Автор(ы):Ван Гендерен Дж. Л., Горный В.И., Караев Н.А., Фролов В.С.
Издание:ФГУНПП “ГЕОЛОГОРАЗВЕДКА”, 17 стр.
Язык(и)Русский
Камуфлетные взрывы как причина формирования структур,  индицирующих алмазоносные районы   (по материалам дистанционных и геофизических методов)

Механизм  формирования  коренных  месторождений  алмазов  до  сих  пор  является  дискуссионным вопросом.  Уникальные  свойства  алмаза,  высокие  термодинамические  условия  его  формирования привлекают внимание многих исследователей. Предложено множество гипотез происхождения коренных месторождений алмазов [1-13]. Эти гипотезы могут быть объединены в несколько групп: 1) Гипотезы, базирующиеся на идее быстрого подъема кимберлитовой магмы с глубин более 180 км в приповерхностные части коры [6-8; 10; 12]. В соответствии с этим механизмом, на глубине более 180 км существует  слой,  где  температура  и  давление  соответствуют  условиям  стабильности  алмаза.  Высокая скорость  подъема  кимберлитовой  магмы  необходима  для  предотвращения  фазового  перехода  алмаза  в графит за пределами условий его стабильности. По минералогическим данным скорость такого подъема оценена в 3.5 – 20 м/с [7; 12], а при наличии кавитации [1] - в диапазоне от 300-500 м/с до 1200 м/с. 2) «Взрывные» гипотезы, в соответствии с которыми алмазы формируются в результате подземных взрывов,  которые  создают  необходимые  для  этого  термодинамические  условия  [2-  5;  8;  11;  13]. Существуют  два  варианта  этих  гипотез.  Первый  -  опирается  на  эндогенную  природу  взрывов.  Он предполагает  серию  подземных  взрывов  при  самопроизвольной  детонации  тяжелых  углеводородов, поступающих в кору из мантии. Эти подземные взрывы создают необходимые для формирования алмаза давление, температуру и высокую скорость транспортировки продуктов взрывов в верхнюю часть коры [3; 2268; 12]. Второй вариант - предполагает экзогенную природу энергии взрывов при формировании алмазов - “астроблемная” гипотеза [5; 13].  Для  выявления  истинных  механизмов  формирования  коренных  месторождений  алмазов  необходима детальная проверка вышеприведенных гипотез.  Большинство коренных месторождений алмазов сосредоточено в телах трубочного типа, верхняя часть которых  выполнена  брекчиями  кимберлитов/лампроитов  с  включениями  ксенолитов  мантийных  пород [12].  Диаметр  таких  трубок  обычно  составляет  несколько  сотен  метров.  Некоторые  из  них  разведаны горными выработками до глубин в 1 км [12]. Принимая во внимание, что  условия стабильности алмаза должны  существовать  на  значительно  больших  чем  1  км  глубинах,  учитывая  наличие  в  алмазоносных трубках  мантийных  ксенолитов  можно  предположить,  что  такие  трубки  являются  только приповерхностными проявлениями мощных процессов, которые начинаются в верхней мантии. Поэтому, естественно  предполагать,  что  характерные  размеры  поверхностных  проявлений  подобных  процессов должны  быть  одного  порядка  с  мощностью  литосферы.  В  связи  с  этим,  для  решения  проблемы происхождения природных алмазов необходимо исследовать значительно более обширные территории, чем те, которые находятся в непосредственной близости от алмазоносных тел. Представляется, что подобное исследование  нескольких  алмазоносных  районов  позволит  выявить  закономерности  в  их  проявлениях  и найти последствия  высокоэнергетичных  процессов,  сформировавших  месторождения  алмазов.  Учитывая предполагаемые  значительные  пространственные  размеры  структур,  контролирующих  коренные месторождения  алмазов  (не  менее,  чем  150-200  км),  космические  и  геофизические  материалы представляются наиболее подходящими для решения данной задачи.

ТематикаГеофизика, Региональная геология
МеткиАлмазоносный район, Алмазы, Геофизические методы исследования, Камуфлетный взрыв
Автор(ы):Устинова В.М., Устинова И.Г.
Издание:Томский политехнический университет, Томск, 2003 г., 5 стр., УДК: 550.831.05(571.1)
Язык(и)Русский
Статистическая параметризация симметричных геофизических объектов

В строении и иерархической согласованности дискретных геолого-геофизических объектов выявляется определённая закономерность и упорядоченность в их размерах. Она обнаруживается в форме структур, в их пространственном расположении и временном следовании. Повторяемость форм проявляется и достаточно легко типизируется в морфологии поверхностей и морфологических сочетаниях геофизических полей. Математическая идентификация типового облика структур эффективно выполняется с использованием автокорреляиионного анализа и фильтров Винера. Геолого-геофизические объекты на любом из изучаемых уровней организации есть система систем и могут рассматриваться как упорядоченное множество дискретных элементов [1-3]. Любая геолого-геофизическая моносистема представима как двух, трёх и более компонентная с эмерджентными свойствами. В вертикальном разрезе дискретность и вложенность геолого-геофизических систем обнаруживается в наличии разнопорядковых циклитов [4]. На поверхности земных оболочек она проявляется в мозаичной, но закономерно построенной совокупности геологических объектов [5]. Дискретность оболочечных объектов имеет прямоугольную симметрию [6. 7], которая осуществляется через систему ортогональных трещин; либо - квази-концентрическую [8, 9]. связанную со структурами центрального типа. Прямоугольные и концентрические блоки структурно согласованы и являются составными частями дискретно-иерархической [10] блоковой системы. Вещественно-структурные комплексы осадочных нефтегазоносных бассейнов, формирующиеся в длительной истории геологического развития, имеют ряд устойчивых форм пространственно-морфологического проявления, в близких морфологических конфигурациях обнаруживаются в геофизических полях. Типовые морфологические сочетания в нефтяной геофизике достаточно надёжно выявляются в палеоповерхностях отражений и др.) Устойчивые морфологические типы рельефа и потенциальных полей характеризуются: кольцевым: вихревым: спиральным: симметрично-сигмоидным [11] (взаимодополняемым по положительным и отрицательным формам): двух-, трёх-, четырёх-, семилучевым сочленением [5] и т.д. основных элементов морфологии. Для выявления и истолкования аномалий центрально-зонального типа могут использоваться различные методы. Среди них. в силу наличия типических сочетаний аномальных проявлений, наиболее эффективны вероятностно-статистические методы, методы классификации и др. В рамках эргодичной и стационарной модели анализируемого поля (будь то геофизическое поле или рельеф поверхности) важные сведения о свойствах аномалий можно получить по автокорреляционной функции (АКФ), энергетическому спектру, математическому ожиданию. Наиболее информативными для оценки свойств составляющих потенциальных полей и полей сейсмических параметров являются функция автокорреляции и энергетический спектр. Среди параметров автокорреляционной функции, характеризующих форму и поперечные размеры изучаемых объектов, выделяются дисперсия, радиус нулевой корреляции [12] и др. Радиус нулевой корреляции даёт представление о скорости спада АКФ.

ТематикаГеофизика
МеткиГеофизические методы исследования, Статистическая параметризация, Статья
Издание:54 стр.
Язык(и)Русский
Общие закономерности и природа новейших внутриконтинентальных горнообразовательных движений и деформацтя земной коры в коллизионных условиях

Как показывают геофизические и сейсмические данные, горообразующие процессы, если их рассматривать в масштабах горного пояса или отдельных его крупных составляющих (систем поднятий или систем межгорных и предгорных прогибов), охватывают всю литосферу, астеносферу и более глубокие слои мантии. В общем, это достаточно очевидно и не подвергается сомнению. Вместе с тем, в природе (причинах и механизмах) внутриконтинентального горообразования, происходящего в условиях и. как предполагается, в результате коллизии литосферных плит, не все ясно. Прежде всего, все ли особенности структуры горных областей такого рода, в том числе рассматриваемые нами, находят удовлетворительное и сбалансированное объяснение с позиций горизонтального раздавливания литосферы? Нет, не все. Как далеко это раздавливание распространяется от коллизионных швов и каким образом оно осуществляется в условиях вещественно-структурной и реологической дисгармонии и расслоенности литосферы? Модели латерального взаимовоздей-ствия однородных (однослойных) литосферных плит или даже блоков коры нас, очевидно, не могут удовлетворить. II в связи с этими вопросами и в их ряду стоит вопрос о месте и роли глубинных процессов (в том числе магматических и метаморфических) в перераспределении вещества на разных уровнях литосферы, которые могут быть независимыми или. по крайней мере, автономными от процессов латерального взаимодействия литосферных плит? Если такие процессы имеют место, то каково их соотношение с процессами латерального раздавливания литосферы или только коры и как они проявляются в структуре орогена?Эти общие вопросы в некоторой мере рассмотрены в нижеследующих главах монографии.Первичный материал по сейсмической томографии верхней мантии в интервале глубин 50-250 км по срезам через каждые 50 км. приведенный нами ранее [Bakirov et.al., 1997]. показал, что под Сырдарьинским (Туранским), Центрально-Казахстанским и Ферганским блоками верхняя мантия сложена массами с высокой скоростью прохождения продольных сейсмических волн (8.3-8,7 км/с). На глубине они соединяются между собой узкими перешейками, и их можно объединить в одно северное Центрально-Казахстанское семейство. Такими же высокоскоростными массами сложено основание Таримского блока. Вместе с Афганским блоком он образует, по-видимому, южное семейство. Эти блоки разделены друг от друга относительно узкими зонами, в которых скорости сейсмических волн сравнительно низкие (7,7-8.2 км/с). Высокоскоростные тела, по-види-мому, сложены наиболее плотным холодным, а разделяющие их низкоскоростные - более нагретым менее плотным веществом. Последнее хорошо согласуется с дефицитом массы, который установлен в гравитационном поле, рассчитанном с учетом “снятия” влияния земной коры. По физическим свойствам разуплотненные массы сходны с веществом астеносферы и на глубине сливаются со слоем Гутенберга (рис. V. 1.1), природа которого обычно объясняется частичным плавлением вещества. По данным геофизиков, нижняя поверхность этого слоя, отвечающая “несогласию” на глубине 400 км. под Тянь-Шанем приподнята относительно соседних регионов не менее чем на 20 км [Chen et al., 1997]. Таким образом, в пределах Центральной Азии нет сплошной единой литосферной плиты. Евразийская плита здесь разбита на ряд блоков. Горные сооружения и межгорные впадины Тянь-Шаня расположены как раз над низкоскоростными, разуплотненными, более нагретыми и менее прочными зонами (“клиньями”) верхней мантии и вытянуты согласно их простиранию. Земная кора Тянь-Шаня обладает повышенной мощностью: от 50 км на севере до 75 км на юге. В ее строении сейсмотомографическими исследованиями установлены тела с разной скоростью сейсмических волн [Roeker et. al., 1993; Сабитова, 1996; Бакиров и др., 1996]. Здесь выделены три типа строения земной коры [Sabitova et. al., 1998], которые по районам их развития можно назвать ферганским, чуйским и киргизско-терскейским.

Том 1
Автор(ы):Lahee Frederic H.
Издание:МИР, Москва, 1966 г., 483 стр., УДК: 550.8, 551.4
Язык(и)Русский (перевод с английского)
Полевая геология. Том 1.

«Полевая геология» профессора Массачусетского технологического института Фредерика Лахи принадлежит к числу наиболее популярных в США методических руководств этого типа. Книга выдержала шесть изданий, причем она постоянно пополнялась новейшими сведениями. Последнее, шестое издание достаточно полно отражает современное состояние полевых геологических методов, принятых американскими геологами.
В книге подробно разбирается методика геологического картирования с акцентом на изучение нефтеносных областей. В отличие от большей части существующих руководств и курсов полевой геологии в книге, помимо методов съемки, с большой полнотой описаны основные вспомогательные виды исследований, сопутствующих съемке: топографическая и подземная съемка, аэрофотосъемка, бурение скважин, геофизические методы исследований и т. д. Лаконизм изложения позволил автору охватить в одной книге очень широкий круг вопросов, обычно составляющих содержание нескольких самостоятельных курсов. Удачная компоновка материала и хорошо подобранные иллюстрации значительно облегчают пользование книгой.
Книга может быть рекомендована как студентам старших курсов геологических вузов в качестве вспомогательного источника при прохождении курсов общей и полевой геологии, так и геологам, занятым самостоятельной практической и научной деятельностью.

Источник:twirpx
Автор(ы):Никитин А.А.
Издание:Недра, Москва, 1986 г., 342 стр., УДК: 550.83:519.2
Язык(и)Русский
Теоретические основы обработки геофизической информации.

Обработка геофизической информации — важнейший этап ана‘ лиза экспериментальных данных всех методов разведочной геофизики. Основой получения геофизической информации (геофизических данных) являются измерения. Измерение — это нахождение значения физической величины опытным путем с помощью специальных технических средств. В разведочной геофизике предметом измерения являются физические свойства горных пород и физические поля, создаваемые горными породами. Техническими средствами их измерения служат аналоговые и цифровые приборы. Результат измерения представляет собой число, выраженное в соответствующих физических единицах измерения. Это число — элемент измерительной информации. Иначе говоря, геофизическая информация — это измерительная информация, доставляющая количественные сведения о каком-либо физическом свойстве, физическом поле или явлении геологической среды, геологического объекта. Объем геофизической информации непрерывно растет, что определяется как увеличением объемов геофизических работ, так и повсеместным переходом на цифровую регистрацию физических полей. Этот переход обусловлен преимуществами цифровой аппаратуры по сравнению с аналоговой, основные из которых: 1) высокая точность и быстродействие; 2) возможность выдачи результатов измерений непосредственно в ЭВМ; 3) безошибочный перенос дискретных сигналов из одних запоминающих устройств в другие и передача информации на большие расстояния; 4) многократное усиление и воспроизведение дискретных сигналов без потери информации; 5) способность работать в системах автоматического контроля и управления. Цель обработки геофизических данных — извлечение полезной информации из результатов измерений (наблюдений) отдельных геофизических методов и их комплексов. В отличие от первичной обработки исходных данных, включающей определение координат точек наблюдений, введение различных поправок (в частности, уравнивание опорной сети в гравиразведке), увязку наблюдений по площади съемки, обработка исправленных данных (перед проведением количественной интерпретации) решает задачи преобразования, фильтрации и анализа с целью подавления помех, выделения и разделения полезных сигналов (аномалий). Количественная интерпретация выделенных путем обработки сигналов сводится к количественной оценке геометрических и физических параметров источников аномалий. Если методика и методы количественной интерпретации геофизических аномалий существенно зависят от регистрируемого физического поля.

ТематикаГеофизика
МеткиАппроксимация, Геофизические методы исследования, Геофизические поля, Дисперсионный анализ, Интерполяция, Корреляционные характеристики, Линейные фильтры
Автор(ы):Торопов И.В.
Издание:25 стр.
Язык(и)Русский
Геофизические работы при поисках и разведке

Электрические свойства пород инфильтрационных месторождений положены в основу существующих методик определения фильтрационных характеристик, поэтому их изучение требует особой тщательности и начинается с момента подготовки площадей  к проведению специализированных поисковых работ. Известно, что каждая литологическая разность осадочных образований представляет многофазную среду от свойств  отдельных  компонент которой и зависит общее удельное и кажущееся электрическое сопротивление, Твердый, минеральный скелет, преимущественно кварц-полевошпатового состава - один из составляющих этой многофазной системы, оказывает меньшее влияние на величину электрического сопротивления пород, чем остальные фазы; глинистое и карбонатное вещество, заполняющее межпоровое пространство скелета, а также минерализация пластовых вод, пропитывающих осадочные отложения. Влияние газовой составляющей полностью влагонасыщенных осадочных отложений на электрическое сопротивление пород очень ничтожно. Если  говорить о кажущемся электрическом сопротивлении литологических разностей пород геологического разреза, то в целом оно изменяется в сравнительно небольшом диапазоне  от 2-3 0мм до 60-80 0мм, иногда до 200 0мм, однако сильно зависит от минерализации пластовых вод,  которая, как уже отмечалось ранее, может изменяться от 0,5 г/л до 6,0 г/л. Количество, состав цемента и сцементированность пород также оказывает заметное воздействие на кажущееся электрическое сопротивление. С увеличением глинистости пород оно уменьшается, становясь минимальным 3-8 0мм у глин. Алевролиты, в зависимости от степени их запесоченности и присутствия карбонатного вещества, характеризуются значениями ρк от 6 до 25 0мм. Наиболее широким диапазоном изменения кажущихся электрических сопротивлений обладают рыхлые пески, на ρк которых очень сильное влияние  оказывает примесь глинистого вещества (общая глинистость) и минерализация пластовых вод. Обычно их сопротивление изменяется от 10 до 40 0мм. Наиболее высокие ρк у «чистых» песков, межпоровое пространство которых заполнено пресной, пластовой водой. Грубообломочные несцементированные осадочные образования.

ТематикаГеофизика
МеткиГеофизические методы исследования, Корреляционные связи, Поляризация пород, Электрокаротаж
Автор(ы):Жданов М.С.
Издание:Недра, Москва, 1986 г., 316 стр., УДК: 550.837 (075)
Язык(и)Русский
Электроразведка. Учебник для вузов

Приведены общие сведения о физико-математических основах электроразведки, условиях и способах возбуждения и измерения электромагнитных полей. Описаны методы электроразведки постоянным электрическим полем, магнитотеллури-ческие и магнитовариацисшные методы, электромагнитные зондирования с контролируемыми источниками поля, методы полей физико-химического происхождения. Рассмотрены аппаратура, оборудование, методика работ, способы обработки и интерпретации результатов наблюдений.

Для студентов вузов, обучающихся по специальности «Геофизические методы поисков и разведки месторождений полезных ископаемых»." title="<--break-->" class="mceItem">

Автор(ы):Боганик Г.Н., Гурвич И.И.
Издание:Издательство АИС, Тверь, 2006 г., 744 стр., УДК: 550.843, ISBN: 1810-5599
Язык(и)Русский
Сейсморазведка

Содержание учебника полностью соответствует программе вузовской дисциплины "Сейсморазведка", утвержденной Министерством образования РФ для подготовки дипломированных специалистов по специальности "Геофизические методы поисков и разведки месторождений полезных ископаемых". Учебник состоит из трех частей. 

Часть I "Физико-геологические основы сейсморазведки" содержит 6 глав, в которых изложены элементы классической теории упругих волн в однородных и неоднородных средах - идеальных и реальных, изотропных и анизотропных, даны геологические основы и классификация методов сейсморазведки, проанализированы особенности поверхностных и линейных годографов различных волн, рассмотрены вопросы моделирования сейсмических полей. " title="<--break-->">

Автор(ы):Бондарев В.И.
Издание:Уральский государственный горный университет, Екатеринбург, 2007 г., 703 стр.
Язык(и)Русский
Сейсморазведка

Сейсмическая разведка (сейсморазведка) является одним из ведущих геофизических методов исследования структуры, строения и состава горных пород. Сейсмические исследования земной коры являются общепризнанным способом ее изучения. Достаточно высока роль сейсморазведки в решении задач рудной и инженерной геологии. Однако главной и наиболее эффективной сферой применения сейсморазведки является поиск месторождений нефти и газа. Поиски и разведку залежей углеводородов в настоящее время трудно представить без широкого использования сейсморазведки. Особенно важна роль сейсморазведки при поисках залежей углеводородов на море. Здесь сейсморазведка является не только практически единственным, но и весьма эффективным методом исследований. Именно поэтому объемы морских сейсморазведочных работ в мире в настоящее время более чем в четыре раза превышает объемы работ на суше. При этом объемы сейсморазведочных работ, выполняемых на море, растут из года в год.

Для проведения сейсморазведочных работ и выполнения геологического истолкования получаемых результатов вузы России готовят специалистов - геофизиков. IB программу их подготовки обязательно входит изучение специальной геофизической дисциплины - сейсмической разведки. Предлагаемый учебник по дисциплине "Сейсморазведка" предназначен для студентов высших учебных заведений, обучающихся по специальности 130201 -"Геофизические методы поисков и разведки месторождений полезных ископаемых" направления 130200 - "Технологии геологической разведки". Этот учебник также может быть использован при изучении специального курса аналогичного названия "Сейсморазведка"студентами вузов, обучающимися по специальности 020302-"Геофизика". В учебных планах вышеназванных специальностей Государственными образовательными стандартами высшего профессионального образования (Москва, 2000) в настоящее время на изучение дисциплины "Сейсморазведка"отводится достаточно значительный объем времени -260 и 168 часов соответственно. По этой причине автор счел возможным и необходимым уделить достаточно большое внимание физико-геологическим основам сейсмического метода разведки. При этом главное внимание уделено фундаментальным основам сейсморазведки - кинематической теории распространения сейсмических волн в относительно простых моделях сред. Во всех случаях особо подчеркивается необходимость знания кинематических особенностей различных волн в современных сейсмических способах изучения геологических сред-в способах многократных перекрытий. <...>

Источник:Интернет

Геофизические методы исследований

Владелец инбокса: kaptar.j

Геофизические методы исследований — это научно-прикладной раздел геофизики, предназначенный для изучения верхних слоев Земли, поисков и разведки полезных ископаемых, инженерно-геологических, гидрогеологических, мерзлотно-гляпиологических и других изысканий и основанный на изучении естественных и искусственных полей Земли. Геофизика, находясь на стыке нескольких наук (геологии, физики, химии, математики, астрономии и географии), изучает происхождение и строение различных физических полей Земли и протекающих в ней и ближнем космосе физических процессов. Ее подразделяют на физику Земли, включающую сейсмологию, земной магнетизм, глубинную геоэлектрику, геодезическую гравиметрию, геотермию; геофизику гидросферы (физику моря); геофизику атмосферы и космоса и геофизические методы исследования, называемые также региональной, разведочной и скважинной геофизикой. Предметом исследования научно-прикладных разделов геофизики является осадочный чехол, кристаллический фундамент, земная кора и верхняя мантия с общей глубиной до 100 км.

Прикрепленные файлы
Категория: Учебное пособие Метки: Геофизика,Геофизические методы исследования,Учебная литература,
Ленты новостей
2076.11