Методическое руководство по работе с модулем MSO.

MSO - Оптимизатор формы контуров извлекаемых запасов

Формирование индивидуальных контуров выемочных единиц и использование их в планировании.

Последовательность действий по вкладке Input Data показана в видео файле: MSO 1 Input Data.wmv

Исходная информация:

MSO рассчитывает оптимальный размер, форму и расположение очистных камер для подземного рудника, используя входную блочную модель содержаний или ценности руды (содержание, выраженное в денежных единицах - Net Smelter Return (NSR) \$/тонну чистая прибыль металлургического производства. NSR = Доход от реализации готовой продукции – Расходы по реализации – Затраты металлургического производства).

Для оптимизации необходима входная блочная модель, содержащая поле VALUE (содержание, выраженное в денежных единицах), или поле GRADE (минимальное среднее содержание по камере) по которому программа проведет оптимизацию контуров выемочных единиц, например по условному серебру AGUS=AU*58.51+AG (для месторождения Дукат) и поле DENSITY (Плотность).

Для доступа к этой функции:

Выбрать Applications (Приложения) | Mineable Envelopes (Контуры извлекаемых запасов)| Mineable Shape Optimizer (Оптимизатор формы контуров извлекаемых запасов):

	Resource Model			Optimization Cutoff Mode	
	Input Model		Statistics	Cut Off Grade	0
	Optimization Field	Ŧ	Default Value	C Cut Off Value	0
	Density Field	Ψ	Default Value	C Calculated Value	
	Data Fields			Cut Off Value	0
	D DIST HILD			Price	0
	Field Name Report	Default Value	Dominant	Mining Recovery	
				Boultu	
				Mining Cost	0
-				Processing Cost	0
ameter Summary				- Shane Sine	
			Report All	Slice Interval	1
			Report None	1	
	Shape Dip and Strike				
		🗆 Use	Control Surface Wireframes for Di	p and Strike 🛛 🔲 Use Model Fields for Dip and	d Strike
	Default Dip (+ve down)	90 - Tria	ngles	Dip Field	Ψ.
	Datask Chiles				

Левая верхняя часть диалогового окна предназначена для создания папок и сценариев с различными параметрами:

При нажатии ПКМ по сценарию выходит контекстное меню:

Создание нового сценария - New Case

Создание новой папки со сценариями - New Folder . Для добавления сценария в новую папку необходимо указать ее текущей.

Копирование всех настроек с текущего проекта - Сору Settings.

Вставить настройки в новый сценарий из ранее скопированного сценария - Разте Settings

Создать новый сценарий с настройками из ранее скопированного сценария - Paste Settings to New Case

Удалить сценарий папку - Delete	
Импорт и экспорт настроек с других проектов - Export Settings	
Переименовать сценарий -	
Добавить, исключить сценарий к запуску процесса оптимиз	Add To Run ации – Remove From Run
Запустить процесс оптимизации всех сценариев либо текущо	Run All CTO - Run This Case

В левой нижней части диалогового окна выходит подсказка по наведению курсора на ячейки ввода данных:

На вкладке Input Data (Входные данные)

Выбираем входную блоковую модель:

-Resource Model-		
Input Model	mv27.dm	

Выбираем поле, по которому программа проведет оптимизацию контуров выемочных единиц, например по условному серебру AGUS=AU*58.51+AG (для месторождения Дукат):

Optimization Field	AGUS	•
--------------------	------	---

Выбираем поле из модели DENSITY плотность:

D 1 5 11	DENCITY	
Density Field	IDENSITY	-

Statistics

Если в ячейках по полю DENSITY отсутствуют значения, то будет присвоено значение по умолчанию:

2.75

Статистика

по текущему выбранному полю модели:

Statistic	Value	^
Total Records	119846	
Total Samples	119846	
Missing Values	0	
Values More Than Tr	119846	
Maximum Value	34.47461	
Minimum Value	0.17803	
Range	34.29658	
Total	340974.75676481	11
Mean	2.84511	
Variance	8.30917426	
Standard Deviation	2.88256383	
Standard Error	0.00832659	
Skewness	4.86381714	
Kurtosis	36.9840887	
Geometric Mean	2.10143777	
Log Sum	89000.24781256	-
Log Mean	0.74262176	
Log Variance	0.54857245	+

Data Fields

- Выводит не стандартные поля, содержащиеся в блоковой модели:

Data Fields

Field Name	Report	Default Value	Dominant	•
COLOUR		0.0		
AGUS		0.0		
VARAU		0.0		
NNS		0.0		
NELIP		0.0		
DCNI		0.0		

В столбце **Report** необходимо отметить те поля, которые должны обрабатываться и включаться в отчет (числовые поля). Отмечаем AGUS, AG, AU.

В столбце Default Value при необходимости выставить значение по умолчанию, когда поле имеет значение absent, «-».

В столбце **Dominant** отмечают поля флажком, значения по которым не должны быть усреднены. Например, по типу породы ZONE т.е. оставить значение как уникальные как 2, 3, а не усредненные.

Пример в исходной модели значения по полю ZONE:

ZONE (N))
	2
	2
	3
	3
	3

В результате без флажка вариант-1 и отмечено флажком вариант-2:

	ZONE (N)		ZONE (N)
	2.62851926		3
	2.04129362		3
	2.96947286		3
Вариант -1	2.78694156	Вариант - 2	3

Кнопки добавить все поля в отчет или исключить:

Report All Report None

Три метода оптимизации:

• Cut Off Grade 240 - по минимальному значению среднего содержания по
камере Head Grade. Среднее содержание серебра по камере 240 г/т.
2. ^{С Cut Off Value} - по минимальному значению выраженного в денежном
эквиваленте - чистая прибыль металлургического производства Net Smelter Return (NSR) \$/тонну.
3. С Calculated Value - значение будет рассчитано по формуле:
Value = Tonnes*(Mining_Recovery * (Price * Processing_Recovery * (1.0 – Royalty) * Optimization_Field_From_Resource_Model – Mining_Cost – Processing_Cost) - Cutoff_Value);
где:
С Cut Off Value – NSR значению выраженное в денежном эквиваленте;
Ргісе цена реализации готовой продукции за вычетом Расходов по
реализации и Затрат на металлургическое производство;
Mining Recovery 0 - извлечение на горном производстве;
Ргосеззіпд Recovery 0 - извлечение при переработки;
Royalty 0 - плата за недра пользования;
Mining Cost 0 - затраты на добычу 1 т. Руды;
Ргосеssing Cost 0 - затраты на переработку 1 т. Руды.
- Shape Slice
Shape Slice (Сегмент формы)

устанавливается шаг приращения (м) между сегментами для первичной оценки модели до оптимизации исходной формы очистных забоев. Сегменты будут ориентированы согласно установленных значений по падению и простиранию р.т.

Пример:

- оптимизатор, учитывая пространственное

расположение рудного тела, параметры прототипа, установленное минимальное значению среднего содержания в камере проводит анализ модели до формирования оптимальных форм очистных забоев.

-Shape Dip and Strike

Shape Dip and Strike (Форма падения и простирания)

- данный раздел используется для определения параметров простирания и падения с целью получения оптимальной формы очистного забоя.

Загружаем каркас р.т. в окно Design и определяем направление простирания рудного тела:

Активируем команду QL, указываем первую точку у южной части р.т. и вторую на севере:

С окна Output выписываем среднее значение по азимуту = 30° :

Output			
Slope Distance Horizontal Distance Vertical Distance Azimuth	323.0150 323.0150 0.0000 30.6249	degrees	

Направление простирания рудного тела на север, поэтому угол простирания откладывается от севера по часовой от 0° до $+90^{\circ}$ и против часовой от 0° до -90° :

Вводим значение:

30 ÷ Default Strike

Переходим в разрез и определяем угол падения = 110°:

Use Control Surface for dip and strike (Использование контрольной поверхности для угла падения и направления простирания): эту опцию выбирают для использования направляющего поверхностного каркаса, чтобы получить интерполированные локальные значения угла падения и простирания для формы.

Активируем использовать в качестве направляющей поверхности каркас р.т. подгружаем файл треугольников и точек:

•	Use Control Surface Wireframes for Dip and Strike				
	Triangles	n1v27-tr.dm			
	Points	n1v27-pt.dm			

Use Model Fields for Dip and Strike (Использование полей модели для контроля угла падения и направления простирания): использование полей во входной модели ресурсов для контроля локальных значений угла паления и простирания формы контуров извлекаемых запасов.

Dip Field (Поле угла падения): поле во входной модели ресурсов, определяющее локальное значение угла падения формы контуров (значение по умолчанию для этого параметра равно TRDIP).

Strike Field (Поле простирания): поле во входной модели ресурсов, определяющее локальное значение направления простирания формы контуров (значение по умолчанию для этого параметра равно TRDIPDIR).

Данные по углу падения и простирания взять из блоковой модели, если эти поля существуют (динамическая анизотропия):

Use Model Fields for Dip and Strike				
Dip Field		~		
Strike Field		~		

Г

Последовательность действий по вкладке Shape Framework показаны в видео файлах: MSO_2-1_Shape Framework.wmv, MSO_2-2_Shape Framework.wmv

Вкладка Shape Framework (Базовая структура формы) содержит следующие поля:

Strike East XZ (Направление простирания на восток):

Strike Convention

Strike North YZ (Направление простирания на север):

В данном примере направление простирания р.т. на север выбираем YZ:

Определяет минимальные и максимальные значения Y для прототипа (прямоугольный параллелепипед), в котором будут создаваться формы контуров извлекаемых запасов (координаты брать с учетом того, что прототип будет повернут):

Minimum North Y	539575.062
Maximum North Y	539978.052

Section Spacing (Пространственное расположение сечения) указываем длину (ширину в зависимости от мощности р.т. и системы разработки) камеры по простиранию р.т.

В данном примере:

Section Spacing	7
-----------------	---

Определяет минимальные и максимальные значения Х для прототипа:

Minimum East $ imes$	-177575.14
Maximum East X	-177227.30

Определяет минимальные и максимальные значения Z для прототипа:

Minimum Z	1030.2
Maximum Z	1165

Level Spacing (Пространственное расположение горизонта): пространственное расположение горизонта, которое контролирует высоту создаваемых форм контуров извлекаемых запасов. Формы контуров могут создаваться со значениями высоты, меньше данной, если они являются оптимальными.

Определяем максимальную высоту камеры:

Level Spacing 5

Select from Model Prototype – использовать значения для создания прототипа из прототипа геологической модели. Проводит статистику по модели и автоматически подгружает данные:

Select from Model Prototype

Для ориентации камер по простиранию р.т. активируем на Rotated Shape Prototype Rotate Shape (Повернуть прототип):

Rotated Shape Prototype				
🔽 Rotate Sha	✓ Rotate Shape			
Model Origin (ir	Model Origin (in world co-ords)			
×o		0		
YO		0		
ZO		0		
Rotation Angle				
Angle		0		
Axis		0		
Angle		0		
Axis		0		
Angle		0		
Axis		0		

Вводим минимальные координаты **X0**, **Y0**, **Z0** точки прототипа вокруг которой будем поворачивать:

×o	-177575.14
YO	539575.06;
Z0	1030.2

Angle (Угол): угол в градусах, определяющий поворот прототипа вокруг оси:

Angle 30

Axis (Ось): ось, вокруг которой поворачиваем прототип, если вокруг оси X то значение=1, Y=2, Z=3:

Axis	1
------	---

При использовании повернутого прототипа время на обработку увеличивается.

	Model Discretization Plane			
Model Discretization Plane	° xz	€ YZ	(Плоскость дискретиз	зации
модели): плоскость, определяющая оси, вдоль которых происходит дискретизация ячеек,				
используя размер шага, задаваем	ный параметрам	ии Horiz	ontal Step (Горизонтал	ьный шаг)
Section Spacing 7 и Ver	tical Step (Верт	икальнь	ый шаг)	5

Export (Экспорт): создать файл экспериментальной модели, в котором установлено соответствие с параметрами базовой структуры формы.

Пояснение по вкладке Output Data отражены в видео файле: MSO_3_Output Data.wmv

Вкладка ^{Output Data} Output Data (Выходные данные) содержит следующие поля:

Файл оптимизированных каркасов камер. Определяем наименование файла, и цвет каркасов. Цвет используется для сравнения вариантов:

View (Просмотр): загружает файл выходных форм в Studio. Если объект с таким именем уже загружен, происходит обновление данных.

Файл оптимизированных контуров камер. Outline Strings (Выходные контуры): имя выходного файла контуров, созданного оптимизатором формы, в котором содержатся три контура для каждой формы контуров извлекаемых запасов. Один контур по 4 точкам в плане и два контура по 4 точкам в разрезе создаются для каждой формы контуров извлекаемых запасов, для которой указан цвет контура в разрезе и в плане:

Shape Strings			
Outline Strings New	Case_1_st.dm		View
Section String COLOUR	Value 1	Plan String COLOUR Value	2 •

Файл отчета содержит расчеты для каждой формы контуров извлекаемых запасов, объем, тоннаж, содержание в пределах каждой формы. Отчетные данные для этого файла контролируются областью data Fields (Поля данных) во вкладке Input Data (Входные данные):

Reports		
Datamine File	New Case_1_rp.dm	 View

View (Просмотр): щелкнуть эту кнопку для загрузки выходного файла отчетов в Datamine Table Editor (Табличный редактор Datamine).

Пояснение по вкладке Layout отражены в видео файле: MSO_4_ Layout.wmv

Вкладка Layout - определение основных параметров формы контуров извлекаемых запасов. Эти значения могут оказать существенное влияние на результат.

-Layout-----

✓ Full Shapes
Full Shapes
Full Shapes
Full Shapes
(Полные формы): при оптимизации использует параметры,
yctaновленные во вкладке
Shape Framework
, т.е. высота равна значению, установленному в
Level Spacing
5
, а длина (ширина) будет согласно установленного значения
Section Spacing
7
. Первый запуск сценария рекомендуется начинать с этой

опции.

Sub Shapes (Суб-формы): при оптимизации создаются суб-формы в дополнение к полным формам.

Если в основные установленные параметры оптимизация не проходит, вводятся дополнительные значения, для их разбивки "под формы". Высота

Level Spacing	5	и длина	Section Spacing	7	будут делиться на
установленное зн	начение:				

🔽 Sub Shapes	
Horizontal Number	1 .
Vertical Number	1 .

Development (Подготовительные выработки): при оптимизации создаются формы контуров подготовительных выработок в промышленной руде в дополнение к полным формам контуров извлекаемых запасов и суб-формам, когда промышленная руда не может быть включена в форму контуров извлекаемых запасов.

Height (Высота) формы контуров подготовительных выработок.

Width (Ширина): ширина формы контуров подготовительных выработок.

Пример при параметрах:

🔽 Full Shapes	🔽 Sub Shapes		Vevelopment	
	Horizontal Number	2 .	Height	2
	Vertical Number	1 .	Width	2

Пример при параметрах, если делим и по высоте:

🔽 Full Shapes	🔽 Sub Shapes	V Development		
	Horizontal Number	2 •	Height	2
	Vertical Number	2	Width	2 .

Shape Waste Control (Контроль пустой породы в форм контуров): определяет Maximum Waste Fraction (Максимальную долю пустой породы), которая может быть включена в любую отдельную форму контуров извлекаемых запасов.

Управление включений (вмещающих) породных прослоев:

Shape Waste Control	
Maximum Waste Fraction	1 .

Максимальная доля пустой породы которая может быть включена в камеру 0÷1 т.е. Максимальный % включения пустой породы в камеру от 0÷100%.

Если поставить 1 – то ограничений нет, но камера не будет состоять на 100% из породы, т.к. основное условие оптимизации по выставленному значению

• Cut Off Grade 240. (MSO – это метод проб и ошибок или метод перебора вариантов.)

Model Discretization (Дискретизация модели): задает интервал разделения на сегменты для использования при дискретизации загруженной геологической модели:

Деление родительской ячейки модели на подъячейки (на контакте каркаса с моделью) для точности подсчета.

Model Discretization	
Horizontal Number	4 -
Vertical Number	4

Ногіzontal Step (Горизонтальный шаг): интервал разделения на сегменты вдоль плоскости дискретизации модели в направлении X или Y (в зависимости от конкретного случая, в соответствии с плоскостью формы контуров или плоскостью дискретизации модели для вращающихся базовых структур формы).

Vertical Step (Вертикальный шаг): интервал разделения на сегменты вдоль плоскости дискретизации модели в направлении Z (в зависимости от конкретного случая, в соответствии с плоскостью формы контуров или плоскостью дискретизации модели для вращающихся базовых структур формы).

Shape Control (Контроль формы): данный раздел используется для определения базовых пространственных параметров при проектных расчетах очистных забоев:

Shape Control			
Minimum Width	0.2	Maximum Width	100

Minimum Width минимальная ширина (длина камеры в крест простирания р.т.) формы контуров извлекаемых запасов.

Maximum Width максимальная ширина (длина камеры в крест простирания р.т.) формы контуров извлекаемых запасов.

Minimum Waste Pillar Width - Минимальная ширина между камерного целика, оставляемого между соседними формами контуров извлекаемых запасов с торца камеры. Меньше указанного значения - расстояния между камерами не будет – больше может

быть, если контур соседней камеры не проходит по	Cut Off Grade	²⁴⁰ или
параметрам камеры. Минимальное устанавливаемое	значение – 0,1м.	

Minimum Waste Pillar Width 10

Near Wall Dilution and Far Wall Dilution - Разубоживание с бортов камеры, которое допускается на соседних боковых сторонах форм контуров извлекаемых запасов (в

единицах измерения расстояния максимум до 10). Увеличение контура камеры с лежачего и висячего борта:

Если простирание модели в направлении XZ, то Near Wall Dilution – это увеличение южного контура камеры параллельно первоначальному. Far Wall Dilution - это увеличение северного контура камеры:

Minimum Dip Angle and Maximum Dip Angle - Минимальный и максимальный угол падения бортов любой расчетной формы контуров. В интервалах от 60° до 120°:

Minimum Dip Angle	60	Maximum Dip Angle	120
initiani elprangio	00	Maximum Dip Angle	120

59.9

Если необходимо точное значения угла, например борта камеры должны быть 60°:

Minimum Dip Angle

Maximum Dip Angle

60.1

Пример – при 120, 90, 92:

Maximum Strike Angle (Максимальный угол простирания): максимальный угол простирания на верхней или нижней кромке любой стороны формы контуров извлекаемых запасов.

Максимальный угол при построении каркасов, окончательных выемочных единиц, между контурами одной камеры в плане по почве и по кровле. Варьирует от -90° до +90°:

Maximum Strike Angle 45

Пример если = 0, при простирании р.т. в направлении на восток "0" XZ

Maximum Strike Angle Change (Изменение максимального угла простирания): максимальная разница углов в градусах между верхней и нижней кромками данной стороны формы контуров извлекаемых запасов.

Максимальная разница в углах при построении каркасов, окончательных выемочных единиц, между контурами одной камеры почвой и кровлей: (отношение, параллельность)

Maximum Strike Angle Change	20
,	

Maximum Side Length Ratio (Максимальное отношение длин боковых сторон): верхний предел отношения верхней и нижней кромок передней и задней поверхности

формы контуров извлекаемых запасов. Максимальное заданное отношение равно "3", означая, что ширина верхней кромки может не более чем в три раза превышать ширину нижней.

Максимальное соотношение длин верхней и нижней грани каждого контура камеры переднего и заднего. Максимальный коэффициент, который может быть установлен "3", то есть верхний край может быть не более чем в 3 раза по длине нижнего края. Значения от 1 до 3.:

Maximum Side Length Ratio 2.25

Пример при значении =1

Пояснение по вкладке Advanced отражены в видео файле: MSO_5_ Advanced.wmv

Вкладка Advanced - Усовершенствованные настройки параметров в MSO.

Данная область диалогового окна используется для определения дополнительных усовершенствованных параметров настройки для уточнения проектных расчетов очистных забоев, включая описание порядка сохранения файлов с формами контуров, созданными MSO, импорта и экспорта данных по сценариям, контроля пустот или участков пустой породы, а также средств для выполнения тестового прогона программы.

Output Verification Wireframes (Выходные проверочные каркасы): эта группа опций включает следующее:

Triangles (Треугольники): дополнительный выходной файл треугольников, созданный оптимизатором формы для детального просмотра сегментов, используемых при построении исходной формы.

Points (Точки): дополнительный выходной файл точек, созданный оптимизатором формы для детального просмотра сегментов, используемых при построении исходной формы.

Файл содержит каркасы камер созданных при оптимизации, каркасы слайсов и каркасы камер без учета разубоживания:

- Output Verification	n Wireframes	
Triangles	New Case_1_ver_tr.dm	
Points	New Case_1_ver_pt.dm	

View (Просмотр): загружает выходные проверочные каркасы в Studio. Если объект с таким именем уже загружен, происходит обновление данных.

Colours – Seed (Цвета - исходная форма): значение COLOUR (ЦВЕТ), заданное в файле проверочных каркасов для идентификации каркасов исходной формы.

	[•
Colours	Seed	۷	•

Colours – Slice (Цвета – сегмент): значение COLOUR (ЦВЕТ), заданное в файле проверочных каркасов для идентификации сегментов модели, используемых при построении исходной формы.

	<u> </u>
slice	ο.

Undiluted Shape (Форма контуров неразубоженных запасов): значение COLOUR (ЦВЕТ), заданное в файле проверочных каркасов для идентификации нормализованной формы контуров неразубоженных запасов.

Undiluted Shape	³ ≟ Цвет каркасов к	амер без разубоживания:	
Near Wall Dilution	0.3	Far Wall Dilution	0.5

Если значения по разубоживанию стоят =0, то каркасы камер на выходе и каркасы во временном файле будут одинаковыми.

Внешнее ЗУ: можно передать данные для каждого сценария, используя следующие опции:

Import External File to Current Case (Импорт текущего сценария из внешнего файла): импортирует текущий сценарий из внешнего файла.

Export Current Case to External File (Экспорт текущего сценария во внешний файл): экспортирует текущий сценарий во внешний файл.

External Storage—		
Import	Export	, нужный проект должен быть активен: 🗔 🗐 n2

Void/Sterile Ground Control (Контроль пустот/участков пустых пород): определяет, как в файлах данных MSO представлены участки, которые рассматриваются как пустоты при построении внешних контуров очистных забоев:

-Void/Sterile Ground Control-	
Model Void Field	<none></none>

Model Void Field (Поле пустот модели): поле во входной модели ресурсов, которое, если оно задано, определяет пустоты или участки пустых пород, которые не могут быть включены в формы внешних контуров извлекаемых запасов. Значение по умолчанию может быть задано для замены, когда значение Model Void Field (Поле пустот модели) установлено, как отсутствующее, т.е. "-".

Void Code (Код пустот) Void Code Соde : значение в Model Void Field (Поле пустот модели), которое указывает, что блок находится в пустотах или на участке пустых пород. Значение по умолчанию Default Value СО может быть использовано, когда не указывается конкретное значение в Void Code Со

Махітит Void Fraction (Максимальная доля пустот): если D представляет собой объем ячеек, которые указаны с Void Code (Кодом пустот), в рассматриваемой форме контуров извлекаемых запасов, а V – общий объем формы, F представляет Maximum Void Fraction (Максимальную долю пустот) и рассматриваемая форма контуров может быть отброшена, если D/V > F

Максимальная доля пустоты (по ранее отработанным камерам с присвоенным значением по полю) которая может быть включена в камеру, т.е. если в выемочную

камеру попадает объем ранее отработанной камеры D, и если отношение D / V> F больше указанного значения F - то камера будет исключена из подсчета.

V-общий объем по камере, D – объем камеры с кодом по ячейкам которой был установлен

в: Void Code . Если отношение D / V> F больше указанного значения - то камера будет исключена из подсчета. Следовательно - Если создание выемочное единицы прошло успешно (на основе заданных параметров и ограничений), то присваивается – 1, если выемочная ед. не создана (была исключена) то -0. Результаты в лог файле.

RESULT (N)	
	1
	1
	1

Если в модели нет ячеек, маркированных кодом пустот, данное значение устанавливается равным нулю. Пустоты должны включаться в выходные формы контуров.

Validation Test Run (Проверочный тестовый прогон): опции для выполнения тестового прогона программы при создании очистных забоев для подтверждения надежности результатов: (После первого прогона каждой камере присваивается уникальный номер по полю IJK.)

Single Cell Test Run (Тестовый прогон расчета единичной ячейки): Эту опцию выбирают для выполнения тестового прогона при определении единичной формы. Она может использоваться для выполнения короткого прогона, что полезно при проверке достоверности при построении сегментов модели, расположения формы контуров и базовой структуры формы контуров.

IJK Value (Значение индекса IJK): указывает индивидуальное значение индекса IJK для ячейки о входной модели ресурсов для прогона программы, при котором базовая структура формы контуров определяет расчет значения индекса IJK

X/Y/Z: тестовое положение координат X,Y,Z входной модели ресурсов для обработки.

I/J/К: тестовое положение I,J,К входной модели ресурсов для обработки.

Apply XYZ (Применить XYZ): используется для расчета числа "IJK" для тестового положения по заданным значениям X,Y,Z или I,J,K.

При использовании уникального кода камеры IJK выполнить предварительный прогон оперирует только с ней:

Single cell test run IJK Value 0

Либо задав ячейку по координатам для тестового прогона, согласно IJK камеры:

Calculating the block model IJK values

DATAMINE

The following set of equations explains how the model IKJ values are calculated.

IJK = IX * NY *NZ + IY *NZ + IZ

 $\begin{array}{l} IX = INT(IJK/(NY^*NZ))\\ N = IJK -IX * NY * NZ\\ IY = INT(N/NZ)\\ IZ = N -IY * NZ \end{array}$

Запуск сценария: ______

Кнопка ^{Орtions...} в нижней панели диалогового окна MSO:

Обработка созданных файлов:

- Output File Handling

Предотвратить дублирование наименований создаваемых файлов в сценариях:

Outpu	ut File Handling
◄	Prevent duplicate output filenames across cases

При загрузке варианта сценария выгружать предыдущий вариант данного сценария из окна Opesign

Unload previously generated data

варианты:

Output from MSO only	·
Unload all data	
Output from MSO only	

- выгружать предыдущий вариант данного сценария только MSO;

- выгружать все данные.

Автоматически загружать результаты после единичного прогона single:

Automatically load output data after single run

Выводить сообщения об ошибках:

Error Notifications

Без запросов переписывать существующий файл:

Silently overwrite existing files

Остановить процесс если условия оптимизации не выполнимы:

Stop processing if a case fails during run

При возникновении ошибок будут всплывать сообщения для выбора действия:

Suppress errors during run

Информация по полям файла отчета New Case_1_rp.dm:

Номер группы при создании камер:

GROUP (N)	
	1
	2
	3

Координаты Центра тяжести каждой выемочной единицы:

XCENTRE (N)	YCENTRE (N)	ZCENTRE (N)
-27495	18709.73474338	10
-27495	18707.37561161	30
-27485	18708.55238631	10

Координаты Центр тяжести контура по почве камеры:

XSTOPE (N)	YSTOPE (N)	ZSTOPE (N)
-27495	18711.27882756	0
-27495	18706.71855394	20
-27485	18710.28035037	0

Поле с порядковым номером камер – количество камер в файле:

Объем по каркасу:

VOLUME (N)
1168.0454943
1187.81075077
1467.20580449

Средняя ширина (длина) камеры:

AVGWIDTH (N)
5.84022747
5.93905375
7.33602902

Тоннаж по камере:

TONNES (N)
3432.26415337
3451.33721368
4335.61689938

Взвешенное содержание по полю эквивалента:

AGUS (N)
350.36332131
315.46421687
273.87763079

Поле со значением, которое использовалось для оптимизации:

PASSTYPE:

	PASSTYPE (N)
PASSTYPE (N)	1
1	1
	1
1	2
1	2

Идентификация метода при выборе первого – значение 1, второго -2, третьего – 3:

Layout		
🔽 Full Shapes	🔲 Sub Shapes	🗖 Development

PASSNUM:

.

PASSNUM	(N)
	1
	1
	1

Идентификация количества прогонов для определения подкамер (деления) в :

Sub Shapes	
Horizontal Number	
Vertical Number	

Ширина (длина) камеры будет делится на указанное значение 2:

🔽 Sub Shapes	
Horizontal Number	
Vertical Number	1

Результат:

Сценарий первый 1:

В отчете по полю PASSTYPE появились значения с двойкой 2:

PASS	TYPE (N)
1	1
	1
	1
	2
2	2
	1

В отчете по полю PASSNUM появились значения с двойкой 2 и 3:

1
1
2
3

Значениям 2 и 3 – это смежные камеры с шириной 5м. При ширине 10м они не создавались – не проходили по параметрам:

