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Preface

This textbook is intended for use in an introductory graduate level course
that broadens (expands) the fundamental concepts acquired by students in
their undergraduate work. The introductory graduate course can be fol-
lowed by advanced courses dedicated to topics such as mechanical and
chemical stabilization of soils, geoenvironmental engineering, finite ele-
ment application to geotechnical engineering, critical state soil mechanics,
geosynthetics, rock mechanics, and others.

The first edition of this book was published jointly by Hemisphere
Publishing Corporation and McGraw-Hill Book Company of New York
with a 1983 copyright. Taylor & Francis Group published the second,
third, and fourth editions with 1997, 2008, and 2014 copyrights, respec-
tively. The book has a total of 11 chapters and an appendix. SI units have
been used throughout the text.

The following is a summary of additional materials given in this edition.

® Several new example problems have been added. The book now has
more than 100 example problems which help the readers understand
the theories presented. About 70 additional line drawings have been
added to the text.

e In Chapter 1, “Soil aggregate, plasticity, and classification,” relation-
ships for determination of liquid limit by one-point method from test
results of fall cone have been added to Section 1.8.1. Section 1.13.1
provides several correlations for estimation of the relative density of
granular soil. This section also has correlations between uniformity
coefficient, angularity, and maximum and minimum void ratios of
granular soil. Effect of nonplastic fines on maximum and minimum
void ratios of granular soils is given in Section 1.14.1.

e In Chapter 3, “Stresses and displacements in a soil mass—two-dimen-
sional problems,” stress determination for vertical line load located at
the apex of an infinite wedge is presented in Section 3.3. Section 3.7
provides stress relationships for horizontal and inclined line loads

XVii
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Preface

acting at the apex of an infinite wedge. Section 3.12 describes the
stress distribution under a symmetrical vertical triangular strip load.
In Chapter 4, “Stresses and displacements in a soil mass—three-
dimensional problems,” vertical stress calculation below flexible
circular area with parabolic and conical loading are presented in
Sections 4.10 and 4.11, respectively. Also a relationship for verti-
cal stress under a uniformly loaded flexible elliptical area is given in
Section 4.12.

In Chapter 8, “Consolidation,” Section 8.1 explains the fundamen-
tals of the time-dependent settlement of saturated cohesive soil using
the behavior of Kelvin model under load. Section 8.3.1 provides a
simplified procedure developed by Hanna et al. (2013) to estimate
the average degree of consolidation due to ramp loading. The log-log
method proposed by Jose et al. (1989) and the Oikawa method (1987)
to determine the preconsolidation pressure have been discussed in
Section 8.5.1.1. A compilation of several correlations presently avail-
able in the literature for the recompression index of clay is given in
Table 8.5. Design curves for prefabricated vertical drains have been
elaborated upon in Section 8.17.

In Chapter 9, “Shear strength of soils,” the relevance of various labo-
ratory test methods to field conditions has been briefly discussed in
Section 9.4. In Section 9.7 a discussion has been provided to quan-
tify the difference between the secant friction angle (¢..,,) and the
ultimate friction angle (¢_,) of granular soils based on the analysis of
Bolten (1968). This section also includes the correlations for ¢., for
single mineral soil as discussed by Koerner (1970). Recently developed
correlations for drained friction angle of normally consolidated clay
(Sorensen and Okkels, 2013) are summarized in Section 9.12. Section
9.15 provides several correlations for the undrained shear strength of
remolded clay. Relationships for determination of undrained shear
strength using tapered vanes have been added to Section 9.22.

In Chapter 10, “Elastic settlement of shallow foundations,” the strain
influence factor method for settlement calculation as provided by
Terzaghi et al. (1996) has been discussed in Section 10.5.2. Settlement
calculation based on the theory of elasticity as given in Section 10.6.1
has been substantially expanded. Elastic settlement in granular soil
considering the change in soil modulus with elastic strain, and the
effect of ground water table rise on elastic settlement of shallow foun-
dations on granular soil have been discussed in two new sections:
Sections 10.7 and 10.8.

In Chapter 11, “Consolidation settlement of shallow foundations,”
discussion of Griffith’s (1984) influence factor for determination of
the average vertical stress increase in a soil layer has been added to
Section 11.2.
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Chapter |

Soil aggregate, plasticity,
and classification

1. INTRODUCTION

Soils are aggregates of mineral particles; and together with air and/or water
in the void spaces, they form three-phase systems. A large portion of the
earth’s surface is covered by soils, and they are widely used as construction
and foundation materials. Soil mechanics is the branch of engineering that
deals with the engineering properties of soils and their behavior under stress.

This book is divided into 11 chapters: “Soil Aggregate, Plasticity, and
Classification,” “Stresses and Strains: Elastic Equilibrium,” “Stresses and
Displacement in a Soil Mass: Two-Dimensional Problems,” “Stresses
and Displacement in a Soil Mass: Three-Dimensional Problems,” “Pore
Water Pressure due to Undrained Loading,” “Permeability,” “Seepage,”
“Consolidation,” “Shear Strength of Soil,” “Elastic Settlement of Shallow
Foundations,” and “Consolidation Settlement of Shallow Foundations.”
This chapter is a brief overview of some soil properties and their
classification. It is assumed that the reader has been previously exposed
to a basic soil mechanics course.

1.2 SOIL: SEPARATE SIZE LIMITS

A naturally occurring soil sample may have particles of various sizes. Over
the years, various agencies have tried to develop the size limits of gravel,
sand, silt, and clay. Some of these size limits are shown in Table 1.1.

Referring to Table 1.1, it is important to note that some agencies classify
clay as particles smaller than 0.005 mm in size, and others classify it as par-
ticles smaller than 0.002 mm in size. However, it needs to be realized that
particles defined as clay on the basis of their size are not necessarily clay
minerals. Clay particles possess the tendency to develop plasticity when
mixed with water; these are clay minerals. Kaolinite, illite, montmorillonite,
vermiculite, and chlorite are examples of some clay minerals.
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Table 1.1 Soil: separate size limits

Agency

Classification

Size limits (mm)

U.S. Department of Agriculture (USDA)

International Society of Soil Mechanics and
Geotechnical Engineering (ISSMGE)

Federal Aviation Administration (FAA)

Massachusetts Institute of Technology (MIT)

American Association of State Highway and
Transportation Officials (AASHTO)

Unified (U.S. Army Corps of Engineers,
U.S. Bureau of Reclamation, and American
Society for Testing and Materials)

Gravel

Very coarse sand
Coarse sand
Medium sand
Fine sand

Very fine sand
Silt

Clay

Gravel

Coarse sand
Fine sand
Silt

Clay

Gravel

Sand

Silt

Clay

Gravel
Coarse sand
Medium sand
Fine sand
Silt

Clay

Gravel

Coarse sand

Fine sand

Silt

Clay

Gravel

Coarse sand
Medium sand

Fine sand

Silt and clay (fines)

>2

2-1

1-0.5
0.5-0.25
0.25-0.1
0.1-0.05
0.05-0.002
<0.002

>2

2-0.2
0.2-0.02
0.02-0.002
<0.002

>2

2-0.075
0.075-0.005
<0.005

>2

2-0.6
0.6-0.2
0.2-0.06
0.06-0.002
<0.002

76.2-2
2-0.425
0.425-0.075
0.075-0.002
<0.002

76.2-4.75
4.75-2
2-0.425
0.425-0.075
<0.075

Fine particles of quartz, feldspar, or mica may be present in a soil in the
size range defined for clay, but these will not develop plasticity when mixed
with water. It appears that it is more appropriate for soil particles with
sizes <2 or 5 pm as defined under various systems to be called clay-size
particles rather than clay. True clay particles are mostly of colloidal size
range (<1 pm), and 2 pm is probably the upper limit.
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1.3 CLAY MINERALS

Clay minerals are complex silicates of aluminum, magnesium, and iron.
Two basic crystalline units form the clay minerals: (1) a silicon—oxygen
tetrahedron, and (2) an aluminum or magnesium octahedron. A silicon—
oxygen tetrahedron unit, shown in Figure 1.1a, consists of four oxygen
atoms surrounding a silicon atom. The tetrahedron units combine to form
a silica sheet as shown in Figure 1.2a. Note that the three oxygen atoms
located at the base of each tetrahedron are shared by neighboring tetrahe-
dra. Each silicon atom with a positive valence of 4 is linked to four oxy-
gen atoms with a total negative valence of 8. However, each oxygen atom
at the base of the tetrahedron is linked to two silicon atoms. This leaves
one negative valence charge of the top oxygen atom of each tetrahedron
to be counterbalanced. Figure 1.1b shows an octahedral unit consisting
of six hydroxyl units surrounding an aluminum (or a magnesium) atom.
The combination of the aluminum octahedral units forms a gibbsite sheet
(Figure 1.2b). If the main metallic atoms in the octahedral units are mag-
nesium, these sheets are referred to as brucite sheets. When the silica
sheets are stacked over the octahedral sheets, the oxygen atoms replace
the hydroxyls to satisfy their valence bonds. This is shown in Figure 1.2c.

Some clay minerals consist of repeating layers of two-layer sheets. A two-
layer sheet is a combination of a silica sheet with a gibbsite sheet, or a
combination of a silica sheet with a brucite sheet. The sheets are about
7.2 A thick. The repeating layers are held together by hydrogen bonding
and secondary valence forces. Kaolinite is the most important clay mineral
belonging to this type (Figure 1.3). Figure 1.4 shows a scanning electron
micrograph of kaolinite. Other common clay minerals that fall into this
category are serpentine and halloysite.

The most common clay minerals with three-layer sheets are illite and
montmorillonite (Figure 1.5). A three-layer sheet consists of an octahedral
sheet in the middle with one silica sheet at the top and one at the bot-
tom. Repeated layers of these sheets form the clay minerals. Illite layers

O Oxygen

@ Silicon

O Hydroxyl

. Aluminum or
magnesium

Figure 1.1 (a) Silicon—oxygen tetrahedron unit and (b) aluminum or magnesium octa-
hedral unit.
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Figure 1.2 (a) Silica sheet, (b) gibbsite sheet, and (c) silica—gibbsite sheet. [After Grim, R. E.,
J. Soil Mech. Found. Div., ASCE, 85(2), 1-17, 1959.]
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Figure 1.4 Scanning electron micrograph of a kaolinite specimen. (Courtesy of David J.
White, Ingios Geotechnics, Inc. Northfield, Minnesota.)
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Figure 1.5 Symbolic structure of (a) illite and (b) montmorillonite.
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Figure 1.6 Scanning electron micrograph of a montmorillonite specimen. (Courtesy of
David ], White, Ingios Geotechnics, Inc. Northfield, Minnesota.)

are bonded together by potassium ions. The negative charge to balance
the potassium ions comes from the substitution of aluminum for some sili-
con in the tetrahedral sheets. Substitution of this type by one element for
another without changing the crystalline form is known as isomorphous
substitution. Montmorillonite has a similar structure to illite. However,
unlike illite, there are no potassium ions present, and a large amount of
water is attracted into the space between the three-sheet layers. Figure 1.6
shows a scanning electron micrograph of montmorillonite.

The surface area of clay particles per unit mass is generally referred to
as specific surface. The lateral dimensions of kaolinite platelets are about
1,000-20,000 A with thicknesses of 100-1,000 A. Illite particles have lateral
dimensions of 1000-5000 A and thicknesses of 50-500 A. Similarly, mont-
morillonite particles have lateral dimensions of 1000-5000 A with thick-
nesses of 10-50 A. If we consider several clay samples all having the same
mass, the highest surface area will be in the sample in which the particle sizes
are the smallest. So it is easy to realize that the specific surface of kaolinite
will be small compared to that of montmorillonite. The specific surfaces
of kaolinite, illite, and montmorillonite are about 15, 90, and 800 m?/g,
respectively. Table 1.2 lists the specific surfaces of some clay minerals.
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Table 1.2 Specific surface area and cation exchange capacity
of some clay minerals

Cation exchange

Clay mineral Specific surface (m?/g)  capacity (me/100 g)
Kaolinite 10-20 3
lllite 80-100 25
Montmorillonite 800 100
Chlorite 5-50 20
Vermiculite 5-400 150
Halloysite (4H,0) 40 12
Halloysite (2H,0) 40 12

Clay particles carry a net negative charge. In an ideal crystal, the positive
and negative charges would be balanced. However, isomorphous substitu-
tion and broken continuity of structures result in a net negative charge at the
faces of the clay particles. (There are also some positive charges at the edges
of these particles.) To balance the negative charge, the clay particles attract
positively charged ions from salts in their pore water. These are referred to as
exchangeable ions. Some are more strongly attracted than others, and the cat-
ions can be arranged in a series in terms of their affinity for attraction as
follows:

APP* > Ca® > Mg** > NH} >K* >H* > Na* > Li*

This series indicates that, for example, A3+ ions can replace Ca2* ions, and
Ca?* ions can replace Na* ions. The process is called cation exchange. For
example,

Nag,y + CaCl, — Cag,, + NaCl

Cation exchange capacity (CEC) of a clay is defined as the amount of
exchangeable ions, expressed in milliequivalents, per 100 g of dry clay.
Table 1.2 gives the CEC of some clays.

1.4 NATURE OF WATER IN CLAY

The presence of exchangeable cations on the surface of clay particles was
discussed in the preceding section. Some salt precipitates (cations in excess
of the exchangeable ions and their associated anions) are also present on
the surface of dry clay particles. When water is added to clay, these cations
and anions float around the clay particles (Figure 1.7).
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Figure 1.7 Diffuse double layer.

At this point, it must be pointed out that water molecules are dipolar,
since the hydrogen atoms are not symmetrically arranged around the oxygen
atoms (Figure 1.8a). This means that a molecule of water is like a rod with
positive and negative charges at opposite ends (Figure 1.8b). There are three
general mechanisms by which these dipolar water molecules, or dipoles, can
be electrically attracted toward the surface of the clay particles (Figure 1.9):

a. Attraction between the negatively charged faces of clay particles and
the positive ends of dipoles

b. Attraction between cations in the double layer and the negatively
charged ends of dipoles. The cations are in turn attracted by the nega-
tively charged faces of clay particles

c. Sharing of the hydrogen atoms in the water molecules by hydrogen
bonding between the oxygen atoms in the clay particles and the oxy-
gen atoms in the water molecules

Oxygen

Figure 1.8 Dipolar nature of water: (a) unsymmetrical arrangement of hydrogen atoms;
(b) dipole.
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Clay Case (a)

particle

Dipole
Cation
Case (b)
Dipole
Cation
Case (c)
Hydrogen

Figure 1.9 Dipolar water molecules in diffuse double layer.

The electrically attracted water that surrounds the clay particles is known
as double-layer water. The plastic property of clayey soils is due to the
existence of double-layer water. Thicknesses of double-layer water for typi-
cal kaolinite and montmorillonite crystals are shown in Figure 1.10. Since
the innermost layer of double-layer water is very strongly held by a clay
particle, it is referred to as adsorbed water.

‘}OO A Double-layer water
10A y

Adsorbed
water

*~ Double- /
/ layer water
200 A Y dy
/Adsorbed water y

————— [ Vlontmorillonite
77 (e crystal

200 A
¢ // 7
() (b)

Figure 1.10 Clay water (a) typical kaolinite particle, 10,000 by 1,000 A and (b) typical
montmorillonite particle, 1,000 by 10 A. [After Lambe, T. W., Trans. ASCE,
125, 682, 1960.]

Kaolinite
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1.5 REPULSIVE POTENTIAL

The nature of the distribution of ions in the diffuse double layer is shown in
Figure 1.7. Several theories have been presented in the past to describe the
ion distribution close to a charged surface. Of these, the Gouy—Chapman
theory has received the most attention. Let us assume that the ions in the
double layers can be treated as point charges, and that the surface of the clay
particles is large compared to the thickness of the double layer. According
to Boltzmann’s theorem, we can write that (Figure 1.11)

—v.ed
My = My0) €XP lljg; (1.1)
—v_e®
_=n_ 1.2
n n (0) eXp KT ( )

where
n, is the local concentration of positive ions at a distance x
n_1is the local concentration of negative ions at a distance x
7,0y M_0) are the concentration of positive and negative ions away from
the clay surface in the equilibrium liquid
@ is the average electric potential at a distance x (Figure 1.12)
v,, v_are ionic valences
e is the unit electrostatic charge, 4.8 x 10-1° esu
K is the Boltzmann constant, 1.38 x 10-1¢ erg/K
T is the absolute temperature

i e 5 ] dr b

Clay
particle

Figure .11 Derivation of repulsive potential equation.
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S

0

Potential, ®

v

Distance from surface of clay, x
Figure 1.12 Nature of variation of potential @ with distance from the clay surface.
The charge density p at a distance x is given by
p=v,en, —v_en_ (1.3)
According to Poisson’s equation

d’® _ —Amp
dx? A

(1.4)

where A is the dielectric constant of the medium.
Assuming v, = v_and n,, = n_, = n,, and combining Equations 1.1
through 1.4, we obtain

2
d-® _ Snnyve sinh ved

1.5
dx* A KT (1.5

It is convenient to rewrite Equation 1.5 in terms of the following nondi-
mensional quantities

y = ve®
KT (1.6)
g =% (1.7)

KT
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and
§=xx (1.8)

where @, is the potential at the surface of the clay particle and

8mnpe’v? _
K=" (cm 2)

AKT (1.9)
Thus, from Equation 1.5

2
Z&Z —sinhy (1.10)

The boundary conditions for solving Equation 1.10 are

1. AtE =, y=0and dy/dE =0
2. AtE =0,y =z, thatis, ® = ®,

The solution yields the relation

o= (€ +1)+ (e —1)e (L.11)
(e +1)—(e"* —1e
Equation 1.11 gives an approximately exponential decay of potential. The
nature of the variation of the nondimensional potential y with the nondi-
mensional distance is given in Figure 1.13.
For a small surface potential (<25 mV), we can approximate Equation 1.5 as

d’o
KO (1.12)
® = o™ (1.13)

Equation 1.13 describes a purely exponential decay of potential. For this
condition, the center of gravity of the diffuse charge is located at a distance
of x = 1/x. The term 1/x is generally referred to as the double-layer thickness.

There are several factors that will affect the variation of the repulsive
potential with distance from the surface of the clay layer. The effect of
the cation concentration and ionic valence is shown in Figures 1.14 and
1.15, respectively. For a given value of ®, and x, the repulsive potential ®
decreases with the increase of ion concentration 7, and ionic valence v.

When clay particles are close and parallel to each other, the nature of
variation of the potential will be as shown in Figure 1.16. Note for this case
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Nondimensional potential, y

|
0 1 2 3

Nondimensional distance, £

Figure 1.13 Variation of nondimensional potential with nondimensional distance.

Potential, ®

v

Distance from clay particle, x

Figure I.14 Effect of cation concentration on the repulsive potential.
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Potential, @

Distance from clay particle, x

Figure 1.15 Effect of ionic valence on the repulsive potential.

v

Clay Clay
particle particle
>

x

Figure .16 Variation of @ between two parallel clay particles.
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21>29> 23
ve(Dd
~ Yd =
i KT

v

E=xd
Figure .17 Nature of variation of the nondimensional midplane potential for two paral-

lel plates.

thatat x = 0, ® = @, and at x = d (midway between the plates), ® = ®, and
d®/dx = 0. Numerical solutions for the nondimensional potential y = y,
(i.e., ® = ®,) for various values of z and & = «xd (i.e., x = d) are given by
Verweg and Overbeek (1948) (see also Figure 1.17).

1.6 REPULSIVE PRESSURE

The repulsive pressure midway between two parallel clay plates (Figure 1.18)
can be given by the Langmuir equation

p= ZnOKT(cosh ”;?d - 1] (1.14)

where p is the repulsive pressure, that is, the difference between the osmotic
pressure midway between the plates in relation to that in the equilibrium
solution. Figure 1.19, which is based on the results of Bolt (1956), shows
the theoretical and experimental variation of p between two clay particles.
Although the Guoy—Chapman theory has been widely used to explain
the behavior of clay, there have been several important objections to this
theory. A good review of these objections has been given by Bolt (1955).
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Clay V4 V4 Clay
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Figure 1.18 Repulsive pressure midway between two parallel clay plates.
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Figure 1.19 Repulsive pressure between sodium montmorillonite clay particles. [After
Bolt, G. H., Geotechnique, 6(2), 86, 1956.]
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1.7 FLOCCULATION AND DISPERSION
OF CLAY PARTICLES

In addition to the repulsive force between the clay particles, there is an
attractive force, which is largely attributed to the Van der Waal force. This
is a secondary bonding force that acts between all adjacent pieces of matter.
The force between two flat parallel surfaces varies inversely as 1/x3 to 1/x*,
where x is the distance between the two surfaces. Van der Waal’s force is
also dependent on the dielectric constant of the medium separating the sur-
faces. However, if water is the separating medium, substantial changes in the
magnitude of the force will not occur with minor changes in the constitution
of water.

The behavior of clay particles in a suspension can be qualitatively visual-
ized from our understanding of the attractive and repulsive forces between
the particles and with the aid of Figure 1.20. Consider a dilute suspen-
sion of clay particles in water. These colloidal clay particles will undergo
Brownian movement and, during this random movement, will come close to

Repulsive force

Net force

v

Distance between
particles, x

Attractive force

v

Figure 1.20 Dispersion and flocculation of clay in a suspension.
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each other at distances within the range of interparticle forces. The forces
of attraction and repulsion between the clay particles vary at different rates
with respect to the distance of separation. The force of repulsion decreases
exponentially with distance, whereas the force of attraction decreases as
the inverse third or fourth power of distance, as shown in Figure 1.20.
Depending on the distance of separation, if the magnitude of the repulsive
force is greater than the magnitude of the attractive force, the net result will
be repulsion. The clay particles will settle individually and form a dense
layer at the bottom; however, they will remain separate from their neigh-
bors (Figure 1.21a). This is referred to as the dispersed state of the soil. On
the contrary, if the net force between the particles is attraction, flocs will be
formed and these flocs will settle to the bottom. This is called flocculated
clay (Figure 1.21b).

1.7.1 Salt flocculation and nonsalt flocculation

We saw in Figure 1.14 the effect of salt concentration, 7,, on the repulsive
potential of clay particles. High salt concentration will depress the double
layer of clay particles and hence the force of repulsion. We noted earlier
in this section that the Van der Waal force largely contributes to the force
of attraction between clay particles in suspension. If the clay particles are
suspended in water with a high salt concentration, the flocs of the clay par-
ticles formed by dominant attractive forces will give them mostly an orien-
tation approaching parallelism (face-to-face type). This is called a salt-type
flocculation (Figure 1.22a).

Another type of force of attraction between the clay particles, which is
not taken into account in colloidal theories, is that arising from the elec-
trostatic attraction of the positive charges at the edge of the particles and
the negative charges at the face. In a soil-water suspension with low salt
concentration, this electrostatic force of attraction may produce a floccula-
tion with an orientation approaching a perpendicular array. This is shown
in Figure 1.22b and is referred to as nonsalt flocculation.

.

S—

-
— E——

(@) (b)

Figure 1.21 (a) Dispersion and (b) flocculation of clay.
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(a) (b)

Figure 1.22 (a) Salt and (b) nonsalt flocculation of clay particles.

1.8 CONSISTENCY OF COHESIVE SOILS

The presence of clay minerals in a fine-grained soil will allow it to be remolded
in the presence of some moisture without crumbling. If a clay slurry is dried,
the moisture content will gradually decrease, and the slurry will pass from
a liquid state to a plastic state. With further drying, it will change to a
semisolid state and finally to a solid state, as shown in Figure 1.23. In 1911,
A. Atterberg, a Swedish scientist, developed a method for describing the
limit consistency of fine-grained soils on the basis of moisture content.
These limits are the liquid limit, the plastic limit, and the shrinkage limit.

The liquid limit is defined as the moisture content, in percent, at which
the soil changes from a liquid state to a plastic state. The moisture contents
(in percent) at which the soil changes from a plastic to a semisolid state
and from a semisolid to a solid state are defined as the plastic limit and
the shrinkage limit, respectively. These limits are generally referred to as
the Atterberg limits. The Atterberg limits of cohesive soil depend on sev-
eral factors, such as the amount and type of clay minerals and the type of
adsorbed cation.

Moisture
» content
decreasing
Liquid Plastic Semisolid Solid
state state state state
Liquid Plastic Shrinkage
limit limit limit

Figure 1.23 Consistency of cohesive soils.
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1.8.1 Liquid limit

Theliquid limit of a soil is generally determined by the Standard Casagrande
device. A schematic diagram (side view) of a liquid limit device is shown in
Figure 1.24a. This device consists of a brass cup and a hard rubber base.
The brass cup can be dropped onto the base by a cam operated by a crank.
To perform the liquid limit test, one must place a soil paste in the cup.
A groove is then cut at the center of the soil pat with the standard groov-
ing tool (Figure 1.24b). By using the crank-operated cam, the cup is lifted
and dropped from a height of 10 mm. The moisture content, in percent,
required to close a distance of 12.7 mm along the bottom of the groove
(see Figure 1.24c and d) after 25 blows is defined as the liquid limit.

It is difficult to adjust the moisture content in the soil to meet the required
12.7 mm closure of the groove in the soil pat at 25 blows. Hence, at least

m-‘

468 T
W mml: 54 mm

On

(a) (b)

Section
-~ 11 p—
mm
S "
% ;W" 8 mm % W
—nt T
2 mm

Figure 1.24 Schematic diagram of (a) liquid limit device, (b) grooving tool, (c) soil pat at
the beginning of the test, and (d) soil pat at the end of the test.
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three tests for the same soil are conducted at varying moisture contents, with
the number of blows, N, required to achieve closure varying between 15
and 35. The moisture content of the soil, in percent, and the corresponding
number of blows are plotted on semilogarithmic graph paper (Figure 1.25).
The relationship between moisture content and log N is approximated as a
straight line. This line is referred to as the flow curve. The moisture content
corresponding to N = 235, determined from the flow curve, gives the liquid
limit of the soil. The slope of the flow line is defined as the flow index and
may be written as

wy —uw,

o lOg(NZ/Nl) (115)

where
I is the flow index
w is the moisture content of soil, in percent, corresponding to N, blows
w, is the moisture content corresponding to N, blows

Note that w, and w, are exchanged to yield a positive value even though the
slope of the flow line is negative. Thus, the equation of the flow line can be

written in a general form as

w=-IglogN+C

(1.16)
where C is a constant.
50
\.\ Flow curve
g ¥
2 Liquid limit = 42
8 SRt ittt Rl i
§ 40 i
o 1
8 | \
2 |
17} I
g :
= .
|
30 :
10 20 25 30 40 50

Number of blows, N (log scale)

Figure 1.25 Flow curve for the determination of the liquid limit for a silty clay.
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From the analysis of hundreds of liquid limit tests in 1949, the U.S. Army
Corps of Engineers, at the Waterways Experiment Station in Vicksburg,
Mississippi, proposed an empirical equation of the form

tanf
LL = — 1.17
WN(ZSJ ( )

where
N is the number of blows in the liquid limit device for a 12.7 mm
groove closure
why, is the corresponding moisture content
tan p = 0.121 (but note that tan p is not equal to 0.121 for all soils)

Equation 1.17 generally yields good results for the number of blows
between 20 and 30. For routine laboratory tests, it may be used to deter-
mine the liquid limit when only one test is run for a soil. This procedure
is generally referred to as the one-point method and was also adopted by
ASTM under designation D-4318 (ASTM, 2014). The reason that the one-
point method yields fairly good results is that a small range of moisture
content is involved when N = 20-30.

Another method of determining the liquid limit, which is popular in
Europe and Asia, is the fall cone method (British Standard—BS 1377).
In this test, the liquid limit is defined as the moisture content at which
a standard cone of apex angle 30° and weight of 0.78 N (80 gf) will
penetrate a distance d = 20 mm in 5 s when allowed to drop from a
position of point contact with the soil surface (Figure 1.26a). Due to the
difficulty in achieving the liquid limit from a single test, four or more
tests can be conducted at various moisture contents to determine the fall
cone penetration, d, in 5 s. A semilogarithmic graph can then be plotted
with moisture content w versus cone penetration d. The plot results in
a straight line. The moisture content corresponding to d = 20 mm is the
liquid limit (Figure 1.26b). From Figure 1.26b, the flow index can be
defined as

_ wH (%) —w, (%)

= (1.18)
logd, —logd,

FC

where w,, w, are the moisture contents at cone penetrations of d; and d,,
respectively.

As in the case of the percussion cup method (ASTM D4318), attempts
have been made to develop the estimation of liquid limit by a one-point
method. They are
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Weight, W=0.78 N
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Figure 1.26 (a) Fall cone test and (b) plot of moisture content versus cone penetration
for determination of liquid limit.

¢ Nagaraj and Jayadeva (1981)

w

L-__%
0.77logd (1.19)

w

L=— = 1.20
0.65+0.0175d ( )

¢ Feng (2001)

0.33
LL = w(zj) (1.21)
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Table 1.3 Summary of main differences among fall cones (Summarized
from Budhu, 1985)

Penetration for

Country Cone details liquid limit (mm)
Russia Cone angle = 30° 10
Cone mass=76g
Britain, France Cone angle = 30° 20
Cone mass=80g
India Cone angle =31° 20.4
Conemass=148g
Sweden, Canada (Québec) Cone angle = 60° 10

Cone mass=60g

Note: Duration of penetration is 5s in all cases.

where w (%) is the moisture content for a cone penetration d (mm) falling
between 15 mm to 25 mm.

The dimensions of the cone tip angle, cone weight, and the penetra-
tion (mm) at which the liquid limit is determined varies from country to
country. Table 1.3 gives a summary of different fall cones used in various
countries.

A number of major studies have shown that the undrained shear strength
of the soil at liquid limit varies between 1.7 and 2.3 kN/m?2. Based on tests
conducted on a large number of soil samples, Feng (2001) has given the
following correlation between the liquid limits determined according to
ASTM D4318 and British Standard BS1377.

LLgs) = 2.6 + 0.94[LL astm)] (1.22)

Example 1.1

One liquid limit test was conducted on a soil using the fall cone.
Following are the results: w =29.5% at d = 15 mm. Estimate the liquid
limit of the soil using Equations 1.19, 1.20, and 1.21.

Solution

From Equation 1.19,

L= W 25 35
0.77logd  (0.77)(log15)
From Equation 1.20,
w 29.5

LL =32.33

T 0.65+0.0175d  0.65 +(0.0175)(15)
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From Equation 1.21,

0.33 0.33
LL= w(g) = (29.5)(@ =32.43
d 15

1.8.2 Plastic limit

The plastic limit is defined as the moist content, in percent, at which the soil
crumbles when rolled into threads of 3.2 mm diameter. The plastic limit
is the lower limit of the plastic stage of soil. The plastic limit test is simple
and is performed by repeated rolling of an ellipsoidal size soil mass by hand
on a ground glass plate. The procedure for the plastic limit test is given by
ASTM Test Designation D-4318 (ASTM, 2014).

As in the case of liquid limit determination, the fall cone method can be
used to obtain the plastic limit. This can be achieved by using a cone of
similar geometry, but with a mass of 2.35 N (240 gf). Three to four tests at
varying moist contents of soil are conducted, and the corresponding cone
penetrations d are determined. The moisture content corresponding to a cone
penetration of d = 20 mm is the plastic limit. Figure 1.27 shows the liquid
and plastic limit determined by the fall cone test for Cambridge Gault clay
reported by Wroth and Wood (1978).

Cone weight,
W=0.78 N
70 °
/
Based on /
Wroth and /)
Wood (1978) /
/

,/ Cone weight,
® 60 O W=235N
2 ,’

E /
3
g Plastic !
© o)
e limit ,* !
g -
% 50 + /O :
) / |
b / i
/ |
/ |
/! !
/ |
|
I
40 + [ ] o |
| | | | |
1 2 5 10 20 50

Cone penetration, d (mm)

Figure 1.27 Liquid and plastic limits for Cambridge Gault clay determined by the fall cone test.
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The difference between the liquid limit and the plastic limit of a soil is
defined as the plasticity index, PI

PI=LL-PL (1.23)
where
LL is the liquid limit

PL is the plastic limit
Sridharan et al. (1999) showed that the plasticity index can be correlated

to the flow index as obtained from the liquid limit tests. According to their
study

PI(%) = 4.121x(%) (1.24)
and

PI(%) = 0.741pc(%) (1.25)

1.9 LIQUIDITY INDEX

The relative consistency of a cohesive soil can be defined by a ratio called
the liquidity index LI It is defined as

[_wn-PL _wy-PL

- - (1.26)
LL-PL PI

where wy is the natural moisture content. It can be seen from Equation 1.26
that, if wy = LL, then the liquidity index is equal to 1. Again, if wy = PL,
the liquidity index is equal to 0. Thus, for a natural soil deposit which is
in a plastic state (i.e., LL > wy > PL), the value of the liquidity index var-
ies between 1 and 0. A natural deposit with wy > LL will have a liquidity
index greater than 1. In an undisturbed state, these soils may be stable;
however, a sudden shock may transform them into a liquid state. Such soils
are called sensitive clays.

1.10 ACTIVITY

Since the plastic property of soil is due to the adsorbed water that
surrounds the clay particles, we can expect that the type of clay miner-
als and their proportional amounts in a soil will affect the liquid and
plastic limits. Skempton (1953) observed that the plasticity index of a
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Soil 1
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Plasticity index
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Percentage of clay-size fraction (<2p)

Figure 1.28 Relationship between plasticity index and percentage of clay-size fraction
by weight.

soil linearly increases with the percent of clay-size fraction (percent finer
than 2p by weight) present in it. This relationship is shown in Figure
1.28. The average lines for all the soils pass through the origin. The cor-
relations of PI with the clay-size fractions for different clays plot separate
lines. This is due to the type of clay minerals in each soil. On the basis
of these results, Skempton defined a quantity called activity, which is the
slope of the line correlating PI and percent finer than 2p. This activity A
may be expressed as

A= — | (1.27)
(percentage of clay-size fraction by weight)

Activity is used as an index for identifying the swelling potential of clay

soils. Typical values of activities for various clay minerals are given in
Table 1.4.

Table 1.4 Activities of clay minerals

Mineral Activity (A)
Smectites -7
lllite 0.5-1
Kaolinite 0.5
Halloysite (4H,0) 0.5
Halloysite (2H,0) 0.1
Attapulgite 0.5-1.2
Allophane 0.5-1.2
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Seed et al. (1964a) studied the plastic property of several artificially pre-
pared mixtures of sand and clay. They concluded that, although the rela-
tionship of the plasticity index to the percent of clay-size fraction is linear
(as observed by Skempton), it may not always pass through the origin. This
is shown in Figure 1.29. Thus, the activity can be redefined as

e PI

= 1.28
percentof clay-size fraction — C’ ( )

where C’ is a constant for a given soil. For the experimental results shown
in Figure 1.29, C" = 9.

O Commercial bentonite
® Bentonite/kaolinite—4:1
A Bentonite/kaolinite—1.5:1
A Kaolinite/bentonite—1.5:1
B Kaolinite/bentonite—4:1
O Kaolinite/bentonite—9:1
v Kaolinite/bentonite—19:1
Vv Commercial kaolinite
500
| | | 1
400 |
-§ 300 =
=]
z
;%
]
= 200 [~
100 [
|
00 20 40 60 80 100

Percentage of clay-size fraction (<2y)

Figure 1.29 Relationship between plasticity index and clay-size fraction by weight for
kaolinite/bentonite clay mixtures. [After Seed, H. B. et al, J. Soil Mech.
Found. Eng. Div., ASCE, 90(SM4), 107, 1964.]
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Plasticity index

0 10 40

Percentage of clay-size fraction (<2p)

Figure 1.30 Simplified relationship between plasticity index and percentage of clay-size
fraction by weight. [After Seed, H. B. et al., J. Soil Mech. Found. Eng. Div.,
ASCE, 90(SMé), 75, 1964.]

Further works of Seed et al. (1964b) have shown that the relationship
of the plasticity index to the percentage of clay-size fractions present in a
soil can be represented by two straight lines. This is shown qualitatively
in Figure 1.30. For clay-size fractions greater than 40%, the straight line
passes through the origin when it is projected back.

1.1l GRAIN-SIZE DISTRIBUTION OF SOIL

For a basic understanding of the nature of soil, the distribution of
the grain size present in a given soil mass must be known. The grain-size
distribution of coarse-grained soils (gravelly and/or sandy) is determined
by sieve analysis. Table 1.5 gives the opening size of some U.S. sieves.

The cumulative percent by weight of a soil passing a given sieve is referred
to as the percent finer. Figure 1.31 shows the results of a sieve analysis for a
sandy soil. The grain-size distribution can be used to determine some of the
basic soil parameters, such as the effective size, the uniformity coefficient,
and the coefficient of gradation.

The effective size of a soil is the diameter through which 10% of the total
soil mass is passing and is referred to as D,,. The uniformity coefficient C,
is defined as

(1.29)

where Dy, is the diameter through which 60% of the total soil mass is passing.
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Table 1.5 U.S. standard sieves

Sieve no. Opening size (mm)
3 6.35
4 4.75
6 3.36
8 2.38
10 2.00
16 1.19
20 0.84
30 0.59
40 0.425
50 0.297
60 0.25
70 0.21
100 0.149
140 0.105
200 0.075
270 0.053

The coefficient of gradation C_is defined as

c. = Ds) (1.30)

* (Dgo)(Dio)

where Dy, is the diameter through which 30% of the total soil mass is passing.

100

80

60

Percent finer

40

30
20

10

0
10 1 0.1 0.01

Diameter, mm (log scale)

Figure 1.3] Grain-size distribution of a sandy soil.
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A soil is called a well-graded soil if the distribution of the grain sizes
extends over a rather large range. In that case, the value of the uniformity
coefficient is large. Generally, a soil is referred to as well graded if C, is
larger than about 4-6 and C. is between 1 and 3. When most of the grains
in a soil mass are of approximately the same size—that is, C, is close to
1—the soil is called poorly graded. A soil might have a combination of two
or more well-graded soil fractions, and this type of soil is referred to as a
gap-graded soil.

The sieve analysis technique described earlier is applicable for soil grains
larger than No. 200 (0.075 mm) sieve size. For fine-grained soils, the pro-
cedure used for determination of the grain-size distribution is hydrometer
analysis. This is based on the principle of sedimentation of soil grains.

1.12 WEIGHT-VOLUME RELATIONSHIPS

Figure 1.32a shows a soil mass that has a total volume V and a total weight W.
To develop the weight—volume relationships, the three phases of the soil mass,
that is, soil solids, air, and water, have been separated in Figure 1.32b. Note that

W =W, + W, (1.31)
and, also
V=V,+V,+V, (1.32)
Vi=Vy+V, (1.33)
Weight Volume Weight Volume
ry Yy
Air I T
GO0 - - - - vy
W @ % = T T water

Soil
solids

= —e—=
| I
o
! ]
S e
——

(@) (b

Figure 1.32 Weight—volume relationships for soil aggregate: (a) soil mass of volume V;
(b) three phases of the soil mass.
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where
W. is the weight of soil solids
W, is the weight of water
V. is the volume of the soil solids
V., is the volume of water
V. is the volume of air

The weight of air is assumed to be zero. The volume relations commonly
used in soil mechanics are void ratio, porosity, and degree of saturation.

Void ratio e is defined as the ratio of the volume of voids to the volume
of solids:

e= "V (1.34)
Porosity n is defined as the ratio of the volume of voids to the total volume:
n=—> (1.35)

Also, V=V +V,
and so

o Ve VIV e
Vit Ve (VIV)+(Vu/V.)  L+e

(1.36)

Degree of saturation S, is the ratio of the volume of water to the volume
of voids and is generally expressed as a percentage:

Sr(%)=%><100 (1.37)

v

The weight relations used are moisture content and unit weight. Moisture
content w is defined as the ratio of the weight of water to the weight of soil
solids, generally expressed as a percentage:

10(%) = Y 100 (1.38)
W,

Unit weight v is the ratio of the total weight to the total volume of the soil

aggregate:

_w 1.
V=Y (1.39)
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This is sometimes referred to as moist unit weight since it includes the
weight of water and the soil solids. If the entire void space is filled with
water (i.e., V, = 0), it is a saturated soil; Equation 1.39 will then give us the
saturated unit weight vy,,..

The dry unit weight vy, is defined as the ratio of the weight of soil solids
to the total volume:

Y=, (1.40)

Useful weight—volume relations can be developed by considering a soil
mass in which the volume of soil solids is unity, as shown in Figure 1.33.
Since V, = 1, from the definition of void ratio given in Equation 1.34, the
volume of voids is equal to the void ratio e. The weight of soil solids can
be given by

W, =Gy, V, =Gy, (sinceV, = 1)

where
G, is the specific gravity of soil solids
Y 1s the unit weight of water (9.81 kN/m?)

From Equation 1.38, the weight of water is W, = wW, = wG_y,,. So the
moist unit weight is

Air

—
.
||
I
b
|

(H—
=
a

Wy =wGgYy _ _Water _ _ |V,

+

W= Gy Soil V,
solids

=
S
Q

|

I

|
|<_

n—-

—_

|4_

Figure 1.33 Weight—volume relationship for V, = 1.
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_W_W+W, _ Gy +wGy, _ Grw(l+w)

- - (1.41)
\% Vi+V, 1+e 1+e
The dry unit weight can also be determined from Figure 1.33 as
W, Gy
=W _ Gitw 1.42
TV T 1ve (1.42)
The degree of saturation can be given by
S = Vo _ Walve _ wGwlw _ wG (1.43)
A V, e e
For saturated soils, S, = 1. So, from Equation 1.43,
e =wG, (1.44)

By referring to Figure 1.34, the relation for the unit weight of a saturated
soil can be obtained as

W _ W+ W, _ Gywtevw
\% 1% 1+e

Yoar = (1.45)

Basic relations for unit weight such as Equations 1.41, 1.42, and 1.45 in
terms of porosity # can also be derived by considering a soil mass that has a
total volume of unity as shown in Figure 1.35. In this case (for V = 1), from
Equation 1.35, V,=#n.S0, V.=V -V, =1 -n.

W[ — — Water — — | V¢

Yw v

-

Soil
Y solids ezl

S
I
—a—>

Figure 1.34 Weight—volume relation for saturated soil with V, = I.
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WWWGSYWIH) _ _ Water_ _ _
(]_T_n) Soil T
solids
i v

Figure 1.35 Weight—volume relationship for V = I.

W= Gy,

=~
I
—
=
|
S
=

The weight of soil solids is equal to (1 - )Gy, and the weight of water

W, = wW, = w(1 - n)Gy,,. Thus, the moist unit weight is

1% \% 1
=Goyu(l=n)(1+w)

p= W Wt W, (1= mGyy + wll=n)Gry

The dry unit weight is

W,

Vo= = (1-n)Gyyw

If the soil is saturated (Figure 1.36),

- ~ Water — ~
szn)/W _ o _ Vv=l’l
- - - - J V=
T Soil Vs=(1—n)

W= Gyy(1-n) solids l
v

Figure 1.36 Weight—volume relationship for saturated soil with V = 1.

(1.46)

(1.47)
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Table 1.6 Typical values of void ratios and dry unit weights for granular soils

Void ratio, e Dry unit weight, v,
Soil type Maximum ~ Minimum  Minimum (kN/m3)  Maximum (kN/m3)
Gravel 0.6 0.3 16 20
Coarse sand 0.75 0.35 15 19
Fine sand 0.85 0.4 14 19
Standard Ottawa sand 0.8 0.5 14 17
Gravelly sand 0.7 0.2 15 22
Silty sand | 0.4 13 19
Silty sand and gravel 0.85 0.15 14 23
W+ Wy
sat — T = (1 - n)GSYW +nYy = [Gs - n(Gs - 1)]Yw (148)

Table 1.6 gives some typical values of void ratios and dry unit weights
encountered in granular soils.

Example 1.2

For a soil in natural state, given e = 0.8, w = 24%, and G, = 2.68.

a. Determine the moist unit weight, dry unit weight, and degree of
saturation.

b. If the soil is completely saturated by adding water, what would
its moisture content be at that time? Also, find the saturated unit
weight.

Solution
Part a:

From Equation 1.41, the moist unit weight is

_Grw(l+w)
l+e

Since y,, = 9.81 kN/m?,

= RESOSNA+024) oy s
1+0.8

From Equation 1.42, the dry unit weight is

ya = Yo = @O8IOD) _ 4y g 1nym?
1+e 1+0.8
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From Equation 1.43, the degree of saturation is

G

100 = (0:2412.68)

x100 =80.4%

S:(%) = “’e

Part b:

From Equation 1.44, for saturated soils, ¢ = wG,, or

(%) = £-x100 =%x100 =29.85%

From Equation 1.45, the saturated unit weight is

Gyyw +eY, _ 9.81(2.68+0.8)
1+e 1+0.8

Yoat = =18.97 kN/m?

Example 1.3

In the natural state, a moist soil has a volume of 0.0093 m? and weighs
177.6 N. The oven dry weight of the soil is 153.6 N. If G,=2.71, cal-
culate the moisture content, moist unit weight, dry unit weight, void
ratio, porosity, and degree of saturation.

Solution

Refer to Figure 1.37. The moisture content (Equation 1.38) is

oo W _W-W,_177.6-153.6 _ 24

= x100=15.6%
W, W, 153.6 153.6

The moist unit weight (Equation 1.39) is

w1776

== =19,096 N/m’ ~19.1 kN/m’
V. 0.0093

For dry unit weight (Equation 1.40), we have

W, 153.6

= =16,516 N/m® ~16.52 kN/m’®
V. 0.0093

Yda =

The void ratio (Equation 1.34) is found as follows:

W, 0.1536
Goyw  2.71x9.81

V, =V -V, =0.0093-0.0058 = 0.0035 m’

=0.0058 m’

s
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Weight (N) Volume (m3)
Yy T
Air T
V,=
T 0.0035
W,, = 24.0 Vi =
0.00245
L5 X
L A
W=171.6 V= 0.0093
W, = 153.6 21 V, = 0.0058
ror 2 &

Figure 1.37 Three phases of a soil sample.

So

~0.0035

e=——"-~0.60
0.0058

For porosity (Equation 1.36), we have

e 0.60

n= =———=0.375
1+e 1+0.60

We find the degree of saturation (Equation 1.37) as follows:

S= Ve
v,
v, = Vo 0024 _ 50245 m?®
v 9.81
So
S= Mxloo =70%

~0.0035
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Example 1.4

For a saturated soil, show that

(e 14+w
YSBY_ w 1+e ’YW'

Solution
From Equations 1.44 and 1.45,

Yo = (2 (@)
and

e =wG;
or

G=" (b)

Combining Equations (a) and (b) gives

e

Vo = 1+e w/\ 1+e

1.13 RELATIVE DENSITY AND RELATIVE
COMPACTION

Relative density is a term generally used to describe the degree of compac-
tion of coarse-grained soils. Relative density D, is defined as

D, = Gmex € (1.49)

€max ~ €min

where
€.y 18 the maximum possible void ratio
i 18 the minimum possible void ratio
e is the void ratio in natural state of soil

Equation 1.49 can also be expressed in terms of dry unit weight of the soil:

GyYw
1 + €min

:&_1 (1.50)
Ya(max)

Ya(max) =

min
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Similarly,
€max =G57'Y‘.N_l (151)
Ya(min)
and
o OV 4 (1.52)
Yd

where y4(max), y4(min), and v, are the maximum, minimum, and natural-
state dry unit weights of the soil. Substitution of Equations 1.50 through
1.52 into Equation 1.49 yields

D, {n(max)}h(vd ~Ya(min) } (1.53)

Ya max) - Y4(min)

Relative density is generally expressed as a percentage. It has been used
by several investigators to correlate the angle of friction of soil, the soil
liquefaction potential, etc.

Another term occasionally used in regard to the degree of compaction of
coarse-grained soils is relative compaction, R, which is defined as

R.o=— 14 (1.54a)
Ya(max)

Comparing Equations 1.53 and 1.54a,

R,

= Do (1.54b)
1-D;(1-R,)

C

where R, = y4(min)/y,(max).
Lee and Singh (1971) reviewed 47 different soils and gave the approxi-
mate relation between relative compaction and relative density as

R. =80+0.2D, (1.54¢)

where D, is in percent.

1.13.1 Correlations for relative density of
granular soil

Several correlations have been proposed for estimation of relative density
from standard penetration test results obtained from field soil exploration
programs. Some of those relationships are given below.
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Kulhawy and Mayne (1990) modified an empirical relationship for rela-
tive density that was given by Marcuson and Bieganousky (1977), which
can be expressed as

, 0.5
D.(%)=12.2+ 0.75{222N60 +2311-7110CR ~ 779((;0] - 50C§}

(1.55)

where
D, = relative density
Ny, = standard penetration number for an energy ratio of 60%
o, = effective overburden pressure
C, = uniformity coefficient of sand

preconsolidation pressure, G

OCR = 2 .
effective overburden pressure, o),

p. = atmospheric pressure (=100 kN/m?)

Meyerhof (1957) developed a correlation between D, and Ny, as

Ny = [17 +24(§° HDE

or

0.5

Neo

T (o] (1.56)
{17”4[ ﬂ
Pa

Equation 1.56 provides a reasonable estimate only for clean, medium
fine sand.

Cubrinovski and Ishihara (1999) also proposed a correlation between
Ny, and the relative density of sand (D,) that can be expressed as

D, =

1.7
Ngo (0.23 + 01'306j )
D,(%) = s ||| 00 (1.57)

Pa

where
p. = atmospheric pressure (=100 kN/m?)
Dy, = sieve size through which 50% of the soil will pass (mm)
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Kulhawy and Mayne (1990) correlated the corrected standard penetra-
tion number and the relative density of sand in the form

0.5
N
DA%){C:CA%O(’J (100 (1.58)
where
C, = grain-size correlations factor = 60+ 25 logDs (1.59)
C4 = correlation factor for aging =1.2 + 0.0SIOg(léo) (1.60)
Cocr = correlation factor for overconsolidation = OCR%!8 (1.61)

D, = diameter through which 50% of the soil will pass (mm)
t = age of soil since deposition (years)
OCR = overconsolidation ratio

Skempton (1986) suggested that, for sand with a relative density greater
than 35%,

7(1\3;60 ~ 60 (1.62)
where (N,)g is Ny, corrected to an effective overburden pressure of
p. =100 kN/m2. (N,),, should be multiplied by 0.92 for coarse sands and
1.08 for fine sands.

More recently Mujtaba et al. (2017) have provided the following correla-
tion for D_:

0.23
D, (%) =1.96Ng —19.2(%] +29.2 (1.63)

o

For more details of Ny, and (N,),,, the readers are referred to Das (2016).

1.14 RELATIONSHIP BETWEEN ¢, ., AND e

max min

The maximum and minimum void ratios for granular soils described in
Section 1.13 depend on several factors such as

e Grain size
¢ Grain shape
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¢ Nature of grain-size distribution
¢ Fine content F. (i.e., fraction smaller than 0.075 mm)

Following are some of the correlations now available in the literature related
to e, and e, of granular soils.

max min

¢ Clean sand (F. = 0%-5%)

Miura et al. (1997) conducted an extensive study of the physical characteris-
tics of about 200 samples of granular material, which included mostly clean
sand, some glass beads, and lightweight aggregates (LWA). Figure 1.38
shows a plot of e, versus e, ;, obtained from that study, which shows that

max min

€max = 1'62'ernin (1.64)

Cubrinovski and Ishihara (2002) analyzed a large number of clean sand
samples based on which it was suggested that

emax = 0.072 4+ 1.53ein (1.65)

Based on best-fit linear regression lines, Cubrinovski and Ishihara (2002)
also provided the following relationships for other soils:

® Sand with fines (5% < F. < 15%)
lmax = 0.25+1.37e,, (1.66)

2.0 LML

1.5

T

emax

T

1.0
O Natural sample
4 Uniform sample
O Graded sample

L ® Glass beads
05 F " LWA
O.zhll.l,l bt b oo on s,
0.2 0.5 1.0 1.5 2.0

€min

Figure 1.38 Plot of e,,,, versus e, based on the results of Miura et al. (1997).
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¢ Sand with fines and clay (15% < F, < 30%; P. = 5%-20%)

e = 0.44 +1.21 e, (1.67)
e Silty soils (30% < F. < 70%; P. = 5%-20%)

emax = 0.44+1.32¢€,, (1.68)

where
F_is the fine fraction for which grain size is smaller than 0.075 mm

P. is the clay-size fraction (<0.005 mm)

With a very large database, Cubrinovski and Ishihara (1999, 2002) developed
a unique relationship between e, — e,,;, and median grain size D,. The data-
base included results from clean sand, sand with fines, and sand with clay,
silty soil, gravelly sand, and gravel. This relationship is shown in Figure 1.39.
In spite of some scatter, the average line can be given by the relation

_0.06 (1.69)

Cmax — Cmin = 0.23 +
so(mm)

1.0 4
O Clean sands (F,=0% — 5%)
A Sands with fines (5% < F,< 15%)
® Sands with clay (15% < F,<30%, P, = 5% —20%)
084 A &4 a A Silty soils (30% < F, < 70%, P, = 5% ~20%)
A 4 < Gravelly sands (F.< 6%, P.=17% —36%)
A A O Gravels

g La

&

T a Ay

é 0.6 — A ,‘._:

< *“\".' s

R AT GERANG A

a0 Ly W g 0.06

g &'_ e  max — €min = 023 + Deg

=t

< 04 -

-

)

2

0.2
0.0 4— - S— ; S ——

0.1 1.0 10

Median grain size, D5, (mm)

Figure 1.39 Plotof e, —e,.., versus median grain size (D). [Redrawn after Cubrinovski
and Ishihara, Soils Found., 42(6), 65-78, 2002.]
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It appears that the upper and lower limits of e, — ¢
in Figure 1.39 can be approximated as

versus D, as shown

min

e Lower limit

0.045

€max ~ €min =016+ ——— (1.70)
Dsp(mm)
e Upper limit
€max ~ €min = 0.29+ M (171)
Dsy(mm)

Youd (1973) analyzed the variation of e, and e, ;, of several sand sam-
ples and provided relationships between angularity A of sand particles and
the uniformity coefficient (C, = D¢y/D,,). The angularity, A, of a granular
soil particle is defined as

_Average radius of corners and edges

~ Radius of maximum inscribed sphere (1.72)

For further details on angularity the readers may refer to Das and Sobhan
(2018).

The qualitative descriptions of sand particles with the range of angular-
ity as provided by Youd (1973) are given below.

® Very angular—The particles that have unworn fractured surfaces and
multiple sharp corners and edges. The value of A varies within a range
of 0.12-0.17 with a mean value of 0.14.

® Angular—The particles with sharp corners having prismoidal or tet-
rahedral shapes with A =0.17-0.25 with a mean value of 0.21.

¢ Sub-angular—The particles have blunted or slightly rounded corners
and edges with A =0.25-0.35 with a mean value of about 0.30.

¢ Sub-rounded—The particles have well-rounded edges and corners.
The magnitude of A varies in the range of 0.35-0.49 with a mean
value of 0.41.

¢ Rounded—The particles are irregularly shaped and rounded with no dis-
tinct corners or edges for which A = 0.49-0.79 with a mean value of 0.59.

e Well-rounded—The particles have a spherical or ellipsoidal shape
with A =0.7-1.0 with a mean value of about 0.48.

The variations of e, and e, with criteria described above are given in
Figure 1.40. Note that, for a given value of C,, the maximum and mini-
mum void ratios increase with the decrease in angularity. Also, for a given
value of A, the magnitudes of e,,,, and e, decrease with an increase in C,.

min

min



46 Advanced Soil Mechanics
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Figure 1.40 Variation of e, and e, with A and C,. (Adapted from Youd, T. L., Factors
controlling maximum and minimum densities of sand, Evaluation of Relative
Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, STP
523, ASTM, 98-122, 1973.)

1.14.1 Effect of nonplastic fines on e, ,, and e,

The amount of nonplastic fines present in a given granular soil has a great
influence on e,,,, and e,,;,. In order to visualize this, let us consider the study
of McGeary (1961) related to the determination of the minimum void ratio
(e;n) for idealized spheres (also see Lade et al., 1998). McGeary (1961) con-
ducted tests with mixtures of two different sizes of steel spheres. The larger
spheres had a diameter (D) of 3.15 mm. The diameter of the small spheres
(d) varied from 0.91 mm to 0.15 mm. This provided a D/d ratio in the range
of 3.45 to 19.69. Figure 1.41 shows the variation of e, with the percent of
small spheres in the mixture by volume for D/d = 3.45 and 4.77. For a given
D/d value, the magnitude of e, decreases with the increase in the volume
of small spheres to an absolute minimum value e, iy This occurs when
the volume of small spheres in the mix is Vy.. Beyond this point, the mag-
nitude of e,;, increases with the increase in the volume of smaller spheres.

min*®

min
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Small spheres in the mixture by volume (%)

Figure 1.41 Test results of McGeary (1961)—Variation of minimum void ratio with
percent of smaller steel spheres by volume.

Table 1.7 provides a summary of all of the test results of McGeary (1961).
This is also shown in Figure 1.42, from which it can be concluded that
(a) for D/d > 7, the magnitude of e, remains approximately constant
(=0.2), and (b) at e, min)> the approximate magnitude of Vi = 27%.

In order to compare the preceding experimental results with idealized
spheres with the actual soil, we consider the study of Lade et al. (1998),
which was conducted with two types: Nevada sand (retained on No.
200 U.S. sieve) and Nevada nonplastic fines (passing No. 200 U.S. sieve).
Table 1.8 shows the Dy, (size through 50% soil will pass) for the two sands
and the nonplastic fines. Figure 1.43 shows the variation of e, and e
with percent of fines by volume. From this figure it can be seen that:

min

Table 1.7 Interpolated values of €, min
from binary packing based on the
tests of McGeary (1961)

Approximate volume of
small spheres at which

D/d €nmin(min) Enmin(min) OCCUrS, Ve (%)
3.46 0.426 413
4.77 0.344 26.2
6.56 0.256 25.0
11.25 0.216 27.5
16.58 0.213 26.3

19.69 0.192 27.5




48 Advanced Soil Mechanics

1.0 T T . 50
0.8 |- 4 40
06 v, 130 &
g ° = ® X
£ * » =
E =

L5
0.4 |- 420
0.2} h = & 10
emin(min)
0 1 L ! I 0
0 4 8 12 16 20
D/d

Figure 1.42 Test results of McGeary (1961)—Variation of e y and Vi with D/d.

min(min|

Table 1.8 Dsg_iung and Dsg_ges Of the soils used by Lade

etal. (1998)
DSO-sand
Sand description DSO-sand (mm) DSO-ﬁnes (mm) D50-ﬁnes
Nevada 50/80 0.211 0.050 4.22
Nevada 80/200 0.120 0.050 2.4
e For a given sand and fine mixture, the ¢, and e, decrease with

the increase in the volume of fines from zero to about 30%. This
is approximately similar to the behavior of ideal spheres shown in
Figures 1.41 and 1.42. This is the filling-of-the-void phase where fines
tend to fill the void spaces between the larger sand particles.

o There is a transition zone, where the percentage of fines is between
30 and 40%.

* For percentage of fines greater than about 40%, the magnitudes of e,
and e, start increasing. This is the replacement-of-solids phase, where
larger-sized solid particles are pushed out and gradually replaced by fines.

1.15 SOIL CLASSIFICATION SYSTEMS

Soil classification is the arrangement of soils into various groups or subgroups to
provide a common language to express briefly the general usage characteristics
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I I T T

® Nevada 50/80 sand and fines
O Nevada B0/200 sand and fines

1.2

Cmaxs Cmin

0 ! I 1 I
0 20 40 60 80 100

Percent fines (by volume)

Figure 1.43 Variation of e,,, and e,;, with percent of nonplastic fines (Based on the test
results of Lade et al., 1998). Note: For 50/80 sand and fines, Dy _,n4/Dso.fines =
4.22 and, for 80/200 sand and fines, Dy 304/ Dso.fines = 2-4-

without detailed descriptions. At the present time, two major soil classification
systems are available for general engineering use. They are the unified system
and the American Association of State Highway and Transportation Officials
(AASHTO) system. Both systems use simple index properties such as grain-
size distribution, liquid limit, and plasticity index of soil.

1.15.1 Unified system

The unified system of soil classification was originally proposed by A.
Casagrande in 1948 and was then revised in 1952 by the Corps of Engineers
and the U.S. Bureau of Reclamation. In its present form [also see ASTM
D-2487, ASTM (2014)], the system is widely used by various organizations,
geotechnical engineers in private consulting business, and building codes.

Initially, there are two major divisions in this system. A soil is classified
as a coarse-grained soil (gravelly and sandy) if more than 50% is retained
on a No. 200 sieve and as a fine-grained soil (silty and clayey) if 50% or
more is passing through a No. 200 sieve. The soil is then further classified
by a number of subdivisions, as shown in Table 1.9.
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Figure 1.44 Plasticity chart.
Example 1.5

For a soil specimen, given the following,

Passing No. 4 sieve = 92% Passing No. 40 sieve = 78%
Passing No. 10 sieve = 81%  Passing No. 200 sieve = 65%
Liquid limit = 48 Plasticity index = 32

classify the soil by the unified classification system.

Solution

Since more than 50% is passing through a No. 200 sieve, it is a fine-
grained soil, that is, it could be ML, CL, OL, MH, CH, or OH. Now, if
we plot LL = 48 and PI = 32 on the plasticity chart given in Figure 1.44,
it falls in the zone CL. So the soil is classified as CL.

1.15.2 AASHTO classification system

This system of soil classification was developed in 1929 as the Public Road
Administration Classification System. It has undergone several revisions,
with the present version proposed by the Committee on Classification of
Materials for Subgrades and Granular Type Roads of the Highway Research
Board in 1945 [ASTM (2014) Test Designation D-3282].

The AASHTO classification system in present use is given in
Table 1.10. According to this system, soil is classified into seven major
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Table 1.10 Classification of highway subgrade materials

General classification

Granular materials (35% or less of total sample passing No.
200 sieve)

Group classification

A-1 A2

A-l-a  A-lI-b A3 A-2-4 A-25 A26 A2-7

Sieve analysis (percent
passing)

No. 10

No. 40

No. 200

Characteristics of
fraction passing

No. 40

Liquid limit

Plasticity index

Usual types of
significant
constituent materials

General subgrade
rating

50 max.
30 max. 50 max. 50 min.
15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max.

40 max. 4| min. 40 max. 4l min.
6 max. NP 10 max. [0max. Il min. |l min.

Stone fragments, Fine Silty or clayey gravel and sand
gravel,and sand  sand

Excellent to good

General classification

Silt—clay materials (more than 35% or total sample passing No.

200 sieve)
A-7
A-7-52
Group classification ~ A-4 A-5 A-6 A-7-6°
Sieve analysis (percent
passing)
No. 10
No. 40
No. 200 36 min. 36 min. 36 min. 36 min.
Characteristics of
fraction passing
No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 10 max. 10 max. Il min. Il min.
Usual types of Silty soils Clayey soils

significant
constituent materials

General subgrade
rating

Fair to poor

@ For A-7-5,PI < LL - 30.
> For A-7-6,Pl > LL — 30.
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groups: A-1 through A-7. Soils classified into Groups A-1, A-2, and A-3 are
granular materials, where 35% or less of the particles pass through the No.
200 sieve. Soils where more than 35% pass through the No. 200 sieve are
classified into groups A-4, A-5, A-6, and A-7. These are mostly silt and clay-
type materials. The classification system is based on the following criteria:

1. Grain size
Gravel: Fraction passing the 75 mm sieve and retained on No. 10 (2 mm)
U.S. sieve
Sand: Fraction passing the No. 10 (2 mm) U.S. sieve and retained on
the No. 200 (0.075 mm) U.S. sieve
Silt and clay: Fraction passing the No. 200 U.S. sieve
2. Plasticity: The term silty is applied when the fine fractions of the soil
have a plasticity index of 10 or less. The term clayey is applied when
the fine fractions have a plasticity index of 11 or more.
3. If cobbles and boulders (size larger than 75 mm) are encountered, they
are excluded from the portion of the soil sample on which classifica-
tion is made. However, the percentage of such material is recorded.

To classify a soil according to Table 1.10, the test data are applied from
left to right. By the process of elimination, the first group from the left into
which the test data will fit is the correct classification.

For the evaluation of the quality of a soil as a highway subgrade material,
a number called the group index (GI) is also incorporated with the groups
and subgroups of the soil. The number is written in parentheses after the
group or subgroup designation. The group index is given by the equation

GI = (F —35)[0.2 +0.00S(LL — 40)] + 0.01(F — 15)(PI - 10) (1.73)

where
F is the percent passing the No. 200 sieve
LL is the liquid limit
PI is the plasticity index

The first term of Equation 1.73—that is, (F - 35)[0.2 + 0.005(LL - 40)]—
is the partial group index determined from the liquid limit. The second
term—that is, 0.01(F - 15) (PI — 10)—is the partial group index deter-
mined from the plasticity index. Following are the rules for determining
the group index:

1. If Equation 1.73 yields a negative value for GI, it is taken as 0.

2. The group index calculated from Equation 1.73 is rounded off to the
nearest whole number (e.g., GI = 3.4 is rounded off to 3; GI = 3.5 is
rounded off to 4).
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3. There is no upper limit for the group index.

4. The group index of soils belonging to groups A-1-a, A-1-b, A-2-4,
A-2-5, and A-3 is always 0.

5. When calculating the group index for soils that belong to groups
A-2-6 and A-2-7, use the partial group index for PI, or

GI =0.01(F —15)(PI-10) (1.74)

In general, the quality of performance of a soil as a subgrade material is
inversely proportional to the group index.

Example 1.6
Classify the following soil by the AASHTO classification system.

Passing No. 10 sieve: 100%
Passing No. 40 sieve: 92%
Passing No. 200 sieve: 86%
Liquid limit (LL): 70
Plasticity index (PI): 32

Solution

Percent passing the No. 200 sieve is 86%. So, it is a silty clay material
(i.e., A-4, A-5, A-6, or A-7) as shown in Table 1.10. Proceeding from
left to right, we see that it falls under A-7. For this case, PI =32 < LL -
30. So, this is A-7-5. From Equation 1.73

GI=(F-35)[0.2+0.005(LL —40)]+0.01(F —15)(PI-10)
Now, F = 86; LL = 70; PI = 32; so

GI=(86-35)[0.2+0.005(70-40)]+0.01(86 —15)(32-10)
=33.47 =33

Thus, the soil is A-7-5(33).

1.16 COMPACTION

Compaction of loose fills is a simple way of increasing the stability and
load-bearing capacity of soils, and this is generally achieved by using
smooth-wheel rollers, sheepsfoot rollers, rubber-tired rollers, and vibratory
rollers. In order to write the specifications for field compaction, Proctor
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compaction tests are generally conducted in the laboratory. A brief descrip-
tion of the Proctor compaction test procedure is as follows:

1.16.1 Standard Proctor compaction test

A standard laboratory soil compaction test was first developed by Proctor
(1933), and this is usually referred to as the standard Proctor test (ASTM des-
ignation D-698). The test is conducted by compaction of three layers of soil in
a mold that is 944 cm? in volume. Each layer of soil is subjected to 25 blows by
a hammer weighing 24.6 N with a 304.8 mm drop. From the known volume
of the mold, weight of moist compacted soil in the mold, and moisture content
of the compacted soil, the dry unit weight of compaction can be determined as

Weight of moist soil in the mold
Volume of the mold

Ymoist =

— Y moist

¥e 1+w

where
Ymois: 1S the moist unit weight of compacted soil
Y4 1s the dry unit weight of compacted soil
w is the moisture content of soil

The test can be repeated several times at various moist contents of soil.
By plotting a graph of y, against the corresponding moisture content, the
optimum moisture content v, and the maximum dry unit weight v,y
can be obtained (Figure 1.45). Also plotted in Figure 1.45 is the variation of

Yzav VS- W

Dry unit weight, yq

I
w,
v opt

v

Moisture content, w (%)

Figure 1.45 Nature of variation of y, versus w.
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the dry unit weights, assuming the degree of saturation to be 100%. These
are the theoretical maximum dry unit weights that can be attained for a
given moisture content when there will be no air in the void spaces. With
the degree of saturation as 100%

e =wG, (1.75)

The maximum dry unit weight at a given moisture content with zero air
voids can be given by (Equation 1.42)

_Gve - Gy _ Y (1.76)
1+e 1+wG, 1/G)+w

’YZ&V

where v,,, is the zero-air-void unit weight (dry).
For standard Proctor compaction test, the compaction energy E can be
expressed as

(24.5N/blow)(3layers)(25blows/layer)(0.3048m)
(944/10°)m*

E=

=593,294N-m/m’ = 5§93kN-m/m’

1.16.2 Modified Proctor compaction test

With the development of heavier compaction equipment, the standard
Proctor test has been modified for better representation of field conditions.
In the modified Proctor test (ASTM designation D-1577), the same mold
as in the standard Proctor test is used. However, the soil is compacted in
5 layers, with a 44.5 N hammer giving 25 blows to each layer. The height
of drop of the hammer is 457.2 mm. Hence, the compactive effort in the
modified Proctor test is equal to

(25blows/layer)(5layers)(44.5N/blow)(0.4572 m)
(944/10°)m’

E =
=2,694,041N-m/m’ = 2604 kN-m/m’

The maximum dry unit weight obtained from the modified Proctor test
will be higher than that obtained from the standard Proctor test due to the
application of higher compaction energy. It will also be accompanied by a
lower optimum moisture content compared to that obtained from the stan-
dard Proctor compaction test.
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1.17 EMPIRICAL RELATIONSHIPS FOR PROCTOR
COMPACTION TESTS

Omar et al. (2003) presented the results of modified Proctor compaction
tests on 311 soil samples. Of these samples, 45 were gravelly soil (GP,
GP-GM, GW, GW-GM, and GM), 264 were sandy soil (SP, SP-SM,
SW-SM, SW, SC-SM, SC, and SM), and two were clay with low plasticity
(CL). Based on the tests, the following correlations were developed:

Pdimax) = [4,804,574G, —195.55(LL)* +156,971(R#4)** -9,527,830]"°
(1.77)

In(10p) = 1.195x107HLL)> —=1.964G, —6.617 x 10 (R#4) +7.651
(1.78)

where
Pd(max) 1 the maximum dry density
W, is the optimum moisture content (%)
G, is the specific gravity of soil solids
LL is the liquid limit, in percent
R#4 is the percent retained on No. 4 sieve

For granular soils with less than 12% fines (i.e., finer than No. 200 sieve),
relative density may be a better indicator for end product compaction speci-
fication in the field. Based on laboratory compaction tests on 55 clean sands
(less than 5% finer than No. 200 sieve), Patra et al. (2010) provided the
following relationships:

D, = ADyy (1.79)

A=0.216InE-0.850 (1.80)

B=-0.03InE +0.306 (1.81)
where

D, is the maximum relative density of compaction achieved with com-
paction energy E, kN-m/m?3
D;, is the median grain size, mm

Gurtug and Sridharan (2004) proposed correlations for optimum mois-
ture content and maximum dry unit weight with the plastic limit PL of
cohesive soils. These correlations can be expressed as
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Weop (%) =[1.95 —0.38(log E)|(PL) (1.82)
Yaimax) (KN/M3) = 22,681 ¥ or ) (1.83)
where

PL is the plastic limit, %
E is the compaction energy, kN-m/m?

For modified Proctor test, E ~ 2700 kN/m3. Hence,

Wope(%0) = 0.65(PL)

Ymax) (KN/m?) = 2268700121

Osman et al. (2008) analyzed a number of laboratory compaction test
results on fine-grained (cohesive) soil, including those provided by
Gurtug and Sridharan (2004). Based on this study, the following cor-
relations were developed:

Wope(%) = (1.99 -0.165In E)(PI) (1.84)

Yamax) (RN/M?) = L = My (%) (1.85)
where

L =14.34+1.195InE (1.86)

M =-0.19+0.073InE (1.87)

W, is the optimum moisture content, %

P1 is the plasticity index, %
Yd(may 18 the maximum dry unit weight, kN/m?
E is the compaction energy, kN-m/m?

DiMatteo et al. (2009) analyzed the results of 71 fine-grained soils and pro-
vided the following correlations for optimum moisture content w,,, and max-
imum dry unit weight y,,,,, for modified Proctor tests (E = 2700 kN-m/m?3)

max

wopt(%):—0.86(LL)+3.04[IE;L)+2.2 (1.88)

S

Yaman (KN/m?) = 40.316 (107" ) (P1°7?) - 2.4 (1.89)
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where
LL is the liquid limit, %
PI is the plasticity index, %
G, is the specific gravity of soil solids

Mujtaba et al. (2013) conducted laboratory compaction tests on 110
sandy soil samples (SM, SP-SM, SP, SW-SM, and SW). Based on the test

results the following correlations were provided for Y., and w,, (opti-
mum moisture content):
Y dimax)(KN/m?) = 4.49 log(C,) + 151 log(E) +10.2 (1.90)
log w,y, =1.67 —0.193log(C,)—0.153 log(E) (1.91)

where
C, = uniformity coefficient
E = compaction energy (kN-m/m?3)

Example 1.7

For a sand with 4% finer than No. 200 sieve, estimate the maximum
relative density of compaction that may be obtained from a modified
Proctor test. Given D, = 1.4 mm.

Solution

For the modified Proctor test, E = 2696 kN-m/m?3.
From Equation 1.80

A=0.216InE-0.850 = (0.216)(In 2696)-0.850 = 0.856
From Equation 1.81
B=-0.03InE+0.306 = —(0.03)(In 2696)+0.306 = 0.069

From Equation 1.79

D, = AD;E =(0.856)(1.4)%% =0.836 =83.6%

Example 1.8

For a silty clay soil given LL = 43 and PL = 18. Estimate the maximum
dry unit weight of compaction that can be achieved by conducting
modified Proctor test. Use Equation 1.835.
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Solution

For the modified Proctor test, E = 2696 kN-m/m?3.
From Equations 1.86 and 1.87

L =1434+1.195InE =14.34+1.195In(2696) = 23.78

M =-0.19+0.073InE =-0.19+0.0731In(2696) = 0.387
From Equation 1.84

Wope (%) = (1.99—0.165 In E)(PI)
=[1.99-0.1651n(2696)](43-18)
=17.16%

From Equation 1.85

Yamax) = L = Mtwy = 23.78—(0.387)(17.16) = 17.14 kN/m*
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Chapter 2

Stresses and strains

Elastic equilibrium

2.1 INTRODUCTION

An important function in the study of soil mechanics is to predict the
stresses and strains imposed at a given point in a soil mass due to cer-
tain loading conditions. This is necessary to estimate settlement and to
conduct stability analysis of earth and earth-retaining structures, as well
as to determine stress conditions on underground and earth-retaining
structures.

An idealized stress—strain diagram for a material is shown in Figure 2.1.
At low stress levels, the strain increases linearly with stress (branch ab),
which is the elastic range of the material. Beyond a certain stress level, the
material reaches a plastic state, and the strain increases with no further
increase in stress (branch bc). The theories of stresses and strains presented
in this chapter are for the elastic range only. In determining stress and
strain in a soil medium, one generally resorts to the principles of the theory
of elasticity, although soil in nature is not fully homogeneous, elastic, or
isotropic. However, the results derived from the elastic theories can be judi-
ciously applied to the problem of soil mechanics.

2.2 BASIC DEFINITION AND SIGN
CONVENTIONS FOR STRESSES

An elemental soil mass with sides measuring dx, dy, and dz is shown in
Figure 2.2. Parameters o,, 6,, and o, are the normal stresses acting on the
planes normal to the x, y, and z axes, respectively. The normal stresses are
considered positive when they are directed onto the surface. Parameters
Toys Tyas Tyos Toys Tows and T, are shear stresses. The notations for the shear
stresses follow.

65
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Figure 2.1 |dealized stress—strain diagram.
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Figure 2.2 Notations for normal and shear stresses in a Cartesian coordinate system.
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If 7; is a shear stress, it means the stress is acting on a plane normal to
the i axis, and its direction is parallel to the j axis. A shear stress 7 is con-
sidered positive if it is directed in the negative j direction while acting on
a plane whose outward normal is the positive i direction. For example, all
shear stresses are positive in Figure 2.2. For equilibrium

Ty =Tys (2.1)
T =T (2.2)
Ty =Toy (2.3)

Figure 2.3 shows the notations for the normal and shear stresses in
a polar coordinate system (two-dimensional case). For this case, o, and
oy are the normal stresses, and 7,4 and 714, are the shear stresses. For
equilibrium, 7,4 = 14, Similarly, the notations for stresses in a cylindri-
cal coordinate system are shown in Figure 2.4. Parameters o,, 6,4, and
o, are the normal stresses, and the shear stresses are 7,y = 6,,, 6o, = 6,0,

and 1,, = T,

v
8

Figure 2.3 Notations for normal and shear stresses in a polar coordinate system.
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Figure 2.4 Notations for normal and shear stresses in cylindrical coordinates.
2.3 EQUATIONS OF STATIC EQUILIBRIUM
Figure 2.5 shows the stresses acting on an elemental soil mass with sides

measuring dx, dy, and dz. Let y be the unit weight of the soil. For equilib-
rium, summing the forces in the x direction

>E.=|6,— Gx+acx dx || dydz+| 1, — sz+8‘czx dz ||dxdy
0x 0z

{rw —(Tyx +aty’“ dy H dxdz=0
dy

or

Jdo, N 0Ty, N 0T,

=0 2.4
ox dy 0z 24
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dx
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d | Ty
Y : Tyz dz
I
ot
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| at,, CEN Ty Ty + —2 dx
1Ty + dy X
L A ( ;
Ty | o1y, Lo, + 9% 4
O, —Pp) | Tyx + dy ot o
: ay Ty + Xz
A ox
4 / a0
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/ 4 ay ’
//
/ 0T,
,/ Toe b dz
// ot d
/ T,y + z
/ 770 da,
/ o, + 5 dz
/ 4
v
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Figure 2.5 Derivation of equations of equilibrium.
Similarly, along the y direction, ¥F, = 0, or
d6, 0T, 0T
() (2.5)

W dx 0z

Along the z direction

99 4o \|dxdy +| 1o [ 1.0 + 2% dx || dydz
0z ox

YF = |:Gz - [Gz +

+ {r,,z - (rﬂ + a;ﬂ dy ﬂ dxdz +y(dxdydz) = 0
y

The last term of the preceding equation is the self-weight of the soil mass.
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Thus

acz + aTJ + ﬂ
dz  dx dy

—y=0 (2.6)

Equations 2.4 through 2.6 are the static equilibrium equations in the
Cartesian coordinate system. These equations are written in terms of total
stresses.

They may, however, be written in terms of effective stresses as

O, =0, +u=0; +y,h (2.7)

where
o, is the effective stress
u is the pore water pressure
Y., is the unit weight of water
b is the pressure head

Thus
Jo, Odo. oh
=K v — 2.8
0x ox Y dx (2.8)
Similarly
d6, 90, ah
90y _ 9% . 9h 2.
3y~ dy +7 9y (2.9)
and
J6, 00, oh
£=—_= w— 2.1
dz 0z 1 dz (2.10)

Substitution of the proper terms in Equations 2.4 through 2.6 results in

acx_}_ari_}_a,tl_k ab—o

oh _ 2.11
ox dy 0z T ox .
90y , 9%y Oty Oh _ (2.12)
dy oJx 0z oy

90 , 0%, 0T\ b _ (2.13)

dz dx  dy dz

where v’ is the effective unit weight of soil. Note that the shear stresses will
not be affected by the pore water pressure.
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v
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Figure 2.6 Derivation of static equilibrium equation for a two-dimensional problem in
Cartesian coordinates.

In soil mechanics, a number of problems can be solved by two-dimensional
stress analysis. Figure 2.6 shows the cross-section of an elemental soil prism
of unit length with the stresses acting on its faces. The static equilibrium equa-
tions for this condition can be obtained from Equations 2.4 through 2.6 by
substituting 7, = 7,, = 0, 7,, = 7,, = 0, and do,/dy = 0. Note that 7, =7,,. Thus

Jdo, 0t

T+ =0 2.14
0x " 0z ( )
do, 0T

L4+ X _v=0 2.15
oz ox ! (2.15)

Figure 2.7 shows an elemental soil mass in polar coordinates. Parameters
o, and o, are the normal components of stress in the radial and tangential
directions, and t,, and 7,4 are the shear stresses. In order to obtain the static
equations of equilibrium, the forces in the radial and tangential directions
need to be considered. Thus

90, dr j(r + dr)de}
or

>E = {G,rde —((5, +

+ |:Ge drsind0/2 + (69 + aa%de jdr sin dG/Z}

+| To, drcosdB/2 —| T, +819, do |drcosd06/2 |+y(rd0dr)cos®=0
00
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v

Figure 2.7 Derivation of static equilibrium equation for a two-dimensional problem in
polar coordinates.

Taking sin d6/2 ~ d6/2 and cos d6/2 = 1, neglecting infinitesimally small
quantities of higher order, and noting that d(c,7)/dr = #(do,/0r) + o, and
To, = T,9, the previous equation yields

do, 10T, ©,—0g
LA A S A 0=0 2.16
Jdr r 00 r veos ( )

Similarly, the static equation of equilibrium obtained by adding the com-
ponents of forces in the tangential direction is

1 809 8‘5,9 2‘5,,9 .
it ARt it A A 0=0 217
r 00  or r rem ( )

The stresses in the cylindrical coordinate system on a soil element are
shown in Figure 2.8. Summing the forces in the radial, tangential, and
vertical directions, the following relations are obtained:

Jdo, +1ar,e N oT,, + 0= 0%

=0 2.18
dr r 00 0z r ( )
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Figure 2.8 Equilibrium equations in cylindrical coordinates.

B‘E,e 1 369 aTez ZT,Q
_— _ 720 .
or r 900 0z i (2.19)

01, 101, do, =T
Ilar | 20202 [ 99 P v 2.20
dr v 00 9z " r v ( !

2.4 CONCEPT OF STRAIN

Consider an elemental volume of soil as shown in Figure 2.9a. Owing to
the application of stresses, point A undergoes a displacement such that its
components in the x, y, and z directions are #, v, and w, respectively. The
adjacent point B undergoes displacements of # + (du/dx)dx, v + (dv/dx)dx,
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! o

@) (b)

Figure 2.9 Concept of strain: (a) elemental volume of soil measuring dx dy dz; (b) rotation
of sides AB and AC of the elemental volume.

and w + (dw/dx)dx in the x, y, and z directions, respectively. So, the change
in the length AB in the x direction is # + (du/dx)dx — u = (du/dx)dx. Hence,
the strain in the x direction, €, can be given as

1 [audxj— du (2.21)

S| o™ )T ox

Similarly, the strains in the y and z directions can be written as

ov

Eyzg (2.22)
Jw

et (2.23)

where €, and €, are the strains in the y and z directions, respectively.

Owing to stress application, sides AB and AC of the element shown in
Figure 2.9a undergo a rotation as shown in Figure 2.9b (see A’B” and A’C").
The small change in angle for side AB is «,, the magnitude of which may
be given as [(dv/0x)dx](1/dx) = dv/dx, and the magnitude of the change in
angle a, for side AC is [(0u/dy)dy|(1/dy) = du/dy. The shear strain v,, is
equal to the sum of the change in angles «; and a,. Therefore

Ju Jv
_ 2.24
Yay 3y + ox ( )
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Similarly, the shear strains v,, and y,, can be derived as

u Jw
= +

’sz_aiz g (225)
and
v Jw
Yyz —afz"'aiy (2.26)

Generally, in soil mechanics, the compressive normal strains are considered
positive. For shear strain, if there is an increase in the right angle BAC
(Figure 2.9b), it is considered positive. As shown in Figure 2.9b, the shear
strains are all negative.

2.5 HOOKE’S LAW

The axial strains for an ideal, elastic, isotropic material in terms of the
stress components are given by Hooke’s law as

_du 1

=5 E[Gx —-v(0, +0,)] (2.27)
ey:g::;[csy—v(cx+cz)] (2.28)
and
Jw 1
ezza—zzg[cz—v(cx+0y)] (2.29)
where

E is the Young’s modulus
v is the Poisson’s ratio

Form the relation given by Equations 2.27 through 2.29, the stress com-
ponents can be expressed as

vE
6oz YT eite, e+ . 2.30
(Lt o)y S PO T € (2.30)
o, = _vE +e, +ez)+iey (2.31)

(I+v)(1-2v) 1+v
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o.=— B e te te)t-L e, (2.32)
1+v)(1-2v) 1+v

The shear strains in terms of the stress components are

’ny
=T 2.33
Yo = o ( )
T
= (2.34)
(e
and
‘Eyz
= e 2.35
Vyz G ( )

where shear modulus

(2.36)

2.6 PLANE STRAIN PROBLEMS

A state of stress generally encountered in many problems in soil mechanics
is the plane strain condition. Long retaining walls and strip foundations
are examples where plane strain conditions are encountered. Referring to
Figure 2.10, for the strip foundation, the strain in the y direction is zero
(i.e., €, = 0). The stresses at all sections in the xz plane are the same, and the
shear stresses on these sections are zero (i.e., 7, =7,, = 0 and 7, = 7,, = 0).
Thus, from Equation 2.28

€,=0= %[0,, -v(o, +0,)]

6, =v(0, +0C,) (2.37)

Substituting Equation 2.37 into Equations 2.27 and 2.29

)
e, =17V [cx—”cz} (2.38)
1-v



Stresses and strains 77

k N Strip foundation

Figure 2.10 Strip foundation: plane strain problem.

and

.2
c=17V [oz—”ox} (2.39)
E 1-v

Since 1,, =0 and 7, = 0

Yoy =0 7,,=0 (2.40)
and
T
= 2 2.41
Y. G (2.41)

2.6.1 Compatibility equation

The three strain components given by Equations 2.38, 2.39, and 2.41 are
functions of the displacements # and w and are not independent of each
other. Hence, a relation should exist such that the strain components give
single-valued continuous solutions. It can be obtained as follows. From
Equation 2.21, €, = du/dx. Differentiating twice with respect to z

%, _ ’u
02> 9dx 0%’

(2.42)
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From Equation 2.23, €, = dw/dz. Differentiating twice with respect to x

d%, _ ’w
ox*  dzox?

(2.43)

Similarly, differentiating vy, (Equation 2.25) with respect to x and z

0%,  Ou ’w

= + 2.44
dxdz 0dx0z° 0Jx° 0z (2:44)
Combining Equations 2.42 through 2.44, we obtain
2 2 2
0°€,  0°€, 0V (2.45)

92 ax’  oxoz

Equation 2.45 is the compatibility equation in terms of strain compo-
nents. Compatibility equations in terms of the stress components can also
be derived. Let E’ = E/(1 - v?) and v’ = v/(1 - v). So, from Equation 2.38,
€, = 1/E'(o, - v'c,). Hence

do*e, 1(d%, ,d%,
2z* :E'( 0z2* Y 0z* ] (2:46)

Similarly, from Equation 2.39, €, = (1/E’)(s, - v's,). Thus

(2.47)

d%, _1 d’c, _y d%c,
ox? FE'| ox* dx?

Again, from Equation 2.41

Voo = Tuz _ 2(1+v) T, = 2(1-|:z/)1:xZ (2.48)
G E E

0™ _ 2(1+0) 3’1,

dx 02 E  9x9dz

Substitution of Equations 2.46 through 2.48 into Equation 2.45 yields

1.,
0x 0%

(2.49)

d%c, . d%c, _y d%c, N d%c,
02> ox? 02> ox?

j=2u+uv
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From Equations 2.14 and 2.15

0 [aﬁx asz) 9 (acz asz j
R + +— +---v|=0

dx| dx 0z dz\ dz  dx
or
o1 d’c, d%c 0
2 2 = a 2 — 2.50
Ix 9z (ax2 e ]+Bzm (2:30)

Combining Equations 2.49 and 2.50

9* 9* . 0
[83(?2+822](Gx +0,)= (1+U)87z(7)

For weightless materials, or for a constant unit weight vy, the previous
equation becomes

* 9
[axz'f‘azzj(cx‘f‘cz)zo (2.51)

Equation 2.51 is the compatibility equation in terms of stress.

2.6.2 Stress function

For the plane strain condition, in order to determine the stress at a given
point due to a given load, the problem reduces to solving the equations of
equilibrium together with the compatibility equation (Equation 2.51) and
the boundary conditions. For a weight-less medium (i.e., y = 0), the equa-
tions of equilibrium are

d0, N 0Ty,

-0 2.14
Jox 02 ( )
dJo, OJ7T

=4 %0 o 2.15
9z | ox (2.15)

The usual method of solving these problems is to introduce a stress func-
tion referred to as Airy’s stress function. The stress function ¢ in terms of
x and z should be such that

G, =22 (2.52)
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82
G, = —axqj (2.53)
82
Te= o g’z (2.54)

The aforementioned equations will satisfy the equilibrium equations. When
Equations 2.52 through 2.54 are substituted into Equation 2.51, we get

900 , 0 o _, (2.55)

ox*  Tox?oz? 9zt

So, the problem reduces to finding a function ¢ in terms of x and z such that
it will satisfy Equation 2.55 and the boundary conditions.

2.6.3 Compatibility equation in polar coordinates

For solving plane strain problems in polar coordinates, assuming the
soil to be weightless (i.e., y = 0), the equations of equilibrium are (from
Equations 2.16 and 2.17)

Jdo, 1at,9+0,,—69
Jdr v 00 r

=0

100y , 970 , 210
r 00  Jr 7

=0
The compatibility equation in terms of stresses can be given by

9,10 109°
or* ror r*00?

](67 +06,)=0 (2.56)

The Airy stress function ¢ should be such that

100 1 9*
s (2:57)
2
o =20 (2.58)
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100 1 9% a(lacb) (2.59)

®T3200 roro®  orl\roe

The previous equations satisfy the equilibrium equations. The compat-
ibility equation in terms of stress function is

0° 19 1 9* \(d9% 100 1 9%*
Y 429,29 J19RL 9P 9% D) 2.60
[81’2 - ror - 72 00° J[arz - ror - r* 96° ( )

Similar to Equation 2.37, for the plane strain condition

G, = V(0, + Gp)

Example 2.1

The stress at any point inside a semi-infinite medium due to a line load

of intensity g per unit length (Figure 2.11) can be given by a stress
function

¢=Axtan‘1(z)
x

where A is a constant. This equation satisfies the compatibility equa-
tion (Equation 2.55). (a) Find o,, o,, 6,, and 7,,. (b) Applying proper
boundary conditions, find A.

Line load,
q/unit length

v

Figure 2.11 Stress at a point due to a line load.
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Solution

Part a:

¢=Axtan™ (zj
x

The relations for o,, o, o, and 7, are given in Equations 2.52
through 2.54.

0%
G, =
0z*
roL0) 1 1 A
—=Ax > 2
0z 1+(z/x)” x  1+(z/x)
5 _872(1)__ 2Azx?
T (?+22)
9%0
Gy =—
ox*
a—q)zAtatn’li—iAZ 3 =Atan’1£— ?xzz
ox x  [1+(z/x)]x x  (x"+27)
s 00 Az A 2Ax’z
o ox? 1+(z/x) x* x*+2* (x> +2*)
_ Az Az | 24Xz 247
X +8 X+ (P + 2 (x* + 22)*
0%
Toe =—
‘ 0x 02
a¢ 1% Axz
Judh At A,
0x an x  (x*+2%)
70 A 1 Ax + 2Axz’

0xdz 1+(z/x) x x*+z> (x> +2%)
or

%0 _ 2Axz’
oxdz (x*+2%)
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0 2Axg
0x 0z  (x*+2%)

Tz = —

2 Azx? B 2AZF°
(x> +227  (*+22)?

G, =v(0, +0;)=v|—

:—ﬂ(x2+z2):— 2Azv

(x2+z2)2 (x2+z2)

Part b: Consider a unit length along the y direction. We can write

oo +oo

B J‘(G ) J‘ 2Az
q | z ] 2 +2)
__ZAz3 x dx ™
222 \x*+2% X +2?
x 1 X oo
=-Az (ﬁ+ “tan™ —J =-A(n/2+7/2)=-
x“+z2° 2 2 ) oo
A=-4
b1
So
2gx> 2973 2gxz?
Ox = quzzz C; = 2qz22 Tz = quzzz
(x” +2°) (x” +2°) (x” +2°)

We can see that at z = 0 (i.e., at the surface) and for any value of x # 0,

o,, 0,, and 1, are equal to zero.

2.7 EQUATIONS OF COMPATIBILITY
FOR THREE-DIMENSIONAL PROBLEMS

For three-dimensional problems in the Cartesian coordinate system as
shown in Figure 2.2, the compatibility equations in terms of stresses are
(assuming the body force to be zero or constant)

1 829
1+v ox*

Vo, + (2.61)
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1 9°0 _

Vo, +——— > =
T 14v 0y?

1 0’0
Vo, +—— > =
1+v 022

1 9%*0

Vit + =
1+v dxdy

Y

1 9%*0 _
1+vdydz

2
Vi, +

1 9’@ _
1+v0dx0dz

VT, +

where

2 2 2
Vz 2872"1‘8724‘872
dx* dy" 0z

and

O®=0,+0,+0,

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

The compatibility equations in terms of stresses for the cylindrical coor-
dinate system (Figure 2.4) are as follows (for constant or zero body force):

Vzcz+1iv‘2;?= (2.67)
vzc,+1iv%?—;iza;—9'9+%(ce+c,>=o (2.68)
VZG"HLC?%;;?) ;iza;ée—%(cemr):o (2.69)
Vi, 41 0°0 1. 20T _j (2.70)

1+vdrdz #*
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1 0 (100 4 2 9
Vi, + | -5 Te -5 5-(0—0,)=0 2.71
" 1+vor (786) P2 r286( ¥ ) ( )
2
V21z9+ 1 1 a @ %aﬂcrz_ﬂciezo (272)

- +
1+vrd0dz r 90 #°

2.8 STRESSES ON AN INCLINED PLANE
AND PRINCIPAL STRESSES FOR
PLANE STRAIN PROBLEMS

The fundamentals of plane strain problems are explained in Section 2.5.
For these problems, the strain in the y direction is zero (i.e., T,, = 7,, = 0;
T,. =T, = 0) and 6, is constant for all sections in the plane.

If the stresses at a point in a soil mass (i.e., 6,, 6,, 6, T,..(= T,,)) are known
(as shown in Figure 2.12a), the normal stress ¢ and the shear stress T on
an inclined plane BC can be determined by considering a soil prism of unit
length in the direction of the y axis. Summing the components of all forces

in the # direction (Figure 2.12b) gives

YE, =0
6 dA = (o, cos B)(dA cos 0) + (o, sin 0)(dA sin 6)
+ (T, sin 0)(dA cos 0) + (1., cos 0)(dA sin 0)

where dA is the area of the inclined face of the prism. Thus

6 =06,co0s’0+0,sin” 0+ 21,,sinOcosO

=("x+"z J+(Gx;"z JcosZG-&-‘txz sin20 (2.73)

2
Similarly, summing the forces in the s direction gives
XFE =0
T dA = —(0, sinB)(dAcos0)+ (6, cos0)(dAsin )
+ (Ty, c0s0)(dA cos 0) — (T, sin0)(dAsin 6)

T=—-0,5in0cos0 + G, sinOcos O + T,,(cos” B —sin* O)

=1T,,Cc0820— [G";GZ jsin 20 (2.74)

Note that 6, has no contribution to ¢ or 7.
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z Principal plane

I
I
/ :
I
Unit o, :
length !
= |

A C !

<
<
-
Q

4 ‘\6< AB=BCcos 6
AC=BCsin

B
(b)

Figure 2.12 (a) Stresses on an inclined plane for the plane strain case; (b) soil prism of
unit length in the direction of y-axis.

2.8.1 Transformation of stress components from
polar to Cartesian coordinate system

In some instances, it is helpful to know the relations for transformation of
stress components in a polar coordinate system to a Cartesian coordinate sys-
tem. This can be done by a principle similar to that demonstrated earlier for
finding the stresses on an inclined plane. Comparing Figures 2.12 and 2.13,
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v
z

Figure 2.13 Transformation of stress components from polar to Cartesian coordinate
system.

it is obvious that we can substitute o, for o,, o, for o,, and t,, for 1, in
Equations 2.73 and 2.74 to obtain o, and ., as shown in Figure 2.13. So

G, =0,sin? 0+ 6y cos> 0+ 21,4sinOcos O (2.75)

Ty, = —CsinOcosO + G, sin 0cos O + T,q(cos” O —sin” 6) (2.76)
Similarly, it can be shown that

G, = G, cos”> 0+ Gy sin” 0 — 21,4 sin O cos O (2.77)

2.8.2 Principal stress

A plane is defined as a principal plane if the shear stress acting on it is zero.
This means that the only stress acting on it is a normal stress. The normal
stress on a principal plane is referred to as the principal stress. In a plane
strain case, 6, is a principal stress, and the xz plane is a principal plane.
The orientation of the other two principal planes can be determined by
considering Equation 2.74. On an inclined plane, if the shear stress is zero,
it follows that

T,,C0s20 = (G’C;Gz jsin 26
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tan20 = 2% (2.78)

6, —0;

From Equation 2.78, it can be seen that there are two values of 0 at right
angles to each other that will satisfy the relation. These are the directions
of the two principal planes BC' and BC” as shown in Figure 2.12. Note
that there are now three principal planes that are at right angles to each
other. Besides o,, the expressions for the two other principal stresses can
be obtained by substituting Equation 2.78 into Equation 2.73, which gives

Op) = (2.79)

Op3) = (2.80)
where 6,;, and o, are the principal stresses. Also

Gp(l) + G17(3) =0, +0, (2.81)

Comparing the magnitude of the principal stresses, Sp(1) > Oy = Opa) > Op3)e
Thus 6,), 6, and o, are referred to as the major, intermediate, and
minor principal stresses. From Equations 2.37 and 2.81, it follows that

Gy =[Oy +Op3)] (2.82)

2.8.3 Mohr’s circle for stresses

The shear and normal stresses on an inclined plane (Figure 2.12) can also
be determined graphically by using Mohr’s circle. The procedure to con-
struct Mohr’s circle is explained later.

The sign convention for normal stress is positive for compression and
negative for tension. The shear stress on a given plane is positive if it tends
to produce a clockwise rotation about a point outside the soil element, and
it is negative if it tends to produce a counterclockwise rotation about a point
outside the element (Figure 2.14). Referring to plane AB in Figure 2.12a,
the normal stress is +o, and the shear stress is +t,,. Similarly, on plane
AC, the stresses are +6, and -t,,. The stresses on planes AB and AC can
be plotted on a graph with normal stresses along the abscissa and shear
stresses along the ordinate. Points B and C in Figure 2.15 refer to the stress
conditions on planes AB and AC, respectively. Now, if points B and C are
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Negative
shear stress

Positive }
shear stress ®

Figure 2.14 Sign convention for shear stress used for the construction of Mohr’s circle.

Positive
shear stress

Shear stress
(+ve)
Y
=
A A

o] >
P; Normal stress
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=) N g
> < o, >
— e o »|

Figure 2.15 Mohr’s circle.

joined by a straight line, it will intersect the normal stress axis at O’. With
O’ as the center and O'B as the radius, if a circle BP; CP; is drawn, it will
be Mohr’s circle. The radius of Mohr’s circle is

O'B=+O'D*+BD? =

(2.83)
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Any radial line in Mohr’s circle represents a given plane, and the
coordinates of the points of intersection of the radial line and the circumfer-
ence of Mohr’s circle give the stress condition on that plane. For example,
let us find the stresses on plane BC. If we start from plane AB and move
an angle 0 in the clockwise direction in Figure 2.12, we reach plane BC. In
Mohr’s circle in Figure 2.15, the radial line O’B represents the plane AB.
We move an angle 26 in the clockwise direction to reach point F. Now the
radial line O’F in Figure 2.15 represents plane BC in Figure 2.12. The coor-
dinates of point F will give us the stresses on the plane BC.

Note that the ordinates of points P, and P; are zero, which means
that O’P; and O’P; represent the major and minor principal planes, and
OP, = o, and OP; = 5,3

2
6,1) =0 =00 +O'P, = Gx;GZ " (Gx_czj + T

2
Op3 =0P =00 -O'P; = zecz - [Gx;GZ] +12,

The previous two relations are the same as Equations 2.79 and 2.80. Also
note that the principal plane O’P, in Mohr’s circle can be reached by moving
clockwise from O’B through angle BO'P, = tan™! [21,/(c, - 6,)]. The other
principal plane O’P; can be reached by moving through angle 180° + tan™!
[27,./(6, - ©,)] in the clockwise direction from O’B. So, in Figure 2.12, if
we move from plane AB through angle (1/2) tan™! |27 /(c, - ©,)], we will
reach plane BC’, on which the principal stress o, acts. Similarly, moving
clockwise from plane AB through angle 1/2{180° + tan™! [21_/(c, - 6,)]} =
90° + (1/2) tan™ 27, /(c, - ©,)] in Figure 2.12, we reach plane BC”, on
which the principal stress 6,3, acts. These are the same conclusions as
derived from Equation 2.78.

b

2.8.4 Pole method for finding stresses
on an inclined plane

A pole is a unique point located on the circumference of Mohr’s circle. If a
line is drawn through the pole parallel to a given plane, the point of inter-
section of this line and Mohr’s circle will give the stresses on the plane. The
procedure for finding the pole is shown in Figure 2.16.

Figure 2.16a shows the same stress element as Figure 2.12. The corre-
sponding Mohr’s circle is given in Figure 2.16b. Point B on Mohr’s circle
represents the stress conditions on plane AB (Figure 2.16a). If a line is drawn
through B parallel to AB, it will intersect Mohr’s circle at P. Point P is the
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v
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Shear stress
(+ve)

(b)

stress

Figure 2.16 Pole method of finding stresses on an inclined plane: (a) stress element;

(b) corresponding Mohr’s circle.

pole for Mohr’s circle. We could also have found pole P by drawing a line
through C parallel to plane AC. To find the stresses on plane BC, we draw
a line through P parallel to BC. It will intersect Mohr’s circle at F, and the
coordinates of point F will give the normal and shear stresses on plane AB.

Example 2.2

The stresses at a point in a soil mass are shown in Figure 2.17 (plane
strain case). Determine the principal stresses and show their direc-
tions. Use v = 0.35.

Solution

Based on the sign conventions explained in Section 2.2,

6, =+100 kN/m?, o, =+50kN/m?, and 1, =-25kN/m’

2
G, =9xt0: 4 (GX—GZJ +
2

2
- 502100 i\/(so—;ooj +(=25) = (75 +35.36) kN/m?

o, = 110.36 kN/m? 6,3 = 39.64 kN/m?

Sy = V16,0 + O] = (0.35)(110.36 + 39.34) = 52.5 kN/m?



92 Advanced Soil Mechanics

> x 0,=100 kN/m?
B K Z C
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k{ K T, =25 kN/m?
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» 2250 %/ 5. = 50 kN/m2
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Figure 2.17 Determination of principal stresses at a point.

From Equation 2.78

tan20= 2% - 22 _y
6,—-0. (50-100)

20 =tan (1) = 45° and 225°s0 6 =22.5° and 112.5°

Parameter Spi 'is acting on the xz plane. The directions of 6,;, and 6,3,
are shown in Figure 2.17.

Example 2.3
Refer to Example 2.2.

a. Determine the magnitudes of 6,;) and o,,;, by using Mohr’s circle.
b. Determine the magnitudes of the normal and shear stresses on
plane AC shown in Figure 2.17.

Solution

Parta: For Mohr’scircle, on plane AB,6,=50kN/m?andt,,=-25 kN/m?.
On plane BC, o, = +100 and t,, +25 kN/m?. For the stresses, Mohr’s
circle is plotted in Figure 2.18. The radius of the circle is

O'H = J(O'IY +(HI} =257 +25> =35.36 kN/m®



Stresses and strains 93

H (100, 25)

P,
>
>

Normal stress

Shear stress
e}

All units are in kN/m?

Figure 2.18 Mohr’s circle for stress determination.

6,1 = 00"+ O'P =75+ 35.36 = 110.36 kN/m?
0,5 = 00"+ O'P; =75 - 35.36 = 39.64 kN/m?

The angle GO'Py = 20 = tan™'(JG/O’]) = tan"'(25/25) = 45°. So, we
move an angle 6 = 22.5° clockwise from plane AB to reach the minor
principal plane, and an angle 6 = 22.5 + 90 = 112.5° clockwise from
plane AB to reach the major principal plane. The orientation of the
major and minor principal stresses is shown in Figure 2.17.

Part b: Plane AC makes an angle 35°, measured clockwise, with plane
AB. If we move through an angle of (2)(35°) = 70° from the radial line
O'G (Figure 2.18), we reach the radial line O’K. The coordinates of K
will give the normal and shear stresses on plane AC. So

©=0'Ksin25° = 35.36 sin25° = 14.94 kN/m?

6=00"-0Kcos25°=75-35.36 cos25° = 42.95 kN/m?
Note: This could also be solved using Equations 2.73 and 2.74:

T="1T,,C0s20— (G’C;Gz )sin 20

where
T, = —25 kN/m?
0 =35°

o, = +50 kN/m?
6, = +100 kN/m? (watch the sign conventions)
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So
T=-25c0s70 —(50 —100 )sin70 =-8.55-(-23.49)
=14.94 kN/m>
o= [G’“ + 0. )+(6" — % )c0329+‘txz sin20
2 2
= [502100 J+(50 ‘2100 )cos70+(—25)sin70

=75-8.55-23.49 = 42.96 kN/m*

2.9 STRAINS ON AN INCLINED PLANE
AND PRINCIPAL STRAIN FOR
PLANE STRAIN PROBLEMS

Consider an elemental soil prism ABDC of unit length along the y direction
(Figure 2.19). The lengths of the prism along the x and z directions are AB =
dx and AC = dz, respectively. When subjected to stresses, the soil prism is
deformed and displaced. The length in the y direction still remains unity.
A'B’"D"C” is the deformed shape of the prism in the displaced position.

)

dz dl

Figure 2.19 Normal and shear strains on an inclined plane (plane strain case).
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If the normal strain on an inclined plane AD making an angle 0 with the
x axis is equal to €,

A'D’ = AD(l+€) = dI(1 +€) (2.84)
where AD = dI.

Note that the angle B"A’C” is equal to (/2 - y,,). So the angle A’'C"D" is
equal to +(n/2 +v,,). Now

(A'D') = (A'C"Y +(C'D")* = 2(A'C")(C’D’)cos(m/2 + v..) (2.85)
A'C’ = AC(l+e,) = dz(1+€,) = di(sinO)(1+€.) (2.86)
C’'D’ = A'B’ = dx(1 +e.) = dl(cos8)(1+e,) (2.87)

Substitution of Equations 2.84, 2.86, and 2.87 into Equation 2.85 gives

1+e)*(dl)? =[dl(sinB)(1+€,)]* +[dl(cos0)(1+€,)]*
+2(dl)*(sin 8)(cos B)(1+ €, ) (I+ €,) sinYy,, (2.88)

Taking sin v,, = y,, and neglecting the higher order terms of strain such as
€%,€5,€2,€ VxerEYxs»ExEYxs» Equation 2.88 can be simplified to

1+2e =(1+2€,)sin” 0+ (1+ 2€,) cos* B+ 2Y,, sinOcos O

c=e, cos’B+e. sin29+%sin29 (2.89)

or

€, te, €,-€
e = X Z+ X
2 2

< c0s20 + Y; sin26 (2.90)

Similarly, the shear strain on plane AD can be derived as
Y =Y. €O0820— (€, —€.) sin20 (2.91)
Comparing Equations 2.90 and 2.91 with Equations 2.73 and 2.74, it

appears that they are similar except for a factor of 1/2 in the last terms of
the equations.
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The principal strains can be derived by substituting zero for shear strain
in Equation 2.91. Thus

tan20 = 1 (2.92)
€, —€,

There are two values of 0 that will satisfy the aforementioned relation.
Thus, from Equations 2.90 and 2.92, we obtain

2 2
€x +ez €Ex —&; Vxz
= + +| == 2.

where €, = principal strain. Also note that Equation 2.93 is similar to
Equations 2.79 and 2.80.

2.10 STRESS COMPONENTS ON AN INCLINED
PLANE, PRINCIPAL STRESS, AND OCTAHEDRAL
STRESSES: THREE-DIMENSIONAL CASE

2.10.1 Stress on an inclined plane

Figure 2.20 shows a tetrahedron AOBC. The face AOB is on the xy plane
with stresses o, t,,, and 7., acting on it. The face AOC is on the yz plane
subjected to stresses 6,, T,,, and t,,. Similarly, the face BOC is on the xz

i > x

Normal to plane ABC;
unit vector =§

Figure 2.20 Stresses on an inclined plane—three-dimensional case.
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plane with stresses o, T,,, and 7,,. Let it be required to find the x, y, and z

components of the stresses acting on the inclined plane ABC.
Let i, j, and k be the unit vectors in the x, y, and z directions, and let s
be the unit vector in the direction perpendicular to the inclined plane

ABC:
s = cos(s, x)i + cos(s, y)j + cos(s, 2)k (2.94)

If the area of ABC is dA, then the area of AOC can be given as dA(s-i) =
dA cos(s, x). Similarly, the area of BOC = dA(s+j) = dA cos(s, y), and the
area of AOB = dA(s-k) = dA cos(s, z).
For equilibrium, summing the forces in the x direction, YF, = 0:
Do dA = [0, cos(s, X) + T, cos(s, y) + T,, cos(s, 2)|dA
or

Dsx = O COS(S, X) + Ty COS(S, V) + T,y COS(S, 2) (2.95)

where p,, is the stress component on plane ABC in the x direction.
Similarly, summing the forces in the y and z directions

Psy = Txy COS(s, X) + G, cOS(s, ) + T,y COS(s, 2) (2.96)

Ps: = Txz COS(S, X) + Ty, COS(S,y) + O, COS(s,2) (2.97)

where p,, and p,, are the stress components on plane ABC in the y and z
directions, respectively. Equations 2.95 through 2.97 can be expressed in
matrix form as

Dol [Ox  Tyx  Ty|[cOS(s,x)
Psy| =|Tsy Oy  Tyl|cos(s,y) (2.98)
Dsz Tz Tyz C; COS(S,Z)

The normal stress on plane ABC can now be determined as

G = Pqy COS(S, X) + Py, COS(S,Y) + Py, COS(s, 2)
=0, cos’(s,x)+ o, cos*(s,y) + G, cos*(s,z) + 27, cos(s, x) cos(s,y)

+ 27, cos(s, y)cos(s, z) + 27T, cos(s, x) cos(s, ) (2.99)
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The shear stress T on the plane can be given as

T= \/(Pfx +phy +pi) -0 (2.100)
2.10.2 Transformation of axes

Let the stresses in a soil mass in the Cartesian coordinate system be given
If the stress components in a new set of orthogonal axes (x;, y,, z;) as

shown in Figure 2.21 are required, they can be determined in the following
manner. The direction cosines of the x,, y,, and z, axes with respect to the
x, v, and z axes are shown:

Following the procedure adopted to obtain Equation 2.98, we can write

P xX1X Gx Tyx sz l 1
p,q y| = Txy Gy Tz}, my
Dz Tz Tyz G, ||

(2.101)

where p.,., sy, and py,, are stresses parallel to the x, y, and z axes and are
acting on the plane perpendicular to the x, axis (i.e., y,z, plane).

_-¥*

Figure 2.21 Transformation of stresses to a new set of orthogonal axes.
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We can now take the components of p,,.,p.,,, and p,,. to determine the

normal and shear stresses on the y,z, plane, or
le = llpxlx + mlp;qy + nlpaqz

Ty = lprwc + 1Py T 2Dy 2

Tz = lprlx + 13D,y + M3Px,

In a matrix form, the previous three equations may be expressed as

le ll my ny lex
Txly1 = 12 my ny pxl)’
Tz 13 ms 13| Dxiz

(2.102)

In a similar manner, the normal and shear stresses on the x,z; plane
(i.e., Oy s Tyxy» and Ty,;,) and on the x1y; plane (i.e., 6,,%,, and T,,,,) can
be determined. Combining these terms, we can express the stresses in the

new set of orthogonal axes in a matrix form. Thus

Gy Ty Tam L m  no, Tyx  Tax L
Txiy Gy, Tay | = 12 n || Txy O, Toy ||
Triz Tym G 13 my || Tz Tyz O, ||

xz°

Note: 1, =17,,T,=T,,and 1, =1

Solution of Equation 2.103 gives the following relations:

O, =6, +mic, + nic, + 2mmt,, + 2mlt, + 2Lm,,

o,, =136, + m36, + 136, + 2mymy Ty, + 2molyT. + 2Lmy,,

6, =36, + m30, + 30, + 2mynsty, + 2n3lt,, + 2Imst,,

Txl)’l = Ty1x1 = lllzcx + mlﬂ’ZZGy +mn,0, + (mli’lz + myny )Tyz

+ (s + moly )T + (limy + lzm1)Txy

(2.103)

(2.104)

(2.1095)

(2.106)

(2.107)
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TX]Z] = Tz1x1 = l]l36x + m1m36y + mn;o, + (m1n3 + WZ371|)T3,Z

+ (7’1113 + 1131] )sz + (l]m3 + l3m1 )Txy (2.108)

Ty1z1 = Tll}’l = lzlgcx + m2m30y +n,n30, + (m2n3 + msn, )Tyz

+ (nzl3 + }’L3lz )sz + (lzm3 + 137712 )Txy (2109)

2.10.3 Principal stresses

The preceding procedure allows the determination of the stresses on any
plane from the known stresses based on a set of orthogonal axes. As dis-
cussed earlier, a plane is defined as a principal plane if the shear stresses act-
ing on it are zero, which means that the only stress acting on it is a normal
stress. This normal stress on a principal plane is referred to as a principal
stress. In order to determine the principal stresses, refer to Figure 2.20, in
which x, y, and z are a set of orthogonal axes. Let the stresses on planes
OAC, BOC, and AOB be known, and let ABC be a principal plane. The
direction cosines of the normal drawn to this plane are [, m, and n with
respect to the x, y, and z axes, respectively. Note that

Pm?+n?=1 (2.110)

If ABC is a principal plane, then the only stress acting on it will be a
normal stress c,. The x, y, and z components of o, are ¢/, 6,m, and o,n.
Referring to Equations 2.95 through 2.97, we can write

ol=cl+t,m+1,n

or

(6. —0 )l +1,m+1,m=0 (2.111)
Similarly

Tl +(0, —C,)m+1,m=0 (2.112)

Tl +1,;m+(0, —0,)n=0 (2.113)
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From Equations 2.110 through 2.113, we note that /, m, and 7 cannot all be
equal to zero at the same time. So

(0x —0,) Tyx Tox
t,  (6,-6,) 1, |=0 (2.114)
Tys Ty, (0. —6,)
or
o,-lo;+1,6,-1;=0 (2.115)
where
Iy =0.+0,+0, (2.116)
I, =6,0,+06,0, + 6,0, — Toy — Ty, — To (2.117)
I; = 6,0,0, +2T,,T,.T,. — Oy Ty, — OyTa, — O, T5, (2.118)

I,, I,, and I; defined in Equations 2.116 through 2.118 are independent of
direction cosines and hence independent of the choice of axes. So, they are
referred to as stress invariants.

Solution of Equation 2.115 gives three real values of o,. So there are
three principal planes and they are mutually perpendicular to each other.
The directions of these planes can be determined by substituting each ¢, in
Equations 2.111 through 2.113 and solving for [, 72, and 7, and observing
the direction cosine condition for I? + m? + n? = 1. Note that these values
for [, m, and # are the direction cosines for the normal drawn to the plane
on which o, is acting. The maximum, intermediate, and minimum values
of o, are referred to as the major principal stress, intermediate principal
stress, and minor principal stress, respectively.

2.10.4 Octahedral stresses

The octahedral stresses at a point are the normal and shear stresses acting
on the planes of an imaginary octahedron surrounding that point. The
normals to these planes have direction cosines of +1y/3 with respect to
the direction of the principal stresses (Figure 2.22). The axes marked 1, 2,
and 3 are the directions of the principal stresses 6,), 6, and o,;. The
expressions for the octahedral normal stress o, can be obtained using

oct
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Toct

Normal to octahedral plane,

C
V() + (Po)” + () direction cosine 1/+/3, 1/~/3, 1/+/3

v
3

Figure 2.22 Octahedral stress.

Equations 2.95 through 2.97 and 2.99. Now, compare planes ABC in
Figures 2.20 and 2.22. For the octahedral plane ABC in Figure 2.22

psl = Gp(l)l (2.119)
psZ = Gp(Z)m (2.120)
Ds3 = O3 (2121)

where pg, p., and pg; are stresses acting on plane ABC parallel to the
principal stress axes 1, 2, and 3, respectively. Parameters [, 7, and # are the
direction cosines of the normal drawn to the octahedral plane and are all
equal to 1/+/3. Thus, from Equation 2.99

2 2 2
Goce = li Gy + MG 0) + 111G 3

1
= g[cpm +0,0)+ 03] (2.122)
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The shear stress on the octahedral plane is

(2.123)

Toct = \/[(Ps] )2 + (Psz)z + (Ps3)2] - cht

where 7, is the octahedral shear stress, or

1
Toct = 5 \/ [6p1) = Oy +[6,0) = O3> +[0,3 — G| (2.124)

The octahedral normal and shear stress expressions can also be derived
as a function of the stress components for any set of orthogonal axes x, y, z.

From Equation 2.116

I, =const =0, +06, +G, = G,1) +Gp) + Op3 (2.125)
So
1 1
Ooct = *[017(1) + Gp(l) + Gp(3)] = E(Gx + Gy + 02) (2126)
Similarly, from Equation 2.117
I, = const = (0,0, + 6,0, + 0,0,) — Tz, — Tr; — Tos
= G,1)0p(2) T Op(2)0p(3) T Op(310p(1) (2.127)
Combining Equations 2.124, 2.125, and 2.127 gives
20 (2.128)

Toxt = %\/(cx -06,)" +(0, - 06,)" +(0, —0,) + 615, + 6T, +6T%,

Example 2.4
The stresses at a point in a soil mass are as follows:

o, = 50 kN/m? T, = 30 kN/m?

o, = 40 kN/m? T,. = 25 kN/m?

o, = 80 kN/m? T, = 25 kN/m?
Determine the normal and shear stresses on a plane with direction
cosines [ =2/3,m =2/3,and n = 1/3.
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Solution

From Equation 2.98

Dol [Ox Ty Tl
Dsy| = |Txy o, Ty| |
psz sz Tyz Gz n

The normal stress on the inclined plane (Equation 2.99) is

G =pul+p,m+pen
=l + o,m? + o n? + 2t Im + 21 mn + 21 In
= 50(2/3)% + 40(2/3)* + 80(1/3)% + 2(30)(2/3)(2/3)
+2(25)(2/3)(1/3) + 2(25)(2/3)(1/3) = 97.78 kN/m?

Dox = 0,0 + Tom + T m = 50(2/3) + 30(2/3) + 25(1/3)
=33.33+20 + 8.33 = 61.66 kN/m>

Doy = Tl + 0m + 1,.m = 30(2/3) + 40(2/3) + 25(1/3)
=20 +26.67 + 8.33 = 55 kN/m?

Do =Tl + T, om + o = 25(2/3) + 25(2/3) + 80(1/3)
=16.67 + 16.67 + 26.67 = 60.01 kN/m?

The resultant stress is

p=[pi+pd+pL =61.66> +557 +60.01° =102.2 kN/m?

The shear stress on the plane is

1=p’ -0 =/102.2> =97.78 =29.73 kN/m”

Example 2.5

At a point in a soil mass, the stresses are as follows:

o, =25 kN/m? T,, = 30 kN/m?
6, = 40 kN/m? T,. = -6 kN/m?

6, = 17 kN/m? T,, = =10 kN/m?

Determine the principal stresses and also the octahedral normal and
shear stresses.
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Solution
From Equation 2.114

(0. —0) Ty Tex
Ty (o, —0,) Ty =0
Taz Ty (0.-0y)
25-0c,) 30 -10
30 (40-0,) -6 |=0,-820,+10695,-800=0
-10 -6 (17 -0,)

The three roots of the equation are
o, = 65.9 kN/m?
Oy = 15.7 kN/m?

6y = 0.4 kN/m?

1
Coct = E[Gp(l) +0,2)+Op3)]

= %(65.9+15.7+0.4) =27.33 kN/m?

Toct = \/[G[) G[) + [G[I 01)(3)]2 + [612(3) - G[}(l)]z

= %J(65.9—15.7)2 +(15.7-0.4)?% +(0.4-65.9? =27.97 kN/m?

2.11 STRAIN COMPONENTS ON AN INCLINED

PLANE, PRINCIPAL STRAIN, AND OCTAHEDRAL

STRAIN: THREE-DIMENSIONAL CASE

We have seen the analogy between the stress and strain equations derived
in Sections 2.7 and 2.8 for the plane strain case. Referring to Figure 2.20,
let the strain components at a point in a soil mass be represented by €, €,
€. Yuy» Yye» and v,,. The normal strain on plane ABC (the normal to plane

ABC has direction cosines of [, 72, and 1) can be given by

€ =l’e, + m’e, + n'e, +Imy,, + mny,, +Iny,,

(2.129)
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This equation is similar in form to Equation 2.99 derived for normal stress.
When we replace €,, €, €,, 1,,/2, V,./2, and v,,/2, respectively, for 6,, 5,, 5,
T.y» Tye» and T, in Equation 2.99, Equation 2.129 is obtained.

If the strain components at a point in the Cartesian coordinate system
(Figure 2.21) are known, the components in a new set of orthogonal axes

can be given by (similar to Equation 2.103)

1 1
€x1 zYxm EYxm
1 c 1
2 Ve y1 P Tyia
1 1
E Yx1z1 5 Ty €z
€ 1 T ] T
x xy Xz
L m ) 2 i L 153 I
=L m m zny €y zsz m my  my (2.130)
13 mis 73 l l . n my 73
P Vz P sz z

The equations for principal strains at a point can also be written in a
form similar to that given for stress (Equation 2.115) as

e —Jie, +]2€,-]5=0 (2.131)
where €, is the principal strain

Ji=€,+te, €, (2.132)

2 2 2
]y =€.€, +e,e, +ee, —(Yzy j —[‘g) —(YZJ (2.133)

2 2 2
Ji=ee,e. + PN e, (Yzyj —e, (YZJ e, (Yzyj (2.134)

Jis ]2, and J; are the strain invariants and are not functions of the direction
cosines.
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The normal and shear strain relations for the octahedral planes are

1
Eoct= E[Epﬂ) + Ep(z) + ep(;z,)] (2.135)

2
Yoer = EJ[GP(M —pl’ +lep — €yl +lEps) — €I (2.136)
where
€ .. is the octahedral normal strain

oct

Yoo 18 the octahedral shear strain
€, €p(2)» €p(3) are the major, intermediate, and minor principal strains,
respectively

Equations 2.135 and 2.136 are similar to the octahedral normal and shear
stress relations given by Equations 2.126 and 2.128.
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Chapter 3

Stresses and displacements
in a soil mass

Two-dimensional problems

3.1 INTRODUCTION

Estimating the increase in stress at various points and the associated
displacement caused in a soil mass due to external loading using the theory
of elasticity is an important component in the safe design of the foundations
of structures. The ideal assumption of the theory of elasticity, namely that the
medium is homogeneous, elastic, and isotropic, is not quite true for most nat-
ural soil profiles. It does, however, provide a close estimation of geotechnical
engineers and, using proper safety factors, safe designs can be developed.

This chapter deals with two-dimensional problems (plane strain cases)
involving stresses and displacements induced by various types of loading.
The expressions for stresses and displacements are obtained on the assump-
tion that soil is a perfectly elastic material. Problems relating to plastic
equilibrium are not treated in this chapter.

Stresses and displacements related to three-dimensional problems are
treated in Chapter 4.

3.2 VERTICAL LINE LOAD ON THE SURFACE
Figure 3.1 shows the case where a line load of g per unit length is applied at

the surface of a homogeneous, elastic, and isotropic soil mass. The stresses
at a point P defined by  and 0 can be determined by using the stress function

(]):gresine (3.1)
T
In the polar coordinate system, the expressions for the stresses are as follows:
2
o 130, 12%

. d 2.
ror r* 00 (2.57)

109
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q/unit length

Figure 3.1 Vertical line load on the surface of a semi-infinite mass.

Go = gi"j (2.58)
and
T,0 =—§r(1gg] (2.59)
Substituting the values of ¢ in the previous equations, we get
o, = 1 (qesin9j+ i[qrcose+qrcos6—qrﬂsin6)
r\m r’\n T s
=2—qc056 (3.2)
nr
Similarly
6o =0 (3.3)

and
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The stress function assumed in Equation 3.1 will satisfy the compatibility
equation:

0> 190 1 9> \(9% 1dd 1 9%
A A A (A A A ) 2.60
(81’2 ror 1’ 08’ j{ or* ror 1 08’ ( )
Also, it can be seen that the stresses obtained in Equations 3.2 through 3.4
satisfy the boundary conditions. For 8 = 90° 7> 0, 6, = 0, and at 7 = 0, 5, is theo-
retically equal to infinity, which signifies that plastic flow will occur locally.
Note that 6, and 6, are the major and minor principal stresses at point P.

Using the earlier expressions for 6,, 64, and 7,4, we can derive the stresses
in the rectangular coordinate system (Figure 3.2):

G, =G, cos> 0+ Gy sin” 0 — 27,4 sin O cos O (2.77)
or,
2 2 ’ 29%°
o, = cos’0= q ad = Zqz 53 (3.5)
nr i +22 | x? + 2 T(x” +27)
Similarly
G, =0, sin? 0+ G, cos’> 0+ 21T,4sinOcos O (2.75)
or,
2gx*z
C,=— 3.6
n(x? +2°)? (3.6)
q/unit length
» X

z
N
r\
A O,
N z
Ny

T

NN
N
RN ) Ox 2 Ox

z XZ
cos 0= Ty
X%+ 22 ¢ x >
c
. z
sin 0 = d
x>+ 2%

Figure 3.2 Stresses due to a vertical line load in rectangular coordinates.
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Table 3.1 Values of o,/(q/2), 6,/(g/z), and 7,,/(q/z)
(Equations 3.5 through 3.7)

xlz c,/(q/z) c,/(q/z) T,,/(q/2)
0 0.637 0 0
0.1 0.624 0.006 0.062
0.2 0.589 0.024 0.118
0.3 0.536 0.048 0.161
0.4 0.473 0.076 0.189
0.5 0.407 0.102 0.204
0.6 0.344 0.124 0.207
0.7 0.287 0.141 0.201
0.8 0.237 0.151 0.189
0.9 0.194 0.157 0.175
1.0 0.159 0.159 0.159
1.5 0.060 0.136 0.090
2.0 0.025 0.102 0.051
3.0 0.006 0.057 0.019
and
T, = =G sin0cosO + G, sin 0cos O + T,4(cos*0 — sin’0) (2.76)
or,
2qxz”
o= X% (3.7)
(x~ +2°)
For the plane strain case
6, =V(0, +0,) (3.8)

The variation of the values for o,, 6., and t,, with x/z in a nondimensional
form are given in Table 3.1. Figure 3.3 shows plots of 6,, 6, 7., with x/z in a
nondimensional form.

3.2.1 Displacement on the surface (z = 0)

By relating displacements to stresses via strain, the vertical displacement w
at the surface (i.e., z = 0) can be obtained as

_21-v?
T

w

qln‘x‘ +C (3.9)

where
E is the modulus of elasticity
v is Poisson’s ratio
C is a constant



Stresses and displacements in a soil mass |13

o,/(q/2), o,/(q/2), T,,/(q/2)
08

02T

-0.4

Figure 3.3 Plot of 6,/(q/z), 0,/(q/z), and t,,/(q/z) vs. x/z (Equations 3.5 through 3.7).

The magnitude of the constant can be determined if the vertical displace-
ment at a point is specified.

Example 3.1
For the point A in Figure 3.4, calculate the increase of vertical stress o,

due to the two line loads.

Solution

The increase of vertical stress at A due to the line load g, = 20 kN/m:

Given,® = 2™ 1
zZ 2m

From Table 3.1, for x/z = 1, 6,/(q/z) = 0.159. So

o) = 0.159[‘11]: 0.159[220} 1.59 kN/m?
<

q,=30kN/m q1=20 kN/m

—— 4 m——>

2 m ]

Figure 3.4 Two line loads acting on the surface.
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The increase of vertical stress at A due to the line load ¢, = 30 kN/m:

Given, ¥ = 0™ _ 3
Z 2m

From Table 3.1, for x/z = 3, 6,/(q/z) = 0.006. Thus

Gy = 0.006(“): 0.006(30j= 0.09 kN/m?
2

z

So, the total increase of vertical stress is

G, =0;1) +Oy2) = 1.59+0.09=1.68 kN/m2

3.3 VERTICAL LINE LOAD AT THE APEX
OF AN INFINITE WEDGE

Figure 3.5 shows an infinite wedge with its apex at O. A vertical line load
of g/unit length is applied at O. The stress at a point P located at a radial
distance r can be given as (Michell, 1900):

G, = (zq)cos.e (3.10)
r )20.+sin20

g/ unit length

) ZAN

Y
)

Figure 3.5 Infinite wedge with vertical line load.



Stresses and displacements in a soil mass |15

Go =0 (3.11)
T,6=0 (3.12)

Note that, if o = n/2, which is the case in Figure 3.1, then Equation 3.10
becomes 6, = (2g/nr) cosO, which is the same as Equation 3.2.

Example 3.2

Refer to Figure 3.5. Given: a=40° g=30kN/m. Determine G, at
P (2.5 m, 4 m).

Solution
0=rtan"’ (ﬁj = tan™! (2) =32¢
b4 4
r=[2.57+@? ] =4717 m

o =| - |40) = 0.698 radians
180

From Equation 3.10,

c,:(zi) cos @ :[(2)(30)} cos32 453 KN/m?
r )20+sin20 | 4.717 || (2)(0.698)+sin80

3.4 VERTICAL LINE LOAD ON THE
SURFACE OF A FINITE LAYER

Equations 3.5 through 3.7 were derived with the assumption that the homoge-
neous soil mass extends to a great depth. However, in many practical cases, a
stiff layer such as rock or highly incompressible material may be encountered
at a shallow depth (Figure 3.6). At the interface of the top soil layer and the
lower incompressible layer, the shear stresses will modify the pattern of stress
distribution. Poulos (1966) and Poulos and Davis (1974) expressed the verti-
cal stress o, and vertical displacement at the surface (w at z = 0) in the forms:

q
o,=—+1I 3.13
! ( )
q
0 = ——1 3.14
Wes0 nE : ( )

where I, and I, are influence values.
I, is a function of z/h, x/h, and v. Similarly, I, is a function of x/h and v. The
variations of I; and I, are given in Tables 3.2 and 3.3, respectively, for v = 0.



116 Advanced Soil Mechanics

q/unit length

Rigid layer

Figure 3.6 Vertical line load on a finite elastic layer.

Table 3.2 Variation of [, (v = 0)
zlh
x/h 0.2 0.4 0.6 0.8 1.0

0 9.891 5.157 3.641 2.980 2.634
0.1 5.946 4516 3.443 2.885 2.573
0.2 2.341 3.251 2.948 2.627 2.400
0.3 0918 2.099 2.335 2.261 2.144

0.4 0.407 1.301 1.751 1.857 1.840
0.5 0.205 0.803 1.265 1.465 1.525
0.6 0.110 0.497 0.889 1117 1.223

0.8 0.032 0.185 0.408 0.592 0.721
1.0 0.000 0.045 0.144 0.254 0.357
1.5 -0019 -0.035 -0.033 -0.018 0.010
20 -0.013 -0.025 -0.035 -0.041 -0.042
4.0 0.009 0.009 0.008 0.007 0.006
8.0 0.002 0.002 0.002 0.002 0.002

3.5 VERTICAL LINE LOAD INSIDE
A SEMI-INFINITE MASS

Equations 3.5 through 3.7 were also developed on the basis of the
assumption that the line load is applied on the surface of a semi-infinite
mass. However, in some cases, the line load may be embedded. Melan
(1932) gave the solution of stresses at a point P due to a vertical line load of
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Table 3.3 Variation of I, (v = 0)

xlh I,
0.1 3.756
02 2.461
0.3 1.730
04 1,244
0.5 0.896
06 0.643
0.7 0.453
0.8 0313
1.0 0.126
1.5 -0.012
2.0 -0.017
40 -0.002
8.0 0

q per unit length applied inside a semi-infinite mass (at point A, Figure 3.7).
The final equations are given as follows:

q 1 (z—d)} (z+d)[(z+d)?+2dz] 8dz(d+z)x*
c, =+ + -
| 2(1-v) n 7 7
1-2v (z-d 3z+d 4z
_ 3.15
" 4(1-v) ( r " ' 7 D ( )

Figure 3.7 Vertical line load inside a semi-infinite mass.
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q{ 1 [(z—d)x2 N (z+d)(x* +2d*) - 2dx* N 8dz(d+z)x2}
2

Ton|2(1-v) N 724 ;:
+41(1_—ZZ)[dh_2z+zJ;£3d i 42‘62 j} (3.16)
T :‘Ix{ 1 J{(z—d)erzz—Zdz—dz+gdz(d+z)z}
o |20-v) r 7 5
" ‘:(1_—25) le_riﬁ%(i‘fz)}} (3.17)

Figure 3.8 shows a plot of 6,/(q/d) based on Equation 3.15.

1.0

0.8

z
= =15
\d
0.6

:\
0.4
1\
8302
© = ﬁ
4 /‘§\

0
0.5/
-0.2

L/

-0.4

-0.6

*
d

Figure 3.8 Plot of c,/(q/d) versus x/d for various values of z/d (Equation 3.15).
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3.6 HORIZONTAL LINE LOAD ON THE SURFACE

The stresses due to a horizontal line load of g per unit length (Figure 3.9)
can be evaluated by a stress function of the form

0=210c0s0 (3.18)
T

Proceeding in a similar manner to that shown in Section 3.2 for the case
of vertical line load, we obtain the stresses at a point P defined by » and 6 as

c, zﬁsine (3.19)
Y

6o =0 (3.20)

T,6=0 (3.21)

In the rectangular coordinate system,

2qg x2*

%= (x> + %) 1522
2g x°

O, :?(x2+z2)2 (3.23)

q/unit length

Figure 3.9 Horizontal line load on the surface of a semi-infinite mass.
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2q

Twe =

x’z

n (2 +2)

For the plane strain case, 6, = v(c, + G,).

Somevaluesofc_,c

x93 V2

(3.24)

andrt, inanondimensional formare givenin Table 3.4.

Figure 3.10 shows plots of 6, 6,, and t,, with x/z in a nondimensional form.

-1.0

Table 3.4 Values of ¢,/(q/z), 0,/(q/z), and t,,/(q/z)

(Equations 3.22 through 3.24)

xlz c,/(q/z) c,/(q/z) T,,/(q/2)
0 0 0 0

0.1 0.062 0.0006 0.006
0.2 0.118 0.0049 0.024
0.3 0.161 0.0145 0.048
0.4 0.189 0.0303 0.076
0.5 0.204 0.0509 0.102
0.6 0.207 0.0743 0.124
0.7 0.201 0.0984 0.141
0.8 0.189 0.1212 0.151
0.9 0.175 0.1417 0.157
1.0 0.159 0.1591 0.159
1.5 0.090 0.2034 0.136
2.0 0.051 0.2037 0.102
3.0 0.019 0.1719 0.057

0,/(q/2), 0x/(q/2), T,/ (a/2)

0.20 4

0.15+

0.10 -

0.05

Tz

—08 -06 -04-02

Ox

+-0.05

+-0.10

-=0.15

+--0.20

Figure 3.10 Plot of 6,/(q/z), 6,/(q/z), and t,,/(q/z) vs. x/z (Equations 3.22 through 3.24).
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Example 3.3

Refer to Figure 3.11. Given: o, = 30°% o, = 45% a=2m; a,=3 m;
a,=5m; b=2m; q, =40 kN/m; g,= 30 kN/m. Determine o, at M

and N.

Solution

Components of g, — Vertical:
Horizontal:

Components of g, — Vertical:
Horizontal:

From Equations 3.5 and 3.22,

At point N:

_ 2(q:5in30)(2)° +

2(=q1cos30)(S)2) | 2(gasin43)(2

g, sin 30
g, cos 30

q,sin 45
g, cos 45

)3

TS 2P (S)* +2)'F

+ 2(q2 cos 45)(5 +2)(2)*
(S +2)* +(2)° ]

=0.121-0.5245+0.0385+0.1346

=~ -0.23 kN/m?

g, /unit length

(S +2)* +(2)°]

g, /unit length

Gy

Figure 3.1 Two inclined line loads.
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At point M:

2(q15in30)(2)° 4 2=q1 €08 30)(=5)(2 ! + (612 sm 45)( )
(=5) +(2)°F (=5 +(2)° (- 2P
2(g> c0s45)(=3)(2)?
(=3)* +(2)° T
=0.121+0.5245+0.6390.959
~0.327 kN/m?

=

3.7 HORIZONTAL AND INCLINED LINE LOAD
AT THE APEX OF AN INFINITE WEDGE

Figure 3.12(a) shows a horizontal line load of g/unit length at the apex of
an infinite wedge. Similar to Equations 3.10 to 3.12, the stress at P can be
given as:

5, =24 __snb (3.25)
r 20.—sin20

6o =0 (3.26)

To=0 (3.27)

Figure 3.12(b) shows an inclined line load at the apex of an infinite wedge,
which is a combination of the loadings shown in Figures 3.5 and 3.12(a).
For this condition

g/unit length 0 /‘i ] . g/unit length 04

*X

6 G,

rt

<

(2) z (b) z

Figure 3.12 (a) Horizontal line load; (b) inclined line load at the apex of an infinite
load.
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2q| cosPcos®  sinPsin®
r= . + . .
© r [20( +sin200 20— sm2(x:| (3.28)
Ge =0 (3.29)
T,0=0 (3.30)

3.8 HORIZONTAL LINE LOAD INSIDE
A SEMI-INFINITE MASS

If the horizontal line load acts inside a semi-infinite mass as shown in Figure
3.13, Melan’s solutions for stresses at a point P(x, z) may be given as follows:

:qx{ 1 {(z—d)2 _dz—z2+6dz+8dzx2}
2

o 1-v) n ' 7
_ 1-2v 12_12_4Z(d4+Z) (331)
A41-v)|n » 7

d "2
l q/unit length
A—>
"

P(x, z)

Figure 3.13 Horizontal line load inside a semi-infinite mass.
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G ooax) 1 Lz_x2+8dz+6d2+8dz(d+z)2
* 20-v) | 7t

T 7‘24 7’26
n 1-2v %+%_4Z(d4+ 2) (3.32)
41-v)|n n 7

Tz =

n|20-v)| # r 7

q{ 1 {(z—d)xz+(2dz+x2)(d+z)+8dz(d+z)x2}

N 1-2v [z—d 3.z+d+4z(d+z)2 ]} (3.33)

41-v)| 7 7} '

3.9 UNIFORM VERTICAL LOADING ON AN
INFINITE STRIP ON THE SURFACE

Figure 3.14 shows the case where a uniform vertical load of g per unit area
is acting on a flexible infinite strip on the surface of a semi-infinite elastic
mass. To obtain the stresses at a point P(x, z), we can consider an elemen-
tary strip of width ds located at a distance s from the centerline of the load.
The load per unit length of this elementary strip is g-ds, and it can be
approximated as a line load.

Figure 3.14 Uniform vertical loading on an infinite strip.
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The increase of vertical stress, 6,, at P due to the elementary strip loading
can be obtained by substituting x - s for x and g - ds for g in Equation 3.5, or

_2qds 2
© [(x—s?+22F

do, (3.34)

The total increase of vertical stress, 6,, at P due to the loaded strip can be
determined by integrating Equation 3.34 with limits of s = b to s = -b; so

+b 3
) e —
T _b[(x—s) +27]

_4 1 a1 % 2bz(x* — 2% - b?)
‘n{m“ b N xwb (2B +Ab

(3.35)

In a similar manner, referring to Equations 3.6 and 3.7,

+b 2
6. = [ do. :ﬁji‘x BLE PN
T 7b[(x—s) +27]

22 g2
q 12 2bz(x” —z" = b") } (3.36)

=] tan™ —tan +
n{ x—b x+b  (x*+22 b +4b*?

_u

2
.= 4bgxz

q]‘b (x —s)2 ds =
mJ [(x—s)* +2°T n[(x* + 2> = b*)* +4b°2?]

(3.37)

Equations 3.35 and 3.36 are for x > b. However, for x = 0 to x < b, the term
tan! [z/(x - b)] becomes negative. For such cases, replace tan™! [z/(x - b)]
with & + tan! [2/(x - b)]. Also note that, due to symmetry, the magnitudes
of 6,, 6,, and 1, are the same at =x for a given value of z.

The expressions for 6,, 6,, and 1., given in Equations 3.35 through 3.37
can be presented in a simplified form:

6. = Lo +sinocos(o +28)] (3.38)
T

6. = Lo, —sino.cos(o + 23)] (3.39)
T

1., = L[sinosin(o + 25)] (3.40)
T

where o and 8 are the angles shown in Figure 3.14.
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(Note: The angle 6 is positive measured counterclockwise from the vertical
drawn at P.)

Tables 3.5 through 3.7 give the values of ¢,/q, 6,/q, t.,/q for various
values of x/b and z/b.

The variation of 6,/q with £ x/B for z/B = 0.25, 0.5, 1.0 and 2.0 is shown
in Figure 3.15.

Using the relationships given in Equation 3.35, isobars for ¢,/q can be
drawn. This is shown in Figure 3.16.

3.9.1 Vertical displacement at the surface (z = 0)

The vertical surface displacement relative to the center of the strip load can
be expressed as

2g(1-1?) (x—b)ln‘x—b‘—

(3.41)
TE | (x+b)ln|x—b|+2bInb

wz:O(x) - wz:O(x = O) =

Example 3.4
Refer to Figure 3.14. Given B = 4 m. For point P,z =1 mand x = 1 m.
Determine 6,/q, 6,/q, and t,/q at P. Use Equations 3.35 through 3.37.

Solution
6./q Calculation
Givenb=B/2=4/2=2

z=1m

From Equation 3.335, since x < b

6. 1 L Loz 2bz(x* —2* - b?)
L ="+t —t -
g Ny (x> +27 = b)) +4b%?
tan”! —° = tan™ L —45°=-0.785rad

x—b 1-2
tan! —*_ — tan™ b =18.43°=0.322rad

x+b 1+2

2bz(x* -2 -b*) (2)Q)A)(12-1*-2?) 0,08
(2 +22 =02 +4b  (1P+12-222+4)(2Y)1%)
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Table 3.5 Values of o,/q (Equation 3.35)

x/b
z/b 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
0.10 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.993 0.980 0.909 0.500
020 0.997 0.997 0.996 0.995 0.992 0.988 0.979 0.959 0.909 0.775 0.500
0.30 0.990 0.989 0.987 0.984 0978 0.967 0.947 0908 0.833 0.697 0.499
0.40 0977 0976 0.973 0.966 0.955 0.937 0.906 0.855 0.773 0.65] 0.498
0.50 0.959 0.958 0.953 0.943 0.927 0.902 0.864 0.808 0.727 0.620 0.497
0.60 0.937 0935 0.928 0915 0.896 0866 0.825 0.767 0.691 0.598 0.495
0.70 0910 0908 0.899 0.885 0.863 0.831 0.788 0.732 0.662 0.581 0.492
0.80 0.881 0.878 0.869 0.853 0.829 0.797 0.755 0.701 0.638 0.566 0.489
090 0.850 0.847 0.837 0.821 0.797 0.765 0.724 0.675 0.617 0.552 0.485
1.00 0818 0.815 0.805 0.789 0.766 0.735 0.696 0.650 0.598 0.540 0.480
.10 0.787 0.783 0.774 0.758 0.735 0.706 0.670 0.628 0.580 0.529 0.474
120 0.755 0.752 0.743 0.728 0.707 0.679 0.646 0.607 0.564 0517 0.468
1.30 0.725 0.722 0.714 0.699 0.679 0.654 0.623 0.588 0.548 0.506 0.462
140 0.696 0.693 0.685 0.672 0.653 0.630 0.602 0.569 0.534 0.495 0.455
1.50 0.668 0.666 0.658 0.646 0.629 0.607 0.581 0.552 0.519 0.484 0.448
1.60 0.642 0.639 0.633 0.621 0.605 0.586 0.562 0.535 0.506 0.474 0.440
1.70 0617 0.615 0.608 0.598 0.583 0.565 0.544 0519 0.492 0463 0.433
1.80 0.593 0591 0585 0.576 0.563 0.546 0.526 0.504 0.479 0.453 0.425
1.90 0571 0.569 0.564 0.555 0.543 0.528 0.510 0.489 0.467 0443 0417
2.00 0.550 0.548 0.543 0.535 0.524 0.510 0494 0475 0455 0.433 0409
2.10 0.530 0.529 0.524 0.517 0507 0.494 0479 0462 0443 0.423 0401
220 0511 0.510 0506 0.499 0490 0479 0465 0.449 0432 0413 0.393
230 0494 0493 0.489 0.483 0474 0464 0451 0437 0421 0.404 0.385
240 0477 0476 0473 0.467 0460 0.450 0438 0.425 0410 0.395 0.378
250 0462 0461 0.458 0.452 0.445 0436 0426 0414 0.400 0.386 0.370
260 0.447 0.446 0443 0.439 0432 0424 0414 0403 0.390 0.377 0.363
270 0433 0432 0430 0425 0419 0412 0403 0.393 0.381 0.369 0.355
280 0420 0419 0417 0413 0407 0.400 0.392 0.383 0372 0.360 0.348
290 0.408 0.407 0.405 0.401 0396 0.389 0.382 0.373 0.363 0.352 0.341
3.00 0.396 0.395 0.393 0.390 0385 0.379 0.372 0.364 0.355 0.345 0.334
3.10 0.385 0.384 0.382 0379 0.375 0.369 0.363 0.355 0.347 0.337 0.327
320 0.374 0.373 0.372 0369 0365 0360 0.354 0.347 0.339 0.330 0.321
330 0.364 0363 0.362 0.359 0.355 0.351 0.345 0.339 0331 0.323 0315
340 0.354 0354 0.352 0.350 0.346 0.342 0.337 0.331 0324 0316 0.308
3.50 0.345 0345 0.343 0.341 0.338 0.334 0329 0.323 0317 0.310 0.302
3.60 0.337 0336 0.335 0333 0330 0.326 0321 0316 0310 0.304 0.297

3.70 0328 0328 0.327 0.325 0.322 0.318 0.314 0.309 0.304 0.298 0.291
(Continued)
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Table 3.5 (Continued) Values of 6,/q (Equation 3.35)
x/b

zIb 0.0 0.1 0.2 03 04 05 0.6 0.7 038 0.9 1.0
3.80 0.320 0320 0.319 0317 0315 0311 0307 0.303 0297 0.292 0.285
390 0313 0313 0312 0310 0307 0.304 0301 0.296 0291 0.286 0.280
4.00 0.306 0.305 0.304 0.303 0.301 0.298 0.294 0.290 0.285 0.280 0.275
4.10 0299 0299 0298 0.296 0.294 0291 0288 0.284 0.280 0.275 0.270
420 0292 0.292 0291 0.290 0288 0.285 0.282 0.278 0.274 0.270 0.265
430 0286 0286 0.285 0.283 0.282 0.279 0276 0.273 0.269 0.265 0.260
440 0280 0.280 0279 0.278 0276 0.274 0.271 0.268 0.264 0.260 0.256
450 0274 0274 0273 0.272 0270 0.268 0.266 0.263 0.259 0.255 0.25]
460 0268 0.268 0268 0.266 0.265 0.263 0.260 0.258 0.254 0.251 0.247
470 0263 0.263 0262 0.261 0.260 0.258 0.255 0.253 0.250 0.246 0.243
480 0.258 0.258 0.257 0.256 0.255 0.253 0251 0.248 0.245 0.242 0.239
490 0253 0.253 0252 0.251 0.250 0.248 0.246 0.244 0.241 0.238 0.235
5.00 0248 0.248 0.247 0.246 0.245 0244 0242 0.239 0.237 0.234 0.231

I.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.091 0.020 0.007 0.003 0.002 0.001 0.001 0.000 0.000 0.000
0.20 0.225 0.091 0.040 0.020 0.011 0.007 0.004 0.003 0.002 0.002
0.30 0.301 0.165 0.090 0.052 0.031 0.020 0.013 0.009 0.007 0.005
040 0.346 0.224 0.141 0.090 0.059 0.040 0.027 0.020 0.014 0.01l
0.50 0.373 0.267 0.185 0.128 0.089 0.063 0.046 0.034 0.025 0.019
0.60 0391 0.298 0.222 0.163 0.120 0.088 0.066 0.050 0.038 0.030
0.70 0.403 0.321 0.250 0.193 0.148 0.113 0.087 0.068 0.053 0.042
0.80 0.4I11 0.338 0.273 0.218 0.173 0.137 0.108 0.086 0.069 0.056
090 0.416 0.35] 0.291 0.239 0.195 0.158 0.128 0.104 0.085 0.070
1.00 0419 0.360 0.305 0256 0214 0.177 0.147 0.122 0.101 0.084
.10 0.420 0.366 0.316 0271 0230 0.194 0.164 0.138 0.116 0.098
120 0419 0371 0325 0282 0243 0209 0.178 0.152 0.130 0.1
1.30 0.417 0373 0331 0.291 0.254 0.221 0.191 0.166 0.143 0.123
1.40 0414 0374 0335 0298 0.263 0.232 0.203 0.177 0.155 0.135
1.50 0411 0374 0338 0303 0271 0240 0.213 0.188 0.165 0.146
1.60 0.407 0.373 0.339 0307 0276 0.248 0.221 0.197 0.175 0.I55
.70 0.402 0.370 0.339 0.309 0281 0.254 0228 0.205 0.183 0.164
1.80 0.396 0.368 0.339 0311 0284 0.258 0.234 0.212 0.191 0.172
1.90 0.391 0.364 0.338 0312 0.286 0.262 0.239 0.217 0.197 0.179
2.00 0.385 0.360 0.336 0.311 0.288 0.265 0.243 0.222 0203 0.185
2.10 0379 0356 0.333 0311 0.288 0.267 0.246 0.226 0.208 0.190
220 0373 0.352 0.330 0.309 0.288 0.268 0.248 0.229 0212 0.195
230 0.366 0.347 0.327 0.307 0.288 0.268 0.250 0232 0215 0.199
(Continued)
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Table 3.5 (Continued) Values of 6,/q (Equation 3.35)
x/b

zib 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

240 0360 0.342 0323 0.305 0287 0.268 0251 0.234 0217 0.202
250 0.354 0.337 0320 0.302 0.285 0.268 0251 0.235 0220 0.205
260 0347 0332 0316 0.299 0.283 0.267 0251 0.236 0.221 0.207
270 0341 0327 0312 0.296 0281 0.266 0251 0.236 0.222 0.208
280 0335 0.321 0.307 0.293 0.279 0.265 0250 0.236 0.223 0.210
290 0329 0316 0303 0.290 0.276 0.263 0249 0.236 0223 0.211
3.00 0.323 0311 0299 0286 0.274 0.261 0.248 0.236 0223 0.21]
3.10 0317 0306 0.294 0283 0271 0.259 0.247 0.235 0223 0212
320 0311 0301 029 0279 0.268 0.256 0.245 0.234 0223 0.212
330 0.305 0.296 0.286 0.275 0.265 0.254 0.243 0.232 0222 0.21]
340 0.300 0291 0.281 0271 0.261 0.251 0.241 0.231 0221 0.211
3.50 0.294 0.286 0.277 0.268 0.258 0.249 0.239 0.229 0.220 0.210
3.60 0.289 0281 0.273 0.264 0.255 0.246 0.237 0.228 0.218 0.209
3.70 0.284 0276 0.268 0260 0.252 0.243 0.235 0.226 0.217 0.208
3.80 0.279 0.272 0.264 0.256 0249 0.240 0.232 0.224 0.216 0.207
390 0.274 0267 0.260 0253 0.245 0.238 0.230 0.222 0.214 0.206
400 0269 0263 0256 0249 0.242 0.235 0227 0220 0.212 0.205
4.10 0264 0.258 0252 0.246 0.239 0.232 0225 0.218 0.211 0.203
420 0260 0.254 0248 0.242 0236 0.229 0222 0216 0.209 0.202
430 0255 0.250 0244 0.239 0.233 0.226 0.220 0.213 0.207 0.200
440 0251 0.246 0241 0.235 0229 0.224 0217 0211 0.205 0.199
450 0247 0242 0237 0232 0.226 0.221 0215 0209 0.203 0.197
460 0243 0.238 0234 0.229 0223 0.218 0212 0.207 0.201 0.195
470 0239 0235 0230 0.225 0.220 0.215 0210 0205 0.199 0.194
480 0235 0.231 0227 0222 0217 0213 0.208 0202 0.197 0.192
490 0231 0227 0223 0219 0215 0210 0.205 0200 0.195 0.190
500 0.227 0.224 0220 0.216 0212 0.207 0203 0.198 0.193 0.188

Table 3.6 Values of ,/q (Equation 3.36)
x/b
z/b 0 0.5 1.0 1.5 2.0 2.5

0 1.000 1.000 O 0 0 0

05 0450 0392 0347 0285 0.171 0.110
1.0 0.182 0.186 0225 0.214 0.202 0.162
I.5 0080 0099 0.1492 0.181 0.185 0.165
20 0.041 0054 0.091 0.127 0.146 0.145
25 0230 0.033 0060 0089 0.126 0.121
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Table 3.7 Values of t,,/q (Equation 3.37)

x/b
z/b 0 0.5 1.0 1.5 2.0 2.5
0 _ _ _ _ _ _
0.5 — 0.127 0300 0.147 0.055 0.025
1.0 — 0.159 0.255 0.210 0.131 0.074
1.5 — 0.128 0.204 0.202 0.157 0.110
2.0 — 0.096 0.159 0.175 0.157 0.126
2.5 — 0.072 0.124 0.147 0.144 0.127

0 0.2 0.4 0.6 0.8 1.0
+x/b

Figure 3.15 Variation of 6,/q with x/B and z/B (Equation 3.35).
Hence

% =l r_0.785-0.322 (~0.8)] = 0.902
q T

c,/q Calculation
From Equation 3.36

x 1

Ox _ 2 T+tan~ —tan™ i sz(xz_zz_bz)
q = x— x+b  (x*+27=b*) +4b%?

= l[11;—0.785 -0.322+(-0.8)] =0.392
T
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Figure 3.16 lIsobars for c,/q below a strip load.

,./q Calculation
From Equation 3.37

Tee _ 4bgxz’ _ (4)(2)(1)(1%)
g mlx?+22 -0 +4b%%] w12 +12 =2%) +(4)(22)(12)]

=0.127

Example 3.5

For the infinite strip load shown in Figure 3.14, given: B =4 m;
q =105 kN/m?; v =0.3. Determine the variation of ¢, G,, T, G,
(major principal stress), G, (intermediate principal stress), and o,
(minor principal stress) at x =0,2 m, 4 m, 6 m, and 8 m at z = 3.

Solution
Given: B=4m;b=4/2=2m;q =105 kN/m?;v=0.3;z2=3m

X O, Oy Txz
(m)  xlb zlb ©,l¢¢ Glq® Tolqg  (kNim?)  (kNim?)  (kNim?)
0 0 1.5 0.668 0.08 0 70.14 8.4 0

2 | 1.5 0448 0.142 0.204 47.07 14.91 21.42
4 2 1.5 0.146 0.185 0.157 15.33 19.43 16.49
6 3 1.5 0.042 0.139 0.080 44| 14.6 8.4

8 4 1.5 0.015 0.095 0.038 1.58 9.98 4.0

2 Table 3.5

b Table 3.6

¢ Table 3.7
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2
oy Oy = 2= ; Ox 4 [GZ ;G" ) +7T%; GOpa = V(0. +0,); v=0.3

X Sp(1) % SIIE)

(m) (kNim?)  (kNIm?)  (kN/m?)

0 70.1 23.6 8.4

2 57.7 18.6 43

4 339 10.4 0.76

6 19.3 5.7 —0.25

8 1.5 34 —-0.03

3.10 UNIFORM STRIP LOAD INSIDE
A SEMI-INFINITE MASS

Strip loads can be located inside a semi-infinite mass as shown in Figure 3.17.
The distribution of vertical stress o, due to this type of loading can be deter-
mined by integration of Melan’s solution (Equation 3.15). This has been
given by Kezdi and Rethati (1988). The magnitude of o, at a point P along
the centerline of the load (i.e., x = 0) can be given as

z+2d I q/unit area

|<—B=|2b—>|

x ® P(0, 2)

v
z

Figure 3.17 Strip load inside a semi-infinite mass.
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Figure 3.18 Plot of c,/q versus z/b (Equation 3.42).

6, ="+
T

_1é_l/—1 b _ b
T T (Z+2d)[(z+2d)2+b2 z2+b2}

et +
cr2dl +b2 0 ii2d b

q{ b(z+2d) 4 b bz

LU 12(z+2d)db(z+d)
2v (2> +b*)

} (forx =0) (3.42)

Figure 3.18 shows the influence of d/b on the variation of ¢,/q.

3.11 UNIFORM HORIZONTAL LOADING ON
AN INFINITE STRIP ON THE SURFACE

If a uniform horizontal load is applied on an infinite strip of width 2b as
shown in Figure 3.19, the stresses at a point inside the semi-infinite mass can
be determined by using a similar procedure of superposition as outlined in
Section 3.9 for vertical loading. For an elementary strip of width ds, the load
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[¢«—B= 2b—>|
q/unit area s "VF_/

v
z

Figure 3.19 Uniform horizontal loading on an infinite strip.
per unit length is g - ds. Approximating this as a line load, we can substitute

q - ds for g and x - s for x in Equations 3.22 through 3.24. Thus, at a point
P(x, 2)

s=+b
2q J’ (x—s)2* 4bgxz*
= = — = .4
o Jdcz n —s)’ 7 ds T[(x* +27 = b*) +4b72] B43)

s=+b 3
zejdcxzz—q J 7(36_25) S ds
T =717[(x—s) +27]

q (x+b)* + 2 4bxz*
=112.3031 - 3.44
T { ©8 (x+b} +2% (P +22 -b*) +4b%? ( )
=1 2
xz d xz — J. (x — S) & d
j t J (x—s)2+z2]2 s
q 1 4 2bz(x* — 2% - b?)
_4 _ _ 345
T {tan b P b (x* + 22 = b +4b*? (3.45)
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For x = 0 to x < b, the term tan~! (z/(x - b)) in Equation 3.45 will be nega-
tive. So, it should be replaced by & + tan! (z/(x - b)). For a given value of z,
the magnitude of t,, is the same at +x.

The expressions for stresses given by Equations 3.43 through 3.45 may
also be simplified as follows:

6, = L[sinosin(o +28)] (3.46)
T
q RE 3.4

6, =—+|2.303log— —sinasin(o + 28) (3.47)
T R;

. = Lo, - sino.cos(o + 28)] (3.48)
T

where Ry, R,, a, and 8 are as defined in Figure 3.19 The angle § is positive
measured counterclockwise from the vertical drawn at P.

The variations of 6, 6,, and 7., in a nondimensional form are given in
Tables 3.8 through 3.10.

3.11.1 Horizontal displacement at the surface (z = 0)

The horizontal displacement # at a point on the surface (z = 0) relative to
the center of the strip loading is of the form

2q<1_1/2) (x_b)ln‘x_b‘_

(3.49)
TE |(x+b)In|x—b[+2bInb

Uy (%) — tto(x = 0) =

Table 3.8 Values of c,/q (Equation 3.43)

x/b
zlb 0 0.5 1.0 1.5 2.0 2.5
0 _ _ _ _ _ _
05 — 0.127 0300 0.147 0.055 0.025
1.0 — 0.159 0255 0210 0.131 0.074
15 — 0.128 0.204 0.202 0.157 o0.110
20 — 0096 0.159 0.175 0.157 0.126

25 — 0072 0.124 0.147 0.144 0.127




136 Advanced Soil Mechanics

6SCS0'0  £0T90'0  0TELO'O  1980°0 80010 €L11'0  TSEI'0 8ESI'0 TILI'O 8881'0 €COTO €80TO 860T0 TIITO €TITO IEITO LEITO 1¥ITO THITO 09
6£TY00 991500 S87900 £9L00 +E€600  TEII'0O T9EI'0 8I91'0 88810 ISITO SLETO LLVTO HOSTO LTSTO LPSTO T9STO €LSTO 08STO TBSCO 0§
900€0°0  18LE00 68/¥00 10900 08Z00 66600 9LTI'0 91910 +I0TO0 EVYTO 9¥8TO THOEO 960€0 EFIEO I8IE0 TITEO SETED 8HLED €ESLED 0¥
TrLI00 69700 €66T00 00400 1¥50°0 1¥£00  ¥TOI'0 ITHI'0 79610 8S9T0 LbYEOD 688€0 LIOVO TEIYO 6ITFO €0EF'0 99€¥'0 TOVYO +vIVKO  O€
S81100 695100 TIITO0 68700 €0K00  TLSO'0O 97800 11TI'0 8BLI'0 LT9CO SELE'D 9¥bb'O L99V'0 69840 LKOSO +61S0 H0ESO TLESO S6ES0 ST
LTL000  9L6000 6EEI00 88100 69700  96€00 86500 8C600 SLPI'0O 98ET0 1S8€0 TIOSO 1THSO 1T8S0 S6190 17990 94490 6€690 G6690 0T
1¥5000  TEL00'0 €10100 #¥100 60200 €1€00 €8¥00 0LL00 I1LTI'0 T9ITO 0SLEO 06150 6+LS0 8TEYO0 0690 LEVLO 9/8L0 0LI80 €LT80 S|
£8€00°0 8TS000 9€£000 SOI00 SSIO0  9€T00 €LE00 €1900 6¥01'0 +/81'0 68FE0 LSISO 18850 L6990 16SL°0 LIS80 LLE6'O 1100°1 8+CO'I Sl
S9C000 €9€000 015000 +£000 01100  0LI00 SZTOO +9%00 STBOO 8¥SI'0 ¥#L0E0 H#OBY'O +T9S0 €T990 958L0 +8E60 ETTI'l 160€°1 066E1 ST
1£1000  9€7000 SEE000 64000 L0000 91100 16100 €EE00 SI900 SITI'0O LLSTO LITHYO 0T0S0 #2090 TIELO LEO6O I¥SI'I  806S'I — ol
$01000 +¥1000 SOCO00 0€000 9¥000  #£000 #TIO0 €TTO0 6THO0 66800 8S0T0 IHSE0 €8TH'O OITSO 6LE90 SS8L0 SS960 96 06€T'1  SLO
£S0000 6£0000 +11000 L1000 9T000  THOO'0 €L000 #EIOO 69200 86SO0 SLVI'O 6C9T0 88IE0 1S8E°0 809Y0 I1THSO S6190 9LL90 S6690 SO
ST0000  +¥€000°0 S0000 L0000 TIOOO 610000 €€000 C900°0 6CI00 10€0°0 08L00 +OPTO T691'0 ¥I0T0 LSETO €69T0 TBTO I8IE0 €SCEO  STO
10000 €10000  TO00'0 €0000 #0000  LOOO0 €100°0 +TOO0 1S000 1CIOO0 LI€O'0 TLSO'0 /8900 #1800 9600 €£01'0 0811'0 TSTI'0 £8TI0 1'0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

09 9 0s v (4 §€ 0¢ s 07 sl 0’/ L0 90 S0 ¥0 €0 4 10 0 q/x

qz

(€ uonenb3) b/*o jo sanjeA 6°¢ 3oL



Stresses and displacements in a soil mass 137

Table 3.10 Values of t,,/q (Equation 3.45)
x/b
z/b 0 0.5 1.0 1.5 2.0

0 1.000 1.000 O 0 0

05 0959 0902 0497 0.08 0.019
1.0 0818 0735 0480 0.214 0.084
1.5 0688 0607 0448 0.271 0.146
20 0550 0510 0409 0288 0.185
25 0462 0436 0370 0.285 0.205

Example 3.6

Refer to Figure 3.19. Given B = 4 m. For point P, z = 1 m. Determine
6./q,0,/q, and T, /q at x = +1 m.
Solution
Calculation for o,/q
Given b =B/2=2m
z=1m
x=+1m

From Equation 3.43

c. 4bxz’ QIPIESVI)

q  T(x*+22—b*) +4b* - m{(£1)* +[1* - 2]+ (@) (2 (1)}

0.127atx=1m
-0.127atx=-1m

Calculation for ¢ /q

From Equation 3.44

o, 1 (x+b)* +2* 4bxz?
—* =-12.3031 -
q n[ Bt +2 (P +2 L) + 4

Atx=+1m

(1+2)°+1* @)
1-22+1* [1)+1>-2*F+@2H (1)

9s _ 1[2.30310;;
q T

]=0.385

Atx=-1m

(~1+2°+1* 42)=n1*)

O, -
(1-27+1%  [(-17 +12 =2°F +(4)(2%)(1%)

—== 1[2.30310g
q =

] =-0.385
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Calculation of T, at x = =1 m

Note: x < b. From Equation 3.45

—tan~

T 1 _
=% = _|m+tan”!
T X —

a1 a1

:l T+tan ———tan
n[ 1-2

Pe 2bz(x* =22 —b*)

x+b (x* +2° —b*) +4b°2*

1 2))ma* -1*-2%)

1+2 @+12-22+@#)2)(1%)

= l[Tc— 0.785-0.322+(-0.8)] =0.902
T

3.12 SYMMETRICAL VERTICAL TRIANGULAR
STRIP LOAD ON THE SURFACE

Figure 3.20 shows a symmetrical vertical triangular strip load on the sur-
face of a semi-infinite mass. The stresses at a point P(x, z) due to the loading

can be expressed by the following relationships (Gray, 1936):

.= q|:((x1 +0€2)—£(0€1 —052)}
i b

T

g/unit area
~ 3 ’
| ~ . Y t:I
| - b = | b s I
~ ’
-, Rl Rn ’,
S “ Rz
R ~ D’.i F
B £ {-"'—‘-3,/
-\.‘-/\‘\ rd
x ’
e ,
“-..:al/
P(x 2)

4

Figure 3.20 Symmetrical vertical triangular strip loading.

(3.50)
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Table 3.1l Variation of 6,/q, 6,/q, and 1, /q with x/b
and z/b (Equations 3.50 through 3.52)

x/b z/b c./q o,/q T /q

0 0 1.0 1.0 0
0.5 0.705 0.193 0
1.0 0.50 0.059 0
1.5 0.374 0.023 0
2.0 0.195 0011 0

0.25 0 0.750 0.75 0
05 0.634 0.203 0.115
1.0 0471 0.068 0.076

0.5 0 05 05 0
0.5 0471 0215 0.176
1.0 0.396 0.091 0.130

0.75 0 0.250 0.250 0
05 0.288 0216 0.181
1.0 0.298 0.117 0.153

1.0 0 0 0 0
05 0.139 0.201 0.14
1.0 0.205 0.134 0.148

_ q X Zz Rle
C. n{(%‘HXz) b(al o) bl R } (3.51)
Too =q(zj<a1 —0ty) (3.52)
n\b

Table 3.11 gives some values of o, /q, 6./q, and 1., /q for various combi-
nations of x/b and z/b.

Example 3.7

Refer to Figure 3.21. Determine G, O, and T,, at P (1.5 m, 1.5 m)
using Equations 3.50 through 3.52.

Solution
Given: ¢ =100 kN/m?; b=3 m; x/b=1.5/3=0.5;2/b=1.5/3=0.5
(1.5 .
Angle CPD = tan 5= 45°=0.785 radians

Angle BPD =tan™' (%j =45°=0.785 radians

Angle APD = tan™ (%J =71.57° =1.25 radians
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g=100 kN/m?
A = ; ? )C x(m)
VI J S W

"'4...“ \‘ i "!

"Ry Ry i R,

Mg ; I La,=157rad
a,=0.456rad S \\(_i\a/ !
§ ML, ‘\ | S
“"'-:\_l,"
P(1.5,1.5)
(Not to scale)

z(m)

Figure 3.21 Calculation of stress due to vertical triangular strip load.

So,
o, =0.785 + 0.785 = 1.57 radians

o, =1.25-0.785 = 0.465 radians

R, = PD _ 1.5 212 m
cos45 cos45

R, = PD =212 m
cos45

R, = 1/(@)2 Jr(E)2 =J1.52 +(4.5? =4.74 m

Equation 3.50:

o =i+[(0€1 +0€2)—£(0€1 —(Xz):l
T b

- @{(1.57+0.465)—%(1.57—0-465)} =47.19 kN/m’®
T
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From Equation 3.51:

2 R,R
G =Z[(a1 +0€2)—%(0€1 —ocz)—?zloge ééz}
- 120[(1.57 +0.465)— (1?5)(1.57 ~0.465)— (2)(%)

4.74%x2.12
x log. BRI

= m(2.035 —-0.5525-0.805) = 21.57 kN/m?
s

From Equation 3.52,

=22 —ay) = 100 E](1.57—0.465) =17.59 kN/m?
n\b T \3

Note: From Table 3.11,

G, =(0.471)(100) = 47.1 kN/m?>

G, =(0.215)(100) = 21.5 kN/m*

Te. = (0.176)(100) = 17.6 kN/m?
Example 3.8

For the triangular loading shown in Figure 3.22, determine G, G, and
T, at point P (3 m, 1.5 m).

100 kN/m?

x (m)

TRy R,
a;=1.107rad

-

a;=0.219 rad T IP(S, 15)

L
z (m)

Figure 3.22 Symmetrical vertical triangular strip load—stress at P.
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Solution
Refer to Figure 3.22.

Angle BPC =0, = tan™" (%) =63.43°=1.107 radians

Angle APC=tan™ (%) =75.96°=1.326 radians

o, =1.326 - 1.107 = 0.219 radians

Rz = 15 m
Ro=[BF +(1.5]" =3.39m

Ri=[(6] +(1.5]" =6.16 m

_9 _|* _
G, = T [(Oh +0,) (b)(oh Oﬁz)}

_ 100[(1.107+0.219)—@](1.107—0.219)} =13.94 kN/m’
T

2 RiR
G, :Z|:((Xl +0c2)—%(0t1 —Otz)—bzloge( 11{52 H

:100[(1.107+o.219)—@](l-107—0-219>
T

(le.Sj (6.16><1.5J
- log. 5
3 3.39

100
-1

1.326-0.888—(-0.218)] = 20.88 kN/m*

2 =9 2 o ) = 129 19 )(1.107-0.219) = 14.14 kN/m?
T 3

Note: From Table 3.11: For x/b =3/3=1and z/b=1.5/3 =0.5,

6. =(0.139)(100) = 13.9 kN/m?
o, =(0.201)(100) = 20.1 kN/m*

T.. =(0.141)(100) = 14.1 kN/m*
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3.13 TRIANGULAR NORMAL LOADING ON AN
INFINITE STRIP ON THE SURFACE

Figure 3.23 shows a vertical loading on an infinite strip on width 2b.
The load increases from zero to g across the width. For an elementary
strip of width ds, the load per unit length can be given as (g/2b)s - ds.
Approximating this as a line load, we can substitute (q/2b)s - ds for q and
x - s for x in Equations 3.5 through 3.7 to determine the stresses at a point
(x, 2) inside the semi-infinite mass. Thus

s=2b

B (1 Y2 sds
o _Jdcz _(219 )( - j.[) (x5 +2F

:ﬁt(za—smzsj (3.53)

2b

B (1 Y2 (x —s)’zsds
o —jdox _(Zb j( T )![(x—s)2 +2°

2
=q[2a—2.303210g§12+sin28] (3.54)

2

Figure 3.23 Linearly increasing vertical loading on an infinite strip.
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Table 3.12 Values of o,/q (Equation 3.53)

z/b
x/b 0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
-3 0 0.0003 0.00I8 0.00054 0.0107 0.0170 0.0235 0.0347 0.0422
-2 0 0.0008 0.0053 0.0140 0.0249 0.0356 0.0448 0.0567 0.0616
-1 0 0.0041 0.0217 0.0447 0.0643 0.0777 0.0854 0.0894 0.0858
0 0O 0.0748 0.1273 0.1528 0.1592 0.1553 0.1469 0.1273 0.1098
I 05 04797 0.4092 0.3341 0.2749 0.2309 0.1979 0.1735 0.1241
2 05 04220 03524 0.2952 0.2500 0.2148 0.1872 0.1476 0.1211
3 0 00152 0.0622 o0.I0l0 0.1206 0.1268 0.1258 0.1154 0.1026
4 0 00019 00119 0.0285 0.0457 0.0596 0.0691 0.0775 0.0776
5 0 0.0005 0.0035 0.0097 0.0182 0.0274 0.0358 0.0482 0.0546
2b 5
1\ 2g (x—s)z°ds
Te=|dte=| | = ||t 22
2b \ w 0[(x—s) +27]
=q=(1+c0525—2a) (3.55)

2T

For Equations 3.53 through 3.55, the angle & is positive in the counter-

clockwise direction measured from the vertical drawn at P.

Nondimensional values of 6, (Equation 3.53) are given in Table 3.12.

3.13.1 Vertical deflection at the surface

For this condition, the vertical deflection at the surface (z = 0) can be

expressed as

-

Example 3.9

1-2?

2
J{sz In[2b - x| - len

2b—x

—b(b+x)} (3.56)

Refer to Figure 3.24. For a linearly increasing vertical loading on an
infinite strip, given b = 1 m; g = 100 kN/m?. Determine the vertical
stress Ao, at P (-1 m, 1.5 m).

Solution

Refer to Figure 3.24. Also note that 2b =2 m.
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q =
100
kN/m?
o =2657° x
2m >

123.7°

Figure 3.24 Linearly increasing load.

o, = tan™ (15): 26.57°
3
o, =tan”! (115J: 56.3°

=0y -0 =56.3-26.57 =29.73°

o3 =90-0, =90-56.3=33.7°

0 =—(o; +0) =—(33.7+29.73) = —63.43°
28 =-126.86°

From Equation 3.53

ﬁzi(ﬁa—sinzsjzi @(ixzan)—sin(—lze.%)
g 2nlb 2n| 1 {180

= i[—0.519 —(-0.8)]=0.0447
2n

o, = (0.0447)(q) = (0.0447)(100) = 4.47 kN/m>
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3.14 VERTICAL STRESS IN A SEMI-INFINITE
MASS DUE TO EMBANKMENT LOADING

In several practical cases, it is necessary to determine the increase of vertical
stress in a soil mass due to embankment loading. This can be done by the
method of superposition as shown in Figure 3.25 and described later.

The stress at A due to the embankment loading as shown in Figure 3.25a
is equal to the stress at A due to the triangular loading shown in Figure 3.25b
minus the stress at A due to the triangular loading shown in Figure 3.25¢.

Referring to Equation 3.53, the vertical stress at A due to the loading
shown in Figure 3.25b is

q+(bla)q
i1

(o +012)

Similarly, the stress at A due to the loading shown in Figure 3.25c is

[b ]1
—q | -0
a n

Thus the stress at A due to embankment loading (Figure 3.25a) is

G, = q[(ﬂ-ﬂ-bj(al +0€2)—baz}
T a a

or
6. =g (3.57)
aE
AR
le— a—ple—b—»| o aat
1
| T % £
! q9© q © b
| ' | ;
! \ 4
N \ N | N b |
N ! e a—de—b—) R—b—>
N N \
\\\ \\ (29) : \\\ : \\ :
NP AN : z \ Lo
N : NS
N
N \\ 1 A K h \ :
\\\\: AN Y :
\‘N \\l \l
A A A

Figure 3.25 Vertical stress due to embankment loading: (a) embankment loading with
an angle of a;, + a, at A; (b) triangular loading with an angle o, + o, at A;
(c) triangular loading with angle a, at A.
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where I, is the influence factor,

I3 =1|:[a+b ](Oh +0Cz)—b0€2} = 17[(“’[9)
T a a T 2z

The values of the influence factor for various a/z and b/z are given in
Figure 3.26.

b
—=a
0.50 3.0 -
2.0 z
iE=sasi——c
0.45 "{2_‘: “"’”’,%;ﬁ{;/:y
) 1.2 ’_,,.-1::/,/ y,’:’/
Lot T TN / / ¢/
040 11 0.0 4 1A af /) /f/
' 08T /// // 4
| 1IN
{07 A A Y /
0.35 <
6”1 1|/
.___p_,_..--“""-'--. / / ,/
0.5 1 // f
0.30 - - 17/
047 /1)
2 0.25 =
) — 1717 TN
e / /
0.3 /
0.20 aal // / ',
| A1V
0.2
0.15 LU A
—1 7T 8%
1
0.1
0.10 Jites
__.-u--""'"'-’.ﬂf /
Z
0.05 ’
0 AT
0 0.1 1.0 10.0

a
z

Figure 3.26 Influence factors for embankment load. (After Osterberg, J. O., Influence
values for vertical stresses in semi-infinite mass due to embankment loading,
Proc. 4th Int. Conf. Soil Mech. Found. Eng., vol. |, p. 393, 1957.)
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Example 3.10

A 5 m-high embankment is to be constructed as shown in Figure 3.27.
If the unit weight of compacted soil is 18.5 kN/m?, calculate the verti-
cal stress due solely to the embankment at A, B, and C.

Solution

Vertical Stress at A: ¢ =yH = 18.5 x 5 = 92.5 kN/m? using the method
of superposition and referring to Figure 3.28a.

Oz4 = Oz1) + Oz
For the left-hand section, b/z = 2.5/5 = 0.5 and a/z = 5/5 = 1. From
Figure 3.26, I; = 0.396. For the right-hand section, b/z = 7.5/5 = 1.5
and a/z = 5/5 = 1. From Figure 3.26, I, = 0.477. So
6.4 =(0.396+0.477)(92.5) = 80.75 kN/m*
Vertical stress at B: Using Figure 3.28b
O3 = Oy1) T+ O0z2) — 03
For the left-hand section, b/z = 0/10 = 0, a/z = 2.5/5 = 0.5. So, from
Figure 3.26, I; = 0.14. For the middle section, b/z = 12.5/5 = 2.5, a/z =
5/5 = 1. Hence, I; = 0.493. For the right-hand section, I; = 0.14 (same

as the left-hand section). So

0.5 =(0.14)(18.5%x2.5)+(0.493)(18.5x5)—(0.14)(18.5x2.5)
=(0.493)(92.5) = 45.5kN/m?

|<—10m—>|

T 1:1 Slope

5m

l y=18.5kN/m3

T

5m

AN S S

Figure 3.27 Stress increase due to embankment loading (not to scale).

1:1 Slope
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25m

l5mde—>|  [— 7.5m —>e5mP] [<_—_1/2-5Tm—>|¢5m»| 2.5 mpf
? 1 L’
STm ® 5m 2.5fn 5m G;E A
' L T A v
S*m: ! 5*m 25 mp : e 2.5 m
Hoatoa £ P
Oz1) | Oz2) Oy 1) ! Oy 03)
(a) (b)
f¢—10 m —p} 5 mpie—5 m—p|
N |
5m © 5

w
3

1
1
Cf
(1) Oz(2)

Figure 3.28 Calculation of stress increase at A, B, and C (not to scale): (a) vertical stress
at A, (b) vertical stress at B, (c) vertical stress at C.

?

GZ
(c)

Vertical stress at C: Referring to Figure 3.28¢
G.c = Oz1)~0z2)

For the left-hand section, b/z = 20/5 =4, a/z = 5/5 = 1. So, I, = 0.498.
For the right-hand section, b/z = 5/5 = 1, a/z = 5/5 = 1. So, I; = 0.456.
Hence

.0 =(0.498—0.456)(92.5)= 3.89 kN/m>
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Chapter 4

Stresses and displacements
in a soil mass

Three-dimensional problems

4.1 INTRODUCTION

In Chapter 3, the procedure for estimating stress and displacement for
plane strain cases was discussed. This chapter relates to the calculation
of stress and displacement for three-dimensional problems based on the
theory of elasticity.

4.2 STRESSES DUE TO A VERTICAL
POINT LOAD ON THE SURFACE

Boussinesq (1883) solved the problem for stresses inside a semi-infinite
mass due to a point load acting on the surface. In rectangular coordinates,
the stresses at a point P(x,y,z) may be expressed as follows (Figure 4.1):

_30)xz 1-2v| 1 = (R+2x* =z (4.2)
" 2n | R 3 |R(R+z) R)R+2?* R’
TR 3 R(R+z2) R}R+2? R’
T, :g %+1—2V (2R+Z)xy (44)
> 2n| R 3 R)R+z)P
_30y7’ 45
Xz _ﬂﬁ ( . )

151
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Figure 4.I Concentrated point load on the surface (rectangular coordinates).

_ 307
DT RS

where
Q is the point load

R=+vZ*+7?

v 1s Poisson’s ratio

In cylindrical coordinates, the stresses may be expressed as follows

(Figure 4.2):
3
o, = 3£2z5
2mR
e 3zr*  1-2v
"“2n| R® R(R+2)

QL 2
%= 2V){R(R+z) RJ

30rz*
T = s
2mR
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i

v
z

Figure 4.2 Concentrated point load (vertical) on the surface (cylindrical coordinates).
Equation 4.1 (or [4.7]) can be expressed as

o.=1,< (4.11)
z
where I, is the nondimensional influence factor:
-1

3 2
1, =[1+(’” (4.12)
21 2

Table 4.1 gives the values of I, for various values of r/z.
Equation 4.8 for the radial stress can be expressed as

2
’
e 3(zj ~ 1-2v
G, ZTCZZ B S/2 2 2 12 (4.13)
{() +11 {(r) +1 +{() +1}
P4 z z
or
s, =21, (4.14)
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Table 4.1 Value of I, (Equation 4.12)

rliz I,

0 0.4775
0.2 0.4329
0.4 0.3294
0.6 0.2214
0.8 0.1386
1.0 0.0844
1.2 0.0513
1.4 0.0317
1.6 0.0200
1.8 0.0129
2.0 0.0085
2.5 0.0034

where

’ 2
1 3(z) ~ 1-2v

2n |:(T)z Tl Krjz 1 {(rjz 1”2 (4.15)
—| +1 —| +1|+||—| +1
b4 z z
The variation of I; with 7/z and v is given in Table 4.2.
Table 4.2 Variation of I with r/z and v (Equation 4.15)
v
riz 0 0.1 03 05
0 0 0 0 0
0.25 0 0 0 0.026
0.50 0.001 0.015 0.041 0.068
1.00 0.031 0.043 0.065 0.088
1.25 0.033 0.040 0.056 0.071
1.50 0.025 0.031 0.044 0.056
1.75 0.018 0.023 0.034 0.044
2.00 0.012 0.017 0.025 0.034
2.25 0.008 0.019 0.019 0.027
2.50 0.005 0.008 0.015 0.021
2.75 0.003 0.006 0.011 0.017
3.00 0.002 0.004 0.009 0.014




Stresses and displacements in a soil mass 155

4.3 DEFLECTION DUE TO A CONCENTRATED
POINT LOAD AT THE SURFACE

The deflections at a point due to a concentrated point load located at the
surface are as follows (Figure 4.1):

_ =Q(1+V) xz (1-2v)x 416

‘Js"dx 2nE {R* R+z} 16l

~ _o(+v)[yz (1-2v)y ‘17

_J.gydy_ 2nE {R3 R+z} @17
1 1 2 21—

w =jszdz = E[cz —V(o, +0y) = Q(zn?) Lzzf ( p V)} (4.18)

4.4 HORIZONTAL POINT LOAD ON THE SURFACE

Figure 4.3 shows a horizontal point load Q acting on the surface of a semi-
infinite mass. This is generally referred to as Cerutti’s problem. The stresses
at a point P(x, y, z) are as follows:

30x2*
c, = 4.19
=S RS (4.19)
Q »
.“ ., . ., 2 » x
\ . Y
.‘.\‘,\.. A :.'//y
___-__\___.(
\ |
\ |z
AR
AN
\I
y iP(x,y,z)
v

Figure 4.3 Horizontal point load on the surface.
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O x |3x* (1-2v)R*|, x*(3R+2)
Ox = 2nR3{R2 =2V R ey {3 RZ(R+z)}}

Y7 2n R | R? (R+2) R*(R+72)

T _Q vy )3 er(l—Zv)R2 1_x2(3R+z)
xy = 2 R3 Rl (R+Z)2 RZ(R+z)

_Q«x {33/ (= 2y)4 20K {3_ y2(3R+z)}}

30 x’z

Ve =55
2n R

30 xyz

Ty =575
2n R

Also, the displacements at point P can be given as

e e )

_Q(1+v)xy{1_(1—2v)R2}

2n E R (R +2)?
w=g(1+v)% £+(1—2V)R

2  E R°|R (R+%2)
Example 4.1

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Refer to Figure 4.4. An inclined point load Q =400 kN is applied at O.
The load is in the xz plane. Determine the vertical stress o, at points

A (3m,0,2m)and B (-3 m, 0,2 m).

Solution

For the point load Q the horizontal component,

0O, =0c0s30=400cos30 =346.41 kN
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............. » x(m)

v

z(m)

Figure 4.4 An inclined load applied at O.

Also the vertical component,
0O, =400sin30 =200 kN

The components Q, and Q, are in the xz plane. Hence, combining
Equations 4.1 and 4.19,

30,2° | 30,xz*
z = 5t 5
2mR 2mR

For point A:
R=(x*+y"+2°)"7 =[3) +(0) +2)°’]"° =3.6 m

5, = R BIB46AVGCS _y 56,558~ 4 54 kN/m?
2m(3.6)° 2m(3.6)°

For point B:
R=3.6m

5. = BR00P  ()3464DCIRN _y 563555 02 kN/m?
21(3.6)° 21(3.6)°
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4.5 VERTICAL STRESS DUE TO A LINE
LOAD OF FINITE LENGTH

Figure 4.5 shows a flexible line load of length L, and the load per unit
length is equal to g. In order to determine the vertical stress at P due to the
line load, we consider an elementary length dy of the line load. The load
on the elementary length is then equal to q-dy. The vertical stress increase
do, due to the elemental load at P can be obtained using Equation 4.1, or

. 3
do, = % (4.28)
TR
where
R’ =(a*+y* +2)" (4.29)

Thus, the total stress increase o, at P due to the entire line load of length L
can be given as

3(q- dy q
J Zrca +y*+27)"? :Zlé 4.30)

M

XK=

z

Figure 4.5 Line load of length L on the surface of a semi-infinite soil mass.
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where
3
1 3

I, = . _ ”12 - . i - (4.31)
2n(mf+1) \/m1 +ni+1 \/m1 +ni+1

N (4.32)
<

n =L (4.33)
<

Figure 4.6 shows a plot of the variation of I, with 2, and #,.

0.34 I T T T T
L my=0 ]
0.1
0.3
0.2
L 0\ _
0.4
0.5

0.2

B 0.6

0.7

0.8

/6
/

0.1

==\
E——

X
i

Figure 4.6 Variation of I, with m, and n,.
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Example 4.2

Refer to Figure 4.5. Givena =3 m, L =4.8 m, g = 50 kN/m. Determine
the increase in stress, 6, due to the line load at

a. Point with coordinates (0, 0, 6 m)
b. Point with coordinates (0, 2.4 m, 6 m)

Solution
Part a:
m=2=3_05
6
ny = £ = ﬁ = 0.8
z 6

From Figure 4.6, for m; = 0.5 and n, = 0.8, the value of I is about
0.158. So

o, =41, = 5?0(0.158) =1.32kN/m?
Ve

Part b:

As shown in Figure 4.7, the method of superposition can be used.
Referring to Figure 4.7,

G, = Oy T 0y

For obtaining o, (Figure 4.7a),

m1—§=0.5
6
m=tr 2% 04
ke

From Figure 4.5, I, = 0.1. Similarly, for o,,, (Figure 4.7b)

m1=0.5
n1=£=ﬁ=0.4
z 6

So, I,y = 0.1. Hence

6. = LI + )] = %(0.1 +0.1) = 1.67 kN/m?
b4
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q=50kN/m

q=50kN/m
1) 5

»

Ly=24m

Figure 4.7 Stress due to a line load: (a) determination of z(l); (b) determination of z(2).

4.6 STRESSES BELOW A CIRCULARLY LOADED
FLEXIBLE AREA (UNIFORM VERTICAL LOAD)

Integration of the Boussinesq’s equation given in Section 4.2 can be adopted
to obtain the stresses below the center of a circularly loaded flexible area.
Figure 4.8 shows a circular area of radius b being subjected to a uniform
load of g per unit area. Consider an elementary area dA. The load over
the area is equal to g-dA, and this can be treated as a point load. To deter-
mine the vertical stress due to the elementary load at a point P, we can

substitute g+ dA for Q and Vr? +2” for R in Equation 4.1. Thus

(3g-dA)Z’

512

- W (4.34)

Since dA = rd0 dr, the vertical stress at P due to the entire loaded area
may now be obtained by substituting for dA in Equation 4.34 and then
integrating

0=2m r=b
3q z rdodr 2
=gl1-—2% 4.35
9.[) J 027'c r+2%) 5/2 q{ (bz+z2)3/2} ( )
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g per unit area

Diameter =
B=2b

Figure 4.8 Stresses below the center of a circularly loaded area due to uniform
vertical load.

Proceeding in a similar manner, we can also determine 6, and o, at point P as
3

q 2(1+v)z z
G, = Oy :2{1"'2\’_ B2 +2)" + b2 + 2" (4.36)

Equation (4.35) can be rewritten as

c 1
. 1 3/2

Table 4.3 gives the variation of ¢,/q with z/b.

Figure 4.9 shows a plot of 6,/g vs. z/b.

A detailed tabulation of stresses below a uniformly loaded flexible circu-
lar area was given by Ahlvin and Ulery (1962). Referring to Figure 4.10, the
stresses at point P may be given by

6. =q(A’+B) (4.38)
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Table 4.3 Variation of 6,/q with z/b
Equation 4.37)

z/b c,/q
0.00 1.0000
0.02 0.9999
0.05 0.9998
0.10 0.9990
0.20 0.9925
0.40 0.9488
0.50 0.9106
0.80 0.7562
1.00 0.6465
1.50 0.4240
2.00 0.2845
2.50 0.1996
3.00 0.1436
4.00 0.0869
5.00 0.0571
O./q

00 02 04 06 08 10
g & /

L= B

6

Figure 4.9 Variation of c,/q with z/b (Equation 4.37).
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Load = g per unit area

i
v

!
——

p

Figure 4.10 Stresses at any point below a circularly loaded area.

6, = g[2vA’ + C + (1 - 2V)F] (4.39)
Go = q[2vA’ -~ D+ (1-2V)E] (4.40)
T, =1, =q9G (4.41)

where A, B, C, D, E, F, and G are functions of s/b and z/b; the values of
these are given in Tables 4.4 through 4.10.

Note that o, is a principal stress, due to symmetry. The remaining two
principal stresses can be determined as

_(o. +G,)J_r\/(0z2 -o,f +Q1,)’ (4.42)

GOp

Example 4.3

Refer to Figure 4.10. Given that g = 100 kN/m?, B = 2b = 5 m,
and v = 0.45, determine the principal stresses at a point defined by
s=3.75mandz=5m.

Solution
s/b =3.75/2.5 =1.5;2/b = 5/2.5 = 2. From Tables 4.4 through 4.10

A’ =0.06275
B’ =0.06371
C=-0.00782
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D =0.05589
E =0.04078
F=0.02197
G =0.07804

So

6. =q(A’+B’)=100(0.06275+0.06371) = 12.6 5 kN/m*

Gy =q[2vA’—D +(1-2V)E]
=100 {2(0.45)(0.06275) -0.05589+[1- (2)(0.45)]0.04078}
=0.466 kN/m*

G, =q[2VA’+C+(1-2V)F]
=100[0.9(0.06275)—-0.00782 +0.1(0.02197)] = 5.09 kN/m?

T, = qG =(100)(0.07804) = 7.8 kN/m?

Gy = 0.466kN/m? = o, (intermediate principalstress)

(12.65+5.09)%/(12.65 - 5.09) + (2 x 7.8)°
' 2

_17.74+17.34

- 2

opy =17.54 kN/m? (major principal stress)

op3 = 0.2 kN/m*(minor principal stress)

4.7 VERTICAL DISPLACEMENT DUE TO UNIFORMLY
LOADED CIRCULAR AREA AT THE SURFACE

The vertical displacement due to a uniformly loaded circular area at a point
(Figure 4.11) can be determined by using the same procedure we used previ-
ously for a point load, which involves determination of the strain €, from the
equation

€= %[Gz — V(0 +Go)] (4.43)
and determination of the settlement by integration with respect to z.
The relations for o,, 6,, and o, are given in Equations 4.38 through 4.40.
Substitution of the relations for 6, 6,, and 6, in the preceding equation for
strain and simplification gives (Ahlvin and Ulery, 1962)
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[{¢——B=2b—>
Radius
Circular area;
Load/unit area =¢q

N

la
s e

Figure 4.11 Elastic settlement due to a uniformly loaded circular area.

.= q“TV[(l VA’ + B (4.44)

where g is the load per unit area. A’ and B’ are nondimensional and are
functions of z/b and s/b; their values are given in Tables 4.4 and 4.5.

The vertical deflection at a depth z can be obtained by integration of
Equation 4.44 as

w=ql;;vb[217+(1—v)lg} (4.45)

where
I, = A’ (Table 4.4)
b is the radius of the circular loaded area

The numerical values and I (which is a function of z/b and s/b) are given
in Table 4.11.
From Equation 4.435, it follows that the settlement at the surface (i.e., at
z=0)is
1-v*
E

Wz=0) = qb Ig (4.46)
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Example 4.4

Consider a uniformly loaded flexible circular area on the surface of a
sand layer 9 m thick as shown in Figure 4.12. The circular area has a
diameter of 3 m. Also given g = 100 kN/m?; for sand, E = 21,000 kN/m?
and v =0.3.

a. Use Equation 4.45 and determine the deflection of the center of
the circular area (z = 0).

b. Divide the sand layer into these layers of equal thickness of 3 m
each. Use Equation 4.44 to determine the deflection at the center
of the circular area.

Solution
Part a:
From Equation 4.45

: )
w:%b[%bﬂl—vﬂg_

Whet = W(z=0,s=0) ~ W(z=9m,s=0)

[e—3m—|
Flexible
l l l ¢ =100 kN/m3
T . Sar.lci o
3m o€, E=21,000 kN/m?
l v=03
z

3m ec,
3l1'1’l ) 63

Figure 4.12 Elastic settlement calculation for a layer of finite thickness.
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Forz/b=0ands/b=0,1,=1and I{ = 2; so

100(1+0.3)

(1.5)[(1-0.3)2] = 0.013m = 13mm
21,000

W(z=0, s=0) =

For z/b=9/1.5 =6 and s/b = 0, I, = 0.01361 and I; = 0.16554; so

100(1+0.3)(1.5)
21,000

=0.00183m =1.83mm

Wiz=9m, s=0) = [6(0.01361)+(1-0.3)0.16554]

Hence, w,.. =13 - 1.83 = 11.17 mm.

Part b:
From Equation 4.44

.= @[(1 —2V)A’+B]

Layer 1: From Tables 4.4 and 4.5, for z/b = 1.5/1.5 =1 and s/b = 0,
A’ =0.29289 and B’ = 0.35355

= 100040304 6 6)(0.29289)+0.35355] = 0.00291
21,000

Layer2: Forz/b=4.5/1.5=3ands/b=0,A’=0.05132 and B’ = 0.09487

_100(1+0.3)

= 1-0.6)(0.05132)+0.09487] = 0.00071
=1 7000 I( I ) ]

Layer 3: Forz/b=7.5/1.5=5ands/b=0,A’=0.01942 and B’ =0.03772

_100(1+0.3)

[(1-0.6)(0.01942)+0.0.3772] = 0.00028
21,000

2(3)

The final stages in the calculation are tabulated as follows:

Strain at the center

Layeri  Layer thickness Az; (m) of the layer €, €,y Az; (m)

I 3 0.00291 0.00873

2 3 0.00071 0.00213

3 3 0.00028 0.00084
20.0117 m

=I11.7 mm
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Example 4.5

A circular raft that is 5 m in diameter rests on a 10-m-thick saturated
clay layer as shown in Figure 4.13a. An approximation of the variation
of the unconfined compression strength of clay (g,) with depth is also
shown in Figure 4.13b. Calculate the elastic settlement (assuming a
flexible area) at the center of the raft by dividing the 10-m-thick clay
layer below the raft into ten 1-m-thick layers. Assume E =200gq, and
v=0.5.

Solution
Equation 4.44:

c=g ;V [(1=2V)A" + B']

Table 4.4 gives A” and Table 4.5 gives B".

q=200kN/m?v=0.5;B=5m;b=2.5m; E=200gq,,.

€, = M{[1 (2x0.5)]A’+ B’} ="+ 300 5
E E
" g, (N/m?)
i 200 (kN/m?
e 150
ey
N Clay
Im f‘—5 m Saturated
GWT. y 5
7m Clay
v=0.5
100
Rock
(@) (b)

Figure 4.13 A circular raft on a saturated clay layer.
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Depth to the

middle of layer E at the middle

from bottom of of the layer
Layer No.  foundation, z (m) z/b B (kN/m?) €,
| 0.5 0.2 0.18857 20,000 0.00283
2 1.5 0.6 0.37831 16,000 0.00709
3 25 1.0 0.35355 12,000 0.00884
4 35 1.4 0.27563 10,714 0.00772
5 4.5 1.8 0.20974 12,142 0.00523
6 5.5 2.2 0.15856 13,570 0.00351
7 6.5 2.6 0.12143 14,998 0.00243
8 7.5 3.0 0.09487 16,426 0.00173
9 8.5 34 0.07985 17,854 0.00134
10 9.5 3.8 0.06466 19,282 0.00101

20.04173

S. =(0.04173)(1000 mm) = 41.73 mm

4.8 VERTICAL STRESS BELOW A RECTANGULAR
LOADED AREA ON THE SURFACE

The stress at a point P at a depth z below the corner of a uniformly loaded
(vertical) flexible rectangular area (Figure 4.14) can be determined by inte-
gration of Boussinesq’s equations given in Section 4.2. The vertical load
over the elementary area dx dy may be treated as a point load of magnitude

“ L »

Uniform vertical load:.
:[i:. q/unitarea +7:

® P(0,0,2z)

v
z

Figure 4.14 Vertical stress below the corner of a uniformly loaded (normal) rectangular area.
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q-dx-dy. The vertical stress at P due to this elementary load can be evalu-
ated with the aid of Equation 4.1:

3gdxdy?’

do, =
©o2ma +yt + 2P

)5/2

The total increase of vertical stress at P due to the entire loaded area
may be determined by integration of the previous equation with horizontal
limits of x =0 to x = L and y = 0 to y = B. Newmark (1935) gave the results
of the integration in the following form:

6. =ql (4.47)
I = 1 2mnim* +n> +1)"? m* +n* +2 ttan! 2mn(m* +n* +1)"?
’ An| m* +nt +m*n? +1 mP + 0> +1 m>+n* —m*n? +1
(4.48)
where
m = B/z
n=1L/)k

The values of I, for various values of 7 and # are given in Table 4.12.

Figure 4.15 shows a plot of I, with 72 and #.

The arctangent term in Equation 4.48 must be a positive angle in radians.
When m? + n2 + 1 < m?n?, it becomes a negative angle. So, a term = should
be added to that angle.

For equations concerning the determination of o,, °,, T,,, T, and t,,,
the reader is referred to the works of Holl (1940) and Giroud (1970).

The use of Table 4.12 for determination of the vertical stress at any point
below a rectangular loaded area is shown in Example 4.6.

In most cases, the vertical stress below the center of a rectangular area is
of importance. This can be given by the relationship

AG = quO
where
Io— 2 ming 1+ m* +2n)? . 1 my
0= 72 ’2 1 72 ’2 72 tsn ’2 ’2 ’2
T l+m1 +m +m my” +m my” +n 1+7’l1

(4.49)

,_L
= (4.50)
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Figure 4.15 Variation of I, with m and n.
’ <
n = 7(B/2) (4.51)

The variation of I,, with #1, and 7, is given in Table 4.13.

Example 4.6

A distributed load of 50 kN/m? is acting on the flexible rectangular
area 6 x 3 m as shown in Figure 4.16. Determine the vertical stress at
point A, which is located at a depth of 3 m below the ground surface.
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Table 4.13 Variation of I,; with m{ and n/

n

m

2

3

4

5

6

7

8

9

10

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

0.994
0.960
0.892
0.800
0.701
0.606
0.522
0.449
0.388
0.336
0.179
0.108
0.072
0.051
0.038
0.029
0.023
0.019

0.997
0.976
0.932
0.870
0.800
0.727
0.658
0.593
0.534
0.481
0.293
0.190
0.131
0.095
0.072
0.056
0.045
0.037

0.997
0.977
0.936
0.878
0.814
0.748
0.685
0.627
0.573
0.525
0.348
0.241
0.174
0.130
0.100
0.079
0.064
0.053

0.997
0.977
0.936
0.880
0817
0.753
0.692
0.636
0.585
0.540
0.373
0.269
0.202
0.155
0.122
0.098
0.081
0.067

0.997
0.977
0.937
0.881
0.818
0.754
0.694
0.639
0.590
0.545
0.384
0.285
0.219
0.172
0.139
0.113
0.094
0.079

0.997
0.977
0.937
0.881
0818
0.755
0.695
0.640
0.591
0.547
0.389
0.293
0.229
0.184
0.150
0.125
0.105
0.089

0.997
0.977
0.937
0.881
0818
0.755
0.695
0.641
0.592
0.548
0.392
0.298
0.236
0.192
0.158
0.133
0.113
0.097

0.997
0.977
0.937
0.881
0818
0.755
0.696
0.641
0.592
0.549
0.393
0.301
0.240
0.197
0.164
0.139
0.119
0.103

0.997
0.977
0.937
0.881
0.818
0.755
0.696
0.641
0.593
0.549
0.394
0.302
0.242
0.200
0.168
0.144
0.124
0.108

0.997
0.977
0.937
0.881
0.818
0.755
0.696
0.642
0.593
0.549
0.395
0.303
0.244
0.202
0.171
0.147
0.128
0.112

B,=B,

33:34

Figure 4.16 Distributed load on a flexible rectangular area.
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Solution

The total increase of stress at A may be evaluated by summing the
stresses contributed by the four rectangular loaded areas shown in
Figure 4.16. Thus

6. = qlloq) + Lop) + Lo + Loa)]

n(,l)zhzﬁzl‘j mm:ﬂ:g:oj
z 3 z 3

From Table 4.12, Iy, = 0.131. Similarly

M) =190 M) -0 To) =0.084
ke 3 z
ng = 1.5 maz) = 0.5 19(3) =0.131

Ny = 0.5 m4) = 0.5 19(4) =0.085

So

6, =50(0.131+0.084 +0.131+0.084) = 21.5 kN/m*

Example 4.7

Refer to the flexible area on the surface of a clay layer shown in Figure 4.17.
The uniformly distributed vertical load on the rectangular area is g, =
100 kN/m?2, and the uniformly distributed vertical load on the semicircu-
lar area is g, = 200 kN/m?. Determine the vertical stress increase due to
the loaded area located at a depth of 3 m below points A and B.

Solution

Stress below point A—The entire area can be divided into three parts
(Figure 4.18):

e For rectangular area 1:

mzézézlg n:£:i=1.33
z 3 z 3

From Figure 4.15: [,=0.196
¢ For rectangular area 2:

m=So1 ne>=1 I,=0178
3 3



184 Advanced Soil Mechanics

q,=200 kN/m?

q, =100 kN/m?

|l <

1
1
1
A) 2m

]
1m
I
I
]

¥

Figure 4.17 Flexible area on the surface of a clay layer.

Area 1

3mx4m

Area 2

3mx3m

Area 3

Diameter=2m

Figure 4.18 Area shown in Figure 4.17 divided into three parts.
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e For half circle area 3 (see Equation 4.35):

3

9 z
=42\ ___*
O 2 |: (b2+z2)1,5:|

Hence,

q 3’
c, = ql(o.196+o.178)+22[1 _(12+3»2)“}

With ¢, = 100 kN/m?2 and ¢, = 200 kN/m?2,

G, = 52.02 kN/m>

Stress below point B—The entire area can be divided into two parts
(Figure 4.19).

e For rectangular area 1:

Sy =t o703
3

From Figure 4.15: 1,=0.202

Area 2

Diameter =2 m
Areal

3mx7m +

B °p

Figure 4.19 Area shown in Figure 4.17 divided into two parts.
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e For semicircular area 2:

s _(2+1) z_3
— = =3 Z===3
b 1 b1

From Equation 4.38,
.= %(A’ +B)= %(0.0198+0.01112)

Thus, total

C.= 100(0.202)+¥(0.0198+ 0.01112) = 23.29 kN/m?

4.9 DEFLECTION DUE TO A UNIFORMLY LOADED
FLEXIBLE RECTANGULAR AREA

The elastic deformation in the vertical direction at the corner of a uni-
formly loaded rectangular area of size L x B (Figure 4.14) can be obtained
by proper integration of the expression for strain. The deflection at a
depth z below the corner of the rectangular area can be expressed in the
form (Harr, 1966)

w(corner):glé(l—vz){ln—[l{ zvjlu} (4.52)

”2 ”2 ” 7”2 ”2
I11=1[11’1[ l+m1 + ny +m1]+m{,1n[ 1+m1 + 1 +1]] (4'53)

JL+ ) +n —m! J1+m +n? -1
=" tanl[ mi ] (4.54)
n w1+ mi? + nlr?
il = % (4.55)
W = % (4.56)

Values of I,; and I, are given in Tables 4.14 and 4.15.
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Table 4.14 Variation of I,

Value of m”

n’ | 2 3 4 5 6 7 8 9 10
0.00 1.122 1.532 1.783 1964 2.105 2220 2318 2403 2477 2544
025 1.095 [1.510 1.763 1944 2085 2200 2298 2383 2458 2525
0.50 1.025 1452 1.708 1.890 2.032 2.148 2246 2331 2406 2473
0.75 0933 1.371 1.632 1816 1959 2076 2174 2259 2334 240l
1.00 0.838 1.282 1547 1.734 1.878 1995 2094 2.179 2255 2322
1.25 0.751 1.192 1461 1.650 1.796 1914 2013 2099 2175 2242
1.50 0.674 1.106 1.378 1.570 1.717 1836 1.936 2022 2098 2166
1.75 0608 1.026 1299 1.493 1641 1.762 1862 1949 2025 2093
2.00 0.552 0954 1.226 1.421 1571 1.692 1.794 1881 1.958 2.026
225 0.504 0888 1.158 1.354 1505 1.627 1.730 1.817 1.894 1.963
250 0463 0829 1.095 1.291 1444 1567 1.670 1.758 1.836 1.904
275 0427 0776 1.037 1.233 1386 I.510 1613 1.702 1.780 1.850
300 0396 0.728 0984 1.179 1.332 1457 [1.561 1.650 1.729 1.798
325 0369 0686 0935 1.128 1.281 1406 1511 1.601 1.680 1.750
350 0346 0.647 0889 1.081 1.234 1359 1.465 1.555 1.634 1.705
375 0325 0612 0848 1.037 1.189 1.315 1.421 1511 1.591 1.662
400 0306 0.580 0.809 0995 1.147 1.273 1379 1.470 1550 1.621
425 0.289 0551 0.774 0957 1.107 1.233 1339 1431 1511 1.582
450 0.274 0.525 0.741 0921 1.070 1.195 1301 1.393 1474 1.545
475 0260 0.501 0710 0.887 1.034 1.159 1.265 1.358 1.438 1.510
5,00 0.248 0479 0.682 0.855 1.001 1.125 1.231 1323 1.404 1477
525 0.237 0458 0.655 0.825 0969 1.093 [.199 1291 1.372 1.444
550 0.227 0440 0.631 0.797 0.939 1.062 1.167 1260 1.341 1413
575 0.217 0422 0.608 0.770 0911 1.032 1.137 1.230 1311 1.384
6.00 0.208 0.406 0.586 0.745 0.884 1.004 1.109 1.201 1.282 1.355
6.25 0.200 0.391 0.566 0.722 0.858 0977 1.082 1.173 1.255 1.328
6.50 0.193 0377 0.547 0699 0.834 0952 1.055 1.147 1.228 .30l
6.75 0.186 0364 0.529 0678 0.810 0927 1.030 [I.121 1.203 1.275
7.00 0.179 0352 0.513 0658 0.788 0904 1.006 1.097 1.178 1.251
725 0.173 0341 0497 0639 0.767 088l 0983 1.073 |I.154 1.227
750 0.168 0330 0482 0621 0.747 0860 0.960 1.050 I.131 1.204
7.75 0.162 0320 0468 0604 0.728 0.839 0939 1.028 1.109 I.I8I
8.00 0.158 0310 0455 0588 0.710 0820 0918 1.007 1.087 1.160
825 0.153 0301 0442 0573 0.692 0801 0.899 0987 1.066 1.139
850 0.148 0293 0430 0558 0.676 0.783 0.879 0967 1.046 1I.118
875 0.144 0285 0419 0544 0.660 0.765 0.861 0948 1.027 1.099
9.00 0.140 0.277 0408 0531 0.644 0.748 0.843 0930 1.008 1.080
9.25 0.137 0270 0.398 0518 0.630 0.732 0.826 0912 0.990 .06l
9.50 0.133 0263 0.388 0506 0.616 0717 0.810 0895 0.972 1.043
9.75 0.130 0.257 0.379 0494 0.602 0.702 0.794 0878 0.955 1.026

10.00 0.126 0.251 0.370 0483 0.589 0688 0.778 0.862 0.938 1.009
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Table 4.15 Variation of I,

”
n

Value of m{

2

3

4

5

6

7

8

9

10

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
225
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
825
8.50
8.75
9.00
9.25
9.50
9.75
10.00

0.098
0.148
0.166
0.167
0.160
0.149
0.139
0.128
0.119
0.110
0.102
0.096
0.090
0.084
0.079
0.075
0.071
0.067
0.064
0.061
0.059
0.056
0.054
0.052
0.050
0.048
0.046
0.045
0.043
0.042
0.040
0.039
0.038
0.037
0.036
0.035
0.034
0.033
0.032
0.032

0.103
0.167
0.202
0.218
0.222
0.220
0213
0.205
0.196
0.186
0.177
0.168
0.160
0.152
0.145
0.138
0.132
0.126
0.121
0.116
0.111
0.107
0.103
0.099
0.096
0.093
0.089
0.087
0.084
0.081
0.079
0.077
0.074
0.072
0.070
0.069
0.067
0.065
0.064
0.062

0.104
0.172
0.212
0.234
0.245
0.248
0.247
0.243
0.237
0.230
0.223
0.215
0.208
0.200
0.193
0.186
0.179
0.173
0.167
0.161
0.155
0.150
0.145
0.141
0.136
0.132
0.128
0.124
0.121
0.117
0.114
0.111
0.108
0.105
0.103
0.100
0.098
0.095
0.093
0.091

0.105
0.174
0.216
0.241
0.254
0.261
0.263
0.262
0.259
0.255
0.250
0.244
0.238
0.232
0.226
0.219
0.213
0.207
0.201
0.195
0.190
0.185
0.179
0.174
0.170
0.165
0.161
0.156
0.152
0.149
0.145
0.141
0.138
0.135
0.132
0.129
0.126
0.123
0.120
0.118

0.105
0.175
0.218
0.244
0.259
0.267
0.271

0.273
0.272
0.269
0.266
0.262
0.258
0.253
0.248
0.243
0.237
0.232
0.227
0.221

0.216
0.211

0.206
0.201

0.197
0.192
0.188
0.183
0.179
0.175
0.171

0.168
0.164
0.160
0.157
0.154
0.151

0.147
0.145
0.142

0.105
0.175
0.219
0.246
0.262
0.271
0.277
0.279
0.279
0.278
0.277
0.274
0.271
0.267
0.263
0.259
0.254
0.250
0.245
0.241
0.236
0.232
0.227
0.223
0.218
0.214
0.210
0.205
0.201
0.197
0.193
0.190
0.186
0.182
0.179
0.176
0.172
0.169
0.166
0.163

0.105
0.175
0.220
0.247
0.264
0.274
0.280
0.283
0.284
0.284
0.283
0.282
0.279
0.277
0.273
0.270
0.267
0.263
0.259
0.255
0.251
0.247
0.243
0.239
0.235
0.231
0.227
0.223
0.219
0.216
0.212
0.208
0.205
0.201
0.198
0.194
0.191
0.188
0.185
0.182

0.105
0.176
0.220
0.248
0.265
0.275
0.282
0.286
0.288
0.288
0.288
0.287
0.285
0.283
0.281
0.278
0.276
0.272
0.269
0.266
0.263
0.259
0.255
0.252
0.248
0.245
0.241
0.238
0.234
0.231
0.227
0.224
0.220
0.217
0.214
0.210
0.207
0.204
0.201
0.198

0.105
0.176
0.220
0.248
0.265
0.276
0.283
0.288
0.290
0.291
0.291
0.291
0.290
0.288
0.287
0.285
0.282
0.280
0.277
0.274
0.271
0.268
0.265
0.262
0.259
0.256
0.252
0.249
0.246
0.243
0.240
0.236
0.233
0.230
0.227
0.224
0.221
0.218
0.215
0.212

0.105
0.176
0.220
0.248
0.266
0.277
0.284
0.289
0.292
0.293
0.294
0.294
0.293
0.292
0.291
0.289
0.287
0.285
0.283
0.281
0.278
0.276
0.273
0.270
0.267
0.265
0.262
0.259
0.256
0.253
0.250
0.247
0.244
0.241
0.238
0.235
0.233
0.230
0.227
0.224
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i
I B
B/2 1 : Corner of
I small rectangles
|
B2 2 | 4
|
|

fe—— L2 —rle—— L/2 —>

Figure 4.20 Determination of settlement at the center of a rectangular area of dimen-
sions L x B.

For surface deflection at the corner of a rectangular area, we can substi-
tute z/B = n{ = 0 in Equation 4.52 and make the necessary calculations; thus

w(corner) = % 1=vH)I; (4.57)

The deflection at the surface for the center of a rectangular area (Figure 4.20)
can be found by adding the deflection for the corner of four rectangular
areas of dimension L/2 x B/2. Thus, from Equation 4.52

w(center)=4[q(f£2):|(l—v2)ln =%(1—VZ)IH (4.58)

Example 4.8

Consider a flexible rectangular area measuring 3 m x 6 m (B x L)
on the ground surface. The flexible area is subjected to a loading
q = 100 kN/m?. A rock layer is located 6 m below the ground surface.
Determine the deflection at the surface below the center of the loaded
area. Use E = 18,000 kN/m2 and v = 0.3.

Solution

w(center) = w(center atz = 0) —w(center atz =6 m)

From Equation 4.58

w(centeratz = 0) = %(1 -V

=X

™ |

L)
3
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From Table 4.14, for m{ = 2 and n] = 0, the value of I,, is 1.532. Hence

(100)3)

teratz=0)=
w(centeratz =0) 18,000

(1-0.3%)(1.532) = 0.0232m = 23.2 mm

w(center at z = 6 m) = (4)[w(corner) at z = 6 m of a rectangular area
measuring B’ x L' =B/2x L/2=1.5m x 3 m

For this case

B 15m
nf:ilzizét
B 1.5

From Table 4.14, I,; = 0.580; and from Table 4.15, I,, = 0.138. For one
of the rectangular areas measuring B’ x L, from Equation 4.52

w(corner) = 9B (1—V2)|:IH —(11_ Zv)112i|
v

2E

- (100(1'5)><(1—0.32)|:O.58—(1_2X0'3)0.138}
(2)(18,000) 1-0.3

=0.0019m=1.9mm

So, for the center of the rectangular area measuring B x L
w(center at g = 6 m) = (4)(1.9) = 7.6 mm

Hence
w(center) =23.2 - 7.6 = 15.6 mm

Example 4.9

The plan of a loaded flexible area is shown in Figure 4.21. If load is
applied on the ground surface of a thick deposit of sand (v =0.25), cal-
culate the surface elastic settlement at A and B in terms of the modulus
of elasticity of soil, E.

Solution

Settlement at A:
For rectangular area (surface settlement) (from Equation 4.57):

Sc(corner) = 2' qlB
2E

[(1_\’2)111]
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a,

1m
rad.

i M ]
oy b
)
—3

-« 3m ,.I
q; = 100 kN/m?
q; = 50 kN/m?

Figure 4.21 Plan of a loaded flexible area.
For half a circle (from Equation 4.46):

1-v?\ I,
S. =qg.b =
92 [ E ]2

Rectangle: L=3m; B’=1m;m{ =3/1=3;n{ =0.So I, =1.783.
Half circle: z/b =05 s/b=0; 13 =2.
So

B 1-v2 I
Total SC:Z[?E(l—VZ)IH}ﬂ]zb( EV ]28

=2 [7(100)(1) (1- 0.252)(1.783)} + (50)(1)(1 =0.25* Jz
2E E 2

_167.16 + 46.88 214.04
E E E

Settlement at B:
Rectangle: L=3 m; B=1m;m{ =3/2=1.5;n =0. So I,; =1.358.
Half circle: z/b =05 s/b=1; I;=1.27.

2
Se :qlB(l—Vz)In'*'%b[l EV JIg

2E 2
_ 100)2) (1—0.252)(1.358)+(50)(1)(1_0'252]1'27
2E E )2

_ 1273 29.77 _157.07
~ E E  E
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4.10 VERTICAL STRESS BELOW A FLEXIBLE
CIRCULAR AREA WITH PARABOLIC LOADING

Figure 4.22 shows a flexible circular area subjected to parabolic type of
loading. The loading pattern can be described by the relation

’ _ r ’
q —q{l—(bJ } (4.59)

Harr and Lovell (1963) studied this case and provided a solution for the
variation of vertical stress (,) with depth (z) in a nondimensional form, as
shown in Figure 4.23. The vertical stress below the center line of the loaded
area (r/b = 0) can be expressed as

O: _ 1 ’ 14 2alb)
q | (@/b)+J1+(z/b) J1+(2/b) (4.60)

Schiffman (1963) evaluated the variation of radial stress (c,) with depth
below the center line of the loaded area, which is a function of Poisson’s ratio v.
Based on this analysis, the plot of 6, /g vs. 2/b for v = 0 is shown in Figure 4.24.

4.11 VERTICAL STRESS BELOW A FLEXIBLE
CIRCULAR AREA WITH CONICAL LOADING

A flexible circular area with conical loading is shown in Figure 4.25. The
variation of vertical stress, G,, below the center line (#/b = 0) of the area was
obtained by Harr and Lovell (1963) and can be expressed as

o [ 1
q - [(b/z)2+1]0.5 (4.61)

r

e

Figure 4.22 Vertical parabolic loading on a flexible circular area.
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q,/b
0 0.2 0.4 0.6 0.8 1.0

0.8 yé ﬁi %
=== 7

7

AN

3

Figure 4.23 Variation of q,/b with z/b and r/b. (Based on Harr, M. D. and C. W. Lovell, Jr.,
Highway Res. Rec., 39, 68-77, 1963.)

G./q
-01 0 0.2 0.4 0.6
0 T

1.0 -
-0
s =
L]

2.0+ —

3.0 L 1

Figure 4.24 Schiffman’s (1963) analysis for radial stress below the center of a flexible
circular area with parabolic loading (v = 0).
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Figure 4.25 Vertical conical loading on a flexible circular area.

o, /q
00 0.2 0.4 0.6 0.8 1.0
e
Conical ﬁﬁ
/,_.’/
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L
2 ///

//Uniform

\

zfb

-

[

Figure 4.26 Variation of 6,/q with z/b at r/b =0 for circular, parabolic, and conical loading.

Figure 4.26 shows a comparison of the variation of c,/q with z/b at
7/b =0 for circular, parabolic, and conical loading (Equations 4.37, 4.60,
and 4.61). Similar to Figure 4.24, Figure 4.27 shows the variation of G, with
depth below the center line of the loaded area (Schiffman, 1963).

4.12 VERTICAL STRESS UNDER A UNIFORMLY
LOADED FLEXIBLE ELLIPTICAL AREA

Deresiewicz (1960) developed the relationship for the variation of vertical
stress along the center line of a uniformly loaded elliptical area. The plan of
an elliptical area is shown in Figure 4.28, over which the magnitude of the
uniformly distributed load per unit area is g. Figure 4.29 shows the varia-
tion of G, /g vs. z/a for various values of e. The term e is defined as

(]

Note that, for a circular area, e=0.
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or/q
-0.1 O 0.2 0.4 0.6
0 T

1.0} -
-
= N _
By

2.0+ —

3.0 1 L

Figure 4.27 Schiffman’s (1963) analysis for radial stress below the center of a flexible
circular area with conical loading (v = 0).

y
.
A
b
Y > x
b
v
4 a

Figure 4.28 Uniformly loaded elliptical area.
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c,/q
0 0.2 0.4 0.6 0.8 1.0

/

e=04

0.6

z/a

NN

/ 0.9
7 / 059
4 /

5

Figure 4.29 Variation of 6,/q with z/b (Deresiewicz, 1966 analysis) along the center line
of a uniformly loaded flexible elliptical area.

4.13 STRESSES IN A LAYERED MEDIUM

In the preceding sections, we discussed the stresses inside a homogeneous
elastic medium due to various loading conditions. In actual cases of soil
deposits, it is possible to encounter layered soils, each with a different mod-
ulus of elasticity. A case of practical importance is that of a stiff soil layer
on top of a softer layer, as shown in Figure 4.30a. For a given loading
condition, the effect of the stiff layer will be to reduce the stress concentra-
tion in the lower layer. Burmister (1943) worked on such problems involv-
ing two- and three-layer flexible systems. This was later developed by Fox
(1948), Burmister (1958), Jones (1962), and Peattie (1962).

The effect of the reduction of stress concentration due to the presence of
a stiff top layer is demonstrated in Figure 4.30b. Consider a flexible circu-
lar area of radius b subjected to a loading of g per unit area at the surface
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GZ
0 0 0.2 0.4 0.6 0.8 1.0
Radius = b 10 o |
Load = g/unit area //50/ ’21% /
= — 1
3 2
h E, z
! b 5,
E,
2
E,
Based on Burmister (1958)
v solution (Note: /1 = b)
z 3 ‘ ‘

(2) (b)

Figure 4.30 (a) Uniformly loaded circular area in a two-layered soil E, > E, and (b) verti-
cal stress below the centerline of a uniformly loaded circular area.

of a two-layered system. E, and E, are the moduli of elasticity of the top
and the bottom layer, respectively, with E; > E,; and b is the thickness of
the top layer. For h = b, the elasticity solution for the vertical stress o, at
various depths below the center of the loaded area can be obtained from
Figure 4.30b. The curves of ¢,/g against z/b for E,/E, = 1 give the simple
Boussinesq case, which is obtained by solving Equation 4.35. However,
for E\/E, > 1, the value of c,/q for a given z/b decreases with the increase
of E,/E,. It must be pointed out that in obtaining these results it is assumed
that there is no slippage at the interface.

The study of the stresses in a flexible layered system is of importance in
highway pavement design.

4.14 VERTICAL STRESS AT THE INTERFACE
OF A THREE-LAYER FLEXIBLE SYSTEM

Peattie (1962) prepared a number of graphs for determination of the vertical
stress o, at the interfaces of three-layer systems (Figure 4.31) below the
center of a uniformly loaded flexible circular area. These graphs are pre-
sented in Figures A.1 through A.32 (see the Appendix). In the determination
of these stresses, it is assumed that Poisson’s ratio for all layers is 0.5. The
following parameters have been used in the graphs:
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Uniformly loaded circular area

Radius = b
Load = g/unit area

i
T i v,=0.5
hy . | E,
Z > (e
l l I Interface 1
T | «—o,
! V=05
h2 1 E2
0—Zz l oM
l y rf Interface 2
T : « Grs
h3 =0 : v3=0.5
| | E;
1
1

Figure 4.31 Uniformly loaded circular area on a three-layered medium.

K, = % (4.63)
K, = % (4.64)
A ::2 (4.65)
H :}’2 (4.66)

For determination of the stresses 6, and o, (vertical stresses at interfaces 1
and 2, respectively), we first obtain ZZ, and ZZ, from the graphs. The
stresses can then be calculated from

c, =9(ZZ,) (4.67a)
and
6., =q(Z2Z,) (4.67b)

Typical use of these graphs is shown in Example 4.6.

Example 4.10

A flexible circular area is subjected to a uniformly distributed load of
100 kN/m? as shown in Figure 4.32. Determine the vertical stress o,
at the interface of the stiff and medium-stiff clay.
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Uniformly loaded
circular area
Radius »=0.6 m

| ‘ g =100 kN/m?
Stiff clay
1.5$m E; =10,000 kN/m?

A 2t}

Medium stiff clay
E,=6666 kN/m?

Soft clay
E;=1666.5 kN/m?

Figure 4.32 Flexible circular load on layered soil.

Solution

K, - Ei 10,000
E, 6,666
E, 6,666

, =2 = -4

E; 1666.5

a=b _06_4,
2

o 15 g
hz 3

From the figures given in the Appendix, we can prepare the following table:

ZZ
K, K,=02 K,=20 K,=20
0.2 0.29 0.27 0.25
20 0.16 0.15 0.15

20.0 0.054 0.042 0.037

Based on the results of this table, a graph of ZZ, against K, for various
values of K| is plotted (Figure 4.33). For this problem, K, = 4. So, the
values of ZZ, for K, = 4 and K, = 0.2, 2.0, and 20.0 are obtained
from Figure 4.17 and then plotted as in Figure 4.34. From this graph,
ZZ7Z,=0.16 for K, = 1.5. Thus

6., =100(0.16) = 16 kN/m*
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Figure 4.33 Plot of ZZ, vs. K,.
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Figure 4.34 Plot of ZZ, vs. K.

4.15 VERTICAL STRESS IN WESTERGAARD MATERIAL
DUE TO A VERTICAL POINT LOAD

Westergaard (1938) proposed a solution for the determination of the
vertical stress due to a point load Q in an elastic solid medium in which
there exist alternating layers with thin rigid reinforcements (Figure 4.35a).
This type of assumption may be an idealization of a clay layer with thin
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Q
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reinforcement
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Figure 4.35 Westergaard’s solution for vertical stress due to a point load. (Note:
v = Poisson’s ratio of soil between the rigid layers.) (a) Westergaard type
material; (b) Vertical stress at P due to a point load Q.

seams of sand. For such an assumption, the vertical stress increase at a
point P (Figure 4.35b) can be given as

3/2
On 1
- 4,
© 212 |+ (r/z2) 4.68)

where

1-2v
= 4.69
n ’/2—2v (4.69)

v = Poisson’s ratio of the solid between the rigid reinforcements

r=x*+y*
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Table 4.16 Variation of I,; (Equation 4.71)

’13

riz v=0 v=02 v=04
0 0.3183 0.4244 0.9550
0.1 0.3090 0.4080 0.8750
0.2 0.2836 0.3646 0.6916
0.3 0.2483 0.3074 0.4997
0.4 0.2099 0.2491 0.3480
0.5 0.1733 0.1973 0.2416
0.6 0.1411 0.1547 0.1700
0.7 0.1143 0.1212 0.1221
0.8 0.0925 0.0953 0.0897
0.9 0.0751 0.0756 0.0673
1.0 0.0613 0.0605 0.0516
1.5 0.0247 0.0229 0.0173

2.0 0.0118 0.0107 0.0076
2.5 0.0064 0.0057 0.0040
3.0 0.0038 0.0034 0.0023
4.0 0.0017 0.0015 0.0010
5.0 0.0009 0.0008 0.0005

Equation 4.68 can be rewritten as

G, = (szln (4.70)
z
where
2 —3/2
=t (r +1 (4.71)
21 nz

Table 4.16 gives the variation of I; with v.
In most practical problems of geotechnical engineering, Boussinesq’s
solution (Section 4.2) is preferred over Westergaard’s solution.

4.16 SOLUTIONS FOR VERTICAL STRESS
IN WESTERGAARD MATERIAL

The Westergaard material was explained in Section 4.15, in which the
semi-infinite mass is assumed to be homogeneous, but reinforced internally
so that no horizontal displacement can occur. Following are some solutions
to obtain stress at a point due to surface loading on Westergaard material.
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a. Vertical Stress (6,) due to a Line Load of Finite Length
Referring to Figure 4.5, the stress at P

1

GZ=*7 .

2-2v

a
m = —

™~

n =

~ |

b. Vertical Stress (c,) due to a Circularly Loaded Area

(mf +mt +007 )0'5

Referring to Figure 4.8, the vertical stress at P

n

Table 4.17 gives the variation of 6,/q for v = 0.

Table 4.17 Variation of 6,/q for v =10

(Equation 4.73)

b/z c,/q
0 0

0.1 0.0099
0.2 0.0378
0.3 0.0794
0.4 0.1296
0.5 0.1835
0.6 0.2375
0.7 0.2893
0.8 0.3377
0.9 0.3822
1.0 0.4227
2.0 0.6667
3.0 0.7706
4.0 0.8259
5.0 0.8599

(4.72)

(4.73)
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c. Vertical Stress (6,) due to a Rectangularly Loaded Area
Referring to Figure 4.14, the vertical stress at P

where
B
m=—
Z
L
n=—
P4

Figure 4.36 shows the variation of 6,/q with 7 and ».

0.25 T T TTT T T TTTT T T TTTT
n = oo
0.20
0.15
o' | :
0.10 0.5
N ﬁz
0.05 02
L | ————J
_ / 0.1 .
n / |
_%// ]
0 T EERET L0 i
0.01 0.1 1.0 10.0

n

Figure 4.36 Variation of c,/q (Equation 4.74) with m and n. (Note: v=0.)
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4.17 DISTRIBUTION OF CONTACT
STRESS OVER FOOTINGS

In calculation vertical stress, we generally assume that the foundation of a
structure is flexible. In practice, this is not the case; no foundation is per-
fectly flexible, nor is it infinitely rigid. The actual nature of the distribution
of contact stress will depend on the elastic properties of the foundation and
the soil on which the foundation is resting.

Borowicka (1936, 1938) analyzed the problem of distribution of contact
stress over uniformly loaded strip and circular rigid foundations resting on
a semi-infinite elastic mass. The shearing stress at the base of the founda-
tion was assumed to be zero. The analysis shows that the distribution of
contact stress is dependent on a nondimensional factor K, of the form

— 2 TY
K, =2[1_Z} ][Efj(bj (4.75)

where
v, is the Poisson’s ratio for soil
v; is the Poisson’s ratio for foundation material
E, E, are the Young’s modulus of foundation material and soil,
respectively

{Half—width forstrip foundation

Radiusforcircular foundation

T is the thickness of foundation

Figure 4.37 shows the distribution of contact stress for a circular founda-
tion. Note that K, = 0 indicates a perfectly flexible foundation, and K, =
means a perfectly rigid foundation.

4.17.1 Foundations of clay

When a flexible foundation resting on a saturated clay (¢ = 0) is loaded with
a uniformly distributed load (g/unit area), it will deform and take a bowl
shape (Figure 4.38). Maximum deflection will be at the center; however,
the contact stress over the footing will be uniform (g per unit area).

A rigid foundation resting on the same clay will show a uniform settle-
ment (Figure 4.38). The contact stress distribution will take a form such as
that shown in Figure 4.38, with only one exception: the stress at the edges
of the footing cannot be infinity. Soil is not an infinitely elastic material;
beyond a certain limiting stress [q, .y, plastic flow will begin.

max)]
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Figure 4.38 Contact pressure and settlement profiles for foundations on clay.

4.17.2 Foundations on sand

For a flexible foundation resting on a cohesionless soil, the distribution of
contact pressure will be uniform (Figure 4.39). However, the edges of the
foundation will undergo a larger settlement than the center. This occurs
because the soil located at the edge of the foundation lacks lateral-confining
pressure and hence possesses less strength. The lower strength of the soil at
the edge of the foundation will result in larger settlement.
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Figure 4.39 Contact pressure and settlement profiles for foundations on sand.

A rigid foundation resting on a sand layer will settle uniformly. The con-
tact pressure on the foundation will increase from zero at the edge to a
maximum at the center, as shown in Figure 4.39.

4.18 RELIABILITY OF STRESS CALCULATION
USING THE THEORY OF ELASTICITY

Only a limited number of attempts have been made so far to compare theo-
retical results for stress distribution with the stresses observed under field
conditions. The latter, of course, requires elaborate field instrumentation.
However, from the results available at present, fairly good agreement is
shown between theoretical considerations and field conditions, especially
in the case of vertical stress. In any case, a variation of about 20%-30%
between the theory and the field conditions may be expected.
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Chapter 5

Pore water pressure due
to undrained loading

5.1 INTRODUCTION

In 1925, Terzaghi suggested the principles of effective stress for a saturated
soil, according to which the total vertical stress o at a point O (Figure 5.1)
can be given as

oc=0'+u (5.1)
where
6 =Y+ Y (5.2)

o’ is the effective stress

u = pore water pressure = h,Y,, (5.3)

Y is the unit weight of water

Combining Equations 5.1 through 5.3 gives
6’ =6 —u= (Y +hYa) =Yy =hy+hy (5.4)

where v’ is the effective unit weight of soil = Ve — Y-
In general, if the normal total stresses at a point in a soil mass are 6, 6,,
and o; (Figure 5.2), the effective stresses can be given as follows:

Direction1: o1 =0;—-u

Direction2: 65 =0, —u

Direction 3: 03 =0;—u
where

o}, 05, and o5 are the effective stresses
u is the pore water pressure, by,

209
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hy »* Dry unit weight =y
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Figure 5.1 Definition of effective stress.
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Figure 5.2 Normal total stresses in a soil mass.

A knowledge of the increase of pore water pressure in soils due to var-
ious loading conditions without drainage is important in both theoreti-
cal and applied soil mechanics. If a load is applied very slowly on a soil
such that sufficient time is allowed for pore water to drain out, there
will be practically no increase of pore water pressure. However, when
a soil is subjected to rapid loading and if the coefficient of permeability
is small (e.g., as in the case of clay), there will be insufficient time
for drainage of pore water. This will lead to an increase of the excess
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hydrostatic pressure. In this chapter, mathematical formulations for the
excess pore water pressure for various types of undrained loading will
be developed.

5.2 PORE WATER PRESSURE DEVELOPED DUE
TO ISOTROPIC STRESS APPLICATION

Figure 5.3 shows an isotropic saturated soil element subjected to an isotro-
pic stress increase of magnitude Ac. If drainage from the soil is not allowed,
the pore water pressure will increase by Au.

The increase of pore water pressure will cause a change in volume of the
pore fluid by an amount AV,. This can be expressed as

AV, =nV,C,Au (5.5)

where
n is the porosity
C, is the compressibility of pore water
V. is the original volume of soil element

The effective stress increase in all directions of the element is Ac’ = Ac — Au.

The change in volume of the soil skeleton due to the effective stress increase
can be given by

AV =3C.V,Ac" = 3C.V,(Ac — Au) (5.6)

A
Ao—+—>» | @ <+«——Ac
Ayl > 2
v
Ao f
|
Ao

3

Figure 5.3 Soil element under isotropic stress application.
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Y

Figure 5.4 Definition of C_: volume change due to uniaxial stress application with zero
excess pore water pressure. (Note: V is the volume of the soil element at any
given value of ¢".)

In Equation 5.6, C_ is the compressibility of the soil skeleton obtained from
laboratory compression results under uniaxial loading with zero excess
pore water pressure, as shown in Figure 5.4. It should be noted that com-
pression, that is, a reduction of volume, is taken as positive.

Since the change in volume of the pore fluid, AV,, is equal to the change
in the volume of the soil skeleton, AV, we obtain from Equations 5.5 and 5.6

nV,C,Au = 3C .V (Ac - Au)

and hence
ﬂ =B= ; (5.7)
Ao 1+n(C,/3C,)

where B is the pore pressure parameter (Skempton, 1954).
If the pore fluid is water,

C, = C,, = compressibility of water
and

3(1-v)
E

3Cc = Csk =

where E and v are the Young’s modulus and Poisson’s ratio with respect to
changes in effective stress. Hence

1

B (5.8)
1+n(Cy/Cy)
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Table 5.1 Soils considered by Black and Lee (1973) for evaluation of B

Void B at 100%
Soil type Description ratio Cq saturation
Soft soil Normally consolidated clay =2 =0.145 x 1072 m?/kN 0.9998
Medium soil ~ Compacted silts and clays ~0.6  =~0.145 x 1073 m%/kN 0.9988
and lightly
overconsolidated clay
Stiff soil Overconsolidated stiff ~0.6  ~0.145 x 10™* m?/kN 0.9877

clays, average sand of
most densities
Very stiff soil  Dense sands and stiff clays, =0.4  =0.145 x 107> m?kN 0.9130
particularly at high
confining pressure

5.3 PORE WATER PRESSURE PARAMETER B

Black and Lee (1973) provided the theoretical values of B for various types
of soil at complete or near complete saturation. A summary of the soil types
and their parameters and the B values at saturation that were considered by
Black and Lee is given in Table 5.1.

Figure 5.5 shows the theoretical variation of B parameters for the soils
described in Table 5.1 with the degree of saturation. It is obvious from this
figure that, for stiffer soils, the B value rapidly decreases with the degree of
saturation. This is consistent with the experimental values for several soils
shown in Figure 5.6.

As noted in Table 5.1, the B value is also dependent on the effective iso-
tropic consolidation stress (c”) of the soil. An example of such behavior in
saturated varved Fort William clay as reported by Eigenbrod and Burak
(1990) is shown in Figure 5.7. The decrease in the B value with an increase
in ¢’ is primarily due to the increase in skeletal stiffness (i.e., Cy).

Hence, in general, for soft soils at saturation or near saturation, B = I.

5.4 PORE WATER PRESSURE DUE
TO UNIAXIAL LOADING

A saturated soil element under a uniaxial stress increment is shown in
Figure 5.8. Let the increase of pore water pressure be equal to Au. As
explained in the previous section, the change in the volume of the pore
water 1s

AV, =nV,C Au
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Figure 5.5 Theoretical variation of B with degree of saturation for soils described in
Table 5.1. (Note: Back pressure = 207 kN/m?, Ac = 138 kN/m?.)
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Figure 5.6 Variation of B with degree of saturation.
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Figure 5.7 Dependence of B values on the level of isotropic consolidation stress
(varved clay) for (a) regular triaxial specimens before shearing, (b) regular
triaxial specimens after shearing, (c) special series of B tests on one single
specimen in loading, and (d) special series of B tests on one single specimen
in unloading. [After Eigenbrod, K. D. and Burak, J. P., Geotech. Test. J., 13(4),
370, 1990.]
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Figure 5.8 Saturated soil element under uniaxial stress increment.
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The increases of the effective stresses on the soil element in Figure 5.8 are

Direction 1: A¢’ = Ac - Au
Direction 2: A¢’ =0 - Au =-Au
Direction 3: A¢’ =0 - Au=-Au

This will result in a change in the volume of the soil skeleton, which may
be written as

AV = C.V,(AG — Au) + C.V,(—Au)+ C.V, (—Au) (5.9)

where C, is the coefficient of the volume expansibility (Figure 5.9). Since
AV, = AV

nV,C,Au = C.V,(Ac - Au) - 2C.V,Au

or
% =A= # (5.10)
Ac nC, +C. +2C,
where A is the pore pressure parameter (Skempton, 1954).
If we assume that the soil element is elastic, then C. = C,, or
_ L (5.11)
n(C,/C.)+3

Again, as pointed out previously, C, is much smaller than C,. So
C,/C, = 0, which gives A = 1/3. However, in reality, this is not the case,

& >
< »

-0’ +0’

Figure 5.9 Definition of C,: coefficient of volume expansion under uniaxial
loading.
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that is, soil is not a perfectly elastic material, and the actual value of A
varies widely.

The magnitude of A for a given soil is not a constant and depends on the
stress level. If a consolidated drained triaxial test is conducted on a satu-
rated clay soil, the general nature of variation of Ao, Au, and A = Au/Ac
with axial strain will be as shown in Figure 5.10. For highly overconsoli-
dated clay soils, the magnitude of A at failure (i.e., A;) may be negative.
Table 5.2 gives the typical values of A at failure (=A;) for some normally
consolidated clay soils. Figure 5.11 shows the variation of A; with overcon-
solidation ratio for Weald clay. Table 5.3 gives the typical range of A values
at failure for various soils.

4 - ——— Overconsolidated
Normally consolidated
°) 277N
7 \
< , \
% // \
\
& / \
b7 /
A
BN
< |1
i
)
.
- >
(a) Axial strain
A
3
<
[
-
5
wy
wy
[}
—
a
-
[}
8
1 -~
2 70N
I
\
~ < >
\
N
S~ ~
(b) Axial strain
A
7 N0 N
A < >

Axial strain

(c)

Figure 5.10 Variation of Ac, Au, and A for a consolidated drained triaxial test in
clay: (a) plot of Ac vs. axial strain; (b) plot of Au vs. axial strain; (c) plot
of A vs. axial strain.
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Table 5.2 Values of A; for normally consolidated clays

Clay Type Liquid limit  Plasticity index  Sensitivity As

Natural soils
Toyen Marine 47 25 8 1.50

47 25 8 1.48
Drammen Marine 36 16 4 1.2
36 16 4 2.4

Saco River Marine 46 17 10 0.95
Boston Marine — — — 0.85
Bersimis Estuarine 39 18 6 0.63
Chew Stoke Alluvial 28 10 — 0.59
Kapuskasing Lacustrine 39 23 4 0.46
Decomposed Talus  Residual 50 18 | 0.29
St. Catherines Till (7) 49 28 3 0.26

Remolded soils
London Marine 78 52 | 0.97
Weald Marine 43 25 | 0.95
Beauharnois Till (7) 44 24 | 0.73
Boston Marine 48 24 | 0.69
Beauharnois Estuarine 70 42 | 0.65
Bersimis Estuarine 33 13 | 0.38

Source: After Kenney,T. C., J. Soil Mech. Found. Eng. Div., 85(SM3), 67, 1959.

1.0 T T T T T
Based on Simons (1960)

—0.4 I I I I
1 2 5 10 20 50 100

Overconsolidation ratio

Figure 5.11 Variation of A; with overconsolidation ratio for Weald clay.
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Table 5.3 Typical values of A at failure

Type of soil A
Clay with high sensitivity 3 —Il
4 2
Normally consolidated clay %_|
Overconsolidated clay L 0
Compacted sandy clay 1.3
2 4

5.5 DIRECTIONAL VARIATION OF A,

Owing to the nature of deposition of cohesive soils and subsequent con-
solidation, clay particles tend to become oriented perpendicular to the
direction of the major principal stress. Parallel orientation of clay par-
ticles could cause the strength of clay and thus A; to vary with direc-
tion. Kurukulasuriya et al. (1999) conducted undrained triaxial tests
on kaolin clay specimens obtained at various inclinations i as shown in
Figure 5.12. Figure 5.13 shows the directional variation of A; with over-
consolidation ratio. It can be seen from this figure that A; is maximum
between a = 30°-60°.

5.6 PORE WATER PRESSURE UNDER
TRIAXIAL TEST CONDITIONS

A typical stress application on a soil element under triaxial test conditions
is shown in Figure 5.14a (Ao, > Aoc;). Au is the increase in the pore water
pressure without drainage. To develop a relation between Au, Ac,, and Ao,

Direction of
consolidation

Direction of
major principal
stress

Figure 5.12 Directional variation of major principal stress application.
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Liquid limit = 83.8%
Plastic limit = 32.6%
Moisture content =57.7%

0.5
3
0.4 8 7
. 03 _
18
02 |- —

a (deg)

Figure 5.13 Variation of A; with a and overconsolidation ratio (OCR) for kaolin clay based
on the triaxial results of Kurukulasuriya et al. Soils Found., 39(1), 21-29, 1999.

(a)

4 4
r Aoy r Aoy
i i
Aoy Aoy
> .Au — Ao Aoy .Aub — Aoy
/ ”
T Acs
Ao, Aoy
(b)

v

Ao, — Aoy
()

Figure 5.14 Excess pore water pressure under undrained triaxial test conditions:
(2) triaxial test condition; (b) application of isotropic stress Ac;; (c) applica-

tion of axial stress Ac, — Ac;.
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we can consider that the stress conditions shown in Figure 5.14a are the
sum of the stress conditions shown in Figure 5.14b and c.
For the isotropic stress Ac; as applied in Figure 5.14b,
Auy, = BAc, (5.12)

(from Equation 5.7), and for a uniaxial stress Ac,-Ac; as applied in
Figure 5.14c,

Au, = A(Ac; — Ac;) (5.13)
(from Equation 5.10). Now,

Au = Auy + Au, = BAG; + A(AG, — AG;3) (5.14)
For saturated soil, if B = 1; then

Au = AG3 + A(AGl —AG3) (5.15)

5.7 HENKEL'S MODIFICATION OF PORE
WATER PRESSURE EQUATION

In several practical considerations in soil mechanics, the intermediate and
minor principal stresses are not the same. To take the intermediate princi-
pal stress into consideration (Figure 5.15), Henkel (1960) suggested a modi-
fication of Equation 5.135:

_ AG1 + AGZ + AG3

Au 3 +ay(Ac; — AG, ) + (A, — AG3)* + (Ac; — Acy)?
(5.16)
Ao, (Major principal stress)
I
! Aoz (Minor principal
| stress)
T
e Al
Ao, — MG <—— Ao, (Intermediate
/'_ ————— principal stress)
///
Aoy | 7 ?

Figure 5.15 Saturated soil element with major, intermediate, and minor principal stresses.
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or
Au = AGye + 3aA T, (5.17)

where
a is Henkel’s pore pressure parameter
Ao, and At are the increases in the octahedral normal and shear
stresses, respectively

In triaxial compression tests, Ac, = Ac;. For that condition,

Auzm%m+a\/§(Acl—Ac3) (5.18)

For uniaxial tests as in Figure 5.14c, we can substitute Ao, — Ao, for Ao,
and zero for Ao, and Ac; in Equation 5.16, which will yield

Au = % +av2 (Ao, — Acs)

or

Au = (1 +aV2 )(Acl —A0C3)
3 (5.19)

A comparison of Equations 5.13 and 5.19 gives

or

1 1
a—\/z(A—3j (5.20)

The usefulness of this more fundamental definition of pore water pressure
is that it enables us to predict the excess pore water pressure associated with
loading conditions such as plane strain. This can be illustrated by deriving
an expression for the excess pore water pressure developed in a saturated
soil (undrained condition) below the centerline of a flexible strip loading of
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_ Load per unit area=g
—» ¥

o~ o,

Figure 5.16 Estimation of excess pore water pressure in saturated soil below the center-
line of a flexible strip loading (undrained condition).

uniform intensity, q (Figure 5.16). The expressions for o, ,, and o, for such
loading are given in Chapter 3. Note that 6, > 6, > ¢,, and 6, = v(o, + 5,).
Substituting o, 6,, and o, for 6, 6,, and o; in Equation 5.16 yields

Ay O:tVO:+0)+0, 1 (A_lj

+7
3 NG 3

Jl6. V(6. +6,) +[v(o, +0,) -0, + (0, —6.)

Forv=0.5

Au:cx+[\/2§[A—§)+ﬂ(cz—cx) (5.21)

If a representative value of A can be determined from standard triaxial
tests, Au can be estimated.

Example 5.1

Figure 5.17 shows an inclined line load. Calculate the increase in pore
water pressure at M immediately after the application of the load for
the following cases with ¢ = 60 kN/m and o= 30°.

a.z2=10m,x=0,v=0.5,A=0.45
b.z=10m,x=2m,v=0.45,A=0.6
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Figure 5.17 Inclined line load, q.

Solution
Part a:

Vertical component of g: q, = gcos30 = (60)(cos 30) = 51.96 kN/m
Horizontal component of g: ¢,, = gsin30 = (60)(sin 30) = 30 kN/m
From Equations 3.2 and 3.19,

AG, = 2ﬁcosGleﬁsinG
r r

Note: 6=0

(2)(51.96)(cos0)
w(10)

Ac, = =3.31 kN/m*

Equations 3.3 and 3.20:
AGQ = 0
AG, = V(AG, + Acg) =(0.5)(3.31+0)=1.67 kN/m*

Equation 5.20:

1 1) 1 1
a=——|A-—~|=——10.45-=1=0.0825
\/Z( 3) 2( 3]
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From Equation 3.16:

Au= M +0.0825[(3.31-1.67)" +(1.67 -0 +(0-3.317]"
~1.99 kN/m?
Part b:

x=2m,z=10m,

6 =tan"'(2/10)=11.31°

r=x?+2 =22 +(10) =102 m

cos0=0.98;sin6=0.196

From Equations 3.2 and 3.19:
(2)(51.96) N (2)(30)

Ao, =————""-7(0.98)

(0.196) = 3.55 kN/m?*
(m)(10.2) (m)(10.2)

From Equations 3.3 and 3.20:
Ace =0
AG, = V(AG, + Acy) = (0.45)(3.55+0) = 1.6 kN/m*

Equation 5.20:

azé(/;_%}%(o.m%):o&w

Au = MHOJS%[B.SS—L@Z +(1.6-0F +(0-3.55°]"
— 2.54 kN/m?
Example 5.2

A uniform vertical load of 145 kN/m? is applied instantaneously over
a very long strip, as shown in Figure 5.18. Estimate the excess pore
water pressure that will be developed due to the loading at A and B.
Assume that v = 0.45 and that the representative value of the pore
water pressure parameter A determined from standard triaxial tests
for such loading is 0.6.

Solution

The values of o,, o,, and 7, at A and B can be determined from
Tables 3.5 through 3.7.

e AtA:x/b=0,z/b=2/2=1,and hence
1. 6,/q = 0.818, so 6, = 0.818 x 145 = 118.6 kN/m?
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Strip load
145 kN/m?

Figure 5.18 Uniform vertical strip load on ground surface.
2. 6,/q =0.182, s0 6, = 26.39 kN/m?
3. 1./9=0,s01,.=0

Note that in this case 6, and o, are the major (6;) and minor (c;) prin-
cipal stresses, respectively.
This is a plane strain case. So, the intermediate principal stress is

6, = V(o + 63) = 0.45(118.6 + 26.39) = 65.25 kN/m?

From Equation 5.20

a:\/lz(A—isz/lz(Oﬁ—;J:O.le

So

01+0,+0
Au=%+a\/(01 —02)2+(02—63)2+(03—G1)2

_118.6+65.25+26.39
3

+0.1 89\/(118.6 —65.25)* +(65.25-26.39)* +(26.39-118.6)

=91.51 kN/m?

e AtB:x/b=2/2=1,2/b=2/2=1,and hence
1. 6,/q = 0.480, so 6, = 0.480 x 145 = 69.6 kN/m?
2. 6,/q =0.2250,s0 6, = 0.2250 x 145 = 32.63 kN/m?
3. 1,/q = 0.255, 50 7, = 0.255 x 145 = 36.98 kN/m>
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Calculation of the major and minor principal stresses is as follows:

2
O, +0 G6,—0
61,03 = 12 xi ( ZZ XJ"'TiZ

_ 69.6+32.63+ 69.6-32.63
2 B 2

2
J +36.98?

Hence

6, =92.46 kN/m? o, =9.78 kN/m?

o, = 0.45(92.46 + 9.78) = 46 kN/m?

_92.46+9.78+46
3

Au

+0.1 89\/(92.46 —46)* +(46—9.78)* +(9.78 — 92.46)

=68.6 kN/m*

Example 5.3

A surcharge of 195 kIN/m? was applied over a circular area of diameter
3 m, as shown in Figure 5.19. Estimate the height of water b that a
piezometer would show immediately after the application of the sur-
charge. Assume that A ~ 0.65 and v=0.5.

Solution
From Chapter 4 (Equations 4.38 to 4.41):

Ac,=q(A’+B)
Ac, = g[2vA’+C+(1-2V)F]
Acy = q[2vA’-D+(1-2V)E]
AT, =71,=9G

q=195kN/m?; s/b=1.5/1.5=1; z/b=3/1.5=2
From Tables 4.4 through 4.10:

A’'=0.08219 C=-0.04144 E=0.04675 G=0.07738
B’'=0.11331 D =0.07187 F=0.03593
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Figure 5.19 Application of surcharge on a circular area.

Substituting the above values in Equations 4.38 to 4.41:

Ac. =38.22 kN/m*, Ac, =8.04 kN/m*, Ac, =2.11kN/m?*, At,
15.09 kN/m?

2
AGy, AG; = A"Z;AG’ + \/( AGZ;AG’) AT

AG; = 44.47 kN/m?*; Ac; =1.79 kN/m”

AGZ = Ace =2.11 kN/m2

From Equation 4.20:

! [0.65 - 1) =0.224

a=—=
NG 3

Equation 5.16:

_ A1 +40, +AGsy + a\/(Acs1 —AG, ) +(AG, — AG;) +(Ac; — Aoy )

Au 3
_ 444742115179 0o [(44.47—2.11)2+(z.11—1.79)2 -
3 +(1.79-44.47)
=29.59 kN/m?

h= Au_ 2959 3.02m
Yo 9.81
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5.8 PORE WATER PRESSURE DUE
TO ONE-DIMENSIONAL STRAIN
LOADING (OEDOMETER TEST)

In Section 5.4, the development of pore water pressure due to uniaxial load-
ing (Figure 5.8) is discussed. In that case, the soil specimen was allowed to
undergo axial and lateral strains. However, in oedometer tests the soil spec-
imens are confined laterally, thereby allowing only one directional strain,
that is, strain in the direction of load application. For such a case, referring
to Figure 5.8,

AV, =nV,C Au

and
AV = C .V (Ao - Au)
However, AV, = AV. So
nV,C,Au = C.V,(Ac - Au)
or

Au_ 1

—C=——— (5.22)
Ac 1+n(C,/C,)

If C, < C_, the ratio C,/C, = 0; hence C = |. Lambe and Whitman (1969)
reported the following C values:

Vicksburg buckshot clay slurry 0.99983
Lagunillas soft clay 0.99957
Lagunillas sandy clay 0.99718

Veyera et al. (1992) reported the C values in reloading for two poorly
graded sands (i.e., Monterrey no. 0/30 sand and Enewetak coral sand) at
various relative densities of compaction (D,). In conducting the tests, the
specimens were first consolidated by application of an initial stress (G%),
and then the stress was reduced by 69 kN/m?. Following that, under und-
rained conditions, the stress was increased by 69 kN/m? in increments of
6.9 kN/m2. The results of those tests for Monterey no. 0/30 sand are given
in Table 5.4.

From Table 5.4, it can be seen that the magnitude of the C value can
decrease well below 1.0, depending on the soil stiffness. An increase in the
initial relative density of compaction as well as an increase in the effective
confining pressure does increase the soil stiffness.



230 Advanced Soil Mechanics

Table 5.4 C values in reloading for
Monterrey no. 0/30 sand

Relative Effective confining
density D, (%)  pressure o, (kN/m?) c
6 86 1.00
6 172 0.85
6 345 0.70
27 86 1.00
27 172 0.83
27 345 0.69
27 690 0.56
46 86 1.00
46 172 0.81
46 345 0.66
46 690 0.55
65 86 1.00
65 172 0.79
65 345 0.62
65 690 0.53
85 86 1.00
85 172 0.74
85 345 0.61
85 690 0.51

Source: Compiled from the results of Veyera,
G. E. et al,, Geotech.Test. J., 15(3), 223, 1992.
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Chapter 6

Permeability

6.1 INTRODUCTION

Any given mass of soil consists of solid particles of various sizes with
interconnected void spaces. The continuous void spaces in a soil permit
water to flow from a point of high energy to a point of low energy.
Permeability is defined as the property of a soil that allows the seepage of
fluids through its interconnected void spaces. This chapter is devoted to the
study of the basic parameters involved in the flow of water through soils.

6.2 DARCY’S LAW

In order to obtain a fundamental relation for the quantity of seepage
through a soil mass under a given condition, consider the case shown in
Figure 6.1. The cross-sectional area of the soil is equal to A and the rate of
seepage 1s ¢.

According to Bernoulli’s theorem, the total head for flow at any section
in the soil can be given by

Total head = Elevation head + pressure head + velocity head (6.1)

The velocity head for flow through soil is very small and can be neglected.
The total heads at sections A and B can thus be given by

Total head at A =z, + b,

Total head at B=23 + by
where

z, and zy are the elevation heads
b, and by are the pressure heads

233
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Figure 6.1 Development of Darcy’s law.

The loss of head Ab between sections A and B is
Ab = (za +bg) = (2a + bg) (6.2)
The hydraulic gradient i can be written as

,_
L
where L is the distance between sections A and B.

Darcy (1856) published a simple relation between the discharge velocity
and the hydraulic gradient:

v=ki (6.4)

where
v is the discharge velocity
i is the hydraulic gradient
k is the coefficient of permeability

Hence, the rate of seepage g can be given by
q =kiA (6.5)

Note that A is the cross-section of the soil perpendicular to the direction
of flow.
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The coefficient of permeability k has the units of velocity, such as cm/s or
mm/s, and is a measure of the resistance of the soil to flow of water. When
the properties of water affecting the flow are included, we can express k by
the relation

k(cmjs) = KPS (6.6)
0
where
K is the intrinsic (or absolute) permeability, cm?
p is the mass density of the fluid, g/cm?
g is the acceleration due to gravity, cm/s?
p is the absolute viscosity of the fluid, poise [i.e., g/(cm-s)]

It must be pointed out that the velocity v given by Equation 6.4 is the
discharge velocity calculated on the basis of the gross cross-sectional area.
Since water can flow only through the interconnected pore spaces, the
actual velocity of seepage through soil, v, can be given by

v = (6.7)

v

n

where 7 is the porosity of the soil.
Some typical values of the coefficient of permeability are given in

Table 6.1. The coefficient of permeability of soils is generally expressed at a

temperature of 20°C. At any other temperature T, the coefficient of perme-

ability can be obtained from Equation 6.6 as

@ _ (P20)(ur)

kr (pr)(M20)

where
kr, kyo are the coefficient of permeability at T°C and 20°C, respectively
Prs P20 are the mass density of the fluid at T°C and 20°C, respectively
s Koo are the coefficient of viscosity at T°C and 20°C, respectively

Table 6.1 Typical values of coefficient of permeability for various soils

Material Coefficient of permeability (mm/s)
Coarse 10-103

Fine gravel, coarse, and medium sand 102—10

Fine sand, loose silt 1074-102

Dense silt, clayey silt 105-10*

Silty clay, clay 1078—1073
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Table 6.2 Values of p/j,,

Temperature T (°C)  pr/py Temperature T (°C)  pr/py

10 1.298 21 0.975
I 1.263 22 0.952
12 1.228 23 0.930
13 1.195 24 0.908
14 1.165 25 0.887
15 1.135 26 0.867
16 1.106 27 0.847
17 1.078 28 0.829
18 1.051 29 0811
19 1.025 30 0.793
20 1.000

Since the value of p,y/pris approximately 1, we can write

ko = ky T (6.8)
(K20)

Table 6.2 gives the values of ./, for a temperature T varying from 10°C
to 30°C.

6.3 VALIDITY OF DARCY’S LAW

Darcy’s law given by Equation 6.4, v = ki, is true for laminar flow through
the void spaces. Several studies have been made to investigate the range
over which Darcy’s law is valid, and an excellent summary of these works
was given by Muskat (1937). A criterion for investigating the range can be
furnished by the Reynolds number. For flow through soils, Reynolds num-
ber R, can be given by the relation

(6.9)

where
v is the discharge (superficial) velocity, cm/s
D is the average diameter of the soil particle, cm
p is the density of the fluid, g/cm3
p is the coefficient of viscosity, g/(cm-s)
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For laminar flow conditions in soils, experimental results show that

R, =2DP < (6.10)
u

with coarse sand, assuming D = 0.45 mm and k = 100D? = 100(0.045)? =
0.203 cm/s. Assuming i = 1, then v = ki = 0.203 cm/s. Also, p,r = 1 glem3,
and pyooc = (10-5)(981) g/(cm-s). Hence

R, = 0:203)(0.0451) _ 5 931 4

! (107°)(986)

From the previous calculations, we can conclude that, for flow of water
through all types of soil (sand, silt, and clay), the flow is laminar and
Darcy’s law is valid. With coarse sands, gravels, and boulders, turbulent
flow of water can be expected, and the hydraulic gradient can be given by
the relation

i =av+bv? (6.11)

where a and b are experimental constants (e.g., see Forchheimer [1902]).

Darcy’s law as defined by Equation 6.4 implies that the discharge veloc-
ity bears a linear relation with the hydraulic gradient. Hansbo (1960)
reported the test results of four undisturbed natural clays. On the basis of
his results (Figure 6.2),

v=k(i-i) i27 (6.12)
A

)

Z

ks}

<

[

> Equation 6.13 | Equation 6.12
g <—+—>

<

2

Z

v

Hydraulic gradient, i

Figure 6.2 Variation of v with i (Equations 6.12 and 6.13).
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Figure 6.3 Discharge velocity—gradient relationship for four clays. [After Tavenas, F.
et al., Can. Geotech. J., 20(4), 629, 1983b.]

and
v=ki" i<i{ (6.13)

The value of # for the four Swedish clays was about 1.6. There are several
studies, however, that refute the preceding conclusion.

Figure 6.3 shows the laboratory test results between v and i for four clays
(Tavenas et al., 1983a,b). These tests were conducted using triaxial test
equipment, and the results show that Darcy’s law is valid.

6.4 DETERMINATION OF THE COEFFICIENT
OF PERMEABILITY IN THE LABORATORY

The three most common laboratory methods for determining the coeffi-
cient of permeability of soils are the following:

1. Constant-head test
2. Falling-head test

3. Indirect determination from consolidation test

The general principles of these methods are given later.
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6.4.1 Constant-head test

The constant-head test is suitable for more permeable granular materials.
The basic laboratory test arrangement is shown in Figure 6.4. The soil spec-
imen is placed inside a cylindrical mold, and the constant-head loss » of
water flowing through the soil is maintained by adjusting the supply. The
outflow water is collected in a measuring cylinder, and the duration of the
collection period is noted. From Darcy’s law, the total quantity of flow O
in time ¢ can be given by

O =gt = kiAs

where A is the area of cross-section of the specimen. However, i = b/L,
where L is the length of the specimen, and so O = k(h/L)At. Rearranging
gives

_oL
k= Y (6.14)

Once all the quantities on the right-hand side of Equation 6.14 have been
determined from the test, the coefficient of permeability of the soil can be
calculated.

Water
Porous

supply
% / stone /— Constant

water level

— h / L {
T / I \ W
e T Overflow
h KRN Constant
Soil L water level
LA £ =
Porous
stone Collection
E of water

Figure 6.4 Constant-head laboratory permeability test.
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6.4.2 Falling-head test

The falling-head permeability test is more suitable for fine-grained soils.
Figure 6.5 shows the general laboratory arrangement for the test. The
soil specimen is placed inside a tube, and a standpipe is attached to the
top of the specimen. Water from the standpipe flows through the speci-
men. The initial head difference b, at time ¢ = 0 is recorded, and water
is allowed to flow through the soil such that the final head difference at
time t = £ is b,.
The rate of flow through the soil is

g=kid=kA=—a® (6.15)

where
b is the head difference at any time ¢
A is the area of specimen
a is the area of standpipe
L is the length of specimen

From Equation 6.15

t b
aL{ db
Jar gy Ak(_bj

0

_ v
A =
Yy
hy A Porous
stone
hy
vV v
Porous
stone

Figure 6.5 Falling-head laboratory permeability test.
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or

L. b
k=2.303%"log L
At Ogh2

(6.16)
The values of a, L, A, t, by, and b, can be determined from the test, and
the coefficient of the permeability k for a soil can then be calculated from
Equation 6.16.

6.4.3 Permeability from consolidation test

The coefficient of permeability of clay soils is often determined by the con-
solidation test, the procedures of which are explained in Section 8.5. From
Equation 8.32

where
T, is the time factor
C, is the coefficient of consolidation
H is the length of average drainage path
¢ is time

The coefficient of consolidation is (see Equation 8.22)

c, =K
Yoy

where
Y 1s the unit weight of water
m,, is the volume coefficient of compressibility

Also

Ae
my=————
Ac(l+e)
where
Ae is the change of void ratio for incremental loading
Ao is the incremental pressure applied
e is the initial void ratio
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Combining these three equations, we have

2
= Dol (6.17)
tAc(l+e)

For 50% consolidation, T, = 0.197, and the corresponding ¢, can be esti-
mated according to the procedure presented in Section 8.10. Hence

b 0.197v,AeH*

(6.18)
t50AG(1 + e)

6.5 VARIATION OF THE COEFFICIENT OF
PERMEABILITY FOR GRANULAR SOILS

For fairly uniform sand (i.e., small uniformity coefficient), Hazen (1911)
proposed an empirical relation for the coefficient of permeability in the form

k(cm/s) = ¢D}, (6.19)

where
c is a constant that varies from 1.0 to 1.5
D, is the effective size, in millimeters, and is defined in Chapter 1

Equation 6.19 is based primarily on observations made by Hazen on loose,
clean filter sands. A small quantity of silts and clays, when present in a
sandy soil, may substantially change the coefficient of permeability.

Casagrande proposed a simple relation for the coefficient of permeability
for fine to medium clean sand in the following form:

k =1.4e’kg s (6.20)

where
k is the coefficient of permeability at a void ratio e
kg5 is the corresponding value at a void ratio of 0.85

A theoretical solution for the coefficient of permeability also exists in the
literature. This is generally referred to as the Kozeny—Carman equation,
which is derived later.

It was pointed out earlier in this chapter that the flow through soils finer
than coarse gravel is laminar. The interconnected voids in a given soil mass
can be visualized as a number of capillary tubes through which water can
flow (Figure 6.6).
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/K Flow of water

through tortuous
channels in soil;
length=1L;

Figure 6.6 Flow of water through tortuous channels in soil.

According to the Hagen—Poiseuille equation, the quantity of flow of
water in unit time, g, through a capillary tube of radius R can be given by

q= \gVuSRZa (6.21)

where
Y. 1s the unit weight of water
u is the absolute coefficient of viscosity
a is the area cross-section of tube
S is the hydraulic gradient

The hydraulic radius Ry of the capillary tube can be given by

o= area _ 7'ER2 _ 5 (6.22)
wetted perimeter 2mR 2

From Equations 6.21 and 6.22
g=L1S R, (6.23)
2
For flow through two parallel plates, we can also derive

_1ns

= Ria (6.24)
3 u

q
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So, for laminar flow conditions, the flow through any cross section can
be given by a general equation

q-= \éwiRgla (6.25)

where C, is the shape factor. Also, the average velocity of flow v, is given by

v, =1 =TS pa (6.26)
a Cu

For an actual soil, the interconnected void spaces can be assumed to be
a number of tortuous channels (Figure 6.6), and for these, the term S in
Equation 6.26 is equal to Ab/AL,. Now

R, __ ara (area)(length) ~ volume
i perimeter  (perimeter)(length) surfacearea

- 1 (6.27)

(surfacearea)/(volume of pores)

If the total volume of soil is V, the volume of voids is V, = nV, where # is
porosity. Let S, be equal to the surface area per unit volume of soil (bulk).
From Equation 6.27

Ry Yolume _nV _n (6.28)
surfacearea S,V S,

Substituting Equation 6.28 into Equation 6.26 and taking v, = v, (where v
is the actual seepage velocity through soil), we get

S

2
v = v g (6.29)
(ONTRI Y

It must be pointed out that the hydraulic gradient 7 used for soils is the
macroscopic gradient. The factor § in Equation 6.29 is the microscopic
gradient for flow through soils. Referring to Figure 6.6, i = Ab/AL and
S = Ab/AL,. So

j= Ab AL _ o (6.30)
AL, AL
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or

S=o (6.31)

where T is tortuosity, AL,/AL.
Again, the seepage velocity in soils is

_VAL v, (6.32)
n AL n

S

where v is the discharge velocity. Substitution of Equations 6.32 and 6.31
into Equation 6.29 yields

. 2
v 1 n
v,=—T= Y

n  CuTS?
or
3
Yo .
v= L 6.33
Cus? T2 (6.33)

In Equation 6.33, S, is the surface area per unit volume of soil. If we define
S, as the surface area per unit volume of soil solids, then

SV.=8V (6.34)
where V, is the volume of soil solids in a bulk volume V, that is,
Vi=(1-n)V

So

S, = = = (6.35)

Combining Equations 6.33 and 6.35, we obtain

Yw n

CuS2T? (1-n)?

_ 1 Yw e’ ;
CSIT? u 1+e

(6.36)
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where e is the void ratio. This relation is the Kozeny—Carman equation
(Kozeny, 1927, 1933; Carman, 1956). Comparing Equations 6.4 and 6.36,
we find that the coefficient of permeability is

3
_ 12 T e (6.37)
CS;T” u 1+e
The absolute permeability was defined by Equation 6.6 as
K=k
Yw
Comparing Equations 6.6 and 6.37,
3
K=_1 ¢ (6.38)

CSIT? 1+e

The Kozeny—Carman equation works well for describing coarse-
grained soils such as sand and some silts. For these cases, the coefficient
of permeability bears a linear relation to ¢3/(1 + e¢). However, serious dis-
crepancies are observed when the Kozeny—Carman equation is applied to
clayey soils.

For granular soils, the shape factor C, is approximately 2.5, and the
tortuosity factor T is about \/Ep

From Equation 6.20, we write that

ko< e (6.39)

Similarly, from Equation 6.37

e3

1+e

ko<

(6.40)

Amer and Awad (1974) used the preceding relation and their experimen-
tal results in granular soil to provide

3
k=3.5%10" (ej CO6 D32 (pW) (6.41a)
1+e l
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where k is in cm/s
C, = uniformity coefficient
D,, = effective size (mm)
p,, = density of water (g/cm?)
1 = viscosity (g-s/cm?)

At 20°C,p,=1g/cm3and n ~ 0.1 x 10~* g-s/cm?2. So

3 1
E=35x10" % |cospy2 |~ 6.41
% (1+ej 10 [0.1x104) (6.41a)

or
3
k (cm/s) = 35[6] C4(Dyo)>2 (6.41b)
1+e

Another form of relation for the coefficient of permeability and void ratio
for granular soils has also been used, namely

eZ

1+e

ko (6.42)

For comparison of the validity of the relations given in Equations 6.39
through 6.42, the experimental results (laboratory constant-head test) for
a uniform Madison sand are shown in Figure 6.7. From the plot, it appears
that all three relations are equally good.

More recently, Chapuis (2004) proposed an empirical relationship for k
in conjunction with Equation 6.40 as

3 0.7825
k (cm/s) = 2.4622{Df0 ¢ } (6.43)
1+e

where D, is the effective size (mm).

The preceding equation is valid for natural, uniform sand and gravel to
predict k that is in the range of 10-'-10-3 cm/s. This can be extended to
natural, silty sands without plasticity. It is not valid for crushed materials
or silty soils with some plasticity.

Mention was made in Section 6.3 that turbulent flow conditions may
exist in very coarse sands and gravels and that Darcy’s law may not
be valid for these materials. However, under a low hydraulic gradient,
laminar flow conditions usually exist. Kenney et al. (1984) conducted
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Figure 6.7 Plot of k against permeability function for Madison sand.

laboratory tests on granular soils in which the particle sizes in various
specimens ranged from 0.074 to 25.4 mm. The uniformity coefficients of
these specimens, C,, ranged from 1.04 to 12. All permeability tests were
conducted at a relative density of 80% or more. These tests showed that,
for laminar flow conditions, the absolute permeability can be approxi-
mated as

K(mm?) =(0.05-1)D; (6.44)

where D; is the diameter (mm) through which 5% of soil passes.

6.5.1 Modification of Kozeny—-Carman
equation for practical application

For practical use, Carrier (2003) modified Equation 6.37 in the follow-
ing manner. At 20°C, v, /p for water is about 9.33 x 10* (1/cm-s). Also,
(C,T?) is approximately equal to 5. Substituting these values into (6.37),
we obtain

2 3
k(cml/s) =1.99x10¢| = | ¢ (6.45)
S, | 1+e

S
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Again
s = F (1j (6.46)
Deg \ cm
with
100%

= = (6.47)

Dy =
Z (fi/D(av)i )

where f; is the fraction of particles between two sieve seizes, in percent
(Note: larger sieve, 1; smaller sieve, s)

Dygyysem) = [Dy(em)]™ x[ Dy (cm)]*? (6.48)

SF is the shape factor
Combining Equations 6.45 through 6.48

2

o, 2 3
k(cm/s) = 1.99x10* 100% L e (6.49)
Zf/ D D‘” SF||1+e

The magnitude of SF may vary between 6 and 8, depending on the angularity
of the soil particles.

Carrier (2003) further suggested a slight modification of Equation 6.49,
which can be written as

o 2 3
k(cm/s) =1.99x10* 100% L] e (6.50)
Zf/ DY4% 5 Do_.595) SF

Example 6.1

The results of a sieve analysis on sand are given as follows:

Fraction of particles between
Sieve no  Sieve opening (cm)  Percent passing  two consecutive sieves (%)

30 0.06 100 4
40 0.0425 96 1
60 0.02 84 34
100 0.015 50 50

200 0.0075 0
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Estimate the hydraulic conductivity using Equation 6.50. Given: the
void ratio of the sand is 0.6. Use SF = 7.

Solution

For fraction between Nos. 30 and 40 sieves

fi 4
DU 5 DI = 0.06) "% % (0.0425)°% =81.62

For fraction between Nos. 40 and 60 sieves

fi 12
= = 440.76
Di**x DG (0.0425)%4%(0.02)"

Similarly, for fraction between Nos. 60 and 100 sieves

f 34

DI DO ™ (0.02)04 % (0.015)55 =2009.5

And, for between Nos. 100 and 200 sieves

fo 50
DY x DG (0.015)%%% x(0.0075)"%

=5013.8

100% 100
Zf/ D°404><DE,595 T 81.62+440.76 +2009.5+5013.8

=0.0133

From Equation 6.50

0.6°
+0.6

2
k = (1.99%10%)(0.0133)2 [;j [1 ]z 0.0097 cm/s

Example 6.2

Refer to Figure 6.7. For the soil, (a) calculate the “composite shape fac-
tor,” CsSZT?, of the Kozeny—Carman equation, given piyp.c = 10.09 x 10-3
poise, (b) If C, = 2.5 and T =+/2, determine S,. Compare this value with
the theoretical value for a sphere of diameter D, = 0.2 mm.

Solution

Part a:

From Equation 6.37,

_ 1 Vw e
CST? u 1+e
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3
cg? = Yo k) i* e)

The value of [e3/(1 + e)]/k is the slope of the straight line for the plot of
e3/(1 + e) against k (Figure 6.7). So

ell+e) 0.15

k  0.03cm/s

(1g/ecm®)(981cm/s?)
10.09x107 poise

CSIT? = (5)=4.86x10° cm™

Part b:
(Note the units carefully.)

S 5
Ssz\/4.86><10 2\/4.86><10 3118 e fen?

C,T? 2.5x(\2)
For D,; = 0.2 mm

S = Surface area of a sphere of radius 0.01 cm
° Volume of sphere of radius 0.01 cm

41(0.01)> 3

= 7= =300cm?/cm?
(4/3)m(0.01)> 0.01

This value of S, = 300 cm?/cm? agrees closely with the estimated value
of S, = 311.8 cm?/cm?.

Example 6.3
Solve Example 6.1 using Equation 6.43.

Solution

If a grain-size distribution curve is drawn from the data given in
Example 6.1, we find:

D, =0.16 mm; D,;=0.09 mm
From Equation 6.43:

63

1+e

0.6°
1+0.6

0.7825 0.7825
k=2.4622 [Dfo :| =2.4622 |:(0.09)2 } =0.0119 cm/s
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Example 6.4
Solve Example 6.1 using Equation 6.41b.
Solution

As given in Example 6.3, D¢, =0.16 mm and D,,=0.09 mm. Thus

C, =D 016 _ 7
Dy, 0.09

From Equation 6.41(b):

0.6°
1+0.6

e 0.6 2.32
k=35 17 Ci?(Dyg)" =35

i j(1.78)°'6 (0.09)*** = 0.025 cm/s
e

6.6 VARIATION OF THE COEFFICIENT OF
PERMEABILITY FOR COHESIVE SOILS

The Kozeny—Carman equation does not successfully explain the variation of
the coefficient of permeability with void ratio for clayey soils. The discrepan-
cies between the theoretical and experimental values are shown in Figures 6.8

10_5 T T T
Sodium illite )
¢ 101N NaCl
Sodium illite 1
106 | S 2 10N NaCl

10~
0.2 0.4 0.6 0.8

Porosity, n

Figure 6.8 Coefficient of permeability for sodium illite. (After Olsen, H. W., Hydraulic
flow through saturated clay, ScD thesis, Massachusetts Institute of Technology,
Cambridge, MA, 1961.)
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and 6.9. These results are based on consolidation—permeability tests (Olsen,
1961, 1962). The marked degrees of variation between the theoretical and
the experimental values arise from several factors, including deviations from
Darcy’s law, high viscosity of the pore water, and unequal pore sizes. Olsen
developed a model to account for the variation of permeability due to unequal
pore sizes.

Several other empirical relations were proposed from laboratory and field
permeability tests on clayey soil. They are summarized in Table 6.3.

100

,_.
1)
[

Ratio of measured to predicted flow
=
o
I

| | |
0.2 0.4 0.6 0.8

Porosity, n

Figure 6.9 Ratio of the measured flow rate to that predicted by the Kozeny—Carman
equation for several clays. Notes: curve |: sodium illite, |0~' N NaCl; curve 2:
sodium illite, 107 N NaCl; curve 3: natural kaolinite, distilled water H,0;
curve 4: sodium Boston blue clay, 107" N NaCl; curve 5: sodium kaolin-
ite and 1% (by weight) sodium tetraphosphate; curve 6: calcium Boston
blue clay, 10™* N NaCl. (After Olsen, H. W., Hydraulic flow through satu-
rated clay, ScD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1961.)
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Table 6.3 Empirical relations for the coefficient of permeability in clayey soils

Investigator Relation Notation Remarks
Mesri and logk=C,loge +C, C,, C; = constants Based on artificial
Olson (1971) and remolded

Taylor (1948)

Samarsinghe
etal. (1982)

Raju et al.
(1995)

Tavenas et al.
(1983a,b)

Iogkzlogko—eo_e
k
k=Cy-5
I+e

£ =223+0.204l0gk

€L

k=f

ko = coefficient of
in situ permeability
at void ratio e,

k = coefficient of
permeability at void
ratio e

C, = permeability
change index

C, = constant

log [k(I + €)] = log
C,+nloge

k is in cm/s

e, = void ratio at
liquid limit = w G,

W, = moisture
content at liquid
limit

f = function of void
ratio,and Pl + CF

Pl = plasticity index
in decimals

CF = clay
size fraction in
decimals

soils

C. = 0.5¢, (Tavenas
etal., 1983a,b)

Applicable only to
normally
consolidated
clays

Normally
consolidated
clay

See Figure 6.10

Example 6.5

For a normally consolidated clay soil, the following values are given:

Void ratio k (cmls)
.1 0.302 x 1077
0.9 0.12 x 1077

Estimate the hydraulic conductivity of the clay at a void ratio
of 0.75. Use the equation proposed by Samarsinghe et al. (1982; see

Table 6.3; see also Figure 6.10).

ei’l
C
4(1+e]

Solution

k=
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Based on Tavenas et al. (1983a,b) PI+CF=1.25 ¥
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Figure 6.10 Plot of e versus k for various values of Pl + CF (See Table 6.3).

by (ef/0+e)
ke (e3(1+e))

0.302x107  (1.1"/(1+1.1)

0.12x107 ~ (0.9/'/(1+0.9)

2.517 =(1.9/2.1)(1.1/0.9)"

2.782 = (1.222)"
log(2.782) _ 0.444

"= = =51
log(1.222)  0.087
SO
5.1
k :C4[ e }
1+e
To find C,
5.1
0.302x107 = ¢, | L | [1626 16,
1+1.1 21
-7
¢, = ©302XA0)RD _ g 395107

1.626
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Hence

5.1
k=(0.39%x107 cm/s)( ¢ ]
1+e

At a void ratio of 0.75

0.75%
1+0.75

k=(0.39%x107 cm/s)( ij.Sl4><108 cm/s

Example 6.6
A soft saturated clay has the following:

Percent less than 0.02 mm = 32%
Plasticity index = 21
Saturated unit weight, y,,, = 19.4 kN/m?
Specific gravity of soil solids = 2.76

Estimate the hydraulic conductivity of the clay. Use Figure 6.10.

Solution
Given: PI (in fraction) = 0.21; clay-size friction, CF = 0.32

CF+PI=0.32+0.21=0.53

Yo = Gt R2T765O8D 19 41N/’ e = 0.8
1+e 1+e

From Figure 6.10, for e =0.8 and CF + PI = 0.53, the value of

k=3.59%10""" m/s=3.59x107% cm/s

Example 6.7

The void ratio and hydraulic conductivity relation for a normally
consolidate clay are given here.

Void ratio k (cmls)
1.2 0.6 x 107
1.52 1.519x 107

Estimate the value of k for the same clay with a void ratio of 1.4. Use
the Mesri and Olson (1971) equation (see Table 6.3).
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Solution
From Table 6.3:

logk =C;loge+C;
So,

log(0.6 x107) = C, log(1.2)+ C; (a)

log(1.519x1077) = C, log(1.52) + C; (b)

From Equations (a) and (b),

o 0.6x107 o loe| 12
8l 1519x107 )~ 2 %8152

_ -0.4034

C=——"—+
-0.1027

=3.928 (c)

From Equations (a) and (c),
C; =log(0.6 x 107) - (3.928)(log1.2)=-7.531

Thus,

logk =3.928loge—7.531

With e = 1.4,

logk = 3.928log(1.4)-7.531=-6.957

Hence,

k=1.1x10"cm/s

6.7 DIRECTIONAL VARIATION OF PERMEABILITY
IN ANISOTROPIC MEDIUM

Most natural soils are anisotropic with respect to the coefficient of perme-
ability, and the degree of anisotropy depends on the type of soil and the
nature of its deposition. In most cases, the anisotropy is more predominant
in clayey soils compared to granular soils. In anisotropic soils, the directions
of the maximum and minimum permeabilities are generally at right angles
to each other, maximum permeability being in the horizontal direction.
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Figure 6.11a shows the seepage of water around a sheet pile wall.
Consider a point O at which the flow line and the equipotential line are
as shown in the figure. The flow line is a line along which a water particle
at O will move from left to right. For the definition of an equipotential
line, refer to Section 7.2. Note that in anisotropic soil, the flow line and
equipotential line are not orthogonal. Figure 6.11b shows the flow line
and equipotential line at O. The coefficients of permeability in the x and z
directions are k, and k,, respectively.

In Figure 6.11, m is the direction of the tangent drawn to the flow line
at O, and thus that is the direction of the resultant discharge velocity.
Direction 7 is perpendicular to the equipotential line at O, and so it is the
direction of the resultant hydraulic gradient. Using Darcy’s law,

V, =—kh% (6.51)
ox

v, =—kV% (6.52)
0z

A
+
h k, m
v ”
//
// /’ "
4 s
4 7z
/ e
s/ Pid
4 <
7 s
//
7
4
O . » X
Equipotential h
line o
Flow Equipotential
line line

@ (b)

Figure 6.11 Directional variation of the coefficient of permeability: (a) seepage of water
around a sheet pile wall; (b) flow and equipotential lines at O.



Permeability 259

v, =k, P
om
oh

n = _k N

v b on

where

direction)

(6.53)

(6.54)

ky, is the maximum coefficient of permeability (in the horizontal x

k, is the minimum coefficient of permeability (in the vertical z direction)
ks kg are the coefficients of permeability in 72, # directions, respectively

Now, we can write

oh _db oh .
——=_-cosO.+——sino

om  ox P4
From Equations 6.51 through 6.53, we have

obh v, db_ v, %: Vy

ax  ky 9z k  om  ky

Also, v, = v,, cos @ and v, = v,, sin a.
Substitution of these into Equation 6.55 gives

v v v, .
- =——"cos0——sina
ko Ry k,
or
Vy _ V.
S = T cosou+ — " sin’a
koc kh kv
)

1 cos’a N sin’o;

ke ki, k,

(6.55)

(6.56)
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The nature of the variation of k, with a as determined by Equation 6.56
is shown in Figure 6.12. Again, we can say that

v, = VU, cosP + v, sinP (6.57)

Combining Equations 6.51, 6.52, and 6.54

kﬁg%zkh%cosﬁ+kv%sinﬁ (6.58)
However

obh  db

or _or 6.59

f anCOSB (6.59)

and
obh _ab .
% on sin3 (6.60)

Substitution of Equations 6.59 and 6.60 into Equation 6.58 yields

ky = ky, cos™B + k, sin*B (6.61)

The variation of k; with f is also shown in Figure 6.12. It can be seen that,
for given values of k, and k,, Equations 6.56 and 6.61 yield slightly differ-
ent values of the directional permeability. However, the maximum differ-
ence will not be more than 25%.

I« ki >

Figure 6.12 Directional variation of permeability.
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There are several studies available in the literature providing the experi-
mental values of k,/k,. Some are given in the following:

Soil type ky/k, Reference
Organic silt with peat  1.2-1.7  Tsien (1955)

Plastic marine clay 1.2 Lumb and Holt (1968)
Soft clay 1.5 Basett and Brodie (1961)
Soft marine clay 1.05 Subbaraju (1973)

Boston blue clay 0.7-3.3  Haley and Aldrich (1969)

Figure 6.13 shows the laboratory test results obtained by Fukushima and
Ishii (1986) related to k,, and k, on compacted Maso-do soil (weathered
granite). All tests were conducted after full saturation of the compacted soil
specimens. The results show that k, and k, are functions of molding mois-
ture content and confining pressure. For given molding moisture contents
and confining pressures, the ratios of k,/k, are in the same general range as
shown in the preceding table.

6.8 EFFECTIVE COEFFICIENT OF PERMEABILITY
FOR STRATIFIED SOILS

In general, natural soil deposits are stratified. If the stratification is continu-
ous, the effective coefficients of permeability for flow in the horizontal and
vertical directions can be readily calculated.

6.8.1 Flow in the horizontal direction

Figure 6.14 shows several layers of soil with horizontal stratification. Owing
to fabric anisotropy, the coefficient of permeability of each soil layer may
vary depending on the direction of flow. So, let us assume that &y, , ks, ,kp, 5 -,
are the coefficients of permeability of layers 1, 2, 3, ..., respectively, for flow
in the horizontal direction. Similarly, let &, ,ky,,k,., ..., be the coefficients
of permeability for flow in the vertical direction.

Considering a unit length of the soil layers at right angle to the cross-
section as shown in Figure 6.14, the rate of seepage in the horizontal direc-
tion can be given by

q=qi+qr+q3+---+q, (6.62)
where

q is the flow rate through the stratified soil layers combined
d1>925 g3, ---» is the rate of flow through soil layers 1, 2, 3, ..., respectively
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Figure 6.13 Variation of k, and k, for Masa-do soil compacted in the laboratory.

Note that for flow in the horizontal direction (which is the direction of strati-
fication of the soil layers), the hydraulic gradient is the same for all layers. So

q1 = khliHl
qr = khzin

qs = ky,iH;

(6.63)
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Figure 6.14 Flow in horizontal direction in stratified soil.
and
q = keniH (6.64)
where

i is the hydraulic gradient

k. is the effective coefficient of permeability for flow in horizontal
direction

H,, H,, H; are the thicknesses of layers 1, 2, 3, respectively

H=H,+H,+H;+ ...

e(

Substitution of Equations 6.63 and 6.64 into Equation 6.62 yields

ke(h)H = kth1 +kh2H2 +kh3H3 + -
Hence

ki, H + ki, Hy +ky Hy +---) (6.65)

1
ke(h) = E(

6.8.2 Flow in the vertical direction

For flow in the vertical direction for the soil layers shown in Figure 6.15,

V=V =V, =V3=:=0, (6.66)
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Figure 6.15 Flow in vertical direction in stratified soil.

where v, v,, v;, ... are the discharge velocities in layers 1, 2, 3, ...,
respectively; or

D=ke(v)i=kv1il =kai2 =kv3i3 =... (667)
where
k.., is the effective coefficient of permeability for flow in the vertical
direction

ky, sky, k., ... are the coefficients of permeability of layers 1, 2, 3, ...,
respectively, for flow in the vertical direction

iy, iy, 13, ... are the hydraulic gradient in soil layers 1, 2, 3, ...,
respectively

For flow at right angles to the direction of stratification
Total head loss = (head loss in layer 1) + (head loss in layer 2) + -
or

iH:i1H1+i2H2 +i3H3+"' (668)
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Combining Equations 6.67 and 6.68 gives

L] v L] v
P H="H+ " H+ > H+
ke(v) kvl kvz kv3

or

- H
e(v) Hl/k"l +H2/k\,2 -l-H3/]QV3 + ...

(6.69)

Varved soils are excellent examples of continuously layered soil.
Figure 6.16 shows the nature of the layering of New Liskeard varved clay
(Chan and Kenney, 1973) along with the variation of moisture content and
grain size distribution of various layers. The ratio of k,/k., for this soil
varies from about 1.5 to 3.7. Casagrande and Poulos (1969) provided the
ratio k., /k.., for a varved clay that varies from 4 to 40.

N Moisture content Grain size
Q
Q1 100
Q)
=
e
<
S et
2 1E7s
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E |
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rE: n é’ "1
§ 25
g Boring No. 1
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Figure 6.16 Variations of moisture content and grain size across thick-layer varves
of New Liskeard varved clay. [After Chan, H. T. and Kenney, T. C., Can.

Geotech. J., 10(3), 453, 1973]
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6.9 DETERMINATION OF COEFFICIENT
OF PERMEABILITY IN THE FIELD

It is sometimes difficult to obtain undisturbed soil specimens from the
field. For large construction projects, it is advisable to conduct permeabil-
ity tests in situ and compare the results with those obtained in the labo-
ratory. Several techniques are presently available for determination of the
coefficient of permeability in the field, such as pumping from wells and
borehole tests, and some of these methods will be treated briefly in this
section.

6.9.1 Pumping from wells
6.9.1.1 Gravity wells

Figure 6.17 shows a permeable layer underlain by an impermeable stra-
tum. The coefficient of permeability of the top permeable layer can be
determined by pumping from a well at a constant rate and observing the
steady-state water table in nearby observation wells. The steady state is
established when the water levels in the test well and the observation wells
become constant. At steady state, the rate of discharge due to pumping can
be expressed as

q = kiA

Observation
wells

|« R >e 7y
[— r; —»|
Test well —» 27y, [4—

e = ==7 = &

Permeable
layer

Phreatic line during /
pumping according to
Dupuit’s assumption

h
Actual phreating line ?

Impermeable layer

Figure 6.7 Determination of the coefficient of permeability by pumping from wells—
gravity well.
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From Figure 6.17, i = dh/dr (this is referred to as Dupuit’s assumption)
and A = 2nrh. Substituting these into the previous equation for rate of dis-
charge gives

q:k%ZRrh

n by
[4r =2 [
7, 4 1 by

So

_ 2.303qllog(r /n)]
by —hi)

(6.70)

If the values of 7, 75, by, b,, and g are known from field measurements,
the coefficient of permeability can be calculated from the simple rela-
tion given in Equation 6.70. According to Kozeny (1933), the maximum
radius of influence, R (Figure 6.17), for drawdown due to pumping can
be given by

R- |12t |ak (6.71)
n s

where
n is the porosity
R is the radius of influence
t is the time during which discharge of water from well has been

established

Also note that if we substitute b, = b atr, =r,and b, = Hat r, = R, then

k= 2.303¢[log(R/#,)]
n(H? - h2)

(6.72)

where H is the depth of the original groundwater table from the imperme-
able layer.

The depth b at any distance r from the well (r,, < # < R) can be determined
from Equation 6.70 by substituting b, = b atr, =r,and b, = b atr, =r. Thus

_ 2.303q[log(r/r,)]
n(h* —h2)
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S A, " Water level
before pumping

X

Impermeable layer

Figure 6.18 Pumping from partially penetrating gravity wells.

or

b= \/mflog’m@ (6.73)
Tk

w

It must be pointed out that Dupuit’s assumption (i.e., that i = dh/dr) does
introduce large errors in regard to the actual phreatic line near the wells during
steady-state pumping. This is shown in Figure 6.17. For » > H - 1.5H, the phre-
atic line predicted by Equation 6.73 will coincide with the actual phreatic line.

The relation for the coefficient of permeability given by Equation 6.70
has been developed on the assumption that the well fully penetrates the per-
meable layer. If the well partially penetrates the permeable layer as shown
in Figure 6.18, the coefficient of permeability can be better represented by
the following relation (Mansur and Kaufman, 1962):

q= ”k[(H‘S)Z‘tZ][l N [0.30 105 )sinl'gs:l (6.74)
H " H

~ 2.303log(R/r,)

The notations used on the right-hand side of Equation 6.74 are shown in
Figure 6.18.

6.9.1.2 Artesian wells

The coefficient of permeability for a confined aquifer can also be deter-
mined from well pumping tests. Figure 6.19 shows an artesian well pen-
etrating the full depth of an aquifer from which water is pumped out at a
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Figure 6.19 Determination of the coefficient of permeability by pumping from wells—
confined aquifer.

constant rate. Pumping is continued until a steady state is reached. The rate
of water pumped out at steady state is given by

q=kiA= k%anT (6.75)

where T is the thickness of the confined aquifer, or

b

fdr [ 2mkT
=] b (6.76)
7 4 by q

Solution of Equation 6.76 gives

_ glog(r/n)
2.727T(h, — by)

Hence, the coefficient of permeability k can be determined by observing the
drawdown in two observation wells, as shown in Figure 6.19.
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If we substitute b, = b, at r, = r, and b, = H at r, = R in the previous
equation, we get

qlog(R/x,

_ )
" 2.727T(H - h,,) (6.77)

6.9.2 Auger hole test

Van Bavel and Kirkham (1948) suggested a method to determine k from
an auger hole (Figure 6.20a). In this method, an auger hole is made in the
ground that should extend to a depth of 10 times the diameter of the hole
or to an impermeable layer, whichever is less. Water is pumped out of the
hole, after which the rate of the rise of water with time is observed in several
increments. The coefficient of permeability is calculated as

k:o.en%% (6.78)

Based on Spangler and Handy
(1973)

6
U A I (.
4 =
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4
v
dh
3
d
2
h
0
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() (b) hld

Figure 6.20 Auger hole test: (a) auger hole; (b) plot of S with h/d and r,/d.
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where
7,, is the radius of the auger hole
d is the depth of the hole below the water table
S is the shape factor for auger hole
dh/dt is the rate of increase of water table at a depth # measured from
the bottom of the hole

The variation of § with 7,/d and h/d is given in Figure 6.20b (Spangler
and Handy, 1973). There are several other methods of determining the field
coefficient of permeability. For a more detailed description, the readers are
directed to the U.S. Bureau of Reclamation (1961) and the U.S. Department
of the Navy (1971).

Example 6.8

Refer to Figure 6.18. For the steady-state condition, 7, = 0.4 m,

w

H =28 m,s=8m,and ¢ =10 m. The coefficient of permeability of the
layer is 0.03 mm/s. For the steady-state pumping condition, estimate
the rate of discharge g in m3/min.

Solution

From Equation 6.74

2 2
_ MHl(H =5 =17] ]{1+[o.30+12;w )sinl'gs}

7= 303log(R/n)] H

k =0.03 mm/s = 0.0018 m/min
So

_ m(0.0018)[(28 8 ~10°] {1{0‘3% (10)(0'4)}in 1.8(8)}

2.303[log(R/0.4)] 28 28
T
= _0.8976 radian
log(R/0.4)

From the equation for g, we can construct the following table:

R (m) q (m’)
25 0.5
30 0.48
40 0.45
50 043

100 0.37

From the aforementioned table, the rate of discharge is approximately
0.45 m3/min.
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6.10 FACTORS AFFECTING THE COEFFICIENT
OF PERMEABILITY

The coefficient of permeability depends on several factors, most of which
are listed in the following:

1. Shape and size of the soil particles.

2. Void ratio. Permeability increases with increase in void ratio.

3. Degree of saturation. Permeability increases with increase in degree
of saturation.

4. Composition of soil particles. For sands and silts, this is not impor-
tant; however, for soils with clay minerals, this is one of the most
important factors. Permeability depends on the thickness of water
held to the soil particles, which is a function of the cation exchange
capacity, valence of the cations, and so forth. Other factors remain-
ing the same, the coefficient of permeability decreases with increasing
thickness of the diffuse double layer.

5. Soil structure. Fine-grained soils with a flocculated structure have
a higher coefficient of permeability than those with a dispersed
structure.

. Viscosity of the permeant.

7. Density and concentration of the permeant.

[

6.11 ELECTROOSMOSIS

The coefficient of permeability—and hence the rate of seepage—through
clay soils is very small compared to that in granular soils, but the drain-
age can be increased by the application of an external electric current.
This phenomenon is a result of the exchangeable nature of the adsorbed
cations in clay particles and the dipolar nature of the water molecules.
The principle can be explained with the help of Figure 6.21. When dc
electricity is applied to the soil, the cations start to migrate to the cathode,
which consists of a perforated metallic pipe. Since water is adsorbed on
the cations, it is also dragged along. When the cations reach the cathode,
they release the water, and the subsequent build up of pressure causes the
water to drain out. This process is called electroosmosis and was first
used by L. Casagrande in 1939 for soil stabilization in Germany (See
Casagrande, 1952).

6.11.1 Rate of drainage by electroosmosis

Figure 6.22 shows a capillary tube formed by clay particles. The surface
of the clay particles has negative charges, and the cations are concentrated
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in a layer of liquid. According to the Helmholtz—Smoluchowski theory
(Helmholtz, 1879; Smoluchowski, 1914; see also Mitchell, 1970, 1976),
the flow velocity due to an applied dc voltage E can be given by

_DLE

== (6.79)
4t L

e

— Water

Ground surface

(> —

Cation
o SO

L Water

Anode ‘ Cathode

Figure 6.21 Principles of electroosmosis.
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Figure 6.22 Helmholtz—Smoluchowski theory for electroosmosis.
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where
v, is the flow velocity due to applied voltage
D is the dielectric constant
{ is the zeta potential
n is the viscosity
L is the electrode spacing

Equation 6.79 is based on the assumptions that the radius of the capil-
lary tube is large compared to the thickness of the diffuse double layer sur-
rounding the clay particles and that all the mobile charge is concentrated
near the wall. The rate of flow of water through the capillary tube can be
given by

g. = av, (6.80)

where a is the area of cross section of the capillary tube.
If a soil mass is assumed to have a number of capillary tubes as a result of
interconnected voids, the cross-sectional area A, of the voids is

A, =nA
where
A is the gross cross-sectional area of the soil

n is the porosity

The rate of discharge g through a soil mass of gross cross-sectional area
A can be expressed by the relation

g = A, = nAv, :nf—C%A (6.81)
™
or,
q = ki.A (6.82)
where

k, = n(DC/4nn) is the electroosmotic coefficient of permeability
i. is the electrical potential gradient

The units of k, can be cm?/(s- V) and the units of i, can be V/cm.

In contrast to the Helmholtz—Smoluchowski theory (Equation 6.79),
which is based on flow through large capillary tubes, Schmid (1951) pro-
posed a theory in which it was assumed that the capillary tubes formed by
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Figure 6.23 Schmid theory for electroosmosis.

the pores between clay particles are small in diameter and that the excess
cations are uniformly distributed across the pore cross-sectional area
(Figure 6.23). According to this theory

r*AF E
v, = —
8N L

(6.83)

where
7 is the pore radius
A, is the volume charge density in pore
F is the Faraday constant

Based on Equation 6.83, the rate of discharge g through a soil mass of
gross cross-sectional area A can be written as

2
q=n7£1°F%A=kcicA (6.84)

where
7 1s porosity
k. = n(r2A F/87) is the electroosmotic coefficient of permeability

Without arguing over the shortcomings of the two theories proposed,
our purpose will be adequately served by using the flow-rate relation
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as g = k.i,A. Some typical values of k, for several soils are as follows
(Mitchell, 1976):

Material Water content (%) k. (cm?/(s-V))
London clay 523 5.8x 10°®
Boston blue clay 50.8 5.1 % 10°°
Kaolin 67.7 5.7x 107
Clayey silt 31.7 50x% [0°°
Rock flour 272 45x% 10
Na-Montmorillonite 170 20x% 10°°
Na-Montmorillonite 2000 12.0 x 1073

These values are of the same order of magnitude and range from 1.5 x 10-3
to 12 x 10~° cm?/(s- V) with an average of about 6 x 10-5 cm?/(s- V).

Electroosmosis is costly and is not generally used unless drainage by
conventional means cannot be achieved. Gray and Mitchell (1967) have
studied the factors that affect the amount of water transferred per unit
charge passed, such as water content, cation exchange capacity, and free
electrolyte content of the soil.

6.12 COMPACTION OF CLAY FOR CLAY
LINERS IN WASTE DISPOSAL SITES

When a clay soil is compacted at a lower moisture content, it possesses
a flocculent structure. Approximately at the optimum moisture content
of compaction, the clay particles have a lower degree of flocculation.
A further increase in the moisture content at compaction provides a
greater degree of particle orientation; however, the dry unit weight
decreases because the added water dilutes the concentration of soil solids
per unit volume.

Figure 6.24 shows the results of laboratory compaction tests on a clay
soil as well as the variation of the coefficient of permeability of the com-
pacted clay specimens. From the laboratory test results shown, the follow-
ing observations can be made:

1. For a given compaction effort, the coefficient of permeability k
decreases with the increase in molding moisture content, reach-
ing a minimum value at about the optimum moisture content (i.e.,
approximately where the soil has a higher dry unit weight with the
clay particles having a lower degree of flocculation). Beyond the
optimum moisture content, the coefficient of permeability increases
slightly.



Permeability 277

2000

1900 —

Dry density (kg/m?)
— —
3 ®
S 3
IS 1S
1 1

1600

(a) Moisture content (%)

O

¢}

Coefficient of permeability (cm/s)

(b Moisture content (%)

=

Figure 6.24 Test on clay soil: (a) modified Proctor compaction curve; (b) variation of k
with molding moisture content.

2. For similar compaction effort and dry unit weight, a soil will have a
lower coefficient of permeability when it is compacted on the wet side
of the optimum moisture content.

Benson and Daniel (1990) conducted laboratory compaction tests by
varying the size of clods of moist clayey soil. These tests show that, for
similar compaction effort and molding moisture content, the magnitude of
k decreases with the decrease in clod size.

In some compaction work in clayey soils, the compaction must be done
in a manner so that a certain specified upper level of coefficient of perme-
ability of the soil is achieved. Examples of such works are compaction
of the core of an earth dam and installation of clay liners in solid-waste
disposal sites.
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To prevent groundwater pollution from leachates generated from solid-
waste disposal sites, the U.S. Environmental Protection Agency (EPA)
requires that clay liners have a hydraulic conductivity of 10-7 cm/s or less.
To achieve this value, the contractor must ensure that the soil meets the fol-
lowing criteria (U.S. Environmental Protection Agency, 1989):

1. The soil should have at least 20% fines (fine silt and clay-sized particles).

2. The plasticity index (PI) should be greater than 10. Soils that have a
PI greater than about 30 are difficult to work with in the field.

3. The soil should not include more than 10% gravel-sized particles.

4. The soil should not contain any particles or chunks of rock that are
larger than 25-30 mm.

In many instances, the soil found at the construction site may be some-
what nonplastic. Such soil may be blended with imported clay minerals
(like sodium bentonite) to achieve the desired range of coefficient of per-
meability. In addition, during field compaction, a heavy sheepsfoot roller
can introduce larger shear strains during compaction that create a more
dispersed structure in the soil. This type of compacted soil will have an
even lower coefficient of permeability. Small lifts should be used during
compaction so that the feet of the compactor can penetrate the full depth
of the lift.

The size of the clay clods has a strong influence on the coefficient of per-
meability of a compacted clay. Hence, during compaction, the clods must
be broken down mechanically to as small as possible. A very heavy roller
used for compaction helps to break them down.

Bonding between successive lifts is also an important factor; otherwise,
permeant can move through a vertical crack in the compacted clay and then
travel along the interface between two lifts until it finds another crack to
travel down.

In the construction of clay liners for solid-waste disposal sites where it
is required that & < 10-7 cm/s, it is important to establish the moisture
content—unit weight criteria in the laboratory for the soil to be used in field
construction. This helps in the development of proper specifications.

Daniel and Benson (1990) developed a procedure to establish the mois-
ture content—unit weight criteria for clayey soils to meet the coefficient of
permeability requirement. The following is a step-by-step procedure to
develop the criteria.

Step 1: Conduct Proctor tests to establish the dry unit weight versus mold-
ing moisture content relationships (Figure 6.25a).

Step 2: Conduct permeability tests on the compacted soil specimens (from
Step 1) and plot the results as shown in Figure 6.25b. In this figure, also
plot the maximum allowable value of k (i.e., k).
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Figure 6.25 (a) Proctor curves; (b) variation of k of compacted specimens; (c) determi-
nation of acceptable zone.

Step 3: Replot the dry unit weight-moisture content points (Figure 6.25c)
with different symbols to represent the compacted specimens with k > k_;

and k S kall'

Step 4: Plot the acceptable zone for which k is less than or equal to k,;

(Figure 6.25c¢).
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Chapter 7

Seepage

7.1 INTRODUCTION

In many practical cases, the nature of the flow of water through soil is
such that the velocity and gradient vary throughout the medium. For these
problems, calculation of flow is generally made by use of graphs referred to
as flow nets. The concept of the flow net is based on Laplace’s equation of
continuity, which describes the steady flow condition for a given point in
the soil mass. In this chapter, we will derive Laplace’s equation of continu-
ity and study its applications as related to problems such as the flow under
hydraulic structures and seepage through earth dams.

7.2 EQUATION OF CONTINUITY

To derive the equation of continuity of flow, consider an elementary
soil prism at point A (Figure 7.1b) for the hydraulic structure shown in
Figure 7.1a. The flows entering the soil prism in the x, y, and z directions
can be given from Darcy’s law as

g = keiiA, = kO dyde (7.1)
ox

gy = kyiy Ay = ky 2 dx dz (7.2
dy

q. = kiA. = kO dxdy (7.3)
0z

where
4> 4,5 q. are the flow entering in directions x, y, and z, respectively
k., ky, k. are the coefficients of permeability in directions x, y, and z,
respectively
b is the hydraulic head at point A

283
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q,+dq,

——> 4 +dq,

Flow at point A

y
(a) (b)

Figure 7.1 Derivation of continuity equation: (a) hydraulic structure; (b) flow in an
elementary soil prism at A.

The respective flows leaving the prism in the x, y, and z directions are

qx +dq, = k(i +di,)A,

oh 9%
=k | —+-—dx |dyd 7.4
x(ax+8x2 x] yaz (7.4)
obh 9*h
qdy +dqy = ky [ay-kayzdy}lxdz (7.5)
2
g.+dg. =k P+ 0P 4o \axdy (7.6)
dz oz

For steady flow through an incompressible medium, the flow entering
the elementary prism is equal to the flow leaving the elementary prism. So,

dx +qy +q. = (qx +dg.) +(q, +dg,) +(g.+ dq.)



Seepage 285

Substituting Equations 7.1 through 7.6 in the preceeding equation we obtain

Ph , *h ., 3h

For two-dimensional flow in the xz plane, Equation 7.7 becomes

9%h 0°h

If the soil is isotropic with respect to permeability, k, = k, = k, and the
continuity equation simplifies to

*h  3%h

This is generally referred to as Laplace’s equation.

7.2.1 Potential and stream functions

Consider a function ¢(x, z) such that

9 oh

% _ . __,0h 7.10

x T ox (7.10)
and

% oh

0 _ 40k 7.11

0z Vs dz (711)

If we differentiate Equation 7.10 with respect to x and Equation 7.11
with respect to z and substitute in Equation 7.9, we get

70 P
87‘%%:0 (7.12)

Therefore, d(x, z) satisfies the Laplace equation. From Equations 7.10 and 7.11

d(x,2) = —kh(x,2) + f(2) (7.13)
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and
O(x, z) = —kh(x,2) + g(x) (7.14)

Since x and z can be varied independently, f(z) = g(x) = C, a constant. So
d(x,2) = —kh(x,2)+C

and

2

h(x,2) = L C—d(x, 2)] (7.15)

If h(x, z) is a constant equal to kb, Equation 7.15 represents a curve in
the xz plane. For this curve, ¢ will have a constant value ¢,. This is an
equipotential line. So, by assigning to ¢ a number of values such as ¢,

¢y, O3, ..., we can get a number of equipotential lines along which b = b,
h,, bs, ..., respectively. The slope along an equipotential line ¢ can now
be derived:
do=22a4x+ 9 4 (7.16)
ox oz

If ¢ is a constant along a curve, d¢ = 0. Hence

(dzj __00/0x _ v (7.17)
dx ), 00/dz v,

Again, let y(x, z) be a function such that

oy ob
W _y = 7.18
0z v 0z ( )
and
oy oh
_W_ 9k 7.19
ox vz 0z < )

Combining Equations 7.10 and 7.18, we obtain

90 _ oy
ox 02
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2 2
Iy _ 0 (7.20)
dz~  0xoz
Again, combining Equations 7.11 and 7.19
_9% _dy
dz  Ox
2 2
_0% v (7.21)
oxdz Ox

From Equations 7.20 and 7.21

2 2 2 2
Oy Idy_ 99 IO

i 9P oxdz oxdy

So y(x, z) also satisfies Laplace’s equation. If we assign to y(x, z) various
values yy, ¥y, s, ..., we get a family of curves in the xz plane. Now

dy =Y ax+ Y gy (7.22)
ox 0z

For a given curve, if y is constant, then dy = 0. Thus, from Equation 7.22

(de _0y/ox _ v, (7.23)
dx ; oy/ldz v,

Note that the slope (dz/dx),, is in the same direction as the resultant velocity.
Hence, the curves y =y, y,, 3, ... are the flow lines.

From Equations 7.17 and 7.23, we can see that at a given point (x, z) the
equipotential line and the flow line are orthogonal.

The functions ¢p(x, z) and y(x, z) are called the potential function and the
stream function, respectively.

7.3 USE OF CONTINUITY EQUATION FOR
SOLUTION OF SIMPLE FLOW PROBLEM

To understand the role of the continuity equation (Equation 7.9), consider a
simple case flow of water through two layers of soil as shown in Figure 7.2.
The flow is in one direction only, that is, in the direction of the x axis. The
lengths of the two soil layers (L, and L) and their coefficients of perme-
ability in the direction of the x axis (k, and k) are known. The total heads
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Figure 7.2 One-directional flow through two layers of soil.

at sections 1 and 3 are known. We are required to plot the total head at any
other section for 0 < x < L, + Lj.
For one-dimensional flow, Equation 7.9 becomes

0%h
— =0 7.24
Jx? ( )
Integration of Equation 7.24 twice gives
h=C2X+C1 (725)

where C; and C, are constants.
For flow through soil A, the boundary conditions are

1. Atx=0,h=h,
2. Atx=L,,h=bh,

However, b, is unknown (b, > b,). From the first boundary condition and
Equation 7.25, C, = h,. So

h=Cyx+h (7.26)
From the second boundary condition and Equation 7.235,

(hy =)

hz = CzLA + hl or C2 =
Ly
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So

h:—hlL_ibzx—i-hl 0<x<L, (7.27)

A

For flow through soil B, the boundary conditions for solution of C, and C,
in Equation 7.25 are

1.Atx=LA,b=h2
2.Atx=L,+ Ly, h=0

From the first boundary condition and Equation 7.25, b, = C,L, + C,, or
Cl = hz —CzLA (728)

Again, from the secondary boundary condition and Equation 7.235,
0=C,(Ly+Lg)+Cy,or

Ci =-Cy(Ly + Ly) (7.29)
Equating the right-hand sides of Equations 7.28 and 7.29,

hy —CyLy ==Cy(La + Lg)
C,=—2 (7.30)

and then substituting Equation 7.30 into Equation 7.28 gives

b L
C1=h2+L2LA=h2(1+LA] (7.31)

B B

Thus, for flow through soil B,

h:—?x+h2(1+i’*] Ly <x<Ly+Ly (7.32)

B B

With Equations 7.27 and 7.32, we can solve for b for any value of x from
0 to L, + Ly, provided that b, is known. However

q = rate of flow through soil A = rate of flow through soil B



290 Advanced Soil Mechanics

So
b —b h
=ky| 2 [A=ky| = |A :
q A( L. J B(LBJ (7.33)
where
ks and kg are the coefficients of permeability of soils A and B,
respectively

A is the area of cross section of soil perpendicular to the direction of flow

From Equation 7.33

ki
Ly (kA/LA + kB/LB)

b, (7.34)

Substitution of Equation 7.34 into Equations 7.27 and 7.32 yields, after
simplification,

kpx
h=h|1-—==— |(forx=0to L 7.35
1[ kALB'i‘kBLA](Orx to Ly) ( )
k
b= h] |:]QALB+A/Q‘¢A(LA + LB — X)} [fOf X = LA to (LA + LB)] (7'36)

7.4 FLOW NETS

7.4.1 Definition

A set of flow lines and equipotential lines is called a flow net. As discussed
in Section 7.2, a flow line is a line along which a water particle will travel.
An equipotential line is a line joining the points that show the same piezo-
metric elevation (i.e., hydraulic head = h(x, z) = constant). Figure 7.3 shows
an example of a flow net for a single row of sheet piles. The permeable
layer is isotropic with respect to the coefficient of permeability, that is,
k. =k, = k. Note that the solid lines in Figure 7.3 are the flow lines and the
broken lines are the equipotential lines. In drawing a flow net, the bound-
ary conditions must be kept in mind. For example, in Figure 7.3,

1. AB is an equipotential line.
2. EF is an equipotential line.
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U/S Water level
—— Constant hydraulic
T - head along an
equipotential line
3m
D/S
Water level y h
A F
Permeable
layer
G % % H

Impermeable layer

Figure 7.3 Flow net around a single row of sheet pile structures.

3. BCDE (i.e., the sides of the sheet pile) is a flow line.
4. GH is a flow line.

The flow lines and the equipotential lines are drawn by trial and error. It
must be remembered that the flow lines intersect the equipotential lines
at right angles. The flow and equipotential lines are usually drawn in
such a way that the flow elements are approximately squares. Drawing
a flow net is time consuming and tedious because of the trial-and-error
process involved. Once a satisfactory flow net has been drawn, it can be
traced out.

Some other examples of flow nets are shown in Figures 7.4 and 7.5 for
flow under dams.

7.4.2 Calculation of seepage from a flow
net under a hydraulic structure

A flow channel is the strip located between two adjacent flow lines. To
calculate the seepage under a hydraulic structure, consider a flow channel
as shown in Figure 7.6.

The equipotential lines crossing the flow channel are also shown, along
with their corresponding hydraulic heads. Let Ag be the flow through the
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=5 Determine maximum

exit gradient from this
/ element (Section 7.10)

Permeable
layer

Impermeable layer

10 m
Scale
Figure 7.4 Flow net under a dam.
v Water level
=&
Toe filter

Permeable layer

\

I
\ \

| 1 | 1
\ ! !

X X X X X X X X X X X

Figure 7.5 Flow net under a dam with a toe filter.

flow channel per unit length of the hydraulic structure (i.e., perpendicular
to the section shown). According to Darcy’s law

Aq = kiA = k(}’ll‘bz](b] x1) = k(bzl_bSJ(ble)
i 2

= k(}“l‘h“j@xl) =... (7.37)
3
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Figure 7.6 Flow through a flow channel.

If the flow elements are drawn as squares, then

11=b1
12 sz
l3=b3

So, from Equation 7.37, we get

171—1/.’2=}.72—/93=h3—h4="'=A/’.7=i (7.38)

Ny

where
Ab is the potential drop (= drop in piezometric elevation between two
consecutive equipotential lines)
b is the total hydraulic head (= difference in elevation of water between
the upstream and downstream side)
N, is the number of potential drops

Equation 7.38 demonstrates that the loss of head between any two con-

secutive equipotential lines is the same. Combining Equations 7.37 and
7.38 gives

b
Ag=k—"— 7.39
9 Ny ( )
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If there are N; flow channels in a flow net, the rate of seepage per unit
length of the hydraulic structure is

q=NiAg = kh% (7.40)
d

Although flow nets are usually constructed in such a way that all flow ele-
ments are approximately squares, that need not always be the case. We could
construct flow nets with all the flow elements drawn as rectangles. In that
case, the width-to-length ratio of the flow nets must be a constant, that is

by b, b
A_R2_B_ .= 7.41
LT n (7.41)

For such flow nets, the rate of seepage per unit length of hydraulic structure
can be given by

N
=kh— 7.42
q N, (7.42)
Example 7.1

For the flow net shown in Figure 7.4

a. How high would water rise if a piezometer is placed at (i) A (ii) B
(iii) C?

b. If & = 0.01 mm/s, determine the seepage loss of the dam in
m?3/(day - m).

Solution

The maximum hydraulic head » is 10 m. In Figure 7.4, N, = 12,
Ab = h/Ny=10/12 = 0.833.

Part a(i):

To reach A, water must go through three potential drops. So head lost
is equal to 3 x 0.833 = 2.5 m. Hence, the elevation of the water level in
the piezometer at A will be 10 - 2.5 = 7.5 m above the ground surface.

Part a(ii):

The water level in the piezometer above the ground level is 10 -
5(0.833) = 5.84 m.

Part a(iii):

Points A and C are located on the same equipotential line. So water in

a piezometer at C will rise to the same elevation as at A, that is, 7.5 m
above the ground surface.
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Part b:
The seepage loss is given by g = kh(N¢/N,). From Figure 7.4, N; = 5 and
Ny =12. Since

k =0.01mm/s =(10(’)(())3)](60><60><24) =0.864m/day

q= 0.864(10)(152)= 3.6m*/(day - m)

Example 7.2

Seepage takes place around a retaining wall shown in Figure 7.7. The
coefficient of permeability of the sand is 2 x 10 c¢cm/s. The retaining
wall is 30 m long. Determine the quantity of seepage across the entire
wall per day.

Solution

For the flow net shown in Figure 7.7, N;=3 and Ny=10. The total
head loss from right to left, H=5.0 m. The flow rate is given by
(Equation 7.40),

g=khNE 0% 10*5m/s)(5.0)(i) =3.0x10"m’/s/m
N, 10

Seepage across the entire wall,

0 =3.0x10" x30.0% 24 x 3600 m*/day = 77.76 m*/day

’ I'r.nf).ermeable
layer

Figure 7.7 Flow net around a retaining wall.
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7.5 HYDRAULIC UPLIFT FORCE
UNDER A STRUCTURE

Flow nets can be used to determine the hydraulic uplifting force under
a structure. The procedure can best be explained through a numerical
example. Consider the dam section shown in Figure 7.4, the cross sec-
tion of which has been replotted in Figure 7.8. To find the pressure head
at point D (Figure 7.8), we refer to the flow net shown in Figure 7.4; the
pressure head is equal to (10 + 3.34 m) minus the hydraulic head loss.
Point D coincides with the third equipotential line beginning with the
upstream side, which means that the hydraulic head loss at that point is
2(h/N,) = 2(10/12) = 1.67 m. So

Pressure head at D = 13.34 — 1.67 = 11.67 m
Similarly

Pressure head at E = (10 + 3.34) — 3(10/12) = 10.84 m
Pressure head at F = (10 + 1.67) — 3.5(10/12) = 8.75 m

(Note that point F is approximately midway between the fourth and the
fifth equipotential lines starting from the upstream side.)

Pressure head at G = (10 + 1.67) — 8.5(10/12) = 4.56 m
Pressure head at H = (10 + 3.34) — 9(10/12) = 5.84 m
Pressure head at I = (10 + 3.34) — 10(10/12) =5 m

The pressure heads calculated earlier are plotted in Figure 7.8. Between
points F and G, the variation of pressure heads will be approximately

W

F G
' 16+7 '
I .67 m I
pt/ 1 % CONE_,
11.67 1 1.67 1 1 1.67 11.67 1
:q-m->:<-m ;:: 18.32 m —*m-b!—m—bl
1 1 ! ! : :
g
E 5
Zg| 2
zd| =
5
2
9
~

L—

Figure 7.8 Pressure head under the dam section shown in Figure 7.4.
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linear. The hydraulic uplift force per unit length of the dam, U, can now
be calculated as

U = y,/(areaof the pressure head diagram) (1)

_ 9.8{(11.67210.84 )(1.67”(10.84; 8.75 J(l'67)

+(8.75J2r4.56 )(18.32)+(4'56;5'84 )(1.67)

+(5.84+5)(1‘67)}
2

=9.81(18.8+16.36+121.92 +8.68+9.05)

=1714.9kN/m

7.6 FLOW NETS IN ANISOTROPIC MATERIAL

In developing the procedure described in Section 7.4 for plotting flow nets, we
assumed that the permeable layer is isotropic, that is, &y,.i,ontal = Ryertical = R-
Let us now consider the case of constructing flow nets for seepage through
soils that show anisotropy with respect to permeability. For two-dimensional
flow problems, we refer to Equation 7.8:

0°h

* ox?

?h

k +k,—5 =0
0z

where

kx = khorizontal

k

2= kvertical

This equation can be rewritten as

b 9k _
(k. /k.)ox>  02%

Let x” = \/k,/k,. x, then

0%h _ 9*h
(k. Ik )ox*  ox™

0 (7.43)

(7.44)
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Substituting Equation 7.44 into Equation 7.43, we obtain

%h  9*h
—=0 7.45
ox’ " 0z* ( )

Equation 7.45 is of the same form as Equation 7.9, which governs the
flow in isotropic soils and should represent two sets of orthogonal lines
in the x'z plane. The steps for construction of a flow net in an anisotropic
medium are as follows:

. To plot the section of the hydraulic structure, adopt a vertical scale.

. Determine \/kz/kx = \/kvertical/khorizontal-

. Adopt a horizontal scale such that scaleyosizonial = v/Ro /Ry (SCaleyericar)-

. With the scales adopted in steps 1 and 3, plot the cross section of the
structure.

5. Draw the flow net for the transformed section plotted in step 4 in the

same manner as is done for seepage through isotropic soils.
6. Calculate the rate of seepage as

q= \/kxkzh% (7.46)
d

A WD =

Compare Equations 7.39 and 7.46. Both equations are similar except for
the fact that k in Equation 7.39 is replaced by \/k.k, in Equation 7.46.
Example 7.3

A dam section is shown in Figure 7.9a. The coefficients of permeability
of the permeable layer in the vertical and horizontal directions are
2 x 1072 and 4 x 10-2 mm/s, respectively. Draw a flow net and calculate
the seepage loss of the dam in m3/(day - m).

Solution

From the given data
k. =2x10?mm/s = 1.728 m/day
ky =4x102mm/s = 3.456 m/day

and b = 10 m. For drawing the flow net,

-2

Horizontal scale = | = =)
4x10

(vertical scale)

= % (verticalscale)
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Permeable
layer 125m
[
x v '.'x

(a) Impermeable layer

Horizontal scale=12.5 x V2=17.68 m

L 1
(b) Vertical scale=12.5 m

Figure 7.9 Construction of flow net under a dam: (a) section of the dam; (b) flow net.

On the basis of this, the dam section is replotted, and the flow net drawn
as in Figure 7.9b. The rate of seepage is given by g = \/k.k.h(N¢/Ny).
From Figure 7.9b, N, = 8 and N; = 2.5 (the lowermost flow channel has

a width-to-length ratio of 0.5). So
q =+(1.728)(3.456)(10)(2.5/8) = 7.637 m*/(day - m)

Example 7.4

A single row of sheet pile structure is shown in Figure 7.10a.

Draw a

flow net for the transformed section. Replot this flow net in the natu-
ral scale also. The relationship between the permeabilities is given as

k, = 6k,.
Solution

For the transformed section

Horizontal scale = k—z(vertical scale)

x

= i(verticalscale)

J6
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Vertical scale
10 m

Horizontal scale =
\ 10 x \/gz 24.5 m

X X

(c) Scale

Figure 7.10 Flow net construction in anisotropic soil: (a) sheet pile structure; (b) flow
net in transformed scale; (c) flow net in natural scale.
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The transformed section and the corresponding flow net are shown in
Figure 7.10b.

Figure 7.10c¢ shows the flow net constructed to the natural scale. One
important fact to be noticed from this is that when the soil is anisotro-
pic with respect to permeability, the flow and equipotential lines are
not necessarily orthogonal.

7.7 CONSTRUCTION OF FLOW NETS
FOR HYDRAULIC STRUCTURES ON
NONHOMOGENEOUS SUBSOILS

The flow net construction technique described in Section 7.4 is for the
condition where the subsoil is homogeneous. Rarely in nature do such
ideal conditions occur; in most cases, we encounter stratified soil depos-
its (such as those shown in Figure 7.13 later in the chapter). When a flow
net is constructed across the boundary of two soils with different perme-
abilities, the flow net deflects at the boundary. This is called a transfer
condition. Figure 7.11 shows a general condition where a flow channel
crosses the boundary of two soils. Soil layers 1 and 2 have permeabilities
of k, and k,, respectively. The dashed lines drawn across the flow channel
are the equipotential lines.

Let Ab be the loss of hydraulic head between two consecutive equipoten-
tial lines. Considering a unit length perpendicular to the section shown, the
rate of seepage through the flow channel is

Aq = klAlih(b1 Xl) = kz %h(bz X].)
1

2

by —» Aq

—»

Figure 7.11 Transfer condition.
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or
kb,
R_ 7.47
k, b/l ( )
where

I, and b, are the length and width of the flow elements in soil layer 1
I, and b, are the length and width of the flow elements in soil layer 2

Referring again to Figure 7.11

[, = ABsin0; = AB cosoy (7.48a)
I, = ABsin®, = AB coso., (7.48b)
b, = AC cos0, = AC sinay (7.48¢)
b, = AC cos0, = AC sina, (7.48d)

From Equations 7.48a,c

b, _cos®; sinoy

[, sin®, cosoy
or

b 1

11 - tan 91

=tanoy (7.49)

Also, from Equations 7.48b,d

b, _cos®, _ sino,

[, sin®, coso,
or

b _ 1
[, tan®,

=tano, (7.50)

Combining Equations 7.47, 7.49, and 7.50

ky _ tan®; _ tanoy, (7.51)
k, tan®, tanoy '
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Flow nets in nonhomogeneous subsoils can be constructed using the
relations given by Equation 7.51 and other general principles outlined in
Section 7.4. It is useful to keep the following points in mind while con-
structing the flow nets:

1. If k&, > k,, we may plot square flow elements in layer 1. This means
that [, = b, in Equation 7.47. So, k,/k, = b,/l,. Thus, the flow elements
in layer 2 will be rectangles and their width-to-length ratios will be
equal to k,/k,. This is shown in Figure 7.12a.

2. If k; < k,, we may plot square flow elements in layer 1 (i.e., [, = b,).
From Equation 7.47, k,/k, = b,/1,. So, the flow elements in layer 2 will
be rectangles. This is shown in Figure 7.12b.

An example of the construction of a flow net for a dam section resting on a
two-layered soil deposit is given in Figure 7.13. Note that k; = § x 102 mm/s
and k, = 2.5 x 102 mm/s. So

k, 5.0x107?
ky, 2.5x10

_tano, _ tan®;

tanoy tan6,

In soil layer 1, the flow elements are plotted as squares, and since k,/k, = 2,
the length-to-width ratio of the flow elements in soil layer 2 is 1/2.

Square elements
lL=b;

Square elements
li=b,

Figure 7.12 Flow channel at the boundary between two soils with different coefficients
of permeability: (a) k, > k,; (b) k; < k,.
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Figure 7.13 Flow net under a dam resting on a two-layered soil deposit.

7.8 NUMERICAL ANALYSIS OF SEEPAGE

7.8.1 General seepage problems

In this section, we develop some approximate finite difference equations
for solving seepage problems. We start from Laplace’s equation, which was
derived in Section 7.2. For two-dimensional seepage

P?h b

ket 3 ths 5 =0 (7.52)

Figure 7.14 shows a part of a region in which flow is taking place. For
flow in the horizontal direction, using Taylor’s series, we can write

2 2 3 3
b1=h0+Ax(ahj RLCEE 7 i S A (7.53)
ox )y 2! \ox” ) 3! {ox’ )
and
2 2 3 3
hs:;,o_Ax(ab) LGS A L A (7.54)
ox )y 2! \ox” ) 3! \dx’ )

Adding Equations 7.53 and 7.54, we obtain

2 2 4 4
byt by = 2y 2OX[ OB 2AN (OB (7.55)
2! {ox A 4! | ox N
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Figure 7.14 Hydraulic heads for flow in a region.

Assuming Ax to be small, we can neglect the third and subsequent terms on

the right-hand side of Equation 7.55. Thus

aih b+ by —2h,
ox? N B (Ax)*

Similarly, for flow in the z direction we can obtain

Ph) byt hy—2hy
92> ), T (Ar)

Substitution of Equations 7.56 and 7.57 into Equation 7.52 gives

b by + by —2h, Tk by + by —2h, -0
T(Axy VYR

If k, = k, =k and Ax = Az, Equation 7.58 simplifies to

h1+l/]2 +h3+h4—4h0 =O

(7.56)

(7.57)

(7.58)
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or
by =%<bl+b2+h3+h4) (7.59)

Equation 7.59 can also be derived by considering Darcy’s law, q = kiA.
For the rate of flow from point 1 to point 0 through the channel shown in
Figure 7.15a, we have

G0 = LYW (7.60)
X
Similarly
qo-3 = pP=hs gy (7.61)
Ax
Gro = kmAx (7.62)
Az
Jo-s :kMAx (7.63)
Az
2 2
| | | |
! L] Az L__1 [
5 0 ) % 3 0 1
- ] Az Impermeable layer
! ! v
4 Ax—ple—A
A — bl x| A o
(a) (b)
z
22" 2 soil 1
1 T T T Ol
AL A Lk
, 0 ) * 3 0 1 .
I o Az ---- --= Soil 2
| L] ' Lk
4 4

Figure 7.15 Numerical analysis of seepage: (a) derivation of Equation 7.59; (b) derivation of
Equation 7.69; (c) derivation of Equation 7.71; (d) derivation of Equation 7.77.
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Since the total rate of flow into point 0 is equal to the total rate of flow
out of point 0, g;, - g, = 0. Hence

(¢1-0 + 92-0) = (qo-3 + g0-4) =0 (7.64)

Taking Ax = Az and substituting Equations 7.60 through 7.63 into
Equation 7.64, we get

h() =%(h1 +I’J2 +l73 +h4)

If the point 0 is located on the boundary of a pervious and an impervious
layer, as shown in Figure 7.15b, Equation 7.59 must be modified as follows:

bi—hy Az

o=k 7.65
q1-0 Ax 2 ( )

hy—h, Az
=k R 7.66
o3 Ax 2 ( )
Gor = kP =b gy (7.67)

Az

For continuity of flow

q1-0 —qo-3—qo-2 =0 (7.68)

With Ax = Az, combining Equations 7.65 through 7.68 gives

hi=hy ho—hs

> > (ho—hz)=0

h‘f'ﬁ‘f'hz—z;)o =O
2 2

or

by %uﬁ T+ 2hy +by) (7.69)
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When point 0 is located at the bottom of a piling (Figure 7.15c), the equa-
tion for the hydraulic head for flow continuity can be given by

G0+ q4-0—qo3—qo-2 —qgo2» =0 (7.70)

Note that 2’ and 2” are two points at the same elevation on the opposite
sides of the sheet pile with hydraulic heads of b, and b, respectively. For
this condition, we can obtain (for Ax = Az), through a similar procedure to
that mentioned earlier,

k’o :1[h1 +%(I’]2’+h2’)+1’]3 +k’4j| (7.71)

7.8.2 Seepage in layered soils

Equation 7.59, which we derived earlier, is valid for seepage in homoge-
neous soils. However, for the case of flow across the boundary of one homo-
geneous soil layer to another, Equation 7.59 must be modified. Referring to
Figure 7.15d, since the flow region is located half in soil 1 with a coefficient
of permeability k, and half in soil 2 with a coefficient of permeability k,, we
can say that

kyy = %(kl k) (7.72)

Now, if we replace soil 2 by soil 1, the replaced soil (i.e., soil 1) will have
a hydraulic head of b, in place of h,. For the velocity to remain the same

Pl N (7.73)
Az Az
or
)
h4' = z(h4 - ]’]0) + h() (7.74)
1
Thus, based on Equation 7.52, we can write
ki +k, h1+h3—2h0+k1 by + by —2hy _0 (7.75)

2 (Ax)* (Az)



Seepage 309

Taking Ax = Az and substituting Equation 7.74 into Equation 7.75

%(kl +k2){hl +hs ‘2’70} ky {hz {kz(m —h0)+h0}—2h0} 0

(Ax)* (Ax)* ky
(7.76)
or
1 2k 2%
ho=—|h L bh+h 2 ) 7.77
0 4[ etk T vk “j (7.77)

The application of the equations developed in this section can best be
demonstrated by the use of a numerical example. Consider the problem of
determining the hydraulic heads at various points below the dam as shown
in Figure 7.13. Let Ax = Az = 1.25 m. Since the flow net below the dam will
be symmetrical, we will consider only the left half. The steps for determining
the values of h at various points in the permeable soil layers are as follows:

1. Roughly sketch out a flow net.

2. Based on the rough flow net (step 1), assign some values for the hydrau-
lic heads at various grid points. These are shown in Figure 7.16a. Note
that the values of b assigned here are in percent.

3. Consider the heads for row 1 (i.e., i = 1). The b for i = 1 and
j=1,2,...,22 are 100 in Figure 7.16a; these are correct values based
on the boundary conditions. The b, fori=1andj =23, 24, ...,28
are estimated values. The flow condition for these grid points is sim-
ilar to that shown in Figure 7.14b, and according to Equation 7.69,
(hy +2h, + h;) =4b,=0, or

(h(i’f*l) + 2]7(”1’/') + h(i,f—l)) - 4//.7(,"7') = 0 (7.78)

Since the hydraulic heads in Figure 7.16 are assumed values,
Equation 7.78 will not be satisfied. For example, for the grid point
i=1and ] = 23, h(i,j-l) = 100, h(i,j) = 84, h(i,/+1) = 68, and b(i+1,/) =78.If
these values are substituted into Equation 7.78, we get [68 + 2(78) +
100] - 4(84) = -12, instead of zero. If we set =12 equal to R (where R
stands for residual) and add R/4 to b, ;, Equation 7.78 will be satisfied.
So the new, corrected value of b, is equal to 84 + (-3) = 81, as shown
in Figure 7.16b. This is called the relaxation process. Similarly, the cor-
rected head for the grid point i = 1 and j = 24 can be found as follows:

[84+2(67)+61]-4(68)=7 =R
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S0, by 4 = 68 + 7/4 = 69.75 ~ 69.8. The corrected values of b, ,5),
b1 26 and b 57 can be determined in a similar manner. Note that
has = 50 is correct, based on the boundary condition. These are
shown in Figure 7.16b.

4. Consider the rows i = 2, 3, and 4. The b fori=2, ..., 4and j = 2,
3, ..., 27 should follow Equation 7.59; (b, + b, + by + h,) = 4b, = 0; or

(h(i,j+1) + h(i—l,/) + h(i,/'—l) + h(m,,‘)) - 4/0(;',/) =0 (7.79)

To find the corrected heads b, ;, we proceed as in Step 3. The resid-
ual R is calculated by substituting values into Equation 7.79, and the
corrected head is then given by b ; + R/4. Owing to symmetry, the
corrected values of b, ,5 for i = 2, 3, and 4 are all 50, as originally
assumed. The corrected heads are shown in Figure 7.16Db.

5. Consider row i = 5 (forj = 2, 3, ..., 27). According to Equation 7.77

h2+l’]3 +L2kh4—4h0 :O (7.80)

Since k; =5 x 10-2mm/s and k, = 2.5 x 10-2 mm/s

-2
2k, _ 2(5)x10 =1333
k+k,  (5+2.5)x10

2
Yo | 225x107 4 o
k] +k2 (5+25)X10

Using the aforementioned values, Equation 7.80 can be rewritten as
h(i,Hl) + 1.333}](,‘_1’7') + b(,"/'_l) + O.667h(,‘+1’/') _4}7(,"7') = 0

As in step 4, calculate the residual R by using the heads in
Figure 7.16a. The corrected values of the heads are given by b, ;, + R/4.
These are shown in Figure 7.16b. Note that, owing to symmetry, the
head at the grid point i = 5 and j = 28 is 50, as assumed initially.

6. Consider the rows i = 6, 7, ..., 12. The b for i = 6, 7, ..., 12 and
j=2,3, ..., 27 can be found by using Equation 7.79. Find the cor-
rected head in a manner similar to that in step 4. The heads at j = 28
are all 50, as assumed. These values are shown in Figure 7.16b.

7. Consider row i = 13. The h;;, for i = 13 and j = 2, 3, ..., 27 can be
found from Equation 7.69, (b, + 2h, + by) = 4b, = 0, or

P jery + 2h 1y + by = 4hj =0
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With proper values of the head given in Figure 7.16a, find the resid-
ual and the corrected heads as in step 3. Note that b ;3 55 = 50 owing
to symmetry. These values are given in Figure 7.16b.

8. With the new heads, repeat steps 3 through 7. This iteration must be
carried out several times until the residuals are negligible.

Figure 7.16¢ shows the corrected hydraulic heads after 10 iterations. With
these values of b, the equipotential lines can now easily be drawn.

7.9 SEEPAGE FORCE PER UNIT
VOLUME OF SOIL MASS

Flow of water through a soil mass results in some force being exerted
on the soil itself. To evaluate the seepage force per unit volume of soil,
consider a soil mass bounded by two flow lines ab and cd and two equi-
potential lines ef and gh, as shown in Figure 7.17. The soil mass has unit
thickness at right angles to the section shown. The self-weight of the
soil mass is (length)(width)(thickness)(y.,,) = (L)}(L)(1)(y,.) = L%y, The
hydrostatic force on the side ef of the soil mass is (pressure head)(L)
(1) = byy, L. The hydrostatic force on the side gh of the soil mass is b, Ly,,.
For equilibrium

AF = by, L+ I*y, sino.— by, L (7.81)

Figure 7.17 Seepage force determination.
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However, b, + L sin o = b, + Ah, so
by = b+ L sina—Ab (7.82)
Combining Equations 7.81 and 7.82

AF = by L+ Iy, sino— (b + L sino.— Ab)y,, L

or
AF = I* (Yo — Yw)sino. + Aby, L = L*Ysino + Aby, L (7.83)
effective weight seepage
of soil in the force

direction of flow

where y' = y,,, - V.- From Equation 7.83, we can see that the seepage force
on the soil mass considered is equal to Aby, L. Therefore

Aby, L
LZ

Seepage force per unit volume of soilmass =
Ah .
—ye i 7.84)
Yo =Y (
where i is the hydraulic gradient.

Example 7.5

Refer to Example 7.2 and Figure 7.7. Estimate the force per unit volume
of the sand at A.

Solution
From Equation 7.84, the force per unit volume of the soil mass =Ywi,

The hydraulic gradient at A, i = Afh

A= _05m
10
L=138m
i 05 36
L 138

So, force per unit volume,

Ywi =(9.81)(0.362) = 3.55 kN/m’
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7.10 SAFETY OF HYDRAULIC STRUCTURES
AGAINST PIPING

When upward seepage occurs and the hydraulic gradient i is equal to 7,
piping or heaving originates in the soil mass:

=Y
Yw
_ _ _ GSYW + er _ (Gs - 1)Yw
Y’_YSat Yw_ 1+€ w 1+€
So
i = J = (1;S+‘el (7.85)

For the combinations of G, and e generally encountered in soils, i, varies
within a range of about 0.85-1.1.

Harza (1935) investigated the safety of hydraulic structures against
piping. According to his work, the factor of safety against piping, Fg, can
be defined as

Fg =t (7.86)
Lexit
where 7., is the maximum exit gradient. The maximum exit gradient can

be determined from the flow net. Referring to Figure 7.4, the maximum
exit gradient can be given by Ah/l (Ah is the head lost between the last two
equipotential lines, and [ the length of the flow element). A factor of safety
of 3—-4 is considered adequate for the safe performance of the structure.
Harza also presented charts for the maximum exit gradient of dams con-
structed over deep homogeneous deposits (see Figure 7.18). Using the nota-
tions shown in Figure 7.18, the maximum exit gradient can be given by

o =C (7.87)
B

A theoretical solution for the determination of the maximum exit gradi-
ent for a single row of sheet pile structures as shown in Figure 7.3 is avail-
able (see Harr, 1962) and is of the form

1 maximum hydraulic head (7.88)

lexit =

' depth of penetration of sheet pile
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————|

Deep homogeneous soil

1.0

Toe sheeting only

Heel and toe sheeting

7

Lexit

-ch

Figure 7.18 Critical exit gradient (Equation 7.87).

Bld

10

15

Lane (1935) also investigated the safety of dams against piping and sug-
gested an empirical approach to the problem. He introduced a term called
weighted creep distance, which is determined from the shortest flow path:

L, = 2L +Y L,

3

where

L, is the weighted creep distance
ZL, = Ly + Ly, + -+ is the sum of horizontal distance along shortest

flow path (see Figure 7.19)
ZL,=L, + L, +--isthe sum of vertical distances along shortest flow

path (see Fifgure 7.19)

(7.89)
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: 1
_H I l«—f I |
< h, >
2
th
LV) V2
l l Permeable layer
X X X X X X X X X X X X

Impermeable layer

Figure 7.19 Calculation of weighted creep distance.

Once the weighted creep length has been calculated, the weighted creep
ratio can be determined as (Figure 7.19)

Weighted creep ratio = ﬁ (7.90)

For a structure to be safe against piping, Lane (1935) suggested that the
weighted creep ratio should be equal to or greater than the safe values
shown in Table 7.1.

If the cross section of a given structure is such that the shortest flow path
has a slope steeper than 45°, it should be taken as a vertical path. If the
slope of the shortest flow path is less than 45°, it should be considered as a
horizontal path.

Terzaghi (1922) conducted some model tests with a single row of sheet
piles as shown in Figure 7.20 and found that the failure due to piping takes
place within a distance of D/2 from the sheet piles (D is the depth of pen-
etration of the sheet pile). Therefore, the stability of this type of structure
can be determined by considering a soil prism on the downstream side of
unit thickness and of section D x D/2. Using the flow net, the hydraulic
uplifting pressure can be determined as

U=%waloa (7.91)
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Table 7.1 Safe values for the weighted creep ratio

Material Safe weighted creep ratio
Very fine sand or silt 85

Fine sand 7.0

Medium sand 6.0

Coarse sand 5.0

Fine gravel 4.0

Coarse gravel 3.0

Soft to medium clay 2.0-3.0

Hard clay 1.8

Hard pan 1.6

where b, is the average hydraulic head at the base of the soil prism. The sub-
merged weight of the soil prism acting vertically downward can be given by

W = %y'DZ (7.92)

Hence, the factor of safety against heave is

’ m2 ’
g W _avD _ Dy (7.93)
U $v.Dh. by,

A factor of safety of about 4 is generally considered adequate.

Hy
A
Possible
failure zone
Permeable
layer

Impermeable layer

Figure 7.20 Failure due to piping for a single-row sheet pile structure.



320 Advanced Soil Mechanics

Permeable layer

X X X X X X X X
Impermeable base

Figure 7.21 Safety against piping under a dam.

For structures other than a single row of sheet piles, such as that shown
in Figure 7.21, Terzaghi (1943) recommended that the stability of several
soil prisms of size D/2 x D’ x 1 be investigated to find the minimum factor
of safety. Note that 0 < D’ < D. However, Harr (1962, p. 125) suggested
that a factor of safety of 4-5 with D’ = D should be sufficient for safe per-
formance of the structure.

Example 7.6

A flow net for a single row of sheet piles is given in Figure 7.3.

a. Determine the factor of safety against piping by Harza’s method.
b. Determine the factor of safety against piping by Terzaghi’s
method (Equation 7.93).

Assume y’ = 10.2 kN/m?.

Solution
Part a:
iexit:Ah Ah:3_05=3_05=0417m
L Ny 6

The length of the last flow element can be scaled out of Figure 7.3 and
is approximately 0.82 m. So
0.417

fexit = ———— =0.509
0.82
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(We can check this with the theoretical equation given in Equation 7.88:

iexit = (1j|: (3 _0‘5):| =0.53
T 1.5

which is close to the value obtained earlier.)

v _102kN/m’

== ~1.04
e 9.81kN/m’

So, the factor of safety against piping is

i _ 104 0,
Ioie  0.509
Part b:

A soil prism of cross section D x D/2, where D = 1.5 m, on the down-
stream side adjacent to the sheet pile is plotted in Figure 7.22a. The
approximate hydraulic heads at the bottom of the prism can be evalu-
ated by using the flow net. Referring to Figure 7.3 (note that N, = 6)

ha =§(3—0.5)=1.25m
2

by =g(3—0.5):0.833m

he =%(3—0.5)=0.75m

\ Soil

C

D=15m p“sm\\
0.75m

__________ h,=0.917 m

X X X X X X X X

(b)

Figure 7.22 Factor of safety calculation by Terzaghi’s method: (a) hydraulic head at the
bottom prism measuring D x D/2; (b) use of filter in the downstream side.
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p 20375 [1.25+o.75

= +0.833 [=0.917m
0.75 2

poDv_ 15x102 o
hoye 0.917x9.81

The factor of safety calculated here is rather low. However, it can be
increased by placing some filter material on the downstream side above
the ground surface, as shown in Figure 7.22b. This will increase the
weight of the soil prism (W’; see Equation 7.92).

Example 7.7

A dam section is shown in Figure 7.23. The subsoil is fine sand. Using
Lane’s method, determine whether the structure is safe against piping.

Solution

From Equation 7.89

L, = 2L +3 L

3
ZLh =6+10=16m
zLV =1+(8+8)+1+2=20m

L. :%uo ~25.33m

l

—— 10m —»|

Figure 7.23 Safety against piping under a dam by using Lane’s method.
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From Equation 7.90

Weighted creep ratio o tw 2333 3.17
H, -H, 10-2

From Table 7.1, the safe weighted creep ratio for fine sand is about 7.
Since the calculated weighted creep ratio is 3.17, the structure is
unsafe.

Example 7.8
Refer to Figure 7.24.

a. Draw a flow net for the seepage in the permeable layer.
b. Determine the exit gradient.

Solution

Part a:
From Equation 7.51,

k; _ tan6; _ tanoy, 4%x1073

k, tan®, tano, 2x1072

The flow net is shown in Figure 7.25.
Part b:

Ab_(3-1)_(3-1)/10 _

0.18

o T T L 11

(Note: L is the length of the flow element.)

T
. 3m l L4
) 1m =
T 2#5 m
Slm ¥ k;=4x10"mm/s
1
Slm ky=2x10"mm/s

Impermeable layer

Figure 7.24 Flow net problem in a two-layered subsoil.
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w
3
|||<

5m

Impermeable
layer

Figure 7.25 Flow net for the case shown in Figure 7.24.

7.11 FILTER DESIGN

When seepage water flows from a soil with relatively fine grains into a
coarser material (e.g., Figure 7.22b), there is a danger that the fine soil par-
ticles may wash away into the coarse material. Over a period of time, this
process may clog the void spaces in the coarser material. Such a situation
can be prevented by the use of a filter or protective filter between the two
soils. For example, consider the earth dam section shown in Figure 7.26.

Soil to be
protected

Figure 7.26 Use of filter at the toe of an earth dam.
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If rockfills were only used at the toe of the dam, the seepage water would
wash the fine soil grains into the toe and undermine the structure. Hence,
for the safety of the structure, a filter should be placed between the fine soil
and the rock toe (Figure 7.26). For the proper selection of the filter mate-
rial, two conditions should be kept in mind:

1. The size of the voids in the filter material should be small enough to
hold the larger particles of the protected material in place.

2. The filter material should have a high permeability to prevent build up
of large seepage forces and hydrostatic pressures.

Based on the experimental investigation of protective filters, Terzaghi and
Peck (1948) provided the following criteria to satisfy the above conditions:

Disw <4-5 (to satisfy condition 1) (7.94)
Dgs )
Dis) 5 45 (o satisfy condition 2) (7.95)
DlS(B)

where

D is the diameter through which 15% of filter material will pass
D, is the diameter through which 15% of soil to be protected will pass
Dysp, is the diameter through which 85% of soil to be protected will pass

The proper use of Equations 7.94 and 7.95 to determine the grain-size
distribution of soils used as filters is shown in Figure 7.27. Consider the soil

100 T T . : ‘ ‘ ‘
—————— Dyg5)=0.11 mm

80 — —
)
& 60~ Curve a (soil to -
g Range of \ C ) be protected)
9 good filter urve
T 40 -
A~

Curvec ¥
20 |
——————— 0.009 mm
0 | | |

5 1.0 05 0.1 0.05 0.01 0.005 0.002

Grain-size distribution (mm)

Figure 7.27 Determination of grain-size distribution of soil filters using Equations 7.94
and 7.95.
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used for the construction of the earth dam shown in Figure 7.26. Let the
grain-size distribution of this soil be given by curve a in Figure 7.27. We can
now determine 5SDgs and 5D 55 and plot them as shown in Figure 7.27.
The acceptable grain- 51ze dlStI‘lbuthH of the filter material will have to lie
in the shaded zone.

Based on laboratory experimental results, several other filter design
criteria have been suggested in the past. These are summarized in
Table 7.2.

Table 7.2 Filter criteria developed from laboratory testing

Investigator Year Criteria developed
Bertram 1940 D'SF) < 6; Dise <9
DBS(B) DBS(B)
U.S. Corps of 1948 Diso 5. Dsww o5 Disw o
Engineers Dese) Dsoge) Dis,
Sherman 1953 For Cypa <1.5: 250 <, D150 o0, Do _ o5
85(B) DIS(B) 50(B)
D D D
Forl.5< Cypuseg < 40: 0 <5 0 <20, =20 <90
85(B) DIS(B) 50(B)

D D D
For Cu(base) >40: =56 < 5; 156 < 407 Z50(F) <25

85(B) Dis 50(B)
Leatherwood and 1954 2156 4 I; Dw 53
Peterson D85(B> 50(8)
Karpoff 1955  Uniform filter:5 < Dsory <10
50(B)

Well-graded filter:12 < Dsoy 58, 12< Dise)  40;and

50(8) 15(8)
parallel grain-size curves

Zweck and 1957  Base of medium and coarse uniform sand:5 < M <10
Davidenkoff Dsoge)

Base of fine uniform sand:5 < ——+ Dso( <15
50(B)

Base of well-graded fine sand:5 < Dsoy <25
50(8)

Note:  Dsy), diameter through which 50% of the filter passes; Dy, diameter through which 50% of
the soil to be protected passes; C,, uniformity coefficient.
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7.12 CALCULATION OF SEEPAGE THROUGH AN
EARTH DAM RESTING ON AN IMPERVIOUS BASE

Several solutions have been proposed for determination of the quantity of
seepage through a homogeneous earth dam. In this section, some of these
solutions will be considered.

7.12.1 Dupuit’s solution

Figure 7.28 shows the section of an earth dam in which ab is the phreatic
surface, that is, the uppermost line of seepage. The quantity of seepage
through a unit length at right angles to the cross-section can be given by
Darcy’s law as g = kiA.

Dupuit (1863) assumed that the hydraulic gradient i is equal to the slope
of the free surface and is constant with depth, that is, i = dz/dx. So

dz dz

=k E W)=k %E
q dx[(z)( )] e
d H,
Jqu= jkzdz
0 Hy
gd = é(H12 ~Hj)
2
or
q= i(H12 - Hj) (7.96)
2d
z
: dz
: dx
H iPhreatic _Y_+_
l : line =
I H,
» | I
X X X X X K X X X X

Impermeable base

[« d >

Figure 7.28 Dupuit’s solution for flow through an earth dam.
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Equation 7.96 represents a parabolic free surface. However, in the deri-
vation of the equation, no attention has been paid to the entrance or exit
conditions. Also note that if H, = 0, the phreatic line would intersect the
impervious surface.

7.12.2 Schaffernak’s solution

For calculation of seepage through a homogeneous earth dam. Schaffernak
(1917) proposed that the phreatic surface will be like line ab in Figure 7.29,
that is, it will intersect the downstream slope at a distance / from the imper-
vious base. The seepage per unit length of the dam can now be determined
by considering the triangle bcd in Figure 7.29:

g=kiA; A= (bd)(1)=Isinp

From Dupuit’s assumption, the hydraulic gradient is given by i = dz/dx =
tanp. So

g = kz % = (k)(IsinB)(tanp) (7.97)
dx

or

H d
J‘ zdz = J (IsinB)(tanP)dx

IsinB lcosB

%(H2 —*sin” B) = (IsinB)(tanP)(d — [ cosP)

dx
Parabolic
free surface b /‘\

XXX X X X
d

R

A

T —>
=l

Impermeable base

Figure 7.29 Schaffernak’s solution for flow through an earth dam.
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.2
L psin? gy =157 B g scosp)
2 cosP
H? cosP lzcosB_ 2
25in’p 5 =1Id -1" cosf
2
lzcosB—Zld+LZOSB=O
sin” 3
j_ 2d £ \J4d” — 4[(H’ cos’ B/sin’ p] (7.98)
2cosf .
so
2 2
j- 4 o _H (7.99)

cosp  \cos’B  sin’B

Once the value of [ is known, the rate of seepage can be calculated from the
equation g = k[ sin B tan p.
Schaffernak suggested a graphical procedure to determine the value of I.
This procedure can be explained with the aid of Figure 7.30:

1. Extend the downstream slope line bc upward.
2. Draw a vertical line ae through the point a. This will intersect the
projection of line bc (step 1) at point f.

Phreatic "3
line

o,
I
I
I
I
I
I
. o--l . - .
e

Impermeable surface

Figure 7.30 Graphical construction for Schaffernak’s solution.
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XXX X XX X X X X X XC XXX
| d > Impermeable
layer

Figure 7.31 Modified distance d for use in Equation 7.99.

3. With fc as diameter, draw a semicircle fhc.

4. Draw a horizontal line ag.

5. With ¢ as the center and cg as the radius, draw an arc of a circle, gh.
6. With f as the center and f/ as the radius, draw an arc of a circle, hb.
7. Measure bc = [.

Casagrande (1937) showed experimentally that the parabola ab
shown in Figure 7.29 should actually start from the point @’ as shown in
Figure 7.31. Note that aa’ = 0.3A. So, with this modification, the value
of d for use in Equation 7.99 will be the horizontal distance between
points a’ and c.

7.12.3 L. Casagrande’s solution

Equation 7.99 was obtained on the basis of Dupuit’s assumption that
the hydraulic gradient 7 is equal to dz/dx. Casagrande (1932) suggested
that this relation is an approximation to the actual condition. In reality
(see Figure 7.32)

. dz
i=—" 7.100

s ( )
For a downstream slope of p > 30°, the deviations from Dupuit’s assump-
tion become more noticeable. Based on this assumption (Equation
7.100), the rate of seepage is g = kiA. Considering the triangle bcd in
Figure 7.32,

i= & =sinB A= (bd)(1)=Isin
ds
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z
A
—»{ 0.3A j—
a’ a
= T SAS
I i ds
: : dz
H p [ dx b
: : Phreatic ‘\
1 | surface )
! i p
P b2
X 4x—x %= X X g ¢ X X
e d >
— A —»

Figure 7.32 L. Casagrande’s solution for flow through an earth dam. (Note: length of the
curve a’bc = 8.)

So
dz . 2
qzkd—zzklsm B (7.101)
s

or

H s

J zdzj(l sin’ B)ds

!

IsinB

where s is the length of the curve a’bc. Hence

%(H2 —Psin?B) = [sin® B(s — )

H? —’sin® B = 2[ssin”* B —2/%sin” B

2

Po2s+ (7.102)

. 2 B
The solution to Equation 7.102 is

2
L (7.103)

[=s— [s°—
sin” B
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With about a 4%-5% error, we can approximate s as the length of the
straight line a’c. So

s=+d*+H? (7.104)

Combining Equations 7.103 and 7.104

I =~d* + H? —|d> - H? cot’ B (7.105)
Once [ is known, the rate of seepage can be calculated from the equation
q = klsin*B

A solution that avoids the approximation introduced in Equation 7.105 was
given by Gilboy (1934) and put into graphical form by Taylor (1948), as
shown in Figure 7.33. To use the graph

1. Determine d/H

2. For given values of d/H and B, determine m
3. Calculate I = mH/sin B

4. Calculate g = kl sin? B

7.12.4 Pavlovsky’s solution

Pavlovsky (1931; also see Harr, 1962) also gave a solution for calculation
of seepage through an earth dam. This can be explained with reference to
Figure 7.34. The dam section can be divided into three zones, and the rate
of seepage through each zone can be calculated as follows.

7.12.4.1 Zone I (area agOf)

In zone I the seepage lines are actually curved, but Pavlovsky assumed that
they can be replaced by horizontal lines. The rate of seepage through an
elementary strip dz can then be given by

dq = kidA
dA=(dz)(1)=dz

i Lossof head, [, _ I8
Lengthofflow  (Hg —z)cotp,
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dlH

Figure 7.33 Chart for solution by L. Casagrande’s method based on Gilboy’s solution.

——B —»]
v T a
A = u
g
H Ho 7 3]
L =P __dz _.
Zonell Zone 111
Zone I
B
A E o x
X X X X X X X X X X Ll
o) d
Y Impermeable base

¢ L >

€

Figure 7.34 Pavlovsky’s solution for seepage through an earth dam.
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So

kl H
d J. 1 dz = 1 1 d
1= J‘ 1= Hd - COtBl ? COtBl an —/91

However, [, = H - b,. So

_k(H=h), H

7.106
cotf, " Hy-h ( )

7.12.4.2 Zone Il (area Ogbd)

The flow in zone IT can be given by the equation derived by Dupuit (Equation
7.96). Substituting b, for H,, b, for H,, and L for d in Equation 7.96, we get

k
q= (b -h) (7.107)
where
L =B+(Hy - hy) cotp, (7.108)

7.12.4.3 Zone Ill (area bcd)

As in zone I, the stream lines in zone III are also assumed to be horizontal:

b2
g=k[-B - kb (7.109)
/ cotB, cotP,
Combining Equations 7.106 through 7.108
B B i
by = +H, - +Hy | -h? (7.110)
cotf, cotf,
From Equations 7.106 and 7.109
Hobyy He b (7.111)

n =
cotfy, Hyg-h cotp,
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Equations 7.110 and 7.111 contain two unknowns, », and /,, which can
be solved graphically (see Example 7.6). Once these are known, the rate of

seepage per unit length of the dam can be obtained from any one of the
Equations 7.106, 7.107, and 7.109.

7.12.5 Seepage through earth dams with k, # k,

If the soil in a dam section shows anisotropic behavior with respect to
permeability, the dam section should first be plotted according to the trans-
formed scale (as explained in Section 7.6):

All calculations should be based on this transformed section. Also, for cal-
culating the rate of seepage, the term k in the corresponding equations

should be equal to \/k.k;.

Example 7.9

The cross section of an earth dam is shown in Figure 7.35. Calculate
the rate of seepage through the dam [g in m3/(min-m)] by (a) Dupuit’s
method; (b) Schaffernak’s method; (c) L. Casagrande’s method; and
(d) Pavlovsky’s method.

|||<
N 2
5
A

25m 2

k=3x10"* m/min

i ittt >

X
X
X
X
X
X
X
X

X X X X X X
Impermeable layer

[e——50m——M10me—5m—Pe—— 60m—»

Figure 7.35 Seepage through an earth dam.
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Solution
Part a: Dupuit’s method.
From Equation 7.96

q=%(H%—H%)

From Figure 7.35, H; = 25 m and H, = 0; also, d (the horizontal dis-
tance between points g and ¢) is equal to 60 + 5 + 10 = 75 m. Hence

-4
g=200 552 212,510 m*/(min-m)
2x75

Part b: Schaffernak’s method.
From Equations 7.97 and 7.99

d d* H?

cosf Y\ cos? B ~sin® B

g =(k)(Isinp)(tanB); =

Using Casagrande’s correction (Figure 7.31), d (the horizontal distance
between a’ and ¢) is equal to 60 + 5 + 10 + 15 = 90 m. Also

B=tan™ % =26.57° H=25m

So

%0 90 Y ( 25 Y
c0s26.57° c0s26.57° sin26.57°

=100.63—/(100.63)* - (55.89) =16.95m

g=(3x10-%)(16.95)(sin 26.57°)(tan 26.57°) = 11.37 x 10-* m*/(min - m)

Part c: L. Casagrande’s method.
We will use the graph given in Figure 7.33.
d 90

d=90m H=25m —=-——=3.6 p=26.57°
H 25

From Figure 7.33 for § = 26.57° and d/H = 3.6, m = 0.34, and

j_mH _ 0.3425)

= = =19.0m
sinf  sin26.57°

g = kl'sin? = (3 x 10-4) (19.0) (sin 26.57°)2 = 11.4 x 104 m*(min - m)
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Part d: Pavlovsky’s method.
From Equations 7.110 and 7.111

2
/72 = B + Hd - B + Hd - h12
cotfP, cotf,

H—l’]1 n Hd _ hz
COtBl Hy —/’71 COtBZ

From Figure 7.35, B = 5 m, cot B, = cot 26.57° =2, H; = 30 m, and
H =25 m. Substituting these values in Equation 7.110, we get

2
b, ~ 2 130- [5+30J —hi
2 2

or

by =32.5-4/1056.25-h? (E7.1)

Similarly, from Equation 7.111

25-h I 30 b,

2 "30-h 2

or

30
30-h

by = (25— by)n (E7.2)

Equations E7.1 and E7.2 must be solved by trial and error:

h, (m)  h, from Equation E7.1 (m)  h, from Equation E7.2 (m)

2 0.062 1.587
4 0.247 3.005
6 0.559 4.240
8 1.0 5.273
10 1.577 6.082
12 2297 6.641
14 3.170 6.915
16 4211 6.859
I8 5.400 6.414

20 6.882 5.493
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T
Equation E7.1

Equation E7.2

hy (m)

0
10 12 14 16 18 20

Figure 7.36 Plot of h, against h,.

Using the values of b, and b, calculated in the preceding table, we
can plot the graph as shown in Figure 7.36 and from that, b, = 18.9 m
and b, = 6.06 m. From Equation 7.109

4
g=_RP _3x107)(6:06) _ g 19,10~ m3/(min-m)
cotf, 2

Example 7.10

Figure 7.37 shows an earth dam section. Given: k,=4 X 10~ m/min
and k,=1x 10" m/min. Determine the rate of seepage through the
earth dam using

a. Dupuit’s method
b. Schaffernak’s method with Casagrande’s modification
c. L. Casagrande’s method

Note: The upstream and downstream slopes of the earth dam are
1V:2H.
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l — 7 m <—

Figure 7.37 An earth dam section on an impermeable layer.

Solution

For this case, \/Z = \/I =0.5
ky 4

The transformed section of the earth dam is shown in Figure 7.38.

Part a:

ko,
q=, Y (Hi — H3)

d=35+3.5+3=41.5m

=5 s
g= [XAONIXA0T) _ 350 02)_ 2467107 m*/min/m
(2)(41.5)

3

64x05=32m m 35m 35m

Figure 7.38 Transformed section of the earth dam.
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Part b: Given: B =45°

A=(0.3)(32)=9.6 m
d=9.6+3+3.5+35=51.1m

d ¢ H* _ 511 510 (32 )
I= _ = - —| = =159 m
cosfp \cos"B sin“B  cos45 cos45 sin45

q = Jkek, IsinBtanP = /(4 x107°)(107°)(15.9)sin45 tan 45

=22.49 x 10~° m*/min/m

Part c:
d=511m; H=32m; d/H =51.1/32=1.6 m. From Figure 7.33,
m=0.4.
_ (0..4)(32) —181m
sin45

g = Jkuk, Isin® B = /(4 x10~°)(10~)(18.1)(sin? 45)
=18.1 x 10 m*/min/m

7.13 PLOTTING OF PHREATIC LINE FOR
SEEPAGE THROUGH EARTH DAMS

For construction of flow nets for seepage through earth dams, the phreatic
line needs to be established first. This is usually done by the method pro-
posed by Casagrande (1937) and is shown in Figure 7.39a. Note that aefb
in Figure 7.39a is the actual phreatic line. The curve a’efb’c’ is a parabola
with its focus at ¢’. The phreatic line coincides with this parabola, but with
some deviations at the upstream and the downstream faces. At a point 4,
the phreatic line starts at an angle of 90° to the upstream face of the dam
and aa’ = 0.3A.
The parabola a’efb’c’ can be constructed as follows:

1. Let the distance cc’ be equal to p. Now, referring to Figure 7.39b,

Ac = AD (based on the properties of a parabola), Ac =+/x* +z*, and
AD =2p + x. Thus

Vx+22 =2p+x (7.112)

At x = d, z = H. Substituting these conditions into Equation 7.112 and
rearranging, we obtain
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p=%(\/m—d)

(7.113)
Since d and H are known, the value of p can be calculated.
2. From Equation 7.112
xP 428 =4p* +x* +4px
2 2
P/ (7.114)
4p

With p known, the values of x for various values of z can be calculated
from Equation 7.114, and the parabola can be constructed.

A . )
e d > Directrix
—»{0.3A1¢—
v a’ a
T = 2 e .
LY
H ARG
3/
Coefficient of b &\ R
permeability = k B ! ¥ AN
x < —
——A—»| c fe
7/
— ple
— P |
(a)
z
A
Directrix
Alx, z)
R D
\
\
\
\
\
\
\
\
X <4
00l /¢
/*pﬂ*p*
(b)

Figure 7.39 Determination of phreatic line for seepage through an earth dam: (a) phre-
atic line; (b) parabola with the focus at .
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0

30 50 70 90 110 130 150 170 180
B (deg)
Figure 7.40 Plot of Al/(l + Al) against downstream slope angle. (After Casagrande, A.,

Seepage through dams, in Contribution to Soil Mechanics 1925—1940, Boston
Society of Civil Engineering, Boston, MA, p. 295, 1937)

To complete the phreatic line, the portion ae must be approximated
and drawn by hand. When p < 30°, the value of / can be calculated from
Equation 7.99 as

d d? H?

cosf - cos’ B - sin’ P

/=

Note that [ = bc in Figure 7.39a. Once point b has been located, the curve
fb can be approximately drawn by hand.

If B > 30°, Casagrande proposed that the value of Al can be determined
by using the graph given in Figure 7.40. In Figure 7.39a, b’b = Al and bc = .
After locating the point b on the downstream face, the curve fb can be
approximately drawn by hand.

7.14 ENTRANCE, DISCHARGE, AND
TRANSFER CONDITIONS OF LINE
OF SEEPAGE THROUGH EARTH DAMS

A. Casagrande (1937) analyzed the entrance, discharge, and transfer con-
ditions for the line of seepage through earth dams. When we consider the
flow from a free-draining material (coefficient of permeability very large;
k, = oo into a material of permeability k,, it is called an entrance). Similarly,
when the flow is from a material of permeability k, into a free-draining
material (k, = o), it is referred to as discharge. Figure 7.41 shows various
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Entrance conditions
B<90°

Horizontal Horizontal

k1:°° Eﬁ

ki =
1 k
B/V
X X X X X X X X
(a) (b)
Discharge conditions
B<90° B=90°
k2 =00
k
! P
X X X X X
(d) (e)
Vertical
i
|
1
ky |
B=180°\
I
X X k2 =
(8)
Transfer conditions
o3
ky o k o %2
® K ® X
2 2
X X X X X X /—\A
ki <k, ky>ky
0y =270"-0;—w 0y =270"—0;—
(h) (@)
k
1 k,
®

ky<ky

) a;=0y=0

Figure 741 Entrance, discharge, and transfer conditions: (a) entrance, f < 90°
(b) entrance, p = 90°% (c) entrance, > 90°% (d) discharge, p < 90° (e) dis-
charge, B = 90% (f) discharge, p > 90°% (g) discharge, § = 180°; (h) transfer,
k, < ky, a, =270°—a,—w; (i) transfer, k, > k,, a, = 270°—,—w; (j) transfer,
k, > k,, a; = a, =o; (k) transfer, k; < k,, «; = a, = 0. (After Casagrande, A,
Seepage through dams, in Contribution to Soil Mechanics 1925—-1940, Boston
Society of Civil Engineering, Boston, MA, p. 295, 1937)
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entrance, discharge, and transfer conditions. The transfer conditions show
the nature of deflection of the line of seepage when passing from a material
of permeability k, to a material of permeability k,.

Using the conditions given in Figure 7.41, we can determine the nature of
the phreatic lines for various types of earth dam sections.

7.15 FLOW NET CONSTRUCTION FOR EARTH DAMS

With a knowledge of the nature of the phreatic line and the entrance, dis-
charge, and transfer conditions, we can now proceed to draw flow nets for
earth dam sections. Figure 7.42 shows an earth dam section that is homo-
geneous with respect to permeability. To draw the flow net, the following
steps must be taken:

1. Draw the phreatic line, since this is known.

. Note that ag is an equipotential line and that gc is a flow line.

3. It is important to realize that the pressure head at any point on the
phreatic line is zero; hence, the difference of total head between any
two equipotential lines should be equal to the difference in elevation
between the points where these equipotential lines intersect the phre-
atic line.

Since loss of hydraulic head between any two consecutive equipo-
tential lines is the same, determine the number of equipotential drops,
N, the flow net needs to have and calculate Ab = h/N,,.

4. Draw the head lines for the cross section of the dam. The points of
intersection of the head lines and the phreatic lines are the points
from which the equipotential lines should start.

[\

N;=23
Ny=10

II|‘<

Ah
Al Head line
Ah

An__ Head line
Ah

Ah

Impermeable layer

Figure 7.42 Flow net construction for an earth dam.
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5. Draw the flow net, keeping in mind that the equipotential lines and
flow lines must intersect at right angles.

6. The rate of seepage through the earth dam can be calculated from the
relation given in Equation 7.40, g = kh(N¢/N,).

In Figure 7.42, the number of flow channels, N, is equal to 2.3. The top
two flow channels have square flow elements, and the bottom flow channel
has elements with a width-to-length ratio of 0.3. Also, Ny in Figure 7.42 is
equal to 10.

If the dam section is anisotropic with respect to permeability, a trans-
formed section should first be prepared in the manner outlined in
Section 7.6. The flow net can then be drawn on the transformed section,
and the rate of seepage obtained from Equation 7.46.

Figures 7.43 through 7.45 show some typical flow nets through earth
dam sections.

A flow net for seepage through a zoned earth dam section is shown in
Figure 7.46. The soil for the upstream half of the dam has a permeabil-
ity k,, and the soil for the downstream half of the dam has a permeability
k, = Sk,. The phreatic line must be plotted by trial and error. As shown
in Figure 7.12b, here the seepage is from a soil of low permeability

N;=15

X X X X X X X X X X X X X X X X X

Impermeable layer

Figure 7.43 Typical flow net for an earth dam with rock toe filter.

Impermeable layer

Figure 7.44 Typical flow net for an earth dam with chimney drain.
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-
N;=3
Ny=6

Pervious
drainage pipe

Impervious
layer

Figure 7.45 Typical flow net for an earth dam with a pervious drainage pipe.

A 4

X X X X X X X X X X X
Number of full Impermeable layer
flow channels

h h
=k; —N, =k, —N,
=5 M =R g e
Nyy=2-2/3  Npp=8/15
Figure 7.46 Flow net for seepage through a zoned earth dam.

(upstream half) to a soil of high permeability (downstream half). From
Equation 7.47

ki _bolly
kbl

If b, = [, and k, = 5k, b,/l, = 1/5. For that reason, square flow elements
have been plotted in the upstream half of the dam, and the flow elements in
the downstream half have a width-to-length ratio of 1/5. The rate of seep-
age can be calculated by using the following equation:

h h
=k —Niy=k,—N 7115
q=r N, f(1) = R2 N, £(2) ( )
where
Ny, is the number of full flow channels in the soil having a perme-
ability k,

Ny, is the number of full flow channels in the soil having a perme-
ability &,
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Chapter 8

Consolidation

8.1 INTRODUCTION

When a saturated soil layer is subjected to a stress increase, the pore water
pressure is suddenly increased. In sandy soils that are highly permeable,
the drainage caused by the increase of pore water pressure is completed
immediately. Pore water drainage is accompanied by a volume reduction
in the soil mass, resulting in settlement. Because of rapid drainage of pore
water in sandy soils, immediate (or elastic) settlement and consolidation
take place simultaneously.

When a saturated compressible clay layer is subjected to a stress increase,
elastic settlement occurs immediately. Since the coefficient of permeability
of clay is significantly smaller than that of sand, the excess pore water
pressure generated due to loading gradually dissipates over a long period
of time. Thus the associated volume change (that is, the consolidation) in
soft clay may continue long after the immediate (or elastic) settlement. The
settlement due to consolidation in soft clay may be several times larger than
the immediate settlement.

The time-dependent deformation of saturated clay soils can best be
understood by first considering a simple rheological model consisting of
a linear elastic spring and dashpot connected in parallel (Kelvin model,
Figure 8.1). The stress-strain relationship for the spring and the dashpot
can be given by

Spring: o, = ke (8.1)

de

Dashpot: =
ashpot: Ga =M, (8.2)

where ¢ = stress (subscripts s and d refer to spring and dashpot, respectively)
€ =strain
k = spring constant

349
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Go

Spring

k
m Dashpot
n

Figure 8.1 Kelvin model.

N = dashpot constant
t =time

The viscoelastic response for the stress 6, in Figure 8.1 can be written

00=Ee+n% (8.3)

If stress G, is applied at time # =0 and remains constant thereafter, the
equation for strain at any time # can be found by solving the preceding
differential equation. Thus,

5 . .
€= ?"[1 —e "“‘W} +g e ke

where €, = strain at time t=0
If €, is taken to be zero

o= -] (8.4)

The nature of variation of strain with time represented by Equation 8.4
is shown in Figure 8.2. At time ¢ = oo, the strain will approach the maxi-
mum value of 6,/k. This is the strain that the spring alone would have
immediately undergone with the application of the same stress, 6, without
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Strain

£= %[1 = e‘(E)’\‘l}:]

L = Time

Figure 8.2 Strain-time diagram for the Kelvin model.

the dashpot having been attached to it. The distribution of stress at any
time ¢ between the spring and dashpot can be evaluated from Equations
8.3 and 8.4.

Portion of stress carried by the spring:

o, =ke=0, [1 - e“"’””]

(8.5)
Portion of stress carried by the dashpot:
de —(k M)t
Oy =MN—=0.¢
L (.6)

(Note: 6,=0,+0;.)

Figure 8.3 shows the variation of 6, and o, with time. At time ¢ =0, the
stress o, is totally carried by the dashpot. The share of stress carried by
the spring gradually increases with time. The stress carried by the dashpot
decreases at an equal rate. At time ¢ = e, the stress G, is carried entirely by
the spring.

With this in mind, we can now analyze the strain of a saturated clay layer
subjected to a stress increase (Figure 8.4a). Consider the case where a layer
of saturated clay of thickness of H, that is confined between two layers of
sand is being subjected to an instantaneous increase of total stress Ac. This
incremental total stress will be transmitted to the pore water and the soil
solids. This means that the total stress Ac will be divided in some propor-
tion between the effective stress and pore water pressure. The behavior of
the effective stress change will be similar to that of the spring in the Kelvin
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A
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—(k;
o= 0.0[1 —e { .’111:]
X Y » Time
T4 A

Y
Uﬂ
X = Time
o, +044

s

c,'0

. & + Time

Figure 8.3 Stress-time diagram for the spring and dashpot in Kelvin model.
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Ll

v Ground water table

T
a
()
~<

z z
A A
Aa
t=0
t=o0 t>0 H; t=0 t>0 t=oo
A >
Au Ao’

(b) (c)

Figure 8.4 Principles of consolidation: (a) soil profile; (b) variation of Au with depth;
(c) variation of Ac” with depth.

model, and the behavior of the pore water pressure change will be similar
to that of the dashpot. From the principle of effective stress,

AG = AG’ + Au (8.7)

where
Ac’ = increase in the effective stress
Au = increase in the pore water pressure

Since clay has very low permeability and water is incompressible as com-
pared to the soil skeleton, at time ¢ = 0 the entire incremental stress Ac will
be carried by water (Ac = Au) at all depths (Figure 8.4b). None will be car-
ried by the soil skeleton (that is, incremental effective stress Ac” = 0). This
is similar to the behavior of the Kelvin model where at time =0, 6,=0,
and 0,=0.
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After the application of incremental stress Ac to the clay layer, the water
in the void spaces will start to be squeezed out and will drain in both direc-
tions into the sand layers. By this process, the excess pore water pressure at
any depth in the clay layer will gradually reduce, and the stress carried by
the soil solids (effective stress) will increase. Thus, at time 0 < < o,

Ac = Ao’ + Au (A’ > 0 and Au < AG)

However, the magnitudes of Ac’ and Au at various depths will change,
depending on the minimum distance of the drainage path either to the
top or bottom sand layer. This is similar to the Kelvin model behavior
for 0 <t < o, where the stress carried by the spring increases with similar
reduction in the stress carried by the dashpot.

Theoretically, at time ¢ = o, the entire excess pore water pressure would
be dissipated by drainage from all points of the clay layer, thus giving Au = 0.
Now the total stress increase, Ac, will be carried by the soil structure. So,

AG = Ao’

Again, this is similar to the spring-dashpot behavior, for which at time
t =, 0,=0,and 6;=0.

This gradual process of drainage under additional load applications and
the associated transfer of excess pore water pressure to effective stress is the
cause of time-dependent settlement in the clay layer.

Several types of rheological models have been used by various investiga-
tors for better representation of stress-strain-time behavior of soils. The
Kelvin model only has been treated in this section to explain the fundamen-
tal concept of consolidation.

8.2 THEORY OF ONE-DIMENSIONAL
CONSOLIDATION

The theory for the time rate of one-dimensional consolidation was first
proposed by Terzaghi (1925). The underlying assumptions in the derivation
of the mathematical equations are as follows:

1. The clay layer is homogeneous.

2. The clay layer is saturated.

3. The compression of the soil layer is due to the change in volume only,
which in turn is due to the squeezing out of water from the void spaces.

. Darcy’s law is valid.

5. Deformation of soil occurs only in the direction of the load application.

N
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6. The coefficient of consolidation C, (Equation 8.22) is constant during
the consolidation.

With the assumptions described earlier, let us consider a clay layer of thick-
ness H, as shown in Figure 8.5. The layer is located between two highly
permeable sand layers. When the clay is subjected to an increase of verti-
cal pressure, Ao, the pore water pressure at any point A will increase by
u. Consider an elemental soil mass with a volume of dx-dy-dz at Aj; this
is similar to the one shown in Figure 7.1b. In the case of one-dimensional
consolidation, the flow of water into and out of the soil element is in one
direction only, that is, in the z direction. This means that g, q,, dq,, and dq,
in Figure 7.1b are equal to zero, and thus the rate of flow into and out of the
soil element can be given by Equations 7.3 and 7.6, respectively. So

(g. +dq.)— q. = rate of change of volume of soil element = aa—‘t/ (8.8)

where
V =dxdydz (8.9)

Substituting the right-hand sides of Equations 7.3 and 7.6 into the left-hand
side of Equation 8.8, we obtain
0*h oV
k——dx dy dz=— (8.10)
"

where k is the coefficient of permeability (k, in Equations 7.3 and 7.6).

Ao

A 4

Figure 8.5 Clay layer undergoing consolidation.
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However

p=" (8.11)
Yw

where y,, is the unit weight of water. Substitution of Equation 8.11 into 8.10
and rearranging gives

kw1 v

k %u _ v 8.12
Yo 02%  dx dy dz ot (8.12)

During consolidation, the rate of change of volume is equal to the rate of
change of the void volume. So

WV _adv, (8.13)
ot ot
where V, is the volume of voids in the soil element. However
V, =¢eV, (8.14)
where
V. is the volume of soil solids in the element, which is constant
e is the void ratio
So
aVv de 'V de dxdydzade
WV _yde_ V de_ ge 8.15
ot ot 1l+eot 1+e ot (8.15)
Substituting the aforementioned relation into Equation 8.12, we get
2
k 0°u_ 1 oe (8.16)

ywy_l+e$

The change in void ratio, de, is due to the increase of effective stress;
assuming that these are linearly related, then

de = —a,0(Ac’) (8.17)

where a,, is the coefficient of compressibility. Again, the increase of effective
stress is due to the decrease of excess pore water pressure, du. Hence

de = a,0u (8.18)
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Combining Equations 8.16 and 8.18 gives

k o°u _ a, ou_  Ou

R - o, 8.19
Yo 022 dteor ot 8.19)
where
m, = coefficient of volume compressibility = 1‘_’: (8.20)
e
Ju k  d*u 0*u
9 _ T =Cy 8.21
ot Y., 0% 0z° { )
where

C, = coefficient of consolidation = (8.22)

Ywity

Equation 8.21 is the basic differential equation of Terzaghi’s consolida-
tion theory and can be solved with proper boundary conditions. To solve
the equation, we assume # to be the product of two functions, that is, the
product of a function of z and a function of ¢, or

u = Fz)G(t) (8.23)
So
ou _ F(z)iG(t) = F(2)G'(t) (8.24)
ot ot
and
Pu 9> ,
# - a—zzF(z)G(t) = F'(2)G() (8.25)

From Equations 8.21, 8.24, and 8.25
Fz)G'(t) = C,F"(2)G(2)

or

F'z) _ G (8.26)
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The right-hand side of Equation 8.26 is a function of z only and is inde-
pendent of #; the left-hand side of the equation is a function of # only and is
independent of z. Therefore, they must be equal to a constant, say, -B2. So

F'(z) = ~B*F(z) (8.27)
A solution to Equation 8.27 can be given by
F(z) = AjcosBz + A, sin Bz (8.28)

where A, and A, are constants.
Again, the right-hand side of Equation 8.26 may be written as

G'(t) = -B*C,G(t) (8.29)
The solution to Equation 8.29 is given by
G(t) = A;s exp(—B*C,t) (8.30)
where A, is a constant. Combining Equations 8.23, 8.28, and 8.30

u = (A, cos Bz + A, sin Bz)A; exp(-B*C,t)

= (A4 cos Bz + As sin Bz)exp(—B*C,t) (8.31)
where
A=A A,
As=A A,

The constants in Equation 8.31 can be evaluated from the boundary
conditions, which are as follows:

1. At time ¢t = 0, # = , (initial excess pore water pressure at any depth)
2.u=0atz=0
3.u=0atz=H,=2H

Note that H is the length of the longest drainage path. In this case, which is
a two-way drainage condition (top and bottom of the clay layer), H is equal
to half the total thickness of the clay layer, H.,.

The second boundary condition dictates that A, = 0, and from the third
boundary condition we get

Assin2BH=0 or 2BH-=un
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where 7 is an integer. From the previous equation, a general solution of
Equation 8.31 can be given in the form

u—ZA sm—ex [—n Z T, ] (8.32)

where T, is the nondimensional time factor and is equal to C #/H>.
To satisfy the first boundary condition, we must have the coefficients of
A, such that

EA sin 7+ e (8.33)

Equation 8.33 is a Fourier sine series, and A, can be given by
A, u; sm—dz 8.34
- j (8.34)

Combining Equations 8.32 and 8.34

= ZH 22
u=z ;I ?!.u st—Hdz sszIt;exp[nZ:T"J (8.35)

So far, no assumptions have been made regarding the variation of #; with
the depth of the clay layer. Several possible types of variation for u; are
shown in Figure 8.6. Each case is considered later.

8.2.1 Constant u; with depth

If u; is constant with depth—that is, if #, = u,, (Figure 8.6a)—then, referring
to Equation 8.35

J.u sinn—nzd = 2u == (1-cosnm)
H nw

=uo
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Figure 8.6 Variation of u; with depth: (a) u; constant with depth (two-way drainage);
(b) u; constant with depth (drainage at top); (c) u; constant with depth (drain-
age at bottom); (d) linear variation of u; (two-way drainage); (e) sinusoidal
variation of u; (two-way drainage); (f) half sinusoidal variation of u; (two-way
drainage); (g) triangular variation of u; (two-way drainage); (h) triangular varia-
tion of u, (drainage at top)-base at bottomy; (i) triangular variation of u; (drainage
at bottom)-base at top; (j) triangular variation of u; (drainage at top)-base at
top; (k) triangular variation of u, (drainage at bottom)-base at bottom.
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So
~ 2u, %4 —n*n*T
= E —(1- )sin——— —_—2 8.36
u 2 mt( cosn )sm2 exp[ ) ( )

Note that the term 1 — cos #r in the previous equation is zero for cases when
n is even; therefore, u is also zero. For the nonzero terms, it is convenient to
substitute 7 = 27 + 1, where m1 is an integer. So, Equation 8.36 will now read

w=S 211 cos2m+ym]sin 2 IR
24 om+ 1)
{—(Zm +1)* 1T, }
X exp
4
or
"= Z%Sin%exp(—Mm) (8.37)

where M = (2m + 1)n/2. At a given time, the degree of consolidation at any
depth z is defined as

_ Excess pore water pressure dissipated

Initial excess pore water pressure

_wi—u_, u _AF_Ad

u; u; u; Uy

(8.38)

where Ac’ is the increase of effective stress at a depth z due to consolidation.
From Equations 8.37 and 8.38.

A N2 M e
U, =1 mZ(;Msm 1 SP(-MT,) (8.39)

Figure 8.7 shows the variation of U, with depth for various values of the
nondimensional time factor T,; these curves are called isochrones. Example
8.1 demonstrates the procedure for calculation of U, using Equation 8.39.

Example 8.1

Consider the case of an initial excess hydrostatic pore water that is
constant with depth, that is, #; = u, (Figure 8.6¢). For T, = 0.3, deter-
mine the degree of consolidation at a depth H/3 measured from the top
of the layer.
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Figure 8.7 Variation of U, with z/H and T,.

Solution

From Equation 8.39, for constant pore water pressure increase

M=o

_ 2 . Mz 2
U, —l—ngﬁsm?exp(—M T,)

Here, z = H/3, or z/H = 1/3, and M = 2m + 1)rn/2. We can now make
a table to calculate U,

l. zIH 1/3 1/3 1/3

2. T, 0.3 03 03

3.m 0 | 2

4. M n/2 3n/2 5r/2

5. Mz/H /6 /2 5n/6

6. 2IM 1.273 0.4244 0.2546

7. exp(-M?T,) 0.4770 0.00128 =0

8. sin(Mz/H) 0.5 1.0 0.5

9. (2/IM)[exp(-M?T,)sin(Mz/H)]  0.3036 0.0005 =0 Y =0.3041
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Using the value of 0.3041 calculated in step 9, the degree of consolida-
tion at depth H/3 is

Uy = 1 - 0.3041 = 0.6959 = 69.59%

Note that in the previous table we need not go beyond m = 2, since the
expression in step 9 is negligible for m > 3.

In most cases, however, we need to obtain the average degree of consoli-
dation for the entire layer. This is given by

H, H,
(1/H,) J' uidz—(llHt)J. wdz
Uy = 0 n 0 (8.40)

(1/H,) j ‘wdz

0

The average degree of consolidation is also the ratio of consolidation settle-
ment at any time to maximum consolidation settlement. Note, in this case,
that H, = 2H and u; = u,,.

Combining Equations 8.37 and 8.40

exp(-M*T,) (8.41)

Terzaghi suggested the following equations for U,, to approximate the
values obtained from Equation 8.41:

o 2
For Uy, =0%—53%: T,=[Ux" (8.42)
4\ 100

ForU,, =53%-100%: T, =1.781-0.933 [log(100-U,,%)] (8.43)

Sivaram and Swamee (1977) gave the following equation for U,, varying
from 0% to 100%:

U % (4T, /)"
= 8.44
100 [1+@T,/m** "7 (544
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or

(n/4)(U,, %/100)*
[1—(U,, %/100)°]"37

(8.45)

v =

Equations 8.44 and 8.45 give an error in T, of less than 1% for 0% < U,, <
90% and less than 3% for 90% < U,, < 100%. Table 8.1 gives the variation
of T, with U,, based on Equation 8.41.

It must be pointed out that, if we have a situation of one-way drainage
as shown in Figure 8.6b and ¢, Equation 8.41 would still be valid. Note,
however, that the length of the drainage path is equal to the total thickness
of the clay layer.

8.2.2 Linear variation of u;

The linear variation of the initial excess pore water pressure, as shown in
Figure 8.6d, may be written as

H-z

(8.46)

u, =uy— U

Substitution of the earlier relation for #; into Equation 8.35 yields

n=ce ZH _ 22
u= ;{; J). (uo —uy Hszsin’;;;dz sinzgexp[n::n’j (8.47)

The average degree of consolidation can be obtained by solving Equations
8.40 and 8.47:

exp(-M>T,) (8.47a)

This is identical to Equation 8.41, which was for the case where the excess
pore water pressure is constant with depth, and so the same values as given
in Table 8.1 can be used.

8.2.3 Sinusoidal variation of u;

Sinusoidal variation (Figure 8.6¢€) can be represented by the equation

. T2
u; = Uy Sin ( )
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Table 8.1 Variation of T, with U,,

Value of T,

u; = uy = const (Figure 8.6a through c)

Uy =up —u ( H- Z] (Figure 8.6d) U; = up sin = (Figure 8.6€)
U,(%) 2H
0 0 0
I 0.00008 0.0041
2 0.0003 0.0082
3 0.00071 0.0123
4 0.00126 0.0165
5 0.00196 0.0208
6 0.00283 0.0251
7 0.00385 0.0294
8 0.00502 0.0338
9 0.00636 0.0382
10 0.00785 0.0427
I 0.0095 0.0472
12 0.0113 0.0518
13 0.0133 0.0564
14 0.0154 0.0611
I5 0.0177 0.0659
16 0.0201 0.0707
17 0.0227 0.0755
18 0.0254 0.0804
19 0.0283 0.0854
20 0.0314 0.0904
21 0.0346 0.0955
22 0.0380 0.101
23 0.0415 0.106
24 0.0452 0.1
25 0.0491 0.117
26 0.0531 0.122
27 0.0572 0.128
28 0.0615 0.133
29 0.0660 0.139
30 0.0707 0.145
3| 0.0754 0.150
32 0.0803 0.156
33 0.0855 0.162
34 0.0907 0.168
35 0.0962 0.175

(Continued)
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Table 8.1 (Continued) Variation of T, with U,,
Value of T,

u; = uy = const (Figure 8.6a through c)

Ui =Uo — U ( H- Zj (Figure 8.6d) u; = Ug sin 22 (Figure 8.6¢e)
U,(%) 2H
36 0.102 0.181
37 0.107 0.187
38 0.113 0.194
39 0.119 0.200
40 0.126 0.207
41 0.132 0.214
42 0.138 0.221
43 0.145 0.228
44 0.152 0.235
45 0.159 0.242
46 0.166 0.250
47 0.173 0.257
48 0.181 0.265
49 0.188 0.273
50 0.196 0.281
51 0.204 0.289
52 0.212 0.297
53 0.221 0.306
54 0.230 0.315
55 0.239 0.324
56 0.248 0.333
57 0.257 0.342
58 0.267 0.352
59 0.276 0.361
60 0.286 0.371
6l 0.297 0.382
62 0.307 0.392
63 0.318 0.403
64 0.329 0414
65 0.304 0.425
66 0.352 0.437
67 0.364 0.449
68 0.377 0.462
69 0.390 0.475
70 0.403 0.488
71 0417 0.502

(Continued)
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Table 8.1 (Continued) Variation of T, with U,,
Value of T,

u; = uy = const (Figure 8.6a through c)

Ui =Uo — U ( H- Zj (Figure 8.6d) u; = Ug sin 22 (Figure 8.6¢e)
U,(%) 2H
72 0.431 0.516
73 0.446 0.531
74 0.461 0.546
75 0.477 0.562
76 0.493 0.578
77 0.511 0.600
78 0.529 0.614
79 0.547 0.632
80 0.567 0.652
8l 0.588 0.673
82 0.610 0.695
83 0.633 0.718
84 0.658 0.743
85 0.684 0.769
86 0.712 0.797
87 0.742 0.827
88 0.774 0.859
89 0.809 0.894
90 0.848 0.933
9l 0.891 0.976
92 0.938 1.023
93 0.993 1.078
94 1.055 1.140
95 1.129 1.214
96 1.219 1.304
97 1.336 1.420
98 1.500 1.585
99 1.781 1.866
100 oo 0o

The solution for the average degree of consolidation for this type of
excess pore water pressure distribution is of the form

a2
U, zl—exp[ “4T“] (8.49)

The variation of U,, for various values of T, is given in Table 8.1.
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8.2.4 Other types of pore water pressure variation

Figure 8.6f through k shows several other types of pore water pressure
variation. Table 8.2 gives the relationships for the initial excess pore water
pressure variation (#;) and the boundary conditions. These could be solved
to provide the variation of U,, with T, and they are shown in Figure 8.8.

Example 8.2

Owing to certain loading conditions, the excess pore water pressure in
a clay layer (drained at top and bottom) increased in the manner shown
in Figure 8.9a. For a time factor T, = 0.3, calculate the average degree
of consolidation.

Solution

The excess pore water pressure diagram shown in Figure 8.9a can be
expressed as the difference of two diagrams, as shown in Figure 8.9b
and c. The excess pore water pressure diagram in Figure 8.9b shows a
case where u; varies linearly with depth. Figure 8.9c can be approxi-
mated as a sinusoidal variation.

Table 8.2 Relationships for u; and boundary conditions

Figure u; Boundary conditions
8.6f U cos:—’: Timet=0,u=u,
u=0atz=2H
u=0atz=0
8.6g Forz<H, uﬁoz t=0,u=uy
u=0atz=2H
For z > H, 2uo—“ﬁ°z u=0atz=0
8.6h uo—uﬁoz t=0,u=uy,
u=0atz=H
u=usatz=0
8.6i "’_‘;z t=0u=u,
u=ugatz=H
u=0atz=0
8.6 l;_‘;z t=0,u=uy,
u=ujatz=H
u=0atz=0
8.6k uo—”ﬁ"z t=0,u=uy,
u=0atz=H

u=uyatz=0
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Figure 8.8 Variation of U,, with T for initial excess pore water pressure diagrams shown
in Figure 8.6.

The area of the diagram in Figure 8.9b is
A= 6(;)(15+5) =60 kN/m
The area of the diagram in Figure 8.9¢c is
2=6 6
A = ;Zsin;—;dz = ‘(!‘ZSinT?dz

6
= (2)[6)[—Cosml =12 012 2% _7 64 kN/m
4 6 b4 b
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Figure 8.9 Calculation of average degree of consolidation (T, = 0.3): (2) soil profile and

excess pore water pressure; (b) excess pore water pressure as a linear distri-
bution; (c) excess pore water pressure as a sinusoidal distribution.

The average degree of consolidation can now be calculated as follows:

‘For Figure 8.9b ‘ ’For Figure 8.9¢ ‘
v )
UT, =03 = YuT=034-Us(T, =034,
A -A,
T 0

For Figure 8.9a ‘Net area of Figure 8.9a

From Table 8.1 for T, = 0.3, U,, = 61% for area A;; U,, = 52.3% for
area A,.
So

61(60)—(7.64)52.3 _ 3260.43

Uav =
60-7.64 52.36

=62.3%
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Example 8.3

Due to a certain type of loading condition, the initial excess pore water
pressure distribution in a 4-m-thick layer is as shown in Figure 8.10.
Given C,=0.3 mm?/s. Determine the degree of consolidation after
100 days of load application.

Solution

From Figure 8.10,
Area of rectangle:

A; =4x%x100 =400 kN/m

Area of half sinusoidal wave:

=+ - ( qz
A, = J 80sin dz=203.6 kN/m
2= 2H

=0 t

Gt _ (0.3)100x24x60x60) _ 0.648

T, =
H? (4><1000)2

2

From Table 8.1, for area A,, U,,;,=83.5%. From Figure 8.8, for
area A, (see Figure 8.6f), U, = 82.5%.

ZA
100 kN/m?® | 80 kN/m?
.".'-'} S ’l ,5.5“fj_ : :
| |
Clay !
i
1
|
He=4m .
| Sinusoidal
I —
: T
]
1
1
y i
& AT gana T

Figure 8.10 Variation of initial excess pore water pressure with depth in a clay layer.
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U. = AU + AZUaV(Z)
av — - < <

A1 + AZ
_ (400)(83.5)+(203.6)(82.5) _ o3 50,
400+203.6
Example 8.4

A 25-mm total consolidation settlement of the two clay layers shown
in Figure 8.11 is expected owing to the application of the uniform
surcharge g. Find the duration after the load application at which
12.5 mm of total settlement would take place.

Solution
U = 12.5 mm — 509
“7 25mm ?
(3m + 15[1’1)(05) = 3Uv(l) + 1.5UV(2) (a)
2 .
Tv(l) _ Cv(lz)t _ (0.13 cm /mlzn)t _ 5.78}(1076 ;
Hj (300 cm)
2
2 .
Ty = CV(zz)t _(0.13 cm /rmzn)t —9231x10"
H; (150 cm)
2

Clay
2Hy=3m €, = 0.13 cm%/min

‘m: Sand
Clay
C, = 0.13 cm*/min

Figure 8.1 Consolidation settlement of two clay layers.
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Hence,

Ty = 4T (b)

Now, trial and error will have to be used. Let T,y = 0.1125. From
Equation (b), Ty5) = 0.45. From Table 8.1, U,(;) = 0.385 and U,;) = 0.73.

Equation (a) gives 2.25 = 3U,(y) + 1.5U, ). Substituting the values of
U, 4 and Uy, in Equation (a) we obtain,

3U, ) +1.5U,) = 3(0.385)+1.5(0.73) = 2.25 m—-O.K.
Ty =5.78x107 ¢

PO 1 = 0'112576 =19,463 min = 13.5days
5.78x107°  5.78x10

Example 8.5

Starting from Equation 8.47a, solve the average degree of consolida-
tion for linearly varying initial excess pore water pressure distribution
for a clay layer with two-way drainage for T, = 0.6 (Figure 8.6d).

Solution

From Equation 8.41:

M=co

U, =1- %exp(—Mva)

m=0

Now, the following table can be prepared.

T, 0.6 0.6 0.6 0.6
m 0 I 2 3
M=Q@m+)(m2)  n2 3n2 sn2 72
UM 0811 0.09 032 0017
e T 0228  ojexi0® =0 =0
Q2/M?) e M 0.185 =0 =0 =0

Y2/ M) e ™ =0.185

U, =1-0.185=0.815=81.5%
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Example 8.6

A uniform surcharge of g = 100 kN/m? is applied on the ground sur-
face as shown in Figure 8.12a.

a. Determine the initial excess pore water pressure distribution in
the clay layer.

b. Plot the distribution of the excess pore water pressure with depth
in the clay layer at a time for which T, = 0.5.

Solution

Part a: The initial excess pore water pressure will be 100 kN/m? and
will be the same throughout the clay layer (Figure 8.12a).

Sand
G.W.T.

|||<

. Sand

cl
R «— ;=100 kKN/m? )

wnt
3

5m=H=H,

(a) Rock
A
Lo T T T T
og L Tu=05 i
0.6 |- _ E
= N
w
04 —
0.2 -
0 I I I I 0 I I >
0 02 04 06 08 1.0 0 20 40
(b) u, (c) u (KN/m?)

Figure 8.12 Excess pore water pressure distribution: (a) soil profile and plot of initial
excess pore water pressure with depth; (b) plot of U, with z/H at T, = 0.5;
(c) plot of u with zat T, = 0.5.
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Part b: From Equation 8.38, U, = 1-u/u;, or u = u;(1 - U,). For T, = 0.5,
the values of U, can be obtained from the top half of Figure 8.7 as
shown in Figure 8.12b, and then the following table can be prepared:

zIH z(m) u u=u(l - U,) (kNIm?)

z

0 0 0.63 37
0.2 | 0.65 35
0.4 2 0.71 29
0.6 3 0.78 22
0.8 4 0.89 I
1.0 5 | 0

Figure 8.12c shows the variation of excess pore water pressure with

depth.

Example 8.7

Refer to Figure 8.6e. For the sinusoidal initial excess pore water pres-
sure distribution, given

u; = 50sin T2 N/m?
2H

Assume H; = 2H = 5 m. Calculate the excess pore water pressure at the
midheight of the clay layer for T, = 0.2, 0.4, 0.6, and 0.8.

Solution

From Equation 8.35

P 2H 5
M:Z ;!uisin%dz [sinrzm;jexp[ nIT”]

n=1

term A

Let us evaluate the term A
2H

A=i I u; sinn—mdz
H d 2H

or

2H
A =i J 50sin == sin "™ 4,
H d 2H 2H
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Note that the integral mentioned earlier is zero if # # 1, and so the only
nonzero term is obtained when 7 = 1. Therefore

0_[ g @H 50

Since only for n = 1 is A not zero

2
u—SOsm—zexp uaily
2H 4

At the midheight of the clay layer, z = H, and so

2 2
u:505in£exp m T, =50exp a1
2 4 4

The values of the excess pore water pressure are tabulated as follows:

T
T, u=50 exp( )(kN/m )
0.2 30.52
0.4 18.64
0.6 11.38
0.8 6.95

8.3 DEGREE OF CONSOLIDATION UNDER
TIME-DEPENDENT LOADING

Olson (1977) presented a mathematical solution for one-dimensional consoli-
dation due to a single ramp load. Olson’s solution can be explained with the
help of Figure 8.13, in which a clay layer is drained at the top and at the bot-
tom (H is the drainage distance). A uniformly distributed load g is applied at
the ground surface. Note that g is a function of time, as shown in Figure 8.13b.

The expression for the excess pore water pressure for the case where
u; = u is given in Equation 8.37 is

u —2—sm—exp( M*T,)

where T, = C t/H>.
As stated earlier, the applied load is a function of time:

q=1(t) (8.50)

where ¢, is the time of application of any load.
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Figure 8.13 One-dimensional consolidation due to single ramp load: (a) soil profile;
(b) ramp loading; (c) variation of U,, (%) with T, and T_. [After Olson, R. E.,
J. Geotech. Eng. Div., ASCE, 103(GTl), 55, 1977]

For a differential load dg applied at time #,, the instantaneous pore pres-
sure increase will be du; = dq. At time ¢, the remaining excess pore water
pressure du at a depth z can be given by the expression

(8.51)
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The average degree of consolidation can be defined as

H;

U - 0gc _(1/H‘)J0 udz _ Settlement at time ¢

qc ~ Settlement at time # = oo (8.52)

where ag. is the total load per unit area applied at the time of the analy-
sis. The settlement at time ¢ = o is, of course, the ultimate settlement.
Note that the term g, in the denominator of Equation 8.52 is equal to
the instantaneous excess pore water pressure (#; = ¢.) that might have
been generated throughout the clay layer had the stress g, been applied
instantaneously.

Proper integration of Equations 8.51 and 8.52 gives the following:

For T, < T,
0= D gt i - epMTL) (8.53)
and
T, 20 1 2
Uy = 1= 3 e ll=expl-MT, 54
I { T 2 M4[ exp( )]} (8.54)
For T, > T,
"= 2 Aile [exp(MzTc)—1]sin%exp(—M2Tv) (8.55)
and
U _1_£m:wi[ex (MZT)—l]CX (—MZT) (8 56)
MU M T P '
where
Cyt.
T.- (8.57)

Figure 8.13c shows the plot of U,, against T, for various values of T..
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Example 8.8

Based on one-dimensional consolidation test results on a clay, the
coefficient of consolidation for a given pressure range was obtained
as 8 x 10~3 mm?/s. In the field, there is a 2 m-thick layer of the same
clay with two-way drainage. Based on the assumption that a uniform
surcharge of 70 kN/m? was to be applied instantaneously, the total
consolidation settlement was estimated to be 150 mm. However, dur-
ing the construction, the loading was gradual; the resulting surcharge
can be approximated as

q (kN/m?) = Z—gt (days) fort <60 days

and
q=70kN/m* for ¢ >60 days

Estimate the settlement at # = 30 and 120 days.

Solution

_ Gute

(8.57)

Now, ¢, = 60 days = 60 x 24 x 60 x 60 s; also, H,=2 m = 2H (two-way
drainage), and so H=1 m = 1000 mm. Hence

(8x107%)(60x24x60x60)

T. = 3 =0.0414
(1000)
At ¢ =30 days
-3
T, = Cut _ (8x107)(30x24x60x60) ~0.0207

H? (1000)?

From Figure 8.13¢, for T, = 0.0207 and T, = 0.0414, U,, ~ 5%. So
Settlement = (0.05)(150) = 7.5 mm

At ¢ =120 days

(8x107%)(120x24x60x60)
(1000)*

T, = =0.083

From Figure 8.13c for T, = 0.083 and T. = 0.0414, U,, ~ 27%. So

Settlement = (0.27)(150) = 40.5 mm
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8.3.1 Solution of Hanna et al. (2013)
and Sivakugan et al. (2014)

Hanna et al. (2013) and Sivakugan et al. (2014) have shown that, during
ramp loading (i.e., t <¢. in Figure 8.13b), the average degree of consolida-
tion can be expressed as

1 2 -
U, = 1_TV{Z(M4)(1_6 M )} (8.58)

m=0

The variation of U,, with T, is shown in Figure 8.14. Also shown in the
figure are the U,, — T, variations for the instantaneous loading (Equation
8.41), which is quite different.

Denoting the degree of consolidation at the end of construction (i.e., at
t<t.) as U, the remaining excess pore water pressure can be considered

Ty
Ol] 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
e Ramp loading
10 = === [nstantateous loading#
)
1
204
\ #Uniform or linear inital excess
1 pore water pressure distribution
30%
E\ \
0 —A—N
\
‘\
= 50 -\ N
\ \
60 \ <
r \
[ \
70 ~ o
E \\ \\
80 [ \.‘ "-u.._____h-
[ <
i ~
90 ~
~
S
h--h‘
100 i T P

Figure 8.14 Plot of U,, versus T, (Equations 8.58 and 8.41).
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as being applied instantaneously at time #.. The average degree of consoli-
dation at time ¢ (>¢_) can then be computed as

Uaviy = Uavio) + [1 = Unvio) U ave—1) (8.59)
where U,y is the average degree of consolidation for duration of ¢ — ¢,

assuming instantaneous loading at ..

Example 8.9
Solve Example 8.8 using the procedure of Hanna et al. (2013) and
Sivakugan et al. (2014).

Solution

Given t.= 60 days.
For =30 days: Equation 8.58 can be used.

Cit  (8x107 mm?2/s)(30 x 24 x 60 x 60)

T, =—5= 5 =0.0207
H 2000 mm
2
From Figure 8.14, for ramp loading, U,, = 5%. So,
Settlement = (0.05)(150) = 7.52 mm
For t=120 days: At time ¢ =t_, the magnitude of
-3 2
T = Cvzf2C _ (8x10~ mm /s)(60><2;¥><60><60) —0.0414
H 2000 mm
2
From Figure 8.14, for ramp loading, U, = 12%.
At =120 days, t —¢.=120 - 60 = 60 days. So
-3
Tyeo, = Cvt(tz_tc) _ (8x107)(60% 242>< 60x60) _ 0.0414
H 2000
2

For instantaneous loading with T, = 0.0414, Figure 8.14 gives
Uvery = 20%.
From Equation 8.59,

Uaviy = Uavio) +[1 = Uay(0) WUav(e—1o)
=0.12+(1-0.12)(0.20) = 0.296 = 29.6%

Settlement = (150)(0.296) = 44.4 mm
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8.4 NUMERICAL SOLUTION FOR ONE-DIMENSIONAL
CONSOLIDATION

8.4.1 Finite difference solution

The principles of finite difference solutions were introduced in Section 7.8.
In this section, we will consider the finite difference solution for one-
dimensional consolidation, starting from the basic differential equation of
Terzaghi’s consolidation theory:

o _ 0’u (8.60)
Jt " 9z? )

Let uyg, tg, and zg be any arbitrary reference excess pore water pressure,
time, and distance, respectively. From these, we can define the following
nondimensional terms:

Nondimensional excess pore water pressure: # = n (8.61)
Uugr
Nondimensional time: f = ti (8.62)
R
Nondimensional depth: z = < (8.63)
<R

From Equations 8.61, 8.63, and the left-hand side of Equation 8.60

Ju _ uy 91
ot tg Ot (8.64)

Similarly, from Equations 8.61, 8.63, and the right-hand side of
Equation 8.60

azu Uur 821/7
Co—5=C,—5— .
0z* 2 02° (8.63)

From Equations 8.64 and 8.65

Ot _ - un 0
IR ot v Z}Z( 852
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or

1du C, d*u
P Tl (8.66)

If we adopt the reference time in such a way that #y =z3/C,, then
Equation 8.66 will be of the form

du _d'u

du _d%u 8.67

ot o7’ (8.67)
The left-hand side of Equation 8.67 can be written as

ou 1, _

5 = s o o) (8.68)

where 1,7 and #y;,,; are the nondimensional pore water pressures at
point 0 (Figure 8.15a) at nondimensional times ¢ and ¢ + Az. Again, similar
to Equation 7.56:

o’u 1 _
# = @(741,? +us; —2u7) (8.69)

Equating the right sides of Equations 8.68 and 8.69 gives

1 _ _ _ _
—— (Mo 7ear —Uo7) = —— (7 +us7 —2up 7
A7 ( 0,7 +A7 O,z) (AE)Z ( 1,7 3,1 0,1)
or
_ o _ _
Uogiar = ——5 (M7 U3z —2uy7) + o5 (8.70)
Az)

For Equation 8.70 to converge, At and Az must be chosen such that A7/(AZ)?
is less than 0.5.

When solving for pore water pressure at the interface of a clay layer
and an impervious layer, Equation 8.70 can be used. However, we need
to take point 3 as the mirror image of point 1 (Figure 8.15b); thus i, ; = #; 7.
So, Equation 8.70 becomes

_ At _ _ _
Uosiar = (02 (uyz —2up7) + to 7 (8.71)




384 Advanced Soil Mechanics

1 1
Az Az Clay
0 0
2 4 2 4
Impervious
Az Az layer
(a) 3 (b) 3
1
Layer 1
AZ Cop ki

0 Interface

AZ Layer 2
Cuz' k2

(c) 3

Figure 8.15 Numerical solution for consolidation: (a) derivation of Equation 8.70;
(b) derivation of Equation 8.71; (c) derivation of Equation 8.75.

8.4.2 Consolidation in a layered soil

It is not always possible to develop a closed-form solution for consolida-
tion in layered soils. There are several variables involved, such as different
coefficients of permeability, the thickness of layers, and different values of
coefficient of consolidation. Figure 8.16 shows the nature of the degree of
consolidation of a two-layered soil.

In view of the earlier description, numerical solutions provide a better
approach. If we are involved with the calculation of excess pore water
pressure at the interface of two different types (i.e., different values of C,)
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Pervious
T Clay layer 1
H/2 3
Interface Co)
H,=H
Clay layer 2
H/2 ko ="k,
Cu(2)= %Cv(l)
(a) Impervious
1.0 | |
CU(l)t
=T
T,=0.08
0.16
T oo l____ AL /L]
N 0.5
0.31
0.62 |
0.94
1.25
1.88
o | | | |
0 0.2 0.4 0.6 0.8 1.0
(b) u,

Figure 8.16 Degree of consolidation in two-layered soil: (a) soil profile; (b) variation
of U, with z/H and T,. [After Luscher, U., J. Soil Mech. Found. Div., ASCE,
91(SM1), 190, 1965.]

of clayey soils, Equation 8.70 will have to be modified to some extent.
Referring to Figure 8.15c, this can be achieved as follows (Scott, 1963).
From Equation 8.21

kdu_, o’u
C, ot 2z*
T T

Change  Difference between
in volume the rate of flow
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Based on the derivations of Equation 7.76

8214 1 kl kZ Zkl Zkz
%W 2 ‘ —2uy, _
ot 2 LAz)z Az }(/« ik Tk, T (8.72)
where
k, and k, are the coefficients of permeability in layers 1 and 2,

respectively
uy,, Uy ,, and u;, are the excess pore water pressures at time ¢ for points
0, 1, and 3, respectively

Also, the average volume change for the element at the boundary is

k 0 1( % k |1
C\)81:=2(C:, + Cjz ]N(MO,HN _uo,t> (8.73)

where #,, and u,,,,, are the excess pore water pressures at point 0 at times ¢
and t + At, respectively. Equating the right-hand sides of Equations 8.72
and 8.73, we get

[kl + kz jl(uO,HAz_uo,z)

C, G, |At
1 2k 2k
= (b +k ! = 2
(Az)z( 1 2>[k1+/€2 U, ki +k, Uz, MO,tj
or
LN itk ke L ke )
Orrat (A Z)2 kl/C\,l + kz /C:U2 kl + kz b kl + kz > o 0t
or
AtC, 1+k,/k 2k 2k
U ear = ] 2 1 ( ! 1,0t 2 us, 2740,1& J"" Uy ;

(A2P 1+ (kalk))(Co /C) kit o ™ Ry + ko

Assuming 1/tg = C,, /zg and combining Equations 8.61 through 8.63 and
8.74, we get

o thik AT
ST T 4 (ko /ey )(Coy /Cy) (AZ)
2k, _ 2k, _ _ _
X(kl +1/€z Uz & +2/€2 us, —2140,; J+ Uyz (8.75)
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Example 8.10

A uniform surcharge of g = 150 kN/m? is applied at the ground surface
of the soil profile shown in Figure 8.17a. Using the numerical method,
determine the distribution of excess pore water pressure for the clay
layers after 10 days of load application.

Solution

Since this is a uniform surcharge, the excess pore water pressure
immediately after the load application will be 150 kN/m? through-
out the clay layers. However, owing to the drainage conditions, the
excess pore water pressures at the top of layer 1 and bottom of layer 2
will immediately become zero. Now, let zg = 8 m and uy = 1.5 kN/m?2.

So,Z7=(8m)/(8 m) =1 and &

2 025

4 0.50

6 075

(150 kN/m?)/(1.5 kN/m?) = 100.

Clay 1
ky=2.8 x 107 mm/s
C,,=0.26 m*/day

Clay 2
ky=2x10" mm/s

=0.38 m%/day

T G T

Time (days)
0 : o1
0 0 0
100 67.5 56.13
100 100 70.98 Interface
100 52.5 50.12
0 0 0

z(m) z

Figure 8.17 Numerical solution for consolidation in layered soil: (a) soil profile; (b) varia-
tion of pore water pressure with depth and time.
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Figure 8.17b shows the distribution of # at time ¢ = 0; note that
AZ =2/8 =0.25. Now

2 2
.Y,
=R F-bt AL_Z%R = =

C, tg At C, 2R

Let At = 5 days for both layers. So, for layer 1

Ay = DA 02600 _ 5503
2R 8
Aty _0:0203 _ 355 (<0.5)
(AZ) 0.25
For layer 2
Aty = G0 _0385) _ 4 6597
2R 8
Al _ 00297 _ g 475 (<0.5)
Az 025
For ¢ = 5 days
Atz =0
ﬁO,?+At =
Atz =0.25
UpFint = (A?l)z(ﬁl,? +us; —2uy7)+ Uy ;
=0.325[0+100-2(100)]+100=67.5 (8.70)

At 7 = 0.5 (Note: this is the boundary of two layers, so we will use
Equation 8.75)

1 + kz //21 A?(l)
1+ (ky/ky)(C,, ICy,) (AZ)

Uy trar =

N LT T i
k1+/€2 1, k1+/€2 3,t 0,1 0,t

~ 1+(2/2.8)
1+(2%0.26)/(2.8x0.38)

(0.325)

(100) +

v 2x2.8 2x2
2+2.8 2+2.8

(100) —2(100)} +100
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or
Uy 7,ar = (1.152)(0.325)(116.67 +83.33-200)+100 =100
Atz =0.75
UoiaT = %(ﬁl,? +uzg—2up)+ gz
=0.475[100+0-2(100)]+100 = 52.5
Atz=1.0
Uyz.ar=0

For ¢ = 10 days

Atz =0
Ug7ar =0
Atz =0.25

o a7 =0.325[0+100-2(67.5)]+67.5=56.13
Atz=0.5

2x2.8 (67.5)+ 2x2
2+2.8 2+2.8

ﬁo,;+A;=(1.152)(0.325)|: (52.5)—2(100)}+100

=(1.152)(0.325)(78.75 +43.75 - 200) + 100 = 70.98

Atz =0.75

ioroar = 0.475[100 +0 — 2(52.5)]+52.5 = 50.12
Atz=1.0

ZE

The variation of the nondimensional excess pore water pressure is
shown in Figure 8.17b. Knowing u = (#)(ug) = # (1.5) kN/m?, we can
plot the variation of # with depth.

Example 8.11

A uniform surcharge of 100 kIN/m? is applied to the ground surface of
a soil profile, as shown in Figure 8.18. Determine the distribution of
the excess pore water pressure in the 3-m-thick clay layer after 1 year
of load application. Use the numerical method of calculation given in
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Uniform surcharge
100 kN/m?

N T N N

C,=0.91 m?/yr

Sand

Figure 8.18 Uniform surcharge on the surface of a soil profile.

Section 8.4. Also calculate the average degree of consolidation at that
time using the above results.

Solution
Let 2 =3 m; Az=0.75 m; Az = 0.75/3=0.25; At = 3 months
Let ug =1 kIN/m?

AT = CVZAt _ [0.91 ><3(3/12)} 0.0
ZR 3

At 0025 42 05-—OK.

Az (0.257

From Equation 8.70,

_ A _ _ _ _
Ugtint = ooy (Mg U5 + 20 7) + g5
i) (Az) > i) i) £

The distribution of # with time and z is shown in Figure 8.19.

ug

{
(100x3)—[(29.6 +41.12+29.6)](1)(0.75)
100x3

U, = =74.9%
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Time (months)

o2 3 6 9 120
0 0 0 0
0.25 190 60 52 37.6 29.6
0.50 1100 100 68 55.2 41.12
0.75}100 60 52 37.6 29.6
100> g 0 0 0
z

Figure 8.19 Variation of nondimensional pore water pressure with Z and time.

Example 8.12

For Example 8.10, assume that the surcharge g is applied gradually.
The relation between time and g is shown in Figure 8.20a. Using the
numerical method, determine the distribution of excess pore water
pressure after 15 days from the start of loading.

Solution
As mentioned earlier, in Example 8.10, zz = 8 m, u#y = 1.5 kIN/m?. For
At = 5 days

Al _g305 Al _g475

(Az) Az)

The continuous loading can be divided into step loads such as
60 kN/m? from 0 to 10 days and an added 90 kN/m? from the tenth
day on. This is shown by dashed lines in Figure 8.20a.

At ¢ =0 days

z2=0 u=0

2=0.25 u=60/1.5=40
z2=0.5 u=40
z2=0.75 u=40

z=1 u=0
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A
250
200
&
£ 150
Z, |
4 |
= 100 |
|
L
50
0 I I I I I >
5 10 15 20 25
(a) Time (days)
Time (days)
0 5 10 15
2
0 0 0 0 u (kN/m?)
0 0 >
22.45
60
57.6
9 0.25 40 27 8245 576 | N 86.4
28.4
60
4 0.50 40 40 88.4 82 | 124.8
20.05
60
40 21 80.05 46.0
6 0/55—m8M =2 ————— %90
g 1000 0 0 0
z(m) Zz

b)

Figure 8.20 Numerical solution for ramp loading: (a) ramp loading; (b) variation of pore
water pressure with depth and time.

Att =35 days
Atz=0

u=0
Atz =0.25, from Equation 8.70

o rar = 0.325[0 + 40 = 2(40)] + 40 = 27
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Atz =0.5, from Equation 8.75

ty7.ar =(1.532)(0.325)

x| 2228 (40)+ 2X2_(40)-2(40) |+ 40 = 40
2+2.8 2+2.8

Atz = 0.75, from Equation 8.70

Ty 1.a7 = 0.475[40 + 0 — 2(40)] + 40 = 21
Atz=1

ZE

At ¢t =10 days
Atz =0

Atz =0.25, from Equation 8.70
Tl o7 = 0.325[0 + 40 — 2(27)] + 27 = 22.45

At this point, a new load of 90 kIN/m? is added, so # will increase by an
amount 90/1.5 = 60. The new 7 5, 7 is 60 + 22.45 = 82.45. Atz = 0.5,
from Equation 8.75

y74ar =(1.152)(0.325)

w| 2228 57y 2X2 91y _2140) |+ 40 = 28.4
2+2.8 2+2.8

New # 7,07 = 28.4 + 60 = 88.4
Atz = 0.75, from Equation 8.70
o 7,a7 = 0.475[40 + 0 - 2(21)]+ 21 = 20.05

New 77,57 = 60 + 20.05 = 80.05

At =15 days
Atz=0

u=0
Atz =0.25
Uo7 = 0.325[0 + 88.4 - 2(82.45)] + 82.45 = 57.6
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Atz=0.5

y74ar =(1.152)(0.325)

(82.45)+
2+2.8 2+2.8

X[ZXZ-S 2x2 (80.05)—2(88.4)}+88.4:83.2

Atz =0.75

o 7oar = 0.475[88.4 + 0 — 2(80.05)]+ 80.05 = 46.0
Atz =1

u=0

The distribution of excess pore water pressure is shown in Figure 8.20b.

8.5 STANDARD ONE-DIMENSIONAL CONSOLIDATION
TEST AND INTERPRETATION

The standard one-dimensional consolidation test is usually carried out
on saturated specimens about 25.4 mm thick and 63.5 mm in diameter
(Figure 8.21). The soil specimen is kept inside a metal ring, with a porous
stone at the top and another at the bottom. The load P on the specimen is
applied through a lever arm, and the compression of the specimen is mea-
sured by a micrometer dial gauge. The load is usually doubled every 24 h.
The specimen is kept under water throughout the test.

For each load increment, the specimen deformation and the correspond-
ing time ¢ are plotted on semilogarithmic graph paper. Figure 8.22a shows a

Micrometer
dial gauge @ Load

A

<177 Porous stone 1]

Soil Brass
specimen ring

Figure 8.21 Consolidometer.
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Sample deformation

<+—

» Time (log scale)

—
o
=

»
»

Void ratio, e

» o (logscale)

(b)

Figure 8.22 (a) Typical specimen deformation versus log-of-time plot for a given
load increment and (b) typical e versus log ¢’ plot showing procedure for
determination of o, and C..

typical deformation versus log ¢ graph. The graph consists of three distinct
parts:

1. Upper curved portion (stage I). This is mainly the result of precom-
pression of the specimen.

2. A straight-line portion (stage II). This is referred to as primary con-
solidation. At the end of the primary consolidation, the excess pore
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water pressure generated by the incremental loading is dissipated to a
large extent.

3. A lower straight-line portion (stage III). This is called secondary
consolidation. During this stage, the specimen undergoes small
deformation with time. In fact, there must be immeasurably small
excess pore water pressure in the specimen during secondary
consolidation.

Note that at the end of the test, for each incremental loading, the stress on
the specimen is the effective stress 6’. Once the specific gravity of the soil
solids, the initial specimen dimensions, and the specimen deformation at
the end of each load have been determined, the corresponding void ratio
can be calculated. A typical void ratio versus effective pressure relation
plotted on semilogarithmic graph paper is shown in Figure 8.22b.

8.5.1 Preconsolidation pressure

In the typical e versus log ¢’ plot shown in Figure 8.22b, it can be seen
that the upper part is curved; however, at higher pressures, ¢ and log ¢’
bear a linear relation. The upper part is curved because when the soil
specimen was obtained from the field, it was subjected to a certain maxi-
mum effective pressure. During the process of soil exploration, the pres-
sure is released. In the laboratory, when the soil specimen is loaded, it
will show relatively small decrease of void ratio with load up to the max-
imum effective stress to which the soil was subjected in the past. This is
represented by the upper curved portion in Figure 8.22b. If the effective
stress on the soil specimen is increased further, the decrease of void ratio
with stress level will be larger. This is represented by the straight-line
portion in the e versus log ¢’ plot. The effect can also be demonstrated
in the laboratory by unloading and reloading a soil specimen, as shown
in Figure 8.23. In this figure, cd is the void ratio—effective stress relation
as the specimen is unloaded, and dfgb is the reloading branch. At d, the
specimen is being subjected to a lower effective stress than the maximum
stress 07 to which the soil was ever subjected. So, df will show a flatter
curved portion. Beyond point f, the void ratio will decrease at a larger
rate with effective stress, and gh will have the same slope as bc.

Based on the previous explanation, we can now define the two conditions
of a soil:

1. Normally consolidated. A soil is called normally consolidated if the
present effective overburden pressure is the maximum to which the
soil has ever been subjected, that is, Gpresent = Gpast maximum-
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Void ratio (e)

Reloading
branch

Unloading
branch

»
»

o1 o' (log scale)

Figure 8.23 Plot of void ratio versus effective pressure showing unloading and reloading

branches.

2. Overconsolidated. A soil is called overconsolidated if the present
effective overburden pressure is less than the maximum to which the

soil was ever subjected in the past, that is, Gjresent < Gpast maximum-

In Figure 8.23, the branches ab, cd, and df are the overconsolidated state of
a soil, and the branches bc and fb are the normally consolidated state of a soil.
In the natural condition in the field, a soil may be either normally consol-
idated or overconsolidated. A soil in the field may become overconsolidated
through several mechanisms, some of which are listed in the following
(Brummund et al., 1976):

Removal of overburden pressure
Past structures

Glaciation

Deep pumping

Desiccation due to drying
Desiccation due to plant lift
Change in soil structure due to secondary compression
Change in pH

Change in temperature

Salt concentration

Weathering

Ion exchange

Precipitation of cementing agents
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8.5.1.1 Preconsolidation pressure determination

from laboratory test results

Casagrande’s procedure (1936)

The preconsolidation pressure from an e versus log ¢’ plot is generally
determined by a graphical procedure suggested by Casagrande (1936), as
shown in Figure 8.22b. The steps are as follows:

1

“»L A~ Wi

()

. Visually determine the point P (on the upper curved portion of the e

versus log ¢’ plot) that has the maximum curvature.

. Draw a horizontal line PQ.

. Draw a tangent PR at P.

. Draw the line PS bisecting the angle OPR.

. Produce the straight-line portion of the e versus log ¢’ plot backward

to intersect PS at T.

. The effective pressure corresponding to point T is the preconsolida-

tion pressure Of.

Log-log method (1989)

This method was proposed by Jose et al. (1989). In this method, a plot is
prepared for log e vs. log o’ (Figure 8.24). Straight lines are fitted, giving
emphasis for the initial and final portions of the log e — log 6’ plot. The
intersection of the two straight lines gives o..

log e

Ll
logo

Figure 8.24 Log-log method of determine Gv.
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log(1+e)
A

Figure 8.25 Oikawa’s method to determine G.

Oikawa’s method (1987)

Oikawa (1987) suggested that a better result of 6. may be obtained by plot-
ting log(1 + e) vs. log o’ (Figure 8.25) and fitting straight lines for the initial
and final portions of the log(1 + ¢) — log 6" plot. The intersection of the two
lines gives o.. Umar and Sadrekarimi (2017) compared several methods
proposed to determine ¢, and concluded that Oikawa’s method provides

more accurate results.

In the field, the overconsolidation ratio (OCR) can be defined as

OCR=2¢

o

where o), = present effective overburden pressure.

Example 8.13

(8.76)

Following are the results of a laboratory consolidation test.

Pressure, 6" (kN/m?) Void ratio, e
50 0.840
100 0.826
200 0.774
400 0.696
800 0.612
1000 0.528
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0.9

0.8

Void ratio, e
=
~

0.6

0.5

50

100

200 400
o' (kN/m2)--log scale

Figure 8.26 Casagrande’s procedure to estimate G_.

1
800 1000

2000

Using Casagrande’s procedure, determine the preconsolidation

pressure G¢.

Solution

Figure 8.26 shows the e-log ¢’ plot. In this plot, a is the point where
the radius of curvature is minimum. The preconsolidation pressure is
determined using the procedure shown in Figure 8.22. From the plot,
o, =160 kN/m?,

Example 8.14

Redo Example 8.13 using Oikawa’s method.

Solution

The following table can be prepared:

Pressure, 6" (kN/m?) e log(1 +e)
50 0.840 0.265
100 0.826 0.262
200 0.774 0.249
400 0.696 0.229
800 0612 0.207
1000 0.528 0.184

Figure 8.27 shows a plot of log ¢ vs. log(l+e) from which
ol =170 kN/m?.
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0.28 T T T T T

o =170 kN/m?

0.26

log
0.24 -

log (1+e)
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T
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=]
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0.18}F =]
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10 30 50 100 300 500 10000
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Figure 8.27 Oikawa’s procedure to estimate G¢.

8.5.1.2 Empirical correlations for preconsolidation pressure

There are some empirical correlations presently available in the literature to
estimate the preconsolidation pressure in the field. Following are a few of
these relationships. However, they should be used cautiously.

Stas and Kulhawy (1984)

= 101162 (for clays with sensitivity between 1 and 10)  (8.77)

Pa

where
p. is the atmospheric pressure (=100 kN/m?)
LI is the liquidity index

Hansbo (1957)

o, = OlysT)Su(vsT) (8.78)
where
Suvst) = undrained shear strength based on the vane shear test
222

oyvst) = an empirical coefficient =

LL(%)

where LL is the liquid limit.
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Mayne and Mitchell (1988) gave a correlation for oysr) as

Oyst) = 22PT (8.79)

where PI is the plasticity index (%).
Nagaraj and Murty (1985)

log o, = 1.322 (e, /e1) —0.0463log o),
0.188

(8.80)

where
e, is the void ratio at the present effective overburden pressure, ¢’
ey is the void ratio of the soil at liquid limit
0. and o}, are in kN/m?

o =| LH%) o
100

G, is the specific gravity of soil solids

8.5.1.3 Empirical correlations for overconsolidation ratio

Similar to the preceding correlations for preconsolidation pressure, the
overconsolidation ratio (OCR) in the field has been empirically correlated
by various investigators. Some of those correlations are summarized in the
following.

The overconsolidation has been correlated to field vane shear strength

[Su(VST)] as

OCRz[ssuLfT’ (8.81)
(¢

o

where G, is the effective overburden pressure.
The magnitudes of B developed by various investigators are given in the
following:
® Mayne and Mitchell (1988)
B = 22[PI(%)]"* (8.82)

where PI is the plasticity index.
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e Hansbo (1957)

222
= 8.83
B= (8.83)
where w is the moisture content.
e Larsson (1980)
B ! (8.84)

~ 0.08+0.0055(PI)

Kulhawy and Mayne (1990) have also presented the following three
correlations:

4
o

OCR — [pa ]10(1.11—1.62L1) (8.85)

OCR = 1O[l—Z.SLI*LZSlog(G;/pa)] (886)

where LI is the liquidity index.

J
(o]

OCR =o.58N[”a] (8.87)

where N is the field standard penetration resistance.
Mayne and Kemper (1988) provided a correlation between OCR and the
cone penetration resistance g, in the form

1.01
OCR =0.37[‘JC_,°°] (8.88)

o

where 6, and o, are total and effective vertical stress, respectively.

8.5.2 Compression index

The slope of the e versus log ¢’ plot for normally consolidated soil is referred
to as the compression index C.. From Figure 8.22b
e —e, Ae

C.= : = ——— (8.89)
logoh —logo]  log(c)/07)

For undisturbed normally consolidated clays, Terzaghi and Peck (1967)
gave a correlation for the compression index as

C. = 0.009(LL-10)
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Based on the laboratory test results, several empirical relations for C,
have been proposed, some of which are given in Table 8.3.

Based on the modified Cam clay model, Wroth and Wood (1978) have
shown that

C. = O.SGSM (8.90)
100

where PI is the plasticity index.

If an average value of G, is taken to be about 2.7 (Kulhawy and Mayne,
1990)

PI
e (8.91)
74
Table 8.3 Empirical relations for C_
Reference Relation Comments
Terzaghi and Peck (1967) C.=0.009(LL - 10) Undisturbed clay
C.=0.007(LL — 10) Remolded clay
LL = liquid limit (%)
Azzouz et al. (1976) C.=0.0lwy Chicago clay
wy = natural moisture content (%)
C.=0.0046(LL - 9) Brazilian clay
LL = liquid limit (%)
C.= 1.21+1.005(e, — 1.87) Motley clays from

Sao Paulo city
€, = in situ void ratio

C.=0.208¢, + 0.0083 Chicago city
e, = in situ void ratio
C.=0.0115wy Organic soil, peat
wy = natural moisture content (%)
Nacci et al. (1975) C.=0.02 + 0.014(PI) North Atlantic clay

Pl = plasticity index (%)

238
Rendon-Herrero (1983) C.=0.141 G's‘2 [I-:;eo)

s

G, = specific gravity of soil solids
e, = in situ void ratio

Nagaraj and Murty (1985) C_= 0.2343(%) G,

G, = specific gravity of soil solids
LL = liquid limit (%)

Park and Koumoto (2004) C. = M
371.747 - 4.275n,

n, = in situ porosity of soil (%)
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Burland (1990) showed that there exists a good relationship between
e; and C. in the form

C! =0.256¢, —0.04 (8.92)

where ¢, is the void ratio at liquid limit (LL).

C* = €100 — €1000 = €100 ~ €1000 (8.93)
100 kN/m? J

¢ [1000 kN/m>
log| ~——— =Y

where e, and e, are void ratios at vertical effective pressures of 100 and
1000 kN/m?2, respectively.

Example 8.15

For a clay soil, given LL = 54% and specific gravity of soil solids
G, = 2.71. Determine the value of C; based on Equation 8.92.

Solution

From Equation 1.44
e=wG,

Fore=e,w =LL. Hence

o = [LL(%) J(GS) - (54)(2.71) =1.463

100 100
From Equation 8.83

C! =0.256¢, —0.04 = (0.256)(1.463)—0.04 = 0.335

8.6 EFFECT OF SAMPLE DISTURBANCE
ON THE e VERSUS LOG ¢’ CURVE

Soil samples obtained from the field are somewhat disturbed. When con-
solidation tests are conducted on these specimens, we obtain e versus log ¢’
plots that are slightly different from those in the field. This is demonstrated
in Figure 8.28.

Curve I in Figure 8.28a shows the nature of the e versus log ¢’ variation
that an undisturbed normally consolidated clay (present effective overbur-
den pressure Gp; void ratio ¢,) in the field would exhibit. This is called the
virgin compression curve. A laboratory consolidation test on a carefully
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Figure 8.28 Effect of sample disturbance on the e versus log ¢’ curve: (a) normally
consolidated soil; (b) overconsolidated soil.

recovered specimen would result in an e versus log ¢’ plot such as curve II.
If the same soil is completely remolded and then tested in a consolidometer,
the resulting void ratio—pressure plot will be like curve III. The virgin com-
pression curve (curve I) and the laboratory e versus log ¢’ curve obtained
from a carefully recovered specimen (curve II) intersect at a void ratio of
about 0.4¢, (Terzaghi and Peck, 1967).

Curve I in Figure 8.28b shows the nature of the field consolida-
tion curve of an overconsolidated clay. Note that the present effective
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Table 8.4 Typical values of C.and C,
of some natural clays

Soil C ¢ ClC
Boston blue clay 035 007 5
Chicago clay 0.4 007 57
New Orleans clay 0.3 005 6
Montana clay 021 0.05 42

overburden pressure is op, the corresponding void ratio e, o, the pre-
consolidation pressure, and bc a part of the virgin compression curve.
Curve Il is the corresponding laboratory consolidation curve. After care-
ful testing, Schmertmann (1953) concluded that the field recompression
branch (ab in Figure 8.28b) has approximately the same slope as the
laboratory unloading branch, ¢f. The slope of the laboratory unload-
ing branch is referred to as C, (recompression index). The range of C, is
approximately from one-fifth to one-tenth of C.. Table 8.4 gives typical
values of C, and C, of some natural clays.

Based on the modified Cam clay model, Kulhawy and Mayne (1990)
have shown that

PI
Co=_= .
370 (8.94)

Table 8.5 provides some correlations presently available in the literature
for C..

Table 8.5 Correlations for C.

Correlation Source
C, = 0.046€, (remolded clay) Nagaraj and Murty (1985)
C,=0.0025(w, — I5) Kempfort and Soumaya (2004)
C,=0.0019 (Pl — 4.6) (reconstituted Nakase et al. (1988)

marine soil)
C,=0.054 (e, — 0.3) Kootahi (2017)

C.=0.0014 (w,— 10)

C,=0.0017 (LL-21)

C,=0.0025 (Pl -3)

C.=0.021 (e, + 0.06LL — 1.6)

C,=0.033 (e, + 0.04PI — 0.55)
(undisturbed samples)

Note: e, = initial void ratio; e, = void ratio at liquid limit;
w, = natural water content; LL = liquid limit; Pl = plasticity index.
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8.7 SECONDARY CONSOLIDATION

It has been pointed out previously that clays continue to settle under sus-
tained loading at the end of primary consolidation, and this is due to the con-
tinued readjustment of clay particles. Several investigations have been carried
out for qualitative and quantitative evaluation of secondary consolidation.
The magnitude of secondary consolidation is often defined by (Figure 8.22a)

= _AHJH. (8.95)
logt, —logt,
where C, is the coefficient of secondary consolidation.

Mesri (1973) published an extensive list of the works of various investi-
gators in this area. Figure 8.29 details the general range of the coefficient
of secondary consolidation observed in a number of clayey soils. Secondary
compression is greater in plastic clays and organic soils. Based on the coef-
ficient of secondary consolidation, Mesri (1973) classified the secondary
compressibility, and this is summarized as follows:

C, Secondary compressibility
<0.002 Very low
0.002-0.004 Low
0.004-0.008 Medium
0.008-0.016 High

0.016-0.032 Very high

In order to study the effect of remolding and preloading on secondary com-
pression, Mesri (1973) conducted a series of one-dimensional consolidation
tests on an organic Paulding clay. Figure 8.30 shows the results in the form of a
plot of Ae/(Alog t) versus consolidation pressure. For these tests, each specimen
was loaded to a final pressure with load increment ratios of 1 and with only
sufficient time allowed for excess pore water pressure dissipation. Under the
final pressure, secondary compression was observed for a period of 6 months.
The following conclusions can be drawn from the results of these tests:

1. For sedimented (undisturbed) soils, Ae/(Alog#) decreases with the
increase of the final consolidation pressure.

2. Remolding of clays creates a more dispersed fabric. This results in a
decrease of the coefficient of secondary consolidation at lower con-
solidation pressures as compared to that for undisturbed samples.
However, it increases with consolidation pressure to a maximum
value and then decreases, finally merging with the values for normally
consolidated undisturbed samples.
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Figure 8.29 Coefficient of secondary consolidation for natural soil deposits:
I, Whangamarino clay; 2, Mexico City clay; 3, calcareous organic silt; 4, Leda
clay; 5, Norwegian plastic clay; 6, amorphous and fibrous peat; 7, Canadian
muskeg; 8, organic marine deposits; 9, boston blue clay; 10, Chicago blue clay;
I, organic silty clay; , organic silt, etc. [After Mesri, G., J. Soil Mech. Found.
Div., ASCE, 99(SMI), 123, 1973.]

3. Precompressed clays show a smaller value of coefficient of secondary
consolidation. The degree of reduction appears to be a function of the
degree of precompression.

Mesri and Godlewski (1977) compiled the values of C/C, for a number
of naturally occurring soils. A summary of this is given in Table 8.6. From
this study, it appears that, in general,

e C,/C.~0.04 = 0.01 (for inorganic clays and silts)
e C,/C.~0.05=0.01 (for organic clays and silts)
e C,/C.~0.075 = 0.01 (for peats)
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Figure 8.30 Coefficient of secondary compression for organic Paulding clay. [After
Mesri, G., J. Soil Mech. Found. Div., ASCE, 99(SMI), 123, 1973.]

Table 8.6 Values of C,/C_ for natural oils

Soil C,C.
Whangamarino clay 0.03-0.04
Calcareous organic silt 0.035-0.06
Amorphous and fibrous peat 0.035-0.083
Canadian muskeg 0.09-0.10
Leda clay 0.03-0.055
Peat 0.075-0.085
Post-glacial organic clay 0.05-0.07
Soft blue clay 0.026
Organic clays and silts 0.04-0.06
Sensitive clay, Portland 0.025-0.055
Peat 0.05-0.08
San Francisco Bay mud 0.04-0.06
New Liskeard varved clay 0.03-0.06
Nearshore clays and silts 0.055-0.075
Fibrous peat 0.06—0.085
Mexico City clay 0.03-0.035
Hudson River silt 0.03-0.06
Leda clay 0.025-0.04
New Haven organic clay silt 0.04-0.075

Source: Compiled from Mesri, G. and Godlewski, P. M.,
J. Geotech. Eng., ASCE, 103(5),417, 1977.
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8.8 GENERAL COMMENTS ON
CONSOLIDATION TESTS

Standard one-dimensional consolidation tests as described in Section 8.5
are conducted with a soil specimen having a thickness of 25.4 mm in which
the load on the specimen is doubled every 24 h. This means that Ac/c’ is
kept at 1 (Ao is the step load increment, and ¢’ the effective stress on the
specimen before the application of the incremental step load). Following
are some general observations as to the effect of any deviation from the
standard test procedure.

Effect of load-increment ratio Ac/c’. Striking changes in the shape of the
compression—time curves for one-dimensional consolidation tests are gen-
erally noticed if the magnitude of Ac/c’ is reduced to less than about 0.25.
Leonards and Altschaeffl (1964) conducted several tests on Mexico City
clay in which they varied the value of Ac/c’ and then measured the excess
pore water pressure with time. The general nature of specimen deformation
with time is shown in Figure 8.31a. From this figure it may be seen that,
for Ac/c’ < 0.25, the position of the end of primary consolidation (i.e., zero
excess pore water pressure due to incremental load) is somewhat difficult
to resolve. Furthermore, the load-increment ratio has a high influence on
consolidation of clay. Figure 8.31b shows the nature of the e versus log ¢’
curve for various values of Ac/c’. If Ac/c’ is small, the ability of individual
clay particles to readjust to their positions of equilibrium is small, which
results in a smaller compression compared to that for larger values of Ac/c’.

Effect of load duration. In conventional testing, in which the soil speci-
men is left under a given load for about a day, a certain amount of sec-
ondary consolidation takes place before the next load increment is added.

If the specimen is left under a given load for more than a day, additional
secondary consolidation settlement will occur. This additional amount of sec-
ondary consolidation will have an effect on the e versus log ¢’ plot, as shown in
Figure 8.32. Curve a is based on the results at the end of primary consolidation.
Curve b is based on the standard 24 h load-increment duration. Curve c refers
to the condition for which a given load is kept for more than 24 h before the
next load increment is applied. The strain for a given value of ¢’ is calculated
from the total deformation that the specimen has undergone before the next
load increment is applied. In this regard, Crawford (1964) provided experimen-
tal results on Leda clay. For his study, the preconsolidation pressure obtained
from the end of primary e versus log 6’ plot was about twice that obtained from
the e versus log 6’ plot where each load increment was kept for a week.

Effect of specimen thickness. Other conditions remaining the same, the pro-
portion of secondary to primary compression increases with the decrease of
specimen thickness for similar values of Ac/c".
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Figure 8.31 Effect of load-increment ratio: (a) effect of Ac/c” on the consolidation curve;
(b) effect of Ac/c” on e-log ¢” plot.

Effect of secondary consolidation. The continued secondary consolidation of a
natural clay deposit has some influence on the preconsolidation pressure o.. This
fact can be further explained by the schematic diagram shown in Figure 8.33.

A clay that has recently been deposited and comes to equilibrium by its own
weight can be called a “young, normally consolidated clay.” If such a clay,
with an effective overburden pressure of 6; at an equilibrium void ratio of
ey, is now removed from the ground and tested in a consolidometer, it will
show an e versus log ¢’ curve like that marked curve a in Figure 8.33. Note
that the preconsolidation pressure for curve a is 5. On the contrary, if the
same clay is allowed to remain undisturbed for 10,000 years, for example,
under the same effective overburden pressure of, there will be creep or sec-
ondary consolidation. This will reduce the void ratio to e,. The clay may
now be called an “aged, normally consolidated clay.” If this clay, at a void
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Figure 8.32 Effect of load duration on the e versus log ¢’ plot: (a) end of primary
consolidation, (b) 24 h load increment duration, and (c) more than
24 h load duration.

ratio of e, and effective overburden pressure of 6}, is removed and tested in
a consolidometer, the e versus log ¢’ curve will be like curve b. The precon-
solidation pressure, when determined by standard procedure, will be o).
Now, 6. =6} > o). This is sometimes referred to as a quasi-preconsolida-
tion effect. The effect of preconsolidation is pronounced in most plastic
clays. Thus, it may be reasoned that, under similar conditions, the ratio
of the quasi-preconsolidation pressure to the effective overburden pressure
o./c will increase with the plasticity index of the soil. Bjerrum (1972) gave
an estimate of the relation between the plasticity index and the ratio of
quasi-preconsolidation pressure to effective overburden pressure (6%./65) for
late glacial and postglacial clays. This relation is shown as follows:

Plasticity index =G /)

20 1.4

40 1.65
60 1.75
80 1.85

100 1.90
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Figure 8.33 Effect of secondary consolidation.

8.9 CALCULATION OF ONE-DIMENSIONAL
CONSOLIDATION SETTLEMENT

The basic principle of one-dimensional consolidation settlement calculation is
demonstrated in Figure 8.34. If a clay layer of total thickness H, is subjected
to an increase of average effective overburden pressure from o}, to o, it will
undergo a consolidation settlement of AH,. Hence, the strain can be given by

AH
e=—0+H" (8.96)
H,
where € is strain. Again, if an undisturbed laboratory specimen is subjected
to the same effective stress increase, the void ratio will decrease by Ae.
Thus, the strain is equal to

c=_2¢ (8.97)
1+€()

where ¢, is the void ratio at an effective stress of o.
Thus, from Equations 8.96 and 8.97

AH, = At (8.98)
1+€0
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Figure 8.34 Calculation of one-dimensional consolidation settlement.

For a normally consolidated clay in the field (Figure 8.35a)

Ae = C.log O = C, log 0 TAC (8.99)
O

0 Oo

For an overconsolidated clay, (1) if o; < o. (i.e., overconsolidation pres-
sure) (Figure 8.35b)

Ae = C,log %L = C, 1og A0 (8.100)
Oy Oy
and (2) if 6} < o, < o] (Figure 8.35¢)
Ae = Aey + Ae, =C, logc—f+Cc logw (8.101)
Oy O,

The procedure for calculation of one-dimensional consolidation settlement
is described in more detail in Chapter 11.

8.10 COEFFICIENT OF CONSOLIDATION

For a given load increment, the coefficient of consolidation C, can be deter-
mined from the laboratory observations of time versus dial reading. There
are several procedures presently available to estimate the coefficient of con-
solidation, some of which are described later.
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Figure 8.35 Calculation of Ae: (a) Equation 8.99; (b) Equation 8.100; (c) Equation 8.101.

8.10.1 Logarithm-of-time method

The logarithm-of-time method was originally proposed by Casagrande and
Fadum (1940) and can be explained by referring to Figure 8.36.

1. Plot the dial readings for specimen deformation for a given load
increment against time on semilog graph paper as shown in
Figure 8.36.

2. Plot two points, P and O, on the upper portion of the consolidation
curve, which correspond to time #, and t,, respectively. Note that
t, = 4t,.
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Figure 8.36 Logarithm-of-time method for determination of C,.

. The difference of dial readings between P and Q is equal to x. Locate
point R, which is at a distance x above point P.

. Draw the horizontal line RS. The dial reading corresponding to this
line is d,,, which corresponds to 0% consolidation.

. Project the straight-line portions of the primary consolidation and
the secondary consolidation to intersect at T. The dial reading cor-
responding to T is d,, that is, 100% primary consolidation.

. Determine the point V on the consolidation curve that corresponds to
a dial reading of (d,, + d;(()/2 = ds,. The time corresponding to point V
is %5, that is, time for 50% consolidation.

. Determine C, from the equation T, = C,#/H?. The value of T, for
U,, = 50% is 0.197 (Table 8.1). So

_ 0.197H?

Is0

Cy (8.102)

8.10.2 Square-root-of-time method

The steps for the square-root-of-time method (Taylor, 1942) are as follows:

1. Plot the dial reading and the corresponding square-root-of-time /# as

shown in Figure 8.37.
2. Draw the tangent PQ to the early portion of the plot.
3. Draw a line PR such that OR = (1.15)(OQ).
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Figure 8.37 Square-root-of-time method for determination of C,.

4.

S.

The abscissa of the point S (i.e., the intersection of PR and the con-
solidation curve) will give \/ts (i.e., the square root of time for 90%

consolidation).
The value of T, for U,, = 90% is 0.848. So

_ 0.848H*

12

G, (8.103)

8.10.3 Su’s maximum-slope method

1.

A W

Plot the dial reading against time on semilog graph paper as shown in
Figure 8.38.

. Determine d,, in the same manner as in the case of the logarithm-of-

time method (steps 2—4).

. Draw a tangent PQ to the steepest part of the consolidation curve.
. Find b, which is the slope of the tangent PQ.
. Find d, as

d, =d, +LUW (8.104)
0.688

where d, is the dial reading corresponding to any given average degree
of consolidation, U,
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Figure 8.38 Maximum-slope method for determination of C,.

6. The time corresponding to the dial reading d, can now be determined,
and

2
C, = T”TH (8.105)

Su’s method (1958) is more applicable for consolidation curves that do not
exhibit the typical S-shape.

8.10.4 Computational method

The computational method of Sivaram and Swamee (1977) is explained in
the following steps:

1. Note two dial readings, d; and d,, and their corresponding times, ¢,
and #,, from the early phase of consolidation. (“Early phase” means
that the degree of consolidation should be less than 53%.)

2. Note a dial reading, d;, at time #; after considerable settlement has
taken place.

3. Determine d,, as

di—d, '

dy=— V2 (8.106)

1‘f
153
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4. Determine d,,, as
dy —ds

1_%%—de7—ﬁDT6'
(di - doWts

leO = dO -

(8.107)

5. Determine C, as

2
C—“[ d-d H ] (8.108)

"4l dy—digo 1 — 11

where H is the length of the maximum drainage path.

8.10.5 Empirical correlation

Based on laboratory tests, Raju et al. (1995) proposed the following empiri-
cal relation to predict the coefficient of consolidation of normally consoli-
dated uncemented clayey soils:

— / -3
c, :{1+eL(1.23 0.27610g60)}{ 1,00.353} (8.109)
eL (00)
where
C, is the coefficient of consolidation (cm?/s)
o} is the effective overburden pressure (kIN/m?)
ey is the void ratio at liquid limit
Note that
e, = LL(%) G, (8.110)
100
where

LL is the liquid limit
G, is the specific gravity of soil solids

8.10.6 Rectangular hyperbola method

The rectangular hyperbola method (Sridharan and Prakash, 1985) can
be illustrated as follows. Based on Equations 8.39 and 8.41, it can be
shown that the plot of T,/U,, versus T, will be of the type shown in Figure
8.39a. In the range of 60% < U,, < 90%, the relation is linear and can
be expressed as
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T,

av

=8.208x107°T, +2.44x107° (8.111)

Using the same analogy, the consolidation test results can be plotted in
graphical form as #/AH, versus t (where ¢ is time and AH, is specimen defor-
mation), which will be of the type shown in Figure 8.39b. Now the follow-
ing procedure can be used to estimate C,.

1. Identify the straight-line portion, b¢, and project it back to d.
Determine the intercept, D.

2. Determine the slope 7 of the line bc.

3. Calculate C, as

2
C, = 0.3[’”H J
D

A

T,
u:v Equation 8.102
(@) T,
A
t
AH,

—o—>

v

) a Time ()

Figure 8.39 Rectangular hyperbola method for determination of C: (a) plot of T /U,,
vs. T; (b) plot of t/AH, vs. t.
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where H is the length of maximum drainage path. Note that the unit
of m is L' and the unit of D is TL-'. Hence, the unit of C, is

(CHIL)

o =i

8.10.7 AH, - t/IAH, method
According to the AH, - ¢/AH, method (Sridharan and Prakash, 1993),

1. Plot the variation of AH, versus #/AH, as shown in Figure 8.40. (Note:
¢ is time and AH, compression of specimen at time ¢.)

2. Draw the tangent PQ to the early portion of the plot.

3. Draw a line PR such that

OR = (1.33)(00Q)

4. Determine the abscissa of point S, which gives t4,/AH, from which #,,
can be calculated.
5. Calculate C, as

2
:% (8.112)

12

Cy

5“ OR=(1.33)(0Q)
I
\ l' \,
\\\ '| \\\
! S
\‘l \
N \ R
[N AN t
0 20 ¢
AH, AH,

Figure 8.40 AH, - t/AH, method for determination of C,.
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8.10.8 Early-stage log t method

The early-stage log ¢t method (Robinson and Allam, 1996), an exten-
sion of the logarithm-of-time method, is based on specimen deforma-
tion against log-of-time plot as shown in Figure 8.41. According to this
method, follow the logarithm-of-time method to determine d,. Draw a
horizontal line DE through d,. Then, draw a tangent through the point
of inflection F. The tangent intersects line DE at point G. Determine the
time ¢ corresponding to G, which is the time at U,, = 22.14%. So

_ 0.0385H*

12214

Cy

In most cases, for a given soil and pressure range, the magnitude of C,
determined using the logarithm-of-time method provides the lowest value.
The highest value is obtained from the early stage log t method. The pri-
mary reason is that the early-stage log ¢ method uses the earlier part of the
consolidation curve, whereas the logarithm-of-time method uses the lower
portion of the consolidation curve. When the lower portion of the consoli-
dation curve is taken into account, the effect of secondary consolidation
plays a role in the magnitude of C,. This fact is demonstrated for several
soils in Table 8.7.

Several investigators have also reported that the C, value obtained from
the field is substantially higher than that obtained from laboratory tests
conducted using conventional testing methods (i.e., logarithm-of-time and
square-root-of-time methods). Table 8.8 provides some examples of this as
summarized by Leroueil (1988). Hence, the early-stage log # method may
provide a more realistic value of fieldwork.

>

<— Deformation (increasing)

1014

Time (¢) (log scale)

Figure 8.4 Early stage log t method.
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Table 8.7 Comparison of C obtained from various methods (based
on the results of Robinson and Allam, 1996) for the
pressure range ¢’ between 400 and 800 kN/m?

C\)(esm) C\)(esm)
Soil Coesm (cm?s) Coiem) Cofstm)
Red earth 12.80 x 10~ 1.58 1.07
Brown soil 1.36 x 107 1.05 0.94
Black cotton soil 0.79 x 107* 1.41 1.23
lllite 6.45 x 1074 1.55 1.1
Bentonite 0.022 x [0 1.47 1.29
Chicago clay 741 x 10 122 1.15

Note: esm: early-stage log t method; Itm: logarithm-of-time method; stm:
square-root-of-time method.

Table 8.8 Comparison between the coefficients of consolidation determined in
the laboratory and those deduced from embankment settlement
analysis as observed by Leroueil (1988)

Site C\)(Iab) (m?s) C\)(in situ) (m?/sec) C\)(Iab)/ Cyfin sitw)
Ska-Edeby IV 50x%107° 1.0 x 107 20
Oxford (1) 4-57
Donnington 4-7
Oxford (2) 3-36
Avonmouth 6-47
Tickton 7-47
Over causeway 3-12
Melbourne 200
Penang 1.6 x 1078 I.1 x 1076 70
Cubzac B 20x% 108 20x% 107 10
Cubzac C 1.4 x 1078 43 x 107 31
A-64 75x 107 20x10°® 27
Saint-Alban 1.0x 1078 8.0x |08 8
R-7 6.0 x 107° 28 x 107 47
Matagami 8.0x 107 85x |08 10
Berthierville 40x 108 3-10
Example 8.16

The results of an oedometer test on a normally consolidated clay are
given as follows (two-way drainage):
o’ (kN/m?) e

50 1.01
100 0.90
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The time for 50% consolidation for the load increment from 50 to
100 kN/m? was 12 min, and the average thickness of the sample was
24 mm. Determine the coefficient of permeability and the compression
index.

Solution

Cyt

T,=1

For U,, = 50%, T, = 0.197. Hence

7= C“(lz)z C, =0.0236 cm®/min = 0.0236 x 10 *m?/min
(2.4/2)

Uomyye [AelAo(l+en )]y

For the given data, Ae = 1.01 - 0.90 = 0.11; Ac = 100 - 50 = 50 kN/m?

Yo = 9.81 kN/m? and e, =(1.01+0.9)/2=0.955. So

Ae
Y Ao(l+e,,)

0.11

k=C }( .81)
50(1+0.955)

Yo = (0.0236x104){
= 0.2605x107 m/min

Compression index = C, ae _ 101=09 _ 0.365

" log(0h/a)  log(100/50)

Example 8.17

During a laboratory consolidation test, the time and dial gauge read-
ings obtained from an increase in pressure on the specimen from
50 kN/m? to 100 kN/m? are as follow:

Time Dial gauge reading Time Dial gauge reading
(min) (cm) (min) (ecm)

0 0.3975 16.0 0.4572

0.1 0.4082 30.0 0.4737

0.25 0.4102 60.0 0.4923

0.5 0.4128 120.0 0.5080

1.0 0.4166 240.0 0.5207

2.0 0.4224 180.0 0.5283

1.0 0.4298 960.0 0.5334

8.0 0.4420 1440.0 0.5364
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040 ——— | | AP T.d T T T T

0.42

o
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=

0.46

0.48

Dial reading (cm)

0.50

Fommmmmmemeao

0.52 -0

0.54 L04
01 03 10 30 10 30 100 300 1000

Time (min)-log scale
Figure 8.42 Plot of dial reading versus time (log scale).

Using the logarithm-of-time method, determine C,. The average
height of the specimen during consolidation was 2.24 cm, and it was
drained at the top and bottom.

Solution

The semilogarithmic plot of dial reading versus time is shown in
Figure 8.42. For this, #;, = 0.1 min and #, = 0.4 min have been used to
determine d,. Following the procedure outlined in Figure 8.36, t;, =
19 min. From Equation 8.102,

2
019712 0.197(—2'24)
C, == = =0.013 em?*/min=2.17 x10"* cm?/s
ts0 19
Example 8.18

Refer to the laboratory test results of a consolidation test given in
Example 8.17. Using the rectangular hyperbola methods, determine C,.

Solution

The following table can now be prepared.

L (min/cm)
Time, t (min) Dial reading (cm) AH (cm) AH
0 0.3975 0 0
0.10 0.4082 0.0107 9.346
0.25 0.4102 0.0127 19.89

0.50 0.4128 0.0153 32.68
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t

(min/cm)

Time, t (min) Dial reading (cm) AH (cm) AH

1.00 0.4166 0.0191 52.36
2.00 0.4224 0.0249 80.32
4.00 0.4298 0.0323 123.84
8.00 0.4420 0.0445 179.78
16.00 0.4572 0.0597 268.00
30.00 0.4737 0.0762 393.70
60.00 0.4923 0.0948 62391
120.00 0.5080 0.1105 1085.97

The plot of t/AH versus time (t) is shown in Figure 8.43. From this
plot,

D =180

1085.97 -623.91
m=——— " " =
60

7.7

2.24
0mH? (0.3)(7.7)(—2
D 180

]2
C, =0.0161 cm?/min = 2.68x10*cm?/s

1260 T I T I I

1000

800

600

HAH (min/cm)

400

] 1

| ] |
0
0 20 40 60 80 100 120

Time, ¢ {(min)

Figure 8.43 Plot of t/AH versus time (t).
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Example 8.19

Refer to the laboratory test results of a consolidation test given in
Example 8.17. Using the early stage log-# method, determine C,.

Solution

Refer to Figure 8.42. A tangent is drawn through the point of inflec-
tion. It intersects the d,, line at G. The time corresponding to point G
is 2.57 min. So,

2.24
) (0.0385)(—

2
= 0.0385(H) = ) =0.01879 cm?/min
12214 2.57

=3.13x10*cm?/s

Gy

8.11 ONE-DIMENSIONAL CONSOLIDATION
WITH VISCOELASTIC MODELS

The theory of consolidation we have studied thus far is based on the assump-
tion that the effective stress and the volumetric strain can be described by
linear elasticity. Since Terzaghi’s founding work on the theory of consoli-
dation, several investigators (Taylor and Merchant, 1940; Taylor, 1942;
Tan, 1957; Gibson and Lo, 1961; Schiffman et al., 1964; Barden, 1965,
1968) have used viscoelastic models to study one-dimensional consolida-
tion. This gives an insight into the secondary consolidation phenomenon
that the Terzaghi’s theory does not explain. In this section, the work of
Barden is briefly outlined.

The rheological model for soil chosen by Barden consists of a linear
spring and nonlinear dashpot as shown in Figure 8.44. The equation of
continuity for one-dimensional consolidation is given in Equation 8.9 as

k(1+e)@ _de
Yo 02° ot

Figure 8.45 shows the typical nature of the variation of void ratio with
effective stress. From this figure, we can write that

Qe _avel, it (8.113)
a, a,
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Figure 8.44 Rheological model for soil. L: Linear spring; N: Nonlinear dashpot.

Void ratio

Ae=a,Aoc
a,, = Coefficient of

Ae \ compressibility
e,

Ao

/

7

o o1+Ac’  Effective stress
=01+ Ao

Figure 8.45 Nature of variation of void ratio with effective stress.

where
e —e . . qo .
“L_=2 — A¢’ = total effective stress increase the soil will be subjected to
y
at the end of consolidation
e —

e 4 . . . S
“L_= =effective stress increase in the soil at some stage of consolidation
ay

(i.e., the stress carried by the soil grain bond, represented by the
spring in Figure 8.44)

u is the excess pore water pressure

T is the strain carried by film bond (represented by the dashpot in
Figure 8.44)
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The strain T can be given by a power-law relation:

ae 1/n
:b —_—
=)

where 7 > 1, and b is assumed to be a constant over the pressure range Ac.
Substitution of the preceding power-law relation for t in Equation 8.113

and simplification gives

1/n
e—e =ab{u+b(ae) ]
ot

Now, lete - e, =¢'. So

e’ _ %
ot ot

=%
H

where H is the length of maximum drainage path, and

The degree of consolidation is

e —e
U, =9-°
61— €&

and

4

e —e e
A=1-U,=—>2=——
e —e dDAG

Elimination of # from Equations 8.16 and 8.114 yields

k(1+e) 9* i,—b e’ )" zae'
Yo 027 ay ot ot

(8.114)

(8.115)

(8.116)

(8.117)

(8.118)

(8.119)

(8.120)
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Combining Equations 8.116, 8.117, and 8.120, we obtain

az
%

"~ k(l+e) ot k(l+e) ot C, ot
(8.121)

1/n 2 2 2
{x_[aub"mc')‘" ?H }- aH Yy O _ mH 4 Ok _ H? )

where
m,, is the volume coefficient of compressibility
C, the coefficient of consolidation

The right-hand side of Equation 8.121 can be written in the form

2
oL _ H” ok (8.122)
dT, C, ot
where T, is the nondimensional time factor and is equal to C #/H?>.
Similarly defining
N\n—1
T, = 140/ (8.123)
ab
we can write
Lo ()"
a,b"(Ac)" = 8.124
[ (AS’) at} (aTSJ ( )
T, in Equations 8.123 and 8.124 is defined as structural viscosity.
It is useful now to define a nondimensional ratio R as
R _Cay b (8.125)

T. H? (A5)"!

From Equations 8.121, 8.122, and 8.124

9 aa "
af{x_[aT] ]:aT (8.126)

Note that Equation 8.126 is nonlinear. For that reason, Barden suggested solv-
ing the two simultaneous equations obtained from the basic Equation 8.16.

9% _ ok

0z> 9T,

(8.127)
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and

x_ OA
(7» u)" = aT, (8.128)

Finite-difference approximation is employed for solving the previous two
equations. Figure 8.46 shows the variation of A and i with depth for a clay
layer of height H, = 2H and drained both at the top and bottom (for # = 5
R =10-%). Note that for a given value of T, (i.e., time #), the nondimensional
excess pore water pressure decreases more than A (i.e., void ratio).

For a given value of T,, R, and #, the average degree of consolidation can
be determined as (Figure 8.46)

1
U, = 1—de2 (8.129)

Figure 8.47 shows the variation of U,, with T, (for #» = 5). Similar results
can be obtained for other values of 7. Note that in this figure the beginning
of secondary consolidation is assumed to start after the midplane excess
pore water pressure falls below an arbitrary value of # = 0.01 Ac. Several
other observations can be made concerning this plot:

1. Primary and secondary consolidation are continuous processes and
depend on the structural viscosity (i.e., R or T,).

2. The proportion of the total settlement associated with the secondary
consolidation increases with the increase of R.

3. In the conventional consolidation theory of Terzaghi, R = 0. Thus, the
average degree of consolidation becomes equal to 100% at the end of
primary consolidation.

4. As defined in Equation 8.125

_Cya, b"
H* (Ac)*™!

The term b is a complex quantity and depends on the electrochemical envi-
ronment and structure of clay. The value of b increases with the increase of
effective pressure 6’ on the soil. When the ratio Ac’/c’ is small, it will result
in an increase of R, and thus in the proportion of secondary to primary
consolidation. Other factors remaining constant, R will also increase with
decrease of H, which is the length of the maximum drainage path, and thus
so will the ratio of secondary to primary consolidation.
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T
N
1l
I
1.00 0.75 0.50 0.25 0
@ 7

1.00 0.75 0.50 0.25 0
(b) A

Figure 8.46 (a) Plot of Z against & for a two-way drained clay layer; (b) plot of Z against
A for a two-way drained clay layer. [After Barden, L., Geotechnique, 15(4),
345, 1965.]
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Primary

Secondary

n=>5

Uy, (%)

O
Terzaghi theory P) \ \\\\\\ T~
R=0 \\ T~ T

100 : : == T oo
0.01 0.1 10 10.0 100.0

T, (log scale)

Figure 8.47 Plot of degree of consolidation versus T, for various values of R (n = 5).
[After Barden, L., Geotechnique, 15(4), 345, 1965.]

8.12 CONSTANT RATE-OF-STRAIN
CONSOLIDATION TESTS

The standard one-dimensional consolidation test procedure discussed in
Section 8.5 is time-consuming. At least two other one-dimensional consoli-
dation test procedures have been developed in the past that are much faster
yet give reasonably good results. The methods are (1) the constant rate-of-
strain consolidation test and (2) the constant-gradient consolidation test.
The fundamentals of these test procedures are described in this and the next
sections.

The constant rate-of-strain method was developed by Smith and Wahls
(1969). A soil specimen is taken in a fixed-ring consolidometer and satu-
rated. For conducting the test, drainage is permitted at the top of the speci-
men, but not at the bottom. A continuously increasing load is applied to
the top of the specimen so as to produce a constant rate of compressive
strain, and the excess pore water pressure #, (generated by the continuously
increasing stress ¢ at the top) at the bottom of the specimen is measured.

8.12.1 Theory

The mathematical derivations developed by Smith and Wahls for obtaining
the void ratio—effective pressure relation and the corresponding coefficient
of consolidation are given later.
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The basic equation for continuity of flow through a soil element is given
in Equation 8.16 as

kw1 ae
Yo 025 l+e ot

The coefficient of permeability at a given time is a function of the average
void ratio e in the specimen. The average void ratio is, however, continu-
ously changing owing to the constant rate of strain. Thus

k=kie)=f(t) (8.130)

The average void ratio is given by

1 H
e=—|ed
e !ez

where H (= H,) is the sample thickness. (Note: z = 0 is the top of the speci-
men and z = H is the bottom of the specimen.)

In the constant rate-of-strain type of test, the rate of change of volume
is constant, or

dv
—=-RA 8.131
I ( )
where

V is the volume of the specimen

A is the area of cross-section of the specimen

R is the constant rate of deformation of upper surface

The rate of change of average void ratio e can be given by

de _1dv_ 1

2t _ - %Y S RA=-— 8.132
dt 'V, dt V, ' ( )
where r is a constant.

Based on the definition of & and Equation 8.130, we can write

e = gR)E+ep (8.133)

where
e, is the void ratio at depth z and time ¢
e, is the initial void ratio at the beginning of the test
g(2) is a function of depth only
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The function g(z) is difficult to determine. We will assume it to be a
linear function of the form

]

where b is a constant. Substitution of this into Equation 8.133 gives

b(z-0.5H
e(z,t):eo—rt[l—r(z o ﬂ (8.134)

Let us consider the possible range of variation of b/r as given in
Equation 8.134:

1. 1If blr = 0,

e(z,t) =ey—1t (8135)

This indicates that the void is constant with depth and changes with
time only. In reality, this is not the case.

2. If b/r = 2, the void ratio at the base of the specimen, that is, at z = H,
becomes

€(H,z) =€ (8.136)

This means that the void ratio at the base does not change with time at
all, which is not realistic.

So the value of b/r is somewhere between 0 and 2 and may be taken as
about 1.

Assuming b/r # 0 and using the definition of the void ratio as given by
Equation 8.134, we can integrate Equation 8.16 to obtain an equation for
the excess pore water pressure. The boundary conditions are as follows: at
z2=0,u =0 (at any time); and at z = H, du/dz = 0 (at any time). Thus

Wt l+e—bt| 2* | H(+e)
Tk {ZH[ rt(bt) }rzrt { rt(bt) }

In(1+e)—zIn(l+ep)—

In(1+ eT)}} (8.137)
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where
ey =eo—rt(1—1bj (8.138)
2r
eT:eo—rt(1+1bj (8.139)
r

Equation 8.137 is very complicated. Without losing a great deal of accu-
racy, it is possible to obtain a simpler form of expression for # by assuming
that the term 1 + ¢ in Equation 8.16 is approximately equal to 1 + ¢ (note
that this is not a function of z). So, from Equations 8.16 and 8.134

Pu | v |9 B _b(z-0.5H
8z2_|:k(1+e)}8t{eo r{l r( H H} 18.149)

Using the boundary condition # = 0 at z = 0 and du/dt = 0 at z = H, Equation
8.140 can be integrated to yield

_|owr 2 b2
“{k(ne)}[[Hz 2] 7[4 6Hﬂ (8.141)

The pore pressure at the base of the specimen can be obtained by substi-
tuting z = H in Equation 8.141:

2
P (1—“’) (8.142)
ki+e)|2 127

The average effective stress corresponding to a given value of #,_; can be
obtained by writing

o =6- "y (8.143)

uz:H

where
O, is the average effective stress on the specimen at any time
o is the total stress on the specimen
u,, is the corresponding average pore water pressure
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1J'H J
— uazg
o~ HJo (8.144)

Ur—H Ur—H

Substitution of Equations 8.141 and 8.142 into 8.144 and further simplifi-
cation gives

oL
Yav :% 214 (8.145)
Uzt ——(blr)

2 12

Note that for b/r = 0, u,/u,_;; = 0.667; and for blr = 1, u,/u,_; = 0.700.
Hence, for 0 < b/r < 1, the values of u,,/u,_;; do not change significantly. So,
from Equations 8.143 and 8.145

———(blr)

o =6— % Uohs (8.146)
———(blr)
2 12

8.12.2 Coefficient of consolidation

The coefficient of consolidation was defined previously as

k(1+e)

AYw

C, =

We can assume 1 + e = 1 + ¢, and from Equation 8.142

2
PO 2 (1_1’9J (8.147)
(1+e)u.p

2
c, = (1—1bj (8.148)

aylz—pg
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8.12.3 Interpretation of experimental results

The following information can be obtained from a constant rate-of-strain
consolidation test:

NN D WN =

. Initial height of specimen, H,

. Value of A

. Value of V,

. Strain rate R

. A continuous record of u,_y

. A corresponding record of o (total stress applied at the top of the

specimen)

The plot of e versus o), can be obtained in the following manner:

\S}

. Calculate r = RA/V,.
. Assume b/r ~ 1.
. For a given value of u,_y, the value of ¢ is known (at time ¢ from the

start of the test), and so 6}, can be calculated from Equation 8.146.

. Calculate AH = Rt and then the change in void ratio that has taken

place during time ¢

AH
Ae=—-—(1+
e H( ey)

where H; is the initial height of the specimen.

. The corresponding void ratio (at time ¢) is e = ¢, — Ae.
. After obtaining a number of points of &}, and the corresponding e,

plot the graph of e versus log G7,.

. For a given value of o}, and e, the coefficient of consolidation Co

can be calculated by using Equation 8.148. (Note that H in Equation
8.148 is equal to H, - AH.)

Smith and Wahls (1969) provided the results of constant rate-of-strain
consolidation tests on two clays—Massena clay and calcium montmoril-
lonite. The tests were conducted at various rates of strain (0.0024%/min-
0.06%/min) and the e versus log ¢’ curves obtained were compared with
those obtained from the conventional tests.

Figures 8.48 and 8.49 show the results obtained from tests conducted
with Massena clay.

This comparison showed that, for higher rates of strain, the e versus
log ¢’ curves obtained from these types of tests may deviate considerably
from those obtained from conventional tests. For that reason, it is recom-
mended that the strain rate for a given test should be chosen such that
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Standard test

0.2

N
<
0.4 — —
Test strain rate
0.6 ® 0.024%/min |
2 |© 0.06%/min
| | |
10 30 100 500 1000

o7, (kN/m?)

Figure 8.48 CRS tests on Massena clay—plot of Ae versus o},. [After Smith, R. E. and
Wahls, H. E., J. Soil Mech. Found. Div., ASCE, 95(SM2), 519, 1969.]

Test strain rate
@® 0.024%/min
1.0 — O 0.06%/min n
Standard test
E
E o3|
U:
0.1
| | |
0 0.2 0.4 0.6

Ae

Figure 8.49 CRS tests on Massena clay—plot of C, versus Ae. [After Smith, R. E. and
Wahls, H. E., J. Soil Mech. Found. Div., ASCE, 95(SM2), 519, 1969.]
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the value of u,_,/c at the end of the test does not exceed 0.5. However,
the value should be high enough that it can be measured with reasonable
accuracy.

8.13 CONSTANT-GRADIENT CONSOLIDATION TEST

The constant-gradient consolidation test was developed by Lowe et al.
(1969). In this procedure, a saturated soil specimen is taken in a con-
solidation ring. As in the case of the constant rate-of-strain type of test,
drainage is allowed at the top of the specimen and pore water pressure
is measured at the bottom. A load P is applied on the specimen, which
increases the excess pore water pressure in the specimen by an amount
Au (Figure 8.50a). After a small lapse of time #,, the excess pore water
pressure at the top of the specimen will be equal to zero (since drainage
is permitted). However, at the bottom of the specimen, the excess pore
water pressure will still be approximately Au (Figure 8.50b). From this
point on, the load P is increased slowly in such a way that the difference
between the pore water pressures at the top and bottom of the specimen
remains constant, that is, the difference is maintained at a constant Au
(Figure 8.50c¢ and d). When the desired value of P is reached, say at time 5,
the loading is stopped and the excess pore water pressure is allowed to dis-
sipate. The elapsed time #, at which the pore water pressure at the bottom
of the specimen reaches a value of 0.1Au is recorded. During the entire

z=H=H,
z=0 L
¢ Aubl f¢Aud| ¢ Aup| [« Aup >
t=0 t t t ¢, 0.1Au
(@) ' (b) > © @ * (
e)
Development Dissipation
|<— of parabolic—>|<— Controlled-gradient tests —>|<— of pore water —’|
pattern pressure
0.08H? (1.1-0.08)H?
t= ty—tg= ———————
1 c. 4~ I3 G,

Figure 8.50 Stages in controlled-gradient test.
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test, the compression AH, that the specimen undergoes is recorded. For
complete details of the laboratory test arrangement, the reader is referred
to the original paper of Lowe et al. (1969).

8.13.1 Theory

From the basic Equations 8.16 and 8.17, we have

kou__ a (8.149)
Y 02 1+e ot '
or
’ 2 2
Ez; ___k 27124:_@“3%’ (8.150)
Ywtly O0F Z
Sincec’' =06 -u
aa(; :%‘_% (8.151)

For the controlled-gradient tests (i.e., during the time #, to ¢; in Figure 8.50),
ou/dt = 0. So

Jdo’ _ do (8.152)
ot ot

Combining Equations 8.150 and 8.152
0c 0*u
do_ 9 8.153
ot 0z ( !

Note that the left-hand side of Equation 8.153 is independent of the vari-
able z and the right-hand side is independent of the variable ¢. So both sides
should be equal to a constant, say A,. Thus

86=

—=A 8.154
o = ( )
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and

8214 A|

gr__4 8.155

02> C, ( )
Integration of Equation 8.155 yields

au Al

—=-—2z+A 8.156

% C, 2 ( )
and

u——ﬁé+Az+A (8.157)

c,2 U7 '

Y

The boundary conditions are as follows (note that z = 0 is at the bottom
of the specimen):

1. Atz=0,0u/dz=0
2. Atz = H, u = 0 (note that H = H; one-way drainage)
3.Atz=0,u=Au

From the first boundary condition and Equation 8.156, we find that
A,=0.So

2
we Mg (8.158)
C, 2

From the second boundary condition and Equation 8.158

2
A= “;g (8.159)
2 2
or w=_Mz A H (8.160)
c,2 "¢ 2

From the third boundary condition and Equation 8.160

_AH?

Au =
C, 2
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or

_ 2C,Au

A="0 (8.161)

Substitution of this value of A, into Equation 8.160 yields

2

u:Au[l—;z] (8.162)

Equation 8.162 shows a parabolic pattern of excess pore water pressure
distribution, which remains constant during the controlled-gradient test
(time ¢, - ¢; in Figure 8.50). This closely corresponds to Terzaghi isochrone
(Figure 8.4) for T, = 0.08.

Combining Equations 8.154 and 8.161, we obtain

fele] _A - 2C,Au

a ' H?
2

or C, = a—c H (8.163)
ot 2Au

8.13.2 Interpretation of experimental results

The following information will be available from the constant-gradient test:

1. Initial height of the specimen H; and height H, at any time during the test

. Rate of application of the load P and thus the rate of application of
stress do/0t on the specimen

. Differential pore pressure Au

. Time ¢,

. Time #,

. Time t,

\S}

N A~ W

The plot of e versus G}, can be obtained in the following manner:

1. Calculate the initial void ratio e,,.
2. Calculate the change in void ratio at any other time ¢ during the test as

= &(1"1‘60) = AHt

i i

Ae (1+ep)

where AH = AH, is the total change in height from the beginning of
the test. So, the average void ratio at time ¢ is e = ¢, — Ae.
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3. Calculate the average effective stress at time ¢ using the known total
stress ¢ applied on the specimen at that time:

Oay =0 — Uy

where u,, is the average excess pore water pressure in the specimen,
which can be calculated from Equation 8.162.

Calculation of the coefficient of consolidation is as follows:

1. At time £,

_ 0.08H*
151

Cy

2. Attime t; <t <ty

_ Ao H?

= AL 2Au (8.163)

v

Note that Ac/At, H, and Au are all known from the tests.

3. Between time #; and ¢,

(1.1—0.08)H2 _ 1.02H?
b — 1ty b — 1ty

C, =

8.14 SAND DRAINS

In order to accelerate the process of consolidation settlement for the con-
struction of some structures, the useful technique of building sand drains
can be used. Sand drains are constructed by driving down casings or hol-
low mandrels into the soil. The holes are then filled with sand, after which
the casings are pulled out. When a surcharge is applied at ground surface,
the pore water pressure in the clay will increase, and there will be drain-
age in the vertical and horizontal directions (Figure 8.51a). The horizontal
drainage is induced by the sand drains. Hence, the process of dissipation of
excess pore water pressure created by the loading (and hence the settlement)
is accelerated.
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Figure 8.51 (a) Sand drains and (b) layout of sand drains.
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The basic theory of sand drains was presented by Rendulic (1935) and
Barron (1948) and later summarized by Richart (1959). In the study of sand
drains, we have two fundamental cases:

1. Free-strain case. When the surcharge applied at the ground surface is
of a flexible nature, there will be equal distribution of surface load.
This will result in an uneven settlement at the surface.

2. Equal-strain case. When the surcharge applied at the ground surface
is rigid, the surface settlement will be the same all over. However, this
will result in an unequal distribution of stress.

Another factor that must be taken into consideration is the effect of
“smear.” A smear zone in a sand drain is created by the remolding of clay
during the drilling operation for building it (see Figure 8.51a). This remold-
ing of the clay results in a decrease of the coefficient of permeability in the
horizontal direction.

The theories for free-strain and equal-strain consolidation are given
later. In the development of these theories, it is assumed that drainage takes
place only in the radial direction, that is, no dissipation of excess pore
water pressure in the vertical direction.

8.14.1 Free-strain consolidation with no smear

Figure 8.51b shows the general pattern of the layout of sand drains. For
triangular spacing of the sand drains, the zone of influence of each drain
is hexagonal in plan. This hexagon can be approximated as an equivalent
circle of diameter d,. Other notations used in this section are as follows:

—_

. 7, = radius of the equivalent circle = d,/2
. 7, = radius of the sand drain well

3. r. = radial distance from the centerline of the drain well to the farthest

S
point of the smear zone. Note that, in the no-smear case, r,, = 7,

\S}

w

The basic differential equation of Terzaghi’s consolidation theory for
flow in the vertical direction is given in Equation 8.21. For radial drainage,
this equation can be written as

Ju *u 19du

—=Cy| =5+ 8.164

ot [arz " r or J ( )
where

u is the excess pore water pressure
r is the radial distance measured from the center of the drain well
C,, is the coefficient of consolidation in radial direction
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For solution of Equation 8.164, the following boundary conditions are used:

1. Attime t = 0, u = u,
2. Attimet>0,u=0atr=r,
3. Atr=r,0uldr=0

With the aforementioned boundary conditions, Equation 8.164 yields the
solution for excess pore water pressure at any time ¢ and radial distance 7:

Ol=oc0

~ “2U,(o)Uy (0 /1)
‘e Z a[nzug(am—uf(a)

] exp(—40’n°T,) (8.165)

0,002, ...

In Equation 8.165

LT (8.166)
Tw
Ui(o) = Ji(0)Yo (o) = Yi (o) Jo(o) (8.167)
Ulou) = Jo(oum)Yo(er) — Yo(oum) Jo(ct) (8.168)
U [‘Z): Jo (Oiv’jyo(a)—yo (Oij]]o(oc) (8.169)
where

Jo is the Bessel function of first kind of zero order

J1 is the Bessel function of first kind of first order

Y, is the Bessel function of second kind of zero order

Y, is the Bessel function of second kind of first order

oy, O,,... are roots of Bessel function that satisfy [ (an)Yy(a) - Y, (o)
Jola) =0

T, = Time factor for radial flow = (;;)zrt (8.170)

In Equation 8.170

C\)r = kh

= (8.171)
mU’YW

where &, is the coefficient of permeability in the horizontal direction.
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Figure 8.52 Free strain—variation of degree of consolidation U, with time factor T.

The average pore water pressure #,, throughout the soil mass may now
be obtained from Equation 8.165 as

< 4U ) L,
Hav = Wi exp(—4o’n’T,) (8.172)
2 o (= 1)[*Ug (0um) = U (0)]

The average degree of consolidation U, can be determined as

U, =1-" (8.173)
U
Figure 8.52 shows the variation of U, with the time factor T..
8.14.2 Equal-strain consolidation with no smear
The problem of equal-strain consolidation with no smear (r, = ) was

solved by Barron (1948). The results of the solution are described later
(refer to Figure 8.51).
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The excess pore water pressure at any time ¢ and radial distance r is given by

4u 5 r rr—r?
— | 2] - w 8.174
" d?E(n) {1’ n[rwj 2 } ( )
where
2 3n? -1
Fn)= "1 - 8.175
() =3 Inn) == (8.175)

u,, = average value of pore water pressure throughout the clay layer

= ue’ (8.176)
2= L (8.177)
E(n)

The average degree of consolidation due to radial drainage is

U, = 1—exph§?ﬂ (8.178)

Table 8.9 gives the values of the time factor T, for various values of U..
For r/r, > 5, the free-strain and equal-strain solutions give approximately
the same results for the average degree of consolidation.

Olson (1977) gave a solution for the average degree of consolidation U,
for time-dependent loading (ramp load) similar to that for vertical drain-
age, as described in Section 8.3.

Referring to Figure 8.13b, the surcharge increases from zero at time ¢ = 0
to q = q. at time ¢ = .. For t > t_, the surcharge is equal to g.. For this case

_Cyt

T, = % = 4T, (8.179)
Te
and
Ty = C“fc (8.180)
Te

For T, < T},

T, - L[1-exp(AT))]
T

U = (8.181)
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Table 8.9 Solution for radial-flow equation (equal vertical strain)

Degree of Time factor T, for value of n(= r.r,)
consolidation
U.(%) 5 10 15 20 25
0 0 0 0 0 0
I 0.0012 0.0020 0.0025 0.0028 0.0031
2 0.0024 0.0040 0.0050 0.0057 0.0063
3 0.0036 0.0060 0.0075 0.0086 0.0094
4 0.0048 0.0081 0.0101 0.0115 0.0126
5 0.0060 0.0101 0.0126 0.0145 0.0159
6 0.0072 0.1222 0.0153 0.0174 0.0191
7 0.0085 0.0143 0.0179 0.0205 0.0225
8 0.0098 0.0165 0.0206 0.0235 0.0258
9 0.0110 0.0186 0.0232 0.0266 0.0292
10 0.0123 0.0208 0.0260 0.0297 0.0326
I 0.0136 0.0230 0.0287 0.0328 0.0360
12 0.0150 0.0252 0.0315 0.0360 0.0395
13 0.0163 0.0275 0.0343 0.0392 0.0431
14 0.0177 0.0298 0.0372 0.0425 0.0467
15 0.0190 0.0321 0.0401 0.0458 0.0503
16 0.0204 0.0344 0.0430 0.0491 0.0539
17 0.0218 0.0368 0.0459 0.0525 0.0576
18 0.0232 0.0392 0.0489 0.0559 0.0614
19 0.0247 0.0416 0.0519 0.0594 0.0652
20 0.0261 0.0440 0.0550 0.0629 0.0690
21 0.0276 0.0465 0.0581 0.0664 0.0729
22 0.0291 0.0490 0.0612 0.0700 0.0769
23 0.0306 0.0516 0.0644 0.0736 0.0808
24 0.0321 0.0541 0.0676 0.0773 0.0849
25 0.0337 0.0568 0.0709 0.0811 0.0890
26 0.0353 0.0594 0.0742 0.0848 0.0931
27 0.0368 0.0621 0.0776 0.0887 0.0973
28 0.0385 0.0648 0.810 0.0926 0.1016
29 0.0401 0.0676 0.0844 0.0965 0.1059
30 0.0418 0.0704 0.0879 0.1005 0.1103
31 0.0434 0.0732 0.0914 0.1045 0.1148
32 0.0452 0.0761 0.0950 0.1087 0.1193
33 0.0469 0.0790 0.0987 0.1128 0.1239
34 0.0486 0.0820 0.1024 0.1171 0.1285
35 0.0504 0.0850 0.1062 0.1214 0.1332
36 0.0522 0.0881 0.1100 0.1257 0.1380
37 0.0541 0.0912 0.1139 0.1302 0.1429

(Continued)



452 Advanced Soil Mechanics

Table 8.9 (Continued) Solution for radial-flow equation (equal vertical strain)

Degree of Time factor T, for value of n(= r./r,)

consolidation

U.(%) 5 10 15 20 25
38 0.0560 0.0943 0.1178 0.1347 0.1479
39 0.579 0.0975 0.1218 0.1393 0.1529
40 0.0598 0.1008 0.1259 0.1439 0.1580
41 0.0618 0.1041 0.1300 0.1487 0.1632
42 0.0638 0.1075 0.1342 0.1535 0.1685
43 0.0658 0.1109 0.1385 0.1584 0.1739
44 0.0679 0.1144 0.1429 0.1634 0.1793
45 0.0700 0.1180 0.1473 0.1684 0.1849
46 0.0721 0.1216 0.1518 0.1736 0.1906
47 0.0743 0.1253 0.1564 0.1789 0.1964
48 0.0766 0.1290 0.1611 0.1842 0.2023
49 0.0788 0.1329 0.1659 0.1897 0.2083
50 0.0811 0.1368 0.1708 0.1953 0.2144
51 0.0835 0.1407 0.1758 0.2020 0.2206
52 0.0859 0.1448 0.1809 0.2068 0.2270
53 0.0884 0.1490 0.1860 0.2127 0.2335
54 0.0909 0.1532 0.1913 0.2188 0.2402
55 0.0935 0.1575 0.1968 0.2250 0.2470
56 0.0961 0.1620 0.2023 0.2313 0.2539
57 0.0988 0.1665 0.2080 0.2378 0.2610
58 0.1016 0.1712 0.2138 0.2444 0.2683
59 0.1044 0.1759 0.2197 0.2512 0.2758
60 0.1073 0.1808 0.2258 0.2582 0.2834
6l 0.1102 0.1858 0.2320 0.2653 0.2912
62 0.1133 0.1909 0.2384 0.2726 0.2993
63 0.1164 0.1962 0.2450 0.2801 0.3075
64 0.1196 0.2016 0.2517 0.2878 0.3160
65 0.1229 0.2071 0.2587 0.2958 0.3247
66 0.1263 0.2128 0.2658 0.3039 0.3337
67 0.1298 0.2187 0.2732 0.3124 0.3429
68 0.1334 0.2248 0.2808 0.3210 0.3524
69 0.1371 0.2311 0.2886 0.3300 0.3623
70 0.1409 0.2375 0.2967 0.3392 0.3724
71 0.1449 0.2442 0.3050 0.3488 0.3829
72 0.1490 0.2512 0.3134 0.3586 0.3937
73 0.1533 0.2583 0.3226 0.3689 0.4050
74 0.1577 0.2658 0.3319 0.3795 0.4167

(Continued)
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Table 8.9 (Continued) Solution for radial-flow equation (equal vertical strain)

Degree of Time factor T, for value of n(= r./r,)

consolidation

U.(%) 5 10 15 20 25
75 0.1623 0.2735 0.3416 0.3906 0.4288
76 0.1671 0.2816 0.3517 0.4021 0.4414
77 0.1720 0.2900 0.3621 0.414] 0.4546
78 0.1773 0.2988 0.3731 0.4266 0.4683
79 0.1827 0.3079 0.3846 0.4397 0.4827
80 0.1884 03175 0.3966 0.4534 0.4978
8l 0.1944 0.3277 0.4090 0.4679 0.5137
82 0.2007 0.3383 0.4225 0.4831 0.5304
83 0.2074 0.3496 0.4366 0.4992 0.5481
84 0.2146 0.3616 0.4516 0.5163 0.5668
85 0.2221 0.3743 0.4675 0.5345 0.5868
86 0.2302 0.3879 0.4845 0.5539 0.6081
87 0.2388 0.4025 0.5027 0.5748 0.6311
88 0.2482 0.4183 0.5225 0.5974 0.6558
89 0.2584 0.4355 0.5439 0.6219 0.6827
90 0.2696 0.4543 0.5674 0.6487 0.7122
9l 0.2819 0.4751 0.5933 0.6784 0.7448
92 0.2957 0.4983 0.6224 0.7116 0.7812
93 03113 0.5247 0.6553 0.7492 0.8225
94 0.3293 0.5551 0.6932 0.7927 0.8702
95 0.3507 0.5910 0.7382 0.8440 0.9266
96 0.3768 0.6351 0.7932 0.9069 0.9956
97 0.4105 0.6918 0.8640 0.9879 1.0846
98 0.4580 0.7718 0.9640 1.1022 1.2100
99 0.5391 0.9086 1.1347 1.2974 1.4244

For T > T}.

U =1- L [exp(AT.) - 1]exp(~AT)) (8.182)
AT
where
A 2 (8.183)

(r2)

Figure 8.53 shows the variation of U, with T, and T}, for » = 5 and 10.
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Figure 8.53 Olson’s solution for radial flow under single ramp loading for n = 5 and 10
(Equations 8.181 and 8.182).
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8.14.3 Effect of smear zone on radial consolidation

Barron (1948) also extended the analysis of equal-strain consolidation
by sand drains to account for the smear zone. The analysis is based on
the assumption that the clay in the smear zone will have one boundary
with zero excess pore water pressure and the other boundary with an
excess pore water pressure that will be time-dependent. Based on this

assumption

uziu In| = _,,2_,52+E =S InS
m 7 272 k, n?

where k, is the coefficient of permeability of the smeared zone.

g=Tr
Ty

where 7, is the radius of the smeared zone.

m = " In| 2 —§+S—2+k—h - InS
T2 =8 S ) 4 4n* k| #?

[_STr j
U,y = U; EXp ;
m

The average degree of consolidation is given by the relation

U, =1—uaV:l—exp(_8Tr)
m

u;

8.15 NUMERICAL SOLUTION FOR RADIAL
DRAINAGE (SAND DRAIN)

(8.184)

(8.185)

(8.186)

(8.187)

(8.188)

As shown previously for vertical drainage (Section 8.4), we can adopt the
finite-difference technique for solving consolidation problems in the case of

radial drainage. From Equation 8.164

aﬁ:C (—927144_18714
ot Yl orr  ror
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Let ug, tg, and 7y be any reference excess pore water pressure, time, and

radial distance, respectively. So

Nondimensional excess pore water pressure = # = —

. . . — t
Nondimensional time = ¢ = —
15

) : o _r
Nondimensional radial distance =7 = —

Substituting Equations 8.189 through 8.191 into 8.164, we get

te 0t |0 7 o7

1 9u Cm[azu 1auJ
- = +77

Referring to Figure 8.54

aj = i(ﬁ o ﬁ ,)

9% AT 0,7 +AF 0,7

’u 1 _
977 = W(’/ﬁ,? +usz —2u7)

——Ar —Pt——Ar—>p|

Figure 8.54 Numerical solution for radial drainage.

(8.189)

(8.190)

(8.191)

(8.192)

(8.193)

(8.194)

(8.1995)
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If we adopt t; in such a way that 1/t =C,. /i and then substitute
Equations 8.193 through 8.195 into 8.192, then

_ At | _ _ Uz — U7 _ _
Uo7iar = |:M1,t +u3y +M_2u0,t:|+ Uy (8196)

Equation 8.196 is the basic finite-difference equation for solution of the
excess pore water pressure (for radial drainage only).

Example 8.20

For a sand drain, the following data are given: r, = 0.38 m, 7, = 1.52 m,
7y =, and C,, = 46.2 x 10-* m?/day. A uniformly distributed load of
50 kN/m? is applied at the ground surface. Determine the distribution
of excess pore water pressure after 10 days of load application assum-
ing radial drainage only.

Solution

Letrg=0.38m, Ar=0.38 m,and At =5 days.So7,=r/ry=1.52/0.38 = 4;
AT = Ar/rg =0.38/0.38 = 1

CuAr _ (46.2x107%)(S) _

At = =0.16
" (0.38)
Ajz _ 0.126 ~0.16
@ary @

Let up = 0.5 kN/m2. So, immediately after load application,
u =50/0.5 = 100.

Figure 8.55 shows the initial nondimensional pore water pressure
distribution at time ¢ = 0. (Note that at7 = 1, # = 0 owing to the drain-
age face.)

At 5 days: u = 0,7 = 1. From Equation 8.196

100-0
2(2/1)

Mo’,+At=O.16|:O+1OO+ —2(100)}+100:88
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Figure 8.55 Excess pore water pressure variation with time for radial drainage.

At7=3
Uy 7,47 =0.16 100+100+M—Z(100) +100 =100
’ 2(3/1)
Similarly at 7 =4
a(),ﬂA? =100
(note that, here, #;; = %, 5)
At 10 days,at7=1,u = 0.
At7=2
Uy 7.ar =0.16] 0+100+ 100-0 —2(88)|+88=79.84 =80
’ 2(2/1)
At7=3
uy 7,47 =0.16 88+100+M—2(100) +100=98.4
: 2(3/1)
At7=4
=100

u=uxuyg=0.5ukN/m?

The distribution of nondimensional excess pore water pressure is
shown in Figure 8.55.
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8.16 GENERAL COMMENTS ON
SAND DRAIN PROBLEMS

Figure 8.51b shows a triangular pattern of the layout of sand drains. In
some instances, the sand drains may also be laid out in a square pattern.
For all practical purposes, the magnitude of the radius of equivalent circles
can be given as follows:

Triangular pattern

7. = (0.525)(drain spacing) (8.197)
Square pattern

7. = (0.565)(drain spacing) (8.198)

Prefabricated vertical drains (PVDs), also referred to as wick or strip
drains, were originally developed as a substitute for the commonly used
sand drain. With the advent of materials science, these drains began to be
manufactured from synthetic polymers such as polypropylene and high-
density polyethylene. PVDs are normally manufactured with a corrugated
or channeled synthetic core enclosed by a geotextile filler as shown sche-
matically in Figure 8.56. Installation rates reported in the literature are on
the order of 0.1-0.3 m/s, excluding equipment mobilization and setup time.
PVDs have been used extensively in the past for expedient consolidation
of low-permeability soils under surface surcharge. The main advantage of

Polypropylene
core

Geotextile
fabric

Figure 8.56 Prefabricated vertical drain (PVD).
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PVDs over sand drains is that they do not require drilling; thus, installation
is much faster. For rectangular flexible drains, the radius of the equivalent
circles can be given as

(8.199)

where
a is width of the drain
b is the thickness of the drain

The relation for average degree of consolidation for vertical drainage
only was presented in Section 8.2. Also the relations for the degree of con-
solidation due to radial drainage only were given in Sections 8.14 and 8.15.
In reality, the drainage for the dissipation of excess pore water pressure

takes place in both directions simultaneously. For such a case, Carrillo
(1942) has shown that

U,,=1-(1-U,)1-U,) (8.200)
where
U, is the average degree of consolidation for simultaneous vertical and
radial drainage
U, is the average degree of consolidation calculated on the assumption
that only vertical drainage exists (note the notation U,, was used
before in this chapter)
U, is the average degree of consolidation calculated on the assumption
that only radial drainage exists

Example 8.21

A 6-m-thick clay layer is drained at the top and bottom and has some
sand drains. The given data are C, (for vertical drainage) = 49.51 x
10-* m/day; k, = k3 d, = 0.45 m; d. = 3 m; r, = 7, (i.e., no smear at the
periphery of drain wells).

It has been estimated that a given uniform surcharge would cause
a total consolidation settlement of 250 mm without the sand drains.
Calculate the consolidation settlement of the clay layer with the same
surcharge and sand drains at time ¢ = 0, 0.2, 0.4, 0.6, 0.8, and 1 year.

Solution
Vertical drainage: C, = 49.51 x 10-* m/day = 1.807 m/year.

Cyt _ 1.807 xt
H>  (6/27

T, = =0.2008t = 0.2t (E8.1)
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Table 8.10 Steps in calculation of consolidation settlement

T, u, T. I - exp u, = S.=
(Equation (Table (Equation [-8T,/F(n)] I=(I-U,) 250%U,,
t(Yea) E81) 81) I-U, E82) =u. I-U. (I-U) (mm)
0 0 0 | 0 0 | 0 0
0.2 0.04 022 0.78 0.04 0.235 0.765 0.404 101
0.4 0.08 032 068 0.08 0414 0.586 0.601 150.25
0.6 0.12 0.39 061 0.12 0.552 0.448 0.727 181.75
0.8 0.16 045 055 0.6 0.657 0.343 0.8I2 203
| 0.2 0.505 0.495 0.2 0.738 0.262 0.870 217.5
Radial drainage:
o lSm g,
7y 0225 m
2 2
E, = nzn—l In(n) —% (equal strain case)
2 2
_[ (6677 | .67 36677 -1
6.677 -1 46.67)
=1.94-0.744=1.196
Since k, = k,, C, = C,,. So
T = Cut 1807t 5, (ES.2)

a2 - 3

The steps in the calculation of the consolidation settlement are shown in
Table 8.10. From Table 8.10, the consolidation settlement at t =1 year
is 217.5 mm. Without the sand drains, the consolidation settlement at
the end of 1 year would have been only 126.25 mm.

8.17 DESIGN CURVES FOR PREFABRICATED
VERTICAL DRAINS

The relationships for the average degree of consolidation due to radial
drainage into sand drains were given in Equations 8.170, 8.171, 8.186 and
8.188, and they are for equal strain cases. Yeung (1997) used these relation-
ships to develop curves for PVDs. The theoretical developments used by
Yeung are given below.
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Figure 8.57 Prefabricated vertical drains—square-grid layout.

Figure 8.57 shows the layout of a square-grid pattern of prefabricated
vertical drains (also see Figure 8.56 for the definition of a and b). From
Equation 8.199, the equivalent diameter of a PVD can be given as,

d, = 2a+b (8.201)
T
Now, Equation 8.188 can be rewritten as
8C.t dy 8T/
U =1 —CXP(— 2 dfm’] = 1—CXP(— o j (8.202)
where d, = diameter of the effective zone of drainage = 27,
’ Cvrt
T/ = P (8.203)
, , nt n 3n*-S*) k
o =n’m =Mln(sj—[4] /:: (n* - §*)InS (8.204)
— de 2
d. (8.2095)

(Also see Equation 8.166.)



Consolidation 463

From Equation 8.202,

T =-%In1-u,)
8
or
(1, = 1 - In=U0) (8.206)
o 8

Table 8.11 gives the variation of (T}); with U,. Figure 8.58 shows the plot
of n versus o from Equation 8.204.

The following is a step-by-step procedure for the design of prefabricated
vertical drains:

1. Assume that the magnitude of required U,, and the corresponding
time ¢ is known.

2. With known time ¢, determine U..

3. From Equation 8.200, determine

_1-U,,

U, =
1-U,

(8.207)

N

. With known U,, use Equation 8.206 to obtain (T});.
. Determine T, from Equation 8.203.
6. Determine o’ = T//(T});.

(92

Table 8.11 Variation of (T)i with U, (Equation 8.206)

U, (M)

0.05 0.0064
0.10 0.0132
0.20 0.0279
0.30 0.0446
0.40 0.0639
0.50 0.0866
0.60 0.1145
0.70 0.1505
0.80 0.2012
0.90 0.2878

0.95 0.3745
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Figure 8.58 Plot of n versus o/. (Based on Yeung, A. T., J. Geotech. Geoenv. Eng., ASCE,
123(8), 755-759, 1997. —Equation 8.204.)

7. Using Figure 8.58 (or a similar figure with varying k,/k, and S), deter-

mine 7.
8. From Equation 8.205

d.=n civ_%

Equation
8.201

9. Choose the drain spacing (see Equations 8.197 and 8.198).

€

d= 16(1,)5 (for triangular pattern)

€

d= 1.L17328 (for square pattern)

REFERENCES

Azzouz, A. S., R. J. Krizek, and R. B. Corotis, Regression analysis of soil compress-
ibility, Soils Found. Tokyo, 16(2), 19-29, 1976.

Barden, L., Consolidation of clay with non-linear viscosity, Geotechnique, 15(4),
345-362,1965.

Barden, L., Primary and secondary consolidation of clay and peat, Geotechnique,
18, 1-14, 1968.

Barron, R. A., Consolidation of fine-grained soils by drain wells, Trans, ASCE, 113,
1719, 1948.



Consolidation 465

Bjerrum, L., Embankments on soft ground, in Proceedings, Specialty Conference
Performance of Earth and Earth-Supported Structures, vol. 2, 1-54, ASCE,
New York, 1972.

Brummund, W. E, E. Jonas, and C. C. Ladd, Estimating in situ maximum past (pre-
consolidation) pressure of saturated clays from results of laboratory consolid-
ometer tests, Transportation Research Board, Special Report 163, 4-12, 1976.

Burland, J. B., On the compressibility and shear strength of natural clays,
Geotechnique, 40(3), 329-378, 1990.

Carrillo, N., Simple two- and three-dimensional cases in theory of consolidation of
soils, J. Math. Phys., 21(1), 1-5, 1942.

Casagrande, A., The determination of the preconsolidation load and its practical sig-
nificance, Proceedings of the First International Conference on Soil Mechanics
and Foundation Engineering, Cambridge, USA, p. 60, 1936.

Casagrande, A. and R. E. Fadum, Notes on Soil Testing for Engineering Purposes,
Publication No. 8, Harvard University, Graduate School of Engineering,
Cambridge, MA, 1940.

Crawford, C. B., Interpretation of the consolidation tests, J. Soil Mech. Found. Div.,
ASCE, 90(SM5), 93-108, 1964.

Gibson, R. E.and K. Y. Lo, A Theory of Consolidation for Soils Exhibiting Secondary
Compression, Publication No. 41, Norwegian Geotechnical Institute, Norway,
1961.

Hanna, D., N. Sivakugan and L. Lovisa, Simple approach to consolidation due to
constant rate loading in clays, Int. |. Geomechanics, ASCE, New York, 13(2),
193-196, 2013.

Hansbo, S., A new approach to the determination of shear strength of clay by the
Fall Cone Test, Report 14, Royal Swedish Geotechnical Institute, Stockholm,
Sweden, 1957.

Jose, B. T., A. Sridharan and B. M. Abraham, Log-log method for determination of
preconsolidation pressure, Geotech. Testing J., ASTM, 12(3), 230-237, 1989.

Kempfert, H. G. and B. Soumaya, Settlement back-analysis of buildings on soft soil
in Southern Germany, Proc., 5th Int. Conf. Case Histories in Geotech. Eng.,
University of Missouri, Rolla, USA, 2004.

Kootahi, K., Simple index tests for assessing the recompression index of fine-grained
soils, J. Geotech. Geoenv. Eng., ASCE, 143(4), 06016027-1, 2017.

Kulhawy, F. F. and P. W. Mayne, Manual on Estimating Soil Properties for Foundation
Design, EPRI, Palo Alto, CA, 1990.

Larsson, R., Undrained shear strength in stability calculation of embankments and
foundations on clay, Can. Geotech. J., 17, 591-602, 1980.

Leonards, G. A. and A. G. Altschaeffl, Compressibility of clay, J. Soil Mech. Found.
Div., ASCE, 90(SMS5), 133-156, 1964.

Leroueil, S., Tenth Canadian geotechnical colloquium: Recent development in con-
solidation of natural clays, Can. Geotech. J.,25(1), 85-107, 1988.

Lowe, J., IIL, E. Jonas, and V. Obrician, Controlled gradient consolidation test, J. Soil
Mech. Found. Div., ASCE, 95(SM1), 77-98, 1969.

Luscher, U., Discussion, J. Soil Mech. Found. Div., ASCE, 91(SM1), 190-195, 1965.

Mayne, P. W. and J. B. Kemper, Profiling OCR in stiff clays by CPT and STP, Geotech.
Test. J., ASTM, 11(2), 139147, 1988.



466 Advanced Soil Mechanics

Mayne, P. W. and J. K. Mitchell, Profiling of overconsolidation ratio in clays by field
vane, Can. Geotech. J.,25(1),150-157, 1988.

Mesri, G., Coefficient of secondary compression, J. Soil Mech. Found. Div., ASCE,
99(SMI), 123-137,1973.

Mesri, G. and P. M. Godlewski, Time and stress-compressibility interrelationship,
J. Geotech. Eng., ASCE, 103(5), 417-430, 1977.

Nacci, V. A., M. C. Wang, and K. R. Demars, Engineering behavior of calcareous
soils, Proceedings of the Civil Engineering in the Oceans III, 1, 380-400,
ASCE, New York, 1975.

Nagaraj, T. and B. S. R. Murty, Prediction of the preconsolidation pressure and
recompression index of soils, Geotech. Test. J., ASTM, 8(4), 199-202, 1985.

Nakase, A., T. Kamei and O. Kusakabe, Constitutive parameters estimated by plas-
ticity index, J. Geotech. Eng., ASCE, 114(7), 844-858, 1988.

Oikawa, H., Compression curve of soft soils, Soils and Foundations, 27(3), 99-104,
1987.

Olson, R. E., Consolidation under time-dependent loading, J. Geotech. Eng. Div.,
ASCE, 103(GT1), 55-60, 1977.

Park, J. H. and T. Koumoto, New compression index equation, J. Geotech. Geoenv.
Eng., ASCE, 130(2), 223-226, 2004.

Raju, P. S. R., N. S. Pandian, and T. S. Nagaraj, Analysis and estimation of coefficient
of consolidation, Geotech. Test. J., ASTM, 18(2),252-258, 1995.

Rendon-Herrero, O., Universal compression index, J. Geotech. Eng., ASCE, 109(10),
1349, 1983.

Rendulic, L., Der Hydrodynamische Spannungsaugleich in Zentral Entwisserten
Tonzylindern, Wasser-wirtsch. Tech.,2,250-253,269-273,1935.

Richart, E. E., Review of the theories for sand drains, Trans. ASCE, 124, 709-736,
1959.

Robinson, R. G. and M. M. Allam, Determination of coefficient of consolidation
from early stage of log t plot, Geotech. Test. J., ASTM, 19(3), 316-320, 1996.

Schiffman, R. L., C. C. Ladd, and A. T. Chen, The Secondary Consolidation of Clay,
LU.T.A.M. Symposium on Rheological Soil Mechanics, 273 Grenoble, France,
273,1964.

Schmertmann, J. H., Undisturbed laboratory behavior of clay, Trans. ASCE, 120,
1201, 1953.

Scott, R. E, Principles of Soil Mechanics, Addison-Wesley, Reading, MA, 1963.

Sivakugan, N., J. Lovisa, J. Ameratunga and B. M. Das, Consolidation settlement
due to ramp loading, Int. . Geotech. Eng., 8(2), 19-196, 2014.

Sivaram, B. and P. Swamee, A computational method for consolidation coefficient,
Soils Found. Tokyo, 17(2), 48-52,1977.

Smith, R. E. and H. E. Wahls, Consolidation under constant rate of strain, J. Soil
Mech. Found. Div., ASCE, 95(SM2), 519-538, 1969.

Sridharan, A. and K. Prakash, Improved rectangular hyperbola method for the deter-
mination of coefficient of consolidation, Geotech. Test. J., ASTM, 8(1), 37-40,
1985.

Sridharan, A. and K. Prakash, 8 - #8 Method for the determination of coefficient of
consolidation, Geotech. Test. J., ASTM, 16(1), 131-134, 1993.



Consolidation 467

Stas, C. V. and E. H. Kulhawy, Critical evaluation of design methods for foundations
under axial uplift and compression loading, Report EL-3771, EPRI, Palo Alto,
CA, 1984.

Su, H. L., Procedure for rapid consolidation test, J. Soil Mech. Found. Div., ASCE,
95, Proc. Pap. 1729, 1958.

Tan, T. K., Discussion, Proc. 4th Int. Conf. Soil Mech. Found. Eng.,vol. 3,p.278,1957.

Taylor, D. W., Research on Consolidation of Clays, Publication No. 82, Massachusetts
Institute of Technology, Cambridge, MA, 1942.

Taylor, D. W. and W. Merchant, A theory of clay consolidation accounting for sec-
ondary compression, J. Math. Phys., 19,167, 1940.

Terzaghi, K., Erdbaumechanik auf Boden-physicalischen Grundlagen, Deuticke,
Vienna, Austria, 1925.

Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York, 1943.

Terzaghi, K. and R. B. Peck, Soil Mechanics in Engineering Practice, 2nd edn., Wiley,
New York, 1967.

Umar, M. and A. Sadrekarimi, Accuracy of determining pre-consolidation pressure
from laboratory tests, Can. Geotech. J., 54(3), 441-450, 2017.

Wroth, C. P. and D. M. Wood, The correlation of index properties with some basic
engineering properties of soils, Can. Geotech. J., 15(2), 137-145, 1978.
Yeung, A.T., Design curves for prefabricated vertical drains, J. Geotech. Geoenu.

Eng., ASCE, 123(8), 755-759, 1997.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Chapter 9

Shear strength of soils

9.1 INTRODUCTION

The shear strength of soils is an important aspect in many foundation
engineering problems such as the bearing capacity of shallow foundations and
piles, the stability of the slopes of dams and embankments, and lateral earth
pressure on retaining walls. In this chapter, we will discuss the shear strength
characteristics of granular and cohesive soils and the factors that control them.

9.2 MOHR-COULOMB FAILURE CRITERION

In 1900, Mohr presented a theory for rupture in materials. According to
this theory, failure along a plane in a material occurs by a critical combina-
tion of normal and shear stresses, and not by normal or shear stress alone.
The functional relation between normal and shear stress on the failure
plane can be given by

s=f() (9.1)

where
s is the shear stress at failure
o is the normal stress on the failure plane

The failure envelope defined by Equation 9.1 is a curved line, as shown in
Figure 9.1.
In 1776, Coulomb defined the function f(c) as

s=c+otan¢ (9.2)

where
¢ is cohesion
¢ is the angle of friction of the soil

469
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c Equation 9.2
[ ]

Equation 9.1

N
//

Shear stress

v

Normal stress

Figure 9.1 Mohr—Coulomb failure criterion.

Equation 9.2 is generally referred to as the Mohr—Coulomb failure crite-
rion. The significance of the failure envelope can be explained using Figure
9.1. If the normal and shear stresses on a plane in a soil mass are such that
they plot as point A, shear failure will not occur along that plane. Shear
failure along a plane will occur if the stresses plot as point B, which falls on
the failure envelope. A state of stress plotting as point C cannot exist, since
this falls above the failure envelope; shear failure would have occurred
before this condition was reached.

In saturated soils, the stress carried by the soil solids is the effective
stress, and so Equation 9.2 must be modified:

s=c+(0—u)tandp=c+0o’'tano (9.3)

where
u is the pore water pressure
o’ is the effective stress on the plane

The term ¢ is also referred to as the drained friction angle. For sand,
inorganic silts, and normally consolidated clays, ¢ = 0. The value of ¢ is
greater than zero for overconsolidated clays.

The shear strength parameters of granular and cohesive soils will be
treated separately in this chapter.
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9.3 SHEARING STRENGTH OF GRANULAR SOILS

According to Equation 9.3, the shear strength of a soil can be defined as
s = ¢ + ¢’ tan ¢. For granular soils with ¢ = 0,

s=0'tan¢ (9.4)

The determination of the friction angle ¢ is commonly accomplished by
one of two methods: the direct shear test or the triaxial test. The test pro-
cedures are given later.

9.3.1 Direct shear test

A schematic diagram of the direct shear test equipment is shown in
Figure 9.2. Basically, the test equipment consists of a metal shear box into
which the soil specimen is placed. The specimen can be square or circular
in plan, about 19-25 c¢m? in area, and about 25 mm in height. The box is
split horizontally into two halves. Normal force on the specimen is applied
from the top of the shear box by dead weights. The normal stress on the
specimens obtained by the application of dead weights can be as high as
1000 kN/m?. Shear force is applied to the side of the top half of the box
to cause failure in the soil specimen. (The two porous stones shown in
Figure 9.2 are not required for tests on dry soil.) During the test, the shear
displacement of the top half of the box and the change in specimen thick-
ness are recorded by the use of horizontal and vertical dial gauges.

Normal force

Porous ; Shear
stone force
__ Shear
box

Figure 9.2 Direct shear test arrangement.
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Figure 9.3 Direct shear test results in loose, medium, and dense sands.

Figure 9.3 shows the nature of the results of typical direct shear tests in
loose, medium, and dense sands. Based on Figure 9.3, the following obser-
vations can be made:

1. In dense and medium sands, shear stress increases with shear dis-
placement to a maximum or peak value 7, and then decreases to an
approximately constant value t_, at large shear displacements. This
constant stress T, is the ultimate shear stress.

2. For loose sands, the shear stress increases with shear displacement to
a maximum value and then remains constant.

3. For dense and medium sands, the volume of the specimen initially
decreases and then increases with shear displacement. At large values
of shear displacement, the volume of the specimen remains approxi-
mately constant.

4. For loose sands, the volume of the specimen gradually decreases to a
certain value and remains approximately constant thereafter.
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Figure 9.4 Determination of peak and ultimate friction angles from direct shear tests.

If dry sand is used for the test, the pore water pressure « is equal to zero,
and so the total normal stress o is equal to the effective stress o’. The test
may be repeated for several normal stresses. The angle of friction ¢ for the
sand can be determined by plotting a graph of the maximum or peak shear
stresses versus the corresponding normal stresses, as shown in Figure 9.4.
The Mohr—Coulomb failure envelope can be determined by drawing a
straight line through the origin and the points representing the experimen-
tal results. The slope of this line will give the peak friction angle ¢ of the
soil. Similarly, the ultimate friction angle ¢, can be determined by plotting
the ultimate shear stresses 1, versus the corresponding normal stresses, as
shown in Figure 9.4. The ultimate friction angle ¢, represents a condition
of shearing at constant volume of the specimen. For loose sands, the peak
friction angle is approximately equal to the ultimate friction angle.

If the direct shear test is being conducted on a saturated granular soil, time
between the application of the normal load and the shearing force should be
allowed for drainage from the soil through the porous stones. Also, the shear-
ing force should be applied at a slow rate to allow complete drainage. Since
granular soils are highly permeable, this will not pose a problem. If complete
drainage is allowed, the excess pore water pressure is zero, and so ¢ = &'

Some typical values of ¢ and ¢, for granular soils are given in Table 9.1.
Typical values of peak friction angle ¢ for granular soils suggested by U.S.
Navy (1986) are also shown in Figure 9.5.

The strains in the direct shear test take place in two directions, that is, in
the vertical direction and in the direction parallel to the applied horizontal
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Table 9.1 Typical values of ¢ and ¢, for granular soils

Type of soil ¢ (deg) ey (deg)
Sand: Round grains
Loose 28-30
Medium 30-35 26-30
Dense 35-38
Sand:Angular grains
Loose 30-35
Medium 35-40 30-35
Dense 40-45
Sandy gravel 34-48 33-36

shear force. This is similar to the plane strain condition. There are some
inherent shortcomings of the direct shear test. The soil is forced to shear in
a predetermined plane—that is, the horizontal plane—which is not neces-
sarily the weakest plane. Second, there is an unequal distribution of stress
over the shear surface. The stress is greater at the edges than at the center.
This type of stress distribution results in progressive failure (Figure 9.6).

In the past, several attempts were made to improve the direct shear test.
To that end, the Norwegian Geotechnical Institute developed a simple
shear test device, which involves enclosing a cylindrical specimen in a rub-
ber membrane reinforced with wire rings. As in the direct shear test, as the
end plates move, the specimen distorts, as shown in Figure 9.7a. Although
it is an improvement over the direct shear test, the shearing stresses are not
uniformly distributed on the specimen. Pure shear as shown in Figure 9.7b
only exists at the center of the specimen.
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Figure 9.5 Friction angles of granular soils. (Based on U.S. Navy, Soil Mechanic-Design
Manual 7.1, Department of the Navy, Naval facilities Engineering Command,
U.S. Government Printing Press, Washington, DC, 1986.)



Shear strength of soils 475
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Figure 9.6 Unequal stress distribution in direct shear equipment.
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Figure 9.7 (a) Simple shear and (b) pure shear.

(a)

9.3.2 Triaxial test

A schematic diagram of triaxial test equipment is shown in Figure 9.8.
In this type of test, a soil specimen about 38 mm in diameter and 76 mm
in length is generally used. The specimen is enclosed inside a thin rubber
membrane and placed inside a cylindrical plastic chamber. For conducting
the test, the chamber is usually filled with water or glycerin. The specimen
is subjected to a confining pressure o; by application of pressure to the
fluid in the chamber. (Air can sometimes be used as a medium for apply-
ing the confining pressure.) Connections to measure drainage into or out
of the specimen or pressure in the pore water are provided. To cause shear
failure in the soil, an axial stress Ac is applied through a vertical loading
ram. This is also referred to as deviator stress. The axial strain is measured
during the application of the deviator stress. For determination of ¢, dry or
fully saturated soil can be used. If saturated soil is used, the drainage con-
nection is kept open during the application of the confining pressure and
the deviator stress. Thus, during the test, the excess pore water pressure in
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Figure 9.8 Triaxial test equipment. (After Bishop, A. W. and Bjerrum, L., The relevance
of the triaxial test to the solution of stability problems, in Proc. Res. Conf.
Shear Strength of Cohesive Soils, ASCE, pp. 437-501, 1960.)

the specimen is equal to zero. The volume of the water drained from the
specimen during the test provides a measure of the volume change of the
specimen.

For drained tests, the total stress is equal to the effective stress. Thus,
the major effective principal stress is 67 = 6, = 63 + Ac; the minor effective
principal stress is 65 = 63; and the intermediate effective principal stress is
o, =05,

At failure, the major effective principal stress is equal to o; + Aoy,
where Aoy is the deviator stress at failure, and the minor effective princi-
pal stress is o;. Figure 9.9b shows the nature of the variation of Ac with
axial strain for loose and dense granular soils. Several tests with similar
specimens can be conducted by using different confining pressures o;.
The value of the soil peak friction angle ¢ can be determined by plotting
effective-stress Mohr’s circles for various tests and drawing a common tan-
gent to these Mohr’s circles passing through the origin. This is shown in
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Figure 9.9 Drained triaxial test in granular soil: (a) application of confining pressure and

(b) application of deviator stress.

Figure 9.10a. The angle that this envelope makes with the normal stress
axis is equal to ¢. It can be seen from Figure 9.10b that

sing = Q _ (67 —0%)/2
oa (o]+05)2
or
7 J
. 1] 01 —03
q) = Sln 4 4
1163 failure

(9.5)
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(b) derivation of Equation 9.5.

However, it must be pointed out that in Figure 9.10a the failure envelope
defined by the equation s = ¢’ tan ¢ is an approximation to the actual
curved failure envelope. The ultimate friction angle ¢, for a given test can
also be determined from the equation

0 = sin”! {0()—0} 0.6)

7/ 4
i) T O3

where 6/ = 05 + AG(,. For similar soils, the friction angle ¢ determined
by triaxial tests is slightly lower (0°-3°) than that obtained from direct
shear tests.

The axial compression triaxial test described earlier is of the conventional
type. However, the loading process on the specimen in a triaxial chamber
can be varied in several ways. In general, the tests can be divided into two
major groups: axial compression tests and axial extension tests. The follow-
ing is a brief outline of each type of test (refer to Figure 9.11).
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Figure 9.11 Soil specimen subjected to axial and radial stresses.

9.3.3 Axial compression tests

1. Radial confining stress o, constant and axial stress o, increased. This
is the test procedure described earlier.

2. Axial stress o, constant and radial confining stress o, decreased.

3. Mean principal stress constant and radial stress decreased.

For drained compression tests, o, is equal to the major effective principal
stress 07, and o, is equal to the minor effective principal stress 63, which
is equal to the intermediate effective principal stress 5. For the test listed
under item 3, the mean principal stress, that is, (6] +05 +63)/3, is kept con-
stant. Or, in other words, 6} + 05 +06% = ] =0, + 20, is kept constant by
increasing o, and decreasing c..

9.3.4 Axial extension tests

1. Radial stress o, kept constant and axial stress ¢, decreased.
2. Axial stress o, constant and radial stress o, increased.
3. Mean principal stress constant and radial stress increased.

For all drained extension tests at failure, o, is equal to the minor effective
principal stress 63, and o, is equal to the major effective principal stress o},
which is equal to the intermediate effective principal stress 5.

The detailed procedures for conducting these tests are beyond the scope
of this text, and readers are referred to Bishop and Henkel (1969). Several
investigations have been carried out to compare the peak friction angles
determined by the axial compression tests to those obtained by the axial
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extension tests. A summary of these investigations is given by Roscoe et al.
(1963). Some investigators found no difference in the value of ¢ from com-
pression and extension tests; however, others reported values of ¢ deter-
mined from the extension tests that were several degrees greater than those
obtained by the compression tests.

9.4 RELEVANCE OF LABORATORY
TESTS TO FIELD CONDITIONS

Various types of laboratory tests described in Section 9.3 will provide soil
friction angles for a given soil which may be slightly different from each
other. In the field, under a given structure, different soil elements will be
subjected to different boundary conditions. These soil elements may be
identified with the various types of laboratory tests and, hence, friction
angles thus obtained (also see Kulhawy and Mayne, 1990).

In order to illustrate the above factor, refer to Figure 9.12 which shows
the failure surface in soil supporting a circular shallow foundation. The
friction angle for the soil element at A can be more appropriately repre-
sented by that obtained from #riaxial compression tests. Similarly, the soil
elements at B and C can be represented by the friction angles obtained
respectively from direct simple shear tests (or direct shear tests) and #riaxial

b

|

T
1
1 1
Ll
1

Triaxial
extension

Triaxial
compression

Direct simple shear
(or direct shear)

Figure 9.12 Soil elements along the failure surface under a shallow circular foundation.
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extension tests. For practical design considerations, however, an average
value of the friction angle is considered.

9.5 CRITICAL VOID RATIO

We have seen that for shear tests in dense sands, there is a tendency of
the specimen to dilate as the test progresses. Similarly, in loose sand, the
volume gradually decreases (Figures 9.3 and 9.9). An increase or decrease
of volume means a change in the void ratio of soil. The nature of the
change of the void ratio with strain for loose and dense sands is shown in
Figure 9.13a. The void ratio for which the change of volume remains con-
stant during shearing is called the critical void ratio. Figure 9.13b shows
the results of some drained triaxial tests on washed Fort Peck sand. The
void ratio after the application of oj is plotted in the ordinate, and the
change of volume, AV, at the peak point of the stress—strain plot is plot-
ted along the abscissa. For a given o,, the void ratio corresponding to
AV = 0 is the critical void ratio. Note that the critical void ratio is a func-
tion of the confining pressure ;. It is, however, necessary to recognize
that whether the volume of the soil specimen is increasing or decreasing,
the critical void ratio is reached only in the shearing zone, even if it is gen-
erally calculated on the basis of the total volume change of the specimen.

The concept of critical void ratio was first introduced in 1938 by A.
Casagrande to study liquefaction of granular soils. When a natural deposit
of saturated sand that has a void ratio greater than the critical void ratio is
subjected to a sudden shearing stress (due to an earthquake or to blasting,
for example), the sand will undergo a decrease in volume. This will result in
an increase in pore water pressure #. At a given depth, the effective stress is
given by the relation ¢’ = 6 - u. If o (i.e., the total stress) remains constant
and u increases, the result will be a decrease in ¢'. This, in turn, will reduce
the shear strength of the soil. If the shear strength is reduced to a value
which is less than the applied shear stress, the soil will fail. This is called
soil liquefaction. An advanced study of soil liquefaction can be obtained
from the work of Seed and Lee (1966).

9.6 CURVATURE OF THE FAILURE ENVELOPE

It was shown in Figure 9.1 that Mohr’s failure envelope (Equation 9.1)
is actually curved, and the shear strength equation (s = ¢ + ¢ tan ¢) is
only a straight-line approximation for the sake of simplicity. For a drained
direct shear test on sand, ¢ = tan-'(t,,,./6’). Since Mohr’s envelope is actu-

ally curved, a higher effective normal stress will yield lower values of ¢.
This fact is demonstrated in Figure 9.14, which is a plot of the results of
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Figure 9.13 (a) definition of critical void ratio; (b) critical void ratio from triaxial test on
Fort Peck sand.
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Figure 9.14 Variation of peak friction angle, ¢, with effective normal stress on standard
Ottawa sand.

direct shear tests on standard Ottawa Sand. For loose sand, the value of
¢ decreases from about 30° to less than 27° when the normal stress is
increased from 48 to 768 kIN/m?2. Similarly, for dense sand (initial void ratio
approximately 0.56), ¢ decreases from about 36° to about 30.5° due to a
16-fold increase of ¢'.

For high values of confining pressure (greater than about 400 kN/m?),
Mohr’s failure envelope sharply deviates from the assumption given by
Equation 9.3. This is shown in Figure 9.15. Skempton (1960, 1961) intro-
duced the concept of angle of intrinsic friction for a formal relation between
shear strength and effective normal stress. Based on Figure 9.15, the shear
strength can be defined as

s=k+o’tan y (9.7)

where v is the angle of intrinsic friction. For quartz, Skempton (1961) gave
the values of k = 950 kN/m? and y = 13°.
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9.7 GENERAL COMMENTS ON ¢y

As shown in Figure 9.15, the failure envelope in a plot of shear stress at
failure and effective normal stress is curved. So, the friction angle ¢ derived
from laboratory tests on a dense sand is the secant friction angle (¢ = Oy.canc)
as shown in Figure 9.16(a). At the same time, for a loose sand, (¢ = 0d,,).
Figure 9.16(b) shows the nature of variation of ¢, and 0., with normal
effective stress ¢”. The difference between 0,..,,, and ¢, is due to dilation.

Bolten (1986) has analyzed the strength test results of 17 clean sand.
Based on this work, he proposed the following relationship to quantify
dilatency, or

Ogecant — Oy = SIr (for plane strain compression) (9.8)
and

Ogecant — Oy = 3Ir (for triaxial compression) (9.9)
where

Iz = relative dilatency index = D, {Q - ln(cfﬂ -R (9.10)
where

D, =relative density (fraction)
p. = atmospheric pressure (=100 kN/m?)
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61 + 6% + 05
3
01, 0%, 03 = major, intermediate, and minor principal effective stresses
QO = compressibility coefficient (=10 for quartz and feldspar)
R =filling coefficient (=1 for quartz and feldspar sands)

o7 = mean effective principal stresses =

Hence, for quartz or feldspar sand under triaxial compression test,

Osecant = P = 3{Dr [10—1n(100(;ﬂ—1} (9.11)

Figure 9.17 compares Equation 9.11 for triaxial compression test results
on quartz and feldspar sand (D,=0.8 and 0.5).

In addition, based on several laboratory test results, Koerner (1970)
proposed a relationship for ¢, on single mineral soil in the form

Oee = 36°+ Ay + Ad, + Ad; + A, + Ads (9.12)



486 Advanced Soil Mechanics

0
0.1 0.3 1.0 3.0 10 30 100 300 1000
oi/p,

Figure 9.17 Comparison of Equation 9.11 with triaxial compression test results on quartz
and feldspar sand. [Redrawn after Bolten, M. D., The strength and dilatancy
of sands, Geotechnique, 36(l), 6575, 1986.]

where

Ad, = correction for particle shape
= —6° for high sphericity and subrounded shape
= +2° for low sphericity and angular shape

Ad, = correction for particle size (Note: D, = effective size)
=-11° for Dy, > 2 mm (gravel)
=-9° for 2.0 > D,y > 0.6 (coarse sand)
=—-4° for 0.6 >D,, > 0.2 (medium sand)
= 0 for0.2>D,,>0.06 (fine sand)

Ads; = correction for gradation (Note: uniformity coefficient C,)
=-2° for C, > 2 (well graded)
=-1° for C, =2 (medium graded)
=0 for C, <2 (poorly graded)

correction for relative density, D,

—-1° for 0 < D, <0.5 (loose)
0 for 0.5< D, <0.75 (intermediate)
4° for 0.75 < D, < 1.0 (dense)

Ad;
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Ads = correction for mineral type

0 for quartz

+4° for feldspar, calcite, chlorite

= +6° for muscovite mica

9.8 SHEAR STRENGTH OF GRANULAR SOILS
UNDER PLANE STRAIN CONDITIONS

The results obtained from triaxial tests are widely used for the design of
structures. However, under structures such as continuous wall footings, the
soils are actually subjected to a plane strain type of loading, that is, the
strain in the direction of the intermediate principal stress is equal to zero.
Several investigators have attempted to evaluate the effect of plane strain
type of loading (Figure 9.18) on the angle of friction of granular soils. A sum-
mary of the results obtained was compiled by Lee (1970). To differentiate the
plane strain drained friction angle from the triaxial drained friction angle,
the following notations have been used in the discussion in this section:

¢, = drained friction angle obtained from plane strain tests
¢, = drained friction angle obtained from triaxial tests

Lee (1970) also conducted some drained shear tests on a uniform sand
collected from the Sacramento River near Antioch, California. Drained tri-
axial tests were conducted with specimens of diameter 35.56 mm and height

0, = Major principal stress
Strain=¢€;
(Note: € is compression)

v
B <+——4%— 0,=Intermediate

principal stress
03=Minor H
principal stress

Strain = €3
(Note: €3 is expansion)

Strain=€5=0

Figure 9.18 Plane strain condition.
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86.96 mm. Plane strain tests were carried out with rectangular specimens
60.96 mm high and 27.94 x 71.12 mm in cross-sectional area. The plane
strain condition was obtained by the use of two lubricated rigid side plates.
Loading of the plane strain specimens was achieved by placing them inside
a triaxial chamber. All specimens, triaxial and plane strain, were aniso-
tropically consolidated with a ratio of major to minor principal stress of 2:

_ oj(consolidation)

=2 9.13
o’s(consolidation) (9.13)

The results of this study are instructive and are summarized in the following:

1. For loose sand having a relative density of 38%, at low confining
pressure, ¢, and ¢, were determined to be 45° and 38°, respectively.
Similarly, for medium-dense sand having a relative density of 78%,
¢, and ¢, were 48° and 40°, respectively.

2. At higher confining pressure, the failure envelopes (plane strain and
triaxial) flatten, and the slopes of the two envelopes become the same.

3. Figure 9.19 shows the results of the initial tangent modulus, E, for
various confining pressures. For given values of 6%, the initial tangent
modulus for plane strain loading shows a higher value than that for
triaxial loading, although in both cases, E increases exponentially
with the confining pressure.

4. The variation of Poisson’s ratio v with the confining pressure for plane
strain and triaxial loading conditions is shown in Figure 9.20. The
values of v were calculated by measuring the change of the volume
of specimens and the corresponding axial strains during loading. The

106 : :
“— Antioch sand

g Initial void ratio = 0.85

Z k.=2.0

=

5

= Plain strain

3

g 105 | .
=

(9]

&

s Triaxial

=

£

104 L L
10 100 1,000 10,000

o5 (kN/ m?)

Figure 9.19 Initial tangent modulus from drained tests on Antioch sand. [After Lee, K. L.,
J. Soil Mech. Found. Div., ASCE, 96(SM3), 901, 1970.]
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Figure 9.20 Poisson’s ratio from drained tests on Antioch sand. [After Lee, K. L., J. Soil
Mech. Found. Div., ASCE, 96(SM3), 901, 1970.]

derivation of the equations used for finding v can be explained with
the aid of Figure 9.18. Assuming compressive strain to be positive, for
the stresses shown in Figure 9.18

AH=H ¢, (9.14)

AB=Be, (9.15)

AL=Le; (9.16)
where

H, L, B are the height, length, and width of the specimen

AH, AB, AL are the changes in height, length, and width of speci-
men due to application of stresses

€,, €,, €, are the strains in the direction of major, intermediate,
and minor principal stresses

The volume of the specimen before load application is equal to V = LBH,
and the volume of the specimen after the load application is equal to
V - AV. Thus

AV =V —(V—AV)=LBH — (L - AL)(B - AB)(H — AH)
=LBH-LBH(1-€,)(1-¢€,)(1-€5) (9.17)
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where AV is change in volume. Neglecting the higher-order terms such as
€,E,, €,€;, €;€,, and €,€,€;, Equation 9.17 gives

U:%:el+ez+e3 (9.18)

where v is the change in volume per unit volume of the specimen.
For triaxial tests, €, = €;, and they are expansions (negative sign). So, €, =
€, = -v €. Substituting this into Equation 9.18, we get v = €; (1 - 2v), or

V= ;(1 - Dj (for triaxial test conditions) (9.19)
€1

With plane strain loading conditions, €, = 0 and €; = -v €,. Hence, from
Equation 9.18,v=¢€, (1 - v), or

v=1-" (for plane strain conditions) (9.20)
€1

Figure 9.20 shows that for a given value of 65, Poisson’s ratio obtained
from plane strain loading is higher than that obtained from triaxial
loading.

On the basis of the available information at this time, it can be concluded
that ¢, exceeds the value of ¢, by 0°~8°. The greatest difference is associ-
ated with dense sands at low confining pressures. The smaller differences
are associated with loose sands at all confining pressures, or dense sand at
high confining pressures. Although still disputed, several suggestions have
been made to use a value of ¢ = ¢p = 1.1¢,, for calculation of the bear-
ing capacity of strip foundations. For rectangular foundations, the stress
conditions on the soil cannot be approximated by either triaxial or plane
strain loadings. Meyerhof (1963) suggested for this case that the friction
angle to be used for calculation of the ultimate bearing capacity should be
approximated as

¢=[1-1—0-1§f]¢t (9.21)
f

where
L; is the length of foundation
B, the width of foundation
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After considering several experiment results, Lade and Lee (1976) gave
the following approximate relations:

0p =1.50.-17 ¢, > 34° (9.22)

0p = O 0 < 34° (9.23)

9.9 SHEAR STRENGTH OF COHESIVE SOILS

The shear strength of cohesive soils can generally be determined in the labo-
ratory by either direct shear test equipment or triaxial shear test equipment;
however, the triaxial test is more commonly used. Only the shear strength
of saturated cohesive soils will be treated here. The shear strength based
on the effective stress can be given by (Equation 9.3) s = ¢ + ¢’ tan ¢. For
normally consolidated clays, ¢ = 0, and for overconsolidated clays, ¢ > 0.

The basic features of the triaxial test equipment are shown in Figure 9.8.
Three conventional types of tests are conducted with clay soils in the
laboratory:

1. Consolidated drained test or drained test (CD test or D test)
2. Consolidated undrained test (CU test)
3. Unconsolidated undrained test (UU test)

Each of these tests will be separately considered in the following sections.

9.9.1 Consolidated drained test

For the consolidated drained test, the saturated soil specimen is first sub-
jected to a confining pressure o; through the chamber fluid; as a result, the
pore water pressure of the specimen will increase by u.. The connection to
the drainage is kept open for complete drainage, so that #, becomes equal
to zero. Then, the deviator stress (piston stress) Ac is increased at a very
slow rate, keeping the drainage valve open to allow complete dissipation
of the resulting pore water pressure #,. Figure 9.21 shows the nature of the
variation of the deviator stress with axial strain. From Figure 9.21, it must
also be pointed out that, during the application of the deviator stress, the
volume of the specimen gradually reduces for normally consolidated clays.
However, overconsolidated clays go through some reduction of volume ini-
tially but then expand. In a consolidated drained test, the total stress is equal
to the effective stress, since the excess pore water pressure is zero. At failure,
the maximum effective principal stress is 67 = 6; = 03 + AG;, where Ac; is the
deviator stress at failure. The minimum effective principal stress is 05 = 0.
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Figure 9.21 Consolidated drained triaxial test in clay: (a) application of confining pres-
sure and (b) application of deviator stress.

From the results of a number of tests conducted using several specimens,
Mohr’s circles at failure can be plotted as shown in Figure 9.22. The values of
c and ¢ are obtained by drawing a common tangent to Mohr’s circles, which
is the Mohr—Coulomb envelope. For normally consolidated clays (Figure
9.22a), we can see that ¢ = 0. Thus, the equation of the Mohr—Coulomb enve-
lope can be given by s = ¢’ tan ¢. The slope of the failure envelope will give
us the angle of friction of the soil. As shown by Equation 9.5, for these soils

4 4
. 01 —O
smq):(”j or O =dcjtan? (45°+¢J
failure 2

o1 + 65
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Figure 9.22 Failure envelope for (a) normally consolidated and (b) overconsolidated
clays from consolidated drained triaxial tests.

Figure 9.23 shows a modified form of Mohr’s failure envelope of pure clay
minerals. Note that it is a plot of (6] — 65)sailure /2 Versus (67 + 65 )aiture /2.

For overconsolidated clays (Figure 9.22b), ¢ # 0. So, the shear strength
follows the equation s = ¢ + ¢’ tan ¢. The values of ¢ and ¢ can be deter-
mined by measuring the intercept of the failure envelope on the shear stress
axis and the slope of the failure envelope, respectively. To obtain a general
relation between 67, 03, ¢, and ¢, we refer to Figure 9.24 from which

ac _ (61—0%)/2
bO+0a ccoth+(c]+0c%)/2

sind =

o' (1—sin®) = 2¢ cos§+ &5(1 +sin ) (9.24)
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Figure 9.23 Modified Mohr’s failure envelope for quartz and clay minerals. [After Olson,
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or

;o 14sind  2ccosd
01 =03 T :
1-sing 1-sin¢

o, = o tan? (45°+§j+ 2¢ tan(45° +i’j (9.25)
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Figure 9.24 Derivation of Equation 9.25.
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Note that the plane of failure makes an angle of 45° + ¢$/2 with the major
principal plane.

If a clay is initially consolidated by an encompassing chamber pressure of
6. = 6. and allowed to swell under a reduced chamber pressure of 63 = 63,
the specimen will be overconsolidated. The failure envelope obtained from
consolidated drained triaxial tests of these types of specimens has two dis-
tinct branches, as shown in Figure 9.25. Portion ab of the failure envelope
has a flatter slope with a cohesion intercept, and portion bc represents a
normally consolidated stage following the equation s = ¢’ tan ¢,,.

It may also be seen from Figure 9.21 that at very large strains the deviator
stress reaches a constant value. The shear strength of clays at very large strains
is referred to as residual shear strength (i.e., the ultimate shear strength). It
has been proved that the residual strength of a given soil is independent of
past stress history, and it can be given by the equation (see Figure 9.26)

Sresidual = G, tan q)ult (9.26)

(i.e., the ¢ component is 0). For triaxial tests

7 /
. -1{ 01 —03
Gyie = sIn [ — J (9.27)
0 +6; residual
where 67 = 65 + Aoy,.
The residual friction angle in clays is of importance in subjects such as
the long-term stability of slopes.
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Figure 9.25 Failure envelope of a clay with preconsolidation pressure of G-.
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The consolidated drained triaxial test procedure described earlier is of the
conventional type. However, failure in the soil specimens can be produced by
any one of the methods of axial compression or axial extension as described
in Section 9.3 (with reference to Figure 9.11), allowing full drainage condition.

9.9.2 Consolidated undrained test

In the consolidated undrained test, the soil specimen is first consolidated by
a chamber-confining pressure o;; full drainage from the specimen is allowed.
After complete dissipation of excess pore water pressure, ., generated by the
confining pressure, the deviator stress Ao is increased to cause failure of the
specimen. During this phase of loading, the drainage line from the specimen
is closed. Since drainage is not permitted, the pore water pressure (pore water
pressure due to deviator stress #,) in the specimen increases. Simultaneous
measurements of Ac and u, are made during the test. Figure 9.27 shows
the nature of the variation of Ac and u, with axial strain; also shown is the
nature of the variation of the pore water pressure parameter A (A = u /Ac;
see Equation 5.11) with axial strain. The value of A at failure, A, is positive
for normally consolidated clays and becomes negative for overconsolidated
clays (also see Table 5.2). Thus, A; is dependent on the overconsolidation
ratio (OCR). The OCR for triaxial test conditions may be defined as

’

OCR =% (9.28)
G3
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Figure 9.27 Consolidated undrained triaxial test: (a) application of confining pressure
and (b) application of deviator stress.

where 6} =6, is the maximum chamber pressure at which the specimen
is consolidated and then allowed to rebound under a chamber pressure
of o;.

The typical nature of the variation of A; with the OCR for Weald clay is
shown in Figure 5.11.
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At failure

Total major principal stress = 6, = 6; + Ac;
Total minor principal stress = o;

Pore water pressure at failure = 2,y = A¢Ac;
Effective major principal stress = 6, — A{Ac; = 6}
Effective minor principal stress = 63 — A{AG; = G}

Consolidated undrained tests on a number of specimens can be conducted
to determine the shear strength parameters of a soil, as shown for the case
of a normally consolidated clay in Figure 9.28. The total-stress Mohr’s cir-
cles (circles A and B) for two tests are shown by dashed lines. The effective-
stress Mohr’s circles C and D correspond to the total-stress circles A and B,
respectively. Since C and D are effective-stress circles at failure, a common
tangent drawn to these circles will give the Mohr—Coulomb failure enve-
lope given by the equation s = ¢’ tan ¢. If we draw a common tangent to the
total-stress circles, it will be a straight line passing through the origin. This
is the total-stress failure envelope, and it may be given by

s=otand,, (9.29)

where ¢, is the consolidated undrained angle of friction.
The total-stress failure envelope for an overconsolidated clay will be of
the nature shown in Figure 9.29 and can be given by the relation

§=Cq +0tand,, (9.30)
A
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Figure 9.28 Consolidated undrained test results—normally consolidated clay.
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Figure 9.29 Consolidated undrained test—total stress envelope for overconsolidated clay.

where c_, is the intercept of the total-stress failure envelope along the shear
stress axis.

The shear strength parameters for overconsolidated clay based on effec-
tive stress, that is, ¢ and ¢, can be obtained by plotting the effective-stress
Mohr’s circle and then drawing a common tangent.

As in consolidated drained tests, shear failure in the specimen can be pro-
duced by axial compression or extension by changing the loading conditions.

9.9.3 Unconsolidated undrained test

In unconsolidated undrained triaxial tests, drainage from the specimen
is not allowed at any stage. First, the chamber-confining pressure o5 is
applied, after which the deviator stress Ao is increased until failure occurs.
For these tests,

Total major principal stress = 6; +Ac; = 6,
Total minor principal stress = o;

Tests of this type can be performed quickly, since drainage is not allowed.
For a saturated soil, the deviator stress failure, Aoy, is practically the same,
irrespective of the confining pressure o5 (Figure 9.30). So the total-stress
failure envelope can be assumed to be a horizontal line, and ¢ = 0. The
undrained shear strength can be expressed as

s=8, =2 (9.31)



500

Advanced Soil Mechanics

>
»

Shear stress

$=0
O3 03 o1 o1 .
»
Normal stress
2 e N
< Aoy »|

Figure 9.30 Unconsolidated undrained triaxial test.

This is generally referred to as the shear strength based on the ¢ = 0 concept.

The fact that the strength of saturated clays in unconsolidated und-
rained loading conditions is the same, irrespective of the confining pres-
sure 65 can be explained with the help of Figure 9.31. If a saturated clay
specimen A is consolidated under a chamber-confining pressure of 6; and
then sheared to failure under undrained conditions, Mohr’s circle at fail-
ure will be represented by circle no. 1. The effective-stress Mohr’s circle

Shear stress

AO®
o
S

%‘(’ | @3\&
o
2

_ande
¢z
$=0
2 1 3
o3 o3 o] o3+ Aoy \o; G3+A‘13,+ Aoy
|[¢——Ac;——» Normal stress
Ao

le— Ao —dle- Auy = Aoy —Ple——— Aoy ——>

Figure 9.31 Effective and total stress Mohr’s circles for unconsolidated undrained tests.
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corresponding to circle no. 1 is circle no. 2, which touches the effective-
stress failure envelope. If a similar soil specimen B, consolidated under a
chamber-confining pressure of o, is subjected to an additional confining
pressure of Ac; without allowing drainage, the pore water pressure will
increase by Au_.. We saw in Chapter 5 that Au_ = BAc; and, for saturated
soils, B = 1. So, Au_ = Ac,.

Since the effective confining pressure of specimen B is the same as speci-
men A, it will fail with the same deviator stress, Ac;. The total-stress Mohr’s
circle for this specimen (i.e., B) at failure can be given by circle no. 3. So, at
failure, for specimen B,

Total minor principal stress = 6; + Ao,
Total minor principal stress = 6; + Aoy + Ao

The effective stresses for the specimen are as follows:

Effective major principal stress = (65 + Aoy + Ac;) — (Au, + AAcy)
= (03 + Aoy) — AAcy;

=0 — AfAGf = (5,1

Effective minor principal stress = (65 + Ac;) — (Au, + AAcy)

4
= 03 — A{AG; =0,

The aforementioned principal stresses are the same as those we had for
specimen A. Thus, the effective-stress Mohr’s circle at failure for specimen
B will be the same as that for specimen A, that is, circle no. 1.

The value of Ao, could be of any magnitude in specimen B; in all cases,
Aoc; would be the same.

Example 9.1

Consolidated drained triaxial tests on two specimens of a soil gave the
following results:

Confining pressure  Deviator stress at failure

Test no. o5 (kN/m?) Ao (kNIm?)
I 70 4404
2 92 4747

Determine the values of ¢ and ¢ for the soil.
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Solution

From Equation 9.25, 6, = o; tan? (45°+d/2) + 2¢ tan (45°+¢/2).
For test 1, 6; = 70 kN/m?; 6, = 65 + Ac; = 70 + 440.4 = 510.4 kN/m?2. So,

510.4 = 70 tan’ (45°+$)+2c tan(45°+$j (E9.1)
Similarly, for test 2, 63 = 92 kN/m?; 6, = 92 + 474.7 = 566.7 kN/m2.
Thus

566.7 =92 tan” (45°+$)+ 2 tan(45°+$j (E9.2)

Subtracting Equation E9.1 from Equation E9.2 gives

56.3=22 tan [45%2]

1/2
o= z{tan‘ (52623) —450} =26°

Substituting ¢ = 26° in Equation E9.1 gives

_510.4-70tan’(45°+26/2) _ 510.4—70(2.56)
2tan(45°+25/2) 2(1.6)

=103.5 kN/m?

Example 9.2

A normally consolidated clay specimen was subjected to a consoli-
dated undrained test. At failure, 65 = 100 kN/m?2, 6, = 204 kN/m?, and
uy = 50 kN/m?. Determine ¢, and ¢.

Solution

Referring to Figure 9.32

sino., _ab _(01-03)/2 _0,—-0;5 _204-100 _104
Oa (01+05)/2 o1+0; 204+100 304
Hence
b, = 20°
Again

_01—0%

o
sing=—=———
O¢ 01+0;
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Figure 9.32 Total- and effective-stress Mohr’s circles.

o5 =100-50 = 50 kN/m?

6} =204-50 =154 kN/m?

So
. 154-50 104
smp=———"=——
154+54 204
Hence
¢ =30.7°
Example 9.3

Consider the normally consolidated clay described in Example 9.2
(i.e., ., =20° and ¢ = 30.7°). If a consolidated undrained triaxial test
is conducted on such a clay specimen with o; = 80 kN/m?, what will be
o, and u at failure?

Solution
sin g, = %
or
§in20= 91780 5 16316 kN/m?

G, +80°
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Again,
sing = 01—03 _ (01 —#a)—(03—%a) _  01-0C;s
G1+05 (01—ug)+(05—ua) O©1+05-2uy
Hence,
sin30.7° = 163.16 -80

(163.16 +80) — 214
ug =41.71 kN/m?

9.10 UNCONFINED COMPRESSION TEST

The unconfined compression test is a special case of the unconsolidated
undrained triaxial test. In this case, no confining pressure to the specimen
is applied (i.e., o3 = 0). For such conditions, for saturated clays, the pore
water pressure in the specimen at the beginning of the test is negative (capil-
lary pressure). Axial stress on the specimen is gradually increased until the
specimen fails (Figure 9.33). At failure, 6; = 0 and so

O =03 +A0f = AGf =4 (932)

where g, is the unconfined compression strength.

>

»
<

[

Shear stress

¢ =0, Failure envelope

03=0 o1=Aoc;

»

»
Normal stress

« Aocg=qy >

Figure 9.33 Unconfined compression strength.
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Table 9.2 Consistency and unconfined
compression strength of clays

Consistency q, (kNIm?)
Very soft 024
Soft 24-48
Medium 48-96
Stiff 96—192
Very stiff 192-383
Hard >383

Theoretically, the value of Ac; of a saturated clay should be the same as
that obtained from unconsolidated undrained tests using similar specimens.
Thus, s = §, = q,/2. However, this seldom provides high-quality results.

The general relation between consistency and unconfined compression
strength of clays is given in Table 9.2.

9.11 MODULUS OF ELASTICITY AND POISSON’S
RATIO FROM TRIAXIAL TESTS

For calculation of soil settlement and distribution of stress in a soil mass, it
may be required to know the magnitudes of the modulus of elasticity and
Poisson’s ratio of soil. These values can be determined from a triaxial test.
Figure 9.34 shows a plot of 67 — G5 versus axial strain € for a triaxial test,
where o5 is kept constant. The definitions of the initial tangent modulus E; and

01—-03

v

Axial strain

Figure 9.34 Definition of E; and E,.
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the tangent modulus E, at a certain stress level are also shown in the figure.
Janbu (1963) showed that the initial tangent modulus can be estimated as

7

O3 "’
E =Kp,| & 9.33)
)

a

where
03 is the minor effective principal stress
p. is the atmospheric pressure (same pressure units E; and o5)
K is the modulus number
n is the exponent determining the rate of variation of E; with 65

For a given soil, the magnitudes of K and # can be determined from the
results of a number of triaxial tests and then plotting E; versus o3 on log—log
scales. The magnitude of K for various soils usually falls in the range of
300-2000. Similarly, the range of 7 is between 0.3 and 0.6.

The tangent modulus E, can be determined as

E = 9(c} —053) (9.34)
oe

Duncan and Chang (1970) showed that

Et:{1_Rf(l—sin¢)(01—G’a)TKpa(c’a ] 9.35)

2ccosO+205sin0 Pa

where R; is the failure ratio. For most soils, the magnitude of R; falls
between 0.75 and 1.
For drained conditions, Trautman and Kulhawy (1987) suggested that

K= 300+900[¢ 2_0205 ) (9.36)

The approximate values of # and R; are as follows (Kulhawy et al., 1983):

Soil type n R
GW 1/3 0.7
SP 13 0.8
swW 12 0.7
SP 12 0.8

ML 2/3 0.8
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The value of Poisson’s ratio (v) can be determined by the same type of
triaxial test (i.e., 0; constant) as

Ae, — Ae,
v=—t——+

9.37
2Ae, ( )
where
A€, is the increase in axial strain
A€, is the volumetric strain = A€, + 2A€,
A€, is the lateral strain
So
A, — (Ae, + 2Ae, A€,
y=Asimlde rahe) A (9.38)

2Ae, Ae,

For undrained loading of saturated cohesive soil
v=0.5

For drained conditions, Poisson’s ratio may be approximated as (Trautman
and Kulhawy, 1987)

v=0.1+0.3(¢02_250] (9.39)

OO

9.12 FRICTION ANGLES ¢ AND ¢,

The drained angle of friction ¢ of normally consolidated clays generally
increases with the plasticity index (PI) of soil. This fact is illustrated in
Figure 9.35 for a number of clays from data compiled by Sorensen and
Okkels (2013). From this plot,

¢»=43-10logPI (mean) (9.40)

and

d»=39-11logPI (lower bound) (9.41)

Based on tests conducted over 30 years on clays obtained in Denmark,
Sorensen and Okkels (2013) gave the following correlations for overcon-
solidated clays.
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Figure 9.35 Variation of ¢ with plasticity index (Pl) for several normally consolidated
clays. (Based on Sorensen, K. K. and N. Okkels, Correlation between
drained shear strength and plasticity index of undisturbed overconsolidated
clays, Proc., 18th Int. Conf. Soil Mech. Geotech. Eng., Paris, Presses des Ponts,

1, 423-428, 2013))

Mean value of ¢:

o (deg) = 45 — 14 log PI (for 4 < PI < 50)

o (deg) =26 — 3 log PI (for 50 < PI < 150)
Lower bound value of ¢:

¢ (deg) =44 — 14 log PI (for 4 < PI < 50)

¢ (deg) =30 - 6 log PI (for 50 <PI< 150)
Lower bound value of ¢:

¢ (kN/m?) =30 (for 7 <PI < 30)

¢ (kN/m?) =48 - 0.6 PI (for 30 <PI < 80)

¢ (kN/m2) = 0 (for PI > 80)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)
(9.47)

(9.48)

Castellanos and Brandon (2013) showed that ¢ for undisturbed riverine
and lacustrine alluvial deposits determined from a consolidated undrained
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Figure 9.36 Variation of ¢ for undisturbed riverine and lacustrine alluvial soils deter-
mined from triaxial and direct shear tests against plasticity index. (Based
on Castellanos, B. A. and T. L. Brandon, A comparison between the shear
strength measured with direct shear and triaxial devices on undisturbed and
remoulded soils, Proc. 18th Int. Conf. Soil Mech. Geotech. Eng., Paris, Presses
des Ponts, |, 317-320, 2013.)

triaxial test is significantly greater than ¢ determined from a consolidated
drained direct shear test (Figure 9.36).

Figure 9.37 shows the variation of the magnitude of ¢, for several clays
with the percentage of clay-size fraction present. ¢, gradually decreases
with the increase of clay-size fraction. At very high clay content, ¢,
approached the value of ¢, (angle of sliding friction) for sheet minerals.
For highly plastic sodium montmorillonites, the value of ¢, can be as low
as 3°-4°.

Stark and Eid (1994) evaluated the residual friction angle of 32 clays and
clay shales using the torsional ring shear tests. Based on those tests, the
effect of clay mineralogy on ¢, is shown in Figure 9.38a. It can be seen that
¢, decreases with increasing liquid limit; also ¢, decreases with increas-
ing activity. Figure 9.38a also shows that the drained residual failure enve-
lope can be nonlinear. The relation between ¢, (secant residual friction
angle) and liquid limit of clays with varying clay-size fractions is shown
in Figure 9.38b. From this figure, it appears that there is a definite relation
between ¢, liquid limit, and the clay-size fraction.
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Figure 9.37 Variation of ¢, with percentage of clay content. (After Skempton, A. W.,
Geotechnique, 14, 77, 1964.)

9.13 EFFECT OF RATE OF STRAIN ON THE
UNDRAINED SHEAR STRENGTH

Casagrande and Wilson (1949, 1951) studied the problem of the effect of
rate of strain on the undrained shear strength of saturated clays and clay
shales. The time of loading ranged from 1 to 10* min. Using a time of
loading of 1 min as the reference, the undrained strength of some clays
decreased by as much as 20%. The nature of the variation of the und-
rained shear strength and time to cause failure, ¢, can be approximated by
a straight line in a plot of S, versus log #, as shown in Figure 9.39. Based on
this, Hvorslev (1960) gave the following relation:

t
Su) = Suta) {1 —Pa log(t ﬂ (9.49)

a

where
S, is the undrained shear strength with time, #, to cause failure
S is the undrained shear strength with time, z,, to cause failure
p, is the coefficient for decrease of strength with time
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Figure 9.38 (a) Drained failure envelopes; (b) plot of secant residual friction angle ver-
sus liquid limit. Note: LL, liquid limit; A, activity; CF, clay size fraction.
[Redrawn after Stark, T. D. and Eid, H. T., J. Geotech. Eng. Div., ASCE,
120(5), 856, 1994.]

In view of the time duration, Hvorslev suggested that the reference time
be taken as 1000 min. In that case

t min
Suit) = Sum | 1= Ppm | —_— 9.50
® m| L=pmlog) To0" (9.50)

where
S is the undrained shear strength at time 1000 min
P, 1s the coefficient for decrease of strength with reference time of
1000 min
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01— 03
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Figure 9.39 Effect of the rate of strain on undrained shear strength.

The relation between p, in Equation 9.49 and p,, in Equation 9.50 can
be given by

Pa

m = : ; 9.51
P 1-p,log[(1000 min)/(¢, min)] ( )
For ¢, = 1 min, Equation 9.38 gives
P1
m = 9.52
Po =113 952

Hvorslev’s analysis of the results of Casagrande and Wilson (1951) yielded
the following results: general range p, = 0.04-0.09 and p,, = 0.05-0.13;
Cucaracha clay-shale p; = 0.07-0.19 and p,, = 0.09-0.46. The study of
the strength-time relation of Bjerrum et al. (1958) for a normally consoli-
dated marine clay (consolidated undrained test) yielded a value of p,, in
the range 0.06-0.07.

9.14 EFFECT OF TEMPERATURE ON
THE UNDRAINED SHEAR STRENGTH

A number of investigations have been conducted to determine the effect of
temperature on the shear strength of saturated clay. Most studies indicate
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Figure 940 Unconfined compression strength of kaolinite—effect of temperature.
(After Sherif, M. A. and Burrous, C. M. Temperature effect on the uncon-
fined shear strength of saturated cohesive soils, Special Report 103, Highway
Research Board, 267-272, 1969.)

thata decrease in temperature will cause an increase in shear strength. Figure
9.40 shows the variation of the unconfined compression strength (g, = 2S,)
of kaolinite with temperature. Note that for a given moisture content, the
value of g, decreases with increase of temperature. A similar trend has been
observed for San Francisco Bay mud (Mitchell, 1964), as shown in Figure
9.41. The undrained shear strength (S, = (6, — 65)/2) varies linearly with
temperature. The results are for specimens with equal mean effective stress
and similar structure. From these tests

ds
=8 = 0.59 kN/(m* °C 9.53
IT (m” °C) (9.53)

Kelly (1978) also studied the effect of temperature on the undrained
shear strength of some undisturbed marine clay samples and commercial
illite and montmorillonite. Undrained shear strengths at 4°C and 20°C
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Figure 941 Effect of temperature on shear strength of San Francisco Bay mud. (After
Mitchell, J. K., J. Soil Mech. Found. Eng. Div., ASCE, 90(SMI), 29, 1964.)

were determined. Based on the laboratory test results, Kelly proposed the
following correlation:

AST“ = 0.0102 +0.00747 S\ avernge (9.54)

where
Su(average) = (Su(4°C) + Su(20°C))/2 in kN/m? (9.55)

T is the temperature in °C

Example 9.4

The following are the results of an unconsolidated undrained test: 65 = 70
kN/m?, 6, = 210 kN/m?. The temperature of the test was 12°C. Estimate
the undrained shear strength of the soil at a temperature of 20°C.

Solution

Sz =229 = 210=70 _ 76 | N/m?
( ) 2 2
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From Equation 9.54
AS, = AT[0.0102 + 0.00747S,1yerage)]
Now
AT =20-12=8°C
and
AS, = 8[0.0102 + 0.00747(70)] = 4.26 kN/m?
Hence

Sua0ec) = 70 = 4.26 = 65.74 kN/m?

9.15 CORRELATION FOR UNDRAINED SHEAR
STRENGTH OF REMOLDED CLAY

Several correlations have been suggested in the past for the undrained
shear strength of remolded clay (S,=3S,,), and some are given in Table 9.3.
It is important to point out that these relationships should be used as an
approximation only. O’Kelly (2013) has also shown that S, at a moisture
content w can be estimated as

log S, =(1— WLN){log(g‘"wH +log Surp) (9.56)

ur(B)

where
S.ur(a) = undrained shear strength at moisture content w,
S ) = undrained shear strength at moisture content wy

W, = Jogw —logws (9.57)
logwy —logw,

Table 9.3 Correlations for S, (kN/m?)

Investigator Relationship
|
i Sur P —
Leroueil et al. (1983) [(L)— 021
Hirata et al. (1990) S = exp[—3.36(LI) + 0.376]
Terzaghi et al. (1996) Sur = 2(L1)728
Yang et al. (2006) Sur =159.6 exp[-3.97(LI)]

Note: LI = liquidity index
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Example 9.5
Consider a saturated remolded clay soil. Given:
Liquid limit = 48

Plastic limit =23
Moisture content of soil =43%

Estimate the undrained shear strength S, using the equations of
Leroueil et al. (1983) and Terzaghi et al. (1996) given in Table 9.3.

Solution

The liquidity index,

LI= w—-PL =43—23=0'
LL-PL 48-23

e Leroueil et al. (1983):

Sur = L 2 = 1 > = 2.87 I(I\I/I’I'l2
[(LD)-0.21]" (0.8-0.21)

e Terzaghi et al. (1996):

Ser = 2(LD)>8 = (1)(0.8) % = 3.74 kN/m?

Example 9.6

Consider a remolded saturated clay. Given:

Moisture Undrained shear
content, w (%) strength, S, (kN/m?)
68 4.68

54 10.68

Estimate the undrained shear strength S, when the moisture content
is 40%. Use Equation 9.56.

Solution

Given:

* @uw,=68%, the value of S, 4, = 4.86 kN/m?
* @uwy=54%, the value of S, = 10.68 kN/m?
e w=40%
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From Equation 9.57

logw —logw, _ log(40)-log(68) -0.231

= = =2.287
logwy —logw,  log(54)—log(68) —0.101

WLN =

From Equation 9.56

log Sy = (1- 2.287){10g(14t)'8668ﬂ+ log(10.68) = 29.44 kN/m?

9.16 STRESS PATH

Results of triaxial tests can be represented by diagrams called stress paths.
A stress path is a line connecting a series of points, each point representing
a successive stress state experienced by a soil specimen during the progress
of a test. There are several ways in which the stress path can be drawn, two
of which are discussed later.

9.16.1 Rendulic plot

A Rendulic plot is a plot representing the stress path for triaxial tests origi-
nally suggested by Rendulic (1937) and later developed by Henkel (1960).
It is a plot of the state of stress during triaxial tests on a plane Oabc, as
shown in Figure 9.42.

Figure 942 Rendulic plot.
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Along Oa, we plot \/R, and along Oc, we plot o, (0 is the effec-
tive radial stress and o the effective axial stress). Line Od in Figure 9.43
represents the isotropic stress line. The direction cosines of this line are
113, 1/{/3, 1/4/3. Line Od in Figure 9.43 will have slope of 1 vertical to v2
horizontal. Note that the trace of the octahedral plane (67 + 65 + 6= const)
will be at right angles to the line Od.

In triaxial equipment, if a soil specimen is hydrostatically consolidated
(i.e., 0, = 0}), it may be represented by point 1 on the line Od. If this speci-
men is subjected to a drained axial compression test by increasing o, and
keeping o} constant, the stress path can be represented by the line 1-2.
Point 2 represents the state of stress at failure. Similarly

Line 1-3 will represent a drained axial compression test conducted by
keeping o constant and reducing o;.

Line 1-4 will represent a drained axial compression test where the mean
principal stress (or | = 6] + 65 + 63) is kept constant.

Line 1-5 will represent a drained axial extension test conducted by keep-
ing o} constant and reducing o.

Line 1-6 will represent a drained axial extension test conducted by
keeping o, constant and increasing ;.

Line 1-7 will represent a drained axial extension test with | = 6} + 65 + 05
constant (i.e., | = 6, + 20/, constant).

A
Failure envelope for \\ Trace of octahedral plane
i 0+ 05+ 03=constant
compression tests \ \‘/ 1t02+03
\ d
\
\
.~ ®© \
© \ Isotropic
\ stress line
\
\
\\
3L _____
cos 1(1/V3)
1 Failure envelope for
o3 extension tests
(@] » a

Figure 943 Rendulic diagram.
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Figure 944 Determination of pore water pressure in a Rendulic plot.

Curve 1-8 will represent an undrained compression test.
Curve 1-9 will represent an undrained extension test.

Curves 1-8 and 1-9 are independent of the total stress combination,
since the pore water pressure is adjusted to follow the stress path shown.

If we are given the effective stress path from a triaxial test in which failure
of the specimen was caused by loading in an undrained condition, the pore
water pressure at a given state during the loading can be easily determined.
This can be explained with the aid of Figure 9.44. Consider a soil specimen
consolidated with an encompassing pressure o, and with failure caused in the
undrained condition by increasing the axial stress 6,. Let acb be the effective
stress path for this test. We are required to find the excess pore water pres-
sures that were generated at points ¢ and b (i.e., at failure). For this type of
triaxial test, we know that the total stress path will follow a vertical line such
as ae. To find the excess pore water pressure at ¢, we draw a line ¢f parallel
to the isotropic stress line. Line cf intersects line ae at d. The pore water pres-
sure u, at ¢ is the vertical distance between points ¢ and d. The pore water
Pressure i, at b can similarly be found by drawing bg parallel to the iso-
tropic stress line and measuring the vertical distance between points b and g.

9.16.2 Lambe’s stress path

Lambe (1964) suggested another type of stress path in which are plot-
ted the successive effective normal and shear stresses on a plane making
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an angle of 45° to the major principal plane. To understand what a stress
path is, consider a normally consolidated clay specimen subjected to a con-
solidated drained triaxial test (Figure 9.45a). At any time during the test,
the stress condition in the specimen can be represented by Mohr’s circle
(Figure 9.45b). Note here that, in a drained test, total stress is equal to
effective stress. So

63 = 03 (minor principal stress)

01 = 03 + AG = 0} (major principal stress)

At failure, Mohr’s circle will touch a line that is the Mohr—Coulomb failure
envelope; this makes an angle ¢ with the normal stress axis (¢ is the soil
friction angle).

We now consider the effective normal and shear stresses on a plane mak-
ing an angle of 45° with the major principal plane. Thus

lAG
+ =0
%

1

>
»

2
&
®
—
5
<
wv
YO
by :
B
D ]
\ I
< |
_________ Z ~ \ !
i BN
a AN
’ \ ’ ’
i 93(f) ! \\ %1 O1(f) R
o ,A c Normal stress

(b)

Figure 9.45 Definition of stress path: (a) sample under loading; (b) definition of K line.
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o1 + 6
2

Effective normal stress, p’ =

(9.58)

’ ’

01 —0G3

Shear stress, ¢’ = 5

(9.59)

The point on Mohr’s circle having coordinates p’ and g’ is shown in
Figure 9.45b. If the points with p’ and g’ coordinates of all Mohr’s circles
are joined, this will result in the line AB. This line is called a stress path.
The straight line joining the origin and point B will be defined here as the
K; line. The K; line makes an angle a with the normal stress axis. Now

(G',l(f) - Gé(f))/z

9.60
(GQ(f) + 0'3(f))/2 ( )

BC
tano=—— =
ocC

where o} and o are the effective major and minor principal stresses at
failure.
Similarly

sing = 2C = (G0 =Gun)/2 (9.61)
OC (Gl(f) + Gg(f))/z

From Equations 9.60 and 9.61, we obtain

tano = sin (9.62)

For a consolidated undrained test, consider a clay specimen consolidated
under an isotropic stress 03 = 03 in a triaxial test. When a deviator stress
Ao is applied on the specimen and drainage is not permitted, there will be
an increase in the pore water pressure, Au (Figure 9.46a):

Au = AAc (9.63)

where A is the pore water pressure parameter.
At this time, the effective major and minor principal stresses can be given

by

Minor effective principal stress = 63 = 03 — Au
Major effective principal stress = 6] = 6; — Au = (03 + AG) — Au

Mohr’s circles for the total and effective stress at any time of deviator stress
application are shown in Figure 9.46b. (Mohr’s circle no. 1 is for total stress
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Figure 9.46 Stress path for consolidated undrained triaxial test: (a) sample under loading;

(b) effective-stress path.

and no. 2 for effective stress.) Point B on the effective-stress Mohr’s circle
has the coordinates p’ and g'. If the deviator stress is increased until failure
occurs, the effective-stress Mohr’s circle at failure will be represented by
circle no. 3, as shown in Figure 9.46b, and the effective-stress path will be
represented by the curve ABC.

The general nature of the effective-stress path will depend on the value
of A = Au/Ac. Figure 9.47 shows the stress path in a p’ versus g’ plot for
Lagunilla clay (Lambe, 1964). In any particular problem, if a stress path

q'(kN/m?)

200

100

Axial strain, € =2%_

-

=

/

-

-
-
-

100 200 300
P (kN/m?)

Figure 9.47 Stress path for Lagunilla clay. [After Lambe, T. W., Soil Mech. Found. Div.,

ASCE, 90(5), 43, 1964
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Figure 948 Determination of major and minor principal stresses for a point on a
stress path.

is given in a p’ versus g’ plot, we should be able to determine the values of
the major and minor effective principal stresses for any given point on the
stress path. This is demonstrated in Figure 9.48, in which ABC is an effec-
tive stress path.

From Figure 9.47, two important aspects of effective stress path can be
summarized as follows:

1. The stress paths for a given normally consolidated soil are geometri-
cally similar.

2. The axial strain in a CU test may be defined as €, = AL/L, as shown in
Figure 9.46a. For a given soil, if the points representing equal strain in
a number of stress paths are joined, they will be approximately straight
lines passing through the origin. This is also shown in Figure 9.47.

Example 9.7

Given here are the loading conditions of a number of consolidated
drained triaxial tests on a remolded clay (¢ = 25°, ¢ = 0).

Consolidation Type of loading applied
Test no.  pressure (kN/m?) to cause failure
I 400 o, increased; 6, constant
2 400 ©, constant; o, increased
3 400 6, decreased; 6, constant
4 400 o, constant; 6, decreased
5 400 o, * 20, constant; increased
64 and decreased o,
6 400 0, + 20, constant; decreased

04 and increased o,
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\EG; (kN/m?)

Figure 9.49 Stress paths for tests 1-6 in Example 9.7.

a. Draw the isotropic stress line.
b. Draw the failure envelopes for compression and extension tests.
c. Draw the stress paths for tests 1-6.

Solution

Part a: The isotropic stress line will make an angle 0 = cos™' 1/+/3 with
the o), axis, so 6 = 54.8°. This is shown in Figure 9.49 as line Oa.
Part b:

7 s a .
. o] —0 o 1+sin
o1 + O3 failure O3 failure 1 —Ssin q)

where ¢ and 6} are the major and minor principal stresses. For com-
pression tests, 6] = 6, and o3 = o). Thus

Gf :1+s%n25°:2.46
O; failure 1-sin25°
or (G; )failure =2.46 (G; )failure
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The slope of the failure envelope is

o, _ 2.460,

NG ANGY %

=1.74

tand, =

Hence, 8, = 60.1°. The failure envelope for the compression tests is
shown in Figure 9.49.
For extension tests, 61 = 6. and 65 = 6,.. So

% | 1msin2d 6406 or o =0.4060,
Or fitue 1+sin25

The slope of the failure envelope for extension tests is

6, _ 0.4060; _ 0287

NP AENGY

Hence, 8, = 16.01°. The failure envelope is shown in Figure 9.49.

tand, =

Part c: Point a on the isotropic stress line represents the point where
G, =0}(or 61 =05 =03). The stress paths of the test are plotted in
Figure 9.49.

Test no.  Stress path in Figure 9.49

ab
ac
ad
ae
af
ag

o U1 A W N —

Example 9.8

The stress path for a normally consolidated clay is shown in Figure
9.50 (Rendulic plot). The stress path is for a consolidated undrained
triaxial test where failure was caused by increasing the axial stress
while keeping the radial stress constant. Determine

a. ¢ for the soil,
b. The pore water pressure at A,

c. The pore water pressure at failure, and
d. The value of A;.

Solution
Refer to Figure 9.51.
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Figure 9.50 Stress path for a normally consolidated clay (consolidated undrained test).
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Figure 9.5 Determination of pore water pressures from stress path.
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a. For compression, §, = 63°

91 = /2 tan8, =2 tan63=2.776
o;

Os 2 2.776= 17500y _oge
ol 1-sin¢

b. From the graph, at A, Au = 80.8 kIN/m?

c. From the graph, at failure, Au=192.3 kN/m?
d. At failure, 6, = 400 kN/m?; 6, = 200//2 =141.4 kN/m?

A 192.3

Example 9.9

T 400-141.4

=0.744

The results of a consolidated undrained test, in which 65 = 392 kN/m?,

on a normally consolidated clay are given below.

Axial strain Ao Uy
(%) (kN/m?) (kN/m?)
0 0 0
0.5 156 99
0.75 196 120
| 226 132
1.3 235 147
2 250 161
3 245 170
4 240 173
4.5 235 175

Draw the K; line in a p” versus q” diagram. Also draw the stress path

for this test in the diagram and determine o.

Solution
o3 =392 kN/m”

’

’

Axial strain Ac Uy q
(%) (kNIm?) (kNIm?) (kN/m?) (kNIm?)
0 0 0 392 0

0.5 156 99 371 78
0.75 196 120 370 98

| 226 132 373 113
1.3 235 147 362.5 117.5

(Continued)
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Axial strain Ac uy / q
(%) (kN/m?) (kN/m?) (kN/m?) (kN/m?)
2 250 161 356 125

3 245 170 3445 122.5
4 240 173 339 120
45 235 175 3345 117.5

The p’ versus g’ plot is shown (Figure 9.52). From the K line, 0. = 20°.

Example 9.10

For a saturated clay soil, the following are the results of some consoli-

dated drained triaxial tests at failure:

Testno. p'=2"% (kN/m?) g = %(m/mz)
| 420 179.2
2 630 255.5
3 770 308.0
4 1260 467.0

Draw a p’ versus q’ diagram, and from that, determine ¢ and ¢ for the soil.

Solution

The diagram of g’ versus p’ is shown in Figure 9.53; this is a straight

line, and its equation may be written in the form

(E9.3)

q'=m+p tana
)
)
Z
&
300
200}
100} !*
A
A
1
20°=a \
0 1 1 1 al
0 100 200 300 400

p' (kN/m?)

Figure 9.52 Plot of q' versus p' for the saturated clay (undrained triaxial test).
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560
420 -
&
E
Z 280
=
140
2
0 23.8 kN/Im | | |
o * 280 560 840 1120 1260
)2 (kN/m?2)
Figure 9.53 Plot of q’ versus p’ diagram.
Also
/S ’ J 7
- +05 .
% ccosor @4 %sing (E9.4)

Comparing Equations E9.3 and E9.4, we find m = c cos ¢ or ¢ = m/cos ¢
and tan a = sin ¢. From Figure 9.53, m = 23.8 kN/m? and o = 20°. So

¢ =sin"'(tan20°) = 21.34°

and

c=" 238 55 55 kKN/m?

" cosa - cos21.34°

9.17 HVORSLEV’S PARAMETERS

Considering cohesion to be the result of physicochemical bond forces (thus
the interparticle spacing and hence void ratio), Hvorslev (1937) expressed
the shear strength of a soil in the form

s=c. + 0’ tand, (9.64)
where ¢, and ¢, are “true cohesion” and “true angle of friction,” respec-
tively, which are dependent on the void ratio.

The procedure for determination of the aforementioned parameters
can be explained with the aid of Figure 9.54, which shows the relation
of the moisture content (i.e., void ratio) with effective consolidation
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Figure 9.54 Determination of ¢, and ¢,: (a) plot of e, and moisture content vs. ¢
(b) effective stress Mohr’s circles.

pressure. Points 2 and 3 represent normally consolidated stages of a
soil, and point 1 represents the overconsolidation stage. We now test
the soil specimens represented by points 1, 2, and 3 in an undrained
condition. The effective-stress Mohr’s circles at failure are given in
Figure 9.54b.

The soil specimens at points 1 and 2 in Figure 9.54a have the same mois-
ture content and hence the same void ratio. If we draw a common tangent
to Mohr’s circles 1 and 2, the slope of the tangent will give ¢,, and the
intercept on the shear stress axis will give c..

Gibson (1953) found that ¢, varies slightly with void ratio. The true angle
of internal friction decreases with the plasticity index of soil, as shown in
Figure 9.55. The variation of the effective cohesion ¢, with void ratio may
be given by the relation (Hvorslev, 1960)

¢. = coexp(—Be) (9.65)
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Figure 9.55 Variation of true angle of friction with plasticity index. (After Bjerrum, L.
and Simons, N. E., Comparison of shear strength characteristics of nor-
mally consolidated clay, in Proc. Res. Conf. Shear Strength Cohesive Soils, ASCE,
711-726, 1960.)

where
¢, 1s the true cohesion at zero void ratio
e is the void ratio at failure
B is the slope of plot of In ¢, versus void ratio at failure

Example 9.11

A clay soil specimen was subjected to confining pressures 63 =03 in a
triaxial chamber. The moisture content versus o5 relation is shown in
Figure 9.56a.

A normally consolidated specimen of the same soil was sub-
jected to a consolidated undrained triaxial test. The results are as
follows: o5 = 440 kN/m?; 6, = 840 kN/m?; moisture content at failure,
27%; uy = 240 kIN/m?2.

An overconsolidated specimen of the same soil was subjected to a
consolidated undrained test. The results are as follows: overconsoli-
dation pressure, ¢’ = 550 kN/m?; 6; = 100 kN/m2?; 6, = 434 kN/m?;
uy = —18 kN/m?; initial and final moisture content, 27%.

Determine ¢, ¢, for a moisture content of 27%; also determine ¢.

Solution

For the normally consolidated specimen,

o5 = 440-240 = 200 kN/m?

o) = 840 - 240 = 600 kN/m?

0= sint[ SL=05 | _ g1 600200 5
o7 +0% 600+200
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Figure 9.56 Determination of Hvorslev’s parameters: (a) plot of moisture content vs. o3;
(b) plot of Mohr’s circles (w = 27%).

The failure envelope is shown in Figure 9.56b.
For the overconsolidated specimen

o3 =100—(~18) = 118 kN/m?

o} =434 —(~18) = 452 kN/m?
Mohr’s circle at failure is shown in Figure 9.56b; from this

¢, = 110 kN/m? ¢, = 15°
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9.18 RELATIONS BETWEEN MOISTURE
CONTENT, EFFECTIVE STRESS, AND
STRENGTH FOR CLAY SOILS

9.18.1 Relations between water
content and strength

The strength of a soil at failure (i.e., (6, = 63)i1ure OF (07 — O3)gailure) is depen-
dent on the moisture content at failure. Henkel (1960) pointed out that
there is a unique relation between the moisture content w at failure and
the strength of a clayey soil. This is shown in Figures 9.57 and 9.58 for
Weald clay.

For normally consolidated clays, the variation of w versus log (o, - c5)
failure 18 @approximately linear. For overconsolidated clays, this relation is
not linear but lies slightly below the relation of normally consolidated
specimens. The curves merge when the strength approaches the over-
consolidation pressure. Also note that slightly different relations for w
versus log (6, = 6;)uiure are obtained for axial compression and axial
extension tests.

Normally consolidated
B Undrained
4l ® Drained axial stress decreased | _|
A Drained radial stress increased
Overconsolidated: Max pressure
828 kN/m?
S 9 I o v O Undrained n
= O Drained axial stress decreased
% A Drained radial stress increased
S VvV Drained J constant
g 2
< — —
=
18— —
16 | I | |
35 100 200 400 1000 2000

(Gl - GS)failure (I(N/mz)

Figure 9.57 Water content versus (6, = O3)piue fOr Weald clay—extension tests.
(After Henkel, D. J., The shearing strength of saturated remolded clays,
in Proc. Res. Conf. Shear Strength of Cohesive Soils, ASCE, 533-554, 1960.)
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26 I I
Normally consolidated
B Undrained
94 ® Drained axial stress increased
Overconsolidated: Max pressure | |
828 kN/m>
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< 22 - _
=
3
=
S
o
-
£ 20
< — —
B
18— —
16 | | | |
35 100 200 400 1000 2000

(01— 03)gaiture (KN/ m?)

Figure 9.58 Water content versus (G, = 0;)piue fOr Weald clay—compression tests.
(After Henkel, D. J., The shearing strength of saturated remolded clays,
in Proc. Res. Conf. Shear Strength of Cohesive Soils, ASCE, 533-554, 1960.)

9.18.2 Unique effective stress failure envelope

When Mohr’s envelope is used to obtain the relation for normal and shear
stress at failure, from triaxial test results, separate envelopes need to be
drawn for separate preconsolidation pressures, o7, as shown in Figure 9.59.
For a soil with a preconsolidation pressure of ¢, s = ¢; + ¢’ tan ¢,); simi-
larly, for a preconsolidation pressure of 6,, s = ¢, + ¢’ tan ¢, ).

Henkel (1960) showed that a single, general failure envelope for normally
consolidated and preconsolidated (irrespective of preconsolidation pressure)
soils can be obtained by plotting the ratio of the major to minor effective
stress at failure against the ratio of the maximum consolidation pressure to
the average effective stress at failure. This fact is demonstrated in Figure 9.60,
which gives results of triaxial compression tests for Weald clay. In Figure 9.60

Jm = maximum consolidation pressure = G-,
J¢ = average effective stress at failure

Gi(failure) + Ga(failure) + Gg(failure)
3

o, +20;
3
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Figure 9.59 Mohr’s envelope for overconsolidated clay.

The results shown in Figure 9.60 are obtained from normally consolidated
specimens and overconsolidated specimens having a maximum preconsoli-
dation pressure of 828 kN/m2. Similarly, a unique failure envelope can be
obtained from extension tests. Note, however, that the failure envelopes for
compression tests and extension tests are slightly different.

4.0 T T T T T

A Drained test J constant

@ Drained axial stress increased
35 | ® Drained radial stress decreased
O Undrained

3.0

O (failure)
o (failure)

25

60

T

Figure 9.60 Plot of (T((fa“ure)/(sg(fa”ure) against |, /J; for Weald clay—compression tests.
(After Henkel, D. J., The shearing strength of saturated remolded clays, in
Proc. Res. Conf. Shear Strength of Cohesive Soils, ASCE, 533-554, 1960.)
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9.18.3 Unique relation between water
content and effective stress

There is a unique relation between the water content of a soil and the effec-
tive stresses to which it is being subjected, provided that normally con-
solidated specimens and specimens with common maximum consolidation
pressures are considered separately. This can be explained with the aid of
Figure 9.61, in which a Rendulic plot for a normally consolidated clay is
shown. Consider several specimens consolidated at various confining pres-
sures in a triaxial chamber; the states of stress of these specimens are rep-
resented by the points 4, ¢, e, g, etc., located on the isotropic stress lines.
When these specimens are sheared to failure by drained compressions,
the corresponding stress paths will be represented by lines such as ab, cd,
ef, and gh. During drained tests, the moisture contents of the specimens
change. We can determine the moisture contents of the specimens during
the tests, such as w,, w,, ..., as shown in Figure 9.61. If these points of
equal moisture contents on the drained stress paths are joined, we obtain

< &
A X
A &.&
AR
S
N
>
RSy
&
d
/™M wy
il N
~ ~
~
-3 N
©
h wy | w
SN Wy a
=~ ~
~
c
e
g Drained tests
————— Undrained tests
W1, Wo.. Moisture contents
.
>
V20,

Figure 9.61 Unique relation between water content and effective stress.
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contours of stress paths of equal moisture contents (for moisture contents
Wiy Woy onn).

Now, if we take a soil specimen and consolidate it in a triaxial chamber
under a state of stress as defined by point @ and shear it to failure in an und-
rained condition, it will follow the effective stress path af, since the mois-
ture content of the specimen during shearing is w;. Similarly, a specimen
consolidated in a triaxial chamber under a state of stress represented by
point ¢ (moisture content w,) will follow a stress path ch (which is the stress
contour of moisture content w,) when sheared to failure in an undrained
state. This means that a unique relation exists between water content and
effective stress.

Figures 9.62 and 9.63 show the stress paths for equal water contents for
normally consolidated and overconsolidated Weald clay. Note the similar-
ity of shape of the stress paths for normally consolidated clay in Figure 9.63.
For overconsolidated clay, the shape of the stress path gradually changes,
depending on the OCR.

1260 T T

Stress path in
undrained tests

1120

— —— - Water content
contours from
drained tests

840

(kN/m?)

~= 560

(o}

280

0 280 560 840 1120 1400
26 (kN/m?)
Figure 9.62 Weald clay—normally consolidated. (After Henkel, D. ]., The shearing

strength of saturated remolded clays, in Proc. Res. Conf. Shear Strength of
Cohesive Soils, ASCE, 533-554, 1960.)
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Figure 9.63 Weald clay—overconsolidated; maximum consolidation pressure = 828 kN/m2.
(After Henkel, D. J., The shearing strength of saturated remolded clays, in
Proc. Res. Conf. Shear Strength of Cohesive Soils, ASCE, 533—-554, 1960.)

9.19 CORRELATIONS FOR EFFECTIVE
STRESS FRICTION ANGLE

It is difficult in practice to obtain undisturbed samples of sand and gravelly
soils to determine the shear strength parameters. For that reason, several
approximate correlations were developed over the years to determine the
soil friction angle based on field test results, such as standard penetration
number (N) and cone penetration resistance (g.). In granular soils, N and g,
are dependent on the effective-stress level. Schmertmann (1975) provided
a correlation between the standard penetration resistance, drained triaxial
friction angle obtained from axial compression tests (¢ = ¢,.), and the verti-
cal effective stress (05). This correlation can be approximated as (Kulhawy
and Mayne, 1990)

0.34
N (
12.2+20.3(6)/p.)

O =tan™ { for granular soils) (9.66)
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where p, is atmospheric pressure (in the same units as o). In a similar
manner, the correlation between ¢,., 65, and g, was provided by Robertson
and Campanella (1983), which can be approximated as (Kulhawy and
Mayne, 1990)

O = tan™' {0.9 + 0.3810g(qf ﬂ (for granular soils) (9.67)
o

0

Kulhawy and Mayne (1990) also provided the approximate relations
between the triaxial drained friction angle (¢,) obtained from triaxial
compression tests with the drained friction angle obtained from other types
of tests for cohesionless and cohesive soils. Their findings are summarized
in Table 9.4.

Following are some other correlations generally found in the recent literature.

e Wolff (1989)

¢, =271 + 0.3N, - 0.00054(N,)? (for granular soil) (9.68)
e Hatanaka and Uchida (1996)

O =+/15.4N; +20 (for granular soil) (9.69)

where N; = ’9—?N (9.70)
G,

= standard penetration number corrected to a standard

value of &}, equal to one atmospheric pressure
(Note: 0, is vertical stress in kN/m?2.)

Table 9.4 Relative values of drained friction angle

Drained friction angle

Test type Cohesionless soil Cohesive soil
Triaxial compression 1.0¢, 1.0,

Triaxial extension .12, 1.22¢,

Plane strain compression  1.12¢,. 1.10¢,

Plane strain extension 1.25¢,. 1.34¢,

Direct shear tan~'[tan(l.12¢,)cos ¢p,] tan~'[tan(l.ld,)cos ¢,]

Source:  Compiled from Kulhawy, F. H. and Mayne, P.W.,, Manual on Estimating Soil Properties
in Foundation Design, Electric Power Research Institute, Palo Alto, CA, 1990.
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e Ricceri et al. (2002)

for silt with low plasticity,

H poorly graded sand, and silty | (9.71)
sand

9.

O = tan™! |:0.38 + O.2710g(
o,

e Ricceri et al. (2002)

0. =31 Kp (for silt with low plasticity, poorly

+
0.236 +0.066Kp ] (9.72)

graded sand, and silty sand

where K, is the horizontal stress index in the dilatometer test.

9.20 ANISOTROPY IN UNDRAINED
SHEAR STRENGTH

Owing to the nature of the deposition of cohesive soils and subsequent
consolidation, clay particles tend to become oriented perpendicular to
the direction of the major principal stress. Parallel orientation of clay
particles could cause the strength of the clay to vary with direction, or in
other words, the clay could be anisotropic with respect to strength. This
fact can be demonstrated with the aid of Figure 9.64, in which V and H
are vertical and horizontal directions that coincide with lines perpen-
dicular and parallel to the bedding planes of a soil deposit. If a soil speci-
men with its axis inclined at an angle i with the horizontal is collected

Vv Undrained shear
! strength =S,
I

N

Figure 9.64 Strength anisotropy in clay with direction of major principal stress: (a) i = 90°;
(b)i=i;(c)i=0°
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and subjected to an undrained test, the undrained shear strength can be
given by

61—03

> (9.73)

Su(i) =

where S, is the undrained shear strength when the major principal stress
makes an angle 7 with the horizontal.

Let the undrained shear strength of a soil specimen with its axis vertical
(i.e., Syi- 90 be referred to as Sy, (Figure 9.64a); similarly, let the und-
rained shear strength with its axis horizontal (i.e., S, _ (-] be referred to as
Sum (Figure 9.64¢). If Sy, = S, = S, ), the soil is isotropic with respect to
strength, and the variation of undrained shear strength can be represented
by a circle in a polar diagram, as shown by curve a in Figure 9.65. However,
if the soil is anisotropic, S, will change with direction. Casagrande and
Carrillo (1944) proposed the following equation for the directional varia-
tion of the undrained shear strength:

Su(i) = S + [Suw) — Su(H)]Sinzi (9.74)
When Sy, > S,u), the nature of variation of S, can be represented by

curve b in Figure 9.65. Again, if S, < S5, the variation of S, is given by
curve c. The coefficient of anisotropy can be defined as

K =24 (9.75)

Suv)

$

Figure 9.65 Directional variation of undrained strength of clay.

v

Sugr)
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90‘

Su( (kN/m?)

5 | | | | o)

90 75 60 45 30 15 0
i (deg)

Figure 9.66 Directional variation of undrained shear strength of Welland Clay, Ontario,
Canada. [After Lo, K. Y., Stability of slopes in anisotropic soils, J. Soil Mech.
Found. Eng. Div., ASCE, 91(SM4), 85, 1965.]

In the case of natural soil deposits, the value of K can vary from 0.75 to
2.0. K is generally less than 1 in overconsolidated clays. An example of the
directional variation of the undrained shear strength S, for a clay is shown
in Figure 9.66.

Richardson et al. (1975) made a study regarding the anisotropic strength of
a soft deposit of marine clay in Thailand. The undrained strength was deter-
mined by field vane shear tests. Both rectangular and triangular vanes were
used for this investigation. Based on the experimental results (Figure 9.67),
Richardson et al. concluded that S, can be given by the following relation:

SarnSuv
Sui = (9.76)
\/SU(H) sin” 7 + Syvycos” i

Example 9.12

For an anisotropic clay deposit, the results from unconfined compres-
sion tests were Syi=30 = 101.5 kN/m?* and Sui=s0s) = 123 kN/m?. Find
the anisotropy coefficient K of the soil based on the Casagrande-
Carillo equation (Equation 9.74).
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30 + 30 —
60°
g il
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= & 45°
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(a) Sy (KN/m?) (b) Sy (KN/m?)
30 = 30 -
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(© Sy (KN/m?) (d) Sy (KN/m?)

Figure 9.67 Vane shear strength polar diagrams for a soft marine clay in Thailand.
(a) Depth = | m; (b) depth = 2 m; (c) depth = 3 m; (d) depth = 4 m. (After
Richardson, A. M. et al., In situ determination of anisotropy of a soft clay, in
Proc. Conf. In Situ Meas. Soil Prop., vol. |, ASCE, 336-349, 1975.)

Solution
Equation 9.74:

Suy = Sumny +[Suv) — Su(H)]Sinzi
101.5= Su(H) + [SU(V) - SU(H)]SiH2 30° (a)

123 = Su(l—[) + [Su(v) - Su(H)]Sinz 60° (b)
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101.5/S,u _ 1+ (K —1)sin” 30°
123/Susy 1+ (K—1)sin> 60°

0.825 = L+ (K=1)(0.25)
1+(K -1)(0.75)
K=1.47

9.21 SENSITIVITY AND THIXOTROPIC
CHARACTERISTICS OF CLAYS

Most undisturbed natural clayey soil deposits show a pronounced reduction of

strength when they are remolded. This characteristic of saturated cohesive soils
is generally expressed quantitatively by a term referred to as sensitivity. Thus

. Sutundi
Sensitivity = Sulundisturbed) (9.77)
u(remolded)

The classification of clays based on sensitivity is as follows:

Sensitivity Clay

~| Insensitive

1-2 Low sensitivity
2-4 Medium sensitivity
4-8 Sensitive

8-16 Extra sensitive
>|6 Quick

The sensitivity of most clays generally falls in a range 1-8. However,
sensitivity as high as 150 for a clay deposit at St Thurible, Canada, was
reported by Peck et al. (1951).

The loss of strength of saturated clays may be due to the breakdown of
the original structure of natural deposits and thixotropy. Thixotropy is
defined as an isothermal, reversible, time-dependent process that occurs
under constant composition and volume, whereby a material softens as a
result of remolding and then gradually returns to its original strength when
allowed to rest. This is shown in Figure 9.68. A general review of the thixo-
tropic nature of soils is given by Seed and Chan (1959).

Figure 9.69, which is based on the work of Moretto (1948), shows the
thixotropic strength regain of a Laurentian clay with a liquidity index of
0.99 (i.e., the natural water content was approximately equal to the liquid
limit). In Figure 9.70, the acquired sensitivity is defined as
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Undisturbed strength

Shear strength

Remolding
Remolding

Remolded strength

v

Time

Figure 9.68 Thixotropy of a material.

. o S
Acquired sensitivity=———2 (9.78)
u(remolded)

where S, is the undrained shear strength after a time ¢ from remolding.
Acquired sensitivity generally decreases with the liquidity index (i.e., the

natural water content of soil), and this is demonstrated in Figure 9.70. It

can also be seen from this figure that the acquired sensitivity of clays with

5.0 , I
4.0 ]
oy
2
Z
<
% 3.0 _
o
g
=
=3
Q
<
20— N
Liquidity index = 0.99
1.0 ' '
1 10 100 1000

Period of time (days)

Figure 9.69 Acquired sensitivity for Laurentian clay. (After Seed, H. B. and Chan, C. K.,
Trans., ASCE, 24, 894, 1959.)
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Acquired sensitivity

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Liquidity index

Figure 9.70 Variation of sensitivity with liquidity index for Laurentian clay. (After Seed,
H. B. and Chan, C. K., Trans., ASCE, 24, 894, 1959.)

a liquidity index approaching zero (i.e., natural water content equal to the
plastic limit) is approximately one. Thus, thixotropy in the case of overcon-
solidated clay is very small.

There are some clays that show that sensitivity cannot be entirely
accounted for by thixotropy (Berger and Gnaedinger, 1949). This means
that only a part of the strength loss due to remolding can be recovered
by hardening with time. The other part of the strength loss is due to the
breakdown of the original structure of the clay. The general nature of the
strength regain of a partially thixotropic material is shown in Figure 9.71.

A

Undisturbed

- Hardened
g Lo
)
&
E| o -
215 o g
3 Sy 3™ =
8 g 2> o
& 5 A £

~ 3]

~

Remolded

v

Time

Figure 9.7 Regained strength of a partially thixotropic material.
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1.6 T T T

@ Vicksburg silty clay
150 PL=23;, w=19.5%

B Pittsburgh sandy clay
PL=20; w=17.4%
14~ | A Friant-Kern clay 7
PL=35w=22%

1.2

Thixotropic strength ratio
—_
w
T
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10 ' ' '
10 100 1,000 10,000 100,000
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Figure 9.72 Increase of thixotropic strength with time for three compacted clays. (After
Seed, H. B. and Chan, C. K., Trans., ASCE, 24, 894, 1959.)

Seed and Chan (1959) conducted several tests on three compacted clays
with a water content near or below the plastic limit to study their thixo-
tropic strength-regain characteristics. Figure 9.72 shows their thixotropic
strength ratio with time. The thixotropic strength ratio is defined as
follows:

Su(t)

u(compacted at #=0)

Thixotropic strength ratio = (9.79)

where S, is the undrained strength at time ¢ after compaction.

These test results demonstrate that thixotropic strength regain is also
possible for soils with a water content at or near the plastic limit.

Figure 9.73 shows a general relation between sensitivity, liquidity index,
and effective vertical pressure for natural soil deposits.

9.22 VANE SHEAR TEST

The field vane shear test is another method of obtaining the undrained shear
strength of cohesive soils. The common shear vane usually consists of four
thin steel plates of equal size welded to a steel torque rod (Figure 9.74a). To
perform the test, the vane is pushed into the soil and torque is applied at the
top of the torque rod. The torque is gradually increased until the cylindrical
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2.0 , ,
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1 Mitchell (1976)
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o
T
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Figure 9.73 General relation between sensitivity, liquidity index, and effective vertical
stress.

T=2Pl

\
S
—x—

\

()

Figure 9.74 Vane shear test: (a) vane shear apparatus; (b) test in soil.
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soil of height H and diameter D fails (Figure 9.74b). The maximum torque
T applied to cause failure is the sum of the resisting moment at the top, My,
and bottom, My, of the soil cylinder, plus the resisting moment at the sides
of the cylinder, M. Thus

T=M5+MT+MB (980)
However
2
Mo=nDHPS. and M;=M, =2 2D¢
2 4 32

(assuming uniform undrained shear strength distribution at the ends; see
Carlson [1948]). So

2
T=nS,|[xDH L |42 F2-2D
2 4 32

T
" n(D*H/2+ D’/6)

or

(9.81)

u

If only one end of the vane (i.e., the bottom) is engaged in shearing the
clay, T = Mg + My. So

T
- n(D*H/2+D*/12)

(9.82)

u

Standard vanes used in field investigations have H/D = 2. In such cases,
Equation 9.81 simplifies to the form

S, = 0.273§ (9.83)

The American Society for Testing and Materials (2002) recommends the
following dimensions for field vanes:

D (mm) H (mm)  Thickness of blades (mm)

38.1 76.2 1.6
50.8 101.6 1.6
63.5 127.0 32

92.1 184.2 32
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In some cases, tapered vanes (Figure 9.75) are also used in the field. If
both ends of the vane are engaged and H/D =2, Equation 9.81 can be mod-
ified as

s. =L (9.84)
K
where
2
k=" [ D D ey (9.85)
12 \ cosit cosiy

If the undrained shear strength is different in the vertical [S,y,] and
horizontal [S, ] directions, then Equation 9.81 translates to

H D
T = nD? [2 Suv) + 6Su(H)} (9.86)
SR e _//
A
S
>
H

Figure 9.75 Tapered vanes.
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In addition to rectangular vanes, triangular vanes can be used in the field
(Richardson et al., 1975) to determine the directional variation of the
undrained shear strength. Figure 9.76a shows a triangular vane. For this
vane

Su(,') = # (987)

iTEL3 cos?i
3

The term S, ;) was defined in Equation 9.73.
Silvestri and Tabib (1992) analyzed elliptical vanes (Figure 9.76b). For
uniform shear stress distribution,

S. =C% (9.88)

where C = f(a/b). The variation of C with a/b is shown in Figure 9.77.

Bjerrum (1972) studied a number of slope failures and concluded that the
undrained shear strength obtained by vane shear is too high. He proposed
that the vane shear test results obtained from the field should be corrected
for the actual design. Thus

Su(design) = A'Su(field vane) (989)

ll

N 7
\

|

€
€
€

(a) (b)

Figure 9.76 (a) Triangular vane and (b) elliptical vane.
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Figure 9.77 Variation of C with a/b (Equation 9.88).
where A is a correction factor, which may be expressed as
A = 1.7-0.54 log(PI) (9.90)

where Pl is the plasticity index (%).
Morris and Williams (1994) gave the following correlations of A:

A=1.18¢"208 10 57 PI>35 (9.91)
and
A=7.01e7 %% L0 57 LL > 20 (9.92)

where LL is the liquid limit (%).
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9.22.1 Correlations with field vane shear strength

The field vane shear strength has been correlated with the preconsolida-
tion pressure and the OCR of the clay. Using 343 data points, Mayne and
Mitchell (1988) derived the following empirical relationship for estimating
the preconsolidation pressure of a natural clay deposit:

c, = 7.04[ S, ficid vane)]0‘83 (9.93)

where
o, is the preconsolidation pressure (kIN/m?)
S u(ficld vane) 18 the field vane shear strength (kN/m?)

The OCR can also be correlated to S, according to the equation

field vane)

4
o

OCR = B Su(field vane) (9.94)
(o

where o, is the effective overburden pressure.
The magnitudes of p developed by various investigators are given later
(also see Chapter 8)

® Mayne and Mitchell (1988)
B = 22[PI(%)]* (9.95)

where PI is the plasticity index.
e Hansbo (1957):

222
B= oA (9.96)

where w is the natural moisture content.
e Larsson (1980):

1

- (9.97)
0.08+0.0055[(PI) %]

B

9.23 RELATION OF UNDRAINED SHEAR STRENGTH (S,)
AND EFFECTIVE OVERBURDEN PRESSURE (p’)

A relation between S, p’, and the drained friction angle can also be derived
as follows. Referring to Figure 9.78a, consider a soil specimen at A. The
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major and minor effective principal stresses at A can be given by p’ and K p’,
respectively (where K is the coefficient of at-rest earth pressure). Let this
soil specimen be subjected to a UU triaxial test. As shown in Figure 9.78b,
at failure the total major principal stress is 6, = p’ + Acy; the total minor
principal stress is 6; = K,p’ + Ac;; and the excess pore water pressure is
Au. So, the effective major and minor principal stresses can be given by
07 =6, —Au and 05 = 63 — Au, respectively. The total- and effective-stress
Mohr’s circles for this test, at failure, are shown in Figure 9.78c¢. From this,
we can write

Su
ccotd+ (0] +63)/2

=sin®

A

Shear stress

Total stress

Effective stress 0o
Mohr’s circle / Mohr’s circle

o o1

j¢—ccotd)—p| f—Au—» Normal stress
(©

Figure 9.78 Relation between the undrained strength of clay and the effective overbur-
den pressure: (a) soil specimen at A with major and minor principal stresses;
(b) specimen at A subjected to a UU triaxial test; (c) total and effective stress
Mohr’s circles.
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where ¢ is the drained friction angle, or

4 4

01 +03

S, =ccosd+ sin ¢

7 4
01 +0 . .
= ccos¢+[123—c'3jsm¢+0’3 sin ¢

However

oi+o, , oi—-0o
—03= =Su
2 2

So,

S, =ccosd+ S, sind+ c5sind
S.(1—sino) = ccos®+ 63sind (9.98)
03 =03—Au=K,p'+Ac; — Au (9.99)

However (Chapter 5)
Au = BAo; + A{Ao, - Aoc;)

For saturated clays, B = 1. Substituting the preceding equation into
Equation 9.99

o3 = K,p' + Ac; —[Ao; + A{(AG; — Ac;)]
= K,p' - Af(AG; — Acs) (9.100)

Again,

¢ _ 0105 _ (p/+A0) - (Kop'+Ac))
! 2 2

or 28, =(Ac; —Acs)+(p' — K. p)

or (Ac;—Ac;3) =28, —(p'— K.p)) (9.101)
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Table 9.5 Empirical equations related to S, and p’

Reference Relation Remarks
Skempton (1957) S, sn/p” = 0.11 + 0.0037 PI For normally consolidated clay
Chandler (1988) Suvsm/pe = 0.11+0.0037 Pl Can be used in overconsoildated

soil; accuracy +25%; not valid
for sensitive and fissured clays

Jamiolkowski S./p. =0.23+£0.04 For low overconsolidated clays
et al. (1985)

Mesri (1989) Su/pl =022

Bjerrum and Su/p” = f(LI) See Figure 9.79; for normally
Simons (1960) consolidated clays

Ladd et al. (|977) (Su /P )overconsolidated — (OCR)OB

(Su /P/)normally consolidated

Notes: PI, plasticity index (%); S,vst), undrained shear strength from vane shear test; p¢, preconsolida-
tion pressure; LI, liquidity index; and OCR, overconsolidation ratio.

Substituting Equation 9.101 into Equation 9.100, we obtain
G = Kopf — 28, A + Agp/(1- K,) (9.102)

Substituting of Equation 9.102 into the right-hand side of Equation 9.98
and simplification yields

_ ccoso+ p'sino [K, + A{(1-K,)]

S,
1+(2A; —1)sin®

(9.103)

For normally consolidated clays, ¢ = 0; hence, Equation 9.103 becomes

Su _sin¢[K, + A1 - K,)] (9.104)

P 1+(Q2A—1)sino

There are also several empirical relations between S, and p’ suggested by
various investigators. These are given in Table 9.5 and Figure 9.79.

Example 9.13

A specimen of clay was collected from the field from a depth of 15 m.
Given, p’=183.43 kN/m2. A consolidated undrained triaxial test
yielded the following results: ¢ =32° and A;=0.8. Estimate the und-
rained shear strength S, of the clay.
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Figure 9.79 Variation of S /p’ with liquidity index (see Table 9.5 for Bjerrum and Simon’
relation).

Solution
From Equation 9.104,

P 1+Q2A —1)sing

S _ sin¢[K, + A((1-K,)]

sin¢ =sin32°=0.53
K,=1-sin¢p=1-0.53=0.47
Su (0.53)[0.47 +0.8(1-0.47)]

183.43  1+[(2)(0.8)-1]0.53
S, =65.9kN/m*

Example 9.14

A soil profile is shown in Figure 9.80. From a laboratory consolida-
tion test, the preconsolidation pressure of a soil specimen obtained
from a depth of 8 m below the ground surface was found to be 140
kN/m2. Estimate the undrained shear strength of the clay at that
depth. Use Skempton’s and Ladd et al.’s relations from Table 9.5 and
Equation 9.90.

Solution

G +wGiyy _ (2.7)9.81)(140.3)
Yoaelan) = 470G, 1+0.32.7)

=19.02 kN/m’®
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3m y=17.3 kN/m>
| GWT.

X
T Clay
G,=27
Smo L 30%
LL=52
e4 PL=31

Figure 9.80 Undrained shear strength of a clay deposit.

The effective overburden pressure at A is

p’ =3 (17.3) + 5 (19.02 - 9.81) = 51.9 + 46.05 = 97.95 kN/m?

Thus, the OCR is

OCR = 140 _ 1.43
97.95

From Table 9.5 (Ladd et al.’s relationship)

o] AL
P joc \P )

However, from Table 9.5 (Skempton’s relationship)

m =0.11+0.037 PI
P ke

From Equation 9.90
Su = kSu(VST) = [17 -0.54 log(PI)]Su(VST)

S

Su(VST) = WL;%

Combining Equations E9.6 and E9.7

S| _0.1140.0037 PI
0.986p" |

(E9.5)

(E9.6)

[1 7 - (054) 10g(52 -3 1)]Su(VST) = 0-986Su(VST)

(E9.7)
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[il =(0.986)[0.11+0.0037(52—31)] =0.185 (E9.8)
C

From Equations E9.5 and E9.8

Suoc) = (0.185)(1.43)08(97.95) = 24.12 kN/m?

9.24 CREEP IN SOILS

Like metals and concrete, most soils exhibit creep, that is, continued defor-
mation under a sustained loading (Figure 9.81). In order to understand
Figure 9.81, consider several similar clay specimens subjected to standard
undrained loading. For specimen no. 1, if a deviator stress (6, - 03); <
(61 = 63)ailure 18 applied, the strain versus time (€ versus #) relation will be
similar to that shown by curve 1. If specimen no. 2 is subjected to a devia-
tor stress (6, — 63), such that (6, - 63)qire > (01 = 03), > (6, - 63);, the strain
versus time relation may be similar to that shown curve 2. After the occur-
rence of a large strain, creep failure will take place in the specimen.

In general, the strain versus time plot for a given soil can be divided
into three parts: primary, secondary, and tertiary. The primary part is the
transient stage; this is followed by a steady state, which is secondary creep.
The tertiary part is the stage during which there is a rapid strain, which
results in failure. These three steps are shown in Figure 9.81. Although the

A Failure
(01~ 03)y

Primary | Steady state or
creep secondary creep

» Tertiary
creep

(o1-03)

¢01—03
v %

—> 403

Curve 1

Strain

v

Time

Figure 9.81 Creep in soils.
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secondary stage is referred to as steady-state creep, in reality a true steady-
state creep may not really exist (Singh and Mitchell, 1968).

It was observed by Singh and Mitchell (1968) that for most soils (i.e.,
sand, clay—dry, wet, normally consolidated, and overconsolidated) the
logarithm of strain rate has an approximately linear relation with the log-
arithm of time. This fact is illustrated in Figure 9.82 for remolded San
Francisco Bay mud. The strain rate is defined as

S (9.105)
At
where
¢ is the strain rate
e is the strain
t is the time

From Figure 9.82, it is apparent that the slope of the log € versus log ¢
plot for a given soil is constant irrespective of the level of the deviator
stress. When the failure stage due to creep at a given deviator stress level is
reached, the log € versus log ¢ plot will show a reversal of slope as shown
in Figure 9.83.

Figure 9.84 shows the nature of the variation of the creep strain rate
with deviator stress D = ¢, - 65 at a given time ¢ after the start of the creep.

1 I
g Deviator stress =
- 01p 24.5 kN/m? 7
&
R Deviator stress =
v 17.7 kN/m?
)
E
=]
5 0.01 —
A
Remolded San Francisco Bay mud
water content =52%
0.001 . .
0.1 1 10 100

Time (min)

Figure 9.82 Plot of log € versus log t during undrained creep of remolded San Francisco
Bay mud. [After Singh, A. and Mitchell, J. K., J. Soil Mech. Found. Eng. Div.,
ASCE, 94(SM1), 21, 1968.]
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Deviator stress=
D=0,-03

log &

Failure

log ¢

Figure 9.83 Nature of variation of log € versus log t for a given deviator stress showing
the failure stage at large strains.

For small values of the deviator stress, the curve of log € versus D is convex
upward. Beyond this portion, log € versus D is approximately a straight
line. When the value of D approximately reaches the strength of the soil,
the curve takes an upward turn, signaling impending failure.

For a mathematical interpretation of the variation of strain rate with
the deviator stress, several investigators (e.g., Christensen and Wu, 1964;
Mitchell et al., 1968) have used the rate-process theory. Christensen and
Das (1973) also used the rate-process theory to predict the rate of erosion
of cohesive soils.

The fundamentals of the rate-process theory can be explained as follows.
Consider the soil specimen shown in Figure 9.85. The deviator stress on the
specimen is D = 6, - 65. Let the shear stress along a plane AA in the speci-
men be equal to 1. The shear stress is resisted by the bonds at the points
of contact of the particles along AA. Due to the shear stress © the weaker

Failure

log strain rate, €

Deviator stress, D=0, - 03

Figure 9.84 Variation of the strain rate € with deviator stress at a given time t after the
start of the test.
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Figure 9.85 Fundamentals of rate-process theory.

bonds will be overcome, with the result that shear displacement occurs
at these localities. As this displacement proceeds, the force carried by the
weaker bonds is transmitted partly or fully to stronger bonds. The effect
of applied shear stress can thus be considered as making some flow units
cross the energy barriers as shown in Figure 9.86, in which AF is equal to
the activation energy (in cal/mol of flow unit). The frequency of activation
of the flow units to overcome the energy barriers can be given by

, kT AF kT AF
=" - |=== [ —— 1
k exp( ] exp( N J (9.106)

where
k' is the frequency of activation
k is Boltzmann’s constant = 1.38 x 10~ erg/K = 3.29 x 10-2* cal/K

AF=
Activation
energy

Potential energy

| A | A

= T - 1
X = Distance between the successive

equilibrium positions

Distance

Figure 9.86 Definition of activation energy.
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T is the absolute temperature

b is Plank’s constant = 6.624 x 10-%7 erg/s
AF is the free energy of activation, cal/mol
R is the universal gas constant

N is Avogadro’s number = 6.02 x 10?3

Now, referring to Figure 9.87 when a force fis applied across a flow unit,
the energy-barrier height is reduced by fA/2 in the direction of the force and
increased by fA/2 in the opposite direction. By this, the frequency of activa-
tion in the direction of the force is

,_kT _ ( AF/N-fM\2
K=", exp[ BT J (9.107)

and, similarly, the frequency of activation in the opposite direction becomes

kT p(_ AF/N+7Lf/2j 9.108)

g =R
T KT

where ) is the distance between successive equilibrium positions.
So, the net frequency of activation in the direction of the force is equal to

I_{_‘l{ = khT|:exp(—AF/N_fmj_ exp(_wj:l

kT kT
26T AF Y. (M
— _ar i/ 9.109
P exp( RT jsmh(sz ) ( )
—_7
Before N After

\ application

application ot
y of force f

of force f

Energy

Displacement

Figure 9.87 Derivation of Equation 9.111.
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The rate of strain in the direction of the applied force can be given by
=x(k' - k) (9.110)

where x is a constant depending on the successful barrier crossings. So

kT fA
2 — 2% lksinh 9.111
€=2x p exp( RT]IH (szj ( )
In the previous equation
T
=— 9.112
f S ( )

where
T is the shear stress
S is the number of flow units per unit area

For triaxial shear test conditions as shown in Figure 9.85

D o,-0;

Toax = — = (9.113)
2 2
Combining Equations 9.112 and 9.113
D
=— 9.114
f 23 ( )
Substituting Equation 9.114 into Equation 9.111, we get
kT AF DA
=2x— ——— Isinh 9.115
© x/oep( Rij (4kST) 2113)
For large stresses to cause significant creep—that is, D > 0.25 [D,,,,, = 0.25

(Mitchell et al., 1968)] the magnitude of DA4kST is greater than 1. So, in
that case

DL _1_( Di
h-2h = Lexp[ DA 9.116
T aesT T2 (4kST j 116

Hence, from Equations 9.115 and 9.116

kT AF DA
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€ =Aexp(BD) (9.118)
where
kT AF
A=x— -—— 9.119
Al o
and
A
B= 9.120
4kST ( )

The quantity A is likely to vary with time because of the variation of x and AF
with time. B is a constant for a given value of the effective consolidation pressure.
Figure 9.88 shows the variation of the undrained creep rate € with the
deviator stress D for remolded illite at elapsed times ¢ equal to 1, 10, 100,
and 1000 min. From this, note that at any given time the following apply:

—2
1x10 T T I

-3 L
1x10 Elapsed time

of creep=
1 min

1x1074

1x107% |

Axial strain rate, € (% per s)

1x107° -

Water content =34.3 +0.1%

1x 10—7 | | |
20 60 100 140 180

Deviator stress, D (kN/m?)

Figure 9.88 Variation of strain rate with deviator stress for undrained creep of
remolded illite. [After Mitchell, J. K. et al., J. Soil Mech. Found. Eng. Div.,
ASCE, 95(SM5), 1219, 1969.]
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Table 9.6 Values of AF for some soils

Soil AF (kcallmol)

Saturated, remolded illite; water content 25-40
30%—43%

Dried illite, samples air-dried from 37
saturation, then evacuated over desiccant

Undisturbed San Francisco Bay mud 25-32

Dry Sacramento River sand ~25

Source:  After Mitchell, ). K. et al., . Soil Mech. Found. Eng. Div., ASCE,
95(SM5), 1219, 1969.

1. For D < 49 kN/m?, the log € versus D plot is convex upward following
the relation given by Equation 9.115, € = 2A sinh (BD). For this case,
DMA4SRT < 1.

2. For 128 kN/m? > D > 49 kN/m?, the log € versus D plot is approxi-
mately a straight line following the relation given by Equation 9.118,
€ = AeBP, For this case, DA/4SKT > 1.

3. For D > 128 kIN/m?2, the failure stage is reached when the strain rate rap-
idly increases; this stage cannot be predicted by Equations 9.115 or 9.118.

Table 9.6 gives the values of the experimental activation energy AF for
four different soils.

9.25 OTHER THEORETICAL CONSIDERATIONS:
YIELD SURFACES IN THREE DIMENSIONS

Comprehensive failure conditions or yield criteria were first developed for
metals, rocks, and concrete. In this section, we will examine the application
of these theories to soil and determine the yield surfaces in the principal stress
space. The notations 67, 63, and o5 will be used for effective principal stresses
without attaching an order of magnitude—that is, 6, 63, and G5 are not
necessarily major, intermediate, and minor principal stresses, respectively.
Von Mises (1913) proposed a simple yield function, which may be stated as

F=(c,-0,) +(cs - 04) +(cs—0}) =22 =0 (9.121)

where Y is the yield stress obtained in axial tension. However, the octahe-
dral shear stress can be given by the relation

4 J

1 ’ ’ ’ ’
Toct = g\/(cl _02)2 +(GZ _63)2 +(G3 —01)2



Shear strength of soils 567

Thus, Equation 9.121 may be written as

312, =2Y?

or Ty = \E Y (9.122)

Equation 9.122 means that failure will take place when the octahedral shear
stress reaches a constant value equal to /2/3Y. Let us plot this on the octa-
hedral plane (o} + 05 + 6% = const), as shown in Figure 9.89. The locus will
be a circle with a radius equal to To = J2/3Y and with its center at point a.
In Figure 9.89a, Oa is the octahedral normal stress (6} + 6% +65)/3 = Ghui;
also, ab = 1, and Ob = /6/% + T2, . Note that the locus is unaffected by the
value of 0. Thus, various values of o will generate a circular cylinder
coaxial with the hydrostatic axis, which is a yield surface (Figure 9.89b).

Another yield function suggested by Tresca (1868) can be expressed in
the form

Omax ~ Omin = 2k (9123)

Equation 9.123 assumes that failure takes place when the maximum
shear stress reaches a constant critical value. The factor k of Equation
9.123 is defined for the case of simple tension by Mohr’s circle shown
in Figure 9.90. Note that for soils this is actually the ¢ = 0 condition.
In Figure 9.90, the yield function is plotted on the octahedral plane

ba=\2/3y

Toct =V2/3Y

Octahedral plane
01+04+03=constant

Yield surface

Isotropic
stress line

o)

(a) (b)

Figure 9.89 Yield surface—Von Mises criteria: (2) plot of Equation 9.122 on the octahe-
dral plane; (b) yield surface.
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. » 0,-05=2k - 03—045=2k
Omin=2 M09 Gya020y 0320120}
0520520] | 2052
|
/ I
[} ! o3

Figure 9.90 Yield surface—Tresca criterion.

(0} + 0% + 0% = const). The locus is a regular hexagon. Point a is the point
of intersection of the hydrostatic axis or isotropic stress line with octa-
hedral plane, and so it represents the octahedral normal stress. Point
b represents the failure condition in compression for 67 > 65 =63, and
point e represents the failure condition in extension with 65 =63 > o7.
Similarly, point d represents the failure condition for 63 > 0} = 65, point g
for ¢} =5 > o5, point f for 65 >3 =067, and point ¢ for o} =067 > 65.
Since the locus is unaffected by the value of i, the yield surface will be
a hexagonal cylinder.

We have seen from Equation 9.24 that, for the Mohr—Coulomb condition
of failure, (0} -0%)=2ccosd+(0]+0%)sing, or (o] — 6'3)2 =[2ccosd +
(o} + ©%)sin¢]’. In its most general form, this can be expressed as

{(6'1 -0 )2 - [ZCcosq) +(0) + 0 )sinq)]}2
x{((s'z -0} )2 - [26 cosd+(0s + Gg)sinq)]}z

X{(G}—Gﬁ)—[26c05¢+(0§ +G§)sin¢}}2 =0 (9.124)

When the yield surface defined by Equation 9.124 is plotted on the octahedral
plane, it will appear as shown in Figure 9.91. This is an irregular hexagon
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A0

Octahedral plane

Mohr—Coulomb

I3 o3

Figure 9.91 Mohr—Coulomb failure criterion.

in section with nonparallel sides of equal length. Point a in Figure 9.91 is
the point of intersection of the hydrostatic axis with the octahedral plane.
Thus, the yield surface will be a hexagonal cylinder coaxial with the iso-
tropic stress line.

Figure 9.92 shows a comparison of the three yield functions described pre-
viously. In a Rendulic-type plot, the failure envelopes will appear in a man-
ner shown in Figure 9.92b. At point a, 6] =03 =05 =06 (say). At point b,
0| =6 +bd’ = & +absin®, where 6 = cos™(1/+/3). Thus

o, =0+ \Eab (9.125)

,_ad _ ,_abcosb _ , 1 (9.126)

0,=0,=0—-"==0 =
T V2 V2 V6

For the Mohr—Coulomb failure criterion, 6] — 65 = 2ccos§ + (0} + 65 )sin¢.
Substituting Equations 9.125 and 9.126 in the preceding equation, we obtain

[G’+ iab—G'Jr\/lgal?]: 2ccosd +[G’+\/§ab+0’—\/1gab}in¢
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Octahedral plane

Mohr—Coulomb

Tresca

Von Mises

(a)
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> 3
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b \‘Z’&‘ec‘,%
1
1
I 0
| .
L v a’ 0“\0(“\)
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a 0 | N\O ‘QX\S\
1
1
1
0 =cos{(1/V3) ! <
-6
———————— T(esca
(b) \/50"2 = \/50"3

Figure 9.92 (a) Comparison of Von Mises, Tresca, and Mohr—Coulomb yield functions;
(b) failure envelopes in a Rendulic type plot.
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or

—[ 2 1 2 1 ). B ,
ab[[\/;Jr\/gJ—[\/;—\/g]51n¢]—2(ccos¢+c sin §)

or ab3(1—ésin¢j=2(ccos¢+c’sinq)) (9.127)

J6

Similarly, for extension (i.e., at point e,)

6,=0—-ead" =6 —ae;sin@=0— %il (9.128)

”

,, aa’” _ , aecos® 1

0, =03=0+——==0"+ =0 ——ae
P 2 2 Je !

(9.129)

Now 03 —0] =2ccosd+ (05 +07)sind. Substituting Equations 9.128 and
9.129 into the preceding equation, we get

2 1 2 1 . _ , .
ae; H\/;+\/gj+[\/; —\/g]sm(b] =2(ccosp+c'sin0) (9.130)

or
a1+ Lsino |= 2(ccoso + o’sin o) (9.131)
Jel 3

Equating Equations 9.127 and 9.131

1.
b ~ 1+§sm¢
e 1. (9.132)
I 1-—=sin¢

Table 9.7 gives the ratios of ab to ae, for various values of ¢. Note that this
ratio is not dependent on the value of cohesion, c.

It can be seen from Figure 9.92a that the Mohr—Coulomb and the Tresca
yield functions coincide for the case ¢ = 0.
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Table 9.7 Ratio of ab to ae,
(Equation 9.132)

b ablae,

40 0.647

30 0.715

20 0.796

10 0.889
0 1.0

Von Mises’ yield function (Equation 9.121) can be modified to the form

2
(o1 —63)2 + (o5 —01)2 +(o4 —51)2 - {c+k32(ci +0) +og)}
or (01 -65) +(05 = 045) +(0% = 6) = (c + koGl )’ (9.133)
where

k, is a function of sin ¢
¢ is cohesion

Equation 9.133 is called the extended Von Mises’ yield criterion.
Similarly, Tresca’s yield function (Equation 9.123) can be modified to
the form

(01 —02) ~(c-+ ksou)

x[ (05 = 6%) = (c + ksOle) |

X[ (05 - 01)" —(c+ kst | (9.134)
where

ks is a function of sin ¢
¢ is cohesion

Equation 9.134 is generally referred to as the extended Tresca criterion.

9.26 EXPERIMENTAL RESULTS TO COMPARE
THE YIELD FUNCTIONS

Kirkpatrick (1957) devised a special shear test procedure for soils, called
the hollow cylinder test, which provides the means for obtaining the
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variation in the three principal stresses. The results from this test can be
used to compare the validity of the various yield criteria suggested in the
preceding section.

A schematic diagram of the laboratory arrangement for the hollow cylin-
der test is shown in Figure 9.93a. A soil specimen in the shape of a hollow
cylinder is placed inside a test chamber. The specimen is encased by both an
inside and an outside membrane. As in the case of a triaxial test, radial pres-
sure on the soil specimen can be applied through water. However, in this

Cap

ANARNNNY

Piston

Figure 9.93 Hollow cylinder test: (a) schematic diagram; (b) relationship for principal
stresses in the soil specimen.
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type of test, the pressures applied to the inside and outside of the specimen
can be controlled separately. Axial pressure on the specimen is applied by a
piston. In the original work of Kirkpatrick, the axial pressure was obtained
from load differences applied to the cap by the fluid on top of the specimen
(i.e., piston pressure was not used; see Equation 9.141).

The relations for the principal stresses in the soil specimen can be
obtained as follows (see Figure 9.93b). Let o, and o, be the outside and
inside fluid pressures, respectively. For drained tests, the total stresses o,
and o; are equal to the effective stresses, 6, and &. For an axially symmetri-
cal case, the equation of continuity for a given point in the soil specimen
can be given by

4 4 4
do’, L 0= 0%

=0 9.135
dr r ( )

where
o, and o} are the radial and tangential stresses; respectively
7 is the radial distance from the center of the specimen to the point

We will consider a case where the failure in the specimen is caused by
increasing o} and keeping o, constant. Let

Gy = A0, (9.136)
Substituting Equation 9.136 in Equation 9.135, we get

&_’_Gr(l—?\)

=0
dr r
1 J‘dcs'r J‘dr
or —— =|1—
A-1J o r
o, = Ar*! (9.137)

where A is a constant.
However, 0, = G}, at 7 = r,, which is the outside radius of the specimen. So

/

Go

A-1
To

A:

(9.138)
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Combining Equations 9.137 and 9.138
A1
G, =0, [’J (9.139)
Again, from Equations 9.136 and 9.139

r—1
o) = AG, (’] (9.140)

%
The effective axial stress o7, can be given by the equation

’ 2 ’ 2
o, (nrs)—of () o2 — ol

o, =
2
2 — -

(9.141)

where 7, is the inside radius of the specimen.
At failure, the radial and tangential stresses at the inside face of the speci-
men can be obtained from Equations 9.139 and 9.140:

A-1
’ ’ 4 r]
O r(inside) = (Gi )failure =0, [1’] (9.142)
, A1
or [GEJ =[“J (9.143)
Go failure To
, A—1
Oinside) = (08) e = Mo [rj (9.144)

To obtain o), at failure, we can substitute Equation 9.142 into Equation
9.141

, CAIARICACS]
(Ga )failure = (7’0 /7,.l )2 -1

_ Sblln/n)” —(r/r) ] (9.145)
(7’0/71) -1

From the earlier derivations, it is obvious that for this type of test (i.e.,
increasing G} to cause failure and keeping o/, constant) the major and minor
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principal stresses are o, and Oy. The intermediate principal stress is G.
For granular soils the value of the cohesion ¢ is 0, and from the Mohr—
Coulomb failure criterion

[Minor principal stress ] _1-sin¢
failu

Major principal stress | . ~ 1+sin6
or |C0] _losme (9.146)
O; failure 1+ Slnq)

Comparing Equations 9.136 and 9.146

1-sin¢ 2 0
— = 45°— X |=A .
1+ sino tan ( > ] (9.147)

The results of some hollow cylinder tests conducted by Kirkpatrick
(1957) on a sand are given in Table 9.8, together with the calculated values
of }\" (G; )failure > (G; )failure > and (G’e)

A comparison of the yield functions on the octahedral plane and the
results of Kirkpatrick is given in Figure 9.94. The results of triaxial com-
pression and extension tests conducted on the same sand by Kirkpatrick

are also shown in Figure 9.94. The experimental results indicate that the

failure *

Table 9.8 Results of Kirkpatrick’s hollow cylinder test on a sand

M (from O (inside) Of(outside) G (from
(0))siturea Ogb Equation  at failured  at failure  Equation 9.141)

Testno. (kN/m?)  (kN/m?)  9.143)c (kN/m?) (kN/m?) (kN/m?)
I 146.3 99.4 0.196 28.7 19.5 72.5
2 187.5 129.0 0.208 39.0 26.8 91.8
3 304.2 2111 0.216 65.7 45.6 153.9
4 384.2 265.7 0.215 825 57.1 192.9
5 453.7 316.0 0.192 87.0 60.7 2229
6 473.5 330.6 0.198 93.8 65.4 2349
7 502.9 347.1 0.215 107.8 74.6 247.7
8 5324 3727 0.219 116.6 81.6 268.4
9 541.2 378.1 0.197 106.3 74.5 263.6

 (07)siwre = Of(inside) at failure.

® (0%) = Or(ouside) at failure.

¢ For these tests,r, = 50.8 mm and r, = 31.75 mm.
4 Gf(inside) = MO )faiure -

¢ Ojoutside) = MO0 )ailure-
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Mohr—Coulomb

Kirkpatrick
Extended
Von Mises

Extended
Tresca

Oy 0'?;

B Triaxial compression

@ Triaxial extension

O Hollow cylinder—outside

O Hollow cylinder—inside
¢ =38

Figure 994 Comparison of the yield functions on the octahedral plane along with the
results of Kirkpatrick.

Mohr—Coulomb criterion gives a better representation for soils than the
extended Tresca and Von Mises criteria. However, the hollow cylinder tests
produced slightly higher values of ¢ than those from the triaxial tests.

Wu et al. (1963) also conducted a type of hollow cylinder shear test with
sand and clay specimens. In these tests, failure was produced by increasing
the inside, outside, and axial stresses on the specimens in various combi-
nations. The axial stress increase was accomplished by the application of
a force P on the cap through the piston as shown in Figure 9.93. Triaxial
compression and extension tests were also conducted. Out of a total of six
series of tests, there were two in which failure was caused by increasing
the outside pressure. For those two series of tests, 65 > 0, > 0;. Note that
this is opposite to Kirkpatrick’s tests, in which o} > &} > 6. Based on the
Mohr-Coulomb criterion, we can write (see Equation 9.25) G = Omin N +
2¢N'2, So, for the case where 6j > 6, > o,

o6 =0.N +2cN'"? (9.148)
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The value of N in the previous equation is tan?(45° + ¢/2), and so the A in
Equation 9.136 is equal to 1/N. From Equation 9.135
do; _ oy -0,
dr 7

Combining the preceding equation and Equation 9.148, we get

% = 1[01(1\1 —1)+2cN" ] (9.149)
r r

Using the boundary condition that at r = r,, 6, = 6}, Equation 9.149 gives
the following relation:

12 N-1 12
o :(Gg+ 2N )(:) 2N (9.150)

Also, combining Equations 9.148 and 9.150

3 N-1 1/2
o =| o+ 2cN r _2cN (9.151)
N-1 | N-1
At failure, G,r(outside) = (6:) )failure. SO
172 N-1 1/2
(&) =|o+ 2N 2N (9.152)
failure N-1 T N-1

For granular soils and normally consolidated clays, ¢ = 0. So, at failure,
Equations 9.150 and 9.151 simplify to the form

N-1
7 7 4 r()
(Gr )outside at failure = (GO )failure =Gi [7) (9153)
. N-1
and (oy) . . =0o/N|~ 9.154
( 6 )out51de at failure [ 7 j ( )
Hence G,r _ Mn?or pr¥nc‘1pal effecqve stress _ 1 _ A (9.155)
O6 huwe Major principal effective stress N

Compare Equations 9.136 and 9.155.
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Figure 9.95 Results of hollow cylinder tests plotted on octahedral plane 6{+ 63 + 63 =1.
[After Wu, T. H. et al,, J. Soil Mech. Found. Eng. Div., ASCE, 89(SMI), 145, 1963.]

Wu et al. also derived equations for O: and Ob for the case &, > 6} > 0.
Figure 9.95 shows the results of Wu et al. plotted on the octahedral plane
61 + 05 + 05 =1. The Mohr—Coulomb yield criterion has been plotted by
using the triaxial compression and extension test results. The results of
other hollow cylinder tests are plotted as points. In general, there is good
agreement between the experimental results and the yield surface predicted
by the Mohr—Coulomb theory. However, as in Kirkpatrick’s test, hollow
cylinder tests indicated somewhat higher values of ¢ than triaxial tests in
the case of sand. In the case of clay, the opposite trend is generally observed.

Example 9.15

A sand specimen was subjected to a drained shear test using hollow
cylinder test equipment. Failure was caused by increasing the inside
pressure while keeping the outside pressure constant. At failure,
0, =28 kN/m? and o; = 38.3 kN/m?. The inside and outside radii of the
specimen were 40 and 60 mm, respectively.

a. Calculate the soil friction angle.
b. Calculate the axial stress on the specimen at failure.

Solution

a. From Equation 9.143:

() -()
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38.3 40

_ 0.136
-0.176

A-1 =-0.773

Equation 9.147:
A =tan*(45-0¢/2)=0.227
¢ =39°
b. Equation 9.141:

’,2 2 2 _ 2
oy = O ~ o _ @8)E0F =(38-3E0 _ g 7012
2o 607 — 40
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Chapter 10

Elastic settlement
of shallow foundations

10.1 INTRODUCTION

The increase of stress in soil layers due to the load imposed by various
structures at the foundation level will always be accompanied by some
strain, which will result in the settlement of the structures.

In general, the total settlement S of a foundation can be given as

S=8+8,+8;

where
S, is the elastic settlement
S, is the primary consolidation settlement
S, is the secondary consolidation settlement

In granular soils elastic settlement is the predominant part of the set-
tlement, whereas in saturated inorganic silts and clays the primary con-
solidation settlement probably predominates. The secondary consolidation
settlement forms the major part of the total settlement in highly organic
soils and peats. In this chapter, the procedures for estimating elastic set-
tlement will be discussed in detail. Consolidation settlement calculation
procedures will be discussed in Chapter 11.

10.2 ELASTIC SETTLEMENT OF FOUNDATIONS ON
SATURATED CLAY (POISSON'’S RATIO v = 0.5)

Janbu et al. (1956) proposed a generalized equation for average elastic set-
tlement for uniformly loaded flexible foundation supported by a saturated
clay soil in the form

S.(average) = Wil % (v=0.5) (10.1)
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where

i, is the correction factor for finite thickness of elastic soil layer H, as
shown in Figure 10.1

W, is the correction factor for depth of embedment of foundation D,
as shown in Figure 10.1

B is the width of rectangular loaded foundation or diameter of circular
loaded foundation

E is the modulus of elasticity of the clay soil

Length=L
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Figure 10.] Variation of p, and p, for use in Equation 10.1. [Based on Christian, J. T. and
Carrier, lll, W. D., Can. Geotech. J., 15(1), 124, 1978.]
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Table 10.] Variation of p with plasticity index
and overconsolidation ratio

OCR Pl range Range of
| Pl <30 1500-600
30<PI<50 600-300
Pl > 50 300125
2 PI <30 1450-575
30<PI<50 575-275
Pl > 50 275-115
4 PI <30 975-400
30<PI<50 400-185
Pl > 50 185-70
6 PI <30 600-250
30<PI<50 250-115
Pl > 50 115-60

Source: Compiled from Duncan, J. M., and Buchignani, A. N.,
Department of Civil Engineering University of California,
Berkley,1976.

Christian and Carrier (1978) made a critical evaluation of Equation
10.1, the details of which will not be presented here. However, they sug-
gested that for Poisson’s ratio v = 0.5, Equation 10.1 could be retained for
elastic settlement calculations with a modification of the values of p; and
o. The modified values of p, are based on the work of Giroud (1972), and
those for p, are based on the work of Burland (1970). These are shown in
Figure 10.1.

The undrained secant modulus E of clay soils can generally be expressed as

E=BS, (10.2)

where S, is undrained shear strength. Duncan and Buchignani (1976) com-
piled the results of the variation of B with plasticity index PI and overcon-
solidation ratio OCR for a number of soils. Table 10.1 gives a summary of
these results.

Example 10.1

A flexible shallow foundation measures 0.67 mx 1.34m (BXL) in
plan and is subjected to a uniform load of 200 kN/m?. It is located
at a depth of 0.67 m below the ground surface in a clay layer. The
undrained shear strength of the clay is 150 kN/m2. A rock layer is
located at a depth of 5 m from the bottom of the foundation. Estimate
the average elastic settlement of the foundation. Use B=600 in
Equation 10.2.
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Solution

Referring to Figure 10.1,

O Wit
1l
O‘H
o | W
N A
1l
[\S)

1]
S
A\ | N
N

I

[EN

=S 746
0.67

W[

E =BS, = (600)(150) = 90,000 kN/m>
Uy ~ 0.92
W =~ 0.9

From Equation 10.1,

gB (200)(0.67)
Se(averase) = 4—=(0.9)(0.92)—————~
(average) = Haklo = (0.9)(0.92) 90,000

=0.00123 m=1.23mm

10.3 ELASTIC SETTLEMENT OF FOUNDATIONS
ON GRANULAR SOIL

Various methods available at the present time to calculate the elastic settle-
ment of foundations on granular soil can be divided into three general cat-
egories. They are as follows:

1. Methods based on observed settlement of structures and full-scale proto-
types: These methods are empirical in nature and are correlated with the
results of the standard in situ tests such as the standard penetration test
(SPT) and the cone penetration test (CPT). They include, for example, pro-
cedures developed by Terzaghi and Peck (1948, 1967), Meyerhof (1956,
1965), Peck and Bazaraa (1969), and Burland and Burbidge (1985).

2. Semi-empirical methods: These methods are based on a combina-
tion of field observations and some theoretical studies. They include,
for example, the procedures outlined by Schmertmann (1970),
Schmertmann et al. (1978), and Akbas and Kulhawy (2009).

3. Methods based on theoretical relationships derived from the theory of
elasticity: The relationships for settlement calculation available in this
category contain the term modulus of elasticity E and Poisson’s ratio v.

The general outlines for some of these methods are given in the following
sections.



Elastic settlement of shallow foundations 589

10.4 SETTLEMENT CALCULATION OF FOUNDATIONS
ON GRANULAR SOIL USING METHODS
BASED ON OBSERVED SETTLEMENT OF
STRUCTURES AND FULL-SCALE PROTOTYPES

The methods suggested by Terzaghi and Peck (1948, 1967), Meyerhof
(1965), and Burland and Burbidge (1985) are elaborated upon in the fol-
lowing sections.

10.4.1 Terzaghi and Peck’s method

Terzaghi and Peck (1948) proposed the following empirical relationship
between the settlement (S,) of a prototype foundation measuring B x B in plan
and the settlement of a test plate [S, ;] measuring B, x B, loaded to the same
intensity:

Se _ 4
Sey [1+(B/B)P (10.3)

Although a full-sized footing can be used for a load test, the normal prac-
tice is to employ a plate with B, in the order of 0.3-1 m.

Terzaghi and Peck (1948, 1967) proposed a correlation for the allowable
bearing capacity, field standard penetration number N, and the width of
the foundation B corresponding to a 25 mm settlement based on the obser-
vation given by Equation 10.3. This correlation is shown in Figure 10.2 (for
depth of foundation equal to zero). The curves shown in Figure 10.2 can be
approximated by the relation

2
Se(mm):?)q( B ) (10.4)
N\ B103

where
Ny, is the field standard penetration number for an energy ratio of 60%
q is the bearing pressure (kN/m?)
B is the width of foundation (m)

If corrections for ground water table location and depth of embedment are
included, then Equation 10.4 takes the form

3q B Y
S.(mm) = Gy Cp 2L (10.5)
(mm) = Cw DN60(3+0.3)
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Figure 10.2 Terzaghi and Peck’s recommendations for allowable bearing capacity for
25 mm settlement variation with B and N,

where
Cy is the ground water table correction
Cp, is the correction for depth of embedment = 1 - (D,/4B)
Dy is the depth of embedment

The magnitude of Cy is equal to 1.0 if the depth of water table is greater
than or equal to 2B below the foundation, and it is equal to 2.0 if the
depth of water table is less than or equal to B below the foundation. The
Ny, value that is to be used in Equations 10.4 and 10.5 should be the aver-
age value of Ny, up to a depth of about 3B to 4B measured from the
bottom of the foundation.

10.4.2 Meyerhof’s method

In 1956, Meyerhof proposed relationships for the elastic settlement of
foundations on granular soil similar to Equation 10.4. In 19635, he com-
pared the predicted (by the relationships proposed in 1956) and observed
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settlements of eight structures and suggested that the allowable pressure g
for a desired magnitude of S, can be increased by 50% compared to what
he recommended in 1956. The revised relationships including the correc-
tion factors for water table location Cy and depth of embedment C, can
be expressed as

S.(mm) = Cy Co 229 (forB<1.22m) (10.6)
60
and
2 B Y
S.(mm) = Cy CDNz)(B+ 0.3j (forB>1.22m) (10.7)
Cy =1.0 (10.8)
and
D¢
Cp=1.0-"F 10.9
P 4B (10.9)

10.4.3 Method of Peck and Bazaraa

Peck and Bazaraa (1969) recognized that the original Terzaghi and
Peck method (see Section 10.4.1) was overly conservative and revised
Equation 10.5 to the following form:

S.(mm) = Cy Cp 21 ( B )2 (10.10)
N¢\B+0.3
where
S, 1s in mm
q is in kN/m?
Bisinm

N¢o is the standard penetration number, N, corrected to a standard
effective overburden pressure of 75 kIN/m?

_ 0y at 0.5 B below the bottom of the foundation
v o, at 0.5 B below the bottom of the foundation

(10.11)
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where
o, is the total overburden pressure
0y is the effective overburden pressure

0.5
Cp = 1.0—0.4[”] (10.12)
q

where vy is the unit weight of soil.
The relationships for N¢, are as follows:

o= N g 6n <75 kKNm?) (10.13)
1+0.040)
and
Nip = - Neo (for 64 > 75 kN/m?) (10.14)

3.25+0.01c%

where o is the effective overburden pressure (kIN/m?).

10.4.4 Method of Burland and Burbidge

Burland and Burbidge (1985) proposed a method for calculating the elastic
settlement of sandy soil using the field standard penetration number N. The
method can be summarized as follows:

Step 1: Determination of variation of standard penetration number with

depth

Obtain the field penetration numbers N, with depth at the location of the
foundation. The following adjustments of N, may be necessary, depending
on the field conditions:

For gravel or sandy gravel

N6O(a) = 1-25N60 (10.15)

For fine sand or silty sand below the ground water table and N, > 15
Ngow) = 15+ 0.5(Ngo —15) (10.16)

where Ny, is the adjusted N value.

Step 2: Determination of depth of stress influence (z')

In determining the depth of stress influence, the following three cases may
arise:
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Case I: If Ny [or N, is approximately constant with depth, calculate 2’
from

, B 0.75
214 2 (10.17)
Br Br

where

By is the reference width = 0.3 m
B is the width of the actual foundation (m)

Case II: If Ng, [or Ngg(,] is increasing with depth, use Equation 10.17 to
calculate z".

Case III: If Ny [or Ny, ] is decreasing with depth, calculate 2’ = 2B and 2’
= distance from the bottom of the foundation to the bottom of the soft soil
layer (=z"). Use 2’ = 2B or 2z’ = z” (whichever is smaller).

Step 3: Determination of depth of stress influence correction factor o

The correction factor « is given as

a:?[z_hfjg (10.18)
< 4

where H is the thickness of the compressible layer.

Step 4: Calculation of elastic settlement
The elastic settlement of the foundation S, can be calculated as

a. For normally consolidated soil

2 0.7
Se _ 0140 L7 _ { 1.25(L/B) } (Bj (q] (10.19)
By [NeoorNeoy | *[L0-25+(L/B) | \ B ) {1
where

L is the length of the foundation

p. is the atmospheric pressure (= 100 kN/m?)

Ny or Ny, is the average value of N, or Ny, in the depth of
stress increase

b. For overconsolidated soil (g < o; where &, is the overconsolidation
pressure)
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2 0.7

S 0.57 1.25(L/B B

2= 0.0470 —— {025 ( L/H (B) (qj (10.20)
R [NGO or N60(a):| . + ( ) R Pa

c. For overconsolidated soil (g > 67)

S o140 0.57 1.25(L/B) T( B\ (q-0.670!
By [Ngo or NeoiI"* [ 0.25 +(L/B) | \ Bx Pa

(10.21)

Example 10.2

A shallow foundation measuring 1.75 m x 1.75 m is to be constructed
over a layer of sand. Given D¢ = 1 m; Ny is generally increasing with
depth, Ny, in the depth of stress influence = 10; ¢ = 120 kN/m?2. The
sand is normally consolidated. Estimate the elastic settlement of the
foundation. Use the Burland and Burbidge method.

Solution

From Equation 10.17

, 0.75
14/ B
Br Br

Depth of stress influence

From Equation 10.19

Se _ 0,140, 1.71 1.25/8) T( B Y
Bx  |[NgorNeowl"* || 0.25+(L/B) | | Bx

For this case, a =1

")

171 171

=0.068
Neo (1 0)'*



Elastic settlement of shallow foundations

595

Hence
2 0.7
S. :(0'14)(1)(0'068)[(1.25)(1.75/1.75)} (1.75) [qu
0.3 0.25+(1.75/1.75)] { 0.3 } (100

S.~0.0118 m = 11.8 mm

Example 10.3
Solve Example 10.2 using Meyerhof’s method.

Solution

From Equation 10.7

S, = CyCp 2‘7[ B )

Ngo \ B+0.3

CW =1

CD=1.0—&=1— ! =0.857
4B (4)(1.75)

2
S. = (1)(0.857)[(2)(11020)}(1 715'150 : ) =14.99mm ~ 15mm

Example 10.4

Consider a shallow foundation 1 mx 1 m in plan in a granular soil.
Given: D;=1 m; unit weight of granular soil, y=17 kN/m?; uniform
load on the foundation, g =200 kN/m?. Following are the results of
standard penetration tests taken at the site.

Depth from the ground

surface (m) N¢o
1.5 8
3.0 10
4.5 12
6.0 14

Estimate the elastic settlement based on the Peck and Bazaara method.
Note: Ground water table is at a depth of 9 m from the ground surface.
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Solution

Determination of N¢,. The following table can be prepared.

Depth o

(m) Nqo (kN/m?) Néo
1.5 8 255 15.82
3.0 10 51.0 13.16
4.5 12 76.5 11.96°
6.0 14 102.0 13.1°

Av.x 1351 = 14

2 Equation 10.13
® Equation 10.14

From Equation 10.11, C = 1.
From Equation 10.12,

0.5 0.5
Cp=2-0.4| 0 =1—0.4[w} =0.88
q 200

Equation 10.10:

Ng \B+0.3

2
S. = CyCo 2q ( B :(1)(0.88)2X200 1
1+0.3

2
——— | =14.88 mm
14 )

10.5 SEMI-EMPIRICAL METHODS FOR SETTLEMENT
CALCULATION OF FOUNDATIONS
ON GRANULAR SOIL

In the following sections, we will discuss the strain influence factor method
suggested by Schmertmann et al. (1978); Terzaghi et al. (1996); and the
L,-L, method developed by Akbas and Kulhawy (2009) for calculation of
settlement of foundations on granular soil.

10.5.1 Strain influence factor method
(Schmertmann et al. 1978)

Based on the theory of elasticity, the equation for vertical strain €, at a
depth below the center of a flexible circular load of diameter B has been
expressed as (Equation 4.40)
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e. = V) _onat B (4.40)
or

I = SZE -1 ’ ’,

(== (1= 294+ B) (10.22)
where

A’ and B’ = f(z/B)

q is the load per unit area

E is the modulus of elasticity
v is the Poisson’s ratio

I, is the strain influence factor

Schmertmann et al. (1978) proposed a simple variation of I, with depth
below a shallow foundation that is supported by a granular soil. This varia-
tion of I, is shown in Figure 10.3. Referring to this figure.

Zp

v
z

Figure 10.3 Nature of strain influence diagram suggested by Schmertmann et al. (1978).
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¢ For square or circular foundation:

I,=0.1 atz=0
Lpeary atz=2,=0.5B
I,=0 atz=2zy=2B

¢ For foundation with L/B > 10:
I,=0.2 atz=0
Lipeay atz=2,=B

I,=0 atz=z =4B

where L is the length of foundation. For L/B between 1 and 10, inter-
polation can be done. Also

0.5
peak) =0.5+0. 1[(5 j (10.23)
0

The value of o in Equation 10.23 is the effective overburden pressure at a
depth where I, occurs. Salgado (2008) gave the following interpolation
for I, atz =0, z,, and z, (for L/B =1 to L/B > 10):

Lyateco) = 0.1+0. 0111&—1}0.2 (10.24)
“ o.5+0.0555[§—1js 1 (10.25)
- 2+0.222(§—1)s 4 (10.26)

The total elastic settlement of the foundation can now be calculated as

2B
S, = clczqz %Az (10.27)
0
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where
q is the net effective pressure applied at the level of the foundation
q, is the effective overburden pressure at the level of the foundation

C, is the correction factor for embedment of foundation =1-0.5(q,/q)
(10.28)

C, is the correction factor to account for creep in soil =1+0.2log(t/0.1)
(10.29)

¢ is the time, in years

Noting that stiffness is about 40% larger for plane strain compared to axi-
symmetric loading, Schmertmann et al. (1978) recommended that

E=2.5qg. (for square and circular foundations) (10.30)

and

E=3.5g. (for strip foundation) (10.31)

where ¢, is the cone penetration resistance.
For rectangular foundation with L x B plan, Terzaghi et al. (1996) sug-
gested that

Eum _110.4108[ E <14 (10.32)
E(L/B=1) B

Example 10.5

Consider a rectangular foundation 2 m x 4 m in plan at a depth of
1.2 m in a sand deposit as shown in Figure 10.4a. Given y = 17.5 kN/m’;
g = 124 k/m?; and the following approximated variation of g, with z:

z (m) q. (kN/m?)
0-0.5 2250
0.5-2.5 3430
2.5-5.0 2950

Estimate the elastic settlement of the foundation using the strain influ-
ence factor method.



600 Advanced Soil Mechanics

— q=124kN/m>
: y=17.5 kN/m>

20T

3.0+

4.0 +
4.44

501

v

(b)
Figure 10.4 (a) Rectangular foundation in a sand deposit; (b) variation of E and I, with depth.

Solution
From Equation 10.25

2 2 0.5+0.0555 £—1 =0.5+0.0555 i—1 =0.56
B B 2

2, =(0.56)(2)=1.12 m

From Equation 10.26

j;):2+0.222(§—1):2+0.222(2—1):2.22

20 =(2.22)(2)=4.44 m
From Equation 10.24, at 2 = 0

I, =O.1+0.0111(]1;—1):0.1+0.0111[;—1):0.11

From Equation 10.23

0.5
ImﬂH:05+OJ[£{] :05+04{ 124 ~0.675
O

0.5
a2+1jau75J
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The plot of I, versus z is shown in Figure 10.4b. Again, from
Equation 10.32

E(L/B) = (1 +0.4 lOgéj(E(L/B_l)) = |:1 +0.4 lOg(;J] (25qu) = 28qc

Thus, the approximate variation of E with z is as follows:

z(m)  q. (kN/m?) E (kNim?)

0-0.5 2250 6300
0.5-2.5 3430 9604
2.5-5.0 2950 8260

The plot of E versus z is shown in Figure 10.4b.
The soil layer is divided into four layers as shown in Figure 10.4b.
Now the following table can be prepared.

Layerno. Az (m) E (kN/m?) I, at middle of layer %Az (m3/kN)

| 0.50 6300 0.236 1.87 x 1073
2 0.62 9604 0.519 3.35x%x 107
3 1.38 9604 0.535 7.68 x 1075
4 1.94 8260 0.197 4.62 x 107

Total 17.52 x 1075

I
5. =CCala)y |, Az

C =1-0.5| 90 |= 1—0.5(M) -0.915
q 124

Assume the time for creep is 10 years. So

10
Cz =1+0.210g[M]=1.4

Hence

S. =(0.915)(1.4)(124)(17.52x107°) =2783x 10" m = 27.83 mm
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10.5.2 Strain influence factor method
(Terzaghi et al. 1996)

Terzaghi et al. (1996) proposed a slightly different form of the strain influ-
ence factor diagram, as shown in Figure 10.3. According to Terzaghi et al.
(1996) and referring to Figure 10.3,

Atz=0,1,=0.2 (for all L/B values)
Atz=2,=0.5B, I,=0.6 (for all L/B values)
Atz=2,=2B,1,=0 (for L/B=1)
Atz=2,=4B, I,=0 (for L/B > 10)

For L/B between 1 and 10 (or >10),

o 2[1+ log(gﬂ (10.33)

The elastic settlement can be given as

20
I 0.1 t days
S.=C ZEAz+0.02| =—— |zolog| ——=
d“”; E® S(g.A2) [ Og( 1 day J (10.34)
20
Post-construction settlement
In Equation 10.34, g, is in MN/m?2.
The relationships for E are
E =3.5q, (for square and circular foundations) (10.35)
and
L
Erectangular = |:1 + 0-4(Bj:|ESquare (fOI' L/B 2> 10) (1036)

In Equation 10.34, C, is the depth factor. Table 10.2 gives the interpo-
lated values of C, for values of D/B.
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Table 10.2 Variation of C, with D,/B?

DB (oF
0.1 I

0.2 0.96
0.3 0.92
0.5 0.86
0.7 0.82
1.0 0.77
2.0 0.68
2.0 0.65

2 Based on data from Terzaghi et al. (1996)

Example 10.6
Solve Example 10.5 using the method of Terzaghi et al. (1996).

Solution
Given: L/IB=4/2=2

Figure 10.5 shows the plot of I, with depth below the foundation.

Note that

%0 = 2{1 + log(éﬂ =2[1+log(2)]=2.6

or
20 =(2.6)(B)=(2.6)(2)=52m

Also, from Equations 10.35 and 10.36,

E= [1 + 0.4(@)}(35%) = {1 + 0.4(‘2‘)}(3.5%)] = 6.3

Also, D¢/B=1.2/2=0.6. From Table 10.2, C, = 0.85.

20

The following is the table to calculate ZEZAZ'
0

1

Az E I, at the middle EAZ
Layer No. (m) (kN/m?) of the layer (m?/kN)
| 0.5 14,175 0.3 1.058 x 105
2 0.5 21,609 03 1.157 x 10
3 1.5 21,609 0.493 3422 x 10°°
4 2.7 18,585 0.193 2.804 x 10

28441 x 10
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E (kN/m?)

14,175

21,609

18,585

@ ()
Figure 10.5 Plot of I, and E