ЕКАТЕРИНБУРГ-2007

 $\mathcal{L}^{(k)}(x) = \{ x \in \mathcal{X} \mid x \in \mathcal{X} \mid x \in \mathcal{X} \mid x \in \mathcal{X} \}$

```
549.5(470.5)
                                        . 2- . 2. -
                        , 2007. 288 .
ISBN 5-7691-1810-5
                                          122
         . 46. . 47. . 414.
                                                      2»:
ISBN 5-7691-1810-5
    8 6(03)-1998
                                           (C)
                                                    ,2007
```

		2»	«		:	
	, ,		,	, ,		
			, -	122 ,		_
		•	, 1990-		,	-
	()	,	-
		•				-
)					2000 (-
,				. «	»	
			•			-
					. ,	-

1* 3

.

VII.

VII.1. - ZrO₂, . . (Baddeleyite) 1985 . Zr - Si. , 1989). (20-40 (10-15 {100}, {101} {111} « n-**>>** (100 20 (100) (. 1). . 1) (**>> «** (Gierth, Krayse, 1974) (Keil, Fricker, 1974).

. 1.

-

(100 150)

1

(. 2). (3 2.5

- ,

. .

(0.01-0.5)

. - Zr_{0.95}Hf_{0.05}O_{2.00} - (., 1997).

1

(.%)

Компоненты	1	2	3
SiO ₂	0.21	0.24	0.06
ZrO ₂	97.96	97.22	96.60
HfO ₂	2.03	1.97	2,10
TiO ₂	0.03	0.07	0.07
Fe ₂ O ₃	0.29	0.24	0.54
MgO	0.01	0.00	0.50
Nb ₂ O ₅	0.04	0.01	0.01
Сумма	100.57	99.76	99.88

(100); 3 - (40). (50); 2 - EDAX-2a,

```
. 2.
                                                              10 мкм
   n-
                   , 1996).
                                , 1989)
         VII.2.
                             - ThO<sub>2</sub>, . . (Thorianite)
                        ., 1964).
  1.777-1.781.
                          5.35 /
                    Th
                          TR,
             Si, Pb, Ni,
                         u Ti.
                                                  5.52-5.55
                                      1000°
                                                         (d, ; I; hkl):
3.16(10X111); 2.81(4)(200); 1.96(8)(220); 1.68(10)(311); 1.61(2X222);
1.281(6)(331); 1.246(5)(420); 1.440(5)(430); 1.075(4)(431, 511);
0.987(3)(440); 0.946(5)(531); 0.931(3)(442, 600); 0.886(3)(620).
                                           125
```

-

-(). VII.3. - UO_2 , . . (Uraninite) (1967, 1968)0.07 42.23 / (0.15-0.32 /),(0.15-1.44 /)(0.02 /).10 % 0.02 /, - 0.76 / (, 1967). (1972)(1977)(155 /), (35 /)0.1-0.3 (120 /).. %: UO₂ 82.9; ThO₂ 6.3; b 4.8; Y₂O₃ 1.8; Yb₂O₃ 0.33; Dy₂O₃ 0.96; Cd₂O₃ 0.61; Er₂O₃ 0.29; CaO 0.5; I TR 3.99; 99.48; *a*⁰ 5.446 {100} {111}, {110}. 0.03-0.3

```
VIII.
    VIII.1.
                                      . . (Eskolaite)
         (1937)
                  ( > 2.45),
                                                          (1941),
                    2 3,
, A1 Fe
           , 1 Fe,
        (1962)
                                      ., 1999).
               15
        . ( .%): <sub>2 3</sub>95.24; 1<sub>2 3</sub>0.03(
  ).
```

```
, 1.5
                                                     , 2003 ).
    (2006)
1
            (Ng)
                                         (Np).
                                        : 3.63; 2.67; 2.48; 2.17 .
(69 . %)
                  25 . % 1<sub>2 3</sub>
                                                       Ti Fe.
 VIII.2.
                                   -( , 1)( , )_{3-} , . .
0.2
                   0.3-0.4 (
                                          ., 1997).
                             0.1 %
            {110}
                                {001},
                                               2-3
                                        2-2.5.
                                   5-6,
```

Таблица 2 Химический состав гидроксида хрома и титана (мас. %)

Точка анализа	TiO ₂	Cr ₂ O ₃	Fe ₂ O ₃	Al ₂ O ₃	MnO	Sc ₂ O ₃	Сумма
1, центр	33.87	41.52	2.57_	2.60	0.14	0.58	81.28
2, край	21.73	49.73	2.61	5.06	0.18	0.23	79.54
3, край	26.12	46.13	2.31	3.18	0.20	0.28	78.22
4, центр	34.25	37.88	3.46	3.22	0.12	0.46	79.39
5, край	18.11	53.26	2.72	3.48	0.18	0.21	77.96

Примечание. Анализы 1–3 (обр. 1) и 4–5 (обр. 2) выполнены Н. С. Рудашевским на микроанализаторах ARL и Cameca.

```
HF
               ).
                                                                      16.4
                                                                                   21.8 %
(Cr_{0.51}Ti_{0.40}Al_{0.05}Fe_{0.03}Sc_{0.01})_{1.00}(OH_{1.80}O_{0.80})_{2.60};\\
                                                                                               (1)
(Cr_{0.61}Ti_{0.26}Al_{0.09}Fe_{0.03})_{0.99}(OH_{2.23}O_{0.51})_{2.74}
                                                                                               (2)
(Cr_{0.59}Ti_{0.32}Al_{0.09}Fe_{0.03})_{1.00}(OH_{2.05}O_{0.63})_{2.68};
                                                                                               (3)
(Cr_{0.47}Ti_{0.42}Al_{0.06}Fe_{0.04}Sc_{0.01})_{1.00}(OH_{1.75}O_{0.84})_{2.59};
                                                                                               (4)
(Cr_{0.68}Ti_{0.22}Al_{0.07}Fe_{0.03})_{1.00}(OH_{2.34}O_{0.44})_{2.78};
                                                                                               (5)
                       (Cr,Ti,Al,Fe,Sc,Mn)(OH,O)<sub>3-n</sub>,
                      P6<sub>3</sub>/mcm (
                                                               - 6<sub>3</sub> m
                                             <sub>0</sub> 19.75, <sub>0</sub> 4.50 .
```

Таблица 3 Расчет рентгенограммы кристаллов гидроксида хрома и титана (а) и гвианаита (б)

	Исследованн	Гвианаит (б)			
I	hkl	d _{H3M} , Å	d _{pacq} , Å	I	d, Å
3	111	4.10	4.095		<u> </u>
4	121	3.70	3.693		
6		3.32		o.c.	3.224
4	321	2.95	2.957		
2		2.89	T		
4	331	2.66	2.657		
2	511	2.55	2.537	ср.	2.524
2	440	2.47	2.469		
3 2 1	1	2.45		c.	2.432
2	. 1	2.40	_		
1	611	2.26	2.257		1
6	441	2.16	2.164	cp.	2.178
	i i	•		cp.	2.115
2		1.716		c.	1.719
10	442	1.662	1.663		
	"		1	c.	1.609
2		1.560	1		
3	12.0.0	1.425	1.425		
3	<u> </u>	1.411	<u> </u>		
1	771	1.347	1.346		
2		1.128	1		
2 2	1	1.078	-		
2	1	1.026			
4		0.880		_	
2	1	0.852	1	_	

```
2 3
                 4-5 %,
    (1) (4).
                                                 . 3),
(
          )
                                                                                ()
            VIII.3.
                                - CaTi<sub>2</sub>O<sub>4</sub>(OH)<sub>2</sub>,
                                                              . . (Kassite)
           3
                                       , 2000).
                                                                                  1997 .
X.
                                                                                  212
```



```
, ); _{2} \sim 7 \% ();
(\text{Ca}_{0.93}\text{Mg}_{0.04}\text{Na}_{0.01})_{0.98}(\text{Ti}_{1.89}\text{Cr}_{0.08}\text{Al}_{0.04}\text{Si}_{0.01})_{2.02}\text{O}_{4}(\text{OH})_{1.95}\text{Cl}_{0.02}. \ \ \Pi\text{epecuer}
                         : iO<sub>2</sub> 65.29 22.56 .%;
                100 %
Fe_2O_3
     VIII.4.
                                           - (Mg, Fe) (Cr, Al, Fe)<sub>2</sub>O<sub>4</sub>,
                                    (Chromspinelids)
                                                                                  »)
                     1798 .
1805 . (Abich, 1831). 1830 .
                                                                       (Rose, 1837, 1842)
                                                  1855 .,
                                                                            1848 .
                                                                                         (1867)
                                                          (
                                                                          , 1913)
                         (1935),
```

(1968), $1 Fe^{3+}$ - Fe^{3+} Al_2O_3 25 . % -, 2000), , 1798; Abich, 1831; ., 1867; , 1913; , 1935; , 1935; , 1938; , 1968; , 1977 - ; ., 1968; ., 1956; , 1973; ., 1980; ., 1978; , 1980; , 1980; ., 1999; ., 1984; ., 1999; ., 1986, 1990, 1997; , 1986; 1987; , 1988; , 1990; ., 1994; .)

2 3 . 3394

Минералы

Ферриалюмохроми

Mg-алюмохромит

Mg-алюмохромит,

феррихромит

Гарцбургиты *экеновский* Хромититы ронковский Хромититы

Дуниты

Дунит-пегматит

Хромититы

Хромититы

Гарцбургиты

Гарцбургиты

Хромититы

Хромититы

Верлиты

Дуниты

Дуниты

Дуниты

Дуниты

Верлиты

Оливинит-пегматит

елтая сопка

іменушинский

гмпирсайский

ючевской

энжаковский

32-48 40 42-55 52

34

40-50

45

44-53

45-53

55-60

44-46

59-65

56-61

43-44

41-55

46

38

9-11

9-12

22-23

8-12

8--11

22-25

5-11

8

10

7-23

9-13

16 10-20 6 15 12-18 12 8-16 10-16 2-3

1-4

1-3

4-6

3-8

7-31

15

30

5

4-28

19 13-19 15 21 17-21 24 18 - 2115-17 14–16 10-17 11-15

13-18

13-14

15-21

19

16

FeO

6 17-20

15-18

15-27

10-12 13-14

7 6-11 11 10 7-11 6 7-9

14-17

12-16

10-14

14-15

4-11

10

MgO

7

10-12

11-13

3-13

Ферриалюмохромі Ферриалюмохромі Mg-алюмохромит Мд-алюмохромит Ферриалюмохроми Ферриалюмохроми Ферриалюмохроми Ферриалюмохроми алюмохромит

Магнезиохромит

Магнезиохромит

Алюмохромит, магнезиохромит

Феррихромит, магнезиохромит Феррихромит

Феррихромит

Mg-алюмохромит

Мд-алюмохромит

Ферриалюмохромі

1	2	3	4	5	6	7	8
. Крака	Дуниты	53–61	9–17	1–3	14-20	9–14	Алюмохромит,
							магнезиохромит
арминский	Хромититы	41	17	9	17	10	Ферриалюмохром
<i>грановский</i>	Дуниты	36-42	13-16	11–17	17–22	8–10	Ферриалюмохром
	Гарцбургиты	44-48	1819	58	15-17	1213	Алюмохромит,
		<u> </u>					Mg-алюмохромит
	Хромититы	40-44	1519	7–16	14–20	7–14	Ферриалюмохром
							алюмохромит
гильский	Дуниты	40-57	6–11	10-20	12-27	5-12	Феррихромит,
		1					магнезиохромит,
							ферриалюмохрома
	Дунит-пегматит	49–54	9–11	9–12	15-20	9–12	Магнезиохромит,
]	ĺ .				Mg-алюмохромит,
		<u></u>					ферриалюмохромі
	Оливинит-пегматит	41	18	10	20	10	Ферриалюмохром
	Хромититы	47–58	4–10	8-31	7–22	8-15	Магнезиохромит,
		1					феррихромит,
		1					Мд-феррихромит
ловский	Дуниты	46-52	9–15	Н. о.	29-36	5–8	Алюмохромит,
							ферриалюмохроми
	Пироксениты	52	7	Н. о.	33	6	Алюмохромит
	Хромититы	54-55	11-13	Н. о.	16-23	12-13	Алюмохромит,
							Mg-алюмохромит
стусский	Дуниты	41–46	11-12	13–15	20–24	6–7	Ферриалюмохром
	Дунит-пегматит	37	12	Н. о.	40	7	Ферриалюмохром
•	Хромититы	45	11	15	20	8	Ферриалюмохром
•							

· · · · · · · · · · · · · · · · · · ·						
2	3	4	5	6	7	- 8
Дуниты	38-54	10-19	4-13	15–20	9–11	Mg-алюмохромит,
	<u> </u>	1				ферриалюмохроми
Гарцбургиты	37	17	14	18	10	Ферриалюмохромі
Хромититы	55	12	6	15	12	Алюмохромит
Карбонатные жилы	53	14	Н. о.	21	11	Алюмохромит
	Б	улканит	16/			
Na-базальты, Магнито-	3662	8-22	5-10	10~17	12-15	Магнезиохромит,
горский синклинорий			l			ферриалюмохроми
Na-риобазальты, Ta-	57	9	6	14	13	Магнезиохромит
гильский синклинорий				<u> </u>		
Андезибазальты, там	40	12	16	20	10	Ферриалюмохромі
же						
Пикриты,	37–48	7–18	6–14	16–26	6–12	Mg-алюмохромит,
Ср. и Сев. Урал		1	۱ ۱	ţ	1	феррихромит,
	<u></u>			<u> </u>		ферриалюмохроми
Лимбургиты, Ц-Ураль-	33–53	9–11	18–23	Н. о.	9–10	Магнезиохромит,
ское поднятие	<u>'</u>	<u>'i</u>		<u>'i</u>		ферриалюмохроми
Марианиты, Ю. Урал	59–60	8–9	Н. о.	18–23	9–12	Магнезиохромит, хр
P _b	іхлые от		я, Сев. У			
Включения в алмазах	64–68	5–6	Н. о.	14–16	12–14	Магнезиохромит
В песчаниках такатин-	63	9	1	11	14	Магнезиохромит
ской свиты	\			<u> </u>		
Аллювий р. Чикман	42	16	11	18	11	Мд-ферриалюмохт
	Дуниты Гарцбургиты Хромититы Карбонатные жилы Nа-базальты, Магнито- горский синклинорий Nа-риобазальты, Та- гильский синклинорий Андезибазальты, там же Пикриты, Ср. и Сев. Урал Лимбургиты, Ц-Ураль- ское поднятие Марианиты, Ю. Урал Ры Включения в алмазах В песчаниках такатин- ской свиты	Дуниты 38–54 Гарцбургиты 37 Хромититы 55 Карбонатные жилы 53 Nа-базальты, Магнито-горский синклинорий 36–62 Nа-риобазальты, Танильский синклинорий 57 Андезибазальты, там же 40 Пикриты, Ср. и Сев. Урал 37–48 Ср. и Сев. Урал 33–53 ское поднятие марианиты, Ю. Урал 59–60 Рыхлые от Включения в алмазах 64–68 В песчаниках такатинской свиты 63	Дуниты 38–54 10–19 Гарцбургиты 37 17 Хромититы 55 12 Карбонатные жилы 53 14 Вулкания Nа-базальты, Магнито-горский синклинорий 36–62 8–22 Nа-риобазальты, Та-гильский синклинорий 57 9 Андезибазальты, там же 40 12 Пикриты, Ср. и Сев. Урал 37–48 7–18 Ср. и Сев. Урал 33–53 9–11 ское поднятие 33–53 9–11 Марианиты, Ю. Урал 59–60 8–9 Рыхлые отложения Включения в алмазах 64–68 5–6 В песчаниках такатин-ской свиты 63 9	Дуниты 38–54 10–19 4–13 Гарцбургиты 37 17 14 Хромититы 55 12 6 Карбонатные жилы 53 14 Н. о. Вулканиты Nа-базальты, Магнито-горский синклинорий 36–62 8–22 5–10 Nа-риобазальты, Та-гильский синклинорий 57 9 6 Андезибазальты, там же 40 12 16 Пикриты, Сев. Урал 37–48 7–18 6–14 Ср. и Сев. Урал 33–53 9–11 18–23 ское подиятие марианиты, Ю. Урал 59–60 8–9 Н. о. Рыхлые отложения, Сев. У У В песчаниках такатин-ской свиты 63 9 1	Дуниты 38–54 10–19 4–13 15–20 Гарцбургиты 37 17 14 18 Хромититы 55 12 6 15 Карбонатные жилы 53 14 Н. о. 21 Вулканиты Вулканиты Nа-базальты, Магнито-горский синклинорий 57 9 6 14 Nа-риобазальты, Таним ке 40 12 16 20 же Пикриты, Сев. Урал 37–48 7–18 6–14 16–26 Ср. и Сев. Урал 33–53 9–11 18–23 Н. о. Рыхлые отложения, Сев. Урал Включения в алмазах 64–68 5–6 Н. о. 14–16 В песчаниках такатин-ской свиты 63 9 1 11	Дуниты 38–54 10–19 4–13 15–20 9–11 Гарцбургиты 37 17 14 18 10 Хромититы 55 12 6 15 12 Карбонатные жилы 53 14 H. o. 21 11 Вулканиты Nа-базальты, Магнито-горский синклинорий Nа-риобазальты, Та-гильский синклинорий Андезибазальты, там 40 12 16 20 10 же Пикриты, 37–48 7–18 6–14 16–26 6–12 Пимбургиты, Ц-Уральское подиятие Марианиты, Ю. Урал 59–60 8–9 H. o. 18–23 9–12 Рыхлые отложения, Сев. Урал Включения в алмазах 64–68 5–6 H. o. 14–16 12–14 В песчаниках такатинской свиты

Примечание. Данные округлены до целых.

VIII.5. - FeCr₂O₄, . . (Chromite)

Компо- нент	1	2	3	4 * *	5	6
TiO ₂	0.52	0.07	0.54	0.27	0.08	0.18
Al ₂ O ₃	4.25	2.17	4.41	0.40	4.74	8.33
Cr ₂ O ₃	58.34	60.78	56.44	57.21	64.34	60.70
Fe ₂ O ₃	36.78	2.96	4.70	Н. о.	H. o.	Н. о.
FeO	Н. о.	25.93	23.72	35.17	21.09	20.58
MnO	0.42	2.51	1.30	1.65	0.62	0.41
NiO	_	_	0.02	_	_	0.12
CoO		_	0.11	· _	_	_
V_2O_5	_	0.18	0.18	0.53	_	_
MgO	3.52	0.47	2.26	3.26	8. 72	8.61
ZnO	_	2.83	5.34	1.73	_	0.41
Сумма	103.83	97.93	99.02	100.24	99.51	99.55

. . - .

```
Mn-Zn-
                                                        Mg-
                                                           );
  1,
                              Zn, Mn, V)
                                                                                        2006
                                                                         97
                                                        , 1988)
                                                          , 1979).
(Fe^{2+}_{\phantom{2}6.41}Mg_{1.48}Mn_{0.11})_{8}(Cr_{13.04}Fe^{3+}_{\phantom{3}1.42}Al_{1.42}Ti_{0.11})_{15.99}O_{32.04}
                                                                                           ( . 1);
(Fe^{2^{+}}{}_{5.82}Mg_{1.41}Mn_{0.40}Zn_{0.37})_{8}(Cr_{12.96}Fe^{3^{+}}{}_{2.71}Al_{0.14}V_{0.10}Ti_{0.09})_{16}O_{32}
                                                                                           (ан. 4).
              VIII.6.
                                                     - (Mg, Fe)Cr<sub>2</sub>O<sub>4</sub>,
                                    (Magnesiochromite)
                                                (Abich, 1831),
                           1848 .
                          (1867)
1935).
                                      _{0} 8.270
                                                                            , 1960),
       MgO 12.3-13.8; FeO 14.0 -16.5; n 0.26-0.44; <sub>2 3</sub> 64.3-67.8;
```

```
1_2 _3 5.36-6.35; TiO<sub>2</sub>0.08-0.18; NiO 0-0.11
                                                   . % (
       , 1980;
                                                   ).
                                                   0.1-0.5
    1—15 %,
                                                         (
                                                                     , 1969;
        , 1977 - ).
                                                            100
                                  (
                                                        ).
                     1-2
                                 3-10
                                                                      (
                                                                  ).
               1.5
                      7-8
                     , 1990).
                                                    10
```

```
4
                                   ., 1968).
               ., 1968;
                                 , 1968).
                                                       (1983, 1984).
                                                                      ( . %):
MgO 13.84-15.69; FeO 10.64-14.53; MnO 0.14-0.21; Cr<sub>2</sub>O<sub>3</sub> 59.91-
62.44; \quad 1_{2} \quad {}_{3}7.87 - 9.22; \ Fe_{2}O_{3} \ 1.94 - 3.27; \quad iO_{2} \ 0.13 - 0.31; \ V_{2}O_{5} \ 0 - 0.11;
NiO 0.06-0.14; 0-0.13; SiO<sub>2</sub> 0.26-0.59; 2 +0-0.29 (
                                          SiO<sub>2</sub> 2
  ., 1968);
   250
                        <sub>2 3</sub> (64.04 . %) 1<sub>2 3</sub> (10.14 . %)
      ZnO 0.19
                     . % ( ,
                                                 , 1990).
                      (...4);
            , 1986),
             , 1989).
                                                        .%): iO<sub>2</sub> 0.16-0.23;
  n 0.19-0.59;
                                              ZnO
                                                        0.50 NiO 0.12;
                                     2.3
                                              .\% iO_2 0.44 .\% V_2O_5
                   ., 1978).
                            - (Fe, Mg)(Cr, 1)<sub>2</sub> <sub>4</sub>- (Mg, Fe) (Cr, AI)<sub>2</sub>O<sub>4</sub>,
VIII.7.
                              . . (Alumochromite)
                                                                   1_{2} 3 (
                       ),
```

```
., 1968),
                                              , 1935;
1938).
                     )
1 . %,
                                       0.5
                            , 1977 ).
      1
                      1
                           . %,
                                           ., 1968;
1977 - );
                                                    ., 1968).
                             ( . . 4;
                                                    ., 1968).
                              - Mn, Ti, V ( . 6).
            (Mg-
                              ),
        (44-58
       ).
    Zn-
```

```
12-17 . % ZnO (
., 1998).
1.18 . % ZnO . . .
(30-60 )
```

g-(.%)

Компо- нент	1	2	3	4	.5	.6	7	8
SiO ₂	0.54	1.25	0.72	0.37	0.56	1.25	. 1	.1
TiO_2	0.16	0.10	0.17	0.43	0.70	0.35	0.11	1
Al_2O_3	12.04	18.52	22.39	21.84	17.44	12.65	19.33	10.95
Cr ₂ O ₃	55.43	46.22	44.46	45.62	41.17	51.90	47.16	47.80
Fe ₂ O ₃	2.68	2.32	1.61	3.96	6.54	5.90	5.29	7.17
FeO	16.39	18.21	16.62	12.23	28.70	15.30	15.46	24.29
MnO	0.25	0.25	0.18	0.17	0.29	0.28	0.33	3.57
ZnO		-		1	_	_		6.06
NiO	0.08	0.05	0.08	0.11	0.18	0.20	0.09	·
CoO		0.17		-		0.07		_
MgO	12.56	12.11	13.52	15.30	11.30	11.30	12.76	0.19
CaO	0.00	0.05	0.00	0.00	0.33	0.17	_	
H ₂ O [±]	0.10	0.33	****	0.00		0.60	Н. о.	Н. о.
V_2O_5	0.07	0.22	0.16	0.17	_	0.08	0.27	0.30
Сумма	100.3	99.80	99.91	100.2	100,6	100.0	100.8	100.3

```
( . %): <sub>2 3</sub> 50.84;
1_{2-3} 12.20; FeO 30.16; n 0.24; MgO 5.38; ZnO 1.18; 100; \neg
                      (Fe_{5.54}Mg_{2.18}Mn_{0.05}Zn_{0.23})_{8.00}(Cr_{10.85}Al_{3.88}Fe_{1.27})_{16.00}O_{32.00}.
                                                        ZnO 1.64-1.71
     , 2003).
           1
                                    0.7
                                                                         10
             3
                   ( , 1986; 1997).
                                                                             . %)
     Mg-
                                                                        (
               1
                           2
                                       3
                                                  4
                                                              5
                                                                          6
                                                                         1.20
  iO<sub>2</sub>
             0.19
                         0.52
                                     048
                                                 0.68
             9.28
                        21.14
                                                18.25
                                                            14.07
                                     9.04
                                                                        16.10
   1203
                        44.25
                                    57.14
                                                            52.73
                                                                        41.90
             57.61
                                                45.09
   20_{3}
Fe<sub>2</sub>O<sub>3</sub>
             4.17
                         6.47
                                     5.97
                                                 6.42
                                                            Н. .
                                                                        10.89
                                     14.38
                         12.30
                                                 15.85
                                                            20.90
                                                                        18.25
 FeO
             17.17
                                                            0.52
                                     0.39
                                                 0.22
             0.39
                         0.19
                                                                        0.30
   n
             11.16
                                                 12.41
 MgO
                         15.70
                                     12.69
                                                            11.03
                                                                        11.10
                        100.57
            99.97
                                    100.09
                                                98.92
                                                            99.25
                                                                        99.10
                   . 1 -
                            (D_2),
                                                                  ; 2 - ,
                                  ; 3 -
                                                                        ; 4 -
                                                                      ., 1980); 5
                      , 1988); 6 —
                                ., 1980). Ni, Co, Zn
```

```
Mg-
                      , 1986).
                                   ., 1980).
                                                                                            Ti
                                                                                       n
      . 7).
              , 1988).
                                                                                    ., 1980),
    VIII.8.
                                    - Fe(Cr, Fe)<sub>2</sub>O<sub>4</sub>,
                                                                  . \ (Ferrichromite) \\
              (1935)
        Fe<sup>3+</sup>)
                                            0.2
0.5
                                                                                     , 1987).
                                                                                      1-4
(
       . 8).
                                     , 1980).
```

Таблица 8 Химический состав феррихромитов (мас. %)

Компо- нент	1	2	3	4	5	. 6	7	8
TiO ₂	0.49	_	2.80	0.30_	0.92	ı		-
Al ₂ O ₃	5.84	3.4	7.89	7.44	0.40	7.10	0.31	0.98
Cr ₂ O ₃	44.27	36.2	30.76	32.32	46.75	48.09	38.36	40.15
Fe ₂ O ₃	18.93	30.6	25.40	27.80	Н. о.	_14.03	<u>H</u> . o.	Н. о.
V_2O_5	-	1	ı	0.60	1	1	į	1
FeO	24.51	25.2	24.70	27.18	41.96	22.82	52.31	52.29
MnO	0.50	1	2.93	0.69	1.62	ı	1.91	1.88
NiO	0.12	1	1	0.18	-	1	1	ŧ
CoO	_			0.10	ŀ	1	0.19	0.11
MgO	5.32	4.4	5.14	3.21	4.24	6.29	4.49	4.08
ZnO			_	_	1.31		0.84	1.01
Сумма	99.98	99.98	99.62		97.20	98.32	98.41	100.5

```
( , , , 1986); 2 - , , ( , 1979); 4 - , ( , 1979); 4 - , ( , 1979); 4 - , ( , 1979); 6 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8 - , ( , 1980); 7, 8
```

```
0.1-1 (
                                                       ., 1984).
VIII.9.
                                     - (Mg, Fe) (Cr, Fe)<sub>2</sub>O<sub>4</sub>,
                     (Magnesioferrichromite)
                                          (1935)
                   5
                                           180
                                                            ( . 9).
                                       1-4 ,
                                                                         9
                                                         ( .%)
Компо-
                         2
                                    3
                                              4
                                                         5
               1
                                                                   6
 нент
             1.82
                        0.50
                                  0.58
                                             0.38
                                                       0.90
                                                                  0.72
 SiO2
 TiO<sub>2</sub>
                                  0.72
                                             0.59
                                                       0.55
                                                                  0.36
              _
                         _
                                  5.74
 Al_2O_3
             4:16
                        5.65
                                             5.43
                                                       5.29
                                                                  5.60
                       51.17
                                  51.42
                                            52.42
                                                       53.31
                                                                 51.80
Cr<sub>2</sub>O<sub>3</sub>
            49.54
             30.89
                       21.42
                                            16.85
                                                       13.94
 Fe<sub>2</sub>O<sub>3</sub>
                                  18.60
                                                                  14.30
 FeO
                        7.38
                                  6.55
                                             9.06
                                                       11.84
                                                                  15.28
 MnO
             0.75
                        0.19
                                  0.12
                                             1.55
                                                       0.20
                                                                  0.26
 NiO
                                                        0.05
                                                                  0.24
 CoO
                                                                  0.03
                                                         _
```

13.54

0.06

99.58

13.40

99.48

11.00

0.15

0.54

0.03

100.47

15.48

99.23

12.58

0.14

99.03

MgO

CaO

H₂O[±]

 V_2O_5

Сумма

12.61

0.14

99.91

VIII.10. - (Mg, Fe) (Cr, Fe, A1)₂O₄, (Ferrialumochromite)), (1913, 1925) (1935), (1956),(1938), .(1969), (1987)30 0.5 12 5 700-800 . 10). 0.2 - 0.4(70-90 . %)

Таблица 10 Химический состав ферриалюмохромитов из расслоенных ультрамафитов Сарановского пояса (мас. %)

Компо- нент	1	2	3	4	5	6	7
SiO ₂	3.66	0.60	1.70	0.80	0.80	0.96	1.10
TiO ₂	0.44	1.50	0.97	0.52	0.54	0.60	0.80
Al ₂ O ₃	13.68	13.10	13.12	18.56	18.23	18.36	16.29
Cr ₂ O ₃	35.91	41.90	37.25	43.23	42.06	41.17	41.62
Fe ₂ O ₃	17.27	10.85	13.23	8.53	9.48	7.68	9.90
FeO	16.92	22.40	25.15	14.44	15.40	17.62	17.57
MnO	1.24	0.48	0.43	0.22	0.23	0.30	0.35
NiO	1	0.24	0.13	0.20	0.18	0.19	0.16
CoO	_	0.03	0.11	0.02	0.02	1	-
MgO	10.30	8.30	7.38	13.60	12.06	11.48	10.55
CaO	< 0.20	0.15	_	0.31	0.21	0.33	0.27
H ₂ O [±]	_		0.53	0.52	0.59	0.52	0.44
V ₂ O ₅		0.12	0.23	0.006	_	0.01	_
Сумма	99.42	99.67	100.23	100.95	99.80	99.20	99.06

```
. 1-3 -
                                      : 1 -
               ( , 1990); 2 -
                                      , 1990); 3 -
                    ., 1968); 4-7 -
                     , 1990): 4 -
                                        13 (
            14 (
                           ); 6 -
                                        18 (
                                    24.
                                                       (0.2-
0.4 \quad 2-4 ).
       1-2 12 (
                                                   )
      0.1-0.2
                               60-70 . %.
```

,	,	1076		٦
	(, 1976). , -		-
1, , 1976).	2 3,		Cr-Fe,	- , -
-	,	,		٦
		-	,	-
	(, 1990) (~1 .%) (.4).	7,	¬ ¬
. 11).		,	-	- ¬
	· - ,			
		7		1
. 4.		1 MM		24.24

3 . 3394 33

Таблица 11 Химический состав постмагматических ферриалюмохромитов из пегматитов и сарановитов Сарановских массивов (мас. %)

Компонент	1	2	3	4
SiO ₂	0.92	2.62	0.68	0.68
TiO ₂	1.16	1.86	0.58	0.52
Al ₂ O ₃	15.05	··12.72	16.999	17.44
Cr ₂ O ₃	39.60	37.26	42.02	43.30
Fe ₂ O ₃	12.69	15.21	8.90	9.28
FeO	17.75	18.50	17.57	15.54
MnO	0,36	0.76	0.34	0.28
NiO			0,18	0.20
CoO	L. – .	_	, 1	0.02
MgO	10.30	9.94	11.46	11,30
CaO	< 0.20	< 0.20	0.33	0.11
H ₂ O [±]	0.68	0.26	0.26	0.46
V ₂ O ₅	-	_	0.01	
Сумма	98.51	99.10	99.30	98.89

	-		,	\neg
		,		-
•				\neg
				_
			,	
,		,	,	
				\neg
	(~]	1 . %),		
	0.2 - 1	•		-
	1-3			_
	(. %): _{2 3} 41.90	-53 47· 1 _{2 2} 8 3	31_
10.20, E ₂ O 0.04 1		14.72-22.66; MgO 6.9	12 3 0)1-)7
			90-12.22, MIIO 0	<i>21-</i>
0.44; TiO ₂ 0.30-0.70	J;	Co, Ni, V .	,	-
			(,
1997).			,	\neg
-				\neg
_	_			\neg
	,			_
	,	1,	,	
		2-3 ,	,	_
		2-3 ,		
	•			_
(1—15)		,	,	
				\neg
]	1-2 .			\neg
			$(_{2}\ _{3}\ 37.30$	
%),		(C _{2 3} 49.4	7-51.78 .%).	
,·•),		(0 2 3 1).1	7 31.70 . 70).	
		,		,
		•	0.5	
			0.5 ,	
,				\neg
	5x5		180	
				-
		•		

3* 35

```
(2-5 )
(1-2 )
6 x 4
( . 12)

12
( . %)
```

Компо- нент	1	2	3	4	5	6	7	8
SiO ₂	-	0.60	1.12	0.84	0.64	0.12	0.40	0.12
TiO ₂	1.36	0.34	0.36	0.50	0.42	0.30	0.90	0.47
Al ₂ O ₃	9.10	9.00	6.98	7.37	9.00	10.00	13.00	11.50
Cr ₂ O ₃	49.52	50.30	51.52	46.96	48.30	49.75	40.30	49.60
Fe ₂ O ₃	22.09	14.00	12.75	13.63	14.05	11.60	16.45	10.70
FeO	9.13	15.38	14.30	19.53	16.76	17.50	17.10	16.60
MnO	0.35	0.34	0.06	0.31	0.29	0.30	0.26	0.27
NiO	0.04	0.20	_	0.32	0.25	0.20	0.05	0.09
CoO	0.10	0.04	_	0.04	0.04	0.03	0.01	0.01
MgO	8.08	9.76	12.85	9.56	10.02	10.15	11.30	11.10
CaO	0.15	< 0.05	0.10	< 0.05	0.16	< 0.20	< 0.20	< 0.20
H ₂ O	_	0.71	_	0.78	0.40	0.35	0.69	0.22
V ₂ O ₅	0.02	< 0.03	-	< 0.03	< 0.03	0.10	0.20	0.13
Сумма	100.14	100.86	100.04	100.13	100.46	100.17	100.51	100.63

1 30 Cr-Fe, 2 3, (, 1975). (1977)0.1 (Fa_{11-12}) , a . 13). , 1977). .%): 2 3 (., 1994).

Таблица 13 Химический состав ферриалюмохромитов из альпинотипных ультрамафитов Хабариинского массива (мас. %)

Компонент	1	3	3	4	5
SiO ₂	1.08	0.63	0.53	2.30	_
TiO ₂	0.66	0.57	0.70	0.88	0.40
Al_2O_3	10.08	19.42	19.75	16.99	11.84
Cr ₂ O ₃	46.60	38.45	37.67	37.38	54.56
Fe ₂ O ₃	12.03	12.62	12.50	13.90	5.87
FeO	19.68	17.75	17.83	18.32	15.26
MgO	8.67	11.29	10.94	9.60	12.07
Сумма	98.80	100.73	99.92	99.41	100.00

```
; 3 - ; 5 - ; 2
4 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5 - ; 5
```

 $\it Tаблица~14$ Химический состав ферриалюмохромитов из вулканитов (мас. %)

Компонент	1	3	4	6
TiO ₂	1.35	0.79	3.19	1.85
Al_2O_3	22.19	11.84	11.45	15.67
Cr ₂ O ₃	35.68	40.11	33.02	37.46
Fe ₂ O ₃	10.38	16.00	25.36	12.46
FeO	17.03	19.68	_	25.89
MnO	0.42	0.59	0.69	0.37
MgO	11.93	9.61	9.05	6.41
CaO		_	0.06	
V_2O_5	_	_	0.39	
Сумма	98.98	98.62	103.93	100.11

```
. 14).
VIII.11.
                         - ZnCr_2O_4, . . (Zincochromite)
    ., 1999).
                                                       80-300
                                       )
. 5);
                       10 mkg
     . 5.
                                                  ( )
                 ( ).
```

```
. %): ZnO 21.75; FeO 3.10;
MnO 8.59; MgO 0.25; Cr<sub>2</sub>O<sub>3</sub> 62.67; Al<sub>2</sub>O<sub>3</sub> 0.48; Fe<sub>2</sub>O<sub>3</sub>; 2.87; iO<sub>2</sub>
0.13; V<sub>2</sub>O<sub>5</sub> 0.16;
                            99.40 (JSM-6400
                                                                   Link,
                                                    : (Zn_{4.88}Mn_{2.21}Fe_{0.79}Mg_{0.11})_{7.99}x
                    ).
(Cr_{15.07}Fe_{0.66}Al_{0.17}Ti_{0.06}V_{0.04})_{16}O_{32}
(d, ; hkl): 4.89(111); 2.99(220); 2.52(311); 2.44(222); 2.08(400);
1.73 (422); 1.597 (511); 1.469 (440); 1.274 (533); 1.081 (731); 0.962
(555); 0.872 (931);
                                                                               (2.52,
1.597 1.469 ),
                                                                      4.5-4.6 /
                             ; 0 8.35
                       1000±53
                                                                        R = 13.8 \%
(
        = 589
                   ).
                  Au-Pd-
            VIII.12.
                                   - Pb[CrO<sub>4</sub>],
                                                        . . (Crocoite)
            1764-65
                                                         , 1808).
                                               (
                    1766 .
             (Lehmann, 1767)
                             , 1911; Dana, 1951),
                                                                    (1954, . 426),
                  1742 .,
                                                             1770 .
```

```
, 1786).
                                                       (Lehmann, 1767),
                            , 1808),
                                                (Hausmann, 1813),
                 (Kobell, 1838),
                                          (Breithaupt, 1841).
           1794 .
                                                        (Williams, 1974).
                                                    (1926),
                              (1911), .
    (Williams, 1974).
                                                    , 1841).
                        , 1898)
                                                    .., 1829).
                                      (
                    1797 .
                                                       (
                                                                 , 1836),
                                                                  1933 .
           1954),
                               1970-
1935).
                                                                 , 1928),
                                                   , 1975),
                                                    ., 1980),
        ., 1986).
```

```
, 1841).
                                     , 1954).
 , 1808)
                   6-7 (
                                                             1801 .
                                                        1.5
       2-2.5
                                 0.5
                                                 (6.2 1.2
                                                               ).
                                                      , 1978).
1
                                           5
                     ,
5 x 1 x 1
                         1.5
           , 1975).
                         10 x 1.5 x 1
     20
          5
              3
                                                           2-5
                                b.
                    ,
(1926)
44
                    . 6): )
b; )
                                                                \{Okl\}
```


$a_{_{0}}$	b_{α}	c_{\circ}	β	Источник
7.122	7.425	6.785	103°38×	Gliszczynski, 1939
7.122	7.425	6.785	102°27×	Pistorius, 1962
7.120	7.421	6.800	102°20×	Williams, 1974

Таблица 15 Химический состав кроконта, мас. %

Компонент	1	2	3	4	5
РьО	67.91	68.5	68.82	68.79	68.59
СгО3	31.72	31.5	31.16	31.25	31.10
SO ₃	-	_	-		0.31
Сумма	99.63	100.0	99.98	100.04	100.00

```
Berzelius, 1818; 3 - Baerward, 1882; 4 - (1978; 1816; 2 - 100 %).

15-20 (1954).

(1786)

(1786)

(1786)

(1786)

(1786)
```

Таблица 16 Расчет рентгенограммы кроконта Точильной горы

I	d, Å	I	d, Å	· I	d, Å
4	5.44	2	2.154	11	1.398
19	5.09	11	2.090	4	1.366
13	4.96	4	2.055	2	1.356
4	4.47	7	1.998	3	1.334
25	4.37	75	1.966	18	1.302
9	3.751	2	1.898	2	1.290
9	3.717	. 23	1.857	2	1.269
69	3.474	16	1.848	4	1.253
100	3.281	5	1.800	4	1.238
12	3.15	4	1.737	2	1.213
3	3.09	24	1.692	2	1.127
42	3.03	2	1.655	4	1.114
10	2.711	10	1.638	. 3	1.079
3	2.595	12	1.614	. 2	1.058
19	2.548	2	1.570	4	1.048
3	2.355	3	1.545	4	1.027
11	2.322	4	1.446	2	1.001
35	2.251	2	1.432		
3	2.216	5	1.420		

```
(Williams, 1974)
(1899),
                                              (Cesbron et al., 1988)
                                         (Williams, 1972).
(?).
                                  , 1990).
 VIII.13.
                      - Pb_5[CrO_4][PO_4]_2 H_2O, . . (Embreyite)
                                           XX .
                                60-
                                ),
                           ) (Williams, 1974).
          XVIII-XIX
         1972 . (Williams, 1972).
                          (70-80)
                                      )
              \{001\}, b\{010\}
                                                     h{110} (
        ., 2003).
                                                                  . 17)
```

Таблица 17 Состав эмбрейнта березовского месторождения (мас. %)

Компонент	1	2	3	4	5
PbO	70.60	74.40	68.13	72.56	75.0
CuO	4.57	1.70	6.93	4.47	1.45
CrO₃	15.50	13.40	14.37	15.03	13.6
P ₂ O ₅	9.78	9.09	8,35	8.24	9.11
As ₂ O ₅	·	· -	0.45	0.48	
H ₂ O	Н. о.	0.91	Н. о.	Н. о.	Н. о.
ZnO	_	0.04			0.06
Fe ₂ O ₃		0.02	_		0.01
Сумма	100.45	99.56	98.23	100.78	99.2

```
1. 1-2 - Williams, 1974; 3-4 - ..., 2003; 5 - ..., 2003; 5 - ..., 2003).

b u: - ..., 2003).

7. , ..., 2003).

8. , ..., 6.45 \pm 0.02 / \frac{3}{2}.

9. : ng = nm = 2.36;

18. , ..., 1988).
```

Таблица 18 Расчет рентгенограммы эмбрейнта

I	d, Å	hk!	Į	d, Å	hkl
3	6.941	001	4	2.407	312, 311
60	4.751	200	23	2.314	003, 212
3	4.378	011	32	2.213	221, 402
32	3.563	201	31	2.187	410, 113
28	3.475	211,002	31	2.105	401, 321
100	_3.167	202, 300	31		320, 222
100_		301	45	1.917	203
60	2.818	020	26	1.789	023, 413
17	2.608	021	Еще	9 линий до	1.207

VIII.14. - Pb₂Cu[CrO₄, PO₄](OH), (Vauquelinite)

Компо- нент	1	2	3	4	5	6	7	8	9
PbO	60.87	61.26	61.06	68.33	61.09	62.59	62.06	63.7	62.6
CuO	10.80	12.43	10.85	7.36	11.91	12.19	10.31	8.9	8.2
CrO ₃	28.33	15.26	16.76	10.13	26.79	21.46	17.44	14.4	15.2
$\overline{P_2O_5}$	– .	8.05	8.57	9.94		3.55	8.66	8.4	6.8
As ₂ O ₅		_		_		_	_	0.2	2.6
Fe ₂ O ₃	– .	1.09	1.28	2.80	. –	0.70	0.50	1.7	1.4
$\overline{\mathrm{H_2O}^+}$	_	1.31	0.90	1.16	_	_	_	1.5	1.5
H ₂ O		_		_		_	1.12	0.7	0.8
Сумма	100.00	99.40	99.42	99.73	99.79	100.49	100.09	99.5	99.1

. 1 - Berzelius, 1818; 2, 3 - Nordenskiöld, 1869; 4 - Hermann, 1870; 5-7 - , 1935; 8, 9 - Guillemin, Prouvost, 1951. ¬ (Williams, 1974).

4 . 3394 49

```
1100-1000 -1 580-520
                                                  , 1871).
                             , 1935 ),
   2
                      ( , 1935 ): {011}, {101}, {110}, {210}
 \{011\}, \ \overline{\{30\overline{2}\}}
                     {201}, {210}.
                                                      (1882,
                                                              , 1935
                                        . 8),
       011
                          011
                                    2.5-3,
   110
                  100
                          110
                                             5.77 (
                                                                .., 1869)
101
                                              . 7.
                       101
                                          ,1935 ), -(
                                                                 , 1882).
```

. 8	: 1 - - , 3	_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/	~\ ~
7.2 / ³ (, 1832	Пропускание, %			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
20.		- ¬	п	9 7 б V, n-100 см ⁻¹ (Во	5 4 erry, 1949).
₀ 9.563 ; = 9 13.726; 5.776; 9.5					<i>b</i> ₀ 5.806;
- ,	,	,	,	,	- , ¬
	,		,	(Williams, 1	, ¬ 1972). ¬
VIII.15.	-	b[5],	(Phoenicoo	chroite)
(Williams, 19	974)	,		•	

4* 51

Таблица 20 Расчет рентгенограммы вокеленита

hkl	I	d, Å	hkl	I	d, Å
101	20	8.1	321	5	2.403
111,002	70	4.73	222	. 5	2.362
210	10	4.44	222, 313	50	2.306
202	5	4.047	422, 214	20	2.051
301	30	4.000	223	. 10	2.026
202	20	3.777	602	5	2.003
012	20	3.684	612, 323	5	1.977
400, 311	10	3,429	131, 612	50	1,895
311, 212	100m	3.305	·	20	1.848
212	10	3.159		5	1,807
103	10	3.042	·	5	1.728
410, 312	30	2.955 _		5	1.688
402, 020	60ш	2.89		20	1.649
113	30	2.773		20	1.589
121	5	2.734		10	1.479
113, 303	30	2.704		5	1.454
221	. 5	2.597		5	1.442
213, 303	5	2.525		5	1.395
320	55	2.451		5	1.374

. -114.6 , Co- , : ₀ 13.68; b₀ 5.83; ₀ 9.53 ; = 93°58' (JCPDS, 13-302).

. 9. 001 100 210 , 1836), (1873). , 1841), [010] [100] . 9). 76.69 .%): b 3 23.31 (; Hermann, 1833); b 79.30 3 . %; rO₃17.94 (2 2.46 , 1899). $\{\overline{2}01\}.$ 2.5. 1 , 5.75 / $7.01 / {}^{3}$ (Williams et al., 1970). $_0$ 14.001-13.993; b_0 5.675-5.667; $_0$ 7.137-7.130 ; $p = 115^{\circ}13'-115^{0}16'$ (Williams et al., 1970; Williams, 1974). . 21 (5084 (1888, .70)3669-1074). (Williams, 1972). (, 1935),

Таблица 21 Расчет рентгенограммы фёникохронта

hki	I	d, Å	hkl	I	d, Å				
001	2	6.53	512	2	1.611				
201	2	5.97	711	8	1.531				
111	3	4.46	912, 602	7	1.506				
201	2 3 3 3	3.76	821	5	1.471				
202		3.62	040	3	1.421				
310	6 5	3.40	622	3	1.327				
002	5	3.29	005	5	1.304				
112	10	2.99	10.2.2, 713	2	1.260)				
312	3	2.89	242, 802	3	1.216				
020	3 3	2.85	442, 115	4	1.202				
511	4	2.51)	825, 11.1.4	4	1.186				
202	4	2.49	12.0.2	4	1.165				
203	2	2.38	713	5.	1.146				
510	2 2 2 8	2.32	12.2.2, 12.0.5, 644	2	1.079				
602	8	2.27	826, 352	2	1.069				
422	7	2.06	044, 12.0.0	5	1.063				
603	3	1.994	10.0.2, 552	3	1.041				
712	8	1.874	642	2	1.030				
622	4	1.778	353	4	1.022				
710, 801	3	1.729	12.2.5, 536, 026	4	1.008				
620, 711	2	1.696)	445, 517	2	1.006				
514, 803	3 2 3 3	1.684	12.0.1, 317	4	0.984				
114	3	1.631	<u> </u>						

. -57.3 , Fe- , : $_0$ 14.036; b_0 5.684; $_0$ 7.124 ; p= 114°40';

VIII.16. $-Pb_5(VO_4)_2(CrO_4)_2 H_2O$, (Cassedanneite)

(Cookman et al. 1000) C. D. Coosedonne

(Cesbron et al, 1988). G. P. Cassedanne,

Таблица 22

Расчет	рентгеног	раммы	касседаннента
1 80 101	P 411 1 1 0 11 0 1		MMOVOMMINIONIA

I	d, Å	hkl	I	d,Å	hki
6	4.83	10-2	0.5	2.612	013
1	3.58	20-2	0.5	2.273	202
2	3.45	200	1.5	2.223	220
6	3.22	21-1	1.5	2.183	113
10	3.15	102	3	2.123	122, 30-4
5	2.873	020	3	1.908	32-2, 311
2.5	2.825	11-3	1	1.573	204, 124

```
-57.3 ; u <sub>a</sub>-
          : _0 7.693; b_0 5.763; _0 9.795 ; p = 115^{\circ}93',
                                           {010}
                                             6.52 / ^{3}
      3.5;
                                                                : ng 2.6,
                                                                               2.25:
                                      . 22.
                                                                V = 390.5 \text{ A}^3, Z = 1.
 P2/m, P2
                     m.
                                                                  P:V = 1.67:0.33
                  (V>P).
                                                                              15
      ): (VO_4)_{1.25}(PO_4)_{0.77}(CrO_4)_{1.98}.
                    ( . %): b 70.24; u 0.61; ZnO 0.65; V<sub>2</sub>O<sub>5</sub> 9.90;
<sub>2 5</sub> 1.56; rO<sub>3</sub> 12.39; <sub>2</sub> 1.65 (
                                                                  100.00 %.
                    (Pb_{4.92}Zn_{0.12}Cu_{0.11})[(VO_4)_{1.63}(\ O_4)_{0.33}(\ rO_4)_{1.86}]\,1.37_{-2}
    Pb_5(VO_4)_2(CrO_4)_2 \cdot H_2O.
```

VIII. 17. $-K_2CrO_4$, . . . (Tarapakoite)

. . (1928)

IX. IX.1. $-V_2O_5$ (?) (1980) $(V^{3+}, Fe^{3+})O(OH),$ IX.2. . . (Montroseite) , 1999). IX.3. - $Cu_3(VO_4)_2$ $3H_2O$, . . (Volbortite) (Hess, 1838) (1839),» (1839).

56

```
, 1839).
                                (1840)
          (1847)
          ( 3-
                                                        ),
     32
                                                          (1938)
            (Rose, 1842)
                                        (1851-1855)
                    ).
(Guillemin, 1955),
                  - BaCu_3(VO_4)_2(OH)_2, . . (Vesignieite)
IX.4.
                               » (Guillemin, 1955);
                   ».
```

IX.5. - $Bi[VO_4]$, . . (Pucherite) 1988 . (, 1990). 1 1, . 23), (, Bi^{3+} Bi^{5+} 6 $c. \% V_2O_5$ (. 24, . 1

100 % ,

Таблица 23 Расчет рентгенограммы пухерита и сопоставление с эталонами других минералов

Кори	чневая		Эталоны						
коро	чка на	Бисмутит Бисмутит		Пухерит		Бисмит			
бисм	лутите	(AS	STM)	(Михе	ев, 1957)			(ASTM)	
· 1	d, Å	Ī	d, Å	I	d, Å	I	d, Å	I	d, Å
4	7.4						-		
3	6.7	4.		7	6 .7				
5	5.96			_		16	5.98		
8	4.64		•	_		55	4.64		
:5	3,96					55	3.98		
6	3.70	70	3.72	6	3.67				
5	3.48					100	3.50		
2	3.43	60	3.42	4	3.41				
1	3,22	_	· -	5	3.24			10	3.23
8	3.08					10	3.12	_	.1
8	2.99		1			45	2.99	· 	-1
8	2.92	100	2.95	10	2.92	ì			-
- 5	2.73	70	2.73	7	2.72	. !	_		
-10	2.70	_	_	_	_	100	2.70	9	2.68
4	2.52	40	2.54	2	2.52	25	2.53	1	-
2	2.31	70	2.28	5	2.27	35	2,31	ı	
2	2.16	100	2.14	6	2.12	25	2.17	-	
3	2.13		-	-	-	40	2.13	Į.	-
4	1.99	-		2	2,03	45	1.99	+	
5	1.93	80	1.95	6	1.93	40	1.93	7	1.95
2	1.871	50	1.86	2	1.86	20	1.872	٠,١	1
4	1.830			2	1.78	40	1.832	<u>.</u>	,
2	1.747	80	1.75	7	1.74	2	1.759	7	1.74
3	1.716			4	1,71		_		_
2	1.681		[<u> </u>	4	1,68	16	1.681	8	1.67
2	1.658	1	ŧ	_		20	1.659	. 8	1.64
3	1.614	100	1.62	8	1.61	-			
3	1.590		_		_	16	1.596		
7	1.554			2	1.566	40	1.554		
3	1.489	70	1.48	4	1.472	35	1.491		

Таблица 24 Химический состав пухерита (мас. %)

№ анализ	Зона корочки	Bi ₂ O ₃	Bi ₂ O ₅	V ₂ O ₅	Сумма
1	а	53.4	41.5	5.7	100.6
2	a	52.7	40.7	5.9	99,3
3	б	59.5	24.1	14.4	98.0
4	б	63.4	16.7	18.7	98.8
5	б	63.9	16.4	19.0	99.3
6	6	71.5	0.4	27.8	. 99.7
7	6	72.2	0.3	28.1	100.5

JXA-5, . i_{2 5}

1993 . 71

{001} . 10)

001 011 . 10. 71.

IX.6 Bi[VO ₄], (Clinobisvanite) , 1986), (1984) ,	
, 1986), (1984) -	(- ¬
57	•
,	٦
,	٦
, ,	¬ ¬ ¬
- « » .	
0.2-0.3 .	,
- ,	« -
BiVO ₄ , (25) (0.2-0.3 . %). (26) (Knorring et al., 1973),	. ¬

Таблица 25 Состав клинобисванита (микрозонд, мас. %)

Ана- лиз	Bi ₂ O ₃	V ₂ O ₅	CuO	FeO	Сумма	Формула
1	74.87	26.18	0.20	0.23	101.48	Bi _{1.073} Cu _{0.008} Fe _{0.011} V _{0.949} O ₄
2	74.20	26.86	0.24	0.61	101.91	Bi _{1.046} Cu _{0.010} Fe _{0.028} V _{0.958} O ₄
3	74.66	26.53	0.25	0.34	101.78	Bi _{1.046} Cu _{0.010} Fe _{0.028} V _{0.958} O ₄
4	74.53	26.86	0.22	0.10	101.71	Bi _{1.055} Cu _{0.009} Fe _{0.005} V _{0.952} O ₄
5	73.75	26.51	0.26	0.21	100.73	Bi _{1,055} Cu _{0,01} Fe _{0,010} V _{0,959} O ₄

Таблица 26 Расчет рентгенограммы клинобисванита из Рассошинского месторождения (а) и из пегматитов Мутала (б)

	a		б			
I	d, Å	I	d, Å	hkl		
8 .	4.76	24	4.76	110		
1	3.80	_				
10	3.11	100	3.096	031, 121		
4	2.95	90	2.928	040		
4	2.63	12	2.603	200		
4	2.55	14	2,548	002		
2	2.36		<u>.</u>			
6	2.28	12	2.267	211		
. 5	2.13					
		8	1.9711	132		
6	1.954	20	1.9457	240		
6	1.922	25	1.9231	042		
3ш	1.817	7	1.8275	202		
8	1,722	30	1.7206	161, 1-61		
_ 1	1.769	3	1.6825	215, 013		
1	1.653	4	1.6469	251, 301		
5	1.592	14	1.5869	170, 330		
6	1.555	17	1.5545	123		
		8	1.5430	242		
1	1.466	6	1.4648	080		
$a_o 5.23; b_o 11.$	$a_o 5.23$; $b_o 11.73$; $c_o 5.10 \text{ Å}$;		a_o 5.205; b_o 11.718; c_o 5.098 Å;			
$\beta = 89^{\circ}51'$		$\beta = 90.4^{\circ}$		·		

Примечание. а – УРС-60, камера РКД-57.3 мм, Fе-излучение. Аналитик С. Г. Суставов.

- $Pb_5(VO_4)_3Cl$, . . (Vanadinite) IX.7. 1833 . (1834),(1847;Struve, 1858). . . (1935). , 1971), 1990). , 1841). (505), , 1954). (1935) . (1834), 3-4 1854-55 . $\{0001\}, \{1010\}, \{1121\}, \{2021\}$ {1011} (, 1935). (1858)

```
, 1971;
                , 0 10.27; 0 7.38 (
   , 1974).
         296.5
                                                  - 212.2
                             .%): As 0.5; n 0.03; Ga 0.005; Bi 0.07;
 u 0.001; Zn 0.04; Ti 0.25; 0.0007; Sr 0.025; 0.015; Y 0.01;
Sn 0.004.
                  (
                                    ),
                       (
                                          , 1971).
                                                38
                                                 ., 1990).
         . 27)
     . 28),
       (ASTM, 19-684);
              : 0 10.34; 0 7.34 .
```

Таблица 27 Химический состав уральских ванадинитов (мас. %)

Компо- нент	1	2	3	4	5	.6	7
РьО	78.83	78.21	77.00	78.13	77.61	77.48	77.08
Fe ₂ O ₃	0.56	0.30		· -		-	
Cr ₂ O ₃	0.56	0.30	_	_	-	_	
V ₂ O ₅	16.84	14.42	18.83	19.48	19.17	19.73	19.23
P ₂ O ₅	3.06	2.77					
Cl	2.44		2.45	2.44	2.58	2.53	2.36
PbCl	.0.25	0.55					
Сумма	101.98	96.25	98.25	100.05	99.36	99.74	98.67

Примечание. 1-2 – из Березовска (Struve, 1858); 3-7 – из Ильменских гор (Поляков и др., 1990; микрозонд, аналитик Л. Н. Поспелова).

Таблица 28 Расчет рентгенограммы ильменского ванадинита

I	d, Å	hkl	I	d, Å	hkl
_3	4.48	200	1	1.69	420
4	4.26	111	3	1.614	214
11	3.75	201	4	1.571	323
8	3.39	102	2	1.410	333 _
8_	3.07	211	1	1.382	602
10	3.01	112	2	1.368	324
1	2.59	220	4	1.338	414
1	2.47	212	3	1.292	
1	2.33	302	2	1.245	
1	2.23	400	2	1.238	
_5	2.13	222	3	1.207	
3	2.06	312	4	1.196	
4	1.99	213	1	1.184	
3	1.96	321	2	1.095	
4	1.910	402	3	1.077	
2	1.847	004	2	1.069	
1	1.73	412	3	1.064	

Примечание. Камера РКД-57.3 мм; FeK_{α} -излучение.

IX.8. - $Pb(Cu, Zn) [VO_4](OH)_3$, (Mottramite)

X.

		, ,
,	,	•
.1.	- 3,	. (Molybdite)
101 15	(1856)	(1877)- (Gagarine, 1907), (1949)
, (, 1938).	,
.2.	- Mo ₃ O ₈ 5H ₂ O,	. (Ilsemannite)
		(1960)
	-	¬
		·
		-
		_
	- Fe ₂ (MoO ₄) ₃ (Ferromolybdite)	7H ₂ O,
	. «	» ¬
(Gagarine, 1907). (1937)	(1856). «	» .
(· /	-	,

5* 67

1.5 .

. . .

(1949 6) 15

, -

; ng 1.98, 1.797 (, 1955).

(.%)²

Компонент	1	2	3
Fe ₂ O ₃	21.04	21.64	22.64
MoO ₃	59.61	58.97	58.45
H ₂ O	19.03	17.42	17.86
Нераств. остаток	_	1.72	0.65
Сумма	99.68	99.75	99.60
Плотность, г/см3		4.38-4.42	
ng		1.91-1.97	
nm		1.78-1.79	
пр		1.76-1.81	

. 1 -2 - ; 3 -

(, 1960).

	2	(, 1960);	7
1	-	-		. 29.
	,			:
	0.2-0.1			7
·				
.4.	- CaFel	$H_6(MoO_4)_4(PO_4)$	6H ₂ O, .	. (Melkovite)
	 15	(., 19	988).
				- ¬
·	,		,	, ¬
	,	0.1 ,	7 30°.	-
3 (),	3 / 3.		, ¬
	(001).	, 2V .	, ng 1	.848; 1.842.
	; .646(5); 3.01(1	, 10); 2.969(7); 2		A; <i>I</i>): 8.85(10); 8(4); 1.927(5);
1.847(6).			Fe, P, ,	-

```
- Mo.
CaFe_{1.5}K_{0.5}H_2(MoO_4)_3(PO_4) 6.3H_2O.
                                                                        Fe-K-
              .5.
                                                    . (Powellite)
                                                    (1882)
                         »,
        1912 .
                            15
                                                       1960).
                                                           , 1949 ).
                               ; ng 1.98 \pm 0.02 (
                                                           2.02 \pm 0.02 (
               , 1960).
                                                 (
                                                                   , 1938),
                                                            1957)
                           ., 1964).
            (
                                               1.2
                                           )
                                      6
                    15
                         1940 .
                      (1949)
(1986).
                        . 11)
                                 2
                                                     {101},
                                                               \{112\}, p\{013\}
                       , 1978).
                               (001).
                                                                    (1986),
```

```
. 11.
                                                                                15
                 .013
              112
        101
                       4.23 / ^{3}.
       4,
             1.972,
ng 1.982;
       Ng.
                                             Np.
                                           TR ( . 30).
                                                                                 30
                                                                   . %)
                                                              (
     Компонент
                            -1
                                        2
                                                    3
                                                                4
         SiO<sub>2</sub>
                           0.57
                                      0.63
 (x_i^*)_{i=1}^k
        TiO<sub>2</sub>
                                       0.20
        Al<sub>2</sub>O<sub>3</sub>
                           0.12
        Fe<sub>2</sub>O<sub>3</sub>
                                       0.34
                                                              0.05
                                                                          0.21
         MgO
                                                                          0.07
                          27.96
                                      26.38
                                                              27.87
         CaO
                                                  28.04
                                                                         27.75
         CuO
                                                                          0.09
                            -
                                        ----
                          69.86
                                      73.06
                                                              72.21
        MoO<sub>3</sub>
                                                  71.88
                                                                         71.62
         WO_3
                           0.75
         H_2O^+
                           0.02
        TR_2O_3
                                       0.47
                                                              0.21
                                                                          0.13
  Нераств. остаток
                                                  0.18
                                      100.88
                          99.28
                                                 100.10
       Сумма
                                                             100.34
                                                                         99.87
                                                            15: 1 -
                     . 1-2 -
                                                  , 1986); 3-5 -
    , 1949 ); 2 -
                                           (
```

; 5 - .

; 4 -

71

, 1960): 3 -

```
140-150°.
                                           . . (Wulfenite)
           .6.
                           - b
                                             (Arzruni, 1888).
                          IV
                                                    , 1955).
                       2.30, 0 5.4, 0 11.63 (
(
             ., 1969)
                           6.75 \pm 0.04 /
2.235 : 2.238.
                                     1989 .
         -1
                                    0.5
             24.2; W 2.14; Bi 0.40; u 0.04; Y 0.01.
 b 56.9;
                           , .%: b 56; 26; Bi 0.35; Y 0.03.
                 , /: Be 1; As 120; Mn 60; Bi 600; V 100; u 360;
Ag 6; Ti 360; Co 24; Cr 100; La 100.
         X.7.
                         - Bi<sub>2</sub>MoO<sub>6</sub>, . . (Koechlinite)
  ., 1969).
```

```
30
                    (0.2-1)
                                 )
                    {010}
                                                      {131}
                                                                {001}.
                                                    [100].
                {010}.
               . %
                                                                     . %: Bi<sub>2</sub>O<sub>3</sub>
              3 24.04,
74.96;
                                                    Bi_{1.92}[Mo_{1.04} \ 6].
             (1.88)
                         . %
                                    3),
                                                 . %: Be 0.0001; Sc 0.003;
Mn 0.001; u 0.025; Ag 0.25; Ti 0.1; Mo 0.03; Cr 0.003; Ca 0.04;
Ba 0.01; Y 0.06; La 0.025; Sn 0.003.
    (7.757 / ^3),
                                                                  (8.29 /
                          <sup>-1</sup>: 575, 740, 860;
                                                                         1110
1410
                                                               1410 -
                                                              <sub>6</sub>],
         740
                 573
                  v_3 (
```

).		860	-1	_
\mathbf{v}_1 ,		-			_
	_				
,					_
[6].			,	-	
					-
$Bi_2[MoO_6].$					

XI.	(«	»)		
,	,	, ,	,	, -
XI.1.	- WO	3, (Kra	snogorite)	
	8 (1984	8 .%	¬ 6 ¬ ¬
(WO₃ CoWO) (,	, 1	991).
(-	20-1324 ASTM),		, : 0	WO ₃
<i>b</i> ₀ 7.53; ₀ 3.84 (6.62 / 3,	: ₀ 7.384 4.	b_0 7.512; b_0	
XI.2.	- WO ₂ (O	θH) ₂ , (Τ	Sungstite)	
			(1940)	\neg
()	V	- V		¬ (1954)
			-	¬ ¬

```
XI.3.
                              - CaWO<sub>4</sub>, . . (Scheelite)
                                          1840 .
                                               1841 .
                                                                        0.65;
                                         78.41 . %;
6.0211 / <sup>3</sup>. . .
     18.88;
                  97.94,
1867 .
                          , 1928).
1947),
                                        , 1959),
                                            ., 1968).
          , 1960).
                                    . 31, 32.
       , : <sub>0</sub> 5.424; <sub>0</sub> 11.428,
                          <sub>0.</sub>5.26; <sub>0.</sub> 11.50.
                                                ),
1968).
                                                                 (0.05-2)
```

Таблиг

0.14

0.73

100.00

; 5 -

10

: 1-7

, 1

8

0.19

100.22

; 10 -

Химический состав шеелитов Урала (мас. %) 2

0.27

0.0016

0.09

0.06

100.14

; 7 -

, 1978; 8 -

Компонент

MoO₃

Ta₂O₅

 Nb_2O_5

TR

Сумма Плотность,

 Γ/cm^3

10 30

0.30

0.03

99.73

6.16

19.60

0.45

0.26

100.31

6.09

: 1 -

; 8 -

0.15

0.001

0.07

0.29

100.32

6.05

; 2 —

; 9 -

, 1969; 9 -

CaO	19.40	19.30	19.60	19.40	19.65	19.75	19.57	19.50	19.32	1
WO ₃	80.30	80.10	80.00	80.00	80.00	80.10	78.80	80.50	79.81	8
FeO	-	-	_	0.40	_	_	0.18		1	~
MnO	_	· -		0.01		_	0.05		- ,	

0.15

0.0014

0.09

0.48

100.15

6.20

6

0.23

0.0026

0.08

0.20

100.36

6.17

; 3–4 -

; 10 -

0.19

0.09

```
),
                               ( 4
   2
Sn-W-Mo-
                                             1973
 0.1-1
                                 6
    ),
                  80 %
                   ,
, 1929;
                                    , 1933).
               (
                                                           , 1967).
                                            )(
      ).
                                                 , 1940).
                   , 1947).
```

Табли остав редких земель в шеелитах месторождений Урала (в % от суммы = 100 %; Покровский, 1:

	42.0	3.5	12.5	0.1	0.1		0.1		0.1	0.1	0.1		1
0.0	40.0						V.1	:	V.1	0.1	U.I		0.1
	70.0		10.0		- . ;	-	1		. –		· . —		1
0.0	30.0	3.0	15.0	5.0	5.0	-	20.0	-	-		1	. –	
3.2	29.1	3.8	13.0	3.5	2.0	4.0	-	23.1	3.7	0.4	2.6	0.5	1.1
5.3	32.5	4.6	17.2	4.2	6.1		0.2	18	.0	0.4	0.7		0.8
4.7	21.6	4.1	18.8	5.3	-	4.9	1.1	30.2	5.4	0.7	2.8	1	0.4
6.8	15.3	2.1	11.2	5.2	2.1	6.9		20.1	13.6	1.9	12.2	1.2	2.2
6.9	27.0	2.8	14.7	5.4	1.8	4.6	_	17.5	8.8	1.4	6.8	0.7	1.6
5.7	10.8	2.6	14.6	6.4	19.0	-	0.1	32.0	6.9	0.1	1.6	-	0.2
2.7	14.0	3.6	20.0	7.6	_	7.6	1.6	29.9	8.2	1.0	3.0	-	0.8
3 4 6. 6.	0.0 0.2 0.3 7 8 9	30.0 30.0 32.5 7 21.6 8 15.3 9 27.0 7 10.8	0.0 30.0 3.0 0.2 29.1 3.8 0.3 32.5 4.6 0.7 21.6 4.1 0.8 15.3 2.1 0.9 27.0 2.8 0.0 7 10.8 2.6	0.0 30.0 3.0 15.0 0.2 29.1 3.8 13.0 0.3 32.5 4.6 17.2 0.7 21.6 4.1 18.8 0.8 15.3 2.1 11.2 0.9 27.0 2.8 14.7 0.7 10.8 2.6 14.6	0.0 30.0 3.0 15.0 5.0 0.2 29.1 3.8 13.0 3.5 0.3 32.5 4.6 17.2 4.2 0.7 21.6 4.1 18.8 5.3 0.8 15.3 2.1 11.2 5.2 0.9 27.0 2.8 14.7 5.4 0.7 10.8 2.6 14.6 6.4	0.0 30.0 3.0 15.0 5.0 5.0 0.2 29.1 3.8 13.0 3.5 2.0 0.3 32.5 4.6 17.2 4.2 6.1 0.7 21.6 4.1 18.8 5.3 - 0.8 15.3 2.1 11.2 5.2 2.1 0.9 27.0 2.8 14.7 5.4 1.8 0.7 10.8 2.6 14.6 6.4 19.0	0.0 30.0 3.0 15.0 5.0 5.0 - 0.2 29.1 3.8 13.0 3.5 2.0 4.0 0.3 32.5 4.6 17.2 4.2 6.1 - 0.7 21.6 4.1 18.8 5.3 - 4.9 0.8 15.3 2.1 11.2 5.2 2.1 6.9 0.9 27.0 2.8 14.7 5.4 1.8 4.6 0.7 10.8 2.6 14.6 6.4 19.0 -	0.0 30.0 3.0 15.0 5.0 5.0 - 20.0 0.2 29.1 3.8 13.0 3.5 2.0 4.0 - 0.3 32.5 4.6 17.2 4.2 6.1 - 0.2 0.7 21.6 4.1 18.8 5.3 - 4.9 1.1 0.8 15.3 2.1 11.2 5.2 2.1 6.9 - 0.9 27.0 2.8 14.7 5.4 1.8 4.6 - 0.7 10.8 2.6 14.6 6.4 19.0 - 0.1	0.0 30.0 3.0 15.0 5.0 5.0 - 20.0 - 3.2 29.1 3.8 13.0 3.5 2.0 4.0 - 23.1 3.3 32.5 4.6 17.2 4.2 6.1 - 0.2 18 7 21.6 4.1 18.8 5.3 - 4.9 1.1 30.2 8 15.3 2.1 11.2 5.2 2.1 6.9 - 20.1 9 27.0 2.8 14.7 5.4 1.8 4.6 - 17.5 7 10.8 2.6 14.6 6.4 19.0 - 0.1 32.0	0.0 30.0 3.0 15.0 5.0 5.0 - 20.0 - - 0.2 29.1 3.8 13.0 3.5 2.0 4.0 - 23.1 3.7 0.3 32.5 4.6 17.2 4.2 6.1 - 0.2 18.0 0.7 21.6 4.1 18.8 5.3 - 4.9 1.1 30.2 5.4 18 15.3 2.1 11.2 5.2 2.1 6.9 - 20.1 13.6 19 27.0 2.8 14.7 5.4 1.8 4.6 - 17.5 8.8 7 10.8 2.6 14.6 6.4 19.0 - 0.1 32.0 6.9	0.0 30.0 3.0 15.0 5.0 5.0 - 20.0 - - - 0.0 30.0 3.0 15.0 5.0 - 20.0 - - - - 0.2 29.1 3.8 13.0 3.5 2.0 4.0 - 23.1 3.7 0.4 0.3 32.5 4.6 17.2 4.2 6.1 - 0.2 18.0 0.4 0.7 21.6 4.1 18.8 5.3 - 4.9 1.1 30.2 5.4 0.7 8 15.3 2.1 11.2 5.2 2.1 6.9 - 20.1 13.6 1.9 9 27.0 2.8 14.7 5.4 1.8 4.6 - 17.5 8.8 1.4 7 10.8 2.6 14.6 6.4 19.0 - 0.1 32.0 6.9 0.1	0.0 30.0 3.0 15.0 5.0 5.0 - 20.0 -<	0.0 30.0 3.0 15.0 5.0 5.0 - 20.0 -<

резовское

слингичей

1.9

5.8

6.7

26.6

2.2

5.0

14.3

25.2

9.1

9.8

21.3

La Ce Pr Nd Sm Eu Gd Tb Y Dy Ho Er Tu Yb

0.1

1.3

7.8

31.8

12.6

9.5

4.3

1.0

0.9

1.9

0.7

0.1

							193	4.
					86-110		,	\neg
	,			1-2 ,				
	,							\neg
								\neg
			0.3	,				_
				,				,
				ŕ				_
								_
	, ,		,	,		,	,	\neg
,,	,	,	,	,	,	•		
•	,		•	, ,	ŕ		,	
								\neg
			,		,		,	
	,		•	,	•		•	_
	,		,	,	,	•		
		5				,	_	,
								_
				(,	1940).	
	-							-
	()(, 190	57).
	·		(,)(, 1929)			
					,			
			10 %					
			1-2 ,	,	6-10	,		,
	-				-			
(, 1957).							
								\neg
	. 1939 .							\neg
	,							
				,			•	
							8.5	
	[001],	600	(, 1	1948).			
	-							-

```
1942 .
                                            .., 1972).
               2
                              3
      {011}
               {131};
                         : ng 1.925-1.932;
                                            1.913-1.920.
5.967-6.088 /
                              8
                                              5.984).
                                     410, 445, 650, 720, 805
                       750, 860, 1110, 1620, 3370
                                               ( / ): Be 3;
 b 900; Bi 390; Mo 30; u 10; Ag 10; Ti 300; Mg 300; Sr 800; Ba 50;
Sn 20;
              Sb.
              , 1941).
```

	,)
-	1-2 , ,	10 -
, 25	, , , , , , , , , , , , , , , , , , ,	-
,	(010),	., - 10°
(011):(331).	, «	, , ,, -
{001}.		•

```
0.1-0.8
                                                                      0.5
       (:
                               )(
                                               , 1978;
                                                                  , 1988).
                                                           1936 .
                                          .
1946 .
        Fe^{3+}.
XI.4.
                                                    . . (Molybdoscheelite)
                           - Ca(W, Mo)O<sub>4</sub>,
                                                             ),
6*
                                                                           83
```

```
1
                                                       : ng 1.946;
                                                                        1.925.
                                      . %: n 0.05; u 0.003; Sn 0.003;
Be 0.0002;
                      Sc, Zr, Si, Ti, Mg, Al, Fe (
       ..., 1972).
1978);
                         15-20
                                                                    3
                                                             (
[001]
                                         2
                                                             3
                     , 1988).
         19.28; WO<sub>3</sub> 78.00; 3.36; TR<sub>2</sub>O<sub>3</sub> 0.38 (
%:
                                                                       , 1978).
```

```
4.1 . %,
                                   2
                   3
                     (2.3-4.1\%),
                                         TR.
    (
                                                         . %:
     - Mn, Nb, Pb,
                          - Bi, u,
                                                                ) - Be,
                                                    0 5.240-5.242; 0
Ag, .
11.366-11.372.
                                                           240-250°
                        Dy<sup>3+</sup> (488
                                      575 ), Th<sup>3+</sup> (548),
 u^{3+} (613), Sm^{3+} (648),
                                          705,
                                     Sm, Pr, Dy,
                                                          b
                                                              u
  5
       270
                                                                 0.01 -
0.6
                                                                  1.84-
                                                  (1.84-5.90),
5.90
                              (1.84 - 4.34)
                                              . %).
          XI.5.
                            - MnWO<sub>4</sub>,
                                            . . (Gubnerite)
                   («
                            ») ·
         1789 .
                   1868 .
  ).
```

```
,20-25
                        2-5
                 .%): FeO 4.5; n 19.79; WO<sub>3</sub> 75.70;
                                                                      99.99 (
                 , 1929).
0.3-0.6 .
                                                         . %): FeO 9.26;
13.35;
           <sub>2</sub> <sub>5</sub> 0.34; WO<sub>3</sub> 76.93;
                                               99.96;
           (Mn_{0.59}Fe_{0.41})WO_4 (
             XI.6.
                                - FeWO<sub>4</sub>, . . (Ferberite)
                                      1932 .
                        1935 .
                                                                 ),
1940).
```

```
, 1940;
                                          , 1947).
                                                       1942 .
                                                           (
1969;
                                      .., 1972).
                                                        (1978),
    . %): FeO 14.48; n 10.20; Nb<sub>2</sub>O<sub>5</sub> 0.14; WO<sub>3</sub> 74.39;
                                                                     99.31;
             7.06 /
          ( / ): Sc 160; Pb 380; Mo 140; u 10; Ag 50; Ti 100; Mg 800;
Sr 250; Sn 30;
                        Nb, Bi, V, Ni, Ba.
                                             ): 4.68; 3.07; 2.94; 2.465;
2.190; 1.868.
     (1-2)
         10
                                        (
                                          , 1978).
                            ).
1991).
```

```
XI.7.
                             - CoWO<sub>4</sub>, . . (Krasnoselskite)
                                                        1989 .
   )
      (d, ; I; hkl): 4.667(17)(001); 3.739(41)(110); 3.611(23)(011);
2.916(77)(111); 2.466(16)(120); 1.695(20)(122).
           , : _04.95; b_05.68; _04.70; p \sim 90^{\circ}(
1991).
           XI.8.
                              - PbWO<sub>4</sub>, . . (Stolzite)
(
         , 1929;
                        , 1929).
                                                                (1961).
                                                             40-50
         , 1961).
                                                                 , 1962)
              Bi-Mo-W-
  ., 1969;
                             , 1971).
                                                   7.94-8.46 /
                         ng 2.26;
                                      2.18.
```

(.%): b 50.6-			
1.20 (, 196	₃ 0.30) .	(0/)
b 48.20; WO ₃ 50.10;	1020-1		(. %): - - 2; 1.663; 1.627;
1.310; 0.988; ₀ 5.462;		1962).	_
, ,	; , ,	;	 - -
, ; , , ,	, - , ,	,	, – , –
· -	,	,	· •
·	,		_
	(1954)	,	,
XI.9.	- Bi ₂ WO ₃ ,	(Russel	ite)
			_

```
6.60
\pm 0.04 / ^3.
                                                         , : {}_{0}5.461; {}_{0}11.314.
                                                                     b,
                                                                                Ag,
                             Sn, Mn, Nb, u, Ti, Fe, Ca, TR, Sr (
     ., 1969).
        XI.10.
                               - Pb(Mo,W)O<sub>4</sub>,
                                                         . . (Chillagite)
1969)
                     7.72±0.04 /
                                                                 1988 .
                                                    ., 1989);
                                                                                  33
                                                                             . %)
            WO_3
                                 CrO<sub>3</sub>
 № ан.
                      MoO<sub>3</sub>
                                            VO_3
                                                       PbO
                                                                 CaO
                                                                           Сумма
                                                       58.6
                                                                            99.0
                                                                 0.25
            9.65
                       29.5
                                  0.8
                                             0.2
                                            0.25
                                                       56.3
                                                                            98.8
            16.85
                       24.1
                                  1.0
                       23.4
                                  0.6
                                            0.2
                                                       56.7
                                                                  0.3
                                                                            100.4
            19.2
    4
                                                       56.2
                                                                            98.5
            <u> 19.8</u>
                       21.0
                                  1.0
                                             0.2
                                                                  0.3
                                                       55.1
                                                                            98.3
            20.4
                       20.9
                                  <u>1.3</u>
                                             0.3
                                                                  0.3
            24.1
                       18.8
                                  1.6
                                            0.2
                                                       54.6
                                                                  0.2
                                           JXA-5,
```

(. 33).				
Mo:W),	,	1.24:1	4.87:1 (

XII.

```
- (Mn, Fe)_2O_3, . . (Bixbyite)
     II.1.
                  (1940)
                                                 , 1972).
   XII.2.
                                 . . (Vernadite)
           1937 . . .
                                   (1940)
      d \approx 2.4 1.4°,
                                                  6- n
            d ~ 2.2 (
                                  ., 1982).
                                                   , 1954)
., 1964).
```

») 1770 (Rose, 1837) (1868)	(« - - - -
(1882)	
XIX . (, 1946) (1907)	?) - -
(1946, 1940), (1954) (1982, 1987).	_
	·
· :	- - -
·	,

n 2, . . (Pyrolusite)

XII.3.

```
(
                                         .., 1978).
                     12
          , 1954).
   , 1974).
                                          - Ni, Sr.
          Si, Al, Mg, Ca, Fe
                                            , 1937, 1940).
                                     (d, A; I): 3.10(10); 2.40(8); 1.622(10);
1.305(8); 1.057(8), -
1954).
```

```
. %): SiO<sub>2</sub> 1.21; 1<sub>2 3</sub> 2.48; Fe<sub>2</sub>O<sub>3</sub> 0.98; MnO<sub>2</sub> 76.51; n 7.08;
             4.77; 2 5.52;
                                             99.49.
     0.94;
                                                                          ); Si, A1
                                                          (
                                                                      1-2
                                         (d, A): 3.11; 2.40; 2.20; 2.11; 1.63;
1.56 (
                         ., 1999).
                                                    . . (Ramsdellite)
          XII.4.
                                                      (
                                                                          ., 1999).
           XII.5.
                                                  . . (Achtenskite)
                                                               n 2-
                                               ., 1982).
```

	. 1	_
HNO ₃ , H ₂ SO ₄ NaOH		;
3-4, .	;	
- n 2	,	_
{0001}.	, , - ,	- - -
- n ₂ n ₂ , , 50 %	: ₀ 2.85, ₀ 4.48 , , , , , , , , , , , , , , , , , , ,	_
XII.6.	- n^{2+} n_2^{3+} 4, (Hausmannite)	-

7 . 3394 97

```
1978).
                                                               ., 1968).
                   , 1978).
                                                                1999).
                                                                 (d,
4.91; 3.09; 2.76; 2.48; 2.36; 1.574; 1.542.
                       - , As;
                                       - u, Ti (
                                      (d, ; I): 5.01(6); 3.11(7); 2.77(9);
2.52(10); 1.800(5); 1.582(6); 1.544(8).
          , : 0.5.78 \pm 0.01, 0.9.42 \pm 0.03.
```

```
- Mn^{2+}(Mn^{4+},Si)_2O_4, . . (Braunite)
       XII.7.
                                           (1927)
                         , 1940).
1978).
     ., 1968).
                -1
                                                                   -2
                  -1
1978).
                                                              2/3
                                                     . %): SiO<sub>2</sub> 4.04; 1<sub>2 3</sub>
                                ),
0.51; Fe<sub>2</sub>O<sub>3</sub>1.45; n 26.98;
                                                     2.66; 0.06; MgO
                                     n <sub>2</sub> 58.65;
0.26; _{2} _{5} 0.18; _{2} ^{+} 4.41;
                                        99.20.
                                        (d, ; I): 2.72(10); 2.36(4); 2.15(5);
1978)
1.660(8); 1.415(6).
                                       ( ): _0 9.40 \pm 0.01, _0 18.69 \pm 0.05.
```

7*

(1960). (Fleisher, Faust, 1963). , 1978; 1986; ., 1986). ., 1982), , 1980), ., 1986). 1-10 0.6

100

XII.8.

```
1 .
                                                                           0.1
                                      2-3
                                                      ( . %): n <sub>2</sub> 83-90;
      0.55-2.59; 2 0.48-1.25;
                                                   0.9, Na<sub>2</sub>O
                                                                    0.53;
 b
         2.09 % (
                                          ., 1999).
                                                                       5,
                      - 3.
     4.11 / ^{3},
                                - 3.96 /
                      . 34).
    : Na<sub>2</sub>O, MgO, BaO, Fe<sub>2</sub>O<sub>3</sub>, CuO, SiO<sub>2</sub>.
```

```
(
              <sub>2</sub> ).
                            (
                                                                             )
(d, A; I): 6.92(8); 4.89(5); 3.10(2); 2.39(1) (
                                                                  , 1986).
         XII.9.
                              - Ba_2Mn_8O_{16},
                                                   . . (Hollandite)
                                         (1978)
                                                              ., 1982).
   II.10.
                                                              . (Rancieite)
                , 1936 ).
       , 1972)
          , 1954).
```

Су

90

99

98

96

 H_2O^{\dagger}

3.25

3.45

4.01

4.23

10.88

CuO

0.44

1.02

0.33

6.26

7.55

2.24

4.93

9.10

0.20

< 1

0.32

0.47

0.n

Химический состав криптомелана (мас. %)

0.62

есторождение	MnO	MnO ₂	SiO ₂	Fe ₂ O ₃	MgO	BaO	K ₂ O	Na ₂ O
жноуральское	10.44	64.39	10.12	1.60	0.19	1.24	2.35	0.28

0.74

Тельпос-Из 50.61 36.48 < 1 < 1 *Примечание*. Дополнительно 2.20 мас. % H₂O⁻.

35.34

35.99

3.02

50.96

51.01

5.63

ысокогорское

ысокогорское

олуночное

51.41

1.52

2.29

Химический состав рансьента (мас. %)

Табли

97

 MnO.	SiO.	A1-O-	Ea.O	M
		-	•	,

есторождение	CaO	MnO	MnO ₂	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	H ₂ O ⁺	H ₂ O	Сy
усаровское	11.11	_	61.94	3.48	0.32	5.69	н/о	15.93		98
усаровское	7.52	8.11	62.69	4.26	2.09	1.46	0.67	12.92		99
усимовское	3.30	1.43	81.83	2.13	0.83	1.27	0.58	8.48		99

```
( . 35),
                       Si, Al, Fe<sup>3+</sup>, Mg,
                                               7.55
                                ., 1999).
                                      ; 240-300 ° -
: 90-130 ° -
       ; 640-670 ° -
                             ASTM ( . 36).
```

Седельниковское **ASTM 22-**Седельниковское ASTM 22-718 718 месторождение месторождение d, Å 2.35 (8.3)2.342 3 6 10 7.52 100 7.49 2.06 2 2.064 4.29 1.813 3.74 2 1.758 8 3.73 14 1.747 3.48 1.423 1.425 2 4 4 m 3 4 3.15 1.399 2 1.397 10 2.463 2.46

```
XII.11.
                         - Na_4Mn_{14}O_{27} 9H_2O_3 . . (Birnessite)
                        7.30
     (
                         ., 1999),
XII.12.
                              n^{2+} n^{4+}_{7} _{16} 4 _{2} , . . (Todorokite)
            (1965).
                                 ., 1978).
                                                          , 1986).
                                                    , 1965).
          ( . %): n <sub>2</sub> 69.11; n 5.01; 3.78; MgO 1.24; SiO<sub>2</sub>
1.43; 1<sub>2 3</sub> 0.76; Fe<sub>2</sub>O<sub>3</sub> 0.59; BeO 0.26; <sub>2</sub> 15.97;
```

```
. 13.
     : Pb, Zn 0.3-0.6 %; Sr, Ni
                                    160
                                         282 437
0.03-0.06%; , 0.01-0.03%;
 u, Mo, Bi, Sn 0.001-0.006 %; Ti, Yb, Y, Cd, W -
                      . 13)
                       : 150-170°
                                     685-690° (
                                                            , 1965).
                        Co-Ni-
                                         , Co-Ni-
            Co-Ni-
      Co-Ni-
                                            , 1987).
    (d, ; I): 12.35(10); 9.75(8); 4.80(10); 3.23(2); 2.49(4); 2.43(1);
2.22(1); 2.15(1); 1.423(3); 1.345(1).
                         ., 1999).
         (
                                     (d, ): 9.67; 4.83; 3.22; 2.40;
                                 .%): 1.52-4.60; 2 0.07-1.37;
Na<sub>2</sub>O 0.15-1.94; MgO 0.40-0.88.
```

```
(d, ; ):
9.82(8), 4.89(5), 3.29(1), 2.39(1) (
                                                 , 1986).
               III,
                                                II(
                                                               ., 1982).
                                    IV (24.4
           III (14.4 )
                                 ., 1978).
            .13.
                                              . . (Manganite)
                , 1833).
                                                    (1877)
             60
                                         , 2002).
                             . 14 (
               15-20
                                                        , 1954).
```



```
( \quad , 1954; \quad , 1972). \\ ( \quad , 8): SiO_2 5.40; \quad iO_2 0.08; \\ 1_{2-3}1.02; Fe_2O_3 0.99; \quad n_2 49.78; \quad n_3 1.11; MgO 0.09; \quad 0.24, \\ (Na_2O+K_2O) \ 0.12; \ H_2O^-0.44; \ H_2O^+ \ 10.12; \quad 2_{-5} \ 0.63; \quad 100.02. \\ ( \quad , 1950; \ 1954), \qquad Al, Fe
```

```
n^{2+}
                    , Mo, Cr, V, Cu, Zr, Be, Ni,
                                             (...\%): n_{2} _{3} 83.03-89.37;
     0.15-1.04; Fe<sub>2</sub>O<sub>3</sub> 2.8; ZnO 0.16-0.35 (
                                                                       :, 1999).
                               - \sim n^{3+} ( ), . (Feitknechtite)
    XII.14.
 n<sub>2 3</sub> 84-87; MgO 3.96; Fe<sub>2</sub>O<sub>3</sub> 0.94.
                (d, A): 4.60; 2.36; 2.0 (
                                                              . 1999).
                      - Mn^{2+}Mn^{4+}_{1-x} O_{2-2} ( )_2, = 0.06-0.07,
   XII.15.
                                   . . (Nsutite)
                                                            ., 1982).
- n 2
                                                      (
1986).
```

0.6-2 ,		·	- - -
4.26 / ³ . 1128 / ² .	7-7.5,		
•		1	- - -
0.05		ASTM.	-
, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬			
. 15.			

```
n 2 (97.3-98.6
                        . %),
                                               0.67-0.87
                                                               . %.
                                  (d, ): 3.98; 2.58; 2.40; 2.34; 2.13, 1.63
                   . 1999).
        XII.16.
                                                    . . (Pyrochroite)
                                    n(
                                           )_{2},
1930)
(
           , 1940)
                                0.02 - 0.4
                         . 1999).
                                                     . No 1.726.
       0.04.
                                              0.02; NiO<sub>2</sub> 0.01; SiO<sub>2</sub> 0.07;
     79.07; FeO 0.15; MgO 1.63;
  1<sub>2</sub> <sub>3</sub> 0.03;
                     80.98.
                                                                          (d, ):
4.72; 2.85; 2.44; 2.362; 1.821; 1.560; 1.441; 1.380.
     .17.
                          - (Al, Li)MnO<sub>2</sub>(OH)<sub>2</sub>, . . (Lithiophorite)
                                                                       (
     ., 1982);
```

```
,
. - .).
                                                    «
                          Co-
                                                             , 1957)
                            Co-Ni-
  n 4-5; n <sub>2</sub>49-50; 1<sub>2 3</sub>20.26-21.72; Fe<sub>2</sub>O<sub>3</sub>1.37-3.09; 4.80-
9.99; NiO 1.07-3.09; Li<sub>2</sub>O <sub>2</sub>
      , 1960; ., 1982).
             , 1970);
                                                     , 1986).
                                                  0.5-1.5 ( . 16).
          . 16.
```

1, HNO₃ H₂SO₄ ASTM(*d*, ; *I*): 4.72(1); 2.39(1); 1.83(1); 1.42(1). , 1987).) - (, $_{2}$ $)_{2}$ n^{2+} n^{4+}_{4} $_{10}$, XII.18. (. . (Psilomelane) 1842 . (Rose, 1842). , 1946). . (, 1954). (, 1960). , 1972) (, 1980).

```
, 1954).
                                                                     - Al, Fe, Si;
           n,
                 , Ni, Sr, Mg;
                                               , V, Ti.
                                   ; I): 2.385(8); 2.191(10); 1.542(3); 1.419(4)
                                      .%): SiO<sub>2</sub> 2.50; 1<sub>2 3</sub> 1.83; Fe<sub>2</sub>O<sub>3</sub>1.66;
                                           1.08; 2 + 3.76;
                  11.82; n <sub>2</sub> 75.33;
                                                                            100.45.
     2.37;
                                                    0.3-0.4
                                               50-80 %
                                                                  . %): Nb 0.06;
V 0.04; u 0.007; Ni 0.002; Zr 0.1; Cr 0.1; Sn 0.003; Ag 0.0003.
```

```
(
                                   ).
  3.48 2.19 ;
                                                            7.75-
8.95 . % (
                           . 1999).
                       , 1933).
                                             150
2-12 .
                                             И
                    - (Ni,Co)_xMn^{4+}(O,OH)_4, . . (Asbolan)
    XII.19.
                           ., 1987).
                                  Ni
                           n,
                                                        (001)
```

8* 115

				n-	
Co-Ni-,					\neg
		():	0 2.823,	₀ 9.34 (n-	,
	<i>I</i>) ₀ 3.04, ₀ 9.3 (Co-Ni-	,	II).	\neg
		, -		,	\neg
: [N ., 1987).	$Mn^{4+}O_{1.5}(OH)_{0.5}]Ni^{2+}$	C _{0.28} Co ³⁺ _{0.17} C	Ca _{0.05} (OH) _{1.5}	₅₀ nH ₂ O (
					\neg
(, 1960).	(.%):	SiO ₂ 4.49;	$iO_2 0.21;$	1_{2} 3
0.72 ; Fe_2O_3 2	20.35; NiO 13.68;	4.82; M	[nO 21.62;]	$MnO_218.19;$	BaO
2.37; MgO 2	$.48$; CaO 0.11 ; H_2O^2	⁺ 9.31; H ₂ O	1.62;	100.19.	\neg
10 .%.		SiO ₂ ,	,		٦
•					,
					_

XIII.

(),		, ,	,	, -
	XII	I. 1. () - FeO,	(Wustite)	
	-	1987 .(, 1991).		, 1983).
		1707 . (., 1991).		-
().		7	«	¬ » ¬
	,	(, , (17).	, , / .	5.5. . ¬
		1 -	(34	40 605°.
		10).	,	(٦

. 17. (). : {100}, {111}, d{110}, n{211}, s{321}, y{522}, V{531}, p{322}, g{320}, O{430}, U{411}, D{623}, {812}.

I	d, Å	hkl	I	d, Å	hkl
3	(2.743)	111	1	(1.368)	222
7	2.485	111	7 .	1.296	311
4	(2.373)	200	7	1.240	222
10	2,152	200	1	(1.183)	400
3	(1.677)	220	7	1.074	400
9	1.522	220	2	(1.059)	420
1	(1.429)	311	6	0.987	331

Примечание. Камера РКД-57.3 мм, Fе-излучение, без фильтра; a_o 4.302 Å.

» ,	. ¬
FeO 83.02; Fe ₂ O ₃ 14.84; 1 _{2 3} 0.20; MgO 0.40; 0.50; 98.99 (., 1991).	(.%):
• •	
100-500	_
(., 1992).	٦
FeO 94.8; n 6.03; 100.11 % (,	(.%): , 1988).
1-2	» ¬
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(. %):
.2 a-Fe ₂ O ₃ , (Hematite)	
« » 1728 .	

```
1768-69 .
        «
                          , 1786).
                                                           (1809)
              1837 .
                                                          (Rose, 1837),
                     (1853)
(1887, 1895)
                        (1853);
                                                                (1973).
           ).
                                                              , 1974).
```

```
магнетитах
                                 ., 1987).
                        (мас. %): TiO<sub>2</sub> 11.83; Al<sub>2</sub>O<sub>3</sub> 1.02; Fe<sub>2</sub>O<sub>3</sub> 78.99;
FeO 5.80; Mn 1.87; MgO 0.03;
                                            99.54 (
                                                                         ., 1978).
  метагранитах
                       1
                                               ., 1968).
       1873 .
                                                                       канкрини-
                                                             («
  »)
                                                         0.4
        0.24 % (
                             , 1949);
                                                       «
                                                                     >>
                                    , 2006).
                  375
                                              плагиоклазитов
                                                                     , 1960).
(Тагило-Кушвинский
                                 ),
                              (1960)
                            : 1 -
```

				2 -	. ,	-
	,	,	,	- ,	,	-
			,	,	, , , 1-2	-
7-8		15 .		(., 1988)	-
-		,	,			-
		, -		, 1962).		-
,			0.5	0.15 .		-
				прожи 4—7	лках - ,	-
				38		

•			(mac. %)	,	
-	1	2	3	4	5
TiO ₂	6.17	2.96	_	11.83	2.13
Al ₂ O ₃	_		0.08	1.02	1.23
Cr ₂ O ₃			0.13		0.70
Fe ₂ O ₃	.89.07	.94.95	99.09	78.99.	88.22
FeO	3.52	_1.23	0.22	5.80	4.24
MnO	0.23	0.11	0.01	1.87	
MgO	1.01	_0.74	0.13	0.03	0.95
CaO		. –	0.24		0.66
V ₂ O ₅	_	_	0.05		0.10
	100.00	99.99	99.95	99.54	98.91
. (3 - ., 1978); 5 - 0.68 мас. % Sid); 4 - O ₂ (, 197		: 1 -	, 2 -	;
магнетит-гем	атитовые				_
· ,	,	, (0).1).	, апогипе	рбазитовых
,				٠	(1974).

	{1011} {0001}.
. ,	-
»	40 8
7.8 mac. % TiO_2 (5.6 mac. % TiO_2 (., 1974)
,	-
	- , -
,	. Лонготьюган
	0.2-4 ,
,	,
,	25-30

```
ются
                                         1
                                    TiO,
             4–6 % ( . 39).
(
                          1-2 20
                                                  TiO<sub>2</sub> 20 mac. %
                                                                                        39
                                                      (mac. %)
                               2
                                                              5
                     1
                                         3
                                                    4
                                                                         6
                                                                                    7
                                                             3.56
     SiO<sub>2</sub>
                                                                       0.54
     TiO<sub>2</sub>
                  7.80
                             6.20
                                                  5.34
                                                             2.56
                                                                       2.56
                                                                                  5.57
                                       21.88
     Al_2O_3
                                        1.48
                                                  0.27
                                                             0.48
                                                                                  0.42
                   0.04
                             0.01
     Cr<sub>2</sub>O<sub>3</sub>
                  0.01
                                       0.005
                                                  0.42
                                                             0.23
                                                                       0.19
    Fe<sub>2</sub>O<sub>3</sub>
                  88.39
                            91.00
                                       72.35
                                                  91.11
                                                            91.93
                                                                       95.81
                                                                                 88.80
     FeO
                   1.72
                              1.80
                                        3.02
                                                   1.76
                                                             1.72
                                                                        1.86
                                                                                  2.78
     MnO
                             0.08
                                                  0.02
                                                                                  0.01
                                        0.10
                  0.06
     MgO
                                        0.05
                   0.01
                                                              сл.
                                                                        сл.
     CaO
                                                  0.12
                                                                       0.05
                                                             0.05
```

0.21

99.11

0.35

99.39

100.4

101.0

0.42

98.46

 V_2O_5

0.33

99.42

125

0.07

97.65

						-	_
(. ,),						-
,		-			,		-
(,	1960).				-		_
,	,						
•							_
							-
-					(1 %
, 1937).					(-
	-		(1000		•
	_	оруденени	ем (, 1929).	-
-		апоги	тербази	товь	(IX	,	1960).
-	. (Rose	e, 1837)			,		-
	-					,	(-
, 1853).)		В	5	15	(-
, 1033).	, (. 18).	Б				
							-
•	(« »)					,	-
- 1055)	_						
, 1955).	-						
		-					
(.)	свите-	M	-				;


```
(мас. %): Fe_2O_3 65.7; SiO_227.0; H_2O 7.0.
                                                                           ).
                 , эвапоритах.
                                    гиббситом.
          гиббситовые (
                                   , 1931).
                                                 , 1954),
                                1-3.5
                                                 \begin{array}{c} (001) \\ \mathrm{Fe_2O_3} \end{array}
0.55 мас. %.
                                                                     (Rose, 1837).
                                                 ., 1987).
тригональную
                                               1881 .
                                                                              . Маг-
```

```
(1893)
                                 1-1.5 (.
                      ).
                                    (1960).
             (1922)
                             рода -
Серебрянского
                                , 1900)
                                                . Пашия
( , 1907).
                                , 1936 a;
Алапаевских
1936; , 1936).
                                , 1960).
                                                    poc-
                              , 1922).
      Красноуральских
```

9 **Зак.** 3394 129

```
, 1940).
                                       , 1991).
               (
                                             (
   2-3
                                                                 {1011},
                                : «
         {0001},
                                                      {1120}
                                                                 {0001}.
                                                         (
                                                                 100 ^{\circ}
                                                          1-2
      45
                                               ; I; hkl):3.69(5)(012);
                                          (d,
2.71(10)(104); 2.52(9)(110); 2.21(7)(113); 1.842(8)(024); 1.693(9)(116);
                . .; a_0 5.037; c_0 13.742
1.599(7)(018)
                                                        )
                                (1869),
                                                               91
                                                                     110
                                     1912 .
                            ~ 10 мас. % TiO, 5 % FeO.
```

```
, 1949).
                                                                      2 3
                   TiO,
                                    7.8 % (
                                                  , 1974),
21.9 % (
                                    ).
                                              Кременкульского
    11.83 % TiO<sub>2</sub>) (
                                      ., 1978).
                                  )
                                                  1950-
                                  3-5
                                              6-8
                                                             вашингтони-
                                    6-7 %.
                             15-35 %
                  4.71–4.83 / <sup>3</sup>.
                  , 1965).
                               )
                                                 (Hermann, 1844;
                                                    5 % H<sub>2</sub>O (
1899).
                  (1936 6).
```

9*

```
(1899)
1960),
                                                  (1936)
          . (1936),
                                 (1936).
                                          , 1936 a).
                                                         SiO<sub>2</sub>(19.5-58 mac.
%).
        7
                 параллельно-шестоватым
                                           .(
                                                           , 1900),
                      II
                       , 1936).
                                                                 , 1920).
```

```
XIII.3.
                   - \mathbf{Fe_2O_3}, . . (Maghemite)
                                                   (1929)
                                    . (1936 )-
          (1942)
                                                      (1953)
                магтемит
        магтемиты,
                (1942)
              маггемита
                                                     (2004);
,
, 1953).
          4.95 / <sup>3</sup>; 8.42 .
```

магтемит,	ортомагматических -
	,
,	2-5
, 1969).	(, -
	(1942)
(,	. (1953, 1960)
,	маггемитом -
,	(1962) -
	-
(1965), -	
-	1-10 .

```
R = 21.5 \%,
                                                  40400-
                               652 / ^2, a_0 8.30-8.33
58600 . CGSE.
                      , 1955)
                           2.48, 1.850, 1.583, 1.485 ).
             2-5
                                 20-90%
       (1963)
     Титанмаггемит
                                ., 1963).
                                     (100), по (111),
                      маггемитом
        XIII.4.
                       - FeFe_2O_4, . . (Magnetite)
                          - Fe(Fe,Ti),O_4, . .
                               1696 .,
                                       (, 1961).
(
                                                 1671 .
                                    , 1974),
                                      1728 .
Гороблагодатское
                                       (1786)
                   ),
```

```
),
      ,
1770 .,
«
                (1828)
                          (Rose, 1837; 1842)
   (1858),
                         17
           (1838)
        ( . 19)
(1893)
                                                         (1858
                                          1-1.5
                                                      5
           111
                                                       110
                                110
        100
                             100
                                      010
                               : 1-3 -
                                                         , 4-6-
  Рис. 19.
```

```
Кирябинского
                                               , 1968).
                                                              1892
                                                        титаномаг-
                                                    » (1989).
                          «
       8-10%,
  0
                                                            1 %
                                  0.0n ( . -2 %),
2.5 %
10 %
                                                             ).
     Магнетиты
                                                             мета-
                                        );
                                                            , 1986;
                                           2-3
    .).
5
```

, магнетиты

 $\rm TiO_2,\ MnO,\ MgO$ - FeO $\rm Fe_2O_3$. $\rm TiO_2$ FeO $\rm Fe_2O_3$

6–12 % .

Рис. 20.

TiO₂

```
циями TiO<sub>2</sub>, MnO
FeO.
                                                   - Fe_2O_3 MgO
                      SiO<sub>2</sub>
                                                                 , мугоджарского
                )
SiO<sub>2</sub>-
                                                      ульвошпинелью,
                                                                    TiO_2 ( 36 mac. %) (a_o 8.455-8.469 ).
                   , T<sub>1,2</sub>),
                                                                               1-5
                                ( 5 mac. % TiO<sub>2</sub>),
                                                               ., 1987),
                                                                с плеонастом
                                                                      . 21).
                                                                             . 21.
                                                                В
```

```
, Гусевогорского
                                      1-2
                                                  0.65 mac. % V<sub>2</sub>O<sub>5</sub>.
                                                                               . 1973).
              ; a<sub>o</sub> 8.38-8.40
                                    1 M
                                                   3-10
(0.5-1.0)
1974). (Mac. %): TiO_2 12.4–13.7; Al_2O_3 \sim 3; Cr_2O_3 0–2.3; V_2O_5 0.6–0.7; MnO 0.3; MgO 0.9-1.9.
                                      . Титансодержащим (3.0-6.7 мас. % TiO<sub>2</sub>)
кого и
                                                                            TiO,
     , 1968).
             0.6-2.7 мас. %.
                 титаномагнетита,
                                                 магнистые.
```

```
Fe(Fe,Cr)_2O_4 (хромомагнетит,
                                                  Cr,O, (
                                                                11 мас. %) -
                                         , 1935),
                            , 1935),
           , 1949 )
                                         (mac. %): TiO<sub>2</sub> 0.46-3.2; Al<sub>2</sub>O<sub>3</sub>
0.03-8.65; Cr,O, 11.20-32.53; Fe,O, 35.05-61.09; FeO 19.32-26.35;
MnO 0.0-7.04; MgO 1.31-5.62; NiO 0.09-0.39; CoO 0.0-0.09; V<sub>2</sub>O<sub>5</sub>
0.03-1.03 (
                      , 1949 6;
                                               , 1973;
                    ., 1984;
                                                      , 1988;
                                                           6-6.5 (
                                 360
       ).
                                                                    , 1973;
  )
                   , 1977).
         ультрамафитах
                                                       1
                                                    0.2
~1 %.
                                 0.5
                                            0.2
   12.5 %.
       0.3
                          0.2
```

```
, 1978).
                          Cr<sub>2</sub>O<sub>3</sub> 22 9 mac. %
    ., 1987).
И
                        магнетитах
               (1.3-5 \text{ mac. }\%).
                        2.5 % Cr<sub>2</sub>O<sub>3</sub>
                          пластовых
                                                      NiO 1.2-1.7 mac. %
                          (Эдельштейн, 1960)
                                                              NiO
                                                                       4.5 мас. %
           , 1960).
(
                                                                   0.1
                                        (\text{Mac.}\%): TiO_2 0.05; Al_2O_3 0.06; Cr_2O_3
0.81; Fe<sub>2</sub>O<sub>3</sub> 68.57; FeO 28.81; MnO 0.25; MgO 1.32; NiO 0.11;
Co V
                 ).
                                                             1-44 mac. % MgO
                                               , Чащухин, 1977),
                                                                           ., 1962;
     .).
                                                                    ),
```

```
0.4 - 1.0
                                                                            TiO<sub>2</sub>4 мас. %
   V<sub>2</sub>O<sub>3</sub> 0.56;
                                                                            - TiO, 0.5-0.8;
V_2O_3^{\circ}0.13 (
                                               , 1962).
                                                                          Платиноносно-
                                                                   2-3
                                                                                      , Запад-
                                           1
             20
                                            ~3 мас. % ТіО, и
                                                                             1 мас. % V<sub>2</sub>O<sub>5</sub>
                , 1966).
                                (Mac. %): TiO<sub>2</sub> 3.75-5.59; Fe<sub>2</sub>O<sub>3</sub> 57.59-60.80;
FeO 29.37-29.47; Cr,O<sub>3</sub>0-0.06; V<sub>2</sub>O<sub>5</sub>0.80-0.88(
                                                                                      ., 1962).
               92, 118, 135,
                                                                 10-15
4
                                                                                  (mac. %):
TiO, 1.94–9.92; Fe<sub>2</sub>O, 58.56–67.50; FeO 27.37-29.07; MnO 1.06-2.79;
V_2O_50.21-0.25 (
                                   , 1949).
                                                                                       1-2
```

30 95 % Fe²⁺Fe³⁺₂O₄. - Ti, V, Mn, Mg, Cr, Ni TiO₂ 0.04-0.30 mac. %, скаполит-скарнового , Качарское, Ti V,), (-Mn. скарново-магнетитовых 2 4-6 3-4 магнетита-1 0.1 - 0.25-6 Гороблагодатского

).

1.		, ()			
	(,	(
),).						кульско
	<i>)</i> .			,	,		
-							
			-			, - -	
				,	,		,
	_		,,	,	,		
•							
		-		,			
	,						
					магне	, тита-1	
	,		3	4 .			
			,	9	20 ,		,
	, 1970).	-		2	20 ,		

1 0 **Зак.** 3394 145

_	магнетитовых -
, 43	. « » - ,
0.001 .	(1962), « -
,	· -
-, октаэдрических	0.3-0.5 10-20 , (. 22).
	(, 1958) - , -
Рис. 22.	
- . ,	0.5 MM

, Зюзель-, 1937), 30 %. , 10 % . Магнетит-1 -2 магнетиту-1, *a_o* 8.41 FeO (, 1974).

```
, 1960;
                                   , 1970).
                         (~1 %)
                                           3-4
                 (0.45 mac. % TiO<sub>2</sub>), MnO 0.53 mac. %.
                                                0.00n \%
Ni, Cr V; a<sub>0</sub> 8.40
                                  , 1970).
до 1 см.
                                                   50 %
                                    8-10 %
                       0.05 - 0.1
, 1977).
                             динамотермальных
                                1
                                                 , 1930),
```

```
2-3
                      , 1963),
                            2
                               ),
                       , 1978)
         , 1979;
                                               , 1984;
                                , 1978;
       , 1989).
титовых
апопироксенитовых
                                          : 1)
   ; 2)
                                  Ti (0.01–0.10 %)
                                                          0.30 %),
Ge
      3-4 / .
```

, 1978).			(-
,). (198		-
п	ластовых			
·	-	«	».	ново
		-		
	(,	, 19	89).	
			(·
1933).				
		(,	
,		-	,	
Диагенетич			2-5	
(,	7-23 %, , 19 55) .			
(1940) 1942	Яницким -			
-	,		1-2	

```
( 8
                                     ( 1 )
               радиально-лучистые
                                          ( 33 %
  4.5 mac. % NiO (
                             , 1960).
                                                         (Эдельштейн,
1960).
1
                            , 1951).
                          15-20
1.5
                                                          , 1991).
                                                       (mac. %): Fe<sub>2</sub>O<sub>3</sub>
65.16; FeO 30.89;
```

```
4%.
                                                                                , a_{o}
8.40
                                                          );
                                                         «
                                                                            ».
             раскристаллизации раплавленных
                         ., 2005).
                                  - MgFe<sup>3+</sup>,O<sub>4</sub>,
                                                       . . (Magnesioferrite)
  XIII.5.
                                                                          , 1991).
                                                 5.5.
                       магнезиоферрита (мас. %): Fe<sub>2</sub>O<sub>3</sub> 75.72; MgO 23.40
                                                       MgO·Fe,O,
Fe<sub>2</sub>O<sub>3</sub> 79.85 MgO 20.15 mac. %.
            XIII.6.
                                 - MnFe<sub>2</sub>O<sub>4</sub>, . . (Jacobsite)
       Якобсит
                                                       (1935)
карбонатных
                            Узельгинского колчеданоносного поля
                                                 зерна, в
```

ропные, (мас. %): 38.18; (FeO	+Fe Ω) 57 02.	; MgO 0.04: CgO	0.72: TiO
0.05 ; $SiO_2 0.7$; $Al_2O_3 0.13$;	97.11 (Аю)	MgO 0.04; СаО пова,	, 2005).
2 2 3	•	-	-
-			0.3-
0.5	•		-
,	,		2.56(10)
минерала 2.12(5); 1.637(7); 1.504(8);	0.981(9).	(d, A; I)	· 2.56(10);
Fe ₂ O ₃ 69.5; ZnO 11.2 (,	(mac. %): , 1993).	19.3;
2 3	,	, ,	, ,
,			
XIII.7.	- ZnFe ₂ O ₄ ,	(Franklin	ite)
,		(1888)	Высоко-
,			-
•			-
32 . % (,	, 1993).		
XIII.8 6	5-FeO(OH),	(Goethite)
			1628
	(, 19	61),	-
		•	
,	, · · .	,	,
	; 1955),	_	
(1975).	,,,	•	•

	·	, (, 1974	, эвапор 4) .	ритах. —	-
, -	-		,	, 1973).	3 ,	- -
	1	- , эвапор	, итовых			- - - ,
1954).		-		(. 23)).	
	. 23.	- - -				
))	0.2 MM			

```
, 1955).
                                             (
                      : 1)
                                             ; 2)
              ; 3)
    типов.
                               , 1967),
                                   ).
Ni ~0.4 mac. % Cr ~1 % (
                                            , 1974).
                         Cr, Ni ( 1 %), 0.1 %
                                                           0.02 %
V (
                         , 1947).
                                 (Мугайское
                                                               ).
```

```
нижне-среднетриасовые
                                                                                  ),
                                                ),
                            Мугоджары).
                   ,
»(
   , 1947)
                                  43.2 mac. %)
                                                                      (82 %). -
5.69, P<sub>2</sub>O<sub>5</sub> - 0.008,
                         3.9
                                                         Cr<sub>2</sub>O<sub>3</sub>
S - 0.06 mac. % (
                                     , 1937).
                                     гетита
                                                          «
                                                                            (1948),
```

(1960), **«** As, Bi, Mn, Pb, Zn. по : As, Bi, Sn, Ba, Au, Ag, Pb, Cu, Zn, Mn. **>>**

```
).
                       100 .
40 mac. %).
                  щебне-глинистых
                       «
                                  ».
                             , 1936 a).
   , 1936 ).
                                                             ),
       1.
```

```
первичноокисные руды -
                                   ),
                («
                           »),
                                                        1.2-1.4 %;
                  0.25
                          (11.3 %)
        -0.25+0.01
                       (10.01 %) -
                                 -0.01+0.005
                                                  (72 %)
0.005
          (6.1 %)
                           ., 1940).
(d 1.5 и 2.5 Å),
                           гётиту,
                                                              100,
160,320°,
                                     350°,
                                                            14%,
```

```
, 1974)
       «
(мас. %): Fe<sub>2</sub>O<sub>3</sub> 82.66; Ni 0.012; Cr 0.0023.
                ., 1940).
                                                                   0.01
         1-3
                                                        MnO.
                                      40-50
                         4-5 (
```

```
280-
290°, турьита-
                      300-340°.
                                                               60-80
                            (300\text{-}380^{\circ}).
                           250-350 .
                           сорбционными
       Ti, Mn, Cr, V, Sn, Ba, Zn, Pb,
    ., 1990).
  ., 1986).
                           » (
                                     , 1923).
      )
                                                     , 1940).
                , 1991).
```

11 3ак. 3394 161

```
XIII.9.
                     - γ-FeO(OH), . . (Lepidokrocite)
                                           (1832)
                                  Алапаевских
     лепидокрокиты
                             , 1936 6;
                                            , 1936 ).
                                               гётитом,
                                инфильтрационных
                                , 1936 ).
                             1-3
                                                    два
                                                   no Ng
               по Np.
                               Al, Ca, Mg, Mn.
                                              вишнево-буро-
                           «
                                              »,
```

```
лепидокрокита,
  «
           >>
      Лепидокрокит
                                                       (Исмагилов,
                                                    при 450–480°.
1962).
                                                                Zn,
Ag, Bi, Mn, Pb, Mg, Cu,
                                Zr.
Гайского
                                , 1975),
                                           , 1963).
1986).
                                              пос.
          7
                                                       «
    »,
           .10.
                             - δ-FeOOH, resc. (Feroxyhyte)
ров и др., 1982).
11*
                                                                163
```

```
XIII.11.
                                  - Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub>,
                                                       . . (Srebrodolskite)
                                                            1982 . (
           , 1985;
                                              , 1991).
                                                             Сребродольского
( . 1927),
                                                                      «
                                                                                »,
{101} {010} ( .24 ).
                                                       0.1
                                           «
                                                        ».
                    {010}.
                                        5.5.
по \{h0l\}.
                         4.04\pm0.01 г/см^{3} (
               ).
                             4.5;
     ).
                                                              (Fe).
         «
                  ».
        1;
                                                                   Nm
                               101
тура.
                                     010
                                                          Np
       Рис. 24.
                                                                   (010)
                    ( )
                ( ).
```

```
Np, a
            - Nm ( . 24 6).
(?); ng 2.27; nm 2.25; 2.24 (
             {\bf Ca_{2}Fe_{2}O_{5}} ( . 40);
                                                  Prima.
: a_{\circ} 5.420 ±0.003, b_{\circ} 14.752 ± 0.003, c_{\circ} 5.594 ± 0.003
V = 447.27 Å<sup>3</sup>, Z = 4, = 4.03 / <sup>3</sup>.
                                                                    (мас. %):
                                                                                        41.69;
Fe<sub>2</sub>O<sub>3</sub> 56.50; MgO 1.19; MnO 0.90;
                                                             100.28 (
                                                    : Ca_{2.01}(Fe_{1.91}Mg_{0.08}Mn_{0.03})_{2.02}O_{5.00}
                                                   1000°).
                         1
                                                                   сребродольскит
«
                                                                                              круп-
                                                     кальцитовый
                            CaO-Al<sub>2</sub>O<sub>3</sub>-Fe<sub>2</sub>O<sub>3</sub>-ферритовых
```

	(1)
$Ca_2Fe_2O_5(2)$	_

	1		Çu _Z .	re ₂ O ₅ (2)	,
\overline{I}	đ _{urus} t	deine Å	I	d, Å	hkl
10	7.381	7.376	10	7.418	020
1	5.234	5.231	4	5.242	011
2	3.887	3.893	10	3.898	101
10	3.690	3.688	24	3.696	040
2	3.052	3.052	8	3.056	131
6	2.797	2.797	63	2.799	002
6	2.710	2.710	48	2.714	200
10	2.676	2.677	100	2.680	141
3	2.611	2.610	14	2.609	051
3 3	2.459	2.460	3	2.460	112
3	2.351	2.355; 2.351	5	2.356	122, 151
1.5	2.187	2.185; 2.184	9	2.189	231,240
4	2.081	2.079	23	2.882	161
7	1.946	1.946	42	1.949	202
1	1.905	1.901	4	1.903	152
2	1.883	1.882; 1.880	8	1.884	222,251
10	1.844	1.844	22	1.847	. 080
2.5	1.745	1.744	9	1.746	. 033
1.5	1.699	1.666; 1.664	5	1.669	181,270
2	1.624	1.625; 1.623	7	1.626	252,331
1	1.604	1.607	3	1.609	172
3	1.592	1.591	15 .	- 1.593	143
1	1.578	1.576	6	1.578	053
2.5	1.559	1.558	18	1.561	341
3 2	1.540	1.540	8	1.541	082
2	1.526	1.526; 1.525	10	1.527	262,280
1	1.488	1.486; 1.485	5	1.488	322,351
1	1.468	1.466	7	1.468	233
1	1.433	1.433; 1.430	5 7	1.434	163,272
2	1.415	1.409	7	1.411	361
1	1.400	1.398	2 2 4	1.400	004
1	1.382	1.379	2	1.381	1.10.1
1	1.378	1.374	4	1.375	024
1	1.365	1.363	3	1.364	253
1	1.357	1.355	4	1.357	400
1	1.350	1.350; 1.349	2	1.350	352,410
2	1.340	1.339	10	1.341	282
2 2 2	1.2320	1.2314;1.2315] -	<u> </u>	450, 372
L <u>2</u>	1.1750	<u> 1.1751;1.1756</u>			2.11.1.2.10.2
	~	. 1 - дифрактом	етр	-2, CuK _α ,	, N1- ,

Ge, . . . Al (Smith, 1962).

-2, CuK_α, Ni-; 2 -

		,	. Сребродольскит -
	« » ()
.12.	- HFe	е ₅ О ₈ ·4Н ₂ О, гекс.	. (Ferrihydrite)
(., 1975).	,	- - -
	(, 2000).

хіv. ОКСИДЫ ГИДРОКСИДЫ МЕДИ, ЦИНКА, НИКЕЛЯ,

XIV.1. - **Cu**,**O**, . . (Cuprite) 1735 . . . : «...руда... самородною ...» ((1795),: «...красноватая (1824): « (1786)». . XIX . (Меднорудянское) «...В » (Энгельгардт, 1829). 1814 1896 . 82 3 , 1953). 1 (, Ольговское,

```
1791 1816 .
                                             680
                      35 . меди.
             , 1887).
                                                         , 1839;
      , 1846; Яговкин, 1932;
                                                         , 1964),
                              1.5
        , 1932).
                                                   (Rose, 1837).
                                                        )
                         , 1911).
 Гайского
                                           70-90
                                               , 1973).
\rightarrow куприт \rightarrow
```

```
10-20
                                  ,
, 1938).
    20-30
                     30
                                                        0.5-3
   10
                                          0.5-2
5-7
                                (
                                         , 1955);
               медь (0.02-0.45\,\text{mac.}\%).
      , 1951).
                                      , 1991).
```



```
1.5
                                               22
\{100\}, \{ \}, \{111\}, pexe \{210\} \{510\} ( .25).
                                                          }, -
                                                          {100}
                    {111}.
                                          (
15-20 (
                 , 1948).
      (Rose, 1837).
                              (
                                                          , 1975),
                                   a_o 4.27 \
                                                            . Бушма-
                     ).
            XIV.2.
                             - CuO,
                                         . . (Tenorite)
                              1827 .
                   ., 1986).
      (
                                                              (Rose,
1837).
```

```
, 1841),
1846).
                                                                 , 1937),
                       . III
                                                                 , 1947),
                                  , Кузнечихинском (
               , 1951)
                                                           , 1955).
                       , 1953).
                                1835 .,
                        , 1987).
                                                   , 1888).
   , 1987).
                                     , 1841).
1894).
1841).
                     , 1887).
           (
```

```
, 1948).
                                                   1947).
                  пос.
                           , 1962).
1951).
                                    , 1991),
    1
                                                                                (d,
hkl): 2.516(10)(111); 2.314(10)(111, 200); 1.860(7)(202); 1.576(5)(202);
1.500(5)(113); \ 1.405(5)(311); \ 1.379(6)(220, \ 113); \ 1.265(004, \ 222); , 4.681,6,3.426, 5.127, \beta = 99.5^{\circ}.
```

```
(1841)
                     1847 .,
                (Friedel, 1873),
                                                             «
             1890-
                             1960 .
  (1949).
                                                  1966 . -
                                                  XIX
                        , 1974).
1962 .
                          Гайского
                                                     (
                                                              , 1973).
                                                          «
    >>
                       , 1949),
               (
                                      (0.5-1)
                            5
                                  , 1973).
                         (
           , 1974).
```

- CuFeO₂, . . (Delafossite)

XIV.3.

	,	1-3 ,	
	•		
			-
, Гайского	-		
,	,	,	,
•			-
	,		. ,
		,	-
	,	делафоссит.	
		, ,	,
'			•
-			
	4.75 / 3	5.47 / ³	
	(340 / ² ,).	4—4.5,
, (0001)	3 1 0 / ,		1
$\{0001\}.$ $H_2SO_4.$,	•	1
,	(мас. %	5): Cu ₂ O42.58; FeO	44.61; Fe ₂ O ₃ 5.64
V ₂ O ₃ 1.21;	99.98 (, 1973);	·

```
сита Гайского
                             (d, A;/; hkl): 2.86(7)(006); 2.54(10)(012);
2.26(6)(104); 1.664(6)(018); 1.520(6)(110); 1.439(6)(1.0.10);
1.341(4)(116); 1.300(4)(202); 1.043(5)(0.2.10); 0.993(4)(120);
0.986(5)(122) (
                      , 1973).
                                                              , 1974).
             XIV.4.
                              - ZnO, гекс. . (Zincite)
                              1903 .
           99.63 % ZnO
                                 FeO (
                                                    ., 1986).
                                 Гайского
      0.01-0.03 % (
                                 , 1975);
                                                            ., 1992).
                                                     1983).
                                                            , 2005).
        XIV.5.
                           - ZnMn,O,
                                            . . (Heterolite)
                               (1980)
            (d, ; I): 4.90(6); 3.07(7); 2.76(9); 2.48(10); 1.538(8) (1).
```

123ак. 3394 177

изоструктурен

```
Zn_2Mn_4^{3+}O_8\cdot H_2O
Ик-Давлят
                                                                         ., 2006).
                                    - (Zn,Fe^{2+},Mn^{2+})Mn_3^{4+}O_7\cdot 3H_2O_7
        XIV.6.
                                    . (Chalcophanite)
2006).
                                                                    . 26),
                                                                            халь-
                           (мас. %): MnO<sub>2</sub>65.49; ZnO 20.71;
                                                                              FeO
    0.3 mac. % (
                                -202
                                                            EDAX,
                                             Zn_{1.01}Mn_{2.99}O_{7}\cdot 3H_{2}O.
                  );
«
                 халькофанита
       Рис. 26.
```

Ик-Давлят

Халькофанит (Ик-Давлят)		(ASTM, 15	(ASTM, 15-807)		(ASTM, 19-88)	
d, Å	/	d,k	I	d,k	I	
6.92	100	6.96	100	6.94	100	
6.23	20	6.23	10	6.20	20	
4.46	10					
4.08	90	4.08	50	4.06	50	
3.50	100	3.50	60	3.46	70	
3.30	10	3.32	10	3.29	20	
3.13	60	3.23	5	3.20	10	
2.80	70	2.77	20	2.76	30	
		2.71	5	2.70	5	
2.57	100	2.57	40	2.54	50	
2.46	80	2.46	20	2.45	40	
2.39	70	2.41	20	2.40	40	
2.23	100	2.24	50	2.23 ,	50	
2.13	60	2.13	20	2.13	30	
-		1.986	5_	1.98	5	
1.900	70	1.900	30	1.899	40	
1.846	30 .	1.849	10	1.841	20	
1.800	50	1.795	20	1.795	30	
		1.750	5	1.748	5	
1.721	10	1.715	5	1.712	10	
1.670	40	1.668	10	1.668	5	
1.600	90	1.597	40	1.563	5	
1.538	80	1.563	5	1.560	50	
		1.507	10	1.508	20	
1.432	90	1.431	30	1.429	50	
1.401	_20	1.402	5	1.398	5	
1.323	10	1.324	5_	1.321	10	
1.302	.10	1.308	5			
1.281	20	1.279	10	1.277	10	
-2.0, Fe-	, .			1.234	5	
				1.204	10	

```
200°,
фект
       ZnMn<sub>3</sub>O<sub>7</sub> (Frenzel et al., 1980).
                         (1998), халькофанит
              XIV.7.
                                   - NiO, . . (Bunsenite)
                                       1993
                                                              «Уфалейникель»
            (~60 %
                                ).
                                          Ni 75.57 mac. % (
                                                                           SEM-
535
                      EDAX,
78.58.
          (d, ): 2.411; 2.088; 1.476, 1.258; 1.207 (
       XIV.8.
                                            , триг. . (Heterogenite)
                                                   (1959)
ультрамафитах
              2-3
                                    2.5-3.
  25 %
                    (Mac. %): 40.58; NiO 3.50; Fe<sub>2</sub>O<sub>3</sub> 2.91; MnO 0.96;
CuO 0.37; As<sub>2</sub>O<sub>5</sub> 5.75; SO<sub>3</sub> 0.82; H<sub>2</sub>O 5.78 (
                   XIV.9. PdO -
                                 (~3
                                                             Pd
                          ).
```

XV.

```
PbO<sub>2</sub>,
          XV.1.
                                - PbO<sub>2</sub>,
                                              . . (Plattnerite)
                                                          платтнерита
                                                                   (1919),
               ., 1982).
                                                         ( 0.5 ).
60°
                 ((d, A; 7): 3.47(1); 2.805(2); 1.490(2),-
                                       )
400° (
                                                   распаде;.
                                                                  ., 1982).
                     4.5 (
                                                  , 1991).
```

XV.2. PbO₂, . .

			(
(.).			1	« •	» -
~4, ,	-	,		Di	-
Fe. 2.679(7)(200 1.199(5)(420) , 1991). PbO ₂ (A)(222); 1.617 2); ,		Pb: 3.093(10)(1 1.229(5)(33 ,	
XV.	3. () - PbO ,	(Li	tharge)	
, 1901)	. 1965 .			· , .	-
,	,			,	-
	, ,	, ,	,	, , (0.8-1.4	,
	,	,			-
,	-	,	· - ,		- - -
		•			-

ской сви	ты.					
	•			;		2006 .
			()	-
•	2	-	,	,		,
				•		
			,	,		
			(),	(-
,		, 1991).		-	,	-
		•				-
2.51(9); 5.022	1.874(9);	1.542(10);	1.217(9);	1.146(9);	(d, ; I): 1.062(8);	3.13(10); a _o 3.981,
	XV.4.		- PbO,	(M	(assicot)	
					15	-
		(, 19	26)	13	-
	-	,			,	
			(, 19	954).	-
•				•		
			(,		, 1991).
			-		,	
			-		,	-

```
XV.5. -Pb_3O_4, . . (Minium)
                       1814 . Первоблагодатном
                                               , 1907),
                                    » (
(1955),
                    ( , 1836),
                         .
, 1887), «
(1900)
                                                 (1-2)
                                           , 1911).
     XV.6. Коронадит – Pb_{2-x}(Mn^{4+}_{8-y}Mn^{2+}_{y})_{8}(O,OH)_{16},
                            (Coronadite)
                                                 15 ,
2006).
30 %),
       . 27).
              (Mac. %): PbO<sub>2</sub>38.72-40.97; 53.13-56.75; FeO 1.20-
ных
2.90; Cu<sub>2</sub>O 1.96–2.61;
                                        - ZnO 0.87 (
                                                             -202
            EDAX,
                                              ); H<sub>2</sub>O
Pb Fe
                       8 \qquad (Mn+Fe+Cu)
Pb_{_{1,53}}(Mn_{_{7,54}}Cu_{_{0,28}}Fe_{_{0,18}})_{_{8}}O_{_{11}}.\\
```

```
. 27.
0.01~{\rm ym}
                                                             Ag<sub>1 1</sub>Hg<sub>0 9</sub>,
                                                        (Frenzel, 1980;
   , 1965),
                                - SnO<sub>2</sub>,
         XV.7.
                                                 . . (Cassiterite)
                                                                            (1920)
                                 XIX
                                                                           1938 .
                              , 1942). 1938 .
```

```
pp.
                                 , 1940)
                                                                 , 1941)
                          сальнерско-маньхамбовского
                                       , 1965),
                                          , 1947),
                             (
                            1936 . .
                72-75 (
                                 , 1949).
                                                                   395;
                                                  1968 .,
                                                                  83.73
мас. % SnO,
                                             , Ti, Nb, Fe, Zr, Ca, . .
                                                               , 2006).
                                                                    57,
64, 70, 71, 234, 235;
                {101}
                          s\{111\} и e\{101\}.
                                                     (
                                                          . 28)
   395 (
                    , 1983).
                        57),
                                                    395);
```

```
. 28.
                                                      : (101) -
     VI
                                           I-III; V и III; VII, II и IV; по (301)
                                                      I, III, VI, II VII.
Ш
                                              71
             (1920),
                                  1954).
                                               , Казенницы
мы (d, ;/): 3.348(10); 2.041(9); 2.367(5); 1.763(9); 1.592(5); 1.435(4).
                                                    (mac. %): SnO<sub>2</sub>96.0;
Nb_2O_51.28; Ta_2O_50.85; WO_30.74; FeO 0.44; MnO 0.08; TiO_20.12;
   99.51 (
                        ., 2002).
           Ta_2O_5 ( 6-8 mac. %), FeO (0.97 %), MnO (0.65 %),
                                                        3
  ., 1968);
                                  - пос.
    , 1940)
   0.2
                                           , 1947).
```

(, 1938). 0.1-0.4 , (, , 1948).

3 .

XVI. ОКСИДЫ И ГИДРОКСИДЫ СУРЬМЫ, МЫШЬЯКА

,	, стиби	конит,	,	,
XVL1.	- SI	o ₂ O ₃ ,	(Valentinit	e)
·		191	l 0 . «	
» (№ 6/7) монитового , 1980).				- , 1919;
		_	(Кайнов	., 1990).
,	3 .			-
	, (Кайнов, 20	005).		- · -
;	(Ramos, 2		: 3.13; 3.11; 2.64	•
XVI.2.	- S	b ₂ O ₃ ,	. (Senarmont	ite)
· · ·	(1856) (1 912)		уточнения	
· (.	, 1972; 1973).	,	1967	

```
. 29. Кристаллы
                    элек-
                                           24000-36000
                                                              . 29).
                        26.9-50.8
       1.84-1.98.
                                                     5-15 %.
          660 °
                                           460
                                                  745
). a_o 11.11 \pm 0.01 ^{\circ}.
                                             (d, A): 3.212; 2.779; 1.551;
                                                               1
                              (Кайнов
                                           ., 1990).
                                                        1.5
```


XVI.5.	- CaSb ₂	O ₆ ·3H ₂ O,	(Hydroro	meite)
Гидроромеит 	г (гидратир (1972)	оованный)	1967 2
,			, рентге	- енострук
23.2 %, 1. 660–1	, 20.7 %. . 679 .	234–5	, 512 / ² .	, 18.2
1040° ИК-спек 730 ¹ . 2820–3) гр 600 см ⁻¹ ,	Ç	200° (980 470
		, ,	,	
		,		

```
XVI.6.
                      - Pb,Sb,O,2H,O, . . (Bindheimite)
                       (1888)
 (.
                 (1955)
                                                  Благодатских
        рентгеноаморфная
                                      44 % биндгеймита, 35 %
                                 биндгеймиту
       Горно-Анатольском
                                   партцитом
                                              (d, A): 3.02; 2.61;
      Рb Sb, рентгенграмме
1.852; 1.581; 1.201 ( ,
                                  , 2003 ).
         XVI.7.
                          -\mathbf{As_2O_3}, . . (Arsenolite)
                                            , 1901);
    (1938)
                                1918 .
                                                 7-8
                             1.5,
```

13 Зак. 3394

```
(~1.75).
                   As.
                                                         β-серы.
                                - Bi<sub>2</sub>O<sub>3</sub>, мон. . (Bismite)
              XVI.8.
                                                             , 1830;
   , 1836)
                                                     , 1954).
                                                             , 1841),
   , 1900),
                 , 1943).
                                                  Map,
                      , 1938).
   айкиниту
1969).
         , 1984).
                                             ., 1986).
 XVI.9.
                            - Ag_2Sb_2O_6 [O,OH], . . (Stetefeldite)
```

(Юшкин	., 1969).	0.3 Mac . % Ag
2003).	,	стетефельдитом (, , , , , , , , , , , , , , , , , ,
		Ag Sb (-202 ,

.

••

13*

ГИДРОКИСЛОМ

```
XVII.1.
                                    - CaS<sub>5</sub>·Ca(S<sub>2</sub>O<sub>3</sub>)·6Ca(OH)<sub>2</sub>·20H<sub>2</sub>O,
                               мон. . (Bazhenovite)
                                                      1984
                   «
                                     >>
                 1987).
                                                      минералов (
                  ).
                                                                                        ».
                             ольдгамита,
                              (
                                    1
                                         )
                                                                           1-2 %
                                                                       (рис. 31),
             {001},
                                     b{010}, m{110}, {011}, o{\bar{1}11}, k{\bar{1}01}.
5
                                                                              [001]
(360 \text{ HM})
             {010}
                        2.
                                          1.83
± 0.01 /
        Рис. 31.
                                            (a)
                                       (б).
```

```
, ng 1.697;
                    1.595; ng-np = 0.102. Np \parallel 010, Ng \parallel 100, cNm = 30^{\circ}
(рис. 31 б). 2V_{\text{выч}} = 60^{\circ}20'.
          , Ng -
                                             . Nm -
    1,
                                                           ).
                                      H,S
       1
                                                                          S).
                                                                          27.58; S 19.56;
                                                       (mac. %):
H<sub>2</sub>O<sup>-</sup> 9.46; H<sub>2</sub>O<sup>+</sup>31.20;
                                12.20 (
                                                    );
                                                                                   100 (
                                                        (S)
               тиосульфатную (S_{_{\rm T}} 6.20),
                                                                   (S_{\pi} 7.25;
                       ).
                                                                 : Ca_{1.00} (S_{263}S^{c}_{2.22})_{4.85}
Ca_{1.00}(S_{2.25}O_{3.00}) Ca_{6.00}(OH)_{12.20} \cdot 0.14H_2O.
                                                                                      P2/C;
a_o 8.45(1), b_o 17.47(1), c_o 8.24(1); \beta = 119.5°, V = 1053.44 A^3, Z = 1
                                                      . 42).
                                                                Ca(OH), («
                                                           H,O
        »),
{010}.
               \{010\},\
                                                                  {010}
                                                     \{010\},\
                         (Ng Nm
                                                                         ),
   120°.
```

I	d, Å	hkl	I	d, Å	hkl
10	8.76	020	4	1.873	280
2	4.52	130	4	1.798	420
10	4.39	040	2	1.709	382
2	3.75	122	2	1.680	302
3	3.01	142	3	1.646	322
6	2.91	060	2	1.601	1.10.2
5	2.81	240	3	1.470	1.10.2
5	2.62	122	3	1.452	0.12.0
4	2.38	162	2	1.371	2.11.1
2	2.34	323	3	1.237	
5	2.28	260	2	1.161	·
2	2.17	080	3	1.127	
7	1.996	162	2	1.086	
4	1.930	182			

.

```
XVII.2.
                          - CuFeS<sub>2</sub>·1.6Mg(OH)<sub>2</sub>, гекс. . (Valleriite)
                           1941 .
                                                                       (1942)
(1948).
                             (0.0)
                              (1947),
                                   0.02
                       (
                              , 1949).
                             0.01-0.08
                                                      (
1972).
                                             (1942)
                                                                    0.0
                                                                         10 %
                                      ., 1973).
                      (
```

```
XVII.3.
                       -FeS·Mg(OH), . . (Tochilinite)
                                  дунитов
                                                   (1978)
                                серпентинизированных
                                                          α-ли-
                                         α-лизардита,
                              (
                                                   по Ng)
                                            α-лизардита.
                               0.01-0.05 .
                                                          5.37-
5.40 .
                                      (mac. %): Fe 39.71; S 22.80;
MgO 20.14; FeO 1.07; NiO 0.08; CoO 0.03; H<sub>2</sub>O
             ., 1990).
                                Джетыгаринском
```

α-лизардитом, Джетыгаринского

5

α-лизардита

 $0.2~\mathrm{mm}$

α-лизардитовых

0.03-

0.05 mac. %,

(. 32).

 $0.1 - 0.6 \, \text{mac.} \, \%$

0.5 - 2.5 mac. %.

. 32.

Джетыгары (;

В

дения (б; -).

D.I MM

```
30 %-
                                                         5
                               родингитах
                                                 отливом до 0.6 мм
          » ( . 32 6)
                                     Fe, Mg, S (
                                                          -202
                  (d, Å; I): 10.7(3); 7.5(3); 5.58(9); 5.42(10); 3.65(3);
2.25(4); 1.882(3); 1.344(3) (РКД-57.3 , Mn-
 XVII.4.
                      - V_{1,x}S·n(Mg,Al)(OH)<sub>2</sub>, resc. . (Yushkinite)
                                       1977
                                                         ., 1984).
                                                        (C_1s),
```


MS-46 Cameca,

V, Al, Mg, CuFeS₂;

: $1 - V_{0.62}S \cdot 0.612(Mg_{0.67}Al_{0.33})_{1.00}(OH)_2$;

2 - $V_{0.53}S \cdot 0.520 (Mg_{0.67}Al_{0.33}Fe_{0.01})_{1.00}(OH)_2$;

 $3 - V_{0.56}S \cdot 0.530 (Mg_{0.65}Al_{0.34}Fe_{0.01})_{1.00} (OH)_2$

XVIII.	,	,	,		
	() .	,		
XVTII.1.	- CaO·2Fe ₂ O ₃ , (Grandife				
	()			
	Fe ₂ O ₃	«grandis» ((), ., 1992).		
			-		
	,				
;			-		
, .			, -		
,	,		-		
5 .	-		1-2 4-		
-1 .		-	-		
- ,	,	двуфазност	LP -		
	(0.01)	-		

```
2-3
            Fe,O,
            ~20%,
                                                            (mac. %):
                                                                                  11.72;
        3.45; MgO 2.35; Fe<sub>2</sub>O<sub>3</sub> 84.37; Al<sub>2</sub>O<sub>3</sub> 0.11;
                                                                                102.00
               JXA-5,
                                                                    0107-15).
(
                                  0.28(Ca,Mg,Mn)O \cdot 0.56(Fe,Mn,Al)_2O_3
      (Ca,Mg,Mn)O·2(Fe,Mn,Al),O,;
CaO·2Fe,O,.
(d, A; /; hkl): 5.23(1)(006); 4.93(1.5)(102); 3.12(2)(108); 2.99(4)(110);
2.68(3)(1.0.10); 2.60(10)(116); 2.55(5.5)(202); 2.15(2)(208);
             : a_0 6.0; c_0 31.3
                                                                  , 1988).
                                                   (
                                                           CaO·3Fe<sub>2</sub>O<sub>3</sub>.
                                                                             (мас. %):
Fe<sub>2</sub>O<sub>3</sub> 88.22; Al<sub>2</sub>O<sub>3</sub> 0.41; SiO<sub>2</sub> 0.53;
                                                     5.41; MgO 3.07; MnO 1.22;
FeO 0.3;
                    99.16 % (
                                                      CaO·3Fe,O,
             Fe<sub>2</sub>O<sub>3</sub>89.52
                                     10.48 мас. %).
                                             CaO·Fe<sub>2</sub>O<sub>3</sub>(
                                                                       25.99 mac. %)
                                                             , 1988).
                                ) (
                                                     ., 1992).
```

```
- Fe^{2+}(Fe^{3+},Al)_2Ti_3O_{10}. . (Yunikovite)
XVIII.2.
                                        (1916-1991),
рентгеноструктурной
         (.
              1991 . . .
                                          47 .
               ., 1991).
   . 35).
решли
    . 36 )
                                     Рис. 35.
                                           . 1 -
                               наит; 4 -
```



```
(Mg, Fe<sup>2+</sup>)Ti<sub>2</sub>O<sub>5</sub> Fe-
                                                                (Fe^{2+}, Mg)Ti_{2}O_{5}
                                                                               ( 0 = 5): (Fe^{2+}_{0.44}Al_{0.09})_{0.53}
\begin{array}{l} (Fe^{3+}_{\phantom{3}0.83}Al_{\phantom{0}.17})_{1.00}(Ti_{1.45}Fe^{3+}_{\phantom{3}0.05})_{1.50}O_{5.00}; \\ Fe^{2+}_{\phantom{2}0.5}(Fe^{3+},\!Al)_{1.0}Ti_{1.5}O_{5.0}, \qquad Fe^{2+}(Fe^{3+},\!Al)_{2}Ti_{3}O_{10}. \end{array}
                                                                     : \ FeO \cdot Fe_2O_3 \cdot 3TiO_2 = \ FeO \cdot 2TiO_2
- Fe-
                            ) + \text{Fe}_2\text{O}_3\cdot\text{TiO}_2
(Fe-
          Fe,O<sub>3</sub>·TiO<sub>2</sub> -MgO·Fe<sub>2</sub>O<sub>3</sub>·2TiO<sub>2</sub> -FeO·Fe<sub>2</sub>O<sub>3</sub>·3TiO<sub>2</sub> (Bowles, 1988)
                                                                            KHM MMA (
1998).
                                                    - Ca_2(Fe^{3+}, Mg, Ca)_6(Fe^{3+},Si,Al)_6O_{20}
          XVIII.3.
                                                       . . (Malakhovite)
                                                      Ca Fe
1990.
                                                                                                             1983-89 гг.
                                                                              (1899-1989 .),
                                                         ., 1993 ).
          базальтоподобные
                                                                                                       , 1991;
         ., 2005). Наболее
```

143ак. 3394 209

```
. 37.
() (). : a\{100\}, b\{010\}, k\{111\}, \tilde{K}\{111\},
R\{1\overline{1}1\}, r\{11\overline{1}\}; m\{110\}, M\{1\overline{1}0\}.
                                                                 b
                                                       a
мелилитов,
                                                              ũ
лезистости
    ( . 37 ),
                                               \{010\}).
                                                                                ., 1991),
                                                                              Зельнеру.
                : b\{010\}, a\{100\}, k\{111\}, K\{\overline{1}11\}R\{1\overline{1}\overline{1}\}
                                                                                  r{111}.
                                          \{110\}, \{110\}
     К
                                             {010}.
                                       5.
4.09 /
                              R \sim 14 \%.
\mathbf{B}
                                                              2.5-3 mac. %);
```

```
5-
                                                           (mac. %): Fe<sub>2</sub>O<sub>3</sub> 69.73; CaO 13.70; SiO<sub>2</sub>
8.13; Al<sub>2</sub>O<sub>3</sub>6.85; MgO 2.67; TiO<sub>3</sub>0.39;
                                                                                      101.47 (
\text{Ca}_{2.00}(\text{Fe}^{3+}_{5.00}\text{Mg}_{0.63}\text{Ca}_{0.32}\text{Ti}_{0.05})_{6.00}(\text{Fe}^{3+}_{3.31}\text{Si}_{1.29}\text{Al}_{1.28})_{5.88}\text{O}_{20.0}, идеализированная - \text{Ca}_2(\text{Fe}^{3+},\text{Mg},\text{Ca})_6(\text{Fe}^{3+},\text{Si},\text{Al})_6\text{O}_{20}.
                                                                                                                         (d.
/; hkl): 8.15(14)(010); 3.83(20)(\overline{121}); 3.48(19)(\overline{2}12); 3.18(40)(012);
2.993(70)(120); 2.859(37)(3\overline{1}1); 2.721(80)(030); 2.587(100)(21\overline{3});
2.526(90)(211); 2.473(40)(2\overline{2}2); 2.132(55)(3\overline{4}3); 1.714(20)(3\overline{6}0);
1.626(52)(26_{-0}); 1.616(33)(\overline{4}34); 1.517(70)(\overline{1}43); 1.506(50)(\overline{7}41);
                                           -2.0, CuK,
1.483(38)(136) (
: \boldsymbol{a}_{o} 10.58(3); \boldsymbol{b}_{o} 10.90(3); \boldsymbol{c}_{o} 9.10(4) ; = 107.08°; \boldsymbol{\beta} = 95.02°; = 124.45°; V = 783.22 A<sup>3</sup>; Z = 2; \boldsymbol{\rho}_{\text{выч}} = 4.094 / <sup>3</sup>.
                                                                                                              . 1988:
                  ., 1990).
            Малаховит -
                                          (1000-2000 \circ)
                                                                                               базальтоподобного
```

14* 211

```
- Ca_2(Fe^{3+},Mg)_6(Al,Si)_6O_{20},
                                                                                                   . . (Dorrite)
   XVIII.4.
                                                                                                              ., 1993 6).
                                       энигматита.
                     , 1981).
                                                                                                                   0.4
                                                                                                                  . 37 6).
                                    , 1981): b\{010\}, m\{110\}, M\{\overline{1}10\}, k\{111\}, K\{\overline{1}11\},
R\{1\overline{1}\overline{1}\} и r\{11\overline{1}\}.
                                    ZRG-3
                                       \{010\},\
                                     5.5,
                                                                                                             (mac. %):
Fe<sub>2</sub>O<sub>3</sub>35.01; Al<sub>2</sub>O<sub>3</sub>20.17; SiO<sub>2</sub>17.75; CaO 14.20; MgO 12.34; TiO<sub>2</sub>0.78;
           0.41:
                : \text{Ca}_{2.00}(\text{Fe}^{3+}_{3.26}\text{Mg}_{2.52}\text{Ca}_{0.09}\text{Ti}_{0.08}\text{Mn}_{0.05})_{6.00}(\text{Al}_{3.26}\text{Si}_{2.44}\text{Fe}^{3+}_{0.35})_{6.05}\text{O}_{20.0},\\ - \text{Ca}_{2}(\text{Fe}^{3+},\text{Mg})_{6}(\text{Al},\text{Si})_{6}\text{O}_{20}.
           ; /; hkl): 8.06(24)(0\overline{1}0); 3.137(32)(3\overline{2}1); 2.940(65)(2\overline{3}1);
2.690(64)(2\overline{41}); 2.550(100)(2\underline{42}); 2.432(26)(\overline{411}); 2.108(60)(1\overline{34});
1.940(56)(\overline{231}); 1.618(28)(162); 1.606(30)(411); 1.498(44)(\overline{2}61);
```

```
1.494(63)(051) ( -2.0; CuK<sub>α</sub>, монохроматором); a_o 10.487(3); b_o 10.784(9); c_o 8.962(5) A; a=106.05^\circ; \beta=94.49^\circ; \gamma=124.59^\circ; V=765.58 A³; <math>Z=2; выч = 3.600 / ^3.
                                                                      (2)
                                                           ., 1994).
                                                      - Ca<sub>12</sub>Al<sub>14</sub>O<sub>33</sub>,
                XVIII.5.
                                                                                      . . (Mayenite)
                                                                                                                  (
        ., 1993 ).
            «
                                                                       майенитом
                                                                                                                           слой-
                                  0.1 - 0.2
                                                                                                            5.5.
                             ),
                                                                                                 1.
7.50 mac. %),
                                                                                         11.25 мас. % Fe<sub>2</sub>O<sub>3</sub> при
                                                Al<sub>2</sub>O<sub>3</sub>,
                                                                               - SiO<sub>2</sub>
```

```
(мас. %):
                                                                                46.33; MgO
1.57; \ \mathbf{MnO} \ \ 0.05; \ \mathbf{Al_2O_3} \ 42.15; \ \mathbf{Fe_2O_3} \ 6.25; \ \mathbf{SiO_2} \ 1.73; \ \mathbf{H_2O^+} \ 1.80;
99.83 (
            0.60 %
                                                                1.80 \, \text{mac.} \, \%).
                                           (Ca,Mg)<sub>12</sub>(Al,Fe,Si)<sub>14</sub>O<sub>33</sub>.
                                              2.94 mac. % 1 (
ляренок).
                                                                 Fe
                                           : 1.660
                                                                              , 1.671
                              1.696
              (d, ; I; hkl): 4.91(69)(211); 3.003(43)(400); 2.690(100)(420);
2.454(47)(422); 2.196(30X521); 1.669(26)(640); 1.610(33)(642) (
2.0; CuK<sub>a</sub>,
                                                                                : a<sub>o</sub> 12.041,
12.056
             12.073
13.9 мас. %).
```

```
_{-} Ca<sub>13</sub>Al<sub>14</sub>(SiO<sub>4</sub>)<sub>0.5</sub>O<sub>32</sub>Cl<sub>2</sub>, куб. c.
        XVIII.6.
                                   (Chlormayenite)
            Силикохлормайенит — Ca_{13}Al_{14}(\dot{SiO}_4)_4O_{24}Cl_4
                                 (Silicochlormayenite)
                                                                     4 mac. %
                      ., 1995 6).
(
                                                     10-12 мас. % 1,
                                 (211):
                                                     12 .
                    a_{o}
                                                        хлормайенитами и
                                                                                       (211)
         «
                                              ».
                                                                  , 1991).
                         1000°
                   (
                                                                           («
             »).
                                                                             . 38 ).
```


. 44.

(мас.	%	١
IMAC.	70	,

-			
	(3)	(4)	(5)
SiO ₂	1.7-4	5-18	18-21
Al_2O_3	34-42	25-29	16-22
CaO	43–46	33-38	38-40
Fe ₂ O ₃	6.2-6.4	4.3	1.4–8.2
MgO	1.6	0.7	1. 9-3.5
SO ₃	-	7.9	0.7-1.7
C1	4.6-4.7	5.3-8.8	8.6-12.2
H ₂ O ⁻	-	1.6	1.1

Ti, Mn, P - 0.5 mac. %.

```
(Al_2O_3+Fe_2O_3)=7. \qquad \text{хлоргибшита} \\ : (Al_2O_3+Fe_2O_3)=1. \\ (Ca_{12\,78}Mg_{0\,60})_{13\,38} (Al_{12\,80}Fe^{3+}_{1.20})_{14.00} (SiO_4)_{0.45} O_{31.68}Cl_{2.06}(OH)_{1.54}, \\ -Ca_{13}Al_{14}(SiO_4)_{0.5}O_{32}Cl_2. \\ ( - O_4)_{13}Al_{14}(SiO_4)_{14}O_{24}Cl_4, \qquad 11CaO\cdot7Al_2O_3\cdot4SiO_2\cdot2CaCl_2\cdot Tak-1000 \\ - O_4(13\,14)_{14}(SiO_4)_{14}O_{24}Cl_4, \qquad 11CaO\cdot7Al_2O_3\cdot4SiO_2\cdot2CaCl_2\cdot Tak-1000 \\ - O_4(13\,14)_{14}O_{24}O_4(14, O_4(14)_{14}O_{24}O_4(14, O_4(14)_{14}O_{24}O_4(14)_{14}O_{24}O_4(14, O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_{14}O_4(14)_14O_4(14)_14O_4(14)_14O_4(14)_14O_4(14)_14O_4(14)_14O_4(14)_14O_4
```

2.5

```
1
«
                                                (горельник),
                                                                                        1-5
                                                                              . 38
                                 ?).
                                                                  5,
   = 1.90 (
                                                                                         10%.
                  (CaO·Fe<sub>2</sub>O<sub>3</sub>).
(Mac. %): SiO<sub>2</sub> 9.23; TiO<sub>2</sub> 0.28; Al<sub>2</sub>O<sub>3</sub> 1.56; Fe<sub>2</sub>O<sub>3</sub> 44.84; MnO 0.64;
MgO 0.07; CaO 38.24; Cl 7.46;
                                                              100.64 (
                                                                                             O = C1 1.68
(JXA-733 Geol,
                                                                         : 15.58CaO(7.59Fe<sub>2</sub>O<sub>3</sub>+
\begin{array}{l} 0.41 A l_2 O_3)_{8.00} \cdot 4.15 SiO_2 \cdot 2.84 CaCl_2 \\ Ca_{18} Fe_{15} AlSi_4 O_{47} Cl_6 . \end{array}
                                                                                                     (d, A):
4.953.04; 2.726; 2.491; 1.633 -
                                                                  (12.20)
                                      a_{o}
```

```
4.86 / ^{3} ( Z = 2).
          a_{o}
                             ряда
                      Al, Mn, Ti Mg, . .
Fe<sup>3+</sup>-аналогом
                     ( Si 1) - Fe<sup>3+</sup>-аналоге «
                           - Ca<sub>4</sub>Fe<sub>2</sub>O<sub>6</sub>Cl<sub>2</sub>, . . (Torbakovaite)
   XVIII.8.
                          .
1986 .
                                                                     45
(1911-1987 .),
                                                           ., 1993 ).
1 .
                                    5 %
```

```
. 39.
0.3
                                                              (7)
                          001
                                               (2).
        2-3
                                                     . 39);
                                                (
          0.2
                               {001}
                    2.
                                                                  {001}.
                        ).
      1
                        (Fe).
                                                                  (AgNO_3).
              3.47 /
                     ).
                  ; ng 2.03; np 2.01; ng - np \approx 0.02.
Ng -
                             , Np -
```

```
Ng > Np.
                    по
                                             34.64; Mg 0.10; Mn 0.08; Fe 26.62;
    2-
                       , мас. %):
Si 0.05; Al 0.08; Cl 16.10;
                                               77.67 (JXA-5,
                                                             (Ca_{381}Fe_{0.10}Mg_{002}Mn_{0.01})_{3.94}
- Ca_{4}Fe_{2}O_{6}Cl_{2},
     ).
\begin{array}{l} (Fe_{2.00}Al_{0.01}Si_{0.01})_{2.02}Cl_{2.00}O_{6.00};\\ 3CaO\cdot Fe_{2}O_{3}\cdot CaCl_{2}. \end{array}
                                                                       дифрактограмма
                                      ; I; hkl): 6.75(100)(002); 2.547(54)(204);
                              (d,
2.274(34)(303); \ 2.225(26)(205); \ 2.120(30)(215); \ 1.949(69)(206);
                               -2.0; CuK<sub>α</sub>). Порошкограмма индицирована
1.518(31)(317) (
                                             \ddot{a}_{a} 7.83; c_{a} 13.45 ; V = 765.58
Z = 4; p_{\text{BEJUY}} = 3.56 / ^3.
                                                                       )
                                      - Ca<sub>4</sub>Al<sub>6</sub>O<sub>1</sub>,SO<sub>4</sub>,
       XVIII.9.
                                                                 . . (Kruzhevite)
                                                                         1992 .
                                                                        ., 1994).
                           47
            «
0.01
```

```
. 40.
                                                                       0.4
         110
                      были
                                                                            . 40)
                                                «
                                                                    0.3-0.4
         20-30
                                                   «
                                                                  («
                      >>
)
      >>
                     >>
                                                    (360-нм)
                                                                           1.582.
                            4—4.5.
2.65 / <sup>3</sup> (
                                                     ).
            5);
```

```
кружевита (
                                36.94; Fe<sub>2</sub>O<sub>3</sub> 6.61; Al<sub>2</sub>O<sub>3</sub> 41.38; SO<sub>3</sub> 13.11; SiO<sub>3</sub>
        . мас. %):
1.07; F 0.24; Cl 0.02;
                                          99.37 (JXA-5,
                                                           : Ca_{4,00}(Al_{5,14}Fe^{3+}_{0,52}Si_{0,11}Ca_{0,17})_{5,94}
\begin{array}{l} \cdot S_{1.04}O_{16.00}, \\ 4CaO\cdot 3Al_2O_3\cdot SO_3. \end{array}
                                                      Ca_{\lambda}(Al,Fe^{3+},Si)_{6}O_{12}\cdot SO_{4}
                                             Ca<sub>4</sub>Al<sub>5</sub>O<sub>12</sub>·SO<sub>4</sub> (Halstead, Moore, 1962;
JCPDS).
                                                                                   (d, A; I; hkl):
3.76(100)(422); 2.66(32)(444); 2.46(6)(642); 2.169(27)(822);
1.626(11)(880); 1.492(5)(10.6.4) (
                                                         -2.0; CuK<sub>0</sub>,
               a 18.405
                                                                 18.39 ).
                  , 14_132; Z = 16, V = 6234.58 <sup>3</sup>, \rho_{\text{BMY}} = 2.673 / <sup>3</sup>.
                                                                         Fe3+ 3a
                                                                                                    A1^{3+}.
                                                                (Halstead, Moore, 1962).
                                     1350°
                                                                                         Al,O,,
                CaCO, (Halstead, Moore, 1962).
                                  ., 1981).
 1350°
                                                                     «
                         1300^{\circ} .
```

«	»						-
-	«	. (»		,).	
XVHI.10.		(Hydr	- Ca ₂ Al cocalum	(OH) ₇ :3 ite)	ВН ₂ О,	•	• •
	45			«	1994 ., 1995 »,	5).	кальде-
,							- -
. эттрингита.							-
0.1-0.2	,				,		-
2.5.		{001} {001}	-	,	٠		
•	(Fe).	?			

15 3ак. 3394 225

```
«
                                                                                Na).
                                                                         SO<sub>4</sub>
          (CO<sub>2</sub>?).
                                                                        ; ng 1.551;
                 1.533; ng-np = 0.018. Оси Ng и Nm практически
nm 1.547;
                        (001).
            -202 )
                                                                               1.
                                                                                  (d,
  ; /; hkl): 7.85(100)(002); 3.92(30)(004); 3.80(20)(030); 2.87(16)(213);
                                                                -2.0; \text{CuK}_{\alpha}, - : a_o 9.90; b_o 11.4;
2.31(11)(-400); 2.15(10)(416); 1.660(8)(-518) (
                  ).
c_0 16.80 \; ; = 111.1^{\circ}.
                                            - CaAl,O<sub>4</sub>·10H,O, гекс. .
        XVIII.11.
                                (Caldecahydrite)
                                                              1994 .
                       45 (
                   ., 1995 a).
«
8
     20
                                                                     1-2
```

```
900-1000° (
                                                        , 1991).
    2-4
                     кальдекагидритом)
(
                     эттрингита.
      Кальдекагидрит (
                                                            кальде-
      CaAl,O<sub>4</sub>·10H,O (JCPDS, 12-408),
    (d, ; I; hkl): 14.1(100)(001); 7.10(100)(002); 4.12(28)(103);
3.54(35)(202); 3.24(22)(104); 2.90(20)(005); 2.46(18)(115); 2.26(18)(310)
     -57.3, FeK<sub>~</sub>,
                                     1990). Двупреломление
ng 1.469;
             1.464; ng -
                           = 0.005.
                             Nm Np.
                      ., 1981).
                   1.
    >>
```

15* 227

```
мически
                                                                          H,O
                                                             (H<sub>2</sub>O, SO<sub>3</sub>, CO<sub>2</sub>)
                             (мас. %):
                                                   ( . %) -
(41.8) - кальдекагидрит (53.3) - эттрингит (65.1).
       XVIII.12. Белошарит – Mg_4(OH)_6(SO_4)\cdot 7H_7O_7
                                (Belosharite)
                                                          1992 .
                          1987 .
                                                                     45
                 ., 1993 ).
90-95 %
                          )
               ).
                                   0.2-0.3
                                                             0.5
              . 41).
                                              {001}
```

```
. 41.
               001
                                          ).
                                                                1.5-2.
                                      ).
                                              {001}.
                                                                       2.33(1) /
(
                                       1
                                                                           SO_{4}
                  Cl, F
                                                                                В
Mg и S.
                                                Nm Np, Ng \perp {001}.
                       {001}
                         nm ≈
                                    <del>-</del> 1.489,
                                                   ; ng = 1.499; ng-np = 0.010.
                                                                          (mac. %):
MgO 36.25; CaO 0.30; SO<sub>3</sub> 18.31; CO<sub>2</sub> 2.70 (
  ); H<sub>2</sub>O<sup>M</sup> 31.48 (
                                      ) H_2\tilde{O}^r 11.50 (
                                   (.42).
                                                               CO_2
        4MgO \cdot SO_3 \cdot 10H_2O_3, 3Mg(OH)_2 \cdot MgSO_4 \cdot 7H_2O_3
Mg_4(OH)_6 \cdot (SO_4) \cdot 7H_2O.
                                       1000°C
             MgSO₄;
```

```
. 42. Дериватограмма
                                                                               ДТА
                                                       125° 225° 475°
                                                                               ДТГ
                              Pccn.
                                                  0
30
                                                  10
        ; /; hkl): 10.12(100)(006);
                                                  20
5.46(18)(018); 5.02(25)(0.0.12);
                                                  30
4.74(30)(204); 4.35(18)(1.1.10);
2.540(10)(322); 2.515(22)(400);
                                                  40
                                                                               TT
2.007(22)(0.0.30) (
                                -2.0; CuK<sub>a</sub>,
a_o 10.04;

a_o 10.04;

a_o 7.89; a_o 60.26 Å; V = 4773.5 3;

Z = 16; \rho_{\text{выч}} = 2.346 / 3.
                                                               400
                                                                      600
                                                    20 200
                         , 1991).
                                                  «
                                                           ».
                                      - 4Fe<sup>2+</sup>(OH),Fe<sup>3+</sup>OCl·4H,O, триг. .
    XVIII.13.
                                  (Chlorosiderite)
                                                                 1996 .
                        47
                                                          Fe<sup>2+</sup>-аналогом
4Mg(OH)_{2}Fe^{3}+OCl\cdot xH_{2}O, где = 0-4 (JCPDS, 20-500).
                                             ., 1996).
                            (6 \times 14 \times 15),
```

```
),
                                                    , 1991).
                         » (
         «
                                        1995
                                                                   1996 .
                                                              кристаллам-
                            акаганеита.
   2-3
                                                                       1.5,
                                                                      1;
   1
                     HNO,
                                                                  ,
{0001}.
                       1.69.
            ).
        (
                                                              ).
(d, A; /; hkl): 7.76(100) (003); 3.87(36) (006); 2.68(13) (012); 2.32(20)
(015); 1.998(6) (018); 1.558(5) (110) (
                                            -2.0; CuK<sub>α</sub>,
         ).
```

ХІХ. ОКСИДЫ КРЕМНИЯ

-	, -
, , , , , , , , , , , , , , , , , , ,	·
, (, , , , , , , , , , , , , , , , , ,	, - , , -
· , , , , , , , , , , , , , , , , , , ,	, -
,	-
40 XX .	1969)
(., 1969; , , 1970; ., 1988), (973; , 1974; , 1984; ., 1988; .)	, 1970; - , 1948; ; Кайнов, 1998;
,	
•	- , -

```
др.).
.).
                                                                       ),
                                                                          ),
                                          («
                                                                             , 1999).
вых
                                                                ),
      ., 2002).
                              (B
      (
                                                 m\{10\overline{1}0\},
                                                                                  r \{10\overline{1} 1\},\
z\{0111\},
                                \pmb{a_o4.9123-4.9129,c_o}\ 5.4041\text{-}5.4047
                                                                                    (Кайнов,
1970).
```

			,			
	,	,		,		
	_	-	-	-		-
	6		;			10.60
			ль, Уреньга			, 1962).
			метасоматі	итах		-
		•			,	;
		,	,			
	;	, .		,		ди-
,	,		•			дп-
		•	•		«	
	».	выветривании				
	«	»				
						-
		диапоз	зоне	-		
				«	» ().
						. ,
		на .				
	,				1.5 .	
			1.5	•		
	(`		(
)	(),	((-
),				().	_
	,	, разлист	ования (. 43),		(
44),		, pasimer	·	. 13),		
/,						_
	,					-
						: -
			-			
		,				-
		(),	

```
. 43.
                 (тём-
               ., 1988).
),
         «
                             б
Берёзовского
                                                      (
```



```
. 45.
Емлину
            ., 1988).
```

кий, Айдырлинский.

```
, n·10<sup>-4</sup> %): Li 0.67-0.96; 1 34-45;
Ti 2.0-21.67; Mg 71.25-122.5; Fe 65-72.25; Cu 1.3-2.58; Mn 0.14-
1.0 (
             , 1974),
«
                 >>
(
          , 2004).
(n·10<sup>-4</sup>%): 1 20; Ti 3.2; Mg 8.6; Fe 14.6; Mn 0.04; Ca 14.0 (
     ., 1988).
                                                  XX .
           10
                                      30-
                   , Хрустальки,
                                                     ).
```

```
. Эшкина,
                                                    парагенезисы,
у-облучении
0.01-0.02%
                                                        , 1974;
                                                                                            ., 1988;
                                          1 (50-80%
                                                                               ),
                                                      1.5-2
                         Li 4-6 ( 0.019 mac. %).
                                   N_{\gamma}, CH_{A}, CO_{\gamma}, H_{\gamma}O_{\gamma}, H_{\gamma}.
                                                 ).
                  (
                                                                                   m\{10\overline{1}0\},
r\{10\overline{1}1\}, z\{01\overline{1}1\},
                                                                                                s\{11\bar{2}1\}
                                                      \{32\overline{5}1\}, \{70\overline{7}4\}, \{20\overline{2}1\}, \{40\overline{4}1\},
                 x\{51\overline{6}1\}.
\{70\overline{7}2\}, \{50\overline{5}1\}, \{70\overline{7}1\}, \{11.0.\overline{1}1.1\}.
                                                                                                      \{11.0.\overline{1}1.1\},
        положительным
\{11.0. .2\}, \{13.0.\overline{13}.2\}, \{80\overline{8}1\}, \{70\overline{7}1\}, \{50\overline{5}1\},под
                     -\{0.20.\overline{20}.1\},\{0.16.\overline{16}.6\},\{0.10.\overline{10}.1\},\{09\overline{9}1\},\{04\overline{4}3\},
\{03\overline{3}1\}, \{08\overline{8}5\}, \{07\overline{7}5\}, \{51\overline{6}1\}, \{31\overline{4}1\}, \{41\overline{5}1\}, \{71\overline{8}1\}, \{12.1.\overline{1}3.1\}
                            , 1937; 1944; .).
                                    приполярноуральским,
       \{3\overline{0}31\}, \{4\overline{0}41\}, \{5\overline{0}51\}, \{7\overline{0}71\}, \{9\overline{0}91\}
                                                    \{10\overline{1}1\}, \{01\overline{1}1\} (Кайнов, 1998).
               {1010}и
```

```
» (
                                                        ).
                                                                   30
(
                  , 1976).
                          ., 2002),
               . 46).
                                      , 1988).
                      50
                                                                   )(
      , 1970;
                     , 1998),
                                  Берёзовского
                                       , 1956),
             (2004).
         . 46.
(20
                      pa- J
             ).
```

1 6 Зак. 3394


```
(1901).
                                               ., 1991).
                         - SiO<sub>2</sub>, . . (Cristobalite)
XIX.3.
                                                             (1976)
      XIX.4.
                        - SiO<sub>2</sub>, MOH. . (Coesite)
          (1971)
                         ., 1977).
                  - SiO<sub>2</sub>·nH<sub>2</sub>O,
    XIX.5.
                                            . (Opal)
                                                           1809 .
                                         (1950).
```

16* 243

- 1962	, . 16 416–418 .	//]	Минерал.	. Львов.
	., Вертушков .		рдловск. го	- орн
	,		//	-
			// Минерал.	. 8.
:	1968	. 116–118.	минерал.	. 0.
•	, 1906. Маггемит	. 110–116.		_
	// .	<u>-</u>	. 1965	70.
. 283-289.	., .	•	. 25 00	
	, Кайнов			
		//		-
	. Свердловск. гор	н. - 1975.	. 106.	. 152-155.
//	,	,		76
//		. 1841 4		. 76.
•	• •		ерагения 1990. 227	-
Альбов .		. ,	1770.227	. // .
	148-150.			•
, -2 - 11				_
				// .
ВИМС 12	1, 1937 131	.•		
		// .		. 1950.
2 139-145	•			
	• •			-
1074	//	•	•	
1954.	. 150. 16. 98	•		
	,		14:	- , 1974.
. 146-157.	11		14	, 17/4.

```
Гороблагодатских
                    журн. 1833. . 3. . 295-329.
        1830 .//
                                   ). : ,2005.
199 .
                    //
                   , 1949 . . . 624-627.
                              //
                      , 1949 . . . 628-630.
                      , 1949 . . . 534-538.
     Бекмухаметов . . «
                                                   . 1962.
                               // Вестн.
  9. . 75-79.
                                //
                  , 1978. . 68-69.
                                              //
XI
                  , 1989. . 84.
                           ) //
                                      . 2006.
                                              5. . 35–43.
                                              //
                          - ( ). ., 1951. . 33. . 3-8.
  . алюминиево-магниевого
  , 1963. 170 .
               , 1935. 148 .
                         . 1937. 4. . 708-712.
```

```
// . -
                                                 . 1940.
   . 30. 4. 64 .
                                       Нижне-Тагильского
                //
                                          70-
1946. . 68-73.
                                          , 1950. 956 .
                         T. H.
                                          // .
                                    на
1940. 1. . 100-103.
                              // Ежегодник-1988 -
                              , 1989. . 32-35.
                                  // .
          , 1960. . 35. . 313-315.
1928.
        . 2. 326 .
        . 3. 187 .
1935.
Fe
                                 . 1929. 2. . 239-247.
    Бонштедт-Куплетская .
             . 1943. . 40. 9. . 412–415.
  // .
  . .: , 1966. 224 .
          //
                                              . . 3.
     , 1970. . 54–67. .
                  . ., Бородаевская . .
                    , 1947. 264 .
                                                       //
      журн. 1846. Ч. 1. . 1. . 101-103.
```

```
, 1974.212 .
                  , 1967. . 7. . 62-66.
           . ., Юшкин . .
                         // Минерал. . Львов. - . 1969.
  23. . 2. . 138-145.
            . .,
                         //
                         . Ленинград. - , 1971. . 181-
190.
             . дисс... . геол.-минерал. /
1989. 20 .
                                 . ., Пальгуева . .
             . H.,
                                    // Ежегодник-1976
                         , 1977. . 60–62.
             . ., Кайнов . .
        гора
                   //
               , 1978. . 63–71.
 . . 1.
                                           // .
    . 1941. . 32. 4. . 266-267.
                                 хромшпинелидов // .
Свердловск. горн. - . 1969. . . 59. . . 112-115.
                     ,
// .: , 1978. 239 .
    : Свердлгео, 1935. 62 .
               // . . . 1942. 3–4. . 132-145.
```

			//	
Benmy	шков			« -
	. Свердловск. горн.	1937.	. 3 13-	
. 1940.	. 1938. 3 488. . <i>H</i> . 8 48-56.			// .
. 44-68.	 . Горно-геол		. 1948.	. 14.
	1: 		. 116–135. // . Свер	// дловск.
горн	1960 37 172-	183.		
. 1 /	. , , 1969. 100	., 0 .	,	,
//	, « » 1957. 1.	. 65-71.		
	,			-
	. Свердловск. горн. мсон,	1975. ,	. 106 1	33-134.
. 2005.) // Урал. минералог. . 309-335.	, 13	: ИМ	, [ин
Коэсит 2 446-	-448.	., // .	, . 1977	
1960.250 .	,		:	,

```
. . Габбро-
                       дунитовый
                       . 1900. . 13. 3. 211 .
                       // . . , 1913.
   . 62, 694
    , 1925. . 4. . 533.
    Гаврилов А. . Эксгаляционно-осадочные
    . .: , 1972. 216 .
                            // Научн. . Киев. - . 1957.
 . 16. . 14. . 189-191.
                             // Ежегодник-1987
                             , 1988. . 93-95.
                                              , 1735 .
 .: 1937. 609 .
                          . X., Онищенко . .,
                       ) //
                                               . 1999.
 . 41. 1. . 84–96.
теринбург. горн. , 1808. 376 .
                            . . 3. .: , 1960.
 . 33-38.
                                 /
          . . ., 1970. 19 .
             » //
«
                     , 2004. . 102-104.
```

· //	журн. 1888
. 1 96-123.	ггемит -
- · · · · · · · · · · · · · · · · · · ·	// -
, 1955 2 239-244.	
// 1985. 1 80-86.	-
Γ лушкова Γ , Кейльман Γ . A .	-
	: ,
1965. 220 .	
. C.,, Γ.	, 1981
334 .	, 1961
,	
Саратов 1964 2 2 2-23.	1005
. 2 1-86.	. 1887
гидротермально-	
//	. 1965.
Зигазино-Комаровское	-
/,	. ,
. ,,	:
//	-
: , 1954 3-128.	-

Емлин,,		// -
	. 3.	, 1970.
. 11-28. , Вахрушева, Кай	йнов	-
: :	- :	. , 2002.
		,
. минерал 1869. 4 201-20	07.	·
· ·	//	журн. 1887.
. 3 263-309.		
1893. 1 19-21.		. минерал.
	// .	
минерал. о-ва. 1894 31 398-400.		
§ 77 // . 1895 33 65-67.	•	. минерал
		:
,		-
// . Свердл	повск. горн.	1972.
. 86 62-66. <i>Еськова</i> ,,		1064 210
Заварицкий	:	, 1964. 319 .
	922 122	2. 280 .
A. H. O	0	
Магнитной // . вестн. 1929 7. 1	1 24-34.	

Комарово-Зигазинские	
// Вестн	
. 1930. 718 20-26.	
Николае–Павди	Н-
//	
1892 13. 1.97 .	
	-
// Минер 1929. 5/6. 551 .	,,
Земятченский	//
. минерал 1900. 2 447–484.	//
минерал	:
, 1938 2 163-183.	•
, 1750 2 105 105.	
,	//
журн. 1838 IV XI.	
	,
. 1867.	
• •	
//	-
. :	,
1976 66-70.	
// . : , 1980 9	7
. , 1960 9 143.	, -
- · ·	_
, 1986. 57 .	
хромитоносные	-
: , 1990. 254 .	
· · · · · · · · · · · · · · · · · · ·	-
: (, ,).	-
· - Vna II - 1997 488	

	Мокру	ШИТ -		-
	••		ал. геолог. журн.,	1999. 3.
. 55-	70.			
	. K.,	. <i>A</i> .K		Мокру-
,	//			-
		:	, 198	86 94-96.
	. К., Кайно	<i>96</i>	•	
			хромшпинелидов	
]	парагенезисы			: -
, 1	975 32-36.			
	٠.,			-
			//	/
			:	, 1987.
. 16	-35.			
				-
, 1			. III 49.	
		ко-химичес	ские	-
() // . I		. минера	л
•	, 1937 63			
	Халы	-		титано-маг-
		-	рно-геол	
	14. Минерал. .	1.	:	, 1948.
. 56-	-57.			
	1000.40			poc-
	. , 1829.42 .			
			. XIX	, -
//			. ΔΙΔ	
/ /	-	1962 23	3_42	-
	, Кайнов	1702 2.	J- -12.	_
	//			3.
	, 1970 92 -	94		3.
	, 1770 72	- ··		

```
Кайнов . .
                      : , 1998. 106 .
    Кайнов . .
       ) // Урал. геолог. журн. 2005. 5 (47). . 3-194.
          . ., Бушмакин . .,
    . 1990. . 109-110.
    Кайнов . И.,
ла-1997.
               : . . . 1997. . 73-76.
            . . Сапальское
       ) //
    . .: , 1978, . 91-112.
     // . . . 1951. 1. . 55-58.
        . . 19. .: , 1986. . 66–77.
                                       // .
  . . 1987. 5. . 127-132.
                                         //
          , 1978. . 74-78.
                      // .
 никельсодержащих
                                   , 1937. . 151-159.
    , 1974. 152 .
                           . . маггемите
    . .: , 1969. . 170-173.
```

```
. 1938. 7. . 17-18.
    //
                   . C.,
                                         , 1956. 113 .
                           .:
                             // . Свердловск. горн. - .
1973. . 95. . 125-127.
    Киселев . .
                                 // . . 1967. 3.
C. 326-329.
                                    Берёзовского
                   //
                                    -2003. . 2.
            , 2003. . 171-177.
                                        никель-кобальт-
                                         //
                                , 1947.
                                        . 1. . 46-98.
    Кожина . К.
                               //
 //
                                                журн.
1853. . 1. . 1.
              . 1858 . . 8.
  //
                                             //
    . 1858 . Кн. 7. С. 50-53.
                                           лаксманиту
// . . минерал. о-ва. 1882. . 17. . 287-305.
Челябинск: « », 2004. 296 .
                    . 1836. . 1. . 2. . 209-222.
        //
```

	•		//	журн.	1877 4.	. 11.
. 202-226.						
: ,	 1919. 	74.		1-81. невском	•	-
					:	,
1936 <i>a</i> 1.	. 9-14.					
				//		-
. 72-97.		COI	ПС		. 1936 .	. 4.
1040 T. 0 6		,			// .	-
1940. T. 26 .	8 80)8-810.				•
. 1955.	. 234-23	// 38.	,		2.	.:
//	,					-
1936 1.			G		:	,
	,	•	. <i>C</i> .,		• •	
	меганти , . A.	клинория 1990 3				-
- . 59-73.	//	′ . Мин	ерал.		. 1959.	. 9.

	Крыжан	овский					
1911	// .		. 191	2 1.	. 1-41.		
	•	XIX	. M.:	, 1961	. 360 .		-
		. <i>K</i> .,		, Юхтанов			_
		,			.:	, 1988.	143
				•			
	•	. 1016	. //	1000		ольшезе	мель-
		1910) .// .	. 1923.	1	1-56.	
		•	•				
					//		
	•	1947.	. 83. 105				
							_
			II	, 1911. 57	15		
	Кутюхин		11.	, 1711.57	<i>J</i> .		//
	Кутюхин		1	1074	202	220	//
			1:	, 1954.	. 303-	329.	
		,		.,			
			,				-
				:	, 196	5. 772	•
				_			_
			HEROR	- , 1947. 2	208		
		•	. JIBBOB.		/	журн.	1960
2	7	140 140		//	'	журп.	1007
. 3.	. 7.	148-149.					
	•	••	,	3.	.,		
							//
			٠	:		,	, 1987.
. 11	17-123.						
							:
		, 1948. 40	1			•	
•	•	, 1740.40	<i>.</i>				
1070	227					:	,
19/3	. 327 .						
					//	•	
	•		1940.				
		,		,		-	-
					//		

17 . 3394 257

```
. 1978. . 119–136.
             // . . . 1959. 1. . 21–38.
                                   1768–1769 .
1795. 537 .
ной
                      . .: , 1988. 212 .
                                           // .
УОЛЕ. 1898. . ХХ. . 1-262.
             , 1972. . 86. . 101-105.
             C. 132-134.
           . .. .- ., 1954. . 5. . 397–631.
    Лотова . .
                    . Свердловск:
                                           , 1986.
 . 105-107:
                    , 1988. . 50–53.
                          . ., Зильберман . .
                            // . . 1978.
 . 580-585.
             . .: , 1965. 164 .
                                               //
     журн. 1828. . . 125-127.
```

	-
: , 1967 120-183.	
	.: , 1968. 276
 // парагенезисы	_
. : , 1983 3-1	10.
,	, Вяльсов,
. И .,	$S \cdot n[(Mg, Al)(OH)_2] -$
// Минерал. журн.	: « »,
1984 6. 5 91-98.	
,	
кохромит	// -
минерал. 28 , 1999 101 165-171.	•
, 1999 101 103-171. , <i>Ковальчук Н</i> Юшкини	τV S:6Γ(Μα Δ1)(ΟΗ) 1
: , 2006. 70 .	1 v _{1-x} 5 n[(wig, 111)(011) ₂₁
, 2000. 70	
// XI	·
. минерал	234–235.
· · ·	·
	979 151 82-85.
, Зильберман,	
	· /-
· IIH	ИГРИ, 1980 96–108 .
Ухта-Печоро-Каменной	, 1911. 137 .
•	
, 1978. 244 .	
	-
// минерал	1907 45 301-317.
,	
	(-

17*

```
) // Урал. минерал. , 2.
                                  : , 1993.
. 101-108.
                                           //
  . . . . . 1928. 8. . 128-132.
            // . . . . . . . 1929.
 . 57-66.
                                      //
журн. 1882. 1. . 70-151.
  , 1986. . 169-170.
          : . . III. . 2. .: , 1981. 614 .
   Молошаг . ., . . .,
                                           //
  . . . 1999. 2. . 71-83.
                               «
                                       //
   . 1986. . 115. 4. . 446-449.
            . 1877. . 3. . 230–282. . 4. . 51-103.
     //
                                   -96.
         , 1996. . 186.
           . B.
                 . , 1871.588 .
   // . . . 1907. . 22. 311 .
```

			//		
. 3:	, 1960	39-55.			//
	. 1912 6.	. 7	171-231	•	//
:	 , 1983. 286 .				
	٠.,	٠	.,	,	-
. 86-100.	//			. 1984	. 2.
. IV 139-146	-		//	журн	. 1980.
			, 1948. 1	18	-
. Минерал.		емите // 20. 1953.	. 3-12.	 еские	-
195 .		•	:		, 1960.
75 .	. // .		. объе	д. 1933.	. 246.
	•		:	٠,	// 1958.
C. 100–200.	•				_
Сапальског	о // Минерал.	. 192	7. 3.	. 163-176.	
	., : .: ., Григорьеви	, , 1968. 177 2-Чупрын і			-
199 .	., -FF	5,F	•	.: ,	1973.

```
3. .
                              ) //
                                       , 1973. . 73-78.
                              . .:
            3. .
                               //
                                                 , 1974.
 . 54–61.
        . , 1786. . 2. . 1. 476 .
    . .: , 1984. 200 .
      1832// журн. 1840. . IV. . 7.
ванадо-кислой // . 1847. . III. . 7. . 122–127.
                                                      //
          . 1839. . 2. . 5. . 178-197.
1936 . . 53-79.
        //
1936 . . II. . 81-122.
                            // .
    . 1961. . 56. . 53-60.
                      //
                 . .: - , 1967. . 105-111.
  //
            , 1984. . 19–23.
```

```
хромшпинелидов
           //
                                                    . II
                           ». . 1.
ОН. . «
1990. . 64.
                            . H.,
                                        Л. .
                       //
                                                      . . 1.
          , 1990. . 135.
                                         . A.
                                                      бадде-
                                                        ) //
                                      -97.
      , 1997. . 218.
                         , 1984. 190 .
                                                     // Урал.
 гармотома родингитов
минерал. , 5.
                                          , 1995. . 139-144.
                                             Bcepocc.
                                      //
              . 2002. . 119–121.
                                   ) // Урал. геолог. журн.,
  (
(37).
                , 2004. . 167-170.
Горно-Анатольского
                                                    //
                           -2002.
2003 . . 103-106.
                                ) //
        -2002.
                                  , 2003 . . 101-103.
                          // Урал. минералог.
                                                          5.
                     . 1995. . 190-196.
```

-	 Урал. минералог.	// V na:	. <i>C</i> .,	,	
,		. 124-12	, 1995.	:	4.
, 2006.	.: Acc. « »			, / 152 .	. 9.
-2000.	188.	. 186-188	, 2000.) // : .	(
,	· · :	, 3.	, Г.	, // Урал. минералог. 124-130.	
-,	 - 2. :	2.	,	, aTi ₂ O ₄ (OH) ₂ //	(1998
: - .: Acc.			, / 3 .	. И. , 2002 5. 128	
мало-	//			 -	
. 1986.	зупироксеновые // .	. Двупи		, 1986 69 ,	
⁷ . 6.	. 1975 17			205-207.	2
- 	//			07.	. 104-1
-		1960.	4, 1	. Минерал.	
,	. 1941 56		_	//	

```
. .: , 1975. 187 .
    Разенкова . .,
                        . C.,
                                        // .
      . 1980. . 253. 3. . 720–722.
         . .. Хоменко . .
          , 1969. 6. . 659-672.
           // . . .- . управл. 1931. . 54. 43 .
                                   магнетиты. -
            // Вестн. . - . 1960. 4. . 64-68.
                                  . .: , 1962.
1132 .
   меногорско-Вишневогорского (
                                      ) //
               , 1989. . 87-94.
  //
    , 1936. . 173-221.
                                              //
     журн. 1834. . 2. . . 6. . 501.
                                              //
             . 1938. 1. . 147-151.
                // . . . 1940. . . 10. . . 29-47.
                    // . .
                                     . I960.
 . 44-52.
          . H., . .
       // . Свердловск. горн. - . . . . 124. 1976. . . 58-60.
```

```
Самойлов .
    //
         . . 1. 1899 . . 109–118.
                                     его
             // Bull. Soc. Nat. Moscov. 1899 . . . 13. . . 142-156.
                   9.
                                       . Кыштыма
                             . 1965. . 70. . 91-94.
    // Горно-геол.
            . Первые
                  . , 1798. 275 .
                . , 1809. . 1. 262 . . 2.
          , 1987. . 2. 159 .
  , 1991.312 .
                  , 1998. 168 .
                    : //
                   , 1949. . 526-533; 559-560.
                                         // . -
        //
                              , 1973. . 97. . 36-44.
                  . . 2.
                               , 1970. . 44–66.
                      свинцово-цинковый
                              . 1926. . 45. 8. . 923-944.
                  // . .
                                         // .
VII . молод. . . ., 1968. . 2.
                                           // .
   . . . . . 1929. . 1. . 27-56.
```

```
. ., Гневушев . .,
1971. . 198. № 1. C. 190-193.
           , 2005. 284 .
                                     . ., 1832.
Ч. 2. . 587-1109.
. .: , 1974. . 1, . 9-108.
   , 1953. . 20. . 87-106.
                                Бакальских
                             // . - .
                             , 1955. . 230-231.
        . Минералог. . 3.
        . дис. ... геол.-минер. / Свердловск. горн. - ,
1970. 28 .
                     . C..
                   хромшпинелиды //
                   , 1998. . 127-129.
 . . 2.
17 1839
                                 меди // . журн.
1839. . . . 5. . 315-317.
   ) //
             . 2006. 3. . 166-170.
                 //
                       , 1986. . 187–189.
```

	. // .
зита //	, 1847 12 305-330.
 // . Минерал.	. 1949 1 93-105.
<i>-</i> /	. дис / .:
, 1970. 27 .	: , 1988.
144	
// . 1990.	: . 28-35.
. C.,	
со-гранитного	· · · · · · · · · · · · · · · · · · ·
Типоморфизм	:: , 1989. 560 .
, Гайсі : ,	1992. 62 .
	· · · · · · · · · · · · · · · · · · ·
,	. , 1824. . 217-348 , 3
107 107	. : , 1986.
. 186-187.	// - 1899 7

```
. C.,
1901. 104 .
     , 1920. 420 .
                             . . VII. .: , 1962. 592 .
// .
                       . 1988. 12. . 27-37.
                          // Ежегодник-1977
                         , 1978. . 80–86.
                               . .: , 1968. 250 .
                                             //
    , 1968. . 3-5.
                                 «
                                   // . -
                . 1978. . 136. . 107–113.
                  //
                  . , 1970. . 89-92.
                                                //
   , 1977. 9. . 1360-1367.
              . ., Юников . ., . . .
                                             маггемите
                      . . 1963. 11. . 69-72.
                                               рудогене-
                                        руд
, 1987. 179 .
                                  // . . . 1960.
   . 40. . 73-87.
```

```
Халезов . .
МПР РФ, 1999. 12 .
           77. .
(
           ). :
                                , 2003. 68 .
              . 77.
               //
                               , 1977 . . 83-95.
              . 77.
          //
                  , 1977 . . 17-32.
              . 77.,
                                    // . -
парагенезисах
                   . 1979. 151. . 86-94.
              //
                   журн. 1830. . II. . . 6. . . 282.
               //
                          , 1990. . 1. . 40-41.
       //
    , 1990. . 1. . 42-45.
                                                   . 1930.
   . 151.72 .
                                                 CaFe,O, -
             // . . . 1985. . 114. . . 2. . . 195-198.
CaS, CaS,O, 6Ca(OH), 20H,O -
                                        // . . 1987.
  6. . 737-743.
                ) //
```

				:		,
1991 5-14.						ĺ
	,	, B	илисов .	٠,		
				уголі	ного.	-
() //			•		
	: УрО , 1992	127-13	6.			
	,	,				
						(-
	// Урал. ми	нералог.	,	1.		:
, 1993	3-25.					
	,	,			•	
						(-
) // Урал. минера	лог.	, 2.		:	
, 1993 .	. 3-36.					
	٠.,	,	•	•	•	,
) // Vaan sawa			2		(-
100) // Урал. мин 94 3-34.	ералог.	,	3.	•	
, 195	74 5-54.					
	• •,	,			•	(-
) // Урал. мин	терапог.		4.	:	(
УрО , 199	95 3-28.	repunton.	,	••	•	
, , , ,						
	,		() //
Урал. минерал	ог. сборник, 5.	:	`	, 1995	3	
_	,	.,				
				(
	ал. минералог.	, (5. :			,
1996 3-25						
	,					
	//	•	. 19	965	162.	4.
. 909-910.						
	,	. 77.				-
`	1001 150	(-
):	, 1991. 152 .					

. //	. Минерал.	//	. 1926	1 43-67. :
, 1935		11	•	
. Ленин . 1 19-35.	г ра д	· .		. 1935 .
	1935	4. 43 .		
	//	1973.	Гай 2 207-	ского - 211.
// Ге . 92-126.	ограф.			. 1873.
•	· // .		. 1974.	12 5-24.
•	•,	,	 //	- . 91-110.
	.,	,	, 1773. , // .	. 71-110.
. 1978. 12.	. 86–95.			
	.,	, 982. 88	· ·, 7-100.	//
	.,	,		- . 210–221.
1948.	. 96. 1	// . 1. 101 .		
40 .			1.	, 1937.
25 //		-4 91–97.		

// 1944. 1 29–35 .
Шеманина,
, 1980 153 89-95.
. , , , , ,
, , , , , , , , , , , , , , , , , , ,
() // Ежегодник—1981
, 1902 93-93
: , 1977. 311 c.
// журн. 1839 III 7 123.
-2000. : () // -2000 169-171.
·
- , 1841. 436 . Эдельштейн //
. 1960 3 72-73.
, 1980. 376 .
,
//
. 1969 13 41-70.
,

Зак. 3394 273

)//	-	. 1938.
//	185. 67 .	: . <i>H</i> .,	. научн .
В.	(. 97 3-16.) //	
XVII // XVII . 1974.	. 54-97.	XVII .	.: .
<i>Н. А.</i> К	. 1953.	. 20 74-76	
1955 26 56-67. 	,, .	. //	
// .	. 1980. 1.	. 98-105.	-

Abich H. Cheniche Untersuchung des Spinells und der minerale von analoger Zusammensetzung // Ann. der Phisic und Chemie. 1831. Bd 99. S. 305-355.

Arzruni A. Einige Mineralien aus einer uralischen Chromitlagerstaten // Zr. Kristallogr. 1888. Bd VIII. S. 330-337.

[ASTM] Diffraction data cards and alphabetical and grouped numerical index of x-ray diffraction data. Philadelphia, 1946-1969.

Baerward C. Analyse und Brechungsexponten des Rothbleierzes von Berjosowsk // Zr. Kristallogr. Miner. 1882, Bd 7. S. 170–171.

Berry L. G. X-ray measurement on vauguelinit // Amer. Miner. 1949. Vol. 34. P. 275.

Berzelius J. J. Undersuking af ett hittilis obermдrkt fossil som stundom fuljerden Siberiska kromsyrade blyoxiden // Ath. fys kemi miner. 1818. Vol. 6. P. 246-254.

Breithaupt A. Handbuch der Mineralogie. Drezden und Leipzig. 1841. Bd 2. S. 262-265.

Cesbron F, Giraud R., Pillard E, Pouleen J. F. La cassedannĭite nouveau chromo-vanadate de plomb de Beresovsk (Oural) // R. Acad. Sci. 1988. Ser. 2. Vol. 306. 2. P. 125-127.

Dana J. D. System of mineralogy. New York, 1951. 7 th edn. Vol.2. 651 p.

Fanfani L., Zanazzi P. F. The crystal structure of vauguelinite and the relationships to fornacite // Zr. Kristallogr. Kristallgeom. 1968. Bd 126. S. 433–443.

Fleischer M., Faust G. Studies on manganese oxide minerals. Lithiophorite // Schweiz. **Miner.** und Petrograph. Mitt, **1963**. Bd 43. 1. S. 197-216.

Frenzel G. The manganese ore minerals. Budapest, 1980. 158 p.

Friedel . C.Sur une combinaison naturelle des oxides de fer et de cuibre et bur la reproduction // R. Acad. Sci., 1873. Vol. 77. 2. P. 211-214.

Gierth E., Krause H. Baddeleyit von Tellkes // Norsk. geol. tidsskr. 1974. Vol. 54. 2. S. 193-197.

Glocker E.F. Grundriss der Mineralogie. Schrag. Nьrnberg, 1839. 612 s.

Guillemin C. Une nouvelle espese minerale: la vesignibite Cu₃Ba(VO₄)₂(OH)₂// Comptes Rendus des Siancer de l'aead des Scences. 1955. Vol. 240. 24. P. 2331-2333.

Guillemin C. etProuvostJ. Estud de la serie: fornacite-vauguelinite // Bull. de la sociйtй fransaise de mineralogie et de cristalligraphie. 1951. Vol. 74. P. 432–438.

Haidinger W. Handbuch der bestimmenden Mineralogie. Braumller und Seidel. Vienna. 1845. 504 s.

- Halstead P. E., Moore A. E. The composition and crystallography of an anhidrous calcium aluminosulphate occurring in expanding cement // Journ. of Appl. Chem. 1962. Vol. 12. 9. P. 413-417.
- *Hausmann J. F. L.* Handbuch der Mineralogie. Gottingen. 1813. Bd3.S. 1084-1088.
- *Hermann R.* Bull. de la Soc. Imper. Des Natural. De Moscou. 1832. Vol. 5. P. 37.
- *Hermann R.* Ueber Melanochroit, ein neueus Mineral // Ann. Phys. Chem. 1833. Bd 28. S. 163-164.
- *Hermann R.* Untersuchungen russischen Mineralien: Über Turgit ein neues Mineral // Jb. **prakt.** Chem. 1844. Bd 33. S. 96-97.
- Hermann R. Ueber die wahrscheinliche Identit zu von Laxmanit und Vauquelenit, sowie über Phosphorochromit, ein neues Mineral // Jb. prakt. Chem. 1870. Bd 60. S. 447–451.
- *Hess H* Über den Volborthit, ein neues Vanadin haltiges Mineral / Jb. prakt. Chem. 1838. Bd 14. S. 52-54.
- *Keil K.*, *Fricer P. E.* Baddeleyit (**ZrO**₂) in gabbroic rock from Axel Heiberg Island, Canadien Arctic Archipelag // **Amer.** Miner. 1974. Vol. 59. 3–4. P. 249-253.
- *Knowing O., Sahama T. G., Siivola G.* Natural bismuth vanadate from the Mutava pegmatite area, Mozambigue //• Contrib. Miner. Petrol. 1973. Vol. 41. 4. P. 325-331.
 - Kobell F.Grundlage der Mineralogie. Narnberg, 1838. S. 282-293.
- *Lehmann J. G.* Nachricht von **einem** neu entdeckten Bleyerz // Neues Hamburg. Mag. 1767. Bd. 7. S. 336-348.
- *Pfaff C.*H. Analisen einiger Mineralien // Jb. Chem. u. Phys. **1816**. Bd 18. S. 65-76.
- Rose G. Reise nach dem Ural, dem Altai und dem Kaspischen Meere. Berlin, 1837. Bd 1. 1837. 205 s.
- Rose G. Mineralogisch-geognostische Reise nach dem Ural, dem Altai und dem Kaspischen Meere von A. Humbolt, G. Ehrensberg und Guctaw Rose. Berlin, 1842. Bd. 2. 606 s.
- Self P., Buseck P.R. Structure model for kassite, CaTi₂O₄(OH)₂ // Amer. Miner. 1991. Vol. 76. P. 283-287.

Struve H. Über die zusammensetzung des vanadinites, pyromorphits und mimetisits // Verhandlungen der Russisch-Kaiserlichen. Mineral. Gess. St.-Pb., 1858. S. 1-20.

Williams S. A. Embreyite, a new mineral from Berezov, Siberia // Miner. Mag. 1972. Vol. 38. 299. P. 790-793.

Williams S. A. The naturally occurring chromates of lead // **Bull.** of the British Museum (Natural History). Mineralogy. 1974. Vol. 2. 8. P. 337-419.

Williams S. A., McLean M. J., Anthoni J. W. A stady of phoenicochroitits structure and properties // **Amer.** Miner. 1970. Vol. 55. 5–6. P. 784-792.

24	85
193	175
115	218
96	212
5	. 67
196	117
228	Кальдекагидрит 226
105	54
93	14
193	185
194	233
99	72
180	61
189	184
199	Коэсит 243
56	75
63	88
57	100
93	242
48	40
72	222
Вюстит 117	168
97	162
119	111
180	133
177	152
153	30
225	22
11	135
192	213
() 182	Малаховит 209
102	107
205	183

Мелковит	69	•	220
	67		7
	83	Точилинит	200
	56		242
	66		75
	109		8
	243		109
	94		51
	111		86
	181		163
	70		31
	113		167
	58		28
	96		67
	102		56
Романешит	113		153
	90		178
PbO ₂	182		215
PdO	180		230
	189		21
	191	Цинкит	177
	215	•	39
	164		91
	194		76
	191	Штольцит	88
	184		46
	55		10
	172		207
Титаномагнетит	135	Юшкинит	202
	105	•	152

INDEX OF MINERALS

Achtenskite	96	Eskolaite	10
Alumochromite	24	Feitknechtite	109
Arsenolite	193	Ferberite	86
Asbolan	115	Feroxyhyte	163
Baddeleyite	5	Ferrialumochromite	31
Bazhenovite	196	Ferrichromite	28
Belosharite	228	Ferrihydrite	167
Bimessite	105	Ferromolybdite	67
Bismite	194	Franklinite	153
Bixbyite	93	Goethite	153
Braunite	99	Grandiferrite	205
Bunsenite	180	Gubnerite	85
Caldecahydrite	226	Hausmannite	97
Cassedanneite	54	Hematite	119
Cassiterite	185	Heterogenite	180
Cervantite	191	Heterolite	177
Chalcophanite	178	Hollandite	102
Chillagite	91	Hydrocalumite	225
Chlormayenite	215	Hydroromeite	192
Chlorosiderite	230	Ilsemannite	67
Chromite	21	Iozite	117
Clinobisvanite	61	Jacobsite	152
Coesite	243	Kassite	14
Coronadite	184	Koechlinite	72
Cristobalite	242	Krasnogorite	75
Crocoite	40	Krasnoselskite	88
Cr-Ti-hydroxide	11	Kruzhevite	222
Cryptomelane	100	Lepidokrocite	162
Cuprite	168	Litharge	182
Delafossite	175	Lithiophorite	111
Demidovskite	218	Maghemite	133
Dorrite	212	Magnesiochromite	22
Embreyite	46	Magnesioferrichromite	30

Magnesioferrite	152	Senarmontite	189
Magnetite	135	Silicochlormayenite	215
Malakhovite	209	Srebrodolskite	164
Manganite	107	Stetefeldite	194
Massicot	183	Stibiconite	191
Mayenite	213	Stolzite	88
Melkovite	69	Tarapakoite	55
Minium	184	Tenorite	172
Molybdite	67	Thorianite	7
Molybdoscheelite	83	Titanomagnetite	135
Montroseite	56	Tochilinite	200
Mottramite	66	Todorokite	105
Nsutite	109	Torbakovaite	220
Opal	243	Tridymite	242
Pb-oxide	182	Tungstite	75
Pd-oxide	180	Uraninite	8
Phoenicochroite	51	Valentinite	189
Plattnerite	181	Valleriite	199
Powellite	70	Vanadinite	63
Psilomelane	113	Vauquelinite	48
Pucherite	58	Vemadite	93
Pyrochroite	111	Vesignieite	57
Pyrolusite	94	Volbortite	56
Quartz	233	V-oxide	56
Ramsdellite	96	Wulfenite	72
Rancieite	102	Wьstite	117
Romanechite	112	Yushkinite	202
Russelite	90	Zincite	177
Scheelite	76	Zincochromite	39

				3
VII.		•		5
	VII. 1.	(Бе лк	овский,	
	VII.2.	(B)	,
	VII.3.	()	
VIII.				10
	VIII. 1.	(.)10
	VIII.2.	(-	(Кайнов,	,
	VIII.3.	,		11
	VIII.3. VIII.4.	(• •))16
	VIII.4. VIII.5.	(.	. ,	,
		(,)	
	VIII.0. IVIAITH	езиохромит (.		22
	VIII. /. VIII. 8.	()	24
	V III. O.	(,	20
	VIII.9.	, .		28
			(• •)	30
	VIII. 10.	1	(,	21
	 X/III 11)		
	VIII.11. VIII.12.	(39
		()	
		,	()46
	VIII.14.	(· ·	/	48
	VIII. 15.	Феникохроит	· ·)51
	VIII. 16.	(.	·	54
	VIII. I7. Tap	апакаит ()	55
IX.				56
	IX. 1.		()56
	IX.2.	()	56

	IX.3.	()	56
	IX.4.	(57
	IX.5.	(Талан	цев,).	58
	IX.6.	(Мурзин,)61
	IX.7.	(63
	IX.8.	(
X.				67
	.1. Mo	либдит (67
	.2.	()	67
		()	67
	.4.	(-)	69
	.5.	()	70
	.6.	()	72
	.7.	(H)	72
XI.				
(«		»)		
`	XI. 1.	(.		. <i>Михаль)</i> 75
	XI.2.	(
	XI.3.	Д		76
	XI.4.	Д.		83
	XI.5.	(·	85
	XI.6.	<i>(</i>		86
	XI.7.	(.		88
	XI.8.	()	88
	XI.9.	(90
	ХІ.10. Ч	иллагит (-	91
XII.				93
	.1.	(93
	.2.	<i>.</i>	· · · · · · · · · · · · · · · · · · ·	93
		(,)94
	.4.	(И	ванов)	,

	.5.	()	96
	XII.6.	()	
	.7.	()	99
	.8.	(100
	.9.	()	102
	.10.	()	102
	.11.	()	105
	XII.12.	()	105
	XII. 13.	(,	
)	107
	.14.	()	
	XII.15.	()	109
	XII. 16.	()_111
	XII. 17.	()	111
	XII. 18.	()	
	()	
	XII.19.	()	115
XIII.	37111 4	() (P		117
	XIII. 1.	() (B. .	,	117
	A	· ·		11/
	XIII.2.		, Литошко,	110
	3 VIII 2 Marray	·		119
	XIII.3. Marren B.	,	, ,	122
	XIII.4.)		133
	XIII.4.	,	(
	• •	, <i>3</i>	,	•
		,	,),	125
	 5	, /F	,	
	.5. .6.	(B .	.)	
	.6. .7.	())	
		(,	
	.8. Гётит (•)	
	.9. Лепид о	ЈКРОКИТ ()	102

	.10.	()		163
	XIII.11.	(.	.)		164
	.12. Фе	рригидрит (
XIV.		,	,	,	
	,				168
	XIV.1.	<i>(B.</i> .	,)	168
	XIV.2.	(Бушма	кин,)	172
	XIV.3.	()		175
	XIV.4.	(<u>)</u>		177
	XIV.5.	()		177
	XIV.6.	(
	XIV.7.	(. ` .	· ·		
	XIV.8.	` (
	XIV.9. PdO)()			
		,			
XV.					181
	XV. 1.	(, .)_181
	XV.2. PbO,				
	XV.3.	()(
					182
	XV.4.	ĺ	,		
	XV.5.	()			
	XV.6.	()		
	XV.7.	(,	
)			185
		<i>,</i>			
XVI.			_		
, -,			,		189
	XVI . 1.	(• , • ,	Кайн	ios) 189
	XVI.2.	(B	·		,
			, Кайнов)		189
•	XVI.3. Cer	. , овантит <i>(В</i>			
	XVI.4.	(
		(,		

X	VI.5.	<i>(B</i>)	192
X	VI.6. Бин	ндгеймит (,).	193
X	VI:7.	()	193
X	VI.8.	(. Бушмак	ин)	
X	VI.9.	(-)194
XVII.				196
X	VII. 1.	,		,
	•	.)		
	VII.2.	()	199
X	CVII.3.	(, ,	
	•	.)		
X	VII.4.	()	202
XVIII.		,	,	,
				205
X	XVIII.1.	()	205
X	VIII.2.	()	207
X	XVIII.3.	()	
X	VIII.4.	()	
X	XVIII.5.	()	213
Х	XVIII.6.	`	,	
	(.	,		215
Х	XVIII.7.	(218
	XVIII.8.	(220
	XVIII.9.	()	
	XVIII.10.	(225
	XVIII.11.	(.	,	226
	VIII.11.	(.	,	228
	XVIII.12.	(230
7	· • • • • • • • • • • • • • • • • • • •	(<i>)</i>	230
XIX.				233
X	XIX.1.	(, .	.)	233
Y	XIX.2.	()	

XIX.3. Кристобалит ()242
_ ,)243
,	,)243
	244
	278
Index of minerals	280