УДК 551.41(470.5)

МОДЕЛЬ ФОРМИРОВАНИЯ ВОРОНЦОВСКОГО ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ НА УРАЛЕ (КАРЛИНСКИЙ ТИП): НОВЫЕ ДАННЫЕ И ПРОБЛЕМЫ

© 2010 г. В. В. Мурзин, В. Н. Сазонов, Ю. Л. Ронкин

Институт геологии и геохимии УрО РАН 620075, г. Екатеринбург, Почтовый пер., 7 E-mail: murzin@igg.uran.ru Поступила в редакцию 20.01.2010 г.

Приводятся новые термобарометрические и изотопно-геохимического данные исследования руд и пород нижней известняковой части разреза месторождения. Изучение газово-жидких включений в минералах указывает на принадлежность рудообразующего флюида к солевой системе CaCl₂–KCl–NaCl–H₂O с концентрацией солей 6.4–9.2 мас. % экв. NaCl. Изотопный состав C, O и Sr карбонатов вмещающих известняков и руд варьирует в пределах δ^{13} C от 2 до –4.0‰ PDB, δ^{18} O от 12 до 23.5‰ SMOW, (87 Sr/ 86 Sr)_{norm} = 0.7048–0.7079 и указывает на наличие двух изотопных резервуаров – метаморфогенного флюида, уравновешенного с известняками и магматогенного флюида. Суммарное содержание P3Э варьирует от 3.7 до 54.8 г/т, обнаруживая тенденцию увеличения в ряду: неизмененный известняк вмещающей толщи (3.7–5.6 г/т)–перекристаллизованный и мраморизованный известняк (8.7–15.5 г/т)–карбонат всех рудоносных образований (21.8–54.8 г/т). Изотопное датирование циркона (SHRIMP) из цемента рудоносной брекчии дало конкордантный возраст 518.5 ± 3.7 млн. лет. Эта датировка существенно древнее девонского возраста формирования толщ известняка и вулканогенных пород. Предполагается, что циркон и возможно часть тонкого золота попадает в глинистую фракцию известняка, а затем в цемент брекчий при размыве более древних отложений.

Ключевые слова: золотое оруденение, карлинский тип, термобарогеохимия, изотопная геохимия, абсолютный возраст.

ВВЕДЕНИЕ

Широко известный в мировой литературе "карлинский" (невадийский) золото-ртутно-мышьяковый тип месторождений является одним из ведущих в мире, как по запасам золота, так и по количеству разрабатывающихся объектов. Характерными особенностями золотого оруденения данного типа являются: приуроченность к фронтальным частям крупных надвигов среди карбонатных и кремнистокарбонатных пород, часто углеродистых, наличие золото-сульфидной минерализации, представленной тонкозернистыми сульфидами с субмикронным или изоморфным золотом, золото-ртутно-таллиево-мышьяковый геохимический спектр руд, аргиллизитовый и джаспероидный типы околорудного метасоматоза. Основная часть оруденения карлинского типа и, прежде всего, типового объекта месторождения Карлин, расположена на территории США (Карлин, Кортец, Гетчелл, Белл, Ноксвилл, Нью-Идрия), где оно сформировано в условиях пассивной окраины континента. Они известны также в Канаде, Китае, Перу, Югославии, Австралии, Филиппинах, Греции, Турции и других странах, в том числе и в России (Кючюс, Мурзинское, Тас-Юрях). В 1985 г. на Урале было открыто Воронцовское месторождение, которое по приуроченности вкрапленного золото-сульфидного оруденения в карбонатных породах и ряду минералогогеохимических характеристик отвечает карлинскому типу. Научный и практический интерес к этому месторождению связан с тем, оно явилось первым и пока единственным объектом карлинского типа на Урале, а также локализацией его в условиях активной окраины континента в краевой части Ауэрбаховского андезитоидного вулкано-плутонического комплекса девонского возраста [11].

Генезис карлинских руд является предметом многочисленных дискуссий. Были предложены, по крайней мере, несколько взаимоисключающих гипотез их происхождения. Ряд исследователей отстаивает магматогенную природу руд, полагая, что внедрение магмы вызвало циркуляцию флюида и рудные компоненты поступали из магматического очага [18]. Другие считают, что флюид и рудные компоненты извлекались из вмещающих пород при их региональном метаморфизме [16] или под воздействием магматического тепла [17]. В последние годы разрабатываются первичноосадочная, гидротермально-осадочная и осадочноэксгаляционная модели формирования (SEDEX) месторождений центральной Невады [5, 14], а также модель, связывающая оруденение с тектономагматической активизацией при которой происходит газо-флюидный перенос металлов из глубоких горизонтов [3]. Наконец, предложены и амагматические концепции формирования оруденения карлинского типа вследствие циркуляции минералообразующего флюида, обусловленного процессами растяжения земной коры [15] или же из рудоносного мантийного флюида, представляющего собой смесь элементоорганических соединений и неорганических металлокомплексов, и поднимающегося в неравновесных условиях из мантии по зонам глубинных разломов [4].

МОДЕЛЬ ФОРМИРОВАНИЯ ВОРОНЦОВСКОГО МЕСТОРОЖДЕНИЯ

Необычность состава руд и геологического положения вызвали неоднозначное трактование генезиса месторождения. Предлагалась модель, связывающая оруденение с молодой позднепалеозойскомезозойской тектонической активизацией, развитием низкотемпературного метасоматоза аргиллизитовой формации и отрицающая связь с развитыми вблизи месторождения магматическими образованиями D_2 [1, 2, 9]. Другая модель связывает оруденение со становлением магматогенно-гидротермальной медно-порфировой системы, рассматривая его как фланговый элемент типовой рудной зональности [6]. К плутоногенно-гидротермальному типу относит Воронцовское месторождение и группа сибирских исследователей [7].

Нами предложена трехэтапная модель формирования Воронцовского месторождения, в которой сочетаются глубинные постмагматические и метаморфогенные источники флюидов [10, 11]. Согласно этой модели (рис. 1) в 1-й этап, в период вулканической деятельности, происходил подогрев заключенных в осадках захороненных морских вод, которые, становясь агрессивными, извлекали из осадочных пород петрогенные и рудные компоненты, в том числе и золото. Во 2-й этап внедрение Ауэрбаховского массива вызвало дополнительное высвобождение воды из мраморизующихся известняков при их прогреве и перемещение растворов к краям вулкано-купольной структуры по системе разломов в карбонатной толще. Крутопадающий разлом на западной границе структуры препятствовал дальнейшему продвижению растворов на запад. Флюиды, обогащенные комплексами рудных элементов с серой и, возможно, мышьяком, выжимались к поверхности и попадали в зону пологого экранирующего контакта вулканогенных пород с известняками. Вулканогенно-осадочные породы контакта, а также проницаемые пачки брекчий в нижележащих известняках явились коллектором и зоной разгрузки растворов, сформировавших пиритреальгаровые руды, несущие основную массу золота на месторождении. В 3-й этап произошел подток магматогенного глубинного флюида, обогащенного

ЛИТОСФЕРА № 6 2010

Рис. 1. Схематическая модель формирования оруденения карлинского типа на Воронцовском месторождении.

 известняки; 2 – туффиты, туфосланцы, кремнистоглинистые сланцы; 3 – вулканиты андезитового состава; 4 – гранитоиды Ауэрбаховского массива; 5 – дорудные дайки (долериты, габбро-долериты); 6 – известковые брекчии; 7 – скарны; 8 – рудные тела; 9 – разломы; 10–11 – направления движения флюидов: магматогенных (10) и "метаморфогенных" (11).

Zn, Pb, Ag, преимущественно на северном и южном флангах рудоносной структуры. При разгрузке этого флюида, смешивающегося с метаморфогенным, образованы сульфосольно-полиметаллический и полиметаллический типы минерализации Воронцовского месторождения, а вблизи контакта с интрузией последовательно сформированы золотоносные скарны и кварцевые жилы.

Данная модель согласуется с предложенной А. Радтке [17] для месторождения Карлин. Анализ литературного материала по месторождениям карлинского тренда выявляет основные необходимые геологические условия для его формирования - наличие специализированных на перечисленные элементы карбонатных отложений, мощного теплового очага и структурных экранов, в качестве которых могут выступать пологие надвиги, контакты карбонатных толщ со слабо проницаемыми породами. Все эти элементы присутствуют в районе Воронцовского месторождения. В то же время, специфика формирования золотого оруденения карлинского типа в условиях активной окраины континента, согласно предложенной нами модели, заключается в следующем: 1) формирование оруденения в непосредственной близости от теплового очага, что привело к совмещению в пространстве и частично во времени разноформационных рудных образований (золотоносные скарново-магнетитовые, медно-порфировые, золотые кварцево-жильные); 2) рудоотложение в более глубинных условиях (1-1.5 км), нежели в типовом месторождении Карлин, и при более высоких температурах (вместо аргиллизитов образованы кварц-серицитовые метасоматиты, а вместо мышьяковистого пирита образовалась ассоциация высокосернистого арсенопирита и пирротина).

В последние годы нами проведены дополнительные термобарометрические, изотопно-геохимические исследования руд и пород нижней известняковой части разреза месторождения, которые позволили детализировать и развить предлагаемую нами модель формирования руд карлинского типа на Урале и высказать новые предположения относительно происхождения горизонтов известковых брекчий, служащих коллектором основной массы золота.

ИССЛЕДОВАНИЕ ВКЛЮЧЕНИЙ МИНЕРАЛООБРАЗУЮЩЕЙ СРЕДЫ В МИНЕРАЛАХ

Включения минералообразующей среды обнаружены в карбонате трех образцов руд с вкрапленностью сульфидов пирит-арсенопиритовой, пиритреальгаровой и сульфосольно-полиметаллической минеральных ассоциаций. Исследованные первичные включения [7] располагаются в виде роя в центральных частях отдельных зерен карбоната размером 1–1.5 мм или приурочены к контактам зерен, фрагментарно трассируя зоны роста. Размер включений, как правило, менее 10 мкм, а по фазовому составу выделены два их типа. Первый тип включений, преобладающий в количественном отношении, – существенно газовые с жидкой углекислотой, второй – водные одно- или двухфазные с наполнением, близким к 100%.

Температура гомогенизации двухфазных включений в кальците составляет 110-150°С, а для парагенезиса с реальгаром - менее 100°С. Криометрическое исследование существенно газовых включений первого типа показало, что в составе газовой фазы присутствует примесь азота или метана, понижающих температуру плавления СО₂ до -58... -62°С. Растворы одно- двухфазных включений по солевому составу относятся к водно-солевой системе CaCl₂-H₂O, о чем свидетельствуют температуры плавления их эвтектик (-49°С). В составе растворов, по-видимому, присутствуют NaCl и KCl, что косвенно подтверждается резким ускорением плавления льда, при температурах близких к эвтектикам водно-солевых систем КСl-NaCl-H₂O (-23.5°C), КСІ-H₂O (-10.6°С). Общая концентрация солей в растворах включений, судя по температурам плавления льда, -4...-6°С, не превышает 6.4-9.2 мас. % экв. NaCl.

Водно-углекислотный кальциево-хлоридный состав рудоносного флюида в карбонатных брекчиях подтверждает, на наш взгляд, его метаморфогенную природу и образование при метаморфизме карбонатных отложений. Соленость этого флюида несколько повышена относительно нормальной солености морской воды, составляющей около 3.5 мас. % экв. NaCl. В рамках предложенной нами модели, повышенная соленость флюида может объясняться смешиванием захороненной в карбонатных породах морской воды с небольшим количеством высокосоленой магматической воды, обычно принадлежащей к типу NaCl-KCl. Присутствие существенно водных и газовых включений указывает на гетерогенное состояние флюида, которое возникает при его вскипании (гетерогенизации) при резком спаде давления в близповерхностных условиях. Поскольку для явлений вскипания можно принять условие идентичности температур захвата и гомогенизации газово-жидких включений, можно говорить о пониженной температуре (150°С и менее) отложения изученных зерен карбоната. Такие карбонаты могут принадлежать парагенезисам аргиллизитов.

ИЗОТОПНЫЙ СОСТАВ КАРБОНАТА

Полученные данные по изотопному составу углерода, кислорода и стронция характеризуют карбонат, образованный в ходе всего периода формирования руд, локализованных среди известняков – от неизмененного известняка до образования рудоносных золотоносных скарнов (табл. 1). Интерпретация этих данных дает основания для ряда заключений, согласующихся в целом с развиваемой нами моделью.

1) Изотопный состав неизмененного известняка вмещающих толщ точно соответствует таковому для морских карбонатов фанерозойского времени – δ^{13} C = 0...+5‰ PDB, δ^{18} O = 20–30‰ SMOW, ⁸⁷Sr/⁸⁶Sr близко к 0.708 [12].

2) Процессы преобразования известняка (перекристаллизация, мраморизация, брекчирование) не оказывают сколько-нибудь существенного влияния на соотношение изученных изотопов.

3) Процессы формирования рудных парагенезисов в брекчиях как с реальгаром, так и без такового ведут лишь к незначительному облегчению его изотопных характеристик по отношению к изотопному составу морского карбоната, что свидетельствует об изотопной уравновешенности метаморфогенного рудообразующего флюида с доминирующими по объему морскими осадками.

4) Наиболее низкие значения 87 Sr/ 86 Sr, приближающиеся к его значениям в магматических породах (0.704 ± 0.002 по [12]) характеризуют карбонат из богатых сульфидами джаспероида и магнетитпиритовой руды в скарне. Карбонат этих руднометасоматических образований имеет также наиболее облегченный изотопный состав углерода и кислорода. Наличие двух изотопных резервуаров – метаморфогенного флюида, уравновешенного с из-

N₂	Порода	δ ¹³ C, ‰ PDB	δ ¹⁸ O, ‰ SMOW	$({}^{87}Sr/{}^{86}Sr)_{norm}$
1	известняк (кальцитовый) вмещающей толщи	1.6	21.0	0.70779
2	то же, перекристализованный	1.3	18.8	0.70736
3	то же, мраморизованный	1.6	23.4	0.70793
4	карбонат обломка нерудной брекчии	1.7	23.5	0.70782
5	известняк, перекристаллизованный, из зоны с реальгаром	2.1	22.7	0.70789
6	известняк из обломка рудоносной брекчии с реальгаром	2.1	18.1	0.70742
7	то же, без реальгара	-0.3	18.1	0.70770
8	_"_	-1.2	18.0	0.70714
9	доломит из сульфидизированного джаспероида	-4.3	14.9	0.70480
10	кальцит из магнетит-пиритовой руды в скарне	-4.0	12.8	0.70637

Таблица 1. Изотопные характеристики карбоната Воронцовского месторождения

Примечание. Изотопный состав углерода и кислорода определен в аналитическом центре ДВГИ ДВО РАН (воспроизводимость анализа на δ¹⁸О и δ¹³С составляет, соответственно, 0.1 и 0.05‰). Изотопный состав стронция определен в Институте геологии и геохимии УрО РАН Ю.Л. Ронкиным.

Рис. 2. Вариации изотопного состав углерода, кислорода и стронция карбонатов из известняков и руднометасоматических образований.

1 – нерудоносные образования (известняк вмещающей толщи, перекристаллизованный, мраморизованный и обломков брекчий), 2 – рудоносные брекчии, 3 – скарн и 4 – джаспероид.

вестняками и магматогенного флюида, смешивающихся в различных пропорциях, подчеркивается коррелирующимися трендами изменения всех изученных изотопов (рис. 2).

5) Обращает на себя внимание отсутствие изотопных свидетельств участия в рудообразующих процессах органического углерода, что находится в противоречии с данными о повышенном содержании органического углерода во вмещающем и рудном комплексах изучаемого месторождения [8].

ЭЛЕМЕНТЫ-ПРИМЕСИ В КАРБОНАТАХ

Концентрации большинства примесных компонентов в карбонатах не превышают 1 г/т (табл. 2). Ряд элементов присутствуют в более высоких концентрациях Ni, P, Sr, Y, Ba, Cu, Cr, не обнаруживая корреляции со степенью метаморфических или метасоматических изменений пород. Присутствие элементов базит-ультрабазитового геохимического профиля связано, по-видимому, с привносом кластогенного материала при отложении известняков.

ЛИТОСФЕРА № 6 2010

Другие элементы, присутствующие в значимых количествах – As, Mn, Pb, Zn, характеризуются отчетливым концентрированием в карбонате рудоносных образований. Аналогично ведут себя редкоземельные элементы (РЗЭ). Суммарное содержание РЗЭ (от La до Lu) варьирует от 3.7 до 54.8 г/т, обнаруживая тенденцию увеличения в ряду: неизмененный известняк вмещающей толщи, в том числе из нерудной известковой брекчии (3.7–5.6 г/т)–перекристаллизованный и мраморизованный известняк (8.7–15.5 г/т)–карбонат всех рудоносных образований (21.8–54.8 г/т).

Хондрит-нормализованные тренды распределения РЗЭ имеют положительный наклон, т.е. наблюдается обогащение всех карбонатов легкими РЗЭ относительно средних и тяжелых (рис. 3). Исключение составляет карбонат двух проб (2 и 5), который характеризуется V-образными трендами. На всех трендах нерудных карбонатов наблюдается хорошо выраженные отрицательные европиевая и цериевая аномалии. Цериевая аномалия является типичной для глубоководных морских обра-

МУРЗИН и др.

	1	2	3	4	5	6	7	8	9	10
As	0.36	0.51	0.85	0.41	35.58	66.50	2.45	3.12	0.17	9.93
Cd	0.050	0.093	0.140	0.299	0.059	0.062	0.051	0.202	0.410	0.620
Ge	0.005	0.012	0.009	0.011	0.012	0.018	0.029	0.018	0.080	0.020
Ni	9.74	9.89	12.45	12.73	20.29	14.27	8.09	8.10	20.43	16.39
Р	64.1	50.3	115.5	48.3	93.4	48.8	54.9	112.4	26.4	90.7
Li	0.053	0.074	0.235	0.393	0.102	0.264	0.488	0.865	0.377	0.116
Be	0.003	0.012	0.011	0.010	0.005	0.001	0.008	0.008	0.048	0.013
Sc	0.146	0.972	0.335	0.186	0.808	1.674	0.683	0.707	1.081	0.475
Ti	1.245	1.894	3.465	1.135	1.413	1.036	1.145	6.551	84.665	4.700
V	0.136	1.890	2.056	1.025	0.446	0.638	1.991	3.289	10.704	0.529
Mn	228	597	161	99	602	1332	9405	24451	11718	12767
Co	0.566	0.628	0.789	0.814	0.657	0.765	0.466	0.475	2.684	0.958
Zn	0.335	0.493	0.990	0.538	0.502	0.467	1.090	1.794	11.325	2.522
Cu	162.5	118.1	222.1	196.1	166.0	150.5	182.7	174.9	231.7	300.3
Rb	0.262	0.364	0.264	0.080	0.342	0.376	0.235	0.389	0.583	0.342
Sr	207.8	209.3	327.6	294.2	160.0	200.7	188.1	127.9	185.9	293.1
Y	3.43	13.01	7.08	2.77	13.86	8.91	14.07	19.26	21.28	14.17
Zr	0.043	0.103	0.065	0.026	0.166	0.105	0.042	0.097	0.153	0.055
Nb	0.083	0.050	0.053	0.049	0.038	0.039	0.037	0.036	0.055	0.040
Мо	0.008	0.105	0.035	0.013	0.054	0.005	0.000	0.224	0.071	0.022
Cs	0.018	0.042	0.018	0.000	0.036	0.083	0.009	0.081	0.020	0.009
Ba	11.67	5.36	3.53	3.90	17.51	15.17	14.81	16.88	8.18	5.81
La	1.451	2.883	2.278	0.888	4.082	7.975	19.28	4.346	5.384	8.632
Ce	1.573	2.932	1.677	0.910	3.230	11.688	17.91	5.270	9.553	12.00
Pr	0.266	0.555	0.428	0.174	0.730	1.252	2.506	1.018	1.438	1.330
Nd	1.094	2.488	1.877	0.756	3.038	4.760	9.129	4.806	6.641	4.994
Sm	0.212	0.587	0.408	0.162	0.590	0.750	1.299	1.068	1.886	0.846
Eu	0.055	0.124	0.086	0.039	0.143	0.296	0.459	0.394	0.657	0.246
Gd	0.248	0.820	0.483	0.203	0.723	0.846	1.334	1.261	2.236	0.864
Tb	0.040	0.144	0.079	0.032	0.135	0.128	0.186	0.214	0.364	0.139
Dy	0.262	1.080	0.530	0.216	0.972	0.777	1.144	1.352	2.341	0.913
Но	0.056	0.254	0.119	0.047	0.227	0.173	0.239	0.289	0.493	0.202
Er	0.152	0.784	0.348	0.126	0.675	0.481	0.649	0.811	1.330	0.568
Tm	0.022	0.130	0.052	0.019	0.108	0.070	0.092	0.123	0.172	0.084
Yb	0.125	0.821	0.291	0.105	0.690	0.422	0.538	0.740	0.943	0.486
Lu	0.018	0.123	0.043	0.014	0.108	0.060	0.074	0.109	0.128	0.069
Hf	0.001	0.005	0.003	0.002	0.005	0.003	0.005	0.005	0.011	0.003
Re	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
TI	0.003	0.101	0.009	0.001	0.158	1.174	0.110	0.525	0.007	0.015
Pb	1.51	1.23	6.99	4.45	0.69	0.90	3.88	14.17	3.87	933.6
Bi	0.028	0.034	0.036	0.619	0.030	0.061	0.045	0.062	0.062	0.113
Th	0.018	0.035	0.050	0.014	0.038	0.065	0.047	0.036	0.082	0.042
U	0.161	0.245	0.719	0.404	0.134	0.198	0.145	0.202	0.154	0.421
Cr	0.506	0.894	0.947	0.900	13.313	3.512	2.936	1.160	0.886	1.627
Th/U	0.11	0.14	0.07	0.03	0.28	0.33	0.32	0.18	0.54	0.10
∑РЗЭ	5.6	13.7	8.7	3.7	15.5	29.7	54.8	21.8	33.6	31.4

Таблица 2. Содержание элементов-примесей в карбонатах Воронцовского месторождения по данным ICP-MS (г/т)

Примечание. Номера проб соответствуют номерам в табл. 1.

зований [19]. Она не проявлена только в карбонате из скарна, но сохраняется и в тех карбонатах из рудоносных образований, которые имеют апоизвестняковую природу (рудные брекчии, джаспероиды). В этом случае она выражена значительно слабее. Отрицательная европиевая аномалия в рудоносных образованиях выражена слабо или даже сменяется слабо выраженной положительной.

Таким образом, можно говорить о том, что неизмененные известняки вмещающей толщи имеют повышенную фоновую концентрацию РЗЭ. Сохранение отрицательной цериевой аномалии в рудных карбонатах в условиях значительного привноса РЗЭ рудообразующим флюидом свидетельствует о том, что известняк может являться основным источником РЗЭ во флюиде. В тоже время очень слабая цериевая аномалия в джаспероиде и отстутствие таковой в скарне может трактоваться как свидетельство участия на 3 этапе рудообразования магматогенного флюида.

УРАН-СВИНЦОВЫЙ ВОЗРАСТ ЦИРКОНА ИЗ РУДОНОСНОЙ ИЗВЕСТКОВОЙ БРЕКЧИИ

Согласно имеющимся представлениям о происхождении линзообразных тел известковых брекчий (D_1), несущих основную массу золота, наиболее распространено мнение об их эруптивном генезисе и возрасте, совпадающем с периодом вулканической активности – D_{1-2} [11]. Цемент брекчий сильно изменен (серцитизация, окварцевание, эпидотизация, хлоритизация, сульфидизация) и надежно диагностируется как вулканит андезитового состава только в горизонтах брекчий за пределами рудных тел.

В одной из скважин, в центральной части месторождения, встречен интервал рудоносной брекчии с необычным цементом, сложенным манганкальцитом и тальком. В качестве акцессорных минералов в цементе брекчии обнаружены зерна хромшпинели, а также циркона, представленные кристаллами размером до 0.2 мм однородными по цвету и габитусу (a/c = 1-3). 14 зерен циркона были проанализированы с помощью ионного микрозонда высокого разрешения SHRIMP II (ВСЕГЕИ) (рис. 4). Полученные нами данные для отдельных кристаллов попадают в диапазон возрастных датировок 507-537 млн. лет, а вычисленный конкордантный возраст составляет 518.5 \pm 3.7 млн. лет (рис. 5). Полученные датировки возраста циркона явно не отвечают как возрасту формирования толщ известняка, так и возрасту вулканизма, являясь более древними (верхний кембрий). Они могут быть объяснены только попаданием циркона в девонские осадки при размыве более древних отложений. Возможность попадания мелких зерен тяжелых минералов (хромшпинелиды, золото, платина, сульфиды и др.) в глинистые прослои среди девонских известняков Тагильского прогиба известна [13].

Предполагается, что эруптивные брекчии образовались путем заполнения вулканическим материалом под давлением пустот, возникающих при одновременном с вулканизмом тектоническом дроблении известняков. Очевидно, что глинистые прослои среди известняков также могли попадать в цемент брекчий. Поскольку золото в сульфидизированных брекчиях представлено очень мелкими частицами (менее 10 мкм) и приурочено исключительно к цементу брекчий, то вопрос о соотношениях вулканогенного и осадочного компонентов цемента брекчий приобретает большое значение для прогнозирования изучаемого оруденения и требует дальнейшей разработки.

На осадочный генезис "известняков комковатого и брекчиевидного сложения" указывает О.В. Минина [6]. По ее представлениям, брекчии вместе со слоями туфопесчаников и туфоалевролитов накапливались в конседиментационных впадинах на поверхности рифовой постройки. В разре-

Указаны полученные значения уран-свинцового возраста в участках анализа.

зе присутствуют также маломощные лавовые потоки мелкопорфировых андезитов, которые вместе с карбонатными и терригенными осадками выпол-

Рис. 5. U-Pb диаграмма с конкордией для цирконов из цемента рудоносной известковой брекчии.

няют межобломочное пространство в горизонтах брекчиевидных известняков.

ЗАКЛЮЧЕНИЕ

Таким образом, получены данные, дополняющие и укрепляющие представления о трехэтапной модели формирования Воронцовского месторождения, как представителя оруденения карлинского типа на активной окраине континента. Исходя из этой модели, для создания промышленных концентраций золота необходима последовательная реализация трех факторов: первый – наличие специализированной на золото толщи осадочного или эффузивно-осадочного происхождения (обычно содержание Аи в специализированных толщах составляет около 6 мг/т, однако в отдельных местах Урала такие толщи содержат до 70 мг/т Au); второй – тепловой источник энергии, чтобы привести Аи в движение, локализовать его в зонах дробления пород (обычно на контакте карбонатных образований с вулканитами) и подать его в составе рудообразующего флюида в зону рудоотложения; третий – ловушки для сброса золота (здесь важно сочетание двух обстоятельств – падение температуры и наличие структурно-литологического барьера, в последнем существенна роль известняков, которые обусловливают высаживание золота путем распада сульфидных комплексов).

Исследования проведены при финансовой поддержке УрО РАН (проект УрО-СО-ДВО РАН "Гидротермальная и экзогенная благороднометалльная минерализация в Центрально-Азиатском, Уральском и Тихоокеанском складчатых поясах").

СПИСОК ЛИТЕРАТУРЫ

- 1. Баранников А.Г., Угрюмов А.Н. Проблемы эндогенного золотого рудогенеза мезозоя Урала // Литосфера. 2003. № 1. С. 13–26.
- Бобров В.Н. Метасоматическая и сопровождающая золоторудная зональность на месторождении благородных металлов // Рудоносные метасоматические формации Урала. Свердловск: УрО АН СССР. 1991. С. 44–46.
- Волков А.В. Модель многоярусного строения рудной колонны и условия образования крупных и сверхкрупных Au-As-Sb вкрапленных месторождений с "невидимым", упорным золотом // Роль минералогии в познании процессов рудообразования: мат-лы Годичной сессии МО РМО, посвященной 110-летию со дня рождения академика А.Г. Бетехтина. М.: ИГЕМ РАН, 2007. С. 81–86.
- Зубков В.С. Эндогенные рудонафтидные месторождения // Геохимические процессы и полезные ископаемые. Иркутск. Вестник ГеоИГУ. Вып. 2. 2000. С. 74–93.
- Константинов М.М., Некрасов Б.М., Сидоров А.А., Стружков С.Ф. Золоторудные гиганты Росси и мира. М.: Научный мир, 2000. 272 с.
- 6. Минина О.В. Ауэрбаховская комплексная рудномагматическая система на Среднем Урале // Отечественная геология. 1994. № 7. С. 17–23.
- 7. Наумов Е.А., Боровиков А.А., Борисенко А.С. и др. Физико-химические условия формирования эпитермальных золото-ртутных месторождений // Геология и геофизика. 2002. Т. 43, № 12. С. 1055–1064.
- Рахов Е.В. Органический углерод во вмещающем и рудном комплексах Воронцовского золоторудного месторождения (Сев. Урал) // Ежегодник-1997. Екатеринбург: ИГГ УрО РАН, 1998. С. 160–162.
- 9. Савельева К.П., Костромин Д.А. Полигенный и по-

ЛИТОСФЕРА № 6 2010

лихронный метасоматоз одного из золоторудных месторождений Северного Урала // Геология метаморфических комплексов. Екатеринбург: УГИ, 1991. С. 75–80.

- Сазонов В.Н., Мурзин В.В.: Григорьев Н.А. Воронцовское золоторудное месторождение – пример минерализации карлинского типа на Урале, Россия // Геология рудных месторождений. 1998. Т. 40, № 2. С. 157–170.
- Сазонов В.Н., Мурзин В.В., Григорьев Н.А., Гладковский Б.А. Эндогенное оруденение девонского андезитоидного вулкано-плутонического комплекса (Урал). Свердловск: УрО АН СССР, 1991. 184 с.
- 12. *Фор Г*. Основы изотопной геохимии. М.: Мир, 1989. 590 с.
- Шнейдер Б.А., Мурзин В.В. Аллотигенное золото в известняках // Докл. АН СССР. 1983. Т. 268, № 1. С. 163–167.
- 14. Berger V.I., Theodore T.G. SEDEX origin of strata-

bound Carlin-type gold deposites in Northcentral Nevada: Geologic implication // Extended abstracts of 12th IAGOD Symp. "Understanding the genesis of ore deposits to meet the demands of the 21st Century". Moscow. 2006. P. 133.

- Ilchik R.P. Geology and geochemistry of the Vantage gold Deposits, Alligator Ridge-Bald Mountain Mining district, Nevada // Econ. Geol. 1990. V. 85. P. 50–75.
- Phillips G.N., Powell R. Link between gold provinces // Econ. Geol. 1993. V. 88. P. 1084–1098.
- 17. *Radtke A.S.* Geology of the Karlin gold deposite, Nevada // US Geol. Prof. Pap., 1985. № 1267. 263 p.
- Silitoe R.H., Bonham H.F. Sediment-hosted gold deposits: distal products of magmatic-hydrothermal systems // Geology. 1990. V. 18. P. 157–161.
- 19. *Strekopytov S.* REE distribution in recent pacific sediments and the relationship with major elements geochemistry and source provenances // J. Czech. Geol. Soc. 1997. V. 42. P. 48.

Рецензент В.Ф. Рудницкий

A formation model of the Vorontsovskoe gold deposit in the Urals (Carline type): New data and problems

V. V. Murzin, V. N. Sazonov, Yu. L. Ronkin

Institute of Geology and Geochemistry, Urals Branch of RAS

The new thermobarometrical and isotopic-geochemical data of ores and rocks' investigation of the lower part deposit sequence are adduced. A study of gas-liquid inclusions in minerals shows a belonging of ore-forming fluid to a saline system of KCl–NaCl–H₂O with a salt concentration of 6.4–9.2 mas. % eq. NaCl. Isotopic composition of C, O and Sr from carbonates of host limestones and ores varies in the levels of $\delta^{13}C = 2 \dots -4.0\%$ PDB, $\delta^{18}O = 12-23.5\%$ SMOW, $(^{87}Sr/^{86}Sr)_{norm} =$ and 0.7048–0.70 and shows an availability of two isotopic reservoirs – metamorphogenic fluid well-balanced with limestones and magmatogenic one. A summary content of REE varies from 3.7 to 54.8 g/t and showes a tendency of increase in row: unaltered limestone of enclosing rocks (3.7–5.6 g/t)–recrystallized and marbled limestone (8.7–15.5 g/t)–carbonate of ore-bearing formations (21.8–54.8 g/t). Isotopic dating of zircon from a cement of ore-bearing breccias has given a concordante age of 518 ± 3.7 MA. This age is older then Devonian age of limestones and volcanogenic rocks' forming. It's supposed that zircon and probably a part of fine gold get in argillaceous fraction of limestone and than come on a breccias' cement under an erosion of more ancient sediments.

Key words: gold deposit, Carlin-type, thermobarogeochemistry, isotope geochemistry, absolute age.