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9 .1 IN T RODUCTION

How can a strong layer of rock permanently bend into
a tight fold (Figure 9.1)? How can a material such as
ice distort, while remaining a solid? Ice is a particu-
larly instructive example of flow in crystalline solids,
because it moves on human timescales. Its behavior is
directly relevant to rock deformation on geologic
timescales. At first one might think that solid deforma-
tion is accomplished by bending and stretching of
atomic bonds in the crystal lattice, but these move-
ments are elastic deformations and, as described in
Chapter 5, elastic deformation is recoverable (i.e., non-
permanent). The movement of a glacier or the forma-
tion of a fold, however, is a permanent feature that 
represents ductile deformation. If we were to carefully
remove a folded layer from an outcrop, or a deformed
mineral from a hand specimen, they would not jump
back to their original shapes. The distortions that

occurred must be a result of permanent changes in the
material. The principles that underlie the ability of
materials like rocks to accumulate permanent strain are
contained in a vast and ever-growing body of materials
science literature. Structural geologists have increas-
ingly applied concepts from materials science to geo-
logic environments. The associated terminology,
however, has not always remained consistent between
these fields. In trying to keep new terms and concepts
to a minimum, we’ve chosen to limit the coverage in
this chapter; otherwise we’d lose sight of our ultimate
goal: understanding the way rocks deform in the duc-
tile regime.

In Chapter 5 we first introduced the concept of flow.
At that point we described the topic merely in terms of
stress and strain rate. We contrasted linear viscous
(Newtonian) and nonlinear viscous (non-Newtonian)
behavior, using analogs and simple mechanical mod-
els. In this chapter we turn to the physical processes
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that allow materials to undergo appreciable, permanent
distortions. To refresh your memory—strain that is dis-
tributed over the body rather than localized is what dis-
tinguishes ductile behavior from brittle behavior. But
strain that appears homogeneous on one scale may rep-
resent heterogeneity on another, so again we need to
include the scale of our observation. As scales of
observation in structural geology range from nanome-
ters (10–9 m) to kilometers, single minerals to moun-
tain ranges, we define ductile behavior as uniform flow
down to the scale of the hand specimen, that is, down
to the mesoscopic scale.

We distinguish three fundamental mechanisms 
that produce ductile behavior in rocks and minerals:
(1) cataclastic flow, (2) diffusional mass transfer, and
(3) crystal plasticity. Which processes dominate at a
given time in a rock’s history is primarily a function of
temperature, stress, strain rate, grain size, composition,
and fluid content. Temperature, in particular, is an
important parameter, but different minerals behave
ductilely at different temperatures. What is considered
high-temperature behavior for one mineral is low-
temperature behavior for another mineral. Thus, when

talking about the relationship between temperature and
deformation, we introduce a normalized parameter that
is called the homologous temperature, Th. The
homologous temperature is a dimensionless parameter
that is defined as the absolute temperature divided by
the absolute melting temperature of the material:

Th = T/Tm Eq. 9.1

where T is temperature and Tm is melting temperature
of the material, both in K (kelvins). We loosely define
low-temperature conditions as 0 < Th < 0.3, medium-
temperature conditions as 0.3 < Th < 0.7, and high-
temperature conditions as 0.7 < Th < 1.

After discussing the fundamental mechanisms and
their associated microstructures (i.e., mineral geome-
tries on the microscopic scale), we close this chapter
by examining the interrelationship between the various
rheologic parameters (such as stress and strain rate; see
Chapter 5), and by introducing the powerful concept of
deformation mechanism maps. Let us first turn to the
three mechanisms of ductile behavior—cataclastic
flow, dislocation movement, and diffusion.

2059 . 1  I N T R O D U C T I O N

F I G U R E  9 . 1 North-verging recumbent fold in mesozoic rocks of the Morcles thrust (or
Nappe); Swiss Alps.
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9 . 2 C ATACL A S TI C  FLOW

We start our examination of cataclastic flow with a sim-
ple experiment. Consider a bean bag that is originally
shaped like a ball (Figure 9.2). We squash the bag so
that it fits into a cube. In order for the ball-shaped bag
to change shape, the beans have to slide past one
another. Now imagine that the bag is strong and that
you attach it to a winch that pulls the bean-filled bag
through an opening that is smaller than a single bean.
For the bag to pass through the small opening, all the

individual beans must fracture into smaller
pieces (brittle deformation), but the bag as a
whole remains coherent. Such a process,
where a mesoscopic body (the bean bag)
changes shape without breaking into separate
pieces, but the constituents (the beans) frac-
ture into smaller pieces and/or slide past one
another, is called cataclastic flow. In rocks,
the tiny fractures are called microcracks and
the pieces move past one another by the
process of frictional sliding (see Chapter 6).

During cataclastic flow a rock deforms
without obvious strain localization on the
scale of the hand specimen, yet the mecha-
nism of deformation is (micro)fracturing
and/or frictional sliding (Figure 9.3). You
may now better appreciate the confusion sur-
rounding the terms brittle and ductile (Chap-
ter 5). Cataclasis is mesoscopic ductile

behavior, yet the process by which it occurs is micro-
scopic brittle fracturing and frictional sliding!

In rocks, microfractures may occur at grain bound-
aries (intergranular) or within individual grains (intra-
granular). In both cases the process occurs by breaking
many atomic bonds at the same time. The crystal struc-
ture away from the fracture, however, remains unaf-
fected. Frictional sliding is strongly dependent on
pressure; with increasing pressure the ability of sliding
to occur is reduced (see Chapter 6). Therefore, we
expect to find cataclastic flow in rocks only at rela-
tively low lithostatic pressures. This condition is met in
the upper several kilometers of the crust and, indeed,
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(a) (b)

(c)

F I G U R E  9 . 2 Bean bag experiment. Changing the shape of a bag is
accomplished by the grains sliding past one another (a and b). Large grains
may fracture and slide on the fracture surface (c).

F I G U R E  9 . 3 Extension experiment showing cataclastic flow in Luning dolomite (Italy) that is
surrounded by marble that deformed by crystal plastic processes. This contrasting behavior reflects
the relative strength of the materials. 
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we typically find cataclastic flow in shallow-crustal
rocks, such as fault zones. The stress-dependence of
cataclasis is one characteristic that distinguishes it
from ductile mechanisms involving crystal defects,
which are discussed in the next section.

9 . 3 C RYS TA L  DE FECT S

Ductile behavior of materials at elevated temperatures
is achieved by the motion of crystal defects. In simple
terms, a crystal defect is an error in the crystal lattice,
and there are three basic types: (1) point defects,
(2) line defects or dislocations, and (3) planar defects
or stacking faults. The motion of defects gives rise to
permanent strain without the material losing cohesion
(i.e., without fracturing). Point and line defects are
most important for the deformation of rocks. Planar
defects, which arise from errors in the internal layering
of minerals, play only a limited role in deformation. In
order to understand diffusional mass transfer and crys-
tal plasticity, we first need to take a more detailed look
at point and line defects.

9.3.1 Point Defects
There are two types of point defects: (1) vacancies and
(2) impurities. Vacancies are unoccupied sites in the
crystal lattice (Figure 9.4a). Impurity atoms are (a) sub-
stitutionals, in which an atom in a lattice site of the
crystal is replaced by a different atom (Figure 9.4b),
and (b) interstitials, in which an atom is at a nonlat-
tice site of the crystal (Figure 9.4c). Vacancies can
migrate by exchange with atoms in neighboring sites
(Figures 9.4d). At first glance, the concept of migrat-
ing vacancies sounds a bit odd, but when an atom
moves into a vacant site, you can equally say that the
vacancy moved. The general term for this process of
atom or vacancy migration is diffusion. This important
process is discussed later in the chapter. When we

apply a differential stress to a crystal, this causes a gra-
dient in the vacancy concentration. Vacancies migrate
down these concentration gradients, which causes
material to deform ductilely, or to flow.

9.3.2 Line Defects or Dislocations
A line defect, usually called a dislocation, is a linear
array of lattice imperfections (Figure 9.5). More for-
mally, a dislocation is the linear array of atoms that
bounds an area in the crystal that has slipped relative to
the rest of the crystal (Figure 9.6). This definition is
hardly informative at this point, so we first look at the
geometry of two end-member configurations, the edge
dislocation and the screw dislocation, before turning to
the concept of slip in crystals.

An edge dislocation occurs where there is an extra
half-plane of atoms in the crystal lattice. As illustrated
in Figure 9.7a, there are 7 vertical planes of atoms at
the top half of the crystal and only 6 vertical planes of
atoms at the bottom half. The termination of the extra
half-plane (the plane that ends halfway in the crystal)
is the dislocation. It extends into the crystal as the 

2079 . 3  C R Y S T A L  D E F E C T S

(a) (b) (c) (d)

F I G U R E  9 . 4 Point defects: (a) vacancy, (b) substitutional
impurity, (c) interstitial impurity, (d) vacancy migration.

µm0

F I G U R E  9 . 5 Transmission electron micrograph showing
dislocation lines, loops, and arrays in experimentally deformed
olivine. 
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dislocation line, l (line CD in Figure 9.7a). The symbol
for an edge dislocation is ⊥ or , depending on
whether the location of the extra half-plane is above or
below the associated glide plane of the crystal (see fur-
ther). Imagine an axe that is stuck in a piece of wood.
The presence of a dislocation causes a distortion of the
crystal structure, just like a wedge distorts the log that
is being split.

In screw dislocations, the atoms are arranged in a
corkscrew-like fashion (Figure 9.7b); the axis of the
screw marks the dislocation line (line CD in Figure 9.7b).
A useful analogy of the geometry of a screw disloca-
tion is a car parking deck, in which ramps carry cars up
or down to individual floors. Many geologists, how-
ever, prefer a corkscrew analogy.

In a deformed crystal, an atom-by-atom circuit
around the dislocation fails to close by one or more
atomic distances, while a similar circuit around atoms
in a perfect crystal would be complete. The arrow con-
necting the two ends of the incomplete circuit is called
the Burgers vector, b. The length of the Burgers vec-
tor in most minerals is on the order of nanometers 
(1 nm = 1 × 10–9 m). For an edge dislocation, the Burg-
ers circuit remains in the same plane (Figure 9.8a),
while for a screw dislocation the circuit steps up or
down to another plane (Figure 9.8b). Edge and screw
dislocations can, therefore, be distinguished on the
basis of the relationship between the Burgers vector

⊥
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Unslipped

Dislocation line

�

Screw

Edge

F I G U R E  9 . 6 Geometry of a dislocation showing the edge-
and screw-type dislocations and their geometrical relationship.
The boundary between the unslipped and slipped portion of the
crystal is the dislocation line, l.
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(a) (b)

F I G U R E  9 . 7 Types of dislocations. (a) The extra half-plane
of atoms in an edge dislocation. (b) The corkscrew-like
displacement of the screw dislocation. The dislocation line, l,
is marked. 
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F I G U R E  9 . 8 Determination of the Burgers vector, b, of a
dislocation using a Burgers circuit. (a) The Burgers circuit
around an edge dislocation (marked by l). (b) The Burgers
circuit in a screw dislocation. The closure mismatch for both
edge and screw dislocations is the Burgers vector, b. In the
edge dislocation b⊥l, and in the screw dislocation b//l.
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and the dislocation line. For edge dislocations, the
Burgers vector is perpendicular to the dislocation line,
(Figure 9.8a) and for screw dislocations, the Burgers
vector is parallel to the dislocation line (Figure 9.8b).
These properties are used to determine the nature of
imaged dislocations revealed by the electron micro-
scope (see Section 9.8). Edge and screw dislocations
are only end-member geometries; dislocations that
consist of part edge and part screw components are
called mixed dislocations. Besides being visible at
very large magnifications in the electron microscope,
crystal defect features may be indirectly seen by using
a decoration technique (see appendix at the end of this
chapter). Figure 9.9 shows an optical image of disloca-
tions in the mineral olivine using a decorated sample.

Earlier we mentioned that the presence of disloca-
tions distorts the crystal lattice, which gives rise to a
local stress field around a dislocation. In an edge dis-
location (Figure 9.10a) there is compressive stress on
the side of the extra half-plane of atoms and tension on
the opposite side. The earlier wood-splitting analogy
serves to illustrate this pattern. The axe forces the
wood apart, giving rise to compression, which may
result in the axe becoming stuck. Just beyond the tip of
the blade, however, there is tension, which is why you
can split wood without the blade going all the way
through. Similarly, in a screw dislocation we introduce
shear stresses (Figure 9.10b). What is the effect of
these local stresses? The role of compressive and ten-
sile stresses is analogous to the behavior of magnets
and charged particles. The compressive stress fields of
edge dislocations repel, while the compressive and ten-
sile fields of edge dislocations attract (Figure 9.11),
just like the poles of two magnets attract or repel when

their polarities are reversed. Similarly, screw disloca-
tions with the same sense of shear repel each other and
those with opposite senses of shear attract. In a crude
way you can say that dislocations are able to “see” each
other by the stress fields they generate from the distor-
tion of the crystal lattice. Later we will see that these
stress fields permit dislocations to move, producing

2099 . 3  C R Y S T A L  D E F E C T S

F I G U R E  9 . 9 Dislocations in olivine from a Hawaiian mantle
nodule. The dislocations appear by a decoration technique
(described in the appendix), which allows for optical inspection.
Width of view is ∼200 µm.

Compression

Tension
Shear

F I G U R E  9 . 1 0 Geometry of the stress field (shaded
region) around an edge dislocation (a) and around a screw
dislocation (b). 
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F I G U R E  9 . 1 1 Interactions between neighboring edge
dislocations. Regions labeled C and T are areas of compression
and tension, respectively, associated with each dislocation. 
(a) Like dislocations on the same or nearby glide planes repel.
(b) Like dislocations on widely separated glide planes may
attract or repel depending on the angle between the lines
joining the dislocations. (c) Unlike dislocations on the same 
or nearby glide planes attract.
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permanent distortions of the crystal, while lowering
the internal strain energy. Remember that this internal
strain energy is not the same as the applied stress aris-
ing from, for example, squeezing a crystal.

Edge and screw dislocations are end-member con-
figurations, called perfect dislocations, because the
Burgers vector has a length of one unit lattice distance
(i.e., the length of one atomic bond, or multiples
thereof). However, studies of minerals (e.g., calcite)
have shown Burgers vectors that differ from one unit
lattice distance; these are called partial dislocations.
Partial dislocations may be formed by splitting a long
Burgers vector into two or more components by the
process of dissociation. Dissociation is energetically
more favorable because it allows smaller displace-
ments. Arrays of partial dislocations produce, for
example, twinning in crystals (see Section 9.4).

9 .4 C RYS TA L  PL A S TI CIT Y

Dislocations are able to migrate through the crystal lat-
tice if the activation energy for movement is achieved.
The distortion of the crystal lattice around dislocations
is one source of driving energy, as the system tries to
achieve a lower internal strain energy. Applying a dif-
ferential stress is another driving mechanism for dislo-
cation motion. The associated distortion of solid
phases is called crystal plasticity. Dislocation move-
ment may occur by glide and a combination of glide
and climb (creep), depending mainly on temperature.
A third case of crystal-plastic behavior, twinning,
occurs at low temperatures in some minerals.

9.4.1 Dislocation Glide
Deformation and temperature introduce energy into
the crystal, which allows dislocations to move. How-
ever, dislocations are not free to move in any direction
through the crystal. At low temperatures they are
restricted to glide planes (or slip planes). The glide
plane of a dislocation is the plane that contains the
Burgers vector, b, and the dislocation line, l. Because
a plane is defined by two nonparallel lines, each edge
dislocation has one slip plane, because b and l are per-
pendicular. A screw dislocation on the other hand has
many potential slip planes, because b and l are paral-
lel. In crystallographic terms, a glide plane is a crys-
tallographic plane across which bonds are relatively
weak. Some crystals have only one crystallographic
plane that is an easy glide plane; others may have
many. Table 9.1 lists the dominant slip systems for

some of the more common rock-forming minerals.
Note that in many crystals more than one slip system
may be active under similar conditions.

What is the actual process that allows the movement
of dislocations? Nature has devised an energetically
clever way for dislocations to move. Rather than
simultaneously breaking all atomic bonds across a
plane, such as occurs during fracturing, only bonds
along the dislocation line are broken during an incre-
ment of movement. This requires much less energy
than fracturing. Let us again turn to an analogy to illus-
trate this. The movement of dislocations is comparable
to moving a large carpet across a room that contains
heavy pieces of furniture. The easiest way to move the
rug is to ruck up one end and propagate the ruck across
the room. Energy is only needed to lift up selected fur-
niture legs to propagate the ruck past these obstacles
rather than lift all the furniture simultaneously. In
nature, caterpillars and snakes move similarly by dis-
placing one segment of their body at a time, instead of
moving their entire body simultaneously. Edge dislo-
cations move by successive breaking of bonds under
the influence of a minimum stress acting on the glide
plane, which is called the critical resolved shear
stress (CRSS). If a crystal has several potential glide
planes, it is likely that, for a given applied stress, the
CRSS is exceeded on at least one and sometimes more
than one of these glide planes. An edge dislocation
moves when the unattached atoms at the bottom of the
extra half-plane bond to the next atoms that are located
directly below the glide plane. Thus the position of the
extra half-plane moves relative to the dislocation 
without breaking all bonds in the extra half-plane
(Figure 9.12a). A screw dislocation moves forward by
shearing one atomic distance (Figure 9.12b), similar to
tearing a piece of paper. While atomic bonds are bro-
ken and reattached when dislocations move toward the
edge of a crystal, they leave a perfect crystal lattice
behind. When a dislocation reaches the edge of the
grain there are no more atoms below to attach to and
the crystal becomes offset. This offset of the crystal
edge produces stair-step structures on the surface of
the crystal known as slip bands, which are sometimes
visible on large crystal surfaces. Thus, the process of
dislocation movement produces permanent strain with-
out the material ever losing coherency.

9.4.2 Cross-Slip and Climb
It is not always possible for dislocations to propagate
to the edge of the crystal. Point defects, such as impu-
rity atoms that are bonded tightly to their neighbors,
can resist the breaking of bonds that is required for dis-
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2119 . 4  C R Y S T A L  P L A S T I C I T Y

T A B L E  9 . 1 D O M I N A N T  S L I P  S Y S T E M S  I N  C O M M O N  R O C K - F O R M I N G  M I N E R A L S

Mineral Glide plane and slip directiona Comments

Calcite {1̄018} <404̄1> e-twinning

{101̄4} <2̄021> r-twinning

{101̄4} <2̄021> r-glide

{011̄2} <22̄01> or <2̄021> f-glide

Dolomite {1̄012} <101̄1> f-twinning

(0001) <21̄1̄0> c-glide

{011̄2} <22̄01> or <2̄021> f-glide

Mica (001) <110> basal (c) slip

Olivine (001) [100]

{110} [001]

Quartz (0001) <112̄0> basal (c) slip

{101̄0} [0001] prism (m) slip, along c

{101̄0} <112̄0> prism (m) slip, along a

{101̄1} <112̄0> rhomb (z) slip

aMiller indices for equivalent glide planes from crystal symmetry are indicated by { }; specific glide planes are indicated by ( ); equivalent slip directions
from crystal symmetry are indicated by < >; individual slip directions are indicated by [ ].
From: Wenk, 1985

location glide. Unfavorable stress fields of the disloca-
tions themselves can also resist their motion, espe-
cially when many dislocations are present. Just 
consider trying to work your way past a car accident
slowing the traffic in your lane, or even bringing it to a
complete halt. Not surprisingly, obstacles that result
from the presence of many immobile dislocations are
called pile-ups. In order to overcome these obstacles,
edge and screw dislocations must move out of their
current glide plane, which they do by the processes of
climb and cross-slip, respectively. The processes
require additional energy beyond that for dislocation
glide. Screw dislocations, unlike edge dislocations, are
not confined to a single glide plane, because the dislo-
cation line and Burgers vector are parallel. They can
therefore leave one glide plane and move to another
glide plane with relative ease, a process called cross-
slip (Figure 9.13a). If it is so easy, why does cross-slip
not occur all the time? Cross-slip requires that the dis-
location abandons a favored glide plane (one with a
short Burgers vector) for a less-favored one, and thus
cross-slip takes place only if the CRSS on the less-
favored plane is increased. Alternatively, raising the

temperature lowers the CRSS that is needed for cross-
slip, because atomic bonds are weakened, and cross-
slip occurs more easily.

Edge dislocations cannot cross-slip because they
have only one glide plane. However, they can climb to
a different, parallel glide plane if there are vacancies
to accept the lowest atoms of the extra half-plane (this
is shown two-dimensionally in Figure 9.13b). Climb,
therefore, involves diffusion (see further), and
because the rate of vacancy production increases with
rising temperature, the efficiency of dislocation climb
is temperature dependent. Both cross-slip and climb
are activated at temperature conditions that exceed
those for dislocation glide in a mineral given the same
stress conditions, and therefore they typically occur at
deeper (i.e., hotter!) levels in the Earth. Although it is
not possible to identify a fixed depth at which cross-
slip and climb occur, because this is a function of the
mineral as well as Earth’s thermal structure, as a gen-
eral guide, we can specify the temperature values at
which these processes occur for different minerals.
Glide and climb occur at temperatures greater than
300°C for quartzitic rocks and carbonates, and at
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higher temperatures (>500°C) for such common min-
erals as dolomite, feldspar, and olivine. In the litera-
ture you find that the term dislocation creep is used
for the combined activity of glide and climb.

While like dislocations often repel one another,
unlike dislocations attract and may annihilate each
other. Dislocation annihilation is one way of reducing
the internal strain energy that arises from lattice 
distortions in a crystal. For example, two edge disloca-
tions lying in the same glide plane with the extra half-
plane of one dislocation inserted upwards (positive
edge dislocation) and the other downward (negative
edge dislocation) annihilate each other (Figure 9.14a).
Similarly, convergence of screw dislocations with
Burgers vectors in opposite directions also results in
annihilation. Two dislocations of opposite sign but on
different glide planes may still attract, but they cannot
fully annihilate each other. In such cases, a point defect
remains (such as a vacancy; Figure 9.14b). Because
climb and cross-slip increase the probability of dislo-
cation annihilation, the rate of dislocation annihilation
is also temperature dependent.

212 D U C T I L E  D E F O R M A T I O N  P R O C E S S E S

Glide
plane

Dislocation
line

Glide
plane

Dislocation
line

(a) (b)

F I G U R E  9 . 1 2 Dislocation glide. (a) Movement of an edge dislocation, which may be likened to
the movement of a caterpillar. (b) Movement of a screw dislocation, which is analogous to tearing a
sheet of paper, with the screw dislocation at the tip of the tear. After the dislocation passes through
the lattice, it leaves behind a strained crystal with a perfect crystal lattice structure. The dislocation
line, l, and the glide planes (shaded) are shown. 
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F I G U R E  9 . 1 3 Cross-slip of a screw dislocation (a), and
climb of an edge dislocation (b) by diffusion of atoms (arrows). 
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9.4.3 Mechanical Twinning
Twins are a common feature in many minerals. You
may see them with the hand lens in the minerals pla-
gioclase and calcite. In thin section, under crossed
polarizers, they are easily recognized by their extinc-
tion behavior and lathlike shape as you rotate the stage.
Twins that develop during the growth of a crystal,
called growth twins, say little or nothing about the
conditions of deformation (i.e., stress and strain). In

contrast, minerals such as calcite form twins in
response to an applied stress; these are called mechan-
ical twins (Figure 9.15). We’ll first have a look at
twinning in general and then see what information
mechanical twins can provide for deformation studies.

Mechanical twinning is a type of crystal plastic
process that involves the glide of partial dislocations.
A surface imperfection, the twin boundary, separates
two regions of a twinned crystal. The lattices in these
two portions are mirror images of each other; in other
words, a twin boundary is a mirror plane with a spe-
cific crystallographic orientation. As a rule, twinning
planes cannot already be mirror planes in the
untwinned crystal, and mechanical twinning is there-
fore most common in low-symmetry minerals such as
trigonal calcite and dolomite, and triclinic feldspar.
Recall that crystal symmetry is a geometric operation
that repeats a crystal plane in another position. For ref-
erence, Table 9.2 lists the seven crystal systems and
their symmetries that you may have learned in your
mineralogy and/or petrology class.

Mechanical twins are produced when the resolved
shear stress acting on the future twin boundary exceeds
a critical value (the CRSS for twinning). During twin-
ning, the crystal lattice rotates in the direction that 
produces the shortest movement (smallest linear dis-
placement) of atoms, with a unique rotation angle. As
such, mechanical twinning has similarities with dislo-
cation glide, but differs in two aspects. First, atoms are
not moved an integral atomic distance as in glide, but

2139 . 4  C R Y S T A L  P L A S T I C I T Y

(a)

(b)

+

–

+

–

F I G U R E  9 . 1 4 (a) Two edge dislocations with opposing
extra half-planes that share a glide plane move in opposite
direction to meet and form a perfect crystal. (b) When they
move in different glide planes, a vacancy may be formed when
they meet.

F I G U R E  9 . 1 5 Calcite e-twins in
marble from southern Ontario (Canada).
Width of view is ∼4 mm.
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rather only by some fraction of the atomic distance;
consequently, twinning involves partial dislocations.
Secondly, the twinned portion of a grain is a mirror
image of the original lattice (Figure 9.16a), whereas
the slipped portion of a grain has the same crystallo-
graphic orientation as the unslipped portion of the
grain (Figure 9.16b). For deformation studies we are
interested mostly in mechanical twinning; that is,
twins produced by stress. We digress briefly to explore
one application using the mineral calcite.

The fact that twinning takes place along specific
crystallographic planes in a calcite crystal,1 and that
rotation occurs over a specific angle and in a specific
sense, allows us to use twinning as a measure of finite

strain and differential stress. The atomic structure of
calcite twins is illustrated in Figure 9.17. (Note the
specified rotation angle of the crystallographic c-axis,
which is perpendicular to the planes containing 
the CO3 groups, and that of the crystal face.) In Fig-
ure 9.18a, a deformed grain A′B′CD with one twin is
shown; the original grain outline is ABCD, whose
sides are parallel to calcite crystal planes. From this
figure you can see that the shear strain for the twinned
grain is

γ = tan ψ = q/T Eq. 9.2

For one twin, q = p, so

Eq. 9.3γ φ= 2 2t

T

tan ( / )
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T A B L E  9 . 2 C R Y S T A L  S Y S T E M S

System Symmetry Crystal Axes

Triclinic 1 one-fold axis or center of symmetry a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90°

Monoclinic 1 two-fold axis or 1 symmetry plane a ≠ b ≠ c, α = γ = 90°, β ≠ 90°

Orthorhombic 3 two-fold axes or 3 symmetry planes a ≠ b ≠ c, α = β = γ = 90°

Trigonal 1 three-fold axis a1 = a2 = a3 ≠ c, β = 90°

Hexagonal 1 six-fold axis a1 = a2 = a3 ≠ c, β = 90°

Tetragonal 1 four-fold axis a = b ≠ c, α = β = γ = 90°

Cubic 4 three-fold axes a = b = c, α = β = γ = 90°

a, b, c describes the length of the crystal axes; α is the angle between b and c; β is the angle between a and c; γ is the angle between a and b.

(b)(a)

F I G U R E  9 . 1 6 Schematic
illustration of mechanical twinning
(a). The heavy outline marks a
twinned grain, in which the twin
boundaries (heavy dashes) are
mirror planes. The atomic
displacements are of unequal
length and generally do not
coincide with one atomic distance.
Closed circles are atoms in final
structure and open circles give the
original positions of displaced
atoms. Twinning contrasts with
dislocation glide (b), in which
atoms move one or more atomic
distances in the glide plane (heavy
dashed line).

1We will only consider e-twins ({1018}<4041>) with a rotation angle for
the c-axis of 52.5°, and a CRSS of 10 MPa.
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where T is the grain thickness and t is the twin thickness.
For a grain containing several twins (Figure 9.18b) the
shear strain is obtained by adding the strain due to each
twin, or

Eq. 9.4

where n is the number of twins in the grain. Given that
the angle φ is constant in the case of calcite (≈38°; Fig-
ure 9.18b), Equation 9.4 simplifies to

Eq. 9.5

So, if we measure the total width of twins and the grain
size perpendicular to the twin plane we can obtain the
total shear strain for a single twinned grain. In an
aggregate of grains, the shear strains will vary as a
function of the crystallographic orientation of individ-
ual grains relative to the bulk strain ellipsoid, and we
use this variation to determine the orientation of the
principal strain axes by determining the orientations

γ π=
=
∑0 7

1

.
T

ti

i

n

γ φ=
=
∑2

2
1T

ti

i

n

tan ( / )

for which the shear strains are zero2 and maximum.
This strain analysis technique is called the calcite
strain-gauge method. Looking again at Figure 9.18
and Equation 9.5, we can now determine the maximum
amount of shear strain that can be accumulated using
twinning: γmax occurs when the entire grain is twinned,
so t = T; thus, γmax = 0.7, or X/Z ≈ 2. This maximum
contrasts with the amount of strain that can accumulate
during dislocation glide, which is unrestricted. More-
over, methods for the determination of the differential
stress for an aggregate with twinned grains have been
developed that use the number of activated twin
planes. Thus, calcite twinning analysis can give both
strain and differential stress magnitudes for naturally
deformed carbonates.

The calcite strain-gauge technique has proven to be
very useful in studying stress and strain fields in lime-
stones that were subjected to small strains, the kine-
matics of folding, the formation of veins, the early
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90°

F I G U R E  9 . 1 7 Calcite crystal
lattice showing layers of Ca (large
black dot) and CO3 groups (C is
small dot, O is large open circle); 
the crystallographic c-axis is
marked (a). The twinned calcite
lattice in (b) shows the partial
dislocation (bt) and angular
rotations of the c-axis and the
crystal face.
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T T

F I G U R E  9 . 1 8 Calcite strain-
gauge technique. An original grain
ABCD (a) with a single twin of
thickness, t (shaded region). In
(b) a grain with multiple twins
(shaded regions) is shown. 

2Details of the method are described elsewhere, and a computer routine is
normally used for the analysis.
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deformation history of fold-and-thrust belts, and even
deformation patterns in continental interiors. The great
advantage of this method lies in the fact that twinning
occurs at low homologous temperature and low differ-
ential stress, and that the orientation and magnitude of
even small finite strains are recorded.

9.4.4 Strain-Producing versus Rate-
Controlling Mechanisms

We saw previously that dislocations are not stationary
elements of a crystal, but are able to move (glide), and
that they leave behind what is called the slipped por-
tion of the crystal. Perhaps surprisingly, this slipped
portion has no crystallographic distortion after the dis-
location has passed through this part of the crystal.
This ability of dislocation to move through a crystal
brings us back to the earlier definition of a dislocation
that was given without much explanation at the time
(Section 9.3): a dislocation is the linear array of atoms
that bounds an area in the crystal that has slipped one
Burgers vector more than the rest of the crystal. Hav-
ing examined the various dislocation motion mecha-
nisms, we need to recognize an important distinction
between dislocation glide on the one hand, and dislo-
cation cross-slip and climb on the other hand. Disloca-
tion glide is the process that produces a change in 
the shape of grains; it is therefore the main strain-
producing mechanism of crystal plasticity. Cross-slip
and climb facilitate dislocation glide, but by them-
selves produce little finite strain; they allow a disloca-
tion to leave its original glide plane, to bypass an
impurity, for example. Cross-slip and climb are there-
fore the rate-controlling mechanisms of crystal plas-
ticity, and limit the resulting strain rate. Because
climb occurs at temperatures that are higher than
those required for glide in a mineral, you also find the
terms low-temperature creep for dislocation glide
(and twinning) and high-temperature creep for dis-
location glide plus climb.

9.4.5 Where Do Dislocations 
Come From?

Nothing in life is perfect! You have undoubtedly heard
and probably experienced this yourself, and the same
goes for a mineral’s life. Defects, such as dislocations,
are a part of all minerals, for good reasons: The small
offsets that occur at the edges of crystals containing
dislocations (on the order of nanometers) are used as
nucleation sites during mineral growth; while for
deformation, dislocations are necessary to enable the

shape change during crystal plasticity. So far, we have
only talked about the situation where a couple of dis-
locations occur at the same time, but the number of
dislocations in a mineral, the dislocation density, N, is
actually quite large. For example, “perfect” grains that
have grown from a melt have a dislocation density of
106 cm–2, and this density is several orders of magni-
tude larger in deformed grains. Even near perfect crys-
tals that are grown in the laboratory still have hundreds
of dislocations per square centimeter (cm2). So what is
this strange unit “cm–2” for dislocation density? Dislo-
cation density, N, describes the total length of disloca-
tions per volume of crystal; thus N = length/volume, so
the unit of N is [l]/[l3] = [l–2]. Measuring dislocation
length per unit volume is not a very convenient way to
determine N, so practically we measure the number of
dislocations (dimensionless scalar) that intersect an
area (l2), which gives the unit [l–2]. Later, in Section 9.9,
we will give an example of a dislocation density 
calculation.

In order to obtain appreciable strains from disloca-
tion movement, we will need a great many disloca-
tions. We have already learned that strain is produced
by dislocations moving to the edge of the crystal
(Figure 9.12), leaving a perfect lattice behind. So, in
order for crystal plastic processes to proceed we actu-
ally need to generate dislocations. We earlier men-
tioned that dislocation density is greater in strained
grains than in unstrained, “perfect” grains, which
suggests that dislocations are generated during defor-
mation. One mechanism for dislocation generation
(or multiplication) is by Frank-Read sources (Fig-
ure 9.19). Consider a dislocation that is anchored at
two points, A and B; this pinning may arise from
impurities, climb, or interaction with other disloca-
tions (not shown in the figure). During glide, the A–B
dislocation will bow out because it is pinned at its
edges (Figure 9.19b–d), and eventually this produces
the kidney-shaped loop in Figure 9.19e and 9.19f.
Note that the dislocation segments at a and b in Fig-
ure 9.19f are opposite in sign because their Burgers
vectors are opposite. So as a and b come together
they annihilate (Figure 9.19g), forming a new A–B
dislocation line, while leaving the old loop present
(Figure 9.19h). The process starts again for the new
A–B dislocation line while the first loop continues to
glide. Because there is no restriction on the number
of cycles, a great many dislocation loops are gener-
ated in this manner, which occurs for both edge and
screw dislocations. This and other dislocation multi-
plication mechanisms collectively produce the high
dislocation densities that are required for grains to
deform by crystal plastic processes.
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9 . 5 DIF F USION A L  M A S S
T R A NS FE R

Flow of rocks also occurs by the transfer of material
through a process called diffusion. We’ll discuss three
diffusion-related deformation mechanisms that are
important for natural rocks: (1) pressure solution,
(2) grain-boundary diffusion, and (3) volume diffu-
sion. Diffusion occurs when an atom (or a point
defect) migrates through a crystal. The process is
strongly temperature dependent, because thermal
energy causes atoms to vibrate, facilitating the breaking
and reattachment of bonds. Increasing the temperature
of a material proportionally increases the ability of
individual atoms to jump to neighboring vacant sites.
For example, at the melting temperature of Fe (Th = 1),
the jump frequency, Γ, of vacancies is on the order of
1010 per second. The jump distance, r (the distance
between atoms in the crystal structure), for each jump

is 10–10 m (0.1 nm). We can determine the average
area, R2, for a vacancy by Einstein’s equation:3

R2 = Γtr2 Eq. 9.6

where t = time. If we use t = 1 s, then R2 = 0.1 mm2, at
Th = 1 for Fe metal. This area seems small, so you might
think at first that the process is relatively insignificant.
However, considering that geologic time is measured in
millions of years, the value of R2 becomes quite large.
For example, at t = 1 m.y. (3.1 × 1013 s) the value of R2

is >3000 m2. Such areas, however, are only representa-
tive for minerals in rocks near their melting tempera-
ture, which is not the typical condition during rock
deformation. At lower Th, diffusion distances are orders
of magnitude less. Another aspect of diffusion that
needs to be appreciated is that R2 does not define the
linear distance between the original position of an atom
and its position after time t. Diffusion is nondirectional
in an isotropic stress field; it is, what we call, a 
random-walk process. So the final distance traveled is
distinct from the path and area covered.

Theoretical arguments, which we will not discuss
here, define a diffusion coefficient, D, for a given min-
eral, describing movement of a species down a con-
centration gradient:4

D = (Γ/6) r2 Eq. 9.7

The diffusion coefficient has the dimension area/time.
We can rewrite Equation 9.7 in a form that shows the
temperature dependence for diffusion and a minimum
energy for migration to occur:

D = Do exp(–E*/RT) Eq. 9.8

where Do is a material constant for diffusion that is empir-
ically determined, E* is the activation energy for migra-
tion (kJ/mol), R is the gas constant (8.31 J/mol ⋅ K), and
T is absolute temperature (in K).5 We present diffusiv-
ity in this particular form, because it is easy to compare
with the constitutive equations for flow that were given
in Chapter 5 and the relationships discussed later in
this chapter.
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F I G U R E  9 . 1 9 Dislocation multiplication in a Frank-Read
source. (a) A pinned dislocation with Burgers vector, b, bows
out during glide (b–g) to form a new dislocation (h). The slipped
portion of the grain is shaded.

3Another Albert Einstein (1879–1955) equation.
4Strictly speaking these equations are for vacancy movement, and 
define Dvac.
5We may also write this equation involving Boltzmann’s constant (k), in
which case E* is given in a different form; k and R are related by the equa-
tion R = kNA, where NA is Avogadro’s number (6.02 × 1023mol–1), which
gives k = 1.38 × 10–23. Note that “exp(a)” means ea.
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Two types of solid diffusion in crystals are (1) grain-
boundary diffusion or Coble creep, and (2) volume dif-
fusion or Nabarro-Herring creep. When mass transfer
involves a reactive and transporting fluid phase, the
process that is geometrically similar to grain-boundary
diffusion is called pressure solution. We will discuss
each of these three mechanisms.

9.5.1 Volume Diffusion and Grain-
Boundary Diffusion

Given sufficient time, diffusing vacancies reach the sur-
face of the crystal where they disappear. To see how this
causes deformation, consider a crystal that is being sub-
jected to a differential stress (Figure 9.20). The vacan-
cies migrate toward the site where stress is greatest and
the atoms move to the sides where the stress is least.
This results in an overall change in the distribution of
mass, producing a change in shape of the crystal. But
realize that this occurs without large-scale distortion of
the crystal lattice. The diffusion of vacancies can occur
through the entire body of a crystal or can be concen-
trated along a narrow region at its grain boundary (Fig-
ure 9.20a); both result in a permanent shape change as
shown in Figure 9.20b. These deformation mechanisms
are called volume diffusion (or Nabarro-Herring
creep) and grain-boundary diffusion (or Coble creep),
respectively. Thus, in the presence of a non-isotropic
stress field we find that diffusion is directional.

Because both Nabarro-Herring creep and Coble
creep achieve strain by the diffusion of vacancies, the
strain rate for each mechanism is a function of the dif-
fusion coefficients (volume diffusion [Dv] and grain-
boundary diffusion [Db] coefficients respectively), but
also of the grain size (d ):

ėCoble ≅ Db/d2 Eq. 9.9
ėNabarro-Herring ≅ Dv /d3 Eq. 9.10

These simplified relationships emphasize the critical
importance of grain size in diffusional creep: a larger
grain size results in a less efficient process, so a lower
strain rate.

The activation energy for grain-boundary diffusion
(included in Db) is less than that for volume diffusion
(included in Dv), and the grain-size dependence of vol-
ume diffusion is larger. Thus, Coble creep is a more
efficient process in crustal rocks than Nabarro-Herring
creep, so that the latter is restricted to high-temperature
regions (e.g., temperatures in the mantle) and/or to
materials with very small grain sizes.

9.5.2 Pressure Solution
Pressure solution is a mass transfer process that
occurs in natural rocks at temperatures much lower
than those for solid diffusion. The process is geometri-
cally similar to grain-boundary diffusion, but involves
the presence of a fluid film on grain boundaries. It is
important in crustal rocks because material transfer
occurs at temperatures well below those required for
vacancy diffusion, thanks to a chemically active fluid
film that dissolves the crystal. The dissolved ions then
move along a chemical gradient that arises from dif-
ferential solubility in the presence of a differential
(non-isotropic) stress to regions of deposition. Recall
that fluids do not support shear stresses (Chapter 3), so
pressure solution only works if the fluid film is
“attached” to the grain boundary by chemical bonds;
thus, the fluid does not move, but dissolved atoms do.
Areas of high stress, say surfaces perpendicular to the

maximum principal stress,
exhibit enhanced solubility and
the dissolved material is trans-
ported to regions under lower
stress (surfaces perpendicular
to the minimum principal
stress). The geometric proper-
ties of the process are very sim-
ilar to our earlier description of
grain-boundary diffusion and,
indeed, pressure solution pro-
duces shape changes like that in
Figure 9.20b, except that it
occurs at the low temperatures
encountered near the Earth’s
surface. A way to distinguish
between these diffusional
deformation mechanisms is to
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Volume
diffusion

Grain-boundary
diffusion

F I G U R E  9 . 2 0 Diffusional flow by material transport through grains (volume diffusion or
Nabarro-Herring creep) and around grains (grain-boundary diffusion or Coble creep), with a
differential stress (a) that produces shape change (b). 
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use the terms fluid-assisted diffusion for pressure
solution and solid-state diffusion for Nabarro-Herring
creep and Coble creep; in colloquial terms we some-
times call them “wet diffusion” and “dry diffusion,”
respectively. Because fluids are abundant in shallow
crustal rocks and these have low ambient temperatures,
pressure solution is an important deformation mecha-
nism in upper crustal rocks.

We infer the past activity of pressure solution diffu-
sion in rocks from the presence of, for example, stylo-
lites in limestones, grain overgrowths in sandstones,
and cleavage and pressure shadows in some slates
(Figure 9.21; see also Chapter 11). In contrast to dry
diffusion, the distance over which material may be
transported by fluid-assisted diffusion is not limited to
individual grains, but can be substantial, particularly if
the dissolved ions migrate into the pore fluid of the
rock. Movement of pore fluid (i.e., groundwater flow)
can flush the dissolved ions completely out of the rock,
resulting in substantial volume loss. On the mesoscale,
pressure solution may result in the formation of alternat-
ing layers of different composition, such as quartz-rich
and mica-rich layers, in a process called differentiation
(see Chapter 11). Alternatively, the dissolved ions may
precipitate as vein fillings in cracks (Figure 9.21). The
widespread occurrence of these pressure-solution
structures in natural settings emphasizes the geologic
importance of this deformation mechanism.

The strain rate associated with pressure solution is a
function of the area and the rate of atoms that go into
solution (i.e., the solubility of a material) in the fluid:

ėpressure solution ≅ Df/d2 Eq. 9.11

where Df is the diffusion coefficient of a phase in a
fluid and d is the grain size.

9 . 6 CONS TIT U TI V E  EQUATIONS
OR  FLOW  L AW S

We defined the rate at which shape change occurs as the
strain rate, ė (Section 5.1). Since dislocation movement
is a function of the differential stress (either arising from
internal distortion or externally imposed on the system),
the ambient temperature, and the activation energy for
breaking bonds, the rate at which strain occurs by dislo-
cation movement is a function of all these parameters.
This relationship is described by a constitutive equa-
tion or flow law, with the general form

ė = A f(σd) exp(–E*/RT) Eq. 9.12

where A is a material constant, E* is the activation
energy, R is the gas constant, T is the absolute 
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F I G U R E  9 . 2 1 Bedding-perpendicular pressure solution seams (stylolites) and veins (white
structures) in argillaceous limestone (Appalachians, Pennsylvania, USA). The middle bed is pure
carbonate and does not contain as many seams. Note that the stylolites cut across bedding.
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temperature (in K), and f(σd) represents a differential
stress function; characteristic values for these para-
meters were given in Table 5.6. In this chapter we
focus on the stress function, f(σd), which is deter-
mined from experiments on natural rocks and com-
mon minerals. For dislocation glide (low-temperature
creep) the function of stress is exponential, so the
flow law is of the form

ė = A exp(σd) exp(–E*/RT) Eq. 9.13

Because of the form of this relationship, dislocation
glide is also called exponential creep.

For dislocation glide and climb (high-temperature
creep), which is typical for deep crustal and mantle
rocks, the stress is raised to the power n. This flow law
takes the general form

ė = A σd
n exp(–E*/RT) Eq. 9.14

Climb-assisted glide is therefore also called power-law
creep, and the power n is called the stress exponent.

In an earlier section we presented the diffusion coef-
ficient for point defects (Equations 9.4–9.6). The
motion of individual defects or atoms is similarly a
function of differential stress and that has the form

ė = A σd exp(–E*/RT) d–r Eq. 9.15

You will notice that the stress function of Equation 9.15
is the same as Equation 9.14, except that the stress
exponent, n, equals 1. This means that diffusion is lin-
early related to the strain rate and, therefore, that 
diffusional creep is a linear viscous process (or New-
tonian viscous process; Chapter 5). Note, however, that
the strain rate for diffusional creep is nonlinearly
related to the grain size, and that the value of r is in the
range of 2 to 3 (Equations 9.5, 9.6, and 9.15).

We will see later that these various creep regimes
produce characteristic microstructures, but let us
revisit the deformation experiments of Chapter 5 and
interpret their behavior in light of what we now have
learned about defects and crystal plasticity.

9 .7 A  MI C ROS T RUCT U R A L  V IE W
OF  L A BOR ATORY  BEH AV IOR

While our discussion has been pretty theoretical and
perhaps esoteric up to this point, it was necessary 

to understand that defect microstructures can explain
how materials respond to stress (i.e., rheology). Defor-
mation experiments typically show the same behavior:
after an initial elastic stage, permanent (ductile) strain
accumulates. The elastic component is recoverable and
does not involve crystal plastic processes, but the duc-
tile component of the curve is mostly achieved by the
motion of defects. Strain accumulates at constant
stress (steady-state flow), or requires increasingly
higher stress (work hardening) at constant ė. From a
microstructural perspective, steady-state flow implies
that the generation, motion and removal of dislocations
is sufficiently fast to achieve strain at a constant rate
for a certain stress level. But what about a microstruc-
tural explanation for work hardening (Section 5.4)?
Limited climb and cross-slip at low temperatures pre-
vent dislocations from slipping past inclusions  and
other obstacles. Combined with a decreased fre-
quency of dislocation annihilation, this causes dislo-
cation density in a crystal to increase, which affects
the ability of dislocations to glide because they inter-
act with one another. Recall that the ability of dislo-
cations to glide produces strain, so dislocation tan-
gles restrict their motion and the rate of strain
accumulation decreases (unless the differential stress
increases).

With so many dislocations in a crystal, the chance of
interaction is large, so let’s look at this in some detail.
Figure 9.22 shows a situation where one edge disloca-
tion (D1) moves relative to an edge dislocation (D2)
with a different slip plane (we keep dislocation D2 sta-
tionary for the convenience of illustrating our point).
As D1 passes through D2, the dislocation line l2 is off-
set (Figure 9.22b). This offset, called a jog, has an
important implication. Whereas the Burgers vector b2

for dislocation D2 remains the same along the disloca-
tion line, its glide plane has changed at the jog. Motion
of dislocation D2 needs a critical resolved shear stress
(CRSS) that allows glide on the initial slip plane, but it
also needs movement on a second slip plane for that
dislocation. Because the values of the CRSS differ for
crystal planes in different orientation, the ability for
glide varies along the dislocation line when a jog is
present, resulting in a dislocation that is held back at
the jog (Figure 9.22c). This reduced ability of a dislo-
cation to move is what causes the material to
strengthen, expressed as work hardening in experi-
ments. Diffusion of vacancies to segments of the 
dislocation can overcome the restriction, so work hard-
ening is much less important in the high-temperature
creep regime. Thus, the presence of impurities that pin
dislocations or high dislocation densities that restrict
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dislocation motion (tangles) result in work hardening
of materials, which is overcome by the activity of 
dislocation climb. We also observe work softening in
some experiments (Section 5.4), but we wait until Sec-
tion 9.9, where we discuss grain-size reduction, to
offer an explanation.

9 . 8 IM AGING  DIS LO C ATIONS

The dislocation density of an unstrained crystal is on
the order of 106 cm–2 and this value is orders of mag-
nitude higher in strained crystals. A 1 cm3 volume of
a strained quartz crystal with a dislocation density 
of 109 cm–2 will have a total dislocation line length of
109 cm or 10,000 km (the distance from Earth’s equa-
tor to pole). Obviously, dislocations and other defects
must be quite small to fit so many in a volume that
small. We therefore need very large magnifications to
see them, and this generally involves transmission elec-
tron microscopy (TEM). This technique permits imag-
ing of microstructures at magnifications of up to
500,000×, with a resolution of better than 1 nm 
(1 nanometer = 10–9 m). Such high resolution is not
usually necessary for the examination of defect
microstructures and more conventional TEM work is
done at magnifications of 10,000–100,000× (Fig-
ure 9.23). TEM samples require sufficient thinning of
the material that it is transparent to the electron beam;

generally the thickness of the thin foil is a few hun-
dred nanometers. Crystal defects in thin foils are
revealed by diffraction contrasts that result from lat-
tice distortions surrounding the defect, which allows
us to determine both the Burgers vector of a disloca-
tion and the crystallographic orientation of the dislo-
cation line (Figure 9.23). Once these are established,
it is possible to determine the nature of a dislocation
(i.e., whether edge, screw, or mixed) from the angular
relationship between b and l. Recall that for edge dis-
locations b and l are perpendicular, and for screw 
dislocations b and l are parallel.

In Figure 9.9 we observed dislocation clusters in
olivine using the standard petrographic microscope
and a decoration technique. Individual dislocation
geometries in olivine in the transmission electron
micrograph were shown in Figure 9.5, where we
can distinguish arrays of parallel dislocations
(lower right), straight dislocations (upper half), and
dislocation loops (lower left). The terminations of
the dislocations in this photomicrograph arise from
the intersection of the dislocation line with the
lower and upper boundaries of the thin foil; the
thicker the foil the longer the dislocation would
appear, until it intersects the crystal edge. Note the
geometric similarity between the optical and trans-
mission electron micrographs of Figures 9.5 and
9.23, which both contain straight dislocation lines
with sharp angular bends as predicted by slip sys-
tems in olivine (Table 9.1).
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F I G U R E  9 . 2 2 The formation of a jog from the interaction of two mobile edge dislocations. For
simplicity, dislocation D2 is initially kept stationary while dislocation D1 moves; the glide planes
(shaded and unshaded), Burgers vectors (b), and dislocation lines (l) for each edge dislocation are
shown (a). As D1 passes through dislocation line l2, a small step of one Burgers vector (b1) length
is created; this small step is a jog, with a differently oriented dislocation line segment but the same
b2 (b). As a consequence, the glide plane, containing l2 and b2, is different along l2. In fact, the glide
plane of the jog is the same of that for D1, but with a different Burgers vector. Assuming that the
CRSS for glide differs in different directions, the ability of D2 to move is no longer the same along l2,
and the jog pins the dislocation by anchoring a segment of l2 (c).

(a) (b) (c)
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9 . 9 DE FOR M ATION
MI C ROS T RUCT U R E S

Can we recognize the (past) activity of a particular
deformation mechanism and, by inference, determine
the rheologic conditions during deformation? The
answer to this question is mostly yes, because defor-
mation mechanisms produce relatively characteristic
microstructures that can be observed in hand speci-
mens and thin section. However, a rock’s “memory”
can be incomplete; only the latest deformation mecha-
nism may be preserved. Once we establish the opera-
tive deformation mechanism from microstructures we
can proceed to make predictions about the conditions
of temperature, stress, and strain rate during deforma-
tion, which is the ultimate reason to study microstruc-
tures. Throughout the book we use the term
microstructure to describe geometric characteristics
of rocks on the scale of the microscope; for example,
twins are a microstructural element. We use the term
(micro)fabric, which means different things to differ-

ent people, with an appropriate modifier (such as
dimensional-preferred fabric for geometric align-
ments). In Chapter 12 we introduce yet another type of
fabric, crystallographic-preferred fabric, that
describes the degree of crystal lattice orientation of a
mineral aggregate.

In the next several pages we look at the characteris-
tic microstructures in deformed rocks that arise from
three mechanisms: recovery, recrystallization, and
superplastic creep. Mechanical twinning, a fourth
mechanism, was discussed earlier (Section 9.5). To
assist you with the many new concepts that will be
introduced, brief descriptions of the processes, charac-
teristic microstructures, and some related terms of crys-
tal plastic and diffusional creep are given in Table 9.3.

9.9.1 Recovery
The presence of crystal defects such as dislocations
and twins increases the internal strain energy of a
grain, because the crystal lattice surrounding the
defects is distorted. The atomic bonds are bent and
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F I G U R E  9 . 2 3 Dislocations in calcite (a) and determination of the Burgers vector using
transmission electron microscopy (TEM). View of the same area for different diffracting lattice
planes: (b) (0006), (c) (101̄2̄), (d) (101̄4); the orientation of the lattice plane in each image is
indicated by its pole (marked by vector g). The presence of dislocation A in (b) and (c) rules out all
possible Burgers vectors in calcite with the exception of <2̄021>; this is confirmed by the absence
of contrast from dislocation A in (d). This (time-consuming) procedure is called the invisibility
criterion. The Burgers vector is neither exactly perpendicular nor parallel to the dislocation line, so
dislocation A is a mixed dislocation. Width of view of each TEM image is ∼1.7 µm.

(a) (b)

(c) (d)
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T A B L E  9 . 3 S O M E  T E R M S  A N D  C O N C E P T S  R E L A T E D  T O  C R Y S T A L  P L A S T I C I T Y  
A N D  D I F F U S I O N A L  C R E E P

Annealing Loosely used term for high-temperature grain adjustments, including static
recrystallization and grain growth.

Bulge nucleation A type of migration recrystallization in which a grain boundary bulges into a grain with
higher internal strain energy, forming a recrystallized grain.

Dislocation wall Concentration of dislocations in a planar array.

Dynamic recrystallization Formation of relatively low-strain grains under an applied differential stress.

Foam structure Recrystallized grain structure characterized by the presence of energetically favorable
grain-boundary triple junction (at ≈120° angles).

High-angle boundary Boundary across which the crystallographic mismatch exceeds 10°; characteristic of
recrystallization.

Low-angle boundary Tilt boundary across which the crystallographic mismatch is less than 10°; characteristic of
recovery.

Migration recrystallization Recrystallization mechanism by which grain boundaries move driven by a contrast in strain
energy between neighboring grains.

Polygonized microstructure Recovery structure showing elongate to blocky subgrains (mostly used for phyllosilicates).

Recovery Process that forms low-angle grain boundaries by the temperature-activated
rearrangement of dislocations.

Recrystallization Mechanism that removes internal strain energy of grains remaining after recovery,
producing high-angle grain boundaries that separate relatively strain-free (recrystallized)
grains.

Recrystallized grains Relatively low-strain grains that are formed by recrystallization.

Rotation recrystallization Recrystallization mechanism by which dislocations pile up in a tilt boundary, thereby
“rotating” the crystal lattice of the area that is enclosed by the tilt boundary.

Static recrystallization Formation of strain-free grains after deformation has stopped (i.e., differential stress is
removed).

Subgrain Area of crystallographic mismatch that is less than 10° relative to the host grain.

Subgrain rotation Rotation recrystallization mechanism by which dislocations continue to move into a low-
angle tilt boundary surrounding a subgrain, thereby increasing the crystallographic
mismatch and forming a high-angle grain boundary.

Superplastic creep Grain-size-sensitive deformation mechanism by which grains are able to slide past one
another without friction because of the activity of diffusion (as opposed to frictional sliding
or cataclasis).

Tilt boundary Concentration of dislocations in a planar array.

Twinning Deformation mechanism that rotates the crystal lattice over a discreet angle such that the
twin boundary becomes a crystallographic mirror plane. Such a planar defect is produced by
the motion of partial dislocations.

Undulose extinction Irregular distribution of dislocations in a grain, producing small crystallographic
mismatches or lattice bending that is visible under crossed polarizers.
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stretched (to give the “strain” in strain energy), so that
the crystal lattice is not in its lowest energy state. Dis-
location creep lowers the internal strain energy by
annihilation and/or moving dislocations to the edge of
crystals, so that the internal strain is minimized. This is
the reason that internal strain energy is also called the
stored strain energy. However, this does not mean
that internal strain is recoverable (as in elastic strain),
because permanent distortions are produced around
dislocations in the crystal (recall Figure 9.12). Another
way to change the internal strain energy of a grain is
by localization of crystal defects. As a result of climb,
cross-slip, and glide, dislocations can be arranged into
a zone of dislocations, called a dislocation wall or tilt
boundary. Such tilt boundaries produce a lower strain
energy state in most of the grain than when disloca-
tions are more evenly distributed across the grain 
(Figure 9.24). A single dislocation produces only a
small crystallographic distortion that is not visible
optically, but an array of dislocations in a tilt boundary
makes the crystallographic mismatch optically visible
(Figure 9.25). The greater the number of dislocations
in the wall, that is, the closer their spacing, the greater
the crystallographic mismatch across the boundary.
The angular mismatch, θ, across a tilt boundary is a
function of the length of the Burgers vector (b) of a
dislocation and the spacing (h) of individual disloca-
tions in the wall

2 sin(θ/2) = b/h Eq. 9.16

or for small angles of θ (in radians)

θ = b/h Eq. 9.17

We call the region of a large crystal that is enclosed
by a low-angle tilt boundary a subgrain. The conven-
tion to distinguish between low-angle (subgrains) and
high-angle boundaries (recrystallized grains; discussed
later) is an angular difference across the tilt boundary
that is less than 10°. With this information we can esti-
mate the number of dislocations in a tilt wall 500 µm
long by 2 nm wide (using Equations 9.16 and 9.17),
assuming a Burgers vector of 0.5 nm length and an
angular mismatch θ of 10°. This implies that the dislo-
cation spacing is approximately 2.9 nm and thus that
there are more than 170,000 (!) dislocations in this
low-angle tilt boundary, representing a dislocation
density in the area of the low-angle tilt wall (1 × 10–8

cm2) of 1.7 × 1013 cm–2. This is many orders of mag-
nitude greater than dislocation density in undeformed
crystals.

In thin section, especially under cross-polarized
light, undulatory extinction is one manifestation of the
crystallographic mismatch that produces subgrains. It
is particularly common in the minerals calcite, quartz,
olivine, and pyroxene (Figure 9.26). Recovery is the
name of the process forming low-angle grain bound-
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Tilt boundary

(a)

(b)

Subgrains

F I G U R E  9 . 2 4 Irregularly distributed dislocations (a) are
rearranged by glide and climb to form a dislocation wall (or tilt
boundary) that separates subgrains (b). 

b

h

b–
h

θ =

F I G U R E  9 . 2 5 A tilt boundary composed of edge
dislocations at a distance h apart in a simple lattice. The 
crystal lattice across the boundary does not have the same
orientation, but is rotated over an angle θ (in radians) = b/h,
where b is the Burgers vector and h is the spacing of
dislocations in the tilt wall. 
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aries by the temperature-activated rearrangement of
dislocation, which produces the characteristic subgrain
deformation microstructure. In the case of phyl-
losilicates, such as muscovite, these subgrains are 
also called a polygonized microstructure, which
describes the archlike geometry where each segment is
oriented at a slightly different angle from the next.
Experiments in which recovery dominates have shown
that the stress function of the associated flow law is
exponential (Equation 9.13). Materials scientists,
therefore, use the term exponential-law creep for
recovery microstructures.

9.9.2 Recrystallization
The process removing the internal strain energy that
remains in grains after recovery is called recrystal-
lization; it forms high-angle grain boundaries that
separate relatively strain-free grains from each other.
In rocks, a recrystallized microstructure is character-
ized by grains without undulatory extinction and with
relatively straight grain boundaries that meet at
angles of about 120° (Figure 9.27). Another example
of this process and the resulting structure is found in
the foam of soap. Looking closely at foam while
doing the dishes or washing your hair, you will see all
the geometric characteristics of a recrystallized
microstructure. Because some of the same energy
considerations are involved in the structure of foam,6

we also call the microstructure of recrystallized rock
a foam structure.

Recrystallization within an anisotropic stress field
(i.e., a differential stress) is called dynamic recrystal-
lization. Dynamic recrystallization results in grain-
size reduction, which is well known from sheared
rocks (such as mylonites; Figure 9.28). We return in
more detail to mylonites in Chapter 12, but at this point
we note that they have a grain size that is smaller than
that of the host rock from which they formed. In fact,
the term mylonite is unfortunate for these microstruc-
tures as it derives from the Greek word “mylos,”
meaning milling. At the time of their discovery in
northern Scotland by Sir Charles Lapworth in the late
1900s (Chapter 12) it was thought that they were formed
by a grinding process (which we now call cataclasis).
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F I G U R E  9 . 2 6 Subgrain microstructure and undulose
extinction in a marble mylonite from southern Ontario
(Canada). Width of view is ∼4 mm.

6In foam, however, surface energy dominates, whereas internal strain
energy is more important in deformed rocks.

F I G U R E  9 . 2 7 Recrystallization microstructure, showing
relatively strain-free grains with straight grain boundaries. This
image represents the most deformed stage in a marble
mylonite that is also shown in Figures 9.15 and 9.26 (Ontario,
Canada). Width of view is ∼2 mm.

F I G U R E  9 . 2 8 Microstructure of a mylonite. Note the fine-
grained, quartz-rich matrix that surrounds relatively rigid
feldspar clasts. Width of view is ∼1 cm.
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Since their original discovery we have learned that this
is incorrect, and that dynamic recrystallization is
responsible for grain-size reduction; nonetheless, the
name mylonite has persisted. Based on experimental
work, dynamic recrystallization can be used as a semi-
quantitative indicator of the temperature conditions dur-
ing deformation; for example, recrystallization begins at
∼300°C for calcite, ∼350°C for quartz, and ∼450°C for
feldspar. These estimates seem to agree well with tem-
perature estimates in deformed natural rocks.

Recrystallization occurring under isotropic stress
conditions or when the differential stress is removed is
called static recrystallization; otherwise know as
annealing. From a microstructural perspective the
only thing that distinguishes static recrystallization
from dynamic recrystallization is a relatively larger
recrystallized grain size. Static recrystallization
reduces the internal strain energy by the formation of
relatively large, strain-free grains that grow to decrease
the total free energy of the rock.7

A closing comment about the use of the term recrys-
tallization before we turn to the operative mechanisms.
Recrystallization as used here involves changes in the
strain energy of a single phase, whereas the term
recrystallization in petrology involves multiple phases.

In petrology the process is governed by chemical
potentials rather than by strain potentials. Be sure not
to confuse these very different meanings of the term
recrystallization.

9.9.3 Mechanisms of Recrystallization
There are two main mechanisms for recrystallization:
(1) rotation recrystallization and (2) migration recrys-
tallization. Rotation recrystallization describes the
progressive misorientation of a subgrain as more 
dislocations move into the tilt boundary, thereby
increasing the crystallographic mismatch across this
boundary. This produces a high-angle grain boundary
without appreciable migration of the original
(sub)grain boundary (Figure 9.29a). Eventually the
crystallographic mismatch is sufficiently large that
individual grains are recognized. Remember that pro-
gressive rotation of the subgrain occurs only by adding
more dislocations in the boundary and that there is
never loss of cohesion with the crystal lattice of the
host grain. The convention we previously introduced to
distinguish subgrains (low-angle grain boundaries)
from recrystallized grains (high-angle grain bound-
aries) is an angle of 10°. This is admittedly an arbitrary
convention, as we find a progression from low-angle to
high-angle grain boundaries in rocks, but it is conve-
nient for our purposes. Recrystallized grains are best

226 D U C T I L E  D E F O R M A T I O N  P R O C E S S E S

7This is sometimes called secondary or exaggerated grain growth.
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F I G U R E  9 . 2 9 Recrystallization by (a) subgrain rotation and (b) bulge nucleation. In (a), a
portion of a crystal is bounded by four tilt boundaries (ABCD); rotation by adding more dislocations
of the same sign leads to a progressively greater misorientation (i.e., a recrystallized grain). In (b),
growth of a dynamically recrystallized grain occurs by bulge nucleation of the grain boundary into
a neighboring grain with higher internal strain energy (dark gray), leaving behind a relatively
strain-free region that eventually develops into a recrystallized grain. 
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the expense of the grain with higher dislocation density,
the internal strain energy of the overall system decreases.
Typically the boundary of the grain with lower disloca-
tion density bulges into the grain with higher dislocation
density (Figure 9.29b). Thus, this recrystallization
process has been called bulge nucleation. When new
grains deform as they grow, this may eventually arrest
their growth. In natural settings, quartz, halite, and
feldspar commonly recrystallize by bulge nucleation.

The dominance of rotation recrystallization (sub-
grain rotation) and migration recrystallization (bulge
nucleation) is largely a function of strain rate. Consider
this: If you are in a hurry to get somewhere, you will
try to take the fastest means of transportation. Simi-
larly, nature uses the mechanism that produces the
highest strain rate to reduce the internal strain energy
of the system. Bulge nucleation is generally favored at
higher strain rates and high temperatures. For both
recrystallization mechanisms, the recrystallized grain
size is inversely proportional to the strain rate. The
smaller recrystallized grain size in mylonitic rocks, for
example, is indicative of strain-rate increase. We
observed work softening, strain-rate increase at con-
stant stress, in some experiments (Chapter 5), which
can now be understood in terms of the role of grain-
size reduction during deformation.

The formation of recrystallized grains is driven by
the generation and motion of dislocations, which in
turn is driven by differential stress. One may, therefore,
expect that a relationship exists between recrystallized
grain size and differential stress magnitude. Indeed,
experiments have shown that a characteristic range of
grain sizes occur for a specific condition of stress and
mechanism of recrystallization. This means that we
can potentially estimate paleostress conditions from
microstructures; that is, recrystallized grain size can be
used as a paleopiezometer (derived from the Greek
“piezo,” meaning to press).8 This is potentially a very
powerful tool for understanding deformation, because
paleostress is a notoriously difficult parameter to
extract from rocks. Although the debate about the
exact relationship is not settled, it is generally agreed
that recrystallized grain size is inversely proportional
to differential stress magnitude

σd = Ad–i Eq. 9.18

where A and i are empirically derived parameters for a
mineral and d is grain size in micrometers (µm). To
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8Piezometers using free dislocation density and subgrain size also exist, but
these data are more difficult to obtain and the methods appear less reliable.

Mantle

Core

Recrystallized grains

Subgrains

Host grain

Small
subgrains

Deformation
bands

Deformation
bands

F I G U R E  9 . 3 0 Core-mantle microstructure (or mortar
structure). Recrystallized grains occur at the edge of the
mantle by progressive misorientation of subgrains. The internal
portion of the host grain (core) shows weak deformation
features such as undulose extinction and deformation bands, 
or may even be strain-free. 

developed where large strain gradients exist, such as at
grain boundaries. The common microstructure in
which relatively deformation-free grain interiors
progress to subgrains and then to recrystallized grains
toward grain boundaries (Figure 9.30) is called a core-
mantle structure or mortar structure. Rotation
recrystallization has been observed in most common
rock-forming minerals, including calcite, quartz,
halite, and olivine.

Migration recrystallization is a process by which
grains grow at the expense of their neighbor(s)—when
grain boundaries effectively sweep through neighbors.
The grain that grows has a lower dislocation density than
the grain(s) consumed. Let’s look at an example where
the boundary of grain A migrates into grain B (Fig-
ure 9.29b). Keep in mind that a grain boundary separates
two crystals whose lattices are not parallel. Migration
happens when atoms in grain B near the boundary
rearrange so they fit into the lattice of the crystal with
lower dislocation density (grain A). As soon as this hap-
pens, these atoms become part of grain A. It is easier to
rearrange atoms and bonds in grain B that are stretched
and misoriented, because of its higher dislocation den-
sity. As the grain with lower dislocation density grows at
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give you a rough idea of these relationships, we list
representative parameters for three common minerals,
calcite, quartz, and olivine, in Table 9.4. These data are
plotted in Figure 9.31, showing representative stress
values. In considering these values, remember that
considerable uncertainty surrounds paleopiezometry.

Overall, a small recrystallized grain size in a deformed
rock reflects a high strain rate, a high differential stress
magnitude, or a combination of both. Rock experiments
show that the corresponding stress function during recrys-
tallization has the form f(σ) = σn (Equation 9.14), so it is
also called power-lap creep. The value of n, the stress
exponent, varies, but typically lies in the range of 2 to 5
for common monomineralic rocks (see Table 5.6).

9.9.4 Superplastic Creep
Superplastic creep, more completely described by the
somewhat cumbersome name grain-boundary sliding
superplasticity (GBSS), will at first seem out of place
after a discussion of dislocation creep mechanisms,
because it returns us to the topic of diffusion. This
mechanism is intentionally kept to the last, because it
occurs at the highest temperature conditions. We look
at the characteristics first. Superplastic creep is a grain-
size-sensitive deformation mechanism in which grains
change shape so they can slide past one another. This
sounds like cataclastic flow, but there is an important
distinction: in superplastic creep, volume and grain-
boundary diffusion are sufficiently efficient to keep
gaps from forming between moving grains, and there-
fore grains are able to slide without friction. Strain is
produced by neighbor switching as illustrated in Fig-
ure 9.32. Superplastic creep can result in very large
strains (>1000%) without appreciable internal defor-
mation of the grains. The original definition of super-
plasticity is, in fact, this ability of rocks to accumulate
very large strains without mesoscopic breaking. Even
after large finite strains, grains are equiaxial and
“fresh-looking,” and show no preferred elongation or
crystallographic fabric. This diffusion-assisted mecha-
nism is mainly important in materials with relatively
small grain sizes (<15 µm) that facilitate diffusion. In
this context, recall Equations 9.9 and 9.10, which show
the inverse exponential proportionality of diffusion to
grain size.

Superplastic creep has been proposed as a natural
deformation mechanism in fine-grained calcite- and
quartz-rich rocks. The very high temperatures that
occur in the (upper) mantle may also permit this
mechanism in coarser-grained olivine-rich rocks.
Superplastic creep is possible at lower differential
stresses than dislocation creep, but requires rocks
with relatively small grain sizes. Thus, a rock may
initially deform by dynamic recrystallization until
its grain size is sufficiently reduced for superplastic
creep to occur. When this happens, the rock
becomes much weaker; that is, the stress necessary
to produce strain decreases. This weakening, known
as work or strain softening, is common in ductile
fault zones.

The stress function of the flow law for superplastic-
ity approaches linearity between strain rate and stress;
that is, the stress component n of Equation 9.15
approaches 1. Consequently, the strain rate is inversely
proportional to grain size

ė ≅ d–r
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T A B L E  9 . 4 E M P I R I C A L L Y  D E R I V E D
P A R A M E T E R S  F O R
R E C R Y S T A L L I Z E D  G R A I N
S I Z E – D I F F E R E N T I A L  S T R E S S
R E L A T I O N S H I P S

Mineral A (in MPa) i (with d in µm)

Calcite 467 1.01

Quartz 381 0.71

Quartz (“wet”) 4090 1.11

Olivine 4808 0.79

Sources: Mercier et al. (1977), Ross et al. (1980), Schmid et al.
(1980), Ord and Christie (1984).

D
iff

er
en

tia
l s

tr
es

s 
(M

P
a)

Grain size (µm)

Olivine

Quartz
("wet")

Quartz
Calcite

1000

100

10

1
1 10 100 1000 10,000

F I G U R E  9 . 3 1 Empirically derived recrystallized grain size
versus differential stress relationships for calcite, quartz, “wet”
quartz, and olivine, using the parameters listed in Table 9.4. Note
that we plot log σb versus log d, so that small shifts in the position
of each curve reflect large changes in ambient conditions.
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where r is 2 to 3 based on experimental work. Recall-
ing that a linear relationship between strain rate and
stress defines linear viscous rheology (Chapter 5),
superplastic creep is well described by Newtonian
fluid mechanics. This contrasts with dislocation creep,
which typically has nonlinear rheology (n ≠ 1). To
emphasize this strong grain-size dependence of super-
plastic creep we also call it grain-size-sensitive creep.

9 .10 DE FOR M ATION  M EC H A NIS M
M A P S

Quite an array of concepts and terms have by now been
introduced, so let’s attempt to create, out of this infor-
mation, a pattern that helps you to remember the impor-
tant elements and relationships. The activity of ductile
deformation mechanisms can be summarized in a dia-
gram that shows over what ranges of stress, strain rate,
temperature, and grain size each mechanism dominates
for a given material; such diagrams are called defor-
mation mechanism maps.9 The variables may be
stress (e.g., differential stress), temperature, and grain
size, but for comparison between different materials we
generally use normalized parameters. A normalized

physical quantity is the ratio between a variable and a
material constant measured in the same units. In this
case, stress is normalized to an elastic modulus of the
material (typically the shear modulus, G), and temper-
ature (absolute temperature, in K) is normalized to the
absolute melting temperature of the material (Fig-
ure 9.33), called the homologous temperature, Th. On
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Diffusion F I G U R E  9 . 3 2 Grain-boundary sliding superplasticity (or superplastic creep). In (a), neighbor
switching in the superplastic regime is illustrated. A group of four grains enjoy ∼55% strain without
appreciable deformation of each grain, except at the boundaries to accommodate grain sliding
(small arrows). The required accommodation of local strain by diffusion is shown in (b), with the
final grain shape shaded. 

9Also called Ashby diagrams, after the British material scientist Michael
Ashby who proposed the construction in the early 1970s.
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the deformation mechanism map we display lines of
constant strain rate, as shown in Figures 9.34 and 9.35.
Only a small region of the diagram can be constrained
by laboratory experiments, so we must extrapolate to
most natural conditions. This is comparatively easy
where an essentially linear (Newtonian) relationship
exists between ė and σ, such as for diffusional flow. For
other regimes, such as dislocation glide (exponential-
law creep), and dislocation glide and climb (power-law
creep), the extrapolation of these nonlinear relation-

ships is more tenuous. Figures 9.34a and 9.35a show
examples of deformation mechanism maps for two
common crustal minerals, calcite and quartz, while in
Figures 9.34b and 9.35b the pressure solution fields
(“wet” diffusion) have been added.

The meaning of boundaries between the fields on a
deformation mechanism map is not straightforward,
because deformation mechanisms do not change
abruptly at this boundary; rather, several mechanisms
operate simultaneously. The mechanism that generates
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F I G U R E  9 . 3 4 Deformation mechanism maps for calcite (a) without and (b) with a pressure
solution field for a grain size of 100 µm. Contours of –log strain rate are shown; σd is differential
stress; G is shear modulus; the σd-scale on the right is for a shear modulus, G, at 500°C. The
undulation of strain rate contours in the pressure solution field arises from the competition
between change in the solubility of calcite and fluid concentration with pressure as temperature
increases. The range of reasonable geologic strain rates (10–11–10–15/s) is shaded. 
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the highest strain rate is the dominant deformation
mechanism. Fields in deformation mechanism maps
are defined by calculating the strain rate for each
mechanism. Then, the mechanism giving the fastest
rate is taken as representative for a field (i.e., the mech-
anism dominating flow). For example, the field for dis-
location creep represents the range of conditions for
which dislocation glide creates a strain rate faster than

any other mechanism, even though such other mecha-
nisms may be operating. This means that at a boundary
the two adjacent deformation mechanisms are equally
important.10 Let’s give a practical example. During
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inhibition of pressure solution through decrease in pore water concentration. 

10To emphasize this aspect, deformation mechanism maps are also called
deformation regime maps.
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mylonitization of a quartzite, dynamic recrystallization
may dominate; yet diffusional flow may occur simul-
taneously if the grain size and the strain rate are suffi-
ciently small. Consequently, the map will indicate that
we are in the power-law field, but we also see
microstructural evidence for diffusional flow.

A general pattern is common to all deformation
mechanism maps, which we illustrate with the mineral
olivine (Figure 9.36). Instead of homologous tempera-
ture we plot depth in Earth, based on a thermal gradient
that exponentially decreases from 300K at the surface
to 1850K at a depth of 500 km. This enables us also to
take into account any effects of pressure, which play a
role in the mantle by increasing the flow strength and
decreasing the strain rate. From the olivine deformation
mechanism map you see that cataclastic flow and
exponential-law creep are restricted to relatively large
differential stresses (here ≈ 8 × 102 MPa), meaning that
these mechanisms are limited to shallow crustal levels.
With depth, we pass from exponential-law creep to
power-law creep to diffusional creep, given a constant
geologic strain rate (say, 10–14/s). In the latter regime,
we may pass from grain-boundary diffusion (Coble
creep) to volume diffusion (Nabarro-Herring creep),
given further temperature or strain-rate change.

The value of a deformation mechanism map lies in its
ability to predict the mechanism that dominates a flow
under natural conditions. For example, if we assume
that the Earth’s upper mantle consists mainly of olivine,

we predict that at strain rates greater than 10–11/s dislo-
cation glide and climb dominate flow in the upper 100
km, given a grain size of 100 µm. If the strain rate is
less, diffusional creep will be more important, espe-
cially if the grain size is small. The latter point, the
effect of grain size, may not be clear from any of the
deformation mechanism maps shown thus far, because
grain size was taken as constant value. So how do we
know the role of grain-size variation? Consider the flow
laws for diffusional creep (Equation 9.15), which state
that strain rate is inversely proportional to the square or
cube of the grain size. Reducing grain size by, say, one
order of magnitude will increase strain rate by two to
three orders of magnitude, which will move the field of
reasonable geologic strain rates into the regime of diffu-
sional flow. Similarly, if we construct a map for a grain
size of, say, 1 mm (1000 µm) or larger, the field of geo-
logic strain rates moves into the regime of power-law
creep. With grain sizes for upper-mantle olivine in the
range of 100–1000 µm, the microstructures of mantle
rocks generally support the predictions that we obtain
from olivine deformation-mechanism maps.

9.10.1 How to Construct a Deformation
Mechanism Map

The concept of deformation mechanism maps is best
understood and appreciated when you construct your
own. In Table 9.5, therefore, we list constitutive equa-
tions for various deformation mechanisms in natural
limestones and marbles, which will allow you to con-
struct a deformation mechanism map.
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F I G U R E  9 . 3 6 Deformation mechanism map for olivine
with a grain size of 100 µm. Variables are the same as in 
Figure 9.33, except that depth is substituted for temperature,
using an exponentially decreasing geothermal gradient with
300K at the surface and 1850K at 500 km depth. From Ashby
and Verrall, 1978.

T A B L E  9 . 5 E X P E R I M E N T A L L Y  D E R I V E D
C O N S T I T U T I V E  E Q U A T I O N S
U S E D  F O R  T H E  C O N S T R U C T I O N
O F  F I G U R E  9 . 3 6

Exponential-law creep: ė = 105.8 e(–62,000/RT + σ/114)

Power-law creep regime a: ė = 10–5.5 e(–75,000/RT) σ6.0

Power-law creep regime b: ė = 103.8 e(–86,000/RT) σ2.9

Superplastic creep: ė = 105.0 e(–51,000/RT) σ1.7 d–3

ė = strain rate (s–1)
σ = differential stress (bar)
T = absolute temperature (K)
R = gas constant
d = grain size (µm)
Source: Rutter (1974), Schmid et al. (1977), Schmid (1982).
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First, choose the axes of the plot. Let’s decide to
plot differential stress versus temperature. Now calcu-
late the corresponding strain rate from each of the four
constitutive equations at a specific stress and tempera-
ture condition (i.e., a point in the diagram). You recall
that the mechanism producing the highest strain rate is
dominant, so from the four solutions the one with the
highest strain rate is dominant at that particular point
in the diagram. Using individual points to fill the dia-
gram is an unnecessarily slow and cumbersome
approach. Instead, we calculate the stress–temperature
curves at a given strain rate for each equation and plot
these four curves in the diagram. Because some of
these curves intersect, the final strain rate curve is
composed of segments of the four curves for which the
differential stress is smallest. When using different
strain rates you will see that the positions of intersec-
tion points change. Also, the dominant deformation
mechanism may change. Connecting these intersection
point where mechanisms change defines the boundary
between fields. A worked-out example is shown in Fig-
ure 9.37, in which differential stress is plotted as a
function of grain size for T = 475°C. You can vary
environmental conditions, such as stress, temperature,
and grain size, and calculate the corresponding map
using fairly simple spreadsheet calculations on a per-
sonal computer.

9.10.2 A Note of Caution
Deformation mechanism maps evaluate all types of
material behavior, which is not restricted to rocks.
They also permit predictions of the creep of metal in a
nuclear reactor, thereby aiding their safe design; they
determine the lifespan of lightbulb filaments; they
explain the creep of ice sheets; and they provide cru-
cial information on the sagging rate of ancient marble
benches in parks (Figure 9.38). So, deformation mech-
anism maps are a powerful approach to understanding
and exploring the rheology of materials, and to applying
this information to significant earth science problems
such as mantle convection or lithosphere subduction.
However, these maps are not without limitations. First,
extrapolation over several orders of magnitude is
needed to move from experimentally derived flow laws
(ė > 10–8/s) to geologic conditions (ė < 10–11/s), intro-
ducing a major source of uncertainty. Second, the
maps assume steady-state flow (i.e., that stress is
strain-independent), which may not be sufficiently rep-
resentative of geologic conditions. Moreover, evolving
microstructures affect the dominant deformation
mechanism; for example, dynamic recrystallization
tends to reduce the grain size, which in turn enhances
the importance of diffusional creep and weakens the
material. In spite of these limitations, deformation
mechanism maps are a handy and powerful tool to
evaluate and predict deformation mechanisms and
ambient conditions for deforming materials. Compari-
son of natural deformation structures with predictions
based on deformation mechanism maps offers a 
natural test, which indeed indicates that these maps
provide reliable estimates about the conditions of
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F I G U R E  9 . 3 8 Sharply dressed man with deformed marble
bench that plastically sagged and locally fractured under the
influence of gravity (and users). 
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T A B L E  9 . 6 D E F O R M A T I O N  M E C H A N I S M S  A N D  P R O C E S S E S  

Process (P) or Atomic-Scale Diagnostic Rheological Common 
Mechanism (M) Process Microstructures Implications Minerals

Bulk rotation (M or P)

Climb (M)

Diffusive mass 
transfer (M or P)

Dislocation glide (M)

Fracturing (M)

Frictional sliding (M)

Grain boundary 
migration (P or M)

Grain boundary 
sliding (M)

(From Jessell and Bons, 2002)

Physical rotation of 
whole or part of 
mineral grains

Diffusional addition 
or removal of atoms 
at dislocation line

“Long range” 
diffusion of atoms

Rearrangement of 
interatomic bonds

Breaking of inter-
atomic bonds

Frictional sliding on 
surfaces

Local diffusion and 
reorientation of atoms 
or atomic clusters

Dislocation movement on 
“clean” grain boundaries,
shearing on “dirty” ones

Helical inclusion trails,
bending of crystals, 
delta and sigma 
porphyroclasts

Veins, pressure shadows, 
porphyroblasts

Deformation lamellae,
deformation bands, 
undulose extinction

Gouge, breccias, 
boudinaged grains

Gouges, breccias, 
pseudotachylytes, 
domino grains

Irregular grain boundaries,
pinning microstructures, 
orientation families; 
lattice-preferred 
orientations with strong
point maxima, non-120°
triple junctions

ė ∝ σ3, also 
a hardening with 
finer grain size

τ ∝σn

Produces low 
dislocation 
density; material 
softer

Any

Any; more at 
high T

Any, especially
quartz and calcite

Any; more at low
stress and high T

Any; more at high
stress and low T

Any; more at 
high stress and
low T

Any; more at 
high T;
especially 
quartz, olivine,
feldpar

Any

deformation. Now return to Figures 9.34 to 9.36,
showing deformation mechanism maps for several
common minerals, and use them to think about the
interplay between deformation mechanism, strain rate,
temperature, and stress, and the associated microstruc-
tures. These maps also offer a useful way to absorb and
appreciate the various mechanisms and processes of
ductile deformation that were the focus of this chapter.

9 .11 CLOSING  R E M A R K S

Modern structural geology interpretations are relying
increasingly on a synthesis of observations on all scales,
including microscopic. An analysis of microstructures
plays a growing role in unraveling the deformation histo-
ries of rocks and regions. For example, mechanical twin-

ning can be used to unravel the early stress and strain his-
tory of fold-and-thrust belts; mylonitic microstructures
allow us to estimate the conditions of T; σd, and ė during
deformation, and olivine fabrics in xenoliths, give 
us information on conditions of mantle flow. One addi-
tional consequence of crystal plastic deformation,
crystallographic-preferred fabrics, will be introduced in
Chapter 12. Meanwhile, we will explore common ductile
structures in outcrop, namely folds, foliations, and lin-
eations, in the next chapters. We close this chapter with
a summary table (Table 9.6) that groups mechanisms
and processes, and serves as a handy reference.
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Rotation 
recrystallization (P)

Twinning (M)

Dislocation glide on 
single slip system

Diffusional movement of 
vacancies and interstitials

Dislocation glide and/or
bulk rotation of grains

Changed crystal structure
without change in bulk
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tation of lattice site

Kink bands

New crystal void of
preexisting impurities
(hard to prove in nature)

Lattice-preferred
orientations

Phase boundaries 
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Herring creep); ė ∝
σ/d3 (Coble creep)

Well-developed
fabrics may be
stronger or weaker
than random fabrics

Often associated with
volume change

Produces low 
dislocation density;
material softer

Change in grain size
can strengthen or
weaken material

Micas, low T
quartz, kyanite

Any; more at low
stress and high T

Any; more at low
stress and high T

Quartz, calcite-
aragonite, olivine

Any; more at 
high T
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stress and high T,
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feldspar, olivine

Calcite (low T and
low strain), plagio-
clase, quartz,
amphibole
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A PPE N DIX :  DIS LO C ATION
DECOR ATION

The principle behind optical imaging by dislocation
decoration of olivine is that iron oxides preferentially
precipitate along defects in olivine. In order to deco-
rate dislocations in olivine, a sample with one pol-
ished surface is heated in air for approximately one
hour at 900°C. A standard petrographic thin section is
then prepared with the previously polished surface in
contact with the glass slide. For most crystallographic
directions, dislocation lines as far as 50 µm from the
polished surface are decorated. Under the optical
microscope, screw dislocations generally appear as
long and straight lines. Using a microscope that is
equipped with a universal stage, the crystallographic
relationship can be determined. Decoration is most
effective in samples with relatively low dislocation
densities (<108/cm2), such as mantle xenoliths in vol-
canic flows.
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