Том 1
Автор(ы):Yilmaz O.
Редактор(ы):Stephen M. Doherty
Издание:178 стр.
Язык(и)Русский
Обработка сейсмических данных. Том 1.

Преобразование Фурье является фундаментальной составляющей анализа сейсмических данных и применяется почти на всех стадиях обработки. Данный временной ряд, такой как сейсмическая трасса, может быть полностью, однозначным образом описана в виде суммы ряда синусоид, каждая из которых характеризуется своей амплитудой, частотой и задержкой по фазе (относительным выравниванием). Этот процесс выполняется путем прямого преобразования Фурье. И наоборот, сейсмическая трасса может быть синтезирована при данных частотных составляющих. Этот процесс выполняется путем обратного преобразования Фурье. Краткое математическое исследование преобразования Фурье приводится в Приложении А. Алгоритмы обработки сейсмических данных часто могут быть описаны или реализованы в частотной области проще, чем во временной. В разделе 1.2 вводится одномерное (1-D) преобразование Фурье и рассматриваются некоторые свойства временного ряда во временной и в частотной областях. Многие методики обработки (одно- или многоканальной) включают операнд (сейсмическую трассу) и оператор (фильтр). Простое применение анализа Фурье состоит в разработке нуль-фазовых частотных фильтров, обычно в форме полосовой фильтрации. В результате 1.3 исследуются 40 выборок ОПВ, записанных в разных частях мира с различными типами источников и регистрирующей аппаратуры (Yilmaz и Cumro, 1983). Введены различные типы сейсмической энергии: отраженные волны, когерентные помехи, такие как кратные волны, боковые волны, поверхностные волны, случайные помехи окружающей среды. В разделе 1.4 приводится основная последовательность обработки данных и примеры полевых данных. В обработке данных имеются три основные стадии, каждая из которых направлена на улучшение сейсмической разрешающей способности, под которой подразумевается способность разделять два отражения, расположенные близко друг к другу.

1. Деконволюция выполняется по оси времен с целью повышения временной разрешающей способности путем сжатия основного импульса приблизительно до единичного и подавления реверберационных волн.

2. Суммирование сжимает размер выноса, тем самым, уменьшая объем сейсмических данных до плоскости сейсмического разреза с нулевым выносом и повышая отношение сигнал/помеха.

3. Миграция обычно выполняется на суммированном разрезе (который предполагается разрезом с нулевым выносом) с целью повышения разрешающей способности в горизонтальном направлении путем рассеивания (collapsing) преломленных волн и перемещения отражений от наклонных поверхностей в их истинные положения.

Вторичные процессы реализуются на определенных стадиях с целью улучшения рабочих характеристик деконволюции, суммирования и миграции. Когда когерентные помехи устраняются, например, с помощью пространственной фильтрации, можно улучшить деконволюцию и скоростной анализ. Коррекция остаточной статики также улучшает скоростной анализ и, следовательно, качество суммированного разреза.

 

ТематикаОбработка и интерпретация геофизических данных, Сейсморазведка, Геофизика
Автор(ы):Урупов А.К.
Издание:Недра, Москва, 1966 г., 225 стр., УДК: 550.834(021)
Язык(и)Русский
Изучение скоростей в сейсморазведке.

В решении задач по строительству материально-технической базы коммунизма большую роль играют поиски и разведка полезных ископаемых. Одним из ведущих поисковых методов является сейсморазведка. Геологическая результативность сейсморазведки зависит от степени изученности скоростпой характеристики разреза. Без знания скоростей распрострапепия упругих волн невозможна пи геометрическая, пи дипамическая интерпретация сейсморазведочных данных, давно как и их геологическое истолкование. Сведения о скоростях используются при анализе экспериментальных сейсмограмм, построении сейсмических границ и установлении их геологической приуроченности. На предварительном знании скоростпого разреза базируются построение и использование сиптетических (теоретических) сейсмограмм. Кроме того, данные о скоростях в реальных средах можно использовать при решении мпогих специальных геологических и геофизических задач. К числу таких задач относятся изучение состава глубинпых слоев земной коры, картирование зон выклинивания и фациального замещения слоев, изучение современного регионального тектопического плапа и особенностей тектогенеза, поиски локальных подпятий, выявлепие зон трещиноватости и повышенной пористости отложений, прямые поиски пефтяпых и газовых месторождений и др. Возможность использования сведений о скоростях при решении упомянутых задач вытекает из известных зависимостей скорости от геологических факторов и связи скорости с другими физическими свойствами. В настоящей книге обобщены способы определения скорости в сейсморазведке. Особое внимание уделено способам, осповапным па интерпретации сейсмозаписсй, наблюдаемых на земной поверхности с помощью метода отраженных волн. Автор выражает глубокую благодарность профессору Л. А. Рябинкииу за ценные советы и критические замечания, которые были учтены при подготовке рукописи к изданию.

 

ТематикаОбработка и интерпретация геофизических данных, Сейсморазведка, Геофизика
Автор(ы):Балашканд М.И., Бяков Ю.А., Глумов И.Ф., Кузьмин Ю.И., Матвеев Ю.И., Нечхаев С.А., Рослов Ю.В., Сакулина Т.С., Салтыкова Н.А., Телегин А.Н.
Редактор(ы):Телегин А.Н.
Издание:ООО Геоинформмарк, Москва, 2004 г., 237 стр., УДК: 550.834, ISBN: 5-900357-74-0
Язык(и)Русский
Морская сейсморазведка

 

Необходимость написания монографии “Морская сейсморазведка" определяется как возрастающим интересом к запасам Мирового океана и особенно шельфа морей, так и прогрессом в области технических средств, методики и технологии работ, а также способов обработки и интерпретации сейсмических материалов. В последнее время издано очень мало литературы на русском языке по сейсморазведочным работам, в частности монография, посвященная морской сейсморазведке методом преломленных волн, вышла в 1984 г. Сейсморазведку можно определить как самостоятельную научную дисциплину: геофизический метод изучения акустических свойств среды с помошью распространения упругих волн для прогнозирования ее геологического строения и месторождений полезных ископаемых. Объект ее исследования - геологическая среда; в качестве метода используется распространение упругих волн, а предметом изучения являются акустические свойства геологической среды. Результатом сейсмических работ должны быть детальные сведения об акустических свойствах изучаемого геологического разреза. В свою очередь, акустические свойства связаны с составом и условиями осадконакопления отложений и образования пород, что является основой для геологической интерпретации сейсмических результатов - прогнозирования геологического строения изучаемой территории и месторождений полезных ископаемых (нефти, газа, угля, руды и т.п.) и проведения инженерно-гидрогеологических изысканий. В основе проведения сейсмических работ (полевых наблюдений, обработки получаемых материалов и интерпретации результатов) лежит физическое представление о волновой картине, возникающей в некоторой акустической среде при возбуждении в ней упругих волн. Хотя геологическая среда, как правило, очень сложная - неоднородная и анизотропная, се можно с различной степенью приближения представить в виде упрощенных акустических моделей, волновую картину в которых можно описать простыми физическими законами.

 

ТематикаСейсморазведка, Геофизика
Ленты новостей
2814.51