Автор(ы):Месчян С.Р.
Издание:Недра, Москва, 1985 г., 342 стр., УДК: 624.131.22
Язык(и)Русский
Экспериментальная реология глинистых грунтов

Обобщены результаты экспериментальных исследований, полученные в области реологии глинистых грунтов и связанные с использованием глинистых оснований при возведении крупных объектов промышленного и гражданского строительства. Рассмотрены вопросы реологии твердых тел, их деформации и прочности. Изложены основы теорий ползучести и релаксации напряжений, даны краткие сведения о глинистых грунтах и протекающих в них реологических явлениях в природных условиях. Описаны методы определения мгновенных и ползучих деформаций, избыточного давления в поровой воде, бокового давления и объемных деформаций. Изложены вопросы влияния уплотняющего давления глинистых грунтов на их реологические свойства.

Для инженерно-технических и научных работников, занимающихся вопросами изучения свойств глинистых грунтов, проектированием гражданских, промышленных, гидротехнических сооружений и т.п.

ТематикаИнженерная геология
Выпуск 342
Автор(ы):Godard G., Kunze K., Mauler A.
Издание:Journal Tectonophysics, 2001 г., 32 стр.
Язык(и)Английский
Crystallographic fabrics of omphacite, rutile and quartz in Vendee eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes

This study aims at further understanding of the mechanisms how lattice-preferred orientations (LPO) develop during deformation in the main eclogite minerals. Microstructures and textures of deformed eclogites from the Les Essarts complex (Western France) were investigated using optical microscopy and electron backscatter diffraction (EBSD) in the scanning electron microscope. Microfabric analyses of eclogite-facies minerals are used to identify their deformation mechanisms, which define the rheology at high-pressure metamorphic conditions. Mechanisms of intracrystalline deformation by dislocation movement (dislocation creep) result usually in a non-linear flow law (typically power law), while diffusive processes (diffusion creep) correspond to linear flow laws. General microstructural observations may suggest intracrystalline deformation (dislocation creep) of omphacite. The omphacite LPO vary between S- and L-type and correlate with oblate or prolate grain shape fabrics, respectively. Until now, these LPO types have not been understood by plasticity models based on dislocation glide on the known slip systems in clinopyroxene. An alternative interpretation is given in terms of anisotropic growth and dissolution, with grain boundary diffusion as the rate controlling process. There are further indications suggesting diffusion creep with concomitant anisotropic growth and dissolution as a main deformation mechanism in omphacite. In omphacite around a hollow garnet, crystallographic and shape fabrics align with the c[001] axes parallel to the grain elongations defining the mineral lineation, which rotates locally with the inferred flow direction. In this part, the grain sizes of omphacite and rutile are larger than in the surrounding matrix. The geometry of both the shape and crystallographic fabrics is interpreted to represent the local stress regime (directions and ratios of the principal stresses). The LPO of rutile duplicate the LPO of omphacite and a similar distinction between S- and L-type was used. Rutile deformation mechanisms probably involve dislocation creep as well as diffusion creep. Quartz mainly occurs as an interstitial phase with weak LPO patterns interpreted as random. No representative obliquity of the LPO in omphacite nor rutile with respect to foliation and lineation was observed to be used as potential shear sense criteria. However, the rutile LPO was slightly rotated relative to the omphacite LPO consistently in most samples. The results suggest that diffusion processes are strongly involved in the deformation of eclogites. A linear flow law should be taken into account in tectonic models where eclogites are incorporated. 

ТематикаРегиональная геология
МеткиAnisotropic growth, Diffusion creep, Dislocation creep, Eclogite, Electron backscatter diffraction, Lattice preferred orientation, Rheology, Vendee (Armorican Massif France), Реология, Эклогиты
Том 17, Выпуск 11
Автор(ы):Haruka Yamaguchi, Tomoki Shibutani, Toshiaki Masuda
Издание:Elsevier, 1993 г., 11 стр.
Язык(и)Английский
Comparative rheological behaviour of albite and quartz in siliceous schists revealed by the microboudinage of piedmontite

This paper presents a detailed comparison of the microboudinage of piedmontite in two different mineralogical hosts, a quartz matrix, and albite porphyroblasts in a siliceous schist, with the aim of clarifying the rheological properties of albite in relation to those of quartz. Stress and strain analyses of the microboudinage confirm that the boudinage took place in the retrograde stage of metamorphism during decreasing temperature, and reveal that albite deformed at the same strain rate as quartz above the plastic-brittle transition temperature of albite.

ТематикаПетрография, Региональная геология
МеткиКремнистые сланцы, Пьембитит, Пьемонтит, Реологические свойства, Реология
Автор(ы):Шмакин В.Б.
Издание:Альманах Пространство и Время, 2012 г., 20 стр., УДК: 55.001:551:24
Язык(и)Русский
На пути к геономической парадигме

Прошло 20 лет с того времени, как, самоорганизовавшись на волне демократических устремлений, тяготеющие к синтезу нетрадиционных, но научных представлений о глобальной эволюции Земли ряд отечественных геологов и представителей других естественных наук объединились в рамках междисциплинарных семинаров — вначале на Дальнем Востоке [Закономерности строения…1992], а затем в Санкт-Петербурге и Москве [Геологическое изучение… 1995]. За это время — время одного человеческого поколения — пройден немалый путь, позволяющий предположить, что в недрах геологии происходит смена старой парадигмы (в узком смысле слова, по Т. Куну), которую мы назовем механистической, на новую [Шолпо 1993; Сывороткин 2007], для именования которой можно принять термин «геономическая» (в понимании И.В. Крутя [Круть 1978]). Корни этой парадигмы, однако, уходят значительно глубже. Первые поразительные по своей глубине эмпирические выводы в плане целостной геономии были сделаны ещё в конце XIX века А.П. Карпинским и И.В. Мушкетовым [Карпинский 1888; Мушкетов 1891] в неявном противостоянии с Зюссом, Огом, Бертраном и другими европейскими классиками ранней теории геосинклиналей. Целостные концепции саморазвития Земли были сформулированы в рамках астрогеологии, бурно развивавшейся в 50-х—60-х гг. XX века (одновременно с успехами космонавтики и в творческой атмосфере «оттепели»). Концепции астрогеологии были обобщены в капитальном сборнике «Проблемы планетарной геологии» [Проблемы планетарной геологии 1963] и в классическом труде Г.Н. Каттерфельда «Лик Земли» [Каттерфельд 1962], ставшем, в свою очередь, эвристическим источником многих последующих идей. 50-летие выхода этой книги, на которую до сих пор постоянно ссылаются, мы отмечаем в этом году. Но затем началось быстрое генеральное наступление Новой Глобальной Тектоники (далее НГТ), и развитие других целостных глобальных концепций стало считаться в лучшем случае дурным тоном. Реально новое идеетворчество началось только в середине 80-х гг., после появления первых симптомов кризиса НГТ [Авсюк 1987; Добролюбов 1987; Зимов 1985; Киркинский 1987и др.] (что любопытно, также совпав с началом очередного этапа свободомыслия и ожиданиями политического обновления). Вскоре появились первые публикации уже на «постплейттектонической» основе, а затем и известные семинары в Хабаровске и Москве [Закономерности…1992, Закономерности…1994; Геологическое изучение… 1995]. Можно — в известном приближении, не считая «прадедов» (XIX века), «дедов» (поколения В.И. Вернадского и Б.Л. Личкова) и «отцов» (астрогеологов), — говорить о том, что мы движемся к новой парадигме уже четверть века. Каковы результаты этого пути? Ведь четверть века — это как раз смена п.околений, именно за это время и должна происходить, согласно классической теории, смена научной психологии, мировоззрения, то есть парадигмы [Шолпо 1993; Ильин, 1994]. Основной результат один: в целом медленно (гораздо медленнее, чем хотелось бы), но верно мы движемся к победе новой парадигмы. Если НГТ побеждала старый фиксизм штурмом и сделала это всего за 5—10 лет, то новая парадигма вытесняет НГТ постепенно и избегая открытых столкновений. Подтверждением происходящей смены вех и именно парадигмального характера этой смены выглядит изменение реакции «традиционной» геологии и ряда её официально признанных представителей на многие обобщения, идеи и гипотезы, казавшиеся в начале 1990-х годов «дикими» и «экстравагантными». Теперь эта реакция существенно поляризовалась — от почти параллельного примыкания к геономической тенденции ряда видных ученых, облеченных высокими официальными титулами [Авсюк 1996; Красный 2002; Милановский 1996; Шолпо 2004; Хаин 2008], публикаций и докладов на официальных научных форумах — и до резкого отторжения, вплоть до жестких административных мер. В этом смысле система научного знания в геологии, по-видимому, переживает бифуркационный период. Усиливается ее неравновесность, а, следовательно, и чуткость к внешним воздействиям. Налицо ряд уже неразрушимых «ядер нуклеации» новой парадигмы, и можно ожидать становления новой когнитивной структуры геологии. К таким «ядрам» следует, как представляется, относить не продукты рутинной научной работы над частностями в стиле эмпирической науки XIX века (к сожалению, именно доклады о частностях стали преобладающими¸ например, на Всероссийских тектонических совещаниях). При всем уважении к такой работе она имеет целью, как правило, лишь индуктивное подкрепление новыми «фактами» и в новых координатах заранее выбранной концепции. И, с другой стороны, эти ядра — не просто новые красивые гипотезы и иные построения в духе перцептуально-экспланантной эпистемологии того же XIX века. Речь должна идти лишь о твёрдых, надёжных эмпирических обобщениях, не только обладающих главными свойствами научного открытия — неожиданностью и проверяемой истинностью, но отвечающих и третьему — увязываемости в общую систему знания.

ТематикаГеодинамика, Геофизика
МеткиБиосфера, Геономия, Информация, Парадигма, Планетология, Прилив, Расслоение, Резонанс, Реология, Ротация, Тектоника, Тектоносфера, Уникальность, Эвристика, Энергия
Автор(ы):Ben A., Stephen Marshak
Издание:W. W. Norton & Company, 2004 г., 672 стр., ISBN: 039392467X
Язык(и)Английский
Earth Structure: An Introduction to Structural Geology and Tectonics (Second Edition) / Строение Земли - Введение в структурную геологию и тектонику (второе издание)

This book is concerned with the deformation of rock in the Earth’s lithosphere, as viewed from the atomic scale, through the grain scale, the hand specimen scale, the outcrop scale, the mountain range scale, and the tectonic plate scale. A deformational feature observed on one scale typically reflects processes occurring on other scales. For example, we can’t understand continental deformation without understanding mountains, we can’t understand mountains without understanding folding and faulting, and we can’t understand folding and faulting without understanding ductile and brittle deformation mechanisms at the atomic scale. This book attempts to integrate topics pertaining to all scales of rock deformation, emphasizing the linkages between structural geology and tectonics.

Данная книга рассматривает деформацию пород в литосфере Земли , которая наблюдается на атомном уровне, переходя на масштаб зерна, образца, обнажения, горного хребта и тектонической плиты. Деформационные особенности, наблюдаемые в одном масштабе, закономерно отражают процессы, возникающие в другом масштабе. К примеру, мы не можем понять деформацию континента без понимания процессов горообразования, мы не можем понять горообразование без понимания процессов образования складок и разломов, и мы не можем понять процессы складкообразования и разрывных нарушений без понимания механизмов пластичной и хрупкой деформации на атомарном уровне. Эта книга пытается объединить темы, касающиеся деформации пород на всех уровнях, подчеркивая связь между структурной геологией и тектоникой.

ТематикаСтруктурная геология
Ленты новостей
1547.18