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Preftwe 

THE proliferation and the importance of the results of crystal structure 
analysis confront the chemist with the need to learn the language of 
crystallography. This book is an outgrowth of the opinion that the 
training of the undergraduate chemistry major can include more of 
this language than the memorization of a list of lattice types. At the 
same time, it would be unreasonable and impractical to expect all 
chemists to become experts in this specialized field. The purpose, 
therefore, is to treat the subject in a manner that will quickly and 
painlessly enable the nonspecialist to read and comprehend the 
crystallographic literature. It is hoped that this introduction may serve 
as a useful starting point for those students who wish to pursue the 
subject further. 

The principal message is contained in the first four chapters. That is, 
these chapters supply the vocabulary of crystallography, and descrip­
tions of crystal structures should be rendered intelligible by acquaint­
ance with this language. In order not to discourage the general reader, 
the use of mathematics has been kept to a minimum. The decision to 
omit vector and matrix methods was made reluctantly, in order to 
reduce the prerequisites, but the elegance thus sacrificed is a luxury 
that some exceptionally competent crystallographers get along without. 
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viii Preface 

On the o~her hand, proficiency in vector algebra is a useful substitute 
for an aptitude for three-dimensional visualization. 

Chapters 5 and 6 attempt to show where the results come from. The 
problem is described formally as that of determining the coefficients in a 
Fourier series. This approach avoids a lengthy treatment of the physical 
theory of scattering, and the mathematical background required should 
not be much more than elementary calculus. Only a sampling of the 
methods and techniques of structure determination can be provided in 
the limited space of these chapters, and the reader interested in more 
detail is referred to one of the many excellent advanced treatises in the 
field. 

The final chapter describes some simple structures, and the principles 
learned from familiarity with these can readily be extended to more 
complex cases. An admonition should be applied here (and in the 
previous chapters): this material should be understood rather than 
memorized. 

Exercises of varying degrees of difficulty are distributed throughout 
the book. Which ones should be attempted will depend upon the level 
of understanding desired. As an aid to self-study, the solutions are 
given at the end of the book. 

Even such a brief book has called upon the cooperation of many 
people. I especially wish to express my appreciation to my students, 
Mr. James A. Cunningham and Mr. Theodore Phillips, for critically 
reading the manuscript in an early form, and to my colleagues and 
family for tolerating my neglect of other duties. Thanks are also due 
Professor Walter Kauzmann for his helpful suggestions and comments 
at an early stage in the writing. 

Lexington, Kentucky 
December 1968 

DONALD E. SANDS 
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Chapter 1 

U R Y S T .t\. IJ S A N D IJ AT T I U E S 

Crystallography is concerned with the structure and properties of the 
crystalline state. Crystals have been the subject of study and speculation 
for hundreds of years, and everyone has some familiarity with their 
properties. We will concentrate on those aspects of the science of 
crystallography that are of interest to chemists. Our knowledge of 
chemistry will help us to understand the structures and properties of 
crystals, and we will see how the study of crystals can provide new 
chemical information. 

1-1 De/btition of a crystal 

Crystals frequently have characteristic polyhedral shapes, bounded by 
flat faces, and much of the beauty of crystals is due to this face develop­
ment. Many of the earliest contributions to crystallography were based 
on observations of shapes, and the study of morphology is still important 
for recognizing and identifying specimens. However, faces can be 
ground away or destroyed, and they are not essential to a modern 
definition of a crystal. Furthermore, crystals are often too small to 
be seen without a high-powered microscope, and many substances 
consist of thousands of tiny crystals (po/ycrysta/line). Metals are 
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l Introduction to Crystal/ogrtlJIIIY 

crystalline, but the individual crystals are often very small, and faces 
are not apparent. The following definition provides a more precise 
criterion for distinguishing crystalline from noncrystalline matter. 

A crystal consists of atoms arranged in a pattern that repeats period­
ically in three dimensions. 1 

The pattern referred to in this definition can consist of a single atom, 
a group of atoms, a molecule, or a group of molecules. The important 
feature of a crystal is the periodicity or regularity of the arrangement of 
these patterns. The atoms in benzene, for example, are arranged in 
patterns with six carbon atoms at the vertices of a regular hexagon and 
one hydrogen atom attached to each carbon atom, but in liquid 
benzene there is no regularity in the arrangement of these patterns. 

The fact that benzene is a liquid rather than a gas at room temperature 
is evidence of the existence of attractive forces between the molecules. 
In the case of benzene these are relatively weak van der Waals' forces, 
and thermal agitation keeps the molecules from associating into ordered 
clusters. If benzene is cooled below its freezing point of 5.5°C, the 
kinetic energy of the molecules is no longer sufficient to overcome the 
intermolecular attractions. The molecules assume fixed orientations 
and positions with respect to each other, and solidification occurs. As 

(a) 

FIG. 1-1 (a) Portion of the sodium chloride structure showing the sizes of 
the ions, magnified about 108 times. 

1 C. S. Barrett, Structure of Metals, 2nd ed., McGraw-Hill, New York, 1952, p. 1. 
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() CI-

0 Na+ 

(b) 

FIG. 1-1 (b) A model showing the geometrical arrangement of the sodium 
chloride structure. 

each molecule joins the growing solid particle, it is oriented so as to 
minimize the forces acting upon it. Each molecule entering the solid 
phase is influenced in almost exactly the same way as the preceding 
molecule, and the solid particle consists of a three-dimensional ordered 
array of molecules; that is, it is a crystaJ.l 

Another example is afforded by a crystal of sodium chloride. The 
crystal contains many positive and negative ions held together by 
electrostatic attractions. The details of the arrangement depend upon 
the balancing of attractive and repulsive forces, which include both 
electrostatic and ionic size effects. The structure of sodium chloride is 
shown in Fig. 1-1, and further discussion will be given in Section 7-8. 
Each ion is surrounded by six ions of opposite charge, at the vertices of 
a regular octahedron, and the crystal structure represents an arrange­
ment of these ions that leads to a potential energy minimum. 

The point we want to emphasize here is that the formation of a solid 

1 This qualitative discussion is intended only to illustrate that periodicity is a 
natural consequence of the growth of a solid particle. It should not obscure the 
essential discontinuity of a phase change. See, for example, T. L. Hill, Lectures on 
Matter and Equilibrium, Benjamin, New York, 1966, p. 198. 
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particle naturally leads to crystallinity. There is a preferred orientation 
and position for each molecule to attach to the solid, and if the rate of 
deposition is slow enough to let the molecules attain this favored 
arrangement, the structure will fit our definition of a crystal. We have a 
pattern consisting of atoms or molecules. This pattern may be as simple 
as a single atom or it many consist of several molecules, each of which 
may contain many atoms. This entire pattern repeats over and over 
again, at regularly spaced intervals and with the same orientation, 
throughout the crystal. 

1-:l Lattice points 

Suppose we imagine a tiny creature wandering through the interior of 
a crystal. He stops at some point and closely examines his surroundings, 
and he carefully notes his position relative to the various atoms that 

FIG. 1-2 A two-dimensional periodic structure. 
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FIG. 1-3 Pick any point. 

constitute the pattern. He then walks in a straight line to an identical 
point in an adjacent pattern. For example, he might travel from one 
Na+ ion to another Na+ ion in sodium chloride or from the center of 
one ring to the center of another ring in benzene. When he arrives at 
this second point, there is absolutely nothing in his environment that 
will enable him to detect that he has moved at all. Furthermore, if he 
continues his walk without turning, he will come to another identical 
point when he has covered the same distance. Of course, the surround­
ings will look different near the surface, but in much of our discussion 
we will assume that the crystal contains so many repeating patterns that 
surface effects are quite negligible. 

A useful two-dimensional analog of a crystal is an infinite wall 
covered with paper. The wallpaper pattern can be of any complexity, 
and the entire pattern repeats periodically in two dimensions. The array 
is actually periodic in the direction defined by any line connecting two 
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identical points, but all of these directions can be described by taking 
vector sums of two arbitrary nonparallel base vectors. 

Figure 1-2 shows a rather simple wallpaper pattern. To aid our 
discussions and calculations, it is convenient to choose some points 
and axes of reference. A system of reference points may be obtained by 
choosing one point at random (Fig. 1-3). All points identical with this 
point constitute the set of lattice points (Fig. 1-4). These points all have 
exactly the same surroundings, and they are identical in position relative 
to the repeating pattern or motif. This set of identical points3 in two 
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FIG. 1-4 Mark all identical points. Connect points to form parallelograms. 

3 We will frequently use the terms lattice point, identical point, and equivalent 
point interchangeably. Lattice points may be considered a special case of identical 
(or equivalent) points in that they are related to each other by lattice translations. 
All lattice points are equivalent to each other, but equivalent points are not 
necessarily lattice points. 
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FIG. 1-5 Six numbers specify the size and shape of a unit cell. 

dimensions constitutes a net. The term lattice or space lattice is fre­
quently reserved for a three-dimensional distribution of points, and in 
one dimension the proper term is row. 

1-3 l!nit cells 

If we now connect the lattice points by straight lines we can divide our 
two-dimensional space into parallelograms (Fig. 1-4). In three dimen­
sions the space is divided into parallelepipeds. Repetition of these 
parallelepipeds by translation from one lattice point to another gener­
ates the lattice. The generating parallelepiped is called a unit cell. A unit 
cell is always a parallelepiped, and it is sort of a template for the wholt: 
crystal. If we know the exact arrangement of atoms within one unit 
cell, then we, in effect, know the atomic arrangement for the whole 
crystal. The process of determining the structure of a crystal consists, 
therefore, of locating the atoms within a unit cell. 

The size and shape of a unit cell may be specified by means of the 
lengths a, b, and c of the three independent edges and the three angles 
oc, {1, andy between these edges. These quantities are shown in Fig. 1-5. 
The angle oc is the angle between band c, {1 is between a and c, andy is 
between a and b. These axes define a coordinate system appropriate to 
the crystal. In some respects it would be simpler to always use a 
Cartesian coordinate system, in which the three axes are equal in length 
and mutually perpendicular, but the advantages of a coordinate system 
based on the lattice vectors outweigh the simplicity of Cartesian 
geometry. 



0,1,1 

~ ./ 
-;;;"' 

FIG. 1-6 Location of a point with coordinates x,y,z. Numbers indicate 
coordinates of unit cell corners. 

1,1,1 
"2 



CRYSTALS AND LA1TICES 9 

EXERCISE 1-1 The density ofNaCI crystals is 2.16 gfcc. Referring to Fig. 1-1, 
calculate the length of the edge of a unit cell of NaCI. (The unit cell in this 
case has a= b = c, IX= fJ = y = 90°.) 

1-4 Fractional coordinates 

The location of a point within a unit cell may be specified by means of 
three fractional coordinates x, y, and z. The point x,y,z is located by 
starting at the origin (the point 0,0,0) and moving first a distance xa 
along the a axis, then a distance yb parallel to the b axis, and finally a 
distance zc parallel to the c axis (Fig. 1-6). If one of these coordinates is 
exactly I, then the point is all the way across the unit cell, and if one of 
the coordinates exceeds I, the point is in the next unit cell. For example, 
the point (1.30,0.25,0.15) is in the next unit cell to the right in Fig. 1-6. 
This point is equivalent to (0.30,0.25,0.15) since all unit cells are 
identical. It is thus apparent that a crystal structure can be entirely 
specified with fractional coordinates. One of the advantages of basing 
our coordinate system on lattice vectors is that two points are equivalent 
(or identical) if the fractional parts of their coordinates are equal. Also 
note that (-0.70,0.25,0.15) is equivalent to (0.30,0.25,0.15) since the 
x coordinates only differ by an integer; that is, equivalent points result 
when any integer is added to a coordinate. 

1-5 l!nit cell calculations 

Calculations involving oblique coordinate systems are certainly more 
tedious than they would be if the axes were at right angles to each other, 
but compensation is provided by features such as the identity of the 
fractional coordinates of equivalent points in different unit cells. The 
following formulas will be useful. 

The volume V of a unit cell is given by 

V =abc( I - cos2 IX- cos2 fJ- cos2 y + 2 cos IX cos fJ cos y)112 

The distance I between the points X~oY~oZ~o and x2,y2,z2 is 

I= [(x, - x2)2a2 + (y 1 - y2)2 b2 + (z1 - z2)2 c2 

+ 2(x1 - x2HY1 - Yl)abcosy + 2(y1 - Y2Hz1 - z2)bccos IX 

+ 2(z1 - z2)(x1 - x2)cacosfJ]''2 

(1-1) 

(1-2) 
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You should verify these formulas for the familiar case where ex = 

fJ = y = 90°. Derivation of these formulas is accomplished easily by 
means of vector algebra. 4 

1-6 1-"rimitive and centered cells 

As is shown by Figs. 1-4, 1-7, and 1-8, the choice of a unit cell is not 
unique. Any parallelepiped whose edges connect lattice points is a 
valid unit cell according to our definition, and there are an infinite 
number of such possibilities. It is even permissible to have lattice points 
inside a unit cell (Fig. 1-8). In such cases there is more than one lattice 

7----
/ 

/ 
/ 

__ / ___ _ 
/ 

/ 

FIG. 1-7 The choice of a unit cell is not unique. 

/ 

4 Many crystallographic calculations are much easier when carried out by means 
of vector algebra. A brief introduction to vectors is given by D. A. Greenberg, 
Mathematics for Introductory Science Courses, Benjamin, New York, 1965. 
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~· 
\ 

FIG. 1-8 A unit cell need not be primitive. 

point per unit cell, and the cell is centered. A unit cell with lattice points 
only at the corners is called primitive. The centered cell in Fig. 1-8 is 
doubly primitive. A unit cell containing n lattice points has a volume of 
n times the volume of a primitive cell in the same lattice (see Exercise 1-2). 

ExERCISE 1-2 A primitive unit cell has a= 5.00, b = 6.00, c = 7.00 A; and 
tX = f3 = y = 90°. A new unit cell is chosen with edges defined by the vectors 
from the origin to the points with coordinates 3, 1,0; 1,2,0; and 0,0, I. 

(a) Calculate the volume of the original unit cell. 

(b) Calculate the lengths of the three edges and the three angles of the 
new unit cell. 

(c) Calculate the volume of the new unit cell. 
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(d) Calculate the ratio of this new volume to the volume of the original 
cell. How many lattice points does the new cell contain? 

ExEacJSE 1-3 A unit cell has dimensions a= 6.00, b = 7.00, c = 8.00 A, 
oc = 90°, f3 = 115.0°, i' = 90°. 

(a) Calculate the distance between the points 0.200,0.150,0.333 and 
0.300, 0.050, 0.123. 

(b) Calculate the distance between the points 0.200,0.150,0.333 and 
0.300, 0.050, -0.123. 



ChBpter 2 

SYMMETRY 

2-1 lntroduetion 

Some of the earliest studies of crystals were motivated by observations 
of their external symmetry. Snowflakes have hexagonal shapes; sodium 
chloride forms perfect cubes; and crystals of alum are frequently 
regular octahedra. Our study of crystallography will show us that 
these symmetrical shapes are manifestations of the internal structures 
of crystals. If the individual molecules have symmetry, then it is perhaps 
reasonable that they should pack together in a symmetrical array. There 
are some complicating factors, however, in the actual development of a 
crystal, and the arrangement of molecules is influenced by the avail­
ability of space as well as by the symmetry of the intermolecular forces. 
In the case of the very symmetrical benzene molecule, for example, it 
may turn out that six additional benzene molecules cannot approach 
closely from six equivalent directions without interfering with each 
other. Some of the molecules tilt to achieve a balance of attractive and 
repulsive forces, and the aggregate has less symmetry than the single 
molecule. In energy terms, the potential energy minimum is associated 
with a lower symmetry. It is also possible to have crystalline arrays 
where the symmetry is higher than that of the individual molecules, 
and we will encounter examples of this as we proceed. The important 

13 



14 Introduction to Crystallography 

point here is that symmetry in crystals is a result of essentially the same 
factors that make crystallinity the natural state of a solid particle. 
If we have learned not to be surprised that solid matter is crystalline, 
then we must also accept the appearance of symmetry as an inevitable 
consequence of some rather simple laws. We will eventually see that 
crystallinity itself may be regarded as a special type of symmetry. 

The utility of symmetry considerations extends beyond their applica­
tion to crystals. For example, it is extremely useful to know that all six 
carbon atoms in a benzene molecule are identical (related by symmetry), 
and calculations pertaining to molecular vibrations or chemical bonding 
are vastly simplified by taking such symmetry into account. For this 
reason, we will devote this chapter to a general discussion of symmetry 
concepts and nomenclature, especially as applied to molecules. This 
material is indispensable to our later treatment of crystal geometry and 
symmetry; it is hoped that it will also provide some background for 
those who want to learn more about the role of symmetry in chemistry .1 

2-2 De/inition of qmmetry 

So far we have spoken of symmetry as though everyone knew what is 
meant by the term. This is probably true, at least qualitatively, but a 
definition will ensure a common understanding of the symmetry 
concept. An object or figure is said to have symmetry if some movement of 
the figure or operation on the figure leaves it in a position indistinguishable 
from its original position. That is, inspection of the object and its 
surroundings will not reveal whether or not the operation has been 
carried out. 

2-a Symmetry operations and elements of 
symmetry 

A molecule of H20 is shown in Fig. 2-1. The H-0-H angle is 104S, 
and the dotted line in the picture is the bisector of this angle. Suppose 
that the H20 molecule is rotated 180° about the axis represented by the 
dotted line. The oxygen atom will be rotated 180°, but it will end up 

1 An excellent introduction to the noncrystallographic uses of symmetry is given 
by F. A. Cotton in Chemical Applications of Group Theory, Interscience, New York, 
1963. A more advanced treatment may be found in R. M. Hochstrasser's Molecular 
Aspects of Symmetry, Benjamin, New York, 1966. See also J. E. White, J. Chem. 
Educ. 44, 128 (1967). 
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HI ID 

FIG. 2-1 Water molecule. 

looking exactly as it did before the rotation. The two hydrogen atoms 
will be exchanged, so that now H(2) is on the left and H(l) is on the 
right. However, there is no possible way of telling the hydrogen atoms 
apart, since all hydrogens atoms are identical and in this molecule they 
have identical chemical environments. The 180° rotation has left the 
molecule in a position indistinguishable from its original position, so our 
definition of symmetry is satisfied. In H20 the 180° rotation about the 
bisector of the H-0-H angle is a symmetry operation, and the rotation 
axis is a symmetry element. This particular symmetry element is 
designated by the symbol C2 in the Schoenfties notation used extensively 
by spectroscopists, or simply by the symbol2 in the Hermann-Mauguin 
or international notation preferred by crystallographers. Besides 
designating the symmetry element, the symbol c2 (or 2) also implies 
the operation of rotation by 180°. 

2-4 Rotation azes 

A symmetry element for which the operation is a rotation of 360° /n is 
given the Schoenfties symbol C,. (or the Hermann-Mauguin symbol n). 
For example, the chloroform molecule (CHC13) has a C3 axis. In this 
molecule (Fig. 2-2), the three chlorine atoms form an equilateral 
triangle, the carbon atom is directly above the center of this triangle, 
and the hydrogen atom is directly above the carbon atom. If the mole­
cule is rotated about the axis defined by the C-H direction, it reaches 
identical orientations after every 120° of rotation, and there are a total 
of three equivalent orientations in a complete 360° turn. 
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(a) (b) 

FIG. 2-2 CHC13 molecule. 

2-5 llirror planes 

Rotation axes are not the only symmetry elements that molecules can 
possess, and both H20 and CHC13 have mirror planes. If the dotted 
line in Fig. 2-1 represents a mirror perpendicular to the plane of the 
paper, one half of the molecule is just the mirror image of the other half. 
The CHC13 molecule has three mirror planes, corresponding to each of 
the three planes defined by the atoms H-C-Cl. If one of the chlorine 
atoms were replaced by a bromine atom, to form CHChBr, the three-

FIG. 2-3 Mirror plane a in CHBrC12 • 



s~Y
 

PIG. 2-4 Mirror plane u• in PC!
5

• 

fold •Ymme<ry Would be destroyed, and the molecule would have only 

one mirror plane (Fig. 2-3). 

The Hermann-llfaugu;n 'Ynlhol for a m;rror plane ;, "'· In the 

Schoenl!;es notation the symbol a;, USed w;th subscr;pts to ;ndkate 

the orientation of the plane Whh "'.Pect to any rotation axes Present. 

Thu~ a, des;gnates a horu,.,,a/ m;rror plane (Hg. 2-4) pe'Pend;cular 

PIG. 2-S Mirror Plane uu in PC!,. 

17 
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FIG. 2-6 Mirror plane a. in staggered form o/C2H6. 

to the principal rotation axis (the rotation axis of the highest order); 
avis a vertical mirror plane (Fig. 2-5) which includes the rotation axis; 
and ad is a diagonal mirror plane (Fig. 2-6), which includes the principal 
rotation axis and bisects the angle between a pair of C2 axes that are 
normal to the principal rotation axis. The C2H6 molecule has a C3 axis; 
the form shown in Fig. 2-6 has three C2 axes perpendicular to the C3 

axis, and there are three ad planes bisecting the angles between these 
c2 axes. 

2-6 Identity 

Any direction in any object is a C1 axis, since a 360° rotation merely 
restores the original orientation. This symmetry element is called the 
identity and is symbolized by C1 or by 1. In Section 2-11 we will denote 
this element by E. 



SYMMETRY 19 

2·" Center of symmetry 

Another symmetry element that occurs frequently is a center of inver­
sion or center of symmetry. This symmetry element is a point, and the 
operation consists of inversion through this point. A straight line drawn 
through the center of inversion from any point of the molecule will 
meet an equivalent point at an equal distance beyond the center. If the 
center of inversion is at the origin of the coordinate system, for 
any point with coordinates x,y,z, there is an identical point with 
coordinates -x,-y,-z. Figure 2-7 shows a molecule, trans­
CHCIBrCHCIBr, which is centrosymmetric. The center of inversion is 
denoted by the Schoenflies symbol i or by the Hermann-Mauguin 
symbol T. 

FIG. 2-7 A molecule with a center of symmetry. 
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0 

FIG. 2-8 An S3 axis. 

2-S luaproper rotot·ion azes 

The rotation axes we have discussed so far have been proper rotation 
axes. The only motion involved in the operation of a proper rotation 
axis is rotation by 360°/n. Although the Schoenfties and Hermann­
Mauguin systems use different symbols, the actual operations are 
identical. The operations in the two systems are quite different, how-

0 

0 0 

0 

FIG. 2-9 An S4 axis (S4 :: ~). 
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ever, in the case of improper rotations. In the Schoenflies system, an 

improper rotation axis, Sno is an axis of rotatory reflection, and the 
operation is a combination of rotation b) 360°/n followed by reflection 
in a plane normal to the Sn axis. It is very important to understand that 
this definition does not necessarily imply the existence of en and ah 

individually. The operation is a combination of the motions of Cn and a h. 

An equivalent point is not generally reached after the Cn operation alone 
or after the ah operation alone, but only after both motions have been 
carried out. The effect of an S3 axis is shown symbolically in Fig. 2-8. 
If we start with a point above the plane of the paper (labeled+), one 
application of S3 generates a point rotated 120° and below the plane of 
the paper (labeled-). Successive applications of S3 (S3 applied to each 
newly generated point) give a total of six points, and Fig. 2-8 shows 
that, in this case, the presence of an S 3 axis implies both a C3 axis and a 

FIG. 2-10 The effect of an S4 axis. 
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u,. plane. An S4 axis does not, however, imply either a C4 axis or au,. 
plane. This is shown in Fig. 2-9, which obviously does not have a C4 axis. 
Figure 2-10 also shows the effect of an S4 axis, in which a right hand 
with the palm down is converted into a left hand with the palm up. 

In the Hermann-Mauguin notation, an improper rotation axis is an 
axis of rotatory inversion. The operation here is a combination of 
rotation by 360°/n followed by inversion through a point, and the 
symbol is fi. Again, the operation consists of a combination of motions, 
and ;; does not necessarily imply the existence of either a proper 
rotation axis, n, or a center of inversion. A 1 axis is shown symbolically 
in Fig. 2-11. As in the case of S3, a total of six points are generated by 
repeated application of the 3" ·operation. However, these points are 
distributed quite differently in the two cases. It is generally true that 
S,. and;; are different unless n is a multiple of 4 (Fig. 2-12). It is easy to 
work out the effect of the S,. and ;; operations by means of diagrams 
such as Fig. 2-12, so no memory effort, other than the definitions of the 
operations, is required. It is of interest to observe that when n is odd 

S,. = 2n and fi = S2,.. We thus have S1 = 2 = u(= m), S3 = li, S5 =TO, 
and so on; and I = S2 = i, 1 = S6, 5 = S 10, and so on. The symbol u 

(or m) is always used in place of S 1 (or 2), and i is always used in place of 
S2• We also note that when n is odd, S,. implies the presence of both C,. 
and u,., and fi implies the presence of both n and I. 

0 0 

0 0 

0 0 

FIG. 2-11 A 3 axis. 
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0 
s,-2 s,-6 

8 
0 

FIG. 2-12 Comparison of s. and ;, axes. 

~-9 Point qmmetry 

All of the symmetry operations we have discussed have the property 
that at least one point is not moved by the operation. All points on a 
proper rotation axis or on a mirror plane are stationary, and no new 
points are generated from these by the action of the operator. In the 
cases of the center of inversion and the improper rotations, there is a 
unique point that is left fixed. It is possible to conceive of symmetry 
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operations that leave no point unchanged. If a set of points (or atoms) 
has such a symmetry element, and the operation is applied to produce 
a new set of points, then the new set must also contain the symmetry 
element (otherwise, the new set would be distinguishable from the first, 
in contradiction to our definition of symmetry). Operation by the new 
symmetry element will generate still another set of equivalent points, 
which will also contain the symmetry element. The result of the repeated 
application of newly generated symmetry elements is that an infinite 
number of equivalent points will be generated for each of our original 
points. It, therefore, follows that a finite molecule cannot have sym· 
metry elements that do not leave at least one point fixed. For this 
reason, if we want to discuss the symmetry of molecules we need only 
the elements summarized in Table 2-1, which are referred to as elements 
of point symmetry. Crystals, however, can have symmetry elements 
that leave no point fixed (since we have agreed to regard our crystalline 
arrays as infinite), and translational symmetry wiiJ be dealt with at length 
in the following chapter. 

2·10 Combinations of qmmetrrJ elements 

We have already observed that molecules sometimes possess more than 
one symmetry element. Every molecule has a C 1 axis, and even the very 
simple water molecule has, in addition, a C2 axis and two mirror planes 
(one of them is the plane of the molecule). We could describe the 
symmetry of a molecule by listing all of its symmetry elements. For 
CH4 such a list would contain 24 entries, and SF6 would require 48 
entries. Even then, our symmetry description would not be clear unless 
we also explained how the symmetry elements are oriented with respect 
to each other. 

We may havt< also observed that the symmetry elements of a molecule 
may not be mutually independent. For example, if two mirror planes 
intersect at right angles to each other, the line of intersection must be a 
twofold rotation axis. A simple proof of this is obtained by considering 
the changes in the coordinates of points as the symmetry operations are 
performed. An initial point at x,y,z is converted into -x,y,z by a mirror 
plane perpendicular to the x axis. A mirror plane perpendicular to the 
y axis then converts -x,y,z into -x,-y,z, and the point -x,-y,z is just 
the result of operating on x,y,z by a twofold rotation axis parallel to 
the z direction (see Fig. 2-13). If we state that the H20 molecule 



Type of element 

Rotation axis 

Mirror plane 
Identity 

Center of inversion 
(center of symmetry) 

Improper rotation axis 
(rotatory reflection axis) 

Improper rotation axis 
(rotatory inversion axis) 

TABLE 2-1 ELEMENTS OF POINT SYMMETRY 

Examples 

Description of operation Schoenflies symbol 
Hermann-Mauguin 

symbol 

Counterclockwise rotation of 360°/n 
about axis 

Reflection through a plane 
Rotation of 360° about any axis. 

All objects and geometric figures 
possess this element 

All points inverted through a center 
of symmetry 

Rotation of 360°/n followed by 
reflection in a plane perpendicular 
to the axis 

Rotation of 360° fn followed by 
inversion through a point on the 
axis 

C~oC2,C3,c4 

a 
E=C1 

s~os2,S3,s4 

1,2,3,4 

m 

I 

I,2,3,4 
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a 

0 0 
x,ji,z x,y,z 

a--------------~-----------e-Y 

0 0 
x,ji,z x,y,z 

X 

FIG. 2-13 Two mutually perpendicular mirror planes generate a twofold 
rotation axis. 

possesses two perpendicular mirror planes, the symmetry of the mole­
cule is completely described. We might alternatively denote the sym­
metry of this molecule by specifying that it has a C2 rotation axis and a 
a. plane; the presence of c2 and a. automatically imply the presence of 
another mirror plane. 

2-11 Point groups 

The collection of symmetry elements possessed by a molecule is called 
a point group. The word point indicates that at least one point of the 
molecule remains fixed under all of the symmetry operations. The word 
group means that some rather stringent conditions are satisfied: 

A set of elements is called a group if there exists a law of combination, 
called multiplication, such that 

I. the law of combination is associative, 
2. there is an identity element in the set, 
3. the inverse of every element is an element of the set, and 
4. the product of any two elements is an element of the set. 

The law of combination in our case consist'> of the successive applica­
tion of two symmetry operations. For example, we might apply a C2 
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operation followed by a av operation. This combination of operations 
we write as av C2, where the crder of the operations is read from right to 
left. Since the results of these two successive operations is another mirror 
plane, we can write avC2 =a~. In this example C2 avis also equal to a~; 
that is, we get the same result if the av operation is carried out first. 
This is not generally true, as shown by Fig. 2-14; point A is transformed 
into point D by the product avC3 (C3 is a 120° counterclockwise 
rotation), but the product C3 av transforms A into B. We have avC3 =a; 
and C3av =a~; since avC3 'I= C3 av, the group multiplication is said to 
be noncommutative. 

Ordinary multiplication of numbers or algebraic quantities is com­
mutative; in arithmetic 2 x 3 = 3 x 2, and in elementary algebra 
xy = yx. In group theory, however, the word multiplication is broadly 
interpreted as implying two successive operations, and the order of the 
factors is important. If we write logsinx, this means compute the sine 
of the number x and then take the logarithm of the number sinx. On 
the other hand, sinlogx means take the logarithm of x and then 
compute the sine of the number logx. We find that logsinx and 
sinlogx are generally not equal. If it suited our purposes we could 
develop an algebra of such operations and talk about the products 
log x sin and sin x log. In group theory, this rather abstract type of 
multiplication is very useful, and diagrams, such as Fig. 2-14, aid in 
evaluating the products. 

The law of combination is associative. If we consider the product of 

a, a, 

a, a, 

FIG. 2-14 Point group C3v. 
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three elements, such as a~avC3 in Fig. 2-14, we can write this product as 
either a~(avC3) or (a~av)C3 . Now, avC3 =a; and a~av = C3, and 
our product is either a~ a: or C3C3 • The equality of these two products 
may be verified from Fig. 2-14 (they both convert point A into point E). 
We, therefore, see that while the order of the elements is important, 
they may be paired off in any manner. 

The element C1 is present in all of our symmetry groups, and C1 

serves as an identity element. Our symmetry groups are only special 
cases of collections of elements satisfying the group properties, and the 
symbol E is often used for the identity element, so in discussing group 
elements we shall use E instead of C 1• The identity is defined as an ele­
ment E such that EA = AE =A, where A is any element of the group. 

If A is any element of the group, there also exists an element A- 1 such 
that AA-1 = A- 1 A= E. The element A-1 is called the inverse of A. The 
inverse of C2 is C2, since C2C2 = Cl =E. The inverse of C3 is C/ = 

C3C3 , since C3C32 = C/C3 =E. The element C/ may be regarded as 
either a 240° counterclockwise rotation or a 120° clockwise rotation. 

The final property, which is that the product of any two elements of a 
group is also an element of the group, is called the law of closure. If A 
and Bare elements of a group, then the product AB is an element of this 
group. 

2-12 Group multiplication table 

The properties of a group are given concisely by its multiplication table. 
The symmetry group of the H 20 molecule contains, as we have seen, 
the elements E, C2 , av, and a~. The number of elements is called the 
order of the group, so the order of this group is 4. The products of pairs 
of these elements are given in Table 2-2. The table is constructed by 

TABLE2-2 GROUP C2v MULTIPLICATION TABLE 

E c2 
, 

av av 

E E c2 
, 

av av 

c2 c2 E ' av av 
' E c2 Uv av av 

' ' c2 E av av av 
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TABLE 2-3 GROUP CJv MULTIPLICATION TABLE 

E CJ c2 ' " 
3 Uv av Uv 

E E CJ C/ ' " av av av 

CJ CJ C/ E ' " av av Uv 

C/ c32 E CJ " ' av Uv av 
" ' E C/ CJ Uv Uv av av 

' ' " c3 E C/ av av Uv av 
" " ' c32 CJ E av av av Uv 

listing each element across the top and at the left, and the products of 
pairs of elements are entered into the appropriate places. Although the 
elements of this particular group do commute, we have seen that this 
is not always the case, and we need to be careful about the order of the 
elements. We shall use the easily remembered convention that the 
element at the left in the table is also at the left in the product. Table 2-3 
describes the group of order 6 illustrated in Fig. 2-14. This table tells 
us at a glance that avC3 =a~ and C3 av =a~, which are relationships 
that can be verified from Fig. 2-14. 

The following properties of group multiplication tables are helpful 
in deriving the tables. Since EA =A£= A for any element A, the first 
row and first column may be written down immediately. The positions of 
the E's in the table are readily obtained by considering the inverse of 
each element and using AA-1 = A- 1 A =E. It is always true that each 
element of the group appears once and only once in each row and in each 
column. 

EXERCISE 2-1 Verify that the numbers I' -I' v=-1, -v=-1 form a group 
where the law of combination is multiplication. Write the multiplication 
table. 

ExERCISE 2-2 If a3 = I, write the multiplication table for the group with 
elements a,a2, I, where ordinary multiplication is the law of combination. 

ExERCISE 2-3 Verify that the set of all integers ... , -3,-2,-1,0, 1,2,3, ... 
forms a group where addition is the law of combination. 
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ExERCISE 2-4 Derive the multiplication table for the group with elements 
1,a,a2,b,ab,a2b, using only the general properties of groups and the relation­
ships ba = a2b, bab = a2, aba = b, ba2b =a. 

2-1 a Point group nouaencloture 

A symmetry group may be designated very concisely by means of an 
abbreviated notation that gives sufficient information for deducing the 
detailed properties. In this chapter we will describe the older Schoen flies 
notation and supply some rules for determining point groups. The 
Hermann-Mauguin point group notation may be developed most 
logically after a discussion of crystal systems, so this topic will be 
deferred until Section 3-6. 

FIG. 2-15 A molecule with C2 symmetry. 
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c. GROUPS. If the only elements of the group are a single c. rotation 
axis and its powers c., C/, ... , E, the group is called a cyclic group and 
is denoted by c •. 2 The order of the group is n. A molecule with point 
symmetry C2 is shown in Fig. 2-15; the only elements of the group are 
C2 and E. The CH3CCI3 molecule has only C3 symmetry if the chlorine 
atoms do not lie in the planes defined by the two carbon atoms and a 
hydrogen atom (Fig. 2-16a). The symmetry elements of the C3 group 
are C3, C32 , and£. 

All elements of the c. groups commute with each other; that is, 
AB = BA, where A and B are any two elements of the group. Groups 
with this property are called Abelian. 

Cnh GROUPS. A Cnh group has a mirror plane perpendicular to a C. 
axis. When n = I, the only symmetry elements are E and a, and the 

(a) 

FIG. 2-16 CH3CC/3 molecule. (a) C3 symmetry (continued on p. 32). 

1 No confusion should arise from using the symbol c. to denote sometimes a 
group and sometimes a symmetry element or symmetry ·operation. The intended 
meaning will always be apparent from the context. 
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(b) 

FIG. 2-16 CH3CC13 molecule. (b) C3v symmetry. 

group is called Cs; the CHBrCh molecule in Fig. 2-3 belongs to point 
group Cs. The trans configuration ofCHCI2CHCh, shown in Fig. 2-17, 
has C2h symmetry. The symmetry operations of C2h are C2, ah, i, and 
E. The center of symmetry is not mentioned explicitly in this point 
group symbol, but its presence is a necessary result of the combina­
tion of a C2 axis and a ah plane. Table 2-4 is the C2h multiplication 
table. 

TABLE2-4 GROUP C1h MULTIPLICATION TABLE 

E c2 ah 

E E c2 ah 

c2 c2 E ah 
ah ah E c2 

ah c2 E 
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Cnv GROUPS. A Cnv group has a Cn axis and n u. mirror planes. When 
n =I, there is only a mirror plane, and C1v = C 11, = C,. The symmetry 
elements of C2• are shown in Fig. 2-13, and molecules with this sym­
metry include H20 (Fig. 2-1) and CH2C)z (Fig. 2-18). The symmetry 
elements of C3• are shown in Fig. 2-14. Among molecules with C3• 

symmetry are CHCI3 (Fig. 2-2) and CH3CCI3 in both the staggered and 
eclipsed configuration (Figs. 2-16b and c). A Cnv group has order 2n. 
Table 2-3 is the multiplication table for C3v· The group c«>V is of special 
interest since it is the symmetry group of all linear molecules that do 
not have a mirror plane perpendicular to the molecular axis. In such 
molecules (Fig. 2-19), the molecular axis is a C«> axis since any rotation 
leaves the molecule in an indistinguishable orientation and any plane 
that includes the axis is a mirror plane. 

Sn GROUPS. The elements of an Sn group are generated by application 
of an Sn axis. An S 1 axis is identical with a uh plane, and the correspond-

(c) 

FIG. 2-16 CH3CCl3 molecule. (c) C3v symmetry. 
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FIG. 2-17 CHC/2CHC/2, C2h symmetry. 

ing group is just c. again. An S2 axis is identical with a center of inver­
sion, and the group, which possesses the elements E and i, is called C1• 

When n is an odd number the groups S" and Cnh are equivalent, and the 
Cnh notation is used. We, therefore, list separately only the S" groups 
S4,S6,S8, and so on. The S6 group is sometimes called C31 since its 
symmetry elements include both a C3 axis and a center of inversion. 
Table 2-5 is the S6 multiplication table. 

The Cn, Cnh• Cnv• and S" point groups are the only groups in which 
there is just one rotation axis. The cases we will now consider have 
two or more rotation axes. 

Dn GROUPS. A Dn group has n c2 axes perpendicular to one Cnaxis. 
The arrangements of points resulting from D 2 and D3 symmetry are 
shown in Fig. 2-20. We can use ethane, C2H6, as an example of D3 
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(a) (b) 

FIG. 2-19 Linear molecules, group C..,.,. (Compare Fig. 2-23.) 
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TABLE2-5 GROUP S6 MULTIPLICATION TABLE 

E s6 c3 c3z s6s 

E E s6 c3 i C/ s6s 

s6 s6 c3 i C/ s6s E 
c3 c3 i C/ s6s E s6 
i i C/ s6s E s6 c3 
C32 C/ s6s E s6 c3 i 
s6s s6s E s6 c3 C/ 

symmetry provided that the molecule has neither the staggered nor the 
eclipsed configuration (Fig. 2-21a). 

Dnh GROUPS. In addition to the c. axis and n c2 axes of a D. group, 
a D.h group has a mirror plane perpendicular to the c. axis. The 
eclipsed configuration of C2H6 (Fig. 2-21 b) and 1,3,5-trichlorobenzene 
have D3h symmetry. Table 2-6 is the D 3h multiplication table. The 
operations in Table 2-6 may be readily checked with the aid of Fig. 2-22. 
Note that the inverse of S 3 isS/. 

0 0 

0 

0 0 
(a) (b) 

FIG. 2-20 D. symmetry. The c. axis is normal to the paper. (a) D2, (b) 0 3• 
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(a) 

FIG. 2-21 Three point groups for C2H6. (a) D3 (continued on p. 38). 

TABLE2-6 GROUP D3h MULTIPLICATION TABLE 

E c) c32 c2 c~ c; , 
" s3 SJ' CTv (Tv CTv a, 

E E c) c32 c2 c~ c" , " s3 SJ' 2 CTv CTv CTv a, 
c) c) c32 E c; c2 c; " 

, 
s3 S/ CTv CTv (Tv a, 

c32 C32 E c) c' c; c2 
, " s3' s3 2 CTv CTv CTv a, 

c2 c2 c; c" E c) c32 SJ S/ 
, . 

2 a, CTv CTv CTv 

c; c; c; c2 c32 E c) S/ s3 
, 

" a, CTv CTv CTv 

c; c" c2 c; c) c32 E s3 SJ' " 
, 

2 a, CTv CTv CTv , . 
s3 SJ' E c) c32 c2 c; c; CTv CTv (Tv CTv a, , , . 

S/ s3 C/ E c) c~ c" c2 CTv (Tv CTv CTv a, 2 . " , 
SJ SJ' c) c32 E c; c2 c' CTv (Tv CTv CTv a, 2 

s3 SJ' 
, . 

c2 c' c" E c) C/ a, a, CTv (Tv (Tv 2 2 
SJ s3 S/ " 

, c; c2 c' c) c32 E a, CTv CTv (Tv 2 
s3s s3s s3 

, . c; c" c2 C/ E c) a, CTv CTv CTv 2 
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(b) (c) 

FIG. 2-21 Three point groups/or C2H6 . (b) Dlh• (c) Dld· 

a:c; 

Cltf\ 
s,•'V 

FIG. 2-22 Symmetry operations of Dlh. Each point is labeled with the 

symmetry operation that generates it. 
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(a) (b) 

FIG. 2-23 Linear molecules, group D .. ,.. (Compare Fig. 2-19.) 

s,•0 
•/ ... 

c; 

... 

c, 

..... 

... Ci 

... 0'~ 
/ 

0C, 

Gc; 
.... ..... .. ; 

FIG. 2-24 Symmetry operations of D311• 

c; 

39 
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FIG. 2-25 N4S4 , a molecule with D2d symmetry. 

The benzene molecule has D6h symmetry. Linear molecules with a 
mirror plane perpendicular to the molecular axis have Dooh symmetry 
(Fig. 2-23). 

Dnd GROUPS. A Dnd group is characterized by a en axis, by n e2 axes 
perpendicular to the en axis, and by n vertical mirror planes that bisect 
the angles between the e 2 axes. The symmetry operations of D3d are 
shown in Fig. 2-24, and the staggered configuration of C2 H6 (Fig. 
2-2lc) has D 3d symmetry. The N4S4 molecule (Fig. 2-25) has D2d 
symmetry. 

CUBIC POINT GROUPS. The next groups we will consider are the 
cubic point groups T, Th, Td, 0, and Oh, which, in common with the 
cube, have four intersecting e3 axes. The group T has all of the rota­
tional symmetry elements of a regular tetrahedron. Figure 2-26 shows 
a regular tetrahedron inscribed in a cube. Each of the four body 
diagonals of the cube corresponds to a e3 axis. In addition to these 
threefold axes, the group T has three e2 axes parallel to the cube edges, 
bisecting opposite edges of the tetrahedron. The group Th has a center 
of inversion, in addition to all of the elements ofT. The group Td has, 
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c; 

\ c; c; 

/ 

--+--C2 

FIG. 2-26 A regular tetrahedron inscribed in a cube. 

in addition to the four C3 axes, three S4 axes bisecting opposite edges 
of the tetrahedron. The symmetry group of tetrahedral molecules such 
as CH4 (Fig. 2-27) is Td; the group is of order 24. 

The group 0, of order 24, has all of the proper rotations of a regular 
octahedron (Fig. 2-28); these include four C3 axes, three C4 axes, and 
six C2 axes. The group Oh has a center of inversion in addition to all 

~/l 

FIG. 2-27 CH4, symmetry Td. 
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FIG. 2-28 A regular octahedron inscribed in a cube. The C3 and C4 rotation 
axes are shown. Not shown are six C 2 axes parallel to the face diagonals of the 
cube. 

of the elements of 0; Oh is of order 48 and is the symmetry group of 
octahedral molecules such as SF6 • (Fig. 2-29.) 

ICOSAHEDRAL GROUPS. Finally, we will mention the icosahedral 
groups I and /h. The elements of group I are all of the rotations of a 
regular icosahedron (or a regular dodecahedron). These include six C5 

axes, ten C3 axes, and fifteen C2 axes. The group Ih has a center of inver­
sion, in addition to all of the symmetry of group/. (See Fig. 2-30.) 

FIG 2-29 SF6 , symmetry Oh. 
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FIG. 2-30 A regular icosahedron. There are six Cs axes connecting opposite 
vertices, ten C3 axes through opposite faces, and fifteen C2 axes bisecting 
opposite edges. 

EXERCISE 2-5 Show that the order of group I is 60 by listing the total number 
of symmetry elements of each type (C5, C52,C53, etc.). 

2-14 Determination o(point groups 

The assignment of the point group of a molecule is based in great part 
on inspection. However, the following rules provide a systematic 
procedure. 

I. Is the molecule linear? If so, the point group is C"'" or Dooh· 
2. Does the molecule have the high symmetry of the cubic point 

groups? The four threefold axes should be apparent, and a careful 
search for the other symmetry elements present should distinguish 
between T, Th, T4 , 0, and Oh. The abundance of symmetry of the 
icosahedral groups, I and /h, should make these readily recognizable. 

3. Having eliminated the highest symmetry groups, we now search 
for proper rotation axes. If there are none, the group is C., C~o or C1• 

4. If there is more than one proper rotation axis, we try to select the 
one of highest order. A unique axis can be chosen except in the cases 
where there are three C2 axes. Is this unique Cn axis actually an S2n axis? 
If so, and if there is no other symmetry, the group is S2n. 
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5. If the unique Cn axis is not an S2n axis, or if there are other sym­
metry elements, we look for the presence of n C2 axes perpendicular to 
Cn. If none are found, the group is Cm Cnv• or Cnh• according to the 
presence of no mirror planes, a a. plane, and a ah plane. 

6. If there are n C2 axes perpendicular to Cm the group is Dm Dnd• or 
Dnh· It is Dnh ifthere is a ah plane; it is Dnd ifthere are n ad planes bisecting 
the angles between the C2 axes; it is Dn if there are no mirror planes. 

2-15 Liuaitation on couabinations of 
quauaetry eleuaents 

An interesting problem that arises is whether or not there exist sym­
metry groups other than those we have described. For example, is it 
possible to have a molecule that has two c6 axes, or could we have a c4 
axis perpendicular to a C 3 axis? The answer is that there are no finite 
symmetry groups other than the ones we have discussed. Although 
there is nothing to stop us from carrying out the mathematical opera­
tions of combining perpendicular C4 and C3 axes, we would find that 
the products of elements continually lead to new elements, and the 
closure property could not be satisfied without an infinite number of 
elements. 

Proofs of these statements are far beyond the scope of this book. 
However, it may be shown that the operation C4C3, where the C3 axis 
is in they direction and the c4 axis is in the z direction, is identical with a 
rotation of cos- 1(-i) about an axis from the origin through the point 
1, -1, 1/v3. The student who is adept in the algebra of vector trans­
formations may want to verify this. The angle cos- 1(-i) is not com­
mensurate with 360°, and no matter how many times this rotation is 
carried out, the original position will not be reached again. Each appli­
cation of the operator C4C3 thus generates a new point, and a molecule 
cannot have this symmetry combination without having all of the sym­
metry of a sphere. The only infinite groups allowed for nonspherical 
objects are Coov and Dooh• which apply to linear molecules. 

ExERCISE 2-6 Prepare models that illustrate some of the cubic point groups 
by drawing the patterns shown in Fig. 2-31 on stiff paper or cardboard, 
cutting them out, folding on the dotted lines, and fastening with tape. Verify 
the presence of each of the required symmetry elements in the models. What 
are the point groups when there are no markings on the faces of (a) a cube, 
(b) a regular octahedron, (c) a regular tetrahedron? 
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FIG. 2-31 Patterns for construction of models illustrating some of the cubic 
point groups. See Exercise 2-6. 



46 Introduction to Crystallography 

ExERCISE 2-7 What is the point group of each of the three isomers of 
dichlorobenzene? 

ExERCISE 2-8 What are the point groups of the linear molecules C2H2, 

C2HCI, C30 2, and of the three isomers of C2H2F2 ? 

ExERCISE 2-9 The configuration of the molecule Fe(C5H70 2) 3 is said to be 
octahedral because the oxygen atoms of the planar ace~lacetonate groups 
are situated around the Fel+ ion at the vertices of an octahedron. What is the 
point group of this molecule? 

ExERCISE 2-10 The AuCI4- ion is planar with the chlorine atoms at the 
vertices of a square. What is its point group? 

ExERCISE 2-11 The following species have tetrahedral shapes: S02F2, 

SO/-, Zn(NH3)/+, CFCI3, CF2CI2• Give the point group of each. (Ignore 
hydrogen atoms.) 

EXERCISE 2-12 Give the point group of each of the following molecules: 
(a) MoCI5, Mo is at the center of a trigonal bipyramid; (b) Mo2CI10, each 
Mo is surrounded by six Cl atoms at the vertices of an octahedron. One edge, 
defined by two Cl atoms, is shared by two octahedra. 

EXERCISE 2-13 Sulfur forms S8 molecules which have D4tJ symmetry. 
Describe the structure of this molecule. 

EXERCISE 2-14 The following species have octahedral shapes: CrCI63-, 

CrCI5Br3-, CrCI4Brl- (two isomers), CrCI3Brl- (two isomers). Give the 
point group of each of these six ions. 

EXERCISE 2-15 (a) The point group of the C032- ion is D 311• Describe the 
structure ofthis ion. (b) The point group ofNH3 is C3v. Describe the structure 
of the NH3 molecule. 

EXERCISE 2-16 Give the point group of each of the following: (a) N2 ; 

(b) anthracene; (c) SF5CI; (d) cyclopropane. 
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l'RYSTAL SYSTEMS 

AND GEOMETRY 

Our definition of a crystal in Chapter 1 stressed its period1city. We will 
subsequently consider the detailed structure of the repeating pattern in 
a crystal. However, our concern in this chapter will be the symmetry 
of the arrangement of atoms in the pattern. The determination of the 
symmetry groups compatible with a periodic structure will lead to a 
convenient classification of crystals. 

3-1 Classi/ication of unit cells 

In Chapter I we pointed out that there are an infinite number of ways of 
choosing a unit cell for a given crystal structure. Of all the possible 
choices, there may be some that offer special advantages. For example, 
calculations of distances between atoms will be easier if the unit cell has 
90° angles or if the axes are equal in length. Such considerations, there­
fore, provide a possible criterion for selecting a favorable unit cell. A 
classification based on unit cell dimensions would not be entirely 
satisfactory, and one objection is that cell edges that appear to be equal 
might become unequal if the temperature were changed, unless there 

47 



48 Introduction to Crystallography 

were some guarantee that the two directions experience the same 

thermal expansion. This effect might also cause the cell angles to deviate 

from 90°. Our classification scheme would depend upon our ability to 
detect these differences in dimensions, and it would be temperature 

dependent. 
On the other hand, if we base our classification upon symmetry we 

will not run into this difficulty. If two directions in a crystal are equi­
valent by symmetry, they necessarily will have the same thermal 

expansion coefficients and they will remain equivalent with changing 
temperature unless there is a phase transition, as manifested by a 

discontinuity in other properties as well. Thermal expansion is only 

one of many physical properties of crystals that depend upon direction; 
other examples include electrical conductivity, magnetic susceptibility, 

elasticity, and optical properties.' Whereas the mathematical descrip­

tions of these phenomena are frequently expressed in terms of 
Cartesian coordinates, their classification depends upon symmetry. 

Our descriptions of crystal structures rely heavily on symmetry. For 

example, if a structure has a plane of symmetry, it is necessary only to 
list the positions of the atoms in half of the unit cell since the other 

half is generated by the reflection operation. There are relationships 

between the coordinates of symmetry related atoms, and if the choice 

of unit cell is dictated by symmetry these relationships are especially 
simple. This will be brought out more clearly in our development of 

sets of equivalent positions. 

B-2 Restrictions imposed "" SfiUimetr, on 
unit cell dimensions 

We will, therefore, use symmetry in selecting a suitable unit cell. It will 

turn out that we will not after all have sacrificed the advantages attend­
ing a purely geometric choice; a unit cell chosen in accord with the 

symmetry elements will frequently have equal axes and 90° angles if 
such lattice vectors exist. 

We will develop the lattice geometry by first considering a crystal 
with a twofold rotation axis. We will prove that the presence of this 
symmetry element guarantees that we can choose unit cell axes so one 

1 An intermediate mathematical treatment of the anisotropic properties of 
crystals is given by J. F. Nye, Physical Properties of Crystals, Oxford Univ. Press, 
London, 1957. A stimulating discussion of optical properties may be found in 
E. A. Wood, Crystals and Light, Van Nostrand, Princeton, New Jersey, 1963. 
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of them is perpendicular to the other two. Since the choice of the first 
lattice point is arbitrary, we might as well select a point on the twofold 
axis, and we will assign coordinates 0,0,0 to this lattice point The 
direction of this twofold axis will be called they direction, and any point 
on this axis will have coordinates O,y,O. Now, let us consider two other 
lattice points x',y',z' and x",y",z". These x and z coordinates are 
referred to arbitrary axes; these axes are not necessarily lattice vectors, 
and for convenience we choose them normal to they axis. As is apparent 
from Fig. 3-1, the twofold axis through the origin will generate lattice 
points with coordinates -x',y',-z' and -x",y",-z". Since there is no 
possible way of telling one lattice point from another, a twofold axis 
must pass through x',y',z', and careful consideration of Fig. 3-1 will 
show that the operation of this twofold axis on -x",y",-z• generates a 
lattice point at 2x' + x",y", 2z' + z". 

New lattice points can be generated by taking sums or differences of 
the coordinates of lattice points, so that (x',y',z') + (x',y',z') = 

2x',2y',2z' is a lattice point; so is (x",y",z") + (2x',2y',2z') = (2x' + 

-x",y", -z" 

-x',y', -z' 

2x' + x· ,y• ,2z' + z• 

FIG. 3-1 Effect of a twofold rotation axis perpendicular to the page. Given 
points x',y',z' and x",y",z", points -x',y', -z' and -x",y", -z" are generated by 
the C2 axis through 0,0,0. The C2 axis through x',y',z' generates 2x' + 
x",y",2z' + z" from -x",y", -z". 
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X 6 ,2y' + yw,2z' + Z 6
; and, finally, SO is (2x' + X 6 ,2y' + yw,2z' + Z6

)­

(2x' + X 6 ,y6
, 2z' + Z 6

) = 0,2y',O. We have thus proved that there exist 
lattice points along they axis, and we must have 2y' = n, where n is some 
integer. That is, we choose our b axis as the vector between adjacent 
lattice points in they direction, and the coordinates of successive lattice 
points are 0,0,0; 0,1,0; 0,2,0; and so on. 

If n is an even number, y' is an integer, and the lattice point x',y',z' 
may be written x',m,z', where m is an integer. A new lattice point may 
be generated by the difference (x',m,z')- (O,m,O) = x',O,z'. 

If n is an odd number, y' is a half-integer such as 1. f, and f. In this 
case, the lattice point 2x',2y',2z' may be written as 2x',m,2z', and 
(2x',m,2z')- (O,m,O) = 2x',0,2z' is a lattice point. 

Since either x',O,z' or 2x',0,2z' is a lattice point, and since any point 
with a zero y coordinate is in the plane of Fig. 3-1 perpendicular to the 
y direction, the vector from the origin to this point is a lattice vector 
perpendicular to the b axis. We can set z' = 0, and x' is either an integer 
or a half-integer. By similar reasoning, either X 6 ,0,zw or 2x6 ,0,2zw is a 
lattice point. We have thus found two lattice vectors perpendicular to b, 
and we can call one of them a and one of them c. Therefore, as a 
consequence of the presence of a twofold rotation axis, it is possible to 
choose unit cell edges so that oc = 90° and y = 90°. This choice of axes is 
also possible if the symmetry operation is a mirror plane instead of a 
twofold axis; in this case the unique axis (usually labeled the b axis) is 
perpendicular to the mirror plane. Furthermore, point group C2h, 

which contains both a C2 axis and a perpendicular mirror plane, also 
requires the existence of two lattice vectors normal to the unique axis. 

3-3 Crystal systents 

These restrictions on lattice geometry characterize the monoclinic 
system. A crystal is said to be monoclinic if symmetry elements are 
present such that it is possible to pick a unit cell that has oc = 90° and 
y = 90°, with no other conditions on the dimensions and shape of the 
cell. The point groups that impose these, and only these, restrictions on 
the lattice vectors are C2 , c •. and C2h, and these are the monoclinic point 
groups (see Table 3-1). It is not sufficient to define the monoclinic 
system by merely stating a ¥- b ¥- c, oc = 90°, f3 ¥- 90°, y = 90°. It is the 
fact that oc = y = 90° by virtue of symmetry that characterizes the 
system as monoclinic. 

There are two point groups that impose no restrictions on the lattice 



TABLE 3-1 CRYSTALLOGRAPHIC POINT GROUPS 

Hermann-
Crysta• Schoenflies Mauguin Order of Laue 
system symbol symbol group group 

Triclinic c, I I I 
c, T 2 

Monoclinic c2 2 2 2/m 
c. m 2 
c2h 2/m 4 

Orthorhombic D2 222 4 mmm 
C2v mm2 4 
Du mmP~ 8 

Tetragonal c4 4 4 4/m 
s4 4 4 
c4h 4/m 8 
D4 422 8 4/mmm 
C4v 4mm 8 
D24 42m 8 
D4h 4/mmm 16 

Trigonal CJ 3 3 :J 
CJI :J 6 
DJ 32 6 3m 
C3v 3m 6 
D34 3m 12 

Hexagonal c6 6 6 6/m 
c3h (i 6 
c6h 6/m 12 
D6 622 12 6/mmm 
C6v 6mm 12 
D3h iim2 12 
D6h 6/mmm 24 

Cubic T 23 12 m3 
Th m3 24 
0 432 24 m3m 
Td 43m 24 
oh m3m 48 
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vectors. These are C1 and C1 and they characterize the triclinic system. 
Point groups D2 , C2v, and D2h require that there exist three mutually 

perpendicular lattice vectors. It is, therefore, possible to select a unit 
cell with ex= f3 = y = 90°. This is the orthorhombic system. 

If the point group includes one (and only one) 4 or 4 axis (in Schoen­
flies notation C4 or S4), there exist vectors so that it is possible to choose 
a= b, ex= f3 = y = 90° with c parallel to the C4 or S4 axis. This is the 
tetragonal system. 

The presence of a 6 or 6 axis (Schoenflies C6 or S3) characterizes the 
hexagonal system. If c is parallel to the sixfold axis, the hexagonal unit 
cell has a= b, ex= f3 = 90°, y = 120° (Fig. 3-2). 

The presence of one (and only one) 3 or j axis (C3 or S6) denotes the 
trigonal system. Two types of lattice occur in the trigonal system, but a 
complete description of these lattices will be delayed until Section 3-7, 
so that we may make full use of the concept of centered lattices. For the 
present we state only that in one of these trigonal lattices a primitive 
unit cell may be chosen with a= b, ex= f3 = 90°, y = 120°, whereas in 
the other trigonal lattice the primitive unit cell has a= b = c, ex= f3 = y. 
When the primitive cell has a= b, ex= f3 = 90°, y = 120°, the lattice is 
identical with the hexagonal lattice. When the primitive cell has 
a= b = c, ex= f3 = y, the lattice is called rhombohedral, and the three­
fold symmetry axis is along the cell body diagonal. 

If the point group includes four threefold axes, the system is cubic. 

FIG. 3-2 Distribution of lattice points in a hexagonal lattice. The 6 or 6 axis 
is perpendicular to the page. Nine unit cells are shown. 
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• • 
2~ t 

A a B c D 

FIG. 3-3 The limitation of symmetry in a crystal. An n-fold rotation axis 
through A generates B' from B. Ann-fold rotation through D, at distance ma 
from A, generates C' from C. B'C' = Ia = ma- 2acos2Tr/n, where/, m, and n 
are integers. The only possible values of n satisfying this equation are I, 2, 3, 4, 
and 6. 

It is possible to choose three equal axes at right angles to each other, and 
the four body diagonals of the unit cell cube will correspond to the 
threefold axes. 

3-4 Limitations on symmetry in crystals 

There are only seven crystal systems (some people count trigonal as 
part of the hexagonal system and so list only six systems), and there are 
only thirty-two crystallographic point groups. Although all point 
groups are permissible for isolated molecules, it is not possible for a 
crystal to have symmetries such as c~ or D44• Figure 3-3 shows why 
only one-, two-, three-, four-, or sixfold rotation axes or axes of rotatory 
inversion are possible in a crystal. The n-fold rotation axes, per­
pendicular to the plane of the paper, generate B' from Band C' from C, 

27T 
B'C' =AD- 2acos­

n 

But B'C' = Ia, wherelisan integer, and AD= ma, wherem is an integer. 

27T 
Ia = ma - 2a cos -

27T 
l=m- 2cos­

n 

27T m -I 
COS-=--

n 2 

n 
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The value of cos21rjn must be between -1 and+ 1, so the allowed values 
are 

27T 
cos-= -1, n=2, 277 = 180° 

n n 

27T 
n=3, 27T = 1200 COS-=-f, 

n n 

27T 
cosn =0, n=4, 

27T 
90° 

n 

27T 
n=6, 

27T 
60° cos-=t, 

n n 

27T 
cos-= 1, n= I, 

27T oo or 360° 
n n 

We, therefore, see that, although any symmetry is possible in a 
molecule, the point symmetry elements of a crystal are limited to 
one-, two-, three-, four-, and sixfold rotations and rotatory inversions 
(recall that I is a center of inversion and~ is a mirror plane). A molecule 
may have 3 symmetry, and a crystal may be formed from such molecules. 
However, the symmetry of the environment of the molecule in the 
crystal cannot be 3 since 3 is not compatible with the requirements of 
translational symmetry. There are only thirty-two combinations of 
symmetry elements possible in a crystal, and these are the thirty-two 
crystallographic point groups listed in Table 3-1. 

3-G Herm.ann-llauguin notation 

In the Hermann-Mauguin system the point groups are designated by 
combinations of the symbols for symmetry elements. Some of the 
elements of the group are, therefore, immediately apparent from the 
symbol, and a few conventions make it possible to deduce the entire 
group structure. This system is preferred by crystallographers because 
it is easily extended to include translational symmetry elements and 
because it specifies the directions of the symmetry axes. 

The Schoenflies and the Hermann-Mauguin symbols for the thirty­
two crystallographic point groups are given in Table 3-1, and many of 
the features of the Hermann-Mauguin notation will be revealed by 
comparison with the Schoenflies symbols. The following summary 
should further clarify the meanings of the sym bois: 
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l. Each component of a symbol refers to a different direction. The 
terms 2/m, 4/m, and 6/m are single components and refer to only one 
direction. In 4/mmm, for example, the 4/m (read "four over m") 
indicates that there is a mirror plane perpendicular to a fourfold 
rotation axis. 

2. The position of an m in a symbol indicates the direction of the 
normal to the mirror plane. 

3. In the orthorhombic system, the three directions are mutually 
perpendicular. If we label our axes x,y,z, the symbol mm2 indicates 
that mirror planes are perpendicular to x andy, and a twofold rotation 
axis is parallel to z. The 2 in this case is redundant since we have seen 
that two perpendicular mirror planes inevitably generate a twofold axis. 
Note that such symbols as m2m and 2mm correspond to renaming the 
axes. 

4. If in the tetragonal system the 4 or 4 axis is in the z direction, the 
second component of the symbol refers to mutually perpendicular 
x andy axes, and the third component refers to directions in the xy plane 
that bisect the angles between the x and y axes. 

5. In the trigonal and hexagonal systems, a second component in the 
symbol refers to equivalent directions (120° or 60° apart) in the plane 
normal to the 3, ~. 6, or ~ axis. 

6. A third component in the hexagonal system refers to directions 
that bisect the angles between the directions specified by the second 
components. 

7. A 3 in the second position always denotes the cubic system and 
refers to the four body diagonals of a cube. The first component of a 
cubic symbol refers to the cube axes, and a third component refers to 
the face diagonals of the cube. 

The entries called Laue groups in Table 3-1 are the eleven centro­
symmetric crystallographic point groups. If, for example, a center of 
symmetry is added to the list of elements of 422, or 4mm, or 42m, the 
result is4fmmm. The special significance of the Laue groups in crystallo­
graphy will be explained in Section 5-21. 

3-6 Bravais lattices 

In selecting a unit cell based on symmetry elements, it may turn out that 
a nonprimitive, or centered, cell is obtained. In the triclinic system no 
symmetry restrictions occur, so a primitive cell can always be chosen. 
In the other crystal systems, however, centered cells are frequently 
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encountered. In our development of the monoclinic system, based on 
Fig. 3-1, we started with a lattice point x',y',z' and proved the existence 
of a lattice point 0,2y',O, where 2y' = n. We also showed that either 
x',O,z' is a lattice point, or 2x',0,2z' is a lattice point, and the vector 
from the origin to this point is a lattice vector perpendicular to b. If both 
x' andy' are half-integers, the point t.t,O is a lattice point, and the unit 
cell is not primitive (Fig. 3-4). A primitive cell may, of course, be selected, 
but it would not be possible in this case to have b the unique axis and 
a: = y = 90°. In order to preserve the advantages of a unit cell chosen on 
the basis of symmetry, a centered cell is chosen. 

The unit cell described in this example is called C centered; the center­
ing is on the C face, or the face of the unit cell bounded by the a and b 
axes. There are lattice points atO,O,O and att,t.O. Points differing from 
these by /,m,n, where/, m, and n are integers, are also lattice points, of 
course, so that there are lattice points at 1,0,0; 0, 1,0; 0,0, 1; 1, 1,0; 
1,0, I ;0, I, I; I, 1, I; andt,t. I; to list just a few of the infinite number of 
possibilities. (It would be well at this stage' to recall the definition of a 

b~~~ 
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FIG. 3-4 C-centered monoclinic unit cell. Lattice points are at 0,0,0 and at 
t.t.o; a.=,= 90°. 
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lattice point: a lattice point can be any point in a crystal; the set of 
lattice points consists of all points identical except for translation.) 

The C-centered monoclinic unit cell is shown in Fig. 3-4. It must be 
kept in mind that this diagram shows only a few lattice points and only 
one unit cell. The lattice point at t.t,O, which is in the center of the face 
bounded by a and b, is shared by two unit cells-by the cell shown in 
Fig. 3-4 and by the cell at its left. It is always true that a point in the 
center of a face is shared by two unit cells, and this must be taken into 
account in calculating the number of lattice points per unit cell in the 
whole crystal. In Fig. 3-4 we have lattice points at!. !,0 and!,!, I, but 
since each of these is shared by two unit cells the total contribution to 
one unit cell is 2 x ! = I lattice point. Each of the eight vertices is 
shared by eight unit cells, so there is a contribution from the vertices of 
8 x t = I. Thus, our C-centered unit cell contains two lattice points. 
You should be very clear on this point. The fact that Fig. 3-4 contains ten 
lattice points and one unit cell does not mean that there are ten lattice 
points per unit cell. If we drew a second unit cell on the front of Fig. 3-4, 
so that the band c axes of the two cells were in common, we would have 
sixteen lattice points and two cells in our picture. In order to assign 
correctly the number of lattice points, we must remember that we are 
depicting only a sample of an infinite lattice, divided into identical cells, 
in which corners are shared by eight cells, edges are shared by four cells, 
and faces are shared by two cells. It should now be obvious that a unit 
cell in which all faces are centered would contain (6 x !) + (8 x t) = 4 
lattice points. 

We have discovered that a lattice that is classified on the basis of 
symmetry as monoclinic may be primitive or it may be C-centered. Are 
other distinct types of centering possible? We could have A centering, 
but this differs from C centering only in our choice of names for the 
a and c axes, so this is not a distinct lattice type. Figure 3-5 shows two 
adjacent body-centered monoclinic unit cells. However, a new choice of 
axes results in a C-centered monoclinic unit cell. When we have a 
lattice with monoclinic symmetry, we will always be able to select 
either a primitive or a C-centered cell satisfying the monoclinic condi­
tion oc = y = 90°. These are the only distinct lattice types consistent 
with monoclinic symmetry. 

EXERCISE 3-1 Why is it not possible to have a unit cell that is centered on 
both the A and C faces? 
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c 
FIG. 3-5 Two body-centered monoclinic unit cells. A C-centered cell may be 
selected with axes A and C = -c. 

ExERCISE 3-2 Show that B-centered monoclinic is not a distinct type of 
lattice. 

The considerations we have applied to the monoclinic system may be 
extended to the other crystal systems. The result is that there are just 

fourteen of these space lattices. These were first deduced by Auguste 

FIG. 3-6 Two C-centered tetragonal unit cells. A primitive tetragonal cell is 
defined by the vectors A, B, C. 
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Bravais in 1848, and they are frequently referred to as Bravais 
lattices. The fourteen Bravais lattices are listed in Table 3-2. The or­
thorhombic system includes four lattice types; besides the primitive 
and C-centered lattices, it is possible for a cell with orthorhombic 
symmetry to be either body centered (symbol I from the German 
innenzentriert) or face centered (symbol F, lattice points in the center 
of each face). The only distinct tetragonal lattices are primitive and 
body centered. The possibility of C-centered tetragonal is considered 
in Fig. 3-6. Similar analysis eliminates face-centering. However, it is 
not possible to describe a body-centered tetragonal crystal in terms of 
a primitive cell without sacrificing the geometrical advantages of the 
system, and if the arrangement of matter in a crystal is such that 
identical points form a body-centered tetragonal lattice, then the only 
logical description is in terms of these axes. 

ExERCISE 3-3 Why is it not possible to have an orthorhombic cell that is 
I, A, B, and C centered all at once? 

ExERCISE 3-4 Why is A-centered tetragonal not possible? How about 
A and B centering together? 

:1-7 Disti~tion between trigonal and 
hexagonal Sf/Steuas 

The overlap between the trigonal and hexagonal systems was mentioned 
in Section 3-3. In this section we will further consider the distinction 
between these systems, and we will in particular establish the relation­
ship between hexagonal and rhombohedral lattices. 

As we brought out in Section 3-3, if the point group symmetry ele­
ments include a 6 or () axis, the system is hexagonal, and a primitive 
unit cell with a= b, oc = f3 = 90°, y = 120° may be chosen. If the axis of 
highest symmetry of the point group is a single 3 or 'J axis, the system is 
trigonal, and there are two possible lattices. If a primitive unit cell may 
be chosen such that a= b, oc = f3 = 90°, y = 120°, the lattice is identical 
with the hexagonal case. The system is trigonal, as characterized by the 
presence of one 3 or 3 axis, but the distribution in space of lattice points 
is exactly the same as that resulting from hexagonal symmetry, and 
these are not two distinct lattice types. In both the trigonal and hexa­
gonal systems, symmetry guarantees that cells with a= b, oc = f3 = 90°, 
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FIG. 3-7 Rhombohedra/lattice. The triply primitive hexagonal cell has axes 
a,b,candlatticepointsatO,O,O; i.t.t; t,i,f. Vectors/rom 0,0,0 to i.t.t; 
-t.t.t; and -t.-1-.t define the primitive rhombohedral cell. 

y = 120° can be chosen. It may be, however, that a cell for a trigonal 
crystal selected with these restrictions on the dimensions is not primitive. 
In these cases, it is possible to choose a primitive cell satisfying a= b = c, 
or:= fJ = y. This lattice is called rhombohedral (symbol R). There are 
three equal axes inclined at equal angles with each other (Fig. 3-7). The 
trigonal threefold (or 3) axis in this case is along the body diagonal of the 

FIG. 3-8 Rhombohedral lattice projected parallel to the threefold axis. 
Numbers next to points indicate z coordinates referred to hexagonal axes. 
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cell (from point 0,0,0 to point I, I, 1). If the lattice is rhombohedral, 
it is still possible to choose a cell with hexagonal dimensions, but the 
cell will have 3 times the volume of the primitive cell. The relationship 
of the primitive rhombohedral cell to the triply primitive "hexagonal" 
cell is shown in Figs. 3-7 and 3-8. There are lattice points at 0,0,0; 
f,t,t; and t,f,f of the hexagonal cell. The three equal axes of the 
rhombohedral cell are given by vectors from the origin to the points 
t.t.t; -t.t.t; -t,-t,t. Figure 3-8 demonstrates a convenient method of 
depicting a complicated array of points; a projection of the arrange­
ment is drawn, and the third coordinate of each point is written next 
to the point. Diagrams of this type will be used frequently in the follow­
ing chapters. 

ExERCISE 3-5 A rhombohedral unit cell has a= 5.00 A, ex= 75.0°. 

(a) Calculate the volume of the rhombohedral cell. 

(b) Calculate the dimensions of the triply primitive hexagonal cell that 
may be chosen. 

(c) Calculate the volume of the hexagonal cell from its dimensions and 
calculate the ratio of this volume to the volume obtained in (a). 

ExERCISE 3-6 A rhombohedral unit cell has a = 6.00 A, ex = 60.0°. Show that 
a face-centered cubic lattice may be chosen and calculate the dimension of 
the cubic cell. What is the criterion for deciding whether the crystal should be 
classified as cubic or as rhombohedral? 

a-s Crystal planes and indices 

In Chapter 1 we mentioned that crystals frequently have polyhedral 
shapes bounded by flat faces and that observations of these faces played 
a crucial role in the historical development of crystallography. Although 
we preferred to define crystals on the basis of their internal structure, we 
must recognize that face development is a consequence of the periodicity 
of this internal arrangement of molecules or atoms. A study of the 
geometry of crystal planes will help us to understand the origin of 
crystal faces, but a reason that is more important for our purposes is 
that the description of these planes is essential to our interpretation of 
X-ray diffraction phenomena in Chapter 5. 

A two-dimensional distribution of lattice points is shown in Fig. 3-9. 
We choose any two lattice points of this array, say A and B, and pass a 
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plane through these points. (In three dimensions, three points not on a 
straight line are required to define a plane.) We now pass planes parallel 
to AB through every lattice point. We have generated a set of parallel 
equidistant planes, and these planes are all exactly alike. If we chose a 
lattice point at the center of a carbon atom in some organic crystal 
structure, then every lattice point would be at an identical carbon atom. 
The planes in Fig. 3-9 would then correspond to planes of identical 
carbon atoms; and these planes thus represent the stacking of layers of 
molecules. 

There are an infinite number of such sets of parallel planes. The only 
restriction is that each plane must pass through at least two points in 
two dimensions or three noncollinear points in three dimensions. Each 
plane represents a layer of molecules, and each set of parallel planes 
represents a stacking of these layers. The faces of a crystal correspond to 
those planes that most favor the deposition of molecules. That is, the 
growing crystal adds molecules more easily on some planes than on 
others, and the corresponding crystal faces experience greater develop­
ment. 

FIG. 3-9 Two-dimensional distribution of lattice points. Pass a plane through 
points A and B. Pass planes parallel to AB through every lattice point. This 
generates a set of equivalent, parallel equidistant planes. 
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FIG. 3-10 Planes with intercepts (t,t. oo); indices (3 4 0). 

The orientation of a set of parallel planes of a crystal may be specified 
by means of the intercepts of one of them on the three axes of the co­
ordinate system, and it is the natural coordinate system of the crystal, 
with axes along the unit cell edges, that is used in our discussion. It is 
customary and convenient, however, to specify the orientations of 
crystal planes by means of their indices, which are proportional to the 
reciprocals of the intercepts. Figure 3-10 shows a plane that intercepts 
the a axis at t. the b axis at t. and the c axis at oo (this intercept on c 
merely means that the plane is parallel to c, so that c and the plane never 
intersect). The reciprocals of these intercepts are f, 2, and 0, and these 
three numbers can be used to characterize a plane. Now a plane with 
intercepts-!.!. oo and indices 3,4,0 would be parallel with this plane, 
so if the orientation is all that interests us we can multiply the indices 
by a common factor so as to obtain integers for the indices. The plane 
shown in Fig. 3-10, therefore, has indices (3,4,0). As another example, 
a plane with intercepts -+.t. I has indices proportional to f,f, l, and if 
.we multiply each of these by 6 to get whole numbers, the indices are 
(21, 10,6). 
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3-9 Law of rational indices 

For some planes we might not be able to obtain whole numbers for the 
indices. For example, if the intercepts are 1/v'i:t. I, the indices will be 
proportional to v'2,f, I, and there is no single factor that will convert 
all three of these numbers into integers. However, as a result of the 
periodicity of crystals, the only planes that are important in crystals 
are those for which the indices are rational numbers (ratios of integers). 
This is the law of rational indices, first deduced by Hauy in 1784 from 
studies of crystal faces. Crystal faces can thus be described by means of 
three indices that are whole numbers, and these, in fact, are always small 
whole numbers for naturally growing crystals. The planes important to 
our treatment of X-ray diffraction in Chapter 5 also have indices that 
are integers, because planes with irrational intercepts do not constitute 
sets of identical, parallel, equidistant planes. 

The three integers describing the orientation of a plane are called 
Miller indices, and the symbols h, k, and I are used for them. 

EXERCISE 3-7 Write the Miller indices of the planes with intercepts (a) 
t.t. 1; (b) oo, 1 ,J; (c) f, oo,!; (d) !.!, oo; (e) !.t. oo. 

We now show that planes with rational intercepts pass through lattice 
points. We will restrict ourselves to planes the indices of which are 
relatively prime numbers; that is, the indices have no common factors. 
We will, thus, concentrate at present on planes such as (100) and (123) 
rather than (200) and (369). This is a logical restriction in classical 
crystallography, since only the orientation of a crystal face has signifi­
cance, and not how far it is from some arbitrarily defined origin. In 
Section 5-7, we will find it convenient to remove this restriction. 

Without loss of generality, the plane (hkl) can be described by the 
equation 

hx+ky+ lz =I (3-1) 

This equation has solutions where x,y,z are integers, provided that 
h,k,l have no common factor. For example, the equation 

21x + lOy+ 6z = I 
is satisfied by such points as 1,-2,0 or 3,-5,-2; that is, these points lie 
on the plane (21 10 6). However, points for which the coordinates are 
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(a) (b) 

FIG. 3-11 (a) Sets o/(310) planes; (b) sets o/(212) planes. 

integers are lattice points. Therefore, every plane (hkl) with relatively 
prime indices passes through a set of lattice points. Since all lattice 
points are identical, planes identical in all respects, including orienta­
tion, must pass through all lattice points. Figure 3-11 shows some 
members of the sets of(310) and (212) planes. 

ExERCISE 3-8 Sketch, in cubic unit cells, planes with the following indices: 
(a) (100); (b) (120); (c) (111); (d) (11 I) (Note: I is a compact way of writing 
-1.) 

a-10 lnterplanar spacings 

In Chapter 5 we will need to know how the interplanar spacing d for a 
set of parallel planes is related to the Miller indices and the unit cell 
dimensions. This spacing is the perpendicular distance between 
adjacent planes of the set. When the unit cell axes are mutually per­
pendicular, the interplanar spacing is easily derived by means of the 
formula from geometry for the distance from a point to a plane. The 
result 

! - ('!:_ ~ !:)1/2 
d- a2 + b2 + c2 (3-2) 

is applicable to orthorhombic, tetragonal, and cubic unit cells. When the 
axes are not mutually perpendicular, the derivation is best accomplished 
by means of vector algebra. The following formula applies to the most 
general case: 
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d = V[h2b2c2 sin2 oc + k 2a 2c2 sin2 f3 + /2a 2b2 sin2 y 

+ 2h/ab2c(cosoccosy- cosf3) + 2hkabc2(cosoccosf3- cosy) 

+ 2kla2bc(cos f3cos y- cos oc}r 112 (3-3) 

where Vis the unit cell volume given by Eq. (1-1). You should verify 
that Eq. (3-3) reduces to Eq. (3-2) when the angles are all 90°. 

ExERCISE 3-9 Use Eqs. (3-3) and (1-1) to derive formulas for 1/d for (a) a 
monoclinic crystal; (b) a hexagonal crystal; (c) a rhombohedral crystal. 

ExERCISE 3-10 A monoclinic crystal has a= 5.00 A, b = 6.00 A, c = 8.00 A, 
{3 = 115.0°. Calculated for the (101) planes by (a) drawing a diagram with 
the planes shown and determining dfrom the geometry of the figure; (b) apply­
ing Eq. (3-3). 

ExERCISE 3-11 Repeat Exercise 3-10 for the (lOT) planes. 



t;hapter 4 

SPA.f'E GROUPS A.ND 

EQUIVALENT POSITIONS 

In the preceding chapters we developed the concepts and terminology 
of symmetry as applied to molecules, and we saw how symmetry 
considerations lead to a logical classification scheme for crystal lattices. 
A complete symmetry classification of crystals requires that we con­
sider translations as well as operations of point symmetry. 

4-1 Translational BflmutetrtJ 

Our definition in Chapter 2 referred to a symmetry operation as some 
movement after which no change could be detected in an object. The 
symmetry operations included in our previous discussions have had the 
common property that at least one point of the object was not moved 
by the operation. In the groups consisting of combinations of such 
elements there is also at least one point that remains fixed, and these 
groups are, therefore, called point groups. This was discussed in 
Chapter 2, where we reached the conclusion that the point groups are 
the only combinations of symmetry elements applicable to finite 
molecules. Other symmetry elements would lead to infinite molecules. 
A crystal, however, may be regarded as an infinite molecule; at least we 
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have combinations of atoms that are repeated over and over throughout 
three-dimensional space. The lattice translations themselves satisfy 
our definition of symmetry operations, since the crystal is indistin­
guishable after such translations. The symmetry groups appropriate 
to crystals, therefore, contain infinite numbers of elements, and the 
lattice translations are included among these. There are two other types 
of symmetry element that result from combining the motions of rota­
tions or reflections with the translatory symmetry of the lattice. 

The operation that characterizes a screw axis, for which the symbol is 
nP, is a rotation of21r/n radians (or 360/n degrees) followed by a transla­
tion of pfn in the direction of the axis. Again we emphasize that an 
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FIG. 4-1 Screw axes. (a) 21 axis parallel to b; (b) 31 axis parallel to c; 
(c) 32 axis parallel to c. 
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equivalent point is not reached after either the rotation or translation 
separately, but both motions are part of the total operation. For 
example, a 21 axis involves rotation by 180° followed by translation by 
one half a unit cell parallel to the axis. For a 31 axis the rotation is 120° 
and the translation is one third of a unit cell, whereas a 32 axis implies 
a rotation of 120° and a translation of two thirds. These cases are 
illustrated in Fig. 4-1, where the coordinates of equivalent points are 
shown. In a system referred to hexagonal axes, a 31 axis converts the 
point x,y,z to j,x- y,z + t. Application of 31 to j,x- y,z + t yields 
y- x,i,z + j, and one more application gives x,y,z +I, which is just 
one unit cell away from the original point. It should also be apparent 
from this illustration that the difference between a 31 and 32 axis is 
essentially the difference between a right-handed and a left-handed 
screw. The other possible screw axes are 4., 42, 43, 6., 62, 63, 64, and 65• 

4·8 6lide planes 

The combination of the motions of reflection and translation gives a 
glide plane. The operation consists of reflection in a plane followed by 
translation. If the glide is parallel to the a axis, the symbol for the glide 
plane is simply a and the operation is reflection in the plane and 
translation by a/2. For the corresponding cases of glides parallel to 
b or c, the respective symbols are b and c and these are the three types 
of axial glide plane. A diagonal glide, denoted by the letter n, involves 
translations of (a+ b)/2, (b + c)/2, or (c + a)/2; that is, the glide direc­
tion is parallel to a face diagonal. In the tetragonal, rhombohedral, and 
cubic systems it is possible to have (a + b + c)/2 for the direction of a 
diagonal glide. Finally, a diamond glide (symbol d) has translations of 
(a± b)/4, (b ± c)/4, or (c ± a)/4, or for tetragonal and cubic 
(a± b ± c)/4. 

4-4 ~" groups 

A group whose elements include both the point symmetry elements 
and the translations of a crystal is called a space group. Our 
study of the point symmetry elements alone led to the important 
result that there are only thirty-two point groups compatible with 
lattice translations. To determine the complete list of space groups we 
should first combine each of the thirty-two point groups with each of 
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the Bravais lattice types. Thus, point group 2/m belongs to the mono­
clinic system, and the two monoclinic lattices are P and C, so we can 
expect P2/m and C2/m as space groups. Our space group symbol will 
always consist of a capital letter denoting the centering followed by a 
generalization of our Hermann-Mauguin point group symbol to allow 
for glide planes and screw axes. In obtaining the space group symbols 
in this way, we must remember to include separately such cases as 
Cmm2, where the twofold axis is perpendicular to the centered face, 
and Amm2, where the twofold axis is one of the edges of the centered 
face, These combinations of point groups with Bravais lattices will give 
us a total of seventy-two space groups. 

We next have to consider the possibility of replacing each of the 
rotations and reflections by the corresponding screw axes and glide 
planes. In our example with point group 2/m, this gives space groups 
P2 1/m, P2fc, P2 1fc, and C2fc. In this process we must carefully delete 
duplications. For example, P2fa is the same as P2fc, except for the 
naming of the a and c axes. It is less obvious that C2 1/c differs from 
C2/c only by a shift of origin, but these are not two different space 
groups. Proceeding in this way, we eventually arrive at a list of230 space 
groups, and these are listed in Appendix I. 

4-6 Relationship between space groups, 
point groups, and physical properties 

The list of space groups in Appendix I has been divided into seven 
crystal systems, and each of these has been further divided into point 
groups. Thus, associated with the tetragonal point group 4/m we have 
the six space groups P4fm, P42/m, P4/n, P42/n, 14/m, and 141/a. 
Although a structure described by space group P4fm is certainly quite 
different from a structure described by space group P42/m, both crystals 
belong to point group 4/m, and the macroscopic physical properties of 
the two crystals will obey the same symmetry conditions. If a physical 
property (for example, electrical conductivity) is measured along the 
direction [uvw], the property will have the same magnitude along any 
of the directions [vuw], [uvw], and [vuw], and in the reverse of these 
directions. Certain properties may have considerably more symmetry 
than this; the electrical conductivity of a tetragonal crystal, for example, 
will have all the symmetry of an ellipsoid of revolution. 1 However, 

1 See J. F. Nye, Physical Properties of Crystals, Oxford Univ. Press, London, 
1957, for a treatment of the symmetry of these properties. 
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FIG. 4-2 Arrangement of points in space group P42/m. (a) a Axis pointing 
out from page; origin at/ower left. (b) b Axis pointing out from page, a axis to 
left; origin at/ower right. 

all physical properties will have at least this much symmetry, and all 
crystals belonging to point group 4/m have the same relationships 
between equivalent directions. Figure 4-2 shows a hypothetical 
"tructure in space group P42/m. An atom has coordinates 0.1, 0.2, 0.3; 
symmetry operations generate the equivalent points 0.1, 0.2, 0. 7; 
0.9,0.8,0.3; 0.9,0.8,0.7; 0.8,0.1,0.8; 0.8,0.1,0.2; 0.2,0.9,0.8; 
0.2,0.9,0.2. (These coordinates will be derived in Section 4-6.) The 
arrangement of atoms is the same whether viewed along the a axis or 
b axis. That is, Fig. 4-2a is identical with Fig. 4-2b, except for a transla­
tion of tc (remember that these are periodic structures, so additional 
points occur in adjacent unit cells). Since the structure looks the same 
whether viewed along a or b, any physical property will have the same 
value in these two directions, as long as the physical measurement is not 
capable of detecting the shift of a few angstrom units corresponding to 
tc. 

The point group of a crystal may always be obtained from the space 
group symbol by replacing each screw axis nP by the proper rotation 
axis n and each glide plane by a mirror plane m. 
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4-6 Equivalent positions 

We have frequently applied the symmetry operations of a group to 
generate a set of points equivalent to a given point. We now consider a 
few examples of this process in the case of space groups. 

We will use space group P42/m as our first illustration of the principles 
of deriving sets of equivalent positions. Figure 4-3a shows the equivalent 
points generated by a fourfold rotation axis in the c direction; a counter­
clockwise rotation of90° generates a point with coordinates ji,x,z from 
a point with coordinates x,y,z. If, for example, our initial point had 
coordinates 0.1,0.2,0.3, the generated point would be at -0.2,0.1,0.3 
(which may also be written 0.8,0.1,0.3 because of the periodicity ofthe 
arrangement). Application of the symmetry operator 4 to point x,y,z, 
thus gives a point whose x coordinate is -y, whose y coordinate is x, 
and whose z coordinate is z. When 4 is applied to ji,x,z the result is 
.i,ji,z, and still another application gives y,.i,z. One more application 
would give x,y,z again, so there are just four points related by the 
operation. The operator required in P42/m is 42 rather than 4. The 
difference is simply that a translation of tc must be included in each 
operation, so the equivalent points generated are those in Fig. 4-3b: 
x,y,z; ji,x,t + z; .i,ji,z; y,x,t + z. Space group P42/m also includes a 
reflection perpendicular to the 42 axis. For each point x,y,z this 
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FIG. 4-3 Equivalent points generated by symmetry operations (a) 4, (b) 42• 
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reflection gives a point x,y,i, so in addition to the four points generated 
by 42 we get four more points by changing the sign of z. Noting that 
-<t + z) = -t- z is equivalent to t- z, we have x,y,i; y,x,t- z; 
i,y,i; y,x,t- z. These eight points constitute the general positions 
for space group P42/m, and Fig. 4-2 illustrates these positions for the 
case where x = 0.1, y = 0.2, z = 0.3; the set of equivalent points within 
the single unit cell consists of 0.1,0.2,0.3; 0.8,0.1,0.8; 0.9,0.8,0.3; 
0.2,0.9,0.8; 0.1,0.2,0.7; 0.8,0.1,0.2; 0.9,0.8,0.7; 0.2,0.9,0.2. 

4-7 Special positions 

Suppose we have a point that is on one of the symmetry elements of 
the space group, such as x,y,O, which lies on the reflection plane of 
P42/m. The equivalent points when z is 0 are x,y,O; y,x,t; x,y,O; 
y,x,t; x,y,O;y,x,t; i,y,O;y,x,t. The last four points listed are identical 
with the first four, so there are only four distinct points in this case. 
When the number of equivalent points in a set is reduced in this way 
because the points lie on a symmetry element, the positions are called 
special positions. A complete list of all general and special positions for 
space group P42/m is given in Table 4-1. The first column of this table 
gives the number or multiplicity of the positions, and the second column 
gives a notation suggested by Ralph W. G. Wyckoff where the positions 

TABLE 4-1 EQUIVALENT POSITIONS OF SPACE GROUP P42/m 

No. of Wyckoff Point 
positions notation symmetry Positions 

8 k x,y,z; ji,x,! + z; i,ji,z; y,i,! + z; 
x,y,z; ji,x,!- z; i,ji,z; y,i,!- z 

4 j m x,y,O;ji,x,!;i,ji,O;y,i,! 
4 i 2 O,!,z; !,0,! + z; O,!,z; !,O,!- z 
4 h 2 !.!,z; !.!.! + z; !.!,z; !.!.!- z 
4 g 2 O,O,z; 0,0,! + z; O,O,z; 0,0,!- z 
2 f 4 !.!.t; !.!.t 
2 e 4 O,O,t; O,O,t 
2 d 2/m O,!.t; t,O,O 
2 c 2/m 0,!,0; t,O,t 
2 b 2/m !.!,0; t.t.t 
2 a 2/m 0,0,0; O,O,t 
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are labeled consecutively with letters beginning with a for the highest 
symmetry. If we have atoms occupying positions (2/) of space group 
P42fm, this means that there are two equivalent atoms, at t.t.t and 
t.t.!, and the symmetry at these atoms is 4. 

4-S Sptwe group tables in International 
Tables for X -rafl f'r,stallograplafl 

Tables such as Table 4-1 have been derived for all of the space groups 
and are given in Volume 1 of the International Tables for X-ray 
Crystallography.2 The practicing crystallographer, therefore, does not 
always have to derive these tables, although he should be well acquainted 
with the principles involved in their derivation. 
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FIG. 4-4 Structure of PdS projected onto (001). The space group is P42/m. 

2 International Tables for X-Ray Crystallography, Vol. 1, Kynoch Press, 
Birmingham, England, 1952. These tables include diagrams, for all except the cubic 
space groups, which show the locations and orientations of the symmetry elements 
and the relationships between equivalent positions. 
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4·9 Examples of tlae use of space tJroup 
tables 

The use of the space group tables may be clarified by discussions of 
some actual structures. Palladous sulfide, PdS, has a tetragonal structure 
with a = 6.429 A and c = 6.608 A. The space group is P42/m, and there 
are eight palladium atoms and eight sulfur atoms per unit cell. The 
sulfur atoms occupy the general positions (8k) with x = 0.19, y = 0.32, 
and z = 0.23. There are three crystallographically different palladium 
atoms: 

2 Pd(l) in 2e 
2 Pd(2) in 2c 
4 Pd(3) in 4j with x = 0.48, y = 0.25 

This information completely describes the structure, and with the aid 
of Table 4-1 the following positions were derived and used in construct­
ing Fig. 4-4: 

8 Sat 0.19, 0.32, 0.23; 
0.81, 0.68, 0.23; 
0.19, 0.32, 0.77; 
0.81, 0.68, 0.77; 

2 Pd(l) at 0, 0, !; 
2 Pd(2) at 0, t. 0; 

0.68, 0.19, 0. 73 
0.32, 0.81, 0.73 
0.68, 0.19, 0.27 
0.32, 0.81, 0.27 

O,O,i 
t,O,t 

4 Pd(3) at 0.48, 0.25, 0; 
0.52, 0.75, 0; 

0.75, 0.48, t 
0.25, 0.52, t 

Many interesting features of the structure can be obtained from the 
diagram. For example, each palladium atom is at the center of a dis­
torted square of sulfur atoms, and each sulfur atom is surrounded by a 
distorted tetrahedron of palladium atoms. 

EXERCISE 4-1 Calculate the distances from each type of palladium atom to 
each of its four sulfur neighbors, and from a sulfur atom to each of its four 
palladium neighbors, in the PdS structure. 

Our second example will be the structure of HgBr2, which has the 
orthorhombic space group Bm2 1b. Note that this symbol does not 
appear in Appendix I, but it is equivalent to Cmc21 on renaming the 
axes. In Bm21b, them stands for a mirror plane normal to a, and this 
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operation converts a point xyz into .iyz. The 21 is a screw axis parallel 
to b, and the point generated is x,t + y,z. The b is a glide plane normal 
to c with a glide component along b, and this produces a point x, t + y,i. 
The lattice in this example is B centered, which means that for point 
x,y,z there is an equivalent point t + x,y,t + z. The complete list of 
positions is given in Table 4-2. The general positions are eightfold, but 
only four points have been listed. The other four are implied by the 
heading (0,0,0; t,O,t) +, which means that the general positions 
include the points listed added to 0,0,0, plus the points listed added to 
t.o.t. 

The unit cell dimensions of HgBr2 are a= 4.624 A, b = 12.445 A, 
c = 6.798 A, and there are four Hg atoms and eight Br atoms per unit 
cell. The Hg atoms, therefore, must lie on mirror planes, and they 
occupy the special positions (4a) withy= 0.000, z = 0.334. Rather than 
being in general positions, the eight Br atoms occupy two sets of (4a) 
positions: Br(l) has y = 0.132, z = 0.056, and Br(2) has y = 0.368, 
z = 0.389. The structure is shown in Fig. 4-5. 

EXERCISE 4-2 Describe the surroundings of a mercury atom in the HgBr2 

structure. Calculate the distances from a mercury atom to the two bromine 
atoms nearest to it, and calculate the Br-Hg-Br angle formed by these 
atoms. 

EXERCISE 4-3 Derive the general positions for space group Pmc21• Obtain 
the special positions by considering the coordinates of points lying on the 
mirror plane. 

As our next example, we compare space groups P321 and P3 121. 
In the trigonal system the threefold axis is along c. The twofold axes in 
these cases are parallel with the a and b axes of the hexagonal cell. The 
1 in each of these symbols serves to distinguish these space groups from 
P312 and P3 112, where the twofold axes are normal to a and b. The 

TABLE 4-2 EQUIVALENT POSffiONS OF SPACE GROUP Bm2tb 

No. of Wyckoff Point Positions 
positions notation symmetry (0,0,0; t,O,t) + 

8 b x,y,z; .i,y,z; .i,t + y,z; x,t + y,i 
4 a m O,y,z; O,t + y, i 
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FIG. 4-S Structure of HgBr2 projected onto (100). The space group is Bm21b. 
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FIG. 4-6 Equivalent points in (a) P321, (b) P312I. 
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TABLE4-3 EQUIVALENT POSITIONS OF SPACE GROUP P3 121 

No. of Wyckoff Point 
positions notation symmetry Positions 

6 c x,y,z; y,x,t- z; y,x- y,t + z; 
x,y -x,t- z;y- x,x,t + z; 
x- y,y,z, 

3 b 2 x,O,t; O,x,i; x,x,t 
3 a 2 x,O,O; O,x,t; x,x,t 

derivation of the equivalent positions is straightforward. The threefold 
axis applied to x,y,z generates a point with hexagonal coordinates 
y,x- y,z, and if the axis is 31 instead of 3 the equivalent point is 
y,x- y,-! + z. The twofold axis along a converts x,y,z into x- y,y,z. 
These points are shown in Fig. 4-6. 

The complete set of equivalent points for P3 121 is given in Table 4-3. 
(These differ from the set given in the International Tables for X-ray 
Crystallography by a rotation of 60°.) 

,-----------~ Si r-~~~------., 

G 0.454 

0.879 8 
Gt 

0 

FIG. 4-7 Structure of a.-quartz. The space group is P3121. 
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The Si02 (quartz) structure in Fig. 4-7 provides an example of this 
space group. The unit cell has dimensions a= 4.913 A, c = 5.405 A, and 
contains three Si02 • The Si atoms occupy positions (3a) with x = 0.465; 
the 0 atoms occupy the general positions (6c) with x = 0.272, y = 0.420, 
z = 0.454. Each silicon atom is surrounded by a nearly regular tetra­
hedron of oxygen atoms: the neighbors of the Si at 0.535,0.535, tare 
the oxygen atoms at 0.272, 0.420, 0.454; 0.420, 0.272, 0.879; 0.852, 
0.580,0.546; and 0.580,0.852,0.787. 

EXERCISE 4-4 Derive the general positions for P312. Also obtain the special 
positions for points along the threefold axis that passes through the origin. 
Are there any threefold axes in this space group that do not pass through the 
origin? 

ExERCISE 4-5 Calculate the distance from a silicon atom to each of its four 
oxygen neighbors in the ex-quartz structure. 

4-10 Equi'Valent positions and the claoice of 
origin 

The general positions of the orthorhombic space group Bmab ( Cmca 
with the axes renamed) may be easily derived. 

(0,0,0;!,0,·!) + 
x,y,z; 
!+x,y,z; 
x,!+y,z; 
!+ x,!- y,z; 

i,y,z 
!-x,y,z 
x,!+y,z 
!-x,!- y,z 

The point group associated with this space group is mmm, which is 
centrosymmetric; that is, a center of symmetry is one of its symmetry 
elements. However, these equivalent positions do not include i,y,z, 
which is characteristic of a center of symmetry, and a centrosymmetric 
point group always implies a centrosymmetric space group. A structure 
based on space group Bmab is, indeed, centrosymmetric, but the center 
of symmetry is not at the origin 0, 0, 0, which was defined by the inter­
section of them, a, and b planes. The point!,!,O is a center of symmetry 
in this case, and, if we choose this point as our origin, our set of positions 
will include i,y,z. There are advantages in having the origin at a center 
of symmetry, one of which will become apparent when we discuss X-ray 
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diffraction. We, therefore, shift the origin by subtracting t.t,O from 
each of the above points. We then have 

(0,0,0; t,O,·i) + 
i+x,i+y,z; i-x,i+y,z 
i+x,i-y,z; i-x,i-y,z 
i + x,t + y,i; i- x,t + y,i 
t +x,t- y,i; t- x,t- y,i 

Wenowletx' =i +x,y' =i + y,z' =z,orx=x' -i,y=y' -i,z=z', 
to obtain 

x',y',z'; 
t +x',t- y',z'; 
x',t+y',i' 
t + x',y',i'; 

t-x',y',z' 
.i',t- y',z' 
t-x',t+ y',i' 
.i',j',Z' 

and when we drop the primes we have the list given in Table 4-4. 
Solid chlorine at -160°C has a structure based on this space group. 

The unit cell dimensions are a = 6.24 A, b = 8.26 A, c = 4.48 A, and 
there are eight atoms in the positions (Sf) withy= 0.100, z = 0.370. 
The structure is shown in Fig. 4-8. The atoms are joined in diatomic 
molecules; for example, the atom at t,0.40,0.87 is bonded to the atom 
at t,0.60,0.63. 

TABLE4-4 EQUIVALENT POSffiONS OF SPACE GROUP B1rUlb. 
ORIGIN AT CENTER (f) 

No. of Wyckoff Point 
positions notation symmetry Positions 

(0,0,0; t,O,t) + 
16 g x,y,z; t- x,y,z; t + x,t- y,z; 

x,t- y,z; x,t + y,z; t- x,t + y,i; 
t + x,ji,z; x,ji,z 

8 I m !-,y,z; i.t- y,z; !-,t + y,i; i,ji,i 
8 e 2 0,!-,z; t.t,z; O,i,z; t.i,z 
8 d 2 x,O,!-; t- x,O,!-; x,t,i; t- x,t,i 
8 c I 0,0,0; t,O,O; t.t,O; O,t,O 
4 b 2/m !-,O,i; i.t.i 
4 a 2/m !-,0,!-; i.t.t 
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FIG. 4-8 Structure ofC/2 at -160°C. The space group is Bmab. 

EXERCISE 4-6 Calculate the bond length in the Cl2 molecule at -l60°C. 
Also, calculate the distance from a chlorine atom to some of the chlorine 
atoms in adjacent molecules. 

ExERCISE 4-7 Tridymite, the high-temperature form of Si02, is hexagonal 
with a= 5.03, c = 8.22 A. The space group is P63fmmc, and there are four 
Si02 units per unit cell. The Si atoms occupy the positions t, t. 0.44; t. t. 0.56; 
t.t,0.94; t.t,0.06. Two oxygen atoms, 0(1), are in the positions t.t.t; 
t.t.!. The other six oxygens 0(2) are in the positions t,O,O; O,t,O; t.t,O; 
t.o.t; o,t.t; t.t.t. 

(a) Draw a diagram of this structure projected onto the (001) plane. Show 
all the atoms in at least one unit cell. Label each atom with the atomic type 
[Si, 0(1) or 0(2)] and with the z coordinate. 

(b) From your diagram deduce the point symmetry at Si, at 0 (I) and 
at 0 (2). 

(c) Calculate the distance from Si to each of the two types of oxygen atom 
to which it is bonded. 

ExERCISE 4-8 Derive the general positions corresponding to the space group 
symbols C2/c and C2.fc and show that these refer to the same space group, 
differing only in the choice of origin. 





Chapter lJ 

X · R 1\. Y D I F F R 1\. U T I 0 N 

We are now ready to study the diffraction of X rays by crystals. In this 
chapter we will discuss the determination of unit cell geometry, which 
involves using X rays to obtain the unit cell dimensions, the lattice type, 
the crystal system, and the possible space groups. We will find it 
necessary to know how the intensities of the diffracted X-ray beams 
depend upon the locations of the atoms within a unit cell, and this will 
lead us into a treatment of Fourier series and structure factors. Methods 
for obtaining the atomic positions from measured values of the 
intensities will be treated in Chapter 6. 

S-1 Periodicity and structural in(ortnation 

A simple analogy may illustrate why crystallographic studies are so 
powerful in determining molecular structure. We first consider several 
identical molecules with random orientations. We suppose that we 
have available some instrument that is capable of supplying structural 
information. For example, our experimental method may involve 
interaction of the molecules with electromagnetic radiation, and the 
pattern of scattered radiation provides the clues from which we must 
determine the structure. Since a single interaction of a photon with a 

8S 
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single molecule cannot provide us with sufficient data to deduce the 
structure, we must repeat the process many times with many molecules. 
We will finally obtain a description or picture of the molecular structure, 
but our picture will be averaged over all of the orientations of the mole­
cules and it will not resemble a snapshot of a single molecule. Such a 
picture might be adequate for deducing the structure of a simple 
molecule, but if the molecule is at all complex the interpretation may be 
very difficult and uncertain. 

We now carry out the same experiment on a crystalline arrangement 
of molecules. In this case the superposition of the pictures of many 
molecules looks like a single molecule, and even if the molecule is com­
plex we will know its structure unambiguously. 

(a) 

FIG. 5-l (a) Light passes through clear glass. None scattered to observer. 
(b) A scratch on the glass scatters light to observer. (c) Radiation scattered by 
two scratches experiences interference. (d) A diffraction grating. Scattered 
radiation observed only at certain angles. 
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1--a----l --·-- ..----

FIG. 5-2 Scattering of light by a diffraction grating with repeat distance a. 

Our actual experimental method cannot, of course, consist of photo­
graphing individual molecules, but the point of this analogy is that 
information is lost when the molecules have random orientations, 
whereas a crystalline arrangement can provide sufficient information 
for deducing the structure. 

G-2 The dilfraction grating 

Diffraction effects with visible light were first observed more than 300 
years ago, and the diffraction grating was invented by Fraunhofer in 
1820. The geometric principles are demonstrated in Fig. 5-l. A beam 
of light passes through the clear sheet of glass in Fig. 5-la. In Fig. 5-1 b 
there is a scratch on the glass which scatters light; the observer sees a 
scratch. The two parallel scratches in Fig. 5-lc both scatter light, but 
interference can occur between the two scattered rays, and the intensity 
will depend upon the angle between the incident ray and the line of 
observation. Each of the scratches on the slide in Fig. 5-ld will scatter 
light, but the mutual interference of these scattered rays makes the 
observed intensity practically zero except near certain angles. The 
derivation of the angles at which the scattered intensity is maximum is 
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based on Fig. 5-2. The incident beam makes angle ~Xo with the diffraction 
grating. The incident ray CE travels farther than AB before reaching 
the grating, and the scattered ray BG travels farther than EH after 
passing the grating. The difference in path lengths of the beams C DEH 
and ABFG is DE- BF, and this difference must be equal to a whole 
number of wavelengths if the high intensity characteristic of con­
structive interference is to be observed at angle IX. Therefore, DE- BF = 

n.\, where,\ is the wavelength of the light and n is an integer (n can be any 
positive or negative integer, -2,-I,I,2, ... ). By simple geometry 
DE= acos~Xo and BF =a cos ~X, where a is the repeat distance, so 

a( cos ~Xo- cos ~X)= nA. (5-I) 

This is the linear diffraction grating formula. For a given ~X0 , (X depends 
upon the repeat distance, the wavelength, and the integer n. 

EXERCISE 5-l Light of wavelength 5000 A is incident at 60°toagratingwith 
4000 lines per centimeter. Calculate the angles at which the first- and second­
order maxima will occur. (That is, evaluate IX for n = 1 and n = 2.) 

6-3 Dilfrtution of X raflll bfl err~stals 

X rays were discovered by Wilhelm Rontgen in I895. In I9I2 it was 
still not known whether X rays consisted of particles or whether they 
were electromagnetic waves. It was known that if the wave hypothesis 
were correct, the wavelengths must be of the order of I A oo-a em). It 
was believed impossible to use a grating to measure such short wave­
lengths, since all grating experiments that had been performed had 
involved wavelengths of the same order of magnitude as the grating 
spacing. (Gratings actually are now the source of our most accurate 
measurements of X-ray wavelengths.) 

EXERCISE 5-2 A grating with 4000 lines per centimeter is used to study 
X rays of wavelength 1.00 A. Calculate the deviation of the beam (i.e., IX - 1Xo) 
for first-order maxima when IXo is 10°, 1°, and 0.1°. Do the results suggest 
how measurements of X-ray wavelengths using gratings may be carried out? 

In I9I2 there was also no direct evidence for the structure of crystals, 
although there were reasons for believing that crystals had periodic 
arrangements of atoms with interatomic distances of the order of I A. 
Max von Laue, at the University of Munich in Germany, suggested 
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that the periodic structure of a crystal might be used to diffract X rays 
just as gratings are used to produce diffraction patterns with visible 
light. This proposal was based on three assumptions: (I) crystals are 
periodic, (2) X rays are waves, (3) the X-ray wavelength is of the same 
order of magnitude as the repeat distance in crystals. Friedrich and 
Knipping carried out an experimental test of von Laue's suggestion 
by irradiating a crystal of CuS04 • 5H20 with X rays. The detection of 
diffraction confirmed von Laue's suggestion and launched the science 
of X-ray crystallography.• 

5-4 The Laue equations 

The observation of diffracted X rays only in certain allowed directions 
is entirely analogous to the diffraction of light by a grating. In both the 
crystal and the grating, the allowed angles are determined only by the 
repeat distance of the periodic structure and the wavelength of the 
radiation. The detailed structure of the rulings on the grating will 
affect the intensities at the allowed angles, but the grating spacing is the 
only grating property included in Eq. (5-l). Similarly, the distances 
between identical points in a crystal will comprise the only information 
required for the corresponding crystallographic equations. Since 
crystals are periodic in three dimensions, three equations are required. 

a( cos ex0 - cos ex)= h>.. 

b( cos {30 - cos {3) = k>.. 

c(cosy0 - cosy)=!>.. 

(5-2a) 

(5-2b) 

(5-2c) 

These are called the Laue equations. (Do not confuse these angles with 
the unit cell angles, for which the same symbols were used.) The angles 
between the incident X-ray beam and the unit cell axes a, b, c are 
ex0, /30, and y0 , and ex, {3, and y are the corresponding angles for the 
diffracted beam. Constructive interference will occur only for values 
of these six angles for which h, k, and I in Eqs. (5-2) are integers. 

1 An account of the history of X-ray crystallography, including a reproduction of 
Friedrich and Knipping's first successful photograph, may be found in Fifty Years of 
X-ray Diffraction (P. P. Ewald, ed.), published for the International Union of 
Crystallography by N. V. A. Oosthoek's Uitgeversmaatschappij, Utrecht, 1962. 
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:;.;; Rotating crystal method 

The Laue equations (5-2) may be applied directly in interpreting the 
geometry of X-ray diffraction. One such application is in the rotating 
crystal method, illustrated in Fig. 5-3. A crystal is rotated continuously 
about one of the unit cell axes, which we will call a, and the incident 
X-ray beam is normal to this axis. The angle oc0 is, therefore, 90°, and 
cos oc0 = 0. If h = 0, Eq. (5-2a) is satisfied if a= 90°. There will be various 
allowed directions for the diffracted beam for the case h = 0, corres­
ponding to the solutions of Eqs. (5-2b) and (5-2c), but these directions 
will all lie in the plane normal to the rotation axis a. As the crystal 
rotates about a, Eq. (5-2a) will always be satisfied, and orientations will 
be reached at which Eqs. (5-2b) and (5-2c) are also satisfied. Orienta­
tions that simultaneously satisfy all three Laue equations will be 
achieved more often than might be expected because the six angles 

X-ray beam 

Trap for incident beam 

h= -I 

FIG. 5-3 Rotating crystal method. X-ray beam perpendicular to a axis of 
crystal. The allowed directions form a cone for each value of h. 
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----~~+-~--+---------~~r-1+~+--h-3 

------+-~----~-----+------------+-----~----~-+------h=2 

----------~~~r-~------------+-~~~+-------------h-1 

-+----~~~~~-;~--------+-~~~+--T----~h-0 

----------~~~r-~------------+-~~~~----------h=-1 

----~~~----r---+-----~--~--~-+---h=-2 

--~~~-;+--+--------------------;-~+--H-+~--h=-3 

FIG. S-4 Rotation pattern obtained by unrolling and developing the film 
shown in Fig. 5-3. 

oc0, {30, y0, oc, {3, 'Yare not all independent. (If, for example, a, b, and care 

mutually perpendicular, cos2 oc0 + cos2 {30 + cos2 y 0 =I and cos2 oc + 
cos2 {3 + cos2 y = I). As the crystal rotates through such a position, a ray 

of diffracted radiation is sent out in the appropriate direction. 

For each value of h other than 0, there is a cone of diffracted radiation. 

The half-angle of this cone is the complement of the angle oc of Eq. 

(5-2a). The diffracted radiation may be intercepted by a photographic 

film, and if the film is wrapped around the crystal as a cylinder (Fig. 5-3), 

the unwrapped and developed film will show series of spots on straight 

lines, as shown in Fig. 5-4. Each straight row corresponds to one value 

of h. The length of the crystal axis a may be obtained from the distances 
between these straight rows by the formula 

h>.. 
a=~---. 

sin tan 1(y/r) 
(5-3) 
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where,\ is the wavelength of the X rays, r is the radius of the cylindrical 
film, andy is the distance on the film from row 0 to row h. 

ExERCISE 5-3 Derive Eq. (5-3) from Eqs. (5-2). 

EXERCISE 5-4 A rotation photograph was taken with X rays of wavelength 
1.542 A and a film diameter of 57.3 mm. A millimeter scale placed next to the 
developed film gave the following readings: 

h=3 5.40mm 

h=2 22.44mm 

h=l 31.83 mm 

h=O 39.40mm 

h=-l 46.96mm 

h=-2 56.35 mm 

h=-3 73.20mm 

Calculate the value of a for each row, and average the results. 

Although one unit cell dimension is easily obtained from a rotation 
pattern, it is not as simple to determine the other two lengths and the 
three angles. The lengths could be obtained by remounting the crystal 
about each of two other axes in turn, but this would be tedious and time 
consuming. Some simplification may be achieved by means of oscilla­
tion photographs, which are taken with the crystal oscillating through 
a limited angular range instead of undergoing complete rotation. This 
procedure facilitates deducing the integers k and I to be assigned to 
each spot on the row characterized by h. The problem is complicated 
by having two unknown lengths and four unknown angles in Eqs. 
(5-2b) and (5-2c), but all necessary information can be acquired by 
carefully correlating the appearance of the spots with the angle of 
rotation. 

G-6 Bragg's law 

Shortly after the discovery of X-ray diffraction, W. H. Bragg and his 
son, W. L. Bragg, discovered that the geometry of the process is 
analogous to the reflection of light by a plane mirror. As was discussed 
in Section 3-8, a consequence of the three-dimensional periodicity of a 
crystal structure is that perpendicular to certain directions it is possible 
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to construct sets of many planes that are parallel with each other, 
equally spaced, and contain identical atomic arrangements.2 If an 
incident X-ray beam makes an angle 8 with such a set of planes, the 
"reflected" beam also makes an angle 8 with the planes, as in the case 
of optical reflection. It, of course, follows that the angle between the 
incident and reflected rays is 28. 

Physically, the process consists of the scattering of X rays by the 
electron clouds surrounding the atoms of the crystal. The observed 
pattern is the result of the constructive and destructive interference of 
the radiation scattered by all of the atoms, and the analogy to ordinary 
reflection is a result of the regularity of the atomic arrangement in a 
crystal. 

Since there are large numbers of parallel planes involved in scattering 
X rays, reflections from successive planes will interfere with each other, 
and there will be constructive interference only when the difference in 
path length between rays from successive planes is equal to a whole 
number of wavelengths. This is illustrated in Fig. 5-5 where X rays of 
wavelength ,\ are incident at angle 8 on a set of planes with spacing d. 
The ray striking the second plane travels a distance AB + BC farther 
than the ray striking the first plane. These two rays will be in phase only 

FIG. 5-5 An X-ray beam makes angle () with a set of planes with interplanar 
spacing d. For constructive interference n>. = 2dsin8. 

1 Review Sections 3-8, 3-9, and 3-10 concerning planes in crystals. 
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if 

AB+ BC=nA. 

where n is some integer. From elementary geometry 

AB= BC= dsin8 

Therefore, 

2dsin0 = nA. (5-4) 

and this is the well-known Bragg's law. Equation (5-4) provides no 
information other than that given by the Laue equations, but the 
interpretation of X-ray diffraction patterns is frequently easier in terms 
of Bragg's law since only one measured angle is required. 

5-7 Generalization of llliller indices 

In applying Bragg's law to the interpretation of X-ray diffraction 
patterns, it will be advantageous to discard the restriction of Section 3-9 
that the three Miller indices of a plane have no common divisor. 
Suppose we use X rays of wavelength 1.542 A to record the (100) 
reflection from a set of planes that have ad-spacing of 4.00 A. According 
to Eq. (5-4), sinO= (I x 1.542)/(2 x 4.00) = 0.193 and 8 = ll.l5° for 
this reflection. But this is only the first-order reflection, and equally 
valid solutions of Eq. (5-4) result from using n = 2, n = 3, and so on. 
For n = 2, we would have sinO= 0.386 or 8 = 22.7°, and this second­
order reflection can also be observed. If, on the other hand, we assume 
the existence of a set of (200) planes, the d spacing for (200) is 2.00 A, 
and planes with this spacing would give a first-order reflection with 
sin 8 =(I x 1.542)/(2 x 2.00) = 0.386 or 8 = 22.7°. Thus, as far as 
X-ray diffraction is concerned, there is no distinction between the 
second-order reflection from (100) and the first-order reflection from 
(200). It is convenient to avoid referring to different orders of reflection 
and merely absorb the factor n of Eq. (5-4) in the Miller indices. This is 
the procedure we will follow, even though it is illogical from the stand­
point of classical crystallography. [After all, the (200) planes in a 
primitive unit cell do not pass through points equivalent to those on 
(100) planes.] It will be convenient for us, therefore, to always use 
Bragg's law in the form 

2dsin 8 =A. (5-5) 

and the d spacing will be calculated by Eq. (3-3) regardless of whether 
or not the indices are relatively prime. 
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a-8 Weissenberg camera 

There are various experimental techniques for accumulating X-ray 
<iiffraction data, but we will give brief descriptions of only two photo­
gnphic methods, besides the rotation camera. More complete informa­
tion on these methods, on other types of cameras, and on counter 
techniques can be found in the numerous advanced textbooks of 
crystallography, and a visit to an X-ray diffraction laboratory will 
contribute more to understanding these instruments than any amount of 
explanation. 

The Weissenberg camera is essentially a rotation camera with a 
cylindrical metal screen that allows only one layer line at a time to 
reach the film. For example, a zero-layer Weissenberg photograph may 
be taken with the arrangement of Fig. 5-3 by allowing only the radiation 
of the h = 0 spots to reach the film. A first-layer Weissenberg photo­
graph would have just the h = 1 reflections, and so forth. If this were all 
there were to it, the photograph would consist only of one of the 
straight rows of spots of Fig. 5-4. However, the film is translated back 
and forth in synchronization with the rotation (see Fig. 5-6), so that 
the spots no longer lie on the straight line but are distributed over the 
whole film in a manner such that the vertical coordinate in Fig. 5-4 
depends upon the rotational coordinate of the crystal. A typical 
Weissenberg application might rotate the crystal through 200° while 

Crystal 
Rotation axis 

Photographic film 

Metal screen Incident X-ray beam 

Slit in metal screen 

.... 
Direction of 
motion of film 

FIG. S-6 Principle of the Weissenberg camera. 
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FIG. 5-7 Appearance of a Weissenberg photograph. With orientation about a, 
all reflections on the film have the same value of h (0 for a zero layer). Curves 
connecting spots with constant k or constant I simplify indexing. 
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the film is translated parallel to the rotation axis by 100 mm. The 
direction of rotation is then reversed and the crystal is rotated 200° in 
the reverse direction while the film is translated back 100 mm. The 
cycle is repeated many times until a sufficiently intense exposure has 
been attained. The Weissenberg camera tremendously simplifies the 
interpretation of X-ray diffraction patterns. With its aid the experienced 
crystallographer can quickly deduce the unit cell size and shape, he can 
determine the crystal system and some possible space groups, and he 
can assign correct Miller indices to all of the reflections. 3 The typical 
appearance of a Weissenberg photograph is shown in Fig. 5-7, which 
illustrates a zero layer with orientation about a; curves corresponding 
to series of reflections with constant k or constant I have been drawn in, 
and these curves make rapid indexing of the spots possible. 

6-9 Buerger precession camera 

In the Buerger precession camera, a crystal axis makes a constant angle 
with the X-ray beam; a typical case might use an angle of 30°. The 
crystal precesses so as to maintain this angle, and during this precessing 
motion various planes successively pass through reflecting position. 
A suitable arrangement with a moving screen and film is used to record 

FIG. 5-8 Principle of the precession camera. 

3 The experimental details of the Weissenberg camera are given in M. J. Buerger, 
X-ray Crystallography, Wiley, New York, 1942. 
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only one type of reflection at a time (see Fig. 5-8). For example, if the 
precessing axis is b, a zero-layer precession photograph contains only 
hOI reflections, a first layer contains hll, and so on.4 

G-10 Comparison of IJ"eissenberg and 
precession techniques 

The Weissenberg camera and the precession camera each has its 
advantages. The cameras are best used to complement each other since 
they provide different information with the same crystal orientation. 
If, for example, a crystal is oriented about the a axis, a zero-layer 
Weissenberg photograph gives Okl reflections. Without remounting 
the crystal hOI reflections can be obtained with a precession camera by 
letting the b axis precess about the X-ray beam, and hkO reflections 
can be recorded by letting the c axis be the precessing axis. A first 
layer of each type will give lkl, hll, and hkl reflections which will 
usually suffice for all except a complete structure determination of a 
complicated crystal in three dimensions, and a few upper layers of each 
type will usually give all possible reflections.5 

EXERCISE 5-5 Calculate the 8 values at which the following reflections would 
appear from a monoclinic crystal with a= 5.50 A, b = 8.05 A, c = 7.68 A, 
{3 = 110.0° (assume an X-ray wavelength of 1.542 A): (a) 010; (b) 020; 
(c) 321; (d) 32I. 

ExERCISE 5-6 Crystals of sodium thiosulfate, Na2S20 3, are monoclinic 
with four molecules per unit cell. A crystal was oriented about the b axis, 
and a rotation pattern taken with a 57.3-mm diameter camera and radiation 
with wavelength 0.7107 A had a distance of 5.02 mm between the k = l and 
k = -1 rows. The following 8 values were obtained from a zero-layer 
Weissenberg photograph, which was also taken with 0.7107 A X rays: 

(200) 6.30° 
(201) 6.94° 
(201) 6.55° 

(a) Calculate the length of b. 

4 For more details, seeM. J. Buerger, The Precession Method in X-ray Crystallo­
graphy, Wiley, New York, 1964. 

5 An account of the instrumentation used in X-ray diffraction studies is given in 
six articles by R. Rudman, J. Chern. Educ. 44, A7, A99, A187, A289, A399, A499 
(1967). 
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(b) Calculate the lengths of a and c and the magnitude of the angle {3. 
(Note: {3 could have been determined directly from the Weissenberg photo­
graph with greater accuracy than this calculation gives.) 

(c) Calculate the volume of the unit cell and the density of anhydrous 
sodium thiosulfate. 

ExERCISE 5-7 Calculate the angles 8 at which the following reflections would 
appear from a hexagonal crystal with a = 6.50 A, c = 9.90 A (assume an 
X-ray wavelength of 1.658 A): 

h k 
I 
0 
I 

0 
I 
I 
I 
0 

2 
2 
2 
2 
2 

G-Il Information obtained from diffraction 
patterns 

Our development so far has indicated how the dimensions of a unit cell 
may be determined from measurements of the positions of the diffrac­
tion spots on a photographic film. In order to deduce the crystal system, 
the symmetry of the diffraction pattern must be determined, and the 
relationship of the diffraction symmetry to the symmetry of the crystal 
structure will be studied in Section 5-21. In Sections 5-22, 5-23, and 5-24, 
we will encounter systematic absences of certain types of reflections 
that supply evidence of the presence of nonprimitive unit cells, of glide 
planes, and of screw axes, and this information will aid in deducing 
possible space groups. In Chapter 6, we will investigate methods of 
determining the locations of the atoms within a unit cell. Our approach 
to all of these topics requires that we consider the dependence of the 
intensities of X-ray reflections on the atomic positions. A thorough 
treatment of this subject would require extensive studies of the inter­
action of X rays with single electrons, of the interference phenomena 
occurring when X rays are scattered by the electrons in atoms, and of the 
interference between rays scattered by different atoms. Although we 
will gloss over most of the complicated theory and try to achieve under­
standing in terms of elementary concepts, the mathematics of the 
next few sections cannot be avoided. 
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G-12 Electron density functio'n 

Since X rays are scattered by the electrons of the atoms, a crystal 
property suitable for our mathematical treatment is the electron 
density. We will use p(xyz) to represent the electron density or number 
of electrons per unit volume near the point in the unit cell that has 
coordinates x,y,z. 

The electron density is a periodic function. A mathematical statement 
of the periodicity is 

p(x + p,y + q, z + r) = p(xyz) 

where p, q, and rare any integers. 

6-18 Fourier series 

(5-6) 

It is frequently useful to be able to express a function by means of a 
Fourier series; that is, as a sum of sine and cosine terms with appro­
priate coefficients. Fourier expansion is particularly advantageous 
when the function is periodic, and the Fourier expansion of the electron 
density will be the keystone of our development. 6 

As an example of a Fourier expansion, we consider the periodic 
function in Fig. 5-9. The functionf(x) is +I when xis between 0 and I; 
-I when xis between I and 2; +I when x is between 2 and 3; and so on. 

1 

-2 -1 0 1 2 

- 1 

FIG. 5-9 A periodic function of amplitude 1 and period 2. 

6 Discussions of Fourier series are included in most textbooks of advanced 
calculus. The results of interest to crystallographers are given in International Tables 
for X-ray Crystallography, Vol. II, Kynoch Press, Birmingham, England, 1959. 
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We write 

f(x) = L An cos mrx + L Bn sin mrx (5-7) 
n n 

where An and Bn are coefficients that must be determined, and the 
summation is over all positive and negative integers n. An equation 
completely equivalent to Eq. (5-7) is 

f(x) = L Cne-in"" (5-8) 
n 

where i = v' -I. These equations are equivalent because the complex 
exponential term is related to the trigonometric functions by 

e-1n"" = cos mrx - i sin mrx (5-9) 

which may be verified by Taylor series expansions of both sides. We 
will use Eq. (5-9) repeatedly in our subsequent discussion, and you 
should be completely familiar with it. Two important corollaries of 
Eq. (5-9) are 

e1n"" + e-1n"" = 2 cos n1rx 

e1n"" - e-1n"" = 2i sin n1rx 

(5-10) 

(5-1 I) 

In order to evaluate the coefficients Cn in Eq. (5-8) for the periodic 
function of Fig. 5-9, we multiply both sides of Eq. (5-8) by exp(+im1rx), 
where m is an integer, and integrate over the range x = 0 to x = 2. After 
considerable algebraic manipulation, we arrive at 

/( ) 4 (sin 1TX sin 37Tx sin 51Tx sin 71Tx ) X=---+--+--+---+··· 
1r I 3 5 7 

(5-12) 

An infinite number of terms are required to represent the function 
exactly, although a few terms may suffice for a crude approximation. 
The curves for f(x) = (4/7T)sin7Tx and for 

!( ) 4 ( . sin 37Tx sin 51TX) X=- Sin1TX+---+---
1T 3 5 

are shown in Fig. 5-10. 

EXERCISE S-8 Use Eq. (5-9) to evaluate: (a) e"1n, where n is an integer; 
(b) el"l/2; (c) e"''6- e-,116; (d) ln(-1). 
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(a) (b) (c) 

FIG. 5-10 (.a)/(x); (b) 4/1Tsin1Tx; (c) 4/7T[sin 1TX +(sin 37Tx)/3 +(sin 57Tx)/5]. 

ExERCISE 5-9 Carry out the details of the calculation of the coefficients for 
the Fourier expansion of the function shown in Fig. 5-9. How could you have 
predicted that only sine terms would appear in the final result and how could 
this have been used to simplify the calculation? 

G-14 Fourier expansion of electron density 

The Fourier expansion of the electron density function is 

p(xyz) = L L L F(hkl)exp[-27Ti(hx + ky + lz)] 
h k I 

(5-13) 

where F(hkl) is the coefficient to be determined, and h, k, and I are 
integers over which the series is summed. Because of the three­
dimensional periodicity, a triple summation is required here. The 
coefficients may be evaluated by multiplying both sides by exp[27ri(h' x + 
k' y + /' z)] and integrating 

J~ J~ J~ p(xyz)exp[21Ti(h' x + k' y +I' z)]dxdydz 

= J 1 J 1 J 1 exp[21ri(h' x + k' y +I' z)] L L L F(hkl) 
000 hkl 

exp[-21ri(hx + ky + lz)]dxdydz (5-14) 

The only nonvanishing term on the right occurs when h = h', k = k', 
I= 1'. The result is 

J~ J~ J>(xyz)exp[21Ti(hx + ky + lz)] dxdydz = F(hkl) (5-15) 
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in which we are ignoring a factor of V, the unit cell volume. The left­
hand side of Eq. (5-15) is known as the Fourier transform of the 
function p(xyz). If we knew the value of p(xyz) at every point x,y,z, we 
could evaluate F(hkl) by integrating Eq. (5-15). Knowing p(xyz) at 
every point is tantamount to knowing the crystal structure, so if we 
knew the crystal structure, we could calculate F(hk/) for all values of 
h, k, and/. On the other hand, if we knew all of the F(hkl) values, we 
could calculate the electron density by means of Eq. (5-13). 

5-15 Intensities of diffraction spots 

The contribution of X-ray diffraction to the solution of the problem is 
that the intensity of the radiation reflected from the plane (hk/) is 
proportional to IF(hk/)12, 

I(hkl) cc IF(hk/)12 (5-16) 

There are various other factors that influence the intensity, and deriva­
tion of the values of IF(hk/)12 from measured intensities will require 
corrections for polarization of X rays, for the length of time the plane 
is in a reflecting position and, perhaps, for absorption of the X rays by 
the crystal. The intensities will also be affected by the size of the crystal, 
by the condition of the crystal, and by thermal vibrations in the crystal 
structure (see Section 5-18). However, the only dependence on the 
atomic positions is given by Eq. (5-16) [since F(hkl) can be obtained 
from the structure by Eq. (5-15)], and a set of relative values of IF(hk/)11 
can routinely be obtained from a set of measured intensities.7 These 
intensities may be obtained by measuring the densities of the spots on 
photographic film or by means of counting methods. The photographic 
methods may make use of photoelectric densitometers or they may 
consist of visual estimation of the intensities by comparison with a 
standard scale. Counter methods may use Geiger, proportional, or 
scintillation counters. 

5-16 The phase problem 

Unfortunately, the availability of sets of values of IF(hk/)12 does not 
lead to routine determination of crystal structures. Equation (5-13) 
requires values of F(hkl), whereas the intensities only give IF(hk/)11. 

7 The physical theory of X-ray diffraction is covered in R. W. James, The Optical 
Principles of the Diffraction of X-rays, Bell, London, 1954, and in W. H. Zachariasen, 
Theory of X-ray Diffraction in Crystals, Wiley, New York, 1945 [reprinted by 
Dover, New York, 1967]. 
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According to Eqs. (5-15) and (5-9), F(hkl) is a complex number. That 
is, we can write 

F(hkl) = A(hkl) + i8(hkl) (5-17) 

where i = v=-i. However, 

IFI 2 =(A+ i8)(A- i8) = A2 + 8 2 

(for simplicity we have omitted writing the h, k, and/) so the intensity 
only gives A 2 + 8 2 , and the values of A and 8 are not obtained directly. 
For example, if IF(hkl)ll = 10, F(hkl) can be any complex number 
A + i8 such that A2 + 8 2 = 10, and there are an infinite number of 
possibilities; a few such numbers are v10, -viO, VIOi, v5 + J5;, 
-v5 + vSi, 3 + i, 3 - i, v6 + 2i, and 2 - v6i. In order to calculate 
the crystal structure by means of Eq. (5-13) we must know A and 8 
individually. This apparent impasse is known as the phase problem in 
crystallography. Things are not entirely dark, however, since the 
complete set of intensities provides enough information so that 
crystal structures can be solved, and methods of solving the phase 
problem will be treated in Chapter 6. 

6-1 '1' Calculation of structure factors 

When a crystal structure is known, values of F(hkl) can be calculated, 
and a test of the correctness of a structure is how well the calculated 
values of F(hkl) agree with the observed magnitudes. Equation (5-15) 
is not particularly convenient for calculating F(hk/) values, and we 
now proceed to derive a more useful form. If we regard atoms as dis­
crete, separated regions of electron density, the function p(xyz) will be 
different from 0 only when the point x,y,z is near an atom, and con­
tributions to the integral of Eq. (5-15) will result only from the regions 
of space near atoms. We may then write Eq. (5-15) as a sum of integrals 

F(hkl) = ,4: I I I p(xyz)exp[21Ti(hx + ky + lz)]dxdydz 
J 

(5-18) 

where each term in the summation is a triple integral over the volume of a 
single atom, and the summation is over all the atoms in the unit cell. We 
now rechoose the origin in each triple integral to be at the center of the 
particular atom. For atomj, centered at x1,y1,zb we choose new co­
ordinates 
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x' =X-X1 

y' =y- YJ 
z' = z- z1 

Substitution of these in Eq. (5-18) gives 

F(hkl) = 4 exp[21Ti(hx1 + kx1 + /z1)] I I I p(x' y' z') 
J 

exp[21Ti(hx' + ky' + /z')] dx' dy' dz' (5-19) 

There is a triple integral in Eq. (5-19) for each atom. It is a quite 
reasonable approximation that all atoms of a given type will have the 
same electron distributions, regardless of the compounds in which 
they occur. There undoubtedly will be differences in the electron 
arrangement due to the type of bonding, but the X-ray scattering is due 
to all the electrons in the atom, and variations resulting from slightly 
different valence states will be minor. This makes it possible to calculate 
numerical values of these integrals by quantum mechanical methods, 
and tables of such values are given in Volume II of the International 

OL-------------~----
0.5 

sin8 
T 

1.0 

FIG. 5-11 Plots of atomic scattering factors for Ca and/or Fe2+. 
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Tables for X-ray Crystallography. These quantities are denoted by the 
letter f, and they are called atomic scattering factors or form factors. 
The value off depends on the type of atom and on the Bragg angle 8. 
Values for the neutral calcium atom and for the Fel+ ion are plotted in 
Fig. 5-11. A scale is used such that the value offwhen 8 = 0 is equal to 
the number of electrons in the atom. When the atomic scattering factor 
is introduced into Eq. (5-19), we have 

F(hkl) = .Z:f1 exp[27Ti(hx1 + ky1 + lz1)] 
j 

(5-20) 

Values of F(hkl), the structure factors, may be readily computed by 
means of this formula. 

ti-18 Effect of thermal vibration 

Calculated structure factors are frequently modified by introducing a 
temperature factor, which takes into account that the atoms undergo 
constant vibration about their equilibrium positions. In this case 

F(hkl) = ~J1 exp[27Ti(hx1 + ky1 + lz1)] exp [ -B1 ei~ 8f] (5-21) 

where B1 is proportional to the mean square displacement of atom j 
from its equilibrium position. Values of B1 can be obtained by compar­
ing the calculated structure factors with the observed magnitudes. In 
some cases, anisotropic temperature factors are determined, which 
account for variations with direction of the amplitude of vibration. 

a-lfl Structure factors of centrosynunetric 
crystals 

Equation (5-20) may be written in the form of Eq. (5-17) by applying 
Eq. (5-9): 

F(hkl) = 2f1 cos27T(hx1 + ky1 + lz1) 
j 

+i 2/.i sin 21r(hx1 + ky1 + lz1) 
j 

(5-22) 

If the crystal has a center of symmetry at the origin of the unit cell, 
then, if there is an atom at x 1,y1,zJo there is an equivalent atom 
at -XJo-YJo-Zi. 
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Therefore, 

F(hkl) = 2..!1 [cos2rr(hx1 + ky1 + lz1) + cos2rr(-hx1 - ky1 -lz1)] 
j 

+ i 2../1 [sin 2rr(hx1 + ky1 + /z1) + 
j 

sin2rr(-hx1 -ky1 -lz1)] (5-23) 

where the summation is now over atoms not related by the center of 
symmetry. Since cos(-cp) = coscp, and sin(-cp) =-sine/>, we have 

F(hkl) = 2 J..f1 cos2rr(hx1 + ky1 + lz1) (5-24) 
j 

We have achieved the valuable result that the structure factor of a 
centrosymmetric crystal is a real number; that is, the imaginary 
component involving i = v-I has vanished. This doesn't entirely 
eliminate the phase problem, since we still must decide whether F(hkl) 
is positive or negative, but it does vastly simplify things. Unfortunately, 
nature doesn't always accommodate us by forming centrosymmetric 
crystals, and this seems to be particularly true as the structures get 
more complex, as in the case of materials of biological interest. 

rt-20 Friedel's lauJ 

We now consider a crystal that does not have a center of symmetry. 
The structure factor for the plane (hkl) is given by Eq. (5-22), or we 
may write 

F(hkl) =A + iB 

using the abbreviated notation of Eq. (5-17). The structure factor for 
the plane with indices -h, -k, -1 is obtained by changing the signs of 
the indices in Eq. (5-22). Therefore, 

F(hkl) = A - iB 

The observed intensities for the two cases are proportional to 

IF(hk/)12 = A2 + B2 

and 

These two planes, therefore, give the same intensities, and the diffraction 
pattern has a center of symmetry, whether the crystal has one or not. 
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This is Friedel's law, and as a consequence we cannot usually tell by 
inspection of a set of photographs whether a crystal has a center of 
symmetry or not. The structure, once it is derived, will, of course, tell 
us the true symmetry of the crystal, and there are also statistical methods 
of detecting a center of symmetry from the distribution of intensities. 
However, the diffraction patterns will be centrosymmetric. 8 

Laue groups 

The symmetry of a diffraction pattern must be that of one of the centro­
symmetric crystallographic point groups. If, for example, we have a 
crystal whose point group is 4, not only will no difference in the 
diffraction pattern be detected if we rotate the crystal through 90° 
about c, but there will also be no difference in intensity between the 
(hkl) and (hkl) planes. The diffraction pattern has all the symmetry 
of point group 4/m, and directions that are equivalent in 4/m will have 
equal intensities of diffraction. 

The diffraction symmetry thus assists us in classifying crystals. If the 
Laue group is observed to be 4/m, the crystal system is tetragonal, the 
point group of the crystal is either 4, 4, or 4/m, and the space group is 
one ofthose associated with these three point groups. Our determination 
of the crystal system is, therefore, based on the diffraction symmetry, 
which may be deduced by inspection of a series of photographs. The 
eleven Laue groups are listed in Table 3-1. 

ExERCISE 5-10 (a) Derive the general positions for space group P41• 

(b) Calculate the structure factors for the (hk/), (kh/), (likl), (klil), (hk [), 
(khl), (likl), and (kli!) planes, and show that these eight planes will give equal 
intensities. 

EXERCISE 5-11 The general positions of P3 are x,y,z; y,x- y,z; y- x,x,z. 
Show that reflections from the planes (hk/), (ihl), (kif), (lik!), (ilil), (kil), 

8 An exception to Friedel's law occurs in the case of anomalous dispersion. This 
happens when the X-ray wavelength is such that the X rays are highly absorbed by 
the atoms in the crystal. Mathematically, the result is that the atomic scattering 
factors for the atoms concerned are complex numbers. An important application of 
this effect is in determining absolute configurations of molecules; i.e., distinguishing 
between enantiomorphs. Anomalous dispersion is also useful in solving the phase 
problem. See, for example, H. Lipson and W. Cochran, The Determination of 
Crystal Structures, 3rd Ed., Cornell Univ. Press, Ithaca, New York, 1966, Chapter 
14. (Also published by Bell, London, 1966.) 
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where i = -h- k, have equal intensities. Note: Four indices, hkil, are some­
times used in the trigonal and hexagonal systems, so that the indices of 
equivalent reflections can quickly be generated by permuting h, k, and i. 

6-22 Structure factors of sodium. chloride 

The sodium chloride structure (Fig. 1-1) is face-centered cubic with 

Na+ ions at 0, 0, 0; !, !, 0; !, 0, !; and 0, !, !; and 

Cl- ions at!, 0, 0; 0, !, 0; 0, 0, !; and!,!, l 

F(hkl) = fNa+ ( exp [21Ti(O)] + exp [21ri(~ + k)] + exp [21ri(; + /)] 

+ exp [21Ti(~ + /)]) + fCI- ( exp [2~ih] + exp [2~ik] 

[21Ti~ [21Ti(h + k + /)]) 
+exp Tj+exp 2 

Now, exp(21Tin/2) = cos1rn + isin1rn and, if n is an integer, this reduces 
to cos1rn = (-l)n. That is, exp(21Tin/2) is +I if n is an even integer and 
-I if n is an odd integer. The structure factor formula can be reduced to 

F(hk/) =[I+ (-l)h+A: + (-I)A:+I + (-1)11+1] [fNa+ + (-1)" /CJ-1 

If we examine some possible values of the indices, we arrive at Table 5-1. 

TABLE 5-l STRUCTURE FACfORS OF NaCI 

hkl F(hkl) 

100 0 
110 0 
Ill 4(/Na+-fcn 
200 4(/Na++/Cn 
210 0 
211 0 
220 4(/Na+ +fen 
300 0 
221 0 
310 0 
311 4(/Na+-fcn 
222 4(/Na+ +fen 
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The term [I+ (-l)h+k + (-l)h+l + (-I)k+'] is 0 unless the indices are 
either all odd or all even, and the structure factor is, therefore, zero for 
planes with mixed indices such as (II 0) or (2I 0). This is characteristic of 
face centering, and the presence of face centering can, therefore, be 
detected by the systematic absence of reflections of a certain type from 
the diffraction pattern. Similar considerations apply to other types of 
centering, and Table 5.2 summarizes the conditions under which 
reflections appear. 

EXERCISE 5-12 Derive the condition on the allowed Miller indices for a body­
centered crystal. 

EXERCISE 5-13 Prepare a table such as Table 5-1, for the CsCl structure, 
where the unit cell contains one cs+ at 0,0,0 and one o-at t.t.t. What is 
the lattice type in this case? 

ExERCISE 5-14 Potassium chloride has the same structure as NaCI. Rewrite 
Table 5-1 for the case of KCl, assuming that, since K+ and Cl- are iso­
electronic, they have the same atomic scattering factors. 

G-23 Extinctions due to glide planes 

Suppose we have a c glide plane perpendicular to the b axis. For an 
atom at x,y,z, there is an equivalent atom at x,ji,! + z. The contribu­
tion of these two atoms to the structure factor is 

F(hkl) = {exp (27Ti(hx + ky + /z)] + exp [27Ti(hx- ky + 1/2 + lz)]}f 

TABLE 5-2 CONDITIONS ON INDICES FOR 
APPEARANCE OF GENERAL REFLECTIONS 

Lattice 
type 

p 

I 

F 

A 
B 
c 
R 

Condition 

None 
h + k + I = 2n, where n 

is an arbitrary integer 
h + k = 2n, k + I = 2n, 

h + I = 2n (indices all 
even or all odd) 

k+l=2n 
h+l=2n 
h+k=2n 
-h + k +I= 3n 
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For the special case of k = 0, 

F(hOI) = exp [2rri(hx + lz)] [I + exp (~;i/)] f 

= exp [2rri(hx + lz)] [1 + (-l)1]f 

= 0 if I is odd, 

= 2 exp [2rri(hx + lz) if I is even 

111 

Reflections of the type (hOI) will, therefore, be missing unless I is an 
even number. The characteristic absence or extinction of (hOI) 
reflections with I odd thus indicates a c glide plane perpendicular to b, 
and such extinctions are extremely useful in deducing the space group 
of an unknown crystal. 

5-24 Extinctions due to screw axes 

We consider for an example a twofold screw axis parallel to b. The 
equivalent positions related by the screw axis are x, y, z and i,! + y, z. 
Thus, 

F(OkO) = e2" 1kY[l + (-l)k)J 

and (OkO) reflections will be absent unless k is an even integer. 
The extinctions due to the various types of glide planes and screw axes 

are given in Volume I of the International Tables for X-ray Crystallo­
graphy, along with tables to aid in deducing space groups. 

ExERCISE 5-15 Deduce all conditions for general and special reflections for 
the following space groups: (a) C2/c; (b) Aba2; (c) lmma. 

ExERCISE 5-16 The structure of coesite, a high-pressure form of Si02, is 
monoclinic. The unit cell has a= 7.17 A, b = 12.38 A, c = 7.17 A, f3 = 1200, 
and contains sixteen Si02 groups. A complete structure determination has 
verified the monoclinic symmetry and established the space group as C2/c. 

(a) Discuss the apparent hexagonal unit cell dimensions. Is it possible for 
a C-centered cell with these dimensions to be hexagonal? 

(b) A body-centered cell may be obtained by choosing vectors from the 
origin to the points t. t. I ; t. -!. I; and I, 0, 0. Calculate the lengths of the 
three edges and the three angles of this new unit cell, and show that it is 
dimensionally nearly tetragonal. 
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(c) Suggest an X-ray diffraction photograph that will show whether or not 
the crystal system is actually tetragonal. 

ExERCISE 5-17 Precession and Weissenberg photographs of a crystal 
indicated a unit cell of dimensions a = 15.97 A, b = 15.97 A, c = 42.47 A, 
ex= {3 = y = 90°. There are lattice points at 0,0,0; i.t.t; t.t.t; and t.i.i. 

(a) Determine the conditions for general reflections. That is, what classes 
of reflections are systematically missing? 

(b) Do the unit cell dimensions indicate the tetragonal crystal system? 

(c) The space group of this crystal is actually C2/m. Choose a C-centered 
monoclinic cell in which the unique axis b is given by the vector from the 
origin to the point 1, I, 0. 



Chapter 6 

DETERMINATION OF 

ATOMIU POSITIONS 

In Chapter 5 we saw how X-ray diffraction provides a means for 
determining the size and shape of the unit cell. The Laue group can be 
obtained from the symmetry of the diffraction patterns, and the lattice 
type can be deduced from systematic absences or extinctions among 
general reflections. Extinctions of special types of reflections indicate 
the presence of glide planes and screw axes, and such observations aid 
in deducing the space group, although a unique choice of space group 
cannot usually be made on the basis of these data alone. For example, 
space groups P222, Pmm2, and Pmmm could not be distinguished 
without more information. 

In Chapter 5 we also learned how the intensities of the Bragg reflec­
tions are related to the atomic positions, and we encountered the phase 
problem which prevents us from proceeding automatically from the 
measured intensities to the structure. In this chapter we will briefly 
discuss some of the methods that make crystal structure determination 
possible. The phase problem is not an insurmountable obstacle because 
the quantity of data available usually vastly exceeds the number of 
parameters to be determined. Each atom to be located in the unit cell 

113 
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requires the specification of three coordinates, and one temperature 
factor is usually also required. (If anisotropy of the thermal vibrations 
is important, six components of the temperature factor may be 
required.) We, thus, need to determine a minimum of four parameters 
per atom, and a structure involving twenty atoms would involve at 
least eighty parameters. However, we would probably measure at 
least 10 times this number of reflections, so that the problem is greatly 
overdetermined. 

6-1 Solutions of structure factor equations 

It might seem possible, in principle, to write Eq. (5-21) for each 
measured reflection and to solve the set of simultaneous equations for 
the unknown parameters. With one observation for each parameter, 
the problem would seem to have a solution. Of course, our intensity 
measurements are subject to error, so perhaps it would be preferable to 
include all of our observations and seek a solution by means of some 
least squares process. One difficulty is that we know only IF(hk/)1 
rather than F(hkl). A possible response to this complication is that we 
will square Eq. (5-21}, so as to obtain a set of equations for the positive 
quantities IF(hk/)12. However, these equations are hopelessly intract­
able, and no one has yet succeeded in solving such sets of simultaneous 
equations with a large number of unknowns. 

It would be well at this stage also to dispose of the possibility of 
obtaining a trial-and-error solution by evaluating the Fourier series 
for all possible combinations of signs. Only a simple structure could be 
solved with 100 terms in the Fourier series, and there would be 2100 

different sign combinations. This number is approximately 1030, and 
you might like to calculate the number of centuries that correspond to 
1030 seconds. 

The methods by which the required information can be extracted 
from the intensity data are much more subtle than these brute force 
attempts, and the search for new and improved methods is still a very 
active field of research. 

6-2 The Patterson function 

In 1934, A. L. Patterson discovered that a Fourier series using values of 
IF(hkl)il as coefficients instead of F(hkl) could produce useful informa­
tion about the structure. To derive Patterson's function, we take the 
electron density at point x,y,z, given by Eq. (5-13), and multiply it by 



DETERMINATION OF ATOMIC POSIDONS 115 

the electron density at the p<'int x + u,y + v,z + w. That is, we form the 
product 

p(xyz) p(x + u,y + v, z + w) 

We now multiply by dxdydz and integrate over the volume of the unit 
cell, 

J: J: J>(xyz)p(x + u,y + v,z + w)dxdydz 
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(a) 

FIG. 6-1 (a) Two unit cells of a structure containing four atoms (continued 
on p. 116). 
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FIG. 6-1 (b) Vector map of the structure of(a). 

When we substitute Eq. (5-13) for each electron density function, we 
eventually arrive at 

P(uvw) = :L :L L IF(hk/)12 cos 2TT(hu + kv + lw) (6-1) 

The Patterson function P(uvw) will be nonzero at the point u,v, w only 
when there exist points x,y,z such that p(xyz) and p(x + u,y + t',z + w) 
are both nonzero. The Patterson function will reach maximum values 
at points u, v, w, which correspond to the coordinates of vectors between 
pairs of atoms. For example, if a crystal structure has an atom at 
0.20,0.31,0.33 and another atom at 0.15,0.18,0.22, there will be a 
maximum in the Patterson function at the point 0.20-0.15,0.31-0.18, 
0.33-0.22 = 0.05,0.13,0.11. The Patterson function thus gives a map 
of the vectors between atoms, and there is a Patterson peak for each 
interatomic vector. As an example, the four-atom structure of Fig. 6-la 
gives the vector map of Fig. 6-1 b. As a result of the periodicity of the 
structure, one unit cell contains one vector of each type, and the vector 
from an A atom to a C atom is related by a lattice translation to every 
other AC vector. For each vector, such as AC, there is a corresponding 
vector in the reverse direction, CA, so the Patterson map has a center 
of symmetry, even though the actual structure in this case is non-
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centrosymmetric. In this example, the vectors BC and CD happen to 
coincide. For the particular point 0, 0, 0, Eq. 6-1 gives 

P(OOO) = L L L IF(hk/)2 1 (6-2) 

so the Patterson function has a large positive value at the origin, 
corresponding to the vectors from each atom to itself. 

ExERCISE 6-1 Construct a vector map, similar to Fig. 6-1 b, for the following 
two-dimensional set of points: 

X y 
0.11 0.13 
0.15 -0.05 
0.39 0.56 

-0.24 0.22 
0.60 0.35 

It is possible, in principle, to deduce the atomic arrangement from 
the vector diagram. Figure 6-la can thus be derived from Fig. 6-lb, 
except for the choice of origin, which is arbitrary, and except for 
inversion of the structure through the center, which wvuld give an 
enantiomorphic structure with the same values of IF(hk/)12. The 
Patterson function is, therefore, an extremely powerful aid to structure 
determination, and a crystal structure investigation will usually include 
calculating this function at a large number of points throughout the 
unit cell so that the coordinates of points where P(uvw) is large can be 
found. Nevertheless, the interpretation of the Patterson function is not 
always straightforward, and by itself it does not provide a general 
solution of the phase problem. One difficulty with the Patterson 
function is that there are so many interatomic vectors. If a unit cell 
contains N atoms, there are N 2 vectors. Of these, N are the origin 
vectors, so there are N 2 - N peaks other than the origin peak. Half of 
these are related to the other half by a center of symmetry (peak CA 
in Fig. 6-1 b is related to peak AC by inversion through the center of 
symmetry), so there are (N 2 - N)/2 independent peaks. If N is 20, 
there are 190 independent Patterson peaks, and the vector map will be 
very crowded. A further complication is that the atoms are not points, 
but they occupy a considerable volume. In fact, the N atoms pretty well 
fill up a unit cell. There will also be a range of values at which P(uvw) is 
different from zero. This is illustrated in one dimension in Fig. 6-2, 
where the vector function corresponding to Gaussian atoms is v2 
times as wide as the atomic peaks. Since the N atoms themselves filled 
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-w 0 w r-w r r+w 
(a) 

0 
(b) 

r- v2w r r+ v2w 

FIG. 6-2 (a) Electron density distribution of atoms of Gaussian shape and 
width 2w, separated by distance r. (b) Vector function for atoms of (a) has 
width 2v2w. 

up the unit cell, it is apparent that the N 2 Patterson peaks, each of 
which is wider than an atom, will overlap considerably. As the structure 
gets more complex, the situation rapidly gets worse. With N atoms in 
volume V, there are N 2fV Patterson peaks per unit volume; with 2N 
atoms in volume 2 V, there are (2N)2/2 V = 2N 2/ V Patterson peaks per 
unit volume. The density of Patterson peaks, thus, increases as the 
complexity of the structure increases, and there is correspondingly less 
chance of resolving the peaks. Although we could deduce the atomic 
arrangement if we knew the vector arrangement, the sad fact is that 
very often we are not able to recognize the individual Patterson vectors. 

ExERCISE 6-2 A vector map of a two-dimensional three-atom structure 
contained, besides the origin peak, independent peaks at 0.85, 0.52; 0.55, 0.21 ; 
0.30,0.31. Draw a diagram of the vector map, and deduce an atomic arrange­
ment that will account for it. 

6-:J lleavy-atorn methods 

If a unit cell contained only a few atoms, we could deduce the structure 
from the locations of peaks on the Patterson map. Interpretation of the 
Patterson function may also be possible for complicated structures if a 
few of the atoms have appreciably higher atomic numbers than the 
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others. Since the atomic scattering factors increase with the number of 
electrons on the atoms, the heavy atoms will contribute more to the 
structure factors, and the Patterson peaks due to the heavy atoms 
alone may be discernible. In this case, the positions of the heavy atoms 
may be obtained, and their contributions to the structure factors may be 
calculated. If the heavy atoms are heavy enough, they may by themselves 
determine enough phases so that a Fourier map of the electron density 
will reveal the positions of some of the lighter atoms. If the structure 
has a center of symmetry, all that is necessary is that the heavy-atom 
contribution give the correct sign of a sufficient number of structure 
factors. As an example, a total of 1828 independent reflections were 
observed from a crystal of810Hu[S(CH3hh. The sulfur atom positions 
were readily deduced from the Patterson maps, and the contributions 
of the sulfur atoms to the 659 largest structure factors were calculated. 
Of these, the 248 structure factors with the largest sulfur contributions 
were selected and used in computing an electron density map with the 
observed magnitudes and calculated signs. This Fourier map indicated 
positions for two of the carbon atoms and six of the boron atoms of a 
molecule. Another structure factor calculation included the contribu­
tions of these atoms in addition to the sulfur atoms, and a second 
Fourier calculation based on 448 terms revealed the rest of the carbon 
and boron atoms. Two of the original 248 signs were eventually shown 
to have been incorrect. 

The success of the heavy-atom method hinges on the presence of an 
atom heavy enough to determine correctly the phases of a substantial 
number of structure factors with large magnitudes. Enough phases are 
required so that the incomplete Fourier series will show some additional 
atoms. This Fourier calculation will also produce spurious peaks, and a 
knowledge of structural chemistry is required to distinguish the atoms 
from the effects of an incomplete series. On the other hand, it is desirable 
that the heavy atom not to be too heavy or it may dominate the scatter­
ing so much that the lighter atoms cannot be recognized on the Fourier 
maps. 

6-4 Isomorphous replacement 

Two substances with the same crystal structure are said to be iso­
morphous. For example, the triethyl ammonium halides, (C2H5) 3NHCI, 
(C2HshNHBr, and (C2H5hNHI have the same atomic arrangement, 
with only slight differences in unit cell dimensions. The structure 
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factors for these three structures differ mainly in the contributions of 
the halogen atoms. In this particular example, the structure could be 
determined by straightforward application of the heavy-atom method. 
However, the heavy-atom method might not suffice for more com­
plicated structures, but information about the phases could be obtained 
by comparing the intensities from crystals of the different compounds. 
If the intensity of a given reflection in a centrosymmetric structure 
increases in going from the chlorine to the bromine compound, the 
structure factor must have the same sign as the halogen contribution. 
If the structure is not centrosymmetric, we need to determine phases 
rather than merely signs of structure factors, but this information can 
be deduced from the observed intensities from two or more compounds. 

The method of isomorphous replacement is exceedingly important 
in solving complex structures. The basic requirement is that it be 
possible to prepare isomorphous derivatives of a compound in which 

CB 

DA 

FIG. 6-3 Arrangement of N atoms repeated N times generates the Patterson 
map. (See Fig. 6-1.) 
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one atom has different scattering power. Besides replacing one 
halogen atom by another, or replacing hydrogen by a halogen, 
sulfur may sometimes be replaced by selenium, or a heavy metal atom 
may be incorporated in the molecule. Among the notable successes of 
this method are the solutions of the structures of the proteins, hemo­
globin and myoglobin, by Kendrew and Perutz. As many as seven 
isomorphous compounds were used in this work. 1 

6-G Superposition methods 

A graphical method of constructing a Patterson map is indicated in 
Fig. 6-3. One unit cell of the arrangement of atoms of Fig. 6-1 a is used, 
and the Patterson map is derived by drawing this four-atom structure 
4 times, once with each atom at the origin. Figures 6-1 b and 6-3 are 
equivalent if the periodicity of the diagrams is taken into account; for 
instance, if the point DA in Fig. 6-3 is repeated one unit cell to the right, 
it coincides with DA of Fig. 6-1 b. The important aspect of the Patterson 
map here is that it contains the structure, repeated N times, where N 
is the number of atoms per unit cell. A method of recovering the atomic 
arrangement from the vector map is shown in Fig. 6-4. The diagram in 
Fig. 6-4 is just four unit cells of the Patterson map of the structure of 
Fig. 6-la. This Patterson map has been drawn twice in Fig. 6-4, but the 
origin of one of the maps has been shifted so that it coincides with one 
of the nonorigin peaks of the other. Positions where peaks in the two 
maps coincide outline the structure. Actually, both the structure and 
its inverse image or enantiomorph are obtained by this process, as a 
consequence of Friedel's law. This method of superposition is generally 
applicable to the recovery of a set of points from its vector set. 

When the Patterson peaks are not resolved from each other, as is 
usually the case in crystal structure analysis, the recovery of the atomic 
arrangement from the Patterson map is not automatic. A procedure 
suggested by M. J. Buerger involves calculating the Patterson function 
at a large number of points, superimposing two maps with the origin 
of one coinciding with a suitable peak of the other, and preparing a new 
map where the value at each point is the lower of the two superimposed 
values. This determination of a minimum function is essentially the 
procedure we carried out in Fig. 6-4, where we retained only those points 

1 A more complete discussion of heavy-atom and isomorphous replacement 
methods, including numerous examples and literature references, may be found in 
M. J. Buerger, Crystal-Structure Analysis, Wiley, New York, 1960. 
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that corresponded to peaks on both Patterson maps. The minimum 
function has far fewer peaks than the Patterson function, since only 
peaks appearing simultaneously on both maps are retained, and the 
minimum function may closely resemble the actual structure. This 
method has been extremely successful on some rather complicated 
structures. Direct Patterson interpretation is very difficult with ten or 
more independent atoms of similar atomic number to be determined. 
As one of many examples in the literature, a modification of the 
minimum function method Jed to the solution of the structure of cel­
lobiose, C 120 11 H22, which has twenty-three independent atoms other 
than hydrogen. 2 

6-6 Inequalities 

We now consider a few of the so-called direct methods, which attempt to 
determine the phases of the structure factors without first deriving a 
set of atomic positions. 

We have already pointed out the redundancy of a structure determina­
tion; that is, there are many more observations than there are para­
meters, so that the structure factors cannot all be independent. In 1948, 
D. Harker and J. S. Kasper derived some inequality relationships 
between the structure factors. We first define a unitary structure factor 
as 

U(hkl) = F(hkl) 
"Lfj 

which reduces to 

U(hkl) = "L n1 cos21r(hx1 + ky1 + lz1) 

where 

(6-3) 

(6-4) 

(6-5) 

if the structure has a center of symmetry. A mathematical inequality 
due to Cauchy is 

(6'-6) 

1 An extensive treatment of superposition methods, including the minimum 
function, may be found in M. J. Buerger, Vector Space, Wiley, New York, 1959. 
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If, for example, a 1 =I, a2 = 2, b1 = 3, b2 = 4, we have 

(1 X 3 + 2 X 4)2 ~(I + 4)(9 + 16) 

or 

121 ~ 125 

We apply the Cauchy inequality to the unitary structure factor by 
letting a1 = (n1) 112, and b1 = (n1) 112 cos2TT(hx1 + ky1 + lz1). 

IL n1 cos2TT(hx1 + ky1 + lz1)12 
~ L n1 L n1 cos2 27T(hx1 + ky1 + lz1) 

From Eq. (6-5), L n1 = 1, and from the trigonometric identity 

2 A _ 1 + cos2A 
cos - 2 ' 

we have 

(6-7) 

I U(hk/)12 ~ t L nAl + cos{2TT x 2(hx1 + ky1 + lz1)}] (6-8) 

I U(hk/)12 ~ t[l + L n 1 cos 2TT(2hx 1 + 2ky 1 + 2/z 1)] ( 6-9) 

I U(hk/)12 ~ t[l + U(2h, 2k, 2/)] (6-10) 

To illustrate the use of Eq. (6-10), suppose I U(l30)1 = 0.50 and 
I U(260)1 = 0.60. The sign of U(260) must be + in order to satisfy 
the inequality, and we, therefore, have deduced the phase of the (260) 
reflection. Inequality relationships appropriate to a given space group 
can be derived by symmetry considerations. It has been shown that 
these inequalities are all a consequence of the simple fact that the 
electron density function p(xyz) is never less than zero. That is, the only 
mathematical requirement is that the number of electrons per unit 
volume cannot be negative, although the nature of the inequalities, and 
their utility in phase determination, depends upon symmetry. 

Another inequality for centrosymmetric structures is 

U2(hkl) + U2(h' k' /') + U2(h + h', k + k', I+ /') 

~ 1 + 2U(hkl) U(h'k'/') U(h + h',k + k',l + /') 

An illustration ofEq. (6-ll) is 

(6-11) 

U2(123) + U2(021) + U2(144) ~ I + 2U(l23) U(021) U(l44) 

If the unitary structure factors are all large, this implies that U(l44) has 
the same sign as the product U(l23) U(02l). Such inequalities are useful 
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for determining more signs such as that of U(144), once some signs, 
such as those of U(123) and U(021), are known. 

The Harker-Kasper inequalities were first used in determining the 
structure of decaborane, B10H 14 • Unfortunately, they apply only when 
the magnitudes of the unitary structure factors are large. The maximum 
value of U(hkl) is l, and statistical analysis shows that the average 
value of I U(hk/)12 is 1/N, where N is the number of atoms in the unit 
cell. As the complexity of the structure increases, therefore, the fraction 
of the structure factors for which the inequality relationships are 
applicable declines. 

6·" Sagre-Cochran-Zachariasen 
relationship 

The result that the inequality in Eq. (6-ll) enables us to deduce the 
sign of U(h + h',k + k',l + /') from the known signs of U(hkl), and 
U(h'k'l') may be expressed symbolically as 

S(h + h',k + k',/ + /') = S(hki)S(h'k'l') (6-12) 

which says that the sign of the structure factor with indices h + h' ,k + 
k',/ +I' is the product of the signs of F(hkl) and F(h'k'l'). If the 
structure factors are not large, we cannot guarantee the truth of Eq. 
(6-12). However, even if the magnitudes of the structure factors are not 
quite sufficient to apply the inequality, Eq. (6-12) will probably be true. 
Slight shifts of some of the atoms might be enough to increase the 
three structure factors so that Eq. (6-11) could be used, and it is unlikely 
that these shifts would actually change the signs of the structure factors. 
The probability that Eq. (6-12) will give the correct sign for F(h + h',k + 
k',/ + /') depends upon the magnitudes of the structure factors 
involved and varies from l (complete certainty) when (6-11) is satisfied 
to! (complete uncertainty) when one or more of the values is zero. 

Once a few signs have been determined, Eq. (6-12) can be used to 
generate more signs, and these, in turn, can be combined to produce 
more. So long as structure factors with large magnitudes are considered, 
the generated signs will probably be correct, and these large structure 
factors are the ones required to produce a recognizable Fourier 
representation of the structure. 

This is the essence of the method developed independently by D. M. 
Sayre, W. Cochran, and W. H. Zachariasen, with contributions from 
many others, and it is frequently referred to as the SCZ method. The 
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SCZ method has been applied successfully to numerous structures, and 
computer programs have been prepared that will deyelop a set of 
signs consistent with Eq. (6-12). 

6-S Hauptman-Karle methods 

We have seen that Eq. (6-12) has a probable validity. The next problem 
is to evaluate numerically the probability that a certain structure factor 
is positive. Formulas have been derived by H. Hauptman and J. Karle, 
among others, for the joint probability distribution of structure 
factors, from which the probability that a given sign is plus can be 
calculated, and numerous structures have been solved by these methods. 
An early impressive illustration of the power of these methods was the 
determination of the structure of p,p' -dimethoxybenzophenone, 
C1s03H28 , which contained two crystallographically independent 
molecules, necessitating locating thirty-six atoms other than hydrogen. 

6-9 Summary of phase-determining method• 

We have discussed only a few methods of phase determination; our 
selection was based somewhat on the methods most commonly 
encountered in the literature. Other methods of solving the phase 
problem may be found in more advanced textbooks. 3 

We wish to emphasize that there is no one "best" method. Each 
crystal structure is different, and each presents its own peculiar 
problems. Very simple structures may be solved by trial and error. If 
only a few atoms are involved, the Patterson function may be inter­
preted directly. The presence of heavy atoms may make more 
sophisticated procedures unnecessary. Very complicated structures 
may require the chemical labor of preparing isomorphous derivatives. 
Both the minimum function and the statistical methods have achieved 
remarkable results, and they have greatly expanded the range of 
structures that can be solved. The question as to whether the minimum 
function or the statistical procedure is better cannot be answered. They 
represent merely different ways of extracting the information inherent 
in the measured intensities, and the crystallographer confronted with 
the phase problem will wish them both continued prosperity and 
development. 

3 See, for example, H. Lipson and W. Cochran, The Determination of Crystal 
Structures, 3rd Ed., Cornell Univ. Press, Ithaca, New York, 1966. (Also published 
by Bell, London, 1966. ) 
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6-10 Refinement 

After the phase problem has been overcome, the crystallographer has 
available a set of parameters specifying the location of every atom within 
the unit cell. Slight variations in these parameters will produce varia­
tions in the values of the structure factors calculated by means of Eq. 
(5-21). The best set of parameters is that which will produce the most 
accurate values of interatomic distances and bond angles. It is hoped 
that these best parameters are also those that give the best agreement 
between the calculated and observed structure factor magnitudes. 
A convenient measure of the correctness of a structure is given by the 
residual or R value 

(6-13) 

An R of 0.20 may indicate a correct structure, with the best possible 
values of the atomic parameters used in calculating the Fe values. 
Usually, R should be considerably less than 0.20, unless the reason for 
the poor agreement is understood. On the other hand, there may be 
something wrong, such as a light atom incorrectly placed, with a 
structure that gives an .R of 0.10 if the quality of the crystal and the data 
were high. Generally, an R of 0.30 indicates that the correct structure 
is near, and if R is 0.10 or less the results are probably very reliable. 
Among the advantages of structural determination by means of X-ray 
diffraction is the great confidence that may usually be placed in the 
structure. 

The convincing arguments for the correctness of a crystal structure 
are the chemical reasonableness of the structure (no inexplicable bond 
lengths or angles) and the agreement between the values of Fe and F0 • 

Journals such as Acta Crystal/ographica, Zeitschrift fiir Kristallo­
graphie, and Inorganic Chemistry usually publish tables of these 
calculated and observed structure factors. A correct structure should 
have generally good agreement, indicated by a low R, with no major 
unexplained discrepancies, and no special classes of reflections that 
are bad. 

There are numerous sources of error in the measured intensities, and 
it may not be feasible to correct the data for all of these. Some of the 
common errors are due to absorption of the X rays by the crystal, 
diminution of the beam by scattering, and background radiation. 
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The calculated structure factors may suffer from inaccurate or in­
appropriate scattering factors, neglect of anisotropic thermal motion, 
and inability to locate hydrogen atoms. 

Once all the phases have been determined, a Fourier map may be 
calculated, and the atomic positions may be taken as the locations of the 
maxima of the electron density function. The advent of high-speed 
computers has led to widespread use of the method of least squares 
which automatically adjusts the parameters so as to minimize some 
function such as L: (Fo - Fc)2• The least squares method gives estimates 
of the standard deviations of the atomic parameters, which can be 
used to calculate the uncertainties in bond lengths and angles. 
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SOME SIMPLE 

STRU()TURES 

The principles we have developed throughout this book can be applied 
to structures of great complexity. In this chapter we want to describe 
the structures of some of the elements and of a few simple compounds. 
Our purpose will not be so much to illustrate the material of the preced­
ing chapters as it will be to gain an understanding of some elementary 
structural concepts. The structures we will consider will have high 
symmetries, and frequently we will regard these structures as assem­
blages of closely packed spheres. Crystals composed of molecules 
cannot be expected to have these high symmetries, since the molecules 
themselves are of low symmetry. Nevertheless, a detailed acquaintance 
with some simple structures will help us in interpreting the arrangements 
in more complicated substances. 

'1'-1 Close packing 

The structures of several elements may be described as close-packed 
arrangements of identical spheres. The only possible close-packed 
arrangement of spheres in two dimensions is shown in Fig. 7-1; each 

129 
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FIG. 7-1 Close packing of spheres in two dimensions. 

sphere is tangent to six other spheres. Three-dimensional close packing 
is achieved by stacking layers of this type on top of each other, so that 
each sphere nestles into the interstices of the layers above and below it. 
Each sphere then has twelve neighbors, six within its own layer, three 
in the layer above, and three in the layer below. No one has suc~eded 
in proving that this is actually the most compact arrangement of spheres 
in three dimensions, but it is the closest packing possible if the resulting 
arrangement is to be periodic. 

FIG. 7-2 Two close-packed layers, with upper layer stacked above interstices 
of lower layer. 
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7-2 t'ubic f"lose ,,af"ldng 

Figure 7-2 shows portions of two close-packed layers stacked together. 
The spheres of the upper layer are above some of the interstices of the 
layer below. If a third layer is stacked on top of the second layer of 
Fig. 7-2, there are two places it can go. It will of course, have to fit into 
the interstices of the second layer, but its spheres can be either directly 
above the spheres of the first layer or directly above a set of interstices 
of the first layer. The latter alternative is shown in Fig. 7-3. 

ExERCISE 7-1 Obtain fourteen identical spheres (Styrofoam balls or Ping­
pong balls are satisfactory). Make two close-packed triangles, using six balls 
in each and stack the triangles together as shown in Fig. 7-2. Use glue to 
hold the balls together. Add a thirteenth sphere, as shown in Fig. 7-3, so 
that it is above interstices of the two layers below. Add the fourteenth sphere 
directly below the thirteenth, so that your model has portions of four layers. 
Verify that the resulting model is a face-centered cube. 

This sequence of close-packed layers gives a periodic structure; the 
structure has cubic symmetry, the cubic unit cell is face centered, and 

FIG. 7-3 Stacking sequence for cubic close-packed structure, showing cubic 
unit cell. 



132 Introduction to Crystallography 

the space group is Fm3m. The unit cell is shown in Fig. 7-3, where the 
view is down one of the threefold axes of the cubic cell. We prepared this 
model by stacking layers in one direction; we imposed one threefold 
rotation axis in constructing the model. The great regularity of the 
arrangement led to three other directions equivalent to this threefold 
axis. 

Table 7-IIists some elements that have cubic close-packed structures. 
It should be observed that these are all elements that do not readily 
form polyatomic molecules; they are either metals or inert gases. The 
atoms of these elements pack together like rigid spheres. 

ExERCISE 7-2 Calculate the density of solid krypton at 58°K from the cell 
dimension in Table 7-1. 

TABLE 7-1 CELL DIMENSION OF 
CUBIC CLOSE-PACKED ELEMENTS 

Element (A) 

Ac 5.311 
Ag 4.086 
AI 4.050 
Am 4.894 
Ar 5.256 (4.2°K) 
Au 4.078 
Ca 5.575 
Ce 5.161 
Cu 3.615 
Ir 3.839 
Kr 5.721 (58°K) 
Ne 4.429 (4.2°K) 
Ni 3.524 
Pb 4.950 
Pd 3.890 
Pt 3.923 
Rh 3.803 
Sr 6.086 
Th 5.084 
Xe 6.197 (58°K) 
Yb 5.486 
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FIG. 7-4 Two unit cells of hexagonal close-packed structure. 

Since this structure represents the close packing of spheres, it is 
interesting to compute how efficient the packing is. In other words, 
how much space is wasted in the interstices between the spheres? If the 

radius of a sphere is r, the unit cell dimension is 2 v2r (verify this). The 

unit cell volume is, therefore, (2v2r)3 = 16v2r3• The volume of a 
spherical atom is 17Tr 3, and the volume actually occupied by the four 

atoms of the unit cell is 4(17Tr 3) = 167TrJ/3. The fraction of the total 
space occupied by the atoms is 

Vuoms = I6?Tr}3 = 7T- = 0.7405 
Vccll 16v2r3 3v2 

In this most compact arrangement of spheres, 25.95% of the space is 
vacant. 

7-3 Hexagonal close-packed structure 

The other common sequence of close-packed layers is just a repetition 
of Fig. 7-2. The third layer is directly above the first, the fourth above 
the second, and so on. Two unit cells of this structure are shown in 
Fig. 7.4. The unit cell is hexagonal, and the space group is P63fmmc. The 
unit cell dimensions in terms of the radius of a sphere are a= b = 2r, 

c = 4v2r;v'3, cfa = 2v2;v3 = 1.633. 

EXERCISE 7-3 Explain the meaning of each component in the space group 
symbol P63/mmc. 
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EXERCISE 7-4 Prove that cfa = 2v'2.;v'3 for the hexagonal close-packed 
structure. 

ExERCISE 7-5 Calculate the efficiency of packing for the hexagonal close­
packed structure. 

Table 7-2 lists the unit cell dimensions for some elements that have 

this structure. The cfa ratios in Table 7-2 suggest that the atoms are 
not exactly spherical in shape. Only helium has the ideal cfa ratio of 

1.633. The ratio is less than the ideal value for all of the other elements 

in the table, except for Cd and Zn. 

TABLE7-2 UNIT CELL DIMENSIONS OF 
HEXAGONAL CLOSE-PACKED ELEMENTS 

Element a(A) c <A> c/a 

Be 2.287 3.583 1.567 
Cd 2.979 5.618 1.886 
Co 2.507 4.069 1.623 
Dy 3.590 5.648 1.573 
Er 3.559 5.587 1.570 
Gd 3.636 5.783 1.590 
He 3.57 5.83 (1.45°K) 1.633 
Hf 3.197 5.058 1.582 
Ho 3.577 5.616 1.570 
La 3.75 6.07 1.619 
Lu 3.503 5.551 1.585 
Mg 3.209 5.210 1.624 
Nd 3.657 5.902 1.614 
Os 2.735 4.319 1.579 
Pr 3.669 5.920 1.614 
Re 2.762 4.457 1.614 
Ru 2.704 4.282 1.584 
Sc 3.309 5.273 1.594 
Tb 3.601 5.694 1.581 
Ti 2.950 4.686 1.588 
Tl 3.456 5.525 1.599 
Tm 3.538 5.555 1.570 
y 3.647 5.731 1.571 
Zn 2.665 4.947 1.856 
Zr 3.232 5.147 1.593 



SOME SIMPLE STRUCTURES 13S 

ExERCISE 7-6 Calculate the density of metallic cobalt from the data in 
Table 7-2. 

'1'··1 Body-centered cubic 

The third structure frequently encountered in the elements is body­
centered cubic, for which the space group is Im3m. Each atom is 
surrounded by eight other atoms at a distance of 2r = (av'3/2) (see 
Fig. 7-5). There are six next-nearest neighbors at distance a. This is not 

(a) 

(b) 

FIG. 7-S Two unit cells of body-centered cubic structure. (a) Spheres tangent 
to each other; (b) point-atom model. 
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TABLE 7-3 DIMENSION OF SOME BODY -CENTERED CUBIC 
STRUCTURES• 

Element (A) Element (A) 

Ba 5.025 Mo 3.147 
Cr 2.884 Na 4.291 
Cs 6.067 (78° K) Nb 3.300 
Eu 4.606 Rb 5.605 (78° K) 
Fe 2.866 Ta 3.306 
K 5.247 (78° K) v 3.024 
Li 3.509 w 3.165 

• Room temperature unless otherwise specified. 

b ----
0 

o* Q! O* Qi 

oo oo t 

a~ 
Qi O* oi O* 

O* Qi O* Qi 

oo oo 
Qi O* Qi 0* 

FIG. 7-6 Four unit cells of the diamond structure. 
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a close-packed structure, which would have twelve neighbors equally 
distributed around each atom, but the combination of eight nearest 
neighbors and six next-nearest neighbors is favored by several elements 
(see Table 7-3). 

ExERCISE 7-7 Calculate the efficiency of packing in the body-centered cubic 
structure. 

ExERCISE 7-8 Use data from Table 7-3 to calculate (a) the density of niobium 
metal and (b) the radius of a niobium atom. 

7-5 Diautond structure 

Four unit cells of the diamond structure are shown in Fig. 7-6. The 
space group is Fd3m, and the atoms occupy the positions (0,0,0; 

!.!.!)+face centering. The unit cell dimension of diamond is 3.567 A. 
This structure is also possessed by silicon (a= 5.431 A), germanium 
(a= 5.657 A), and gray tin (a= 6.491 A). 

EXERCISE 7-9 Calculate the density of diamond. 

ExERCISE 7-10 Calculate the efficiency of packing in the diamond structure. 

ExERCISE 7-11 (a) On a diagram of the diamond structure (Fig. 7-4), draw 
lines showing which atoms are bonded to which. 

(b) Calculate the length of the C-C bond in diamond. 
(c) Calculate the C-C-C bond angle. 

ExERCISE 7-12 Calculate the structure factors, in terms of atomic scattering 
factors f. for the (Ill), (200), and (220) planes of diamond. 

The great strength of diamond crystals is a consequence of the three­
dimensional network of strong covalent bonds that link each carbon 
atom to four other carbon atoms. 

7-6 Graphite structure 

Polymorphism is quite common among the elements; that is, under 
different conditions of crystallization different structures result. The 
diamond structure is actually thermodynamically unstable under 
ordinary conditions of temperature and pressure, although the rate of 
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b 

FIG. 7-7 Four unit cells of the structure of graphite. Network of bonds at 
z = 0 shown in black; network of bonds at z = ! shown in gray. 

transition to a more stable form is fortunately very slow. The stable 
polymorph of carbon is represented by the graphite structure in Fig. 7-7. 
The hexagonal unit cell has a= 2.456 A, c = 6.696 A. The space group 
is P63mc, and there are two atoms in positions 2a:O,O,z; O,O,t + z, 
with z~O. and two atoms in 2b: t.i,z; i.t.t+z, with z~O. The 
structure consists of layers in which each atom is bonded to three other 
atoms to form a hexagonal network. The layers are relatively far apart, 
which is evidence of only weak bonding between the layers, and this 
structure accounts for the cleavage and other characteristic properties 
of graphite. The stacking sequence may be described by translating one 
layer byi,t.t with respect to the other. 

ExERCISE 7-13 (a) Calculate the density of graphite. 

(b) Calculate the length of the C-C bond in a graphite layer. Compare 
this distance with the values for a carbon-carbon single bond, a double bond 
and the bond in the benzene molecule. 

(c) Calculate the distance between layers. 

7-7 Other elements 

The few simple structures we have described account for a surprising 
number of elements. Elements that form polyatomic molecules, such 
as N2, 0 2, and S8 , necessarily have more complex structures, and each 
structure is usually unique. A few monatomic elements, such as mer­
cury, have structures that may be regarded as distortions of close-packed 
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structures. Elemental boron has a very complex covalent structure 
involving icosahedra of boron atoms. Polymorphism is frequently 
observed in the elements, and iron (which we have listed as body­
centered cubic) exhibits several simple phases, whereas four modifica­
tions have been observed for manganese. 1 

,-.s Sodium claloride structure 
The sodium chloride structure was shown in Fig. 1-1, and the calcula­
tion of its structure factors was treated in Section 5-22. The space group 
is Fm3m, the Na+ ions occupy positions (4a): 0,0,0 +face centering, 
and the Cl- ions occupy positions (4b): !,!,!+face centering. Each 
ion has six neighbors of opposite charge at a distance of a/2. There are 
twelve next-nearest neighbors with like charge at a distance of ajv2 
along the face diagonals of the cubic unit cell. The unit cell dimension for 
NaCI is 5.64 A. Wyckoff1 lists 220compounds that have this structure. 
The electrostatic attractions between ions of opposite charges hold the 
structure together. The attractions are balanced by the repulsions of 
ions of the same charge and by a short-range potential due to the 
finite sizes of the ions. That is, the ions occupy space, and they cannot 
be pushed arbitrarily close together without generating very strong 
repulsive forces at short distances. The sizes of the ions evidently are 
quite important in determining the favorability of this structure. In 
fact, we can deduce a condition on the ratio of ionic sizes which must 
be satisfied in order for an RX compound to have the NaCI structure. 
The ions are in contact along a cell edge, so 

a= 2[r(Na+) + r(Cn] 

Ions of the same type cannot get closer than an ionic diameter. Now, 
ions of the same type approach each other most closely along the face 
diagonals of the cell. Assuming that r(Cn > r(Na+), 

~2 ~ 2r(cn or a~ 2v2r(cn 

2[r(Na+) + r(Cn] ~ 2vlr(Cn 

r(cn -
---- ~ v2+ 1 
r(Na+) 

1 The structures of the elements are summarized by R. W. G. Wyckoff, Crystal 
Structures, 2nd Ed., Vol. I, Interscience, New York, 1963. This volume also includes 
the structures of compounds with formulas RX and RX2 • The structures of other 
compounds are treated in other volumes of the Wyckoff series. 
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A necessary condition for the NaCI structure, is, therefore, that the 
ratio of ionic sizes be less than 2.414. According to tables of ionic sizes, 
r(Cn = 1.81 A and r(Na+) = 0.96 A, so this condition is satisfied for 
NaCI. 

Quantitative calculations of the energy liberated when an ionic 
crystal, such as NaCI, is formed from infinitely separated ions are given 
in most textbooks of physical chemistry.2 

7-9 Cesium cltloride structure 

This structure was the subject of Exercise 5-13. The space group is 
Pm3m, and there is a cs+ ion at 0,0,0 and a cJ- ion at!.!.!. One unit 
cell of the structure is shown in Fig. 7-8. Each ion is surrounded by 
eight ions of opposite charge at a distance of a vJ/2, corresponding to 
one half of the length of the body diagonal of the cube. Each ion has 
six neighbors of the same charge at a distance a. The radius ratio 
requirement for this structure is r(Cn/r(Cs+) ~ (v3 + 1)/2. This 
structure is, therefore, possible when the ions are nearly the same size. 
If the radius ratio exceeds 1.366, the CsCI structure is not possible, and 
the NaCI structure is preferred. 

FIG. 7-8 Structure o/CsCI. 

2 See, for example, W. J. Moore, Physical Chemistry, Jrd Ed., Prentice-Hall, 
Englewood Cliffs, New Jersey, 1962, p. 693, or T. L. Hill, Lectures on Matter and 
Equilibrium, Benjamin, New York, 1966, p. 88. 
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0 Ca )------~Car-------( Ca 0 

! Ca Ca ! 

8 8 
u u 

0 Ca ..... -----"{ Ca ~------1 Ca 0 

FIG. 7-9 A unit cell of the CaF2 structure. 

EXERCISE 7-14 Prove that theratior(Cn/r(Cs+)cannot exceed (VJ + 1)/2 
for the CsCI structure. 

7-10 Fluorite •tructure 

Ionic compounds of the type RX2, where r(X-)/r(R2+) :!6; (v'J + 1)/2 
may form the CaF2, or fluorite, structure. A unit cell of this structure, 
shown in Fig. 7-9, has four Cal+ ions at 0,0,0 +face centering and 
eight p- ions at !,!,!; i,i,i +face centering. The space group is 
Fm3m. The unit cell dimension of CaF2 is 5.462 A. 

EXERciSE 7-15 (a) Determine the number of nearest neighbors of each Ca2+ 
ion in the fluorite structure. What is the Cal+ -F- distance? 

(b) How many nearest neighbors does each p-ion have? 
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b 

0 Ti ~--------------------------~ Ti 0 

.l. T; J---8-o __ ' ____ G_o_o_---{ Ti o 

FIG. 7-10 The tetragonal Ti02 structure projected onto (001). Titanium ions 
are at 0,0,0; t,;,;. Oxygen ions are at 0.30,0.30,0; 0.80,0.20,-!; 0.70,0.70,0; 
0.20,0.80, ;. 

7-11 Rutile structure 

The structure possessed by rutile, Ti02, by cassiterite, Sn02, and by a 
number of other substances with small cations is shown in Fig. 7-10. 
The structure is tetragonal; for Ti02, a= 4.594 A, c = 2.958 A; for 
Sn02, a = 4.737 A, c = 3.186 A. The space group is P42/mnm, the 
Ti4+ ions occupy positions (2a): 0,0,0; !.!.!.and the 0 2- ions occupy 
positions (4/): ±(x,x,O; t + x,t- x,t) with x very nearly 0.30. 
The titanium ion is surrounded by six oxygen ions which form a slightly 
distorted octahedron. 

ExERCISE 7-16 Calculate the distance from the Ti4+ ion at;,;, 1 in the rutile 
structure to each of its six 0 2- neighbors. 

ExERCISE 7-17 Describe the nearest neighbor environment of an 0 2- ion 
in Ti02• Give the distances wherever necessary. 
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7'-12 Zinc sui/ide structure 

Zinc blende, ZnS, is cubic. The Zn2+ ions are at 0, 0, 0 + face centering, 
and the S2- ions are at i. i, i + face centering (see Fig. 7-11 ). The space 
group is F43m, and the lattice dimension for ZnS is 5.409 A. If the zinc 
and sulfur atoms were identical, this would be the diamond structure. 
Each atom in ZnS is surrounded by a regular tetrahedron of atoms of 
the opposite type. 

EXERCISE 7-18 Calculate the structure factors, in terms of/, for the (111), 
(200), and (220) planes of cubic ZnS. Compare with the corresponding 
results for diamond from Exercise 7-12. 

7'-13 Zincite structure 

Zincite, ZnO, has a hexagonal structure. The space group is P63mc, and 
both types of atom occupy positions (2b):t, i,z;i, t.t + z; with z equal 
to 0 for zinc and about i for oxygen. The unit cell dimensions for ZnO 
are a= 3.250 A, c = 5.207 A. 

b 

0 Zn )-------( Zn )-------( 0 

0 

! Zn e Zn ! 

.! 0 b)---

8
-S_i_-(:n)---

8
-s_*_-(Zn o 

FIG. 7-11 The cubic ZnS structure. 
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As in the case of the zinc bien de structure, each atom is surrounded 
by a tetrahedron of atoms of the opposite type, and both structures 
consist of continuous networks of interconnected tetrahedra. However, 
in the case of zincite, symmetry does not require the tetrahedra to be 
regular. It is instructive to prepare models of these two structures. 

EXERCISE 7-19 Draw a diagram of the zincite structure. Select one zinc atom 
in your diagram and show the four oxygen atoms that surround it. Repeat 
for an oxygen atom and its four zinc neighbors. 

EXERCISE 7-20 Beryllium oxide, BeO, has the zincite structure with 
a= 2.698 A, c = 4.380 A, and z = 0.378. Calculate the distance from a 
beryllium atom to each of its four neighbors. 

Other structures 

The structures described in this chapter represent only a few of the 
stru~tural types observed in the simple compounds. The examples we 
have included have been selected because they occur so frequently and 
because they serve to illustrate structural principles. The crystal 
structures of molecular compounds are usually all different and are 
not so readily classified. The reader is referred to structural papers in 
journals such as Acta Crystal/ographica and Inorganic Chemistry, to 
Wyckoff's compilation of crystal structures, 1 to the summary of 
structures in Structure Reports,3 and to tabulations of unit cell data such 
as Crystal Data,4 and Pearson's descriptions of intermetallic 
structures. 5 

3 Structure Reports, published annually by N. V. A. Oosthoek's Uitgevers Mij, 
Utrecht, describe the results of crystal structure analyses. Structures published 
before 1940 are described in Strukturbericht. 

4 Crystal Data, Determinative Tables (J.D. H. Donnay, G. Donnay, E. G. Cox, 
0. Kennard, and M. V. King, eds.), Am. Crystallographic Assoc., 1963, tabulates 
unit cell dimensions for all published structures, other than intermetallic compounds. 

5 W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals, Vol. 1, 
1958; Vol. 2, 1967, Pergamon, New York. 
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THE 230 SPA()FJ GROUPS 

Point Space 
group group 

Triclinic 
1 PI 
I PI 

Monoclinic 
2 P2 

P21 

C2 
m Pm 

Pc 
Cm 
Cc 

2/m P2/m 
P2tfm 
C2/m 
P2/c 
P2tfc 
C2/c 

Orthorhombic 
222 P222 

P2221 

P21212 
P212121 

C2221 

Orthorhombic ~cont'd.) 
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Point Space 
group group 

Orthorhombic 
C222 
F222 
1222 
12,2,2, 

mm2 Pmm2 
Pmc21 

Pcc2 
Pma2 
Pca21 

Pnc2 
Pmn21 

Pba2 
Pna21 

Pnn2 
Cmm2 
Cmc21 

Ccc2 
Amm2 
Abm2 
Ama2 
Aba2 
Fmm2 
Fdd2 

Orthorhombic (cont'd.) 



146 Introduction to Crystal/ogrtlphy 

Point Space Point Space 
group group group group 

Orthorhombic Tetragonal 

/mm2 /4 
/ba2 /41 
/ma2 4 P4 

mmm Pmmm 14 
Pnnn 4/m P4/m 
Pccm P41fm 
Pban P4/n 
Pmma P41/n 
Pnna 14/m 
Pmna 14Jfa 
Pcca 422 P422 
Pbam P4212 
Peen P4122 
Pbcm P41212 
Pnnm P4122 
Pmmn P41212 
Pbcn P4322 
Pbca P43212 
Pnma /422 
Cmcm /4122 
Cmca 4mm P4mm 
Cmmm P4bm 
Cccm P41cm 
Cmma P41nm 
Ceca P4cc 
Fmmm P4nc 
Fddd P41mc 
Immm P~bc 
/bam 14mm 
lbca 14cm 
Imma /41md 

141cd 
Tetragonal 42m P42m 

4 P4 
P42c 

P41 
P421m 

P41 
P421c 
P4m2 

P43 P4c2 
Tetragonal (cont'd.) Tetragonal (cont'd.) 
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Point Space Point Space 
group group group group 

Tetragonal Trigonal 

P4b2 P3121 
P4n2 P3212 
14m2 P3221 
14c2 R32 
142m 3m P3ml 
142d P3lm 

4/mmm P4/mmm P3cl 
P4/mcc P3lc 
P4/nbm R3m 
P4/nnc R3c 
P4/mbm 3m P3lm 
P4/mnc P3lc 
P4/nmm P3ml 
P4/ncc P3cl 
P42/mmc R3m 
P42/mcm R3c 
P42/nbc 
P42/nnm Hexagonal 
P42/mbc 6 P6 
P42/mnm P61 

P42/nmc P65 

P42/ncm P62 

14/mmm P64 

14/mcm P63 
14.famd () p() 

14.facd 6/m P6/m 
P63/m 

Trigonal 622 P622 
3 P3 P6122 

P31 P6522 
P32 P6222 
R3 P6422 

3 P3 P6322 
R3 6mm P6mm 

32 P312 P6cc 
P321 P63cm 
P3112 P63mc 

Trigonal (cont'd.) Hexagonal (cont'd.) 
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Point Space Point Space 
group group group group 

Hexagonal Cubic 
~m2 P~m2 432 P432 

P~c2 P4232 
P~2m F432 
P~2c F4132 

6/mmm P6/mmm /432 
P6/mcc P4332 
P63/mcm P4132 
P63 jmmc 14.32 

43m P43m 
F43m 

Cubic 143m 
23 P23 P43n 

F23 F43c 
/23 143d 
P213 m3m Pm3m 
12t3 Pn3n 

m3 Pm3 Pm3n 
Pn3 Pn3m 
Fm3 Fm3m 
Fd3 Fm3c 
1m3 Fd3m 
Pa3 Fd3c 
la3 lm3m 

Cubic (cont'd.) Ia 3d 



.tlppendix 2 

THE REtJIPROtJAL 

LATTitJE 

An essential part of the language of crystallography is concerned with 
the reciprocal lattice. Many seemingly involved geometric calculations 
become quite simple when considered with the aid of this concept. We 
will attempt here only a brief description of what it is and why it is 
useful. 

In Chapter 3 we learned how to describe the orientation of planes by 
means of their Miller indices, and Eq. (3-3) gave us a means of calculat­
ing the distance between the members of the set of parallel planes 
denoted by these indices. It is rather difficult to visualize the orientations 
of these planes, particularly when the indices may not be small, and 
when the coordinate system defined by the unit cell edges may be 
oblique. It is easier to visualize the location of a point in space, so we 
will define one point for each set of planes as follows. We construct a 
line from the origin perpendicular to the planes. We place a point at a 
distance 1/d from the origin along this line, where dis the interplanar 
spacing. This point is the reciprocal lattice point corresponding to the 
set of planes. The set of all such points, one for each set of parallel 
planes charact~rized by a triplet of integral Miller indices, constitutes 
a lattice. 

149 
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The advantage of using reciprocal distances may be appreciated by 
considering Bragg's law in the form 

I 2sin 8 
d=-,\-- (A2-I) 

From our films we obtain 8 values; the higher the value of 8 the lower 
the corresponding value of d. Our diffraction patterns may thus be 
regarded as photographs of the reciprocal lattice, distorted by the sine 
function (the precession camera, in fact, gives an undistorted picture 
of the reciprocal lattice). The construction in Fig. A2-I, due to P. P. 
Ewald, shows how this principle can be used to simplify problems in 
X-ray diffraction. Point 0 is the origin of the reciprocal lattice. A beam 
of X rays, of wavelength ..\, is passing in the direction AO. We con­
struct a sphere of radius If..\ centered on the line AO and passing through 
the point 0. We now keep the sphere fixed and rotate the crystal until 

FIG. A2-1 Ewald construction. Reciprocal lattice centered at 0 on a sphere 
ofradius 1/A. 
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the reciprocal lattice point P is on the surface of the sphere. The 
distance OP is 1/d, by the way we defined the reciprocal lattice. The 
distance AO is 2/A, and APO is a right triangle. Therefore, 

. OP 1/d ).. 
smi:PAO= Ao=2/>.. =u 

Therefore, i: PAO = 8, by Bragg's law, so when the point Pis on the 
surface of the sphere, Bragg's law is satisfied, and the planes correspond­
ing to this point are in reflecting position. By elementary geometry, the 
angle PCO is 28, so CP makes an angle 28 with the incident X-ray beam, 
and CP represents the direction of the reflected ray. 

If we want to know how to orient the crystal so that the planes 
represented by reciprocal lattice point R are in reflecting position, we 
need only consider how we must tilt the crystal so that R is on the 
surface of the sphere. A point such as T of Fig. A2- I can never be made 
to intersect the sphere, so this plane is inaccessible, corresponding to 
sin8 > I. However, we can make the sphere larger by decreasing the 
wavelength, and point T can be obtained by using shorter wavelengths. 
(Some writers define the reciprocal lattice distances in terms of A/d, and 
use a sphere of unit radius; we prefer to treat the reciprocal lattice as a 
property of the crystal only.) 

The reciprocal lattice concept facilitates many crystallographic 
calculations. For example, the value of 1/d may be computed as the 
length of the reciprocal lattice vector with coordinates h,k, I referred to 
a coordinate system based on reciprocal axes. Mastery of this concept 
is indispensable to crystallographers, but more extensive treatment 
cannot be given here. 
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THE POWDER METHOD 

The powder method is somewhat outside the intended scope of this 
book. However, its widespread use and importance make a short 
discussion of the principles desirable. 

Although the majority of solid substances are crystalline in nature, 
it is only in rare cases that a solid sample consists of one large crystal. 
Usually, the sample will be polycrystalline; that is, it is composed of 
many tiny crystals, and these crystals may have completely random 
orientations. When such a sample is irradiated with X rays, for every 
set of planes of the lattice there will be some crystals that are correctly 
oriented so that Bragg's law is satisfied and reflection will take place. 
For example, there will be some crystals whose (231) planes make an 
angle () with the X-ray beam which is given by 

. 8 .\ SID =--
2d2Jl 

If the material is cubic, this becomes 

sin8 = .\vl4 
2a 

153 



154 Introduction to Crystallography 

The reflected rays will also be at angle 8 with the (231) planes, and the 
angle between the incident beam and the reflected beam will be 28. 
The locus of all rays that make a particular angle of 28 with the incident 
beam is a cone whose half-angle is 28. The powdered sample will, 
therefore, produce a cone for each set of indices, h,k,l, for which 
reflection is possible. If a photographic film is placed in the path of this 
radiation, a curved line will be produced for each set of planes of the 
lattice, and the corresponding 8 can be obtained from the position of 
ihe line on the film. Alternatively, electronic methods, such as Geiger 

Hole in film for incident 
X-ray beam""\ 

\() 

(a) 

(b) 

Photographic film wrapped 
about sample 

\Hole in film for trap for 
undiffracted beam 

((('b))) I 

FIG. A3-l (a) Production of three powder pattern lines. (b) Film after 
development. 
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or proportional counters, can be used to detect and measure the 
diffracted X rays. 

The experimental arrangement is shown in Fig. A3-Ia. The photo­
graphic film is wrapped cylindrically about the sample. Each crystallite 
which is correctly oriented for reflection from some set of planes will 
give rise to a diffracted ray, which will produce a spot if it hits the film. 
The continuous line which is observed is composed of the spots due to 
a large number of crystallites. Figure A3-I b shows the film after it has 
been unwrapped and developed. Only three lines are shown here for 
simplicity; a typical pattern might have from 10 to 100 lines. 

If the crystal structure is cubic, it is possible to analyze completely 
the powder pattern and to determine the Miller indices of each line 
and the dimension of the unit cell. For the other crystal systems this 
complete analysis may not be possible, and the powder pattern cannot 
give all the information accessible to single crystal methods. However, 
even in these cases the powder pattern serves to identify the substance. 
Each crystalline material produces a characteristic powder pattern, 
and the positions and intensities of the lines can show what a material 
is and can even serve to identify the components of a mixture. 





SOJ..,UTIONS TO EXERUISES 

1-1 5.64 A. 
1-2 (a) 210 A3 ; (b) a= 16.16 A, b = 13.00 A, c = 1,00 A, oc = 90°, p = 90°, 

y = 45.6°; (c) 1050 A3 ; (d) 5.00, 5 lattice points. 
1-3 (a) 2.13 A; (b) 4.00 A. 
2-4 After filling in all of the obvious products in the table, make use 

of such relationships as b(a2) = (ba)a = (a2b)a = a(aba) = ab, and 
remember that each element must appear once in each row and column. 

2-6 (a) 0 11 ; (b) 0 11 ; (c) r,. 
2-7 Ortho, c2P; meta, c2P; para D211· 

2-8 C2H2, D..,11 ; C2HC1, C..,p; C30 2, D..,.; CH2CF2, C2p; trans-CHFCHF, 
C211 ; cis-CHFCHF, C2p. 

2-9 D3• 

2-10 D 411• 

2-11 S02F2, C2P; SOl-. T,; Zn(NH3)i+, T,; CFC13, C3p; CF2Cl2, C2P· 
2-12 (a) D311 ; (b) D 211• 

2-13 This is the crown configuration; the structure may be generated by 
successive applications of symmetry operation Sa. (Note that Sa is 
not the same group as D411, however, since Sa does not generate the 
diagonal mirror planes.) 

2-14 CrC163-, O~;CrC15Br3-, C4p; trans-CrC14Br23-, D 411 ; cis-CrC14Br23-, 

c2P; one isomer of CrClJBrJJ- has CJp symmetry, the other has c2P 
symmetry. 
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2-15 (a) planar; (b) trigonal pyramid. 
2-16 (a) D .. 11 ; (b) D2,.; (c) C4.,; (d) D3,.. 

3-1 Lattice points at O,t,t and t.t,O imply a lattice point at t,O,t, so the 
B face would also have to be centered. 

3-2 Choose a primitive monoclinic cell with vectors to the points t,O,t 
and t.O,-t. 

3-3 If points t.t.t and t,O,t are lattice points, then O,t,O must also be a 
lattice point. Similarly, t.O,O and O,O,t must be lattice points, and a 
primitive orthorhombic cell can be chosen with axes a/2, b/2, and c/2. 

3-4 Tetragonal symmetry would require B centering as well as A centering. 
Both A and B centering implies face centering (see Exercise 3-1 ), and a 
body-centered tetragonal lattice could be chosen. 

3-5 (a) 114.13 A3 ; (b) a= 6.09 A; c = 10.67 A; (c) 342.4 A3• 

3-6 a = 6.00v2 = 8.48 A. The classification is based on symmetry. A cubic 
crystal has four threefold axes, whereas a rhombohedral crystal has 
one axis of threefold symmetry. 

3-7 (a) 432; (b) 025; (c) 3 0 12; (d) 650; (e) 650. 
3-10 3.27 A. 
3-11 4.88 A. 
4-1 Pd(l) has fourS neighbors at 2.396 A; Pd(2) has fourS neighbors at 

2.267 A; Pd(3) has two S neighbors at 2.447 A and two at 2.233 A. 
The four neighbors of a sulfur atom are Pd(l) at 2.396 A, Pd(2) at 
2.267 A, Pd(3) at 2.447 A, and Pd(4) at 2.233 A. 

4-2 Hg-Br(l) = 2.504 A, Hg-Br(2) = 2.499 A, angle= 180°. 
4-3 General positions: x,y,z; .i,y,z; x,.Y,t + z; .i,y,t + z. Special 

positions: O,y,z; O,.Y,t + z. Special positions: t,y,z; t • .Y.t + z. 
4-4 General positions: x,y,z; ji,x- y,z; y- x,.i,z; x,x- y,z; y- x,y,z; 

ji,.i,i. Special positions: O,O,z; O,O,z. There are also threefold axes 
parallel to c through the points x = i. y = t and x = t. y =-f. 

4-5 Two at 1.606 A, two at 1.599 A. 
4-6 Bond length= 1.971 A. Each Cl atom has two neighbors at 3.34 A, 

two at 3. 72 A, four at 3.84 A, and two at 3.98 A. 
4-7 (b) Si, C3.,; 0(1), D311 ; 0(2), C 211 ; (c) one 0(1) at 1.562 A, three 0(3)at 

t.534 A. 
4-8 By suitable shifts of origin, both sets of positions can be written C 

centering± (x,y,z; t- x,y,t- z). 
5-1 n =I, 72S; n = 2, 84.3°. 
5-2 ac0 = 10°, Llac = 0.013°; ac0 = 1°, Llac =0.124°; IXo = 0.1°, Llac = 0.422°. 
5-4 Average 6.05 A. 
5-5 (a) 5.50°; (b) 11.04°; (c) 32.0°; (d) 27.7°. 
5-6 (a) 8.14 A; (b) a=6.50 A; c=8.49 A; {J=94.9°; (c) V=448 A3, 

density = 2.35 g/ml. 
5-7 For 112,8 = 17.77°; for all others, 8 = 12.89°. 
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5-8 (a) (-1)"; (b) -i; (c) i; (d) Take logarithm of -1 = exp[1Ti(2n + 1)], 
ln(-1) = 1Ti(2n + 1). 

5-10 (a) x,y,z; y,x,z + t; x,y,z + t; y,x,z + t; (b) Show that these 
structure factors differ only by a constant complex factor. For example, 
F(khl) = e2" 11 ' 4 F(hkl), so these planes will give equal intensities. 

5-11 Write formulas for these structure factors and observe that they differ 
at most by the sign of the exponent. 

5-13 All reflections present. The structure factor is the sum of the atomic 
scattering factors when h + k + I is even, and the difference when 
h + k +I is odd. This lattice is primitive. The CsCl structure is primitive 
cubic, contrary to the opinion of many textbook writers. 

5-15 (a) hkl,h + k = 2n; hOI,/= 2n; (b) hkl,k +I= 2n; Okl,k = 2n; hO/,h = 
2n; (c) hkl,h + k +I= 2n; hkO,h = 2n. 

5-16 (a) This centering violates the sixfold symmetry required for the 
hexagonal system. (b) a= b = 8.77 A, c = 7.17 A, IX= fJ = 90°, 
y = 89.8°. (c) In terms of these "tetragonal" lattice vectors, a hkO 
Weissenberg photograph or precession photograph would provide a 
useful indication of the true symmetry. Complete verification of 
tetragonal symmetry would require additional pictures, but coesite 
actually is monoclinic. 

5-17 (a) Reflections missing unless -h + k +I= 4n; (b) this distribution of 
lattice points lacks tetragonal symmetry; (c) a= 22.58 A, b = 22.58 A, 
c = 12.03 A, fJ = 118.0°. 

6-2 A possible set is 0.00,0.00; 0.30,0.31; 0.85,0.52. Equally valid 
structures are obtained by changing the signs of all of these coordinates 
or by any shift of origin. 

7-2 2.972 g/ml. 
7-3 P indicates a primitive lattice; 63 indicates a sixfold screw axis 

parallel to c; first m indicates a mirror plane normal to c; second m 
indicates mirror planes normal to a and b (and symmetry-related 
directions); c represents glide planes with glide component c/2 and 
orientation including the c and a axes (and symmetry-related 
directions). 

7-5 Same as cubic close-packed; 74.05%. 
7-6 8.84 g/ml. 
7-7 ,/31T/8 = 0.6802. 
7-8 (a) 8.59 g/ml; (b) 1.429 A. 
7-9 3.515 g/ml. 

7-10 v'31T/l6 = 0.3401. 
7-11 (b) 1.545 A; (c) 109.47°. 
7-12 F(lll) = 4f(l - i), F(200) = 0, F(220) =Sf 
7-13 (a) 2.281 g/ml; (b) graphite, 1.418 A; single bond, 1.544 A; double 

bond, 1.334 A; triple bond, 1.206 A; benzene, 1.395 A; (c) 3.348 A. 
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7-15 (a) Eight neighbors at 2.366 A; (b) four neighbors. 
7-16 Two at 1.95 A, four at 1.97 A. 
7-17 Two Ti at 1.97 A, one Ti at 1.95 A, one 0 at 2.60 A. 
7-18 F(lll) = 4(/z,- i/5), F(200) = 4(/z,- / 5), F(220) = 4(/z, + / 5). 

7-20 One oxygen neighbor at 1.642 A, three at 1.651 A. 



INDEX 

Abelian groups, 31 
Absolute configuration, 108 
Acetylacetonate, 46 
Acetylene, 46 
Acta Crystallographica, 127, 144 
Actinium, 132 
Alum, 13 
Aluminum, 132 
Americium, 132 
Ammonia molecule, 46 
Anomalous dispersion, I 08 
Anthracene, 46 
Argon, 132 
Atomic scattering factors, 105-106 
AuCI4-,46 
Axes, screw, 70-71 

Barium, 136 
Barrett, C. S., 2 
Benzene, 2, 5, 13 

symmetry, 40 
Beryllium, 134 
Beryllium oxide, 144 
BtoHu[S(CHJ)lh. 119 
Body-centered cubic, 135-137 
Boron, 139 
Bragg, W. H., 92 

161 

Bragg, W. L., 92 
Bragg's law, 92-94, 150, 153 
Bravais lattices, 55-59 

table, 60-61 
Buerger minimum function, 121-122 
Buerger, M. J., 97-98, 121, 123 
Buerger precession camera, 97-98 

Cadmium, 134 
Calcium, 132 

form factors, 105 
Calcium fluoride, 141 
Carbonate ion, 46 
Cassiterite, 142 
Cauchy inequality, 123-124 
Cellobiose, 123 
Center of inversion (see Center of 

symmetry) 
Center of symmetry, 19, 25 
Centering, 10-11 

extinction conditions, 110 
Centrosymmetric crystals, structure 

factors, 106-107 
Cerium, 132 
Cesium, 136 
Cesium chloride, 140 

structure factors, 110 



162 

CFCh,46 
CF2Ciz, 46 
CHBrCICHBrCI, 19 
cH3ca3, 31-33 
CHzCI2 , 33, 35 
C2HCI,46 
C2H2F2,46 
Chlorine, 82-83 
Chloroform, 15-16, 33 
Chromium, 136 
Close packing, 129-134 
C302,46 
Cobalt, 134 
Cochran, W., 108, 125-126 
Coesite, 111-112 
Coordinates, fractional, 9 
Copper, 132 
Copper sulfate, 89 
Cotton, F. A., 14 
Cox, E. G., 144 
CrCI63-, 46 
CrChBr13-, 46 
CrCI5Br3-, 46 
Crystal, definition, 2 
Crystal data, 144 
Crystal systems, 50--53 

tables, 51 , 60--61 
Cubic close packing, 131-133 
Cubic point groups, 40--42, ~5, 51, 

60--61 
Cubic system, 52-53, 60--61 
Cyclopropane, 46 

Decaborane, 125 
Diamond structure, 137 
Dichlorobenzene, 46 
Diffraction grating, 87-88 
Dimethoxybenzophenone, 126 
Direct methods, 123-126 
Distance between points, 9 
Dodecahedron, 42 
Donnay, G., 144 
Donnay, J.D. H., 144 
Dysprosium, 134 

Electron density, 100 
Fourier expansion of, 102-103 

Elements of symmetry (see Symmetry) 

Equivalent points, 6 
Equivalent positions, 74-75 

choice of origin in, 81-82 
Erbium, 134 

INDEX 

Errors in intensity measurements, 127 
Ethane, 18 
Europium, 136 
Ewald, P. P., 89, 150 
Ewald reciprocal lattice construction, 

150 
Extinctions 

general reflections, 110 
special reflections 

due to glide planes, 110--111 
due to screw axes, 111 

Faces, I, 63 
Ferrous ion, form factors, 105 
Fluorite structure, 141 
Form factors, 105-106 
Four indices in hexagonal system, 109 
Fourier expansion of electron density, 

102-103 
Fourier series, 100--102 
Fractional coordinates, 9 
Friedel's law, 107-108, 121 
Friedrich, W., 89 

Gadolinium, 134 
Geiger counters, 103, 154 
Germanium, 137 
Glide planes, 71 

extinctions due to, 110--111 
Gold, 132 
Graphite, 137-138 
Grating, 87-88 
Greenberg, D. A., 10 

Hafnium, 134 
Harker, D., 123 
Harker-Kasper inequalities, 123-125 
Hauptman, H., 126 
Hauptman-Karle methods, 126 
Hauy, R. J., 66 
Heavy atom method, 118-119 
Helium, 134 
Hemoglobin, 121 



INDEX 

Hermann-Mauguin notation, 15-22, 
54-55 

Hexagonal 
point groups, 51, 60-61 
system, 52, 60-61 
trigonal, distinguished from hexag-

onal, 59-63 
Hexagonal close packing, 133-134 
Hill, T. L.; 3, 140 
Hochstrasser, R. M., 14 
Holmium, 134 

Icosahedron, 42-43, 139 
Identical points, 6 
Identity, 18, 25 
Improper rotation axes (see Rotation 

axes, improper) 
Indices (see Miller indices) 
Inequalities, 123-125 
InorganicChemistry(joumal), 127,144 
Intensities, 103 

errors in measurements, 127 
International Tables for X-Ray Crys-

tallography, 76, 100, 105-106, Ill 
Interplanar spacing, 67-68 
Iridium, 132 
Iron, 136, 139 
Iron acetylacetonate, 46 
Iron acetylacetonate chloroformate, 

cell dimensions, 112 
Isomorphous replacement, 119-121 

James, R. W., 103 

Karle, J., 126 
Kasper, J. S., 123-125 
Kendrew, J. C., 121 
Kennard, 0., 144 
King, M. V., 144 
Knipping, P., 89 
Krypton, 132 

Lanthanum, 134 
Lattice points, 4-7 
Laue,M.von,88-89 
Laue equations, 89 
Laue groups, 51, 108-109 
Lead, 132 

Least squares, 128 
Linear molecules, 33, 35, 39-40 
Lipson, H., 108, 126 
Lithium, 136 
Lutetium, 134 

Magnesium, 134 
Manganese, 139 
Mercuric bromide, 77-79 
Mercury, 138 
Miller indices, 65-67, 149 

generalization of, 94 
Minimum function, 121-123 
Mirror planes, 16-18, 25 

diagonal, 18 
horizontal, 17-18 
vertical, 18 

Molybdenum, 136 
Molybdenum pentachloride, 46 
Monoclinic 

point groups, 51, 60-61 
system, 50-51, 60-61 

163 

calculation of Bragg angle, 98 
calculation of interplanar spacing, 

68 
Moore, W. J., 140 
Morphology, 1 
Multiplication table for groups, 28-30 

examples of 
c2b• 32 
C2vo 28 
C3vo 29 
Dlb• 37 
s •. 36 

Myoglobin, 121 

Neodymium, 134 
Neon, 132 
Net, 7 
Nickel, 132 
Niobium, 136-137 
Nitrogen molecule, 46, 138 
Nye, J. F., 48, 72 

Octahedron, 41-42 
Orthorhombic 

point groups, 51, 60-61 
system, 51-52, 60-61 



164 

Oscillation photographs, 92 
Osmium,l34 
Oxygen, 138 

Palladium, 132 
Palladium sulfide, 77 
Patterson, A. L., 114 
Patterson function, 114-119 
Patterson peaks 

density, 117-118 
width, 117-118 

Pearson, W. B., 144 
Periodicity, 85-86, 100 
Perutz, M. F., 121 
Phase problem, 103-104 
Phosphorus pentachloride, 17 
Physical properties and symmetry, 

72-73 
Planes 

glide, 71 
mirror (see Mirror planes) 

Planes in crystals, 63-65 
Platinum, 132 
Point groups, 26-28 

descriptions 
Cn, 31 
Cnh• 31 
Cnv, 32-33 
cubic, 40-42 
o •. 34,36 
o.d. 40 
Dnht 36 
icosahedral, 42-43 
s •. 33-34 

determination, 43-44 
(see also Point symmetry) 

Point symmetry, 23-24 
(see also Point groups) 

Polycrystalline, I, 153 
Polymorphism, 137 
Potassium, 136 
Potassium chloride, structure factors, 

110 
Powder patterns, 153-155 
Praseodymium, 134 
Precession camera, 97-99, 112, 150 
Primitive, 10-11 
Probability relationships, 126 

INDEX 

Proportional counters, I 03, 155 

Quartz, 81 

Rational indices, law of, 66-67 
Reciprocal lattice, 149-151 
Refinement, 127-128 
Reflection of X rays, 92-93 
Residual, 127 
Rhenium, 134 
Rhodium, 132 
Rhombohedral 

lattice, 61-63 
system, 52 
(see also Trigonal) 

Rontgen, W., 88 
Rotating crystal method, 90--92 
Rotation axes, I 5, 25 

improper, 20--23, 25 
Rotatory inversion axes, 22-23, 25 
Rotatory reflection axes, 21-23, 25 
Row, 7 
Rubidium, 136 
Rudman, R., 98 
Ruthenium, 134 
Rutile structure, 142 
R value, 127 

Sayre-Cochran-Zachariasen relation-
ship, 125-126 

Sayre, D. M., 125 
Scandium, 134 
Scattering factors, 105-106 
Schoenflies notation, I 5-23, 30-42 
Scintillation counters, 103 
Screw axes, 70--71 

extinctions due to, Ill 
SCZ method, 125-126 
SF6 , 42 
SF5Cl, 46 
Silicon, 137 
Silicon dioxide, 81, 83, Ill 
Silver, 132 
Snowflakes, 13 
Sodium,l36 
Sodium chloride, 2-3, 5, 9, 13 

ionic sizes, 139-140 
structure, 2-3, 139-140 
structure factors, 109-110 



INDEX 

Sodium thiosulfate, 98 
S02F2, 46 
Space groups, 71-72 

table of, 145-148 
tables, 76 

examples of use, 77-81 
Space lattice, 7 
Spacing between planes, 67--68 
Special positions, 75-76 
Standard deviations of parameters, 128 
Strontium, 132 
Structure factors, 106 

for centrosymmetric crystal, 106-1 ('7 
sodium chloride, 109-110 
unitary, 123 

Structure reports, 144 
Sulfate ion, 46 
Sulfur molecule, 46, 138 
Superposition method, l2J -123 
Symmetry 

definition, 14 
elements, 14-15 
limitation in crystals, 53-54 
operations, 14-15 
restrictions imposed on unit cell di­

mensions, 48-50 
translational, 69-70 

Symmetry combinations, limitation in 
finite groups, 44 

Tantalum, 136 
Temperature factor, 106, 114 
Terbium, 134 
Tetragonal 

point groups, 51, 60--61 
system, 52, 61 

Tetrahedron, 40-41 
Thallium, 134 
Thermal vibration, 106, 114 
Thorium, 132 
Thulium, 134 
Tin, 137 
Tin dioxide, 142 
Titanium, 134 
Titanium dioxide, 142 
Triclinic 

point groups, 51, 60--61 
system, 52, 60--61 

165 

Tridymite, 83 
Triethyl ammonium halides, 119-120 
Trigonal 

hexagonal, distinguished from trig­
onal, 59--63 

point groups, 51, 60--61 
system, 52, 60--61 

Tungsten, 136 
Twofold axis, conditions imposed on 

lattice dimensions, 48-50 

Unit cell 
classification, 47-48 
definition, 7 
restrictions on dimensions, 48-50 
shape, 7 
volume, 9 

Unitary structure factor, 123 

Vanadium, 136 
Vector map, 114-118 
Volume of unit cell. 9 

Wallpaper, 5--6 
Water molecule, 14-16, 24, 33 
Weissenberg camera, 95-99, 112 
White, J. E., 14 
Wood, E. A., 48 
Wurtzite (see Zincite structure) 
Wyckoff, R. W. G., 75, 139, 144 

Xenon, 132 
X rays, 88 
X-ray diffraction, 88-89 

Ytterbium, 132 
Yttrium, 134 

Zachariasen, W. H., 103, 125 
Zeitschrift fUr Kristallographie, 127 
Zinc, 134 
Zinc blende, 143 
Zinc oxide, 143-144 
Zinc sulfide structure, 143 
Zincite structure, 143-144 
Zirconium, 134 
Zn(NH3) 4 2+, 46 



Introduction to 
Crystallography 

Donald E. Sands 
'This is truly a delightful monograph" - Canadian Chemical Education. 

Designed as a useful, accessible introduction to the logical development of basie 
crystallographic concepts, this book presents important principles in a clear, 
eoncise manner that will enable the nonspecialist to read and comprehend 
crystallographic literature. Explanations are concise and mathematical prerequi­
sites have been kept to a minimum. 

In the first four chapters, the author presents the vocabulary of crystallogr<\ph} , 
with discussions of lattice points, unit cells, symmetry, point groups, cs;ystal 
systems, space groups a11d equivalent positions. The principles of x-ray diffraction 
and methods of determining crystal structures are summarized in the next two 
chapters. The final chapter describes various simple structures. Appendixes list the 
230 space groups, introduce the reciprocal lattice and describe the powder method. 
A well-chosen selection of problems (with solutions) encourages self-study. 

Ideal as the basis for a course in crystallography and highly useful as an adjunct to 
physieal chemistry cour~es, this book will also serve as an excellent reference for 
practicing chemists, mineralogists, metallurgists and other workers in the field . 

Unabridged Dover (1993) republication of the corrected (1975) edition published 
by W. A. Benjamin, Inc., Reading, Mass. , 1969. 3 appendixes. Exercises and 
solutions. Index. ll4 illustrations. xii + I65pp. 5~~ >< 8J2. Paperbound. 

Free Dover Mathematics and Science Catalog (59065-8) available upon request. 

Cover de,ign b} Paul E. 1-..ennprlv 

See every Dover book in pr 
www.doverpublicatlons.co 

$12-95 IN 
$19-50 IN 

USA 
CANA A 


