Автор(ы):A.Hamid Mumin, Derek L.Mulligan, Kathryn L.Neale, Norman A.Duke, Robin E.Goad
Издание:PGS Publishing, Linden Park, 2002 г., 17 стр.
Язык(и)Английский
Geology of the proterozoic iron oxide-hosted, Nico cobalt-gold-bismuth, and Sue-Dianne copper-silver deposits, southern great bear magmatic zone, northwest territories, Canada

The NICO cobalt-gold-bismuth and Sue-Dianne copper-silver deposits of the Mazenod Lake area, Northwest Territories, are currently being drill-delineated by Fortune Minerals Limited. They are the only known significant Canadian examples of the Proterozoic iron oxide-hosted polymetallic class, more commonly referred to as hydrothermal iron oxide copper-gold deposits. NICO and Sue-Dianne are located in the southern part of the Great Bear magmatic zone, the central tectonic subdivision of the Bear Structural Province. It is a post-collisional plutonic terrane with related continental volcanic rocks dating from 1867 Ma and culminating with the emplacement of A-type rapikivi granite plutons at approximately 1856 Ma. Iron oxide occurrences are widely distributed within the Great Bear magmatic zone, ranging from Salobo-type magnetite-rich schists and ironstones in receptive basement rocks to Kiruna-type magnetite-apatite-rich veins and Olympic Dam-type sulphidized magnetite-hematite breccias in overlying volcanic rocks. NICO is hosted in iron- and potassium-altered, brecciated basement sedimentary rocks at and beneath the volcanic unconformity, showing similarities to the Salobo-type. The host "black rock" amphibole-magnetite-biotite schists and ironstones are capped by potassium feldspar-magnetite "red rock" felsite. In contrast, Sue-Dianne shows the essential characteristics of Olympic Dam-type ores, with mineralization hosted within a well-zoned diatreme breccia complex crosscutting a rotated ash flow tuff succession above the unconformity. At both NICO and Sue-Dianne, ongoing detailed paragenetic studies demonstrate that early, reduced, high-temperature mineral assemblages are overprinted by late, oxidative, low-temperature assemblages. These together with stratigraphic relationships, indicate fluid mixing at shallow crustal levels was important in deposit formation. Proximity of the NICO and Sue-Dianne deposits to subvolcanic porphyries, rapakivi granite and various other phases of the Marian River Batholith, together with geochronology and mineralogy studies, suggest they are all genetically related. The occurrence of diverse iron oxide deposit types within the Great Bear magmatic zone, makes this region favourable for exploration and for the study of the Proterozoic iron oxide class as a whole.

ТематикаПолезные ископаемые
МеткиBismuth, Cobalt, Copper, Gold, NICO, Sue-Dianne
Автор(ы):Roger G.Skirrow
Издание:PGS Publishing, Linden Park, 2002 г., 12 стр.
Язык(и)Английский
Gold-copper-bismuth deposits of the Tennant creek district, Australia: a reappraisal of diverse high-grade systems

Gold-copper-bismuth deposits of the Tennant Creek district, Northern Territory, Australia, are distinctive as some of the highest grade deposits within the Fe-oxide Cu-Au global family. They are unified by an association with epigenetic magnetite ± hematite - rich 'ironstones' that are hosted by a sequence -I860 Ma, low metamorphic grade, Fe-oxide rich greywacke, siltstone and shale. While many of the high grade gold orebodies are dominated by magnetite - chlorite ± minor hematite, muscovite and pyrite, there are significant variations representing a spectrum of styles from reduced (pyrrhotite-bearing) Cu-Au-Bi deposits to oxidised hematitic Au-Bi(Cu) deposits. Shear-hosted Au-Cu mineralisation outside ironstones further adds to the diversity of styles present in the district. Ironstones predated syn- to late-deformational ~1825-1830 Ma introduction of Au, Cu and Bi in ~-300-350°C, acidic, low-moderate salinity or hypersaline fluids, which were in places carbonic and nitrogenous. The very wide range of oxidation-reduction conditions during ore deposition across the district is interpreted as the product of both reduced (magnetite ± pyrrhotite stable, H2S > S04=) and oxidised (hematite stable, S04= > H2S) fluids reacting with ironstones and/or mixing. Oxygen and hydrogen isotope data point to an hybrid ore fluid source with input of evolved surficial or formation waters, whereas Sm-Nd reconnaissance data and sulfur isotope compositions are consistent with contributions from igneous sources.

ТематикаПолезные ископаемые
МеткиBismuth, Copper, Gold, Gold-copper-bismuth deposit, Tennant creek
Ленты новостей
1341.78