
3 .1 IN T RODUCTION

We frequently use the words force and stress in casual
conversation. Stress from yet another deadline, a test,
or maybe an argument with a roommate or spouse.
Appropriate force is applied to reach our goal, and so
on. In science, however, these terms have very specific
meanings. For example, the force of gravity keeps us
on the Earth’s surface and the force of impact destroys
our car. Like us, rocks experience the pull of gravity,
and forces arising from plate interactions result in a
range of geologic structures, from microfabrics to
mountain ranges (Figure 3.1). In this chapter we begin
with the fundamentals of force and stress, followed by
a look at the components of stress that eventually pro-
duce tectonic structures. In later chapters we will use
these concepts to examine the relationship between
geologic structures and stress.

To understand tectonic processes we must be famil-
iar with the fundamental principles of mechanics.
Mechanics is concerned with the action of forces on

bodies and their effect; you can say that mechanics is
the science of motion. Newtonian1 (or classical)
mechanics studies the action of forces on rigid bodies.
The equations of Newtonian mechanics adequately
describe a range of movements in the natural world,
from the entertaining interaction between colliding
balls at a game of pool (Figure 3.2a) to the galactic
dance of the planets in our solar system. When reach-
ing the subatomic level, Newtonion mechanics starts to
break down and we enter the complex realm of quan-
tum mechanics. In tectonic structures we commonly
deal with interactions that involve not only movement,
but also distortion; material displacements occur both
between and within bodies. Imagine playing pool with
balls made up of jelly rather than solids (Figure 3.2b).
The theory associated with this type of behavior is the
focus of continuum mechanics. In continuum mechan-
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1After Isaac Newton (1642–1727).
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rocks. The primary reason to use the simplifications of
continuum mechanics is that it provides us with a math-
ematical description of deformation in relatively
straightforward terms. When the behavior of rocks is
dominated by discrete discontinuities, like fractures,
continuum mechanics theory no longer holds. Then we
need to resort to more complex modeling methods that
fall outside the scope of this book.

By the time you have reached the end of this chapter,
a good number of terms and concepts will have appeared.

413 . 1  I N T R O D U C T I O N

F I G U R E  3 . 1 Aerial view of the Karakoram range of the Himalaya.

(a) (b)
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F I G U R E  3 . 2 The interaction of nondeformable bodies is
described by Newtonian (or classical) mechanics (a) and that
between deformable bodies by continuum mechanics (b).
Imagine the difference between playing pool with regular 
balls and balls made of jelly.

ics, a material is treated as a continuous medium (hence
the name), that is, there are no discontinuities that appre-
ciably affect its behavior. This may seem inappropriate
for rocks at first, because we know that they consist of
grains whose boundaries are material discontinuities by
definition. Yet, on the scale of a rock body containing
thousands or more grains we may consider the system
statistically homogeneous. Indeed, the predictions from
continuum mechanics theory give us adequate first-
order descriptions of displacements in many natural
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For convenience and future reference, therefore, some of
the more common terms are described in Table 3.1.

3 . 2 U NIT S  A N D  F U N DA M E N TA L
QUA N TITIE S

When measuring something you must select a unit for
the quantity that is to be measured. The physical prop-
erties of a material can be expressed in terms of four
fundamental quantities: mass, length, time, and charge.
For our purposes we can ignore the quantity charge,
which describes the electromagnetic interaction of par-
ticles. It plays a role, however, when we try to under-
stand the behavior of materials at the atomic scale. The
units of mass, length, and time are the kilogram (kg),

the meter (m), and the second (s), respectively. This
notation follows the Système International (French),
better known as SI units. Throughout the text we will
use SI units, but other conventions remain popular in
geology (such as “kilobar,” which is a measure of pres-
sure). Where appropriate we will add these units in
parentheses. In Table 3.2 the SI units of stress and
some common conversions are given.

The symbol for mass is [m], for length [l], and for 
time [t]. Velocity [v], which combines the fundamental
quantities of length and time, has the units of length di-
vided by time. In conventional symbols this is written as

[v] : [lt–1]

in which the colon means “has the quantity of.” Such
dimensional analysis is a check on the relevance of an
equation. We begin by using it in the case of a force.

42 F O R C E  A N D  S T R E S S

T A B L E  3 . 1 T E R M I N O L O G Y  A N D  S Y M B O L S  O F  F O R C E  A N D  S T R E S S

Force Mass times acceleration (F = m ⋅ a; Newton’s second law); symbol F

Stress Force per unit area (F/A); symbol σ

Anisotropic stress At least one principal stress has a magnitude unequal to the other principal stresses
(describes an ellipsoid)

Deviatoric stress Component of the stress that remains after the mean stress is removed; this component of
the stress contains the six shear stresses; symbol σdev

Differential stress The difference between two principal stresses (e.g., σ1 – σ3), which by definition is ≥0; symbol σd

Homogeneous stress Stress at each point in a body has the same magnitude and orientation

Hydrostatic stress/pressure Isotropic component of the stress; strictly, the pressure at the base of a water column

Inhomogeneous stress Stress at each point in a body has different magnitude and/or orientation

Isotropic stress All three principal stresses have equal magnitude (describes a sphere)

Lithostatic stress/pressure Isotropic pressure at depth in the Earth arising from the overlying rock column (density ×
gravity × depth, ρ ⋅ g ⋅ h); symbol Pl

Mean stress (σ1 + σ2 + σ3)/3; symbol σmean

Normal stress Stress component oriented perpendicular to a given plane; symbol σn

Principal plane Plane of zero shear stress; three principal planes exist

Principal stress The normal stress on a plane with zero shear stress; three principal stresses exist, with the
convention σ1 ≥ σ2 ≥ σ3

Shear stress Stress parallel to a given plane; symbol σs (sometimes the symbol τ is used)

Stress ellipsoid Geometric representation of stress; the axes of the stress ellipsoid are the principal stresses

Stress field The orientation and magnitudes of stresses in a body

Stress tensor Mathematical description of stress (stress is a second-order tensor)

Stress trajectory Principal stress directions in a body

2917-CH03.pdf  11/20/03  5:09 PM  Page 42



3 . 3 FOR C E

Kicking or throwing a ball shows that a force changes
the velocity of an object. Newton’s first law of motion,
also called the Law of Inertia, says that in the absence
of a force a body moves either at constant velocity or
is at rest. Stated more formally: a free body moves
without acceleration. Change in velocity is called
acceleration [a], which is defined as velocity divided
by time:

[a] : [vt–1] : [lt–2]

The unit of acceleration, therefore, is m/s2.
Force [F], according to Newton’s Second Law of
Motion, is mass multiplied by acceleration:

[F] : [ma] : [mlt–2]

The unit of force is kg ⋅ m/s2, called a newton (N) in SI
units. You can feel the effect of mass when you throw
a tennis ball and a basketball and notice that a different
force is required to move each of them.

Force, like velocity, is a vector quantity, meaning
that it has both magnitude and direction. So it can be
graphically represented by a line with an arrow on one
side. Manipulation of forces conforms to the rules of
vector algebra. For example, a force at an angle to a
given plane can be geometrically resolved into two
components; say, one parallel and one perpendicular to
that plane.

Natural processes can be described with four basic
forces: (1) the gravity force, (2) the electromagnetic
force, (3) the nuclear or strong force, and (4) the weak
force. Gravity is a special force that acts over large dis-

tances and is always attractive; for example, the ocean
tides reflect the gravitational interaction between the
Moon and the Earth. The other three forces act only
over short ranges (atomic scale) and can be attractive
or repulsive. The electromagnetic force describes the
interaction between charged particles, such as the elec-
trons around the atomic nucleus; the strong force holds
the nucleus of an atom together; and the weak force is
associated with radioactivity. It is quite possible that
only one fundamental force exists in nature, but,
despite the first efforts of Albert Einstein2 and much
progress since then, it has not so far been possible to
formulate a Grand Unified Theory to encompass all
four forces. The force of gravity has proved to be a par-
ticular problem.

Forces that result from action of a field at every point
within the body are called body forces. Bungee jump-
ing gives you a very vivid sensation of body forces
though the action of gravity. The magnitude of body
forces is proportional to the mass of the body. Forces
that act on a specific surface area in a body are called
surface forces. They reflect the pull or push of the
atoms on one side of a surface against the atoms on the
other side. Examples are a cuestick’s force on a pool
ball, the force of expanding gases on an engine piston,
and the force of the jaws of a vice. The magnitude of
surface forces is proportional to the area of the surface.

Forces that act on a body may change the velocity
of (that is, accelerate) the body, and/or may result in a
shape change of the body, meaning acceleration of one
part of the body with respect to another part. Although
force is an important concept, it does not distinguish

433 . 3  F O R C E

T A B L E  3 . 2 U N I T S  O F  S T R E S S  A N D  T H E I R  C O N V E R S I O N S

bar dynes/cm2 atmosphere kg/cm2 pascal (Pa) pounds/in2 (psi)

bar 106 0.987 1.0197 105 14.503

dynes/cm2 10–6 0.987 × 10–6 1.919 × 19–6 0.1 14.503 × 10–6

atmosphere 1.013 1.013 × 106 1.033 1.013 × 105 14.695

kg/cm2 0.981 0.981 × 106 0.968 0.981 × 105 14.223

pascal (Pa) 10–5 10 0.987 × 10–5 1.0197 × 10–5 14.503 × 10–5

pounds/in2 (psi) 6.895 × 10–2 6.895 × 104 6.81 × 10–2 7.03 × 10–2 6.895 × 103

To use this table start in the left-hand column and read along the row to the column for which a conversion is required. For example, 1 bar = 105 Pa or 
1 Pa = 14.5 × 10–5 psi.

2German-born theoretical physicist (1879–1955).
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the effect of an equal force on bodies of equal mass but
with different shapes. Imagine the effect of the same
force applied to a sharp object and a dull object. For
example, a human is comfortably supported by a water
bed, but when you place a nail between the person and
the water bed, the effect is quite dramatic. Using a
more geologic experience, consider hitting a rock with
a pointed or a flat hammer using the same force. The
rock cracks more easily with the pointed hammer than
with the flat-headed hammer; in fact, we apply this
principle when we use a chisel rather than a sledge
hammer to collect rock samples. These examples of
the intensity of force lead us into the topic of stress.

3 .4 S T R E S S

Stress, represented by the symbol σ (sigma), is defined
as the force per unit area [A], or σ = F/A. You can,
therefore, consider stress as the intensity of force, or a
measure of how concentrated a force is. A given force
acting on a small area (the pointed hammer mentioned
previously) will have a greater intensity than that same
force acting on a larger area (a flat-headed hammer),
because the stress associated with the smaller area is
greater than that with the larger area. Those of you
remembering turntables and vinyl records (ask your
parents) are familiar with this effect. The weight of the
arm holding the needle is only a few grams, but the
stress of the needle on the vinly record is orders of
magnitude greater because the contact area between
needle and record is very small. The high stresses at
the area of contact eventually gave rise to scratches
and ticks in the records, so it is little wonder that we
have embraced digital technologies.

You will see that stress is a complex topic, because
its properties depend on the reference system. Stress
that acts on a plane is a vector quantity, called trac-
tion, whereas stress acting on a body is described by a
higher order entity, called a stress tensor. In the next
few pages we will gradually develop the pertinent con-
cepts and components of stress.

Because stress is force per unit area it is expressed
in terms of the following fundamental quantities:

[σ] : [mlt–2 ⋅ l–2] or [ml–1 ⋅ t–2]

The corresponding unit of stress is kg/m ⋅ s2 (or N/m2),
which is called a pascal (Pa).3 Instead of this SI unit,

however, many geologists continue to use the unit bar,
which is approximately 1 atmosphere. These units are
related as follows:

1 bar = 105 Pa ≈ 1 atmosphere

In geology you will generally encounter their larger
equivalents, the kilobar (kbar) and the megapascal (MPa):

1 kbar = 1000 bar = 108 Pa = 100 MPa

The unit gigapascal (1 GPa = 1000 MPa = 10 kbar) is
used to describe the very high pressures that occur
deep in the Earth. For example, the pressure at the
core-mantle boundary, located at a depth of approxi-
mately 2900 km, is ∼135 GPa, and at the center of 
the Earth (at a depth of 6370 km) the pressure exceeds
350 GPa. Later we will see how these values can be
calculated (Section 3.9).

3 . 5 T WO - DIM E NSION A L  S T R E S S :
NOR M A L  S T R E S S  
A N D  S H E A R  S T R E S S

Stress acting on a plane is a vector quantity, meaning that
it has both magnitude and direction; it is sometimes
called traction. Stress on an arbitrarily oriented plane,
however, is not necessarily perpendicular to that plane,
but, like a vector, it can be resolved into components nor-
mal to the plane and parallel to the plane (Figure 3.3).
The vector component normal to the plane is called the
normal stress, for which we use the symbol σn (some-
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3After Blaise Pascal (1623–1662).
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is normal stress
is shear stress
is force; � is stress

F I G U R E  3 . 3 The stress on a two-dimensional plane is
defined by a stress acting perpendicular to the plane (the
normal stress) and a stress acting along the plane (the shear
stress). The normal stress and shear stress are perpendicular
to one another.
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times just the symbol σ is used); the vector component
along the plane is the shear stress and has the symbol σs

(sometimes the symbol τ (tau) is used).
In contrast to the resolution of forces, the resolution

of stress into its components is not straightforward,
because the area changes as a function of the orienta-
tion of the plane with respect to the stress vector. Let
us first examine the resolution of stress on a plane in
some detail, because, as we will see, this has important
implications.

In Figure 3.4, stress σ has a magnitude F/AB and
makes an angle θ with the top and bottom of our
square. The forces perpendicular (Fn) and parallel (Fs)
to the plane EF are

Fn = F cos θ = σ AB cos θ = σ EF cos2 θ
(AB = EF cos θ) Eq. 3.1
Fs = F sin θ = σ AB sin θ =
σ EF sin θ cos θ = σ EF 1⁄2(sin 2θ) Eq. 3.2

Thus the corresponding stresses are

σn = Fn/EF = σ cos2 θ Eq. 3.3
σs = Fs/EF = σ 1⁄2(sin 2θ) Eq. 3.4

You notice that the equation for the normal stress
and the normal force are different, as are the equations
for Fs and σs. We graphically illustrate this difference
between forces and stresses on an arbitrary plane by

plotting their normalized values as a function of the
angle θ in Figure 3.4c and d, respectively. In particu-
lar, the relationship between Fs and σs is instructive for
gaining an appreciation of the area dependence of
stress. Both the shear force and the shear stress ini-
tially increase with increasing angle θ; at 45° the shear
stress reaches a maximum and then decreases, while Fs

continues to increase.
Thus, the stress vector acting on a plane can be

resolved into vector components perpendicular and
parallel to that plane, but their magnitudes vary as a
function of the orientation of the plane. Let us further
examine the properties of stress by determining the
stress state for a three-dimensional body.

3 . 6 T H R E E- DIM E NSION A L
S T R E S S :  PRINCIPA L
PL A N E S  A N D  PRINCIPA L
S T R E S S E S

Previously, we discussed stress acting on a single plane
(the two-dimensional case), recognizing two vector
components, the normal stress and the shear stress
(Figure 3.3). However, to describe stress on a randomly
oriented plane in space we need to consider the three-
dimensional case. We limit unnecessary complications
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F I G U R E  3 . 4 The relationship between force (F) 
and stress (σ) on a plane. Section through a cube
showing face ABCD with ribs of length AB on which a force
F is applied. This force is resolved into orientations
parallel (Fs) and perpendicular (Fn) to a plane that makes
an angle θ with the top and bottom surface (EF is the
trace of this plane). The magnitudes of vectors Fs and Fn

are a function of the angle θ: Fn = F ⋅ cos θ, Fs = F ⋅ sin θ.
The magnitude of the normal (σn) and shear stress (σs)
is a function of the angle θ and the area: σn = σ cos2 θ,
σs = σ 1⁄2 (sin 2θ). (a) Force F on plane; (b) stress σ on
plane; (c) normalized values of Fn and σn on plane with
angle θ; (d) normalized values of Fs and σs on a plane
with angle θ.
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by setting the condition that the body containing the
plane is at rest. So a force applied to the body is bal-
anced by an opposing force of equal magnitude but
opposite sign; this condition is known as Newton’s
Third Law of Motion. Using another Newtonian sports
analogy, kick a ball that rests against a wall and notice
how the ball (the wall, in fact) pushes back with equal
enthusiasm.

3.6.1 Stress at a Point
We shrink our three-dimensional body containing the
plane of interest down to the size of a point for our
analysis of the stress state of an object. Why this seem-
ingly obscure transformation? Recall that two nonpar-
allel planes have a line in common and that three or
more nonparallel planes have a point in common. In
other words, a point defines the intersection of an 
infinite number of planes with different orientations.
The stress state at a point, therefore, can describe the
stresses acting on all planes in a body.

In Figure 3.5a the normal stresses (σ) acting on four
planes (a–d) that intersect in a single point are drawn.
For clarity, we limit our illustrations to planes that are
all perpendicular to the surface of the page, allowing
the use of slice through the body. You will see later 
that this geometry easily expands into the full three-
dimensional case. Because of Newton’s Third Law of
Motion, the stress on each plane must be balanced by
one of opposite sign (σ = –σ). Because stress varies as
a function of orientation, the magnitude of the normal
stress on each plane (represented by the vector length)
is different. If we draw an envelope around the end
points of these stress vectors (heavy line in Fig-
ure 3.5a), we obtain an ellipse. Recall from geometry
that an ellipse is defined by at least three nonperpen-
dicular axes, which are shown in Figure 3.5a. This
means that the magnitude of the stress for all possible
planes is represented by a point on this stress ellipse.
Now, the same can be done in three dimensions, but
this is hard to illustrate on a piece of flat paper. Doing
the same analysis in three dimensions, we obtain an
envelope that is the three-dimensional equivalent of an
ellipse, called an ellipsoid (Figure 3.5b). This stress
ellipsoid fully describes the stress state at a point and
enables us to determine the stress for any given plane.
Like all ellipsoids, the stress ellipsoid is defined by
three mutally perpendicular axes, which are called the
principal stresses. These principal stresses have two
properties: (1) they are orthogonal to each other, and
(2) they are perpendicular to three planes that do not
contain shear stresses; these planes are called the prin-

cipal planes of stress. So, we can describe the stress
state of a body simply by specifying the orientation
and magnitude of three principal stresses.

3.6.2 The Components of Stress
The orientation and magnitude of the stress state of a
body is defined in terms of its components projected in
a Cartesian reference frame, which contains three
mutually perpendicular coordinate axes, x, y, and z. To
see this, instead of a point representing an infinite
number of planes on which our stress acts, we draw
our point as an infinitely small cube whose ribs are
perpendicular to each of the coordinate axes, x, y, and
z. We resolve the stress acting on each face of a cube
into three components (Figure 3.6). For a face normal
to the x-axis the components are σxx, which is the com-
ponent normal to that face, and σxy and σxz, which are
the two components parallel to that face. These last
two stresses are shear stress components, acting along
one of the other coordinate axes y and z, respectively.
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F I G U R E  3 . 5 (a) A point represents the intersection of an
infinite number of planes, and the stresses on these planes
describe an ellipse in the two-dimensional case. In three
dimensions this stress envelope is an ellipsoid (b), defined by
three mutually perpendicular principal stress axes (σ1 ≥ σ2 ≥ σ3).
These three axes are normal to the principal planes of stress.
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Applying this same procedure for the faces normal to
y and z, we obtain a total of nine stress components
(Figure 3.6):

In the direction of
x: y: z:

stress on the face normal to x: σxx σxy σxz

stress on the face normal to y: σyx σyy σyz

stress on the face normal to z: σzx σzy σzz

The columns, from left to right, represent the com-
ponents in the x, y, and z directions of the coordinate
system, respectively. σxx, σyy, and σzz are normal stress
components and the other six are shear stress compo-
nents. Because we specified that the body itself is at
rest, three of the six shear stress components must be
equivalent (σxy and σyx, σyz and σzy, and σxz and σzx). If
these components were unequal, the body would
move, which violates our at-rest condition. So, rather
than nine components, we are left with six independent
stress components to describe the stress acting on any
arbitrary infinitesimal body:

In the direction of
x: y: z:

stress on the face normal to x: σxx σxy σxz

stress on the face normal to y: σxy σyy σyz

stress on the face normal to z: σxz σyz σzz

The only ingredient left in our description is a sign
convention. In physics and engineering, tensile stress

is considered positive, and compressive stress nega-
tive. In geology, however, it is customary to make
compression positive and tension negative, because
compression is more common in the Earth. We will,
therefore, use the geologic sign convention throughout
the text; however, don’t confuse this with the engi-
neering sign convention used in some other textbooks.4

For any given state of stress there is at least one set
of three mutually perpendicular planes on which the
shear stresses are zero. In other words, you can rotate
our infinitesimal cube such that the shear stresses on
each of its three faces are zero. In this orientation,
these three faces are the principal planes of stress (the
same ones that we described in our stress ellipsoid;
Section 3.6.1) and they intersect in three mutually per-
pendicular axes that are the principal axes of stress
(which are the same as the axes of the stress ellipsoid
in Section 3.6.1). The stresses acting along them are
called the principal stresses for a given point or
homogeneous domain within a body.

3.6.3 Stress States
If the three principal stresses are equal in magnitude, we
call the stress isotropic. This stress state is represented
by a sphere rather than an ellipsoid, because all three
radii are equal. If the principal stresses are unequal in
magnitude, the stress is called anisotropic. By conven-
tion, the maximum principal stress is given the symbol
σ1, the intermediate and minimum principal stresses act-
ing along the other two axes are given the symbols σ2

and σ3, respectively. Thus, by (geologic) convention:

σ1 ≥ σ2 ≥ σ3

By changing the relative values of the three principal
stresses we define several common stress states:

General triaxial stress: σ1 > σ2 > σ3 ≠ 0
Biaxial (plane) stress: one axis = 0

(e.g., σ1 > 0 > σ3)
Uniaxial compression: σ1 > 0; σ2 = σ3 = 0
Uniaxial tension: σ1 = σ2 = 0; σ3 < 0
Hydrostatic stress (pressure): σ1 = σ2 = σ3

So, we learned that the stress state of a body is
defined by nine components. Mathematically this 

473 . 6  T H R E E - D I M E N S I O N A L  S T R E S S
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F I G U R E  3 . 6 Resolution of stress into components
perpendicular (three normal stresses, σn) and components
parallel (six shear stresses, σs) to the three faces of an
infinitesimally small cube, relative to the reference system x, y,
and z.

4A further source of possible confusion is that elastic constants of materi-
als are given with the engineering convention, so their sign needs to be
reversed in our use.
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ellipsoid is described by a 3 × 3 matrix (called a 
second-rank tensor). Although it may seem easier at
first to use a geometric representation of stress, as we
just did, for the analysis of stress in bodies it is better
to apply mathematical operations. We will return to
this later in the chapter (Section 3.10).

3 .7 DE RI V ING  S OM E  S T R E S S
R E L ATIONS HIP S

Now that we can express the stress state of a body by
its principal stresses, we can derive several useful
relationships. Let’s carry out a simple classroom
experiment in which we compress a block of clay
between two planks (Figure 3.7). As the block of clay
develops a fracture, we want to determine what the
normal and the shear stresses on the fracture plane are.
To answer this question our approach is similar to our
previous one (Equations 3.1 to 3.4), but now we
express the normal and shear stresses in terms of the
principal stress axes.

The principal stresses acting on our block of clay
are σ1 (maximum stress), σ2 (intermediate stress), and
σ3 (minimum stress). Since we carry out our experi-
ment under atmospheric conditions, the values of σ2

and σ3 will be equal, and we may simplify our analy-
sis by neglecting σ2 and considering only the σ1-σ3

plane, as shown in Figure 3.7. The fracture plane
makes an angle θ (theta) with σ3. This plane makes the
trace AB in Figure 3.7b, which we assign unit length
(that is, 1) for convenience. We can resolve AB along
AC (parallel to σ1) and along BC (parallel to σ3). Then,
by trigonometry, we see that the area represented by
AC = sin θ, and the area represented by BC = cos θ.
Note that if we assign dimension L to AB then AC =
L ⋅ sin θ and BC = L ⋅ cos θ.

Next we consider the forces acting on each of the
surface elements represented by AB, BC, and AC.
Since force equals stress times the area over which it
acts, we obtain

force on side BC = σ1 ⋅ cos θ
force on side AC = σ3 ⋅ sin θ

The force on side AB consists of a normal force (i.e.,
σn ⋅ 1) and a shear force (i.e., σs ⋅ 1); recall that force
is stress times area.

For equilibrium, the forces acting in the direction of
AB must balance, and so must the forces acting per-
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F I G U R E  3 . 7 Determining the normal and shear stresses
on a plane in a stressed body as a function of the principal
stresses. (a) An illustration from the late nineteenth-century
fracture experiments of Daubrée using wax. (b) For a classroom
experiment, a block of clay is squeezed between two planks of
wood. AB is the trace of fracture plane P in our body that makes
an angle θ with σ3. The two-dimensional case shown is
sufficient to describe the experiment, because σ2 equals σ3

(atmospheric pressure).

(b)

(a)
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pendicular to AB (which is parallel to CD). Hence,
resolving along CD:

force ⊥ AB = force ⊥ BC resolved on CD +
force ⊥ AC resolved on CD

or
1 ⋅ σn = σ1 cos θ ⋅ cos θ + σ3 sin θ ⋅ sin θ Eq. 3.5
σn = σ1 cos2 θ + σ3 sin2 θ Eq. 3.6

Substituting these trigonometric relationships in
Equation 3.6, we obtain

cos2 θ = 1⁄2(1 + cos 2θ)
sin2 θ = 1⁄2(1 – cos 2θ)

Simplifying, gives

σn = 1⁄2(σ1 + σ3) + 1⁄2(σ1 – σ3) cos 2θ Eq. 3.7

and,

force parallel AB = force ⊥ BC resolved on AB +
force ⊥ AC resolved on AB

or
1 ⋅ σs = σ1 cos θ ⋅ sin θ – σ3 sin θ ⋅ cos θ Eq. 3.8

Note that the force perpendicular to AC resolved on AB
acts in a direction opposite to the force perpendicular
to BC resolved on AB, hence a negative sign is needed
in Eq. 3.8, which further simplifies to

σs = (σ1 – σ3) sin θ ⋅ cos θ Eq. 3.9

Substituting this trigonometric relationship in Eq. 3.9,
we get

sin θ ⋅ cos θ = 1⁄2 sin 2θ

which gives

σs = 1⁄2(σ1 – σ3) sin 2θ Eq. 3.10

From Equations 3.7 and 3.10 we can determine that the
planes of maximum normal stress are at an angle θ of
0° with σ3, because cos 2θ reaches its maximum value
(cos 0° = 1). Secondly, planes of maximum shear stress
lie at an angle θ of 45° with σ3 because sin 2θ reaches
its maximum value (sin 90° = 1) (see also Figure 3.2c
and d). Whereas faulting resulted in a shearing motion
along the fault plane, we find that the fault plane in our
experiment is not parallel to the plane of maximum
shear stress (θ > 45°). This perhaps suprising result

reflects a fundamental property of solids that we ana-
lyze in Chapter 6.

3 . 8 MOH R  DI AGR A M  
FOR  S T R E S S

The equations we derived for σn and σs do not offer an
obvious sense of their values as a function of orienta-
tion of a plane in our block of clay. Of course, a pro-
grammable calculator or simple computer program
will do the job, but a convenient graphical method,
known as the Mohr diagram5 (Figure 3.8), was intro-
duced over a century ago to solve Equations 3.7 and
3.10. A Mohr diagram is an “XY”-type (Cartesian) plot
of σs versus σn that graphically solves the equations for
normal stress and shear stress acting on a plane within
a stressed body. In our experiences, many people find
the Mohr construction difficult to comprehend. So
we’ll first examine the proof and underlying principles
of this approach to try to take the magic out of the
method.

If we rearrange Equations 3.7 and 3.10 and square
them, we get

[σn – 1⁄2(σ1 + σ3)]2 = [1⁄2(σ1 – σ3)]2 cos2 2θ Eq. 3.11
σs

2 = [1⁄2(σ1 – σ3)]2 sin2 θ Eq. 3.12
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5Named after Otto Mohr (1835–1918).
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F I G U R E  3 . 8 The Mohr diagram for stress. Point P
represents the plane in our clay experiment of Figure 3.7.
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Adding Equations 3.11 and 3.12 gives

[σn – 1⁄2(σ1 + σ3)]2 + σs
2 =

[1⁄2(σ1 – σ3)]2 ⋅ (cos2 2θ + sin2 2θ) Eq. 3.13

Using the trigonometric relationship

(cos2 2θ + sin2 2θ) = 1

in Equation 3.13 gives

[σn – 1⁄2(σ1 + σ3)]2 + σs
2 = [1⁄2(σ1 – σ3)]2 Eq. 3.14

Note that Equation 3.14 has the form (x – a)2 + y2 = r2,
which is the general equation for a circle with radius r
and centered on the x-axis at distance a from the 
origin. Thus the Mohr circle has a radius 1⁄2(σ1 – σ3) 
that is centered on the σn axis at a distance 1⁄2(σ1 + σ3) 
from the origin. The construction is shown in Figure 3.8.
You also see from this figure that the Mohr circle’s
radius, 1⁄2(σ1 – σ3), is the maximum shear stress, σs, max.
The stress difference (σ1 – σ3), called the differential
stress, is indicated by the symbol σd.

3.8.1 Constructing the Mohr Diagram
To construct a Mohr diagram we draw two mutually
perpendicular axes; σn is the abscissa (x-axis) and σs is
the ordinate (y-axis). In our clay deformation experi-
ment, the maximum principal stress (σ1) and the mini-
mum principal stress (σ3) act on plane P that makes an
angle θ with the σ3 direction (Figure 3.7); in the Mohr
construction we then plot σ1 and σ3 on the σn-axis

(Figure 3.8). These principal
stress values are plotted on the
σn axes because they are normal
stresses, but with the special
condition that the planes on
which they act, the principal
planes, have zero shear stress (σs

= 0). We then construct a circle
through points σ1 and σ3, with
O, the midpoint, at 1⁄2(σ1 + σ3) as
center, and a radius of 1⁄2(σ1 –
σ3). Next, we draw a line 
OP such that angle POσ1

is equal to 2θ. This step often
gives rise to confusion and
errors. First, remember that we
plot twice the angle θ, which is

the angle between the plane and σ3, because of the
equations we are solving. Second, remember that we
measure 2θ from the σ1-side on the σn-axis.6 When
this is done, the Mohr diagram is complete and we
can read off the value of σn,P along the σn-axis, and
the value of σs,P along the σs-axis for our plane P, as
shown in Figure 3.8. We see that

σn,P = 1⁄2(σ1 + σ3) + 1⁄2(σ1 – σ3) cos 2θ
and

σs,P = 1⁄2(σ1 – σ3) sin 2θ

A couple of additional observations can be made from
the Mohr diagram (Figure 3.9). There are two planes,
oriented at angle θ and its complement (90 – θ), with
equal shear stresses but different normal stresses. Also,
there are two planes with equal normal stress, but with
shear stresses of opposite sign (that is, they act in dif-
ferent directions on these planes).

In general, for each orientation of a plane, defined
by its angle θ, there is a corresponding point on the
circle. The coordinates of that point represent the nor-
mal and shear stresses that act on that plane. For
example, when θ = 0° (that is, for a plane parallel to
σ3), P coincides with σ1, which gives σn = σ1 and σs

= 0. In other words, for any value of σ1 and σ3 (σ3 =
σ2 in our compression experiment), we can determine
σn and σs graphically for planes that lie at an angle θ
with σ3. If we decide to change our earlier experi-
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F I G U R E  3 . 9 For each value of the shear stress and the normal stress there are two
corresponding planes, as shown in the Mohr diagram (a). The corresponding planes in 
σ1 – σ3 space are shown in (b).

6Alternative conventions for this construction are also in use, but be care-
ful that they are not mixed.
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ment by gluing the planks to
the clay block and then mov-
ing the planks apart (a tension
experiment), we must use a
negative sign for the least
principal stress (in this case,
σ1 = σ2 and σ3 is negative). So
the center O of the Mohr cir-
cle can lie on either side of 
the origin, but is always on the 
σ-axis.

The Mohr diagram also
nicely illustrates the attitude of
planes along which the shear
stress is greatest for a given
state of stress. The point on the
circle for which σs is maxi-
mum corresponds to a value of
2θ = 90°. For the same point,
the magnitude of σs is equal 
to the radius of the circle, that
is, 1⁄2(σ1 – σ3). Thus the 
(σ1 – σ3), the differential
stress, is twice the magnitude
of the maximum shear stress:

σd = 2σs, max               Eq. 3.15

When there are changes in the
principal stress magnitudes
without a change in the differ-
ential stress, the Mohr circle
moves along the σn-axis with-
out changing the magnitude of
σs. In our experiment, this
would be achieved by increas-
ing the air pressure in the class-
room or carrying out the 
experiment under water;7 this “surrounding” pressure is
called the confining pressure (Pc) of the experiment. In
Chapter 6 we return to the Mohr stress diagram and the
role of the confining pressure for fracturing of rocks, but
let’s get comfortable with the construction with a simple
assignment. Figure 3.10a shows six planes in a stressed
body at different angles with σ3. Using the graph in
Figure 3.10b, draw the Mohr circle and estimate the nor-
mal and shear stresses for these six planes. You can
check your estimates by using Equations 3.7 and 3.10.

3.8.2 Some Common Stress States
Now that you are familiar with the Mohr construction,
let’s look at its representation of the various stress
states that were mentioned earlier. The three-
dimensional Mohr diagrams in Figure 3.11 may at first
appear a lot more complex than those in our earlier
examples, because they represent three-dimensional
stress states rather than two-dimensional conditions.
Three-dimensional Mohr constructions simply com-
bine three two-dimensional Mohr circles for (σ1 – σ2),
(σ1 – σ3), and (σ2 – σ3), and each of these three Mohr
circles adheres to the procedures outlined earlier.
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F I G U R E  3 . 1 0 Adventures with the Mohr circle. To estimate the normal and shear
stresses on the the six planes in (a) apply the Mohr construction in (b). The principal
stresses and angles θ are given in (a). You can check your estimates from the construction 
in σn – σs space by using Equations 3.7 and 3.10.

7Both conditions can prove uncomfortable.
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Figure 3.11a shows the case for general triaxial stress,
in which all three principal stresses have nonzero val-
ues (σ1 > σ2 > σ3 ≠ 0). Biaxial (plane) stress, in which
one of the principal stresses is zero (e.g., σ3 = 0) is
shown in Figure 3.11b. Uniaxial compression (σ2 = σ3

= 0; σ1 > 0) is shown in Figure 3.11c, whereas uniaxial
tension (σ1 = σ2 = 0; σ3 < 0) would place the Mohr 
circle on the other side of the σn-axis. Finally, isotro-
pic stress, often called hydrostatic pressure, is repre-
sented by a single point on the σn-axis of the Mohr 
diagram (positive for compression, negative for ten-
sion), because all three principal stresses are equal in
magnitude (σ1 = σ2 = σ3; Figure 3.11d).

3 . 9 M E A N  S T R E S S  
A N D  DE V I ATORI C  S T R E S S

In Chapters 4 and 5 we will explore how stresses result
in deformation and how stress and strain are related.
Because of a body’s response to stress, we subdivide
the stress into two components, the mean stress and the
deviatoric stress (Figure 3.12). The mean stress is
defined as (σ1 + σ2 + σ3)/3, using the symbol σm. The

difference between mean stress
and total stress is the deviatoric
stress (σdev), so

σ = σmean + σdev

The mean stress is often
called the hydrostatic compo-
nent of stress or the hydrostatic
pressure, because a fluid is
stressed equally in all directions.
Because the magnitude of the
hydrostatic stress is equal in all
directions it is an isotropic stress
component. When we consider
rocks at depth in the Earth we
generally refer to lithostatic
pressure,8 Pl, rather than the
hydrostatic pressure. The litho-
static stress component is best
explained by a simple but pow-
erful calculation. Consider a
rock at a depth of 3 km in the
middle of a continent. The litho-
static pressure at this point is 
a function of the weight of 
the overlying rock column

because other (tectonic) stresses are unimportant. The
local pressure is a function of rock density, depth, and
gravity:

Pl = ρ ⋅ g ⋅ h Eq. 3.16

If ρ (density) equals a representative crustal value of
2700 kg/m3, g (gravity) is 9.8 m/s2, and h (depth) is
3000 m, we get

Pl = 2700 ⋅ 9.8 ⋅ 3000 = 79.4 ⋅ 106 Pa ≈ 80 MPa 
(or 800 bars)

In other words, for every kilometer in the Earth’s crust the
lithostatic pressure increases by approximately 27 MPa.
With depth the density of rocks increases, so you can-
not continue to use the value of 2700 kg/m3. For
crustal depths greater than approximately 15 km the
average density of the crust is 2900 kg/m3. Deeper into
Earth the density increases further, reaching as much
as 13,000 kg/m3 in the solid inner core.
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F I G U R E  3 . 1 1 Mohr diagrams of some representative stress states: (a) triaxial stress,
(b) biaxial (plane) stress, (c) uniaxial compression, and (d) isotropic stress or hydrostatic
pressure, P (compression is shown).

8Also called overburden pressure.
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Because the lithostatic pres-
sure is of equal magnitude in
all directions, it follows that σ1

= σ2 = σ3. The actual state of
stress on a body at depth in the
Earth is often more complex
than only that from the overly-
ing rock column. Anisotropic
stresses that arise from tectonic
processes, such as the collision
of continental plates or the
drag of the plate on the under-
lying material, contribute to
the stress state at depth. The
differential stresses of these
anisotropic stress components,
however, are many orders of magnitude less than the
lithostatic stress. In the crust, differential stresses may
reach a few hundred megapascals, but in the mantle,
where lithostatic pressure is high, they are only on the
order of tens of megapascals or less (see Section 3.13).
Yet, such low differential stresses are responsible for
the slow motion of “solid” mantle that is a critical ele-
ment of our planet’s plate dynamics.

Let’s return to Figure 3.12 and the preceding com-
ments. Why divide a body’s stress state into an isotropic
(lithostatic/hydrostatic) and an anisotropic (devia-
toric) component? For our explanation we return to
look at the deformation of a stressed body. Because
isotropic stress acts equally in all directions, it results
in a volume change of the body (Figure 3.12a).
Isotropic stress is responsible for the consequences of
increasing water pressure at depth on a human body or
air pressure changes during take-off and landing of a
plane (remember those painfully popping ears?).
Place an air-filled balloon under water and you will
see that isotropic stress maintains the spherical shape
of the balloon, but reduces the volume. Deviatoric
stress, on the other hand, changes the shape of a body
(Figure 3.12b). As we will see in Chapter 4, distortion
of a body can often be measured in structural geology,
but volume change is considerably more difficult to
determine. As in determining distortions, knowledge
about the original volume of a body is the obvious
way to determine any volume change. Reliable vol-
ume markers, however, are rare in rocks and we resort
to indirect approaches such as chemical contrasts
between deformed and undeformed samples. The
division between the isotropic and anisotropic compo-
nents of stress provides the connection between the
volumetric and distortional components of deforma-
tion, respectively.

3 .10 T H E  S T R E S S  T E NS OR

The stress ellipsoid is a convenient way to visualize
the state of stress, but it is cumbersome for calcula-
tions. For example, it is difficult to determine the
stresses acting on a randomly chosen plane in a three-
dimensional body, or the corresponding stresses
when we change the reference system (e.g., by a rota-
tion). In contrast, the stress tensor, which mathemat-
ically describes the stress state in terms of three
orthogonal stress axes, makes such determinations
relatively easy. So let us take a look at the stress ten-
sor in a little more detail.

A vector is a physical quantity that has magnitude
and direction; it is visualized as an arrow with length
and orientation at a point in space. A vector is repre-
sented by three coordinates in a Cartesian reference
frame that we describe by a matrix consisting of 
three components. Figure 3.4 showed that stress at a
point is a physical quantity that is defined by nine
components, which is called a second-rank tensor.
This is represented by an ellipsoid with orientation,
size, and shape at a point in space. The rank of a ten-
sor reflects the number of matrix components and is
determined by raising the number 3 to the power of a
tensor’s rank; for the stress tensor this means, 32 =
9 components. It follows that a vector is a first-rank
tensor (31 = 3 components) and a scalar is a zero-rank
tensor (30 = 1 component). Geologic examples of
zero-rank tensors are pressure, temperature, and time;
whereas force, velocity, and acceleration are exam-
ples of first-rank tensors.

Consider the transformation of a point P in three-
dimensional space defined by coordinates P(x, y, z) to
point P′(x′, y′, z′). The transformed condition is identi-
fied by adding the prime symbol (′). We can describe
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F I G U R E  3 . 1 2 The mean (hydrostatic) and deviatoric components of the stress. 
(a) Mean stress causes volume change and (b) deviatoric stress causes shape change.
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the transformation of the three coordinates of P as a
function of P′ by

x′ = ax + by + cz
y′ = dx + ey + fz
z′ = gx + hy + iz

The tensor that describes the transformation from P to
P′ is the matrix

a b c
d e f
g h i

In matrix notation, the nine components of a stress ten-
sor are

σ11 σ12 σ13

σ21 σ22 σ23 = [σij]
σ31 σ32 σ33

with σ11 oriented parallel to the 1-axis and acting on a
plane perpendicular to the 1-axis, σ12 oriented parallel
to the 1-axis and acting on a plane perpendicular to the
2-axis, and so on. The systematics of these nine com-
ponents make for an unnecessarily long notation, so in
shorthand we write

[σij]

where i refers to the row (component parallel to the 
i-axis) and j refers to the column (component acting on
the plane perpendicular to the j-axis).

You will notice the similarity between our approach
to the stress tensor and our earlier approach to the
description of stress at a point, consisting of one nor-
mal stress (i = j) and two shear stresses (i ≠ j) for each
of three orthogonal planes. The stress tensor is simply
the mathematical representation of this condition. Now
we use this notation for decomposing the total stress
into the mean stress and deviatoric stress

Decomposing the stress state in this manner demon-
strates the property that shear stresses (i ≠ j) are
restricted to the deviatoric component of the stress,
whereas the mean stress contains only normal stresses.
Because σij = σji, both the mean stress and the devia-
toric stress are symmetric tensors.
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Once you have determined the stress tensor, it is rel-
atively easy to change the reference system. In this
context, you are reminded that the values of the nine
stress components are a function of the reference
frame. Thus, when changing the reference frame, say
by a rotation, the components of the stress tensor are
changed. These transformations are greatly simplified
by using mathematics for stress analysis, but we’d
need another few pages explaining vectors and matrix
transformations before we could show some examples.
If you would like to see a more in-depth treatment of
this topic, several useful references are given in the
reading list.

3 .11 A  BRIE F  S U M M A RY  
OF  S T R E S S

Let’s summarize where we are in our understanding of
stress. You have seen that there are two ways to talk
about stress. First, you can refer to stress on a plane (or
traction), which can be represented by a vector (a
quantity with magnitude and direction) that can be
subdivided into a component normal to the plane (σn,
the normal stress) and a component parallel to the
plane (σs, the shear stress). If the shear stress is zero,
then the stress vector is perpendicular to the plane, but
this is a special case; in general, the stress vector is not
perpendicular to the plane on which it acts. It is there-
fore meaningless to talk about stress without specify-
ing the plane on which it is acting. For example, it is
wrong to say “the stress at 1 km depth in the Earth is
00°/070°,” but it is reasonable to say “the stress vector
acting on a vertical, north-south striking joint surface
is oriented 00°/070°.” In this example there must be a
shear stress acting on the fracture; check this for your-
self. If the magnitude of this shear stress exceeds the
frictional resistance to sliding along the fracture, then
there might be movement.

The stress state at a point cannot be described by
a single vector. Why? Because a point represents the
intersection of an infinite number of planes, and
without knowing which plane you are talking about,
you cannot define the stress vector. If you want to
describe the stress state at a point you must have a
tool that will allow you to calculate the stress vector
associated with any of the infinite number of planes.
We introduced three tools: (1) the stress ellipsoid,
(2) the three principal stress axes, and (3) the stress
tensor. The stress ellipsoid is the envelope containing
the tails or tips (for compression and tension, respec-
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tively) of the stress vectors associated with the infi-
nite number of planes passing through the point,
with each of the specified vectors and its opposite
associated with one plane. On all but three of these
planes the vectors have shear stress components. As
a rule, there will be three mutually perpendicular
planes on which the shear component is zero; the
stress vector acting on each of these planes is per-
pendicular to the plane. These three planes are called
the principal planes of stress, and the associated
stress vectors are the principal axes of stress, or
principal stresses (σ1 ≥ σ2 ≥ σ3). Like any ellipsoid,
the stress ellipsoid has three axes, and the principal
stresses lie parallel to these axes. Given the three
principal stresses, you have uniquely defined the
stress ellipsoid; given the stress ellipsoid, you can
calculate the stress acting on any random plane that
passes through the center of the ellipsoid (which is
the point for which we defined the stress state). So,
the stress ellipsoid and the principal stresses give a
complete description of the stress at a point.
Structural geologists find these tools convenient to
work with because they are easy to visualize. Thus
we often represent the stress state at a point by pic-
turing the stress ellipsoid, or we talk about the values
of the principal stresses at a location. For example,
we would say that “the orientation of the maximum
principal stress at the New York–Pennsylvania bor-
der trends about 070°.”

For calculations, these tools are a bit awkward and
a more general description of stress at a point is needed;
this tool is the stress tensor. The stress tensor consists of
the components of three stress vectors, each associated
with a face of an imaginary cube centered in a speci-
fied Cartesian frame of reference. Each face of the
cube contains two of the Cartesian axes. If it so hap-
pens that the stress vectors acting on the faces of the
cube have no shear components, then by definition
they are the principal stresses, and the axes in your
Cartesian reference frame are parallel to the principal
stresses. But if you keep the stress state constant and
rotate the reference frame, then the three stress vectors
will have shear components. The components of the
three stress vectors projected onto the axes of your ref-
erence frame (giving one normal stress and two shear
stresses) are written as components in a 3 × 3 matrix (a
second-rank tensor). If the axes of the reference frame
happen to be parallel to the principal stresses, then the
diagonal terms of the matrix are the principal stresses
and the off-diagonal terms are zero (that is, the shear
stresses are zero). If the axes have any other orienta-
tion, then the diagonal terms are not the principal
stresses and some, or all, of the off-diagonal terms are

not equal to zero. When using the three principal
stresses or the stress ellipsoid, you are merely specify-
ing a special case of the stress tensor at a point.

3 .12 S T R E S S  T R A J ECTORIE S
A N D  S T R E S S  F IE LDS

By connecting the orientation of principal stress vec-
tors at several points in a body, you obtain trajectories
that show the variation in orientation of that vector
within the body, which are called stress trajectories.
Generally, stress trajectories for the maximum and
minimum principal stresses are drawn, and a change in
trend means a change in orientation of these principal
stresses. Collectively, principal stress trajectories rep-
resent the orientation of the stress field in a body. In
some cases the magnitude of a particular stress vector
is represented by varying the spacing between the tra-
jectories. An example of the stress field in a block that
is pushed on one side is shown in Figure 3.13. If the
stress at each point in the field is the same in magni-
tude and orientation, the stress field is homogeneous;
otherwise it is heterogeneous, as in Figure 3.13.
Homogeneity and heterogeneity of the stress field
should not be confused with isotropic and anisotropic
stress. Isotropic means that the principal stresses are
equal (describing a sphere), whereas homogeneous
stress implies that the orientation and shape of the
stress ellipsoids are equal throughout the body. In a
homogeneous stress field, all principal stresses have the
same orientation and magnitude. The orientation of
stress trajectories under natural conditions typically
varies, arising from the presence of discontinuities in
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σx σxσ1 σ3

σx σx

F I G U R E  3 . 1 3 (a) Theoretical stress trajectories of σ1 (full
lines) and σ3 (dashed lines) in a block that is pushed from the
left resisted by frictional forces at its base. Using the predicted
angle between maximum principal stress (σ1) and fault surface
of around 30° (Coulomb failure criterion; Chapter 6) we can
predict the orientation of faults, as shown in (b).
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rocks, the complex interplay of more than one stress
field (like gravity), or contrasts in rheology (Chapter 5).

3 .13 M E T HODS  OF  S T R E S S
M E A S U R E M E N T

Up to this point our discussion of stress has been pretty
theoretical, except perhaps for our classroom experi-
ment with clay and the example of kicking a ball
around. Before you forget that stress is a physical
quantity rather than an abstract concept (as in psychol-
ogy), we will close this chapter with a few notes on
stress measurements and an application. Because the
methods of present-day stress measurements are
explained in most engineering texts on rock mechan-
ics, the more common methods are briefly described in
Table 3.3. At the end of this section we’ll offer a few
general comments on geologic stress and give a sense
of stress magnitudes.

3.13.1 Present-Day Stress
As it turns out, it is quite difficult to obtain a reliable
measure of present-day stress in the Earth. The deter-

mination of the absolute magnitude of the stress is par-
ticularly challenging. Generally, stress determinations
give the stress differences (the differential stress) and
the orientation of the principal stresses, using earth-
quake focal mechanisms, well-bore enlargements (or
“breakouts”), and other in situ stress measurements
(Table 3.3), and the analysis of faults and fractures.
Earthquake focal mechanisms define a set of two pos-
sible fault planes and slip vectors, which are assumed
to parallel the maximum resolved shear stress on these
planes. Several focal mechanisms and slip vectors on
faults of different orientation are used to determine the
(best-fit) principal stress axes. The magnitude of stress
is based on the energy release of earthquakes, but this
relationship is incomplete. The analysis of the orienta-
tion of exposed faults and their observed slip uses a
similar inversion approach. The elliptical distortion of
vertical wells that were drilled for petroleum and gas
exploration is a direct gauge of the local stress field
and is widely available; the long axis of the distortion
is parallel to the horizontal, minimum principal stress.
Other in situ stress measurements, such as hydraulic
fracturing, in which a hole is capped and pressurized
by a fluid until fracturing releases the fluid pressure,
reflect the local stress field. Whether this local field
reflects the regional (or, remote) tectonic stress or
merely the conditions surrounding the particular geo-
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Borehole breakouts The shape of a borehole changes after drilling in response to stresses in the host rock. Specifically,
the hole becomes elliptical with the long axis of the ellipse parallel to minimum horizontal principal
stress (σs, hor).

Hydrofracture If water is pumped under sufficient pressure into a well that is sealed off, the host rock will fracture.
These fractures will be parallel to the maximum principal stress (σ1), because the water pressure
necessary to open the fractures is equal to the minimum principal stress.

Strain release A strain gauge, consisting of tiny electrical resistors in a thin plastic sheet, is glued to the bottom of
a borehole. The hole is drilled deeper with a hollow drill bit (called overcoring), thereby separating
the core to which the strain gauge is connected from the wall of the hole. The inner core expands (by
elastic relaxation), which is measured by the strain gauge. The direction of maximum elongation is
parallel to the direction of maximum compressive stress and its magnitude is proportional to stress
according to Hooke’s Law (see Chapter 5).

Fault-plane solutions When an earthquake occurs, records of the first motion on seismographs around the world enable us
to divide the world into two sectors of compression and two sectors of tension. These zones are
separated by the orientation of two perpendicular planes. One of these planes is the fault plane on
which the earthquake occurred, and from the distribution of compressive and tensile sectors, the
sense of slip on the fault can be determined. Seismologists assume that the bisector of the two
planes in the tensile sector represents the minimum principal stress (σ3) and the bisector in the
compressive field is taken to be parallel to the maximum compressive stress (σ1).
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logic feature, including the role of pore pressure, is a
topic of ongoing debate.

We can get an intuitive sense of differential stress
magnitudes in nature from a simple consideration of
mountainous regions. We have all looked in awe at
steep walls of rock, especially when they are scaled by
climbers. In the western Himalayas, vertical cliffs rise
up to 2000 m above the valleys. Using Equation 3.16,
we can calculate the vertical stress at the base of such
cliffs is >50 MPa,9 while the minimum horizontal
stress (that is, atmospheric pressure) is only about 
0.1 MPa. Of course mountain ranges of 6–9 km high
are not vertical cliffs, so we require a modification of
Equation 3.16 to get the differential stress from the
load of mountains. Using a triangular load with height
h on an elastic medium, we get (without showing the
derivation)

σd ≈ 0.5 ρ ⋅ g ⋅ h Eq. 3.17

Given that mountain ranges are up to 9 km in height,
this implies differential stresses that exceed 100 MPa.

Present-day stress determinations, like borehole
measurements, give differential stress magnitudes that
likewise range from tens to hundreds of megapascals.
Realize, though, that these methods only record stress
magnitudes in the outermost part (upper crust) of Earth
(Figure 3.14). The magnitude of differential stresses
deep in Earth can only be understood when we 
know something about Earth’s thermal structure and
mechanisms of rock deformation, where differential
stresses are one to two orders of magnitude less (see
Section 3.13.3).

3.13.2 Paleostress
If we wish to determine the ancient stress field from
rocks, most of the approaches listed above are not suit-
able. For the analysis of paleostress we are essentially
limited to the analysis of fault and fracture data, and to
microstructural approaches such as grain-size determi-
nations and grain deformation analysis. Fault-slip
analysis requires some understanding of fault mechan-
ics (Chapter 6), but, in short, it uses fault orientation and
the sense of slip on that fault with the assumption that
the slip direction parallels the maximum shear stress in
that plane. Numerical analysis of sufficiently large fault
data sets can provide the reduced stress tensor that con-
tains the orientations of the three principal stresses and

the differential stress ratio, (σ2 – σ3)/(σ1 – σ2), which
ranges from 0 (when σ2 = σ3) to 1 (when σ1 = σ2).

Microstructural methods require an understanding
of crystal plastic processes and the development of
microstructures that are discussed in Chapter 9. The
grain size of plastically deformed rocks appears to be
nonlinearly related to the differential stress magni-
tude, based on laboratory experiments at elevated
pressure and temperature conditions. Similarly, the
development of deformation microstructures of indi-
vidual grains, like crystal twins, is a function of the
differential stress. Collectively, these approaches
broadly constrain the differential stress magnitudes at
many depths in Earth, complementing upper crustal
data from fault studies and present-day stress determi-
nations. Whereas these methods remain unexplained
at this point, some of the information that is obtained
from them is incorporated in the final section on stress
in Earth.

3.13.3 Stress in Earth
From large data sets of present-day stress measure-
ments we find that the results are generally in good
agreement about the orientation of the principal stresses
and that they compare reasonably well in magnitude.
An application of these approaches and the informa-
tion that they provide about regional stress patterns and
plate dynamics is shown in Figure 3.15. This global
synthesis of stress data, part of the World Stress Map
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F I G U R E  3 . 1 4 In situ borehole measurements of
differential stress (σd) with depth, indicating a friction
coefficient (µ) in the range of 0.6–0.7 for the upper crust.

92700 kg/m3 × 9.8 m/s2 × 2000 m = 53 MPa.
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project, reflects an international effort that catalogs
present-day stress patterns around the world. The
majority of stress determinations are from earthquake
focal mechanism solutions.

The global stress summary map (Figure 3.15b)
shows regionally systematic stress fields in the upper
crust, despite the geologic complexity found at Earth’s
surface. The orientation and magnitudes of horizontal
principal stresses are uniform over areas hundreds to
thousands of kilometers in extent. These data also
show that the upper crust is generally under compres-
sion, meaning that maximum compressive stresses are
horizontal, resulting in either reverse or strike-slip
faulting. For example, the maximum stress in the east-
ern half of North America is oriented approximately
NE–SW with differential stresses on the order of a
hundred megapascals. Areas where horizontal tensile
stresses dominate are regions of active extension, such
as the East African Rift zone, the Basin and Range of
western North America, and high plateaus in Tibet and
western South America. Using this compilation we can

divide the global stress field into stress provinces,
which generally correspond to active geologic
provinces. From this, a pattern emerges that is remark-
ably consistent with the broad predictions from the
main driving forces of plate tectonics (such as the pull
of the downgoing slab in subduction zones and “push”
at ocean ridges) and with the effects of plate interac-
tions (such as continent–continent collision). In
Chapter 14 we’ll revisit the driving forces of plate tec-
tonics. When studying these global patterns you must
realize that they only reflect the present-day stress
field. Many of the world’s geologic provinces reflect
ancient tectonic activity, with configurations and
processes that are no longer active today, and the 
present-day global stress pattern is unrelated to this
past activity. For example, the orientation of today’s
compressive stresses in eastern North America reflect
the opening of the Atlantic Ocean. They are at a high
angle to late Paleozoic compressive stresses, which
resulted from compressional Appalachian-Caledonian
activity at the margin.
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F I G U R E  3 . 1 5 (a) World Stress Map showing orientations of the maximum horizontal stress superimposed on topography. 
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What happens at depth? While lithostatic pressure
increases with depth (see Equation 3.17), differential
stress cannot increase without bounds, because the
rocks that comprise the Earth do not have infinite
strength. Strength is the ability of a material to sup-
port differential stress; in other words, it is the maxi-
mum stress before rocks fail by fracturing or flow.
Combining present-day stress and paleostress data
with experimental data on flow properties of rocks and
minerals (Chapter 9) gives generalized strength pro-
files for Earth. These strength curves represent the
differential stress magnitude with depth, given
assumptions on the composition and temperature of
rocks. At this point we include representative strength
curves without much explanation just to give you an
idea of stress magnitudes with depth.

You remember from your introductory geology
class that the outermost rheologic layer of the Earth
is called the lithosphere, comprising the crust and
part of the upper mantle, which overlies the
asthenosphere. Taking a quartzo-feldspathic crust
and an olivine-rich upper mantle, a low geothermal
gradient (about 10°C/km), and a crustal thickness of
about 40 km, produces the lithospheric strength curve
in Figure 3.16a. You will notice that a sharp decrease
in strength occurs around 25 km, which reflects 
the change from brittle to plastic flow (called the 
brittle–plastic transition) in quartzo-feldspathic
rocks. The properties of an olivine-rich mantle are
quite different from the crust, and this in turn pro-
duces a sharp increase in strength and, therefore, a
return to brittle behavior at the crust-mantle boundary
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F I G U R E  3 . 1 5 (Continued.) (b) The generalized pattern based on (a) shows stress trajectories for individual plates; an inward
pointing arrow set reflects reverse faulting, an outward pointing arrow set reflects normal faulting, double sets indicate strike-slip
faulting.
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(the Moho). As with the crustal profile, strength
decreases as plastic behavior replaces the brittle
regime of mantle rocks with depth. This brittle versus
plastic behavior of rock is strongly dependent on tem-
perature, as demonstrated by creating a strength pro-
file at a higher geothermal gradient (Figure 3.16b),
which promotes plastic flow and reduces the strength up
to one order of magnitude. With a geothermal gradient

of 20°C/km, the brittle–plastic transition now occurs
at a depth of about 10 km. In all cases the deeper
mantle is mechanically weak, because it is character-
ized by high temperatures, meaning that the mantle
only supports differential stresses on the order of a
few megapascals. When considering strength pro-
files, remember the distinction between differential
stress and lithostatic pressure. The lithostatic pres-
sure always becomes greater with depth in the Earth,
and is orders of magnitude greater than the differen-
tial stress. For example, the lithostatic stress at a
depth of 100 km in the Earth is several thousand
megapascals (use Equation 3.16), but the differential
stress is only on the order of 1–10 MPa!

3 .14 CLOSING  R E M A R K S

Dynamic analysis, the study of stresses in a body, is a
topic whose relevance goes well beyond structural
geology. Societal challenges like building collapse and
mass wasting come to mind as examples of phenom-
ena whose disastrous effects can be minimized by ade-
quate knowledge of stress states. In this chapter you
have learned the fundamentals of force and stress, and
obtained an intuitive sense of the meaning of stresses
on a body, the stress ellipsoid, and stress conditions in
Earth. A more quantitative analysis of the material is
left for advanced texts (see reading list). Throughout
this book we mainly focus on the general relationship
(or lack thereof) between the geometry of geologic
structures and their origins. Although many aspects of
dynamic analysis remained unmentioned in this chap-
ter, you now have the basic tools needed for the next
step in our journey: the analysis of deformation and
strain.
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F I G U R E  3 . 1 6 Strength curves showing the variation in
differential stress magnitude with depth in the Earth for 
(a) a region characterized by a low geothermal gradient 
(e.g., Precambrian shield areas) and (b) a region with a high
geothermal gradient (e.g., areas of continental extension).
Differential stresses are largely based on experimental data 
for brittle failure and ductile flow, which change as a function 
of composition and temperature. In these diagrams the only
compositional change occurs at the crust-mantle boundary
(the Moho); in the case of additional compositional
stratification, more drops and rises will be present in the
strength curve. The bar at the right side of each diagram
indicates where seismic activity may occur.
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