Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Издание:Economic geology, 2006 г., 42 стр.
Язык(и)Английский
Geology of the Sari Gunay epithermal gold deposit, Northwest Iran / Геология эпитермального золоторудного месторождения Сари Гунай, Северо-Западный Иран

The Sari Gunay epithermal gold deposit is located within a mildly alkaline latitic to trachytic volcanic complex in central-northwest Iran. Intrusive and volcanic rocks that host the deposit have been dated at between 11.7 and 11.0 Ma (with one younger sample at 8.0 Ma; 40Ar/39Ar dating of igneous biotite and hornblende), whereas sericitic alteration associated with an early stage of hydrothermal activity occurred between ~10.8 and ~10.3 Ma (the best age estimate is 10.7 Ma obtained by 40Ar/39Ar dating of sericite).

Автор(ы):Kerrich R., Richards J.P.
Издание:Economic geology, 2007 г., 40 стр.
Язык(и)Английский
Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis

Based on a compilation of published sources, rocks referred to as adakites show the following geochemical and isotopic characteristics: SiO2 £56 wt percent, Al2O3 >15 wt percent, MgO normally <3 wt percent, Mg number =0.5, Sr >400 ppm, Y <18 ppm, Yb <1.9 ppm, Ni >20 ppm, Cr >30 ppm, Sr/Y >20, La/Yb >20, and 87Sr/86Sr <0.7045. Rocks with such compositions have been interpreted to be the products of hybridization of felsic partial melts from subducting oceanic crust with the peridotitic mantle wedge during ascent and are not primary magmas. High Mg andesites have been interpreted to be related to adakites by partial melting of asthenospheric peridotite contaminated by slab melts. The case for these petrogenetic models for adakites and high Mg andesites is best made in the Archean, when higher mantle geotherms resulted in subducting slabs potentially reaching partial melting temperatures at shallow depths before dehydration rendered the slab infusible. In the Phanerozoic these conditions were likely only met under certain special tectonic conditions, such as subduction of young (<25-m.y.-old) oceanic crust.

Key adakitic geochemical signatures, such as low Y and Yb concentrations and high Sr/Y and La/Yb ratios, can be generated in normal asthenosphere-derived tholeiitic to calc-alkaline arc magmas by common upper plate crustal interaction and crystal fractionation processes and do not require slab melting. An assessment of several arc volcanic suites from around the world shows that most adakite-like compositions are generated in this way and do not reflect source processes. Similarly, rare adakite-like intrusive rocks associated with some porphyry Cu deposits are the evolved products of extensive crustal-level processing of calc-alkaline basalt-an-desite-dacite-rhyolite series magmas. If slab melts contribute to such magmas, their geochemical signatures would have been obliterated or rendered ambiguous by subsequent extensive open-system processes. In Archean terranes, where adakitic and high Al tonalite-trondhjemite-granodiorite (TTG) magma series rocks are more common, porphyry Cu deposits are rare and, where found, are associated with normal calc-alkaline suites rather than adakites. The two different magma series are compositionally distinct in terms of several major and trace element parameters.

Common upper plate magmatic processes such as melting-assimilation-storage-homogenization (MASH) and assimilation-fractional-crystallization (AFC) affecting normal arc magmas can be demonstrated to explain the distinctive compositions of most adakite-like arc rocks, including high Mg andesites and especially those rare examples associated with porphyry Cu deposits. In contrast, slab melting can in most cases neither be proved nor disproved and is therefore unsatisfactory as a unique factor in porphyry Cu genesis.

Автор(ы):Richards J.P.
Издание:PGS Publishing, Linden Park, 2005 г., 19 стр.
Язык(и)Английский
Cumulative Factors in the Generation of Giant Calc-Alkaline Porphyry Cu Deposits

The formation of porphyry Cu deposits in calc-alkaline magmatic arcs is considered to be the cumulative product of a wide range of processes beginning with dehydration of the subducting oceanic slab. No single process is key to the formation of large deposits, but the absence or inefficient operation of any contributory process, or the action of a deleterious process, can stunt or prevent deposit formation.

Ленты новостей
3090.99