= ГЕОЛОГИЯ =

УДК 551.72+551.21(470.22)

ПОЛИХРОННАЯ ПРИРОДА МЕТАМОРФИЧЕСКОЙ ЗОНАЛЬНОСТИ ПО ДАННЫМ U-Pb-, Pb-ДАТИРОВАНИЯ МЕТАМОРФИЧЕСКИХ ПОРОД (ЮЖНАЯ КАРЕЛИЯ, БАЛТИЙСКИЙ ЩИТ)

© 2005 г. Ш. К. Балтыбаев, О. А. Левченков, член-корреспондент РАН В. А. Глебовицкий, Л. К. Левский, А. Ф. Макеев, С. З. Яковлева

Поступило 15.11.2004 г.

Для Свекофеннского пояса на территории Южной Финляндии, Швеции и России характерно доминирующее развитие мигматитовых полей, лишь отдельные сравнительно узкие зоны отличаются температурой метаморфизма, не превышающей уровня устойчивости мусковита [1-3]. Даже в сравнительно низкотемпературных частях Свекофеннского пояса тепловой режим метаморфизма соответствует полю устойчивости ставролита. РТ-параметры метаморфизма для мигматитовых зон на большей части выходов свекофеннид можно охарактеризовать как выдержанные, находящиеся в диапазоне 670-800°С и 4-6 кбар [3]. Установлено, что в породах Свекофеннского пояса при высокотемпературном замещении мусковита продукты реакции распада всегда образуются в поле развития силлиманита: для большинства мигматитовых полей стабильной является ассоциация гранат + кордиерит + калишпат + + силлиманит. Изограды силлиманит + калишпат, силлиманит + мусковит и андалузит -> силлиманит практически повсеместно пространственно сильно сближены (первые сотни метров, километры). Прогрессивный переход пород с мусковитовыми парагенезисами к мигматизированным породам без мусковита наблюдаются на небольших расстояниях. Эти наблюдения, с одной стороны, позволяют признать существование повышенного теплового потока в пределах всего Свекофеннского пояса, а с другой – указывают на резкую дифференцированность (наличие температурного градиента) этого потока на малых площадях. Последнее обстоятельство может свидетельствовать косвенно о наличии нескольких источников тепла, вызывающих метаморфические преобразования пород. В связи с этим возникает вопрос – являются ли примеры полной (или почти полной) метаморфической зональности результатом воздействия единого источника тепла или же породы

разного уровня метаморфизма представляют собой гетерогенный структурно-метаморфический комплекс? Решение этого вопроса во многом связано с выяснением вопроса синхронности или асинхронности формирования отдельных зон метаморфизма в пределах пространственно единого зонально-метаморфизованного комплекса. В данной работе предпринимается попытка подойти к решению этого вопроса путем изучения U–Pb-системы метаморфогенных монацитов из пород разного уровня метаморфизма в пределах приладожского зонально-метаморфизованного комплекса (юго-восток Балтийского щита).

Приладожье представляет собой юго-восточный фрагмент Свекофеннского пояса и традиционно рассматривается как раннепротерозойская зонально-метаморфизованная структура, сложенная породами архейского инфракомплекса, раннепротерозойскими вулканитами основного состава и турбидитами калевия [4]. В ее составе выделяются два самостоятельных домена – Северный (СД) и Южный (ЮД), разделенные Мейерской надвиговой зоной [5, 6] (рис. 1).

Характерной чертой СД является присутствие пород архейского возраста в ядрах гнейсово-купольных структур, а также проявление прогрессивной зональности от зеленосланцевой фации на севере через ставролитовые субфации в средней части до силлиманит-мусковитовой субфации и далее до зоны мигматитов на юге, где мусковит становится неустойчивым (рис. 1).

В пределах ЮД отсутствуют породы архейского возраста, комплекс раннепротерозойских пород отличается высоким уровнем метаморфизма (высокотемпературная амфиболитовая-гранулитовая фации) и широким развитием магматизма. На основании этого ЮД рассматривается как высокотемпературное ядро приладожского метаморфического комплекса, Эволюция термального режима высокотемпературного ядра (ЮД) зонально-метаморфизованного комплекса, изученная петрологическими и геохронологическими методами (твердофазовая геотермобарометрия, U-Pb-геохрономе-

Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург

Рис. 1. Схематическая карта метаморфической зональности приладожского комплекса с указанием места отбора проб. 1 - выступ архейского кристаллического фундамента; 2 – архейский фундамент в ядрах гнейсово-купольных структур; 3-6 - нижнепротерозойский вулканогенно-осадочный покров, метаморфизованный в фациях биотит-хлоритовых сланцев (3), ставролитовых и андалузитовых сланцев (4), силлиманит-мусковитовых и силлиманит-ортоклазовых гнейсов (5), гранат-кордиеритовых и гиперстеновых гнейсов (б); 7 - граниты рапакиви; 8 - рифейский платформенный чехол; 9 - Мейерский надвиг; 10 место отбора пробы и ее номер: 1 - Б-2000-19/1, 2 -Б-2000-19/2, 3 - Б-2000-16, 4 - Б-2000-31, 5 -Б-2000-30/1, 6 - Б-03-125, 7 - Б-03-126, 8 - Б-03-132. СД, ЮД - Северный и Южный домены. На врезке: прямоугольником показано положение изученного участка.

трия метаморфогенных монацитов), показала, что ареальнораспространенные плутоно-метаморфические события происходили 1.88-1.86 млрд. лет назад [7]. В то же время U-Pb-датирование метаморфогенных монацитов из слабометаморфизованных пород СД выявило, что они имеют значительно моложе возраст – 1.80–1.79 млрд. лет (рис. 2, 3; табл. 1). Монацит гранат-биотит-силлиманитового гнейса (проба Б-03-132) имеет конкордантный (с вероятностью 0.81 при 95%-ном уровне значимости) возраст 1793.5 ± 4.6 млн. лет. Конкордантный (с вероятностью 0.58 при 95%-ном уровне значимости) возраст монацита в гранат-андалузит-ставролитовом гнейсе (проба Б-03-125) составляет 1786.9 ± 4.6 млн. лет. Для гранат-ставролитового гнейса (Б-03-126) получен конкордантный возраст монацита 1787.3 ± ±4.7 млн. лет (с вероятностью 0.18 при 95%-ном уровне значимости). Такая же разница выявляется по Pb²⁰⁷/Pb²⁰⁶-возрасту силлиманитов: 1.88 млрд. лет для высокотемпературного глиноземистого гнейса из ЮД [8] и ~1.80 млрд. лет для глиноземистого гнейса из домигматитовой зоны СД (рис. 3, табл. 1 [7]). Учитывая, что выявленная возрастная разница основывается на данных, полученных по единой методике и для одних и тех же минералов-хронометров, следует полагать, что она отвечает реальной температурно-временной эволюции, отвечающей дискретным событиям.

Рис. 2. Диаграмма с конкордией для изученных монацитов из метаморфических пород Северного домена. Номера эллипсов (1–3) соответствуют порядковым номерам проб в табл. 1. Погрешность определения 20.

Рис. 3. Сводная диаграмма возрастных данных для метаморфогенного монацита (U–Pb-метод) и силлиманита (Pb–Pb–LS-метод) из пород Южного (а) и Северного (б) домена Приладожья. Значения конкордантных возрастов монацитов приведены с учетом погрешности определения возраста (20). Диапазон возраста для силлиманитов показан пунктирными линиями с учетом максимальной погрешности. Номера на диаграмме (1–8) соответствуют номерам образцов, приведенным на рис. 1.

Природа раннепротерозойского метаморфизма свекофеннид в юго-восточной части Балтийского щита связывается с базитовым андерплейтингом, который вызвал приток тепла и генера-

№ п.п.	²⁰⁶ Рb ^а ²⁰⁴ Рb	²⁰⁷ Рb ^а ²⁰⁴ Рb	$\frac{\frac{208}{204}Pb^{a}}{\frac{204}{204}Pb}$	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	²⁰⁶ Pb ²³⁸ U	Rho	$\frac{\mathrm{Th}^{6}}{\mathrm{U}}$	Возраст, млн. лет			Конкор-	
								$\frac{\frac{206}{Pb}}{\frac{238}{U}}$	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	²⁰⁷ Pb ²⁰⁶ Pb	дантый возраст, млн. лет	СКВО/Р
	. .	1.094	-	1.2	M	онаци	ит, Б-03	-125	7.00- 1			
1	14750	1624	51760	4.814	0.3198	0.96	9.7	1788.7	1787.4	1785.8	1786.9 ± 4.6	0.31/0.58
			100		M	онаци	т, Б-03	-126				
2	2904	330.3	12690	4.818	0.3204	0.9	12	1791.6	1788.1	1784.1	1787.3 ± 4.7	1.8/0.18
					M	онаци	т, Б-03	-132			· · ·	
3	6820	761.3	8710	4.848	0.3206	0.96	3.5	1792.7	1793.2	1793.8	1793.5 ± 4.6	0.059/0.81
			-	Си	ллима	нит, Б	-03-132,	валовая	проба		and the second second	
4	50.387	19.150	46.390	He onp.	He onp.	0.82	0.89	He onp.	He onp.	1792 ^в	He onp.	Не опр.
			Силли	манит.	Б-03-132	2, остато	ок после	кислотн	ого выщ	елачива	RNH	
5	42.118	18.244	48.583	Не опр.	He onp.	0.92	1.4	He onp.	Не опр.	1792 ^в	Не опр.	Не опр.

Таблица 1. Результаты U-Рb-изотопных исследований монацита и силлиманита

Примечание. ^а – изотопные отношения, скорректированные на фракционирование и бланк Pb; ⁶ – Th/U-отношение, рассчитанное по изотопному составу Pb минерала и его возрасту; ^в – возраст силлиманита ((²⁰⁷Pb/²⁰⁶Pb) = 1792 ± 42 млн. лет определен по двум точкам: валовой пробе и остатку после кислотного выщелачивания. *P* – 95%-ная вероятность. Разложение минералов и выделение Pb и U проводилось по методике Кроу [13]. Уровень лабораторного загрязнения Pb не превышал 0.1 нг для монацита и 0.4 нг для силлиманита, а U – 0.01 нг. Изотопные измерения Pb и U выполнены на масс-спектрометре MAT-261. Ошибки измерения Pb/U-изотопных отношений – 0.5% (2σ). Все расчеты проводились по программам Ладвига [14, 15].

цию магматических масс и метаморфические преобразования амфиболитовой и гранулитовой стадий в ядрах термальных куполов [1, 6, 9]. Предполагается также наличие направленного потока углекислотных флюидов, что вызвало метаморфизм амфиболитовой и гранулитовой ступени [10]. Для некоторых зон установлено, что пиковые параметры метаморфизма (около 800°С, 5-6 кбар) были достигнуты при внедрении синкинематических интрузий эндербитоидов около 1.88 млрд. лет назад [3], после чего метаморфические события быстро завершились. Примерами такого сценария развития геологических событий могут служить эволюция Центрально-Финляндского гранитоидного массива [3], а также формирование высокотемпературного ядра метаморфического комплекса (Южный домен) в Приладожье [7].

Сравнительно недавно в свекофеннидах Южной Финляндии и Швеции определен возрастной рубеж повторной термальной активности 1.82–1.80 млрд. лет [11, 12]. Эта активность выразилась в высокотемпературном метаморфизме (до гранулитовой фации) и мигматизации метапелитов, а также сопряженном развитии высококалиевых интрузивных пород. *РТ*-параметры формирования пород этого позднего этапа метаморфизма оценивались как 700–800°С и 4–5 кбар [1].

Особенность тектонической позиции Приладожья заключается в приуроченности территории к зоне сочленения Карельского кратона и островодужных комплексов Финляндии (рис. 1). СД относится к перикратонной Свеко-Карельской зоне, а ЮД – к собственно свекофеннидам. Такое пространственное положение доменов затрудняет проведение однозначных параллелей с указанными выше зонами в Южной Финляндии и Швеции, где "омоложение" термальной активности происходит с севера на юг и целиком проявлено только в пределах свекофеннид. Несмотря на сложность интерпретации природы позднего этапа метаморфизма, очевидно, что полученные данные позволяют рассматривать зонально-метаморфизованные комплексы Южной Финляндии и Приладожья как длительно развивающиеся термальные структуры, в пределах которых центры активности смещались по латерали.

Таким образом, U–Pb-система метаморфогенных монацитов и Pb–Pb-система силлиманитов из двух зон (доменов) Приладожья свидетельствует о полихронном происхождении раннепротерозойской метаморфической зональности, наблюдаемой на современном эрозионном срезе. Природа поздней термальной активности в Северном домене, а также возможность проявления в его пределах более раннего (1.88 млрд. лет) этапа метаморфизма должны стать предметом дальнейшего изучения.

Работа выполнялась при финансовой поддержке РФФИ (проекты 02-05-65343, 04-05-64856, 03-05-64779), фонда "Ведущие научные школы" НШ-615.2003.05 и проекта ОНЗ № 7.

ПОЛИХРОННАЯ ПРИРОДА МЕТАМОРФИЧЕСКОЙ ЗОНАЛЬНОСТИ

СПИСОК ЛИТЕРАТУРЫ

- Korsman K., Hölttä P., Hautala T., Wasenius P. // Geol. Surv. Finland. 1984. № 328. 40 p.
- Глебовицкий В.А. // Регион. геология и металлогения. 1993. № 1. С. 7–24.
- Korsman K., Korja T., Pajunen M., Virransalo P. // Intern. Geol. Rev. 1999. V. 41. P. 287–333.
- Геологическое развитие глубинных зон подвижных поясов (Северное Приладожье) / Под ред. Н.Г. Судовикова. Л.: Наука, 1970. 228 с.
- Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В. и др. // ДАН. 1996. Т. 348. № 3. С. 353-356.
- Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В. и др. Геология и петрология свекофеннид Приладожья. СПб.: Изд-во СПбГУ, 2000. 198 с.
- Балтыбаев Ш.К., Левченков О.А., Бережная Н.Г. и др. // Петрология. 2004. Т. 12. № 4. С. 373–392.

- Балтыбаев Ш.К., Левченков О.А., Глебовицкий В.А. и др. // ДАН. 2003. Т. 393. № 6. С. 793–796.
- Väisänen M., Hölttä P., Rastas J. et al. // Geol. Surv. Finland. 1994. № 37. P. 35–41.
- Schreurs J., Westra L. // Contribs Mineral. and Petrol. 1986. V. 93. P. 236–250.
- Väisänen M., Manttari I., Hölttä P. // Precambr. Res. 2002. V. 116. P. 111–127.
- Väisänen M., Andersson U.B., Huhma H., Mouri H. // Geol, fören. Stockholm förhande. 2004. V. 126. P. 40– 41.
- Krogh T.E. // Geochim. et cosmochim. acta. 1982. V. 46. P. 637–649.
- Ludwig K.R. // US Geol. Surv. Open-File Rept. 1991. P. 91–445.
- Ludwig K.R. Isoplot / Ex. Vers. 1.00 // Berkeley Geochronol. Center. Spec. Publ. 1998. № 1.