<u>Развитие минерально-сырьевой</u> базы России

Ю.Н. Нерадовский Ю.Л. Войтеховский

АТЛАС СТРУКТУР И ТЕКСТУР КРИСТАЛЛИЧЕСКИХ СЛАНЦЕВ БОЛЬШИХ КЕЙВ

> Апатиты 2013

Нерадовский Юрий Николаевич. Окончил ГРФ ЛГИ (1967). К.г.-м.н. (1976), ведущий научный сотрудник Геологического института КНЦ РАН (2008). Научный профиль: общая и генетическая минералогия, технологическая минералогия медно-никелевых и кианитовых руд.

Войтеховский Юрий Леонидович, окончил ГРФ ЛГИ (1982) и Матмех СПбГУ (1994), стажировался в Центре геостатистики при Высшей национальной горной школе Парижа (1996-1997), д.г.-м.н. (1998), председатель Кольского отделения РМО (2003), профессор (2006), директор Геологического института КНЦ РАН (2007), председатель комиссии РМО по истории (2010). Научный профиль: геология и минералогия рудных месторождений; математические методы в естественных науках.

РОССИЙСКАЯ АКАДЕМИЯ НАУК КОЛЬСКИЙ НАУЧНЫЙ ЦЕНТР ГЕОЛОГИЧЕСКИЙ ИНСТИТУТ

Развитие минерально-сырьевой базы России

Нерадовский Ю.Н., Войтеховский Ю.Л.

АТЛАС СТРУКТУР И ТЕКСТУР КРИСТАЛЛИЧЕСКИХ СЛАНЦЕВ БОЛЬШИХ КЕЙВ

АПАТИТЫ, 2013

УДК 549.613:553.61 (470.21) ISBN 978-5-902643-22-7

Нерадовский Ю.Н., Войтеховский Ю.Л. Атлас структур и текстур кристаллических сланцев Больших Кейв – Апатиты: Изд-во К & M, 2013. – 116 с.

Большие Кейвы на Кольском п-ове – крупнейшая в мире провинция кианитовых руд стратегического значения, потенциальный источник алюминия и целого ряда попутных элементов. Технология переработки руд существенно определяется минеральными парагенезисами, структурами и текстурами. Их систематической характеристике и посвящён «Атлас...», составленный в рамках программы № 27 президиума РАН «Фундаментальный базис инновационных технологий прогноза, оценки, добычи и глубокой комплексной переработки стратегического минерального сырья, необходимого для модернизации экономики России» и интеграционного проекта «Развитие минерально-сырьевой базы России: освоение новых источников высокоглиноземистого сырья (минералы группы силлиманита и пирофиллита, каолины, золы и др.)».

Предназначено геологам широкого профиля и студентам геологических специальностей.

Рекомендовано к печати ученым советом Геологического института КНЦ РАН

Компьютерная верстка Л.Д. Чистякова, Н.А. Мансурова

Электронная версия: http://geoksc. apatity.ru/publications

© Авторы, 2013 © ФГБУН Геологический институт КНЦ РАН, 2013

Кейвские кристаллические сланцы представляют собой уникальное с научной и практической точек зрения скопление глинозема. Большие Кейвы – крупнейшая в мире кианитовая провинция. На площади около 2000 км² здесь сосредоточено 90 % разведанных запасов высококачественных кианитовых руд России: до глубины 100 м – 966 млн. т. ресурсы – 11 млрд. т. запасы кианита – 338 млн. т. ресурсы – 2 млрд. т [Бельков и др., 1974; Недра северо-запада..., 2003]. Громадные ресурсы глинозема, сопоставимые с кианитовыми, добавляют ставролитовые сланцы [Войтеховский и др., 2010]. В последние годы установлено присутствие в них значительных объёмов РЗЭ [Войтеховский и др., 2011]. Кианит и ставролит – ценное минеральное сырье для металлургической и огнеупорной промышленности. Кианитовые руды в перспективе могут стать альтернативой бокситам в производстве металлического алюминия. Значительно возрастает значение кианитовых руд как комплексного сырья для производства цветных металлов, золота, титана и РЗЭ. В различных отраслях ведутся интенсивные поиски эффективного использования кианита. В связи с этим важно всестороннее исследование кристаллических сланцев, анализ их структур, текстур и минеральных парагенезисов. Предлагаемый атлас нацелен именно на это.

Высокоглиноземистые сланцы входят в состав кейвской серии и занимают общирную территорию кейвского мегаблока плошалью около 15000 км². На современном срезе они сохранились в виде узких полос по его северной и южной окраинам – возвышенности Больших и Малых Кейв. Первые представляют главный интерес. Здесь сланцы смяты в синклинальную структуру протяженностью около 200 км и шириной до 14 км. Мощность продуктивной толщи до 1 км. В её пределах выявлено 27 месторождений кианита: Воргельурта, Тавурта, Тяпыш-Манюк, Червурта, Большой Ров, Безымянная, Кырпурта, Ягельурта, Шуурурта и другие. Образования кейвской серии рассматриваются «как породы осадочного чехла платформы или переотложенные коры химического выветривания, фиксирующие древнейший этап корообразования» [Пожиленко и др., 2002]. Накопление осадков произошло около 2871±15 млн. лет назад, а их метаморфические преобразования в кристаллические сланцы – около 2.0-1.8 млн. лет назад [Петров, 1999; Баянова и др., 2000]. Важная особенность высокоглиноземистых сланцев Кейв – их насыщенность углеродом. Генетическая связь углерода с осадочными породами докембрия подтверждает их седиментогенную природу [Сидоренко, Сидоренко, 1975] и характеризует появление фотосинтезирующих организмов в архее [Углеродистые отложения..., 1988].

Атлас структур и текстур кристаллических сланцев кейвской серии – систематизированный материал, базирующийся на трудах предшествующих исследователей Кейв: Н.А. Кумари, Л.Я. Харитонова, П.В. Соколова, И.В. Белькова, В.Г. Гаскельберга, Д.Д. Мирской и др. – и на современных исследованиях кианитовых, ставролитовых, силлиманитовых и гранатовых сланцев, выполненных авторами. Основная цель атласа – показать основные черты минералогии кристаллических сланцев Кейв. В нем приведены результаты исследования онтогении кианита и ставролита, а также минералов – носителей РЗЭ, Аs и Bi. Сделана попытка на примере текстур и структур показать признаки происхождения сланцев, углерода, серы и РЗЭ.

Атлас подготовлен в рамках программы № 27 президиума РАН «Фундаментальный базис инновационных технологий прогноза, оценки, добычи и глубокой комплексной переработки стратегического минерального сырья, необходимого для модернизации экономики России», руководитель акад. РАН Д.В. Рундквист, и интеграционного проекта «Развитие минерально-сырьевой базы России: освоение новых источников высокоглиноземистого сырья (минералы группы силлиманита и пирофиллита, каолины, золы и др.)», руководитель акад. РАН В.А. Коротеев.

Авторы благодарят к.г.-м.н. С.М. Карпова и к.г.-м.н. А.К. Шпаченко, принявших участие в полевых работах на кианитовых месторождениях Больших Кейв.

Глава 1

ОБЩИЕ СВЕДЕНИЯ О КРИСТАЛЛИЧЕСКИХ СЛАНЦАХ БОЛЬШИХ КЕЙВ

1.1. Стратиграфическое положение

Кейвская серия пород является важнейшим рубежом докембрия и относится большинством исследователей к верхнему архею [Галахов, 1948; Бельков, 1963; Объяснительная записка..., 1994], но в современной шкале докембрия [Состояние изученности..., 2008] она не нашла места (табл. 1). Общие вопросы положения кейвской серии в сводной стратиграфической схеме кольского докембрия рассмотрены в Объяснительной записке к геологической карте северо-восточной части Балтийского щита масштаба 1:500000 [Объяснительная записка..., 1994] и позднее уточнены в изданиях [Геологическая карта..., 1996; Геология рудных районов..., 2002].

Эонотема	Эратема	Прибли- зительный возраст границ, (млн. лет)	Региональная шкала: надгоризонты	Кольский регион
Верхнеархейская (лопийская) L	Верхнелопийская L ₃	2550 2800 3000 3200	Гимольский Gm	Поросозерская серия Кейвская серия
	Среднелопийская L ₂		Контоккский Кt	Колмозерская серия
	Нижнелопийская L ₁			

Таблица 1. Расчленение верхнего архея в общей стратиграфической шкале докембрия России [Состояние изученности..., 2008].

Парагенезис высокоглиноземистых, графитовых и кварцитовидных гнейсов широко распространен на всех докембрийских щитах и платформах [Салоп, 1973]. На Воронежском массиве, где наиболее детально исследовано их стратиграфическое положение, установлено, что образование высокоглиноземистых сланцев предшествовало железистым кварцитам КМА, местами они переслаиваются и отнесены к отложениям древнего осадочного чехла, перекрывающего архейский кристаллический фундамент [Холин и др., 1998; Сиротин, Лебедев, 2004]. Условия накопления глиноземистых и железистых пород определены как морские внутриконтинентальные с периодической сменой морского и мелководного лагунного режимов литогенеза. Соотношения кейвских сланцев с железистыми кварцитами центрально-кольского блока позволяют предполагать [Бельков, 1960], что они также отражают условия формирования земной коры в верхнем архее до образования железистых кварцитов, характеризовавшиеся глубоким разложением гранитных пород, размывом и отложением высокоглиноземистых осадков в мелководных бассейнах с частым колебанием уровня.

Кейвская сланцевая серия лучше всего представлена в северной части кейвского блока (рис. 1.1.1) комплексом кианитовых, ставролитовых, мусковитовых графитизированных сланцев с полевым шпатом и гранатом. Сланцы образуют синклинальную структуру северо-западного простирания (Большие Кейвы), в которой согласно залегают с амфиболитами и подстилающими гнейсами. Общее простирание кейвского синклинория СЗ-ЮВ 290-300 °, в этом направлении располагается и простирание складок. Наиболее подробно стратиграфическое расчленение сланцевого комплекса рассмотрено в работах [Соколов, 1958; Бельков, 1963]. Стратиграфия всего комплекса пород в районе Больших Кейв в настоящее время остается неясной. Ранее [Бельков, 1963] полная стратиграфическая схема кейвской серии включала червуртскую, вы-

Рис. 1.1.1. Геологическая карта Кейвского блока [Геологическая карта, 1996].

1 – субщелочные граниты; 2 – габбро, габбро-лабрадориты, основные породы; 3 – метагравелиты, метапесчаники, кварциты; мусковит-кварцевые, плагио-кианитставролитовые, кианитовые, ставролит-кианитовые, силлиманитовые с гранатом углеродистые сланцы; 4 – лейкограниты, гранодиориты; 5 – кислые, средние метавулканиты / гастингситовые гнейсы; 6 – слюдяные, гранат-слюдяные парагнейсы и сланцы, конгломераты, кварциты; 7 – гранодиориты, тоналиты, плагиограниты / эндербиты; 8 – комплекс основания: биотитовые, амфибол- и пироксен-биотитовые гнейсы, мигматиты, тоналито-гнейсы, гранодиорито-гнейсы, амфиболиты; 9 – комплекс пород Имандра-Варзуги; 10 – комплекс пород Мурманского блока; 11 – геологические границы; 12 – тектонические нарушения. хчуртскую и песцово-тундровую свиты, в ней выделялось семь пачек. Сегодня в разрез кейвской серии включаются только пачки А, Б, В и Г, коррелирующиеся с червуртской и выхчуртской свитами (рис. 1.1.2). Пачка Д относится к песцово-тундровой свите [Бельков, 1981; Петров, 1999], Е и Ж – к варзугской серии нижнего протерозоя [Геология рудных..., 2002].

В тектонике северного и южного крыльев кейвского синклинория имеются значительные различия. Северное крыло на всем протяжении опрокинуто к югу под углами 60-80 °, граница с вмещающими породами прямолинейная, складки сильно вытянутые, сжатые, изоклинальные, протяженные. В южном крыле залегание пород нормальное синклинальное, углы падения пологие 30-45 °, граница с вмещающими породами извилистая, складки замкнутые, открытые. Эти особенности тектоники существенно повлияли на распространение различных типов кианитовых руд [Бельков, 1963].

Среди кристаллических сланцев располагаются многочисленные прослои метаморфизованных ультраосновных и основных пород, представленных амфиболитами, мощностью от долей метра до 250 м. Морфология тел различна, в пластичных сланцах они залегают согласно, в менее пластичных – занимают пластово-секущее положение. Происхождение амфиболитов большинством исследователей рассматривается как интрузивное, реже как первично-осадочное [Носиков, 1960].

Исследования состава кристаллических сланцев показали, что они являются продуктами метаморфического преобразования дифференцированной при седиментации серии осадочных пород. В них развито тонкое ритмичное переслаивание, характерное для отложений годовых и сезонных циклов одной фации пород, и ритмичное переслаивание пород различных литологических фаций от глин до песчаников и карбонатов, связанное с колебаниями уровня морского бассейна. Периоды отложения тонкозернистых фаций характеризуются накоплением высокоглиноземистого вещества, а периоды накопления грубозернистых фаций отличаются более высоким накоплением кремнезема. Характерна ассоциация глинозема с углеродом, титаном, серой и редкими землями.

В истории формирования осадочной толщи выделяются четыре ритма, объясняющие связь химического состава и зернистости пород [Бельков, 1963]. В связи с ними в разрезе кейвской серии наблюдаются четыре уровня высокоглиноземистых сланцев. Наиболее мощный приурочен к пачке Б. Исходный материал представляли пелиты следующего состава: для кианитовых сланцев – каолиновые глины (70-80 об. %) с примесью обломочного кварца (10-20), калиевой гидрослюды (0-25), сульфидов и органического вещества; для ставролито-кианитовых сланцев – каолинит (50-70), калиевая слюда (15-30), примесь обломочного кварца и полевого шпата, железистого хлорита, органического углерода. Исходный материал ставролитовых сланцев пачки Г также представляли пелиты: гидрослюды (30-80), каолинит (10-30), обломки кварца (10-15) и плагиоклаза (10-20), биогенное органическое вещество. Связь глиноземистых отложений с наиболее тонкозернистыми фациями пород указывает на синхронные размывы и переотложения в периоды трансгрессий продуктов глубокого выветривания пород [Белолипецкий и др., 1979].

Рис. 1.1.2. Схема корреляции стратифицированных комплексов синклинория Больших Кейв со сводным разрезом кейвской зоны [Геология рудных районов..., 2002].

Парагенезисы и сланцы: 1-8 – сланцы: 1 – биотитовые; 2 – двуслюдяные; 3 – кварцмусковитовые с биотитом; 4 – гранатовые; 5 – кианитовые; 6 – ставролитовые; 7 – кварциты и кварц-мусковитовые сланцы; 8 – двуслюдяные с гранатом и ставролитом; 9 – известняки и доломиты; 10 – карбонатные метапсаммиты; 11 – силициты; 12 – конгломераты; 13 – метабазальты, метадиабазы; 14 – метатуфы пикритовых порфиритов; 15-19 – ортоамфиболиты и ортогнейсы по: 15 – туфам кислых вулканитов; 16 – риодацитам и дацитам; 17 – андезитам и туфам; 18 – андезито-базальтам и туфам; 19 – базальтам и туфам; 20 – перерывы; 21 – наиболее крупные пластовые интрузии основных пород.

1.2. Характеристика разреза

В основании кейвской серии залегают гнейсы лебяжинской свиты (рис. 1.2.1). Их возраст по данным U-Pb датирования 2871±15 млн. лет [Беляев и др., 2001]. Гнейсы представляют собой мощную (1.3-1.5 км) толщу глубоко метаморфизованных аркозовых песчаников. Они имеют разнообразный состав и представлены биотитовыми, гранато-биотитовыми и амфиболовыми разновидностями. Маркирующие горизонты отсутствуют. В основании разреза установлены конгломераты, лежащие на плагиогранитах и гранодиоритах [Батиева, Бельков, 1958].

Рис. 1.2.1. Стратиграфическая колонка сланцевого комплекса [Бельков, 1963].

Червуртская свита

Гнейсы постепенно, на расстоянии 1-2 м, переходят в кристаллические сланцы пачки А. В приконтактовой зоне встречаются биотитовые гнейсы с галькой кварца и ставролитом. В зоне контакта наблюдается чередование тонких полос сланцев и гнейсов. В отдельных участках контакт тектонизирован и окварцован. Сланцы пачки А, несмотря на небольшую мощность, не превышающую 30 м, прослеживаются непрерывно в основании сланцевого комплекса, залегая на гнейсах и подстилая кианитовые сланцы пачки Б. В пачке А преобладают гранатсодержащие породы. С ней связаны все крупные месторождения абразивного граната [Бельков, 1957]. В основании пачки залегают мусковитобиотито-гранатовые и мусковито-гранатовые сланцы, выше сменяющиеся ставролито-гранатовыми сланцами с повышенным содержанием кварца. Среди ставролитовых сланцев, особенно в северном крыле, встречаются обогащенные углеродом разности. В верхней части пачки развиты хлоритовые сланцы. Предполагается происхождение пород пачки А за счет углисто-глинистых кварцевых песчаников.

На мусковито-гранатовых сланцах пачки А залегает мощная пачка Б, сложенная преимущественно кианитовыми сланцами. Она без перерыва, почти на 150 км, прослеживаются на всем протяжении Больших Кейв. К ней приурочены все месторождения кианита. Различают кианитовые и ставролито-кианитовые сланцы. Среди первых по морфологическим разновидностям кианита выделяются разновидности, не имеющие стратиграфического значения. При этом в разрезе и по простиранию пачки Б имеются существенные различия в распространении ставролита и силлиманита. Появление ставролита связано с увеличением железистости пород, развитие силлиманита – с воздействием гранитов. Содержание ставролита увеличивается в верхних частях разреза и восточной части Больших Кейв, количество силлиманита, напротив, увеличивается в западной части структуры. Мощность всей пачки колеблется от 25 до 325 м. Полный разрез включает: переходный пласт филлитовидных сланцев слюдянокианитового состава (5-8 м); нижний пласт кианитовых сланцев (25-100 м); нижний пласт ставролито-кианитовых или слюдяно-плагиоклазовых сланцев; второй пласт кианитовых сланцев (0-150 м); верхний пласт ставролитокианитовых или слюдяно-плагиоклазовых сланцев. Иногда между толщами А и Б залегает пласт амфиболитов. Первичные осадки, за счет которых образовались сланцы толщи Б, представляли устойчивую на большой территории высокоглиноземистую фацию существенно каолиновых пород, возникших в результате химического выветривания бедных железом пород, достигших стадии каолинового разложения.

Выхчуртская свита

На кианитовых сланцах пачки Б залегают мусковитовые кварциты пачки В мощностью 30-130 м. Благодаря резкому литологическому отличию от подстилающих ставролито-кианитовых и покрывающих плагиоклазо-кианитоставролитовых сланцев они выполняют роль маркирующего горизонта. В зоне перехода с обеих сторон наблюдаются прослои сланцев промежуточного состава – ставролито-мусковитовые, двуслюдяные и др. мощностью 1-15 м, коегде по контакту залегает пласт амфиболита. Пачка В однородна по составу: 85-90 об. % кварца, 8-12 % мусковита, примесь полевого шпата и других минералов. В западной части Больших Кейв мусковитовые кварциты залегают на гнейсах и вверх по разрезу переходят в гранато-мусковитовые сланцы. Первичный состав пород отвечает кварцевым пескам с примесью глинистого и углеродистого материала.

Пачка мусковитовых кварцитов перекрывается породами пачки Г, сложенной преимущественно плагиоклазо-ставролитовыми сланцами. Переход от пачки В к пачке Г постепенный в интервале нескольких метров. По контакту иногда располагается пласт амфиболита. Полная мощность пачки Г достигает 250 м. Состав пород однообразен, условно выделяются два горизонта: нижний – кианитоплагиоклазо-ставролитовые сланцы и верхний – плагиоклазо-ставролитовые сланцы. В западной части Больших Кейв плагиоклазо-ставролитовые сланцы переходят в силлиманито-ставролито-слюдяные сланцы. Особенность пород пачки Г – широкое развитие порфиробластических структур, в которых ставролит, кианит и плагиоклаз образуют крупные кристаллы.

Глава 2

КРИСТАЛЛИЧЕСКИЕ СЛАНЦЫ

2.1. Кианитовые сланцы

Кианитовые сланцы слагают пачку Б червуртской свиты, составляющую около 40 % разреза кейвской серии. По минеральному составу в ней выделяются три группы сланцев: кварцево-серицитовые, кианитовые, ставролитокианитовые и слюдяно-плагиоклазовые (рис. 1.2.1).

Кварцево-серицитовые сланцы слагают нижние части пачки Б и характеризуются тонкой ритмичной слоистостью, подчеркнутой неоднородным распределением кварца и углеродистого вещества. Вверх по разрезу слоистость в них становится неравномерной, в отдельных прослоях появляются порфиробласты кианита. Главные минералы – кварц и серицит, в переменных количествах присутствуют кианит, ортит, рутил, ильменит, графит. Кварцево-серицитовые сланцы являются результатом изменения кианитовых сланцев на контакте с амфиболитами [Мирская, 1960].

Кианитовые сланцы делятся на собственно кианитовые, слагающие нижний горизонт пачки Б, и ставролито-кианитовые, слагающие её верхний горизонт. Между ними иногда располагаются тела амфиболитов. Нижняя часть пачки Б мощностью от 10 до 120 м составляет «продуктивный пласт», с которым связаны основные месторождения кианита. Сланцы с кианитом встречаются ниже и выше пласта в разрезе серии. По вещественному составу некоторыми авторами (В.В. Носиков, А.Д. Хинейко и др.) в пачке Б выделяется от 3 до 10 горизонтов и подгоризонтов. По морфологическим типам кианита выделяются три разновидности сланцев: тонкопризматические, параморфические и конкреционно-параморфические, а также ряд локально развитых разновидностей – параллельно-волокнистые, сноповидные, радиальные и призматическизернистые. Нередки сочетания нескольких морфотипов кианита. По размерам агрегатов кианита выделяются крупно- и мелкопараморфические, крупно- и мелкоконкреционные. Для кианитовых и ставролито-кианитовых сланцев характерен черный цвет (из-за присутствия графита), сланцеватая, плойчатая и массивная текстуры. Структура порфиробластическая, сложенная агрегатами кианита, ставролита, плагиоклаза и ильменита. Основная ткань породы – мелкозернистый агрегат кварца, мусковита, графита и рутила гранобластовой, лепидобластовой или пойкилобластической структуры.

Главные минералы кианитовых сланцев: кианит (30-65 об. %), кварц (40-70), мусковит (0-15); второстепенные: ставролит, ильменит, рутил, монацит, биотит, гранат, плагиоклаз, эпидот, хлорит, циркон, апатит и графит. В ставролитокианитовых сланцах главными минералами являются: кианит (10-25), кварц (50-60), мусковит (1-10), ставролит (1-15), плагиоклаз (2-8); второстепенными: ильменит, рутил, монацит, биотит, гранат, эпидот, хлорит, циркон, апатит, графит. Несмотря на разнообразие типов кианитовых сланцев их химический состав меняется весьма слабо, особенно по главным элементам (табл. 2.1.1). Это подтверждает мнение о том, что сланцы показывают редкий пример устойчивости на большой площади состава первичных осадков, представляющих высокоглиноземистую фацию богатых каолином пород, и их инертность в ходе регионального метаморфизма. Но в отношении малых элементов этого сказать нельзя. Крупноконкреционные сланцы обогащены РЗЭ по сравнению с мелкоконкреционными [Войтеховский и др., 2011]. Можно полагать, что РЗЭ подвижны в процессах, приведших к укрупнению морфотипов кианита.

Элементы	Тип руды					
	1(4)	2(7)	3(4)	5(1)		
SiO ₂	<u>60.00-64.32</u> 61.98	<u>54.75-66.30</u> 60.63	<u>60.25-63.19</u> 61.24	60.84		
TiO ₂	<u>0.94-1.21</u> 1.12	<u>0.66-1.14</u> 0.96	<u>1.07-1.25</u> 1.16	1.19		
Al ₂ O ₃	<u>27.98-31.54</u> 28.84	<u>28.83-35.56</u> 32.17	<u>30.86-39.98</u> 33.19	31.41		
Fe ₂ O ₃ + FeO	<u>0.68-2.07</u> 1.27	<u>0.31-2.19</u> 1.21	<u>0.57-2.28</u> 1.46	1.25		
MgO	<u>0.02-0.40</u> 1.67	<u>0.03-0.78</u> 0.29	0.17-0.18	0.23		
CaO	<u>0.26-0.50</u> 0.31	<u>0.04-1.25</u> 0.43	<u>0.19-0.52</u> 0.35	0.34		
Na ₂ O+ K ₂ O	<u>1.86-2.41</u> 2.15	<u>0.39-2.63</u> 1.26	<u>0.83-1.98</u> 1.20	1.60		
P ₂ O ₅	<u>0.08-0.17</u> 0.09	(0.02-0.11)	(0.17-0.30)	0.19		
MnO	(0.007)	(0.04)	(0.01-0.05)	-		
H_2O+H_2O+	(0.09-1.01)	(0.04-1.18)	(0.05-0.2)	0.09		
Cr ₂ O ₃	(0.023-0.027)					
ппп	(1.31-2.12)	$\frac{1.1-3.65}{2.45}$	$\frac{1.19-3.66}{2.79}$	3.28		
SO ₃	(0.05-0.07)					
S	(0.41-0.97)	(0.24)	(0.2-0.36)	-		
C	(0.59-1.14)	(1.1-1.74)				
Сумма	<u>99.13-100.98</u> 99.93	<u>99.39-100</u> 99.91	$\frac{100.41-100.97}{100.63}$	100.42		

Таблица 2.1.1. Химический состав кианитовых руд разных типов.

Примечание: номера типов по табл. 2.1.2; прочерк – не обнаружено, в скобках – число проб и единичные определения, пустая клетка – нет данных.

Для кианитовых сланцев характерно сочетание элементов первичной осадочной и метаморфической текстур. Широко представлены параллельные текстуры слюдистых минералов, кианита и рутила. Характерно развитие фенокристов плагиоклаза, более крупных, чем другие минералы, захват ими включений ранних минералов и основной ткани горной породы с сохранением плойчатости и образованием гелицитовой структуры [Половинкина, 1966]. Неоднократный метаморфизм кианитовых сланцев и контактовые воздействия интрузий основного и кислого состава создали условия для различных механизмов кристаллизации и образования нескольких морфогенетических типов кианита, кварца, мусковита. Особенно тесную связь морфологии агрегатов и сланцеватости пород проявляет кианит (рис. 2.1.1).

Рис. 2.1.1. Морфология кристаллов и агрегатов кианита в зависимости от структуры: а) в конкреционных, параморфических и порфиробластических сланцах; б) в радиально-волокнистых и радиально-лучистых сланцах; в) в сноповидно-волокнистых и призматически-зернистых кианитовых сланцах [Бельков, 1963].

Выделяются пять разновидностей кианита [Кумари, 1937; Борисов, 1940; Бельков, 1958, 1962, 1963]: *1*. Параморфозы кианита по андалузиту (хиастолиту); *2*. Тонкопризматический кианит ориентированных агрегатов; *3*. Тонковолокнистый кианит конкреционных агрегатов; *4*. Идиобластический кианит из зон контакта с метабазитами; *5*. Кианит из зон повторной перекристаллизации. Текстурные и структурные признаки кианита являются основой для классификации промышленных типов руд кейвских кианитовых месторождений (табл. 2.1.2, рис. 2.1.2-2.1.50).

Классификация кианитовых руд кейвских месторождений наиболее полно изложена в [Бельков, 1963] и включает 5 типов и 7 разновидностей (табл. 2.1.2). Позднее [Бельков, 1981] она была скорректирована. В основу положено разделение руд по текстурным и структурным признакам кианита, которые и определяют технологические свойства руд – агрегатное состояние и формы выделений, наличие или отсутствие примесей, соотношения с вмещающей тканью породы, содержание кианита в руде, размер выделений. Принято деление руд на богатые (> 40 об. %), средние (40-30), бедные (30-20) и убогие (< 20).

		Преобладающие содержания кианита			
Тип	Разновидность	богатые	средние	бедные	убогие
D	Параллельно-волокнистая	-	++	+	+
Волокнисто-игольчатыи	Сноповидно-волокнистая	+	++	-	-
(тонкопризматическии)	ій) Радиально-волокнистая + ++ +		+	_	
Параморфический	Крупнопараморфическая Мелкопараморфическая	- +	++ ++	++ +	+ -
TC V	Крупноконкренионная	+	++	++	-
Конкреционный Мелкоконкреционная - +		++	-		
Порфиробластический	-	-	++	++	++
Конкреционно- параморфический	-	-	++	+	+

Таблица 2.1.2. Классификация руд кейвских кианитовых месторождений [Бельков, 1963, 1981].

Примечание: ++ наиболее типично, + менее распространено, - практически отсутствуют.

Рис. 2.1.2. Параллельно-волокнистая текстура волокнисто-игольчатых руд. Распределение волокнистых агрегатов кианита совпадает с плоскостью слоевого кливажа. [Бельков, 1958].

Рис. 2.1.3. Параллельная и косая ориентировка игольчатых агрегатов кианита в плоскости рассланцевания кианитовых сланцев [Бельков, 1958].

Ведущая роль в распределении морфотипов кианита в сланцах принадлежит тектонике (рис. 2.1.1). Неодинаковые соотношения во времени и пространстве деформаций пород и кристаллизации кианита обусловили возникновение его нескольких морфогенетических разновидностей, играющих разную роль в формировании месторождений. Наибольший объем составляют волокнисто-игольчатые руды (61.9 об. %), менее развиты параморфические (35.7), еще менее – конкреционные (2.4). Распространение типов контролируется структурой продуктивной толщи. Волокнисто-игольчатые руды характерны

Рис. 2.1.4. Косая ориентировка игольчатых агрегатов кианита в плоскости рассланцевания кианитовых сланцев [Бельков, 1958].

для кианитовых сланцев южного крыла кейвской синклинали, параморфические – для сланцев северного крыла, конкреционные встречаются в обоих крыльях (рис. 2.1.51).

Сложный вопрос в генезисе кианитовых руд – взаимоотношение кианита с андалузитом. Предполагается, что параморфический кианит образован по андалузиту в результате полиморфного превращения при изменении параметров регионального метаморфизма. Но вопрос остается дискуссионным, поскольку андалузита в кейвских

Рис. 2.1.5. Линзовидно-линейная текстура сланца, обусловленная субпараллельной ориентировкой игольчатых кристаллов кианита (черное) вдоль плоскости сдвига. Большой Ров. Штуф [Бельков, 1958].

сланцах не обнаружено, а возможность указанного полиморфного превращения сомнительна ввиду резких различий в их физических свойствах [Питчер, 1967]. У исследователей нет однозначного мнения о месте андалузита в истории метаморфизма кейвской структуры [Бельков, 1963; Петров, Глазунков, 1987].

В связи с этим, в атласе показаны структуры и текстуры, которые иллюстрируют генетическую концепцию образования

морфотипов кианита при отсутствии первичного андалузита. Генерации кианита и сопутствующих минералов установлены на основе возрастных взаимоотношений минералов в кианитовых сланцах месторождений Новая Шуурурта и Тяпш-Манюку. Для определения возраста минералов использованы методы текстурно-структурного анализа [Бетехтин и др., 1958; Юшко, 1966; Чесноков, 1966]. По нашим данным, в кианитовых сланцах имеют место три генерации кианита. С каждой связана определенная минеральная ассоциация (табл. 2.1.3).

К первой генерации относится кианит первичных конкреций, встречающихся среди графитомусковито-кварцевой основной массы (субстрата) слабоизмененных сланцев. Размеры конкреций 1-6 мм, они состоят из зерен размером менее 0.2 мм. Конкреции участвовали в складкообразовании, поскольку часто находятся в S-образных изгибах сланца, указывающих на вращение (рис. 2.1.52, 2.1.53). Вероятно, кианит-1 образовался на стадиях диагенеза и

Рис. 2.1.6. Плойчатая текстура распределения игольчатых кристаллов кианита (черное) в слюдистой массе кианитового сланца. Штуф [Бельков, 1958].

1	2	3	4
Ранняя	Средняя	Поздняя	Экзогенная
Кианит-1	Кианит-2	Кианит-3	
Кварц-1	Кварц-2	Кварц-3	
Мусковит-1	Мусковит-2	Мусковит-3	
Графит-1	Графит-2	Графит-3	
Рутил-1	Рутил-2	Рутил-3	
Циркон-1	Циркон-2		
Монацит-1		Монацит-2	
Пирротин-1		Пирротин-2	
Петландит-1		Кобальтпетландит	
Халькопирит-1		Халькопирит-2	
	Ортит?		
	Ставролит		
	Биотит		
	Хлорит		
	Ильменит		
	Плагиоклаз		
	Магнетит	Апатит	
		Ксенотим	
		Кобальтин	
		Галенит	
		Молибденит	
		Сфалерит	
		Хоулиит	
		Висмут	
			Гетит
			Пирит
			Марказит
			Виоларит
			Халькозин
			Ковеллин

Таблица 2.1.3. Минеральные ассоциации в кианитовых сланцах Кейв.

Рис. 2.1.7. Плойчатая текстура кианитового сланца с игольчатым кианитом из зоны поперечного смятия [Бельков, 1958].

катагенеза осалочных пород. Объем сохранившихся конкреций невелик, но они играют роль зародышей для кианита-2 в более крупных поздних конкрециях. С кианитом-1 связана ассоциация первичных минералов раннего этапа регионального метаморфизма, присутствующих в субстрате сланцев (табл. 2.1.3): кварц-1, мусковит-1, графит-1, рутил-1, цир-

кон-1, монацит-1, пирротин-1, халькопирит-1 и пентландит-1.

Ко второй генерации относится главная масса кианита, представленного игольчатыми зернами, образующими агрегаты метельчатого, сферического, радиально-лучистого, волокнистого строения (рис. 2.1.54-2.1.56). Кианитом-2 сложены ориентированные радиально-лучистые и конкреционные образования. По объему они слагают значительную часть кианитовых сланцев. Учитывая большой диапазон размеров агрегатов кианита, можно предполагать, что его кристаллизация в разных участках сланцев происходил с разной интенсивностью. Выделение кианита-2 произошло ранее ставролита и плагиоклаза (рис. 2.1.57, 2.1.58). Кристаллизация конкреций кианита-2 происходила в спокойных тектонических условиях, метасоматическим путем с замещением субстрата сланцев. Игольчатая форма кристаллов кианита-2 объясняется тем, что его рост в

Рис. 2.1.8. Плойчатая текстура кианитового сланца с игольчатым кианитом из зоны смятия в параллельно-волокнистой руде. Червурта [Бельков, 1958].

субстрате осложнялся дисперсным графитом, расщеплявшим кристаллы кианита на тонкие иглы (рис. 2.1.59). Это обусловило сферолитовую форму агрегатов кианита и его тесное срастание с графитом. С кианитом-2 ассоциирует группа минералов метаморфического этапа (табл. 2.1.3): вторые поколения кварца, мусковита, графита, рутила, циркона и впервые появляющиеся ставролит, биотит, хлорит, плагиоклаз, ильменит.

Рис. 2.1.9. Сланцеватая текстура осветленной волокнисто-игольчатой руды из переходной зоны от неизмененных сланцев к контактным порфиробластическим плагиоклазоставролито-кианитовым сланцам. Характерно появление осветленных участков вдоль флексурных изгибов пласта. Червурта [Бельков, 1958].

Рис. 2.1.10. Сланцеватая текстура в волокнисто-игольчатой руде. Изогнутые полосы кианита из линейно-ориентированных агрегатов игольчатых кристаллов чередуются с осветленными прослоями кварцево-слюдистого сланца. Большой Ров [Бельков, 1958].

Рис. 2.1.11. Сноповидно-игольчатая текстура волокнистоигольчатой руды. Призматиче-ские кристаллы кианита (черное) образуют сноповидные агрегаты. Червурта, шлиф [Бельков, 1958].

Кианит третьей генерации образует «параморфозы». Он отличается белым или розовым (в свежем сколе) цветом, отсутствием включений графита. Агрегаты кианита-3 представлены пластинчатыми кристаллами, образующими плотные радиально-лучистые сростки (рис. 2.1.17-2.1.19). Форма агрегатов и распределение включений графита в них напоминает фигуры, характерные для хиастолитовой разновид-

ности андалузита. Поэтому рассматриваемые агрегаты многими исследователями относятся к параморфозам кианита по хиастолиту.

По нашим данным, кианит-3 кристаллизовался при активизации трещинной тектоники и гидротермальных растворов, под воздействием которых началась перекристаллизация субстрата, в первую очередь кварца с дисперсными включениями графита (рис. 2.1.60, 2.1.61), и образование «безуглеродистого» светлого кварца. Вмещающие породы с мелкоагрегатным кианитом-3 обладают характерной микробрекчиевой текстурой (рис. 2.1.62). Структуры агрегатов и зерен кианита-3 свидетельствуют, что он рос метасоматически, замещая раз-

дробленный субстрат (рис. 2.1.63, 2.1.64). Образование кианита-3 происходило в условиях перекристаллизации раннего кварца с включениями дисперсного графита в жильный кварц и переходом графита из дисперсной формы в межкристаллическую [Сидоренко, Сидоренко, 1975] (рис. 2.1.60, 2.1.61). В связи с укрупнением зерен графита он не расщеплял кри-

Рис. 2.1.12. Сноповидно-волокнистая текстура волокнистоигольчатой кианитовой руды. Новая Шуурурта [Бельков, 1958].

Рис. 2.1.13. Пятнистая текстура волокнисто-игольчатой кианитовой руды, обусловленная неравномерным распределением радиально-игольчатых и шестоватых агрегатов кианита. Осветленный сланец, Червурта [Бельков, 1958].

сталлы кианита, как дисперсный графит, а входил в них в виде включений или накапливался на фронте кристаллизации (рис. 2.1.65, 2.1.66). В агрегатах кианита-3 графит присутствует в виде включений непосредственно в кристаллах и между зерен, иногда образуя правильные геометрические фигуры, в основном секториальные типа «песочных часов», от центра зарождения по удлинению агрегата.

Структура «песоч-

ных часов» возникает в результате роста крестообразных пучков кристаллов кианита уже на начальной стадии роста «параморфоз». Поэтому практически все мелкие агрегаты кианита-3 имеют зародыш либо креста, либо «песочных часов» (рис. 2.1.67, 2.1.68). Принципиальное отличие хиастолита от «параморфоз» кианита состоит в том, что последние не являются монокристаллами, а

представляют поликристаллические агрегаты. В них отсутствуют признаки уплотнения структуры, которое должно было иметь место в результате перекристаллизации андалузита в кианит. В хиастолите углистое или глинистое вещество располагается по определенным кристаллографическим направлениям: в поперечном разрезе кристалла – в виде черного креста или квадрата, в про-

Рис. 2.1.14. Переходные от радиально-волокнистых к сноповидно-волокнистым структуры агрегатов кианита в волокнисто-игольчатой кианитовой руде. Червурта [Бельков, 1958].

дольном разрезе – в виде параллельных полос [Дана, 1937; Бетехтин, 1950]. В кианитовых агрегатах распределение включений определяется особенностями роста вероподобных пластинчатых и призматических кристаллов. Поэтому распределение углеродистого вещества здесь имеет другие формы, нежели в истинном хиастолите (рис. 2.1.69).

Кианит-3 развит в кейвской структуре неравномерно (рис. 2.1.70). Широко распростране-

Рис. 2.1.15. Спутанно-игольчатая текстура волокнистоигольчатой кианитовой руды: агрегаты кианита, переходные от радиально-волокнистых к сноповидно-волокнистым. Большой Ров [Бельков, 1958].

ны сланцы с параморфозами кианита по андалузиту только в северном крыле. В южном крыле они как первичные образования отсутствуют. По нашему мнению, в породах северного крыла благоприятные условия для кристаллиза-

Рис. 2.1.16. Массивная текстура распределения агрегатов кианита радиально-лучистой структуры (темное) в волокнисто-игольчатой руде. Большой Ров [Бельков, 1958].

ции кианита-3 сложились в связи с тем, что раньше в нем не было кианита. И кварцевый метасоматоз, сопровождавщийся кристаллизацией кианита-3, прошел по субстрату. В южном крыле кристаллические сланцы уже содержали конкреции и ориентированные агрегаты кианита-2. Поэтому кианит-3 наложен на различные морфологические агрегаты. Он, как и другие ранее образованные морфотипы, подвергался изменениям в зонах повторной перекристаллизации и замещался более поздним кианитом.

С образованием кианита-3 ассоциирует большая группа разнообразных по составу минералов (табл. 2.1.3): третье поколение кварца, мусковита, графита и рутила; а также группа сульфидов Fe, Ni, Cu, Pb, Mo Cd: пирротин-2, халькопирит-2, кобальтпентландит, галенит, молибденит, сфалерит и хоулиит. Вместе с сульфидами кристаллизовались кобальтин, самородный Bi, апатит, монацит-2 и ксенотим.

Рис. 2.1.17. (а, б, в). Порфировидная текстура крупнопараморфической кианитовой руды. В сечениях параморфоз кианита (светлое) видна секториальная структура роста. Воргельурта [Бельков, 1958].

Рис. 2.1.18. Секториальная структура роста кианита в крупной параморфозе [Бельков, 1958].

Рис. 2.1.19. Радиально-лучистая структура перекристаллизованного кианита, заместившего кианит параморфозы с сохранением контура [Бельков, 1958].

Рис. 2.1.20. Пятнистая текстура распределения параморфоз (белое) с разросшимся за пределы хиастолита кианитом в крупнопараморфической руде [Бельков, 1958].

Рис. 2.1.21. Параллельно-шестоватая текстура распределения параморфоз кианита (светлое) на выветрелой поверхности параморфической руды [Бельков, 1958].

Рис. 2.1.22. Порфировидная, пальчиковая текстура выделений параморфических агрегатов кианита (белое) на выветрелой поверхности параморфической руды [Бельков, 1958].

Рис. 2.1.23. Порфировидная текстура мелкопараморфических кианитовых руд в изломе. Видны ограненные параморфозы кианита (белое) с включениями углеродистого вещества (темное). Манюк [Бельков, 1958].

Рис. 2.1.24. Пятнистая текстура мелкопараморфической руды с «размытыми» контурами параморфоз [Бельков, 1958].

Рис. 2.1.25. Массивная текстура мелкопараморфической руды с большим содержанием параморфоз с расплывчатыми формами. Манюк [Бельков, 1958].

Рис. 2.1.26. Массивная текстура мелкопараморфической руды с большим количеством параморфоз с размытыми формами [Бельков, 1958].

Рис. 2.1.27. Полосчатая текстура мелкопараморфической руды. Тяпш-Манюк. Колл. Нерадовского Ю.Н.

Рис. 2.1.28. Пятнистая текстура мелкопараморфической руды. Тяпш-Манюк. Колл. Нерадовского Ю.Н.

Рис. 2.1.29. Конкреционная текстура крупноконкреционной руды в обнажении. Видны крупные тела линзовидных конкреций [Бельков, 1958].

Рис. 2.1.30. Конкреционная текстура крупноконкреционной руды: видны овальные тела линзовидных конкреций [Бельков, 1958].

Рис. 2.1.31. Радиально-лучистая текстура крупной шаровидной конкреции. Видны расходящиеся от центра с белым кианитом пучки ветвящихся агрегатов более темного кианита, содержащего углеродистое вещество (светло-серое). Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.32. Сноповидная и фибролитовая текстуры в разрезе крупной конкреции: светлое – игольчатый кианит, темное – кварцево-мусковитовая масса. Единый центр кристаллизации кианита отсутствует. Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.33. Конкреционная текстура мелкоконкреционной руды. Тяпш-Манюк [Бельков, 1958].

Рис. 2.1.34. Пятнистая текстура в разрезе мелкоконкреционной руды. Видны многочисленные неправильные удлиненные (светлые) пятна из тонковолокнистого кианита в темно-серой слюдистой массе. Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.35. Пятнистая текстура в разрезе мелкоконкреционной руды. Видны сложные очертания конкреций без центра кристаллизации (удлиненные светлые пятна из тон-коволокнистого кианита фибролитовой структуры в темно-серой слюдистой массе). Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.36. Пятнистая текстура мелкоконкреционной руды. Видны неправильные удлиненные и овальные (светлые) пятна из тонковолокнистого кианита в темно-серой слюдистой массе. Некоторые конкреции пересекаются жилой кварца (светлый зернистый агрегат). Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.37. Порфиробластовая текстура крупнокристаллического плагио-мусковитокианитового сланца [Бельков, 1958].

Рис. 2.1.38. Линейно-ориентированная сноповидная текстура порфиробластической руды. Агрегаты идиобласт кианита (темное) в слюдистой массе (светлое). Зона приконтактового изменения вблизи метабазитов. Восточная Шуурурта [Бельков, 1958].

Рис. 2.1.39. Радиально-лучистая текстура порфиробластической руды. Видны лучистые агрегаты идиобласт кианита [Бельков, 1958].

Рис. 2.1.40. Брекчиевидная текстура порфиробластической руды. Темное – обломки перекристаллизованного игольчатого кианита [Бельков,1958].

Рис. 2.1.41. Параллельно-шестоватая текстура порфиробластической руды. Темное – идиобласты кианита в слюдистой массе. Приконтактовые сланцы, Червурта [Бельков, 1958].

Рис. 2.1.42. Порфиробластовая текстура в кианитовых сланцах, приконтактовых с метабазитами. Идиобласты кианита крупных размеров, г. Колокольная [Бельков, 1958].

Рис. 2.1.43. Пятнистая текстура конкреционно-параморфической руды. Развитие конкреционных агрегатов кианита (черное) за счет параморфоз (белое). Восточная Шуурурта, [Бельков, 1963].

Рис. 2.1.44. Радиально-лучистая и сноповидная текстуры конкреционно-параморфичес-кой руды. Замещение белого кианита параморфоз черным фибролитовым кианитом конкреционных агрегатов [Бельков, 1958].

Рис. 2.1.45. Конкреционно-параморфическая текстура кианитовй руды. Видны округлые конкреции и бруски параморфоз кианита. Воргельурта [Бельков, 1958].

Рис. 2.1.46. Пятнисто-порфировидная текстура конкреционно-параморфической кианитовой руды. Белое – параморфозы кианита, между ними кварцево-слюдистая масса с темными пятнами конкреций кианита. Безымянное [Бельков, 1963].

Рис. 2.1.47. Пятнистая текстура кианитового сланца с параморфическим сноповиднолучистым и конкреционным кианитом. Манюк [Бельков, 1958].

Рис. 2.1.48. Пятнистая текстура кианитового сланца с параморфическим (белое) и конкре-ционным (серое) кианитом в углеродистой кварцево-слюдистой массе (черное). Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.49. Порфиробластовая текстура кианитового сланца с параморфическим (белое) и конкреционным (серое) кианитом в углеродистой кварцево-слюдистой массе (черное). Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.50. Порфиробластовая текстура кианитового сланца с параморфическим (белорозовое) и конкреционным (серое) кианитом в углеродистой кварцево-слюдистой массе (черное). Видны прослойки кварца (белое). Штуф, Новая Шуурурта. Колл. Нерадовского Ю.Н.

Рис. 2.1.51. Схема распределения главных типов кианитовых руд кейвских месторождений. В квадрате – Новая Шуурурта, где отобрана технологическая проба КИ-2009. а – кианитовые и ставролито-кианитовые сланцы пачки Б; б –месторождения кианита; в – месторождения силиманита (на западных Кейвах). Месторождения: 1 – Воргельвурта, 2 – Тавурта, 2 – Тяпшманюку, 4 – Червурта, 5 – Большой Ров, 6 – Безымянная, 7 – Кырпурта, 8 – Ягельвурта, 9 – Шуурурта, 10 – Восточная Шуурурта, 11 – Кайпурта, 12 – Нусса, 13 – Манюк. Типы руд: а-1 – волокнисто-игольчатые, а-2 – параморфические, а-3 – крупноконкреционные.

Рис. 2.1.52. Конкреция кианита-1 в субстрате сланцев. Основная ткань содержит включения рутила-1 и дисперсный графит-1 (черное), кварцевые прожилки. Виден S-образный изгиб сланца и разворот конкреции. Тяпш-Манюк. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.1.53. Пластинчатая структура зерен кианита-1 в конкреции. Тяпш-Манюк. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.1.54. Нарастание кианита-2 на кианит-1 в мелкой конкреции. Новая Шуурурта. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.1.55. Крупная конкреция кианита-2 с ядром кианита-1. Новая Шуурурта. Штуф. Колл. Нерадовского Ю.Н.

Рис. 2.1.56. Гелицитовая структура в конкреции кианита-2 как результат замещения породы агрегатом кианита и сохранения прослоя, обогащенного графитом. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.57. Ставролит нарастает на конкреции ки
анита-2. Шлиф, николи $\times.$ Колл. Нерадовского Ю.Н.

Рис. 2.1.58. Метакристалл плагиоклаза с включением ставролита и конкреции кианита-2. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.59. Расщепленный рост кианита-2 вследствие разделения кристаллов графитом. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.60. Зерна раздробленного субстрата с дисперсным графитом. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.61. Петельчатая (ячеистая) текстура распределения графита (черное) между зернами кварца-3. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.1.62. Микробрекчиевая текстура субстрата с жилами кварца-3 в местах развития параморфоз кианита. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.1.63. Метасоматические прожилки кианита-3 в ассоциации с жилами кварца-3. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.1.64. Блоковое замещение раздробленного субстрата кианитом-3. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.65. Зональное распределение графита в кристалле кианита-3. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.66. Накопление графита на фронте растущего кристалла кианита-3. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.67. «Песочные часы» как форма включений графита в агрегате кианита-3. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.1.68. Крестообразные обособления включений графита в агрегатах кианита-3. Штуф. Колл. Нерадовского Ю.Н.

Рис. 2.1.69. Фигуры распределения углеродистого вещества в хиастолите (негатив, белое) [Дана, 1937; Бетехтин, 1950] и разрезы кианитовых «параморфоз» [Бельков, 1963].

2.2. Ставролитовые сланцы

Ставролитовые сланцы входят в состав пачки Г, которая сложена двумя главными разновидностями пород: плагиоклазо-ставролитовыми и плагиоклазо-кианито-ставролитовыми сланцами (рис. 1.2.1). Для них характерна порфиробластовая структура, обусловленная развитием крупных зерен ставролита, кианита и плагиоклаза в тонкозернистой кварцево-слюдистой основной массе (рис. 2.2.1, 2.2.2). Размеры порфиробластов ставролита достигают 25 см. Сланцы с кианитом отличаются повышенным содержанием графита и ильменита (рис. 2.2.3, 2.2.4). В некоторых прослоях кианит-ставролитовых сланцев встречаются друзовые текстуры (рис. 2.2.5). По контактам пачки Г с кварцитами пачки В и слюдяно-кварцевыми сланцами пачки Д местами расположены пластовые амфиболиты. Они же образуют три пласта внутри пачки Г. В контакте с амфиболитами (метабазитами) ставролитовые сланцы изменены на расстоянии до 20-30 м [Мирская, 1960]. Выделяются до 5 зон изменения по мере удаления от контакта: амфиболовые или амфиболово-эпидотовые роговики; амфиболово-полевошпатовые породы; полевошпатовые породы с кианитом, ставролитом, биотитом и хлоритом; слюдяные порфиробластические ставролитовые сланцы; осветленные порфиробластические ставролитовые сланцы. Нижняя часть разреза толщи Г обогащена кианитом, местами содержит прослои кварцитов, аналогичных мусковитовым кварцитам пачки В.

Рис. 2.2.1. Порфиробластовая текстура сланца с порфиробластами ставролита (темное) и плагиоклаза (белое) в тонкозернистой слюдисто-кварцевой основной массе. Штуф, выветрелая поверхность. Колл. Нерадовского Ю.Н.

В верхней части разреза, вблизи контакта с пачкой Д, плагиоклазо-ставролитовые сланцы переходят в двуслюдяные с гранатом и ставролитом.

Химический состав (масс. %): $SiO_2 - 62.92$, $TiO_2 - 1.94$, $Al_2O_3 - 23.36$, Fe₂O₃ - 1.84, FeO - 1.84, MgO - 0.2, CaO - 0.78, Na₂O - 2.13, Ka₂O - 1.80, P₂O₅ - 0.10, H₂O⁺ - 2.21, H₂O⁻ - 0.26; менее 0.01 %: S, Cu, Ni, Co, Zn, CO, Pb.

Минеральный состав ставролитовых сланцев (об. %): кварц – 30-70, плагиоклаз (олигоклаз-андезин № 29-32) – 5-10, ставролит – 10-25, мусковит – 30-50, рутил – 1-3, ильменит – 2-5, хлорит, монацит, апатит, циркон, графит и др. В кианито-ставролитовых сланцах присутствует кианит до 15-25 %.

Особенность ставролитовых сланцев – образование ставролитом, кианитом и плагиоклазом ограненных кристаллов (идиобластов) в тонкозернистой кварцево-слюдистой основной массе (рис. 2.2.6) и развитие в этих минералах кристаллизационной зональности (рис. 2.2.7-2.2.14). Все кристаллы ставролита обладают тремя зонами, свидетельствующими о трех стадиях кристаллизации ставролитовых сланцев (Нерадовский, 2010, 2011). В кианите и плагиоклазе установлено по две зоны, поскольку эти минералы образовались позднее ставролита (рис. 2.2.15). Ставролит часто сдвойникован в виде косых и прямых крестов (рис. 2.2.16). В сланцах широко развит ильменит, неравномерно рассеянный в виде пластинчатых кристаллов размером до 5 мм. В отдельных прослоях его содержание достигает 10 %. Ильменит частично или полностью замещается рутилом.

Ставролитовые сланцы – перспективное высокоглиноземистое сырье. Уже сейчас имеются разработки, позволяющие использовать их в качестве металлургического сырья. Ведутся исследования по получению из ставролита глинозема.

Рис. 2.2.2. Порфиробластовая текстура сланца с порфиробластами ставролита (темное) и плагиоклаза (белое) в тонкозернистой слюдисто-кварцевой основной массе. Штуф, пришлифованная поверхность. Колл. Нерадовского Ю.Н.

Рис. 2.2.3. Вкрапленность ильменита в кианито-плагио-ставролитовом сланце. Штуф. Колл. Нерадовского Ю.Н.

Рис. 2.2.4. Порфиробластовая текстура кианит-плагио-ставролитового сланца с ильменитом. Штуф, пришлифованная поверхность. Колл. Нерадовского Ю.Н.

Рис. 2.2.5. Порфиробластовая и друзовая текстуры в кианито-плагио-ставролитовом сланце. Штуф, пришлифованная поверхность. Колл. Нерадовского Ю.Н.

Рис. 2.2.6. Метакристаллы кианита и ставролита в ставролитовом сланце. Штуф, пришлифованная поверхность. Колл. Нерадовского Ю.Н.

Рис. 2.2.7. Метакристалл кианита в ставролитовом сланце. Черное – ильменит и хлорит. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.2.8. Зональные метакристаллы кианита в ставролитовом сланце. Черное – ильменит и хлорит. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.2.9. Зональность в продольном сечении кристалла кианита. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.2.10. Зональный кристалл плагиоклаза в субстрате кианито-плагио-ставролитового сланца. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.2.11. Зональный кристалл плагиоклаза в субстрате кианито-плагио-ставролитового сланца. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.2.12. Зональность в продольном сечении кристалла ставролита, видны три зоны. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.2.13. Зональность в поперечном сечении кристалла ставролита, видны три зоны. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.2.14. Тонкая зональность второго типа в кристалле ставролита. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 2.2.15. Кристалл кианита пересекает кристалл ставролита с замещением. Штуф, пришлифованная поверхность. Колл. Нерадовского Ю.Н.

Рис. 2.2.16. Крестообразный двойник ставролита. Колл. Нерадовского Ю.Н.

2.3. Силлиманитовые сланцы

Силлиманитовые и силлиманито-ставролито-слюдяные сланцы развиты в западной части Кейв. Они установлены П.В. Соколовым [Соколов, 1940] и изучены более подробно С.Н. Сусловой [Суслова, 1960]. Разрезы сланцевой толщи в западной и центральной частях Кейв аналогичны, но с отличиями в мощностях и составе пачек (табл. 2.3.1).

Пачки	Западные Кейвы	Мощность, м	Центральные Кейвы	Мощность, м
Г	Силлиманито-ставролитовые сланцы с порфиробластами став- ролита (иногда ослюденелые)	-	Порфиробластические ставролитовые сланцы с кианитом	0-250
в	Кварциты, мусковитовые квар- циты, содержащие силлиманит и ставролит	20-75	Мусковитовые кварциты, кварциты	0-75
Б	Силлиманитовые и слюдяно- силлиманито-ставролитовые сланцы, частично мусковитизиро- ванные. По форме различаются:		Кианитовые и кианито- ставролитовые сланцы. По форме выделяются:	
	 а) сланцы с параморфозами сил- лиманита по кианиту, развивав- шемуся по андалузиту; 	-	 а) сланцы с параморфоза- ми кианита по андалузиту; 	
	б) волокнистые и сноповидные сланцы;		б) волокнистые и сноповидно-волокнистые сланцы;	
	в) белые спутанно-волокнистые силлиманитовые сланцы;	3-90	в) мелкопризматические ставролито-кианитовые сланцы;	25-325
	г) слюдяно-ставролито-силлима- нитовые сланцы с призматически- ми выделениями силлиманита.		 г) конкреционные сланцы; д) радиально-лучистые сланцы. 	
A	Графито-слюдяные сланцы; гранато-слюдяные сланцы (микроклинизированные гранато-слюдяные сланцы до превращения их в микроклино- гранато-слюдяные гнейсы).	10-40	Мусковито-биотито-грана- товые сланцы, мусковито- гранатовые сланцы, став- ролито-гранатовые слан- цы гранатиты, хлоритовые сланцы с графитом.	10-30

Таблица 2.3.1. Сопоставление разрезов кристаллических сланцев Западных и Центральных Кейв.

Под воздействием интрузий щелочных гранитов в западной части кейвской структуры различные сланцы претерпели перекристаллизацию и метасоматоз, преимущественно связанные с прогрессивной стадией контактово-метасоматического метаморфизма [Суслова, 1960]. Кианитовые и кианито-ставролитовые сланцы пачек Б и Г преобразованы в силлиманитовые и слюдяно-силлиманито-ставролитовые сланцы. С приближением к контакту с щелочными гранитами наблюдается вторичное изменение под воздействием гранитов на силлиманитовые сланцы: замещение силлиманита и ставролита мусковитом и биотитом. В толще силлиманитовых сланцев залегают пегматитовые жилы, на контакте обогащенные мусковитом и полевым шпатом. Наблюдаются переходы от неизмененных силлиманитовых или слюдяно-силлиманитоставролитовых сланцев к мусковитовым и двуслюдяным, при этом состав основной ткани сланцев остается постоянным. Наблюдаются замещение мусковита биотитом (калиевый местасоматоз) и каолинизация.

Ставролитовые сланцы пачки Г преобразованы в силлиманито-ставролитослюдяные сланцы. Среди них выделяются мелко- и крупнозернистые разновидности, последние тяготеют к контактам с пегматитовыми жилами. С востока на запад по простиранию толщи сланцев, с приближением к контакту со щелочными гранитами, усиливается замещение силлиманита и ставролита слюдами. Минеральный состав волокнистых и сноповидно-волокнистых слюдяносиллиманитовых сланцев, удаленных от контакта с гранитами (об. %): силлиманит – 10-80, кварц – 10-40, мусковит – 5-20, плагиоклаз – 0-10, биотит, ставролит – 0-6, кианит, ильменит, графит, гранат, циркон, апатит, рутил, каолинит, серицит, хлоритоид. Минеральный состав ставролито-силлиманитово-слюдяных сланцев, наиболее близко расположенных к гранитам: кварц – 10-30, мусковит – 30-70, биотит, плагиоклаз, силлиманит, ильменит, ставролит, апатит, циркон, рутил. Химический состав пород дан в табл. 2.3.2.

Силлиманитовые сланцы хр. Вост. Макзабак характеризуются высоким содержанием силлиманита. Он образует тонковолокнистые агрегаты со светлым розовато-белым оттенком с шелковистым отливом в изломе (рис. 2.3.1 а, б). Среди силлиманита спорадически присутствуют линзы мусковита (рис. 2.3.2 а, б) и сложные линзовидно-чешуйчатые стяжения графита в сочетании со ставролитом, ильменитом и рутилом (рис. 2.3.3 а, б; 2.3.4). Агрегаты графита тонкочешуйчатой структуры достигают размеров 0.5-1.0 см (рис. 2.3.5). В тесном срастании с графитом находятся ильменит (рис. 2.3.6) и монацит (рис. 2.3.7, 2.3.8). В ассоциации с графитом и ильменитом отмечается корунд (рис. 2.3.9, 2.3.10). В ставролите присутствуют ортит, мусковит, апатит и молибденит (рис. 2.3.11, 2.3.12). Вокруг зерен ортита наблюдаются радиально-лучистые зоны растрескивания, по трещинам ставролит замещается хлоритом. В отличие от ставролита в кианитовых сланцах Центральных Кейв, ставролит в силлиманитовых сланцах не содержит включений кварца и не имеет зональности. Химический состав рассматриваемых сланцев обогащен глиноземом (табл. 2.3.2).

Рис. 2.3.1. Тонковолокнистая текстура силлиманитового сланца. Штуф. Здесь и далее в гл. 2.3 – Макзабак. Колл. Нерадовского Ю.Н.

Обр. 580а	Обр. 1054
40.44	69.56
5.11	0.38
37.70	20.27
6.20	1.78
2.51	6.72
0.09	0.27
_	0.43
0.34	0.26
2.58	0.17
_	0.12
0.48	0.12
4.42	-
99.87	100.08
	Обр. 580a 40.44 5.11 37.70 6.20 2.51 0.09 - 0.34 2.58 - 0.48 4.42 99.87

Таблица 2.3.2. Химический состав силлиманитовых сланцев.

Оксиды	Обр. 1276	Обр. 1262	Обр. 264-10
SiO ₂	61.90	66.62	35.5
TiO ₂	1.53	1.39	0.19
Al ₂ O ₃	23.20	20.84	56.21
Fe ₂ O ₃	3.37	2.61	_
FeO	2.05	1.26	1.32
MgO	0.73	0.54	_
CaO	0.23	1.66	0.56
Na ₂ O	0.86	1.92	0.63
K ₂ O	3.23	1.38	2.8
MnO	0.07	0.03	0.01
H ₂ O-	0.31	0.20	0.06
ппп	2.23	1.55	2.48
Сумма	99.71	100.0	99.76

Таблица 2.3.2 (продолжение). Химический состав силлиманито-ставролитовых сланцев.

Рис. 2.3.1. а. Тонковолокнистая структура сил-Рис. 2.3.1. б. Тонковолокнистая структура лиманита. Шлиф, николи ||. Колл. Нерадов- силлиманита. Шлиф, николи ×. Колл. Неского Ю.Н.

Рис. 2.3.2. Текстура слюдистого прослоя в силлиманитовом сланце. Штуф. Колл. Нерадовского Ю.Н.

Рис. 2.3.2. а. Пластинчатая структура му-Рис. 2.3.2. б. Пластинчатая структура мусковита. Шлиф, николи ||. Колл. Нерадов- сковита. Шлиф, николи ×. Колл. Нераского Ю.Н. довского Ю.Н.

Рис. 2.3.3. Пятнистая текстура силлиманитового сланца с выделениями ставролита (справа) и графита (чёрное). Штуф. Колл. Нерадовского Ю.Н.

Рис. 2.3.3. а. Гипидиоморфнозернистая Рис. 2.3.3. б. Гипидиоморфнозернистая струкструк-тура силлиманитового сланца с вытура силлиманитового сланца с выделениделениями ставролита. Шлиф, николи ||. ями ставролита. Шлиф, николи ×. Колл. Колл. Нерадовского Ю.Н.

Рис. 2.3.4. Пятнистая текстура силлиманитового сланца с выделениями графита (чёрное. Колл. Нерадовского Ю.Н.

Рис. 2.3.5. Спутанно-чешуйчатая структура графитового агрегата. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.6. Линзовидно-чешуйчатая структура срастания графита с ильменитом, рутилом и мусковитом. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.7. Сростки графита с монацитом. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.8. Графит-монацитовая жилка. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.9. Включение корунда в графите. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.10. Включение корунда в рутиле. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.11. Включение ортита в ставролите. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.3.12. Включение молибденита в ставролите. Аншлиф. Колл. Нерадовского Ю.Н.

2.4. Гранатовые сланцы

Гранатовые сланцы распространены в западной части Кейв в основании сланцевой толщи на всем протяжении выходов червуртской свиты [Бельков, 1957; Суслова, 1960]. По составу различаются гранато-слюдяные и слюдяноставролито-гранатовые сланцы.

Гранато-слюдяные сланцы представляют собой средне- и крупнозернистую породу с отчетливой сланцеватостью и линейностью, обусловленными расположением пластинок слюды. В основной ткани кварц-слюдяного состава заключены порфиробласты граната и ставролита. Размер порфиробластов граната от 1 до 20 см, распределение неравномерное. Укрупнение граната сопровождается укрупнением слюды. Особенность минерального состава гранато-слюдяных сланцев в Зап. Кейвах – присутствие хлоритоида, образующего пятнистые скопления радиально-лучистой структуры.

Гранато-слюдяные и слюдяно-ставролито-гранатовые сланцы пачки А по мере приближения к щелочным гранитам подвержены метасоматическим изменениям. Они переходят в микроклино-гранато-слюдяные гнейсы за счет привноса щелочей и кремния и выноса железа. Плагиоклаз (№ 32-38) и слюда замещаются микроклином, гранат – биотитом, мусковитом и кварцем. Вблизи границы с гнейсами в сланцах наблюдаются очковые выделения микроклина.
В замковых частях складок за счет собирательной перекристаллизации мелких зерен граната наблюдаются скопления его крупных зерен.

Минеральный состав гранато-слюдяных сланцев (об. %): альмандин – 20-60, кварц – 45-55, мусковит – 20-36, биотит – 1-10, ставролит, плагиоклаз, силлиманит, апатит, циркон, ортит, турмалин. Минеральный состав гранатовослюдяных сланцев с микроклином: гранат – 15-30, кварц – 45-55, мусковит – 10-25, биотит – 5-7, плагиоклаз – 0-10, микроклин – 3-20, ильменит, апатит, циркон, турмалин, ортит, хлорит, хлоритоид, графит, молибденит, рутил. Химический состав пород дан в табл. 2.4.1.

Оксиды	Обр. 451	Обр. 1065	Обр. 445
SiO ₂	70.06	79.13	80.17
TiO ₂	0.41	0.38	0.31
Al ₂ O ₃	13.76	9.30	10.91
Fe ₂ O ₃	1.44	1.98	1.09
FeO	10.47	3.02	0.72
MgO	0.36	-	0.04
CaO	0.09	0.44	0.09
Na ₂ O	0.19	0.16	0.42
K ₂ O	1.77	3.28	3.46
MnO	0.53	0.08	0.05
H ₂ O-	0.13	0.30	1.25
ппп	0.17	1.46	1.22

Таблица 2.4.1. Химический состав гранато-слюдяных сланцев.

Содержания граната в сланцах достигает 60 %. Установлен ряд месторождений абразивного сырья. По мнению И.В. Белькова [Бельков, 1957], они возникли под контактово-метасоматическим воздействием на сланцы щелочных гранитов. Наиболее изучены месторождения: Тахлинтуайв (мощность до 120 м, длина более 500 м, содержание граната 10-40 %, запасы до глубины 50 м около 500000 т), Макзабак (мощность 14 м, длина до 600 м, содержание 10-25 %, запасы до глубины 50 м около 180000 т), Слюдяные сопки (мощность 10 м, длина 850 м, содержание 50-90 %, запасы до глубины 20 м около 300000 т), Березовая (содержания 20-40 %, запасы до глубины 50 м около 1200000 т), Ровозерское (аналогичное Березовой, запасы 450000 т).

Гранатовые сланцы месторождения г. Березовая имеют преимущественно порфиробластовую текстуру (рис. 2.4.1-2.4.3). Порфиробласты граната в кварцево-слюдяной основной массе имеют размеры 5-30 мм. Распределение включений хаотичное, группами или цепочками. Гранат не образует слоев, но спорадически встречаются сгустки кристаллов в плоскости сланцеватости. Зерна до 10-15 мм имеют округлые формы со сложными зазубренными границами, крупные чаще в форме ромбододекаэдров. Мелкие зерна насыщены

Рис. 2.4.1. Порфиробластовая текстура мелкозернистого гранатового сланца. Штуф. Здесь и далее в гл. 2.4 – г. Березовая. Колл. Нерадовского Ю.Н.

включениями кварца, иногда рутила, ильменита (рис. 2.4.4-2.4.7). Крупные кристаллы более однородны, включения сохраняются только в центральных частях. В них наблюдается кристаллизационная зональность, выраженная в очищении внешней зоны (рис. 2.4.8). Сланцеватость породы обусловлена ориентированным расположением слюды и слойками, обогащенными слюдой и кварцем. Кроме мелкозернистого кварца в основной массе породы встречаются линзы кварца вдоль сланцеватости (рис. 2.4.9). В кварце чаще всего концентрируется ильменит и циркон (рис. 2.4.10). Пластинки слюды облекают зерна граната и линзы кварца. Состав сланцев (об. %): кварц – 40-45, мусковит – 15-30. гранат – 30-40, ильменит – 1, циркон – 1, единичные зерна рутила и молибденита.

Рис. 2.4.2. Порфиробластовая текстура мелкозернистого гранатового сланца в сечении поперек сланцеватости. Штуф пришлифованный. Колл. Нерадовского Ю.Н.

ный. Колл. Нерадовского Ю.Н.

Рис. 2.4.3. Порфиробластовая текстура мел- Рис. 2.4.4. Ситовидная структура мелкозеркозернистого гранатового сланца в сечении нистого граната, обусловленная обильнывдоль сланцеватости. Штуф пришлифован- ми включениями кварца. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 2.4.5. Ситовидная структура мелкозер-Рис. 2.4.6. Включения рутила (черное) в нистого граната, обусловленная обильны- гранате. Шлиф, николи ІІ. Колл. Нерадовми включениями кварца. Шлиф, николи ×. ского Ю.Н. Колл. Нерадовского Ю.Н.

Рис. 2.4.7. Включения кварца и рутила в мелкозернистом гранате. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 2.4.8. Зональная структура крупного кристалла граната. Шлиф. Колл. Войтеховского Ю.Л.

Рис. 2.4.9. Линзовидное включение кварца в гранатовом сланце. Штуф. Колл. Нерадовского Ю.Н.

Рис. 2.4.10. Метакристалл ильменита в кварце. Аншлиф. Колл. Нерадовского Ю.Н.

Глава 3 ОСНОВНЫЕ ПОРОДЫ

Среди кристаллических сланцев кейвской серии широко развиты пластовые тела амфиболитов, рассматривающиеся как измененные интрузивные основные породы [Мирская, 1960]. На долю основных пород приходится от 34 до 38 % разреза сланцевого комплекса. Мощности пластовых амфиболитов достигают 170 м в южном и 230 м в северном крыле синклинория Больших Кейв. В разрезе его центральной части зафиксировано 11 пластов амфиболитов. Их суммарная мощность в южном крыле 560 м, в том числе метаги-пербазитов 100 м, в северном крыле – 700 м, в том числе 200 м метагипербазитов. Преобладающее число пластовых тел амфиболитов участвует в строении складчатых структур всех порядков и рассланцованы согласно с вмещающими породами. Поэтому считается, что внедрение основной магмы произошло до главной фазы складчатости осадочной толщи [Бельков, 1963].

В центральной части Больших Кейв присутствуют полевошпатовые, гранатополевошпатовые и тремолитовые амфиболиты (рис. 3.). Полевошпатовые и гранато-полевошпатовые амфиболиты по составу породообразующих и рудных минералов сходны, гранатовые отличаются присутствием рассеянных порфиробластов альмандина размером до 1 см. Тремолитовые амфиболиты отличаются низким содержанием плагиоклаза. Минеральный состав породообразующей части полевошпатовых амфиболитов (об. %): амфиболы (преобладает обыкновенная роговая обманка) – 61.7, плагиоклаз (андезин-битовнит, №№ 45-80) – 29.2, кварц – 5.3, хлорит – 1.2, биотит – 1.4, титанит – 0.6, единичные зерна эпидота, рутила и апатита. Минеральный состав гранато-полевошпатовых амфиболитов: амфибол – 53.7, плагиоклаз – 19.2, гранат – 5.9, кварц – 16.3, хлорит – 2.7, единичные зерна биотита, титанита, эпидота и ортита. Минеральный состав тремолитовых амфиболитов: амфибол (тремолит-актинолит) 55.4, хлорит 38.0, плагиоклаз (№ 75) 6.1, рутил 0.4, титанит 0.1, единичные зерна апатита, биотита и графита.

Вкрапленная минерализация в амфиболитах представлена двумя ассоциациями рудных минералов. К ранней относится вкрапленность, сложенная пирротином, халькопиритом, сфалеритом, ильменитом и магнетитом. Последний содержит продукты распада твердого раствора в виде ильменита и шпинели, пирротин содержит выделения пентландита (рис. 3.1-3.4). К поздней ассоциации относится вкрапленность, сложенная пирротином, халькопиритом, ильменитом, макинавитом и рутилом (рис. 3.5-3.7). В измененной первичной вкрапленности рутил замещает ильменит, появляется макинавит, усложняются границы вкрапленников. Для поздней ассоциации характерно неустойчивое соотношение минералов и мономинеральные агрегаты. Наиболее часто обособленные выделения образует поздний ильменит, активно замещающий ранние сульфиды. В зоне окисления первичные минералы замещены пиритом,

Рис. 3. Залегание пластовых тел амфиболитов в сланцах (геологические разрезы вкрест простирания свиты Кейв). І – разрез через западную часть Центральных Кейв; ІІ – разрез через среднюю часть Центральных Кейв. 1 – амфиболиты – метамандельштейны и амфиболиты – плагиопорфириты; 2 – полевошпатовые амфиболиты; 3 – гранатополевошпатовые амфиболиты; 4 – тремолитовые амфиболиты; 5 – кварцево-слюдяные сланцы пачки Ж; 6 – доломиты и скарны пачки Е; 7 – кварцево-слюдяные сланцы пачки Д; 8 – ставролитовые сланцы пачки Б; 11 – кианитовые сланцы пачки Б; 12 – сланцы пачки А; 13 – гнейсы.

Рис. 3.1. Первичная ассоциация минералов в основных породах: пирротин (замещен пиритом), халькопирит, пентландит, ильменит (замещен рутилом). Аншлиф. Колл. Карпова С.М.

	Ш		4	3	9			3	5		6	6	5	6		1	5	8	4	5
	E		5.2	4.9	5.0		0.5	0.4	0.6	0.7	0.7	1.9	2.6	1.0		2.5	0.0	3.5	0.0	1.5
и Кейв	MnO		0.15	0.25	0.2		0.17	0.11	0.14	0.15	0.1	0.2	0.18	0.15		0.16	0.16	0.09	0.16	0.14
ной част	K_2O		0.21	0	0.11		0	1.31	1.18	0	0.45	0.75	0	0.53		1.01	0.47	0.18	0.98	0.66
централь	Na_2O		0.06	0.29	0.18		0.16	3.65	3.61	0.5	2.3	2.18	0.48	1.84		1.45	1.05	2.66	0.93	1.52
нтрузий 1	CaO		7.05	5.7	6.38		13.14	7.6	7.58	12.29	8.55	7.97	7.54	9.24	Ie	6.41	9.28	3.62	6.04	6.34
стовых и	MgO	питы	22.05	18.73	20.39	ОЛИТЫ	9.26	5.07	4.53	9.01	5.08	4.41	9.49	6.69	фиболитн	4.63	4.68	4.16	4.75	4.56
е для пла	FeO	е амфибо.	8.88	7.93	8.41	ые амфиб	1.18	9.7	9.65	7.23	10.23	9.96	7.13	7.87	товые ам	9.81	10.88	8.29	11.02	10
рактерны	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	ОЛИТОВЫ	0.99	0.43	0.71	ошпатовн	7.03	1.2	1.99	0.19	1.5	1.89	1.09	2.13	левошпа	1.72	1.37	2.23	1.65	1.74
тород, xal	Al_2O_3	Трем	10	12.28	11.14	Полев	16.33	17.17	15.96	15.7	15.26	14.83	14.72	15.71	ранато-по	16.16	16.04	18.45	16.32	16.74
ие типы и	TiO_2		0.35	0.3	0.33		0.23	1.27	1.41	0.41	1.26	1.25	0.41	0.89	Ŀ	1.28	1.5	1.58	1.52	1.47
Главн	SiO_2		45.03	48.57	46.8		51.83	52.15	53.3	53.38	54.27	54.63	56.02	53.65		54.72	54.92	55.2	56.04	55.22
	NeNe		24-28a	52-23д	Cp		23-64a	27-35	58-40	52-236	23-69 ^в	73-43	52-23r	Cp		73-44	28-9	73-45	58-41	Cp

Таблица 3.1. Химический состав пород пластовых интрузий центральной части Кейв.

Рис. 3.2. Коррозионная текстура: первичный вкрапленник сульфидов корродирован силикатами, выделен поздний макинавит. Аншлиф. Колл. Карпова С.М.

марказитом и гидроксидами железа (рис. 3.8). Содержание пирротина достигает 5 %, ильменита 3 %, рутила 2 %. Остальные минералы составляют не более 1 %, спорадически встречаются сфалерит, магнетит, шпинельи, титанит, циркон, макинавит и графита. Характерно замещение раннего ильменита рутилом и широкое развитие вторичного ильменита. Пентландит наблюдается в амфиболитах по ультраосновным породам, в основных чаще встречаются сфалерит и ильменит. В зоне окисления пирротин замещается пиритом, развивается гетит.

Все разновидности амфиболитов могут участвовать в строении одного тела, переходя друг в друга вкрест и по простиранию. Химический состав тремолитовых амфиболитов отвечает ультраосновным породам, полевошпатовых и гранато-полевошпатовых амфиболитов – габброидам (табл. 3.1). Они оказывают контактово-метаморфическое воздействие на кристаллические сланцы и сами испытали эндоконтактовые изменения: окварцевание, раскисление и уменьшение содержания плагиоклаза, хлоритизацию амфибола. Наиболее сильные изменения приводили к преобразованию амфиболитов в хлоритовые сланцы с гранатом и ставролитом (рис. 3.9).

Рис. 3.3. Структура распада твердого раствора: первичный магнетит с продуктами распада твердого раствора ильменита и шпинели. Аншлиф. Колл. Карпова С.М.

Рис. 3.4. Аллотриоморфнозернистая структура: срастание сфалерита, халькопирита и пирротина в первичной вкрапленности, пирротин замещен марказитом. Аншлиф. Колл. Карпова С.М.

Рис. 3.5. Пластинчатые метакристаллы позднего ильменита в основной породе. Аншлиф. Колл. Карпова С.М.

Рис. 3.6. Скелетные метакристаллы позднего ильменита в основной породе. Аншлиф. Колл. Карпова С.М.

Рис. 3.7. Дендритовая микротекстура замещения пирротина марказитом в зоне окисления. Аншлиф. Колл. Карпова С.М..

Рис. 3.8. Прожилковая текстура замещения ильменита гетитом в зоне окисления. Аншлиф. Колл. Карпова С.М.

Рис. 3.9. Зональная текстура метасоматического прожилка: ильменит-ставролитовая ассоциация в зоне изменения основных пород. Аншлиф. Колл. Карпова С.М.

Глава 4 УГЛЕРОДИСТОЕ ВЕЩЕСТВО

Присутствие углерода в кейвских сланцах обсуждалось многими [Куплетский, 1939; Борисов, 1940; Харитонов, 1940; Соколов, 1958; Бельков, 1963; Сидоренко, Сидоренко, 1975; Белолипецкий и др., 1980; Мележик и др., 1988, и др.]. Более основательно вопросы генезиса рассмотрены в работах [Сидоренко, Сидоренко, 1975; Мележик и др., 1988]. Несмотря на различные определения возраста кейвской серии, при обсуждении проблемы углерода большинством исследователями принималось его первично-осадочное биогенное происхождение.

Одним из основных был вопрос о форме нахождения углерода в сланцах. В ранних работах [Соколов, 1958] по данным прокаливания предполагалось, что углерод, составляющий до 4 об. % некоторых сланцев, на 99 % представлен легко выгорающей (аморфной) фазой, и лишь 1 % составляет трудно выгорающий углерод (графит). Позднее на основании электронно-микроскопического изучения весь углерод стали относить к графиту [Гинзбург, Горшков, 1961]. И.В. Бельков, анализируя результаты изучения углерода термическими способами, вернулся к заключению о наличии аморфной и кристаллической модификаций углерода [Бельков, 1963]. По его мнению, роль углеродистого вещества и графитоида при региональном метаморфизме была пассивной. В то же время, обогащенность углеродом способствовала поддержанию восстановительной среды, в частности, сохранению сульфидов, в иной обстановке не переживших бы неоднократный метаморфизм. В результате комплексного исследования углеродистого вещества кианитовых сланцев Кейв [Сидоренко, Сидоренко, 1975] была дана характеристика его содержаний и состояний. Среднее содержание составило 1.18 %. По разрезу углерод наиболее концентрируется в кианитовых сланцах, максимальное содержание в конкреционнопараморфических сланцах – 2.27 %, минимальное в кианито-ставролитовых сланцах – 0.18 %. Было убедительно показано, что все кристаллические формы углерода представлены графитом. Определен изотопный состав углерода σ^{13} C = 3.49-3.50. В различных метаморфических комплексах выделены четыре формы углеродистого вещества: точечная (тонкодисперсная), межкристаллическая (межзерновая), отдельные крупные выделения и трещинная. Они связаны постепенными переходами, но первичной является точечная форма. Остальные являются производными и определены подвижностью углерода на разных стадиях метаморфизма.

Исследования битумных вытяжек из кейвских сланцев показали присутствие углеводородных компонентов в виде метана, этана и пропана. В результате хроматографического исследования [Сергиенко и др., 1974] показано, что в них присутствуют аминокислоты и углеводы, свидетельствующие об органогенном происхождении углерода. Наши исследования с применением современных оптических и электронных микроскопов подтверждают графитовую форму углерода во всех типах сланцев: кианитовых, ставролитовых, гранатовых и силлиманитовых. Дисперсная форма широко развита в субстрате кианитовых сланцев и особенно характерна для включений в кварце, полевом шпате и ставролите (рис. 4.1-4.4). Размеры дисперсного графита от 0.2 до 1.5, реже 3 мкм (рис. 4.5). Петрографическими методами он неопределим, кажется аморфным. Но с помощью электронных микроскопов кристаллическая форма графита хорошо определяется. Межкристаллическая форма преобладает в срастаниях с кварцем, кианитом, рутилом и мусковитом (рис. 4.6-4.13). Размеры частиц 5-20 мкм (рис. 4.12). Отдельные крупные зерна графита развиты в силлиманитовых сланцах. Они образуют гнезда со ставролитом и ильменитом, в которых чешуйки графита достигают нескольких сантиметров (рис. 4.14-4.16). Крупнокристаллический графит развит в парагенезисе с ильменитом, ставролитом и цирконом. Жильная форма графита наблюдается в кианитовых сланцах. Здесь графит в ассоциации с кварцем, мусковитом, рутилом и монацитом формирует насыщенные зоны вдоль тектонических швов (рис. 4.17-4.19), но крупных жил графита не встречено. Размеры чешуек графита достигают нескольких десятков микрон, сплошные агрегаты до 1 мм.

Включения графита наблюдаются во всех минералах – кварце, ставролите, кианите и плагиоклазе. При этом ставролит, кианит, плагиоклаз включают графит при метасоматическом замещении субстрата вследствие его нерастворимости, а кварц кое-где содержит и первичные дисперсные включения. Они присутствуют только в кварце-1, остальные генерации кварца и кианит содержат в основном межзерновой графит. Разные формы графита могут присутствовать вместе, особенно дисперсная и межзерновая (рис. 4.20). Важное событие в генезисе графита связано с перекристаллизацией кварца-1. При этом происходит укрупнение дисперсного графита и его высвобождение из кварца в межзерновые поры. Это имеет большое значение и для кристаллизации кианита (гл. 2.1). Его главная генерация – игольчатый кианит – кристаллизовалась в присутствии тонкодисперсного графита. Он препятствовал росту пластинчатых кристаллов кианита, расщеплявшихся в игольчатые кристаллы, образовавшие радиально-лучистые агрегаты в виде снопов, метел, радиально-лучистых солнц и конкреций. Кианит-3 (параморфический) образовался на фоне перекристаллизации кварца и укрупнения графита. Крупные чешуйки графита меньше препятствовали росту кианита. Его кристаллы расщеплялись незначительно, росли в виде вееров и грубых пучков пластинчатых кристаллов, между которыми оставались скопления дисперсного и межзернового графита.

Рис. 4.1. Дисперсная форма графита в кварцевом субстрате кианитового сланца. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 4.2. Дисперсная форма графита (черное) в кварце. Шлиф, николи $\times.$ Колл. Нерадовского Ю.Н.

Рис. 4.3. Дисперсная форма графита в плагиоклазе. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 4.4. Включение дисперсного графита в метакристаллы ставролита и плагиоклаза. Ставролит и плагиоклаз при кристаллизации захватывали дисперсный графит из углеродистого прослоя сланца. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 4.5. Дисперсная форма графита в кварцевом субстрате. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 4.6. Графит (черное) между зернами кварца. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 4.7. Графит (черное) между зернами кварца. Видна гранобластовая структура кварца. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 4.8. Графит (черное) в кианите-1. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 4.9. Графит (черное) между зерен кианита-1, гранобластовая структура кианита-1, характерная для ядер конкреций кианита-2. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 4.10. Межзерновая форма графита в кианите-2. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 4.11. Межзерновая форма графита (черное) в конкреции кианита-2. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 4.12. Межзерновая форма графита (черное) в кианите-3. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 4.13. Межзерновая форма графита в кианите-2. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 4.14. Межзерновая форма графита в мусковите. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Рис. 4.15. Гнездовая текстура выделений крупнокристаллического графита в силлиманитовом сланце. Макзабак. Штуф. Колл. Нерадовского Ю.Н.

Рис. 4.16. Чешуйчатая структура агрегата графита в гнездах. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 4.17. Пластинчатая структура зерен графита в гнездах. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 4.18. Жильная форма графита в зоне рассланцевания ки
анитовых сланцев. Шлиф, николи $\times.$ Колл. Нерадовского Ю.Н.

Рис. 4.19. Жильная форма графита в зоне рассланцевания кианитовых сланцев. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 4.20. Жильная форма графита в зоне рассланцевания ки
анитовых сланцев. Шлиф, николи $\times.$ Колл. Нерадовского Ю.Н.

Рис. 4.21. Сочетание дисперсной и межзерновой форм графита: дисперсная в кварце-1, межзерновая – на фронте растущего кианита-3. Шлиф, николи ×. Колл. Нерадовского Ю.Н.

Рис. 4.22. Сочетание дисперсной и межзерновой форм графита: дисперсная в кварце-1, межзерновая – на фронте растущего кианита-3. Шлиф, николи ||. Колл. Нерадовского Ю.Н.

Глава 5

РЕДКОМЕТАЛЛЬНО-РЕДКОЗЕМЕЛЬНАЯ МИНЕРАЛИЗАЦИЯ

Исследования РЗЭ в породах Больших Кейв выполнялись рядом авторов [Лутц, 1967; Гаскельберг, Рубинраут, 1974; Бельков и др., 1976] (табл. 5.1). Предполагалась их связь с древними россыпями, поэтом особое внимание уделялось породам пачки А. В них «отмечаются повышенные содержания циркония, редких земель, иногда фосфора, связанные с присутствием циркона, обнаруживающего признаки обломочного происхождения, и с другими акцессорными минералами – апатитом, сфеном, монацитом, ортитом». Изучались также пачки Д, Е и Ж в связи с приуроченностью к ним первично россыпных редкометалльных рудопроявлений. «Наиболее перспективным участком для выявления повышенных концентраций тяжелых минералов являются литологически разнородные породы пачек Е и Ж, завершающие разрез свиты Кейв» [Бельков и др., 1976]. Кианитовые и ставролито-кианитовые сланцы пачек Б и Г не рассматривались как перспективные на РЗЭ в связи с отсутствием признаков концентрирования их в каких-либо минералах.

По данным Б.Г. Лутца [Лутц, 1967], спектры РЗЭ пород сланцевого комплекса и подстилающих гнейсов сходны. Те и другие обогащены легкой группой РЗЭ, что соответствует распределению в осадочных породах [Виноградов, 1962] и «каноническому распределению в земной коре» [Гоулс, 1971; Haskin *et all*, 1967]. Это позволило сделать вывод, что распределение РЗЭ в породах кейвской серии определялось условиями первично-осадочного накопления из одного источника и в дальнейшем не нарушалось. «Большинство компонентов (даже щелочи) при метаморфизме оставались инертными, т.е. не происходило мобилизации и перераспределения компонентов между отдельными разностями пород и прослоями» [Лутц, 1967].

Авторами выполнено дополнительное исследование редкометалльной и редкоземельной минерализации в сланцах и минералах из руд месторождений Новая Шуурурта и Тяпш-Манюк [Войтеховский и др., 2011]. Установлены основные минералы-концентраторы РЗЭ. Минеральные формы изучены в ГИ КНЦ РАН на приборе СЭМ LEO-1450, аналитик Савченко Е.Э. Химические анализа РЗЭ выполнены в Лаборатории химических и оптических методов анализа ИХТРЭМС КНЦ РАН методом МС ИСП на приборе ELAN 9000 DRC-е, аналитики Дрогобужская С.В., Панченко О.Л. и Шлапак А.И. Концентраты кианита, мусковита и кварца получены в Лаборатории фазового анализа ГИ КНЦ РАН, зав. Коваль Л.И. Концентрат графита получен в лаборатории геологотехнологического изучения сырья ООО «Гипроникель», зав. Максимов В.И. Результаты даны в табл. 5.2 и 5.3. Повышенным содержанием РЭ и РЗЭ отчетливо выделяются мусковит и графит – выше в 2-5 раз по сравнению с кианитом и кварцем. Особенно значительно обогащение мусковита и графита La, Ce и Nd, мусковит выделяется высоким содержанием циркония, минимальные содержания РЗЭ и РМ – в кианите.

Пачки	Породы и минералы	Лутц 1967	Бельков и др., 1976	Новые данные, 2010
Ж	Мусковито-биотитовые сланцы с		0.03	2010
	Куммингтонито-роговообманковый кварцит		0.001	
	Двуслюдяные сланцы с гематитом и магнетитом		0.001	
Е	Флогопито-полевошпат-кварц- диопсидовые породы		0.01	
	Доломиты с диопсидом и флогопитом		0.001	
Д	Мусковито-кварцевые сланцы		0.001	
	Двуслюдяные сланцы		0.04	
	Двуслюдяные и мусковитовые сланцы	0.005-0.06		
Г	Крупнопорфиробластические кианито-ставролитовые сланцы		0.06	
В	Мусковитовые кварциты		не обн.	
Б	Мелкопараморфические ставролито-кианитовые сланцы		0.05	
	Ставролито-кианитовые сланцы	0.04-0.05		
	Кианитовые сланцы	0.32		
	Мелкоконкреционные кианитовые руды			0.0310
	Крупноконкреционные кианитовые руды			0.1447
	Кианит			0.0102
	Слюда			0.058
	Кварц			0.0228
	Графит			0.0472
A	Ставролито-гранатовые сланцы и кварциты	0.02		
	Гранато-ставролитовые и ставролито-гранатовые сланцы		0.095	
	Слюдяно-гранатовые сланцы		0.01	
Гнейсы	Двуслюдяные и биотитовые гнейсы	0.005-0.009		
	Биотито-гранатовые гнейсы	0.01-0.02		

Таблица 5.1. РЗЭ (Σ Ln+Y ₂ O ₃) в	породах и минералах ке	ейвской серии, масс. %.
--	------------------------	-------------------------

Примечание: минералы представлены концентратами (%): кианит 89, слюда (мусковит + парагонит) 82, кварц 93, графит 25.

Суммарная концентрация РЗЭ в крупноконкреционных рудах выше в 4 раза по сравнению с мелкоконкреционными. При этом легкие элементы (от La до Gd) возросли в 5 раз, тяжелые (группа Y) – в 3 раза. Содержания редких элементов в крупноконкреционных рудах ниже по сравнению с мелкоконкреционными в 1.5 раза в основном за счет уменьшения Zr₂O₃. Отсюда следует вывод о различной подвижности редких и редкоземельных элементов в различных носителях. Очевидно, циркон менее подвижен, чем монацит при формировании крупноконкреционных руд. Лабораторным методом из крупноконкреционного сланца получен концентрат РЭ и РЗЭ. Достигнуто содержание суммы РЗЭ и Y 1.62 %, РЭ 0.37 %. Концентрирование РЗЭ происходит неравномерно, легкие элементы и Th сконцентрировались в 11-13 раз относительно исходной руды, тяжелые – в 1.5-8 раз. В сланцах выявлено несколько минералов-носителей РЗЭ: монацит, ксенотим, апатит, циркон. Главные концентраторы – фосфорсодержащие монацит и ксенотим. Возможно, какую-то нагрузку несет апатит, установленный в ассоциации с ними. Ранее считалось, что основным минералом РЗЭ является ортит, но он не подтвержден в сланцах. Спектр РЗЭ в концентрате полностью соответствует таковому в монаците.

Монацит обнаруживает в кианитовых сланцах двукратное образование. Первая генерация фиксируется в мусковито-кварцевом субстрате. Его мелкие зерна присутствуют в кварце и между его зернами с цирконом (рис. 5.1, 5.2). Вторая генерация связана с различными нарушениями, по которым развивались также рутил, графит, мусковит, кварц и сульфиды (рис. 5.3-5.5). Этот монацит образует скелетные, ситовидные, зональные метакристаллы. Во включениях присутствуют рутил, кварц, сульфиды. В зональных кристаллах ядра содержат большее количество Th (рис. 5.6-5.9). Монацит-2 наложен на сульфиды и образует тесные сростки с ксенотимом, апатитом и полиметаллической Ni-Co-Mo-Zn-Bi ассоциацией (рис. 5.10-5.14). Монацит-1 мы относим к осадочному процессу, монацит-2 – к метаморфическому. Ассоциация монацита с ксенотимом и апатитом позволяет предполагать привнос фосфора на поздней стадии метаморфизма кианитовых сланцев.

Главный концентратор РЭ в сланцах – циркон двух генераций. Первая связана с осадочным процессом и присутствует в мусковито-кварцевом субстрате в виде кластогенных зерен (рис. 5.1, 5.2). Состав субстрата соответствует исходным осадочным породам (пелитам). Ранний региональный метаморфизм привел к образованию устойчивого минерального парагенезиса кварца и мусковита. Мы рассматриваем их как раннюю генерацию, представляющую сохранившиеся обломки зерен циркона осадочного генезиса. В последующих процессах на ранний циркон нарастала оболочка позднего циркона, вероятно, за счет перекристаллизации мелкозернистого циркона (рис. 5.15, 5.16). Зональные кристаллы с четко выраженным ядром и пористой оболочкой относятся к циркону-2. Он ассоциирует с монацитом-2, но совместных сростков не образует.

	Y			$\rm Y_{2}\rm O_{3}$	44.3	140.9	23.6	121.2	68.6	93.7	866.5			
			ые) Ln _{Er}	$\mathrm{Lu}_2\mathrm{O}_3$	0.5	0.6	0.2	1.0	0.7	0.6	0.875			
			псэжкт) э	$\rm Yb_2O_3$	4.4	12.7	2.5	11.7	8.3	10.2	59.6			
			Эрбиевы	Tm_2O_3	0.7	1.9	0.5	1.8	1.3	1.5	8.75			
		'n		$\mathrm{Er}_{2}\mathrm{O}_{3}$	4.6	13.4	2.6	10.6	7.5	9.5	82.7			
TR_{γ}		гриевые I		$\mathrm{Ho}_{2}\mathrm{O}_{3}$	1.3	3.4	0.7	3.1	2.2	2.9	10.9			
		Ип	$\mathrm{Ln}_{\mathrm{sm}}$	$\rm Dy_2O_3$	6.9	24.9	3.2	16.5	10.4	12.7	192.6			
	5		средние)	Tb_2O_3	1.2	4.1	0.8	2.8	1.4	2.3	30.15			
	аноиды]		риевые ($\mathrm{Gd}_{2}\mathrm{O}_{3}$	7.5	38.1	2.5	12.2	5.2	11.3	421.6			
	Лант		Сама	Eu_2O_3	1.1	4.9	0.4	3.7	0.5	1.3	55.5			
				$\mathrm{Sm}_2\mathrm{O}_3$	8.3	43.7	2.9	15.4	5.6	13.1	567.1			
				Pm					•					
	с. с		Nd_2O_3	42.9	224.4	11.1	76.9	25.9	58.2	2935.7				
$\mathrm{TR}_{\mathrm{cc}}$		Цериевые (легкие)	Цериевые (легкие	Цериевые (легкие	Цериевые (легкие	Цериевые (легкие		Pr_2O_3	12.9	67.1	3.9	21.2	6.7	18.6
								CeO_2	120.0	612.3	35.6	193.7	63.3	171.0
				$\mathrm{La}_{2}\mathrm{O}_{5}$	53.0	254.3	10.9	88.9	20.3	65.3	3042.5			
		1			Мелкоконкреционный сланец	Крупноконкреционный сланец	Кианит	Мусковит	Кварц	Графит	Концентрат			

овая Шуурурта.
месторождения Н
к и минералах и
РЗЭ в породах
. Содержание
Таблица 5.2

Примечание: классификация РЗЭ приведена по [Распоряжение МПР..., 2007].

Рис. 5.1. Ранние выделения циркона в основной ткани субстрата, сопутствующие кианиту-1. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Содержание циркона-1 в отдельных участках породы достигает 1 %. Он обеспечивает основное содержание ZrO₂ в пробах от 1503 до 2430 ppm. Высокие содержания циркона установлены в мусковите и графите, которые также вносят вклад в баланс Zr. Пока не изучена форма его концентрирования мусковитом и графитом. Имеющиеся данные позволяют считать поведение циркона независимым от минералов РЗЭ.

Минералы-концентраторы РЗЭ ассоциируют с большой группой редких минералов в поздних сульфидных прожилках с Со-пентландитом, молибденитом, сфалеритом, самородным Ві, хоулиитом и фазой BiSTe. В этой же ассоциации присутствует апатит. В этой ассоциации монацит является одним из поздних минералов. Монацитовую минерализацию следует относить к позднему процессу, как и фосфорсодержащие ксенотим, апатит. Мы считаем возможным дополнительное поступление РЗЭ и фосфора в сланцы в период внедрения щелочных гранитов (Бельков, 1962).

	Компоненты						
Минералы и руды	Sc ₂ O ₃	ZrO ₂	HfO ₂	Th ₂ O ₃			
Мелкоконкреционный сланец	6.7	2430	11.2	15.4			
Крупноконкреционный сланец	27.8	1503.8	27.1	65.1			
Кианит	7.5	581	12.0	3.4			
Мусковит	163.8	2168	39.5	19.1			
Кварц	9.7	1101	25.1	8.2			
Графит	4.1	1751	34.6	22.6			
Концентрат	37.35	2769	43.4	843			

Таблица 5.3. Содержание РЭ в породах и минералах месторождения Новая Шуурурта (ppm).

Рис. 5.2. Ранние выделения монацита и циркона в субстрате. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.3. Поздний монацит в кварцево-мусковитовой жилке с рутилом и графитом. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 5.4. Монацит, циркон и ксенотим вдоль жилки с сульфидами. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.5. Поздний циркон и монацит в кианитовых сланцах с графитом. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 5.6. Жилообразная форма выделения позднего монацита. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 5.7. Скелетный метакристалл монацита в субстрате. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.8. Идиоморфный метакристалл монацита в субстрате: включения кварца и рутила. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.9. Футлярообразный кристалл монацита зональной структуры с ядром, обогащенным Th. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.10. Нарастание монацита на рутил и пирротин. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 5.11. Обрастание пирротина монацитом. Аншлиф. Колл. Нерадовского Ю.Н.

Рис. 5.12. Структура нарастания монацита в виде метакристаллов (белое) на сульфиды (серое). В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.13. Срастание монацита и ксенотима с пирротином, молибденитом и апатитом. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.14. Срастание монацита и ксенотима с пирротином, сфалеритом и апатитом. В отраженных электронах, СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.15. Зональная структура циркона: срастание раннего и позднего циркона. В отраженных электронах. СЭМ LEO 1450. Снимок Савченко Е.Э.

Рис. 5.16. Зональная структура циркона: срастание раннего и позднего циркона. В отраженных электронах. СЭМ LEO 1450. Снимок Савченко Е.Э.

Батиева И.Д., Бельков И.В. Базальные конгломераты кейвской осадочнометаморфической серии в районе Западных Кейв // Изв. Карельского и Кольского филиалов АН СССР. Петрозаводск: КарФ АН СССР, 1958. № 4. С. 48-53.

Баянова Т.Б., Митрофанов Ф.П., Пожиленко В.И. Геохронология реперных геологических образований и процессов раннего докембрия Кольского региона. Общие вопросы расчленения докембрия // Матер. III Всерос. совещ. Апатиты: КНЦ РАН, 2000. С. 235-241.

Белолипецкий А.П., Ильин Ю.И., Предовский А.А. Первичная природа и эволюция состава метапелиов кейвского сланцевого комплекса // Первичная природа и геохимия пород докембрия Кольского п-ова. Апатиты: КФ АН СССР, 1979. С. 3-16.

Белолипецкий А.П., Гаскельберг В.Г., Гаскельберг Л.А. и др. Геология и геохимия метаморфических комплексов раннего докембрия Кольского п-ова. Л.: Наука, 1980. 240 с.

Бельков И.В. Месторождения абразивного граната района Западных Кейв // Богатства недр Кольского п-ова. Мурманск: Кн. ред. «Полярной правды», 1957. С. 97-104.

Бельков И.В. Отчет по теме «Полезные ископаемые Больших Кейв и пути их промышленного использования». Гл. «Кианитовые месторождения». Апатиты: Научный архив КНЦ РАН, 1958.

Бельков И.В. Закономерности размещения и формирования метаморфогенных высокоглиноземистых месторождений (на примере кианитовых месторождений Кейв на Кольском п-ове) // Металлогения докембрийских щитов и древних подвижных зон. Ч. 1. Киев: АН УССР, 1960. С. 178-186.

Бельков И.В. Акцессорная минерализация щелочных гранитов Западных Кейв // Матер. по минералогии Кольского п-ова. Вып. 3. Выборг: Леноблполиграфиздат, 1962. С. 5-20.

Бельков И.В. Кианит из кианитовых сланцев свиты Кейв // Матер. по минералогии Кольского п-ова. Вып. 2. Апатиты: КФ АН СССР, 1962. С. 5-45.

Бельков И.В. Кианитовые сланцы свиты Кейв. М.-Л.: АН СССР, 1963. 321 с.

Бельков И.В. Кианитовые месторождения // Минеральные месторождения Кольского п-ова. Л.: Наука, 1981. С. 163-176.

Бельков И.В. Минералы титана в кианитовых сланцах Кейв // Минералы и минеральные парагенезисы горных пород Кольского п-ова. Апатиты: КФ АН СССР, 1981. С. 43-48.

Бельков И.В., Белолипецкий А.П., Ильин Ю.И. и др. К геохимии метаморфических пород кейвской серии // Геохимическая эволюция метаморфических комплексов докембрия Кольского п-ова. Апатиты: КФ АН СССР, 1976. С. 5-14.

Бельков И.В., Загородный В.Г., Предовский А.А. и др. Опыт разработки сводной схемы стратиграфии докембрия Кольского п-ова // Стратиграфическое расчленение и корреляция докембрия северо-восточной части Балтийского щита. Л.: Наука, 1971. С. 141-150.

Бельков Й.В., Истомин А.В., Матвеев Б.А. Экономические предпосылки разаработки кианитовых руд открытым способом месторождения Новая Шуурурта // Теория и практика работы карьеров Заполярья. Апатиты: КФ АН СССР, 1974. С. 14-18.

Беляев О.А., Митрофанов Ф.П., Баянова Т.Б. и др. Позднеархейский возраст метавулканитов района Малых Кейв, Кольский п-ов // Докл. АН. 2001. Т. 379. № 5. С. 651-654. Бетехтин А.Г. Минералогия. М.: Госгеолиздат, 1950. 956 с.

Бетехтин А.Г., Генкин А.Д., Филимонова А.А. и др. Текстуры и структуры руд. М.: Госгеолтехиздат, 1958. 435 с.

Борисов П.А. Кейвские кианиты // Производительные силы Кольского п-ова. Вып. 1. М.-Л.: АН СССР, 1940. С. 153-181.

Виноградов А.П. Среднее содержание химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. № 7. С. 555-571.

Войтеховский Ю.Л., Нерадовский Ю.Н., Гришин Н.Н. Редкие и редкоземельные элементы в кианитовых сланцах Больших Кейв, Кольский п-ов // Разведка и охрана недр, 2011. № 6. С. 41-44.

Войтеховский Ю.Л., Нерадовский Ю.Н., Гришин Н.Н. Редкие металлы и земли в кианитовых сланцах Больших Кейв, Кольский п-ов // Тез. докл. Всерос. конф. «Редкие металлы: минерально-сырьевая база, освоение, производство, потребление». М.: ИМГРЭ, 2011. С. 43-44.

Войтеховский Ю.Л., Нерадовский Ю.Н., Гришин Н.Н. и др. Кейвские кианитовые и ставролитовые сланцы – высокоглиноземистое комплексное сырье // Матер. IV Межд. конф. «Проблемы рационального использования природного и техногенного сырья Баренцева региона в технологии строительных и технических материалов». Архангельск, 6-10 июня 2010 г. Архангельск: АрхГТУ, 2010. С. 5-7.

Войтеховский Ю.Л., Нерадовский Ю.Н., Касиков А.Г. и др. Перспективы освоения новых видов минерального сырья северо-запада России // Матер. Всерос. конф. «Северные территории России: проблемы и перспективы развития». Архангельск, 23-26 июня 2008 г. Архангельск: ИЭПС УрО РАН, 2008. С. 958-961.

Вочеламбинский архейский геодинамический полигон Кольского п-ова / Ред. Ф.П. Митрофанов и В.И. Пожиленко. Апатиты: КНЦ РАН, 1991. 196 с.

Галахов А.В. К вопросу о возрасте свиты Кейв // Докл. АН. 1948. Т. 61. № 3. С. 499-500.

Гаскельберг В.Г., Рубинраут Г.С. Комплексная минерализация в разрезах Больших и Малых Кейв // Вопросы геологии и металлогении Кольского п-ова. Вып. 5. Апатиты: КФ АН СССР, 1974. С. 208-212.

Геологическая карта Кольского региона (северо-восточная часть Балтийского щита) м-ба 1:500000 / Авторы: В.В. Балаганский, А.А. Басалаев, О.А. Беляев и др. Ред. Ф.П. Митрофанов. Апатиты: КНЦ РАН, 1996. 3 л.

Геология и геохимия метаморфических комплексов раннего докембрия Кольского п-ова / Ред. И.В. Бельков. Л.: Наука, 1980. 240 с.

Пожиленко В.И., Гавриленко Б.В., Жиров Д.В. и др. Геология рудных районов Мурманской области. Апатиты: КНЦ РАН, 2002. 359 с.

Гинзбург И.В., Горшков А.И. О графите кианитовых сланцев Кейв, Кольский п-ов // Тр. минерал. музея. 1961. Вып. 12. С. 171-176.

Гоулс Г.Г. Геохимия редкоземельных элементов в докембрийских плутонических породах // Геология и геохимия рудных месторождений. Тр. XXII МГК. М.: Мир, 1971. С. 248-257.

Дана Э.С. Описательная минералогия / Ред. А.Е. Ферсман и О.Е. Шубникова. М.: ОНТИ, 1937. 423 с.

Докембрийская тектоника северо-восточной части Балтийского щита / Ред. Ф.П. Митрофанов. СПб.: Наука, 1992. 112 с.

Кумари Н.А. Генезис кейвских кианитов // Изв. АН СССР. 1937. № 5. С. 919-928.

Куплетский Б.М. Стратиграфия докембрия Кольского п-ова // Стратиграфия СССР. Т. 1. Докембрий. М.-Л.: АН СССР, 1939. С. 17-56.

Лути Б.Г. Парагенетический анализ и TR-минерализация глиноземистых пород амфиболитовой и гранулитовой фаций Алдана и Кольского п-ова // Редкие элементы в породах различных метаморфических фаций. М.: Наука, 1967. С. 30-58.

Мирская Д.Д. Метабазиты (амфиболиты) свиты кейв и связанные с ними контактные изменения вмещающих пород // Вопросы геологии и минералогии Кольского п-ова. Вып. 2. М.-Л.: АН СССР, 1960. С. 94-153.

Недра северо-запада Российской Федерации / Коровкин В.А., Турылева Л.В., Руденко Д.Г. и др. СПб.: Картогр. ф-ка ВСЕГЕИ, 2003. 500 с.

Нерадовский Ю.Н. О двойниковании ставролита в метаморфических породах (на примере кейвских кристаллических сланцев) // Тр. VIII Всерос. Ферсмановской научн. сессии. «Минералогия, петрология и полезные ископаемые Кольского региона». Апатиты, 18-19 апреля 2011. Апатиты: К & M, 2011. С. 138-142.

Нерадовский Ю.Н., Войтеховский Ю.Л., Савченко Е.Э. Первая находка цинкставролита в Кейвах // Зап. РМО. 2011. № 5. С. 93-97.

Носиков В.В. Месторождения кианитов карело-кольского региона как новая сырьевая база огнеупорной промышленности // Матер. по геологии и полезным ископаемым северо-запада РСФСР. Вып. 2. М.-Л.: Гостоптехиздат, 1960. С. 47-67.

Объяснительная записка к геологической карте северо-восточной части Балтийского щита м-ба 1:500000 / Авторы: А.Т. Радченко, В.В. Балаганский, А.А. Басалаев и др. Ред. Ф.П. Митрофанов. Апатиты: КНЦ РАН, 1994. 88 с.

Петров В.П. Метаморфизм раннего протерозоя Балтийского щита. Апатиты: КНЦ РАН, 1999. 325 с.

Петров В.П. Метаморфические полезные ископаемые. Апатиты: КНЦ РАН, 2002. 216 с.

Петров В.П., Глазунков А.Н. Этапность и термодинамический режим метаморфизма Кейвского блока // Строение и метаморфическая эволюция главных структурных зон Балтийского щита. Апатиты: КФ АН СССР, 1986. С. 50-59.

Питчер У.С. Полиморфные модификации силиката алюминия. Т. 2. Природа метаморфизма. М.: Мир, 1967. С. 339-354.

Половинкина Ю.И. Структуры и текстуры изверженных и метаморфических пород. Т. 2. Метаморфические породы. М.: Недра, 1966. 271 с.

Распоряжение МПР РФ от 05.06.2007 № 37-р «Об утверждении Методических рекомендаций по применению классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых».

Салоп Л.И. Общая стратиграфическая шкала докембрия. М.: Наука, 1973. 310 с.

Самсонов А.Е., Самсонов А.А. // www.newchemistry.ru/letter.php?n id=385

Сергиенко И.З., Бобылева М.И., Сидоренко Св.А. и др. Аминокислоты и углеводы в древнейших отложениях (на примере кианитовых сланцев Кольского п-ова) // Докл. АН. 1974. Т. 215. № 2. С. 474-477.

Сидоренко Св.А., Сидоренко А.В. Органическое вещество в осадочно-метаморфических породах докембрия // Тр. ГИН АН СССР. М.: Наука, 1975. 115 с.

Сиротин В.И., Лебедев И.П. О литогенезе глиноземистых пород докембрия Воронежского кристаллического массива // Вестник ВГУ. Геология. 2004. № 1. С. 30-37.

Соколов П.В. Геология плато Кейв и свиты кейвских кристаллических сланцев // Большие Кейвы. Проблемы кольских кианитов. Л.: Гостоптехиздат, 1940. С. 35-50.

Соколов П.В. Свита кейв. Геология СССР. Т. 27. Мурманская обл. М.: Госгеолтехиздат, 1958. С. 180-246.

Сорохтин А.Г., Ушаков С.А. Развитие Земли. М.: МГУ, 2002. 560 с.

Состояние изученности стратиграфии докембрия и фанерозоя России. Задачи дальнейших исследований. Постановления Межведомственного стратиграфического комитета и его постоянных комиссий. Вып. 38. СПб.: ВСЕГЕИ, 2008. 131 с.

Суслова С.Н. Контактово-метасоматические изменения кристаллических сланцев под влиянием щелочных гранитов в районе Западных Кейв // Вопросы геологии и минералогии Кольского п-ова. Вып. 2. М.-Л.: АН СССР, 1960. С. 58-93.

Мележик В.А., Басалаев А.А., Предовский А.А., Балабонин Н.Л., Болотов В.И., Павлова М.А., Гавриленко Б.В., Абзалов М.З. Углеродистые отложения ранних этапов развития Земли (геохимия и обстановки накопления на Балтийском щите). Л.: Наука, 1988. 197 с.

Харитонов Л.Я. Кианитоносные породы Кейв и их характеристика // Большие Кейвы. Проблемы кольских кианитов. Л.: Гостоптехиздат, 1940. С. 51-64.

Харитонов Л.Я. Структура и стратиграфия карелид восточной части Балтийского щита. М.: Госгеолиздат, 1966. 360 с.

Холин В.М., Лебедев И.П., Стрик Ю.Н. О геодинамике формирования и развития Тим-Ястребовской структуры КМА // Вестник ВГУ. Геология. 1998. № 5. С. 51-59.

Чесноков Б.В. Морфологический метод определения относительного возраста минералов // Генезис минеральных индивидов и агрегатов. М.: Наука, 1966. С. 9-24.

Юшко С.А. Методы лабораторного исследования руд. М.: Недра, 1966. 320 с.

Haskin L.A., Haskin M.A., Frey F.A. et al. Relative and absolute terrestrial abundances of the rare earths // Symp. Int. Assoc. Geochem. Cosmochem. Paris, 1967.

Mitrofanov F.P, Bayanova T.B. Keivy terrain in the Kola early precambrian collison. New geological data and interpretation // SVEKALAPKO 4th Workshop. Dept. of Geophysics, Oulu University, Finland, 1999. Rep. 22. P 51.

оглавление

ПРЕДИСЛОВИЕ	3
Глава 1. ОБЩИЕ СВЕДЕНИЯ О КРИСТАЛЛИЧЕСКИХ СЛАНЦАХ БОЛЬШИХ КЕЙВ	5
1.1. Стратиграфическое положение	5
1.2. Характеристика разреза	9
Глава 2. КРИСТАЛЛИЧЕСКИЕ СЛАНЦЫ	12
2.1. Кианитовые сланцы	12
2.2. Ставролитовые сланцы	51
2.3. Силлиманитовые сланцы	60
2.4. Гранатовые сланцы	70
Глава 3. ОСНОВНЫЕ ПОРОДЫ	76
Глава 4. УГЛЕРОДИСТОЕ ВЕЩЕСТВО	84
Глава 5. РЕДКОМЕТАЛЛЬНО-РЕДКОЗЕМЕЛЬНАЯ МИНЕРАЛИЗАЦИЯ	97
СПИСОК ЛИТЕРАТУРЫ	110

Научное издание

Нерадовский Ю.Н., Войтеховский Ю.Л.

АТЛАС СТРУКТУР И ТЕКСТУР КРИСТАЛЛИЧЕСКИХ СЛАНЦЕВ БОЛЬШИХ КЕЙВ

Рекомендовано к печати ученым советом Геологического института КНЦ РАН

Отпечатано в ООО «К & М»

184209 г. Апатиты Мурманской обл., ул. Ферсмана, д. 17 а тел. / факс (881555) 77329

Тираж 100 экз.

