Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

> Горный институт Кафедра горных машин и комплексов

МЕТОДЫ РАСЧЕТА ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ. ПОСТРОЕНИЕ МОДЕЛЕЙ ДЛЯ РАСЧЕТОВ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Методические указания к практическим занятиям по дисциплине «Методы расчета горных машин и оборудования» для студентов специальности 130400.65 «Горное дело» специализации 130409.65 «Горные машины и оборудование» всех форм обучения

> Составители Г. Д. Буялич В. В. Воеводин К. Г. Буялич

Утверждены на заседании кафедры Протокол № 29 от 3.06.2013 Рекомендованы к печати учебно-методической комиссией специализации 130409.65 Протокол № 13 от 03.06.2013 Электронная копия находится в библиотеке КузГТУ

Кемерово 2013

1. Введение

В настоящее время для решения задач твёрдых, жидких, газообразных и комбинированных сред широко применяется метод конечных элементов (МКЭ). Суть этого метода заключается в замене исследуемого объекта дискретной моделью в виде множества (совокупности) отдельных подобластей с известными свойствами, называемых конечными элементами (КЭ), которые связаны между собой в отдельных точках – узлах. В качестве искомых величин используются перемещения, усилия, температуры и т.д. в этих узлах.

При программной реализации МКЭ весь комплекс моделирования выполняется тремя основными функциональными модулями:

- 1) препроцессорным подготовка геометрической твёрдотельной модели и её дискретизация конечными элементами;
- 2) процессорным приложение конечных сил и связей, выбор типа расчёта и его проведение;
- 3) постпроцессорным получение информации о результатах расчёта в удобном для пользователя виде.

В данных методических указаниях рассмотрена часть препроцессорного модуля системы ANSYS, относящаяся к построению геометрической модели.

2. Интерфейс ANSYS и общие замечания

Интерфейс представляет собой перечень нескольких логически связанных процедур управления программой, которые расположены в отдельных окнах. К этим окнам, которые можно переместить или убрать с помощью мыши, возможен доступ в процессе работы. Команды программы объединены в отдельные функциональные группы для быстрого доступа в соответствующие моменты. Семь основных меню или оконных областей показаны на рис. 1.

Панель инструментов – (**Toolbar – TB**) даёт возможность пользователю разместить часто используемые процедуры (например, команды или написанные пользователем подпрограммы в виде кнопок с текстом для быстрого их запуска щелчком мыши). Панель инструментов может вместить до 200 кнопок.

Меню утилит (Utility Menu – UM) – содержит набор часто используемых процедур, которые здесь отображены для доступа в любой момент работы программы. Выполнению этих процедур предшествует появление в каскадном порядке выпадающих меню, которые позволяют непосредственно выполнить нужное действие или перейти в другое диалоговое окно. Меню утилит не обладает жёстким режимом работы, и пользователь может выполнить несколько действий за одно обращение (например, отказаться от прежнего намерения и перейти к выполнению другой операции).

Рис. 1. Интерфейс ANSYS

Строка ввода (**Input Window – IW**) – представляет собой область для ввода команд. Имеется возможность обратиться к списку ранее введённых команд. Команды также можно извлекать из файла регистрации (log-файла).

Диалоговое окно (**Dialog Box – DB**) – предоставляет пользователю на выбор перечень действий для выполнения процедур или установки необходимых настроек. Такие окна подсказывают, какие данные следует вводить и какие решения принимать для определённых процедур.

Главное меню (**Main Menu – MM**) – содержит основные функции программы, которые группируются в располагаемые сбоку всплывающие (динамические) меню, вид которых зависит от продвижения по программе.

Строка состояния – представляет собой область для вывода состояния следующих переменных: **mat** – номер активного материала, **type** – номер активного конечного элемента, **real** – номер активных параметров, **csys** – номер активной координатной системы, **secn** – номер активного поперечного сечения балки.

Графическое окно (Graphics Display – GD) – представляет собой область для вывода построенной модели или графиков результатов анализа. Размеры окна можно уменьшать или увеличивать по своему усмотрению. В программе ANSYS реализована полностью интерактивная графика (т. е. средства и системы ввода, отображения и редактирования изображений).

Системные переменные – представляет собой область для вывода сообщений-подсказок программы.

Панель инструментов **Pan-Zoom-Rotate** – содержит наиболее часто используемые кнопки команд управления видами. Назначение кнопок более подробно смотри в подразделе 3.5. «Управление видами».

Окно вывода (**Output Window – OW**) – фиксирует отклик программы на команды и действия пользователя. Всегда доступно при работе графического интерфейса.

Во всех диалоговых окнах ANSYS в квадратных скобках показаны команды, с помощью которых можно достичь аналогичного результата, вводя их в окне ввода. Например, на рисунке 3 показано диалоговое окно, которое выполняет 3 команды: /PNUM; /NUM; /REPLOT.

В ANSYS существуют следующие объекты (рисунке 2): ключевые точки, линии, поверхности, объёмные твёрдотельные объекты, узлы и конечные элементы. Узлы и конечные элементы в данном методическом указании не рассматриваются.

При этом линейные объекты не могут существовать без ключевых точек, поверхности – без линейных объектов и т. д. То есть при по-

строении объёмного твёрдотельного объекта создаются также ключевые точки, линейные объекты и поверхности.

Рабочей плоскостью является плоскость X-Y, которая предназначена для построения примитивов. Первоначально она совпадает с глобальной Декартовой плоскостью X-Y, но при необходимости для облегчения (упрощения) построения геометрической модели можно изменить её положение, направление осей или тип координатной системы.

При создании объектов, когда не используются существующие объекты, поверхности и основания объёмов строятся в рабочей плоскости или параллельной ей, если при выполнении команды задаётся координата **Z**.

3. Команды управления отображением графического окна

3.1. Перерисовка графического окна

Путь: UM:Plot> Replot

3.2. Многооконный режим

Путь: UM:Plot Ctrls> Multi Window Layout...

Данное диалоговое окно позволяет создать следующие многооконные режимы:

- One Window одно окно;
- **Two** (Left-Right) два окна (слева и справа);
- **Тwo** (**Top-Bottom**) два окна (сверху и снизу);
- Three (2 Top/Bot) три окна (два сверху и одно снизу);
- Three (Top/2 Bot) три окна (одно сверху и два снизу);
- Four (2 Top/2 Bot) четыре окна (два сверху и два снизу).

3.3. Нумерация объектов

Путь: UM:Plot Ctrls> Numbering...

В появляющемся диалоговом окне (рис. 3), если кнопки с независимой фиксацией **KP**, **LINE**, **AREA**, **VOLU** или **NODE** имеют значения **On**, производится нумерация ключевых точек, линий, поверхностей, объёмных тел или узлов, соответственно.

1	N Plot Numbering Controls	×
	[/PNUM] Plot Numbering Controls	
	KP Keypoint numbers	C Off
	LINE Line numbers	☐ Off
	AREA Area numbers	☐ Off
	VOLU Volume numbers	C Off
	NODE Node numbers	C Off
	Elem / Attrib numbering	No numbering 🗨
	TABN Table Names	☐ Off
	SVAL Numeric contour values	☐ Off
	[/NUM] Numbering shown with	Colors & numbers 👤
	[/REPLOT] Replot upon OK/Apply?	Replot 🔽
	ОК Арріу	Cancel Help

Рис. 3. Диалоговое окно Plot Numbering Controls

Стиль нумерации определяется в выпадающем списке [/NUM] и может принимать значения:

Colors&numbers – показывать цвета и номера объектов; Colors only – показывать только цвета; Numbers only – только номера; No Color/numbers – не производить нумерацию.

Выбор нумерации конечных элементов или нумерации по атрибутам объектов определяется в выпадающем списке Elem/Attrib numbering и может принимать следующие значения:

No numbering – не производить нумерацию;

Element numbers – нумерация по номерам конечных элементов;

Material numbers – нумерация по номеру материала;

Element type num – по типу конечных элементов;

Real Const num – по параметрам (реальным константам); **Section numbers** – по секциям (поперечное сечение балок и т. д.); **Element CS num** – по координатным системам.

Если **TABN** имеет значение **On**, то производится вывод в **GD** значений результатов расчёта для внешних сил и связей (граничных условий).

Если SVAL имеет значение On, то производится вывод в GD значений результатов расчёта для каждого узла при прорисовке из постпроцессора.

Раскрывающийся список /**REPLOT** определяет перерисовку графического окна после нажатия на кнопки [**Apply**] или [**OK**]:

Do not replot – не перерисовывать;

Replot – перерисовывать.

3.4. Отображение активных объектов в графическом окне

Путь: **UM:Plot>**

KeyPoints> Keypoints – отображаются ключевые точки.

Lines – только линии.

Areas – только поверхности.

Volumes – только объёмные тела.

Nodes – только узлы.

Elements – только конечные элементы.

Multi-Plots – одновременно отображаются несколько видов объектов (ключевые точки, линии, поверхности, объёмные тела, узлы и т. д.), выбранных командой UM:PlotCtrl> Multi-Plot Controls....

3.4.1. Отображение части активных объектов

UM:Plot> Specified Entities> Keypoints... – отображаются ключевые или твёрдые точки, номера которых совпадают с NP1, NP1+NINC, NP1+2·NINC, ..., NP2 (рис. 4). Поле LAB позволяет выбрать КРТ для отображения ключевых точек и HPT – для отображения твёрдых точек.

Рис. 4. Диалоговое окно Plot Specified Keypoints

UM:Plot> Specified Entities> Lines... – отображаются линии, номера которых совпадают с NL1, NL1+NINC, NL1+2·NINC, ..., NL2.

КомандыUM:Plot> SpecifiedEntities> Areas...иUM:Plot> SpecifiedEntities> Volumes...аналогичныпредыдущимипредназначеныдляотображениячасти поверхностейи объёмныхтел,соответственно.соответственно.соответственно.соответственно.соответственно.

3.5. Управление видами

Наиболее часто используемые команды управления видами находятся в диалоговом окне UM:PlotCtrls> Pan, Zoom, Rotate... (рис. 5), разделённом на 8 групп.

В 1 группе раскрывающийся список **Window** позволяет выбрать номер видового окна, с которым вы хотите совершить какие-нибудь действия.

Во 2 группе расположены кнопки, позволяющие изменить вид (сверху, снизу, изометрия и т. д.).

В 3 группе расположены кнопки управления масштабом.

В 4 группе расположены кнопки-прокрутки, кнопки увеличения (с большой точкой) и уменьшения масштаба (с маленькой точкой) изображения.

В 5 группе расположены кнопки поворота вида вокруг выбранной оси.

В 6 группе задаётся приращение. При повороте – это угол, при прокрутке изображения – это шаг и т. д.

В 7 группе при включении кнопки с независимой фиксацией **Dynamic Mode** включается режим динамического изменения вида. При нажатии левой кнопки мыши – переносим вид, а при нажатии правой кнопки мыши – вращаем вид.

В 8 группе расположены следующие кнопки:

[**Fit**] – вписать все объекты в видовое окно;

[**Reset**] – вернуть вид отображения, который был до открытия этого диалогового окна;

[Close] – закрыть диалоговое окно;

[Help] – справка.

Рис. 5. Диалоговое окно Pan-Zoom-Rotate

4. Построение геометрической модели

Все доступные в ANSYS функции для построения геометрической модели находятся в группе MM:Preprocessor> Modeling>:

Create – создание объектов;

Operate – операции над объектами;

Move/Modify – перемещение / редактирование;

Сору – копирование;

Reflect – зеркальное отображение;

Check Geom – измерение расстояний;

Delete – удаление объектов.

4.1. Создание объектов

4.1.1. Ключевые точки (Keypoints)

Путь: MM:Preprocessor> Modeling> Create> Keypoints>

On Working Plane+ – создание ключевой точки заданием координат в диалоговом окне выбора объектов или указанием курсором в графическом окне. Новым ключевым точкам автоматически присваивается минимально возможный номер.

In Active CS... – создание ключевой точки по её номеру (NTP) и координатам (X, Y, Z) в активной координатной системе. Если с таким номером ключевая точка уже существует, то старая ключевая точка удаляется.

On Line+ – создание ключевой точки на существующей линии. Выбирается линия и задаётся координата предварительной точки. Пересечение перпендикуляра, опущенного из предварительной точки на выбранную линию, будет координатой новой ключевой точки.

On Line w/Ratio+ – создание ключевой точки на линии с помощью коэффициента пропорции. Коэффициент пропорции равен длине выбранной линии, делённой на расстояние от первой ключевой точки выбранной линии до создаваемой (Line Ratio).

On Node+ – создание ключевой точки с координатами выбранного узла.

КР Between KPs+ – создание ключевой точки между двумя существующими. Тип определения координаты создаваемой точки выбирается в списке **Value Type**, а в поле **Value (ratio, or distance)** задаётся значение коэффициента пропорции (Тип – **RATI**) или расстояние от первой выбранной до создаваемой ключевой точки (Тип – **DIST**).

Fill Between KPs+ – создание NFILL ключевых точек между двумя существующими (NL1 и NL2). Также можно задать: в поле SPACE – коэффициент расстояний между ключевыми точками (если >1, то указывает, во сколько раз первое расстояние будет больше последнего; если <1, то указывает, во сколько раз первое расстояние будет меньше последнего; если <0, то указывает, во сколько раз центральное расстояние будет больше крайних); в поле NSTRT – начальный номер создаваемых ключевых точек, а в поле NINC – шаг между номерами.

KP at center> 3 keypoints+ – создание ключевой точки в центре дуги, проходящей через указанные 3 ключевые точки.

KP at center> 3 KPs and radius+ – создание ключевой точки в центре дуги, проходящей через первые две ключевые точки с заданным радиусом. Третья выбираемая ключевая точка служит для определения стороны, с которой будет создаваться новая точка по отношению к первым двум.

KP at center> Location on line+ – создание ключевой точки в центре выбранной дуги.

4.1.2. Линейные объекты

Путь: MM:Preprocessor> Modeling> Create> Lines>

Lines> Straight Line+ – построение прямого отрезка независимо от вида активной координатной системы (рис. 6). Построение производится выбором двух ключевых точек, которые определяют начало и конец отрезка.

Рис. 6. Типы координатных систем: а) Декартова (X,Y,Z); б) цилиндрическая (R, Θ ,Z); в) сферическая (R, Θ , ϕ); г) тороидальная (R, Θ , ϕ ,r)

Lines> In Aktive Coord+ – построение линии в зависимости от вида активной координатной системы (рис. 6). Например, если активная координатная система сферическая, то линия построится в виде дуги. Построение производится выбором двух ключевых точек, которые определяют начало и конец отрезка.

Lines> Overlaid on Area+ – построение линии, принадлежащей поверхности. Построение производится выбором поверхности, а затем двух ключевых точек. Построение производится, если получаемый отрезок будет полностью принадлежать выбранной поверхности.

Lines> Tangent to Line+ – построение линии, касательной к существующему линейному объекту (рис. 7). После выбора линии, ключевой точки (1), показывающей, к какому концу выбранной линии будет строиться касательная линия, и ключевой точки (2), определяющей конец создаваемого линейного объекта, появится диалоговое окно «Line Tangent to Line», в котором необходимо задать касательный вектор (XV3, YV3, ZV3) к создаваемой линии, исходящий из ключевой точки (2). В диалоговом окне в поле NL1 будет показан номер выбранной линии, а в поле P3 – номер конечной ключевой точки.

Рис. 7. Построение линии, касательной к существующей

Lines> Tan to 2 Lines+ – построение касательной линии между двумя существующими линиями. Команда аналогична вышеописанной команде Tangent to Line+.

Lines> Normal to Line+ – построение перпендикуляра. Выбирается линия, к которой необходимо построить перпендикуляр, ключевая точка, из которой будет исходить перпендикуляр, и для ускорения построения задаётся приблизительная координата на выбранной линии, куда опустится перпендикуляр. Кроме создания перпендикуляра выбранная линия разделится на две в месте пересечения с перпендикуляром.

Lines> Norm to 2 Lines+ – построение перпендикуляра к двум линиям. Линии должны быть параллельны. Каждая выбранная линия разделится на две части в месте пересечения с перпендикуляром.

Lines> At angle to Line+ – построение линии под углом к существующей линии. После выбора линии, к которой необходимо построить линию под углом, выбирается ключевая точка, из которой будет исходить создаваемая линия. После этого в диалоговом окне «Straight line at angle to line» вводится угол, а затем для ускорения построения задаётся приблизительная координата на выбранной линии, куда опустится создаваемая линия. Кроме созданной линии выбранная линия разделится на две части в месте пересечения.

Lines> Angle to 2 Lines+ – построение линии под углом к двум существующим линиям. Построение происходит в следующем порядке: выбор двух линий; в появившемся диалоговом окне «Straight Line at Angle to 2 Lines» (рис. 8) в полях ANG1 и ANG2 вводятся углы между 1, 2 и создаваемой линией, соответственно; при необходимости можно ввести номера крайних ключевых точек создаваемой линии. Каждая выбранная линия разделится на две части в месте пересечения с создаваемой линией.

N Straight Line at Angle to 2 Lines	
[L2ANG] Create a Straight Line at Angles to 2 Existing Lines	
NL1,NL2 Existing lines	μ 3
ANG1,ANG2 Angles in degrees	
PHIT1,PHIT2 Numbers to assign -	
- to new keypoints at hit locations	
OK Apply	Cancel Help

Рис. 8. Диалоговое окно Straight Line at Angle to 2 Lines

Arcs> Through 3 KPs+ – построение дуги по трём ключевым точкам (начальной, конечной, средней).

Arcs> By End KPs & Rad+ – построение дуги по трём ключевым точкам (начальной, конечной и точки, определяющей, с какой стороны находится центр кривизны) и радиусу (RAD).

Arcs> By Cent & Radius+ – построение дуги по центру (Center - X, Y, Z), радиусу (Radius) и углу дуги (ARC). После построения дуга будет разбита на NSEG равных частей.

Arcs> Full Circle+ – построение окружности по центру (Center - X, Y, Z) и радиусу (Radius). После построения окружность будет разбита на четыре равные части. **Splines> Spline thru Locs+** – построение сплайна по двум ключевым точкам и предварительным промежуточным. Кроме созданного сплайна в местах предварительных точек создадутся новые ключевые точки.

Splines> Spline thru KPs+ – построение сплайна по ключевым точкам. Ключевые точки выбираются последовательно.

Splines> Segmented Spline+ – построение сплайна по ключевым точкам с его разбиением на отдельные сегменты в ключевых точках.

Splines> With Options> – в этом подменю расположены команды для построения сплайнов, аналогичных трём выше изложенным, но в конце выполнения команды появляется диалоговое окно, в котором необходимо ввести касательный вектор для начальной и конечной точек.

Line Fillet+ – построение скругления между двумя линейными объектами с радиусом RAD. Линейные объекты должны иметь общую ключевую точку.

4.1.3. Поверхностные объекты

Путь: MM:Preprocessor> Modeling> Create> Areas>

Arbitrary> Through KPs+ – построение поверхности произвольной формы путём выбора ключевых точек, описывающих контур создаваемой поверхности.

Arbitrary> Overlaid on Area+ – построение поверхности произвольной формы, перекрывающейся существующей поверхностью.

Arbitrary> By Lines+ – построение поверхности произвольной формы путём выбора линейных объектов, описывающих контур создаваемой поверхности.

Arbitrary> By Skinning+ – «натягивание» поверхности на «ребра» (рис. 9). В качестве «рёбер» выступают линейные объекты. Можно задать до 9 линейных объектов.

Рис. 9. "Натягивание" поверхности на "ребра": а) до выполнения команды; б) после выполнения

Arbitrary> By Offset+ – построение поверхности копированием существующей поверхности в направлении оси Z на расстояние DIST, вводимое в диалоговом окне «Create Area by Offset From Base Area». В поле KINC можно ввести начальный номер создаваемых ключевых точек.

Rectangle> By 2 Corners+ – построение прямоугольной поверхности с помощью задания координат диагонали или вводом в диалоговом окне «**Rectangle by 2 Corners**» в полях **WP X**, **WP Y**, **Width** и **Height**, соответственно, координаты (X, Y) угла прямоугольника, ширины и высоты.

Rectangle> By 2 Centr & Cornr+ – построение прямоугольной поверхности с помощью задания координат центральной точки и одного из углов или вводом в диалоговом окне «**Rectangle by Ctr, Corner**» в полях **WP X, WP Y, Width** и **Height**, соответственно, координаты (**X**, **Y**) угла прямоугольника, ширины и высоты.

Rectangle> By Dimensions... – построение прямоугольной поверхности заданием координат (X1, Y1 и X2, Y2) диагонали прямоугольника в диалоговом окне «Create Rectangle by Dimensions».

Circle> Solid Circle+ – построение круга по центру (WP X, WP Y) и радиусу (Radius).

Circle> Annulus+ – построение кольца по центру (WP X, WP Y), внешнему (Rad-1) и внутреннему (Rad-2) радиусу.

Circle> Partial Annulus+ – построение сектора кольца (рис. 10) по центру (**WP X**, **WP Y**), внешнему (**Rad-1**) и внутреннему (**Rad-2**) радиусам, начальному (**Theta-1**) и конечному (**Theta-2**) углам.

Рис. 10. Сектор кольца

Circle> By End Points+ – построение круга, вписанного между двумя точками диаметра (WP XE1, WP YE1 и WP XE2, WP YE2).

Circle> By Dimensions... – построение сектора кольца (см. рис. 10) по размерам, задаваемым в диалоговом окне «**Circular Area by Dimensions**». Координаты центра сектора кольца всегда равны **0,0,0**.

Polygon> Triangle+, Square+, Pentagon+, Hexagon+, Septagon+, Octagon+ – построение 3, 4, 5, 6, 7 и 8-стороннего правильного многоугольника по центру (WP X, WP Y), радиусу (Radius) и начальному углу (Theta).

Polygon> By Inscribed Rad..., **By Circumscr Rad...** – построение правильного многоугольника по количеству сторон (NSIDES) и, соответственно, радиусу вписанной окружности (MINRAD) или описанной окружности (MAJRAD).

Polygon> By Side Length... – построение правильного многоугольника по количеству сторон (NSIDES) и длине одной стороны (LSIDE).

Polygon> By Vertices+ – построение многоугольника по координатам его углов (**WP X**, **WP Y**). Ломаную линию можно не замыкать.

Area Fillet+ – построение скругления между поверхностями с радиусом **RAD**.

4.1.4. Объёмные твёрдотельные объекты

Путь: **MM:Preprocessor> Modeling> Create> Volumes>**

Толщина создаваемых объектов задаётся в направлении оси Z.

Arbitrary> Through KPs+ – построение объёма произвольной формы путём выбора ключевых точек, описывающих контур создаваемого объёма.

Arbitrary> By Areas+ – построение объёма произвольной формы путём выбора поверхностей, описывающих контур создаваемого объёма.

Blocks> By 2 **Corners & Z+** – построение прямоугольного параллелепипеда (рис. 11) с помощью задания диагонали основания и толщины или вводом в диалоговом окне **«Block by Corners & Z»** в полях **WP X, WP Y, Width, Height** и **Depth**, соответственно, координаты угла основания (**WP X, WP Y**), ширины, высоты и толщины.

Рис. 11. Прямоугольный параллелепипед

Blocks> By Center & Cornr+ – построение прямоугольного параллелепипеда (см. рис. 11) с помощью задания координаты центральной точки, координаты одного из углов основания и толщины или вводом в диалоговом окне «**Block by Ctr**, **Cornr**, **Z**» в полях **WP X**, **WP Y**, **Width**, **Height** и **Depth**,соответственно, координаты угла основания (**WP X**, **WP Y**), ширины, высоты и толщины.

Blocks> By Dymensions... – построение прямоугольного параллелепипеда (см. рис. 11) по координатам его диагонали (X1, Y1, Z1 и X2, Y2, Z2), задаваемым в диалоговом окне «Create Block by Dimensions».

Cilinder> Solid Cylinder+ – построение цилиндра (рис. 12, а) по центру (WP X, WP Y), радиусу (Rad-1) и высоте (Depth).

Рис. 12. Типы цилиндрических тел: а) цилиндр; б) полый цилиндр; в) сектор полого цилиндра

Cilinder> Hollow Cylinder+ – построение полого цилиндра (см. рис. 12, б) по центру (WP X, WP Y), внешнему (Rad-1), внутреннему (Rad-2) радиусам и высоте (Depth).

Cilinder> Partial Cylinder+ – построение сектора полого цилиндра (см. рис. 12, в) по центру (WP X, WP Y), внешнему (Rad-1), внутреннему (Rad-2) радиусам, начальному (Theta-1), конечному (Theta-2) углам и высоте (Depth).

Cilinder> By End Pts & Z+ – построение цилиндра по двум точкам диагонали основания (см. рис. 12, a – точки 1 и 2), между которыми вписывается основание, и высоте (**Depth**).

Cilinder> By Dymensions... – построение сектора полого цилиндра (см. рис. 12, в) заданием в диалоговом окне «Create Cylinder by Dimensions» Z координат центров верхнего (Z2) и нижнего (Z1) оснований, внешнего (RAD1) и внутреннего (RAD2) радиусов, начального (THETA1) и конечного (THETA2) углов.

Prism> Triangle+, Square+, Pentagon+, Hexagon+, Septagon+, Octagon+ – построение призмы с 3, 4, 5, 6, 7 и 8-сторонним правильным многоугольником в основании по центру (WP X, WP Y), радиусу (Radius), начальному углу (Theta) и высоте (Depth). **Prism> By Inscribed Rad...**, **By Circumscr Rad...** – построение призмы с правильным многоугольником в основании по Z координатам центров верхнего (Z2) и нижнего (Z1) оснований, количеству сторон многоугольника (NSIDES) и соответственно радиусу вписанной окружности (MINRAD) или описанной окружности (MAJRAD).

Prism> By Side Length... – построение призмы с правильным многоугольником в основании по Z координатам центров верхнего (Z2) и нижнего (Z1) оснований, количеству сторон у многоугольника (NSIDES) и длине одной стороны (LSIDE).

Prism> By Vertices+ – построение призмы с многоугольником в основании по координатам углов многоугольника (**WP X**, **WP Y**) и толщине (**Depth**). Ломаную, образующую основание, можно не замыкать.

Sphere> Solid Sphere+ – построение шара по центру (WP X, WP Y) и радиусу (Radius).

Sphere> Hollow Sphere+ – построение полого шара по центру (WP X, WP Y), внешнему (Rad-1) и внутреннему (Rad-2) радиусам.

Sphere> By End Points+ – построение шара, вписанного между двумя точками диагонали (WP XE1, WP YE1 и WP XE2, WP YE2).

Sphere> By Dimensions... – построение сектора полого шара заданием внешнего (RAD1) и внутреннего (RAD2) радиусов, начального (THETA1) и конечного (THETA2) углов в диалоговом окне «Create Sphere by Dimensions». Координаты центра равны 0,0,0. Углы указываются вокруг оси X.

Cone> By Picking+ – построение усечённого кругового конуса (рис. 13) по центру (**WP X**, **WP Y**), радиусам нижнего (**Rad-1**) и верхнего (**Rad-2**) оснований и высоте (**Depth**).

Cone> By Dimensions... – построение сектора усечённого кругового конуса (рис. 13) заданием в диалоговом окне «**Create Cone by Dimensions**» **Z** координат центров верхнего (**Z2**) и нижнего (**Z1**) оснований, радиусов верхнего (**RTOP**) и нижнего (**RBOT**) оснований, начального (**THETA1**) и конечного (**THETA2**) углов.

Рис. 13. Круговой конус

Torus... – построение сектора полого тора (рис. 14) заданием в диалоговом окне «**Create Torus by Dimensions**» радиусов тора (**RADMAJ**), внешнего кольца (**RAD1**) и внутреннего кольца (**RAD2**), а также начального (**THETA1**) и конечного (**THETA2**) углов. Углы указываются вокруг оси **Z**. Координаты центра равны **0,0,0**.

Рис. 14. Сектор тора

4.2. Операции над объектами

MM:Preprocessor> Modeling> Operate> Extend Line+ – увеличение длины линии. Вначале необходимо выбрать линию, затем ключевую точку (базовую) и в диалоговом окне «**Extend Line**» в поле **DIST** ввести, на сколько увеличить линию. В раскрывающемся списке **KEEP** можно выбрать «**Be modified**» (автоматически удалить исходную линию) или «**Not be modified**» (не удалять исходную линию).

4.2.1. Логические операции

Путь: MM:Preprocessor> Modeling> Operate> Booleans>

Settings... – предварительные настройки. В данном диалоговом окне кнопка с независимой фиксацией KEEP при значении On указывает на автоматическое удаление изменяемых объектов, а при значении Off – удаление не производится. Раскрывающийся список NWARN позволяет выбрать, какие сообщения выдавать при невыполнении логической операции (Give warning msg – предупреждение; Give error msg – ошибка; No messages – не выдавать сообщения). В раскрывающемся списке VERS выбирается версия нумерации создаваемых объектов. А в поле PTOL – вводится допуск для операций.

Intersect – пересечение – логическое умножение (конъюнкция) множеств. Результатом является множество, одновременно принадлежащее исходным множествам. Обозначение операции: «&» или And.

Intersect> Common> Volumes+ – пересечение двух объёмов (рис. 15).

Рис. 15. Пересечение двух объёмов

Intersect> Common> Areas+ – пересечение двух поверхностей (рис. 16).

Рис. 16. Пересечение двух поверхностей

Intersect> Common> Lines+ – пересечение двух линейных объектов (рис. 17).

Рис. 17. Пересечение двух линейных объектов

Intersect> Pairwise> Volumes+ – попарное пересечение всех выбранных объёмов (рис. 18).

Рис. 18. Попарное пересечение объёмов

Intersect> Pairwise> Areas+ – попарное пересечение всех выбранных поверхностей (рис. 19).

Рис. 19. Попарное пересечение поверхностей

Intersect> Pairwise> Lines+ – попарное пересечение всех выбранных линейных объектов (рис. 20).

Intersect> Area with Volume+ – пересечение поверхности с объёмом (рис. 21).

Intersect> Line with Volume+ – пересечение линии с объёмом (рис. 22).

Рис. 20. Попарное пересечение линейных объектов

Рис. 21. Пересечение поверхности с объёмом

Рис. 22. Пересечение линии с объёмом

Intersect> Line with Area+ – пересечение линии с поверхностью (рис. 23).

Add – логическое сложение (дизъюнкция) множеств. Результатом является множество, являющееся суммой исходных множеств. Обозначение: «+» или Or.

Рис. 23. Пересечение линии с поверхностью

Add> Volume+ – логическое сложение выбранных объёмов (рис. 24).

Рис. 24. Логическое сложение объёмов

Add> Areas+ – логическое сложение выбранных поверхностей (рис. 25).

Рис. 25. Логическое сложение поверхностей

Add> Lines+ – логическое сложение выбранных линейных объектов (рис. 26).

Рис. 26. Логическое сложение линий

Subtract – логическое вычитание множеств А и В. Результатом является множество А за вычетом из него множества, одновременно принадлежащего исходным множествам. Первыми выбираются объекты, из которых производится вычитание. Обозначение: «–».

Subtract> Volume+ – логическое вычитание объёмов (рис. 27).

Рис. 27. Логическое вычитание объёмов

Subtract> Areas+ – логическое вычитание поверхностей (рис. 28).

Рис. 28. Логическое вычитание поверхностей

Subtract> Lines+ – логическое вычитание линейных объектов (рис. 29).

Рис. 29. Логическое вычитание линейных объектов

Subtract> With Options> Volume+, Areas+ и Lines+ – логическое вычитание аналогично предыдущим командам, но в конце выполнения команды будет открыто диалоговое окно «Substract Volume (Areas или Lines) with Options».

В данном диалоговом окне раскрывающийся список SEPO позволяет выбрать правило создания поверхностей (для команды Volume), линий (для команды Areas) и ключевых точек (для команды Lines). В случае, если раскрывающийся список SEPO=Shared entities, то в местах пересечения для смежных новых объектов будет создана общая поверхность, линия или ключевая точка соответственно. Если SEPO=Separate entity, то будет создаваться для каждого нового объекта своя поверхность, линия или ключевая точка. То есть у смежных объектов в местах пересечения будут созданы отдельные разделяющие объекты (поверхность, линия или ключевая точка), но с одинаковым местоположением. Например, в месте пересечения двух линий будет создано две ключевые точки: для каждой новой линии – своя, но с одинаковыми координатами.

Раскрывающиеся списки **КЕЕР1** и **КЕЕР2** отвечают за удаление исходных объектов. **КЕЕР1** – из которого производится вычитание (выбирается первым при выполнении команд), и **КЕЕР2** – вычитаемого объекта. При значении **Handled per BOPT** – значение принимается

равным кнопке с независимой фиксацией **KEEP**, которая задана в диалоговом окре «**Settings...**» (см. начало данного подраздела). При значении **Kept** – исходный объект не удаляется, соответственно при значении **Delete** – исходный объект удаляется.

Divide> Volume by Area+ – логическое вычитание поверхности из объёма (рис. 30).

Рис. 30. Логическое вычитание поверхности из объёма

Divide> Volu by WrkPlane+ – логическое вычитание рабочей плоскости из объёма. Команда аналогична выше изложенной, только в качестве поверхности выступает рабочая плоскость.

Divide> Area by Volume+ – логическое вычитание объёмов из поверхностей (рис. 31).

Divide> Area by Area+ – логическое вычитание поверхностей (см. рис. 28).

Рис. 31. Логическое вычитание объёма из поверхностей

Divide> Area by Line+ – логическое вычитание линий из поверхностей (рис. 32).

Рис. 32. Логическое вычитание линии из поверхностей

Divide> Area by WrkPlane+ – логическое вычитание рабочей плоскости из поверхности. Команда аналогична MM:Preprocessor> -Modeling- Operate> -Booleans- Divide> Area by Area+, только в качестве вычитаемой поверхности выступает рабочая плоскость.

Divide> Line by Volume+ – логическое вычитание объёмов из линейных объектов (рис. 33).

Рис. 33. Логическое вычитание объёма из линий

Divide> Line by Area+ – логическое вычитание поверхностей из линейных объектов (рис. 34).

Divide> Line by Line+ – логическое вычитание линейных объектов (см. рис. 29). **Divide> Line by WrkPlane+** – логическое вычитание рабочей плоскости из линейных объектов.

Рис. 34. Логическое вычитание поверхности из линий

Divide> Line into 2 Ln`s+ – разделение линейного объекта на две части. На первом этапе выбирается делимая линия, а на втором – место разделения.

Divide> Line into N Ln`s+ – разделение линейного объекта на N равных частей. Вначале выбирается делимая линия, затем в диалоговом окне «**Divide Line into N Lines**» в поле **NDIV** – количество частей. Также в этом диалоговом окне в поле **NL1** показан номер выбранного линейного объекта, а в раскрывающемся списке **KEEP** можно выбрать «**Be modified**» (автоматически удалить исходную линию) или «**Not be modified**» (не удалять).

Divide> Line w/Options+ – разделение линейного объекта на N частей. Вначале выбирается делимая линия, затем в диалоговом окне «**Divide Multiple Lines with Options**» в поле **NDIV** – количество частей, в поле **RATIO** коэффициент длин (если >1, то указывает, во сколько раз первый линейный объект будет больше последнего; если <1, то наоборот), а в поле **PDIV** вводится минимальный номер создаваемых ключевых точек. Раскрывающейся список **KEEP** аналогичен выше изложенной команды. Поля **RATIO** и **PDIV** не используются, если **NDIV** больше 2.

Divide> With Options> – в данном меню находятся команды аналогично выше описанным, но в конце выполнения команды появится диалоговое окно в котором необходимо задать параметры через раскрывающие списки **KEEP1** и **KEEP2**. Данные раскрывающие списки отвечают за удаление исходного объекта, из которого производится вычитание (выбирается первым при выполнении команд), и вычитаемого

объекта соответственно. При значении **Handled per BOPT** – значение принимается равным кнопке с независимой фиксацией **KEEP**, которая задана в диалоговом окре «**Settings...**» (см. начало данного подраздела). При значении **Kept** – исходный объект не удаляется, а при значении **Delete** – исходный объект удаляется.

Glue> Lines+ – объединение ключевых точек выбранных линий с одинаковыми координатами (рис. 35).

Рис. 35. Объединение ключевых точек с одинаковыми координатами

Glue> Areas+ – объединение ключевых точек с одинаковыми координатами и общих частей линейных объектов выбранных поверхностей.

Glue> Volumes+ – объединение ключевых точек с одинаковыми координатами, общих частей линейных объектов и общих частей поверхностей выбранных объёмов.

Overlap> Volumes+ – разъединение на части перекрывающихся объёмов (рис. 36).

Рис. 36. Разъединение перекрывающихся объёмов

Overlap> Areas+ – разъединение на части перекрывающихся поверхностей (рис. 37).

Overlap> Lines+ – разъединение на части перекрывающихся линейных объектов (рис. 38).

Рис. 37. Разъединение перекрывающихся поверхностей

Рис. 38. Разъединение перекрывающихся линейных объектов

Partition> Volumes+ – разъединение на части перекрывающихся или пересекающихся объёмов (рис. 39).

Рис. 39. Разъединение перекрывающихся или пересекающихся объёмов

Partition> Areas+ – разъединение на части перекрывающихся или пересекающихся поверхностей (рис. 40).

Partition> Lines+ – разъединение на части перекрывающихся или пересекающихся линейных объектов (рис. 41).

Рис. 40. Разъединение перекрывающихся или пересекающихся поверхностей

Рис. 41. Разъединение перекрывающихся или пересекающихся линейных объектов

4.2.2. Масштабирование объектов

Путь: MM:Preprocessor> Modeling> Operate> Scale>

Команды Keypoints+, Lines+, Areas+, Volumes+ предназначены для масштабирования ключевых точек, линейных объектов, поверхностей и объёмов, соответственно.

Поле выбора масштабируемых объектов в появившемся диалоговом окне в полях **RX**, **RY**, **RZ** необходимо ввести масштабный коэффициент по соответствующим осям в активной системе координат. Также в поле **KINC** можно ввести минимальный номер создаваемых ключевых точек. В раскрывающемся списке **NOELEM** выбирается: или масштабировать выбранные объекты вместе с сеткой, или только выбранные объекты. В раскрывающемся списке **IMOVE** определяется: копировать масштабируемые объекты (**Copied**) или переносить (**Moved**).

4.2.3. Изменение, перемещение объектов

Путь: **MM:Preprocessor> Modeling> Move/Modify>**

Keypoints> Set of KPs+ – изменение координат ключевых точек. После выбора ключевых точек в диалоговом окне "Move Set of Keypoints" в полях X, Y, Z необходимо ввести новые координаты этих точек. Если изменяемым ключевым точкам принадлежат какие-нибудь объекты (линии, поверхности, объёмы), то происходит и их изменение.

Keypoints> **Single KP**+ – изменение координат ключевой точки. После выбора ключевой точки необходимо задать ей новую координату. Если изменяемой ключевой точке принадлежат какие-нибудь объекты (линии, поверхности, объёмы), то происходит и их изменение.

Lines+, -Areas- Areas+, Volumes+ – перемещение линейных объектов, поверхностей и объёмов, соответственно. После выбора объектов в диалоговом окне необходимо ввести смещение вдоль осей.

4.2.4. Копирование объектов

Путь: MM:Preprocessor> Modeling> Copy>

Команды Keypoints+, Lines+, Areas+, Volumes+, соответственно, предназначены для копирования ключевых точек, линейных объектов, поверхностей и объёмов.

Поле выбора копируемых объектов в диалоговом окне в полях **DX**, **DY**, **DZ** необходимо ввести смещение по соответствующим осям в активной системе координат, а в поле **ITIME** количество копий. Также в поле **KINC** можно ввести минимальный номер создаваемых ключевых точек. В раскрывающемся списке **NOELEM** выбирается: или копировать выбранные объекты вместе с сеткой, или только выбранные объекты.

4.2.5. Зеркальное отображение объектов

Путь: **MM:Preprocessor> Modeling> Reflect>**

Команды Keypoints+, Lines+, Areas+, Volumes+ предназначены для зеркального отображения ключевых точек, линейных объектов, поверхностей и объёмов, соответственно.

Поле выбора отображаемых объектов в диалоговом окне необходимо выбрать плоскость отображения (зеркало) Y-Z, X-Z или X-Y. Также в поле KINC можно ввести минимальный номер создаваемых ключевых точек. В раскрывающемся списке NOELEM выбирается: или отражать выбранные объекты вместе с сеткой, или только выбранные объекты. В раскрывающемся списке IMOVE определяется: копировать объекты (Copied) или переносить (Moved).

4.2.6. Измерение расстояний

Путь: MM:Preprocessor> Modeling> Check Geom>

Команда **KP distances**+ – определение расстояния между двумя ключевыми точками. При выполнении команды необходимо выбрать две ключевые точки. Выбрать можно либо с помощью указателя мыши в графическом окне, либо, введя в диалоговом окне выбора объектов номера двух ключевых точек, через клавишу [Enter]. После этого появится листинг, в котором будут указаны: расстояние между двумя точками и значения проекций данного расстояния на координатные оси.

Команда **ND distances**+ – определение расстояния между двумя узлами. Принцип действия аналогичен команде **KP distances**.

4.2.7. Удаление объектов

Путь: MM:Preprocessor> Modeling> Delete>

Команды Keypoints+, Lines only+, Areas only+, Volumes only+ предназначены соответственно для удаления только ключевых точек, линейных объектов, поверхностей и объёмов.

Команды Lines and Below+, Areas and Below+, Volumes and Below+ предназначены для удаления линейных объектов, поверхностей и объёмов и всех принадлежащих им объектов.

Содержание

1.	ВВЕДЕНИЕ	1
2.	. ИНТЕРФЕЙС ANSYS И ОБШИЕ ЗАМЕЧАНИЯ	
3.	КОМАНДЫ УПРАВЛЕНИЯ ОТОБРАЖЕНИЕМ ГРАФИЧЕСКОГ	
Oł	ζHΑ	4
	3.1. Перерисовка графического окна	4
	3.2. Многооконный режим	4
	3.3. Нумерация объектов	5
	3.4. Отображение активных объектов в графическом окне	6
	3.4.1. Отображение части активных объектов	6
	3.5. Управление видами	7
4.	ПОСТРОЕНИЕ ГЕОМЕТРИЧЕСКОЙ МОДЕЛИ	8
	4.1. Создание объектов	9
	4.1.1. Ключевые точки (Keypoints)	9
	4.1.2. Линейные объекты	10
	4.1.3. Поверхностные объекты	13
	4.1.4. Объёмные твёрдотельные объекты	16
	4.2. Операции над объектами	19
	4.2.1. Логические операции	20
	4.2.2. Масштабирование объектов	32
	4.2.3. Изменение, перемещение объектов	33
	4.2.4. Копирование объектов	33
	4.2.5. Зеркальное отображение объектов	33
	4.2.6. Измерение расстояний	34
	4.2.7. Удаление объектов	34

Составители Буялич Геннадий Даниилович Воеводин Владимир Васильевич Буялич Константин Геннадьевич

МЕТОДЫ РАСЧЕТА ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ. ПОСТРОЕНИЕ МОДЕЛЕЙ ДЛЯ РАСЧЕТОВ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Методические указания к практическим занятиям по дисциплине «Методы расчета горных машин и оборудования» для студентов специальности 130400.65 «Горное дело» специализации 130409.65 «Горные машины и оборудование» всех форм обучения

Рецензент проф. Л. Е. Маметьев

Печатается в авторской редакции

Подписано в печать 24.06.2013. Формат 60×84/16. Бумага офсетная. Отпечатано на ризографе. Уч.-изд. л. 2,5. Тираж 76 экз. Заказ

КузГТУ. 650000, Кемерово, ул. Весенняя, 28. Типография КузГТУ. 650000, Кемерово, ул. Д. Бедного, 4а.