

549.5(470.5)

	-	•	,	200	7. 288		•	2-			2.	-
ISBN 5-	-7691-18	10-5										
								122				7
							,				,	,
		,		,	,		,		,			,
		,	,		,							-
•	,		,						•			_
					. •	,					,	_
		,								,		-
			,									
						,			,			,
								,				-
									,			٦
,												7

. 46. . 47. . 414.

»: « , . .- . , , . . .--, 2»: « . , . .- . . , . .- , ..-: · · · , ..--

ISBN 5-7691-1810-5

м<u>ПРП-2007-30(07)</u> пв-2007

8 6(03)-1998

© ,2007

1*

• • • _ _ , • •

5~ , VII.1. - ZrO₂, . . (Baddeleyite) 1 1985 .) (Zr - Si. (, 1989). , (20-40) (10-15); {100}, {101} {111} « n-» , , , -() . (100 20) (100) (. 1). . 1) (**»** « • ---, (Gierth, Krayse, 1974) (Keil, Fricker,

,

VII.

1974).

., 1997).

1

(. %)

Компоненты	1	2	3
SiO ₂	0.21	0.24	0.06
ZrO ₂	97.96	97.22	96.60
HfO ₂	2.03	1.97	2.10
TiO ₂	0.03	0.07	0.07
Fe ₂ O ₃	0.29	0.24	0.54
MgO	0.01	0.00	0.50
Nb ₂ O ₅	0.04	0.01	0.01
Сумма	100.57	99.76	99.88

); 2 -EDAX-2a, . 1 -(50 (40). (100); 3 -

(, 1989)

VII.2. - ThO₂, . . (Thorianite)

(., 1964).		,	;
1.777-1.781.	5.35 /	3.		,
Th	TR,			, , Sr, a
Si, Pb, Ni,	u Ti.			
				-

5.52-5.55 ¬

 $\begin{array}{cccc} 1000 & \circ & (d, ; I; hkl):\\ 3.16(10X111); \ 2.81(4)(200); \ 1.96(8)(220); \ 1.68(10)(311); \ 1.61(2X222);\\ 1.281(6)(331); \ 1.246(5)(420); \ 1.440(5)(430); \ 1.075(4)(431, \ 511);\\ 0.987(3)(440); \ 0.946(5)(531); \ 0.931(3)(442, \ 600); \ 0.886(3)(620).\\ \end{array}$

VII.3.
$$-UO_2$$
, $..(Uraninite)$
 $(1967, 1968)$
 $..., (1967, 1968)$
 $..., (0.15-0.32 /), (0.15-1.44 /)$
 $(0.02 /). ..., (0.15-1.44 /)$
 $(0.02 /). ..., (0.02 / , ..., 0.02 / ,$

 \neg

-

.

-().

.

,

VIII.

,

VIII.1. - 2 3, . . (Eskolaite)

,

		-	, 1.5 (, ,	2003).
1	(2006)				
1	,	(<i>Ng</i>)	, _	(<i>Np</i>). : 3.63; 2.67; 2.4	 - 48;2.17 .
(69	.%)	25 . %	l _{2 3}		$\begin{array}{ccc} & 2 & 3 \\ \text{Ti} & \text{Fe.} \end{array}$
VI	II.2.		- (, 1) (,) _{3_} ,	••
			•		- -
0.2		, 0.3-0.4 ,	(., 1997). ,	- - -
		·	- 0.1 %	;	
		{110}	{001},	, : 2-3	- - -
			/	2-2.5.	,
	;	, . ,	, 5-6	, , 4.2	-4.3 / ³

Таблица 2

Точка анализа	TiO ₂	Cr ₂ O ₃	Fe ₂ O ₃	Al ₂ O ₃	MnO	Sc ₂ O ₃	Сумма
1, центр	33.87	41.52	2.57	2.60	0.14	0.58	81.28
2, край	21.73	49.73	2.61	5.06	0.18	0.23	79.54
<u>3, край</u>	26.12	46.13	2.31	3.18	0.20	0.28	78.22
4, центр	34.25	37.88	3.46	3.22	0.12	0.46	79.39
5, край	18.11	53.26	2.72	3.48	0.18	0.21	77.96

Химический состав гндроксида хрома и титана (мас. %)

Примечание. Анализы 1-3 (обр. 1) и 4-5 (обр. 2) выполнены Н. С. Рудашевским на микроанализаторах ARL и Cameca.

).	HF	2)		~
	(. 2)		
	-	,		
	,			
, –		•		
		16.4	21.8 %	-
:		:		
(Cr Ti Al Fe Sc.)(OHO):	(f)	
(Cr Ti Al Fe)	(OH O)	y 2.60°		
$(C_{10.61}^{+1})^{+0.261}$ $(C_{0.03}^{+1})^{+0.091}$ $(C_{0.03}^{+1})^{+0.99}$	$(011_{2.23}, 0.51)_{2.74}$		(2)	
$(Cr_{0.59}\Pi_{0.32}AI_{0.09}\Gamma e_{0.03})_{1.00}$	(OH _{2.05} O _{0.63}) _{2.68} ;	_	(3)	
$(Cr_{0.47}Ti_{0.42}Al_{0.06}Fe_{0.04}Sc_{0}$	$(OH_{1.75}O_{0.84})$	$)_{2.59};$	(4)	
$(Cr_{0.68}Ti_{0.22}Al_{0.07}Fe_{0.03})_{1.00}$	(OH _{2.34} O _{0.44}) _{2.78} ;		(5)	
(Cr,Ti,Al,	Fe,Sc,Mn)(OH,O	D) _{3-n} ,		

P63/mcm (-	63 m	6 2);	-
	₀ 19.75,	04.50			7
,	;		,	,	

,

•

(

Таблица З

]	Исследованн	ый образец (а	a) [Гвианаит (б)		
I	hkl	d _{Ham} , Å	dpaca, Å	I	<i>d,</i> Å	
3	111	4.10	4.095			
4	121	3.70	3.693			
6		3.32		0.C.	3.224	
4	321	2.95	2.957			
2		2.89				
4	331	2.66	2.657			
2	511	2.55	2.537	cp.	2.524	
2	440	2.47	2.469			
3		2.45		C.	2.432	
2		2.40				
1	611	2.26	2.257			
6	441	2.16	2.164	cp.	2.178	
				cp.	2.115	
2		1.716		с.	1.719	
10	442	1.662	1.663			
				c.	1.609	
2		1.560				
3	12.0.0	1.425	1.425			
3		1.411				
1	771	1.347	1.346			
2		1.128				
2		1.078				
2		1.026				
4		0.880				
2		0.852				

Расчет рентгенограммы кристаллов гидроксида хрома и титана (а) и гвианаита (б)

Ge.

,

10-

•

.

,

13

_

			,						
	(1) (4).						-		
				(. 3)	,			
				,					,
							•		
()						()	7
					•				7
									7
	,								

_

VIII.3. - CaTi₂O₄(OH)₂, . . (Kassite)

4-5 %,

•

,

2 3

(ASTM 20-243; ., 1965).

b (Self, Buseck, 1991).

 $(\ \ .\ \%): TiO_2\ 60.34; 20.85; 2 2.34; 1_2\ _3\ 0.80; MgO\ 0.57; SiO_2\ 0.16; FeO\ 0.01; Na_2O\ 0.09; C1_2O\ 0.26; 85.42\ (JXA-733, 12.3); C1_2O\ 0.26; C1_2O$

,); $_2 \sim 7 \%$ (); $(Ca_{_{0.93}}Mg_{_{0.04}}Na_{_{0.01}})_{_{0.98}}(Ti_{_{1.89}}Cr_{_{0.08}}Al_{_{0.04}}Si_{_{0.01}})_{_{2.02}}O_4(OH)_{_{1.95}}Cl_{_{0.02}}. \ \ \mbox{Tepecyer}$: iO₂ 65.29 22.56 .%; 100 % --),) ((),) (2 (. % Fe₂O₃ VIII.4. - (Mg, Fe) (Cr, Al, Fe)₂O₄, (Chromspinelids) ») (« 1798 . , 1798) (1805 . (Abich, 1831). 1830 . (Rose, 1837, 1842) 1855 ., 1848 . (1867)• (, 1913) .) (, 1912). ((1935), 16

, 1798; Abich, 1831; ., 1867; (, 1913; , 1935; , 1935; , 1938; , 1968; , 1977 - *;* ., 1968; ., 1956; , 1969; , 1973; ., 1980; , ., 1978; , 1980; , 1980; ., 1999; ., 1984; ., 1999; ., 1986, 1990, 1997; , 1986; •• , 1987; , 1988; , 1990; ., 1994; .)

, . . .

Табл

							·
Массивы	Породы и руды	Cr ₂ O ₃	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	Минералы
1	2	3	4	5	6	7	8
แหนнский้	Хромититы	40-41	17~18	10-11	17-20	10-12	Ферриалюмохром
женовский	Гарцбургиты	40-47	19-23	5-7	15-18	11-13	Mg-алюмохромит
	Хромититы	32-48	7–23	4-28	15–27	3–13	Mg-алюмохромит
ронковский	Хромититы	40	16	16	19	7	Ферриалюмохром
елтая сопка	Дуниты	42-55	9-11	10-20	13–19	6–11	Ферриалюмохром Mg-алюмохромит
	Дунит-пегматит	52	13	6	15	11	Mg-алюмохромит
	Оливинит-пегматит	34	18	15	21	10	Ферриалюмохром
	Хромититы	40-50	9-13	12-18	17-21	7-11	Ферриалюмохром
	Верлиты	45	13	12	24	6	Ферриалюмохром
іменушинский	Дуниты	44–53	9-13	8–16	18-21	7-9	Ферриалюмохром алюмохромит
	Хромититы	45-53	9-11	10-16	15-17	10-12	Ферриалюмохром
мпирсайский	Дуниты	55-60	9-12	2-3	14-16	13-14	Магнезиохромит
-	Гарцбургиты	44-46	22-23	1-4	10-17	14-17	Mg-алюмохромит
	Хромититы	59-65	8-12	1–3	11-15	12-16	Магнезиохромит
ючевской	Дуниты	56-61	8-11	4-6	13-18	1014	Алюмохромит, магнезиохромит
	Гарцбургиты	43-44	22-25	3-8	13-14	14-15	Mg-алюмохромит
нжаковский	Дуниты	41-55	5-11	7–31	1521	4-11	Феррихромит, магнезиохромит
	Хромититы	46	8	15	19	10	Феррихромит
	Верлиты	38	10	30	16	5	Феррихромит

Зарнации содержаний основных компонентов хромшпинелидов в породах и рудах Урала (мас.

1	2	3	4	5	6	7	8
). Крака	Дуниты	53-61	9–17	1-3	14-20	9–14	Алюмохромит,
-							магнезиохромит
арминский	Хромититы	41	17	9	17	10	Ферриалюмохром
грановский	Дуниты	36-42	13-16	11-17	17-22	8-10	Ферриалюмохроми
	Гарцбургиты	44-48	18-19	58	15-17	12-13	Алюмохромит,
							Mg-алюмохромит
	Хромититы	40-44	1519	7-16	14-20	7-14	Ферриалюмохром
	1 -						алюмохромит
гильский	Дуниты	40-57	6-11	10-20	12-27	5-12	Феррихромит,
							магнезиохромит,
				•			ферриалюмохроми
	Дунит-пегматит	49-54	9-11	9-12	15-20	9-12	Магнезиохромит,
							Мд-алюмохромит,
							ферриалюмохроми
	Оливинит-пегматит	41	18	10	20	10	Ферриалюмохроми
	Хромититы	47–58	4-10	8-31	7–22	8-15	Магнезиохромит,
	-						феррихромит,
							Мд-феррихромит
ловский	Дуниты	46-52	9-15	Н. о.	29-36	5-8	Алюмохромит,
							ферриалюмохроми
	Пироксениты	52	7	H. o.	33	6	Алюмохромит
	Хромнтиты	54-55	11-13	H. o.	16-23	12-13	Алюмохромит,
							Mg-алюмохромит
тусский	Дуниты	41-46	11-12	13-15	20-24	6-7	Ферриалюмохроми
-	Дунит-пегматит	37	12	H. o.	40	7	Ферриалюмохроми
	Хромититы	45	11	15	20	8	Ферриалюмохроми

۰.

Окончание т

· · · · · · · · · · · · · · · · · · ·						
2	3	4	5	6	7	8
Дуниты	38-54	10-19	4-13	15-20	9-11	Mg-алюмохромит,
_						ферриалюмохром
Гарцбургиты	37	17	14	18	10	Ферриалюмохром
Хромититы	55	12	6	15	12	Алюмохромит
Карбонатные жилы	53	14	Н. о.	21	11	Алюмохромит
· · · · ·	E	улканит	њ			
Na-базальты, Магнито-	3662	8-22	5-10	10-17	12-15	Магнезиохромит,
горский синклинорий						ферриалюмохром
Na-риобазальты, Та-	57	9	6	14	13	Магнезиохромит
гильский синклинорий						-
Андезибазальты, там	40	12	16	20	10	Ферриалюмохром
же						
Пикриты,	37-48	7-18	6-14	16-26	6-12	Мд-алюмохромит,
Ср. и Сев. Урал						феррихромит,
						ферриалюмохроми
Лимбургиты, Ц-Ураль-	33–53	9-11	18-23	H. o.	9–10	Магнезиохромит,
ское поднятие						ферриалюмохроми
Марианиты, Ю. Урал	59-60	8-9	Н. о.	18-23	9–12	Магнезиохромит, х
Pb	нхлые от	ложени	я, Сев. У	′рал		
Включения в алмазах	64-68	5-6	H. o.	14-16	12-14	Магнезиохромит
В песчаниках такатин-	63	9	1	11	14	Магнезиохромит
ской свиты						- -
Аллювий р. Чикман	42	16	11	18	11	Mg-ферриалюмох
	2 Дуниты Гарцбургиты Хромититы Карбонатные жилы Карбонатные жилы Na-базальты, Магнито- горский синклинорий Na-риобазальты, Та- гильский синклинорий Андезибазальты, Та- гильский синклинорий Андезибазальты, там же Пикриты, Ср. и Сев. Урал Лимбургиты, Ц-Ураль- ское поднятие Марианиты, Ю. Урал <i>Pb</i> Включения в алмазах В песчаниках такатин- ской свиты Аллювий р. Чикман	2 3 Дуниты 38–54 Гарцбургиты 37 Хромититы 55 Карбонатные жилы 53 Карбонатные жилы 54 Карбонатные жилы 57 Гильский синклинорий 40 же 37–48 Пикриты, Ср. и Сев. Урал 37–48 Лимбургиты, Ц-Ураль- ское поднятие 33–53 В песчаниках такатин- ской свиты 63 Аллювий р. Чикман 42	2 3 4 Дуниты 38–54 10–19 Гарцбургиты 37 17 Хромититы 55 12 Карбонатные жилы 53 14 Виловазальты, Магнито- горский синклинорий 36–62 8–22 Карбонатные жилы 36–62 8–22 Горский синклинорий 36–62 8–22 Па-риобазальты, Та- тильский синклинорий 57 9 Андезибазальты, там же 40 12 Лимбургиты, Ц-Ураль- ское поднятие 37–48 7–18 Лимбургиты, Ц-Ураль- ское поднятие 33–53 9–11 Включения в алмазах 64–68 5–6 В песчаниках такатин- ской свиты 63 9 Аллювий р. Чикман 42 16	2 3 4 5 Дуниты 38–54 10–19 4–13 Гарцбургиты 37 17 14 Хромититы 55 12 6 Карбонатные жилы 53 14 H. o. Вулканиты 53 14 H. o. Вулканиты 36–62 8–22 5–10 горский синклинорий 36–62 8–22 5–10 Na-базальты, Marнито- горский синклинорий 36–62 8–22 5–10 Na-риобазальты, Ta- тильский синклинорий 57 9 6 Мандезибазальты, там же 40 12 16 Лимбургиты, Ц-Ураль- ское подиятие 33–53 9–11 18–23 Лимбургиты, Ц-Ураль- ское подиятие 33–53 9–11 18–23 Марианиты, Ю. Урал 59–60 8–9 H. o. Рыхлые отложения, Сев. У У 9 1 Ской свиты 63 9 1 Ской свиты 10 11 11	23456Дуниты38-5410-194-1315-20Гарцбургиты37171418Хромититы5512615Карбонатные жилы5314H. o.21ВулканитыМа-базальты, Магнито- горский синклинорий36-628-225-1010-17Порский синклинорий36-628-225-1010-17Пикриты, Та- ке579614Ма-базальты, Та- гильский синклинорий37-487-186-1416-26Ср. и Сев. Урал33-539-1118-23H. o.18-23Лимбургиты, Ц-Ураль- ское поднятие33-539-1118-23H. o.18-23Рыхлые отложения, Сев. УралВключения в алмазах64-685-6H. o.14-16В песчаниках такатин- ской свиты639111Аллювий р. Чикман42161118	2 3 4 5 6 7 Дуниты 38-54 10-19 4-13 15-20 9-11 Гарпбургиты 37 17 14 18 10 Хромититы 55 12 6 15 12 Карбонатные жилы 53 14 H. o. 21 11 Вулканиты Ма-базальты, Магнито- горский синклинорий Na-риобазальты, Ta- гильский синклинорий 57 9 6 14 13 Маевибазальты, Ta- гильский синклинорий 57 9 6 14 13 Марезибазальты, Ta- гильский синклинорий 37-48 7-18 6-14 16-26 6-12 Ср. и Сев. Урал 33-53 9-11 18-23 H. o. 9-10 Кой сви урал Марианиты, Ю. Урал 59-60 8-9 H. o. 18-23 9-12 Рыхлые отложения, Cee. Урал В песчаниках такатин- ской свиты 63 9 1 11 1

Примечание. Данные округлены до целых.

() (. %)

Компо- нент	1	2	3	4	5	6
TiO ₂	0.52	0.07	0.54	0.27	0.08	0.18
Al ₂ O ₃	4.25	2.17	4.41	0.40	4.74	8.33
Cr ₂ O ₃	58.34	60.78	56.44	57.21	64.34	60.70
Fe ₂ O ₃	36.78	2.96	4.70	H. o.	H. o.	H. o.
FeO	H. o.	25.93	23.72	35.17	21.09	20.58
MnO	0.42	2.51	1.30	1.65	0.62	0.41
NiO	-	-	0.02	_	-	0.12
CoO	-	_	0.11	· _	_ ·	_
V ₂ O ₅		0.18	0.18	0.53	-	_
MgO	3.52	0.47	2.26	3.26	8.72	8.61
ZnO	- 1	2.83	5.34	1.73		0.41
Сумма	103.83	97.93	99.02	100.24	99.51	99.55
1000	. 1 –	_		,	1	(¬
, 1990); 2	2, 3 -		, ,		(· - ·,
1998); 4 -		,	97 ((• •); 5 -
1988); 6 -	,		,	(, (, , 1989).

. .-

1 ₂ ₃ 5.36-6.35; TiO ₂ 0.08-0.18; NiO 0-0.11 , 1980;	. % ().	, ¬
1—15 %, ,	0.1-0.5	,1969;
, 1977 -). -		-
(3-4) , (, (1-2 3-10	100 , -).) ,	, ,
, - , 1.5 7-8 ,	2	, - , , - , , - , , -
(, 1990). , ,	,	-
_	10 .	-

4 ., 1968). (, ., 1968; , 1968). ((1983, 1984). (.%): MgO 13.84-15.69; FeO 10.64-14.53; MnO 0.14-0.21; Cr₂O₃ 59.91- $62.44; \quad 1_2 \quad {}_37.87 \text{-} 9.22; \ Fe_2O_3 \ 1.94 \text{-} 3.27; \quad iO_2 \ 0.13 \text{-} 0.31; \ V_2O_5 \ 0 \text{-} 0.11;$ NiO 0.06-0.14; 0-0.13; SiO₂ 0.26-0.59; ² +0-0.29 (SiO₂ ₂ ., 1968); 250 $_{2}$ $_{3}(64.04$.%) 1_{2} $_{3}(10.14$.%)ZnO 0.19 .%(, , 1990). (. . 4); , 1986), (, 1989). .%): iO₂0.16-0.23; (n 0.19-0.59; ZnO 0.50 NiO 0.12; 2.3 $.\% iO_2 0.44 .\% V_2O_5$., 1978). (• - (Fe, Mg)(Cr, 1)₂ 4- (Mg, Fe) (Cr, AI)₂O₄, **VIII.7.** . . (Alumochromite) $1_{2,3}$

), .

., 1968), (, 1935; (1938). (,) -(. 4). , 1.%, , , 0.5 -, 1977). (, 1 1 .%, ., 1968; (1977 -); (., 1968). -(. . 4; ., 1968). - Mn, Ti, V (. 6). ; , , (Mg-), (); (44-58 .%;). Zn-, , ;

• •

-

_

. .

(30-60)

(07.)	
(. 70)	

Компо- нент	1	2	3	4	5	.6	, 7	. 8
SiO ₂	0.54	1.25	0.72	0.37	0.56	1.25	1	.
TiO ₂	0.16	0.10	0.17	0.43	0.70	0.35	0.11	t t
Al ₂ O ₃	12.04	18.52	22.39	21.84	17.44	12.65	19.33	10.95
Cr ₂ O ₃	55.43	46.22	44.46	45.62	41.17	51.90	47.16	47.80
Fe ₂ O ₃	2.68	2.32	1.61	3.96	6.54	5.90	5.29	7.17
FeO	16.39	18.21	16.62	12.23	28.70	15,30	15.46	24.29
MnO	0.25	0.25	0.18	0.17	0.29	0.28	0.33	3.57
ZnO	-	-	_	-	-	-	-	6.06
NiO	0.08	0.05	0.08	0.11	0.18	0.20	0.09	· ••
CoO	— .	0.17	1	I	l	0.07	— • •	-
MgO	12.56	12.11	13.52	15.30	11.30	11.30	12.76	0.19
CaO	0.00	0.05	0.00	0.00	0.33	0.17	—	
H ₂ O [±]	0.10	0.33	-	0.00	_	0.60	H. o.	H . o.
V_2O_5	0.07	0.22	0.16	0.17	_	0.08	0.27	0.30
Сумма	100.3	99.80	99.91	100.2	100.6	100.0	100.8	100.3

. 1 - 4 -	-	4	-	1	
-----------	---	---	---	---	--

.

XII

(., 1968): 1 — ; 2 -

	,		711		, 2 -	
,				;	$_{2}O_{5} 0$.05 . %;
3 -		,		- ,	. 50; 4 -	
		,				; 5 -
-	-		,			(,
1990); 6 -		-		,	. (, 1986);
7, 8 -			: 7 -		, 8 -	
	().
—						

ZnO 1.64-1.71 . %

Mg-

(

.

7 .%)

(

	1	2	3	4	5	6
iO_2	0.19	0.52	048	0.68		1.20
1_2O_3	9.28	21.14	9.04	18.25	14.07	16.10
203	57.61	44.25	57.14	45.09	52.73	41.90
Fe_2O_3	4.17	6.47	5.97	6.42	H	10.89
FeO	17.17	12.30	14.38	15.85	20.90	18.25
n	0.39	0.19	0.39	0.22	0.52	0.30
MgO	11.16	15.70	12.69	12.41	11.03	11.10
	99 <u>.9</u> 7	100.57	100.09	98.92	99.25	99.10
	•	; ,	2 -			

		; 3 -	-	-
		,		; 4 -
•	,		(., 1980); 5
		1088). 6	,	
,	, .	(900), 0 -		• • •
	(., 1980). Ni,	Co, Zn	

Таблица 8

Химический состав феррихромитов (мас. %)

-								
Компо- нент	1	2	3	4	5	. 6	7	8
TiO ₂	0.49	_	2.80	0.30	0.92	-	_	_
Al_2O_3	5.84	3.4	7.89	7.44	0.40	7.10	0.31	0.98
Cr ₂ O ₃	44.27	36.2	30.76	32.32	46.75	48.09	38.36	40.15
Fe ₂ O ₃	18.93	30.6	25.40	27.80	Н. о.	14.03	<u>H</u> . o.	H. o.
V_2O_5	_	-	-	0.60	-	_	+	_
FeO	24.51	25.2	24.70	27.18	41.96	22.82	52.31	52.29
MnO	0.50		2.93	0.69	1.62	_	1.91	1.88
NiO	0.12	-	-	0.18	-		_	~_
CoO	-		-	0.10	-	-	0.19	0.11
MgO	5.32	4.4	5.14	3.21	4.24	6.29	4.49	4.08
ZnO	-		-	_	1.31	· -	0.84	1.01
Сумма	99.98	99.98	99.62		97.20	98.32	98.41	100.5

. 1 -

,

, 1986); 2 -((, 1980); 3 -, (, 1979); 4 -(,); 5 -229 (, , 1990); 6 -, ., 1980); 7, 8 -(7) (8) (٠,

1984). . . -

•

(

Mg-). . . , 1990). (,

29

•

0.1-1 (., 1984).

VIII.9.

,

,

- (Mg, Fe) (Cr, Fe)₂O₄, (Magnesioferrichromite)

, (1935) . . • , 5 180 (. 9). 1-4 ,

9

-

-

-

_

•

(. %)	(. %)
--------	---	------

Компо- нент	1	2	3	4	5	6
SiO ₂	1.82	0.50	0.58	0.38	0.90	0.72
TiO ₂	_	-	0.72	0.59	0.55	0.36
Al ₂ O ₃	4:16	5.65	5.74	5.43	5.29	5.60
Cr ₂ O ₃	49.54	51.17	51.42	52.42	53.31	51.80
Fe ₂ O ₃	30.89	21.42	18.60	16.85	13.94	14.30
FeO	-	7.38	6.55	9.06	11.84	15.28
MnO	0.75	0.19	0.12	1.55	0.20	0.26
NiO		-	_	-	0.05	0.24
CoO	_	_	_	_	_	0.03
MgO	12.61	12.58	15.48	13.54	13.40	11.00
CaO	0.14	0.14		0.06	_	0.15
H ₂ O [±]	_	_	-	-	_	0.54
V ₂ O ₅	_	—	-	_	_	0.03
Сумма	99.91	99.03	99.23	99.58	99.48	100.47

•

. 1 - , , 47 69-2 , . 32-2 (1 - 4 -(, 1997). 4-03; 2, 3 -; 4 -, 1935); 5, 6 -

- (Mg, Fe) (Cr, Fe, A1)₂O₄, . . (Ferrialumochromite)

(70-90 . %)

31

,

Таблица 10

-		•	•	•		`	
Компо- нент	1	2	3	4	5	6	7
SiO ₂	3.66	0.60	1.70	0.80	0.80	0.96	1.10
TiO ₂	0.44	1.50	0.97	0.52	0.54	0.60	0.80
Al ₂ O ₃	13.68	13.10	13.12	18.56	18.23	18.36	16.29
Cr_2O_3	35.91	41.90	37.25	43.23	42.06	41.17	41.62
Fe ₂ O ₃	17.27	10.85	13.23	8.53	9.48	7.68	9.90
FeO	16.92	22.40	25.15	14.44	15.40	17.62	17.57
MnO	1.24	0.48	0.43	0.22	0.23	0.30	0.35
NiO	_	0.24	0.13	0.20	0.18	0.19	0.16
CoO	-	0.03	0.11	0.02	0.02	_	_
MgO	10.30	8.30	7.38	13.60	12.06	11.48	10.55
CaO	< 0.20	0.15	_	0.31	0.21	0.33	0.27
H ₂ O [±]	_		0.53	0.52	0.59	0.52	0.44
V ₂ O ₅	-	0.12	0.23	0.006	_	0.01	_
Сумма	99.42	99.67	100.23	100.95	99.80	99.20	99.06

Химический состав ферриалюмохромитов из расслоенных ультрамафитов Сарановского пояса (мас. %)

	1-3	-

- --- -

(, 1990); 2 -	. 1990): 3	
(., 1968); 4-7 -	,,, -	-
` (, 1990): 4 -	13 (); 5 -
14 (); 6 -	18 (); 7 -
	2	4.	

:1-

0.4 2-4).

1-2 12 (

0.1-0.2

60-70 . %.

•

,

(0.2-

,

)

. --

_

-

,

-

Таблица 11

Компонент	1	2	3	4
SiO ₂	0.92	2.62	0.68	0.68
TiO ₂	1.16	1.86	0.58	0.52
Al ₂ O ₃	15.05	12.72	16.999	17.44
Cr_2O_3	39.60	_ 37.26	42.02	43.30
Fe_2O_3	12.69	15.21	8.90	9.28
FeO	17.75	18.50	17.57	15.54
MnO	0,36	0.76	0.34	0.28
NiQ		-	0,18	0.20
CoO	. – .	-	- 1	0.02
MgO	10.30	9.94	11.46	11.30
CaO	< 0.20	< 0.20	0.33	0.11
H_2O^{\pm}	0.68	0.26	0.26	0.46
V ₂ O ₅		-	0.01	· -
Cunto	98.51	99 10	09 30	08.80

Химический состав постмагматических ферриалюмохромитов из пегматитов и сарановитов Сарановских массивов (мас. %)

: 1 — ; 2 -

10

1

: 3 -

; 3-4 — ; (, 1990).

35-80 . %

1830-

(..., 1830; Rose, 1837). . (1913, 1925)

(,1935; ,1928; .,1956; , ¬ ,1970; , ;1979; , ,1987; ,1990;1997; .).

, (~1 . %), 0.2-1 1-3 .%): 2 341.90-53.47; 12 38.31-(10.20; Fe₂O₃ 9.94-19.60; FeO 14.72-22.66; MgO 6.96-12.22; MnO 0.27-0.44; TiO₂ 0.30-0.70; Co, Ni, V . (, 1997). , 1 2-3 1—15) (, , 1-2 2 3 37.30 (%), (C 2 3 49.47-51.78 .%). 0.5 , , 5x5 180 3*
•

(2-5)

.

•

.

6 x 4 . 12)

•

(

•

12

-

(0/.)
(•	/0/

Компо- нент	1	2	3	4	5	6	7	8
SiO ₂	+	0.60	1.12	0.84	0.64	0.12	0.40	0.12
TiO ₂	1.36	0.34	0.36	0.50	0.42	0.30	0.90	0.47
Al ₂ O ₃	9.10	9.00	6.98	7.37	9.00	10.00	13.00	11.50
Cr_2O_3	49.52	50.30	51.52	46.96	48.30	49.75	40.30	49.60
Fe ₂ O ₃	22.09	14.00	12.75	13.63	14.05	11.60	16.45	10.70
FeO	9.13	15.38	14.30	19.53	16.76	17.50	17.10	16.60
MnO	0.35	0.34	0.06	0.31	0.29	0.30	0.26	0.27
NiO	0.04	0.20	· - ·	0.32	0.25	0.20	0.05	0.09
CoO	0.10	0.04	1	0.04	0.04	0.03	0.01	0.01
MgO	8.08	9.76	12.85	9.56	10.02	10.15	11.30	11.10
CaO	0.15	< 0.05	0.10	< 0.05	0.16	< 0.20	< 0.20	< 0.20
H ₂ O	_	0.71	-	0.78	0.40	0.35	0.69	0.22
V ₂ O ₅	0.02	< 0.03		< 0.03	< 0.03	0.10	0.20	0.13
Сумма	100.14	100.86	100.04	100.13	100.46	100.17	100.51	100.63
		. 1-5 -						(
1997): 1-2						: 3 -		`

 1997): 1-2
 ; 3 7

 ; 6-7 : 6 ;

 7 : 8 - «
 »

.

,

Компонент	1	3	3	4	5
SiO ₂	1.08	0.63	0.53	2.30	_
TiO ₂	0.66	0.57	0.70	0.88	0.40
Al ₂ O ₃	10.08	19.42	19.75	16.99	11.84
Cr_2O_3	46.60	38.45	37.67	37.38	54.56
Fe ₂ O ₃	12.03	12.62	12.50	13.90	5.87
FeO	19.68	17.75	17.83	18.32	15.26
MgO	8.67	11. 29	10.94	9.60	12.07
Сумма	98.80	100.73	99.92	99.41	100.00
	. 1 —		-		;
		; 3			,

Химический состав ферриалюмохромитов

Таблица 14

Химический состав ферриалюмохромитов из вулканитов (мас. %)

		=	-			
Компонент	1	3	4	6		
TiO ₂	1.35	0.79	3.19	1.85		
Al ₂ O ₃	22 .19	11.84	11.45	15.67		
Cr ₂ O ₃	35.68	40.11	33.02	37.46		
Fe ₂ O ₃	10.38	16.00	25.36	12.46		
FeO	17.03	19.68		25.89		
MnO	0.42	0.59	0.69	0.37		
MgO	11.93	9.61	9.05	6.41		
CaO	_	t	0.06			
V_2O_5	_		0.39			
Сумма	98.98	98.62	103.93	100.11		
(); 3 - (, 1986); 4 - . , - ; 6 -						

); 3 -) (, 1986); 4 -- ; 6 -

., 1980).

38

(

- $ZnCr_2O_4$, . . (Zincochromite)

().

.%): ZnO 21.75; FeO 3.10; (MnO 8.59; MgO 0.25; Cr₂O₃ 62.67; A1₂O₃ 0.48; Fe₂O₃; 2.87; iO₂ $0.13; V_2O_5 0.16;$ 99.40 (JSM-6400 Link, $: (Zn_{4.88}Mn_{2.21}Fe_{0.79}Mg_{0.11})_{7.99}x$). . . $(Cr_{15.07}Fe_{0.66}Al_{0.17}Ti_{0.06}V_{0.04})_{16}O_{32}$ -(d, ; hkl): 4.89(111); 2.99(220); 2.52(311); 2.44(222); 2.08(400);1.73 (422); 1.597 (511); 1.469 (440); 1.274 (533); 1.081 (731); 0.962 (555); 0.872 (931); (2.52,1.597 1.469), _ 4.5-4.6 / ; $_0 8.35$ ² (1000 ± 53 -3.), -R = 13.8 %(= 589). -_ Au-Pd-VIII.12. - **Pb**[**CrO**₄], . . (Crocoite) 1764-65 _ , 1808). (1766 . (Lehmann, 1767) , 1911; Dana, 1951), (: « (1954, . 426). >> 1742 ., 1770 . ,

, 1786). (: , , (Lehmann, 1767), , 1808), (Hausmann, 1813), ((Kobell, 1838), (Breithaupt, 1841). _ 1794 . (Williams, 1974). (1926), (1911), . . . _ (Williams, 1974). , 1841). (, 1898) (.., 1829). (1797 . (, 1836), , 1933 . 1954), (1970-(, 1935). (, 1928), , 1975), ((., 1980), (, ., 1986).

, • (, 1841). , : , 1954). (, 1808) 6-7 (1801 . . 1.5 , 2-2.5 0.5 (6.2 1.2). , , , 1978). (, 1 , 5 , 5 x 1 x 1 . 1.5 , (, 1975). , 10 x 1.5 x 1 , 20 5 3 . 2-5 , *b*. , (1926) 44 . . . , . 6):) *b;*) (, $\{Okl\}$;) ,

2.5-3, 6.004 / ³(), 6.07 (). 1-4 , (110}, {100}. (001) 96-109 / ². (001) 9.5.93 (-), 5.93 (-)

(

, , , 2003).

. 10	•

	•
- · r ·	

a 7.122	ь 7.425	с 6.785	β 103º38×	Источник Gliszczynski, 1939
7.122	7.425	6.785	102°27×	Pistorius, 1962
7.120	7.421	6.800	102°20×	Williams, 1974

Химический состав кроконта, мас. %

Компонент	1	2	3	4	5
РЬО	67.91	68.5	68.82	68.79	68.59
CrO ₃	31.72	31.5	31.16	31.25	31.10
SO ₃	·	· -		_	0.31
Сумма	<u>99.6</u> 3	100.0	99.98	100.04	100.00
Berzelius, 1818; (. 1- 4 - 3 - Baerwar , , , 19	rd, 1882; 4 978;		: 1 - Pf , 1899 <i>;</i> 5 100 %).	aff, 1816; 2 -
					-
		15-20	, 4	0-50	_
			(, 1954).	-
		,		,	,
,	,	,	,		,
,	,	,	,	,	•
	, (178	6)	,		_
«					», -
,	-	,			-
	•		-		-
				,	-
	,		,	,	
			•		-

•

I	<i>d</i> , Å	I	d, Å	· I	d, Å
4	5.44	2	2.154	11	1.398
19	5.09	11	2.090	4	1.366
13	4.96	4	2.055	2	1.356
4	4.47	7	1.998	3	1.334
25	4.37	75	1.966	18	1.302
9	3.751	2	1.898	2	1.290
9	3.717	23	1.857	2	1.269
69	3.474	16	1.848	4	1.253
100	3.281	5	1.800	· 4	1.238
12	3.15	4	1.737	2	1.213
3	3.09	. 24	1.692	2	1.127
42	3.03	2	1.655	4	1.114
10	2.711	10	1.638	· 3	1.079
3	2.595	12	1.614	· 2	1.058
19	2.548	2	1.570	4	1.048
3	2.355	3	1.545	4	1.027
11	2.322	4	1.446	2	1.001
35	2.251	2 ·	1.432		
3	2.216	5	1.420		

,

)

Расчет рентгенограммы крокоита Точильной горы

: $_0$ 7.13; b_0 7.43; $_0$ 6.74 ; =

,

. 103°04' (, , , 1978). 1 .

> , (

> > ,

,

,

45

-

,

,

, (Williams, 1974) (1899),	,	,		-
,		(Ce (William)	sbron et al., 1 s, 1972).	988)
	-			- -
(?).			-	-
	,	-		- -
-	, , 199	7 0).		,
VIII.13.	- Pb ₅ [CrO ₄][PO ₄	$[_{1}]_{2}$ H ₂ O,	(Embre	yite)
	60-	XX .		- -
- ((),) (Williams,	, 1974).	()) _
XVIII-XI	, X .		,	Г
1972 .(W	- illiams, 1972).		,	
	(70-80)			,
{001} ., 2003).	, <i>b</i> {010}		h{110} (- -
			(. 17)

,

Состав эмбрейн	га березовского ме	сторождения (мас. %)
----------------	--------------------	----------------------

Компонент	1	2	3	4	5
PbO	70.60	74.40	68.13	72.56	75.0
CuO	4.57	1.70	6.93	4.47	1.45
CrO ₃	15.50	13.40	14.37	15.03	13.6
P ₂ O ₅	9.78	9.09	8.35	8.24	9.11
As ₂ O ₅	· _	-	0.45	0.48	
H ₂ O	Н. о.	0.91	H. o.	Н. о.	Н. о.
ZnO	_ ·	0.04	_	_	0.06
Fe ₂ O ₃		0.02	-	_	0.01
Сумма	100.45	99.56	98.23	100.78	99.2

(

_

. . 1800 .

).

,

,

b u:

,

3.5 (

,

., 2003).

- \neg $\overline{}$ 6.45 ± 0.02 / 3 .

= 2.20.

: *ng* = *nm* = 2.36; . 18.

,

_

,

(Cesbron et al., 1988).

47

•

-

d, Å d, Å I hkl I hkl 3 6.941 4 2.407 312, 311 001 60 4.751 200 23 2.314 003, 212 221, 402 4.378 011 2.213 3 32 32 3.563 201 2.187 410, 113 31 28 3.475 211.002 31 2.105 401, 321 100 3.167 202, 300 31 320, 222 1.917 203 100 301 45 <u>60</u> 2.818 26 1.789 023, 413 020 17 2.608 021 Еще 9 линий до 1.207

Расчет рентгенограммы эмбрейнта

,

VIII.14.

.

,

- Pb₂Cu[CrO₄, PO₄](OH), . (Vauquelinite)

1869 .

..., 1869).

,

-

(Hermann, 1870),

(

,

. (1882).	•
,	
,	
	_
. ,	
	-
	_
(1935)), ¬
,	_
: ,	-
$Pb_2Cu[CrO_4,PO_4](OH),$	-
(. 19).
,	
(),

(%)
•	•	/0/

Компо- нент	1	2	3	4	5	6	7	8	9
РЬО	60.87	61.26	61.06	68.33	61.09	62.59	62.06	63.7	62.6
CuO	10.80	12.43	10.85	7.36	11.91	12.19	10.31	8.9	8.2
CrO ₃	28.33	15.26	16.76	10.13	26.79	21.46	17.44	14.4	15.2
$\overline{P_2O_5}$		8.05	8.57	9.94		3.55	8.66	8.4	6.8
As ₂ O ₅	++	1		-		_	_	0.2	2.6
Fe ₂ O ₃		1.09	1.28	2.80	. —	0.70	0.50	1.7	1.4
H_2O^+	_	1.31	0.90	1.16	-	_	_	1.5	1.5
H ₂ O		-	—	-	—	_	1.12	0.7	0.8
Сумма	100.00	99.40	99.42	99.73	99.79	100.49	100.09	99.5	99.1

. 1 - Berzelius, 1818; 2, 3 - Nordenskiöld, 1869; 4 -Hermann, 1870; 5-7 - , 1935; 8, 9 - Guillemin, Prouvost, 1951. ¬ 1-4 (Williams, 1974).

4.3394

,

,

,

,

1882 .

,

_

,

,

,

,

,

(Williams, 1974). .

			•		
hkl	I	d, Å	hk!	I	<i>d</i> , Å
101	20	8.1	321	5	2.403
111,002	70	4.73	222	5	2.362
210	10	4.44	222, 313	50	2.306
202	5	4.047	422, 214	20	2.051
301	30	4.000	223	10	2.026
202	20	3.777 _	602	5	2.003
012	20	3.684	612, 323	5	1.977
400, 311	10	3,429	131,612	50	1,895
311, 212	100ш	3.305		20	1.848
212	10	3.159		5	1,807
103	10	3.042	· .	5	1.728
410, 312	30	2.955		5	1.688
402, 020	60ш	2.89		20	1.649
113	30	2.773		20	1.589
121	5	2.734		10	1.479
113, 303	30	2.704		5	1.454
221	. 5	2.597		5	1.442
213, 303	5	2.525		5	1.395
320	5	2 451		5	1 374

Расчет рентгенограммы вокеленита

-114.6 , Co-

: ${}_{0}$ 13.68; b_{0} 5.83; ${}_{0}$ 9.53 ; = 93°58' (JCPDS, 13-302).

«

1832,1833).

(Rose, 1837)

(Lehmann, 1767),

: (Glocker, 1839), (Breithaupt, 1841), (Haidinger, 1845) . . . (1899) , . . (Williams, 1974),

(Hermann,

,

».

. 9.	
(, 1836), 1873).	ר (, ר
(, 1841), (. 9). $_{3}$ 23.31 ($_{3}$ rO ₃ 17.94 ($_{2}$ 2.46	[010] [100] (.%): b 76.69 ; Hermann, 1833); b 79.30 .%; , 1899).
, 1 , 7.01 / ³ (Williams et al., 1970).	{201}. 2.5. , 5.75 / ³ . ()
$_0$ 14.001-13.993; b_0 5.675-5.667; (Williams et al., 1970; Williams, 19	: 17.137-7.130 ; p = 115°13'-115 ⁰ 16; 974) ¬
. 21 (; (1888, . 70)	/ 5084 ¬ 3669-1074).
, , 1935), , (Willi ,	, , , iams, 1972). , , , , , ,

•

hki	I	<i>d</i> , Å	hki	I	<i>d</i> , Å					
001	2	6.53	512	2	1.611					
201	2	5.97	711	8	1.531					
111	3	4.46	912, 602	7	1.506					
201	3	3.76	821	5	1.471					
202	3	3.62	040	3	1.421					
310	6	3.40	622	3	1.327					
002	5	3.29	005	5	1.304					
112	10	2.99	10.2.2, 713	2	1.260)					
312	3	2.89	242, 802	3	1.216					
020	3	2.85	442, 115	4	1.202					
511	4	2.51)	825, 11.1.4	4	1.186					
202	4	2.49	12.0.2	4	1.165					
203	2	2.38	713	5	1.146					
510	2	2.32	12.2.2, 12.0.5, 644	2	1.079					
602	8	2.27	826, 352	2	1.069					
422	7	2.06	044, 12.0.0	5	1.063					
603	3	1.994	10.0.2, 552	3	1.041					
712	8	1.874	642	2	1.030					
622	4	1.778	353	4	1.022					
710, 801	3	1.729	12.2.5, 536, 026	4	1.008					
620, 711	2	1.696)	445, 517	2	1.006					
514, 803	3	1.684	12.0.1, 317	4	0.984					
114	3	1.631		1						

Расчет рентгенограммы фёникохроита

VIII.16.

,

- Pb₅(VO₄)₂(CrO₄)₂ H₂O, (Cassedanneite)

G. P. Cassedanne,

.

. .

Ι	d,Å	hkl	Ι	d,Å	hkl
6	4.83	10-2	0.5	2.612	013
1	3.58	20-2	0.5	2.273	202
2	3.45	200	1.5	2.223	220
6	3.22	21-1	1.5	2.183	113
10	3.15	102	3	2.123	122, 30-4
5	2.873	020	3	1.908	32-2, 311
2.5	2.825	11-3	1	1.573	204, 124

Расчет рентгенограммы касседаннента

. -57.3 ; u _a-: ₀ 7.693; b₀ 5.763; ₀ 9.795 ; p = 115°93',

{010}

3.5,

6.52 / ³.

: ng 2.6,

2.25:

 $V = 390.5 A^3, Z = 1.$

. 22.

P2/m, P2 m.

VIII. 17. $- K_2 CrO_4$, . . (Tarapakoite)

(1928)

IX.4. - $BaCu_3(VO_4)_2(OH)_2$, . . (Vesignieite)

,

Расчет рентгенограммы пухерита и сопоставление с эталонами других минералов

Кори	чневая	Эталоны							
кора	чка на	Бис	мутит	Бис	мутит	Пухерит		Бисмит	
бисмутите		(A\$	STM)	(Михе	ев, 1957)	(Å	STM)	(A:	STM)
· 1	d,Å	I	d, Å	Ι	<i>d</i> , Å	I	d,Å	Ι	d,Å
4	7.4		· · · ·						
3	6.7	•.		7	6.7				
5	5.96			_		16	5.98		
8	4.64			_		55	4.64		
5	3,96			_		55	3.98		
6	3.70	70	3.72	6	3.67				
5	3.48	_	-	_	_	100	3.50		
2	3.43	60	3.42	4	3.41				
1	3.22	_	· · · ·	5	3.24		-	10	3.23
8	3.08		· _	_	· _	10	3.12	_	-
8	2.99					45	2.99		<u> </u>
8	2.92	100	2.95	10	2.92	·		1	
- 5	2.73	70	2.73	7	2.72	1	-	-	
-10	2.70	—	_	—		100	2.70	9	2.68
4	2.52	40	2.54	2	2.52	25	2.53	1	<u> </u>
2	2.31	70	2.28	5	2.27	35	<u>2,31</u>		·
2	2.16	100	2.14	6	2.12	25	2.17	-	· ···
3	2.13	— .		-	-	40	2.13	-	
4	1.99	-		2	2,03	45	1.99		
5	1.93	80	1.95	6	1.93	40	1.93	7	1.95
2	1.871	50	1.86	2	1.86	20	1.872		_
4	1.830	. — .		2	<u>1.78</u>	40	1.832	<u> </u>	
2	1.747	80	1.75	. 7	<u>1.74</u>	2	1.759	7	1.74
3	<u>1.716</u>		<u> </u>	4	1.71			_ :	
2	1.681	=	· ·	4 -	1.68	16	1.681	8	1.67
2	1.658		~	_	. –	20	1.659	. 8	1.64
3	1.614	100	1.62	8	1.61	_			
3	1.590		_	_		16	1.596		
7	1.554	-		2	1.566	40	1.554		
3	1.489	70	1.48	4	1.472	35	1.491		

,

-

_

_

. 24,

Химический состав пухерита (мас. %)

№ анализ	Зона корочки	Bi ₂ O ₃	Bi ₂ O ₅	V ₂ O ₅	Сумма
1	a	53.4	41.5	5.7	100.6
2	a	52.7	40.7	5.9	99.3
3	б	59.5	24.1	14.4	98.0
4	б	63.4	16.7	18.7	98.8
5	б	63.9	16.4	19.0	99.3
6	6	71.5	0.4	27.8	99.7
7	6	72.2	0.3	28.1	100.5

. i_{2 5}

,

JXA-5,

 $Bi^{3+}(Bi^{5+}_{0.8}V^{5+}_{0.2})O_4.$

Ана- лиз	Bi ₂ O ₃	V ₂ O ₅	CuO	FeO	Сумма	Формула
1	74.87	26.18	0.20	0.23	101.48	Bi1.073Cu0.008Fe0.011V0.949O4
2	74.20	26.86	0.24	0.61	101.91	Bi1.046Cu0.010Fe0.028V0.958O4
3	74.66	26.53	0.25	0.34	101.78	Bi1.046Cu0.010Fe0.028V0.958O4
4	74.53	26.86	0.22	0.10	101.71	Bi1.055Cu0.009Fe0.005V0.952O4
5	73.75	26.51	0.26	0.21	100.73	Bi _{1.055} Cu _{0.01} Fe _{0.010} V _{0.959} O ₄

Состав клинобисванита (микрозонд, мас. %)

Таблица 26

Расчет рентгенограммы клинобисванита из Рассошинского месторождения (а) и из пегматитов Мутала (б)

	a		б.	
I	d, Å	I	d, Å	hkl
8 .	4.76	24	4.76	110
1	3.80			
10 /	<u> </u>	100	3.096	031, 121
4	2.95	90	2.928	040
. 4	2.63	12	2.603	200
4	2,55	14	2,548	002
2	2.36			
. 6	2.28	12	2.267	211
5	2.13	-	·	
		8	1.9711	132
6	1.954	20	1.9457	240
6	1.922	25	1.9231	042
3ш	1.817	7	1.8275	202
8	1.722	30	1.7206	161, 1-61
1	1.769	3	1.6825	215,013
_ 1	1.653	4	1.6469	251, 301
	1.592	.14	1.5869	170, 330
6	1.555	17	1.5545	123
:		8	1.5430	242
1	1.466	.6	1.4648	080
$a_o 5.23; b_o 11$.73; c _o 5.10Å;	a, 5.205; b, 1	1.718; co 5.09	8 Å;
β = 89°51'		β = 90.4°		

Примечание. а – УРС-60, камера РКД-57.3 мм, Fе-излучение. Аналитик С. Г. Суставов.

- Pb₅(VO₄)₃Cl, . . (Vanadinite) IX.7. 1833 . (1834), (1847; Struve, 1858). . . (1935). , 1971), ((, 1990). **,** . . (, 1841). (505), , 1954). ((1935) . (1834), 3-4 1854-55 . $\{0001\}, \{1010\}, \{1121\}, \{2021\}$ $\{10\overline{1}1\}~(~~,~1935~~).$ (1858)

•

 C^{*}

•

Таблица 27

Компо- нент	1	2	3	4	5	.6	7
РЬО	78.83	78.21	77.00	78.13	77.61	77.48	77.08
Fe ₂ O ₃	N 56	0.30	-	·· ••	-	-	
Cr ₂ O ₃	0.56	0.30	-	_	-	· _	
V_2O_5	16.84	14.42	18.83	19.48	19.17	19.73	19.23
P ₂ O ₅	3.06	2.77			·		
Cl	2.44		2.45	2.44	2.58	2.53	2.36
PbCl	.0.25	0.55					
Сумма	101.98	96.25	98.25	100.05	99.36	99.74	98.67

Химический состав уральских ванадинитов (мас. %)

Примечание. 1-2 – из Березовска (Struve, 1858); 3-7 – из Ильменских гор (Поляков и др., 1990; микрозонд, аналитик Л. Н. Поспелова).

Таблица 28

Расчет рентгенограммы ильменского ванаднинта

I	d, Å	hkl	Ι	d, Å	hkl
3	4.48	200	1	1.69	420
· <u>4</u>	4.26	111	3	1.614	214
1	3.75	201	4	1.571	323
8	3.39	102	2	1.410	333
8	3.07	211	1	1.382	602
10	3.01	112	2	1.368	324
1	2.59	220	4	1.338	414
· 1	2.47	212	3	1.292	
1	2.33	302	2	1.245	
. 1	2.23	400	2	1.238	
5	2.13	222	3	1.207	
3	2.06	312	4	1.196	
4	1.99	213	1	1.184	
3	1.96	321	2	1.095	
4	1.910	402	3	1.077	
2	1.847	004	2	1.069	
1	1.73	412	3	1.064	

Примечание. Камера РКД-57.3 мм; FeK_α-излучение.

,

-

(1953)		, ¬
ng 2.29; 2.01. 1.13; As ₂ O ₅ 0.42; 93.93;	, .%: u 17.50; b 3 1.46; ₂ 3.37; 6.19 / ³ (: Pb _{1.05} Cu _{0.95} Mo _{0.04} V	, 54.03; $V_2O_514.67$; 2 5 0.75;
		, ¬
, - ;	1994 71	۔
	(,	, ¬ , 1995).

.1. . . (Molybdite) 3, » « 101 (1856) (1877)-. 15 (Gagarine, 1907), (1949) -(, 1938). , - Mo₃O₈ 5H₂O, .2. . (Ilsemannite) (1960) - Fe₂(MoO₄)₃ ·7H₂O, (Ferromolybdite)

,

,

,

« » (1856). « **»** (Gagarine, 1907). (1937) ,

5*

X.

,

,

67

		•
(1949 6)		

,

; ng 1.98, 1.797 (, 1955).

1.5

,

(

•

-(

15

29

-

, 1938).

(.%)

Компонент	1	2	3
Fe ₂ O ₃	21.04	21.64	22.64
MoO ₃	59.61	58.97	58.45
H ₂ O	19.03	17.42	17.86
Нераств. остаток		1.72	0.65
Сумма	99.68	99.75	99.60
Плотность, г/см ³		4.38-4.42	
ng		1.91-1.97	
nm		1.78-1.79	
np		1.76-1.81	

. 1 -

2 -

, 1960).

; ; ; 3 -

	2		(, 1960);		7
			-			
	-					
1					. 29.	
		,				-
	0 2-0 1					-
	0.2 0.1					
•					•	

.4. - CaFeH₆(MoO₄)₄(PO₄) 6H₂O, . . (Melkovite)

•

		• •				
		15		(., 1988).	
						-
		•				-
	•					
	,					,
					,	-
	•		01			-
			0.1	, 17	30°.	
	3 (),	3 / 3	3.		-
	,	,				, ¬
		(001).			, ng 1.848;	1.842.
		,	, 2V .			7
			,			-
		,			(<i>d</i> , A; <i>I</i>): 8	3.85(10);
4.76	5(7); 3.64	6(5); 3.01(1	10); 2.969(7)	; 2.6	514(7); 2.288(4); 1	1.927(5);
1.84	-/(0).				Eo D	
					1, 5, 1, ,	-

69

- -

- Mo. CaFe_{1.5}K_{0.5}H₂(MoO₄)₃(PO₄) 6.3H₂O.

.5. . (Powellite) 4, (1882)« . », 1912 . 15 1960). (. , 1949). ; $ng 1.98 \pm 0.02$ (2 2.02 ± 0.02 (; • , 1960). (, 1938), 1957) (, , ., 1964). (1.2 ,) 2 (6 , 15 , 1940 . ; (1949) (1986). . 11) (2 {101}, *{*112*}, <i>p*{013*}* , 1978). _ (001). (1986), -2 4

Fe-K-

(

- 1 X			(.%)		
Компонент	1	2	3	4	5
SiO ₂	0.57	0.63		– –	_ · ·
TiO ₂	. .	0.20	a an	· · · · ·	
Al ₂ O ₃	_		. <u>-</u> .		
Fe ₂ O ₃	0.12	0.34		0.05	0.21
MgO	_		_		0.07
CaO	27.96	26.38	28.04	27.87	27.75
CuO	-		-		0.09
MoO3	69. <u>86</u>	_73.06	71 <u>.8</u> 8	72.21	7 <u>1.62</u>
WO ₃	0.75		=		1
H_2O^+	0.02		· _ ·	_	1
TR_2O_3		0.47	_	· - ·	ł
Нераств. остаток	_	_	0.18	0.21	0.13
Сумма	99.28	100.88	100.10	100.34	99.87
(, 1949); 2 - (, 1986); 3-5 - (, 1960): 3 -					

(, 1960): 3 ; 4 -

•

71
,		;	140-1	50°.		-
	.6.	- b	4,	(W	ulfenite)	
		IV		(Arzru	ıni, 1888).	
	6 , 2.	30, ₀ 5.4,	₀ 11.6.	3 (, 1955).	Г
		•	,			, _
,		,				-
(., 1969)					-
2.235 : 2.238	3.	6.75 ± 0).04 /	3		0: 0 =
			1989	•	• •	
-1		. (~).	
-			0.5	,		. – . –
b 56.9; Ag 6; Ti 360	24.2; W 2.14 , , / : Be ; Co 24; Cr 10	4; Bi 0.40; , e 1; As 120 0; La 100.	; u 0.0 .%: b 0; Mn 0	(04; Y 0.0 56; 2 60; Bi 60	, 26; Bi 0.35 0; V 100;	. %): ; Y 0.03. u 360;
X.	7.	- Bi ₂ MoO	69	(Ko	echlinite)	

-

(

., 1969).

-1

573 v₃ (

740

73

[

₆],

	XI.	(«		»)			
,	, ,	,	,	,	,		, -
	XI.1.	- WC) ₃ , .	. (Krasnog	gorite)		
		8 (),	1984	·	8.		ר ר ר
(WO ₃ CoWO) (D4.	,	. ,	1991) -	• י
($.\\b_0$ 7.53;	- 20- ₀ 3.84 (1324 ASTM), 6.62 / ³ ,	:	₀ 7.384; <i>b</i> ₀ 4.	, : 7.512;	WO 0 7.39 0 3.84)	3 7 ;
	XI.2.	- WO ₂ (0	OH)2,	(Tung	gstite)		
					(1940)	-	٦
()	_	w.			- (1954	י 4)
					-	-	ר ר

•

•

		1840 .			-
			1841 .		,
10.00.	07.04	78.4	1_{3} .	%;	0.65;
18.88; 9	97.94,	6.0211 /	· · ·		_
(. 1928).	,			
	,	,	,		-
$, \cdot \cdot$					
		,	,	,	,
,				(
1947),	(, 1959),		,	, _
,	,	,			
	(., 1968).		1	-
- , 1960).	-	-		(, _
,					-
		,	,	,	-
, ,	,				
: 0.5.424	: 0 11.428.	. 51, 52.			
-	0 ¹¹¹¹²⁰ , 0 ^{5.26} ; 0	11.50.			
			-	-	-
,				(
- ,		.),	(-
1968)			(•,
1900).					,
					(¬
,	,	,).	
	;			(0.05-2	2),

XI.3. - CaWO₄, . . (Scheelite)

Табли

Химический состав шеелитов Урала (мас. %)

Компонент	1	2	3	4	5	6	7	8	9	
CaO	19.40	19.30	19.60	19.40	19.65	19.75	19.57	19.50	19.32	1
WO ₃	80.30	80.10	80.00	80.00	80.00	80.10	78.80	80.50	79,81	8
FeO	-	-	_	0.40	_	_	0.18	_	-	0
MnO	-	· -	_	0.01	_ ·	· –	0.05	· _ ·	-	
MoO3	0.27	0.30	0.45	0.15	0.15	0.23	0.19	<u> </u>	_	
Ta ₂ O ₅	0.0016	_	_	0.001	0.0014	0.0026	_	-		
Nb ₂ O ₅	0.09	_	_	0.07	0.09	0.08	· _	-	0.14	
TR	0.06	0.03	0.26	0.29	0.48	0.20	0.09	0.19	0.73	
Сумма	100.14	99.73	100.31	100.32	100.15	100.36	99.88	100.22	100.00	10
Плотность, г/см ³		6.16	6.09	6.05	6.20	6.17				
- ; , 19	7 - 78; 8 -	; 8	:1- 3-	; 2 - ; 9 , 1969;	 - 9 -	; 3_4	4 - 10 <u>,</u> ;	10 -	; 5 - :	1-7 , 1

2		(4),		ר ר ר
Sn-W-Mo-			1973	- -
0.1-1 ,	, ,	6.		, – , – –
),			(- -
, (, 80 % - , , , 1929; -	4 , 1933).	-	, - ,
	()(, 1967).
-).	, (· , (, - , , 1940).	, - 7 7
, (, , 1947).	,	,	, - 7 7

•

	La	Ce	Pr	Nd	Sm	Eu	Gd	ТЪ	Y	Dy	Но	Er	Tu	УЪ
лканское	42.0	42.0	3.5	12.5	0.1	0.1		0.1	-	0.1	0.1	0.1	_	0.1
женовское	40.0	40.0	-	10.0	-	⊷ .	_	_	·	. –	·	·. —		-
)во- резовское	20.0	30.0	3.0	15.0	5.0	5.0	: - .	20.0	_	. —	· _	. –	· -	_
рановское	13.2	29 .1	3.8	13.0	3.5	2.0	4.0	· -	23.1	3.7	0.4	2.6	0.5	1.1
роховское	15.3	32.5	4.6	17.2	4.2	6 .1		0.2	18	3.0	0.4	0.7		0.8
евское	4.7	21.6	4.1	18.8	5.3	_	4.9	1.1	30.2	5.4	0.7	2.8	1	0.4
янковское	6.8	15.3	2.1	11.2	5.2	2.1	6.9	_	20.1	13.6	1.9	12.2	1.2	2.2
бровское	6.9	27.0	2.8	14.7	5.4	1.8	4.6	_	17.5	8.8	1.4	6.8	0.7	1.6
ідырлинск	5.7	10.8	2.6	14.6	6.4	19.0	-	0.1	32.0	6.9	0.1	1.6	_	0.2
зрождение	2.7	14.0	3.6	20.0	7.6	-	7.6	1.6	29.9	8.2	1.0	3.0		0.8
резовское	1.9	6.7	2.2	14.3	9.1	21.3	-	0.1	31.8	9.5	1.0	1.9	0.1	0.1
лингичей	5.8	26.6	5.0	25.2	9.8	_	7.8	1.3	12.6	4.3	0.9	0.7	_	_

остав редких земель в шеелитах месторождений Урала (в % от суммы = 100 %; Покровский, 1

Табли

1934 . 86-110 . 1-2 , , , 0.3 . ۰. 5 . , 1940). () (1929) (, 1967). (. 10 % 1-2 6-10 , , _ , 1957). (1939 . • -, , 8.5 [001], 600 (, 1948).

1942 . .., 1972). (, 2 3 , {011} {131}; , : ng 1.925-1.932; 1.913-1.920. ³ (5.967-6.088 / 8 5.984). -1 410, 445, 650, 720, 805 · -1 (750, 860, 1110, 1620, 3370). (/): Be 3; n 200; b 900; Bi 390; Mo 30; u 10; Ag 10; Ti 300; Mg 300; Sr 800; Ba 50; Sn 20; Sb. _ _

,

(, 1941).

. 3394

	()	
-	1-2 ,	, 10	,
,		,	
23 . , , , , ,	, , , , , , , , , , , , , , , , , , ,	, : ng 1.935; 57; ,	۔ 1.918. ، 2 ح
,	(010),	10º	-
(011):(331). ,	,	,	- - -
, {001},	«	»,	

•

6*

1			ng 1.946;	۔ 1.925. ٦
Be 0.0002;	. , Sc, Zr, Si,	. %: n 0.05; Ti, Mg, Al, Fe (u 0.003; S	n 0.003;
, 1772).		() (-
, ,	15-20 ,	· ·	(3 [001]	- - 3) - -
_	,	3-4 . ,	,	, ¬ ,
,	,	2.	, 3	- - -
-	,	, , ,	,	- - - -
(, 1988).		. <i></i>	, , .
%: 19.28; W	O ₃ 78.00;	$_{3}$ 3.36; TR ₂ O ₃ 0.38	3 (, 1978).

-

4.1 . %, 2 3 (2.3-4.1%),TR. _ () . %: - Mn, Nb, Pb, - Bi, u,) - Be, (0 5.240-5.242; 0 Ag, . 11.366-11.372. 240-250 ° , , Dy³⁺ (488 575), Th³⁺ (548), ³⁺ (605). u^{3+} (613), Sm^{3+} (648), 705 , Sm, Pr, Dy, b u 5 270 -, 2 , 0.01-0.6 1.84-, , (1.84-5.90), 5.90 . % (1.84-4.34 .%). XI.5. - MnWO₄, . . (Gubnerite) (« ») [·] 1789 . (1868 .). .

,

,

,

,

,

,

 $(Mn_{0.59}Fe_{0.41})WO_4$ (. .).

XI.6. - FeWO₄, . . (Ferberite)

			1932 .				
		1935 .					-
	(),		
							•
				,	,		
,					,	,	7
,	,		•				7
					(,
1940).							-
							-

,

	(, 1940;		, 1947).	1942 .		7
							,	- -
		•				, (.,
1969;				, 19	72).	(1978).		
	. – .	,			•	(1) (,
. %): FeC) 14.48; 7.06 [·] /	n 10.20); Nb ₂ O ₅ ().14; WO ₃	,74.39;).	Ĺ	99.31;
Sr 250	(/ ; Sn 3): Sc 16 0;	50; Pb 380; Nb, Bi,	Mo 140; V, Ni, Ba	u 10; Ag 1.	g 50; Ti 10	00; M	g 800;
2 100.	1 868			(<i>d</i> ,): 4.68;	3.07; 2	.94; 2	2.465;
2.190,		•						'
(1	-2)						
	,	•						
							_	
	10			,				
	10	•		()		-
	•	•		,	,	,		-
-					•	,	-	-
		,	,		,	,		,
	•	,	(,	1978).			-
		()					_
		-).					
					(•
1991).					X	7		,

XI.7.	- CoWO ₄ ,	(Krasnoselskite)
)	(1989 . ¬ ¬ ¬
(<i>d</i> , ; <i>I</i> ; <i>I</i> 2.916(77)(111); 2 , : 1991).	<i>hkl</i>): 4.667(17)(001); 3.7 2.466(16)(120); 1.695(20) ₀ 4.95; <i>b</i> ₀ 5.68; ₀ 4.70; p	739(41)(110); 3.611(23)(011); 9(122).
XI.8	- PbWO ₄ ,	(Stolzite)
		¬
(,1929;	, 1929).	(1961).
,	-	- - - - - - - - - - - - - - - - - - -
, 1961).	(10(2)
В	i-Mo-W-	(, 1902)
, ., 1969; - , - ,	, , 1971). - , - ; ng 2.26; 2.1	(, , - , ¬ , - , , 7.94-8.46 / ³ ; 8

•

. 12.

{115}

,

•

0.5-1

-

(.%): b 50.6-51.3; WO₃ 46.2-48.7; $_3$ 0.30 1.20 (, 1961). b 48.20; WO₃ 50.10; $_3$ 1.65; \neg $1020-1130^{\circ}$. (d, A): 3.26; 2.02; 1.782; 1.663; 1.627; 1.310; 0.988; $_0$ 5.462; $_0$ 12.05 (, 1962). \neg

(1954)

XI.9. $-Bi_2WO_3$, . . (Russelite)

,

$$\pm 0.04$$
 / ³.
 ± 0.04 / ³.
 ± 0.04 / ³.
 $5.461; _0 11.314.$
b, Ag,
Sn, Mn, Nb, u, Ti, Fe, Ca, TR, Sr (

., 1969).

XI.10. - Pb(Mo,W)O₄, . . (Chillagite)

- (.-.).

...

1969)

33

(.%)

№ ан.	WO ₃	MoO ₃	CrO ₃	VO ₃	РЬО	CaO	Сумма
1	9.65	29.5	0.8	0.2	58.6	0.25	99.0
2	16.85	24.1	1.0	0.25	56.3	0.3	98.8
3	19.2	23.4	0.6	0.2	56.7	0.3	100.4
4	19.8	21.0	1.0	0.2	56.2	0.3	98.5
5	20.4	20.9	1.3	0.3	55.1	0.3	98.3
6	24.1	18.8	1.6	0.2	54.6	0.2	99.5
				JXA-5,			
			3	;	-		-
		10 10	0;	-	5		. Fe r

-

_

: 1 - $Pb_{0.98}Ca_{0.02}(Mo_{0.78}W_{0.16}Cr_{0.03}V_{0.01})_{0.98}O_4;$

 $2 \ \text{-} \ Pb_{0.99}Ca_{0.01}(Mo_{0.52}W_{0.42}Cr_{0.06}V_{0.01})_{1.00}O_4.$

(. 33).				- -
Mo:W	,	1.24:1	4.87:1 (-
),				- -

_

•

XII.

., 1964).

XII.3. - n ₂, . . (Pyrolusite)

(« ») 1770 . (Rose, 1837) (1868) 1829 . ~ » 8 . , (1882) (1894) -XIX . (?) (, 1946). (1907) (1954) (1946, 1940), . . . •

:

-

,

(1982, 1987).

,

,

.

Si, Al, Mg, Ca, Fe

•

- Ni, Sr.

•

(, , , - ,)) 3-4 .%, , 7 (, 1928; , 1937, 1940). 7 7

(*d*, A; *I*): 3.10(10); 2.40(8); 1.622(10);

1954).

(.%): SiO₂ 1.21; 1_{2 3} 2.48; Fe₂O₃ 0.98; MnO₂ 76.51; n 7.08; 4.77; 2 5.52; 99.49. 0.94;); Si, A1 (, ; _ 1-2 (*d*, A): 3.11; 2.40; 2.20; 2.11; 1.63; 1.56 (., 1999). . . (Ramsdellite) **XII.4**. n ₂, -(., 1999). -XII.5. . . (Achtenskite) n 2, n ₂--., 1982). (_

,

,

1

,

96

,

	. 1	-
HNO ₃ , H ₂ SO ₄ NaOH	, I .	;
3-4, .	,	
- n ₂	,	_ _
		I
	,	Ч
{0001}.	_	
	, , , ,	- -
•		7
- n ₂	$: _{0} 2.85, _{0} 4.48$,	-
n ₂ ,	,	-
,	,	
50 %	,	
XII.6.	- n^{2+} n_2^{3+} 4, (Hausmannite)	
	1927	-

1978).

(., 1968). (, 1978). , , , , (1999). •• (*d*,): 4.91; 3.09; 2.76; 2.48; 2.36; 1.574; 1.542. , % - b; - , As; - u, Ti (, 1978). (*d*, ; *I*): 5.01(6); 3.11(7); 2.77(9);

2.52(10); 1.800(5); 1.582(6); 1.544(8).

, : 05.78 ± 0.01 , 09.42 ± 0.03 .

XII.7. - $Mn^{2+}(Mn^{4+},Si)_2O_4$, . (Braunite)

, 1940). (, (1978). (., 1968). -1 : -2 · -1 (1978). , 2/3 . %): SiO₂ 4.04; 1_{2} 3), ((0.51; Fe₂O₃1.45; n 26.98; 2.66; 0.06; MgO n ₂ 58.65; 0.26; 2 5 0.18; 2 + 4.41; 99.20. ((*d*, ; *I*): 2.72(10); 2.36(4); 2.15(5); 1978) 1.660(8); 1.415(6). (): $_{0} 9.40 \pm 0.01$, $_{0}^{'} 18.69 \pm 0.05$.

7*

	XII.8.	(Cı	- ₂ (n ⁴⁺ , cyptomelane	$n^{2+})_{8-16}$	•••	
			(1960).		,	-
		(Fleisher,	Faust, 1963).			- -
1986;		(., 1986).	, 19	78;	,	, _
		(., 1982), (, 1980),		-
	-		(., 19	86).	-
			,	,		
				,		ר
		•				-
		,				-
			1-10			٦
		-		·		- -
						, -
	,			0.6 .	,	

.

, 2-3 _ (. %): n ₂ 83-90; 0.55-2.59; 2 0.48-1.25; 0.9, Na₂O 0.53; b 2.09 % (., 1999). _ , 5, - 3. 4.11 / ³, 3 - 3.96 / . 34). (n^{2+} n⁴⁺ , : Na₂O, MgO, BaO, Fe₂O₃, CuO, SiO₂. , -,

1.

,

(2).			
				. ¬
	. ()
(<i>d</i> , A; <i>I</i>): 6.92(8); 4.89(5); 3.10(2); 2.39(1) (,	, 1986).
XII.9.	- Ba	a ₂ Mn ₈ O ₁₆ ,	(Hollar	ndite)
		(1978)		-
				- -
,		(٦ , 1982).
П.10.	-(, n ²	⁺) n ₄ ⁴⁺ 9	2 ,	(Rancieite)
(, 1936).		(- ٦ ٦, 1940).
 , 1972) , 1954).	-		۲ -) (- ۲

,

102

Табл

Химический	і состав	криптомелана (мас.	%))
------------	----------	----------------	------	----	---

_										
MnO	MnO ₂	SiO ₂	Fe ₂ O ₃	MgO	BaO	K ₂ O	Na ₂ O	CuO	H_2O^+	Су
10.44	64.39	10.12	1.60	0.19	1.24	2.35	0.28	_	3.25	96
50.96	35.34	. – .	1.52		_0.20	7.55	0.32	0.44	3.45	- 99
51.01	35.99	0.74	2.29	0.62		2.24	0.47	1.02	4.01	98
50.61	36.48	< 1	< 1	_	< 1	4.93	0.n	0.33	4.23	96
	MnO 10.44 50.96 51.01 50.61	MnO MnO2 10.44 64.39 50.96 35.34 51.01 35.99 50.61 36.48	MnO MnO2 SiO2 10.44 64.39 10.12 50.96 35.34 - 51.01 35.99 0.74 50.61 36.48 < 1	MnO MnO2 SiO2 Fe2O3 10.44 64.39 10.12 1.60 50.96 35.34 - 1.52 51.01 35.99 0.74 2.29 50.61 36.48 < 1	MnO MnO2 SiO2 Fe2O3 MgO 10.44 64.39 10.12 1.60 0.19 50.96 35.34 - 1.52 - 51.01 35.99 0.74 2.29 0.62 50.61 36.48 < 1	MnO MnO2 SiO2 Fe2O3 MgO BaO 10.44 64.39 10.12 1.60 0.19 1.24 50.96 35.34 - 1.52 - 0.20 51.01 35.99 0.74 2.29 0.62 - 50.61 36.48 <1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO MnO2 SiO2 Fe2O3 MgO BaO K2O Na2O CuO 10.44 64.39 10.12 1.60 0.19 1.24 2.35 0.28 - 50.96 35.34 - 1.52 - 0.20 7.55 0.32 0.44 51.01 35.99 0.74 2.29 0.62 - 2.24 0.47 1.02 50.61 36.48 <1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Примечание. Дополнительно 2.20 мас. % H₂O⁻.

а., ^с

Табт

Химический состав рансьента (мас. %)

есторождение	CaO	MnO	MnO ₂	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	H_2O^+	H ₂ O ⁻	Ċy
усаровское	11.11	_	61.94	3.48	0.32	5.69	н/о	15.93	· _	98
усаровское	7.52	8.11	62.69	4.26	2.09	1.46	0.67	12.92	_	99
усимовское	3.30	1.43	81.83	2.13	0.83	1.27	0.58	8.48	_	99
олуночное	5.63	3.02	51.41	8.67	-	9.10	_	6.26	10.88	91

ASTM	(36).
	· ·		

Седелы местој	никовское рождение	AST	°M 22- 718	Седели место	ьниковское рождение	ASTN	1 22-718
I	d, Å	I	<i>d</i> , Å	Ι	d, Å	Ι	<i>d</i> , Å
3	(8.3)			5	2.35	.6	2.342
10	7.52	100	7.49	2	2.06	2	2.064
2	4.29	1	_	1	1.813	_	_
8	3.73	14	3.74	2	1.747	2	1.758
2	3.48	-	ţ	4	1.423	4 ш	1.425
4	3.15		-	3	1.399	2	1.397
6	2.46	10	2.463				

XII.11.	- Na ₄ Mn ₁₄ O ₂₇ 9H ₂ O,	(Birnessite)
(7.30 ., 1999),	- - -
	$- n^{2+} n^{4+}_{7 16} 4_{2},$	(Todorokite)
(1965).		ר . ۔ - -
(., 1978). ,	, -
	(, 1986). ∽
-	(, 19	65). ¬
	, ,	 -
(. %): 1.43; 1 _{2 3} 0.76; Fe	n ₂ 69.11; n 5.01; ₂ O ₃ 0.59; BeO 0.26; ₂ 15.97	3.78; MgO 1.24; SiO₂ ′; 98.15. ¬

	Co-Ni-		, Co-Ni-	,	-
Co-Ni-		,			-
Co-Ni-	(,	, 1987).		

(*d*, ; *I*): 12.35(10); 9.75(8); 4.80(10); 3.23(2); 2.49(4); 2.43(1); 2.22(1); 2.15(1); 1.423(3); 1.345(1). \neg

,

(., 1999). \neg (*d*,): 9.67; 4.83; 3.22; 2.40; (.%): 1.52-4.60; ₂ 0.07-1.37; Na₂O 0.15-1.94; MgO 0.40-0.88.

; (*d*, ;): 9.82(8), 4.89(5), 3.29(1), 2.39(1) (, , 1986).

> III, II (., 1982). III (14.4) IV (24.4) , -(., 1978).

,

.13. - n , . . (Manganite)

(, 1833).

,

.

. . (1877) 60 .

. 14 (, 2002).

15-20		(, 1954).	-
	,	-			7
	-		•		7
			•		-
				,	

•

107

 \neg

_

-

. 14.

 $(\ , 1954; \ , 1972). \\ (\ , 8): SiO_2 5.40; \ iO_2 0.08; \\ 1_2 \ _31.02; Fe_2O_3 0.99; \ n \ _2 49.78; \ n \ 31.11; MgO \ 0.09; \ 0.24, \\ (Na_2O+K_2O) \ 0.12; \ H_2O \ 0.44; \ H_2O^+ \ 10.12; \ _2 \ _5 \ 0.63; \ 100.02. \\ (\ , 1950; \ 1954), \qquad Al, Fe \ \neg n^{4+}$

,

XII.14. (.%):
$$n_2$$
 3 83.03-89.37;
0.15-1.04; Fe₂O₃ 2.8; ZnO 0.16-0.35 (., 1999).
XII.14. - ~ n^{3+} (), (Feitknechtite)
, (. %):
 n_2 3 84-87; MgO 3.96; Fe₂O₃ 0.94.
(d, A): 4.60; 2.36; 2.0 (. 1999).

 n^{2+}

-

.

XII.15.	- $\mathrm{Mn}^{2+}\mathrm{Mn}^{4+}_{1-x}\mathrm{O}_{2-2}()_2$,	= 0.06-0.07,
	(Nsutite)	

- n ₂	(., 1982).		
1096)		(,	-	
1980).				-	
		,		-	
			•	, 「	
				, ¬	
				, -	

109

-

-

(. 15),

0.6-2

. 15.

n 2 (97.3-98.6 .%), 0.67-0.87 . %. (*d*,): 3.98; 2.58; 2.40; 2.34; 2.13, 1.63 . 1999). (

-

,

XII.16. . . (Pyrochroite) n()2, « » 1930) (, 1940)

0.02-0.4 . 1999). (. No 1.726. 0.04. 4 . %): (0.02; NiO₂ 0.01; SiO₂ 0.07; 79.07; FeO 0.15; MgO 1.63; n 1_2 3 0.03; 80.98. (*d*,): 4.72; 2.85; 2.44; 2.362; 1.821; 1.560; 1.441; 1.380.

.17. - (Al, Li)MnO₂(OH)₂, . . (Lithiophorite)

., 1982);

,

•

. (

(

$1, HNO_3 H_2SO_4$

,

-

,

ASTM

,

•

,

•

2.39(1); 1.83(1); 1.42(1). (, , , 1987).

XII.18. () - (, $_2$)₂ n^{2+} n^{4+}_{4-10} , . . (Psilomelane)

	18	. 842			-
	(Rose, 1842).				7
		(, 1946).		
(. 1954).				-
× ·	, ,	(, 1960).	7
	(, 1972)			-
		,			_
-			(, 1980).	
			•	. ,	7

,

$$(, 1954).$$

$$n, : - ; - Al, Fe, Si;$$

$$- , Ni, Sr, Mg; - , V, Ti. (d, ; l): 2.385(8); 2.191(10); 1.542(3); 1.419(4)$$

$$; (. %): SiO_2 2.50; 1_2 , 1.83; Fe_2O_31.66;$$

$$2.37; n 11.82; n , 275.33; 1.08; 2 + 3.76; 100.45;$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$50-80 \%$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0.4$$

$$; 0.3-0$$

-

,).	- - - - - -
3.48 2.19 ; 8.95 .%(, 1999). ()	¬ 7.75-
(2-12 .	, 1933). ,	150 н .
XII.19.	, - (Ni,Co) _x Mn ⁴⁺ (O,OH)₄,	(Asbolan)
. (., 1987).	-
,	n, Ni	٦
,	, , ,	(001) ¬ ¬ ,

Co-Ni- ,

$$(): _{0} 2.823, _{0} 9.34$$
 (n- ,
 $I) _{0} 3.04, _{0} 9.3$ (Co-Ni- , II).
 $; [Mn^{4+}O_{1.5}(OH)_{0.5}]Ni^{2+}_{0.28}Co^{3+}_{0.17}Ca_{0.05}(OH)_{1.50} nH_2O$ (
 $; 1987$).
 $(, 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 1960$).
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(. , 260$):
 $(.$

2.37; MgO 2.48; CaO 0.11; H₂O⁺ 9.31; H₂O⁻ 1.62; 100.19.

10 .%.

•

,

XIII.

: (), , , , ,) - FeO, . . (Wustite) XIII. 1. (•• (, 1983). 1987 . (., 1991). , , ~ **»** (7). 5.5. , , . 17). (.37), 04.302 (105 / . 340 605°. 1 (-10). () ~ , ,

. 17. (). : {100}, {111}, d{110}, n{211}, s{321}, y{522}, V{531}, p{322}, g{320}, 0{430}, u{411}, b{623}, {812}.

Ι	d, Å	hkl	I	d, Å	hkl
3	(2.743)	111	1	(1.368)	222
7	2.485	111	7	1.296	311
4	(2.373)	200	7	1.240	222
10	2,152	200	1	(1.183)	400
3	(1.677)	220	7	1.074	400
9	1.522	220	2	(1.059)	420
1	(1.429)	311	6	0.987	331

Примечание. Камера РКД-57.3 мм, Fe-излучение, без фильтра; a₀ 4.302 Å.

»,	. ¬
	(.%):
FeO 83.02; Fe ₂ O ₃ 14.84; 1_2 ₃ 0.20; MgO 0.40;	-
0.50; 98.99 (., 1991).	
	,
100-500	-
(1992)	
(., 1992).	
	_
F-O 04 9:	(%):
FeO 94.8; n 6.03; 100.11 % (,	, 1988).
«	» ¬
(, , 1991).	
1-2	-
1-2 .	7
. ,	. ¬
	- ¬
· · · ,	-
, 5.5	
1,	(. %):
FeO 74.71; Fe ₂ O ₃ 6.18; n 0.50; MgO 16.43; Al ₂ O ₃ 0.50;	- -
1.00; 99.32; <u>0</u> 4.299 .	
Fe_2O_3 -	:
$(Fe_{0.71}Mg_{0.28}, n_{0.01})_{1.00} = 1.00$	-
,	•
$.2 a-re_2O_3, \ldots (Hematite)$	
« » 1728	· -
	-

1768	8-69 .						٦
«		»	•	•	• •		
	(, 1786).				(1809)	- 7 -
,	1837 .						7
	(1	1853)				(Rose, 183	37),
(1887,1895) 	X	(« (1853);)		() » . (19	٦ ٦ 73).
,					,	,	- -
						, ,	-
).					(·	- - - -
					(, 1974	, 4). _
	,				-		- -

магнетитах

(., 1987). , (мас. %): TiO₂ 11.83; Al₂O₃ 1.02; Fe₂O₃ 78.99; FeO 5.80; Mn 1.87; MgO 0.03; 99.54 (., 1978). метагранитах 1 (., 1968). 1873 . канкрини-(« , ») 0.4 0.24 % (, 1949); « » , 2006). 375 плагиоклазитов , 1960). (() , (), (Тагило-Кушвинский),), ((1960)

: 1 -

,

0.5

прожилках 4—7 .

. 38.

;

(мас.	%)
-------	----

,

-	. 1	2	3	· 4	5
TiO ₂	6.17	2.96		11.83	2.13
Al ₂ O ₃	_	_	0.08	1.02	1.23
Cr_2O_3	_	· _ · .	0.13	_	0.70
Fe ₂ O ₃	.89.07	.94.95	99.09	78.99	88.22
<u> </u>	3,52	_1.23	0.22	5.80	4.24
MnO	0.23	0.11	0.01	1.87	_
MgO	1.01	_0.74	0.13	0.03	0.95
CaO		_	0.24		0.66
V_2O_5			0.05	_	0.10
	100.00	99.99	99.95	99.54	98.91

): 1 -

1-2 -

. 3 -

(

., 1978); 5 - -0.68 мас. % SiO₂(, 1973).

магнетит-гематитовые

,

, (0.1).

. .

, апогипербазитовых

, 2 -

(

(

. (1974).

{**1011**} {0001}.

40

8

7.8 мас. % ТіО₂ (, 1974). . Лапчавож 5.6 мас. % ТіО₂ (., 1968). .

,

»

,

. Лонготъюган

«

5-7

25-30

0.2-4

,

,

(**Mac.** %)

	. 1	2	. 3	4	5	6	7
SiO ₂	-		-	-	3.56	0.54	-
TiO ₂	7.80	6.20	21.88	5.34	2.56	2.56	5.57
Al_2O_3	0.04	-	1.48	0.27	0.48	-	0.42
Cr ₂ O ₃	0.01	0.01	0.005	0.42	0.23	0.19	
Fe ₂ O ₃	88.39	91.00	72.35	91.11	91.93	95.81	88.80
FeO	1.72	1.80	3.02	1.76	1.72	1.86	2.78
MnO	0.06	0.08	0.10	0.02	-	-	0.01
MgO	0.01	-	0.05	-	сл.	сл.	-
CaO	-	-		0.12	0.05	0.05	-
V_2O_5	0.42	0.33	0.21	0.35	-	-	0.07
	98.46	99.42	99.11	99.39	100.4	101.0	97.65
		1-2 -				. Лон	готъюган
(,,)	1988); 3 -						;4-
•	•	; 3–6 -		(•	10(0)	
• •); / -			(.,	1968).	

(), , 1960). (1 % (, 1937). , 1929). оруденением (, 1960). (апогипербазитовых , (Rose, 1837) (5 15 () , 1853). B . 18). ((« ») , 1955). -(.) свите-М

126

(

. **18.** , *3 -*

, 4-7 -

) (, 1892).

(

(

1.3 1

(

1975).

-

, -(, 1900; , 1907). , -

127

,

	(мас. %): Fe ₂ O ₃ 65.7;	SiO ₂ 27.0; H ₂ O 7.0.
-	(, , ,). -
, , эвапорил	rax.	,
,	, гиббситом.	,
гиббситовые ((,)) -).
(, 1931). (, - -
0.55 мас. %.	1-3.5 . (001) . Fe ₂ O ₃	-
(), ,	, _	-
		- (Rose, 1837). -
, тригональную 	, , , , , , , , , , , , , , , , , , ,	, ,
•	•	 . Маг-

, 1949).

(

, 2 3 TiO₂ 7.8 % (, 1974), 21.9 % (. .). (11.83 % TiO₂) (., 1978).

)

1950-

4.71–4.83 / ³.

(, , , 1965). () , (Hermann, 1844; 5 % H₂O (

1899).

. . (1936 *б*).

9*

131

.).

,

(1899)

•

,

•

XIII.3.	- Fe ₂ O ₃ ,	(Maghemite)	
	, · · ·	 (1936)-	(1929)
	, (1942)	-	(1953)
	,		-
,)	маггемит -	(, -
,	магтемиты,		-
	(1942)	-	, – – –
	, магтемита		•
	,	• •	(2004);
		·	-
, , 1953).			, , - (- -
, -,	4.95 / ³ ; 8.42		-

.

-

,

•

магтемит, ортомагматических , , 2-5 1-2 %. (, 1969). (1942) , , () (1953, 1960) маггемитом (1962) (1965), 1-10 _ , ,

	-	,	,	, 1	R = 21.5	%,
58600 . CGSI	E.	652	2 /	² , a _o 8	.30-8.33	······································
	-					-
						-
,		1055				-
(2	, , (-5	1955) 2.48, 1	.850, 1.5 2 0–90 %	583, 1.48	5).	-
(1963)					· · ,	-
, Титанмагг	емит					-
	(.,	1963).	,		_
,	М	аггемитом	(10)0),	по (111)),
XIII.4.		- FeFe ₂ O ₄ , - Fe(Fe,	(1 Ti) ₂ O ₄ ,	Magnetit 	æ)	
<i>,</i>		16	96 .,	· •	0.61	
()		(, 197	(,) 4),	1961). 1671	- 1.
.)		, ,		(. .	-
Гороблаголатеко	a		1′	728 .		_
(),			(1700)		-

Рис. 19.

-	, 1968).	,	(инского	Киряби	
1892						
		•	•		• •	•
-						
,	,			•		
	,	,		,		
			•			
-						
-	, ,			,		
итаномаг-	. Tł		,	,	,	
-	•					
					,	
,	,					
89).	» (198		«			

8–10%, (1%)

10 %)	(2 %),	
	Магнетиты	(0.0 <i>n</i> 2.5 %).
		,		мета-
			•	- (
,	,);	
~	"	,	(,	, 1986;
•).		2-3	
	,		,	
		•		-
5)			(

. 20). TiO₂ (13–21 мас. %)

).

(

(

, T_{1,2}),

1-5

(5 мас. % TiO₂),

-

титаномагнетита, ,

магнистые.

 $Fe(Fe,Cr)_2O_4$ (хромомагнетит,) - -Cr,O, (11 мас. %) -(, 1935), , 1935), (, 1949) (мас. %): TiO₂ 0.46–3.2; Al₂O₃ 0.03-8.65; Cr₂O₃ 11.20-32.53; Fe₂O₃ 35.05-61.09; FeO 19.32-26.35; MnO 0.0-7.04; MgO 1.31-5.62; NiO 0.09-0.39; CoO 0.0-0.09; V₂O₅ 0.03-1.03 (, 1949 **в**; , 1973; , 1978; ., 1984; , 1988;). 6-6.5 (360). (, 1973; (, 1977). ультрамафитах 1 0.2 ~1 %. 0.5 0.2 Cr,O, 12.5 %. 0.3 0.2 •

(

)

		(, 1978).	-
и 1987).	Cr ₂ O ₃ 22	9 мас. %		-
ii ., 1907).	магнетитах	,	-	, - Cr.O.
(1.3-	5 мас. %). 2.5 % Cr ₂ O	3	-	23
	, пластовых		NiO 1.2–1.7	мас. % -
	(Эдельште	йн, 1960)		-
- (, 1960).			NiO	4.5 mac . %
			0.	.1 -
0.81; Fe₂O₃ 68.5	7; FeO 28.81;	, (мас.%):Т MnO 0.25	iO ₂ 0.05; Al ₂ O ; MgO 1.32;	30.06; Cr₂O₃ NiO 0.11;
Co V).	(;	
	(Uon	, , , , , , , , , , , , , , , , , , ,	ac. % MgO -
, .). ,	(, 141	цухин, 1977), (., 1962;
, ,				
	(),	,
		,		

.

, 10,4-1.0 . ТіО,4 мас. % - ТіО,20.5-0.8;

 $V_2O_3 0.56; V_2O_3 0.13$ (

, 1962).

Платиноносно-

2-3 ,

, Запад-

20

1

4

92, 118, 135,

10-15

4

(мас. %):

 $\label{eq:constraint} \begin{array}{l} \text{TiO}_2 \ 1.94 - 9.92; \ Fe_2O_3 \ 58.56 - 67.50; \ FeO \ 27.37 - 29.07; \ MnO \ 1.06 - 2.79; \\ V_2O_5 \ 0.21 - 0.25 \ (\ , \ 1949). \end{array}$

1-2 ,
30 95 %

 $Fe^{2+}Fe^{3+}_{2}O_{4}$. - Ti, V, Mn, Mg, Cr, Ni TiO₂ 0.04-0.30 мас. %, : скаполит-скарнового (, Качарское, Ti V,), () - Mn. скарново-магнетитовых ; 2 4-6 3-4 ; магнетита-1 0.1-0.2 • 5-6 Гороблагодатского ().

;

магнетита-1

•

3-4

,

20 ,

(, 1970).

,

, 1974).

, 1960; (, 1970). (~1 %) 3-4 3 (0.45 мас. % TiO₂), MnO 0.53 мас. %. 0.00n % Ni, Cr V; a 8.40 , 1970). (, до 1 см. 50 % 8-10 % 0.05-0.1 $(, 1990). (mac. \%): TiO_2 0.91; FeO 21.20; MgO 1.52; NiO 0.26; Fe_2O_3 72.14; Cr_2O_3 4.57; Al_2O_3 0.003; 100.0 (-$, 1977). ,

. динамотермальных (- -) -, , , , -, , , , -, , , -, , 1 (, 1930), - - -

,

титовых апопироксенитовых

, 1978). (). , (1984), пластовых ново-« ». _ , 1989). (• -1 (, 1933). () , , Диагенетический 2-5 7-23 %, , 1955). (1940) 1942 . - . . Яницким , _ 1-2

,

150

(

(8 (1)), радиально-лучистые • , (33 %), 4.5 мас. % NiO (, 1960). , • , (Эдельштейн, 1960). , , 1 , 1951). (15-20 ,

(, , 1991). « ».
(мас. %): Fe₂O₃
65.16; FeO 30.89; () -

1.5 ;

ропные, (mac. %): 38.18; (FeO+Fe₂O₃) 57.92; MgO 0.04; CaO 0.72; TiO₂ 0.05; SiO₂0.7; Al₂O₃ 0.13; 97.11 (Аюпова, , 2005). 0.3 -0.5 , (*d*, A; *I*): 2.56(10); минерала 2.12(5); 1.637(7); 1.504(8); 0.981(9). (мас. %): 19.3; Fe₂O₃ 69.5; ZnO 11.2 (, 1993). , XIII.7. - ZnFe₂O₄, . . (Franklinite) (1888)Высоко-32 . % (, 1993). XIII.8. - **6-FeO(OH)**, . . (Goethite) 1628 (, 1961), (1936 *6*; 1955), (1975).

153

,

1954).

. 23).

(

. . (1960), -« » -; , -, -As, Bi, **Mn**, Pb, Zn. по

,

»

~

,

Pb, Cu, Zn, Mn.

«

,

,

,

.

: As, Bi, Sn, **Ba,** Au, Ag, »

•

4-6.

первичноокисные руды -

(

(d 1.5 и 2.5 Å), гётиту, . 160, 320°, 350°, 14%,

159

)

»

« **»** «

(mac. %): Fe_2O_3 82.66; Ni 0.012; Cr 0.0023.

1 ; (., 1940).

0.01

•

). _

MnO. 40–50

4-5 (

,

1-3

	, -		
290°, турьита - 300–340 °.	280-		
	60-80 .		
,	-		
, (300-380 °). 250-350 . сорбционными	, -		
Ti, Mn, Cr, V, Sn, Ba, Zn, Pb, ., 1990).	(
1986)	(
., 1700).	:		
,	-		
,	-		
« » (, 1923).	, -		
	(-		
) (, - , 1940).		
, , 1991).	- (-		

,

•

161

-

,

XIII.9. - **\scyletery FeO(OH)**, . . (Lepidokrocite)

(1832)

«

вишнево-буро-

»,

ров и др., 1982).

_

XIII.11. - Ca₂Fe₂O₅, . . (Srebrodolskite)

 $CaO-Al_2O_3$ -Fe_2O_3-ферритовых

(1)

	$\underline{\text{Ca}_2\text{Fe}_2\text{O}_5(2)}$					
	1	2				
Ι	đ _{u310} , t	d _{eine} Å	I	<i>d</i> , Å	hkl _	
10	7.381	7.376	10	7.418	020	
1	5.234	5.231	4	5.242	011	
2	3.887	3.893	10	3.898	101	
10	3.690	3.688	24	3.696	040	
2	3.052	3.052	8	3.056	131	
6	2.797	2.797	63	2.799	002	
6	2.710	2.710	48	2.714	200	
10	2.676	2.677	100	2.680	141	
3	2.611	2.610	14	2.609	051	
3	2.459	2.460	3	2.460	112	
3	2.351	2.355; 2.351	5	2.356	122, 151	
1.5	2.187	2.185; 2.184	9	2.189	231,240	
4	2.081	2.079	23	2.882	161	
7	1.946	1.946	42	1.949	202	
1	1.905	1.901	4	1.903	152	
2	1.883	1.882; 1.880	8	1.884	222,251	
10	1.844	1.844	22	1.847	080	
2.5	1.745	1.744	9	1.746		
1.5	1.699	1.666; 1.664	5	1.669	181,270	
2	1.624	1.625; 1.623	1	1.626	252,331	
	1.604	1.607	3	1.609	172	
3	1.592	1.591	15 .	1.593	143	
	1.578	1.576	6	1.578	053	
2.5	1.559	1.558	18	1.561	341	
3	1.540	1.540	8	1.541	082	
2	1.526	1.526; 1.525	10	1.52/	262,280	
	1.488	1.486; 1.485	2	1.488	322,351	
	1.408	1.400	-	1.468	233	
	1.433	1.435; 1.450	2	1.434	163,272	
	1.415	1.409		1.411	301	
	1.400	1.398		1.400	004	
	1.362	1.3/9		1.301	1.10.1	
	1.3/8	1.3/4	4	1.3/3	024	
	1.505	1.303		1.304	233	
	1.557	1.333	4	1.557	400 .	
	1.330	1.550, 1.549	10^{-2}	1.330	332,410	
	1.540	1.339	10	1.541	202 450 272	
	1.2320	1.2314;1.2313	-		430, 372	
L, <u> </u>	1.1/30	<u></u> 1ифрактом	<u></u>	2 Cur	Ni	
	Ge	. 1 - дифрактом	стр	$2 -2, \operatorname{Cur}_{\omega}$, 111 ,	

Al (Smith, 1962).

. Сребродольскит

. » («)

,

.12. - HFe₅O₈·4H₂O, гекс. . (Ferrihydrite)

,

•

(, 2000).

хіv. ОКСИДЫ ГИДРОКСИДЫ МЕДИ, ЦИНКА, НИКЕЛЯ, ,

XIV.1. - **Cu**,**O**, . . (Cuprite)

, ,

1735 . . .

,

,

: «...руда... , самородною» (, 1937). . (1795), , - -, ; : «...красноватая ...

XIX .

(Меднорудянское)

«...В

, » (Энгельгардт, 1829). 82 1814 1896 . 3 , 100 , 1953). (, , , , , Ольговское, , , -

1791 1816 .) 680 , 35 . меди. , 1887). (, 1839; (, 1846; Яговкин, 1932; , 1964), , 1.5 . . , 1932). (, , , (Rose, 1837). () , (, 1911). Гайского 70-90 : , 1973). → куприт →

10-20 , , 1938). , , , (20-30 30 0.5-3 • 10 3. . 0.5-2 5-7 (, 1955); медь (0.02-0.45 мас. %). , , ; , , ,

(, 1951).

,

(, , 1991).

(2);

,

,

•

. 25. (4, 7, 9, 11, 15)

(1-3, 5, 6),

171

-

	1.5 .					•	-
	,		-	22		-	-
{100}, {	}, {111}, реже {2	10} {5	510} (.25).			
	,		,		{	}, -	-
	{111}.			•		{100}	
,	,		()	-
·							-
15–20 (, 1948).						-
. (Ros	e, 1837).	(,			, 1 975),	
					,	,	-
		•		3			•
		C	a _o 4.27 \			Буши	ла-
().)	-			
	XIV.2.	- CuO,	,	(Tenor	rite)		
(., 1986).	1827 .					-
1837).						(Ro	se,

. III (-), , , **Кузнечихинском** (, 1947), , .

(, 1951) (, 1955).

(), , , , , (), () (, 1953). , 1835 ., (, 1987). (, 1888). - ,

, 1987).

,

, 1887).

173

(

	,		(1841)	-
 	(Frie	1847 ., del, 1873),		-
»	1890-	, 	«	-
(1949).		, 1960 . ,	, 1966 XIX	-
(1962 .	,	, 1974) Гайского	(, 1)	973).
				- -
»		,	«	-
	(, 1949),		
,		: (0.5-1 5 , (, 1973).)	-
,	, 1974).	-	(-

,

, 1-3

CHTA FAŬCKOFO (d, A;/; hkl): 2.86(7)(006); 2.54(10)(012); 2.26(6)(104); 1.664(6)(018); 1.520(6)(110); 1.439(6)(1.0.10); 1.341(4)(116); 1.300(4)(202); 1.043(5)(0.2.10); 0.993(4)(120); 0.986(5)(122) (, 1973).

(, 1974). **XIV.4**. - ZnO, гекс. . (Zincite) 1903 . 99.63 % ZnO FeO (., 1986). Гайского 0.01-0.03 % (, 1975); (., 1992). 1983). (, 2005). (**XIV.5.** - ZnMn,O,, . . (Heterolite) (1980)(d, ; I): 4.90(6); 3.07(7); 2.76(9); 2.48(10); 1.538(8) (1).

,

Ик-Давлят

Халькофанит (Ик-Давлят)		(ASTM, 15-807)		(ASTM, 19-88)		
<i>d</i> , Å	/	<i>d,k</i>	Ī	d,k	Ι	
6.92	100	6.96	100	6.94	100	
6.23	20	6.23	10	6.20	20	
4.46	10					
4.08	90	4.08	50	4.06	50	
3.50	100	3.50	60	3.46	70	
3.30	10	3.32	10	3.29	20	
3.13	60	3.23	5	3.20	10	
2.80	70	2.77	20	2.76	30	
		2.71	5	2.70	5	
2.57	100	2.57	40	2.54	50	
2.46	80	2.46	20	2.45	40	
2.39	70	2.41	20	2.40	40	
2.23	100	2.24	50	2.23	50	
2.13	60	2.13	20	2.13	30	
		1.986	5	1.98	5	
1.900		1.900	30	1.899	40	
1.846	30 .	1.849	10	1.841	20	
1.800	50	1.795	20	1.795	30	
		1.750	5	1.748	5	
1.721	10	1.715	5	1.712	10	
1.670	40	1.668	10	1.668	5	
1.600		1.597	40	1.563	5	
1.538	80	1.563	5	1.560	50	
		1.507	10	1.508	20	
1.432	90	1.431	30	1.429	50	
1.401	20	1.402	5	1.398	5	
1.323	10	1.324	5	1.321	10	
1.302	.10	1.308	5			
1.281	20	1.279	10	1.277	10	
-2.0, Fe-	,			1.234	5	
)				1.204	10	
200° . фект ZnMn₃O₇ (Frenzel et al., 1980). (1998), халькофанит **XIV.7.** - NiO, . . (Bunsenite) 1993 «Уфалейникель» (~60%). (Ni 75.57 мас. % (SEM-535[°] EDAX,); 78.58. (*d*,): 2.411; 2.088; 1.476, 1.258; 1.207 (-2.0,). , XIV.8. , триг. . (Heterogenite) (1959)ультрамафитах 2-3 2.5-3.

Pd

XIV.9. PdO -

).

(~3)

 $\frac{\mathrm{Pd}_{11}\mathrm{Sb}_{2}\mathrm{As}_{2}}{(}$

60°

,

, 1991). ,

XV.2. PbO₂,

.

() ~ » 1 (.). ~4 Pb (*d*, A; *I*; *hkl*): 3.093(10)(111); Fe. 1.229(5)(331); 2.679(7)(200); 1.895(9)(222); 1.617(9)(311); 1.199(5)(420); 1.095(7)(422); ,5.316 (• , 1991). PbO, (ASTM, 22-389). XV.3.) - **PbO**, . . (Litharge) ((, 1901). 1965 . (0.8 - 1.4))

2.51(9); 1.874(9); 1.542(10); 1.217(9); 1.146(9); 1.062(8); a_o 3.981, 5.022 .

XV.4. - PbO, . . (Massicot)

,

- 15 . (, 1926) -, (, 1954). -, (, , , 1991). - ,

• •	(pp.	,		
	(, 1940)		-
			•		-
	,		,		•
				-	
-			(, 1941)
		сальнерско-м	маньхамос 1065)	овского	,
		(,	1905), 1 947)		-
		(, 1717)	•	
	,				
		1936	•		-
	72-75 (, 1949)).		395;
, ,			т.	1968 ., NI E Z O	83.73
Mac. $\%$ SnO ₂			, 11,	ND, Fe, Zr, Ca	$\frac{1}{2006}$
			(, ,	2000). 57.
64, 70, 71, 234	4, 235;				-
					-
,					
				•	_
,				_	
	-				7
	{101}				-
		s{111} и e{1	01}.		-
205 (10	22)		(. 28)	
393 (, 196	55).			_
		·			
7			,		-
	(57),	(395);	

(, 1938).

-

-

-

0.1-0.4 , (, , 1948).

3

.

XVI. ОКСИДЫ И ГИДРОКСИДЫ СУРЬМЫ, МЫШЬЯКА

2. (d,): 3.23; 1.969; 1.680; 1.076; a_o 11.158(2) (Кайнов, 2005).

XVI.3. $-Sb_2O_4$, . . (Cervantite)

(1912)

(3-5) - , , , -(, 1972, 1973). -(30).

XVI.4. Стибиконит - SbSb₂O₆OH, . . (Stibiconite)

· · · (1912) - · (1972)

XVI.5.	- CaSb ₂ O ₆ ·3H ₂ O	, (Hydı	(Hydroromeite)			
Гидроромеит ((1	гидратированный 972))	1967 2			
,		, pe	- нттенострук- -			
- 23.2 %, 20 1.660–1.67	, .7 %. 79. 2	, 234—512 /	- , , , , , , , , , , , , , , , , , , ,			
1040°. ИК-спектр)	200 °	(980 470			
2820–360	00 cm ⁻¹ ,		-			

,

,

7-8

1.5,

,		(~1.75)).		-
	As.			-	-
			-	В-серы	

XVI.8. - Ві₂О₃, мон. . (Bismite)

, 1830; (, 1836) (, 1954). , 1841), ((, 1900), (, 1943). Map, , 1938). (айкиниту (1969).

(, 1984). (., 1986). , -, -, -, -

XVI.9. $-Ag_2Sb_2O_6$ [O,OH], . . (Stetefeldite)

(Юшки	н	., 1969).					0.3 ма	c. % /	Ag -
2003)		,).	стетефе ,	ельдитом Ag	τ(Sb(, ~2,	-202	- , - ,

÷

- .t

.

гидрокислом

, ng 1.697;). 1.595; ng-np = 0.102. $Np \parallel 010$, $Ng \parallel 100$, cNm = 30° nm 1.629; (рис. 31 б). $2V_{\text{выч}} = 60^{\circ}20'$. : Np -, Ng -. Nm -SO₂. 1,). (H₂S H,S, 1 S). (27.58; S 19.56; (Mac. %): H₂O⁻ 9.46; H₂O⁺ 31.20; 12.20 (); 100 (**(S)**). **(S**, 6.11) тиосульфатную (S_{T} 6.20), **(S**_π 7.25;). : $Ca_{100} (S_{263}S^{\circ}_{222})_{4.85}$ $Ca_{1.00}(S_{2.25}O_{3.00}) Ca_{6.00}(OH)_{12.20} \cdot 0.14H_2O.$ $P2_{1}/C;$ $a_o 8.45(1), b_o 17.47(1), c_o 8.24(1)$; $\beta = 119.5^\circ, V = 1053.44 A^3, Z = 1$ -86 -5. . 42). Ca(OH), (« H,O »), « **»** {010}. {010}, {010} {010}, (Ng Nm), 120°. ~ **»** (

Ι	<i>d</i> , Å	hkl	Ι	d, Å	hkl
10	8.76	020	4	1.873	280
2	4.52	130	4	1.798	420
10	4.39	040	2	1.709	382
2	3.75	122	2	1.680	302
3	3.01	142	3	1.646	322
6	2.91	060	2	1.601	1.10.2
5	2.81	240	3	1.470	1.10.2
5	2.62	122	3	1.452	0.12.0
4	2.38	162	2	1.371	2.11.1
2	2.34	323	3	1.237	
5	2.28	260	2	1.161	
2	2.17	080	3	1.127	
7	1.996	162	2	1.086	
4	1.930	182			
	•	-57.3	, FeK _a .		
(Ge.		1	(0107-48).

,

_

_

,

_

_

,

«

,

),

(

;

,

),

ольдгамит. ольдгамита

».

,

•

XVII.2.	- CuFeS ₂ ·1.6Mg(OH) ₂ , гекс (Valleriite)					
	1941 . ,	-				
-	 ,	(1942) ,				
(1948).		- - ,				
· · · · · · · ·	 (1947),					
	0.02 , - (, 1949). 0.01-0.08	-				
1972).	· · · · · · · · · · · · · · · · · · ·	, , - , 0.0				
	-	10 %				
	,	, -				
	(., 1973).					

XVII.3. –FeS·Mg(OH)₂, . . (Tochilinite)

,

.

(

дунитов и -... (1978) , , ,

серпентинизированных

,

α-ли-

5.37-

α-лизардита, по *Ng)* -

α-лизардита.

0.01-0.05 .

5.40 . (мас. %): Fe 39.71; S 22.80; MgO 20.14; FeO 1.07; NiO 0.08; CoO 0.03; H₂O (., 1990).

,

, Джетыгаринском -- .

,

,

•

,

α-лизардитом,

Джетыгаринского -

XVII.4. $-V_{1,x}$ S·n(Mg,Al)(OH)₂, resc. (Yushkinite)

	. 33.		-
	-		
	-	•	
	,		-
,	,		-
,		,	-
			•
			-
			-

2-8

(0.5) 5-12 (. 33).

»).

P3mI, $a_o 3.21(1)$; $c_o 11.3(1)$ A, Z = 1, (0001). $c_o 11.3(1)$ (« »), $a_o 3.21(1)$ $c_o 11.3(1)$ (« -

(d, A; I): 11.40(3); 5.68(10); 2.76(6); 1.596(4); 1.575(6); 1.386(3) (-50 , Fe-).

> (1), 2-6 / 22.94 / 3, - 3.00 / 3.

400-600 °C (7 %

15-20 %),	
: 440 ° C -	, 475 °
	(, -
, 2006).	

(мас. %)

43

	V	Mg	1	Fe	S			
1	32.48	10.17	5.66	-	32.93	19.89	1.26	102.48
2	29.07	8.99	5.07	0.14	34.20	17.66	1.11	96.24
3	29.42	8.65	5.04	0.13	32.83	16.99	1.07	94.13

MS-46 Cameca,

V, Al, Mg, CuFeS₂;

: $1 - V_{0.62} S \cdot 0.612 (Mg_{0.67} Al_{0.33})_{1.00} (OH)_2;$

2 - $V_{0.53}$ S·0.520(Mg_{0.67}Al_{0.33}Fe_{0.01})_{1.00}(OH)₂;

3 - $V_{0.56}$ S·0.530(Mg_{0.65}Al_{0.34}Fe_{0.01})_{1.00}(OH)₂

XVIII.		,	,	,
		()	,
XVTII.1.		- CaO·2F	e₂O₃, (Gr	andiferrite)
		()	
		Fe ₂ O ₃	«grandis» ((), - ., 1992).
				-
		,		-
• 2				-
, .				, -
,		,		-
5.		-		1-2 4-
~1 .			-	-
-	,	,	двуфазнос	- ТЪ –
	,	(0.01 [']) 70 %	

2-3 (),
(,)			
Fe ₂ O ₃		(),	-
~20%,	•		,	-
- 3.45; MgO 2.3 (JXA-5, (Ca,Mg,Mn)O·2(5; Fe ₂ O ₃ 84.3 : 0.28(Ca,N (Fe,Mn,Al) ₂ O	37; Al ₂ O ₃ ; Mg,Mn)C	(мас. %): 0.11; 0107-15)·0.56(Fe,Mr	11.72; 102.00) 1,A1) ₂ O ₃ ,
$CaO·2Fe_2O_3$.				-
-				?
, (d, A; /; <i>hkl</i>): 5.23(1)(0 2.68(3)(1.0.10); 2.60(10 : a 6.0: c 31	06); 4.93(1.5)())(116); 2.55(5	102); 3.12 .5)(202); 2	2(2)(108); 2.99 2.15(2)(208);	9(4)(110); -
$. u_0 0.0, v_0 0.0$		(, 1988).	
,		(CaO·3Fe ₂ O ₃ .	
$Fe_{2}O_{3} 88.22; Al_{2}O_{3} 0.41$ FeO 0.3; 99.16 9 $Fe_{2}O_{3} 89.52$	l; SiO ₂ 0.53; % (10.48 ма Са (5.41; CaO ac. %). aO·Fe ₂ O ₃ ((MgO 3.07; M ·3Fe ₂ O ₃ (25.99 , 1988).	мас. %): InO 1.22; - Э мас. %)
, ()(., 199	92).	

(1916-1991), рентгеноструктурной (.). 1991 . . . 47. ., 1991). ((). « », . 35). (решли (~ »). 2 .36) (Рис. 35. ~ **»** , 2 -), 3 -.1-;5 наит; 4 -

. 36. () (δ -e). $a\{100\}, b\{010\}, \mu\{210\}, e\{101\}.$

кими

,	[001].			
(Макагоновым		ZRG-3)	-
		(.	.36 -)	-

0	5
4	-

 $(Fe^{3+},Fe^{2+})_2(Fe^{3+},Ti)O_5$.

,

: : = 0.981:0.374; =4.32 / ³.

JXA-733 Geol (. . .). (7- , мас. %): $\dot{\text{TiO}}_2$ 47.92; Fe_2O_3 44.91; Al_2O_3 5.68; MgO 0.31; MnO 0.12; 97.44; $Fe_2O_3^*$ 29.94 FeO* 13.47 мас. % Fe^{2+} и Fe³⁺ в , , Fe^{2+} -аналогом -

Fe²⁺.

 $\begin{array}{c} 42 & , & (d, \ ; \\ /; \ hkl): \ 8.15(14)(010); \ 3.83(20)(\overline{1}21); \ 3.48(19)(\overline{2}12); \ 3.18(40)(012); \\ 2.993(70)(120); \ 2.859(37)(3\overline{1}1); \ 2.721(80)(030); \ 2.587(100)(2\overline{1}3); \\ 2.526(90)(2\overline{1}1); \ 2.473(40)(2\overline{2}2); \ 2.132(55)(3\overline{4}3); \ 1.714(20)(3\overline{6}0); \\ 1.626(52)(2\overline{6}_{-0}); \ 1.616(33)(\overline{4}34); \ 1.517(70)(\overline{1}43); \ 1.506(50)(\overline{7}41); \\ 1.483(38)(136) & (-2.0, \ CuK_{\alpha},). \\ & : a_{\sigma} \ 10.58(3); \ b_{\sigma} \ 10.90(3); \ c_{\sigma} \ 9.10(4) \quad ; \ = \ 107.08^{\circ}; \\ \beta = 95.02^{\circ}; \ = \ 124.45^{\circ}; \ V = 783.22 \ A^{3}; \ Z = 2; \ \rho_{\text{выч}} = 4.094 \ / \ ^{3}. \end{array}$

Малаховит -	(1000 2000 °)	,	5000 TT	тополоби	0.000
	(),	,	-
., 1990).		(, 1700,	-
,		(1088.	_

5.5,

(мас. %):

 $\begin{aligned} & \operatorname{Fe_2O_3}35.01; \operatorname{Al_2O_3}20.17; \operatorname{SiO_2}17.75; \operatorname{CaO} 14.20; \operatorname{MgO} 12.34; \operatorname{TiO_2}0.78; \\ & 0.41; & 100.66 \ (& &). \\ & : \operatorname{Ca_{2.00}}(\operatorname{Fe^{3+}_{3.26}Mg_{2.52}}\operatorname{Ca_{0.09}}\operatorname{Ti_{0.08}}Mn_{0.05})_{6.00}(\operatorname{Al_{3.26}}\operatorname{Si_{2.44}}\operatorname{Fe^{3+}_{0.35}})_{6.05}\operatorname{O_{20.07}} \\ & - \operatorname{Ca_2}(\operatorname{Fe^{3+}},\operatorname{Mg})_6(\operatorname{Al,Si})_6\operatorname{O_{20}} \\ & & 52 \ (d, \quad ; /; \ hkl): \ 8.06(24)(0\overline{1}0); \ 3.137(32)(3\overline{2}1); \ 2.940(65)(2\overline{3}1); \end{aligned}$

(2)

(

)

(., 1994).

XVIII.5. - $Ca_{12}Al_{14}O_{33}$, . . (Mayenite)

., 1993).

. « »,

майенитом , - , ; - , - , Слой-, . -, - ,

0.1-0.2

(mac. %): 46.33; MgO 1.57; MnO 0.05; Al₂O₃ 42.15; Fe₂O₃ 6.25; SiO₂ 1.73; H₂O⁺ 1.80; 99.83 (. . .).

0.60 %	(1.80 мас. %).	-
		$(Ca,Mg)_{12}(Al,Fe,Si)_{14}O_{33}$.	
		2.94 mat. 70 1 (-

ляренок).

		Fe				-
		: 1.660			, 1.671	. –
-	1.696		-	•		,

 $(d, ; I; hkl): 4.91(69)(211); 3.003(43)(400); 2.690(100)(420); 2.454(47)(422); 2.196(30X521); 1.669(26)(640); 1.610(33)(642) (-2.0; CuK_{\alpha},).$

13.9 мас. %).

XVIII.6. _ $Ca_{13}Al_{14}(SiO_4)_{05}O_{32}Cl_2$, куб. с. (Chlormayenite) Силикохлормайенит — $Ca_{13}Al_{14}(SiO_4)_4O_{24}Cl_4$, . . (Silicochlormayenite)

(

4 мас. %

., 1995 б). 10-12 мас. % 1, , (211): 12 . a_o хлормайенитами и (211) « ». () , 1991). (1000 ° (() , (« »). . 38). (,

новато-оранжевой

. 44.

-			
	(3)	(4)	(5)
SiO ₂	1.7-4	5-18	18-21
Al ₂ O ₃	34-42	25-29	16-22
CaO	43-46	33-38	38-40
Fe ₂ O ₃	6.2-6.4	4.3	1.4-8.2
MgO	1.6	0.7	1. 9-3.5
SO ₃	-	7.9	0.7-1.7
Cl	4.6-4.7	5.3-8.8	8.6-12.2
H_2O^-	-	1.6	1.1

Ti, **Mn**, P -

 $(Al_2O_3 + Fe_2O_3) = 7.$ хлоргибшита $: (Al_2O_3 + Fe_2O_3) = 1.$ $(Ca_{12\ 78}Mg_{0\ 60})_{13\ 38}(Al_{12\ 80})_{13\ 38}$ $\begin{array}{l} {\rm Fe}^{3+}_{1.20} \big)_{14.00} \ ({\rm SiO}_4)_{0.45} \ {\rm O}_{31.68} {\rm Cl}_{2.06} ({\rm OH})_{1.54}, \\ {\rm Ca}_{13} {\rm Al}_{14} ({\rm SiO}_4)_{0.5} {\rm O}_{32} {\rm Cl}_2. \end{array}$) $Ca_{13}Al_{14}(SiO_4)_4O_{24}Cl_4$, $11CaO\cdot7Al_2O_3\cdot4SiO_2\cdot2CaCl_2$ Takхлоргибшита (Ca_{3.04}Mg₀₃₁)_{3.35} (Al_{1.54}Fe³⁺_{0.46})_{2.00} (SiO₄)_{1.40}O_{2.45}Cl_{1.46}(OH)_{0.74} (831 442 ¹); 938 см⁻¹ (). « игумновит -» ., 1992). (

лять

(горельник),

10%.

 $(CaO \cdot Fe_2O_3).$

«

»

a_o (12.20)

 Al, Mn, Ti
 Mg, ...,

 Fe³⁺-аналогом
 «

 »
 (Si<1)</td>
 - Fe³⁺-аналоге «
 »

•

XVIII.8. - $Ca_4Fe_2O_6Cl_2$, . . (Torbakovaite)

,

,

,

; ng 2.03; np 2.01; $ng - np \approx 0.02$. Ng - , Np - , ;

дифрактограмма

 $(d, ; I; hkl): 6.75(100)(002); 2.547(54)(204); 2.274(34)(303); 2.225(26)(205); 2.120(30)(215); 1.949(69)(206); 1.518(31)(317) (-2.0; СиК_α). Порошкограмма индицирована : <math>a_o$ 7.83; c_o 13.45 ; V = 765.58 ³; Z = 4; $p_{\text{выч}}$ = 3.56 / ³.

(

XVIII.9.

- $Ca_{4}Al_{6}O_{12}SO_{4}$, . . (Kruzhevite)

)

			1992 .
	47	(., 1994).
*	»		
,			
	. «	*	
			,
,			

0.01

кружевита (3-
, мас. %): 36.94; Fe₂O₃ 6.61; Al₂O₃ 41.38; SO₃ 13.11; SiO₂
1.07; F 0.24; Cl 0.02; 99.37 (JXA-5, . .).
: Ca_{4 00}(Al_{5 14}Fe³⁺
$$_{0 52}$$
Si_{0 11}Ca_{0 17})_{5 94}
·S_{1.04}O_{16.00}, - Ca₄(Al,Fe³⁺,Si)₆O₁₂·SO₄, -
Ca₄(Al,Fe³⁺,Si)₆O₁₂·SO₄, -

Ca₄Al₆O₁₂·SO₄ (Halstead, Moore, 1962; JCPDS). (d, A; I; hkl): 3.76(100)(422); 2.66(32)(444); 2.46(6)(642); 2.169(27)(822); 1.626(11)(880); 1.492(5)(10.6.4) (-2.0; CuK_a,). **a** 18.405 (18.39). , $14_{1}32; Z = 16, V = 6234.58^{-3}, \rho_{BMY} = 2.673^{-3}.$ a_{o} a Fe³⁺ 3a Al³⁺. (Halstead, Moore, 1962). 1350 ° Al,O,, CaCO₃ (Halstead, Moore, 1962). , ., 1981). 1350° (« ». , 1300°.

XVHI.10. $- Ca_2Al(OH)_7 \cdot 3H_2O,$ (Hydrocalumite)

эттрингита.

0.1-0.2

,

2.5.	{	{001}- {001}	,	· -
•	(Fe).	, ,	

.

.

,

. « »

1-2

226

-

.

,

. .

, (H₂O, SO₃, CO₂) (мас. %): (...%) -(41.8) - кальдекагидрит (53.3) - эттрингит (65.1).

,

XVIII.12. Белошарит – Mg₄(OH)₆(SO₄)•7H₂O, (Belosharite)

		1987	· ·			1992 .	45	, _
(., 1993	3).				«	»,	-
90–95 %))		(«	» (
).		0.2-0.3	,		0.5	•	_
			• ?					-
							;	-

(. 41). {001}

), , , , -« »(, , 1991). 1995 ., 1996 .

кристаллам.

). (_______). (________). (d, A; /; *hkl*): 7.76(100) (003); 3.87(36) (006); 2.68(13) (012); 2.32(20)

(015); 1.998(6) (018); 1.558(5) (110) (-2.0; CuK_{α} , -).

 $: a_o 3 \quad 3 \quad , c_o 23.45 \text{ A}, \mathbb{Z} = 1.$

акаганеитаβ-FeO(OH,Cl), окис-, (Fe,Mg)(OH)₂. , , (мас. %): Fe₂O₃ 73.76 (); FeO 29.8; C17.92 (). (, ,). () ,

ХІХ. ОКСИДЫ КРЕМНИЯ

)

,

(

,

•

,

,

,

., 1969). -

,

•

	(., 1969;	,	, 1970; -
••	1970;	., 1988),	(, 1948;
1973;	, 1974;	, 1984;	., 1988;	Кайнов, 1998;
.)				

(

	,	,	,		• -
	C	-	-		-
	0	· ; Unovour Vnour	D0	(1067)
		, премель, урены	a,	(, 1902).
		Meracomai	ппах		-
		•		,	,
		, , ,			_
	,		,		ли-
,	,				-
				**	
	».	выветривании			-
	*	* »		•	
					-
		диапозоне	-		
			*	» ().
					. ,
		на.		1.5	-
	,			15 .	
		1.4	-		-
		1).		-
	()		(-
).	(),	().	-
/ / /				,-	-
	,	, разлистования (. 43),		(.
44),		•			-
					-
	,				-
					: -
					-
		-			•
		,		`	-
		(),	

,

235

-

1959 . , XVIII .,

кий, Айдырлинский.

(, 2004).

(n·10⁻⁴%): 1 20; Ti 3.2; Mg 8.6; Fe 14.6; Mn 0.04; Ca 14.0 (., 1988).

10 . 30- XX .

, Хрустальки,

(

).

. Эшкина, парагенезисы, , , у-облучении 0.01-0.02% , 1974; ., 1988; (.). 1 (50--80%), () 1.5-2 1. Li 4-6 (**0.019 мас.** %). N₂, , CH₄, CO₂, H₂O, H₂.). ($m\{10\overline{1}0\},\$ $r\{10\overline{1}1\}, z\{01\overline{1}1\},$ $s\{11\overline{2}1\}$ $\{32\overline{5}1\}, \{70\overline{7}4\}, \{20\overline{2}1\}, \{40\overline{4}1\},$ $x\{51\overline{6}1\}.$ {7072}, {5051}, {7071}, {**11.0.1**1.1}. $\{11.0.\overline{1}1.1\},\$ положительным {11.0. .2}, {13.0.13.2}, {8081}, {7071}, {5051}, под $- \{0.20.\overline{2}0.1\}, \{0.16.\overline{16}.6\}, \{0.10.\overline{10}.1\}, \{09\overline{9}1\}, \{04\overline{4}3\},$ $\{03\overline{3}1\}, \{08\overline{8}5\}, \{07\overline{7}5\}, \{51\overline{6}1\}, \{31\overline{4}1\}, \{41\overline{5}1\}, \{71\overline{8}1\}, \{12.1.\overline{1}3.1\}$, 1937; 1944; .). (приполярноуральским, {3031}, {4041}, {5051}, **{7071}**, {9091} {1011}, {0111} (Кайнов, 1998). {1010}и

1 6 Зак. 3394

(

10).

E.

242

. 47.

. (190	01).		-
			-
	(., 1991).
XIX.3.	- SiO ₂ ,	(Cristobal	ite)
			(1976)
			-
XIX.4.	- SiO ₂ , мон.	. (Coesite)	
	(•	, 1965),
(1971)			
. (., 1977).		
XIX.5.	- SiO ₂ ·nH ₂ O,	. (Opal)	
			1809 .
•		(1950).	

,

,

.

,

_

,

,

,

•

· ·, . . // Минерал. . Львов. - . 1962. . 16. . **416–418**. . ., Вертушков . // . Свердловск. горн. 1956. Вып. 26. . 93-94. . ., 11 . Минерал. . 8. , 1968. . **116–118**. : . Маггемит . . . 1965. // . _ . 70. . 283-289. ., Кайнов . . // . Свердловск. горн. - 1975. . 106. . 152-155. . ., // - . 1841. . 4. . 3. . 76. . минерагения , , 1990.227 . : . Альбов // , 1954. 2. . 148-150. . . // . ВИМС. . 121. ., 1937. . 131. // . . 1950. . . 2. . 139-145. . . // - 150. 16. 98 . . 1954. // . 14. .: . , 1974. . 146-157. 244

Гороблагодатских журн. 1833. . 3. . 295-329. 1830 .//, (). : ,2005. 199 . // , 1949 . . . 624-627. .: // , 1949 . . . 628-630. . -.: // , 1949 . . 534-538. Бекмухаметов . . « » . 1962. // Вестн. 9. . 75-79. . . « **»** . ., - // , , 1978. . 68-69. : •• . . // XI . , 1989. . 84. : . ., . .,)// . 2006. 5. . 35-43. (. // . - (). ., 1951. . 33. . 3-8. . алюминиево-магниевого . .: , 1963. 170 . . .- .: , 1935. 148 . . . // . . 1937. 4. . 708-712. . .

// . -. 1940. . . 30. 4.64 . Нижне-Тагильского // 70-. .: , 1946. . 68-73. , 1950. 956 . .: *T. H.* . ., // . на . 1940. 1. . 100-103. // Ежегодник-1988 -, 1989. . 32-35. . // . -. , 1960. . 35. . 313-315. .: , 1928. . 2. 326 . .: , . 3. 187 . 1935. Fe // . 1929. 2. . 239-247. . Бонштедт-Куплетская . -. 1943. . 40. 9. . 412–415. // . . .: , 1966. 224 . . . // . . 3. , 1970. . 54-67. . ., Бородаевская . . , 1947. 264 . .: . // журн. 1846. Ч. 1. . 1. . 101-103.

. .: -, 1974.212 . . **A**. // . -. ., . , 1967. . 7. . 62-66. . ., Юшкин . . // Минерал. . Львов. - . 1969. 23. . 2. . 138-145., // . Ленинград. - , 1971. . 181-. 190. . . . дисс... . геол.-минерал. / / 1989.20 . . ., Пальгуева . . . *H*., . .. // Ежегодник-1976 , 1977. . **60–62**. . . ., Кайнов . . гора // , 1978. . **63–71**. . . 1[.]. // . . 1941. . 32. 4. . 266-267. . . хромшпинелидов // Свердловск. горн. - . 1969. . 59. . 112-115. , // .: , 1978.239 . : Свердлгео, 1935. 62 . // . . 1942. **3-4**. . 132-145.

// . ., 1911. . 345–351. Вертушков . . « » // . Свердловск. горн. - . 1937. . 3. . 13-21. // . . 1938. 3. . 488. // . . *H*. . 1940. 8. . 48-56. . . // . Горно-геол. -. 1948. . 14. . 44-68. - // . . 1. .: , 1954. . 116–135. // . Свердловск. горн. - . 1960. . 37. . 172-183. .1/ · ·, · ., · . . « » // . . . 1957. 1. . 65-71., // . . Свердловск. горн. - . 1975. . 106. . 133-134. Вильямсон . ., . ., . . . () // Урал. минералог. , 13. : ИМин . 2005. . 309-335. · ., · . ., · . . // . . .1977. .232. • •, Коэсит 2. . 446-448. . .: • • • •, 1960.250 .

. . Габбро-. ., . Габбр / . ИГЕМ. 1962. . 65. 318 . . ., лунитовый . 1900. . 13. 3. 211 . // . . . 62. 694 . , 1925. . 4. . 533. Гаврилов А. . Эксгаляционно-осадочные . .: , 1972. 216 . . . // Научн. Киев. - . 1957. . 16. . 14. . 189-191. . .,, // Ежегодник-1987 -, 1988. . 93-95. , 1735 . .: 1937.609 . . Х., Онищенко . ., . .,)// . 1999. (. . , . 41. 1. . **84–96.** теринбург. горн. , 1808. 376 . . . 3. .: , 1960. // . 33-38. /, 1970. 19 . .-» // : ~ . : , 2004. . 102-104.

. // журн. 1888.

. 1. . 96-123. маггемит • •, // ., 1955. . 2. . 239-244. . . 1985. 1. . 80-86. // Глушкова Г. ., Кейльман Г.А. // . 1979. . 142. . 21-31. . : • , 1965.220 . . C., . Г. . ., , 1981. .: . 334 . . ., // . Саратов. - . 1964. . 2. . 2. . 2-23. . // .1887. . 2. . 1-86. гидротермально-пневматолито-// . 1965. • • . 70. . 197-204. . Зигазино-Комаровское . / , . . : •• , 1940. . 115-356. // , 1954. . 3-128. . .: -,

.

1962.238 .

Емлин . ., . ., . . // -, 1970. . . 3. . 11-28. . ., Вахрушева . ., Кайнов . . , 2002. - : . : . 156 . . . // . . . минерал. - . 1869. 4. . 201-207. . . • // журн. 1887. . 3. . 263-309. § 32 // . . . минерал. - . 1893. 1. . 19-21. . . // . . . минерал. о-ва. 1894. . 31. . 398-400. . . минерал. - . §77// . . . 1895. . 33. . 65-67. /, . . // . Свердловск. горн. - . 1972. . 86. . 62-66. Еськова . ., . ., . .: , 1964. **319** . Заварицкий . . A. H. O 0 Магнитной // . вестн. 1929. . 7. 1. . 24-34.
. Комарово-Зигазинские // Вестн. . .- . . 1930. 718. . 20-26. Николае-Павдин-. . // . . . 1892. . 13. 1.97 . . . _ // Минер. . 1929. 5/6. 551 . Земятченский . . // . . . минерал. - . 1900. 2. . 447-484. // . , ., минерал. . : • , 1938. . 2. . 163-183. . , // журн. 1838. . IV. . XI. . . , . 1867. . . // -: . , 1976. . 66-70. // . . , 1980. . 97-: . 143. -. . : . , 1986. 57 . хромитоносные . .: , 1990. 254 . : (). , : - Урал. - . 1997. 488 .

	M	[окрушит -		-
		// y]	рал. геолог. журн., 1	1999. 3.
. 55-	70.	-		
	. K .,	. <i>A</i> .K		Мокру-
,	//			-
		. :	, 1986	94-96.
	. K., I	Кайнов		
			хромшпинелидов	// -
Ι	арагенезисы			: -
, 1	975 32-36.			
	,			-
			//	
			:	, 1987.
. 16-	-35.			
	•			-
, 1	866/1867 //	. 1868	3 III 49.	
	(Физико-химиче	еские	-
()//	. II .	. минерал	
•	, 1937.	. 65-73.		
		Халькотрихит	T	итано-маг-
		// . 10	рно-геол	
	14. Минерал.	. 1.	:	, 1948.
. 56-	-57.			
	1000 40			poc-
	. , 1829.42	•		
	•	•	VIV	, -
//			. ΑΙΑ	
11	-	1062	12 12	-
	 หัวมันเวล	, 1902 2	23-42.	
	лаинов			- 2
	1070	92 - 94		
	, 1970	<i>74</i> - 74.		

Кайнов . . : . , 1998. 106 . Кайнов . . () // Урал. геолог. журн. 2005. 5 (47). . 3-194., Бушмакин . ., // . : . . 1990. . 109-110. Кайнов . И., // ла-1997. . . Сапальское () // . .: , 1978, . 91-112. // . . . 1951. 1. . . 55-58. . .,, // . . 19. .: . . 1986. . . 66–77. . ., . . // . . . 1987. 5. . 127-132. . . // , 1978. . 74-78. // . никельсодержащих . .- .: , 1937. . 151-159. , , . .**:** , 1974. 152 . . . маггемите . ., // . .: , 1969. . 170-173.

. 1938. 7. . 17-18. // . C., . ., · ·, , 1956. 113 . .: . . // . Свердловск. горн. - . 1973. . 95. . 125-127. Киселев . . // . . 1967. 3. C. 326–329. . ., . ., Берёзовского // -2003. . 2. : , 2003. . 171-177. никель-кобальт-. . •, // , 1947. . 1. . 46-98. . Кожина . К. // -// журн. . . 1853. . 1. . 1. -. 1858 . . 8. // // . 1858 . Кн. 7. С. 50-53. лаксманиту // . . . минерал. о-ва. 1882. . 17. . 287-305. • • . Челябинск: « », 2004. 296 . . 1836. . 1. . 2. . 209-222. //

255

. .

// журн. 1877. . 4. . 11. . 202-226. . -: , 1919. 74. 1. 1-81. Алапаевском · · . .: , **1936***a*. . 1. . 9-14. . . // . . . СОПС. . . 1936 . . 4. . 72-97. . . , // . 1940. **T. 26.** 8. . 808-810. . . // . . 2. .: , 1955. . 234-238. . ., _ . . // . .- .: • 1936. . 1. . 15-118. . C.,, мегантиклинория // _, 1990. . 37-38. . A. // . Минерал. . 1959. . 9.

•

. 59-73.

Крыжановский . .
 1911
 //
 .
 .
 .
 1912.
 .
 1.
 .
 1-41.
 • XIX . M.: , 1961.360 . . К., . ., Юхтанов . . -. .: , 1988. 143 . Большеземель-1910 .// . . 1923. 1. . 1-56. . . // . - . . 1947. . 83. 105 . . . II. **, 1911**.575 . Кутюхин . . // . . 1. .: , 1954. . 303-329. . ., . ., . . . -, . .: , 1965. 772 Львов. - , 1947. 208 . // журн. 1869. . 3. . 7. . 148-149. 3. ., . ., . ., . . // , 1987. . : . 117-123. . .- .: , 1948.40: , 1973.327 . // 1940. . . ., . . , //

. 1978. . **119–136**. . // . . . 1959. 1. . . 21–38. . . 1768–1769 . 1795.537 . . ной . .: , 1988. 212 . // . **УОЛЕ**. 1898. XX. 1-262. . . // , 1972. . 86. . 101-105. . C. 132–134. // . Лотова . . // . Свердловск: , 1986. . 105-107: · ·, •, • •, . . // , 1988. . **50–53**. : . ., Зильберман . . ٠, // . . . 1978. 5. . 580-585. . .: . , 1965. 164 . // журн. 1828. . . 125-127.

:

.

.: , 1967. . 120-183. . .: , 1968. 276 . // парагенезисы , 1983. . 3-10. : . ., Вяльсов . . ., V_{1-x} S·n[(Mg, Al)(OH)₂] -. И., *H*. . -// Минерал. журн. : « ». 1984. . 6. 5. . 91-98. . ., . ., // кохромит минерал. . 28. . -, 1999. . 101. . 165-171. . ., Ковальчук Н. . Юшкинит V_{1-x} S·n[(Mg, Al)(OH)₂]. , 2006. 70 . : . ., // . .XI . . . 1983. . . 234–235. . минерал. . 1979. . 151. . 82-85. // . -. ., Зильберман . ., . . , // .: ЦНИГРИ, 1980. . 96-108. Ухта-Печоро-Каменной . . , 1911. 137 . . .: , 1978. 244 . . . минерал. - . 1907. . 45. . 301-317. // . . •, (_

) // Урал. минерал. , 2. : , 1993. . 101-108. // . . // 1929. . 1. . 57-66. // . . журн. 1882. 1. 70-151. // . , 1986. . 169-170. : . . III. . 2. .: , 1981. 614 . Молошаг . ., . ., . . . // . ., . . « **»** // . . 1986. . 115. 4. . 446-449. . . . 1877. . 3. . **230–282.** . 4. . 51-103. // . ., . . // -96. , 1996. . 186. : . . B.

. , 1871.588 .

. .

// • . 3. .: , 1960. . 39-55. // . . 1912. . 6. . 7. . 171-231. , 1983. 286 . . .: • •, 1984. // . 2. . . 86-100. журн. 1980. // . IV. . 139-146. , 1948. **118** . . маггемите // . - . -. Минерал. 2. . 20. 1953. . 3-12. . . Контактово-метасоматические . , 1960. : . 495 . // . .- . объед. 1933. . 246. . 75 . // , 1958. . .**:** · C. 100–200. Сапальского // Минерал. . 1927. 3. . 163-176., . .: , 1968. 177 . . ., Григорьева-Чупрынина . . , 1973. . .: 199 .

. .

3. .) // (. , 1973. . 73-78. . .: 3. . // , 1974. .: . 54-61. . , 1786. . 2. . 1. 476 . . .: , 1984. 200 . 1832// журн. 1840. . IV. . 7. ванадо-кислой // . 1847. . III. . 7. . 122–127. // . 1839. . 2. . 5. . 178-197. // . .- .: 1936 . . 53-79. • • // .- .: , 1936 . . II. . 81-122. // . . 1961. . **56.** . 53-60. // . .: - , 1967. . 105-111. // • , 1984. . 19–23.

хромшпинелидов . . // . II ». .1. **ОН.** . « : **1990.** . 64. . H., Л. . . ., // . . 1. , 1990. . 135. . A. бадде-. ., ••) // (-97. : . , 1997. . 218. , 1984. 190 . : // Урал. гармотома родингитов минерал. , 5. , 1995. . 139-144. : Bcepocc. // : . . 2002. . 119–121.) // Урал. геолог. журн., (1 (37). , 2004. . 167-170. . . Горно-Анатольского // -2002. : 2003 . . 103-106. · ·, , ,) // (-2002. , 2003 . . 101-103. : . ., // Урал. минералог. 5. , . 1995. . 190-196. :

. C.,, // Урал. минералог. , 1995. . 124-126. 4. : . . / . .: Acc. « », 2006. . 9. 152 .) // -2000. (, 2000. . 186-188. // Урал. минералог. , 3. : . ., , 1994. . 124-130. ., CaTi,O4(OH), . . 2. : // 1998. . 75-77. . И.,, .: Acc. « », 2002. . 5. 128 . . . // мало-. : . , 1986. . 69-71. . . Двупироксеновые . ., 2. . 205-207. // . 1975. . 17. 6. . . 104-107. . . // . . Минерал. . 4, 1960. . 35. . 209-263. . 1941. . 56. // . - .

. .: , 1975. 187 . Разенкова . ., . C., . . , , // . . 1980. . 253. 3. . **720–722**. . .. Хоменко . . , // , 1969. 6. . 659-672. . . // . . .- . управл. 1931. . 54. 43 . магнетиты. -// Вестн. . - . 1960. 4. . 64-68. . .: , 1962. 1132 . Рассказова . ., . Магнетитовые меногорско-Вишневогорского ()// . , 1989. . 87-94. : // . .- .: , 1936. . 173-221. // • журн. 1834. . 2. . 6. . 501. // . 1938. 1. . 147-151. . . . // . . . 1940. . . 10. . . 29-47. -. . -. // . . . I960. 2. . 44-52. .Н., .. // . Свердловск. горн. - . . . 124. 1976. . . 58-60.

Самойлов . , // . . 1. 1899 . . **109–118**. его . . // Bull. Soc. Nat. Moscov. 1899 . . 13. . 142-156. 9. . Кыштыма • •, . . . 1965. . 70. . 91-94. // . Горно-геол. . Первые . , 1798. 275 . . , 1809. . 1. 262 . . 2. // : , 1987. . 2. 159 . . -. .: , 1991.312 . , 1998. 168 . .: : // , 1949. . 526-533; 559-560. .- .: . // . -// , 1973. . 97. . 36-44. . . // . . 2. , 1970. . **44–66**. свинцово-цинковый .1926. .45. 8. .923-944. // // . . VII . молод. . . ., 1968. . 2. // .

. ., 1832.

Ч. 2. 587-1109.

1970. 28 . . ., . ., . ., . ., . ., . . хромшпинелиды // . . 2. : , 1998. . 127-129.

 17
 1839
 меди//
 журн.

 1839.
 .
 .
 .
 5.
 .
 315-317.

. .

)// . 2006. 3. . 166-170.

//

. .

· ·,

:

, 1986. . **187–189**.

// . . **1933.** 1. . 5-11. зита // . 1847. . 12. . 305-330. . 1949. . 1. . 93-105. // . Минерал. _ -/ . дис.- . / .: , 1970. 27 . . .: , 1988. . . 144 . . C., . . _ // : • , 1990. . 28-35. . C., вульфенит-чиллагит-штольцит) // со-гранитного (, 1989. . 24–27. : Типоморфизм . .: , 1989. 560 . : . ., Сергеев . ., . ., Гайского , 1992. 62 . : // . . , **1824**. . 217-348. . 3. . . ., _ . ., // , 1986. : . . 186-187. // -. . . 1899. . . . 7.

, 1920. 420 . . . VII. .: ,1962.592 . · ·,) (// . . 1988. 12. . 27-37. • . ., дp. •• // Ежегодник-1977 _ , 1978. . **80–86**. • . . ., . ., , . .: , 1968. 250 . . . // : . , 1968. . 3-5. « **»** . . // . -. . 1978. . 136. . **107–113.** . . . // , 1970. . 89-92. // ., . . _ , 1977. 9. . 1360-1367. . ., Юников . ., . . . маггемите . . 1963. 11. . 69-72. // . . рудогене-. . . ., . ., руд , 1987. 179 . :

. 40. . 73-87. // . . . **1960**.

. .

Халезов . . , В . .: . . **МПР РФ**, 1999. 12 . 77. . (). : , 2003. 68 . . 77. || , 1977 . . 83-95. : • . 77. // , 1977 . . 17-32. : . 77., . . // . парагенезисах . 1979. 151. . 86-94. • • // журн. 1830. . II. . 6. . 282. . ., .77. // , 1990. . 1. . 40-41. : . C., . ., . ., // : , 1990. . 1. . 42-45. / . 1930. . 151.72 . CaFe₂O₅ -// . . 1985. . 114. . 2. . 195-198. CaS, CaS, O, 6Ca(OH), 20H, O -// . . . 1987. 6. . 737-743. · `, . . • •,) // (

. : , 1991. . 5-14. . ., . . ., Вилисов . ., угольного) // (: УрО , 1992. . 127-136. . ., • •, . . (// Урал. минералог. , 1. , 1993 . . 3-25. •••, •••, . . () // Урал. минералог. , 2. , 1993 . . 3-36., . .,) // Урал. минералог. , 3. : , 1994. . 3-34. . ., . ., . .) // Урал. минералог. , 4. : УрО , 1995 . . 3-28. · ·, . .) // ()// ,1995 . .3-28. Урал. минералог. сборник, 5. : . ., . ., () // Урал. минералог. , 6. : , 1996. . 3-25. • •, // . 909-910. . 77. • •, (). .: , 1991. 152 .

// . Минерал. . **1926**. . 1. . 43-67. || . . .: , 1935 . 35 . // . . Ленинград. . 1935 . - . .- .-. 1. . 19-35. || . , 1935 . . 4. 43 . .- .: Гайского // 2. . 207-211. . 1973. . // Географ. . . 92-126. . 1974. 12. . 5-24. // . . ., . // . .: , 1975. . 91-110. ., ., // . 1978. 12. . **86–95**. . ., . ., . . // . 1982. 8. . 87-100. // . . . 1987. . 16. . 2. . . 210–221. // . -. . . . 1948. . 96. 11. 101 . 1 . , 1937. . . 40. 25 // . . . 1942. 3-4. . 91–97.

// . . 1944. 1. . **29–35.** Шеманина || ., 1980. . 153. . 89-95. . . ., . ., () // Ежегодник-1981 _ , 1982. . 93-95. . • . *C.*, . . , 1977. **311 c.** .: журн. 1839. . Ш. . 7. . 123. //) // (-2000. : , 2000. . 169-171. -, 1841. 436 . Эдельштейн . . 11 . 1960. . 3. . 72-73. // . 1829. . 7. • // . . . 1962. 2. . 207–211. . . Опыт среднемасштабной (). .: , 1980. 376 . . ., • •, . . // . 1969. . 13. . 41-70. . K., ٠,: , 1986. 294 .

. 1938.)// . . -(() // . объел. . научн. , 1932. . 185. 67 . . разв. . Н.Гончаров Яковлев .*H*.. . .,)// . (_ . 97. . 3-16. . 1973. . . **B**. // XVII XVII XVII . .: . 1974. . 54-97. // . 1953. . 20. . 74-76. Н. А. К // . 26. . 56-67. 1955. // **1949.** № 1. . 59-60.

// . . 1980. 1. . 98-105.

Abich H. Cheniche Untersuchung des Spinells und der minerale von analoger Zusammensetzung // Ann. der Phisic und Chemie. 1831. Bd 99. S. 305-355.

Arzruni A. Einige Mineralien aus einer uralischen Chromitlagerstaten // Zr. Kristallogr. 1888. Bd VIII. S. 330-337.

[ASTM] Diffraction data cards and alphabetical and grouped numerical index of x-ray diffraction data. Philadelphia, 1946-1969.

Baerward C. Analyse und Brechungsexponten des Rothbleierzes von Berjosowsk // Zr. Kristallogr. Miner. 1882. Bd 7. S. 170–171.

Berry L. G. X-ray measurement on vauguelinit // Amer. Miner. 1949. Vol. 34. P. 275.

Berzelius J. J. Undersuking af ett hittilis obermarkt fossil som stundom fuljerden Siberiska kromsyrade blyoxiden // Ath. fys kemi miner. 1818. Vol. 6. P. 246-254.

Breithaupt A. Handbuch der Mineralogie. Drezden und Leipzig. 1841. Bd 2. S. 262-265.

Cesbron F, Giraud R.,Pillard E, Pouleen J. F. La cassedannăite nouveau chromo-vanadate de plomb de Beresovsk (Oural)// R. Acad. Sci. 1988. Ser. 2. Vol. 306. 2. P. 125-127.

Dana J. D. System of mineralogy. New York, 1951. 7 th edn. Vol.2. 651 p.

Fanfani L.,Zanazzi P. F. The crystal structure of vauguelinite and the relationships to fornacite // Zr. Kristallogr. Kristallgeom. 1968. Bd 126. S. **433–443**.

Fleischer M., Faust G. Studies on manganese oxide minerals. Lithiophorite // Schweiz. **Miner.** und Petrograph. Mitt, **1963**. Bd 43. **1**. S. 197-216.

Frenzel G. The manganese ore minerals. Budapest, 1980. 158 p.

Friedel . *C*.Sur une combinaison naturelle des oxides de fer et de cuibre et bur la reproduction // R. Acad. Sci., 1873. Vol. 77. 2. P. 211-214.

Gagarine G. Sur la Molibdite des monts d'Ilmen // . 6. 1907. 1.

Gierth E., Krause H. Baddeleyit von Tellkes // Norsk. geol. tidsskr. 1974. Vol. 54. 2. S. 193-197.

Glocker E.F. Grundriss der Mineralogie. Schrag. N**brnberg**, 1839. 612 s.

Guillemin C. Une nouvelle espese minerale: la vesignibite $Cu_3Ba(VO_4)_2(OH)_2$ // Comptes Rendus des Siancer de l'aead des Scences. 1955. Vol. 240. 24. P. 2331-2333.

Guillemin C. etProuvostJ. Estud de la serie: fornacite-vauguelinite // Bull. de la sociătă fransaise de mineralogie et de cristalligraphie. 1951. Vol. 74. P. 432–438.

Haidinger W. Handbuch **der bestimmenden** Mineralogie. **Braumller** und **Seidel**. Vienna. 1845. 504 s.

Halstead P. E., Moore A. E. The composition and crystallography of an **anhidrous** calcium **aluminosulphate** occuring in expanding cement // Journ. of **Appl. Chem.** 1962. Vol. 12. 9. P. 413-417.

Hausmann J. F. L. Handbuch der Mineralogie. Gottingen. 1813. Bd3.S. 1084-1088.

Hermann R. Bull. de la Soc. Imper. Des Natural. De Moscou. 1832. Vol. 5. P. 37.

Hermann R. Ueber Melanochroit, ein neueus Mineral // Ann. Phys. Chem. 1833. Bd 28. S. 163-164.

Hermann R. Untersuchungen russischen Mineralien: Über Turgit ein neues Mineral // Jb. **prakt.** Chem. 1844. Bd 33. S. 96-97.

Hermann R. Ueber die wahrscheinliche Identitgt von Laxmanit und Vauquelenit, sowie über Phosphorochromit, ein neues Mineral // Jb. prakt. Chem. 1870. Bd 60. S. 447–451.

Hess H Über den Volborthit, ein neues Vanadin haltiges Mineral / / Jb. prakt. Chem. 1838. Bd 14. S. 52-54.

Keil K., Fricer P. E. Baddeleyit (ZrO₂) in gabbroic rock from Axel Heiberg Island, Canadien Arctic Archipelag // Amer. Miner. 1974. Vol. 59. **3–4.** P. 249-253.

Knowing O., Sahama T. G., Siivola G. Natural bismuth vanadate from the Mutava pegmatite area, Mozambigue *#* Contrib. Miner. Petrol. 1973. Vol. 41. 4. P. 325-331.

Kobell F.Grundlage der Mineralogie. Nurnberg, 1838. S. 282-293. Lehmann J. G. Nachricht von einem neu entdeckten Bleyerz // Neues Hamburg. Mag. 1767. Bd. 7. S. 336-348.

Pfaff C.H. Analisen einiger Mineralien // Jb. Chem. u. Phys. 1816. Bd 18. S. 65-76.

Rose G. Reise nach dem Ural, dem Altai und dem Kaspischen Meere. Berlin, 1837. Bd 1. 1837. 205 s.

Rose G. Mineralogisch-geognostische Reise nach dem Ural, dem Altai und dem Kaspischen Meere von A. Humbolt, G. Ehrensberg und Guctaw Rose. Berlin, **1842**. Bd. 2. 606 s.

Self P., Buseck P.R. Structure model for kassite, $CaTi_2O_4(OH)_2 //$ Amer. Miner. 1991. Vol. 76. P. 283-287.

Struve H. Über die zusammensetzung des vanadinites, pyromorphits und mimetisits // Verhandlungen der Russisch–Kaiserlichen. Mineral. Gess. St.-Pb., 1858. S. 1-20.

Williams S. A. Embreyite, a new mineral from Berezov, Siberia // Miner. Mag. 1972. Vol. 38. 299. P. 790-793.

Williams S. A. The naturally occuring chromates of lead // **Bull**. of the British Museum (Natural History). Mineralogy. 1974. Vol. 2. 8. P. 337-419.

Williams S. A., McLean M. J., Anthoni J. W. A stady of phoenicochroitits structure and properties // Amer. Miner. 1970. Vol. 55. 5–6. P. 784-792.

24		85
193		175
115		218
96		212
5		67
196		117
228	Кальдекагидрит	226
105	_	54
93		14
193		185
194		233
99		72
180		61
189		184
199	Коэсит	243
56		75
63		88
57		100
93		242
48		40
72		222
117		168
97		162
119		111
180		133
177		152
153		30
225		22
11		135
192		213
182	Малаховит	209
102		107
205		183
	$\begin{array}{c} 24\\ 193\\ 115\\ 96\\ 5\\ 196\\ 228\\ 105\\ 93\\ 193\\ 193\\ 194\\ 99\\ 180\\ 189\\ 199\\ 56\\ 63\\ 57\\ 93\\ 48\\ 72\\ 117\\ 97\\ 119\\ 180\\ 177\\ 153\\ 225\\ 11\\ 192\\ 182\\ 102\\ 205\\ \end{array}$	24 193 115 96 5 196 228 Кальдекагидрит 105 93 193 194 99 180 189 199 Коэсит 56 63 57 93 48 72 117 97 119 180 177 153 225 11 192 182 Малаховит 102 205

Вюстит

(

Мелковит	69		220
	67		7
	83	Точилинит	200
	56		242
	66		75
	109		8
	243		109
	94		51
	111		86
	181		163
	70		31
	113		167
	58		28
	96		67
	102		56
Романешит	113		153
	90		178
PbO ₂	182		215
PdO	180		230
	189		21
	191	Цинкит	177
	215	·	39
	164		91
	194		76
	191	Штольцит	88
	184		46
	55		10
	172		207
Титаномагнетит	135	Юшкинит	202
	105		152

INDEX OF MINERALS

Achtenskite	96	Eskolaite	10
Alumochromite	24	Feitknechtite	109
Arsenolite	193	Ferberite	86
Asbolan	115	Feroxyhyte	163
Baddeleyite	5	Ferrialumochromite	31
Bazhenovite	196	Ferrichromite	28
Belosharite	228	Ferrihydrite	167
Bimessite	105	Ferromolybdite	67
Bismite	194	Franklinite	153
Bixbyite	93	Goethite	153
Braunite	99	Grandiferrite	205
Bunsenite	180	Gubnerite	85
Caldecahydrite	226	Hausmannite	97
Cassedanneite	54	Hematite	119
Cassiterite	185	Heterogenite	180
Cervantite	191	Heterolite	177
Chalcophanite	178	Hollandite	102
Chillagite	91	Hydrocalumite	225
Chlormayenite	215	Hydroromeite	192
Chlorosiderite	230	Ilsemannite	67
Chromite	21	Iozite	117
Clinobisvanite	61	Jacobsite	152
Coesite	243	Kassite	14
Coronadite	184	Koechlinite	72
Cristobalite	242	Krasnogorite	75
Crocoite	40	Krasnoselskite	88
Cr-Ti-hydroxide	11	Kruzhevite	222
Cryptomelane	100	Lepidokrocite	162
Cuprite	168	Litharge	182
Delafossite	175	Lithiophorite	111
Demidovskite	218	Maghemite	133
Dorrite	212	Magnesiochromite	22
Embreyite	46	Magnesioferrichromite	30

Magnesioferrite	152	Senarmontite	189
Magnetite	132	Silicochlormavenite	215
Malakhovite	209	Srebrodolskite	164
Manganite	107	Stetefeldite	194
Massicot	183	Stibiconite	191
Mayenite	213	Stolzite	88
Melkovite	69	Tarapakoite	55
Minium	184	Tenorite	172
Molybdite	67	Thorianite	. 7
Molybdoscheelite	83	Titanomagnetite	135
Montroseite	56	Tochilinite	200
Mottramite	66	Todorokite	105
Nsutite	109	Torbakovaite	220
Opal	243	Tridymite	242
Pb-oxide	182	Tungstite	75
Pd-oxide	180	Uraninite	8
Phoenicochroite	51	Valentinite	189
Plattnerite	181	Valleriite	199
Powellite	70	Vanadinite	63
Psilomelane	113	Vauquelinite	48
Pucherite	58	Vemadite	93
Pyrochroite	111	Vesignieite	57
Pyrolusite	94	Volbortite	56
Quartz	233	V-oxide	56
Ramsdellite	96	Wulfenite	72
Rancieite	102	Wьstite	117
Romanechite	112	Yushkinite	202
Russelite	90	Zincite	177
Scheelite	76	Zincochromite	39

VII.				
	VII. 1.	(. Белк	ดธระหมมั) 5
	VII 2	(R))	7
	VII 3	(2)	
	v 11.5.	(· ·)	
VIII.				
	VIII. 1.	(.	,	.)_10
	VIII.2.	(••	. , (Кайнов	· <u> </u>
	,)	, 11
		,)	14
	VIII 4	(· · ·	/) 16
	VIII.5.	(. ,	21
	VIII 6 Mart)	22
	VIII 7)	
	VIII.7.	()	
	V III. 0.	(,	28
		, .	.)	
	VIII.9. VIII 10		(· · ·)	
	v III. 10.)	(•••,	21
	· ·)	······	
	VIII.11. VIII 12	()	
	VIII.12. VIII 12	()	
	VIII. 13.	(()40
	VIII.14.	(Фаттика и в алга)	
	VIII. 15.	Феникохроит	()51
	VIII. 16.	(.	•)	
	vIII. 17. Tap	рапакаит ()	
IV				56
1Л,	IV 1		(
	$\mathbf{I}\mathbf{A}$. \mathbf{I} .	(()30
	IA.2.	()	

	IX.3.	()	
	IX.4.	()	
	IX.5.	(Талан	цев, <u>)</u>	
	IX.6.	(Мурзин,)61
	IX.7.	()	
	IX.8.	(,))
X.				
	.1. Mo	либдит ()	
	.2.	()	
) ()	
	.4.	(-)	
	.5.	()	
	.6.	(<u>)</u>	
	.7.	(H)	
XI.				
(«		»)		
	XI. 1.	, (.	. , .	. Михаль)_ 75
	XI.2.	$(\cdot \cdot)$)	
	XI.3.	(Д	<u>)</u>	
	XI.4.	<i>(Д</i> .	·)	
	XI.5.	()	
	XI.6.	(ý	
	XI.7.	(.	.)	
	XI.8.	()	
	XI.9.	(· ·)	
	ХІ.10. Ч	иллагит ()	
XII.				
	.1.	(<u>)</u>	
	.2.)	
	• •	(,)
	.4.	(<i>И</i>	ванов).	
		,		

X.

	.5.	()	
	XII.6.	()	
	.7.	()	99
	.8.	()	
	.9.	()	
	.10.	()	102
	.11.	()	105
	XII.12.	()	105
	XII. 13.	(,	
)	107
	.14.	()	109
	XII.15.	()	
	XII. 16.	()_111
	XII. 17.	()	111
	XII. 18.	()	
	()	
	XII.19.	()	
37111				117
XIII.	VIII 1			
	XIII. 1.	() (Б	,	117
	<i>A.</i> .)	π	11/
	XIII.2.	()	, Литошко,	110
	3 VIII 2 Marray)		
	AIII.5. Marten	ит(, ,	122
)		
	АШ.4.	,	(,	
		, 5	,	,
	• •	,	, ,)	125
	 5	, (F	, <i>)</i>	155
	.5.	. (Д.	• <i>)</i>	152
	.0. 7	()		1.52
)	153
		· ·)	155 167
	. Л. лениц	mponni (<i>J</i>	

.10. (· .)
XIII.11.		(.		<u>)</u> 164
.12. Ферригидрил	Г ()

VI	17	
Л	V	•

XIV.			, ,	,	
	,				
	XIV.1.	(B	,)	
	XIV.2.	(Бушм	акин,)	
	XIV.3.	())		
	XIV.4.	()		
	XIV.5.	()		
	XIV.6.	()		
	XIV.7.	(<u>)</u>		
	XIV.8.	()		180
	XIV.9. PdO	(\ldots)	,		180
		()			
XV.					181
1	XV 1	() 181
	XV2 PhO ((FB)	,	•••	182
	XV3 ()(102
	AV.3. () (,	,	182
	· · · XV 4	()	183
	XV 5	$(\cdot \cdot \cdot)$,)	18/
	XV.5. XV.6	().			10 4 18/
	$\mathbf{X}\mathbf{V}$.0. $\mathbf{X}\mathbf{V}$.7	$(\cdot \cdot \cdot)$)		
	$\Lambda V./.$	$(\cdot \cdot \cdot)$,	,	105
)			
VVI					
Λ V I.			,		100
	XXX7 1			T¢	
		(. (.	• ,	Каш	<i>ioe)</i> _189
	XVI.2.	(B	, ,		100
		, (D	. Каинов)		
	XVI.3. Cepi	зантит (<i>В</i>)		
	XVI.4.	()		

.

XVI.5.	(B)	
XVI.6. Бин	дгеймит (,)
XVI.7.	$(\cdot \cdot \cdot)$)	
XVI.8.	(. Бушман	син)	
XVI.9.	(,)194
XVII.			
XVII. 1.	(Чесн	юков,	,
	•)	······	
XVII.2.	()	
XVII.3.	(,	,
•	•)		
XVII.4.	()	
XVIII.	,	,	,
	· · · · · · · · · · · · · · · · · · ·		
XVIII.1.	()	
XVIII.2.	()	
XVIII.3.	()	
XVIII.4.	()	212
XVIII.5.	()	213
XVIII 6	(,	-10
(,		215
XVIII 7	•))	218
XVIII 8	()	220
XVIII 9	()	220
XVIII.5.	())	225
XVIII.10. XVIII.11	(.	•).) 226
XVIII.11. XVIII.12	(•	•	
XVIII.12. XVIII.13	())	
Ανπ.15.	(•	•).	
XIX.			
XIX.1.	(,)
XIX.2.	()	

-

XIX.3. Кристобалит (.	.)	
XIX.4. Коэсит ()	
XIX.5. (,)
		244
Index of minerals		