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1 Introduction

1.1 The Earth

The Earth is approximately spherical, with a mean radius R = 6370km,
a very small flattening (+7/− 15km), mass � 6× 1024kg, and an av-
erage density 5.5g/cm3; the law of gravitational attraction is F =
GmMr/r3, where F is the force directed along the separation dis-
tance r between two point bodies with mass m and M ; and G =
6.67× 10−8cm3/g · s2 is the gravitation constant.
Little is known about Earth’s interior. The drilling down into the
earth reaches at most 10− 15km. It is accepted that the Earth con-
sists of several shells. First, at the surface, there is a solid crust,
extending down to approximately 70km, on average; locally it may
have 5km thickness. Down to approximately 3000km an extremely
viscous mantle exists. The next 2000km down to the centre are oc-
cupied by a liquid outer core. Finally, a solid inner core exists at
the centre. The viscosity of the mantle is 1022 − 1025g/cm · s; for
comparison, water has 10−2g/cm · s. The physical properties are dis-
continuous at the boundaries of these layers, like the "Moho" dis-
continuity (named after Mohorovicic) between crust and mantle, or
the Gutenberg discontinuity between mantle and the liquid core, or
the Bullen (or Lehmann) discontinuity between the inner core and
the outer core. Changes in propagation of the elastic (seismic) waves
have been measured and have indicated such discontinuities. The
main chemical elements in the Earth’s shells are Fe, O, Si, Mg, S, Ni,
Co, Al. The crust is made mainly of silicon dioxide and aluminium
oxide. The crust density is 3g/cm3; the inner core has probably the
density 13g/cm3. The crust and the upper part of the mantle are
called lithosphere; tectonic plates are located there, in slow motion.
This motion is known as the continental drift. The largest rate of the
continental drift seems to be 2.5cm/year (separation of the Ameri-
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1 Introduction

cas from Europe and Africa).1 The Earth’s crustal movements are
measured today by satellites in the Global Positioning System (GPS).
Very likely, the earthquakes, volcanoes and mountains are produced
at plate boundaries. The gravitational acceleration at the Earth’s
surface g = 9.8m/s2 is preserved down to 3000km, where it decreases
appreciably. Earth’s magnetic field is produced probably by convec-
tion and motion of electrical charges in the liquid outer core; the
Earth’s temperature is due probably to radioactive decays. In the
inner core the temperature is probably 6000K and the pressure is
3.5× 1012dyn/cm2.
A great deal of physical phenomena can be observed and even quanti-
tatively measured, related to the internal motion in the Earth. Among
these are heat flow, quasi-static displacement (the motion of the tec-
tonic plates), strain, variations in gravity, electromagnetic phenom-
ena; and, of course, seismic waves. The range of these variables is
huge. Explosive charges are detected from 1g to 109kg; ground dis-
placements are measured from 1μ to tens of meters for the slip of a
major fault during an earthquake. Earthquakes vary in intensity over
more than 18 orders in energy (one of the greatest earthquake was
the Chilean earthquake of 1960, May 22). Seismic networks vary from
tens of meters for an engineering foundation survey to 104km for the
global array of seismological observatories.

1.2 Seismic sources and waves

The Earth is a deformable body, which may bear local elastic move-
ments, like static deformations and elastic waves. Among these, the
greatest are the earthquakes. The Earth may be viewed as an elastic
body, in the first approximation an infinite homogeneous and isotropic
elastic medium; however, the effects of the earthquakes are felt on its
surface, so the surface should be included.
The mechanics of deformable bodies and the theory of elasticity ap-
peared gradually, over more than two hundred years. About 1660
1A. Wegener, "Die Herausbildung der Grossformen der Erdrinde (Kontinente

und Ozeane) auf geophysikalischer Grundlage", Petermanns Geographische
Mitteilungen 63 185, 253, 305 (1912); Die Entstehung der Kontinente und

Ozeane, Vieweg & Sohn, Braunschweig (1929).
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1 Introduction

Hooke determined the proportionality of the force with the deforma-
tion: ut tensio, sic vis. In 1821 Navier established the equilibrium of
the elastic bodies and their vibrations; Young and Fresnel showed the
polarization of the waves, in relation to the transverse polarization
of light; in 1822 Cauchy introduced the strain and the stress ten-
sors; then, Poisson determined the compression and the shear elastic
waves, and Green introduced the strain-energy function; Kelvin com-
puted the static deformation produced by a localized force and Stokes
derived the elastic waves from a localized force in an infinite elastic
medium. Elastic waves and vibrations were studied intensively by
Rayleigh, Lamb and Love at the end of the 19th century and the be-
ginning of the 20th century. Non-linear elasticity (also called "finite"
elasticity), or the mechanics of deformable visco-elastic media, or of
micro-structured media are various generalizations.

It is widely accepted that the earthquakes are produced by a sudden
release of the elastic energy built up locally at the boundary of two
or more tectonic plates; such an interface of tectonic plates, where
a rupture in the material may occur, is a fault. The spontaneous
slip occurring in a fault, or explosions, is a seismic source. The force
acting in a faulting source is usually related to the fault slip over a
finite faulting area. For a "volume" source, like those associated with
explosions, the force is related to the dilatational strain. The focus
of an earthquake is localized in a small volume, of various shapes
which, however, are irrelevant as long as the focal volume may be
viewed as being concentrated in a point. In the first approximation,
the fault slip, occurring in the focus, is characterized by a direction;
the pressure, caused by an explosion for instance, is the (uniform)
force per unit area on the surface enclosing a localized, small volume.
The focus is active a certain duration of time (which often may be
taken as an impulse-like duration). In general, a faulting slip gener-
ates tensorial forces; a faulting source is characterized by a tensor;
this is the tensor of the seismic moment. The "volume" sources cor-
respond to an isotropic tensor of seismic moment (isotropic sources).
As long as the material remains elastic the seismic forces generate a
slow movement of the tectonic plates; such a quasi-static deformation
relieves the stress and diminishes the probability of an earthquake. If
the material yields, and a sudden rupture appears, the seismic forces

3



1 Introduction

generate a shock and cause an earthquake. Hence, monitoring the
small displacement of the tectonic plates, especially in regions prone
to earthquakes, may give an indication about the likelihood of an
earthquake.

The rock fracture and the faulting mechanism for seismic sources
(located from a few kilometers beneath the Earth’s surface down to
700km) have been accepted gradually, especially after the big earth-
quakes of Mino-Owari (Japan), 1891 and San Francisco, 1906. In a
big earthquake soil displacement as large as a few meters may ap-
pear, both horizontally and vertically, along distances as large as tens
to hundreds of kilometers,2 and accelerations may exceed the gravita-
tional acceleration; sometimes, the soil displacement is permanent. An
extensive phenomenology of the earthquakes was given by Richter.3

Although Earth is not a perfect elastic body, it is still approximated
by a simple, homogeneous and isotropic elastic solid, with two elastic
moduli: the Lame coefficients λ and μ, or the Young modulus E and
the Poisson ratio σ.4 In such an (infinite) elastic solid two kinds of
elastic waves can be propagated: longitudinal waves, associated with
the compressibility of the solid, and transverse waves, associated with
the shear elastic properties of the solid. The longitudinal waves propa-
gate faster; they are called P waves ("primary", compressional waves);
their velocity (in the crust) is approximately 7km/s; the transverse
waves are slower, they are called S waves ("secondary", shear waves);
their velocity in the crust is approximately 3km/s.5 In general, the
velocity of the elastic wave seems to increase with the increasing depth
in the earth.

The problem of propagation of the seismic waves is complicated by
the presence of the Earth’s surface, which suggests to approximate
the Earth by an elastic half-space (we may neglect in the first ap-
proximation the Earth’s surface curvature). The equations of mo-
tion of the linear elasticity are second-order differential equations in

2H. F. Reid, Mechanics of the Earthquake, The California Earthquake of April

18, 1906, vol. 2, Carnegie Institution, Washington (1910).
3C. F. Richter, Elementary Seismology, Freeman, San Francisco, CA (1958).
4We may take as mean values for Earth E � 1011dyn/cm2, μ = E/2(1 + σ) �

1011dyn/cm2, λ = Eσ/(1−2σ)(1+σ) � 1011dyn/cm2 (Poisson ratio σ � 0.2).
5The notations P and S seem to originate historically in "primary" and "sec-

ondary" waves. Both will be called here primary waves.
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variables time and position (elastic waves equation, known also as
the Navier-Cauchy equation). Such an equation is amenable to two
distinct approaches. First, we may consider a source appearing at
a certain moment of time, which produces waves. Before, there is
no motion. This is the propagating-wave approach, governed by the
causality principle: the waves are produced only by sources acting in
the past. The waves propagate in the future. The wave source lasts
a finite time, usually a short time; in this case it produces localized
waves, like the P and S seismic waves, which have a spherical-shell
structure. This is the case of earthquakes. Once arrived at Earth’s
surface, these seismic waves (primary seismic waves) produce surface
sources of secondary waves, according to Huygens principle, propa-
gating on the surface, which gives the seismic main shock (actually,
two main shocks, corresponding to the two distinct velocities of the
seismic waves). The seismic main shock is a delocalized wave propa-
gating back in the Earth. On the surface it looks like a propagating
wall, behind the primary waves, with a long tail (actually two walls,
corresponding to the two P and S waves, for distinct components of
the elastic displacement). Despite having a long tail, the main shock
is a wave, propagating from a certain instant towards the future. This
is a transient regime, seen and felt in earthquakes. The inner layers of
the Earth may cause dispersion of the elastic waves.6 After a while,
the seismic waves suffer multiple reflections on the spherical Earth’s
surface, their presence is continuous on the whole Earth’s surface, and
they produce free oscillations of the Earth (eigenoscillations, eigenvi-
brations, normal modes); the seismic source ceased its action since
long. The frequencies of the P and S seismic waves are, mainly, of
the order 1s−1 (it seems that the periods of the seismic waves are in
the range 0.1s-10s, though these are only orientative figures); their
wavelength is longer than the dimensions of the focal region. The free
oscillations of the Earth may have much lower frequencies.

The second approach consists in viewing a continuous source, whose
effects (waves) act continuously upon the whole Earth’s surface. They
should obey boundary conditions on the surface. The time is indef-
inite in this approach, the role of the causality principle is played

6A. E. H. Love, Some Problems of Geodynamics, Cambridge University Press,
London (1911).
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now by the boundary conditions. This is the vibration approach. In
vibration, the waves propagate both in the future and in the past,
their superposition gives a vibration. A source may produce forced
vibrations, in the absence of a source the vibrations are free (free
oscillations, eigenoscillations). The vibration regime is a stationary
regime, distinct from the propagating-wave transient regime. In 1885
Rayleigh discovered that an important contribution to the vibrations
of a homogeneous and isotropic elastic half-space with a free plane
surface is brought by damped waves, called Rayleigh’s surface waves
(actually vibrations).7 Since they last long, over large distances (as
any vibration), it was tempting to associate them with the seismic
main shock. The Rayleigh’s surface waves propagate as plane waves
along the surface and are damped vibrations along the direction per-
pendicular to the surface; in another nomenclature they may be called
guided waves.

The recording of the seismic waves in seismograms shows approxi-
mately, very approximately, a general, qualitative picture of P and
S elastic waves and main shock (shocks). The first attempt at con-
structing a theoretical seismogram was done by Lamb in 1904 for a
seismic source on the surface of a homogeneous and isotropic elastic
half-space or buried in such a half-space;8 Lamb’s results consist of
a sequence of three pulses, which Lamb associated to a preliminary
feeble tremor (say, P , S waves) and Rayleigh surface "waves", ac-
cording to their arrival times (the surface waves are the slowest). In
fact, Lamb’s solution is for a vibration problem, not for a propagating
wave problem. For a temporal-impulse source, Rayleigh’s and Lamb’s
solution (though inapplicable) extends over the whole free surface,
much before the arrival of a main shock, albeit exhibiting a propa-
gating double-wall structure.9 Even the seismic main shock, though
extended over the surface, is not a vibration, because its source, the
source of secondary waves, lies just on the surface, and boundary con-
ditions are meaningless in this case. On the other hand, a construction

7Lord Rayleigh, "On waves propagated along the plane surface of an elastic
solid", Proc. London Math. Soc. 17 4 (1885).

8H. Lamb, "On the propagation of tremors over the surface of an elastic solid",
Phil. Trans. Roy. Soc. (London) A203 1 (1904).

9B. F. Apostol, "On the Lamb problem: forced vibrations in a homogeneous and
isotropic elastic half-space", Arch. Appl. Mech. 90 2335 (2020).
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built on Earth’s surface, under the action of the seismic waves may
suffer vibrations, of course. The first seismogram was recorded in the
early 1880s. P , S and a main shock (interpreted as surface waves)
have been first recognized on a seismogram by Oldham in 1900.10 Re-
flections of the original seismic pulses in Earth’s surface layers may
generate long-lasting oscillations; for a long time Earth vibrates and
oscillates (rather than "radiates"), as Jeffreys discussed in 1931;11

seismic waves may be localized in Earth’s surface layers. In general,
the scattering of the seismic waves by inhomogeneities makes them to
last long. The seismograms exhibit a characteristic, long tail (coda).

One of the main problems of the Seismology is to understand the
seismograms, i.e. the seismic movement recorded at Earth’s surface.
This is known as the seismological problem. Typically, any seismo-
gram exhibits a preliminary tremor of feeble movement, which consists
of spherical-shell P - and S-seismic waves, followed by a main shock (or
two main shocks); the main shock finally subsides slowly with a long
seismic tail. The recorded pattern exhibits many oscillations. Spheri-
cal waves are generated by seismic sources localized in space and time.
These waves interact with the Earth’s surface and produce additional
sources moving on the Earth’s surface. These surface sources generate
secondary waves, which propagate in the whole Earth; on the surface
they cause the main shock and its long tail. The oscillations are prob-
ably due to the internal structure of the earthquake focus, which may
include successive and adjacent point ruptures (the structure factor of
the earthquake focal region); also, inhomogenities of the Earth, mul-
tiple reflections and the seismographs’ characteristics may play a role
in these oscillations.

1.3 Empirical laws

The energy released by an earthquake was, and still is, estimated
by the damage produced by the seismic waves at Earth’s surface, in

10R. D. Oldham, Report on the Great Earthquake of 12th June, 1897, Geol. Surv.
India Memoir 29 (1899); "On the propagation of earthquake motion to long
distances", Trans. Phil. Roy. Soc. London A194 135 (1900).

11H. Jeffreys, "On the cause of oscillatory movement in seismograms", Monthly
Notices of the Royal Astron. Soc., Geophys. Suppl. 2 407 (1931).
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1 Introduction

the region affected by the earthquake. The highest known value is
of the order 1030erg, for the 1960 Chilean earthquake, or the 1964
Alaskan earthquake. The smallest value is about 1012erg for micro-
earthquakes; 105erg corresponds to micro-fractures in laboratory ex-
periments on loaded rock samples. For such large variations a loga-
rithmic scale is convenient. The earthquake magnitude M appeared
this way, defined by

E/E0 = ebM , (1.1)

where E0 is a threshold energy and b is a constant, chosen by conven-
tion b = 3.45.12 Originally, the law was written with powers of ten,
where b = 3/2. By another convention, the parameter E0, measured
in erg, is given by lgE0 = 15.65 (decimal logarithm). The logarith-
mic form of this law is also known as the Gutenberg-Richter law.13

Later on, the earthquake energy was associated with the tensor of
the seismic moment, and a similar logarithmic law was introduced
for the magnitude of this tensor, which defines a so-called earthquake
moment magnitude. This law is called the Hanks-Kanamori law.14

It was shown empirically that the number of earthquakes with mag-
nitude greater than M which appear in a given region in a given time
duration obeys a logarithmic law

lnN = const− βM , (1.2)

where β is a constant which depends on the data set (like const too).
A reference value β = 2.3 is accepted (in decimal logarithms β = 1).
This is a statistical law. It is called also the Gutenberg-Richter law
(known also as the excedence, or cumulative law).
It was noticed that a big earthquake is often preceded and succeeded
by many smaller earthquakes, which appear in the same seismic region
12T. Utsu and A. Seiki, "A relation between the area of aftershock region and

the energy of the mainshock" (in Japanese), J. Seism. Soc. Japan 7 233
(1955); T. Utsu, "Aftershocks and earthquake statistics (I): some parameters
which characterize an aftershock sequence and their interaction", J. Faculty of
Sciences, Hokkaido Univ., Ser. VII (Geophysics) 3 129 (1969).

13B. Gutenberg and C. Richter, "Frequency of earthquakes in California", Bull.
Seism. Soc. Am. 34 185 (1944); "Magnitude and energy of earthquakes",
Annali di Geofisica 9 1 (1956) (Ann. Geophys. 53 7 (2010)).

14H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981
(1977); T. C. Hanks and H. Kanamori, "A moment magnitude scale", J. Geo-
phys. Res. 84 2348 (1979).
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and in a reasonably short time interval; they are called foreshocks and
aftershocks, respectively. The time distribution of these accompany-
ing earthquakes is given approximately by

ΔN

Δt
∼ 1

const+ t
, (1.3)

where ΔN is the number of earthquakes which appear in the time
interval Δt measured with respect to the main shock. This is known
as Omori’s law.15

Finally, it seems that the greatest aftershock of a main shock has a
magnitude smaller by ΔM = 1.2 than the main shock. This is known
as Bath’s law.16

All that we know about earthquakes reduces practically to these em-
pirical, disparate laws. If we add the lack of knowledge of the P and
S seismic waves and the main shock, we can see that we do not know
much about earthquakes. It is claimed that the tensor of the seis-
mic moment is related to the main shock, the later associated with
surface waves; and, from measurements of these waves we may have in-
formation about the seismic moment and the magnitude of the earth-
quakes (through the Hanks-Kanamori law). Also, it is claimed that
this knowledge is incorporated in numerical codes, released by vari-
ous agencies, to be used for the determination of the seismic moment,
the magnitude and, possibly, other earthquakes parameters. However,
this knowledge is not in the public domain and, consequently, cannot
be checked.

15F. Omori, "On the after-shocks of earthquakes", J. Coll. Sci. Imper. Univ.
Tokyo 7 111 (1894).

16M. Bath, "Lateral inhomogeneities of the upper mantle", Tectonophysics 2 483
(1965); C. F. Richter, Elementary Seismology, Freeman, San Francisco, CA
(1958) p. 69.

9



1 Introduction

1.4 Seismology

Recently, basic results have been obtained in Seismology,17 which are
described briefly below.

The law of energy accumulation with increasing time in a pointlike
focus was obtained by using the continuity equation and the energy
conservation. The geometric-growth parameter r has been introduced
(1/3 < r < 1), which makes the difference between β = br and b. Also,
besides the energy threshold E0, the basic time threshold t0 has been
introduced, which gives the seismicity rate 1/t0.

Based on this law, the time and energy probability distributions have
been derived, as well as the standard Gutenberg-Richter magnitude
distributions. This way, the background seismicity of regular earth-
quakes has been defined and Omori’s law of conditional probability
has been derived. These laws have been applied to the the estimation
of the mean recurrence time of earthquakes and to the analysis of
next-earthquakes distribution, both results of practical relevance.

The law of energy accumulation and the time and magnitude distri-
butions have been used to derive the bivariate distributions, which
account for the earthquake correlations in the foreshock-main shock-
aftershock sequences. Time-magnitude, dynamical and statistical cor-
relations have been highlighted, and correlation-modified Gutenberg-
Richter distributions have been derived. This way, Bath’s law has
been explained and a procedure was established for estimating the
occurrence time of a main shock, by using the analysis of the fore-
shocks. In the vicinity of a main shock the parameter β decreases,
while the number of aftershocks and the parameter β increase after
a main shock, as a result of the change in the seismicity conditions
brought about by the main shock.

The tensorial force acting in a pointlike focus has been established and
the notion of the elementary earthquake (temporal-impulse force) has
been introduced. This force is governed by the tensor Mij of the
seismic moment. The elastic wave equation has been solved with this

17B. F. Apostol, The Theory of Earthquakes, Cambridge International Science
Publishers, Cambridge (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishers, Cambridge (2017); Seismology,
Nova, NY (2020.
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force, as well as the elastic equilibrium equation (Navier-Cauchy equa-
tions). This way, the P and S seismic waves have been derived, the
transient regime of the seismic waves has been established, and the
static deformations at Earth’s surface have been computed. A regu-
larization method has been introduced for the solutions of the elastic
wave equation and a new method has been introduced for computing
static deformations of an elastic half-space with general forces.

The main shock produced by the seismic waves, especially on Earth’s
surface, has been computed, and its singular wavefront has been de-
rived. Thus, together with the derivation of the P and S seismic
waves, the structure of the seismograms has been explained. This is
known as the seismological (or Lamb’s) problem. The identification
of the transient regime was instrumental in solving this problem.

The above results have been applied to the seismological inverse prob-
lem, i.e. the derivation of the tensor of the seismic moment. The
seismic moment was derived from the P and S seismic waves mea-
sured at Earth’s surface, by using the Kostrov representation and the
energy conservation. On this occasion, all the parameters of the seis-
mic source were derived from empirical measurements of the P and
S waves, like the duration of the seismic activity in the earthquake
focus, the dimension of the focus, the focus strain and its rate, the
orientation of the fault and the slip along the fault. The relation(
M2

ij

)1/2
= 2
√
2E between the magnitude of the seismic moment and

the energy (E) has been established. Also, the results have been
applied to explosions, which have an isotropic tensor of the seismic
moment. It was shown that a hybrid focal mechanism, which would
imply a shear faulting and an isotropic dilatation (or compression) is
impossible. A procedure has also been devised for getting the seismic
moment from the (very small) static displacements measured (theo-
retically) in the epicentral region.

Finally, the effect of the seismic movements on the constructed struc-
tures on Earth’s surface has been investigated by using the models of
the embedded bar, the buried bar and coupled oscillators (and bars).
Amplification factors have been derived and the risk brought by soft
inclusions, and, in general, by inhomogeneities in elastic structures
was highlighted. A new method for computing the elastic vibrations
of a half-space has been introduced and the difference between prop-
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agating waves and vibrations was emphasized; also, two-dimensional
related problems were solved.

Most of these subjects can also be found in a previously published
book.18 Apart from new, original points, the present book emphasizes
the practical side of such problems of seismological interest.

1.5 Description of the book

The first part of the book is devoted to statistical Seismology (the
first four chapters). The geometric-growth model for energy accumu-
lation in the focus is introduced, the time distribution of earthquakes
is established and the standard Gutenberg-Richter earthquake distri-
bution in magnitude is deduced. Conditional probabilities are de-
scribed and the Omori distribution is derived. Aplications to Vrancea
earthquakes are presented. It is shown that the background seismicity
(consisting of regular earthquakes) of a region over a long period of
time is characterized by two parameters: the slope of the Gutenberg-
Richter distribution and the seismicity rate. The recurrence time (pe-
riodicity problem) is governed by these parameters. Further on, the
next-earthquake distributions are introduced, and their practical rel-
evance is emphasized. A main subject in statistical Seismology is
the earthquake correlations, which characterize the distribution of the
foreshocks and the aftershocks (accompanying seismic events). The
pair correlations are established, the roll-off effect is explained and
the nature and characteristics of the accompanying seismic events are
presented. The pair correlations explain the deviations from the stan-
dard Gutenberg-Richter distribution. On this occasion the Bath’s law
is explained. Short sequences of correlated foreshocks may be used to
make a short-term prediction of a main shock, including its occur-
rence moment and magnitude. A few examples of application of this
procedure are given. Also, in this part the problem of the statistical
equilibrium of a seismic zone is discussed, by means of the earthquake
entropy. It is shown that the seismic activity is a non-equilibrium pro-
cess, where the steadily decreasing entropy is interrupted from time
to time by abrupt increases, due to big earthquakes.

18B. F. Apostol, Seismology, Nova, NY (2020).
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The second part of the book deals with seismic waves, seismic moment
and the static deformations (three chapters). First, the tensorial seis-
mic point force is introduced. This is a temporal-impulse force, local-
ized in space and governed by the tensor of the seismic moment. It is
shown how the P and S seismic waves can be derived from this force,
and how these primary waves generate on Earth’s surface sources of
secondary waves, which generate the main shock(s). The primary seis-
mic waves are scissor-like spherical shells, and the main shock comes
out with an abrupt wall and a long tail, propagating on the surface
behind the primary waves. This way, the seismological problem is
solved. A complete solution would require the determination of the
seismic-moment tensor and the other parameters of the earthquakes
by measurements performed on Earth’s surface. We show that the
amplitude of the P and S seismic waves provides a means of deter-
mining this tensor. The determination procedure is conducted in a
consistently covariant way. It gives access to the earthquake energy
and magnitude, as well as to the dimension of the focus, the duration
of the seismic activity in the focal region and the orientation of the
fault. The introduction of the seismic tensorial force raises another
problem, besides the seismological problem: the computation of the
static deformations generated on Earth’s surface. The result of these
computations is presented and discussed in this book. Moreover, the
periodic small discharge of the seismic stress generates small deforma-
tions in the epicentral zone. We show, on one side, how to estimate
an average seismic moment and the depth of the focus by measuring
such quasi-static deformations; and, on the other side, we show that
a continuous monitoring of the quasi-static epicentral deformations
may give information about a possible evolution of the seismic activ-
ity, because, after periods of silence we may expect a burst of seismic
activity.

The next three chapters of the book deal with local seismic effects.
An important problem in Seismology is how to secure the buildings
erected on Earth’s surface against the destructive action of the earth-
quakes. We show that the buildings may be viewed as vibrating bars,
which, under the seismic action may resonate; also, sub-surface in-
homogeneities may behave as resonating embedded (buried) bars. In
both cases we get local amplification factors, evaluated in the book.
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The estimation of the local effects requires the understanding of the
relevance of the site spectral response, which is currently measured
on Earth’s surface. We discuss the information the site response may
give, in the complex context of the presence of the inhomogeneities,
different local velocities of the elastic waves, or different wave polariza-
tions. A special chapter is devoted to the interaction of a harmonic-
oscillator model with an elastic wave, the associated amplification
factors, the role of damping, the different behaviour under seismic
shocks and periodic elastic waves.

Hitherto, besides giving theoretical tools, sometimes in great detail,
necessary for understanding the seismic phenomenon, we focused on
practical procedures relevant for Seismology. The book describes in
detail activities (tasks) which can be undertaken by anybody in or-
der to get knowledge about earthquakes. For instance, by updating
periodically the background earthquake activity, we may get infor-
mation about the recurrence time of the big earthquakes; the next-
earthquake distribution may answer our current question: "what may
we expect after an important earthquake?"; by fitting (daily, some-
times hourly) the correlated foreshock sequences we may predict, on
a very short term, a main seismic shock; by updating periodically the
earthquake entropy we may see if something changed in the seismic
non-equilibrium process, so we may get an insight on what we may
expect in the future in regard to earthquakes. By using the procedure
described in this book we may determine the seismic moment, the
magnitude and the characteristics of the fault; or, we may assess the
behaviour of the small epicentral seismic discharges. By measuring the
local effects, the amplification factors and the site spectral response,
we may get information about improving the design of the construc-
tions. By using such practical procedures, the Seismology reveals its
practical side, besides its pure-science side, which may become useful
in our daily life.

The end part of the book deals with a few more theoretical issues
(three chapters). Such issues are not of practical use, but they may
help us to better understanding of the problems raised by the seis-
mological studies. The first problem tackled in this context is the
problem of the inhomogeneities dispersed naturally in the Earth. We
give a detailed presentation of this problem, regarding both bulk and
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surface inhomogeneities (rough surface). We show that the bulk in-
homogeneities may renormalize the velocity of the elastic waves, may
produce a slight distortion of the localized seismic waves and may
produce dispersion of the waves, as expected. In general, such effects
have, relatively, little relevance, though, in some cases, a rough sur-
face may generate the surprising effect of a surface localized wave. The
next problem is the vibration problem. In the seismological studies the
wave propagation and the elastic vibrations are treated to some extent
indistinctly. We introduce a new mathematical technique of treating
the elastic vibrations, which serves to distinguish them sharply from
propagating waves, and apply this technique to a half-space. In this
context we discuss amply the so-called Lamb problem. Further on,
we dedicate a rather long space to the elastic vibrations of a sphere,
which is an old and important subject in Seismology. We are con-
cerned in particular with the effect of gravitation and rotation and
with approximate techniques of estimating vibrations in the case of
the Earth, which has a large radius. Finally, we devote the end chap-
ter to a rather academic problem, concerning the seismic phenomenon
in two dimensions. Though far from a direct physical relevance, this
problem is often discussed because, in some cases, it may look more
simple than the three dimensional problem. We compute the seismic
waves in two dimensions, the main shock and the vibrations of an
elastic half-plane.

We hope, according to the above description, that the book may be
useful, not only for an understanding of the seismic phenomena, but,
especially, to those who wish to be active in Seismology.

We are very thankful to our colleagues in the Department of En-
gineering Seismology in the Institute for Earth’s Physics and the
Department of Theoretical Physics in the Institute for Physics and
Nuclear Engineering, both at Magurele, for enlightening discussions,
very useful suggestions, pointing out errors and offering corrections
(many accepted and included) and a thorough critical reading of the
manuscript.
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2 Background Earthquakes

2.1 Geometric-growth model

We consider a typical earthquake (which we call a tectonic earth-
quake), with a small focal region localized deeply in the solid crust
of the Earth. Also, we assume that the movement of the tectonic
plates (rocks) leads to energy accumulation in this pointlike focus.
(For surface earthquakes the focal mechanism may exhibit additional
features, for instance a propagating focus. A propagating focus can
also be associated with a deep extended shear faulting).1

The energy accumulation in the focus is governed by the continuity
equation (energy conservation)

∂E

∂t
= −vgradE , (2.1)

where E is the energy, t denotes the time and v is an (undetermined)
accumulation velocity. For a localized focus we may replace the deriva-
tives in equation (2.1) by ratios of finite differences. For instance, we
replace ∂E/∂x by ΔE/Δx, for the coordinate x. Moreover, we as-
sume that the energy is zero at the borders of the focus, such that
ΔE = −E, where E is the energy in the centre of the focus. Also, we
assume a uniform variation of the coordinates of the borders, given
by equations of the type Δx = uxt, where u is a small (undeter-
mined) displacement velocity of the medium in the focal region. The
energy accumulated in the focus is gathered from the outer region of
the focus, as expected. We note that the displacement of the rocks in
the focal region affects larger zones with increasing time. With these

1B. F. Apostol, Theory of Earthquakes and Introduction to the Theory of Earth-

quakes, Cambridge International Science Publishing, Cambridge (2017).
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assumptions equation (2.1) becomes

∂E

∂t
=

(
vx
ux

+
vy
uy

+
vz
uz

)
E

t
. (2.2)

Let us assume an isotropic compression without energy loss; then, the
two velocities are equal, v = u, and the bracket in equation (2.2) ac-
quires the value 3. In the opposite limit, we assume a one-dimensional
compression. In this case the bracket in equation (2.2) is equal to
unity. An energy loss may exist in this case, as a consequence of a
back-displacement, off the focus along the other two directions, such
that the bracket in equation (2.2) may have a value slightly smaller
than unity. A similar analysis holds for a two dimensional accumula-
tion process, such that, in general, we may write equation (2.2) as

∂E

∂t
=

1

r

E

t
, (2.3)

where the parameter r varies in the range (1/3, 1).

The integration of this equation needs a cutoff (threshold) energy
and a cutoff (threshold) time. We may imagine that during a short
time t0 a small energy E0 is accumulated. In the next short interval
of time this energy may be lost, by a relaxation of the focal region.
Consequently, such processes are always present in a focal region, al-
though they do not lead to an energy accumulation in a focus. We
call them fundamental processes (or fundamental earthquakes, or E0-
seismic events). It follows that we must include them in the accumu-
lation process, such that we measure the energy from E0 and the time
from t0. The integration of equation (2.3) leads to the law of energy
accumulation in the focus2

t/t0 = (E/E0)
r . (2.4)

The time t in this equation is the time needed for accumulating the
energy E, which may be released in an earthquake (the accumulation
time).

2B. F. Apostol, "A Model of Seismic Focus and Related Statistical Distributions
of Earthquakes", Phys. Lett. A357 462 (2006); "A Model of Seismic Focus
and Related Statistical Distributions of Earthquakes", Roum. Reps. Phys. 58

583 (2006).
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2.2 Gutenberg-Richter statistical

distributions

Let us assume a time interval (0, t) divided in cells of duration t0.
In each cell we may have an event with energy E0 (a fundamental
process). We view these events as independent events. We have a total
number t/t0 of such cells, such that the probability to have an E0-
event in the interval (t0, t) is t0/t. On the other hand, let us assume
that P (t′)dt′ is the probability to have an earthquake with energy E >
E0 in the time interval (t′, t′ + dt′). Also, we view these earthquakes
as independent events. The probability to have an earthquake with
energy E > E0 in the time interval (t0, t) is

´ t
t0
dt′P (t′). Consequently,

we have the equality

t0
t
+

ˆ t

t0

dt′P (t′) = 1 , (2.5)

which gives, by differentiation, the probability density

P (t) =
t0
t2

. (2.6)

This is a single-event probability distribution of independent events. It
is worth noting that (t0/t2)dt is the probability to have an earthquake
in the interval (t, t+ dt), with no other conditions regarding the time
before the time moment zero and after the time duration t.
Making use of accumulation equation (2.4), we get from equation (2.6)
the energy distribution 3

P (E)dE =
r

(E/E0)
1+r

dE

E0
. (2.7)

At this point we may use the exponential law4 E/E0 = ebM , where
3A power law E−α for the energy distribution of earthquakes was suggested as

early as 1932 by K. Wadati, "On the frequency distribution of earthquakes", J.
Meteorol. Soc. Japan 10 559 (1932), with an estimated exponent α = 0.7−2.3.

4H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981
(1977); T. C. Hanks and H. Kanamori, "A moment magnitude scale", J. Geo-
phys. Res. 84 2348 (1979); see also B. Gutenberg and C. Richter, "Fre-
quency of earthquakes in California", Bull. Seism. Soc. Am. 34 185 (1944);
"Magnitude and energy of earthquakes", Annali di Geofisica 9 1 (1956) (Ann.
Geophys. 53 7 (2010)).
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M is the earthquake magnitude and b = 3
2 · ln 10 = 3.45 (ln 10 =

2.3), by convention. This equation is the definition of the earthquake
magnitude. Historically, it was assumed that the energy E released
by an earthquake would be distributed, quasi-uniformly, in a region
with the volume ∼ R3 (a sphere with radius R). According to the
exponential formula E/E0 = ebM we haveR3 ∼ 10bM and R ∼ 10

1
3 bM ,

in powers of ten. The area of the surface covering this volume is
S ∼ R2 ∼ 10

2
3 bM . It was assumed that an estimate of this area

could be obtained from the area affected on Earth’s surface by an
earthquake, including its subsequent companions (aftershocks). By
convention, it has been taken lg S = M + const, which leads to b = 3

2
(in decimal logarithms).5 It is worth noting that such assumptions
imply that an earthquake and its aftershocks (at least those in its
immediate temporal neighbourhood) may be viewed as a single seismic
event. The estimation of an earthquake energy from the damaged area
on the surface of the Earth is still used today.

Making use of E/E0 = ebM in equation (2.7) we get the (normalized)
magnitude distribution

P (M)dM = βe−βMdM , (2.8)

where β = br. In decimal logarithms, P (M) = 3
2r · 10−

3
2 rM , where

0.5 < 3
2r < 1.5 (for 1/3 < r < 1). Usually, the mean value 3

2r = 1
(β = 2.3) is used as a reference value, corresponding to r = 2/3.6 We
note that the magnitude zero corresponds to energy E0, such that an
E0-event means, in fact, the absence of any earthquake.

The magnitude distribution can be used to analyze the empirical dis-

5T. Utsu and A. Seiki, "A relation between the area of aftershock region and
the energy of the mainshock" (in Japanese), J. Seism. Soc. Japan 7 233
(1955); T. Utsu, "Aftershocks and earthquake statistics (I): some parameters
which characterize an aftershock sequence and their interaction", J. Faculty of
Sciences, Hokkaido Univ., Ser. VII (Geophysics) 3 129 (1969).

6S. Stein and M. Wysession, An Introduction to Seismology, Earthquakes, and

Earth Structure, Blackwell, NY (2003); A. Udias, Principles of Seismology,
Cambridge University Press, NY (1999); T. Lay and T. C. Wallace, Modern

Global Seismology, Academic, San Diego, CA (1995); C. Froelich and S. D.
Davis, Teleseismic b values; or much ado about 1.0, J. Geophys. Res. 98 631
(1993).
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Figure 2.1: Excedence law lnNex = lnN0 − βM fitted to the cumu-
lative distribution of Vrancea earthquakes, 1981 − 2018,
M ≥ 3, ΔM = 0.1, for β = 2.1 and − ln t0 = 10.62.

tribution

P (M) =
ΔN

N0ΔM
=

t0ΔN

TΔM
= βe−βM , (2.9)

of ΔN earthquakes with magnitude in the range (M, M +ΔM) out
of a total number N0 = T/t0 of events which occurred in time T . We
note that we introduce here the seismicity rate 1/t0.

The parameter t0 in equation (2.9) has the same meaning as the cutoff
time t0 used in the geometric-growth model (it is the same). Indeed,
from the probability βe−βMdM we may adopt βM as a natural mag-
nitude, i.e. we may measure the magnitudes in units 1/β. With
this convention we have a number ΔN/βΔM of earthquakes with the
natural magnitude βM (i.e. the number of earthquakes per unit of
natural magnitude), occurring in the mean recurrence time

tr = T
ΔN/βΔM = TβΔM

ΔN =

= TβΔM
N0βΔMe−βM = T

N0
eβM = t0e

βM .

(2.10)

This is precisely the accumulation time for an earthquake with mag-
nitude M , according to t = t0e

βM , where t0 is the cutoff time in the
accumulation law (equation (2.4)). Indeed, the mean recurrence time
of the fundamental earthquakes with M = 0 (E = E0) is given by
this formula as tr(M = 0) = t0, which shows that the cutoff time
(tr(M = 0), i.e. the accumulation time for the fundamental earth-
quakes with zero magnitude) is identical with t0 (the inverse of the
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seismicity rate). We can see that an earthquake with magnitude M
is equivalent with eβM fundamental earthquakes (with zero magni-
tude). If we use the magnitude M instead of the natural magnitude
βM , we get tr = (t0/β)e

βM . Also, we note that the number of fun-
damental earthquakes with zero magnitude ΔN(M = 0)/βΔM per
natural-magnitude unit is N0 (or βN0 in magnitude units), i.e. it is
the number of total earthquakes. This makes N0 a fitting parameter.
Since T determines the statistical ensemble, it remains that t0 should
be viewed as a fitting parameter.

The discussion given above shows that the fitting parameters in the
magnitude distribution are t0 and β, i.e. we should use the formula

ΔN

TΔM
=

β

t0
e−βM (2.11)

in empirical studies.

As regards the recurrence time given by equation (2.10) we note
that, by its definition (T/(ΔN/βΔM), it is a mean recurrence time;
at the same time, it is given by M (tr = t0e

βM ), which is a sta-
tistical variable. This means that tr has a dispersion (root mean
square deviation, standard deviation) δtr = tr, given by the disper-

sion δM =
(
ΔM2

)1/2
= 1/β (where ΔM = M−M). We may use an

error δeM =
(√

M2 −M
)
/M =

√
2−1 and δetr =

√
2−1. (We note

that M = 1/β, M2 = 2/β2 from the magnitude distribution given by
equation (2.9)).

Similarly, from equation (2.8) we get the excedence rate (the so-called
recurrence law, or the cumulative distribution), which gives the num-
ber N (denoted also Nex) of earthquakes with magnitude greater than
M . The corresponding probability is readily obtained from (2.8) as
Pex = e−βM , such that the excedence rate can be written as

lnN = lnN0 − βM . (2.12)

As discussed above, it is convenient to use this logarithmic formula as

ln (N/T ) = − ln t0 − βM , (2.13)

where t0 and β are fitting parameters.
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α

− ln t0

lnN

O M

Figure 2.2: Typical empirical cumulative number of earthquakes N
fitted by the standard Gutenberg-Richter law (straight line
with the slope −β, β = tanα and the intercept − ln t0).

The distributions given above are the standard Gutenberg-Richter
statistical distributions (equations (2.8) and (2.13)). They assume
that the earthquakes are independent statistical events. We call these
distributions the distributions of the background (or regular) seismic
activity.

2.3 Empirical studies

The cumulative distribution given by equation (2.13) is used to fit the
empirical data. The fitting parameters are t0 and β and the variable
is the magnitude M .

First, the knowledge of the magnitude may raise problems. The cur-
rent procedures relate the magnitude M to the energy of the earth-
quake and the magnitude of the seismic moment; the later is related to
the amplitude (and the frequency) of the seismic waves, measured by
seismographs; various corrections are applied. These procedures em-
ploy various qualitative estimations, more or less arbitrary, or, at least,
of a very particular nature, and are not fully provided by the public do-
main; it is claimed that they are included in numerical codes, provided
by various agencies. The relation energy-magnitude is E/E0 = ebM ,
where b = 3.45. In powers of ten E/E0 = 10

3
2M . Since the signif-

icant figure in the estimated energy is a large exponent of 10, it is
reasonable to assume that a unit error may appear in this exponent,
such that the variation of M is 2/3 = 0.66; this may imply an error
δeM = 0.33. Such an error may be a serious source of uncertainty.
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The empirical number of earthquakes ΔN with the magnitude in the
range (M, M+ΔM) is counted by using a step ΔM . In principle, this
step should be as small as possible, but for very small ΔM there could
be no earthquake, especially for larger magnitudes. The theoretical
distribution (e.g., the cumulative distribution e−βM ) is a continuous
distribution, while the empirical distribution is a discrete distribution.
This is an important source of errors. Also, it is worth noting that
the parameter of empirical seismicity rate t0 (T/N0) is very different
from the fitting parameter t0 in equation (2.13), precisely because of
the difference between a continuous distribution and a discrete dis-
tribution and the region of the vanishing magnitudes. In particular,
the empirical total number of earthquakes N0 = T/t0 is very differ-
ent from the number of zero-magnitude earthquakes (the fundamental
earthquakes) N0 = ΔN(M = 0)/βΔM , as discussed above. Since the
latter is unknown, we view it as a fitting parameter, so t0 in N0 = T/t0
is a fitting parameter.

In the fitting procedures we should consider all the earthquakes which
occurred in a given seismic region in a long time interval T . This num-
ber should be as large as possible, and, consequently, the time interval
T should be as long as possible, in order to have a meaning for the
probabilities, the statistical variables and the statistical distributions.
We say that this large set of earthquakes form a statistical ensemble.
(All that we measure in statistical ensembles are mean values, and
mean values of the deviations of mean values, known as fluctuations;
for relevant results we need small fluctuations, which, presumably, are
associated with large ensembles).

A statistical ensemble should be reproducible, i.e. we should be able
to prepare it in the same conditions many times (or to have many
copies of it), such that the measurements made upon it are repro-
ducible. This is impossible with the sets of earthquakes, because we
cannot reproduce the conditions of a certain region and a certain pe-
riod of time T ; these conditions may change in time. Also, they vary
from region to region; for instance, a variation in the conditions of
the statistical ensemble may appear after a large earthquake. A suc-
cessive number of updates may be considered repetitions in identical
conditions of the same statistical ensemble.

In addition, a statistical ensemble should fulfil the condition of the
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null hypothesis, i.e. we should not suspect the existence of a certain,
unknown, cause which may favour, or disfavour (bias) certain values
of the magnitudes.

Finally, in a statistical ensemble all the earthquakes should be in-
cluded, in principle, especially those with magnitudes down to zero,
which are the most numerous. This is impossible, at least for the
fact that the sensitivity of our instruments (seismographs) is limited.
Consequently, in empirical studies a lower-magnitude cutoff is always
employed, e.g. M ≥ 2 or M ≥ 3; this cutoff is called the completeness
magnitudes of the seismological catalogs. The existence of a lower-
magnitude cutoff may induce a serious discussion about the validity
of the fit.

Also, in this context, the inclusion of the great earthquakes in a sta-
tistical ensemble raises problems, since such events are rare.

In view of all these conditions, practically any empirical realization of
a statistical ensemble for the seismic activity is, more or less, a poor
copy. Consequently, such a realization may not exhibit fully all the
expected features of the statistical ensemble.

Statistical ensembles have been introduced in Statistical Physics by
Gibbs, as an instrument of analyzing the thermodynamical ensembles
in equilibrium. An important particularity of the thermodynamical
ensembles is their so-called extensivity.7 This means that a statistical
ensemble is a collection of a large number N of identical independent
statistical sub-ensembles. Although the seismic events characterized
by the magnitude M may be viewed as independent events, they are
not identical statistical sub-ensembles. The seismic activity is a single
statistical process, not a collection of many statistical sub-ensembles.
This is an important difference between thermodynamical ensembles
and the statistical ensembles of the seismic activity. In particular, the
statistical ensemble of the seismic activity should exhibit fluctuations
in equilibrium, while the fluctuations of the thermodynamical ensem-
bles are vanishing in the limit of large N (this is sometimes called
the central limit theorem). However, we show in this book that the
seismic activity does not exhibit fluctuations (at least for Vrancea),
which indicates that the seismic activity is not in equilibrium.
7J. W. Gibbs, Elementary Principles in Statistical Mechanics, Scribner’s sons,

NY (1902).
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An analysis of a large set of global earthquakes with 5.8 < M <
7.3 (ΔM = 0.1) indicates β = 1.38 (and 1/t0 = 105.5 per year),
corresponding to r = 0.4, a value which suggests an intermediate
two/three-dimensional focal mechanism.8 For r = 1/3, corresponding
to a uniform pointlike focal geometry, we get β = 1.15. Equations
(2.8) and (2.13) have been fitted to a set of 1999 earthquakes with
magnitude M ≥ 3 (ΔM = 0.1), which occurred in Vrancea between
1974 − 2004 (31 years).9 The mean values of the fitting parameters
are − ln t0 = 9.68 and β = 1.89 (r = 0.54). A similar fit has been done
for a set of 3640 earthquakes with magnitude M ≥ 3 which occurred
in Vrancea during 1981 − 2018 (38 years).10 The fitting parameters
for this set are − ln t0 = 11.32 and β = 2.26 (r = 0.65). We note
that β = 2.26 is close to the reference value 2.3. The fitting values
given above for Vrancea have an estimated error of approximately
18%. A fit to the excedence law for the Vrancea earthquakes in the
period 1981 − 2018 (M ≥ 3, ΔM = 0.1) leads to − ln t0 = 10.62
and β = 2.1 (r = 0.61, error 10%, Fig. 2.1). The data for Vrancea
have been taken from the Romanian Earthquake Catalog, 2018. It is
accepted that the mean magnitude error in this catalog is ΔM = 0.1
and the completeness magnitude, i.e. the magnitude below which the
recordings are not reliable, is M = 2.

The statistical analysis gives a generic image of a collective, global
earthquake focal region (a distribution of foci). Particularly inter-
esting is the parameter r, which is related to the reciprocal of the
(average) number of effective dimensions of the focal region and the
rate of energy accumulation. The value r = 0.54 (Vrancea, period
1974− 2004) indicates a (quasi-) two-dimensional geometry of the fo-
cal region in Vrancea, while the more recent value r = 0.65 for the
same region suggests an evolution of this (average) geometry towards
one dimension. At the same time, we note an increase of the seis-
micity rate 1/t0 in the recent period in Vrancea. The increase of the

8K. E. Bullen, An Introduction to the Theory of Seismology, Cambridge Univer-
sity Press, London (1963).

9B. F. Apostol, "A Model of Seismic Focus and Related Statistical Distributions
of Earthquakes", Phys. Lett. A357 462 (2006); "A Model of Seismic Focus
and Related Statistical Distributions of Earthquakes", Roum. Reps. Phys. 58

583 (2006).
10B. F. Apostol, Seismology, Nova, NY (2020).
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Figure 2.3: Cumulative law lnN = lnN0 − βM fitted to the Vrancea
earthquakes, 1980−2019, M ≥ 2, ΔM = 0.1, for β = 2.22
and − ln t0 = 10.77.

geometrical parameter r determines an increase of the parameter β,
which dominates the mean recurrence time. For instance, the accu-
mulation time (recurrence time) for magnitude M = 7 (tr = t0e

βM )
is increased from tr � 34.9 years (period 1974−2004) to tr � 90 years
period 1981− 2018). If we use the values − ln t = 10.62 and β = 2.1
obtained from the excedence law in the period 1981− 2018 we get a
recurrence time tr = 59 years for M = 7. This large variability indi-
cates the great sensitivity of the statistical analysis to the data set.
In particular, for any fixed M we may view the exponential Me−Mβ

as a distribution of the parameter β, which indicates an error � 0.41
in determining this parameter.

2.4 Vrancea background seismic activity

A typical set of empirical cumulative number of earthquakes N (all
earthquakes with magnitude greater than, or equal to M), fitted by
the standard Gutenberg-Richter distribution ln(N/T ) = − ln t0−βM ,
is shown in Fig. 2.2. We can see that the empirical data are more
or less scattered around a descending straight line, with the slope −β
and the intercept − ln t0. The deviation from a straight line may be
larger for large magnitudes, where the data are poor. The empirical
data show, typically, a flattened straight line at small magnitudes.
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This is called the roll-off effect.11 Usually, it is assigned to an insuffi-
cient realization of the statistical ensemble. We show in this book that
the roll-off effect may arise, at least partially, by earthquake correla-
tions. In empirical studies these small-magnitude data are left aside,
by using a lower-magnitude cutoff. The remaining data preserve their
straight-line character, more or less, such that we may accept that we
have a more or less reliable determination of the slope parameter β.
However, the parameter t0 is affected by errors. These parameters, de-
termined in this way, correspond to the background seismic activity of
regular earthquakes, i.e. they do not include the effect of the correla-
tions. The Gutenberg-Richter distribution employed for the determi-
nation of these parameters is called the standard Gutenberg-Richter
distribution. We show in this book that the correlations modify the
Gutenberg-Richter distribution, especially in the region of small mag-
nitudes, but they preserve the slope of the straight line for moderate
and larger magnitudes (where the cumulative distribution is shifted
upwards by ln 2).

3561 Vrancea earthquakes with magnitude M ≥ 3 (ΔM = 0.1), pe-
riod 1980 − 2019 (T = 40 years), have been fitted to the standard
cumulative Gutenberg-Richter distribution ln(N/T ) = − ln t0 − βM ,
with the fitting parameters − ln t0 = 11.81, β = 2.44. These parame-
ters are similar to those given previously, with a slight increase of β.
For the same period 8455 earthquakes with magnitude M ≥ 2 have
been analyzed by using the same law, with parameters− ln t0 = 10.77,
β = 2.22. (The error of these fits are 10%, given by the standard de-

viation
[∑N

i=1(di − fi)
2/N

]1/2
, where di are data and fi is the func-

tion).12 All the analzyed earthquakes occurred in Vrancea region with
45◦−46◦ latitude and 26◦−27◦ longitude, at various depths (between,

11J. D. Pelletier, "Spring-block models of seismicity: review and analysis of a
structurally heterogeneous model coupled to the viscous asthenosphere", in J.
B. Rundle, D. Turcote, and W. Klein, eds., Geocomplexity and the Physics of

Earthquakes, vol. 120, Am. Geophys. Union, NY (2000); P. Bhattacharya,
C. K. Chakrabarti, Kamal and K. D. Samanta, "Fractal models of earthquake
dynamics", in H. G. Schuster, ed., Reviews of Nonlinear Dynamics and Com-

plexity, Wiley, NY (2009), p.107.

12

[∑N
i=1(di − fi)

2/N
]1/2

is the root mean square (rms) error;
[∑N

i=1 [(di − fi)/fi]
2 /N

]1/2
is the root mean square relative error.
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approximately, 5km to 150km). It is worth noting that the data with
M ≥ 2 exhibit the roll-off effect (Fig. 2.3).

In all subsequent calculations included in this book we use the back-
ground seismicity parameters − ln t0 = 11.32 and β = 2.26 (r = 0.65)
for Vrancea, as resulted form the analysis of 3640 earthquakes, with
magnitude M ≥ 3, over the period 1981− 2018 (with 18% error).

The proper fitting to the data should be carried out by using the
correlated-earthquake cumulative distribution, which reads ln(N/T ) =
− ln t0 + ln 2 − ln

(
1 + eβM

)
(given in the Correlations. Foreshocks.

Short-term Prediction chapter). Unfortunately, we have not enough
data for small magnitudes, for getting relevant fitting parameters.
For instance, we get for the above data − ln t0 = 10.08, which is
just by ln 2 smaller than 10.77 found above with the standard distri-
bution. Smaller magnitudes remove ln 2 in the exact formula. On
the other hand, the parameter β may be slightly reduced by the
correlation-modified formula. We conclude that the cumulative stan-
dard Gutenberg-Richter distribution, employed for data sets with a
lower-magnitude cutoff, leads to an underestimate of the parameter
t0 by a factor 2; also, an overestimate of β may be obtained from
the standard formula. We note that the correlation-modified formula
may have a little weight in the whole ensemble of earthquakes, in
comparison to the regular earthquakes.

The correlations which modify the standard Gutenberg-Richter for-
mula occur in foreshock-aftershock sequences associated mainly to
high-magnitude main shocks, which may have a large productivity of
accompanying earthquakes. We expect the proportion of these se-
quences to the number of regular earthquakes to be small. It can be
obtained as a fitting parameter in the combined formula of the two
distributions with their own weights. This is why we expect the stan-
dard Gutenberg-Richter distribution to give results not far away from
the real ones.

By comparing the results described above, we can see that there exists
a change in the parameters of the background seismicity. This change
is due to the differences in the data sets, on one hand, but, on the
other hand, a change in the geological and the seismicity conditions
of the region cannot be excluded. Updating from time to time this
analysis may give an insight into the expected estimates of the recur-
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rence times. Also, the basic parameters t0 and β of the background
seismicity are useful in the statistical analysis of other variables.

Task #1 of Practical Seismology is to determine the background seis-
micity parameters t0 and β of a given seismic region, like Vrancea,
and a given (long) period of time, by using the cumulative stan-
dard Gutenberg-Richter for data sets with a lower-magnitude cutoff
(M ≥ 3). The main result is the estimation of the mean recurrence
time tr = t0e

βM .

2.5 Physical mechanism

We emphasize the fundamental role played by the E0-events, which
we call fundamental earthquakes (or fundamental seismic events). At
any moment of time we may have an E0-event in a time cell of du-
ration t0. This energy may be released immediately after this time,
by relaxation, and we have not an earthquake, because the energy E0

corresponds to magnitude M = 0 (according to the definition of the
magnitude E/E0 = ebM ). It follows that in any measurement of time
we need a cutoff time t0; and in any measurement of energy we need a
cutoff energy E0. On the other hand, energies E0 may not be released.
They may accumulate during a time t, consisting of a number of time
intervals t0, given by t/t0 = eβM . This energy may be released at
time t, as an earthquake with magnitude M . It follows that earth-
quakes are made of a number of fundamental E0-events. The seismic
activity is the process of accumulation and release of energy, due to
the fundamental earthquakes.

Therefore, in a time interval t we may have an E0-event or an earth-
quake with energy E > E0. This is a sure event, with probability 1.
We have immediately the equation (2.5) and the time probability of an
earthquake with the accumulation time t, as given by equation (2.6).
By using this probability, the accumulation law and the definition
of the magnitude we derive immediately the (standard) Gutenberg-
Richter distributions.

Particularly interesting is the Gutenberg-Richter excedence law, which
tells that the logarithm of the number of earthquakes with magnitude
greater than M is a linear function of M with a slope β and the
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intercept − ln t0 (equation (2.13)). This theoretical prediction should
be checked against empirical data.

Practically all data exhibit a straigt-line pattern, according to the
theoretical prediction, except for a flat region for small magnitudes
(the roll-off effect, like in Fig. 2.3). Obviously, the fitting of the
theoretical (standard) equation to data should avoid this flat region.
The cutoff magnitude can easily be read from data, such that there
is no need to introduce a cutoff-magnitude parameter Mc, which, in
any case, does not enter the fitting formula. In spite of this obvious
situation, there exist many attempts of using a small-magnitude cutoff
(as well as an upper-magnitude cutoff) in fitting data. Generally
speaking, any set of data may be fitted with any function. As such,
the fits have no relevance. They are relevant only when we have a
theory which gives a meaning to the parameters entering the fitting
formula. In the attempts mentioned above there is no such theory for
an Mc (or an upper-magnitude cutoff).

Actually, the Gutenberg-Richter distribution is slightly erroneous. We
call it the standard Gutenberg-Richter distribution. We have shown
that it is modified by correlations. When using this correlation-
modified distribution the small-magnitude flat region may be included
in fitting data. The linear part of the standard Gutenberg-Richter dis-
tribution remains unaffected by correlations, so the parameter β is,
practically, not affected. The intercept − ln t0 is affected. However,
we expect the weight of the correlated earthquakes to be small in
comparison with the regular earthquakes.
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3 Aftershocks. Next
Earthquake

3.1 Conditional probabilities. Omori law

Any earthquake is preceded and followed by other earthquakes, all
occurring approximately in the same region and within a reasonably
short time interval. In some cases, a big earthquake may be preceded
by many earthquakes and followed by many others. The number of
the preceding earthquakes is, in general, different from the number of
the succeeding earthquakes. Some of these accompanying earthquakes
may be regular (background) earthquakes. Some others may be con-
nected between them and to the main earthquake, at least, simply,
because they are associated in time and space, or because we chose
them according to some constraints. We say that these earthquakes
are correlated earthquakes. We call the precursory earthquakes fore-
shocks; they precede the main earthquake. We call aftershocks the
subsequent earthquakes, which follow, succeed the main earthquake.
The main earthquake is called in this case a main shock; the fore-
shocks and the aftershocks are smaller in magnitude than the main
shock. Some foreshocks or aftershocks are regular, some others may
be correlated, either by physical causes, or by physical constraints, or
simply by the constraints implied by their definition.
The correlations may have known physical causes, in which case they
are called dynamical correlations, or may have unknown physical
causes, in which case we call them purely statistical correlations; by
unknown causes we understand causes which are not included in the
theoretical models employed to analyze the earthquakes, or implied
by their definition. Usually, the correlations are present in statistical
distributions, such that all such correlations are in fact statistical cor-
relations. However, there exist also purely deterministic correlations,
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which affect the parameters of the earthquakes. In general, since the
physical causes (known or unknown) are symmetrical with respect
to the time reversal, we may expect that the number of foreshocks
and their various distributions are identical with the number and the
distributions of the aftershocks.1 However, in empirical studies an ap-
preciable asymmetry often exists, which may not arise only from an
insufficiency of the empirical realization of the statistical ensembles.2

For instance, there often exists a significant increase in the number of
small-magnitude aftershocks with respect to the background seismic
activity, in contrast with the number of foreshocks.3 This circum-
stance may arise not only from the insufficiency of the realization of
the statistical ensemble, but it may also arise from the fact that af-
ter a main shock the seismic conditions of the region have changed,
sometimes appreciably, leading to many succeeding small earthquakes.
In this case, it may seem more appropriate to view the main shock
and these small-magnitude aftershocks as a single (collective) seismic
event.

As long as the aftershocks, irrespective of being regular or correlated
earthquakes, are referred to the main shock they are described by
conditional probabilities. Similarly, the foreshocks are described by
conditional probabilities. The most interesting case is the conditional
probability in the time variable.

We know that the probability density for an earthquake to occur at
time t is

P (t) =
t0
t2

. (3.1)

Let us assume that a main shock occurs at time tms, followed by an
aftershock occurring at time tms + τ . The above probability density

1D. Vere-Jones, "A note on the statistical interpretation of Bath’s law", Bull.
Seismol. Soc. Amer. 59 1535 (1969).

2T. Utsu, "Aftershocks and earthquake statistics (I,II): Source parameters which
characterize an aftershock sequence and their interrelations", J. Fac. Sci.
Hokkaido Univ., Ser. VII, 2 129, 196 (1969); "Statistical features of seis-
micity", International Geophysics 81 Part A, 719 (2002).

3L. Gulia, A. P. Rinaldi, T. Tormann, G. Vannucci, B. Enescu and S. Wiemer,
"The effect of a mainshock on the size distribution of the aftershocks", Geo-
phys. Res. Lett. 45 13277 (2018).
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Figure 3.1: Next-earthquake distribution of seismic events in Vrancea
1981− 2018 (3640 events, M ≥ 3, panel a) and probabili-
ties P = P (t) (in %, panel b). The fitting curve in panel a
is 1066.45/(1.15+ t) (coefficient of determination � 0.96).

reads

P (tms + τ) � t0
t2ms

tms/2

tms/2 + τ
(3.2)

for τ � tms. We can see that this equality shows that a combined
event, consisting of a main shock and an aftershock, occurs with a
probability ∼ P (tm + τ) which is the product of the probability ∼
t0/t

2
ms of the main shock and the probability ∼ 1/(tms/2 + τ) of the

aftershock. This equality is precisely the definiton of the conditional
probability ∼ 1/(tms/2 + τ).4

We denote by tc the time tms/2 and normalize the aftershock proba-
bility, whose density is denoted by P0, in the interval 0 < τ < tc; this
is an arbitrary normalization. We get

P0(τ) =
1

ln 2

1

tc + τ
; (3.3)

this law is valid for τ � tc. The parameter tc is viewed as a fitting
parameter. Since we assume a foreshock-aftershock symmetry we ex-
tend this law to the foreshocks, where τ is measured from the main

4T. Bayes, "An essay towards solving a problem in the doctrine of chance" (com-
municated by R. Price in a letter to J. Canton), Phil. Trans. Roy. Soc. London
53 370 (1763).
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shock in the past. This empirical law is known as Omori’s law.5 It
may also be derived for a self-replication process which generates af-
tershocks (and foreshocks).6 We show in this book that the law holds
for both the regular-earthquake probability given by equation (3.1)
and the correlated-earthquake probability. We note that Omori’s law
does not reflect correlations, generated by physical causes. It reflects
the simple fact that after a main shock follows an aftershock, or be-
fore a main shock there exists a foreshock. It gives the probability
of occurring an accompanying seismic event with the condition of the
existence of a main shock (it is a conditional probability). This is a
(statistical) correlation arising from the definition of the events

We note that, according to Omori’s law, the probability of the after-
shocks decreases in time, because high-magnitude earthquakes, which
are favoured for longer times, are less numerous. We expect to have
many small-magnitude earthquakes in the vicinity of the main shock.

3.2 Next-earthquake distribution

From the derivation of Omori’s law we see that there is no particular
distinction between the main shock and the aftershocks, or foreshocks.
The law may be applied to any pair of earthquakes separated by time
τ . Such a time distribution is called the next-earthquake (or inter-
event) distribution.

The probability density of N serial events denoted by i and occurring
at time ti can be written as N−1

∑
i δ(ti − t). Similarly, the pair

distribution of nearest-neighbours separated by time t is given

P (t) =
dN

Ndτ
=

1

N

∑
i

δ(ti+1 − ti − t) . (3.4)

This function is also known as the next-earthquake distribution, recur-
rence, or waiting-time distribution, or inter-event time distribution.

5F. Omori, "On the after-shocks of earthquakes", J. Coll. Sci. Imper. Univ.
Tokyo 7 111 (1894).

6B. F. Apostol, "Euler’s transform and a generalized Omori’s law", Phys. Lett.
A351 175 (2006).
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Figure 3.2: Next-earthquake distributions P = P (M, t) (in %) for
Vrancea 1981 − 2018 for M0 ≥ 3 and 3 ≤ M < 4 (panel
a), 4 ≤M < 5 (panel b), 5 ≤M < 6 (panel c) and 6 ≤M
(panel d).

The earthquakes that occurred in Vrancea between 1981− 2018 with
M ≥ 3 (Romanian Earthquake Catalog, 2018) are distributed in Fig.
3.1 on the inter-event time (panel a); the corresponding probabilities
P (t) (in %) are shown in Fig. 3.1 panel b (time is measured in days
on the abscissa).7 The rate of occurrence per day of the next earth-
quake follows a power-law time dependence (Omori-type law) over a
time window of about 25 days. The distribution is fitted with the law
a/(b + t), where a = 1066.45, b = 1.15 and t denotes the time (co-
efficient of determination R = 0.96).8 The mean time (t) for P (t) is

� 5.89 days, and the variance is σ = 9.55 days (σ =
(
t2 − t

2
)1/2

). We
note the presence of the cutoff time b. To check whether this behavior
is biased by the aftershock sequences of the strongest seisms of the
investigated time period (four earthquakes with magnitude ≥ 6.0), it

7B. F. Apostol and L. C. Cune, "Short-term seismic activity in Vrancea. Inter-
event time distributions", Ann. Geophys. 63 SE328 (2020); doi: 10.4401/ag-
8366.

8The coefficient of determination R is defined by R2 = 1−
∑

i(di−fi)2/
∑

i(di−

d)2, where di denote the data, fi denote the fit and d is the mean value of the
data.
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was considered also two shorter time intervals: 1991− 2018, avoiding
the aftershock sequences of three events with M > 6.0 (occurred on
August 30, 1986, M = 7.1, May 30, 1990, M = 6.9, and May 31, 1990,
M = 6.4), and 2005−2018, when no earthquake larger than magnitude
5.6 occurred. The results show very similar next-earthquake probabil-
ities of occurrence, in all three cases (a = 881.85, b = 1.25, R = 0.94
for 1991− 2018 and a = 492.6, b = 1.16, R = 0.93 for 2005− 2018).
We note that the cutoff time b is much smaller than the recurrence
time tms of a main shock, which occurs in the original derivation of
Omori’s law, since we included all the earthquakes, not only main
shocks with high magnitudes (next-earthquake distribution).

From a practical standpoint a relevant question in short-term earth-
quake forecasting seems to be "what happens next?". Let us assume
that an earthquake occurs at time t0 and the next one occurs at some
time t measured with respect to t0. We can define a distribution P (t)
of these next earthquakes, and determine it from a set of relevant
statistical data. Once determined, it can be used for estimating the
time probability of occurrence of the next earthquake, based on the
principle "what happened will happen again". For instance, from Fig.
3.1, panel b, we can say that the probability for an earthquake with
magnitude M ≥ 3 to occur in the next day after an earthquake with
magnitude M ≥ 3 has occurred is � 27%. Let the earthquakes be la-
belled by some generic parameter x, like magnitude, location, depth,
etc. Then, we may distribute the next earthquakes with respect to
x, and introduce the time probability distribution P (x, t) of the next
earthquake characterized by parameter x occurring at time t. An-
other distribution P (x, t | x0) may also be introduced with respect
to an earthquake labelled by parameter x0, which is a conditional
probability. The procedure may obviously be extended, by introduc-
ing, similarly, the probability distributions P (x, t | x01, x02, ...), or
P (x1, x2, ..., t | x01, x02, ...), which resemble the hierarchy of n-point
correlation functions. Characteristic scale time or size, or correlation
range could be identified from the statistical analysis of such func-
tions, providing the statistical set of data is large enough, which may
shed light on the statistical patterns of a seismic activity. The statis-
tics is rather poor, in general, precisely for those ranges of x where
the estimation of the seismic hazard and risk is most interesting, like,
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for instance, for x corresponding to high values of magnitude M . The
generic parameter x in the analysis of the inter-event time distribu-
tions described here is the magnitude M .

The probabilities P (M, t) for M0 ≥ 3 for Vrancea during 1981− 2018
are shown in Fig. 3.2 for 3 ≤ M ≤ 4, 4 ≤ M ≤ 5, 5 ≤ M ≤
6, and 6 ≤ M (panels a, b, c and d, respectively). P (M, t) is the
probability for an earthquake with magnitude M to occur after a time
t since the occurrence of an earthquake with magnitude M0. First, we
note that the inter-event distributions P (M, t) for Vrancea exhibit a
characteristic decrease in time, with the highest probability of next-
earthquake occurrence in the same day as the reference earthquake,
at least for small magnitudes (M < 5). Then, we note the decreasing
maximum values of these probabilities ∼ 22.7 for 3 ≤ M < 4, ∼ 2.75
for 4 ≤ M < 5, while the probability P (M, t) vanishes practically
for M > 5. Also, it is worth noting that P (t) and P (3 ≤ M <
4, t) are similar, obeying Omori-type power laws, at least for short
times, while the distributions become gradually irregular, exhibiting
large fluctuations on increasing magnitude above M = 4 − 5. The
statistics becomes poor for higher magnitude (M > 5), as expected.
A correlation time of 20− 25 days can be estimated, after which the
probabilities decrease appreciably, as well as a size correlation of M =
4−5, above which the distributions acquire very small values, and are
very irregular. The null hypothesis was tested on these distributions,
by comparing the results of the first half of data with those derived
from the second half of data.

Task #2 of Practical Seismology is to produce and use Figures like
Figs. 3.1, 3.2 shown above. The probability of the next seismic event
can be read on such Figures after each earthquake.
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4 Correlations. Foreshocks.
Short-term Prediction

4.1 Time-magnitude correlations

We know that the law of energy accumulation in the focus is t/t0 =
(E/E0)

r , where t is the accumulation time, r is the focus parameter
and t0 and E0 are time and energy thresholds.

Let the amount of energy E accumulated in time t be released by
two successive earthquakes with energies E1,2, such as E = E1 + E2.
According to the accumulation law

t/t0 = (E/E0)
r = (E1/E0 + E2/E0)

r
<

< (E1/E0)
r + (E2/E0)

r = t1/t0 + t2/t0 ,
(4.1)

where t1,2 are the accumulation times for the energies E1,2. We can
see that the time corresponding to the pair energy is shorter than the
sum of the independent accumulation times of the members of the
pair. This is a type of deterministic time-magnitude (time-energy)
correlations, arising from the non-linearity of the accumulation law.
These correlations are not statistical (though they may affect the sta-
tistical distributions); they occur just by a partition of energy among
two (or more) earthquakes, as a consequence of the seismicity con-
ditions. They may appear in the foreshock-main shock-aftershock
sequences.

According to the above equation, the time interval τ between the two
successive earthquakes is given by

τ = t1 [(1 + E2/E1)
r − 1] , (4.2)
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where t = t1 + τ and t1 = t0e
βM1 is the accumulation time of the

earthquake with magnitude M1. If we introduce the magnitudes M1,2

in equation (4.2) (by E/E0 = ebM ), we get

τ = t1

[(
1 + e−bm

)r − 1
]

, (4.3)

where m = M1 −M2. This equation relates the time τ to the magni-
tude difference m.

From the above equations we get the magnitude

M2 = M1 +
1
b ln

[
(1 + τ/t1)

1/r − 1
]

, (4.4)

or
M2 � 1

b
ln

τ

τ0
, τ0 = rt0e

−(1−r)bM1 (4.5)

for τ > τ0 (M2 > 0).1 The magnitude M2 is plotted vs θ = τ/τ0 in
Fig. 4.1 for b = 3/2 (decimal logarithms in equation (4.5)).

We can apply these equations to a foreshock-main shock-aftershock
sequence, where M1 is the magnitude of the main shock and M2 is
the magnitude of the foreshocks (aftershocks). In this case we need to
impose also the condition M2 < M1, i.e. τ < t1(2

r − 1) (or τ < rt1).
We can see that after a main shock there is a small quiescence time τ0,
followed by an increase in the aftershock magnitudes;2 similarly, very
close to a main shock there are small-magnitude foreshocks followed
by no seismic activity until the main shock. An estimation of τ0 for
r = 2/3, − ln t0 = 11.32 (years, Vrancea) and M1 = 7 (b = 3.45) gives
τ0 � 10−8.53 years (� 0.09s).

Very likely, after a main shock the seismicity conditions of the re-
gion change. The occurrence of the aftershocks is governed by the
accumulation law

P (τ)dτ =
τ0
τ2

dτ , (4.6)

where τ and τ0 are given by equation (4.5). The change of the seis-
micity conditions is incorporated in the parameter τ0, which replaces
1B. F. Apostol, "Correlations and Bath’s law", Res. Geophys. 5 100011 (2021).
2Y. Ogata and H. Tsuruoka, "Statistical monitoring of aftershock sequences: a

case study of the 2015 Mw7.8 Gorkha, Nepal, earthquake", Earth, Planets and
Space 68 44 10.1186/s40623-016-0410-8 (2016).
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Figure 4.1: Magnitude M2 plotted vs θ = τ/τ0 for b = 3/2 (equation
(4.5), decimal logarithms).

the parameter t0 of the regular (background) seismicity. By using
τ = τ0 + t, we note that we get Omori’s law from the above equation
(as expected for a conditional probability). From equation (4.6) we
get the magnitude distribution of the aftershocks

P (M2) = be−bM2 . (4.7)

We can see that the magnitude distribution increases, with respect
to the background, from β to b for zero magnitudes; this increase
lasts up to a magnitude of the order M2c = ln r/b(r − 1) (where
P (M2c) = βe−βM2c). We may estimate an average relative increase of
the order (b − β)/2β = (1 − r)/2r, which, for r = 2/3, is 1/4 (25%).
The cutoff magnitude is M2c = 0.36 (for r = 2/3, b = 3.45). Such an
increasing tendency of the magnitude distribution of the aftershocks,
with respect to the background, in the region of the small magnitudes
is documented empirically in some cases.3

3L. Gulia, A. P. Rinaldi, T. Tormann, G. Vannucci, B. Enescu and S. Wiemer,
"The effect of a mainshock on the size distribution of the aftershocks", Geo-
phys. Res. Lett. 45 13277 (2018).
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4.2 Physical mechanism

Let us consider a main shock with energy E1 (magnitude M1) occur-
ring at time t1, followed by an aftershock with energy E2 (magnitude
M2), occurring after a lapse of time τ . We may assume E2 � E1, and
write the first two terms in a Taylor series expansion of the accumu-
lation law t/t0 = (E1/E0 + E2/E0)

r. We get

t = t1 + rt1E2/E1 ; (4.8)

indeed, we can check easily

rt1E2/E1 = rt0e
−(1−r)bM1ebM2 = τ0e

bM2 = τ , (4.9)

according to equation (4.5), i.e. t = t1 + τ . Let us introduce the
notation

1

D(E)
=

∂t

∂E
= rt0

Er−1

Er
0

= rt/E , (4.10)

such that equation (4.8) can be written as

t = t1 +
1

D(E1)
E2 . (4.11)

This equation shows that an energy E1, accumulated in focus, is re-
leased at time t1 (main shock) and the accumulation continues, such
that, after time τ = E2/D(E1), an energy E2 is released. We note
that, in general, the accumulation process is not uniform, it is per-
formed with a rate D(E) = ∂E/∂t which depends on time (or the
accumulated energy). After the main shock, the accumulation may
continue, approximately with the rate it had at the moment of the
main shock, for a short time interval τ = E2/D(E1), after which the
corresponding aftershock (with energy E2) is produced. The correla-
tion consists in the dependence of τ on E1.

Let us consider now the foreshocks, where the situation is different.
Let us assume that at time t2 = t1 − τ an energy E1 is accumulated.
This energy correponds to the accumulation time t1, i.e. t1/t0 =
(E1/E0)

r. The accumulation process t2/t0 = (E1/E0)
r, where t2 <

t1, is possible provided r decreases. Therefore, at time t2 the seismicity
conditions are changed, such that we have a smaller parameter r.
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At this moment an energy E2 is released by a foreshock, and the
parameter r recovers its background value. At this moment we have
t2/t0 = [(E1 −E2)/E0]

r, where r has its background value. We write

t1 = t0(E1/E0)
r = t0(E1/E0 − E2/E0 + E2/E0)

r =

= t2 +
1

D(E1−E2)
E2 ;

(4.12)

we can see that the accumulation process continues from the fore-
shock time t2 with an accumulation rate corresponding to the energy
E1 − E2; since E2 � E1 this rate is equal to the rate corresponding
to energy E1. There exists a symmetry between foreshocks and after-
shocks as regards their time-magnitude (energy) relationship. How-
ever, the physical mechanisms of the foreshocks and the aftershocks
are different. Before any foreshock the seismicity conditions change,
leading to a decrease of the accumulation parameter r, which recovers
its original value immediately after the foreshock. The decrease in the
parameter r, indicated for foreshocks by the time-magnitude correla-
tions, reflects the general mechanism of dynamical correlations, valid
for both foreshocks and aftershocks.

Both the foreshock and the aftershock mechanisms are described by
small relative variations in the accumulation time and the energy.
From t/t0 = (E/E0)

r we get δt/t = rδE/E; on the other hand, an
excess of energy implies a change in the seismicity parameter r, such
that δr · ln(E/E0) + rδE/E = 0 (from t/t0 = const), or δr/r =
−δE/bME = −δt/βMt. In these equations E and E + δE are the
energies of two succeeding events, separated by time δt = τ , and t is
the occurrence time of the event with energy E and magnitude M .
For an aftershock δE < 0 and τ < 0, such that δr/r = τ/βMt > 0,
and we can see that r increases. For a foreshock δE > 0, τ > 0 and
δr/r = −τ/βMt < 0, such that the parameter r decreases. It is worth
noting that δE = E

(
ebδM − 1

)
cannot be written as δE = bEδM for

realistic values of the magnitude (because bδM is not small).
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4.3 Correlated Gutenberg-Richter

distributions

In general, two or more earthquakes may appear as being associ-
ated in time and space with, or without, a mutual interaction be-
tween their focal regions. In both cases they form a foreshock-main
shock-aftershock sequence which exhibits correlations. The correla-
tions which appear as a consequence of an interaction imply an energy
transfer (exchange) between the focal regions (e.g., a static stress).
These correlations may be called dynamical (or "causal") correlations.
Other correlations may appear without this interaction. For instance,
an earthquake may produce changes in the neighbourhood of its focal
region (adjacent regions), and these changes may influence the occur-
rence of another earthquake. Similarly, an associated seismic activity
may be triggered by a "dynamic stress", not a static one.4 The cor-
relations which appear in the statistical distributions are statistical
correlations. In this sense, the dynamical correlations are statistical
correlations. Other statistical correlations may exist, distinct from
dynamical correlations. They arise from conditions imposed on the
statistical variables. We call them purely statistical correlations.

We know that t0/(t1 + t2) is the probability to have an E0-event
(M = 0) in the interval (t0, t), t = t1 + t2. Let

´ t1
t0

dt′P1(t
′; t2) be the

probability to have an earthquake with E > E0 in the interval (t0, t1)
and an E0-event in the interval (0, t2). We must have

t0
t1 + t2

+

ˆ t1

t0

dt′P1(t
′; t2) =

t0
t0 + t2

(4.13)

for any fixed t2; hence, by differentiation, we get the probability

P1(t1; t2) =
t0

(t1 + t2)2
(4.14)

to have an earthquake E > E0 at t1 and an E0-event in the interval
(0, t2). The probability to have an earthquake E > E0 at t1 and

4K. R. Felzer and E.E. Brodsky, "Decay of aftershock density with distance
indicates triggering by dynamic stress", Nature 441 735 (2006).
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another earthquake with energy greater then E0 in the interval (0, t2)
is
´ t2
0 dt′P (t1, t

′); therefore, we must have

t0
(t1 + t2)2

+

ˆ t2

0

dt′P (t1, t
′) =

t0
t21

, (4.15)

which leads immediately to

P (t1, t2) =
2t0

(t1+t2)3
(4.16)

(normalized with a cutoff time only for one variable, t0 < t1). We
note that this distribution corrresponds to two earthquakes which are
mutually conditioned; it is symmetric in t1,2. Consequently, they
involve correlations generated by physical causes, like a transfer of
stress or energy. These are dynamical correlations. Moreover, it is
easy to see that the law given above leads to Omori’s law, e.g. for
t2 � t1, as expected for conditional probabilities. The factor ∼ 1/t31
obtained in this case, instead of the factor 1/t21, reflects the fact that
the earthquake occurring at t1 is conditioned by the succeeding earth-
quake, in contrast with the law ∼ 1/t21, which does not imply such
a condition.5 Also, we note that the correlations appear through the
frequency t0/(t1+t2) of the E0-events in the whole time interval t1+t2.
This probability is distinct from the probability (t0/t1)(t0/t2), which
corresponds to two independent sets of E0-events.
Introducing t1,2 = t0e

βM1,2 in equation (4.16) we get the pair distribu-
tion in magnitudes (also called the two-event, bivariate distribution)6

P (M1,M2) = 4β2 eβ(M1+M2)

(eβM1 + eβM2)
3 . (4.17)

We can see that this distribution is different from P (M1)P (M2) =
β2e−β(M1+M2), which indicates that the two events M1,2 are corre-
lated.
Let M1 = M2 + m and M1 > M2, 0 < m < M1; equation (4.17)
becomes

P (M1,M2) = 4β2 e
−βM1e−βm

(1 + e−βm)
3 ; (4.18)

5B. F. Apostol, Seismology, Nova, NY (2020).
6B. F. Apostol, "Correlations and Bath’s law", Res. Geophys. 5 100011 (2021).
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similarly, for M2 > M1, −M2 < m < 0 we get

P (M1,M2) = 4β2 e
−βM2eβm

(1 + eβm)
3 . (4.19)

It follows that we may write

P (M1,M2) = 4β2 e
−βmax(M1,M2)e−β|m|(

1 + e−β|m|)3 , (4.20)

which highlights the magnitude-difference distribution, with the con-
straint | m |< max(M1,M2).

Let Ms and M be the magnitudes of the main shock and an accom-
panying earthquake (foreshock or aftershock), respectively. We define
the ordered magnitude difference m = Ms−M > 0 for foreshocks and
m = M −Ms < 0 for aftershocks, | m |< Ms. According to equation
(4.20), the distribution of the pair consisting of the main shock and
an accompanying event is

P (Ms,m) = 4β2e−βMs
e−β|m|(

1 + e−β|m|)3 , | m |< Ms. (4.21)

The exponential e−β|m| falls off rapidly to zero for increasing m, so
we may neglect it in the denominator in equation (4.21). We are left
with the pair distribution

P (Ms,m) = β2e−βMse−β|m| , | m |< Ms , Ms > 0 (4.22)

(properly normalized).

If we integrate equation (4.17) with respect to M2 (and redefine M1 =
M), we get the so-called marginal distribution

P c(M) = βe−βM 2

(1 + e−βM )
2 . (4.23)

This distribution differs appreciably from the standard Gutenberg-
Richter distribution βe−βM for βM� 1 and only slightly (by an al-
most constant factor � 2) for moderate and large magnitudes, as
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(a) (b)

Figure 4.2: The standard GR distribution βe−βM (panel (a), curve
a) compared to the correlation-modified GR distribution,
equation (4.23) (panel (a), curve b) and the standard cu-
mulative GR distribution lnNex = a − βM (panel (b),
curve a) compared to the correlation-modified cumulative
GR distribution, equation (4.24) (panel (b), curve b) for
β = 2.3 and an arbitrary value a = 5.

shown in Fig. 4.2. We note that the mean magnitude M
c
= 2 ln 2/β�

1.39/β is only slightly greater than the mean magnitude M = 1/β
computed with the standard Gutenberg-Richter distribution. The cor-
responding cumulative distribution for all magnitudes greater than M
is

P c
ex(M) = e−βM 2

1 + e−βM
. (4.24)

This distribution can be written as

P c
ex(M) � e−βM 1

1− 1
2βM

� e−
1
2βM (4.25)

in the limit βM −→ 0, which indicates that the slope of the excedence
rate

lnP c
ex(M) = ln

(
2

1 + e−βM

)
− βM (4.26)

deviates from −β, corresponding to the standard Gutenberg-Richter
exponential distribution, to − 1

2β (Fig. 4.2). This roll-off effect7

7J. D. Pelletier, "Spring-block models of seismicity: review and analysis of a
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is attributed usually to an insufficient determination of the small-
magnitude data. We can see that it may arise, at least partially,
from dynamical correlations. This deviation indicates the presence
of dynamical correlations governed by the distribution law Pc(M) =
1
2βe

− 1
2βM for small magnitudes. It can be shown that the law 1

2βe
− 1

2βM

indicates fluctuations in the number of fundamental earthquakes eβM

= t/t0 (square root of this number), as arising from mutual interac-
tions of events with various magnitudes.8 The slope of the modified
Gutenberg-Richter distribution given by equation (4.26) is practically
the same as the slope −β of the standard Gutenberg-Richter distri-
bution for βM greater than � 2. For large values of βM the modified
distribution given by equation (4.26) is shifted above the standard
Gutenberg-Richter distribution by � ln 2. The distributions P c(M)
(equation (4.23)) and P c

ex(M) (equation (4.26)) are correlation-modi-
fied Gutenberg-Richter distributions (different from the standard
Gutenberg-Richter distributions βeβM and e−βM ). Such a qualita-
tive behaviour seems to be exhibited by the cumulative distributions
of southern California earthquakes recorded between 1945-1985 and
1986-1992.9 The difference arises mainly in the small-magnitude re-
gion M � 1, where the distributions are flattened.

In empirical studies an earthquake may be either correlated, or uncor-
related (regular, independent); let c and s denote the corresponding
weights, c + s = 1. For a correlated earthquake with magnitude M
the cumulative distribution is P c

ex(M) (equation (4.25)), while for a
regular earthquake with magnitude M the cumulative distribution is
e−βM . Consequently, we can write the cumulative distribution

Pex(M) = c · e−βM 2

1 + e−βM
+ s · e−βM . (4.27)

The asymptotic behaviour of this (logarithmic) distribution is given

structurally heterogeneous model coupled to the viscous asthenosphere", in J.
B. Rundle, D. Turcote and W. Klein, eds., Geocomplexity and the Physics of

Earthquakes. vol. 120, Am. Geophys. Union, NY (2000); P. Bhattacharya,
C. K. Chakrabarti, Kamal and K. D. Samanta, "Fractal models of earthquake
dynamics", in H.G. Schuster, ed., Reviews of Nolinear Dynamics and Com-

plexity, Wiley, NY (2009), p.107.
8B. F. Apostol, "Correlations and Bath’s law", Res. Geophys. 5 100011 (2021).
9L.M. Jones, "Foreshocks, aftershocks and earthquake probabilities: accounting

for the Landers earthquake", Bull. Seism. Soc. Am. 84 892 (1994).
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by
lnPex(M) = ln

(
2c

1+e−βM + s
)
− βM =

=

⎧⎨⎩
− 1+s

2 βM , M −→ 0 ,

ln(1 + c)− βM , M −→∞ .

(4.28)

We can see that the change of the slope from −(1+s)β/2 to −β occurs
quickly, over the (narrow) range ΔM � 2 ln(1+c)

βc � 2/β (� 0.87,
β = 2.3). Also, the slope of the roll-off region is increased from β/2 to
(1+s)β/2. Equation (4.28) can be used to fit the empirical data, small-
magnitude region included. Such a fit does not affect appreciably the
slope of the standard Gutenberg-Richter distribution.

4.4 Bath’s law

Bath’s law states that the average difference ΔM between the mag-
nitude of a main shock and the magnitude of its largest aftershock
is independent of the magnitude of the main shock.10 The reference
value of the average magnitude difference is ΔM = 1.2. Deviations
from this value have been reported.11 In principle, as a consequence
of the foreshock-aftershock symmetry, we may expect a similar law
for foreshocks.

Let us apply first the pair distribution given by equation (4.22) to
dynamically-correlated earthquakes, by replacing β by β/2. These
earthquake clusters are associated to high-magnitude main shocks, so
we may omit the condition | m |< Ms, and let | m | go to infinity.
In this case the statistical correlations are lost; we are left only with

10M. Bath, "Lateral inhomogeneities of the upper mantle", Tectonophysics 2 483
(1965); C. F. Richter, Elementary Seismology, Freeman, San Francisco, CA
(1958) p. 69.

11A. M. Lombardi, "Probability interpretation of "Bath’s law", Ann. Geophys.
45 455 (2002); K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekstrom and
J. R. Rice, "Triggering of the 1999 Mw 7.1 Hector Mine earthquake by after-
shocks of the 1992 Mw 7.3 Landers earthquake", J. Geophys. Res. 107 2190
10.1029/2001JB000911 (2002); R. Console, A. M. Lombardi, M. Murru and
D. Rhoades, "Bath’s law and the self-similarity of earthquakes", J. Geophys.
Res. 108 2128 10.1029/2001JB001651 (2003).
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the dynamical correlations. The distribution given by equation (4.22)
becomes a distribution of two independent events, identified by Ms

and m; we may use only the magnitude difference distribution

pc(m) =
1

4
βe−

1
2β|m| , −∞ < m < +∞ . (4.29)

This distribution has a vanishing mean value m (m = 0). The next
correction to this mean value, i.e. the smallest deviation of m, is the
standard deviation

Δm =
√
m2 =

2
√
2

β
. (4.30)

Therefore, we may conclude that the average difference in magnitude
between the main shock and its largest aftershock (or foreshock) is
given by the standard deviation ΔM = Δm = 2

√
2/β. This is Bath’s

law. The number 2
√
2/β does not depend on the magnitude Ms (but

it depends on the parameter β, corresponding to various realizations
of the statistical ensemble). It is worth noting that Δm given by
equation (4.30) implies an averaging (of the squared magnitude differ-
ences). Making use of the reference value β = 2.3 we get ΔM = 1.23,
which is Bath’s reference value for the magnitude difference. We can
check that higher-order moments m2n, n = 2, 3, ... are larger than m2

(for any value of β in the range 1.15 < β < 3.45).

We can estimate the occurrence time τB of the Bath earthquake, mea-
sured from the occurrence of the main shock, by using m = 2

√
2/β in

equation (4.3), where r is replaced by r/2 (as for dynamical correla-
tions); we get τB/t1 = 1

2re
−2
√
2/r; for r = 2/3 we get τ0/t1 = 5×10−3.

This time can be taken as an estimate of the duration of the aftershock
(foreshock) activity.

The result ΔM = 2
√
2/β could be tested empirically, although, as it is

well known, there exist difficulties. In empirical studies the magnitude
difference ΔM is variable, depending on the fitting parameter β, which
can be obtained from the statistical analysis of the data. The results
may tend to the value ΔM = 1.2 by adjusting the cutoff magnitudes,12

12A. M. Lombardi, "Probability interpretation of "Bath’s law", Ann. Geophys.
45 455 (2002); R. Console, A. M. Lombardi, M. Murru and D. Rhoades,
"Bath’s law and the self-similarity of earthquakes", J. Geophys. Res. 108

2128 10.1029/2001JB001651 (2003).
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or by choosing particular values of fitting parameters;13 there are cases
where the data exhibit values close to ΔM = 1.2.14 It seems that
values closer to ΔM = 1.2 occur more frequently in the small number
of sequences which include high-magnitude main shocks.

If we extend the dynamical correlations to moderate-magnitude main
shocks, we need to keep the condition | m |< Ms, such that the
distribution is

Pc(Ms,m) =
1

4
β2e−

1
2βMse−

1
2β|m| , | m |< Ms , Ms > 0 ; (4.31)

purely statistical correlations are now included. The standard devi-
ation is now ΔM = Δm =

√
2/β, which leads to ΔM � 0.61 for

the reference value β = 2.3. Such a variability of ΔM can often be
found in empirical studies. For instance, from the analysis of Southern
California earthquakes 1990-2001 we may infere β � 2 and an aver-
age ΔM � 0.45 (with large errors), in comparison with the theoret-
ical result ΔM = 0.7.15 From the New Zealand catalog (1962-1999)
and Preliminary Determination of Epicentres catalog (1973-2001)16

we may infere β � 2.5 − 2.3 and an average ΔM = 0.43 − 0.54, re-
spectively, while ΔM =

√
2/β gives 0.56−0.61. In other cases, like the

California-Nevada data,17 the parameters are β = 2.3 and ΔM � 1.2,
in agreement with ΔM = 2

√
2/β (equation (4.30)). We note that

ΔM =
√
2/β given here is an over-estimate, because it extends, in

fact, the dynamical correlations (equation (4.25)) to small-magnitude
main shocks.
13A. Helmstetter and D. Sornette, "Bath’s law derived from the Gutenberg-

Richter law and from aftershock properties", Geophsy. Res. Lett. 30 2069
10.1029/2003GL018186 (2003).

14K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekstrom and J. R. Rice,
"Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks
of the 1992 Mw 7.3 Landers earthquake", J. Geophys. Res. 107 2190
10.1029/2001JB000911 (2002).

15A. M. Lombardi, "Probability interpretation of "Bath’s law", Ann. Geophys.
45 455 (2002).

16R. Console, A. M. Lombardi, M. Murru and D. Rhoades, "Bath’s law
and the self-similarity of earthquakes", J. Geophys. Res. 108 2128
10.1029/2001JB001651 (2003).

17K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekstrom and J. R. Rice,
"Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks
of the 1992 Mw 7.3 Landers earthquake", J. Geophys. Res. 107 2190
10.1029/2001JB000911 (2002).
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Leaving aside the dynamical correlations we are left with purely statis-
tical correlations for clusters with moderate-magnitude main shocks.
In this case we use the distribution given by equation (4.22), which
leads to ΔM =Δm = 1/

√
2β and ΔM = 0.31 for the reference value

β = 2.3. The Bath partner for such a small value of the magnitude
difference looks rather as a doublet.18

For statistical correlations we can compute the correlation coefficient
(variance). The correlation coefficient R = MsM/ΔMsΔM between
the main shock and an accompanying event M = Ms− | m | (| m |<
Ms) computed by using the distribution given in equation (4.22) is
R = 2/

√
5. For the correlation coefficient between two accompany-

ing events M1 and M2 we need the three-events distribution (which
includes M1,2 and Ms).

According to equation (4.7), the time-magnitude distribution for small-
magnitude aftershocks with changed seismicity conditions leads to a
parameter b instead of the background parameter β (an increase of β).
On the other hand, the dynamical correlations give β/2 instead of β
(a decrease). These processes may appear with different weights. For
equal weights we get a change 1

2 (b + β/2)− β, i.e. a relative change
(1−3r/2)/2r in the parameter β. For the reference value r = 2/3 this
change is zero.

4.5 Foreshocks. Short-term prediction

Let us assume that we are in the proximity of a main shock with
magnitude M0, at time τ until its occurrence, and we monitor the
sequence of correlated foreshocks. According to equation (4.5), the
magnitudes of the (correlated) foreshocks M (< M0) are related to
the time τ by

M =
1

b
ln(τ/τ0) , (4.32)

18G. Poupinet, W.L. Elsworth and J. Frechet, "Monitoring velocity variations
in the crust using earthquake doublets: an application to the Calaveras fault,
California", J. Geophys. Res. 89 5719 (1984); K. R. Felzer, R. E. Abercrombie
and G. Ekstrom, "A common origin for aftershocks, foreshocks and multiplets",
Bull. Seism. Soc. Am. 94 88 (2004).
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Figure 4.3: Function R(θ) vs θ for r = 2/3 (equation (4.35)).

where
τ0 = rt0e

−b(1−r)M0 (4.33)

is a cutoff time, which depends on the magnitude of the main shock,
the seismicity rate t0 and the parameter r = β/b. All these parameters
are provided by the analysis of the background seismic activity. The
small cutoff τ0 corresponds to a very short quiescence time before the
occurrence of the main shock.19 In addition, the time τ should be
cut off by an upper threshold, corresponding to the magnitude of the
main shock (τ < t0e

βM0). We limit ourselves to small and moderate
magnitudes M in the accompanying seismic activity, such that the
magnitude of the main shock may be viewed as being sufficiently large
(in this respect, the so-called statistical correlations are not included).

The correlation-modified cumulative Gutenberg-Richter distribution
given by equation (4.24) indicates a change in the parameter β of the
standard GR distribution. We denote by B the modified parameter
β; it is given by

e−βM 2

1 + e−βM
= e−BM . (4.34)

19Y. Ogata and H. Tsuruoka, "Statistical monitoring of aftershock sequences: a
case study of the 2015 Mw7.8 Gorkha, Nepal, earthquake", Earth, Planets and
Space 68 44 10.1186/s40623-016-0410-8 (2016).
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Figure 4.4: Precursory seismic events of the Vrancea 7.1-earthquake
of 30 August 1986 and a series of fits by using equation
(4.39).

It is convenient to introduce the ratio R = B/b (similar with r = β/b
given above), such that the above equation becomes

R =
1

ln θ
ln

[
1

2
(1 + θr)

]
, (4.35)

where θ = τ/τ0. The parameter R varies from R = r for large values
of the variable θ to R = r/2 for θ −→ 1 (τ −→ τ0). The function R(θ)
is plotted in Fig. 4.3 vs θ for r = 2/3. The decrease in the function
R(θ) for θ −→ 1 indicates the presence of the correlations.

According to equation (4.34) the modified GR parameter B is given
approximately by

B � β − ln 2

M
, (4.36)

or

R � r − ln 2

bM
= r − ln 2

ln(τ/τ0)
(4.37)

for a reasonable range of foreshock magnitudes M > 1. We can see
that a 10% decrease is achieved for M = 3 and τ/τ0 � 3.6× 104 (β =
2.3). Such a decrease has been reported for the L’Aquila earthquake
(6 April 2009, magnitude 6.3) and the Colfiorito, Umbria-Marche,

56



4 Correlations. Foreshocks. Short-term Prediction

earthquake (26 September 1997, magnitude 6)20 and for the Amatrice-
Norcia earthquakes (24 August 2016, magnitude 6.2; 30 October 2016,
magnitude 6.6).21 It is worth noting that smaller magnitudes occur
in the sequence of correlated foreshocks for shorter times, measured
from the occurrence of the main shock (the nearer main shock, the
smaller correlated foreshocks).

If we update the slope B of cumulative distribution ln[Nex(M)/N(0)] =
−BM at various successive times t and if this B fits equation (4.36),
then we may say that we are in the presence of a correlated se-
quence of foreshocks which may announce a main shock at the moment
tms = t+ τ . From equation (4.32) we get

tms = t+ τ0e
bM(t) . (4.38)

This formula provides an estimate of the occurrence moment of the
main shock. It is worth noting that this moment depends on the
expected magnitude of the main shock. For instance, a magnitude M
indicates a time τ = τ0e

bM up to the main shock. Let us assume that
we are interested in a main shock with magnitude M0 = 7; then by
using t0 = e−11.32 (years) and r = 2/3 (values derived for Vrancea),
we get τ0 = 2

310
−8.42 (years); a foreshock with magnitude M = 5

would indicate that we are at τ = 2
310

−8.42107.5 = 0.079 years, i.e. 29
days, from that main shock.22

Therefore, the cumulative Gutenberg-Richter distribution modified
by correlations in the foreshock region and the time dependence of
the foreshock magnitudes can be used to estimate the moment of

20A. De Santis, G. Cianchini, P. Favali, L. Beranzoli and E. Boschi, E., (2011).
"The Gutenberg-Richter law and entropy of earthquakes: two case studies in
Central Italy", Bull. Seism. Soc. Am. 101 1386 (2011).

21L. Gulia and S. Wiemer, "Real-time discrimination of earthquake foreshocks
and aftershocks", Nature 574 193 (2019); see also L. Gulia, T. Tormann, S.
Wiemer, M. Herrmann and S. Seif, "Short-term probabilistic earthquake risk
assessment considering time-dependent b values", Geophys. Res. Lett. 43

1100 (2016).
22B. F. Apostol and L. C. Cune, "On the time variation of the Gutenberg-Richter

parameter in foreshock sequences", J. Theor. Phys. 323 (2020).
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occurrence of the main shock.23 It may be convenient to use equation

M =
1

b
ln(tms − t)− 1

b
ln τ0 (4.39)

with two parameters tms and τ0 to fit a sequence of correlated fore-
shocks; from τ0 = rt0e

−b(1−r)M0 (equation (4.33)) we can get the
magnitude M0 of the main shock which would occur at time tms, by
using the background values of r and t0.

From equation (4.39) we can get the time τ until a main shock with
magnitude M0 from the magnitude M measured at any time t; for
r = 2/3 and t0 = e−11.32 years it is given by

τ = 10−(2.54+M0/2−1.5M) days ; (4.40)

for instance, for M = 4 we are at τ = 100.04 � 1 day from a main
shock with magnitude M0 = 7.

Vrancea is the main seismic region of Romania. Reliable recordings
of earthquakes started in Romania around 1980. Since then, three
major earthquakes occurred in Vrancea: 30 August 1986, magnitude
M = 7.1; 30 May 1990, magnitude M = 6.9; 31 May 1990, magnitude
M = 6.4.24 The 7.1-earthquake (depth 131km) is shown in Fig. 4.4,
together with all its precursory seismic events from 1 August to 31
August. All these earthquakes occurred in an area with dimensions
� 100km× 80km (45◦− 46◦ latitude, 26◦− 27◦ longitude), at various
depths in the range 30km− 170km, except for the events of 7-8 Au-
gust and the 1.6-event of 30 August, whose depth was 5km− 20km.
The subset of earthquakes from 16 August to 24 August can be fit-
ted by equation (4.39) with the fitting parameters tms = 24 August,
τ0 = 10−4.76 days and a large rms relative error 0.32. The maximum
magnitude has been used for the earthquakes which occurred in the
same day, because, very likely, those with smaller magnitude are sec-
ondary accompanying events of the greatest-magnitude shock. If we
assume that this is a correlated-foreshock subset, it would indicate
23It is worth noting that the correlation-modified magnitude distribution

P c(M) = βe−βM 2

(1+e−βM )2
(equation (4.23)) is not reproduced by a

standard-type Gutenberg-Richter magnitude distribution Be−BM in the range
0.87 < βM < 2.4.

24Romanian Earthquake Catalog 2018, http://www.infp.ro/data/romplus.txt.
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the occurence of a main shock with magnitude 4.4 on 24 August. The
main shock (M = 7.1) occurred on 30 August. The three earthquakes
from 27 August to 29 August may belong to a subset prone to such an
analysis, but it is too poor to be useful. A main shock with magnitude
7.1 (τ0 = 10−6.06 days) and an average magnitude for the days with
multiple events leads to a fit with a larger rms relative error 0.6. For
the earthquake pair of 30-31 May 1990 (depth 87− 91km) we cannot
identify a correlated subset of foreshocks, i.e. a sequence of precur-
sory events with an average magnitude, or a maximum-magnitude
envelope, decreasing monotonously in a reasonably short time range.
Another particularity in this case, in comparison to the earthquake of
1986, is the quick succession (30-31 May) of two comparable earth-
quakes (magnitude 6.9-6.4).

In the set of precursory events of the l’Aquila earthquake, 6 April 2009
(magnitude 6.3, local magnitde 5.9) one can identify two magnitude-
descending sequences, with earthquakes succeeding rapidly at inter-
vals of hours. The first sequence occurred on 2 April, consisting of
7 earthquakes with local magnitudes from 2.1 to 1.0. The fitting of
these data with equation (4.39) indicates a main shock approximately
5 hours before the earthquake with magnitude 3.0 of 3 April (with a
large rms relative error 0.4). The second magnitude-descending se-
quence consists of 5 earthquakes with magnitudes from 1.9 to 1.1,
which ocurred on 6 April. The fit, with a similar large error, indi-
cates the occurrence of a main shock at the time 01 : 35; the l’Aquila
earthquake occurred at 01 : 32 (UTC; the last foreshock was recorded
at 01 : 20). On the other hand, a magnitude-descending sequence
cannot be identified before the earthquake of 4 April, with local mag-
nitude 3.9. The data used in this analysis are taken from the Bol-
lettino Sismico Italiano, 2002-2012, in ±25km an area around the
epicentre of the l’Aquila earthquake (42.342◦ latitude, 13.380◦ longi-
tude). The lack of the background seismicity parameters β and − ln t0
for the l’Aquila region prevents us from estimating the magnitude of
the main shocks by this analysis. We note that the magnitude in
the fitting equation (4.39) is the moment magnitude; the use of local
magnitudes in this equation generates (small) errors.

We applied the same procedure to the Vrancea earthquake with mag-
nitude 3.8 (local magnitude 4.1), viewed as a main shock, which oc-

59



4 Correlations. Foreshocks. Short-term Prediction

curred on 30 November 2021.25 By making use of the foreshock se-
quence from 24 November to 27 November (5 earthquakes), we can
predict a main shock on 28 November, with a large magnitude (6.9,
with a small rms relative error). On 28 November an earthquake with
magnitude 3.1 was recorded in this area. By extending the sequence
until 29 November (7 earthquakes), a main shock with magnitude
4.5 was forecasted on 1 December.26 All these earthquakes occurred
within 45◦− 46◦ latitude, 26◦− 27◦ longitude, at depths in the range
90km− 180km.
The main source of errors arises from the quality of the fit B(t) vs M(t)
(equation (4.36)), or, equivalently, the fit of the function R(θ) given by
equation (4.35), or the fit of equation (4.39). In order to improve the
quality of this fit we need a rich foreshock activity in the immediate
proximity of the main shock, because the relevant part of the curve
given by equation (4.39) is its abrupt decrease in the proximity of the
main shock. This is an ideal situation, because the number of small-
magnitude foreshocks in the immediate vicinity of the main shock is
small. The fits of equation (4.39) have necessarily large errors. An-
other source of errors arises from the background parameters t0 and r
(β), which may affect considerably the exponentials in the formula of
the time cutoff τ0 (equation (4.33)). The procedure described above is
based on the assumption that the foreshock magnitudes are ordered in
time according to the law given by equation (4.32). However, accord-
ing to the epidemic-type model,27 the time-ordered magnitudes may
be accompanied by smaller-magnitudes earthquakes, such that the law
given by equation (4.32) may exhibit lower-side oscillations, and the
slope given by equation (4.37) may exhibit upper-side oscillations.
Task #3 of Practical Seismology is a continuous monitoring of the
seismic activity in a given region (say, daily, for Vrancea). At any
moment we have a (necessarily short) time series of descending mag-
25B. F. Apostol and L. C. Cune, "Prediction of Vrancea Earthquake of November

30 2021", Seism Bull 2, Internal Report National Institute for Earth’s Physics,
Magurele, (2021).

26All the data are taken from Romanian Earthquake Catalog 2018,
http://www.infp.ro/data/romplus.txt.

27Y. Ogata, "Statistical models for earthquakes occurrences and residual analysis
for point proceses", J. Amer. Statist. Assoc. 83 9 (1988); "Space-time point-
processes models for earthquakes occurrences", Ann. Inst. Statist. Math. 50

379 (1998).
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nitudes M(t), which, introduced in equation (4.40), provides the time
τ until an expected main shock with magnitude M0. The current
seismic activity in Vrancea is given in the Romanian Earthquake Cat-
alog with a local magnitude ML.28 An approximate estimation of the
moment magnitude M is provided by the Hanks-Kanamori law

M = lg(Rv) +
2

3
lg(8πρc2)− 1.07 , (4.41)

where R is the distance from the focus to the observation point, v
is a mean amplitude of the displacement produced by the P and S
seismic waves, ρ = 5g/cm3 is a mean density for earth and c = 5km/s
is a mean velocity of the elastic waves (R and v are measured in cm,
ρ is measured in g/cm3 and c is measured in cm/s). This formula
is derived in one of the next chapters. Using these values for the
parameters, equation (4.41) becomes M = lg(Rv)− 1.8.

4.6 Seismic activity

As a consequence of the tectonic movement, in a pointlike focus an
energy E is accumulated in time t, according to the formula

t/t0 = (E/E0)
r . (4.42)

The geometrical accumulation parameter r is the reciprocal of the
number of dimensions of the focal region. It varies in the range
1/3 ≤ r ≤ 1. The reference value is r = 2/3. The threshold energy E0

defines the magnitude M = 0, according to the formula E/E0 = ebM ,
where b = 3.45 by convention (b = 3/2 for powers of ten). Intro-
ducing this formula in equation (4.42), we get the accumulation time
t = t0e

βM , where β = br. This formula gives a meaning to the thresh-
old time t0: it shows that an earthquake with magnitude M consists of

28The relationship between ML and the moment magnitude M used by the Ro-
manian Earthquake Catalog is M = 0.74ML + 0.8 for ML < 4.7 and depth
h > 60km; M = 0.52ML + 1.1 for ML < 4.7 and depth h < 60km and
M = 1.43ML + 2.14 − 0.018M2

L for ML > 4.7, any depth. These formu-
lae should be used with caution, because they define a "moment magnitude"
which depends on ML and h.
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t/t0 = eβM seismic events with magnitude M = 0, each having an ac-
cumulation time t0. The seismic activity consists of such fundamental
E0-events. In a time interval t we may have either an E0-event with
probability t0/t, or an earthquake with energy E > E0 and probabil-
ity
´ t
t0
dt′P (t′), such that t0/t+

´ t
t0
dt′P (t′) = 1; hence, P (t) = t0/t

2.
This is the probability to have an independent earthquake at time t.
Using the accumulation law we get from this probability the standard
Gutenberg-Richter distributions. In particular, we get the standard
cumulative (excedence) law e−βM of all the earthquakes N with mag-
nitude greater than M . This law is fitted to empirical data, in the
form ln(N/T ) = − ln t0 − βM , where T is the time of all the ana-
lyzed earthquakes; this way, the fitting parameters β, i.e. r, and t0
are extracted. The reference value r = 2/3 (β = 2.3) has been estab-
lished as an average value. The standard law describes the so-called
background (regular) earthquakes, which are independent events.

Some earthquakes appear in the same seismic region and in a rea-
sonably short time interval. Very likely, these earthquakes are not
independent. We say that they are correlated, i.e. they depend on
one another. It is convenient to identify the highest earthquake in
magnitude in such subsets of earthquakes, which is called the main
shock. The earthquakes which preced the main shock are called fore-
shocks, while those which succeed a main shock are called aftershocks.
Regular earthquakes may also be present in the accompanying (asso-
ciated) earthquakes.

The earthquake correlations may appear in various ways. If any quan-
tity which refers to an earthquake depends on another earthquake, we
say that the two earthquakes are correlated. The most general cor-
relations are generated simply by referring an earthquake to another.
This procedure is described by conditional probabilities. It is present
in the time distributions of aftershocks, or foreshocks, with respect
to the time τ measured from the main shock. Such a distribution,
which is proportional to 1/τ for small times τ (with a cutoff time),
is called the Omori law. The Omori correlations are not caused by
a distinct physical circumstance, but rather by the procedure we use
to distribute the earthquakes. The inter-event distributions (wait-
ing time, next earthquake distributions) are included in this class of
correlations generated by conditional probabilities.
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Two earthquakes may share their energy, which means a modifica-
tion of the accumulation mechanism. These correlations are time-
magnitude correlations. Other earthquakes may interact with one
another, exchanging energy. These correlations can be seen in the
statistical distributions. They are called dynamical correlations. An
energy transfer is implied in both these types of correlations, although
the time-magnitude correlations are deterministic, while the dynam-
ical correlations are statistical correlations. Some other correlations
appear in statistical distributions by imposing conditions on the sta-
tistical variables. We call them purely statistical correlations. They
arise by the definition of the seismic events.

In general, since all these correlations are governed by physical laws
which are symmetric under time reversal, we expect that the correla-
tions are symmetric with respect to the change foreshocks-aftershocks.
However, certain asymmetries appear, generated by some particular-
ities of the two foreshock-aftershock subsets.

Let us imagine that we come from the far past, where a regular (back-
ground) regime of seismicity dominates, and approach a main shock.
On approaching a main shock, higher-magnitude foreshocks appear,
followed by small-magnitude foreshocks, which are very near in time
to the main shock. The remaining time until the main shock is related
to the magnitude of the foreshock, such that, by monitoring the fore-
shock activity we may estimate the occurrence moment of the main
shock. This relationship between time and magnitude is governed by
time-magnitude correlations, which imply a certain modification in
the energy accumulation mechanism. Before any foreshock the seis-
micity conditions are modified, such as to accumulate a larger amount
of energy. Immediately after the foreshock the seismicity conditions
come back to their normal regime. This modification of the seismicity
conditions is reflected in a temporary decrease in the parameter r.

At the same time, the exchange of energy between the foreshocks
and the main shock generates dynamical correlations. The dynami-
cal correlations modify the standard Gutenberg-Richter distribution,
in such a way that the small-magnitude region is affected. This is
called the roll-off effect in the Gutenberg-Richter distribution. The
change affects mainly the region with M � 1. The slope β of the
standard cumulative distribution remains, practically, the same. The
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intercept − ln t0 of the standard cumulative distribution is changed,
but we have not enough data in the region M → 0 to get a reliable
value for this parameter. The parameter β in the small-magnitude
region becomes β/2 , which amounts to a reduction of r to r/2. This
means a flattening of the standard Gutenberg-Richter distribution in
the region of small magnitudes. The reduction of β for foreshocks
is documented in some empirical cases. The proportion of the dy-
namically correlated earthquakes to the regular earthquakes can be
obtained from fitting data by the corresponding distributions, each
with its own weight. We expect dynamical correlations to be present
in earthquake sequences accompanying high-magnitude main shocks,
which, although rare, have a large productivity of small-magnitude
associated earthquakes.

As regards the empirical studies it is very important to be aware of
the fact that any empirical realization of the statistical ensemble of
the seismic activity is a poor representation. Consequently, not all the
features expected from a theory can be seen in empirical ensembles.

Very likely, the aftershocks are correlated to the main shock by time-
magnitude correlations. Small-magnitude aftershocks appear immedi-
ately after the main shock, followed by higher-magnitude aftershocks.
After a main shock the seismicity conditions may change, such that the
cutoff time in the energy accumulation law is changed. This change
leads to a modified Gutenberg-Richter distribution be−bM for small-
magnitude aftershocks (derived from

(
τ0/τ

2
)
dτ and equation (4.32)).

We can see that the number of small-magnitude aftershocks is in-
creased, in the region of magnitudes M < M2c = ln r/[b(r − 1)]. The
range of this region is very small (for r = 2/3 and b = 3/2 we get
M2c � 0.36). This increase in the aftershocks parameter β (r) is doc-
umented empirically in some cases. At the same time, the dynamical
correlations may be present in aftershocks, leading to a decrease in
the parameter β for small magnitudes.

The dynamical correlations may be present in aftershocks. Their low-
ering of the parameter β (r) for small magnitudes (β −→ β/2) may
be compensated by the increase in this parameter, due to the change
in the seismicity conditions. However, this interplay is valid over a
very narrow range of small magnitudes (� 0.36). Beyond this range
we may use the reduced parameter β/2.
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The dynamical correlations, which are present both in foreshocks and
aftershocks, lead to a decomposition of the joint probability main
shock plus accompanying earthquake, which highlights the probabil-
ity distribution of the difference in magnitude between the two events.
This distribution has a vanishing mean value for the magnitude dif-
ference and a deviation ΔM = 2

√
2/β, which is the amount by which

the highest aftershock (foreshock) magnitude is lower than the magni-
tude of the main shock. This is Bath’s law. In this form it arises from
dynamical correlations. However, the magnitude difference may be
subject to certain conditions, either for dynamically-correlated earth-
quakes or for regular earthquakes. These conditions are purely sta-
tistical correlations. They lead to other values of Bath’s difference,
like

√
2/β, or 1/

√
2β. Such a variability in Bath’s difference is docu-

mented in some empirical cases. (For instance, the difference 1/
√
2β

may be associated with doublets).

4.7 Watch the little ones: they may herald

disasters

(contributed by M. Apostol)

A large number N of earthquakes with magnitude greater than M ,
occurring in a long time T in a seismic region are fitted by the well-
known Gutenberg-Richter relationship

lg(N/T ) = − lg t0 − βM , (4.43)

where t0 and β are fitting parameters. For instance, a set of 3640
earthquakes with magnitude M ≥ 3, which occurred in Vrancea be-
tween 1981 and 2018, leads to − lg t0 = 4.92 (t0 measured in years)
and β = 0.98, with an estimated 15% error; a useful parameter is
r = 2β/3 � 2

3 .

The earthquakes may be correlated: a main shock may be preceded by
correlated, smaller foreshocks, and it may be followed by correlated,
smaller aftershocks. According to the theory, the time τ elapsed from
the occurrence of a foreshock with magnitude M to the occurrence
of a main shock with magnitude M0 (or the time from an M0-main
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shock to an M -aftershock) is given by

τ = rt0 · 10− 3
2 [(1−r)M0−M ] , (4.44)

or, with the parameters given above,

τ = 10−(2.54+M0/2−3M/2) days . (4.45)

The background parameters t0 and r (β) can be derived for any seismic
region (the parameter r varies in the range 1

3 < r < 1). By inserting
them in equation (4.44), we can estimate the time which may elapse
from an M -earthquake to an M0-main shock (if they are correlated).
We can see that in any moment we may expect a large earthquake.
The time τ is shorter for a greater M0 and a smaller M . The smaller
the correlated foreshock, the nearer a large main shock: watch the
little ones, they may announce disasters. If M −→ 0 is correlated with
an M0-main shock, we are already at the moment τ0 = 10−(2.54+M0/2)

days when this main shock occurrs (a very short time). We do not
know the moment of occurrence of the earthquakes. At any moment
a "big one" may appear.

For instance, an M = 3-foreshock may announce an M0 = 7 main
shock after 41.5 minutes; or an M0 = 6-main shock after 2.19 hours;
or an M0 = 5-main shock after � 7 hours.
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5.1 Thermodynamic ensembles

Let us consider a gas of N 
 1 identical, non-interacting particles,
moving in a large volume V (in the three-dimensional space), each
within a large range of momenta p. We consider the coordinates q

and the momenta p as undetermined statistical variables. We say that
each particle is a statistical sub-ensemble and the gas is a statistical
ensemble. This is the starting framework of Statistical Physics, as
formulated by Gibbs.1

As any statistical variable, the coordinates q and the momenta p of
each particle should be distributed by a probability density ρ, which
should be normalized. The normalization condition isˆ

ρ · dpdq/(2π�)3 = 1 ; (5.1)

the Planck constant � measures the unit cell in the phase space (of gen-
eralized coordinates p and q), according to the uncertainty principle
of Quantum Mechanics; it makes the probability density dimension-
less, as it should be. The point (p, q) defines a state in the phase
space (for a classical particle). Each particle is free to acquire any
state in the whole volume and the whole range of momenta.

If a particle is free, it is conceivable that it moves perfectly chaotical,
i.e. it is subject to a maximal disorder; if it has at its disposition a
number Γ of states, then its probability density should be ρ = 1/Γ. We
note that this probability density, of perfectly randomly distributed
events, should be minimal. We have dΓ = dpdq/(2π�)3. The hypoth-
esis of a perfect chaos (called "molecular chaos") has been introduced

1J. W. Gibbs, Elementary Principles in Statistical Mechanics, Scribner’s sons,
NY (1902).
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in Statistical Physics by Boltzmann.2 The use of the number of states
Γ opened the way towards Quantum Statistics.

Let us assume that we put together two such particles, denoted by 1
and 2. If they are free, we can define for each a number of available
states Γ1,2, the same as if they were separated; their probability densi-
ties are ρ1,2 = 1/Γ1,2, since, being free, they move perfectly chaotical.
In addition, being free, they are independent, such that the number of
available states of the ensemble of the two particles is Γ = Γ1Γ2 and
the probability density of the ensemble is ρ = 1/Γ1Γ2 = ρ1ρ2. It is
convenient to use − ln ρ (= lnΓ) instead of ρ, because ln ρ is additive
for multiplicative ρ’s. S = − ln ρ is called entropy. We see that it
should be maximal, according to the hypothesis of the perfect chaos.
This is the law of increase of entropy. Also, we see that this hypoth-
esis implies free, non-interacting and independent particles. We note
that this hypothesis does not exclude certain conditions in defining
the states of the particles, the same for each particle. (Such condi-
tions are encountered in Quantum Statistics, and are called sometimes
quantum-mechanical correlations).

The hypothesis described above is called statistical-independence hy-
pothesis. It defines the entropy as an additive quantity (like other
physical quantities, e.g. the energy). The corresponding ensemble is
said to be extensive. Extensive statistical ensembles are called ther-
modynamic ensembles.

It is worth noting that the assumption of a given number of avail-
able states Γ defines an external condition needed to characterize the
ensemble. We need external conditions to define ensembles. For in-
stance, we may use a fixed energy as an external condition. Then,
we have a micro-canonical ensemble. The entropy defined above is
often called a micro-canonical entropy. We may imagine an ensemble
in contact with a so-called "thermal bath", exchanging continuously
energy with that bath, i.e. giving and receiving energy; preserving at
the same time the hypothesis of a perfect chaos. Such an ensemble
is called canonical ensemble (if it exchanges also particles, it is called
grand-canonical ensemble). It is worth noting that this hypothesis for

2L. Boltzmann, Lectures on Gas Theory, Dover, NY (1964) (translated from L.
Boltzmann, Vorlesungen uber Gastheorie, Barth, Leipzig, Part I (1896) and
Part II (1898)).
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a canonical ensemble makes it stationary in time (because a perfect
chaos is unique); we call this condition statistical, or thermodynamic
equilibrium. The entropy in this case should also be maximal, only
that we need a mean entropy, defined as − ´ dΓρ ln ρ. We note that
the entropy defined above as S = − ln(1/Γ) is a mean entropy, be-
cause − ´ dΓρ ln ρ = −Γ · 1

Γ ln(1/Γ) = − ln(1/Γ). It follows that we
can compute the entropy of a canonical ensemble by imposing upon it
a stationarity condition under the constraints of a fixed mean energy
and the normalization (in fact, this condition is a maximum condition
with respect to the probability density, as for a maximal disorder).
The stationarity of the entropy in equilibrium has been introduced in
Thermodynamics by Clausius.3 Therefore, let us seek the stationarity
of the Lagrange function

S = −
ˆ

dΓρ ln ρ− α

(ˆ
dΓρ− 1

)
− β

(ˆ
dΓρE − E

)
, (5.2)

where E is the statistical variable of the energy, E is the mean energy
and α, β are Lagrange’s coefficients to be determined. We get

ρ = C(β, V )e−βE (5.3)

and
S = βE − lnC , (5.4)

where C (coefficient α) is determined from
´
dΓCe−βE = 1 (and the

mean energy E is a function of β and V ); the coefficient β is de-
termined from the mean energy (which is an external condition, like
V ). We note that these equations are valid both for statistical sub-
ensembles and statistical ensembles. Equation (5.3) gives the canon-
ical Boltzmann-Gibbs distribution. (The proportionality ln ρ ∼ −E
follows also from the stationarity of the two conserved quantities ρ
and E, since, for a mechanical ensemble, ln ρ should be a linear com-
bination of the prime integrals). It is convenient to write C = eβF

and introduce the temperature T = 1/β; then, we have F = E − TS

3R. Clausius, "Uber verschiedene fur die Anwendung bequeme Formen der
Hauptgleichungen der mechanischen Warmetheorie", Ann. Phys. 125 353
(1865); The Mechanical Theory of Heat - with its Applications to the Steam

Engine and to Physical Properties of Bodies, van Voorst, London (1867).
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and

dE =
∂F

∂V
dV + TdS = −pdV + TdS (5.5)

at fixed T , where p, by definition, is the pressure. F is called the
free energy. This is the thermodynamic equation, which defines an
equilibrium transformation. TdS is the heat. We can see how the
Statistical Physics produces Thermodynamics.
In equilibrium dS = 0. The variation of the entropy with respect to
the equilibrium is

δ(2)S = −
ˆ

dΓ(1/ρ)(δρ)2 < 0 , (5.6)

which shows that the entropy is maximal in equilibrium (with respect
to the variation of the probability density).
In an equilibrium transformation

dS =
1

T
(dE + pdV ) . (5.7)

If dS = 0 the transformation is reversible. If the changes are very slow,
the transformation is adiabatic (and the process is a quasi-equilibrium
process).
If the ensemble deviates from equilibrium, the entropy should decrease
by an amount δS given by

ΔS =
1

T
(ΔE + pΔV )− δS . (5.8)

It follows, that the probability density of the deviations of the mean
quantities is proportional to

e−δS = e−
1
T (ΔE+pΔV−TΔS) ; (5.9)

the exponent in this equation is proportional to

ΔE + pΔV − TΔS =
1

2

(
∂2E

∂V 2
ΔV 2 + 2

∂2E

∂V ∂S
+

∂2E

∂S2

)
. (5.10)

This equation leads to the normal distribution of the fluctuations
(known as Einstein’s fluctuation formula4). Being additive, this varia-
tion is proportional to N . Therefore, the dispersion of the fluctuations
4A. Einstein, "Zum gegenwaertigen Stand des Strahlungsproblem", Phys. Z. 10

185 (1909).
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is proportional to 1/
√
N ; in the limit of large N the thermodynamic

fluctuations are vanishing. This is why we need a large N . (For small
values of N the mesoscopic, or nanoscopic ensembles exhibit large
fluctuations).

5.2 Seismic activity

Following the instance offered by a gas of particles many other statis-
tical ensembles can be constructed. Some of them are not thermody-
namic (extensive) ensembles. This is the case of the seismic activity.
Earthquakes occur at undetermined moments of time with undeter-
mined magnitudes. This induces the idea that they may be described
by a probability density with the magnitude as the statistical variable
(occurrence time, energy, location, etc can also be viewed as statistical
variables for earthquakes). Moreover, the earthquakes are produced
by the movement of the tectonic plates, so they may be viewed as a
canonical ensemble. The tectonic bath feeds continuously the earth-
quake activity, but the energy released by earthquakes does not go
back to the tectonic plates, at least not integrally, nor directly. This
special circumstance has important consequences.

In order to be able to define a probability we need empirical real-
izations of the statistical ensemble of the seismic activity as large as
possible, with many earthquakes for each magnitude value. Such a
realization can be obtained by collecting all the earthquakes which
occurred in a given seismic region in a given, long period of time.
We assume that the magnitudes are measurable with a reasonable
accuracy. We need also reproducibe results of the measurements,
so we need many realizations of the same statistical esemble in the
same given conditions. This is not possible with the seismic activ-
ity, because the seismicity conditions change in time. However, many
updates of the statistical ensemble of a given seismic region may be
viewed as many realizations of the same statistical ensemble.

The seismic activity is one statistical ensemble which produces various
values of the magnitude. It is not formed by several statistical sub-
ensembles; it is only one ensemble. Therefore, the seismic acivity may
be a statistical ensemble, but it is not a thermodynamic (extensive)

71



5 Entropy of Earthquakes

ensemble.
Let us assume that the seismic activity is a canonical ensemble in
equilibrium. Consequently, it is described by an entropy S, which,
under the constraint of a fixed mean magnitude M , leads, by its max-
imization, to5

S = βM − lnβ , (5.11)

exactly as in equations (5.2) to (5.4), where C is equal to β. The
resulting probability density is

ρ = βe−βM . (5.12)

This is precisely the Gutenberg-Richter magnitude distribution, which
is well-documented empirically.6 From empirical studies the value β =
2.3 is accepted as a reference value. The corresponding cumulative
Gutenberg-Richter distribution is e−βM , given empirically by

lnN(M) = lnN(0)− βM , (5.13)

where N(M) is the number of earthquakes with magnitude greater
than, or equal to M , out of a total number of earthquakes N(0).
From equation (5.12) the mean magnitude is M = 1/β (and S =
1 − lnβ in equilibrium). In equilibrium (∂S/∂β)M = M − 1/β = 0.
The variation of the entropy with respect to the equilibrium is

ΔS = (M − 1/β)Δβ +
1

2β2
(Δβ)2 + ... =

1

2β2
(Δβ)2 + ... ; (5.14)

it follows the fluctuation distribution

ρf =
1√
2πβ

e
− (Δβ)2

2β2 . (5.15)

The standard deviation of the parameter β is

δβ =
[
(Δβ)2

]1/2
= β ; (5.16)

5B. F. Apostol and L. C. Cune, "Entropy of earthquakes: application to Vrancea
earthquakes", Acta Geophys. doi: 10.1007/s11600-021-00550-4 (2021).

6B. Gutenberg and C. Richter, "Frequency of earthquakes in California", Bull.
Seism. Soc. Am. 34 185 (1944); "Magnitude and energy of earthquakes", Ann.
Geofis. 9 1 (1956) (Ann. Geophys. 53 7 (2010)); C. F. Richter, Elementary

Seismology. Freeman, San Francisco, California (1958); G. Ranalli, G., (1969).
"A statistical study of aftershock sequences", Ann. Geofis. 22 359 (1969).
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(a) (b)

Figure 5.1: Short-time (weeks) continuous (panel a, year 2010) and
discontinuous (ruptures, panel b, year 2011) variations of
the parameter β for Vrancea (Romanian Earthquake Cat-
alog, 2018, updated).

its finite value shows that the seismic activity is a non-extensive sta-
tistical ensemble.

If the entropy is viewed as measuring the degree of disorder, then
S = 1 − lnβ > 0, i.e. β < e (this condition corresponds to the
classical-gas condition in Statistical Physics). For statistical ensem-
bles the Shannon entropy Σ = −∑n pn ln pn is often used, where
pn =

(
1− e−βδ

)
e−nβδ is the discrete Gutenberg-Richter magnitude

probability with step δ (properly normalized for n = 0, 1, 2...).7 This
entropy depends on the arbitrary discretization step δ, Σ = S−ln δ+...
(for βδ � 1), where S = 1 − lnβ. The discretization step δ corre-
sponds to Planck’s constant in Quantum Statistics.

7A. De Santis, C. Abbattista, L. Alfonsi, L. Amoruso, S. A. Campuzano, M.
Carbone, C. Cesaroni, G. Cianchini, G. De Franceschi, A. De Santis, R. Di
Giovambattista, D. Marchetti, L. Martino, L. Perrone, A. Piscini, M. L. Rain-
one, M. Soldani, L. Spogli and F. Santoro, "Geosystemics view of earthquakes",
Entropy 21 412 (2019) doi:10.3390/e21040412.
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5.3 Vrancea non-equilibrium seismic

activity

Let us assume that we fitted the Gutenberg-Richter distribution (e.g.,
the cumulative distribution, equation (5.13)) to data gathered over a
long period of time t0 for a given region. At the moment of time
t0 we have the fitting parameter β0. For a sufficiently long period
of time t0 we may assume that this seismic activity is statistically
well-defined. Let us take (at random) the next moments of time ti,
i = 0, 1, 2, ...N and update the fitting to get the parameters βi. If the
time intervals ti+1 − ti are sufficiently small (but still as large as to
have a measurable seismic activity in each) we may expect that the
variations Δβi = βi+1−βi are fluctuations. For a sufficiently large N
we may fit their distribution with the normal law given by equation
(5.15). Thus, we get the fitting parameter β. If β = β0 (within the
fitting errors), the seismic equilibrium has not changed. If β �= β0

the equilibrium has changed over the period tN − t0. Consequently
(in the absence of an external agent), we may expect a tendency to
recover the equilibrium over the next period of time t2N+1 − tN+1.
Such an information might be regarded as a short-time prediction.
For instance, if β < β0, the mean magnitude increased, so we may
expect in the next time interval a decrease in the mean magnitude,
i.e. the number of earthquakes with low magnitudes will increase,
and high-magnitude earthquakes are not likely. On the contrary, if
β > β0, then the mean magnitude decreased, and we may expect an
increase in the number of earthquakes with higher magnitude. We
note that an increase (decrease) in β amounts to a decrease (increase)
in equilibrium entropy S = 1− lnβ (equation (5.11)).

It may happen that the distribution of the parameter changes Δβi is
not a normal distribution. Then, the ensemble is not in equilibrium
in the time period tN − t0. Under the equilibrium hypothesis, we
may expect an evolution towards equilibrium in the next period. For
instance, if the distribution of the variations Δβi is shifted towards
higher values, i.e., if the parameters βi show a tendency to increase,
we may expect a decrease of these parameters in the next period, i.e.

an increase in the mean magnitude.

It is worth noting that the discussion given above is valid under the
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main asumption of independent seismic events. If correlations ex-
ist, the entropy formulae derived above do not apply. A special case
in this connection is the short-term foreshock (and aftershock) ac-
tivity. The accompanying seismic activity obeys, approximately, the
Gutenberg-Richter magnitude distribution,8 and a decrease in the pa-
rameter β, observed for the foreshock activity, was interpreted as an
increase in entropy.9 Moreover, recently it was shown that a real-time
discrimination between foreshocks and aftershocks might be attained
by monitoring the variations in the parameter β .10

If the correlations are included, we expect a change in the distribution.
In this case, the formulae given above for the entropy are not valid
anymore. It was shown that the change caused by correlations in the
Gutenberg-Richter distribution affects mainly the small-magnitude re-
gion.11 For moderate and large earthquakes the distribution preserves
its independent-event form ∼ e−βM , which ensures the validity of the
entropy formulae used here. Small-magnitude earthquakes (M < 2)
are excluded from our analysis.

Also, we note that the practical application of the procedure described
above depends on the choice of the (long) time period t0, the (short)
time intervals ti+1 − ti and the (large) number N of these intervals.
This choice can only be made in close connection with the particular
character of the seismic activity in the given region and in the given
(long) time period.

The description given above is not supported by data, at least for
Vrancea region, in the analyzed time periods. The parameter β is
quasi-uniformly increasing in time, at a slow rate, due to the accu-
mulation of small-magnitude earthquakes. This quasi-uniform ten-
dency is interrupted from time to time by large-magnitude earth-
quakes, which decrease suddenly the parameter β. We may say that

8C. Kisslinger, "Aftershocks and fault-zone properties", Adv. Geophys. 38 1
(1996).

9A. De Santis, G. Cianchini, P. Favali, L. Beranzoli and E. Boschi, "The
Gutenberg-Richter law and entropy of earthquakes: two case studies in Central
Italy", Bull. Sesim. Soc. Am. 101 1386 (2011).

10L. Gulia and S. Wiemer, "Real-time discrimination of earthquake foreshocks
and aftershocks", Nature 574 193 (2019).

11B. F. Apostol, "Correlations and Bath’s law", Res. Geophys. Sci. 5 100011,
(2021).
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β

t1 tMS t2

MS

(f) (a)
Δβ1

Δβ2

tO

Figure 5.2: A qualitative sketch of the variation of the parameter β
vs time t around the moment tMS of the occurrence of
a main shock (MS), possibly including a foreshock region
(f) and an aftershock region (a). The total variation of the
parameter β in the time intervals (t1, tMS) and (tMS , t2)
is zero (Δβ1+Δβ2 = 0), indicating an equilibrium process
(constant entropy, ΔS = 0).

the seismic activity in Vrancea is not in equilibrium; it is at most in
quasi-equilibrium, as the time variations of the parameter β are very
slow. Two examples of short-time variations of beta are given in Fig.
5.1 for Vrancea seismic activity. The time t0 is from 1 January 1980
to 31 December 2009, with 5391 earthquakes with magnitude greater
than 2. The Gutenberg-Richter fit to these data gives β0 = 2.121
(error 15%). We have updated the parameter β for each week of the
year 2010 (Fig. 5.1, panel a). We can see that this parameter in-
creases continuously over this whole year (due to the accumulation
of small-magnitude earthquakes). A similar procedure was used for
each of the next years up to 2019 (8455 earthquakes with M ≥ 2
in the whole period 1980 − 2019, taken from Romanian Earthquake
Catalog, 2018, updated. In some years the continuous increase of
the parameter β is disrupted by the occurrence of greater-magnitude
earthquakes, like in the year 2011 (Fig. 5.1, panel b). Such varia-
tions of the parameter β cannot be fitted by a normal distributions,
and, therefore, they cannot be viewed as fluctuations. We can only
say, very imprecisely and qualitatively, that after a period of small-
magnitude seismic activity it is likely to follow a few earthquakes with
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greater magnitude, and viceversa, which is a useless, common-sense
expectation. Rigorously speaking, the seismic activity is not in (quasi-
) equilibrium, because the tectonic energy source feeds it continuously.
We expect this behaviour to have a general character. We note that
such abrupt variations in the parameter β (and an abrupt increase in
the entropy) have been reported for the accompanying seismic activ-
ity of the L’Aquilla earthquake (magnitude 6.3, 6 April 2009) and the
Colfiorito earthquake (magnitude 6, 26 September 1997).12

The overall variation of the parameter β is a slow increase in time,
which may suggest a quasi-equilibrium adiabatic process. In the
neighbourhood of a greater earthquake the parameter β suffers an
abrupt variation. A qualitative sketch of the typical variations of the
parameter β for a time interval (t1, t2) which includes a main shock
(MS) at the moment tMS is given in Fig. 5.2. After a (slight) in-
crease the parameter β suffers an abrupt decrease Δβ1, possibly in
a foreshock region, down to the main shock, followed by an abrupt
increase Δβ2 which may include, possibly, an aftershock region. We
can see that the total variation Δβ = Δβ1 +Δβ2 = 0, such that we
may say that over this region there exists a (quasi-) equlibrium pro-
cess (ΔS = 0). It was suggested to use the precursory decrease in the
foreshock region, distinct from an increase in the aftershock region,
as a real-time prediction of a main shock.13

There exists another interpretation of the sudden variation of the
parmeter β in the vicinity of a large-magnitude earthquake, where
the continuous variable is the time t (Fig. 5.1, panel b). Indeed, the
sudden jump in the parameter β indicates a time derivative ∂β

∂t =
Δβ1δ(t − tMS), with the notations in Fig. 5.2. This abrupt varia-
tion induces a similar variation in the time derivative of the entropy
∂S
∂t = −Δβ1

β1
δ(t − tMS). The singularity indicated by the function

δ(t − tMS) is associated with a phase-transition singularity, which
would correspond to a critical regime.14 However, this is not a ther-

12A. De Santis, G. Cianchini, P. Favali, L. Beranzoli and E. Boschi, "The
Gutenberg-Richter law and entropy of earthquakes: two case studies in Central
Italy", Bull. Sesim. Soc. Am. 101 1386 (2011).

13L. Gulia and S. Wiemer, "Real-time discrimination of earthquake foreshocks
and aftershocks", Nature 574 193 (2019).

14A. De Santis, C. Abbattista, L. Alfonsi, L. Amoruso, S. A. Campuzano, M.
Carbone, C. Cesaroni, G. Cianchini, G. De Franceschi, A. De Santis, R. Di
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modynamic interpretation of the singularity, because the continuous
parameter is the time, not the temperature T = 1/β, which has also
a jump (it is discontinuous) at tMS .

The absence of fluctuations in the seismic activity analyzed here raises
an interesting question. In Statistical Physics (Thermodynamics) the
fluctuations are analyzed for an ensemble consisting of a large num-
ber N 
 1 of sub-ensembles (sub-systems). The standard deviation
δβ = β computed in equation (5.16) corresponds to one sub-ensemble.
The sub-ensemble method is convenient for an extensive ensemble (like
a gas of N particles). The seismic activity lacks this extensive prop-
erty. However, we may view the successive updates of the parameter
β described above as a series of N distinct, random, independent real-
izations of our ensemble, such that the average value of the parameter
β is given by

B =
1

N

N∑
i=1

βi , (5.17)

with the mean value B = β. We note that these assumptions imply
the statistical equilibrium. The mean squre deviation of B is

ΔB2 =
1

N2

N∑
i,j=1

ΔβiΔβj =
1

N2

N∑
i=1

Δβ2
i , (5.18)

which can be written as ΔB2 = 1
NΔβ2; hence, we find δB/B =√

ΔB2/B = 1√
N

(
δβ/β

)
, where we may take δβ = β and β = β.

We can see that the relative fluctuation of B is vanishing for large

N and the dispersion of the variables βi is δβ =

√
Δβ2 = β. This

corresponds to the normal (gaussian) distribution given by equation
(5.15) (this result is also known as the central limit theorem). If
the normal distribution changes in time, under the assumption of
(quasi-) statistical equilibrium, we would have the possibility to do a
prediction, as discussed above. From the discussion given above we
see that this picture is not supported by data. The values βi of the

Giovambattista, D. Marchetti, L. Martino, L. Perrone, A. Piscini, M. L. Rain-
one, M. Soldani, L. Spogli and F. Santoro, "Geosystemics view of earthquakes",
Entropy 21 412 (2019) doi:10.3390/e21040412.
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parameter β exhibit a slight, uniform increase in time, interrupted
by disparate, aparently random abrupt decreases. This behaviour
indicates a non-equilibrium process.
The time variation of the parameter β of the Gutenberg-Richter dis-
tribution may be used as a quantitative measure of the departure from
equilibrium of a given seismic activity. For example, from Fig. 5.1 we
can estimate a variation � 1% for β during the year 2010 and � 0.5%
for year 2011. The latter is smaller, due to the occurence of two large
earthquakes in 2011, which lowered the parameter β (1 May 2011,
magnitude 4.9 and 4 October 2011, magnitude 4.8). Similar values
are obtained for other years, which may indicate that the seismic ac-
tivity in Vrancea has a rather steady character, with a constant rate of
change in time of the magnitude distribution, over a long period. Al-
though these figures are very small, and we might be tempted to assign
a quasi-equilibrium character to the seismic activity, such a conclusion
is not supported by the lack of fluctuations; the existence of the fluc-
tuations is a necessary element for the statistical (quasi-) equilibrium.
However, if we view the small-earthquake increase in the parameter
β together with the decrease brought about by larger earthquakes as
long-period quasi-oscillations over a long period of time (including a
large set of data), then we may assume that these quasi-oscillations
are fluctuations. Such quasi-oscillations have been identified previ-
ously on the data corresponding to 3640 earthquakes with magnitude
M ≥ 3 which occurred in Vrancea during 1981 − 2018.15 It seems
that such quasi-oscillations have also been seen, although on small-
sized samples.16 From this perspective, long-period quasi-oscillations
in the parameter β, corroborated with a small, overall increase, might
lead to assuming that the seismic activity may be approximated by a
quasi-equilibrium process over such very long periods of time. How-
ever, we note that the steady increase of the parameter β and its
disparate ruptures are not easily distributed on a normal gaussian.
The maximization of the canonical entropy under the condition of a
fixed mean energy (magnitude) leads to the canonical distribution,
as described above. This distribution fits the emprical data, except
15B. F. Apostol, Seismology, Nova, NY (2020).
16I. Main and F. Al-Kindy, "Entropy, energy and proximity to criticality in global

earthquake populations", Geophys. Res. Lett. 29 (7) 10.1029/2001GL014078
(2002).

79



5 Entropy of Earthquakes

for small-magnitude region, where there exist correlations (the roll-off
effect). This indicates that the seismic events are not independent,
especially for small magnitudes, which are the most numerous. Con-
sequently, the seismic activity is not in equilibrium.

Task #4 of Practical Seismology follows from the continuous updating
(daily) of the parameter β for Vrancea. The weekly updatings should
be plotted, in order to get the annual variation of the parameter β,
which gives information about the state of the non-equilibrium process
of the seismic activity. For instance, we can estimate the annual
increase of the parameter β, as described above.
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6 Seismic Moment. Seismic
Waves

6.1 Focal force

There exist earthquakes which are produced by forces localized, for a
short time, in a focal region with small dimensions, called the earth-
quake focus. The dimensions of the focus are small in comparison with
distances where we measure the effects of the earthquake on Earth’s
surface. Similarly, the duration of the earthquake is short in com-
parison with the relevant times during which we measure the effects
of the earthquake. We call these earthquakes tectonic, elementary
earthquakes. There exist other classes of earthquakes, whose focal
regions are distributed over larger regions (like, for instance, some
surface earthquakes), or with the focal region propagating along large
ruptures.

The position of the focus and the duration of the effects of the earth-
quakes on Earth’s surface are determined by seismographs, which
record seismograms. A typical seismogram exhibits a weak, pre-
liminary tremor, consisting of longitudinal P ("primary") waves and
transverse S ("secondary") waves, followed by a large main shock,1

as shown in Fig. 6.1. (This "main shock" is different from the
"main shock" used for foreshock-main shock-aftershock sequences).
At any point of a region with reasonable dimensions about the epi-
centre these seismic waves come and go, pass over these points. They

1R. D. Oldham, Report on the Great Earthquake of 12th June, 1897, Geol. Surv.
India Memoir 29 (1899); "On the propagation of earthquake motion to long
distances", Trans. Phil. Roy. Soc. London A194 135 (1900); C. G. Knott, The

Physics of Earthquake Phenomena, Clarendon Press, Oxford (1908); A. E. H.
Love, Some Problems of Geodynamics, Cambridge University Press, London
(1926).
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disappear gradually by exciting the eigenmodes of vibrations of the
(quasi-) spherical Earth, which may last a long time (raising, finally,
the Earth’s temperature). The seismic waves and the main shock are
propagating waves. The effects of the earthquakes on Earth’s surface
are analyzed often in terms of Rayleigh surface "waves",2 which are
vibrations. Herein, we limit ourselves to the transient regime of prop-
agation of the elastic waves, prior to the establishment of the regime
of stationary vibrations.3

In regard to the propagation of the seismic waves the Earth may be
viewed as a homogeneous and isotropic elastic body, with a mean
density ρ = 5g/cm3. The velocity of the longitudinal waves is cl �
7km/s and the velocity of the transverse waves is ct � 3km/s. Also,
for distances of reasonable magnitudes, the Earth may be viewed as
a semi-infinite space (a half-space).

The main problem of Seismology is to account for the recordings of the
seismographs, i.e. for the P and S seismic waves and the main shock.
This is known as the Lamb problem (or seismological problem).4 In
1848 Kelvin computed the deformation of an infinite (homogeneous,
isotropic) elastic body for a point force,5 and Stokes derived in 1849

2Lord Rayleigh, "On waves propagated along the plane surface of an elastic
solid", Proc. London Math. Soc. 17 4 (1885) (J. W. Strutt, Baron Rayleigh,

Scientific Papers, vol. 2, Cambridge University Press, London (1900), p. 441.
3B. F. Apostol, "On the Lamb problem: forced vibrations in a homogeneous and

isotropic elastic half-space", Arch. Appl. Mech. 90 2335 (2020).
4R. D. Oldham, "On the propagation of earthquake motion to long distances",

Trans. Phil. Roy. Soc. London A194 135 (1900); H. Lamb, "On wave-
propagation in two dimensions", Proc. Math. Soc. London 35 141 (1902);
"On the propagation of tremors over the surface of an elastic solid", Phil.
Trans. Roy. Soc. (London) A203 1 (1904); A. E. H. Love, "The propagation
of wave-motion in an isotropic elastic solid medium", Proc. London Math.
Soc. (ser. 2) 1 281 (1903); H. Jeffreys, "On the cause of oscillatory movement
in seismograms", Monthly Notices of the Royal Astron. Soc., Geophys. Suppl.

2 407 (1931). See also M. Bath, Mathematical Aspects of Seismology, Else-
vier, Amsterdam (1968); A. Ben-Menahem and J. D. Singh, Seismic Waves

and Sources, Springer, NY (1981); K. Aki and P. G. Richards, Quantitative

Seismology, University Science Books, Sausalito, CA (2009).
5Sir William Thompson, Lord Kelvin, "On the equations of equilibrium of an

elastic solid", Cambridge Dublin Mathematical Journal 3 87 (1848); Mathe-

matical and Physical Papers, vol. 1, Cambridge Univ. Press, London (1982),
p. 97.
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the spherical elastic waves generated in such a body by a point force.6

However, a force is not allowed, because it would give a translation
motion of the Earth as a whole; also, a non-vanishing torque of forces
is forbidden, because it would give a rotation of the Earth as a whole.
Let us assume a force density f (t)w(R) at position R and time t,
where f is the force and w is a distribution function. The net force
acting along the i-th direction on an infinitesimal volume can be rep-
resented as

fiw(x1 + h1, x2 + h2, x3 + h3)− fiw(x1, x2, x3) �

� fihj∂jw(x1, x2, x3) ,
(6.1)

where fi, i = 1, 2, 3, are the components of the force, hj , j = 1, 2, 3,
are the components of an infinitesimal displacement h and xi are the
coordinates of the point with the position vector R. It is convenient
to generalize the product fihj to a tensor Mij , which is assumed to
be a symmetric tensor. In addition, the distribution function w is
taken as the Dirac delta function w(R) = δ(R−R0), where R0 is the
position of the focus. Therefore, the force density in the focus can be
written as

Fi(R, t) = Mij(t)∂jδ(R −R0) , (6.2)

where Mij(t) includes the time dependence. Further on, we may as-
sume that this force acts a very short time T , such that we may write
Mij(t) = MijTδ(t). The force density becomes

Fi(R, t) = MijTδ(t)∂jδ(R −R0) . (6.3)

We call an earthquake with a δ(R−R0) spatial dependence and a δ(t)
time dependence of the focal force (or the derivatives of the δ-function)
an elementary earthquake, produced by an elementary seismic source.
The tensor Mij is called the tensor of the seismic moment. Sometimes,
it is convenient to use the reduced tensor mij = Mij/ρ, where ρ is the
density of the body.
6G. G. Stokes, "On the dynamical theory of diffraction", Trans. Phil. Soc.

Cambridge 9 1 (1849) (reprinted in Math. Phys. Papers, vol. 2, Cambridge
University Press, Cambridge 1883, p. 243).
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P S MS

t

Figure 6.1: Schematic representation of a typical seismogram, with
the P and S waves and the main shocks MS; the arrow
indicates the flow of the time t.

The force density given by equation (6.3) is the tensorial focal force
density for an elementary earthquake.7 It is a representation of what
is called in Seismology the "double-couple" force.8 We can see that
the total forceˆ

dRFi =

ˆ
dRMij(t)∂jδ(R−R0) = 0 (6.4)

is vanishing (due to the presence of the derivatives ∂jδ(R−R0)) and,
also, the total torque of the force

ˆ
dRεijkxjFk =

ˆ
dRεijkxjMkl(t)∂lδ(R −R0) = 0 (6.5)

is vanishing (by an integration by parts, and assuming that the seismic
tensor is symmetric; εijk is the total antisymmetric tensor of rank
three).

The (symmetric) seismic tensor Mij has in general six components.
For a shear fault the number of components is reduced to four (by
Kostrov representation9); in this case it can be deduced from the

7B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor
force. General solution for the half-space with point forces", J. Elas. 126 231
(2017); "Elastic waves inside and on the surface of a half-space", Quart. J.
Mech. Appl. Math. 70 289 (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishing, Cambridge (2017); The Theory of

Earthquakes, Cambridge International Science Publishing, Cambridge (2017);
Seismology, Nova, NY (2020).

8K. Aki and P. G. Richards, Quantitative Seismology, 2nd edition, University
Science Books, Sausalito, CA (2009), p. 60, Exercise 3.6.

9B. V. Kostrov, "Seismic moment and energy of earthquakes, and seismic flow
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recordings of the P and S seismic waves, by imposing the covariance
condition.10 For an explosion the seismic tensor reduces to a scalar
(Mij = −Mδij).

It was realized that the logarithm of the soil displacement measured at
Earth’s surface is a measure of the strength of the earthquake, called
magnitude. Since the displacement is related to the energy E released
by the earthquake, this law can be written as

lgE = a+ bMw , (6.6)

where Mw is the magnitude of the earthquake and a and b are conven-
tional numerical coefficients. This is known as the Gutenberg-Richter
law.11 On the other hand, we can see from equation (6.3) that the

magnitude M =
(
M2

ij

)1/2
of the seismic tensor is a measure of the en-

ergy released in the focus. The relation E = M/2
√
2 was established

recently.12 Equation (6.6) can be written as

lgM =

(
a+

3

2
lg 2

)
+ bMw , (6.7)

or, by convention,

lgM =
3

2
Mw + 16.1 , (6.8)

where M is measured in erg (1dyn · 1cm); therefore, a = 15.65 and
b = 3

2 . This equation is known as the Hanks-Kanamori law.13

of rock", Bull. (Izv.) Acad. Sci. USSR, Earth Physics, 1 23 (1974) (English
translation pp. 13-21); B. V. Kostrov and S. Das, Principles of Earthquake

Source Mechanics, Cambridge University Press, NY (1988).
10B. F. Apostol, "An inverse problem in seismology: derivation of the seismic

source parameters from P and S seismic waves", J. Seism. 23 1017 (2019);
"On an inverse problem in elastic wave propagation", Roum. J. Phys. 64 114
(2019).

11B. Gutenberg and C. Richter, "Frequency of earthquakes in California", Bull.
Seism. Soc. Am. 34 185 (1944); "Magnitude and energy of earthquakes",
Annali di Geofisica 9 1 (1956) (Ann. Geophys. 53 7 (2010)).

12B. F. Apostol, "An inverse problem in seismology: derivation of the seismic
source parameters from P and S seismic waves", J. Seism. 23 1017 (2019).

13H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981
(1977); T. C. Hanks and H. Kanamori, "A moment magnitude scale", J. Geo-
phys. Res. 84 2348 (1979).
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The magnitude of the seismic moment is determined by using semi-
empirical laws, especially its relation with the soil displacement, i.e.

the solution of the elastic wave equation; synthetic seismograms are
produced this way, which are fitted to the recorded seismograms.14

Usually, the solution of the Stokes problem is used to construct a
solution for a couple of forces (with an infinitesimal arm), then another
couple is added to avoid free rotations. This is called the double-couple
solution.15 Various other semi-empirical parameters are introduced.
The comparison is made with time-frequency windows of the main
shock. This procedure involves many arbitrary approximations, or
at least, of a very particular nature, and it is not fully in the public
domain. It is incorporated in numerical codes, provided by various
agencies. The determination of the seismic moment, as well as of all
the other parameters of the seismic source from the seismic P and S
waves was established recently.16

14A. M. Dziewonski and D. L. Anderson, "Preliminary reference Earth model",
Phys. Earth planet. Inter. 25 297 (1981); M. L. Jost and R. B. Herrmann,
"A student’s guide to and review of moment tensors", Seismol. Res. Lett.
60 37 (1989); D. Giardini, "Moment tensor inversion from mednet data (I).
Large worldwide earthquakes of 1990", Geophys. Res. Lett. 19 713 (1992); F.
Bernardi, J. Braunmiller, K. Kradolfer and D. Giardini, "Automatic regional
moment tensor inversion in the European-Mediterranean region", Geophys.
J. Int. 157 703 (1995); H. Kawakatsu, "Automated near real-time CMT in-
version", Geophys. Res. Lett. 22 2569 (1995); Z. H. Shomali, "Empirical
Green functions calculated from the inversion of earthquake radiation pat-
terns", Geophys. J. Int. 144 647 (2001); G. Ekstrom, M. Nettles and A. M.
Dziewonski, "The global CMT project 2004-2010: centroid-moment tensors for
13,017 earthquakes", Phys. Earth planet. Int. 200-201 1 (2012).

15See, for instance, M. Bath, Mathematical Aspects of Seismology, Elsevier, Ams-
terdam (1968); A. Ben-Menahem and J. D. Singh, Seismic Waves and Sources,
Springer, NY (1981); K. Aki and P. G. Richards, Quantitative Seismology, Uni-
versity Science Books, Sausalito, CA (2009).

16B. F. Apostol, "An inverse problem in seismology: derivation of the seismic
source parameters from P and S seismic waves", J. Seism. 23 1017 (2019).
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6.2 Primary waves: P and S seismic waves

The equation of the elastic waves in a homogeneous isotropic body
(Navier-Cauchy equation17) is

ü− c2tΔu− (c2l − c2t )grad divu = F , (6.9)

where u is the displacement vector, cl,t are the wave velocities and
F is the force per unit mass (reduced force, force density divided by
the density ρ of the elastic body).18 The velocities are related to the
Lame coefficients λ and μ by cl =

√
(λ+ 2μ)/ρ , ct =

√
μ/ρ. We

solve this equation in the infinite space by a particular solution given
by the tensorial force

Fi = mijTδ(t)∂jδ(R) ; (6.10)

equation (6.9) reads now

üi − c2tΔui − (c2l − c2t )∂i∂juj = mijTδ(t)∂jδ(R) , (6.11)

where mij = Mij/ρ. The solution has a near-field part, corresponding
to small distances R (comparable to the dimension of the focus) and
a far-field part, corresponding to large R. We give here the far-field
displacement19

uf
i = T

4πct

mijxj

R2 δ
′

(R − ctt)+

+ T
4π

mjkxixjxk

R4

[
1
cl
δ
′

(R− clt)− 1
ct
δ
′

(R − ctt)
] (6.12)

for the tensorial force.

In the far-field region the cl-contribution is the longitudinal (P ) wave,
while the ct-contribution is the transverse (S) wave (this can easily

17C. L. Navier, Mem. Acad. Sci. t. 7 (1827) (read in Paris Academy in 1821);
A. L. Cauchy, "Sur les equations qui expriment les conditions d’equilibre ou
les lois du mouvement interieur d’un corps, solide, elastique ou non-elastique",
included in Exercices de Mathematique (1828) (communicated to the Paris
Academy in 1822).

18L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of

Elasticity, Elsevier, Oxford (1986).
19B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.

J. Mech. Appl. Math. 70 289 (2017).
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be seen by multiplying by xi and summing over i in equation (6.12)).
The scissor-like shape of the δ

′

-functions appears in seismograms (as
shown in Fig. 6.1, with oscillations). We can see that the P and
S waves are spherical-shell waves, concentrated on spherical surfaces
with radius R = cl,tt. We call them primary waves. (In the near-field
region the cl,t-contributions have not purely longitudinal or purely
transverse polarizations).

For an isotropic source mij = −mδij and the displacements reduce to

un =
TmR

4πclR3
δ(R− clt) , uf = − TmR

4πclR2
δ
′

(R− clt) , (6.13)

where un is the near-field displacement. We can see that these dis-
placements are purely longitudinal, as expected.

From equation (6.9) we get the energy conservation in the elastic
waves.20 If we multiply equation (6.9) by u̇i and perform summation
over the suffix i, we get the law of energy conservation

∂
∂t

[
1
2ρu̇

2
i +

1
2ρc

2
t (∂jui)

2 + 1
2ρ(c

2
l − c2t )(∂iui)

2
]−

−ρc2t∂j(u̇i∂jui)− ρ(c2l − c2t )∂j(u̇j∂iui) = ρu̇iFi .
(6.14)

According to this equation, the external force F performs a mechan-
ical work ρu̇F (in the focus) per unit volume and unit time. The
corresponding energy is transferred to the waves (the terms in the
square brackets in equation (6.14)), which carry it through the space
(the terms including the div in equation (6.14)). It is worth noting
that outside the focal region the force is vanishing. Also, the waves
do not exist inside the focal region. Therefore, limiting ourselves to
the displacement vector of the waves, we have not access to the me-
chanical work done by the external force in the focal region. This
circumstance arises from the localized character of the focus (which
is separated from the body).

Using the decomposition u = ul+ut, curlul = 0, divut = 0, equation
(6.14) is transformed into

∂el,t
∂t

+ cl,tdivsl,t = 0 , (6.15)

20B. F. Apostol, Seismology, Nova (2020).
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Figure 6.2: Spherical-shell wave intersecting the surface z = 0 at P .

where
el,t =

1

2
ρ
(
u̇f
l,ti

)2
+

1

2
ρc2l,t

(
∂iu

f
l,tj

)2
(6.16)

is the energy density and

sl,ti = −ρcl,tu̇f
l,tj∂iu

f
l,tj ; (6.17)

cl,tsl,ti are energy flux densities per unit time (energy flow). From
equation (6.15) we can see that the energy is transported with veloc-
ities cl,t (as it is well known). The volume energy E =

´
dR(el + et)

is equal to the total energy flux

Φ = − ´ dtdR (cldivsl + ctdivst) =

= − ´ dt ¸ dS (clsl + ctst) ,
(6.18)

i.e. the energy is fully transported by waves.

6.3 Secondary waves: main seismic shock

The primary waves are concentrated on spherical shells with thickness
of the order l = ΔR = cT � R (for convenience, we discuss only one
primary wave, with velocity c). They propagate from the focus and
intersect the free surface of the Earth, placed at height z0 from the
focus. This height defines the position of the epicentre on the surface
of the Earth. The wavefront of the primary waves intersect the surface
of the Earth along a circular line, with radius r, measured from the
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epicentre. The intersection line of the primary waves with this surface
has a finite spread Δr, which can be calculated from

R2 = r2 + z20 , (R + l)2 = (r +Δr)2 + z20 ; (6.19)

hence,

Δr =
2Rl+ l2

r +
√
r2 + 2Rl+ l2

; (6.20)

we can see that for r → 0 the width Δr � √2z0l of the seismic spot
on the surface is much larger than the width of the spot for large
distances Δr � l (2z0 
 l). We may call the region with the radius√
2z0l surrounding the epicentre the epicentral region. For values

of r not too close to the epicentre we may use the approximation
Δr � Rl/r. A spherical wave intersecting the surface z = 0 is shown
in Fig. 6.2.

The energy density of the spherical waves is proportional to 1/R2. As
long as the spherical wave is fully included in the half-space its total
energy E0 is given by the energy density integrated over the spherical
shell of radius R and thickness l. If the wave intersects the surface of
the half-space, its energy E is given by the energy density integrated
over the spherical sector which subtends the solid angle 2π(1+ cosθ),
where cos θ = z0/R (see Fig. 6.2). It follows E = 1

2E0 (1 + z0/ct)
for ct > z0. We can see that the energy of the wave decreases by
the amount Es = 1

2E0 (1− z0/ct), ct > z0. This amount of energy is
transferred to the surface, which generates secondary waves (according
to Huygens principle).

In the seismic spot with width Δr generated on the surface by the far-
field primary waves we may expect a reaction of the (free) surface, such
as to compensate the force exerted by the incoming spherical waves
(boundary force). The waves propagate by transferring motion from
particle to particle. The particles on the free surface return the motion
to the body. This localized reaction force generates secondary waves,
distinct from the incoming, primary spherical waves. The secondary
waves can be viewed as waves scattered off the surface (reflected), in
the whole half-space, from the small region of contact of the surface
seismic spot (a circular line). If the reaction force is strictly limited to
the zero-thickness surface (as, for instance, a surface force), it would
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not give rise to waves, since its source has a zero integration measure.
We assume that this reaction appears in a surface layer of thickness Δz
(Δz � z0) and with a surface extension 2πrΔr, where it is produced
by volume forces. The thickness Δz of the superficial layer activated
by the incoming primary wave may depend on R (and r), similarly for
the surface spread Δr; for instance, from Fig. 6.2 we haveΔz = lz0/R.
We limit ourselves to an intermediate, limited region of the variable r
(R) (i.e., for a region not very close to the epicentre and not extending
to infinity), of the order z0.
We can calculate the displacement us in the secondary waves by solv-
ing the elastic waves equation, with a force f localized on the sur-
face, in the region where the primary waves intersect the surface of
the Earth (the superficial layer of thickness Δz and surface spread
2πrΔr). Such a force is usually derived from two potentials χ and h,
by f = gradχ+ curlh (divh = 0). We take these potentials as21

χ = χ0(r)δ(z)δ(r − vlt) , h = h0(r)δ(z)δ(r − vtt) . (6.21)

Equations (6.21) describe wave sources, distributed uniformly along
circular lines on the surface, propagating on the surface with con-
stant velocities vl,t and limited to a superficial layer with "zero" thick-
ness and a circular line ("zero" width); their magnitudes χ0(r) and
h0(r) have an approximate m/R-dependence, where m is an order-
of-magnitude estimate of the seismic moment mij . These quantities
have a slow variation for r ∼ z0 (not very close to the epicentre); for
this range of the variable r we may consider χ0 and h0 as being con-
stant. The velocities vl,t in equation (6.21) correspond to the velocities
vl,t = dr/dt = c2l,tt/r resulting from equation (6.19). We see that vl,t
are greater than cl,t, i.e. the primary waves move faster on the surface
of the Earth than the secondary waves they generate. In addition, vl,t
depend on r and tend to cl,t for large values of the distance r. We
make a further simplification and consider them as constant velocities,
slightly greater than cl,t (over an intermediate, limited range of varia-
tion of r). Also, in the subsequent calculations we consider the origin
21B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.

J. Mech. Appl. Math. 70 289 (2017); Introduction to the Theory of Earth-

quakes, Cambridge International Science Publishing, Cambridge (2017); The

Theory of Earthquakes, Cambridge International Science Publishing, Cam-
bridge (2017); Seismology, Nova, NY (2020).
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Figure 6.3: Primary wave (PW ), moving with velocity v on the
Earth’s surface, secondary wave (SW ), moving with veloc-
ity c < v, the main shock (MS) and the long tail (LT ); the
separation between the two wavefronts is Δs = 2(v − c)t
and the time delay is Δt = (2r/c)(v/c− 1), where r is the
distance on the surface from the epicentre.

of the time at r = 0 (the epicentre) for each primary wave and the as-
sociated secondary source. The simplified model of secondary sources
introduced here retains the main features of the exact problem, in-
corporated in the surface localization and propagation of the sources
with velocities vl,t greater than wave velocities cl,t; on the other hand,
by using this model we lose the anisotropy induced by the tensor of
the seismic moment and specific details regarding the dependence on
the distance. Since the secondary seismic sources are sources moving
on the surface we may call the secondary waves produced by these
sources "surface seismic radiation".

The potentials given above give rise to the leading contributions to the
components of the surface displacement (z = 0, in polar cylindrical
coordinates)22

usr � χ0τl
4cl

· r

(c2l τ2
l
−r2)3/2

,

usϕ � −h0zτt
4ct

· r

(c2tτ
2
t −r2)3/2

,

usz � h0ϕτt
4ct

· c2t τ
2
t

r(c2tτ
2
t −r2)3/2

,

(6.22)

where τl,t denote times slightly smaller than t. We can see that there
exists a horizontal component of the displacement perpendicular to

22B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.
J. Mech. Appl. Math. 70 289 (2017).
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the propagation direction (usϕ) and both the r-component and the
ϕ, z-components, which make right angles with the propagation direc-
tion, are of the same order of magnitude.23 For long times (cl,tτl,t
 r)
the surface displacement goes like

usr � χ0r
4c4l τ

2
l
, usϕ � − h0zr

4c4tτ
2
t
, usz � h0ϕ

4c2tr
; (6.23)

these equations show that the displacement exhibits a long tail, espe-
cially the z-component. It is worth noting the singular character of
the solution near the wavefront, where the displacement looks like a
wall. The solutions given above are valid for distances r larger than
the radius

√
2z0l of the epicentral region, but sufficiently small, such

that the thickness Δz = lz0/R of the superficial layer of sources to
be comparable to the thickness l of the primary waves. It follows
that the maximum of the main shock appears for distances r of the
order of the depth z0. The solutions given by the above equations
describe the seismic main shock. Primary and secondary waves, the
main shock and the long tail are shown in Fig. 6.3. The P and S
seismic waves and the main shock are the main characteristics of a
typical seismogram.24

Also, secondary waves produced by an internal discontinuity surface,
parallel to the free surface of the half-space, have been calculated.
The discontinuity surface, excited by primary waves, separates two
bodies with distinct elastic properties. Secondary waves propagating
above and below the discontinuity surface are refracted and reflected
waves. They differ from the refracted and reflected waves produced
by a plane wave.

The calculation of a typical seismogram presented here has been ex-
tended to other, more complex, situations. For instance, we can con-
sider a structured focus, consisting of a set of pointlike elementary
foci, acting at different moments of time. Also, we can consider a
moving focus, in which case we have a "seismic radiation". On the

23A. E. H. Love, Some Problems of Geodynamics, Cambridge University Press,
London (1926).

24R. D. Oldham, "On the propagation of earthquake motion to long distances",
Trans. Phil. Roy. Soc. London A194 135 (1900); C. G. Knott, The Physics

of Earthquake Phenomena, Clarendon Press, Oxford (1908); A. E. H. Love,
Some Problems of Geodynamics, Cambridge University Press, London (1926).
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surface of seas and oceans the abrupt wall of the main shock looks like
a tsunami. The focus may be localized on the surface of the Earth, in
which case, it is isotropic, we have an explosion or a meteorite. Also,
the focus may be localized beneath the bottom of seas and oceans.25

The static elastic deformations caused by a tensor force Fi(R) =
Mij∂jδ(R − R0) (equation (6.2)) have been computed for a homo-
geneous and isotropic half-space.26 Small crustal quasi-static defor-
mations can be measured by laser techniques from satellites; they
release the seismic energy accumulated in the focus. A long intermit-
tence of these deformations may indicate the accumulation of a large
amount of seismic energy. Therefore, watching the crustal quasi-static
deformations, especially in a presumable epicentral region, may give
information about the seismic hazard.

6.4 Main shock

Let a spherical-shell primary wave touch the plane surface of the Earth
at the epicentre. The depth of the focus is z0 and the thickness of
the wave is l, of the order of the dimension of the focus. The wave
affects a circular disk on Earth’s surface with radius de, given by
(z0 + l)2 = z20 + d2e , i.e. de �

√
2z0l (l � z0). This is the radius of

the epicentral region. For instance, for z0 = 100km and l = 500m we
get de = 10km.

Thereafter, the primary wave propagates along the surface of the
Earth as a circular ring with velocity

v =
dr

dt
=

d

dt

√
R2 − z20 = c

R

r
, (6.24)

where r is the radius of the ring on the surface of the Earth, R = ct
is the distance from the focus and c is the velocity of the spherical-
shell primary wave (Fig. 6.2). We can see that v is a non-uniform
velocity, which varies from ∞ (r = 0, epicentre) to c (r −→ ∞). It

25B. F. Apostol, Seismology, Nova, NY (2020).
26B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor

force. General solution for the half-space with point forces", J. Elast. 126 231
(2017).
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is always higher than the elastic wave velocity c. The spot of the
primary wave propagates on the surface of the Earth faster than the
elastic wave velocity. We look for its effect on the surface of the Earth
for distances much larger than the epicentral distance (r 
 de).

The circular ring of the primary wave on the suface of the Earth has
a thickness Δr given by equation (6.20). It varies from the epicentral
distance de (r = 0) to l (r −→ ∞). We may take approximately
Δr � R

r l for r 
 de.

In addition, according to Fig. 6.2, the spherical shell of the primary
wave has a vertical thickness Δz = z0

R l; it varies from l (r = 0) to
0 (r −→ ∞). In the circular ring with the cross-section of the or-
der ΔrΔz, of the primary wave on the surface of the Earth, volume
forces occur, which are sources for secondary waves. For these vol-
ume forces the cross-section of the ring should be of the order l2, i.e.

ΔrΔz = z0
r l

2 � l2. It follows that the secondary waves (the main
shock) derived above are valid for intermediate distances r, centered
on z0.

A critical quantity in the derivation of the main shock is ε = v/c−1 =
R
r − 1, where 0 < ε < 1.27 For ε > 1 the main shock has not been
formed yet, while ε −→ 0 for r −→ ∞, where the secondary waves
disappear (and their expressions given above are not valid anymore).
The threshold ε = 1 gives r = z0/

√
3, which may be taken as an

estimate of the spread of the r-region centered on r = z0, where the
expressions given here for the secondary waves are valid. For r = z0
we get ε =

√
2− 1.

The parameter ε governs the time delay between the arrival of the
primary wave and the main shock. The primary wave arrives at the
time τp = (r/c)/(1 + ε) at the point r, while the main shock arrives
at the same point at the time τm = (r/c)/(1 − ε). The time delay is
Δτ = 2(r/c)ε/(1− ε2). For r = z0 (ε =

√
2− 1) we get τp = 0.7(r/c)

and τm = 1.7(r/c) (where r = z0); the time delay is Δτ � r/c.

We pass now to estimate the magnitude of the main shock ums. Ac-
cording to equation (6.22) the displacement of the main shock is sin-
gular for cτ = r. This singularity is smoothed out by the uncertainty

27B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.
J. Mech. Appl. Math. 70 289 (2017); Seismology, Nova, NY (2020).
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introduced by the parameter ε, such that c2τ2 − r2 −→ c2τ2ε. From
equation (6.22) we get

ums � χ0

4c2
1

rε3/2
=

χ0

4c2

√
r(R + r)3/2

z30
(6.25)

for cτ = r, where χ0 is a generic notation for the magnitudes χ0

and h0 of the potentials. Making use of equation (6.21) we get χ �
χ0/ΔzΔr, such that χ0 = (z0l

2/r)χ. The potential χ is a generic
notation for the potentials χ and h, which can be estimated from
f = gradχ + curlh (divh = 0), where f is the density of the elastic
volume force (per unit mass) generated by the displacement of the
primary waves. The estimate is χ � cTM/4πρRl3 = M/4πρRl2,
where M is the magnitude of the seismic moment and ρ is the density.
On the other hand, the magnitude of the seismic moment is of the
order M � ρc2l3, i.e. the elastic energy stored in the focus. Therefore,
χ � c2l/4πR and χ0 � c2l3z0/4πrR. Finally, we get

ums � l3

16π

(R+ r)3/2

z20
√
rR

; (6.26)

this estimate is valid for an intermediate range of distances r, say from
z0/
√
3 to z0 + (z0 − z0/

√
3) = z0(2 − 1/

√
3). For r = z0 we get ums

of the order l3/z20 .

This displacement should be compared with the displacement pro-
duced by the primary wave, which is of the order up � l2/R (equation
(6.12)). We can see that ums � up (on the average). The damaging
effect of the main shock arises from its long duration, which is of the
order z0/c, compared with the duration � l/c of the primary waves.

6.5 Earthquake parameters

The main parameter of an earthquake is the tensor of the seismic mo-
ment Mij of the focus. We show here how it can be derived, together
with other earthquake parameters, from the measurements of the P
and S seismic waves at the surface of the Earth.
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For an elementary earthquake the displacement produced by the far-
field seismic waves are given by

uf
i = − T

4πρc3t

Mijxj

R2 δ
′

(t−R/ct)− T
4πρ

Mjkxixjxk

R4 ·

·
[

1
c3l
δ
′

(t−R/cl)− 1
c3t
δ
′

(t−R/ct)
] (6.27)

(equation (6.12). This equation can be decomposed in longitudinal
and transverse waves, which are the P wave and the S wave, respec-
tively. In addition, we may replace δ

′

by 1/T 2, such that we get

vli = − 1
4πρTc3l

Mjkxixjxk

R4 ,

vti =
1

4πρTc3tR
2

(
Mjkxixjxk

R2 −Mijxj

) (6.28)

for the amplitudes of these waves. We introduce the unit vector n =
R/R, where R is the vector from the focus to the observation point.
Also, we introduce the notations

Mi = Mijnj , M0 = Mii , M4 = Mijninj . (6.29)

Henceforth, we consider the unit vector n a known vector. M0 is
the trace of the seismic-moment tensor and M4 is the quadratic form
associated to the seismic-moment tensor, constructed with the unit
vector n; we may call it the unit quadratic form of the tensor. The
vector M can be called the "projection" of the tensor along the focus-
observation point direction (observation direction). We get easily

vl = − 1

4πρT c3lR
M4n , vt =

1

4πρT c3tR
(M4n−M) (6.30)

and
M = −4πρTR (c3l vl + c3tvt

)
. (6.31)

The displacement in the far-field waves is determined by three inde-
pendent parameters: the magnitude of the vectors vl,t (two param-
eters) and the direction of the transverse vector vt (one parameter).
Consequently, we may view equations (6.31) as three independent
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equations for the six unknown components Mij of the seismic mo-
ment. Therefore, we have three input data (displacement field vl,t)
and seven unknowns, consisting of six components of the tensor Mij

and the duration T of the seismic activity in the focus. The rest of the
parameters entering equations (6.31) (density ρ, distance R, velocities
cl,t of the elastic waves) are known (e.g., ρ = 5g/cm3, cl = 7km/s,
ct = 3km/s).

We note the consistency (compatibility) relation M2 > M2
4 , derived

from v2t > 0 (vl,t denote the magnitudes of the vectors vl,t).

6.6 Kostrov representation

The earthquakes are produced by shear forces acting in a (localized)
fault. The explosions are produced by anisotropic dilatation occurring
in a (localized) focus. A hybrid mechanism, which would involve
both a shearing slip in a fault and a dilatation (or compression) is
impossible. This follows from the definition of the two processes, and
it was also proved formally.28

We assume that the fault focal region includes two plane-parallel sur-
faces, each with a (small) area S, separated by a (small) distance
d, sliding against one another. The focal area is determined by two
lengths l1,2, S = l1l2. In general, the lengths l1, l2, d are distinct;
in order to ensure the compatibility with the localization provided
by the δ-function (used in deriving the seismic waves), we assume
l1 = l2 = d = l. The fault is determined by its normal s, i.e. the unit
vector perpendicular to the fault surface. The slip along the surface
of the fault is characterized by a unit vector a, such that sa = 0.
The torque of the elastic forces acting upon a localized fault has been
computed.29 It provides a seismic moment given by

Mij = 2μV (siaj + aisj) , (6.32)

where μ is the Lame coefficient and V = l3 is the volume of the faulting

28B. F. Apostol, Seismology, Nova, NY (2020).
29B. F. Apostol, "An inverse problem in seismology: derivation of the seismic

source parameters from P and S seismic waves", J. Seismol. 23 1017 (2019).
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focus. This is the Kostrov relation;30 (it is a vectorial, or dyadic,
representation of the seismic moment). We note the invariant M0 =
Mii = 0, which tells that the seismic moment in this representation is a
traceless tensor.31 In addition, we note the relations M0

4 = Mijsisj =
0 and M0

i = Mijsj = 2μSu0ai; the former relation shows that the
quadratic form associated to the seismic moment in the focal region
is degenerate (it is represented by a conic), while the latter relation
shows that the "force" in the focal region is directed along the focal
displacement. The relations M0 = 0 and M0

4 = 0 reduce the number
of independent components of the tensor Mij from six to four.
It is worth noting an uncertainty (indeterminacy) of the dyadic con-
struction of the seismic-moment tensor (equation (6.32)). We can see
from equation (6.32) that the seismic moment is invariant under the
inter-change s ←→ a. This means that from the knowledge of the
seismic moment Mij we cannot distinguish between the two orthogo-
nal vectors s and a (fault direction and fault slip). Another symmetry
of the seismic moment given by equation (6.32) is the simultaneous
change of sign of the two vectors s and a. The symmetry s ←→ a
shows that any fault is associated, in fact, with another orthogonal
fault.32

Making use of equations (6.18) and (6.30), we get the energy of the
elastic waves

E = Φ =
4πρ

T
R2
(
clv

2
l + ctv

2
t

)
; (6.33)

this relation gives the energy released by the earthquake in terms
of the displacement measured in the far-field region and the (short)
duration of the earthquake. From equations (6.30) we get the relation

E =
1

4πρc5tT
3

[
M2 − (1− c5t/c

5
l

)
M2

4

]
(6.34)

between energy and the seismic moment. On the other hand, the
Kostrov representation allows the estimation of the mechanical work
30B. V. Kostrov, "Seismic moment and energy of earthquakes, and seismic flow

of rock", Bull. (Izv.) Acad. Sci. USSR, Earth Physics, 1 23 (1974) (English
translation p. 13); B. V. Kostrov and S. Das, Principles of Earthquake Source

Mechanics, Cambridge University Press, NY (1988).
31This particularity gives access to the near-field waves (B. F. Apostol, Seismology,

Nova (2020).
32B. F. Apostol, Seismology, Nova, NY (2020).
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W = μV done by the elastic forces in the fault. (We can see that the
mechanical work done in the focal region is of the order of the elastic
energy stored in the focal region, as expected). By equating these two
energies, we get

μV =
4πρ

T
R2
(
clv

2
l + ctv

2
t

)
, (6.35)

or
T =

4π

c2tV
R2
(
clv

2
l + ctv

2
t

)
. (6.36)

By using equation (6.36) we can eliminate the unknown T from equa-
tions (6.31), which include now only the seismic moment. We note
that the volume V is given by

M2
ij = 8μ2V 2 (6.37)

(from equation (6.32)).
Also, we note the representation

u0
ij =

1

2
(siaj + aisj) =

1

4μV
Mij (6.38)

for the focal strain, which follows immediately from the definition of
the elastic strain and the considerations made above on the geometry
of the focal region. This equation relates the focal strain to the seismic
moment; it may be used for assessing the accumulation rate of the
seismic moment from measurements of the surface strain rate.33

6.7 Determination of the seismic moment

and source parameters

Making use of the reduced moment mij = Mij/2μV and mi = Mi/2μV
= Mijnj/2μV , equation (6.32) leads to

si(na) + ai(ns) = mi ; (6.39)
33S. N. Ward, "A multidisciplinary approach to seismic hazard in southern Cal-

ifornia", Bull. Seism. Soc. Am. 84 1293 (1994); J. C. Savage and R. W.
Simpson, "Surface strain accumulation and the seismic moment tensor", Bull.
Seism. Soc. Am. 87 1345 (1997).
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using equations (6.31) and (6.35) the components mi of the reduced
moment are given by

mi = −T 2

2R
· c

3
l vli + c3t vti
clv2l + ctv2t

. (6.40)

We solve here the equations (6.39) for the unit vectors a and s, subject
to the conditions

s2i = a2i = 1 , siai = 0 . (6.41)

Since M0 = 0 and M2 > M2
4 , we have m0 = mii = 0 and m2 > m2

4

(where m4 = mijninj and m2 = m2
i ). From equation (6.40) we

have mi < 0. The compatibility condition m2 > m2
4 can be checked

immediately from equation (6.40) (it arises from v2t > 0). We write
equations (6.39) as

αs+ βa = m , (6.42)

where we introduce two new notations α = (na) and β = (ns). We
assume that the vectors s, a and n lie in the same plane, i.e.

βs+ αa = n . (6.43)

This condition determines the system of equations and ensures the co-
variance of the solution; it is the covariance condition. From equations
(6.42) and (6.43) we get

2αβ = m4 , α2 + β2 = m2 = 1 . (6.44)

The equality m2 = 1 (covariance condition) has important conse-
quences; it implies M2 = (2μV )2, such that we can write the seismic
moment from equation (6.32) as

Mij = M (siaj + aisj) ; (6.45)

it follows the magnitude of the seismic moment
(
Mij

2
)1/2

=
√
2M ;34

M is the magnitude of the "projection" of the seismic-moment tensor
along the observation radius. In addition, from E = W = μV (equa-

tion (6.28)) we have E = M/2 =
(
Mij

2
)1/2

/2
√
2. The magnitude

34See, for instance, P. G. Silver and T. H. Jordan, "Optimal estimation of the
scalar seismic moment", Geophys. J. R. Astr. Soc. 70 755 (1982).
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(
Mij

2
)1/2

=
√
2M = 2

√
2E may be used in the Gutenberg-Richter

(Hanks-Kanamori) relation lg
(
Mij

2
)1/2

= 1.5Mw + 16.1, which de-
fines the magnitude Mw of the earthquake; in terms of the earthquake
energy this relation becomes lgE = 1.5(Mw − lg 2) + 16.1 (where
lg 2 � 0.3). We note that an error of an order of magnitude in the

seismic moment (M , E,
(
Mij

2
)1/2

) induces an error � 0.3 in the

magnitude Mw. We introduce the notation M =
(
Mij

2
)1/2

for the
magnitude of the seismic-moment tensor (M =

√
2M).

Further, from equation (6.40), the equality m2 = 1 can be written as

T 4

4R2
· c6l v

2
l + c6tv

2
t

(clv2l + ctv2t )
2 = 1 , (6.46)

which gives the duration T in terms of the displacements vl,t measured
at distance R. Inserting T in equation (6.36), we get

V 2 =
8π2R3

c4t

(
clv

2
l + ctv

2
t

) (
c6l v

2
l + c6t v

2
t

)1/2
(6.47)

and the magnitude of the seismic moment and the energy of the earth-
quake

M = 2E = 2μV =

= 2πρ(2R)3/2
(
clv

2
l + ctv

2
t

)1/2 (
c6l v

2
l + c6t v

2
t

)1/4 (6.48)

in terms of the displacements vl,t measured at distance R. In addition,
by eliminating R2 between equations (6.36) and (6.46), we can express
the focal volume as

V =
πT 3

c2t
· c

6
l v

2
l + c6tv

2
t

clv2l + ctv2t
. (6.49)

The solutions of the system of equations (6.44) are given by

α =

√
1 +

√
1−m2

4

2
, β = sgn(m4)

√
1−

√
1−m2

4

2
(6.50)
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and α ←→ ±β, α, β ←→ −α, −β. Making use of equations (6.40)
and (6.46), the parameters mi and m4 are given by

mi = − c3l vli + c3tvti

(c6l v
2
l + c6tv

2
t )

1/2
, m4 = − c3l (vln)

(c6l v
2
l + c6tv

2
t )

1/2
. (6.51)

Finally, we get the vectors

s = α
α2−β2m− β

α2−β2n ,

a = − β
α2−β2m+ α

α2−β2n ;

(6.52)

from equations (6.42) and (6.43); these solutions are symmetric under
the operations s ←→ a (α ←→ −β) and s ←→ −a (α ←→ β, or
α, β ←→ −α, −β). The seismic moment given by equation (6.45)
is determined up to these symmetry operations. We can see that
the seismic-moment tensor given by equation (6.45) is determined
by M (equation (6.48)) and the vectors s and a given by equations
(6.52), with the coefficients α, β given by equations (6.50); the vector
n is known and the vector m and the scalar m4 are given by the
experimental data (equations (6.51)). Equations (6.52) are manifestly
covariant.
Finally, by making use of equations (6.52) in equation (6.45) we get
the solution for the seismic moment

Mij =
M

1−m2
4

[minj +mjni −m4 (mimj + ninj)] , (6.53)

where M is given by equation (6.48) and mi, m4 are given by equa-
tions (6.51); the focal strain is u0

ij = Mij/2M (equation (6.38)).
In equation (6.53) there are only three independent components of
the seismic tensor, according to the equations mijnj = mi (mij =
Mij/M): the vectors n and m are known (equation (6.51)) from ex-
perimental data, such that these equations can be viewed as three con-
ditions imposed upon the six components Mij . Also, we can see that
there exist only three independent components of the seismic tensor
Mij from the conditions M0 = Mii = 0, Mijsjsi = 0 (or Mijaiaj = 0)
and m2

i = 1. The later equality arises from the covariance condition;
this equality and the energy conservation determine the duration T of
the earthquake, the volume V of the focal region and the magnitude
parameter M of the seismic moment.
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6.8 Isotropic seismic moment

An isotropic seismic moment Mij = −Mδij is an interesting partic-
ular case, since it can be associated with seismic events caused by
explosions.35 In this case the transverse displacement is vanishing
(uf

t = 0), M = −Mn, M4 = −M and vl = (R/clT )u
n
l (equations

(6.30)); from equations (6.31) and (6.28) we get

M = −4πρTRc3lvl , E =
4πρR2

T
clv

2
l (6.54)

we can see that vln > 0 corresponds to M > 0 (explosion), while the
case vln < 0 corresponds to an implosion. The focal zone is a sphere
with radius of the order l, and the vectors s and a are equal (s = a)
and depend on the point on the focal surface; the magnitude of the
focal displacement is u0 = l. The considerations made above for the
geometry of the focal region lead to the representation

Mij = −2V (2μ+ λ)δij = −2ρc2l V δij , (6.55)

where V = Sl denotes the focal volume and S is the area of the focal
region. Similarly, the energy is E = W = 1

2M (M > 0), such that,
making use of equations (6.54), we get clT =

√
2Rvl,

M = 2πρc2l (2Rvl)
3/2 = 2ρc2l V , (6.56)

and the focal volume V = π(2Rvl)
3/2. These equations determine the

seismic moment and the volume of the focal region from the displace-
ment vl measured at distance R. A superposition of shear faulting
and isotropic focal mechanisms (hybrid seismic mechanism) cannot
be resolved, because the longitudinal displacement vl includes indis-
criminately contributions from both mechanisms.36

6.9 Qualitative results

We can summarize the results as follows. Making use of the longitu-
dinal displacement vl and the transverse displacement vt, measured
35See, for instance, S. E. Minson and D. S. Dreger, "Stable inversions for complete

moment tensors", Geophys. J. Int. 174 585 (2008).
36B. F. Apostol, Seismology, Nova, NY (2020).
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on Earth’s surface, we compute the magnitude parameter M from
equation (6.48) and the vector m and the scalar m4 from equation
(6.51); then, from equation (6.53) we get the seismic moment Mij .
The energy released by the earthquake is E = M/2 (μV ) and an es-
timate of the focal volume is given by V = M/2ρc2t . An estimation
of the duration T of the earthquake is provided by equation (6.46).
The focal slip is of the order V 1/3 and the focal strain is of the order
Mij/2M (equation (6.38)). From the magnitude

(
Mij

2
)1/2

=
√
2M

of the seismic moment we may estimate the magnitude Mw of the
earthquake by means of the Gutenberg-Richter relation. A similar
procedure holds for an isotropic seismic moment.

Making use of m and m4 in equations (6.52) we compute the normal
s to the fault plane and the unit slip vector a in the fault plane;
the quadratic form associated to the seismic moment is a degenerate
hyperboloid which reduces to a hyperbola in the (s, a)-plane with
asymptotes along the vectors s and a. This hyperbola is tighter (closer
to the origin) for higher M .

It is convenient to have an estimation of the order of magnitude of
the various quantities introduced here. To this end we use a generic
velocity c for the seismic waves and a generic vector v for the dis-
placement in the far-field seismic waves. Equation (6.46) (which is
m2 = 1) gives cT � √

2Rv, which provides an estimate of the du-
ration of the earthquake in terms of the displacement measured at
distance R. The focal volume can be estimated from equation (6.35)
as V � π (2Rv)

3/2 � π(cT )3, as expected (dimension l of the focal
region of the order cT ; the rate of the focal slip is l/T � c). Also, from
equation (6.48) we have the energy E � μV � M/2 � 2ρc2V , where

M is related to the magnitude
(
M2

ij

)1/2
=
√
2M of the seismic mo-

ment (and the magnitude of the vector Mijnj). From equation (6.38)
we get a focal strain of the order unity, as expected. In addition, we
can see the relationships

lgE = lgM + const = lgV + const =
3

2
lg(vR) + const , (6.57)

which give a justification for the original identification lg(vR) = Mw+
const and for the coefficient 3/2 (or lg v = Mw + const for the same
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distance R).37

6.10 Moment magnitude. Local magnitude

The seismic-moment magnitude Mw is defined by the Hanks-Kanamori
relationship38

lg
(
Mij

2
)1/2

=
3

2
Mw + 16.1 , (6.58)

where M =
(
Mij

2
)1/2

is the magnitude of the seismic-moment tensor,
measured in erg (1erg = 1dyn · 1cm) and lg is the decimal logarithm.
It is related to the magnitude M of the vector Mi = Mijnj and the
earthquake energy E by the relations M =

√
2M = 2

√
2E, where n is

the unit vector from the focus to the observation point.39 Therefore,
equation (6.58) can also be written as

lgE =
3

2
Mw + 15.65 . (6.59)

We can see that the seismic-moment magnitude is a measure of the
energy released by the earthquakes.

On the other hand, the magnitude of the seismic moment tensor is
related to the amplitudes of the P and S seismic waves vl,t by

M = 8πρR3/2
(
clv

2
l + ctv

2
t

)1/2 (
c6l v

2
l + c6t v

2
t

)1/4
, (6.60)

where ρ is the density of the (homogeneous and isotropic) body, R
is the distance from the focus to the observation point and cl,t are
the velocities of the longitudinal (l) elastic wave and the transverse
(t) elastic wave (equation (6.48)). It follows that we can compute

37B. Gutenberg and C. F. Richter, "Frequency of earthquakes in California", Bull.
Seism. Soc. Am. 34 185 (1944).

38H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981
(1977); T. C. Hanks and H. Kanamori, "A moment magnitude scale", J. Geo-
phys. Res. 84 2348 (1979); see also B. Gutenberg and C. Richter, "Fre-
quency of earthquakes in California", Bull. Seism. Soc. Am. 34 185 (1944);
"Magnitude and energy of earthquakes", Annali di Geofisica 9 1 (1956) (Ann.
Geophys. 53 7 (2010)).

39B. F. Apostol, "An inverse problem in seismology: derivation of the seismic
source parameters from P and S seismic waves", J. Seismol. 23 1017 (2019).
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the magnitude Mw, by using equations (6.58) and (6.60), from the
measurements of the amplitudes vl,t of the seismic waves. The pa-
rameters entering these equations can be taken as the mean density
of the earth ρ = 5g/cm3 and the elastic waves velocities cl = 7km/s,
ct = 3km/s. Obviously, such a determination of the magnitude is
affected by errors.

This is why it is convenient to use an approximate formula

M = 8πρc2 (Rv)
3/2 (6.61)

for equation (6.60), where c = 5km/s is a mean value of the elastic
waves velocity and v is a mean value of the amplitude of the elastic
waves. Such an approximation implies also a duration T of the seismic
activity in the focus given by

cT = (2Rv)1/2 (6.62)

and a volume of the focal region V � π(cT )3 (equations (6.36) and
(6.46)), such that we may also write

M = 2
√
2ρc2V (6.63)

and E = ρc2V . By means of these approximate formulae we have
immediately a direct access to the focal volume and the duration of
the seismic activity in the focus.

Making use of equations (6.58) and (6.61), we get

lgM = 3
2 lg (Rv) + lg(8πρc2) =

= 3
2Mw + 16.1 ,

(6.64)

or
lg v + lgR = Mw + 1.8 (6.65)

for ρ = 5g/cm3 and c = 5km/s = 5×105cm/s (8πρc2 = 1013.54erg/cm3).

We can see that lg v + lgR+ const can be taken as a measure of the
seismic-moment magnitude. Since it depends on R, it is called local
magnitude, denoted by Ml. We define it as

Ml = lg v + lgR− 4.8 = Mw − 3 ; (6.66)
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the constant−4.8 is chosen such that we have Ml = 0 for Mw = 3; this
corresponds to v = 10−2.2cm and R = 100km = 107cm. In equation
(6.66) the displacement v and the distance R are measured in cm.
Equation (6.66) is valid only for the approximate estimation of the
moment magnitude Mw, which follows by using M � 8πρc2(Rv)3/2

in equation (6.58), instead of M given by equation (6.60).40

Equation (6.66) is similar to the great variety of local magnitude scales
in use. In particular, the original Richter local magnitude41 is defined
as

MR = lg v − 2.48 + 2.76 lgΔ , (6.67)

where v is measured in m and Δ is the epicentral distance measured
in km; it is calibrated to ML = 0 for v = 10−3m and Δ = 100km
(v is measured in m and Δ is measured in km in equation (6.67)).42

For shallow earthquakes the epicentral distance Δ =
√
R2 − h2 is

approximately equal to R, because the depth of the focus h is much
smaller than R.

Task #5 of Practical Seismology is to estimate a mean amplitude v of
the P and S seismic waves from recordings and use equations given
above to get an estimate of the duration T of the seismic activity in
the focus, the focal volume V , the magnitude of the seismic moment
M, the energy of the earthquake E, the moment magnitude Mw and
the local magnitude Ml.

Earth is not a homogeneous and isotropic elastic medium; it includes
inhomogeneities, which would cast doubts upon the validity of the
above derivations. There exist a few inhomogeneities with large di-
mensions; they affect the direction and the velocity of the elastic
waves. This is why, the position of the focus and the epicentre are de-
termined only approximately. The dimensions of the most numerous
inhomogeneities are small. They affect the content of the waves in the
spherical-shell waves with small wavelengths. Consequently, the seis-
mic waves exhibit a small-amplitude dispersion with short wavelengths
(short period of oscillation). This dispersion is visible on seismograms.

40B. F. Apostol, "On the local magnitude scale of earthquakes", J. Theor. Phys.
329 (2021).

41C. F. Richter, Elementary Seismology, Freeman, San Francisco (1958).
42T. Lay and T. C. Wallace, Modern Global Seismology, Academic, San Diego

(1995).
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It is compounded with the focus-structure effects and seismographs’
eigenoscillations. In estimating the amplitude of the displacement
from seismograms we should use the envelope of the oscillations. It
may happen that the amplitude is not the same on the two sides
of the oscillations; in that case we should use either the maximum
amplitude, or a mean amplitude. It is more difficult to establish a
direct connection between the displacement in the mainshock and the
characteristics of the focal region. In any case, the inhomogeneities
structure is more or less uniformly distributed, which makes accept-
able the conventional definitions of the earthquakes characteristics, in
particular the magnitude. Also, the logarithmic scale in the definition
of the magnitude allows for an appreciable reduction of the effect of
the large variations.
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7.1 Introduction

The determination of the seismic source and earthquake parameters is
a basic problem in seismology.1 This problem is currently solved, al-
most in real time, by various international and national agencies. The
Institute of Earth’s Physics at Magurele provides such information for
Vrancea earthquakes. The main quantity envisaged by these computa-
tions is the seismic-moment tensor and earthquake’s magnitude. The
solution is obtained by numerically fitting synthetic seismograms to
various waveforms recorded at Earth’s surface.

Recently, a new method was put forward for determining these pa-
rameters from local seismic recordings of the ground displacement
produced by the P and S seismic waves at Earth’s surface.2 This the-
ory has no fitting parameters. The components of the force density

1A. M. Dziewonski abd D. L. Anderson, "Preliminary reference earth model",
Phys. Earth planet. Inter. 25 297 (1981); S. A. Sipkin, "Estimation of earth-
quake source parameters by the inversion of waveform data: synthetic wave-
forms", Phys. Earth planet. Inter. 30 242 (1982); H. Kawakatsu, "Automated
near real-time CMT inversion", Geophys. Res. Lett. 22 2569 (1995); S.
Honda and T. Seno, "Seismic moment tensors and source depths determined
by the simultaneous inversion of body and surface waves", Phys. Earth plan.
Int. 57 311 (1989), and References therein; B. Romanowicz, "Inversion of
surface waves: a review", in International Handbook of Earthquake and En-

gineering Seismology, vol. 81A, eds. W. Lee, P. Jennings, C. Kisslinger and
H. Kanamori, Academic Press, NY (2002); G Ekstrom, M. Nettles and A. M.
Dziewonski, "The global CMT project 2004-2010: centroid-moment tensors for
13,017 earthquakes", Phys. Earth Planet. Int. 200-201 1 (2012); M. Vallee,
"Source time function properties indicate a strain drop independent of earth-
quake depth and magnitude", Nature Commun. doi: 10.1038/mcomms3606
(2013).

2B. F. Apostol, "An inverse problem in Seismology: determination of the seismic
source parameters from P and S seismic waves", J. Seism. 23 1017 (2019).
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in a seismic focus localized at R = 0, with a seismic activity lasting a
short time T at the initial moment t = 0, is given by

fi = MijTδ(t)∂jδ(R) , (7.1)

where i, j = 1, 2, 3 denote cartesian components and Mij is the (sym-
metric) tensor of the seismic moment.3 The Dirac delta functions in
equation (7.1) define an elementary earthquake, i.e. an earthquake
with a localized focus and a short duration. The equation of the
elastic waves in a homogeneous, isotropic body has been solved for
this force,4 and the static deformations produced by it in a homo-
geneous, isotropic half-space have been computed.5 A homogeneous,
isotropic elastic half-space with a plane surface is used as a model for
Earth in the seismic regions of interest. It was shown that the force
density given by equation (7.1) generates in the far-field region two
spherical-shell waves, identified as the P (primary, longitudinal) and
S (secondary, transverse) seismic waves. In addition, these primary
waves produce wave sources on Earth’s surface, with a cummulative
elastic energy, which generate secondary waves; the wavefront of the
secondary waves has a wall-like profile on Earth’s surface, which is the
main shock of the earthquakes. A highly simplified sketch of a typical
seismogram displaying these features is shown in Fig. 7.1. The theory
discussed herein makes use of the amplitudes of the P and S waves
computed previously.

Since the theory of determining the tensor Mij may appear as being
too technical,6 we provide here a direct, practical and operative pro-
cedure of applying this theory. In particular, the compatibility of the
3M. Bath, Mathematical Aspects of Seismology, Elsevier, Amsterdam (1968); A.

Ben-Menahem and J. D. Singh, Seismic Waves and Sources, Springer, NY
(1981); A. Udias, Principles of Seismology, Cambridge University Press, Cam-
bridge (1999); K. Aki and P. G. Richards, Quantitative Seismology, University
Science Books, Sausalito, CA (2009); B. F. Apostol, Introduction to the The-

ory of Earthquakes, Cambridge International Science Publishing, Cambridge
(2017); The Theory of Earthquakes, Cambridge International Science Publish-
ing, Cambridge (2017); Seismology, Nova, NY (2020).

4B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.
J. Mech. Appl. Math. 70 289 (2017).

5B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor
force. General solution for the half-space with point forces", J. Elast. 126 231
(2017).

6B. F. Apostol, loc. cit.
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Figure 7.1: Sketch of a typical seismogram, displaying the P - and S-
waves and the main shock MS. The arrows indicate the
"same side" of the P - and S-waves discussed in text.

input data and the optimization of the errors are discussed. The pro-
cedure gives the seismic-moment tensor, the earthquake energy and
magnitude, the orientation of the fault and the direction of the tec-
tonic slip, the duration of the focal seismic activity and the dimension
of the focal region (fault). The results are exemplified on two Vrancea
earthquakes.

7.2 Theory

The basic equations used in this paper relate (algebrically) the longi-
tudinal displacement vl (P wave) and the transverse displacement vt

(S wave), measured at a local site on Earth’s surface, to the seismic-
moment tensor Mij and the duration T of the focal seismic activity.7

We assume that the other ingredients entering these relations, like
Earth’s density and wave velocities, are known. Also, we assume that
the position of the focus is known, such that we know the unit vector

7B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.
J. Mech. Appl. Math. 70 289 (2017).
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n from the focus to the origin of the local frame. Consequently, the
data include one parameter of the longitudinal displacement (its mag-
nitude) and two parameters of the transverse displacement; this makes
three known parameters. In general, the seismic-moment tensor Mij

has six components, which, together with the duration T , make seven
unknowns. However, for a fault, the Kostrov representation holds
for the seismic-moment tensor,8 which reduces the number of compo-
nents from six to four; the energy conservation9 relates, in fact, one of
these components with the earthquake duration, such that the seismic
moment has only three independent components for a fault. It fol-
lows that we are left with four unknowns and three known parameters
(equations). We need a fourth equation in order to solve the problem
(i.e., in order to determine the seismic-moment tensor). The fourth
equation is provided by the covariance condition, which determines
the problem.

7.3 Initial input. Data compatibility

We use a local reference frame with axes, denoted by 1, 2, 3, corre-
spondig to the directions North-South, West-East and the local ver-
tical, respectively. Let θ0 and ϕ0 be the latitude and the longitude of
the origin of this local frame. We assume that the latitude θE and the
longitude ϕE of the epicentre are also known. Then, we determine
immediately the coordinates of the epicentre

x1 = −R0θ , x2 = R0 cos θE · ϕ , (7.2)

where θ = θE − θ0, ϕ = ϕE − ϕ0 (in radians, e.g. θ = θ◦ · π
180 ) and

R0 = 6370km is Earth’s mean radius. Usually, the depth H of the
focus is also given by the seismic measurements, such that we might
know the unit vector n directed from the focus to the origin of the
local frame. Indeed, the vector directed from the focus to the origin
of the local frame is R = (x1,x2,H), such that n = R/R.

8B. V. Kostrov, "Seismic moment and energy of earthquakes, and seismic flow
of rock", Bull. (Izv.) Acad. Sci. USSR, Earth Physics, 1 23 (1974) (English
translation pp. 13); B. V. Kostrov and S. Das, Principles of Earthquake Source

Mechanics, Cambridge University Press, NY (1988).
9B. F. Apostol, loc. cit.
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Figure 7.2: P -wave displacement along the South-North direction
recorded at Bucharest for the Vrancea earthquake of
23.09.2016.

Unfortunately, the measured longitudinal displacement vl is not al-
ways along the vector n, which raises a problem of compatibility of the
data. This is why we prefer to estimate the depth H of the focus. The
experimental determination of the depth of the focus may be affected
by errors more than the experimental determination of the epicentral
coordinates.

The displacements vl and vt should be measured from the P - and S-
waves of the seismograms for all the three directions, as the maximum
value of the displacement (with its sign) on the same temporal side
of the seismogram recordings (along the time axis); these recordings
have a scissor-like (double-shock) characteristic pattern. The "same
temporal side" means either up to the point where these patterns
change sign, or away from that point. The "same side" of the P -
and S-waves is indicated by arrows in Fig. 7.1. The displacements
used here are the envelope of the zoomed out oscillatory curves of the
P - and S-waves recorded by seismograms. Instead of the maximum
values, mean values may also be used. In addition, the sign of the
longitudinal components should be compatible with the position of the
focus. For instance, for Vrancea earthquakes recorded in Bucharest,
the sign of the longitudinal components should be either (+,−,+) or
(−,+,−). We call this constraint the "sign rule". In practice, if the
sign rule is not fulfilled, the input data are useless.

We include here an example of reading the displacement from a record-
ing. The raw data are provided by accelerograms. A standard numeri-
cal code transforms the accelerations into displacements. The P -wave
displacement recorded in Bucharest along the South-North direction
for the Vrancea earthquake of 23.09.2016 is shown in Fig. 7.2. The
ordinate scale (units 10−5) should be multiplied by 103 for a displace-
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ment in cm. By zooming out this picture, we can see clearly the
scissor-like pattern of the displacement. We can read easily the am-
plitudes on each part of the zero-point; they are 0.14cm and 0.8cm.
The mean value of these amplitudes is 0.11cm. Since our axis points
to the South, we must take this value with the negative sign. We as-
sign this value to the left side of the pattern in Fig. 7.2, and preserve
this wing for all other seismograms (in order to observe the sign rule).

Let f = (f1, f2, f3) be the longitudinal displacement as read from the
seismogram and let g = (f1/f, f2/f, f3/f). Then, the coordinates of
the epicentre should be given by −Rg1, −Rg2, where R is the distance
to the focus; they should be as close as possible to the coordinates x1,2.
Therefore, we minimize the quadratic form (Rg1+ x1)

2 +(Rg2+ x2)
2

and get an estimate

R1 = −g1x1 + g2x2

g21 + g22
(7.3)

for the focal distance, with a relative error

χ1 = 1− (g1x1 + g2x2)
2

(g21 + g22)(x
2
1 + x2

2)
. (7.4)

Making use of equation (7.3) we get an estimate

H1 = −
√
R2

1 − (x2
1 + x2

2) (7.5)

for the depth of the focus.

Let vt be the transverse displacement, measured as described above,
and let t = vt/vt. It may happen that f and vt are not perpendicular
to each other; we define sinφ = gt, where φ may be different from
zero. This rises again a problem of data compatibility. We define the
vector

n =
1

cosφ
(g − t sinφ) , (7.6)

which is perpendicular to t, and take the longitudinal displacement
as

vl = fn . (7.7)
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We have now the possibility to get another estimate

R2 = −n1x1 + n2x2

n2
1 + n2

2

(7.8)

of the focal distance and another estimate

H2 = −
√
R2

2 − (x2
1 + x2

2) (7.9)

of the depth of the focus, with a relative error

χ2 = 1− (n1x1 + n2x2)
2

(n2
1 + n2

2)(x
2
1 + x2

2)
. (7.10)

Finally, we use the mean values R = (R1+R2)/2 and H = (H1+H2)/2
for the focal distance and the depth of the focus. In practice, if the
angle φ is too far from zero, the input data may be discarded, since
they lead to large errors.

7.4 Results: earthquake energy and

magnitude; focal volume, fault slip

According to the theory,10 the reduced magnitude of the seismic mo-
ment is given by

M = (M2
ij/2)

1/2 = 4π
√
2ρR3/2

(
clv

2
l + ctv

2
t

)1/2 (
c6l v

2
l + c6tv

2
t

)1/4
(7.11)

and the earthquake energy is

E = M/2 (7.12)

(the magnitude of the seismic moment is M =
√
2M = (M2

ij)
1/2.

Using the Gutenberg-Richter (Hanks-Kanamori) law

lgE = 1.5Mw + 15.65 (7.13)

10B. F. Apostol, loc. cit.
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(or lgM = 3
2Mw + 16.1), we derive the (moment) magnitude of the

earthquake

Mw =
1

1.5
(lgE − 15.65) . (7.14)

In these equations R is the focal distance and vl is the longitudinal
displacement (P -wave, equation (7.7)) as determined above; vt is the
transverse displacement (S-wave), as measured experimentally; ρ is
Earth’s mean density (we can take ρ = 5g/cm3) and cl,t are the
velocities of the longitudinal and transverse waves (for instance, we
may take cl = 7km/s and ct = 3km/s). All the equations are written
in units cm, g, s.

Similarly, the focal volume is given by

V =
M

2ρc2t
, (7.15)

whence we may infer the dimension of the focal region and the mag-
nitude of the fault slip l = V 1/3.

7.5 Results: seismic-moment tensor; focal

strain, focal-activity duration

The seismic-moment tensor is given by

Mij =
M

1−m2
4

[minj + nimj −m4 (mimj + ninj)] , (7.16)

where
mi = − c3l vli+c3tvti

(c6l v2
l +c6tv

2
t )

1/2 ,

m4 = − c3l vl

(c6l v2
l
+c6tv

2
t )

1/2

(7.17)

and n is given by equation (7.6).11 As discussed above, the compo-
nents Mij can be viewed as generalized force couples, while the vector
m may be viewed as indicating the direction of a "force" acting in

11B. F. Apostol, loc. cit.
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the focus; m4 is a measure of the "force" acting along the observation
radius (longitudinal "force"). We can check the traceless condition
Mii = 0 and the covariance condition m2

i = 1.

The focal strain is given by

u0
ij =

Mij

2M
, (7.18)

where uij =
1
2 (∂ivj +∂jvi) are the strain components for the displace-

ment vector v (the superscript 0 stands for the focus). The duration
of the seismic activity in the focal region12 is given by

T = (2R)1/2
(
clv

2
l + ctv

2
t

)1/2
(c6l v

2
l + c6tv

2
t )

1/4
; (7.19)

it is related to the focal volume by

V =
4πR2

c2tT

(
clv

2
l + ctv

2
t

)
; (7.20)

hence we may estimate the rate of the focal strain u0
ij/T and the rate

of the focal slip l/T (during the seismic activity).

It is useful to have a quick and simple estimation of the order of
magnitude of the various quantities introduced here. To this end we
use a generic velocity c for the seismic waves and a generic vector v for
the displacement in the far-field seismic waves. From the covariance
equation m2 = 1 (equation (7.17)) we get immediately cT � √2Rv,
which provides an estimate of the duration T of the seismic activity
in the focus in terms of the displacement measured at distance R.
The focal volume can be estimated as V � π (2Rv)

3/2 � π(cT )3, as
expected (dimension l of the focal region of the order cT ; the rate
of the focal slip is l/T � c). The earthquake energy is E � μV �
M/2 � 2ρc2V , where μ = ρc2 is the Lame coefficient and M is the

reduced magnitude
(
M2

ij

)1/2
=
√
2M of the seismic moment (and the

magnitude of the vector Mijnj). The focal strain is of the order unity,
as expected. The magnitude of the earthquake is given immediately
by equation (7.14). In addition, we can see the relationship lg v =

12B. F. Apostol, loc. cit.
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Mw + 10.43− lg
[
(2R)(2πρc2)2/3

]
, or lg(2Rv) = Mw + 1.83 (for ρ =

5g/cm3, c = 5km/s and v measured in cm). Hence, we may see that
the displacement measured at Bucharest for a Vrancea earthquake of
magnitude Mw = 7 is of the order v � 30cm. Similar estimations can
be made for other magnitudes, by using equation (7.14).

7.6 Results: fault geometry

The geometry of the seismic activity in a fault is characterized by the
normal s to the fault (unit vector) and the slip unit vector a lying
on the fault; these two vectors are mutually orthogonal. According
to Kostrov representation (and the covariance condition), the seismic-
moment tensor is given by

Mij = M(siaj + aisj) . (7.21)

We can see the conditions Mii = 0 and Mijsisj = 0 (or Mijaiaj = 0),
which, together with the covariance condition m2

i = 1 (where mi =
Mijnj/M ; and m4 = Mijninj/M), lead to three independent compo-
nents of the tensor Mij . From equation (7.21) we can see that, apart
from the (simultaneous) symmetry operations s → −s and a→ −a,
which indicate merely a reflection of the fault and the slip, there exists
another symmetry, given by s ←→ a, which indicates an important
uncertainty. Indeed, any fault slip is accompanied by another fault
slip, along an orthogonal direction, as a consequence of matter conser-
vation. It follows that we are not able to make the difference between
the direction of the fault and the direction of the slip, because, ac-
tually, we have another fault oriented along the slip, and, of course,
another slip oriented along the original fault.

The vectors s and a are given by13

s = α
α2−β2m− β

α2−β2n ,

a = − β
α2−β2m+ α

α2−β2n ,

(7.22)

13B. F. Apostol, loc. cit.
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where

α =

√
1+
√

1−m2
4

2 ,

β = sgn(m4)

√
1−
√

1−m2
4

2 ;

(7.23)

the vector n is given by equation (7.6) and the vector m and the
scalar m4 are given by equation (7.17). These relations ensure the
identity of equation (7.16) with equation (7.21). If we define two
orthogonal coordinates u = aixi (along the slip) and v = sixi (along
the normal to the fault), then the quadratic form Mijxixj = const
defines a hyperbola uv = const/2M ; its asymptotes are directed along
the normal to the fault s and the slip in the fault a. We call it the
seismic hyperbola. For high values of the reduced magnitude M of the
seismic moment the seismic hyperbola is tight. Actually, for various
const in Mijxixj = const we get a hyperboloid directed along the
third axis s× a.
A similar hyperbola may be derived from equation (7.16) by using
the coordinates ξ = mixi (along the vector m) and η = nixi (along
the vector n); its equation is 2ξη −m4(ξ

2 + η2) = const. We recall
that m indicates the direction of a "force" acting in the focus; the
angle made by the vectors m and n is given by cosχ = m4, the
angle made by n and s (observation radius and the fault direction) is

given by sinψ =

√(
1 +

√
1−m2

4

)
/2 and the angle made by n and

a (observation radius and the fault slip) is π/2− ψ.

7.7 Explosions

For explosions, which are isotropic, the moment tensor is a scalar. We
write it as Mij = −Mδij . We have only a longitudinal displacement.
The above formulae reduce to

M = 2πρc2l (2Rvl)
3/2 , V = π(2Rvl)

3/2 ,

T =
√
2Rvl
cl

.

(7.24)

The "focal" region for explosions is a sphere. The minus sign in the
definition of the moment tensor indicates the fact that the slip on a
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point of the surface of the "focal" sphere is opposite to the direction
of the surface element at that point.

Also, we note that both a seismic shear faulting and an explosion pro-
duce a longitudinal displacement, such that their distinct contribution
cannot be resolved (a superposition of a seismic shear faulting and an
isotropic mechanism - the so-called "hybrid" mechanism - cannot be
resolved).

7.8 Earthquake of 28.10.2018, Vrancea

We apply here the algorithm described above to two earthquakes.14

For the Vrancea earthquake of 28.10.2018 the epicentre coordinates
are θE = 45.61◦, ϕE = 26.41◦ and the depth of the focus is H =
−147.8Km (= x3). We use the data from Cernavoda station with
coordinates θ0 = 44.3◦, ϕ0 = 28.3◦ (coordinates x1 = −145.64km,
x2 = −125.99km). The position vector is

n = (0.60, 0.52, 0.61) . (7.25)

Within the accuracy used here, the vector vl is directed along the
vector n, with magnitude vl = 0.18cm, so there is no need to estimate
other values of the focus depth and vectors n. Noteworthy, the sign
rule for Cernavoda is (+,+,+) (or (−,−,−)). The vector of the
transverse displacement is

vt = (−0.30, 0.40, −0.08)cm (7.26)

(magnitude vt = 0.51cm) and the angle made by vl(n) with vt is
� 92◦ (which may be viewed as an acceptable departure from orthog-
onality).

Making use of equations (7.11)-(7.15) we get the energy E = 4.65 ×
1023erg, the magnitude of the seismic moment M = 1.30 × 1024erg,
the magnitude of the earthquake Mw = 5.33 and the focal volume
V = 9.6 × 1011cm3. The Institute for Earth’s Physics, Magurele,

14B. F. Apostol, F. Borleanu and L. C. Cune, "Seismic source and earthquake
parameters from local seismic recordings. Earthquakes of 28.10.2018 and
23.05.2016, Vrancea, Romania", Roum. Reps. Phys. 74 702 (2022).
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announced the magnitude Mw = 5.5 (www.infp.ro, with a large error
ΔMw = 0.7). We can see that the dimension of the focal volume (the
focal slip) is � 100m.
Making use of equations (7.16)-(7.20) we get the "force" vector

m = (−0.46, −0.68, −0.56) , m4 = −0.98 , (7.27)

the seismic moment

(Mij) =

⎛⎝ 1.4 −7.5 −1.6
−7.5 1.6 −4.8
−1.6 −4.8 −2.8

⎞⎠× 1023erg (7.28)

and the duration of the focal activity T = 8.7×10−3s; the focal strain
is of the order 10−1, the rate of the focal strain is of the order 10s−1

and the rate of the focal slip is of the order 106cm/s. The deviation
of Mii from zero in equation (7.28) is a measure of the error of these
estimations.
Using equations (7.22) and (7.23), we get the parameters α = 0.78,
β = −0.63 and the fault and the slip vectors

s = (0.09, −0.94, −0.26) ,
a = (0.84, −0.09, 0.57) ; (7.29)

these vectors pierce the Earth’s surface at θ = 46.05◦, ϕ = 33.38◦ (s)
and θ = 43.67◦, ϕ = 26.18◦ (a) (see Appendix).

7.9 Earthquake of 23.09.2016, Vrancea

The epicentre coordinates for this earthquake are θE = 45.71◦, ϕE =
26.62◦ and the depth of the focus is H = −92km (= x3). We use the
data from Magurele station with coordinates θ0 = 44.35◦, ϕ0 = 26.03◦

(coordinates x1 = −151.12km, x2 = 45km). The position vector is

n = (0.83, −0.25, 0.50) . (7.30)

The direction of the vector vl is close to the direction of the vector n;
its magnitude is vl = 0.13cm. The sign rule for Magurele is (+,−,+)
(or (−,+,−)). The vector of the transverse displacement is

vt = (−0.30, −0.30, −0.17)cm (7.31)
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(magnitude vt = 0.46cm) and the angle made by vl(n) with vt is
� 106◦ (this is a rather large deviation).
Making use of equations (7.11)-(7.15) we get the energy E = 1.1 ×
1023erg, the magnitude of the seismic moment M = 3.1 × 1023erg,
the magnitude of the earthquake Mw = 4.92 and the focal volume
V = 2.2 × 1011cm3. The Institute for Earth’s Physics, Magurele,
announced the magnitude Mw = 5.5 (with an error ΔMw = 0.4).
We can see that the dimension of the focal volume (the focal slip)
is � 60m. The rather large difference in magnitudes arises from the
deviation of the vectors vl,t from mutual orthogonality.
Making use of equations (7.16)-(7.20) we get the "force" vector

m = (−0.19, −0.57, −0.71) , m4 = −0.97 , (7.32)

the seismic moment

(Mij) =

⎛⎝ 0.89 1.21 0.25
1.21 0.23 1.45
0.25 1.45 −0.8

⎞⎠× 1023erg (7.33)

and the duration of the focal activity T = 6× 10−3s; the focal strain
is of the order 10−1, the rate of the focal strain is of the order 10s−1

and the rate of the focal slip is of the order 106cm/s. The deviation
of Mii from zero in equation (7.33) is a measure of the error of these
estimations.
Using equations (7.22) and (7.23), we get the parameters α = 0.79,
β = −0.61 and the fault and the slip vectors

s = (0.29, 0.77, −0.21) ,
a = (0.69, 0.07, 0.88) ;

(7.34)

these vectors pierce Earth’s surface at θ = 45.88◦, ϕ = 22.24◦ (s) and
θ = 44.1◦, ϕ = 26.7◦ (a).

7.10 Concluding remarks

The practical application of the theory of determining the seismic
source and the earthquake parameters from local seismic recordings
of the P and S seismic waves15 is presented, with a detailed emphasis
15B. F. Apostol, loc. cit.
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on the specific points of its implementation. Special attention is given
to the input parameters, as read from seismograms; these parame-
ters, which are the amplitudes of the ground displacement, should
satisfy certain compatibility conditions. The optimization procedure
described above can be employed to improve compatibility. It is shown
how the earthquake energy and magnitude can be derived, as well as
the volume of the focal region and the focal slip. Also, it is shown
how to determine the tensor of the seismic moment, the focal strain
and the duration of the seismic activity in the earthquake focus. We
describe how to deduce the orientation of the fault and the direc-
tion of the focal slip. The particular case of an isotropic explosion is
also presented. The procedure is applied to two Vrancea earthquakes
(28 October, 2018, and 23 September, 2016), both with magnitude
Mw = 5.5. The errors implied by the practical application of this the-
ory are discussed. Particularly interesting is a rapid estimation, by
hand, of the earthquake parameters, which is described above. The
procedure presented here can be implemented by means of a numer-
ical computing program with modest resources, and the results can
be obtained in real time. The procedure is routinely applied at the
Institute of Earth’s Physics in Magurele, Romania.

Task #6 of Practical Seismology is the implementation of the proce-
dure described above, by a numerical code, for determining the seismic
moment, the magnitude, the energy and the source parameters of the
Vrancea earthquakes in real time, from readings of the seismograms
of the recorded P and S seismic waves.

7.11 Appendix

It may be of interest to determine the points where the vectors s
and a pierce Earth’s surface. For this it is necessary to express all
the vectors in the reference frame of the Earth (a sphere). We have
the vector which determines the origin of the local frame, the vector
which determines the focus and the vector s (or a) with the origin in
the focus. The point of interest on Earth’s surface corresponds to a
vector λs (or λa), where λ has a well-determined value. We express
this vector in Earth’s frame and requires it to be on Earth’s surface;
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this condition leads to the equation

λ2 + 2λ [R0s3 −R(ns)]− 2R0H = 0 ; (7.35)

we need to choose for λ the smallest absolute value of the roots.

A simplified version of these calculations can be done for points close
to the local observation point and the epicentre, such that we may ap-
proximate the Earth’s surface by a plane surface. The corresponding
equations are

H s1
s3

+ x1 = −R0θ ,

H s2
s3

+ x2 = R0 cos θ
′ · ϕ

(7.36)

(s3 > 0); the coordinates of the intersection point are θ
′

= θ0 + θ and
ϕ
′

= ϕ0 + ϕ.
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8 Quasi-static Deformations

8.1 Introduction

We have described in this book the derivation of the seismic moment
and the parameters of the seismic source from measurement of the dis-
placement caused by the P and S seismic waves on Earth’s surface.
We show below that the same problem can be solved by measuring the
static displacement caused by a seismic source in the epicentral zone.
It is admitted that the continuous accumulation of the tectonic stress
may be gradually discharged, to some extent and with intermittence,
causing quasi-static crustal deformations of Earth’s surface in seismo-
genic zones.1 We show here that measurements of these deformations
may give, besides qualitative information about the seismic activity,
the depth of the focus and the focal volume, the opportunity of deter-
mining the tensor of the seismic moment for a shear faulting.2 We use
here the displacement derived previously for a homogeneous isotropic
half-space with a free surface and tensor point forces generated by a

1F. C. Frank, "Deduction of earth strains from survey data", Bull. Seism. Soc.
Am. 56 35 (1966); J. C. Savage and R. O. Burford, "Geodetic determination of
relative plate motion in central California", J. Geophys. Res. 78 832 (1973); J.
C. Savage, "Strain accumulation in western United States", Ann. Rev. Earth
Planet. Sci. 11 11 (1983); K. L. Feigl, D. C. Agnew, Y. Bock, D. Dong,
A. Donnellan, B. H. Hager, T. A. Herring, D. D. Jackson, T. H. Jordan, R.
W. King, S. Larsen, K. M. Larson, M. M. Murray, Z. Shen and F. W. Webb,
"Space geodetic measurement of crustal deformation in central and southern
California, 1984-1992", J. Geophys. Res. 98 21677 (1993); S. N. Ward, "A
multidisciplinary approach to seismic hazard in southern California", Bull.
Seism. Soc. Am. 84 1293 (1994); Working Group on California Earthquake
Probabilities, "Seismic hazards in southern California: probable earthquakes,
1994-2024", Bull. Seism. Soc. Am. 85 379 (1995); J. C. Savage and R. W.
Simpson, "Surface strain accumulation and the seismic moment tensor", Bull.
Seism. Soc. Am. 87 1345 (1997).

2B. F. Apostol, Seismology, Nova, NY (2020).
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seismic moment in a focus localized inside the half-space.3

8.2 Surface displacement

The static deformations produced by a tensor point force f in a homo-
geneous isotropic elastic half-space are given by the equation of elastic
equilibrium

Δu+
1

1− 2σ
graddivu = −2(1 + σ)

E
f , (8.1)

where u is the displacement vector (with components ui, i = 1, 2, 3),
E is the Young modulus and σ is the Poisson ratio. The components
of the force density are given by

fi = Mij∂jδ(r− r0) , (8.2)

where r0 is the position of the focus and Mij is the tensor of the seismic
moment. It is convenient to write f = − [2(1 + σ)/E] f and M ij =
− [2(1 + σ)/E]Mij (reduced force and seismic moment). Equation
(8.1) is solved for a half-space z < 0, with free surface z = 0, the po-
sition of the focus being r0 = (0, 0, z0), z0 < 0 (epicentral frame); we
use the radial coordinate ρ = (x2+y2)1/2 for the in-plane coordinates
x, y and x1 = x, x2 = y, x3 = z. We use the labels α, β, γ, etc for
the components 1, 2.

The components uα given by equations (8.1) are vanishing for ρ −→ 0
and go like 1/ρ2 for ρ −→∞; they have a maximum value for ρ of the
order | z0 |. The component u3 goes like 1/z20 for ρ −→ 0 and 1/ρ2

for ρ −→ ∞.4 It is convenient to give these displacement components
for ρ close to zero, i.e. in the seismogenic zone (close to a presumable

3B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor
force. General solution for the half-space with point forces", J. Elast. 126 231
(2017); loc. cit.

4B. F. Apostol, loc. cit.
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epicentre). We get

uα = 1
16π

[
4(1− 2σ)M33 − (3 + 2σ)M0

]
xα

|z0|3+

+ 1
8π (1− 2σ)

Mαβxβ

|z0|3 + ... ,

u3 = 1
8πz2

0

[
2(3− 2σ)M33 − (1 + 2σ)M0

]
+

+M3αxα

2π|z0|3 + ... ,

(8.3)

where M0 = M ii is the trace of the tensor M ij .

A simplified numerical estimation of the unknowns (components of
the seismic moment) can be obtained as follows. We assume M0 = 0
(as for a shear faulting), replace all the components of the seismic-
moment tensor in equations (8.3) by a mean value M and average
over the orientation of the vector ρ; we denote the resulting u3 by
uv (vertical component) and introduce uh (horizontal component) by

uh =
(
u2
1 + u2

2

)1/2
; we get approximately

uh �
(1− 2σ)

∣∣M ∣∣
4π

ρ

| z0 |3 , uv � (3− 2σ)M

4πz20
; (8.4)

hence, we get immediately the depth of the focus

| z0 |� 1− 2σ

3− 2σ
|uv| /(∂uh/∂ρ) (8.5)

and the mean value M = 4πz20uv/(3 − 2σ) of the (reduced) seismic
moment. Making use of M ij = − [2(1 + σ)/E]Mij we have

Mav � − 2πE

(1 + σ)(3 − 2σ)
z20uv (8.6)

for the mean value Mav of the seismic moment Mij . Since the small
displacement values uh, uv are affected by errors, the determination of
the mean value of the seismic moment may be viewed as satisfactory.
For Mav = 1022dyn · cm (which would correspond to an earthquake
with magnitude Mw = 4 by the Gutenberg-Richter law lgMav =
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1.5Mw + 16.1), Young modulus E = 1011dyn/cm2, σ = 0.25 and
depth | z0 |= 100km we get a vertical displacement uv � 1μm; we can
see that the static surface displacement is indeed small.
A rough estimate for the elastic energy stored by the static defor-
mation is given by E � 4πz20E | uv |� 2(1 + σ)(3 − 2σ) |Mav|; it
is also given by E � μV , where μ is the Lame coefficient and V
is the focal volume (μ = E/2(1 + σ); the other Lame coefficient is
λ = Eσ/(1 − 2σ)(1 + σ)); making use of the approximations intro-
duced above, we get V � 8π(1 + σ)z20 | uv |. For | z0 |= 100km and
uv = 1μm (σ = 0.25) we get a volume V � 105πm, i.e. a linear di-
mension l � 500m. Similarly, from equations (8.3) we get an estimate
uij ∼ V/ | z0 |3 for the surface strain; using the numerical data above,
it is of order 1Å.5

8.3 General form

Making use of the general results of static deformations,6 the displace-
ment components given by equation (8.3) can be written in a general
form (for M0 = 0) as

ui = {[2(3− 2σ)M
(n)

4 − (9− 10σ)M
(nv)

4 ]ni−

−4M (n)

4 vi + (1− 2σ)M ijvj} 1
8πz2

0
,

(8.7)

where
n = (xα, z − z0)/ | z0 | , v = (xα, z)/ | z0 | ,

M
(n)

4 = M ijninj , M
(nv)

4 = M ijnivj ;

(8.8)

in equations (8.7) and (8.8) we retain only contributions linear in xα

and in the limit z → 0. Within these restrictions the form given by
equation (8.7) is unique. In these equations

M i = M ijvj � M iαxα

| z0 | (8.9)

5A static deformation may diffuse, such that the corresponding focal volume is
larger than the focal volume of a sudden earthquake discharge.

6B. F. Apostol, loc. cit.
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are the components of a vector and

M
(n)

4 � 2M3 +M33 , M
(nv)

4 �M3 (8.10)

are scalars. Taking the scalar product nu � u3 in equation (8.7), we
get

M
(n)

4 =
4πz20u3 + 4(1− σ)M3

3− 2σ
; (8.11)

inserting this M
(n)

4 and M
(nv)

4 �M3 in equation (8.7) we get

uα =
1− 2σ

3− 2σ

xα

| z0 |u3 +
1− 2σ

8πz20
Mα (8.12)

(and the identity u3 = u3). This equation gives

Mα = 8πz20

(
1

1− 2σ
uα − 1

3− 2σ

xα

| z0 |u3

)
(8.13)

(and Mα = − [E/2(1 + σ)]Mα) as functions of the measured quanti-

ties uα, u3 and xα; M
(nv)

4 and M
(n)

4 are given by equations (8.10) and
(8.11) as functions of u3 and the parameter M3. This is the maximal
information provided by measuring the static displacement in a seis-
mogen zone; the parameter z0 remains undetermined; we can use its
numerical estimation given above (equation (8.5)).

8.4 Seismic moment

We assume that the components Mα of the vector M are determined
from data, according to equation (8.13); the component M3 will be
determined shortly. The scalars M

(nv)
4 � M3 and M

(n)
4 are given by

equations (8.10) and (8.11), respectively; they depend on the param-
eter M3. Parameters z0 (focus depth) and the focal volume V re-
main undetermined. The order-of-magnitude estimations given above
(equation (8.5) and below) may be used for them.7

7B. F. Apostol, "Near-field seismic motion", J. Theor. Phys. 328 (2021).
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In order to determine the seismic moment we use its expression derived
before for a shear faulting; it is given by

Mij = M0(siaj + sjai) , i, j = 1, 2, 3 , (8.14)

where M0 = 2μV and si, ai are the components of two orthogonal
unit vectors s and a: s is normal to the fault plane and a is directed
along the fault displacement (fault sliding). We can see that equation
(8.8) implies M0 = Mii = 0. We assume that the measured data of
the static displacement satisfy this condition. In addition, we assume
that M0 is a known parameter.

We introduce the scalar products A = av and B = sv and write

As +Ba = m , Bs +Aa = v (8.15)

from equation (8.14), where m = M/M0; we solve this system of
equations for s and a with the conditions s2 = a2 = 1, sa = 0. We
note that equation (8.14) is invariant under the symmetry operations
s ←→ a and s, a ←→ −s, −a (and s ←→ −a); consequently, it is
sufficient to retain one solution of the system of equations (8.15) (it
has multiple solutions), all the other being given by these symmetry
operations. We get

s = A
A2−B2m− B

A2−B2v , a = − B
A2−B2m+ A

A2−B2v (8.16)

and
A2 +B2 = m2 = v2 , 2AB = v2m4 , (8.17)

where m4 = mv/v2 = Mijvivj/v
2M0. From m2 = v2 we get the

component M3 as given by

M2
3 =

(
M0

)2
v2 −M2

α ; (8.18)

we may take

A = v

√
1 +

√
1−m2

4

2
, B = sgn(m4) · v

√
1−

√
1−m2

4

2
(8.19)

as a solution of the system of equations (8.17); this solves the problem
of determining the seismic moment from the measurements of the
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surface static displacement. From equation (8.14) the seismic-moment
tensor is given by

Mij =
M0

v2(1 −m2
4)

[mivj +mjvi −m4 (mimj + vivj)] ; (8.20)

the vector v is known from equation (8.8) (z → 0, v = ρ/ | z0 |)
and the vector m is known from equations (8.13) and (8.18) (with
z0 and M0 as known parameters); the scalar m4 is given by m4 =
Mαvα/v

2M0. The component M3 does not enter the expression of
m4; it is included in Mij . The quadratic form Mijxixj = const is a
hyperbola; its asymptotes indicate the fault plane (vector s) and the
fault slip (vector a).

The isotropic case Mij = −M isδij , where M is = 2(2μ+ λ)V , implies
a surface displacement

u =
M is(1 + σ)

4πz20E
[(3 − 10σ)n− (3− σ)v] , (8.21)

the vector M being given by M = −M isv. The energy can be esti-
mated as E = M is/2 = 4πz20E | uv |,which leads to a focal volume
V = [4π(1 + σ)(1 − 2σ)/(1− σ)]z20 | uv |.
Task #7 of Practical Seismology is to deduce the average seismic
moment Mav, the depth z0 and the volume of the focal region V
by using static deformations measured at the surface of the Earth in
the epicentral zone (equations (8.5) and (8.6)). Also, the tensor of
the seismic moment can be derived from these static displacements
(equation (8.20)).
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9.1 Embedded bar

The response of various inhomogeneities to seismic movements is a
subject of utmost importance for the design of buildings (structural
engineering); on the other hand, local amplification is reported in soil
displacement, velocities and acceleration during an earthquake, which
is an indication of internal inhomogeneities in the Earth’s crust.1 The
most convenient model for the response of an inhomogeneity to an
earthquake movement is the embedded vibrating bar.2

Let us assume that a vertical elastic bar with uniform cross-section is
fixed in the ground at one end, having a length l above the ground
surface; the bar end above the ground is free. Under the action of the
seismic waves the buried end of the bar is set in motion. We assume
the cross-sectional dimensions of the bar being much smaller than the
bar length, so we may limit ourselves only to the z-dependence of
the displacement, where z is the vertical coordinate (along the bar).
At the same time, we consider the length of the bar and the excita-
tion sufficiently small, such that the bar does not enter the regime of
flexural elasticity (bending).

The elastic motion of the bar implies transverse displacements and
a longitudinal displacement, each with its own wave velocity. The
general equation of motion of the local displacement reads

1P. Y. Bard and M. Bouchon, "The two dimensional resonance of sediment filled
valleys", Bull. Seism. Soc. Am. 75 519 (1985); J. F. Semblat, M. Kham,
E. Parara, P. Y. Bard, K. Pitilakis, K. Makra and D. Raptakis, Site effects:
basin geometry vs soil layering, Soil Dyn. Earthq. Eng. 25 529 (2005); J.
F. Semblat and A. Pecker, Waves and vibrations in soils: earthquakes, traffic,
shocks, construction works, IUSS Press, Pavia (2009).

2S. P. Timoshenko, "On the transverse vibrations of bars of uniform cross-
section", Phil. Mag. 43 125 (1922).
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ü− c2
∂2u

∂z2
= 0 , (9.1)

where u is the displacement and c denotes the elastic wave velocity.
This equation is solved with the boundary conditions of a free end
and a given displacement at the fixed end, i.e.

∂u
∂z |z=l= 0 , u |z=0= u0(t) . (9.2)

We consider seismic excitations which have a general aspect of shocks,
i.e. they are concentrated at the initial moment of time. This is valid
for both the primary P and S waves, as well as for the main shock
produced by the so-called surface waves. Consequently, we assume
first a shock-like ground motion u0(t) = Tu0δ(t), where T is a measure
for the duration of the shock. Apart from the original shock which
propagates along the bar, the local displacement in the bar is also a
superposition of eigenfrequencies of the bar, given by

u(z, t) =
1

2
u0Tδ(t− z/c) + u0

cT

l

∑
n

sinωnt · sinωnz/c , (9.3)

where ωn = (2n + 1)πc/2l, n = 0, 1, 2, ... (the roots of the equation
cosωnl/c = 0). We can see that an amplification factor g = cT/l
appears. From equation (9.3), similar amplification factors appear for
velocities and accelerations (gωn, gω2

n, respectively). Typical values
of the velocity of the elastic waves in the bar are c � 3×103m/s; for a
short duration T = 0.1s we get g = 10 for a length l = 30m. We can
see that the displacement, velocity and acceleration amplitudes in the
bar could be enhanced in comparison with their ground counterparts.
This is why we may call the parameter g the amplification factor.3

However, a pulse with a finite duration T excites mainly frequencies
ωn up to � π/T . Therefore, the amplification parameter is subject to
the condition

ωnT =
(2n+ 1)π

2
g ≤ π , (9.4)

3B. F. Apostol, The Theory of Earthquakes, Cambridge International Science
Publishers, Cambridge (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishers, Cambridge (2017).

136



9 Structural Engineering

which implies values for g as high as the order of unity, correspond-
ing to the fundamental frequency ω0 = πc/2l (n = 0). In addition,
it is well known that the seismic spectrum includes a range of fre-
quencies extending up to � 10s−1, which is far below a fundamental
frequency of the order c/l � 100s−1 for c � 3× 103m/s and l = 30m.
Therefore, it is unlikely that a short pulse can excite normal modes
which might lead to appreciable amplification factors in reasonable
conditions. However, the situation is different if the pulse includes
resonance frequencies.

Also, we note that if the pulse is applied at some point on the bar,
different from the bar ends, then we deal in fact with two bars. The
boundary conditions are the continuity of the displacement at the
point of application of the excitation, the equality of the displacement
with the excitation at that point and the conditions at the two ends.

9.2 Oscillating shock

If the ground displacement has the form of a harmonic oscillation
u0(t) = u0 cosω0t, the displacement in the bar is4

u(z, t) = u0 cosω0t
cosω0(z−l)/c

cosω0l/c
; (9.5)

if ω0 happens to be an eigenfrequency of the bar (ω0 = ωn), then the
amplitude increases indefinitely, and the dangerous resonance phe-
nomenon occurs (we recall that the eigenfrequencies ωn are the roots
of the equation cosωnl/c = 0).

Let us assume a ground motion given by

u0(t) = u0θ(t)e
−αt cosω0t , (9.6)

where θ(t) = 1 for t > 0, θ(t) = 0 for t < 0 is the step function
and 0 < α � ω0; it represents an oscillating shock with a sharp
wavefront, attenuated in time with the rate α, which is deemed to
model the seismic main shock with its long tail (produced by the so-
called surface waves). We may leave aside the original propagating

4B. F. Apostol, loc. cit.
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shock. We can compute the response of the bar for ω �= ωn.5 At
resonace

u(z, t) = u0
c

l

1− e−αt

α
sinω0t · sinω0z/c . (9.7)

We can see that the displacement amplitudes at resonance are (c/lα)u0,
i.e. in the amplification factor g = cT/l the duration T is replaced by
1/α, as expected. We note that for ω0 = 0 the amplitude is reduced
to (c/lωn)u0. Similarly, the response velocity and acceleration include
factors u0ω0 and u0ω

2
0 , respectively, which now can be viewed as cor-

responding to the ground velocity and acceleration; the amplification
factor for these quantities is g = c/lα, as for the displacement. It
is worth emphasizing that amplification factors of the type g = c/lα
may attain high values.

Task #8 of Practical Seismology is to check displacements (velocities
and accelerations) given by equations (9.3) and (9.7) against the val-
ues measured by sensors in high buildings, in order to derive useful
parameters for an informed design, maintenance, safety measures, etc.

9.3 Buried bar. Site amplification factors

We consider now a bar completely buried in the ground, with both
ends free (its orientation is immaterial); we assume that the bar moves
freely in the ground, its displacement being superposed over the dis-
placement u0 of the ground. We assume a ground excitation

u0(z, t) = u0θ(t)e
−αt cosω0t · cosκ0z , (9.8)

where κ0 = ω0/c0, c0 being the wave velocity in the soil. The eigen-
frequencies of the bar are ωn = nπc/l, for n = 1, 2, 3, ...(the roots of
the equation sinωnl/c = 0). We can compute the response of this
bar to the soil excitation for ω0 �= ωn(non-resonance). At resonance
(ω0 = ωn) the displacement along the bar is

u(z, t) = (−1)nu0
c2

c0l
sinω0l/c0

1− e−αt

α
sinω0t · cosω0z/c . (9.9)

5B. F. Apostol, loc. cit.
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We can see the occurrence of an amplification factor

g =
c2

c0lα
sinω0l/c0 , (9.10)

which now has a more complex structure; it depends on the wave
velocity c0 and the frequency ω0 of the excitation (it is a spectral
amplification factor).

This result may throw an interesting light upon the so-called ampli-
fication site effect. It is well known that the ground displacement,
velocity and acceleration may exhibit large local variations from site
to site. In the light of the above result it is easy to see that a local
inhomogeneity surrounded by a different environment may behave as
a buried bar, and the normal modes set in this inhomogeneity may
exhibit large amplifications factors. The effect is enhanced for a stiff
inhomogeneity (c
 c0), but for low attenuation factors α it may ap-
pear also for soft inhomogeneities. The conditions for its occurrence
are the resonance and seismic waves with wavelengths shorter than
the linear dimension of the inhomogeneity. We note that it is easy
to see that the bar-shape of the inhomogeneity is irrelevant; the am-
plification may occur for inhomogeneities of any shape; the necessary
conditions are c0/ω0 < l (excitation wavelength shorter than the di-
mension of the inhomogeneity) and ω0 = ωn = cαn/l, where αn is
a numerical coefficient which gives the eigenfrequency ωn (increasing
with increasing n); these conditions imply c0 < cαn.

We can see that there exists a discontinuity between the soil displace-
ment u0 and the displacement u of the bar at the points of the bar. If
we allow for a finite extension d of the bar, along, say, the transverse
direction x, then this discontinuity disappears. If the inhomogeneity
is gradually disappearing along the longitudinal direction, the discon-
tinuity disappears along this direction too. If the inhomogeneity has
sharp ends with respect to the surrounding medium, the discontinuity
remains.

Task #9 of Practical Seismology is to assess the dimension and the
nature of buried inhomogeneities from recorded amplification factors,
according to equation (9.10).
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9.4 Coupled harmonic oscillators

It is usual to view a building-foundation structure as two coupled
harmonic oscillators, each with its own mass and eigenfrequency. Ac-
cording to the solution to this problem,6 the coupling reduces the low
eigenfrequency and raises the high eigenfrequency.

For a realistic use of the coupled-oscillator model we consider the two
oscillators as corresponding to a building (oscillator 2) and its founda-
tion (oscillator 1). For a stiff foundation (higher eigenfrequency) the
eigenfrequencies of the building are reduced to an appreciable extent
(down to zero), while the eigenfrequencies of the foundation are in-
creased by the coupling. For a soft foundation (lower eigenfrequency)
the situation is reversed, the eigenfrequencies of the building are raised
by the coupling and those of the foundation are reduced.

If the excitation is at resonance with the building, the original damped
excitation is lost in time and for long time both the building and
the foundation oscillate with the resonance frequency of the building;
the amplitudes of the oscillations are enhanced by the attenuation
factor of the excitation, as expected; the oscillation amplitude of the
foundation is controlled by the exciting force, while the amplitude
of the building is controlled by the coupling constant. We note that
we have considered oscillations without a damping factor; a damping
factor affects the contribution of the normal modes and adds to the
attenuation factor of the excitation.

As regards a possible seismic base isolation of the buildings by design-
ing special foundations we may say that the answer is not definite.
The coupling of the two structures reduces the low frequency (either
of the building or of the foundation) and raises the higher frequency,
without definitely removing the building frequency from the range of
the seismic shock; at resonance, especially for long-lasting shocks, the
amplification factors may attain appreciable values.

6B. F. Apostol, loc. cit.
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9.5 Coupled bars

The model of coupled vibrating bars is useful for accounting for voids
in buildings.7 Let us assume a bar with length l fixed at z = 0 to
another long bar with length l0; we denote the former bar by 1 and
the latter bar by 2. The equations of elastic motion in the two bars
are

ü1 − c21u
′′

1 = 0 , ü2 − c22u
′′

2 = 0 , (9.11)

where u1,2 are the displacements in the two bars; the boundary con-
ditions are

u2 |z=−l0= u0(t) , u1 |z=0= u2 |z=0 ,

μ1u
′

1 |z=0= μ2u
′

2 |z=0 , u
′

1 |z=l= 0 ,
(9.12)

which signify a ground motion applied to the lower end z = −l0 of
bar 2, the continuity of the displacement at the joining point (the
bars are rigidly connected to each other), the absence of the force at
the interface z = 0 and the free upper end z = l; the force is writ-
ten for a shear displacement; for compression (dilatation) the rigidity
moduli μ1,2 should be replaced by λ1,2+2μ1,2. The solutions of these
equations show that the eigenfrequencies are controlled by the elastic
properties of the "softer" bar. This result gives an indication regard-
ing the vibration properties of bars with a composite structure (e.g.,
including voids).

7B. F. Apostol, loc. cit.
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10.1 Seismic displacement

A typical seismogram, recorded at Earth’s surface, consists of a suc-
cession of P and S seismic waves, followed by a main shock. The
displacement of the P and S waves is given by

uP = − TM4

4πρc3l R
nδ′(t−R/cl) ,

uS = −T (M4n−M)
4πρc3tR

δ′(t−R/ct) ,

(10.1)

where T is the duration of the seismic activity in the focus, n is the
unit vector from the focus to the observation point placed at distance
R from the focus, ρ is the density of the homogeneous and isotropic
elastic body (the Earth), cl,t are the propagation velocities of the
longitudinal and transverse elastic waves and Mi = Mijnj , M4 =
Mijninj, where Mij is the tensor of the seismic moment. M and
M4 can be called the seismic moment vector and the seismic moment
scalar. These formulae are valid for a focus localized in time (short
duration T ) and space (small length l), where a seismic tensorial force
acts. Both T and l are much smaller than the times and distances of
interest. The seismic waves given by equation (10.1) are spherical-shell
waves. The P wave is longitudinal, while the S wave is transverse.1

The parameters T and l are independent. Accordingly, the function
δ′(t − R/cl,t) in equations (10.1) is viewed as a function localized on
the observation point P , placed at distance R from the seismic focus
F , with a temporal width Δt = l/cl,t (� t) and a function localized
at a fixed moment of time with a spatial width ll,t = cl,tT (� R). For

1B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.
J. Mech. Appl. Math. 70 289 (2017).
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E r
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l

Figure 10.1: Seismic spot on Earth’s surface (focus F , epicentre E,
observation point P ).

a point P placed on Earth’s plane surface at distance rl,t from the
epicentre E we have

R2
l,t = r2l,t + z20 , (Rl,t + ll,t)

2 = (rl,t +Δrl,t)
2 + z20 , (10.2)

where z0 is the depth of the focus and

Δrl,t =
2Rl,tll,t + l2l,t

rl,t +
√
r2l,t + 2Rl,tll,t + l2l,t

(10.3)

is the spread of the seismic spot on Earth’s surface (Fig. 10.1). In
these equations Rl,t = cl,tt. Near epicentre (rl,t → 0) the width of the
seismic spot Δrl,t �

√
2z0ll,t is much larger than ll,t (ll,t � z0). The

distance
√
2z0ll,t defines the epicentral region. From equations (10.2)

we get the velocities vl,t = drl,t/dt = cl,t
Rl,t

rl,t
of the seismic spot on

Earth’s surface. We can see that these velocities are greater than the
velocities of the elastic waves. For regions of interest we approximate
the Earth by a homogeneous and isotropic half-space with a plane free
surface.

In the above formulae the velocities cl,t are global average velocities.
The average is made over the propagation region with a radius R. It
follows that the average velocities differ for different radii R. There-
fore, they may exhibit small, local variations on Earth’s surface, at
points placed at different distances from the focus.

The displacement produced by the main shock on Earth’s surface is
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given by
ur =

χ0r
4cl

τ
(c2l τ

2−r2)3/2
,

uϕ = −h0zr
4ct

τ
(c2tτ

2−r2)3/2
,

uz =
h0ϕ

4ctr
c2tτ

3

(c2tτ
2−r2)3/2

,

(10.4)

for cl,tτ > r, where r is the distance from epicentre to the observation
point on Earth’s surface, τ = t(1− ε), ε = R/r− 1 and the potentials
χ0 and h are of the order M/ρR, where M is the magnitude of the
seismic moment (elastic energy released in the focus). The coordinates
r, ϕ, z are cylindrical coordinates. The time τ in equations (10.4) is
measured from the epicentre. We note that the main shock (also called
secondary waves) moves with velocities cl,t, which are smaller than the
velocities vl,t = cl,tR/r of the P and S waves on Earth’s surface. The
main shock moves behind the P and S waves. Equations (10.4) are
valid for ε < 1 and within a limited range of the order z0 for distances
r, centered on a distance of the order z0, where z0 is the depth of the
focus (z0/

√
3 < r < 2z0). The singularity at cl,tτ = r is smoothed

out according to the replacement c2l,tτ
2− r2 |cl,tτ=r→ r2ε.2 The main

shock has the appearance of a seismic "wall" with a long tail. We may
use the simplified formulae

ur =
Mr

4ρclR
τ

(c2l τ
2−r2)3/2

,

uϕ = − Mr
4ρctR

τ
(c2tτ

2−r2)3/2
,

uz = M
4ρctrR

c2tτ
3

(c2tτ
2−r2)3/2

,

(10.5)

for the main-shock displacement, where the term ε is neglected in τ .

10.2 Seismic spectrum

The soil layers and the buildings on Earth’s surface exhibit vibration
eigenfrequencies. Therefore, we are interested in the frequency con-
tents of the local seismic displacement (local velocity, acceleration),
2B. F. Apostol, loc. cit.
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in order to avoid resonances. The frequency content is given by the
Fourier transform. The Fourier transform of the seismic displacement,
velocity and acceleration is also called the site spectral response. Let
us perform the time Fourier transform of the function δ′(t − R/cl).
Formally, it is given by

f(ω) =

ˆ
dtδ′(t−R/cl)e

iωt . (10.6)

According to the hypotheses used in deriving equations (10.1), the
function δ(t − R/cl) for fixed R should be viewed as 1/Δt in the
range −Δt/2 to Δt/2, centered on t = R/cl. The temporal range is
Δt = l/cl, where l is of the order of the dimension of the seismic focus
(localization of the tensorial force which generates the seismic waves).
We choose the origin of time at t = R/cl. Consequently, equation
(10.6) leads to

fP (ω) =

ˆ Δt/2

−Δt/2

dtδ′(t) sinωt = −2cl
l

sinωl/2cl (10.7)

and

uP (ω) � TM4

2πρc2l lR
n sinωl/2cl . (10.8)

Since the amplitude of this function is not appropriate for giving rel-
evant information in empirical studies we may replace l in the ampli-
tude by clT , such that3

uP (ω) � M4

2πρc3lR
n sinωl/2cl . (10.9)

The corresponding Fourier transforms of the velocity and accelera-
tion are vP (ω) = ωuP (ω) and aP (ω) = −ω2uP (ω). The function
sinωl/2cl (for displacement) has a maximum value for

ωm � πcl/l (10.10)

(period Tm� 2l/cl). The velocity spectrum has a maximum at ωm �
4cl/l and the acceleration spectrum has a maximum at ωm � 3πcl/2l

3B. F. Apostol, "Seismic spectrum and spectral response", J. Theor. Phys. 335

(2022).
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Figure 10.2: Typical acceleration spectrum f(x) = 1
x2 sin

1
x as a func-

tion of period, exhibiting the maximum at x � 3π/4.

(period � 4l/3cl). By using these maxima values we can obtain an es-
timation of the dimension l of the focus (for known velocities cl,t). The
maximum value of the functions gives an estimation of the parameter
TM4/ρ.

The parameters of the earthquakes and the seismic sources can be
determined from the displacement produced by the seismic waves on
Earth’s surface.4 For instance, for l = 100m (earthquake magnitude
� 5) and a mean velocity c = 5km/s (cl = 7km/s, ct = 3km/s) we
get Tm = 0.04s (from the maximum of the displacement). An approx-
imate estimation of the parameter l is given by E � 2ρc2l3, where E is
the earthquake energy; making use of the Hanks-Kanamori relation-
ship lgE = 3

2Mw +15.6, where Mw is the moment magnitude (and E
in erg), we get the approximate formula lg l � 1

2Mw+1 (ρ = 5.5g.cm3,
c = 5km/s ).5 This estimation differs from the exact determination
of l and T , because of the average procedure. A graphical represen-
tation of the function (1/x2) sin(1/x), which is a typical acceleration
spectrum as a function of the period, is given in Fig. 10.2

By a similar procedure we compute the Fourier transform of the S
wave. The S wave has a time delay δ = R/ct − R/cl with respect to

4B. F. Apostol, "An inverse problem in Seismology: derivation of the seismic
source parameters from P and S seismic waves", J. Seismol. 23 1017 (2019).

5B. F. Apostol, Seismology, Nova, NY (2020).
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the P wave. Consequently, the Fourier transform is given by

fS(ω) = cosωδ

ˆ Δt/2

−Δt/2

dtδ′(t) sinωt = −2ct
l

cosωδ sinωl/2ct (10.11)

(where Δt = l/ct). This function has a maximum at ωm � πct/l,
which implies a shift

ΔTm � 2l
cl − ct
clct

(10.12)

in its period, with respect to the P wave.
We pass now to the Fourier transforms of the main shock (equations
(10.4)). The time delay R/cl, with respect to the P wave, can be left
aside. We have two types of Fourier transforms, written for a generic
velocity c:

g(ω) = Re
´∞
r/c dτ

τ
(c2τ2−r2)3/2

eiωτ ,

h(ω) = Re
´∞
r/c dτ

τ3

(c2τ2−r2)3/2
eiωτ .

(10.13)

The first Fourier transform is

g(ω) =
1

c2r
√
ε
cos(ωr/c)− πω

2c3
ReH

(1)
0 (ωr/c) , (10.14)

where H
(1)
0 is the Hankel function of the first kind and zeroth or-

der and ε = cτ/r − 1.6 For all frequencies and distances of in-

terest H
(1)
0 (ωr/c) �

√
2c
πωr e

i(ωr/c−π/4); this function and the func-
tion cos(ωr/c) are rapidly varying functions; they are filtered out in
the seismic spectrum. Similarly, the Fourier transform h(ω) implies
rapidly varying trigonometric functions and the Hankel function of
the first kind and the first order H

(1)
1 . It follows that the seismic

spectrum reduces to the contribution of the P and S seismic waves.

10.3 Local frame

We use a local frame with the origin O at the observation point and
axes 1, 2, 3 corresponding to the directions North-South (NS), West-
6I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th

ed., Academic Press, NY (2000), p. 904, 8.421 (1).
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Figure 10.3: Local frame at the observation point O. The unit vec-
tors are e1 for NS, e2 for WE and e3 for the vertical
coordinate z. x1,2 are the epicentre (E) coordinates.

East (WE) and the local vertical (z). Let θ0 and ϕ0 be the latitude
and the longitude of the origin O and θE and ϕE the latitude and the
longitude of the epicentre E. The coordinates of the epicentre are

x1 = −R0Δθ , x2 = R0 cos θEΔϕ , (10.15)

where Δθ = θE − θ0, Δϕ = ϕE − ϕ0 and R0 is the Earth’s radius
(Fig. 10.3). We introduce the unit vector from the epicentre to the
observation point

eE = − x1√
x2
1 + x2

2

e1 − x2√
x2
1 + x2

2

e2 , (10.16)

such that the unit vector from the focus to the observation point is

n =
r

R
eE +

z0
R
e3 , (10.17)

where e1,2,3 are the unit vectors along the local axes (NS, WE, z;
Fig. 10.4). Also, we introduce the notations

α = − x1√
x2
1+x2

2

= Δθ√
Δθ2+cos2 θEΔϕ2

,

β = − x2√
x2
1+x2

2

= − cos θEΔϕ√
Δθ2+cos2 θEΔϕ2

.

(10.18)
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The displacement of the P wave (equations (10.1)) can be written as

uP = − TM4

4πρc3l R
nδ′(t−R/cl) =

= − TM4

4πρc3l R

(
αr
R e1 +

βr
R e2 +

z0
R e3

)
δ′(t−R/cl) .

(10.19)

We write M = M4(ae1 + be2 + ce3) and get c = R
z0

(
1− aαr

R − bβrR

)
from the condition Mn = M4. Consequently, the displacement of the
S wave (equations (10.1)) can be written as

uS = −T (M4n−M)
4πρc3tR

δ′(t−R/ct) =

= − TM4

4πρc3tR
{(αrR − a

)
e1 +

(
βr
R − b

)
e2+

+
[
z0
R − R

z0

(
1− αr

R a− βr
R b
)]

e3}δ′(t−R/ct) .

(10.20)

It follows that the displacements along the local directions are

u1(NS) = − TM4

4πρR [ αr
c3lR

δ′(t−R/cl)+

+ 1
c3t

(
αr
R − a

)
δ′(t−R/ct)] ,

u2(WE) = − TM4

4πρR
βr
c3lR

δ′(t−R/cl)+

+ 1
c3t

(
βr
R − b

)
δ′(t−R/ct)] ,

u3(z) = − TM4

4πρR{ z0
c3lR

δ′(t−R/cl)+

+ 1
c3t

[
z0
R − R

z0

(
1− αr

R a− βr
R b
)]

δ′(t−R/ct)} .

(10.21)

We can see that the spectrum of each of these components exhibits,
in general, two maxima. The position of these maxima depends on
the coefficients of the functions δ′(t − R/cl,t), i.e. the position of
the observation point (α, β, r, R) and the orientation of the seismic
moment vector (coefficients a and b). The fitting of the curves given
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Figure 10.4: The unit vectors n and eE from the focus and from the
epicentre to the observation point.

by equation (10.21) to the seismic records gives access, in principle,
to the remaining parameters M4, a and b.

A great simplification of the equations (10.21) is obtained for the
particular values α = β = 1/

√
2 and r = z0 = R/

√
2 (they corre-

spond approximately to data recorded in Bucharest, or Cernavoda,
for Vrancea intermediate-depth earthquakes). Also, we can replace
the velocities cl,t by a local effective velocity c. The displacement
spectrum becomes

u1(ω) =
M4

2πρc3R (1 − a) sin ωl
2c ,

u2(ω) =
M4

2πρc3R (1 − b) sin ωl
2c ,

u3(ω) =
M4

2
√
2πρc3R

(a+ b) sin ωl
2c .

(10.22)

The position of the maximum ωm, of the order c/l, depends on the
earthquake magnitude, through l, and the local conditions, through
the parameter c.
We can compare the seismic spectrum (for example, the Fourier trans-
form of the acceleration) for two earthquakes, 1 and 2, recorded at the
same site. Then, the effective velocity c is the same. From the two
distinct positions of the maxima, ωm1 � 3πc

2l1
and ωm2 � 3πc

2l2
(for

accelerations), we can derive the ratio of the dimensions of the foci
l1/l2 = ωm2/ωm1. The ratio of the maximum amplitudes gives ratios
of the type M41(1− a1)/M42(1− a2) (for the NS component). Also,
we can compare the spectrum for the same earthquake and two dis-
tinct sites. In this case the parameter l is the same and we get the
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ratio of the two effective velocities c1/c2 = ωm1/ωm2. If we know one
velocity (for example the standard mean velocity c = 5km/s), we can
get the other velocity. Also, we can characterize the local conditions
(velocities c) with respect to a standard site (e.g., a bedrock). The
ratio of the maximum amplitudes gives the ratio ρ1c

3
1R1/ρ2c

3
2R2 (for

any component).

10.4 Spectral response

The constructions built on Earth’s surface and, in general, finite-size
irregularities, may be approximated, in a simplified picture, by linear
harmonic oscillators. The motion of such an oscillator is governed by
the equation

mü+mω2
0u+mγu̇ = ma(t) , (10.23)

where m is the mass of the oscillator, u is its displacement, ω0 is
its eigenfrequency, γ is a damping coefficient and a(t) is the ac-
celeration generated by the action of an external force (a coupling
impedance can also be introduced). We adopt an external acceler-
ation a(t) = a0(ω) sinωt, given by the seismic spectrum calculated
above (site response). The solution of this equation is

u(t) = −a0(ω) ω2−ω2
0

(ω2−ω2
0)

2+ω2γ2 sinωt−

−a0(ω) ωγ
(ω2−ω2

0)
2+ω2γ2 cosωt .

(10.24)

We can see that it exhibits a resonance for ω = ω0, attenuated by
the damping. A large damping occurs for nonlinear structures. At
resonance, u(t) = −a0(ω0)

ω0γ
cosω0t. The ratio | u(ω0)/a0(ω0) |, where

u(ω0) is the Fourier transform of u(t), leads to an amplification factor
1/ω0γ.

The energy conservation resulted from equation (10.23) is

d

dt

(
1

2
mu̇2 +

1

2
mω2u2

)
+mγu̇2 = F u̇ , (10.25)

where E = 1
2mu̇2+ 1

2mω2u2 is the energy of the oscillator, W = mγu̇2

is the energy dissipated per unit time and F u̇ is the work done by the
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force F (t) = ma(t) per unit time. The oscillator receives energy from
the external source and dissipates it, partially. The average energy of
the oscillator is

E =
1

2
ma20

ω2 + ω2
0

(ω2 − ω2
0)

2 + ω2γ2
(10.26)

and the average energy dissipated per unit time is

W = mγu̇2 =
1

2
ma20

γω2

(ω2 − ω2
0)

2 + ω2γ2
. (10.27)

At resonance E = ma20/γ
2 and W = ma20/2γ. For small γ (γ � ω0)

the energy dissipated in a period is ma20/2γω0 � E; it is much smaller
than the oscillator energy. On the contrary, for a large damping the
dissipated energy is ma20/2γ

2; we can see that it is comparable to the
energy of the oscillator. It follows that a small dissipation (γ � ω0) is
preferrable, if we cannot avoid resonance, although the displacement,
velocity and acceleration (amplification factor) are higher.

For a full description of the seismic response the acceleration a0(ω)
resulted from the seismic spectrum should be introduced in equation
(10.24). According to equation (10.8) we can use

a0(ω) = bω2 sinωl/2c (10.28)

with a generic velocity c, where b is of the order M/ρc3R. Far from
resonance the response of the oscillator does not differ appreciably
from the seismic spectrum (site response); the maximum frequency
remains at ωm� πc/l (for displacement). On the contrary, close to
resonance the response is given approximately by

u(t) � − b

4

ω0γ

(ω − ω0)2 + γ2/4
sinω0l/2c cosω0t , (10.29)

whence we can see that the response is maximal for the resonance
frequency ω0.

An elastic, vertical, thin bar, with length L and with the lower end
embedded in the ground on Earth’s surface and the upper end free,
has the eigenfrequencies ωn = (2n+1)π

2
c
L , where c is the velocity of

the elastic waves in the bar (either longitudinal, or transverse) and
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n = 0, 1, 2....7 The seismic acceleration has a narrow peak for ωm �
3π
2

cl,t
l . It follows that the resonance is avoided for L �= (2n+ 1) c

3cl,t
l.

Task #10 of Practical Seismology consists in estimating the ratio l/c
from the position ωm (frequency) of the maxima exhibited by the site
spectral response (ωm = πc

l ,
4c
l ,

3πc
2l for displacement, velocity and

acceleration); this way, for a known velocity c, we have an estimate
of the dimension of the seismic focus l. A comparison between two
earthquakes for the same site leads to the ratios l1/l2 = ωm2/ωm1,
while a comparison between two sites for the same earthquake gives
the ratios c1/c2 = ωm1/ωm2.

7B. F. Apostol, The Theory of Earthquakes, Cambridge International Science
Publishing, Cambridge (2017).
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11 Oscillator and Elastic
Waves

11.1 Amplification factors

Finite size inhomogeneities in elastic media can be viewed as localized
oscillators, under the action of the elastic waves. We view the Earth
as a homogeneous and isotropic elastic half-space which sustains the
propagation of the seismic waves. The wavelengths of the seismic
waves are longer than the dimension of the seismic focus and the
dimension of many inhomogeneities embedded in Earth or placed on
Earth’s surface. These inhomogeneities are themselves elastic media
capable of sustaining their own elastic vibrations. Therefore, they
exhibit vibration eigenfrequencies, such that they may be viewed as
oscillators.

11.1.1 Damped harmonic oscillator

Let a particle of mass m and coordinate x(t) be subjected to an elastic
force −kx, a friction force −αẋ and an external force f(t); k denotes
the elastic force constant and α is the friction coefficient. The corre-
sponding equation of motion reads

mẍ+ kx+ αẋ = f . (11.1)

We introduce the eigenfrequency ω0 given by ω2
0 = k/m and look for

a solution x = ξe−λω0t. For α/2mω0 = λ we obtain

ξ̈ + ω
′2
0 ξ = (f/m)eλω0t , (11.2)

where ω
′

0 = ω0(1 − λ2)1/2. We introduce η = ξ̇ + iω
′

0ξ which obeys
the equation

η̇ − iω
′

0η = (f/m)eλω0t , (11.3)

155



11 Oscillator and Elastic Waves

and look for a solution η = ueiω
′

0t. We find the new equation

u̇ = (f/m)e−iω
′

0t+λω0t , (11.4)

whose solution is

u =

ˆ t

0

dτ(f/m)e−iω
′

0τ+λω0τ + u0 , (11.5)

where u0 is the initial condition. It follows

η =

ˆ t

0

dτ(f/m)eiω
′

0(t−τ)+λω0τ + u0e
iω
′

0t , (11.6)

and ξ = (1/ω
′

0)Imη, i.e.

ξ =
1

ω
′

0

ˆ t

0

dτ(f/m)eλω0τ sinω
′

0(t− τ) +
1

ω
′

0

|u0| sin(ω
′

0t+ϕ) , (11.7)

where ϕ is an initial phase. Finally we obtain the coordinate

x = 1
ω
′

0

´ t
0 dτ(f/m)e−λω0(t−τ) sinω

′

′0(t− τ)+

+ 1
ω
′

0

|u0| e−λω0t sin(ω
′

0t+ ϕ) .

(11.8)

We choose u0 = 0 and get the forced oscillations with attenuation

x =
1

ω
′

0

ˆ t

0

dτ(f/m)e−λω0(t−τ) sinω
′

0(t− τ) (11.9)

and
ẋ = 1

ω
′

0

´ t
0 dτ(f/m)e−λω0(t−τ)·

·[−λω0 sinω
′

0(t− τ) + ω
′

0 cosω
′

0(t− τ)] ,

(11.10)

which both satisfy the initial conditions x(0) = 0 and ẋ(0) = 0. We
get also

ẍ = f/m−

− 1
ω
′

0

´ t
0
dτ(f/m)e−λω0(t−τ)[(1 − 2λ2)ω2

0 sinω
′

0(t− τ)+

+2λω0ω
′

0 cosω
′

0(t− τ)] ,

(11.11)
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for acceleration, which equals the external acceleration ẍ(0) = f(0)/m
at the initial moment of time. Usually, the damping parameter λ is
small (λ� 1), so that we may replace ω

′

0 by ω.

11.1.2 Periodic external force

With the notations introduced above we may rewrite equation (11.1)
as

ẍ+ ω2
0x+ 2λω0ẋ = f/m , (11.12)

and assume a periodic external force as given by

f = f0 cosωt . (11.13)

The solution x(t) of the equation (11.12) is obtained from equation
(11.9) by introducing this force, as given by equation (11.13) (for
vanishing initial conditions). The same solution is also obtained as
x = x0 + x1, where x0 is the solution of the homogeneous equation
and x1 is a particular solution of the inhomogeneous equation. It is
easy to check that x0 is given by x0 = ae−λω0t cos(ω

′

0t+α), where the
amplitude a and the phase α are not yet determined. The particular
solution of the inhomogeneous equation reads x1 = b cos(ωt + β),
where

b = f0/m√
(ω2−ω2

0)
2+4λ2ω2ω2

0

,

tanβ = 2λωω0

ω2−ω2
0
.

(11.14)

The phase β is always negative, −π < β < 0, i.e.

sinβ = −2λωω0/
√
(ω2 − ω2

0)
2 + 4λ2ω2ω2

0 ,

cosβ = (ω2
0 − ω2)/

√
(ω2 − ω2

0)
2 + 4λ2ω2ω2

0 ,

(11.15)

so that the particle lags always behind the external force. The ampli-
tude b is maximal for ω = ω0(1 − 2λ2)1/2. For λ � 1 the resonance
occurs for ω = ω0. Let ω = ω0 + ε; then

b = f0/2mω0√
ε2+λ2ω2

0

,

tanβ = λω0/ε .

(11.16)
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In the absence of the damping the phase of the oscillation undergoes
a jump at resonance (b changes the sign), while the damping smooths
this jump out (β = −π/2 at resonance).

The friction force −αẋ can be derived from −∂F/∂ẋ where F =
(1/2)αẋ2 is the dissipation function. It follows that the Euler-Lagrange
equations reads

d

dt

∂L

∂ẋ
=

∂L

∂x
− ∂F/∂ẋ , (11.17)

where L is the Lagrange’s function. The energy E changes in time
according to

dE/dt = d
dt(ẋ∂L/∂ẋ− L) =

= ẋ[ ddt (∂L/∂ẋ)− ∂L/∂x] = −ẋ∂F/∂ẋ = −2F .
(11.18)

For a time long enough the motion is stabilized, i.e. x � x1 and the
energy is constant. The particle absorbs continuously energy from
the external force and dissipates it through friction. The dissipated
average energy per unit time is given by

I(ω) = 2F = 2mλω0ω
2b2sin2(ωt+ β) = mλω0ω

2b2 , (11.19)

and close to the resonance

I(ω0) =
f2
0

4m

λω0

ε2 + λ2ω2
0

, (11.20)

which is a dispersive function of the frequency ε. Its integral does not
depend on frequency,

´∞
0

dω0I(ω0) = πf2
0 /4m.

We now turn back to the general solution

x = ae−λω0t cos(ω0t+ α) + b cos(ωt+ β) , (11.21)

where we neglect the small effect of the damping on the frequency, i.e.

ω
′

0 � ω0, and impose the vanishing initial conditions x(0) = ẋ(0) = 0.
Making use of equations (11.14) and (11.15) we obtain

a =
f0
m

√
(ω2 − ω2

0)
2 + λ2(ω2 + ω2

0)
2

(ω2 − ω2
0)

2 + 4λ2ω2ω2
0

(11.22)
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and

tanα = −λ(ω2 + ω2
0)

ω2
0 − ω2

. (11.23)

At resonance the phase α passes through π/2, i.e.

sinα = λ(ω2 + ω2
0)/
√
(ω2 − ω2

0)
2 + λ2(ω2 + ω2

0)
2 ,

cosα = −(ω2
0 − ω2)/

√
(ω2 − ω2

0)
2 + λ2(ω2 + ω2

0)
2 .

(11.24)

Also at resonance the amplitude

a = f0/2mλω2
0 (11.25)

equals the amplitude b = f0/2mλω2
0 as given by equation (11.16).

We also establish now the coordinates for a motion of the particle
proceeding solely under the action of the external force f . Since
f = f0 cosωt it follows that acceleration is ac = (f0/m) cosωt, which
has a maximum value acmax = f0/m. The velocity is given by
v = (f0/mω) sinωt, which initially vanishes and has a maximum value
vmax = f0/mω. Finally, the displacement d is given by

d = −(f0/mω2) cosωt+(f0/mω2) = (2f0/mω2) sin2(ωt/2) , (11.26)

for a vanishing initial displacement; its maximum value is dmax =
2f0/mω2.

11.1.3 Amplification factors at resonance

According to the results derived above at resonance a = b = f0/2mλω2
0,

α = π/2 and β = −π/2. Then, the general solution given by equation
(11.21) becomes

x =
f0

2mλω2
0

(1 − e−λω0t) sinω0t . (11.27)

We look for the local minima of this function, i.e. the solutions of the
equation

tanω0t = − 1

λ
(eλω0t − 1) ; (11.28)
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they are close to
ω0t = (2k + 1)π/2 (11.29)

(and slightly above), where k = 0, 1, 2.... The maximum values of the
coordinate modulus are given by

|x|max �
f0

2mλω2
0

(1− e−λ(2k+1)π/2) . (11.30)

The amplification factor of the displacement is defined as the ratio

Fd = |x|max /dmax � 1

4λ
(1− e−λ(2k+1)π/2) . (11.31)

For small values of the damping coefficient λ the amplification factor
may attain considerably higher-than-unity values. Indeed, for λ(2k+
1)π/2� 1 we get

Fd � (2k + 1)π/8 (11.32)

from equation (11.31). Typical values for λ allow the integer k to go
up to k = 1, 2, 3, 4, where the amplification factor reaches the values
1.18, 1.96, 2.75 and 3.53, respectively, for times t = (2k + 1)T0/4,
where T0 is the eigenperiod of the oscillations. For higher values of
the damping ( λ > 0.25, for instance) the amplification factor is less
than unity.1

A similar analysis holds for the velocity

ẋ =
f0

2mλω0
[λe−λω0t sinω0t+ (1 − e−λω0t) cosω0t] , (11.33)

which reaches the maximum modulus values

|ẋ|max �
f0

2mλω0
(1− e−λkπ) (11.34)

for ω0t � kπ, k = 1, 2, 3...(the maximum placed between 0 and π/2 is
left aside). The amplification factor for velocities is defined by

Fv = |ẋ|max /vmax � 1

2λ
(1 − e−λkπ) . (11.35)

1B. F. Apostol, "Amplification factors in oscillatory motion", Roum. J. Phys.
49 691 (2004).
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For small values of the damping coefficient the amplification factor is
given by

Fv � kπ/2 ; (11.36)

it may attain higher values than the amplification factor for displace-
ment (up to 2π for instance, corresponding to k = 4).

Within the approximation λω0t � 1 and λ � 1 employed here the
acceleration can be written as

ẍ =
f0
2m

(ω0t sinω0t− 2 cosω0t) ; (11.37)

its modulus attains maximum values for ω0t satisfying the equation
tanω0t = −ω0t/3. The approximate solutions of this equations, cor-
responding to higher values of the acceleration, are given by ω0t �
(2k+1)π/2 for k = 2, 3.... The amplification factor for acceleration is
defined by

Fa = |ẍ|max /acmax =
1

2
|ω0t sinω0t− 2 cosω0t|max . (11.38)

Its maximum values are (slightly less than) Fa � (2k + 1)π/4.

Far from resonance the amplification factors decrease. It is worth not-
ing that the amplification factors are higher than unity because of the
large amplitudes of oscillations at resonance, and far from resonance
these amplitudes decrease according to equations (11.14) and (11.22),
and, consequently, the amplification factors decrease too. Indeed, it
is worth analyzing the energy forced into the oscillating particle for
zero damping. From equation (11.6) we obtain

η = eiω0t

ˆ +∞

−∞
dτ(f/m)e−iω0τ , (11.39)

in this case, for a very large duration t and vanishing initial conditions
at t → −∞. On the other hand the energy of the particle is E =
m(ẋ2 + ω2

0x
2)/2 = m |η|2 /2, i.e.

E =
1

2m

∣∣∣∣ˆ +∞

−∞
dτfe−iω0τ

∣∣∣∣2 , (11.40)

161



11 Oscillator and Elastic Waves

which shows that the pumped energy is associated with the Fourier
component of the external force corresponding to the particle fre-
quency. For f = f0 cosωt we obtain E = π2f2

0 δ
2(Δω)/2m close to

resonance, where Δω = ω − ω0. The energy per unit time leads to
I = E/t = πf2

0 δ(Δω)/4m, since tΔω = 2π; it may also be written as

I =
f2
0

4m

λω0

(Δω)2 + λ2ω2
0

, (11.41)

where λ is a vanishing parameter, which coincides with the dissipated
energy per unit time given by (11.20). The latter equation shows
that the energy absorbed from the external force equals the dissipated
energy and it has a maximum value at resonance.

11.1.4 Shocks

In more realistic cases the external force is distributed around a certain
frequency Ω, of the order of the frequency ω0, as given by a gaussian

f = const · f0
ˆ

dω1e
−(ω1−Ω)2/2Δ2

cosω1t , (11.42)

where Δ is the frequency extension of the external spectrum. If Δ�
Ω, ω0 then the external wavepacket is similar with a monochromatic
wave, and the results for the amplification factors are similar with
those given above. More interesting is the opposite limit Δ
 Ω, ω0,
which corresponds to a shock of a short duration as given by

f = −f0Δte−Δ2t2/2 , (11.43)

extending over a time interval t ∼ 1/Δ. Such a force is obtained as a
gaussian distribution of the form

f = (f0/
√
2πΔ)

ˆ
dω1[−(ω1 − Ω)/Δ]e−(ω1−Ω)2/2Δ2

sinω1t . (11.44)

Now, it is easy to compute the maximum value of the acceleration
under the action of such an external force, acmax = f0/m

√
e, as well

as the velocity vmax = f0/mΔ and the displacement

d = (f0/mΔ)

ˆ t

−∞
dτe−Δ2τ2/2 , (11.45)
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which gives a maximum value dmax =
√
2πf0/mΔ2.

The coordinate of the particle can easily be obtained by introducing
the force f given by equation (11.43) into the general solution of the
form given by equation (11.9). We may neglect the small contribution
of the damping in this case, and make use of the inequalities Δ 

Ω, ω0 in estimating the integral (11.9). We obtain

x =
f0
mΔ

te−Δ2t2/2 , (11.46)

which has a maximum value |x|max = (f0/mΔ2√e). Therefore, the
amplification factor for displacement is

Fd = 1/
√
2πe . (11.47)

Similarly, we get the amplification factors Fv = 1 for velocity, and
Fa = 2.28 for acceleration. As one can see, the amplification is less
than unity for displacement, equal to unity for velocity and higher
than unity for acceleration for shocks of very short duration.

11.2 Oscillator-wave coupling

In studies of seismic risk and hazard it is important to assess the
effects of the seismic motion upon localized structures, either natural
or built on Earth’s surface. Usually, such structures are viewed as
localized harmonic oscillators, with one or several degrees of freedom
and corresponding eigenfrequencies (characteristic frequencies). It is
assumed that the seismic motion acts as an external force upon such
oscillators and the resonant regime is highlighted. It is desirable to
avoid the resonance, i.e. the structure’s characteristic frequencies
must be different from the main frequencies of the seismic motion at
the site of the structure (local seismic motion).

Two elements are overlooked in such a simplified picture: the reaction
of the structure back on the elastic medium and the coupling of the
structure to the elastic medium. We show here a way of introducing
these two elements in the analysis and describe the consequences of
including these two more realistic features.
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11.2.1 Structure on the surface

First, we consider the free plane surface of an infinite, homogeneous
elastic medium; we consider elastic waves propagating on this surface
and assume a generic wave equation

ρü = FΔu (11.48)

describing the motion of the (two-dimensional) displacement vector
u; in equation (11.48) ρ is the superficial mass density and F is a
generic superficial modulus of elasticity, such that the wave velocity
is given by c2 = F/ρ; the laplacian in equation (11.48) is the two-
dimensional laplacian. On the other hand we assume a point-like
harmonic oscillator with mass m and eigenfrequency Ω localized at r0
on the surface, described by the equation

mv̈ +mΩ2v = 0 , (11.49)

where v is the oscillator’s displacement from its equilibrium position.

The medium acts upon the oscillator with the surface force den-
sity (FΔu)r=r0 ; for an area S of the contact surface between the
oscillator and the medium, the force acting upon the oscillator is
S(FΔu)r=r0 . We introduce a coupling function g and write the force
as gS(FΔu)r=r0 ; under these conditions, the equation of motion of
the oscillator becomes

mv̈ +mΩ2v = gS(FΔu)r=r0 ; (11.50)

the area S must be much smaller than the area constructed with any
relevant wavelength. The coupling function g may have a complex
structure; it may depend on the oscillator eigenmode (frequency Ω),
the oscillator amplitude, the local amplitude u of the wave, or the
time t. We assume here the most simple situation which corresponds
to a constant g. Obviously, g ≤ 1.

Similarly, the oscillator reacts back upon the elastic medium, with
its inertia force −gmv̈Sδ(r − r0), localized at r0 and affected by the
coupling function; the wave equation (11.48) becomes

ρü = FΔu− gmv̈δ(r− r0) . (11.51)
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Equations (11.50) and (11.51) are two coupled equations. We write
equation (11.51) as

1

c2
ü−Δu = −gmv̈

F
δ(r− r0) , (11.52)

take the temporal Fourier transform, introduce the modulus of the
wavevector k = ω/c and get

Δu+ k2u = −gmω2v

F
δ(r− r0) ; (11.53)

the solution of the equation

Δu + k2u = f (11.54)

in two dimensions is given by2

u =
1

4i

ˆ
dr′H(1)

0 (k |r− r′|)f(r′) , (11.55)

since
ΔH

(1)
0 + k2H

(1)
0 = 4iδ(r) , (11.56)

H
(1)
0 being the Hankel function of zeroth degree and the first kind;

at the same time it is the Green function in equation (11.56); its
asymptotic behaviour is given by

H
(1)
0 (kr) ∼

⎧⎪⎨⎪⎩
2i
π ln(kr) , kr → 0 ,√

2
πkr e

i(kr−π/4) , kr →∞ .

(11.57)

Applying these formulae to equation (11.53) we get the particular
solution

up = − gmω2v

4iF H
(1)
0 (k |r− r0|) �

� − gmω2v

2πF ln(k |r− r0|) , k |r− r0| � 1 ;

(11.58)

2P. M. Morse and H. Feschbach, Methods of Theoretical Physics, vol. 1, McGraw-
Hill, NY (1953).
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we can see that a localized source generates cylindrical waves on an
elastic surface, which have a logarithmic singularity at the source. A
solution of the homogeneous equation (11.53) must be added to this
particular solution in order to get the general solution; we choose a
free wave written as

u0 = A cosω0(t− x/c) , (11.59)

or its Fourier transform

u0 = πA
[
δ(ω − ω0)e

iω0x/c + δ(ω + ω0)e
−iω0x/c

]
. (11.60)

Now we compute (Δu)r=r0 , where u = up +u0, in order to introduce
it in equation (11.50); since Δ ln rr=0 = 2πδ(r) we have

(Δup)r=r0 = −gmω2v

F
δ(r− r0)r=r0 � −

gmω2v

FS
, (11.61)

while

(Δu0)r=r0 = −ω2
0

c2 πA·

· [δ(ω − ω0)e
iω0x0/c + δ(ω + ω0)e

−iω0x0/c
]
.

(11.62)

Introducing these quantities in the Fourier transform of equation (11.50)
we get

m(Ω2 − ω2)v = −g2mω2v−

− gSFω2
0

c2 πA
[
δ(ω − ω0)e

iω0x0/c + δ(ω + ω0)e
−iω0x0/c

]
,

(11.63)

or

v(ω) = − ω2
0

Ω2−ω2(1−g2)×

× gSρ
m πA

[
δ(ω − ω0)e

iω0x0/c + δ(ω + ω0)e
−iω0x0/c

]
.

(11.64)

The most important result exhibited by equation (11.64) is the change
in the resonance frequency ω → ω

√
1− g2 or Ω→ Ω/

√
1− g2. As a
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result of its interaction with the elastic medium, the oscillator eigen-
frequncy Ω changes into Ω/

√
1− g2 (gets "renormalized").3 If we

take the inverse Fourier transform we get

v(t) = − ω2
0

Ω2 − ω2
0(1 − g2)

gSρ

m
A cosω0(t− x0/c) ; (11.65)

if we take into account the contribution of the poles ω0 = ±Ω/
√
1− g2

we get the solution corresponding to free oscillations at resonance,
which occurs now at the modified eigenfrequency ±Ω/

√
1− g2. It is

worth noting that for a perfect coupling corresponding to g = 1, there
is not a resonance anymore.

11.2.2 Oscillator in an elastic medium

We examine here the case of a point oscillator embedded in a homo-
geneous, infinite, elastic medium. Equations (11.50) and (11.51) read
now

mv̈ +mΩ2v = gV (FΔu)R=R0 ,

ρü = FΔu− gmv̈δ(R−R0) ,
(11.66)

where ρ is the volume density of mass and F is a generic (volume)
modulus of elasticity; the wave velocity has the same expression (and
value) given by c2 = F/ρ and V (much smaller than the volume con-
structed with any relevant wavelength) is the volume of the oscillator.
The wave equation

1

c2
ü−Δu = f (11.67)

has the particular solution

u =
1

4π

ˆ
dR′

f(R′, t− |R−R′| /c)
|R−R′| ; (11.68)

applying this formula to the wave equation

1

c2
ü−Δu = −gmv̈

F
δ(R−R0) (11.69)

3B. F. Apostol, "A resonant coupling of a localized harmonic oscillator to an
elastic medium", Roum. Reps. Phys. 69 116 (2017).
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we get the particular solution

up = −gmv̈(t− |R−R0| /c)
4πF |R−R0| (11.70)

and

(Δup)R=R0 =
gmv̈(t)

F
δ(R −R0)R=R0 =

gmv̈(t)

FV
, (11.71)

since Δ(1/R) = −4πδ(R). Similarly, for a plane wave u0 = A cosω0(t−
x/c) we get

(Δu0)R=R0 = −(ω2
0A/c2) cosω0(t− x0/c) . (11.72)

The equation of motion (11.66) of the oscillator becomes

mv̈ +mΩ2v = g2mv̈ − gV Fω2
0

c2
A cosω0(t− x0/c) , (11.73)

or

m(1 − g2)v̈ +mΩ2v = −gρV ω2
0A cosω0(t− x0/c) . (11.74)

This is a typical equation of motion for a harmonic oscillator with a
modified eigenfrequency under the action of an external force.

We may say that the reaction of a point harmonic oscillator to the elas-
tic medium to which it is coupled modifies the inertia of the oscillator,
which implies a change in its eigenfrequency; this change is controlled
by a coupling function. The introduction of the coupling function
and the reaction upon the elastic medium may bring important con-
sequences in estimating the resonance regime of a structure subjected
to the action of a seismic motion. The present treatment opens the
way of introducing various features in the coupling functions, in order
to meet more realistic situations; in particular it is amenable to intro-
ducing non-linearities which may affect the coupling of the structure
with its site’s motion.
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11.3 Anharmonic oscillators

There is a huge literature on anharmonic oscillators, both quantum-
mechanical and classical.4 Exact solutions are known for classical
cubic and quartic anharmonic oscillators with and without dissipa-
tion.5 We present here a simple derivation of the exact solution for
the classical cubic oscillator, the first-order terms in the corresponding
series expansion in powers of the anharmonicity and the self-consistent
harmonic approximation.

11.3.1 Cubic oscillator

Let T = mu̇2/2 be the kinetic energy and

U =
1

2
mω2u2 +

1

3
mω2au3 (11.75)

the potential energy of a cubic anharmonic oscillator of mass m, fre-
quency ω and anharmonicity parameter a > 0. The energy conserva-
tion gives

u̇2 =
2

m
(E − U) = ω2(x2 − u2 − 2

3
au3) , (11.76)

for this oscillator, where E = mω2x2/2 > 0 is the energy. For x2 >
1/3a2 the velocity in equation (11.76) vanishes for u1 > 0 and the
motion is infinite for u < u1. For x2 < 1/3a2 the velocity in (11.76)
vanishes for u3 < u2 < u1 and the motion is infinite for u < u3 and
finite for u2 < u < u1. For this finite motion equation (11.76) can
also be written as u̇2 = (2aω2/3)(u1 − u)(u − u2)(u − u3), and the

4L. Skala, J. Cizek, V. Kapsa and E. J. Weniger, "Large-order analysis of the
convergent renormalized strong-coupling perturbation theory for the quartic
anharmonic oscillator", Phys. Rev. A56 4471 (1997); L. Skala, J. Cizek, E. J.
Weniger and J. Zarnastil, "Large-order behaviour of the convergent perturba-
tion theory for anharmonic oscillators", Phys. Rev. A59 102 (1999).

5K. Banerjee, J. K. Bhattacharjee and H. S. Manni, "Classical anharmonic os-
cillators: rescaling the perturbation series", Phys. Rev. A30 1118 (1984); J.
M. Dixon, J. A. Tuszynski and M. Otwinowski, "Special analytical solutions
of the damped-anharmonic-oscillator equation", Phys. Rev. A44 3484 (1991).
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integral of motion reads
ˆ u

u2

dy√
(u1 − u)(u− u2)(u − u3)

=
√
2a/3ωt , (11.77)

for u2 < u < u1 and the initial conditions u = u2 , u̇ = 0 for t = 0.
The integral in equation (11.77) can be expressed by means of the
elliptic function of the first kind F (ϕ, k) by introducing sinα = [(u1−
u3)(y − u2)/(u1 − u2)(y − u3)]

1/2.6 We obtain

F (ϕ, k) =

ˆ ϕ

0

dα√
1− k2 sin2 α

= τ , (11.78)

where

sinϕ =

√
u1 − u3

u1 − u2

√
u− u2

u− u3
, (11.79)

the modulus of the elliptic function is given by

k2 =
u1 − u2

u1 − u3
, (11.80)

and the dimensionless time τ is given by

τ =
1

2

√
u1 − u3

√
2a/3ωt . (11.81)

From (11.79) we obtain the solution

u =
u2 − k2u3 sin

2 ϕ

1− k2 sin2 ϕ
, (11.82)

or, making use of the Jacobi sine-amplitude snF = snτ = sinϕ,7 we
get

u =
u2 − k2u3sn

2τ

1− k2sn2τ
. (11.83)

6I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products,
Academic Press, London (1980), p. 219, 3.131(5).

7I. S. Gradshteyn and I. M. Ryzhik, loc. cit., p. 910.
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11 Oscillator and Elastic Waves

This is the exact solution of the cubic anharmonic oscillator. It oscil-
lates between u2 for ϕ = nπ, and u1 for ϕ = (2n+ 1)π/2, n being an
integer. The period T of the motion is given by

K =

ˆ π/2

0

dα√
1− k2 sin2 α

=
1

4

√
2a(u1 − u3)/3ωT , (11.84)

where K is the complete elliptic function. A similar exact solution
can also be obtained for the quartic anharmonic oscillator.8

It is worth noting that the infinite motion proceeds in a finite time.
Indeed, let u1 > 0 and u2,3 = A ± iB for x2 > 1/3a2. Then, the
integral in equation (11.77) becomes F (ϕ, k) =

√
2aD/3ωt, where

k2 = [1 + (u1 − A)/D]/2, D = [(u1 − A)2 + B2]1/2 and u = u1 −
D tan2(ϕ/2). One can see that u→ −∞ for ϕ→ π, which means that
motion goes to infinite in a finite time T1 given by 2K =

√
2aD/3ωT1.

It is often useful to have the solution of the cubic oscillator in the
limit of the weak anharmonicity. In order to get this limit we need
the approximate roots u1,2,3 of the equation x2−u2− 2

3au
3 = 0 in this

limit. Introducing z = 2au/3 this equation becomes z3 + z2− ε2 = 0,
where the perturbational parameter is ε = 2ax/3. It is easy now to
solve perturbationally this equation; its solutions are given by z1,2 =
±ε(1∓ ε/2 + ε2/4) and z3 = −1 + ε2, or

u1 = x(1 − ε/2 + ε2/4) , u2 = −x(1 + ε/2 + ε2/4) ,

u3 = −x
ε (1− ε2) .

(11.85)

Making use of these expansions in powers of ε we obtain k2 = 2ε(1−
ε+11ε2/4) and K = π(1+ε/2+ε2/16)/2. Using the same expansions
in equation (11.84) we get the well-known second-order shift

Ω = 2π/T = ω(1− 15ε2/16) = ω(1− 5a2x2/12) (11.86)

in frequency. Similarly, the angle ϕ is obtained from equation (11.78)
as

ϕ =
1

2
Ωt+

ε

4
sinΩt+

ε2

64
sin 2Ωt , (11.87)

8B. F. Apostol, "On anharmonic oscillators", Roum. J. Phys. 50 915 (2005).
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11 Oscillator and Elastic Waves

and the oscillator coordinate

u = −x cosΩt− xε
4 (3− cos 2Ωt)−

−xε2

2 (2− 17
8 cosΩt+ 2 cos 2Ωt− 11

8 cos 3Ωt) .

(11.88)

It is worth noting that the renormalized frequency Ω appears in these
expansions, instead of the original frequency ω. All these expansions
in powers of ε can also be obtained directly by solving perturbationally
the equation of motion ü = −ω2(u + au2), including the frequency
renormalization.

11.3.2 Self-consistent harmonic approximation

Let T = mu̇2/2 be the kinetic energy of a linear oscillator of mass
m, and U = (mω2/2)(u2 + 2au3/3) its potential energy with cubic
anharmonicities, where a is a parameter. Let u3 be approximated by

u3 =
3

2
(Au +Bu2) , (11.89)

where A = ū2, B = ū, the averages being taken over the motion
and the coefficients 3/2 in equation (11.89) being chosen such as ū3 =
3ūū2. It is easy to see that the oscillator becomes then a displaced one,
with the frequency Ω = ω(1+aB)1/2; the solution is u = u0 cosΩt−C,
where u0 is an amplitude and C = aA/2(1 + aB). The condition
ū3 = 3ūū2 is fulfilled only for small values of C, as expected (ū = −C,
ū2 = u2

0/2+C2, ū3 = −3u2
0C/2). It follows C ∼= au2

0/4 and A ∼= u2
0/2,

B = −C ∼= −au2
0/4. The frequency shift is then given by

Ω = ω(1 + aB)1/2 � ω(1− a2u2
0/8) , (11.90)

which compares well with the exact result Ω = ω(1− 5a2u2
0/12).

A similar decomposition u4 = 3Au2/2 holds for the quartic anhar-
monicity in the potential energy U = (mω2/2)(u2 + bu4/2), where
A = ū2 and b is the anharmonic parameter. The condition ū4 =
3 ¯(u2)2/2 is then fulfilled exactly ( ¯u2 = A = u2

0/2, ū4 = 3u4
0/8 for so-

lution u = u0 cosΩt and frequency Ω = ω(1 + 3Ab/4)1/2). It follows
the frequency shift given by

Ω = ω(1 + 3Ab/4)1/2 ∼= ω(1 + 3bu2
0/16) , (11.91)
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11 Oscillator and Elastic Waves

for small b, which again compares well with the exact result Ω =
ω(1+3bu2

0/8). Is is worth noting that the frequency shift is quadratic
in amplitude for cubic anharmonicities, and linear for quartic anhar-
monicities.

Similar approximations can be used for higher-order anharmonicities,
without any loss of qualitative behaviour, and a satisfactory repre-
sentation of the quantitative results. They are called generically the
self-consistent harmonic approximation.

11.4 Parametric resonance

It is natural to assume that the force f cosωt which acts upon a har-
monic oscillator depends on the coordinate u of the oscillator. Then,
we may write f(u) = f0 + f1u + ..., where f0 = f(0), f1 = f

′

(0),
... and the equation of motion of the oscillator with mass m and
eigenfrequency ω0 becomes

ü+ ω2
0

(
1− f1/mω2

0 cosωt
)
u = (f0/m) cosωt ; (11.92)

making use of h = −f1/mω2
0 it is re-written as

ü+ ω2
0 (1 + h cosωt)u = (f0/m) cosωt . (11.93)

The solution of the homogeneous equation

ü+ ω2
0 (1 + h cosωt)u = 0 (11.94)

may exhibit a resonance for some particular values of the frequency
ω. This is known as the parametric resonance.9

Indeed, let us assume ω = 2ω0 and h � 1. In this case equation
(11.94) is a Mathieu equation.10 We seek a solution

u � a cosω0t+ b sinω0t , (11.95)

9L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 1., Mechanics,
Elsevier, Oxford (1976).

10E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge
University Press, Cambridge (1927).
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11 Oscillator and Elastic Waves

where the coefficients a and b depend slowly on the time t and ad-
ditional terms with frequencies ω0 ± 2nω0, n integer, are neglected.
Therefore,

u̇ = ȧ cosω0t− aω0 sinω0t+

+ḃ sinω0t+ bω0 cosω0t
(11.96)

and
ü = −2ȧω0 sinω0t+ 2ḃω0 cosω0t−

−aω2
0 cosω0t− bω2

0 sinω0t .
(11.97)

Equation (11.94) implies

ȧ+
hω0

4
b = 0 , ḃ =

hω0

4
a = 0 . (11.98)

We can see that the coefficients a and b may increase exponentially in
time. The force induces a parametric resonance for ω = 2ω0. Actually,
the resonance may appear in a narrow range of frequency centered on
2ω0. Similar resonances may appear in much narrower ranges centered
on ω = 2ω0/n, where n is any integer (nω−ω0 = ω). Equation (11.94)
with ω = 2ω0, 4ω0,... is a Hill equation.11 The range of resonance
frequencies is diminished by damping.

11E. T. Whittaker and G. N. Watson, loc. cit.
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12 Surface Waves,
Inhomogeneities

12.1 Surface waves. H/V -Ratio

12.1.1 Surface (Rayleigh) waves

As it is well known, the equation of elastic waves in a homogeneous
and isotropic body is given by

ü = c2tΔu+ (c2l − c2t )grad divu+ F (12.1)

where u is the local displacement, ct,l are the velocities of sound for
transverse and longitudinal waves and F is an external force (per unit
mass). The sound velocities are given by

c2t =
E

2ρ(1 + σ)
, c2l =

E(1 − σ)

ρ(1 + σ)(1 − 2σ)
(12.2)

where E is Young’s modulus, σ is Poison’s ratio (0 < σ < 1/2) and ρ
is the density of the body.1

We consider a half-space z < 0 and an external force

F = −fe−iΩtδ(r)eκz (12.3)

where f is a force per unit superficial mass, Ω is the frequency of the
force, κ is an attenuation coefficient and r = (x, y) are in-plane coor-
dinates. This would correspond formally to surface "waves" excited
on Earth’s surface by seismic waves or other external perturbations.

1L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of

Elasticity, Elsevier, Oxford (1986).
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12 Surface Waves, Inhomogeneities

The localization of the force means that we detect the surface waves
far away form the source of excitation.

We look for solutions of the form u ∼ eikreκz and introduce the
notation u = (ul, ut, uv) and k = (k, 0, 0). In addition we assume
f = (fl, 0, fv). Equation (12.1) becomes

ül = (−c2l k2 + c2tκ
2)ul + iκk(c2l − c2t )uv − fle

−iΩt ,

üv = (−c2tk2 + c2l κ
2)uv + iκk(c2l − c2t )ul − fve

−iΩt ,

üt = c2t (−k2 + κ2)ut .

(12.4)

It is easy to see that the homogeneous equations (12.4) have two
distinct eigenfrequencies given by ω2

l,t = c2l,t(k
2 − κ2), corresponding

to the eigenmodes ul ∼ ik, uv ∼ κ and ul ∼ κ , uv ∼ −ik.

We introduce the notation ω2 = c2l (k
2 − κ2

l ) = c2t (k
2 − κ2

t ) and the
linear combinations

ul = (ikAeκlz + κtBeκtz)eikx ,

uv = (κlAe
κlz − ikBeκtz)eikx

(12.5)

in order to satisfy the boundary conditions σiz = 0 at the free surface
z = 0, where

σij =
E

1 + σ
(uij +

σ

1− 2σ
ullδij) (12.6)

is the stress tensor and uij = (∂ui/∂xj+∂uj/∂xi)/2 is the strain ten-
sor. These are the well-known Rayleigh "waves".2 From the boundary
conditions we get ut = 0 and the equations

2iκlkA+ (k2 + κ2
t )B = 0 ,[

σ(k2 + κ2
l )− κ2

l

]
A+ i(1− 2σ)κtkB = 0 .

(12.7)

It is easy to see that the ωl-solution corresponds to curlu = 0 and
the ωt-solution corresponds to divu = 0. Making use of c2l (k

2−κ2
l ) =

2Lord Rayleigh, "On waves propagated along the plane surface of an elastic
solid", Proc. London Math. Soc. 17 4 (1885).
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c2t (k
2 − κ2

t ) = ω2 and of equations (12.2) the second equation (12.7)
can also be written as

(k2 + κ2
t )A− 2iκtkB = 0 , (12.8)

so that equations (12.7) have solutions providing

(k2 + κ2
t )

2 = 4κlκtk
2 . (12.9)

We introduce the variable ξ defined by ω = ctξk and, making use of
equations (12.2), we get

κ2
l = (1 − c2t ξ

2/c2l )k
2 =

[
1− 1−2σ

2(1−σ) ξ
2
]
k2 ,

κ2
t = (1− ξ2 )k2 .

(12.10)

Equation (12.9) becomes

ξ6 − 8ξ4 + 8
2− σ

1− σ
ξ2 − 8

1− σ
= 0 . (12.11)

This equation has a solution close to unity, ξ � 1, for 0 < σ < 1/2. It
follows that κl ∼ k and κt ∼ 0. The ratio of the two amplitudes is

A

B
= 2i

√
1− ξ2

2− ξ2
, (12.12)

so the amplitude of the κl-wave (A) is much smaller than the ampli-
tude of the κt-wave (B). The κt-wave is a shallow wave with a large
penetration depth (κt � 0).
Therefore, for a given frequency ω we have two waves (with ampi-
tudes A and B), both with an in-plane wavevector k, related to the
frequency by ω = ctξk, and with two fixed attenuation coefficients κl,t.
Actually, equation (12.11) has two solutions ±ξ, i.e. two frequencies
ω = ±ctξk, which means that the displacement goes like ∼ sin ctξt,
i.e. the displacement is in fact a vibration.

12.1.2 H/V -ratio

We pass now to solving equations (12.4) with the force term. The
solution is of the form u ∼ eikreκze−iΩt, where κ is the attenuation
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coefficient in the force. We get easily

ul =
(Ω2−c2tk

2+c2l κ
2)fl−iκk(c2l−c2t )fv
Δ ,

uv =
(Ω2−c2l k

2+c2tκ
2)fv−iκk(c2l−c2t )fl
Δ

(12.13)

where Δ =
[
Ω2 − c2l (k

2 − κ2)
] [

Ω2 − c2t (k
2 − κ2)

]
. We define the

"H/V "-ratio as H/V = |ul|2 / |uv|2.3 It is convenient to introduce
the notation s = f2

l /f
2
v . We get

H/V =
(Ω2 − c2tk

2 + c2l κ
2)2s+ κ2k2(c2l − c2t )

2

(Ω2 − c2l k
2 + c2tκ

2)2 + κ2k2(c2l − c2t )
2s

. (12.14)

We introduce ω = ctξk for ξ � 1 and r = cl/ct. Let us assume, as a
working hypothesis, κ � 0, by analogy with κt given by κ2

t = (1−ξ2)k2
for ξ � 1. Equation (12.14 becomes then approximately

H/V � (Ω2 − ω2)2s

(Ω2 − r2ω2)
2 . (12.15)

We can see that the H/V -ratio exhibits a resonance at ω = ω0 �
Ω/r = (ct/cl)Ω.4 If we take Ω = clk this resonance is in the vicinity
of the S-wave frequency ω � ctk. For s = 0 the H/V -ratio is given by

H/V � (1− ξ2)(r2 − 1)2ω4

(Ω2 − r2ω2)
2 (12.16)

and one can see that the resonance is rather sharp. For s → ∞ the
resonance disappears. A plot of the ratio H/V given by equation
(12.15) is shown in Fig. 12.1

3M. Nogoshi and T. Igarashi, "On the amplitude characteristics of microtremor-
Part 2", J. Seism. Soc. Japan 24 26 (1971) (in Japanese); Y. Nakamura,
"A method for dynamical characteristics estimation of subsurface using mi-
crotremor on the ground surface", Quart. Rep. Railway Tech. Res. Inst. 30

25 (1989); "On the H/V spectrum", The 14th World Conference on Earthquake
Engineering, 2008, Beijing, China.

4B. F. Apostol, "Resonance of the surface waves. The H/V ratio", Roum. Reps.
Phys. 60 91 (2008).
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12 Surface Waves, Inhomogeneities

Figure 12.1: The H/V resonance at frequency ω0 = Ω/r.

We may also use κ2 = (1−ξ2/r2)k2, by analogy with κl, and equation
(12.14) becomes

H/V �
[
Ω2 + (r2 − 2)ω2

]2
s+ (r2 − 1)3ω4/r2

[Ω2 − (r2 + 1/r2 − 1)ω2]
2
+ s(r2 − 1)3ω4/r2

. (12.17)

This expression has a rather broad maximum. For s = 0 equation
(12.17) exhibits a resonance at ω � (r2 + 1/r2 − 1)−1/2Ω = (1 +
1/r4− 1/r2)−1/2ω0 which is greater than ω0 (r2 > 2). For s→∞ the
maximum of equation (12.17) disappears.

The surface waves given by (12.13) and the H/V -ratio (12.14) acquire
a very simple expression. A small but finite value of κ shifts the
resonance frequency and smooth out the resonance, giving it a small
width. If the force is a superposition of various frequencies Ω then the
resonance is smoothed out and gets a finite width.

It is worth noting that what we call herein surface waves are not the
Rayleigh surface waves. If they were, the frequency Ω of the force
would be equal to the frequency ω and the H/V -resonance would
disappear. We use the term surface waves in the sense that they
are proportional to eκzand κ may be very small. It is difficult to
ascertain an external force proportional to eκz. Boundary forces exist,
generated by displacement at the surface, but they are restricted to
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12 Surface Waves, Inhomogeneities

Figure 12.2: The wave fronts of the excited surface waves.

the surface.5

12.1.3 Surface displacement

For a very small attenuation coefficient κ the surface waves given by
equation (12.13) become

ul � fl
Ω2 − c2l k

2
, uv � fv

Ω2 − c2tk
2
. (12.18)

It is worth computing the (inverse) Fourier transforms of the displace-
ments given by equations (12.18).6 We assume that the external force
is smoothly distributed with an average f̄l,v over a large range Δω of
frequencies, i.e. 1/Δω is approximately the duration of the external
pulse. For vanishing κ we may omit the z-dependence. Then, the dis-
placements as function of position and time are given approximately
by

ul,v(r, t) �
f l,v

(2π)3ΔΩ

ˆ
dk

ˆ
dΩ

1

Ω2 − c2l,tk
2
e−iΩteikr . (12.19)

5B. F. Apostol, Seismology, Nova, NY (2020).
6B. F. Apostol, "Surface waves in an isotropic semi-infinite body", Roum. Reps.

Phys. 65 1204 (2013).
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The integration over Ω can be performed immediately. Similarly, the
integration over angles (in eikr) gives the Bessel function J0(kr) of
the first kind and zeroth order. We get

ul,v(r, t) � −
f l,v

4πcl,tΔΩ

ˆ ∞
0

dk · J0(kr) sin cl,tkt . (12.20)

The remaining integral in equation (12.20) is a known integral.7 We
get

ul,v(r, t) � −
f l,v

4πcl,tΔΩ

θ(cl,tt− r)√
c2l,tt

2 − r2
, (12.21)

where θ(x) = 1 for x > 1 and θ(x) = 0 for x < 0 is the step function.
This is a cylindrical wave, with an abrupt wavefront at r = cl,tt,
propagating with the velocities cl,t and decreasing in time as∼ 1/t. Its
duration is of the order of the pulse duration 1/ΔΩ.8 An illustration
of these waves as functions of time is given in Fig. 12.2. A finite value
of κ smooths out the abrupt wavefront of these waves.

We might say that surface waves excited by an external force in an
isotropic half-space may exhibit a resonance of their H/V -ratio (hor-
izontal to vertical polarization), which is rather sharp and it may be
close to the frequency of the in-plane transverse (shear) waves. The
dominant soil frequencies for a response caused by such an external
force are the resonance frequency ω0 = Ω/r. It may be close to the
frequency ctk of the in-plane (shear) transverse wave (for Ω = clk), or
to the frequency c2tk/cl for Ω = ctk and vanishing longitudinal force
(fl = 0). Similarly, if we assume that Ω is the fundamental frequency
of a superposed layer of thickness d (Ω = πc0t/2d, where c0t is the
transverse wave velocity in the layer), the resonance frequencies are
πctc

0
t/2cld. These formulae may help in estimating the thickness of the

layer or the magnitude of velocities. If we recall that we have denoted
here the resonance frequency by ctk = 2πct/λ, we get λ/d = 4cl/c

0
t .

If the assumption λ/d = 4 is correct, this would imply cl/c
0
t = 1. If,

7I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
Academic Press, NY (2000), p. 709, 6.671.

8H. Lamb, "On wave-propagation in two dimensions", Proc. London Math. Soc.
35 141 (1902); "On the propagation of tremors over the surface of an elastic
solid," Phil. Trans. Roy. Soc. (London) A203 1 (1904).
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on the other side, we assume that the resonance frequency is given
by Ω/r0 = c0tΩ/c

0
l = πc0t /2d, then, for Ω = rω0 = 2πrct/λ, we get

λ/d = 4cl/c
0
l ; for λ/d = 4 we have cl/c

0
l = 1.

The disturbance given by equation (12.21) is similar to the main shock.
We recall that the main shock goes like (c2l,tt

2−r2)−3/2, so the distur-
bance given by equation (12.21) is less singular than the main shock,
while its tail is higher than the tail of the main shock. Since this
disturbance arises from a force concentrated at r = 0, it is likely
that it is produced by the epicentral region, at distances much larger
than the dimension of this region; the epicentral region is left aside in
estimating the main shock.9

Also, we note that the horizontal (radial) displacement both for the
main shock and the epicentral shock is propagated with velocity cl,
while the vertical displacement in both cases is propagated with ve-
locity ct < cl. Therefore, at the moment a large (singular) horizontal
displacement is measured the vertical one is zero, or, at most, it is
the finite vertical displacement in the preceding S (or P ) wave, a
circumstance which gives indeed a large H/V -ratio.
It is worth noting that a large H/V -ratio seems to occur only on a
soft soil, superposed over a hard bedrock, so it may be related to
the oscillation frequency of the superposed layer.10 On the other
hand, the main shock which appears in the presence of an internal
discontinuity11 leads to a H/V -ratio of the order r/2z1 for long times
(low frequencies), where r is the epicentral distance and z1 is the
depth of the discontinuity. This contribution arises from the waves
propagating with longitudinal velocity.

12.1.4 An exponentially decaying force

We consider a semi-infinite isotropic elastic solid (half-space) extend-
ing over the region z < 0. We are interested in its elastic motion
9The time Fourier transform of the function in equation (12.21) is related to

the integral
´+∞
0

dueix cosh u = iπ
2
H

(1)
0 (x), where H

(1)
0 is the Hankel function

(I. S. Gradshteyn and i. M. Ryzhik, Table of Integrals, Series and Products,
Academic, NY (2000), p. 904, 8.421).

10Y. Nakamura, "On the H/V spectrum", The 14th World Conference on Earth-
quake Engineering, 2008, Beijing, China.

11B. F. Apostol, Seismology, Nova, NY (2020).
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Figure 12.3: A schematic representation of two parallel threads of
atoms.

(elastic waves) under the action of an external force, in particular an
external damping force of the form f ∼ eκz, where κ is an attenuation
(damping) coefficient. We sketch here an argument that such a force
is plausible within the general definition of an elastic solid.

First, we resort to the general atomic structure of solid matter. In a
simplified model we may focus attention upon two parallel threads of
atoms, arranged at their equilibrium positions in a generic solid, as
shown in Fig. 12.3. We recall that one of the basic assumptions of the
linear elasticity consists of admitting only local displacements which,
though they may be large, must have a small spatial derivative, i.e.

they must vary very slowly within the solid. This means that atoms
in thread 1 in Fig. 12.3 may move only within the inter-atomic spaces
of thread 2 (each such space is of length a in Fig. 12.3). If we look
to a large stack of such many parallel threads, it is easy to see indeed
that the displacements may get high values, but certainly they vary
slowly over large distances. This amounts to disregard the friction, or
other losses in an ideal elastic solid.

For external forces the situation may be different, especially near their
location, where we may expect abrupt changes in atomic positions.
Suppose that such a force f acts along the thread 1 and causes a
displacement u1 of this thread. Atoms in thread 1 may pass over
atoms in thread 2. As long as atoms in thread 1 move within the
inter-atomic space of thread 2 we may expect little displacement of
thread 2. Each time, however, when atoms in thread 1 pass over atoms
in thread 2 we may expect a certain contribution to the displacement
u2 of thread 2. It is reasonable to assume that such a displacement is
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of the order of the atomic size denoted by b in Fig. 12.3. Suppose that
there are n such pass-over steps. We get approximately a displacement

u2 = nb . (12.22)

Now, the number n is obviously proportional to u1/a, so we have

u2 =
b

a
u1 . (12.23)

Suppose now that we take a stack of parallel chains, the first, denoted
by u0 located at z = 0 and the n-th, denoted by un located at z.
Obviously, we have

un =

(
b

a

)n

u0 (12.24)

by iterating equation (12.23), or

u(z) = u0e
− z

a ln(b/a) = u0e
κz , (12.25)

where κ = − 1
a ln(b/a); we have taken into account that z < 0,

ln(b/a) < 0 and have assumed the same distance a between the
threads. Such a damping displacement, caused by an external force,
may generate an elastic force which, obviously, has the same damping
character: f ∼ eκz (through fi = ∂σij/∂xj , where σij is the stress
tensor). This is, of course the external force. It may even have a
abrupt decrease (though not necessarily), for large κ, but, of course,
this does not impede on the basic assumption of the elasticity, be-
cause its magnitude may be sufficiently small as to preserve the small
variations of the elastic displacement.

12.1.5 Rough surface

We consider the elastic waves equation

ü = c2tΔu+ (c2l − c2t )grad divu , (12.26)

where u is the displacement field,

ct =
√
E/2ρ(1 + σ) , cl =

√
E(1 − σ)/ρ(1 + σ)(1 − 2σ) (12.27)

184



12 Surface Waves, Inhomogeneities

are the velocities of the transverse and longitudinal waves, E is the
Young’s modulus, σ is the Poisson ratio (0 < σ < 1/2) and ρ is the
density of the isotropic body. As it is well known, the elastic field
can be written as u = ut + ul, with divut = 0 and curlul = 0. This
splitting leads to üt = c2tΔut and ül = c2lΔul. We consider surface
waves of the form e−iωteikreκz which are vanishing for z → −∞. The
frequencies are given by ω2

t = c2t (k
2 − κ2

t ) and ω2
l = c2l (k

2 − κ2
l ).

The above conditions of transversality and irotationality lead to the
following representation for these waves:

ul = A(kx, ky,−iκl)e
−iωteikreκlz ,

ut = (Bκt, Cκt,−i(Bkx + Cky))e
−iωteikreκtz ,

(12.28)

where A,B,C are coefficients which depend on the wavevector k (for
a given frequency). The elastic field is a superposition over k′s of
ul + ut given by equation (12.28).

We consider a free surface with a normal vector n and impose the
free-force boundary condition σijnj = 0, where

σij =
E

1 + σ
(uij +

σ

1− 2σ
ullδij) (12.29)

is the stress tensor and uij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain
tensor. We give here the strain tensor as computed from equation
(12.28):

uxx =
∑

k i
(
k2xAke

κlz + kxκtBke
κtz
)
eikr ,

uyy =
∑

k i
(
k2yAke

κlz + kyκtCke
κtz
)
eikr ,

uzz = −∑k i
[
κ2
lAke

κlz + κt (kxBk + kyCk) e
κtz
]
eikr

(12.30)
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and

uxy =
∑

k i
[
kxkyAke

κlz + 1
2κt (kyBk + kxCk) e

κtz
]
eikr ,

uxz =
∑

k[κlkxAke
κlz+

+ 1
2

(
(k2x + κ2

t )Bk + kxkyCk

)
eκtz]eikr ,

uyz =
∑

k[κlkyAke
κlz+

+ 1
2

(
kxkyBk + (k2y + κ2

t )Ck

)
eκtz]eikr .

(12.31)

In addition
ull =

∑
k

i(k2 − κ2
l )Ake

κlzeikr . (12.32)

We consider the free surface described by equation z = f(x, y). Its
normal vector n is proportional to (f1, f2,−1), where f1 = ∂f/∂x
and f2 = ∂f/∂y. We assume that f1 and f2 are small quantities and
limit ourselves to the second-order expansion in these quantities; we
get the normal vector n = (f1, f2,−(1−f2

1/2−f2
2/2)). The boundary

condition σijnj = 0 reads

(uxx + σ
1−2σull)f1 + uxyf2 = uxz(1− f2

1 /2− f2
2 /2) ,

uxyf1 + (uyy +
σ

1−2σull)f2 = uyz(1− f2
1 /2− f2

2 /2) ,

uxzf1 + uyzf2 = (uzz +
σ

1−2σull)(1 − f2
1/2− f2

2 /2) .

(12.33)

We assume further that κl,tf � 1, and write eκl,tz � 1 + κl,tf +
κ2
l,tf

2/2. We use the Fourier decomposition f =
∑

q fqe
iqr. The

system of equations (12.33) can then be solved, in principle. It is of
the form AijXj = λijXj , where λ denotes a small parameter, orig-
inating in function f . For a flat surface λ = 0 (z = 0) and we get
the Rayleigh waves. For a surface defined by function f the above
system leads to det(A − λ) = 0 which induces small changes in the
k-dependence of κl,t; and leads also to small changes in coefficients
A,B,C. Essentially, the effect of the irregular surface is to introduce
a superposition of waves instead of a pure k-Rayleigh plane wave. The

186



12 Surface Waves, Inhomogeneities

actual superposition depends on the particular form of the function
f .
We adopt a statistical view and average over function f and its deriva-
tives in equations (12.33). We assume f̄1,2 = 0, ff1,2 = 0, f̄2 = 2f2

and ¯f2
1,2 = q2f2, where f is now a parameter and q−1 is a measure of

the scale of the variations of the function f . Then, the wavevectors
are not coupled anymore in equations (12.33), so we may restrict our-
selves to one k-plane wave; in addition, we may assume ky = 0. The
lhs of equations (12.33) is now vanishing, and the remaining rhs gives

2κlkA(1 + κ2
l f

2 − q2f2)+

+(k2 + κ2
t )B(1 + κ2

t f
2 − q2f2) = 0 ,

κ2
lA(1 + κ2

l f
2 − q2f2)− κtkB(1 + κ2

tf
2 − q2f2)−

− σ
1−2σ (k

2 − κ2
l )A(1 + κ2

l f
2 − q2f2) = 0

(12.34)

and C = 0. We introduce new variables A′ = A(1 + κ2
l f

2− q2f2) and
B′ = B(1 + κ2

tf
2 − q2f2) and the above equations become

2κlkA
′ + (k2 + κ2

t )B
′ = 0 ,

2κtkB
′ + (k2 + κ2

t )A
′ = 0 .

(12.35)

The second equation (12.35) is obtained by using the dispersion rela-
tions (frequency ω vs wavevector k) and the definition of the waves
velocities as functions of σ.
Equations (12.35) define the Rayleigh waves. With ω = clkξ and
κ2
l = (1− c2t ξ

2/c2l )k
2, κ2

t = (1− ξ2)k2 they lead to

ξ6 − 8ξ4 + 8
2− σ

1− σ
ξ2 − 8

1− σ
= 0 , (12.36)

which has a solution close to unity. The amplitude ratio is given by

A′/B′ = −2
√
1− ξ2

2− ξ2
. (12.37)

The statistical effect of small superficial irregularities on the surface
waves is the small change in amplitudes according to A′ = A(1 +
κ2
l f

2 − q2f2) and B′ = B(1 + κ2
t f

2 − q2f2).
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12.2 Surface inhomogeneities

12.2.1 Introduction

The effect of the surface inhomogeneities (defects) on the propagation
of the elastic waves in a semi-infinite isotropic solid body (half-space)
is investigated herein. A perturbation-theoretical scheme is devised
for small surface defects (in comparison with the relevant elastic dis-
turbances propagating in the body), and the elastic waves equations
are solved in the first-order approximation. It is shown that surface
defects generate both scattered waves localized (and propagating only)
on the surface (two-dimensional waves) and scattered waves reflected
back in the body. Directional effects, wave slowness and attenuation
by diffusive scattering, or possible resonance effects are discussed.

There is a great deal of interest in the role played by the surface
defects (inhomogeneities) in a large variety of physical phenomena,
ranging from mechanical properties of the elastic bodies, to hydrody-
namical flow of microfluids, dispersive properties of surface plasmon-
polariton in nanoplasmonics, terahertz-waves generation or electronic
microstructures. Giant corrugations have been found on the graphite
surface by scanning tunneling microscopy, due to the elastic deforma-
tions induced by atomic forces between tip and surface. Periodic sur-
face corrugation plays a central role in enhanced, or suppressed, opti-
cal transmission in the subwavelength regime, or in highly-directional
optical emission. An appreciable reduction in the thermal conduc-
tance has been assigned to the phonon scattering by surface defects.
Stick-slip instability responsible for earthquakes has been studied, as
well as the associated radiation of seismic surface waves. It has been
recognized that elastic-waves propagation effects may play a central
role in the surface defects associated with the cracks occurring in het-
erogeneous media, like aluminium alloys, ceramics or rock. The main
difficulty in getting more definite results in this problem resides in
modelling conveniently the surface inhomogeneities, such as to arrive
at mathematically operational approaches.

We introduce here a model of surface inhomogeneities, whose elastic
characteristics are, in general, distinct from the ones of the underlying
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(isotropic) elastic half-space (semi-infinite solid).12 Such a model may
account both for surface roughness and for surface coatings (in general,
non-uniform). It is shown that the elastic waves propagating in the
semi-infinite body (incident on and reflected specularly by the surface)
generate a force localized on the surface, which is responsible for the
scattered waves. This force arises mainly from both the presence of
the surface layer and the more-or-less abrupt termination of the solid
at its surface. The scattered waves are of two kinds: localized (and
propagating only) on the surface (two-dimensional waves), and waves
scattered back in the body. For an enhanced distribution of surface
defects the waves scattered back in the body may get confined to
the surface (damped surface waves). The method employed herein is
based on a perturbation-theoretical scheme, and the resulting coupled
integral equations are solved in the first approximation with respect
to the magnitude of the defects distribution. Multiple scattering is
expected to occur in higher-order approximations. The perturbation
method employed here differs from other perturbation methods. For
instance, the perturbation treated here is partially an intrinsic one, not
a purely external one, as in the Born approximation. The introduction
of a surface layer is equivalent to some extent with a double-scale
treatment, so that, in this respect, there is a resemblance with a multi-
scale method.

Forward scattering and backward scattering of elastic waves have also
been reported in corrugated waveguides. Great insight has been ob-
tained previously in the coupling of the surface (Rayleigh) waves to
periodic corrugation (grating), especially as regards the wave atten-
uation, slowing and leaking (outgoing increasing wave), corroborated
with band gaps and stop bands, by using non-perturbational tech-
niques. The reflection and refraction of elastic (acoustic) waves at
a rough surface, or ducts with variable cross-sections, have been ex-
tensively studied, emphasizing the role of the boundary conditions.
Powerful numerical methods have been developed for such complex
problems. A great deal of attention was given to the coupled modes
propagating in elastic waveguides with rough surfaces, which high-
lighted a rich phenomenology. The interplay between mode dispersion

12B. F. Apostol, "The effect of surface inhomogeneities on the propagation of
elastic waves", J. Elas. 114 85 (2014).
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and surface roughness may lead to a well-defined selectivity in the
transmission coefficient and anomalous backscattering enhancement.
Most of such important results are obtained numerically. Similar re-
sults have been reported for sound and ultrasound waves propagating
in fluids.

In addition to such results, we show here that the surface inhomo-
geneities may cause localized waves, propagating only on the surface,
which may store a certain amount of energy, due to the localization
effects. Attenuation of crustal waves across the Alpine range has been
reported, which might be associated with the localization of energy
in the surface defects region.13 The method presented here can be
extended to electromagnetic waves,14 or fluid waves, propagating in
a semi-infinite body with surface defects. It was employed to analyze
the elastic waves produced by localized forces in semi-infinite solids.15

12.2.2 Elastic body with surface inhomogeneities

We consider an isotropic elastic body extended boundlessly along the
directions r = (x, y) and limited along the z-direction by a free sur-
face z = h(r), where h(r) > 0 is a function to be further specified
(roughness function). The body, which may also be termed a semi-
infinite solid (elastic half-space) with a non-planar surface, occupies
the region z < h(r). It is convenient to write the well-known equation
for free elastic waves in an isotropic body as

1

v2t
ü−Δu = m · grad divu , (12.38)

where u(r, z, t) is the displacement field, t denotes the time, vt is
the velocity of the transverse waves, m = v2l /v

2
t − 1 > 1/3 (actually

1)16 and vl is the velocity of the longitudinal waves. Indeed, equation

13M. Campillo, B. Feignier, M. Bouchon and N. Bethoux, "Attenuation of crustal
waves across the Alpine range", J. Geophys. Res. 98 1987 (1993).

14B. F. Apostol, "Scattering of electromagnetic waves from a rough surface", J.
Mod. Optics 59 1607 (2012).

15B. F. Apostol, "Elastic waves in a semi-infinite body", Phys. Lett. A374 1601
(2010).

16L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, vol. 7, Theory

of Elasticity, Elsevier, Oxford (2002).
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(12.38) gives the free transverse waves (divu = 0) propagating with
velocity vt and the free longitudinal waves (curlu = 0) propagating
with velocity vl.

For a semi-infinite body with a surface described by equation z = h(r)
and extending in the region z < h(r) the displacement field can be
written as

u = (v, w)θ[h(r) − z] , (12.39)

where v lies in the (x, y)-plane, w is directed along the z-axis and θ
is the step function (θ(z) = 0 for z < 0, θ(z) = 1 for z > 0). The
magnitude of the surface inhomogeneities (deviation from a plane)
is given by the function h(r), which we assume to be very small in
comparison with the relevant wavelengths along the z-directions of
the elastic disturbances propagating in the body. Consequently, we
may use the first-order approximation

u = (v, w)[θ(−z) + h(r)δ(z)] (12.40)

for equation (12.39), where δ(z) is the Dirac function. This is the usual
approximation employed in the perturbation-theoretical approaches.17

The specific conditions of validity for this approximation will be dis-
cussed on the final results.

We write such a displacement field as

u = u0 + δu0 , (12.41)

where

u0 = (v0, w0)θ(−z) , δu0 = (v0, w0)|z=0 hδ(z) , (12.42)

and assume that u0 satisfies the wave equation (12.38)

1

v2t
ü0 −Δu0 = m · grad divu0 (12.43)

17F. Gilbert and L. Knopoff, "Seismic scattering from topographic irregularities",
J. Geophys. Res. 65 3437 (1960); J. A. Ogilvy, "Wave scattering from rough
surfaces", Reps. Progr. Phys. 50 1553 (1987) and references therein; A. A.
Maradudin and D. L. Mills, "The attenuation of Rayleigh surface waves by
surface roughness", Ann. Phys. 100 262 (1976).
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with specific boundary conditions at z = 0. This equation describes
incident and (specularly) reflected waves propagating in a semi-infinite
solid with a plane surface z = 0. We can see that δu0 generates
a source-term localized on the surface (a force), which can produce
scattered waves. We denote the displacement field associated with
these scattered waves by u1; it satisfies the wave equation

1

v2t
ü1 −Δu1 = m · grad divu1 +

f

v2t
, (12.44)

where the force is given by

f

v2t
=

1

v2t
δü0 −Δδu0 −m · grad divδu0 . (12.45)

Equations (12.44) and (12.45) represent merely a different way of re-
writing the wave equation for a semi-infinite solid with surface defects.
For waves localized on the surface the solution of equation (12.44) is
u1 = δu0. Another solutions are given by the waves scattered back
in the body by the surface defects, i.e. waves generated in equa-
tion (12.44) by the source term f (a particular solution of equation
(12.44)). We generalize this model of surface defects by assuming
that the roughness is "inhomogeneous", i.e. it is a homogeneous
elastic medium with different elastic characteristics than the plane-
surface half-space bulk (for instance, different density and elastic con-
stants). Therefore, we introduce distinct velocities vt,l and denote all
the changed parameters with an overbar (for instance, m = v2l /v

2
t−1).

The force is given in this case by

f

v2t
=

1

v2t
δü0 −Δδu0 −m · grad divδu0 , (12.46)

The results are expressed conveniently by using the relative differences
ηt,l = 1−v2t,l/v

2
t,l. The displacement field u1 given by equation (12.44)

can be written as u1 = (v, w)θ(−z).
We may say that, in the presence of a displacement field u0, the
surface inhomogeneities generate a force f , localized on the surface
and of the same order of magnitude as the function h (δu0 ∼ hδ(z)).
This force is the difference between the inertial force δü0/v

2
t and the
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elastic force Δδu0 +m · grad · divδu0; it represents the distinct way
the surface follows the elastic motion in comparison with the bulk.
Equation (12.43) gives the free incident and reflected waves propagat-
ing in a half-space with a plane surface, while equation (12.44) gives
the scattered waves produced by the roughness of the surface, as a
consequence of the source term f/v2t .
It is worth noting that such a model of inhomogeneous surface may
correspond either to a surface whose physical properties have been
changed, or to a solid which is homogeneous everywhere, including
its rough surface. Indeed, in the latter case, it is precisely the spa-
tial variations of the rough surface which affect its elastic properties,
viewed as a homogeneous medium, and render it, in fact, a rough
surface which is inhomogeneous with respect to the bulk.
The above perturbation-theoretical scheme can also be writen in a
different way, by recasting equation (12.38) into an equation involving
the velocity vl of the longitudinal waves and the parameter n = 1 −
v2t /v

2
l = m/(1 +m). Then, equations (12.43) - (12.45) become

1
v2
l
ü0 −Δu0 = n(−Δu0 + grad divu0) ,

1
v2
l
ü1 −Δu1 = n(−Δu1 + grad divu1) +

f
v2
l

,

(12.47)

where

f

v2l
=

1

v2l
δü0 − (1− n)Δδu0 − n · grad divδu0 . (12.48)

We solve equation (12.44) and the second equation (12.47) for the
scattered transverse and longitudinal waves by using the Green func-
tion method.

12.2.3 Plane surface

As it is well known, the elementary solutions of equation (12.43), or
the first equation (12.47), (homogeneous elastic waves equation) for a
half-space with a plane surface are transverse and longitudinal plane
waves of the form

u0 ∼ (e±iκ0z, e±iκ
′

0z)e−iωt+ik0r , (12.49)

193



12 Surface Waves, Inhomogeneities

where both incident (+κ0, +κ
′

0) and reflected (−κ0, −κ′0) waves are
included, ω is the frequency and k0 is the in-plane wavevector. For
divu0 = 0 we get the transverse waves, propagating with the veloc-
ity vt (ω = vtK0, where K0 = (k0, κ0)), with the z-component of
the wavevector κ0 =

√
ω2/v2t − k20 . For curlu0 = 0 we get the lon-

gitudinal waves (through curl · curlu0 = −Δu0 + grad · divu0 = 0),
propagating with the velocity vl and the z-component of the wavevec-
tor κ

′

0 =
√
ω2/v2l − k20 (ω = vlK

′

0 and K
′

0 = (k0, κ
′

0)). The trans-
verse waves have two polarizations, one in the propagating plane (the
(k0, κ0)-plane), which we call here the p-wave (parallel wave), another
perpendicular to the propagating plane, which we call here the s-wave
(from the German "senkrecht", which means "perpendicular"). Lin-
ear combinations of the plane waves given by equation (12.49) are sub-
ject to conditions imposed on the surface (e.g., free or fixed surface).
The p- and s- notations are used in electromagnetism. In seismol-
ogy the longitudinal waves, denoted here by the suffix l, are usually
called primary waves and denoted by P , while the transverse s-waves
discussed here are called shear horizontal waves and denoted by SH .
The transverse p-waves discussed here have not a simple polarization
with respect to the surface. It is worth noting that the results of the
perturbation scheme applied here to the integral equations acquire
their most simple and convenient form for longitudinal waves and p-
and s-transverse waves as used here.

We derive here these free waves propagating in a half-space with a
plane surface by a different method, which will be used subsequently
in deriving the solutions for the scattered waves (equation (12.44) and
the second equation (12.47)). In order to simplify the notations we
omit here the subscript 0.

The solution of equation (12.43) is written as

u = [v(z), w(z)] θ(−z)e−iωt+ikr . (12.50)

Introducing this u in equation (12.43) and leaving aside the exponen-
tial factor e−iωt+ikr we get

∂2u

∂z2
+ κ2u = S , (12.51)
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where κ2 = ω2/v2t − k2 and the source S has the components

S(x,y) = −imk
(
ikv + ∂w

∂z

)
θ(−z)+

+
(
∂v
∂z

∣∣
z=0

+ imk w|z=0

)
δ(z) + v|z=0 δ

′

(z) ,

Sz = −m
[
ik∂v

∂z + ∂2w
∂z2

]
θ(−z) + im kv|z=0 δ(z)+

+(1 +m)
[

∂w
∂z

∣∣
z=0

δ(z) + w|z=0 δ
′

(z)
]
.

(12.52)

We can see that the source S, which collects all the contributions from
m · gradu and the derivatives of θ(−z) in Δu, acts as an "external
force" in equation (12.51). As it is well known, the particular solution
of equation (12.51) is given by

u(z) =

ˆ
dz′G(z − z′)S(z′) , (12.53)

where
G(z) =

1

2iκ
eiκ|z| (12.54)

is the Green function for equation (12.51) (Green function of the one-
dimensional Helmholtz equation). Making use of the notations v1 =
vk/k and v2 = vk⊥/k, where k⊥is a vector perpendicular to k and
of the same magnitude k, equations (12.52)-(12.54) lead to

v2 = − i

2κ

∂v2
∂z

∣∣∣∣
z=0

e−iκz − 1

2
v2|z=0 e

−iκz (12.55)
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and
v1 = − imk2

2κ

´ 0
dz′v1(z′)eiκ|z−z′|−

−mk
2κ

∂
∂z

´ 0
dz′w(z′)eiκ|z−z′|−

− i
2κ

∂v1
∂z

∣∣
z=0

e−iκz − 1
2 v1|z=0 e

−iκz ,

(1 +m)w = −mk
2κ

∂
∂z

´ 0
dz′v1(z′)eiκ|z−z′|+

+ imκ
2

´ 0
dz′w(z′)eiκ|z−z′|−

− i
2κ

∂w
∂z

∣∣
z=0

e−iκz − 1
2 w|z=0 e

−iκz .

(12.56)

Equation (12.55) corresponds to the s-wave. It is easy to see that the
particular solution given by equation (12.55) is identically vanishing.
Therefore, we are left with the free s-waves given by equation (12.49),
as expected (∼ e±iκze−iωt+ikr).

Let us take the second derivative of equations (12.56) with respect to
z and use the identity

∂2

∂z2

ˆ
dz′f(z′)eiκ|z−z′| = −κ2

ˆ
dz′f(z′)eiκ|z−z′| + 2iκf(z) (12.57)

for any arbitrary function f(z). We get

∂2v1
∂z2 + κ2v1 = −imk

(
ikv1 +

∂w
∂z

)
,

∂2w
∂z2 + κ2w = −m ∂

∂z

(
ikv1 +

∂w
∂z

)
.

(12.58)

We can see that for div(v1, w) = 0, i.e. for ikv1 + ∂w/∂z = 0, we get
the free p-waves (κ =

√
ω2/v2t − k2), according to equation (12.49)

(∼ e±iκze−iωt+ikr). Similarly, for curlu = 0, i.e. for ikw − ∂v1/∂z =
0, equations (12.58) become

(1 +m)∂
2(v1, w)
∂z2 + (κ2 −mk2)(v1, w) = 0 , (12.59)

or, making use of m = v2l /v
2
t − 1,

∂2(v1, w)

∂z2
+ κ

′2(v1, w) = 0 , (12.60)
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where κ
′

=
√
ω2/v2l − k2, i.e. free longitudinal waves∼ e±iκ′ze−iωt+ikr.

The longitudinal waves can also be obtained by noticing that the
coupled equations (12.56) imply the relationship

∂v1
∂z

− ikw = Ce−iκz , (12.61)

where

C = −1

2

(
∂v1
∂z

− ikw

)∣∣∣∣
z=0

+
1

2

(
iκv1 − k

κ

∂w

∂z

)∣∣∣∣
z=0

. (12.62)

We use this relationship in one of equations (12.58), and get

∂2v1
∂z2

+ κ
′2v1 = − imκ

1 +m
Ce−iκz . (12.63)

The particular solution of this equation is vanishing identically, and
we are left with free longitudinal waves. Indeed, equation (12.61) with
C = 0 corresponds to curl(v1, w) = 0.

The p-waves are obtained in a similar way, by starting with the first
equation (12.47). Using u given by an equation similar with equation
(12.50) we get

(1− n)v2 = in(κ
′2+k2)

2κ′

´ 0
dz′v2(z′)eiκ

′ |z−z′|−

− i
2κ′

∂v2
∂z

∣∣
z=0

e−iκ
′

z − 1
2 v2|z=0 e

−iκ
′

z

(12.64)
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and
(1− n)v1 = inκ

′

2

´ 0
dz′v1(z′)eiκ

′ |z−z′|−

− nk
2κ′

∂
∂z

´ 0
dz′w(z′)eiκ

′ |z−z′|−

− i
2κ′

∂v1
∂z

∣∣
z=0

e−iκ
′

z − 1
2 v1|z=0 e

−iκ
′

z ,

w = − nk
2κ′

∂
∂z

´ 0
dz′v1(z′)eiκ

′ |z−z′|+

+ ink2

2κ′

´ 0
dz′w(z′)eiκ|z−z′|−

− i
2κ′

∂w
∂z

∣∣
z=0

e−iκ
′

z − 1
2 w|z=0 e

−iκ
′

z .

(12.65)

It is easy to see, by taking the second derivative with respect to z,
that equation (12.64) gives the free s-waves. Similarly, by taking the
second derivative with respect to z, equations (12.65) become

∂2v1
∂z2 + κ

′2

1−nv1 = −ink ∂w
∂z ,

∂2w
∂z2 + (1− n)κ2w = −ink ∂v1

∂z

(12.66)

(where we have used the identity κ
′2+nk2 = (1−n)κ2). On the other

hand, from equations (12.65), we get easily the relationship

∂v1
∂z

+ i
κ2

k
w =

C
′

1− n
e−iκ

′

z , (12.67)

where

C
′

= −1

2

(
∂v1
∂z

+
iκ
′2

k
w

)∣∣∣∣∣
z=0

+
1

2

(
iκ
′

v1 +
κ
′

k

∂w

∂z

)∣∣∣∣∣
z=0

. (12.68)

Making use of this relationship in equations (12.66) we get

∂2w

∂z2
+ κ2w = − ink

1− n
C
′

e−iκ
′

z (12.69)

and a similar equation for v1. It is easy to see that the particular
solution of equation (12.69) is identically vanishing, so we are left with
the free p-waves. Indeed, equation (12.67) with C

′

= 0 corresponds
to div(v1, w) = 0.
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12.2.4 Scattered waves

We consider now a bulk incident transverse wave and reflected trans-
verse and longitudinal waves given by

u0 =
(
u
(1)
0 eiκ0z + u

(2)
0 e−iκ0z + u

(3)
0 e−iκ

′

0z
)
e−iωt+ik0r (12.70)

(for z < 0), where the amplitudes u
(1,2,3)
0 satisfy the corresponding

conditions of transverse and longitudinal waves. For instance, in the
representation u0 = (v0, w0) we have k0v

(1,2)
0 ± κ0w

(1,2)
0 = 0 (includ-

ing w
(1,2)
0 = 0 for the s-waves) and κ0v

(3)
0 k0/k0 + k0w

(3)
0 = 0. In ad-

dition, the wave given by equation (12.70) must satisfy the conditions
at the surface. For instance, for a fixed surface we have u0|z=0 = 0,
while for a free surface, we impose the condition σiz = 0, where σij is
the stress tensor (i = x, y, z). All these conditions fix the amplitudes
u
(1,2,3)
0 , up to the incidence angle and the amplitude of the incident

wave, in terms of the reflection coefficients and reflection angles, ulti-
mately in terms of the wave velocities vt,l. For an incident s-wave we
have only a reflected s-wave (u(3)

0 = 0), while for an incident p-wave
we have both p- and longitudinal waves. A similar situation occurs for
an incident longitudinal wave, with κ0 and κ

′

0 interchanged in equa-
tion (12.70). The displacement δu0 given by equation (12.42) implies
u0 for z = 0, so that we may represent this localized contribution of
the u0-wave as

u0|z=0 = (v0, w0)e
−iωt+ik0r , (12.71)

where v0, w0 include contributions corresponding to various polariza-
tions.
First, we are interested in solving equation (12.44) for the scattered
waves, with the force f/v2t generated by the free waves u0, as given
by equation (12.46). We consider a Fourier component of the form

h(r) = heiqr (12.72)

for the roughness function, where h is an amplitude (depending on q)
and q denotes a characteristic wavevector (in final results the contri-
bution q → −q must be included). The localized displacement δu0

given by equation (12.42) can be written as

δu0 = h(v0, w0)e
−iωt+ikrδ(z) , (12.73)
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where k = k0 + q. Making use of this displacement δu0, the force
f/v2t given by equation (12.46) can be computed straightforwardly.
Leaving aside the exponential factor e−iωt+ikr, it is given by

f (x,y)

v2
t

= −h[κ2v0δ(z) + v0δ
′′

(z)−

−mk(kv0)δ(z) + imkw0δ
′

(z)] ,

fz

v2
t
= −h[κ2w0δ(z) + w0δ

′′

(z)+

+imkv0δ
′

(z) +mw0δ
′′

(z)] ,

(12.74)

where
κ =

√
ω2/v2t − k2 (12.75)

and
κ =

√
ω2/v2t − k2 =

√
κ2
0 − 2k0q− q2 . (12.76)

We add the contributions arising from this force (via the Green func-
tion of equation (12.51)) to the rhs of equations (12.55) and (12.56)
and solve these equations by the procedure described in the previous
section. For instance, equation (12.55) becomes

v2 = − i
2κ

∂v2
∂z

∣∣
z=0

e−iκz − 1
2 v2|z=0 e

−iκz−

− ih
2κ (κ

2 − κ2)v02e
−iκz + hv02δ(z) .

(12.77)

The displacement v2 given above includes the localized wave

v2l = hv02δ(z)e
−iωt+ikr , (12.78)

which is a scattered wave propagating only on the surface (two-dimen-
sional wave). The remaining contribution to equation (12.77) (terms
without δ(z)) represents scattered waves reflected back in the body.
We denote this contribution by v2r. Taking the second derivative
with respect to z in equation (12.77) and using the self-consistency
condition imposed by this equation on the displacement on the surface,
we get immediately the solution

v2r = − ih

4κ
(κ2 − κ2)v02e

−iωt+ikr−iκz . (12.79)

200



12 Surface Waves, Inhomogeneities

This is an s-wave, scattered back in the body by the surface roughness.
We can see that it is the distinct elastic parameters of the surface
roughness that ensure this scattering (through κ2 − κ2 = −ω2ηt/v

2
t �=

0). The occurrence of the wavevector k = k0 + q in equation (12.79)
is indicative of the selective reflection phenomenon, associated with
corrugated surfaces, and in general, of directional effects.

In likewise manner we get the equations for v1 and w with the force
terms given by equation (12.74). We get the amplitudes for localized
waves

v1l = hv01δ(z) , wl = h
1 +m

1 +m
w0δ(z) . (12.80)

Equations (12.58) and (12.61) remain the same, but the constant C
given by equation (12.62) (entering the relationship (12.61)) becomes
now

C = − 1
2

(
∂v1
∂z − ikw

)∣∣
z=0

+ 1
2

(
iκv1 − k

κ
∂w
∂z

)∣∣
z=0

−

− h
2κ(κ

2 − κ2)(κv01 + kw0) .

(12.81)

Following the same procedure as described in the previous section we
get the scattered waves

v1r = −ih v2
t

4ω2 (κ
2 − κ2)(κv01 + kw0)e

−iωt+ikr−iκz =

= i
4hηt(κv01 + kw0)e

−iωt+ikr−iκz

(12.82)

and wr = kv1r/κ. We can see that this represent a p-wave (div(v1r , wr)
= 0, i.e. kv1r − κwr = 0).

We turn now to the second equation (12.47) with the force given by

f (x,y)

v2
l

= −h[(1− n)κ2v0δ(z) + (1 − n)v0δ
′′

(z)−

−nk(kv0)δ(z) + inkw0δ
′

(z)] ,

fz

v2
l
= −h[(1− n)κ2w0δ(z) + (1 − n)w0δ

′′

(z)+

+inkv0δ
′

(z) + nw0δ
′′

(z)] .

(12.83)
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By using the procedure described in the previous section we get a
localized displacement

vl = h
1− n

1− n
v0δ(z) , wl = hw0δ(z) . (12.84)

We can see, by comparing equations (12.78), (12.80) and (12.84) that
the inhomogeneous roughness affects the localized waves in different
ways. For the scattered waves reflected back in the body, equations
(12.66) and (12.67) from the previous section remain unchanged, but
the constant C

′

given by equation (12.68) (entering the relationship
(12.67)) becomes

C
′

= − 1
2

(
∂v1
∂z + iκ

′2

k w
)∣∣∣

z=0
+ 1

2

(
iκ
′

v1 +
κ
′

k
∂w
∂z

)∣∣∣
z=0

−

− h
2k (κ

′2 − κ′2)(kv01 − κ′w0) .

(12.85)

We get straightforwardly the reflected waves

v1r = −ih v2
l k

4ω2κ′ (κ
′2 − κ′2)(kv01 − κ′w0)e

−iωt+ikr−iκ′z =

= i
4hηl(kv01 − κ′w0)e

−iωt+ikr−iκ′z

(12.86)

and wr = −κ′v1r/k. We can see that this scattered wave is a longitu-
dinal wave (curl(v1r , wr) = 0, i.e. −κ′v1r = kwr).
According to equations (12.79), (12.82) and (12.86), within the present
model of surface roughness we get waves scattered back in the body
only for a rough surface with elastic characteristics different from those
of the body (inhomogeneous roughness, ηt,l �= 0). For a homogeneous
roughness, i.e. for ηt,l = 0, we get only scattered waves localized on
the surface, given by

ul = δu0 = h(r)(v0, w0)e
−iωt+ik0rδ(z) , (12.87)

as expected.

12.2.5 Discussion

The localized waves have the general form of the incoming wave
e−iωt+ik0r, modulated by the roughness function h(r). If q is a char-
acteristic wavevector of this roughness function and k = k0 + q, the
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velocity of the localized waves is given by vs = ω/k = vt,lk0/k sin θ,
where θ is the incidence angle of the incoming (transverse or longitu-
dinal) wave. The directional effects are clearly seen from the presence
of k =

√
k20 + 2k0q+ q2 in the denominator of this relation. It is

worth noting that for q = ±k0, i.e. for a surface distribution of de-
fects modulated with the same wavelength as the original u0-wave,
there appear scattered waves with half the wavelength of the orig-
inal u0-waves (wavevector 2k0) and the whole surface suffers a vi-
bration (independent of the coordinate r), a characteristic resonance
phenomenon (k = 0). The waves corresponding to the wavevector
2k0 have a velocity ω/2k0, which is twice as small as the original ve-
locity on the surface. This is indicative of the slowness phenomenon,
associated with rough surfaces.
The q = ±k0 resonance phenomenon is exhibited also by the waves
scattered back in the body. Another resonance phenomenon may ap-
pear for ±2k0q + q2 = 0, which is the well-known Laue-Bragg con-
dition for the X-rays diffraction in crystalline bodies.18 In this case,
k = k0, κ = κ0 and κ

′

= κ
′

0, and we can see that the scattered
transverse (longitudinal) waves are generated only by the transverse
(longitudinal) part in the original u0-waves, as expected, due to the
presence of the factors κv01+kw0 and kv01−κ′w0 in equations (12.82)
and (12.86). For antiparallel k0 and q the scattered wave propagates
in opposite direction with respect to the incident wave.
The results given above hold also for purely imaginary values of the
wavevectors κ or κ

′

, when the scattered waves become confined to
the surface (surface waves), a situation which may occur especially
for high values of the magnitude q of the characteristic wavevectors
q (q 
 k0). According to equations (12.79), (12.82) and (12.86),

the scattered waves are now damped (∼ e|κ|z , ∼ e|κ′|z) and their
amplitudes are proportional to the roughness function h(r). It is
worth noting that these surface waves are generated by the surface
roughness.
As it is well known, the energy of the incident wave is transferred to
the reflected waves. In the present case, it is transferred both to the
reflected waves as well as to the scattered waves, including the waves
localized on the surface and the waves scattered back in the body.
18C. Kittel, Introduction to Solid State Physics, Wiley, NJ (2005).

203



12 Surface Waves, Inhomogeneities

According to equations (12.79), (12.82) and (12.86) the energy den-
sity of the scattered waves reflected back in the body is proportional
to (h/λ)2, where λ is a characteristic "wavelength" of these waves
(projection of the wavelength λ on the surface, or on the direction
perpendicular to the surface, or combinations of these). It follows
that the validity criterion for our perturbation-theoretical scheme is
h � λ. In the limit of small roughness (h → 0), the energy of the
scattering waves (their amplitude) is vanishing. It is worth estimat-
ing the energy of the waves localized on the surface. For simplicity,
we consider a homogeneous roughness, with the localized waves given
by

(vl, wl) = h(v0, w0)δ(z)e
−iωt+ikr (12.88)

(according to equation (12.87)) and choose the wavevector k directed
along the x-axis. The validity condition for these waves is obtained
by assuming that the distribution of the surface defects extends over
a distance of the order of hm = maxh(r) and use the representation
δ(z) � 1/hm for the δ-function. Then, the perturbation calculations
are valid for h � hm, where h is the average (mean value) of the
function h(r). This means that the surface distribution of defects has
only a few spikes. As it is well known, the (elastic) energy density
(per unit mass) can be expressed as

E/ρ = v2t (u
2
ij − u2

ii) +
1

2
v2l u

2
ii , (12.89)

where uij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the strain tensor. In our
case, we use for computing this strain tensor the displacement given
by equation (12.88). The strain tensor includes factors proportional to
δ(z) and δ

′

(z), and the energy density includes factors proportional to
δ2(z) and δ

′2(z). The leading contribution comes from δ
′2(z) -terms:

E/ρ =
h2

2
(v2tv

2
0 + v2l w

2
0)δ

′2(z) , (12.90)

giving a surface energy (per unit mass)∼ hmE/ρ. Making use of the
representation δ

′2(z) � 1/h4
m, this surface energy is proportional to

h2/h3
m, while the corresponding energy of the incident wave goes like

hm/λ2; the ratio of the two quantities is of the order of h2λ2/h4
m.

We can see that that this ratio may acquire large values, even for
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h� hm (perturbation criterion satisfied), for λ
 hm. Therefore, the
surface waves may store an appreciable amount of energy, as a result
of their localization. This phenomenon is related to the discontinuites
experienced by the strain tensor along the direction perpendicular to
the surface.

12.2.6 Particular cases

From equations (12.79), (12.82) and (12.86) we can get the reflec-
tion coefficients, related to the energy, of the waves scattered back
in the body. Their general characteristic is the directionality effects.
The derivation of these coefficients is complicated in the general case,
where we should fix the amplitudes of the original u0-waves according
to the nature of these waves and the boundary conditions. Another
complication arises from the fact that we should "renormalize" the
amplitudes of the reflected original u0-waves such as to include (acco-
modate) the scattered waves in the boundary conditions (a procedure
specific to theoretical-perturbation calculations). We limit ourselves
here to give the reflection coefficients for a few particular cases.

First, one of the simplest case is an original s-wave, described by

u0 = 2(0, u0, 0) cosκ0z · e−iωt+ik0r , (12.91)

where k0 is directed along the x-axis. Making use of equation (12.89),
the energy density (per unit mass) of the incident wave in equation
(12.91) is E0/ρ = ω2u2

0. We must compute the projections v01,2
of the amplitude of this wave on k = k0 + q and k⊥. Introduc-
ing the angle α between q and k0, we get v01 = 2u0q sinα/k and
v02 = 2u0(k0 + q cosα)/k (and, of course, w0 = 0). We can see, from
equations (12.79), (12.82) and (12.86), that an incident s-wave pro-
duce both s- and p- scattered transverse waves as well as a scattered
longidudinal wave, due to the surface inhomogeneities. Making use of
these equations we compute easily the amplitudes of these waves and
get the reflection coefficients

Rs = ηt
hω2

4v2
tκk

(k0 + q cosα) ,

Rp = ηt
hωq
4vtk

sinα , Rl = ηl
hωq
4vlk

sinα .

(12.92)
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The energy density carried on by these waves is given by Es,p,l/E0 =
R2

s,p,l. We stress upon the complicated direction-dependence (angle α)
of these reflection coefficients, included both in κ and k. The formulae
given by equations (12.92) become more simple for normal incidence
(k0 = 0).

For normal incidence there is another simple case concerning longitu-
dinal waves described by

u0 = 2(0, 0, u0) cosκ
′

0z · e−iωt , (12.93)

where κ
′

0 = ω/vl. The energy density per unit mass of this incident
wave is E0/ρ = ω2u2

0. According to equations (12.79), (12.82) and
(12.86), the scattered waves in this case are a p-wave and a longitu-
dinal wave. Their reflection coefficients are much more simple now,

Rp = ηt
hωq

4vtκ
, Rl = ηl

hωκ
′

4vlq
. (12.94)

The squares of these coefficients give the fraction of energy carried on
by these waves.

It is worth stressing that all the above formulae are valid only for
κ, k, q �= 0 (non-vanishing denominators).

We can see from the above particular cases, as well as from the general
equations (12.79), (12.82) and (12.86), that the total amount of energy
carried on diffusively by the waves scattered by the surface roughness
implies sums of the form

∑
q |h(q)|2 f(q), where h(q) is the Fourier

transform of the roughness function h(r) and f(q) are specific func-
tions corresponding to the waves’ nature (factors implying k, κ, κ

′

,
etc). Qualitatively, in order to maximize this energy, it is necessary,
apart from particular cases of gratings (one, or a few wavevectors q),
to include as many Fourier components as possible, i.e. the surface
should be as rough as possible in order to have a good attenuation, a
reasonably expected result.

In conclusion, we may say that we have introduced a model of inho-
mogeneous surface distribution of defects for a semi-infinite isotropic
elastic body and solved the wave equations for the elastic waves scat-
tered by this surface roughness in the first-order approximation with
respect to the magnitude of the defects distribution. The scattered
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waves are of two kinds: waves localized (and propagating only) on
the surface, given by equations (12.80) and (12.84), and scattered
waves reflected back in the body by the surface inhomogeneities, both
transverse, as given by equations (12.79) and (12.82), and longitudi-
nal, as given by equation (12.86). The latter may become confined to
the surface (damped surface waves) for an enhanced roughness (large
wavevectors q). The reflected waves are absent for a homogeneous
roughness (ηt,l = 0), where only the localized waves survive.

12.3 Bulk inhomogeneities

12.3.1 Introduction

A new method is introduced herein for estimating the effects of the
inhomogeneities on the propagation of the elastic waves in isotropic
bodies. The method is based on the Kirchhoff potentials. It is aplied
here for estimating the effect of a static density inhomogeneity, either
extended or localized, on the elastic waves propagating in an infi-
nite, or a semi-infinite (half-space) body. For a semi-infinite body the
method leads to coupled integral equations, which are solved. It is
shown that such a density inhomogeneity may renormalize the waves
velocity, or may even produce dispersive waves, depending on the ge-
ometry of the body and the spatial extension of the inhomogeneity.19

The method can be extended to other types of geometries or inho-
mogeneities, as, for instance, those occurring in the elastic constants.
The same method is employed for the propagation of sound in fluids.20

The effect of the inhomogeneities on the propagation of the elastic
waves in structures with special, restricted geometries has always en-
joyed a great deal of interest. Apart from its practical importance
in engineering, the problem is particularly relevant for the effect the
seismic waves may have on the Earth’s surface.21 The propagation

19B. F. Apostol, "The effect of the inhomogeneities on the propagation of elastic
waves in isotropic bodies", Mech. Res. Commun. 37 458 (2010).

20B. F. Apostol, "Scattering of longitudinal waves (sound) by defects in fluids.
Rough surface", Centr. Eur. J. Phys. 11 1036 (2013).

21K. E. Bullen, An Introduction to the Theory of Seismology, Cambridge Uni-
versity Press, Cambridge (1976); K. Aki and P. G. Richards, Quantitative
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of elastic waves in bodies with finite, special geometries, like, for in-
stance, a semi-infinite space, poses certain technical problems. We
present herein a new method of dealing with elastic waves in isotropic
media, borrowed from electromagnetism. The method is based on
Kirchhoff retarded potentials for the wave equation. We analyze the
change produced in the eigenfrequencies of the elastic modes by static
density inhomogeneities of a certain spatial extent, distributed in an
infinite, or a semi-infinite (half-space) isotropic body.
As it is well known, the propagation of the elastic waves in an isotropic
body is governed by the equation of motion

ρü = μΔu+ (λ+ μ) grad divu , (12.95)

where ρ is the body density, u is the field displacement and λ , μ are
the Lame coefficients. We leave aside the external forces and write
this equation in the form

1

v2t
ü−Δu = q · grad divu , (12.96)

where vt =
√
μ/ρ is the velocity of the transverse waves, q = v2l /v

2
t −1

and vl =
√
(λ+ 2μ)/ρ is the velocity of the longitudinal waves. As it

is well-known, for reasons of stability, the inequality q > 1/3 (actually
q > 1 for real bodies) holds. A particular solution of equation (12.96)
is given by the well-known Kirchhoff potential22

u(R, t) = q
4π

´
dR′

grad divu(R′,t−|R−R′|/vt)
|R−R′| . (12.97)

Indeed, making use of Fourier transforms and using also the well-
known integral

ˆ
dR

eiKR+iωR/vt

R
= − 4πv2t

ω2 − v2tK
2

, (12.98)

we get the eigenvalue equation(−ρω2 + μK2
)
u = − (λ+ μ) (Ku)K , (12.99)

Seismology, Theory and Methods, Freeman, San Francisco (1980); A. Ben-
Menahem and J. D. Singh, Seismic Waves and Sources, Springer, New York
(1981).

22M. Born and E. Wolf, Principles of Optics, Pergamon, London (1959).
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where ω denotes the frequency, K is the wavevector and u(K, ω) is the
Fourier transform of u(R, t). One can check immediately that equa-
tion (12.99) gives the well-known transverse and longitudinal elastic
waves propagating in an infinite isotropic body.

For a semi-infinite body extending over the region z > 0, with a free
surface in the (x, y)-plane z = 0, we use

u→ uθ(z) = (v, u3)θ(z) (12.100)

for the displacement field, where θ(z) = 1 for z > 0, θ(z) = 0 for z < 0
is the step function, v is the (x, y) in-plane component and u3 is the
normal-to-surface component of the displacement (directed along the
z-coordinate). We note that we employ in fact distributions (in the
sense of generalized functions) like θ(z) or δ(z), etc, instead of usual
functions. For the function u in uθ(z) (defined over the entire space)
we use Fourier transforms of the type

u(r, z; t) =
∑
k

ˆ
dωũ(kω; z)eikre−iωt , (12.101)

where R = (r, z) and ũ(kω; z) is the (partial) Fourier transform of
u(r, z; t) with respect to r and t. The divergence occurring in equation
(12.97) can then be written as

divu =

(
divv +

∂u3

∂z

)
θ(z) + u3(0)δ(z) , (12.102)

where we can see the occurrence of the surface term u3(0) = u3(z =
0). The gradient can be computed similarly, by using the Fourier
transform given by equation (12.101).

12.3.2 Inhomogeneities

We assume a certain region in the body, whose shape and extension
is described by a function g(r, z), where the density of the body is
modified according to

ρ→ ρ+ ρg(r, z) . (12.103)
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We employ equation (12.103) for describing an inhomogeneity in the
body. It is easy to see that this change in density introduces a new
source term in equation (12.96), which can be written as

− 1

v2t
g(r, z)ü(r, z; t) =

∑
k

ˆ
dω

ω2

v2t
h̃(kω; z)eikre−iωt , (12.104)

where
h̃(kω; z) =

∑
k1

g̃(k − k1, z)ũ(k1ω; z) . (12.105)

Consequently, equation (12.97) becomes

u(R, t) = q
4π

´
dR′

grad divu(R′,t−|R−R′|/vt)
|R−R′| −

− 1
4πv2

t

´
dR′

g(r′,z′)ü(R′,t−|R−R′|/vt)
|R−R′| .

(12.106)

Making use of the representations given above, and after performing
conveniently a few integrations by parts, equation (12.106) can be
simplified appreciably. The intervening integrals can be performed
straightforwardly. They reduce to the known integral23ˆ ∞

|z|
dxJ0

(
k
√
x2 − z2

)
eiωx/vt =

i

κ0
eiκ0|z| , (12.107)

where J0 is the Bessel function of the first kind and zeroth order and

κ0 =

√
ω2

v2t
− k2 . (12.108)

We get the system of coupled integral equations

ṽ(kω; z) = − iqk
2κ0

´
0
dz′kṽ(kω; z′)eiκ0|z−z′|−

qk
2κ0

∂
∂z

´
0 dz

′ũ3(kω; z
′)eiκ0|z−z′|+

+ iω2

2v2
tκ0

´
0
dz′h̃‖(kω; z′)e

iκ0|z−z′|

(12.109)

23I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
Academic Press, NY (2000), pp. 714-715, 6.677; 1,2.
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and

ũ3(kω; z) = − q
2κ0

∂
∂z

´
0 dz

′kṽ(kω; z′)eiκ|z−z′|+

+ iq
2κ0

∂2

∂z2

´
0
dz′ũ3(kω; z

′)eiκ|z−z′|+

+ iω2

2v2
tκ0

´
0 dz

′h̃3(kω; z
′)eiκ0|z−z′| ,

(12.110)

where h̃‖ is the in-plane component of the vector h̃ defined by equation
(12.105) and h̃3 is its component along the z-direction. The details
for deriving these equations are given in Appendix.

It is convenient to introduce the notations ṽ1 = kṽ/k, ṽ2 = k⊥ṽ/k,
and similar ones for the vector h̃, where k⊥ is a vector perpendicular
to k, kk⊥ = 0, and of the same magnitude k. Under these conditions
equation (12.109) for ṽ2 reduces to

ṽ2(kω; z) =
iω2

2v2t κ0

ˆ
0

dz′h̃2(kω; z
′)eiκ0|z−z′| . (12.111)

This equation corresponds to the transverse wave polarized perpen-
dicular to the plane of propagation (it is known in electromagnetism
as the s-wave, from the German "senkrecht" which means "perpendic-
ular"). Taking the second derivative with respect to z in this equation
we get

∂2ṽ2
∂z2

= −κ2
0ṽ2 −

ω2

v2t
h̃2 . (12.112)

Here, it is worth noting the non-invertibility of the (second) derivative
and the integral in equation (12.111), as a result of the discontinuity

in the derivative of the function eiκ0|z−z′| for z = z′. In equation
(12.112) we perform a Fourier transform with respect to the coordinate
z. Introducing the wavevectors K = (k, κ) and K1 = (k, κ1) and
making use of equation (12.108), equation (12.112) becomes(

ω2

v2t
−K2

)
v2(Kω) = −ω2

v2t

∑
K1

g(K−K1)v2(K1ω) . (12.113)
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We assume first that function g(R) is a constant, g(R) = g. Then,
g(K) = gδK,0 and equation (12.113) gives the frequency

ω =
vt√
1 + g

K , (12.114)

an expected result, which shows that the wave velocity is renormal-
ized as a consequence of the change in density, as described by the
parameter g. Second, we assume that the function g(R) is localized
at some position R0 in the body over a small spatial range of linear
extension a. Then, its Fourier transform can be taken almost con-
stant, g(K)� ga3/V , over a range ∼ 1/a, where V is the volume of
the Fourier integration and g = g(R0). Under these conditions we get
from equation (12.113) the dispersion relation

1 = −ω2ga3

v2t V

∑
K

1

ω2/v2t −K2
. (12.115)

For small values of g the solutions of this equation are given by

ω2/v2t = K2 − gω2

6π2v2t
= K2 − g

6π2
K2 + ..., (12.116)

whence, in the first approximation, we get another renormalizaton of
the wave velocity

vt → vt

(
1− g

12π2

)
. (12.117)

More specifically, we may take for the localized function g(R) a Gauss-
sian normal distribution of the form g(R) = g exp

(− |R−R0| /2a2
)
,

centered at R0 and of standard deviation a. As it is well known, its
Fourier transform is g(K) = (g/V )(2πa2)3/2 exp (−iKR0) ·,
· exp (−K2a2/2

)
which is, essentially, another Gaussian distribution,

centered at K = 0 and of standard deviation 1/a. In this case, the cor-
rection term

(
g/6π2

)
K2 in equation (12.116) acquires an additional

factor (2π)3/2. However, we emphasize here that all these numerical
results are only qualitative estimations.

We note that the renormalization given by equation (12.117) does not
depend on the spatial extension of the function g(R). We also note
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that these results are the same for an infinite body. For a general func-
tion g(R) we may obtain a renormalization of the velocity comprised
between the two limiting cases given above by equations (12.114) and
(12.117). As one can see, there is a qualitative resemblance between
these two results (for instance, equation (12.114) can also be written
as vt → vt(1−g/2)). But we must keep in mind that all these are only
approximate, qualitative estimations. The exact solution would im-
ply solving the integral equation (12.113) (a homogeneous Fredholm
equation of the second kind), which, for a general kernel g(K−K1),
is a difficult problem. Generally speaking, it implies finding out the
eigenfunctions and eigenvalues of the kernel. Under certain condi-
tions, we may try an iterative technique, which may offer an insight
into the qualitative behaviour of the solution: the dispersion relation
ω(K) will exhibit both dispersion and anisotropy, and the waves will
get anisotropic, dispersive group velocities. They may, more appro-
priately, be then viewed as dispersive, anisotropic wave packets.

It is also interesting the case where the localized inhomogeneities are
randomly distributed in the whole body, i.e. the function g(R) is
given by

g(R) =

N∑
i=1

gi(R−R0i) , (12.118)

where gi(R −R0i) is a function of strength gi localized over the vol-
ume a3i centered at R0i and N denotes the number of these inho-
mogeneities. The Fourier transform is given then approximately by
gi(K) � gia

3
i /V , which extends over a volume ∼ 1/a3i . By repeating

the above calculations for equation (12.113) we get a renormalization
of the velocity given by

vt → vt

(
1− 1

12π2

∑
i

gi

)
= vt

(
1− Ng

12π2

)
, (12.119)

where g is the mean strength, as expected. If the inhomogeneities
are distributed in a regular, periodic array, then the problem be-
comes more complicated, because the Fourier transforms will then be
peaked at all the reciprocal vectors of the array. The integral equa-
tion (12.113) is then replaced by another integral equation, implying
summation over all the reciprocal vectors, but with similar (common)
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kernels in all the terms of the summation. The qualitative behaviour
of the solutions of such equations are known from the theory of energy
bands in solids (or the propagation of light in periodic media24): due
to the multiple reflections, the waves may form stationary waves and
the frequencies ω will be distributed in bands, separated by frequency
gaps. However, such subjects will take the present discussion too far.

We can also consider a layer of thickness a, i.e. take g(R) = g(z−z0),
where g(z− z0) is a function localized over the thickness a around z0.
Its Fourier transform is g(k, κ) � (ga/L) δk,0, where L is the length of
the Fourier integration along the z-direction and g(k, κ) extends over a
range∼ 1/a as a function of κ. We note that function g(R) = g(z−z0)
does not depend on r. Of course, the definition of such a (full) Fourier
transform is

u(r, z; t) = u(R, t) =
∑

kκ

´
dωu(k, κ, ω)eikreiκz =

=
∑

K

´
dωu(K, ω)eiKR ,

(12.120)

(compare with equation (12.101)), where the summations (integra-
tions) over k, κ and ω extend over the entire space. The velocity is
then renormalized according to

vt → vt

(
1− g

4π

)
. (12.121)

We turn now to equation (12.109) written for ṽ1 and equation (12.110)
for ũ3. We leave aside arguments k , ω for simplicity, and preserve ex-
plicitly only the argument z. It is easy to see that these two equations
imply

ũ3(z) = − i

k

∂ṽ1
∂z

− ω2

2v2t κ0k

∂H̃1

∂z
+

iω2

2v2t κ0
H̃3(z) , (12.122)

where

H̃1,3(z) =

ˆ
0

dz′h̃1,3(z
′)eiκ0|z−z′| . (12.123)

24L. Brillouin and M. Parodi, Propagation des Ondes dans les Milieux Peri-

odiques, Dunod, Paris (1956).
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We introduce ũ3(z) as given by equation (12.122) in equation (12.109)
for ṽ1(z) and take the second derivative in the resulting equation. We
get

∂2ṽ1
∂z2

+ κ
′2
0 ṽ1 =

iω2

2v2t κ0

(
∂2H̃1

∂z2
+

κ2
0v

2
t

v2l
H̃1

)
+

qkω2

2v2l κ0

∂H̃3

∂z
, (12.124)

where

κ
′

0 =

√
ω2

v2l
− k2 . (12.125)

We introduce Fourier transforms with respect to the z-coordinate both
in equation (12.122) and equation (12.124). The Fourier transforms
of the functions H̃1,3(z) are

H1,3(κ) = − 2iκ0

κ2 − κ2
0

h1,3(κ) (12.126)

for κ �= κ0. Restoring the arguments, h1(κ) is written, by equation
(12.105), as

h1(K) =
∑
K1

g(K−K1)v1(K1) ; (12.127)

a similar expression holds for h3. Doing so, we get two coupled equa-
tions

u3(K)− κ
kv1(K) + ω2

ω2−v2
tK

2 ·

·∑K1
g(K−K1)

[
u3(K1)− κ

k v1(K1)
]
= 0

(12.128)

and

(ω2 − v2tK
2)(ω2 − v2l K

2)v1(K)+

+ω2(ω2 − v2l κ
2 − v2t k

2)
∑

K1
g(K−K1)v1(K1)+

+qv2t κkω
2
∑

K1
g(K−K1)u3(K1) = 0 .

(12.129)

In analyzing these equations we proceed as before. For a constant
function g(R) = g, whose Fourier transform is g(K) = gδK,0, equa-
tions (12.128) and (12.129) give two types of waves. For the longi-
tudinal wave, u3 = κv1/k, equation (12.128) is satisfied identically,
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while from equation (12.129) we get a renormalization of the velocity
vl which is the same as that given above by equation (12.114). For
the transverse wave u3 = −kv1/κ (p-wave, whose polarization lies in
the plane of propagation) we get from equations (12.128) and (12.129)
the same renormalization of the velocity vt as that given by equation
(12.114).

We assume now a function g(R) localized at some position R0 within
the body and extending over a range ∼ a. Its Fourier transform can
be taken as g(K) � ga3/V for K extending over a range ∼ 1/a and
g = g(R0). It is easy to see that, according to equations (12.128) and
(12.129), the velocity vt is not renormalized in the first order of the
(small) parameter g, but the velocity vl acquires a renormalization
given by

vl → vl

(
1− g

36π2

)
. (12.130)

Similarly, for a layer of thickness a the velocity vt is not renormal-
ized in the first order of the parameter g but the frequency of the
longitudinal waves becomes

ω = vlK

(
1− gak

4

)
; (12.131)

we can see that the longitudinal waves become dispersive in this case.

For comparison we give here the results for a density inhomogeneity
in an infinite elastic body. By using Fourier transforms, equation
(12.106) leads to

u(Kω) =
qv2t

ω2 − v2tK
2
(Ku)K− ω2

ω2 − v2tK
2
h(Kω) , (12.132)

where
h(Kω) =

∑
k1

g(K−K1)u(K1ω) (12.133)

and we have used the integral given by equation (12.98). Equation
(12.132) reduces to

u1,2(Kω) +
ω2

ω2 − v2l,tK
2

∑
K1

g(K−K1)u1,2(K1ω) = 0 (12.134)
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for the longitudinal waves u1 = uK/K (velocity vl) and transerse
waves u2 = uK⊥/K (velocity vt), where K⊥ is a vector perpendicular
to the wavevector K, KK⊥ = 0, and of the same magnitude K.
Both equations (12.134) lead to a dispersion equation of the same
form as the one corresponding to the s-wave (equation (12.113)). For
an extended inhomogeneity both vt,l are renormalized according to
equation (12.114), for a localized inhomogeneity both velocities are
renormalized according to equation (12.117). This is different than
the semi-infinite body (compare with equation (12.130)).

In conclusion we may say that we have introduced herein a new
method, based on the Kirchhoff electromagnetic potentials, to esti-
mate the effects of density inhomogeneities on the propagation of the
elastic waves in isotropic bodies. We have applied this method both
to an infinite body and a semi-infinite (half-space) body. For an in-
finite body a density inhomogeneity renormalizes the velocity of the
transverse and longitudinal waves. We have estimated this effect both
for an extended and a localized inhomogeneity, or for a layer, assum-
ing that the strength of the inhomogeneity is small (parameter g).
For a semi-infinite body the present method leads to coupled integral
equations which we have solved. The transverse s-wave is affected in
the same manner as in an infinite body, and this holds also for all the
waves for an extended inhomogeneity, as expected. For a localized
inhomogeneity the transverse p-wave is affected in the second-order of
the parameter g, while the longitudinal wave undergoes a renormal-
ization of velocity (different than in an infinite body). In addition, for
a layer inhomogeneity, the longitudinal waves become dispersive.

12.3.3 Appendix: equations (12.109) and (12.110)

Let us denote by

F(r, z; t) = − 1

4πv2t

ˆ
dR′

g(r′, z′)ü(R′, t− |R −R′| /vt)
|R−R′| (12.135)

the second term in the rhs of equation (12.106), where R = (r, z)
and R′ = (r′, z′). We note that the integration here extends over the
whole space (according to the definition of the Kirchhoff potentials).
First, we replace u by uθ(z), which will restrict the integration with
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respect to z′ to 0 < z′ <∞. Second, we perform the Fourier transform
with respect to the time, according to equation (12.101), which will
bring a factor −ω2. Then, we introduce the spatial Fourier transforms
(according to the same equation (12.101)) and get

F̃(r, z;ω) = ω2

4πv2
t

∑
k1k2

´∞
0 dz′

´
dr′ g̃(k2,z

′)ũ(k1ω;z′)√
(r−r′)2+(z−z′)2

×

×ei ω
vt

√
(r−r′)2+(z−z′)2ei(k1+k2)r

′

.

(12.136)

In this equation we introduce the new variable r1 = r′ − r and put
k1 + k2 = k. We get immediately the Fourier transform

F̃(kω; z) = ω2

4πv2
t

∑
k1

´∞
0

dz′
´
dr1

g̃(k−k1,z
′)ũ(k1ω;z′)√

r21+(z−z′)2
×

×ei ω
vt

√
r21+(z−z′)2eikr1 .

(12.137)

Now, by successive integrations, we have

´
dr1

e
i ω
vt

√
r2
1
+z2√

r21+z2
eikr1 =

= 2π
´∞
0 dr1r1

e
i ω
vt

√
r21+z2√

r21+z2
J0(kr1) =

= 2π
´∞
|z| dxJ0(k

√
x2 − z2)ei

ω
vt

x = 2πi
κ0

eiκ0|z| ,

(12.138)

according to equation (12.107), where κ0 =
√
ω2/v2t − k2 (equation

(12.108)). In equation (12.138) J0 is the Bessel function of the first
kind and zeroth order and we made the change of variable r21+z2 = x2.
This result will be used in all the subsequent calculations. We may
replace now the integral with respect to r1 in equation (12.137) by
this result and get

F̃(kω; z) = iω2

2v2
tκ0
·

·∑k1

´∞
0 dz′g̃(k− k1, z

′)ũ(k1ω; z
′)eiκ0|z−z′| ,

(12.139)
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or

F̃(kω; z) =
iω2

2v2t κ0

ˆ ∞
0

dz′h̃(kω; z′)eiκ0|z−z′| , (12.140)

according to definition (12.105). We can already recognize the last
term in the rhs of equations (12.109) and (12.110).

Now, we pass to the first term in the rhs of equation (12.106). First,
we replace here u by uθ(z). Second, we note that this term is com-
puted for u(R′, t′), where the time t′ is then replaced by the retarded
time t−|R−R′| /vt (according to the definition of the retarded Kirch-
hoff potentials). Making use of equations (12.100) and (12.102), and
introducing the Fourier transform with respect to r, we get

divu =
∑
k

[(
ikv +

∂u3

∂z

)
θ(z) + u3(0)δ(z)

]
eikr (12.141)

and

(grad · divu)‖ =

=
∑

k

[
ik
(
ikv + ∂u3

∂z

)
θ(z) + iku3(0)δ(z)

]
eikr

(12.142)

for the in-plane component of the gradient and

(grad · divu)3 =

=
∑

k

[(
ik ∂v

∂z + ∂2u3

∂z2

)
θ(z) +

(
ikv + ∂u3

∂z

)
δ(z)

]
eikr+

+
∑

k u3(0)δ
′(z)eikr

(12.143)

for its component normal to the surface. The symbol δ′(z) denotes
here the derivative of the δ-function with respect to the coordinate z.
Making the Fourier transform with respect to the time, the contribu-
tion of the in-plane component of the gradient (equation (12.142)) to
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equation (12.106) becomes

q
4π

∑
k

´∞
0

dz′
´
dr′

ik(ikv+ ∂u3
∂z′ )√

(r−r′)2+(z−z′)2
·

·ei ω
vt

√
(r−r′)2+(z−z′)2eikr

′

+

+ q
4π

∑
k

´
dr′ iku3(0)√

(r−r′)2+z2
ei

ω
vt

√
(r−r′)2+z2

eikr
′

.

(12.144)

Here, we introduce again the variable r1 = r′ − r and use the result
given by equation (12.138). Now, we can write the Fourier transform
of v as given by equation (12.106) (including the contribution given
by equation (12.140)) as

ṽ(kω; z) = − iqk
2κ0

´∞
0

dz′kṽeiκ0|z−z′|−

− qk
2κ0

´∞
0 dz′ ∂ũ3

∂z′ e
iκ0|z−z′|−

− qk
2κ0

ũ3(0)e
iκ0z + F̃‖(kω; z) .

(12.145)

In the second integral in this equation we make an integration by parts
and pass from ∂/∂z′ to −∂/∂z in the derivatives of function eiκ0|z−z′|.
We get immediately the equation (12.109) given in the main text.

The gradient component normal to the surface (equation (12.143)) is
treated in the same way. We introduce the Fourier transform with
respect to time, then use equation (12.138) for the integration over r′

and get the partial Fourier transform of the u3. Thereafter, we per-
form an integration by parts in the first bracket in equation (12.143)
which cancels out the contribution of the second bracket in this equa-
tion. Finally, we make another integration by parts for the term
containing ∂ũ3/∂z

′ which cancels out the contribution of the δ′-term.
We give here the contribution of this δ′-term, which is perhaps a bit
more difficult to compute. We have successively

´ +∞
−∞ dz′δ′(z′)eiκ0|z−z′| = − ´+∞−∞ dz′δ(z′) ∂

∂z′ e
iκ0|z−z′| =

= ∂
∂z

´ +∞
−∞ dz′δ(z′)eiκ0|z−z′| = iκ0e

iκ0z .

(12.146)
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This completes the proof of the derivation of the equations (12.109)
and (12.110) given in the previous subsection.

12.4 P and S seismic waves

For seismic studies Earth can be viewed as an elastic continuous body,
which is homogeneous and isotropic on the average, with a plane sur-
face (half-space). Small deviations from homogeneity and isotropy
can be viewed as small inhomogeneities, irregularities, distributed in
the bulk and on the surface. The effect of the bulk inhomogeneities
is a renormalization of the wave velocity and a small dispersion. This
effect is estimated for plane waves, i.e. for the Fourier transforms of
the waves. The dispersion transforms these plane waves in wave pack-
ets. The wave is retrieved by the inverse Fourier transform, which is
slightly distorted by dispersion. The inverse Fourier transform pro-
duces interference. The surface inhomogeneities produce also scat-
tered waves, which may lead to an appreciable distortion of the orig-
inal waves. The primary P and S seismic waves produced by a seis-
mic source localized in time and space are spherical-shell waves. On
Earth’s surface they produce the main shock, which has the more
complex structure of a cylindrical-type wave.

The displacement of the P and S seismic waves is

uP = − TM4

4πρc3
l
R
nδ′(t−R/cl) ,

uS = −T (M4n−M)
4πρc3tR

δ′(t−R/ct) ,

(12.147)

where T is the duration of the seismic activity in the focus, n is
the unit vector from the focus to the observation point placed at
distance R from the focus, ρ is the density of the Earth, cl,t are the
propagation velocities of the longitudinal and transverse elastic waves
and Mi = Mijnj, M4 = Mijninj , where Mij is the tensor of the
seismic moment. Leaving aside the polarization, these waves have the
generic form

u(t, R) =
1

R
δ
′

(ct−R) . (12.148)
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We compute here the Fourier transform of this function. Since

δ(ct−R) = 1
2π

´
dqeiq(ct−R) ,

δ
′

(ct−R) = i
2π

´
dq · qeiq(ct−R) ,

(12.149)

we get

u(t, R) =
i

2π

ˆ
dq · qeiqct e

−iqR

R
. (12.150)

On the other hand,

e−iqR

R
=

1

(2π)3

ˆ
dkf(k)eikR , (12.151)

where

f(k) =

ˆ
dR

e−iqR

R
e−ikR . (12.152)

This integral is performed by introducing a cutoff factor e−μr and
letting μ go to zero; we get

f(k) =
4π

k2 − q2
(12.153)

and

u(t, R) = − 2i

(2π)3

ˆ
dkeikR

ˆ
dq · qeiqct

q2 − k2
. (12.154)

We can see that the Fourier transform f(k) corresponds to free waves
with frequency ω = qc. In the integral over q we need to give a
prescription for the singularities at q = ±k. Since u(t, R) should be
vanishing for t < 0, according to the causality principle, the integra-
tion over q should be performed in the upper half-plane; therefore,
the q-poles should lie in the upper half-plane, i.e. q2 − k2 should be
viewed as q2 − k2 − isgn(q)0+. We get

u(t, R) =
1

(2π)2

ˆ
dkeikR(eikct + e−ikct) (12.155)

(for t > 0). Indeed, this integral is

u(t, R) =
2

πR

ˆ
0

dk · k sin kR cos kct , (12.156)
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or

u(t, R) = − 2

πR

∂

∂R

ˆ
0

dk cos kR cos kct , (12.157)

which gives

u(t, R) = − 1

R

∂

∂R
[δ(R− ct) + δ(R+ ct)] , (12.158)

i.e. the function given by equation (12.148) (for t > 0).

If we include the polarizations, the Fourier transform amounts to an
integral of the form

g(k) =

ˆ
dRn

e−iqR

R
e−ikR . (12.159)

This integral can be performed by using

ˆ +∞

−∞
dx

sin px cos qx

x
=

{
π , p > q ,
0 , p < q .

(12.160)

The result is

g(k) =
4πk

k3

[
qk

q2 − k2
− iπ

2
θ(k − q)

]
. (12.161)
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13 Vibrations

13.1 Half-space

13.1.1 Introduction

According to empirical observations two faible tremors are felt on
Earth’s surface during an earthquake, followed by a wall-like main
shock (or two main shocks).1 The two tremors are localized in space
and time and propagate with different velocities. They have been
identified with the longitudinal P and the transverse S seismic waves.
The earthquake produces elastic waves. On the other hand, the main
shock(s), apart from an abrupt wall, which propagates with a slower
velocity, exhibits a long tail. Obviously, it is a wave, but such a wave
shape is unknown among the waves. The explaination of this curiosity,
exhibited by any seismogram, is called the seismological problem, or
Lamb’s problem. It was felt that it is related to Earth’s surface.

When Rayleigh discovered the damped "surface waves" on the free
surface of an elastic half-space,2 they have immediately been related
to the seismic main shock. "It is not improbable that the surface waves
here investigated play an important part in earthquakes, and in the
collision of elastic solids" (Rayleigh, loc. cit.). Indeed, the Rayleigh
surface waves propagate with a velocity smaller than the velocities
of the elastic waves. Only that the Rayleigh surface waves are in
1R. D. Oldham, Report on the Great Earthquake of 12th June, 1897, Geol. Surv.

India Memoir 29 (1899); "On the propagation of earthquake motion to long
distances", Trans. Phil. Roy. Soc. London A194 135 (1900); C. G. Knott, The

Physics of Earthquake Phenomena, Clarendon Press, Oxford (1908); A. E. H.
Love, Some Problems of Geodynamics, Cambridge University Press, London
(1911).

2Lord Rayleigh, "On waves propagated along the plane surface of an elastic
solid", Proc. London Math. Soc. 17 4 (1885) (J. W. Strutt, Baron Rayleigh,

Scientific Papers, vol. 2, Cambridge University Press, London (1900), p. 441).
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fact vibrations, while the seismic effects are waves. The difference
between waves and vibrations is great: the waves have a wavefront
which propagates, while the vibrations extend over the whole space,
which oscillates.
The problem was taken up by Lamb,3 who formulated it as a vibra-
tion problem for the Navier-Cauchy equation and a homogeneous and
isotropic half-space with a plane free surface. The vibration prob-
lem requires an indefinite time and (spatial) boundary conditions on
the surface. Lamb uses temporal Fourier transforms with respect to
the frequency ω and in-plane Fourier tranforms with respect to the
wavevector k parallel to the surface (though he gives main attention
to a two-dimensional half-plane). He arrives at integrals with inte-
grands having a denominator denoted Δ (see below) and including

square roots like κ1,2 =
√
ω2/c21,2 − k2, where c1,2 are the velocities

of the elastic waves (c2 < c1).
Among many rather unphysical and irrelevant cases Lamb considers
a force localized in space and, what is more important, localized in
time (a time-impulse force ∼ δ(t)), suitable for earthquakes. These
would be forced vibrations, i.e. vibrations produced by a force. This
is the first inappropriate thing in Lamb’s analysis. A force of the
δ(t)-type requires special conditions: for t < 0 we have no motion,
the motion appears only after the force started to act, and exists for
t > 0. This is the so-called causality principle, which says that any
effect is subsequent to its cause, and the future is determined by the
past. This principle and the causality condition it entails lead to
waves, as expected for a force pertaining to earthquakes. We can see
that the time is not indefinite in a propagating-wave problem, as it
is in a vibration problem. A propagating-wave problem is completely
distinct from a vibration problem. By treating a propagating-wave
problem as a vibration problem, or viceversa, a vibration problem
as a propagating-wave problem, is meaningless and leads to incorrect
results. The contradiction resides in the fact that a vanishing integral,
say
´
dxf(x) = 0, does not imply necessarily f(x) = 0, while f(x) = 0

does imply a vanishing integral. The boundary conditions may mean´
dxf(x) = 0, but by using Fourier transforms we require f(x) = 0.

3H. Lamb, "On the propagation of tremors over the surface of an elastic solid",
Phil. Trans. Roy. Soc. (London) A203 1 (1904).
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The problem becomes especially dangerous for discontinuous, singular
functions like δ-functions. For instance, δ(x) is vanishing for any
x �= 0, but the waves eikx in its Fourier transform δ(x) = 1

2π

´
dkeikx

are nowhere vanishing.

Further on, Lamb identifies in his integrals two types of contributions.
One arises from the zeros of the denominator Δ (the residues), which
corresponds to Rayleigh surface-wave contribution. The correspond-
ing contribution is identified by Lamb as the seismic main shock. An-
other contribution, Lamb claims, appears from the cuts in the complex

plane associated to the zeros of the square roots κ1,2 =
√
ω2/c21,2 − k2

(branch points). According to Lamb, these cuts start from ω = ±c1,2k
and go to infinity, such that a contour at infinity would cross such
lines, and would give non-uniform functions, which make the integra-
tion result indefinite. Therefore, we should go along the cuts, such
as to circumvent them, a procedure which gives additional contribu-
tions to the integrals. Surprisingly, such a procedure gives waves,
claims Lamb, which he assigns to the seismic P and S waves. So, it
is claimed that Lamb was the first to explain the seismograms, and
solved thus the seismological problem. However, it is curious that a
vibration problem gives waves, isn’t it? Unfortunately, the cuts for

κ1,2 =
√
ω2/c21,2 − k2 are not from the branch points ω = ±c1,2k to

infinity, but from −c2k to c2k, and from −∞ to −c1k and from c1k
to +∞ (with the point at infinity as a single point). A cut from ck to
infinity appears for

√
ω/c− k, but not for

√
ω2/c2 − k2. The correct

cuts bring no contribution to Lamb’s integrals, so he did not get the
seismic P and S waves, as expected from a vibration treatment.

The full, exact evaluation of Lamb’s integrals has never been accom-
plished, in spite of numerical calculations and the use of Laplace trans-
forms.4 However, the Rayleigh surface-wave contribution for a tem-
poral impulse (the residues arising from the zeros of Δ, associated
by Lamb to the main shock) can straightforwardly be qualitatively

4L. Cagniard, Reflection and Refraction of Progressive Seismic Waves (trans-
lated by E. A. Flinn and C. H. Dix), McGraw-Hill, NY (1962); A. T. de
Hoop, Representation theorems for the displacement in an elastic solid and

their applications to elastodynamic diffraction theory, D. Sc. Thesis, Technis-
che Hogeschool, Delft (1958); "Modification of Cagniard’s method for solving
seismic pulse problems", Appl. Sci. Res. B8 349 (1960).
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estimated (see below). It looks like a displacement extended over the
whole free surface, valid at any moment, with a scissor-like (double-
wall) bump which propagates with velocity c < c2. The infinite spa-
tial extension and non-vanishing values for any time are specific to
vibrations, the propagating bump is specific to waves, coming from a
δ(t)-source. After a long time, this motion extincts. This solution is
very different from the seismic main shock, which is an abrupt wall,
with a long tail, propagating with the velocity c1,2, and vanishing
beyond the wall position. The seismic P and S waves propagate on
Earth’s surface with velocities larger than c1,2, which is easily seen
from the projection of their wavefronts on Earth’s surface.
We summarize here briefly the theory of the seismic P and S waves
and the seismic main shock(s).5 First, the seismic focus is localized
in space and time at a depth below the Earth’s surface much smaller
than the radius of the Earth. Therefore, we may assume, for distances
of our interest, a half-space for the Earth, which we take homoge-
neous and isotropic. Next, we have established the seismic tensorial
point force acting in the focus, governed by the seismic moment (as
for a shear faulting; an isotropic moment corresponds to explosions).
The static deformations produced by such a (static) force have been
computed.6 This force produces two waves, which look like spheri-
cal shells and propagate with velocities c1,2. These are the seismic P
and S waves. When arrived at the Earth’s surface, the crossing cir-
cles of the wavefronts with the surface propagate (their radii increase)
with higher velocities than c1,2. Along these circles a reaction force
acts on behalf of the surface (boundary force), which generates sec-
ondary waves, according to Huygens principle. The secondary waves
are in fact the reflected waves of the singular primary waves. On
Earth’s surface the secondary waves look like two walls (for different
components of the displacement), with abrupt wavefronts propagating
with velocities c1,2, exhibiting long tails. These are the seismic main
5B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.

J. Mech. Appl. Math. 70 289 (2017); Introduction to the Theory of Earth-

quakes, Cambridge International Science Publishing, Cambridge (2017); The

Theory of Earthquakes, Cambridge International Science Publishing, Cam-
bridge (2017); Seismology, Nova, NY (2020).

6B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor
force. General solution for the half-space with point forces", J. Elas. 126 231
(2017).
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shocks. The crossing circles of the primary seismic P and S waves
leave behind seismic main shocks.

The process of wave generation and propagation described above for
an earthquake is a transient process, in the sense that the seismic pri-
mary waves and the wall of the seismic main shock come and go to
infinity in time, and the coda (the tail) of the main shock subsides pro-
gressively to zero. Meantime, the force in the seismic focus has ceased
since long. Obviously, boundary conditions on Earth’s surface are
meaningless, since this motion does not affect all the time the entire
surface. A vibration problem is improper in this case. However, after
multiple reflections on the Earth’s spherical surface the motion may
embrace the whole Earth’s surface and will lasts indefinitely, with-
out no force. These are the free oscillations (eigenvibrations, normal
modes) of the Earth, viewed either a a half-space or as a sphere.

Nevertheless, for the sake of completeness and for its historical interest
in seismology we may formulate a vibration problem with a force
(forced vibrations) in these cases.

13.1.2 Lamb’s problem

The vibration problem of a homogeneous and isotropic elastic half-
space (Lamb’s problem) is a long-standing problem.7 Traditionally, it
is related to the seismic waves and the seismic main shock propagat-
ing during earthquakes on Earth’s surface. Fourier and Laplace trans-
form techniques have been employed to solve this problem.8 Though
the main feature - the Rayleigh surface waves- is known since long,9

7H. Lamb, "On the propagation of tremors over the surface of an elastic solid",
Phil. Trans. Roy. Soc. London A203 1 (1904); K. Aki and P. G. Richards,
Quantitative Seismology, University Science Books, Sausalito, CA (2009); A.
Ben-Menahem and J. D. Singh, Seismic Waves and Sources, Springer, New
York (1981).

8L. Cagniard, Reflection and Refraction of Progressive Seismic Waves (trans-
lated by E. A. Flinn and C. H. Dix), McGraw-Hill, NY (1962); A. T. de
Hoop, Representation theorems for the displacement in an elastic solid and

their applications to elastodynamic diffraction theory, D. Sc. Thesis, Technis-
che Hogeschool, Delft (1958); "Modification of Cagniard’s method for solving
seismic pulse problems", Appl. Sci. Res. B8 349 (1960).

9Lord Rayeigh, "On waves propagated along the plane surface of an elastic solid",
Proc. London Math. Soc. 17 4 (1885) (J. W. Strutt, Baron Rayleigh, Scientific
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the progress towards an explicit full solution requires, on one side,
a physically sound wave-vibration force source and, on the other, a
consistent differentiation between vibrations and propagating waves.
Recently, a general, formal scheme of solution has been analyzed and
the difference between waves and vibrations has been emphasized.10

The seismic tensorial point force governed by the seismic moment
tensor has been introduced.11 The static deformations produced by
this force in a homogeneous and isotropic elastic half-space have been
computed and the waves generated in a homogeneous and isotropic
body have been derived for a temporal-impulse seismic moment. The
seismic P and S waves have been obtained and the main shock gen-
erated by these waves on the free surface of the half-space has been
computed. The seismic waves are spherical shells (proportional to the
derivative of the δ-function) and the main shock has the shape of an
abrupt wall propagating on the surface, vanishing beyond the posi-
tion of the wall (actually, there exist two main shocks, for different
components of the displacement). We present herein the full explicit
solution of the vibration problem with the (isotropic) tensorial point
force in a homogeneous and isotropic half-space with a (free) plane
surface. The solution is obtained by introducing vector plane-wave
functions.

The seismic focus is localized over distances much smaller than our
scale distances; therefore, a point focal force is justified. The seis-
mic activity in an earhquake focus lasts a short time in comparison
to our scale time; therefore, a temporal-impulse of the focal force is
also justified. Moreover, the depth of earthquake foci is very small
in comparison to Earth’s radius; therefore, the approximation of a
half-space for the seismic effects is justified, at least for not very long
propagation times. Under these conditions the seismic waves are lo-
calized (singular) and obey the causality principle, i.e. they have
the shape of propagating spherical shells which appear only after the

Papers, vol. 2, pp. 441-447. Cambridge University Press, London (1900)).
10B. F. Apostol, "On the Lamb problem: forced vibrations in a homogeneous and

isotropic elastic half-space", Arch. Appl. Mech. 90 2335 (2020).
11B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor

force. General solution for the half-space with point forces", J. Elast. 126 231
(2017); "Elastic waves inside and on the surface of an elastic half-space", Quart.
J. Mech. Appl. Math. 70 281 (2017).
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seismic activity started in the focus; they come to any location and
pass over, rather quickly. Once arrived at the surface of the half-space
these waves generate secondary waves, according to Huygens principle,
which, on the surface, propagates as an abrupt wall-like main shock
(actually, two main shocks). A vibration problem, which requires nec-
essarily boundary conditions, is obviously a different problem, since
the waves are not present permanently on the entire surface, and, for
the main shock, the surface is the location of the wave sources. The
wave propagation in these conditions is a transient phenomenon, not
a stationary one.

For the vibration problem we consider a wave source which lasts an
indefinite time. Such a source may generate delocalized waves, which
propagate both in the future and in the past. These waves may obey
boundary conditions. This is a valid vibration problem (of forced
vibrations), which we solve herein for a half-space. The Rayleigh
surface waves bring the main contribution to the solution (for a free
surface). In the special limit of a temporal-impulse source the so-
lution extends over the entire free surface, exhibiting a (scissor-like)
double-wall, whih propagates both in the future and in the past. This
solution is different from the abrupt one-wall seismic main shock. Af-
ter the temporal-impulse seismic force ceases its action we may have
free oscillations (vibrations), which, for the half-space, are governed
by the Rayleigh surface wave frequency.

13.1.3 Vibration equation

The elastic vibrations of a homogeneous and isotropic body are de-
scribed by the Navier-Cauchy equation

c22curl curlu− c21grad divu− ω2u = F , (13.1)

where u is the time Fourier transform of the local displacement, c1,2
are the velocities of the elastic waves, ω is the frequency and F is the
time Fourier transform of the force (per unit mass).12 We consider
this equation in a half-space z < 0, with a free, or fixed, plane surface

12L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of

Elasticity, Elsevier, Oxford (1986).
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z = 0, for the seismic tensorial force with components

Fi = mij∂jδ(R −R0) , (13.2)

placed at R0 = (0, 0, z0), z0 ≤ 0, where mij are the cartesian compo-
nents of the seismic (symmetric) tensor (i, j = x, y, z). The position
vector is R = (r, z), where r = (x, y) is the in-plane position vector
(parallel to the surface z = 0), with horizontal coordinates x, y, and z
is the perpendicular-to-surface coordinate (vertical coordinate, z < 0
). In these equations the unknown function u depends on ω and R

(u = u(ω;R)) and the seismic tensor depends on ω (mij = mij(ω)).
For simplicity, we omit occasionally the position-coordinates variables
and the arguments of the Fourier transforms, which can be read easily
from the context.

We introduce the orthogonal vector plane waves

Z(k; r) = ez
eikr

2π ,

G(k; r) = i
k (kxex + kyey)

eikr

2π ,

C(k; r) = i
k (kyex − kxey)

eikr

2π ,

(13.3)

where k is the in-plane wavevector and ei, i = x, y, z, are the unit
vectors along the x, y, z-directions, and use the decompositions

u(ω,R) =
´
dk[f(ω,k; z)Z(k, r)+

+g(ω,k; z)G(k, r) + h(ω,k; z)C(k, r)] ,
(13.4)

and
F (ω,R) =

´
dk[Fz(ω,k; z)Z(k, r)+

+Fg(ω,k; z)G(k, r) + Fc(ω,k; z)C(k, r)] .
(13.5)

The function G is the gradient of a plane wave (G from "gradient")
and the function C is the vertical component of the curl of a plane
wave (C from "curl"). These functions are constructed following the
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example of the vector spherical and cylindrical harmonics.13 Equation
(13.1) becomes

c21f
′′ + (ω2 − c22k

2)f − (c21 − c22)kg
′ = −Fz ,

c22g
′′ + (ω2 − c21k

2)g + (c21 − c22)kf
′ = −Fg ,

c22h
′′ + (ω2 − c22k

2)h = −Fc ,

(13.6)

where the derivatives are taken with repect to the variable z and

Fz = i
2πmzαkαδ(z − z0) +

1
2πmzzδ

′(z − z0) ,

Fg = 1
2πkmαβkαkβδ(z − z0)− i

2πkmzαkαδ
′(z − z0) ,

Fc =
1

2πk (mxαkαky −myαkαkx)δ(z − z0)−

− i
2πk (mxzky −myzkx)δ

′(z − z0) ,

(13.7)

where α, β = x, y. An anisotropic seismic moment is specific to earth-
quakes which produce seismic waves (by a shear faulting). Although
the solution can be obtained for this general form, for vibrations we
prefer an isotropic tensor mij = −mδij , which simplifies greatly the
calculations. The salient features of the solution are not affected by
this simplification. For an isotropic seismic moment the force compo-
nents become

Fz = −m
2π δ

′(z − z0) , Fg = −mk
2π δ(z − z0) ,

Fc = 0 .
(13.8)

An average over the directions of the wavevector k in equations (13.7)
leads to the same force components (with different coefficients).

13H. Lamb, "On the vibrations of an elastic sphere", Proc. London Math. Soc. 13

189 (1882); "On the oscillations of a viscous spheroid", Proc. London Math.
Soc. 13 51 (1881); W. W. Hansen, "A new type of expansion in radiation
problems", Phys. Rev. 47 139 (1935); R. G. Barrera, G. A. Estevez and J. Gi-
raldo, "Vector spherical harmonics and their applications to magnetostatics",
Eur. J. Phys. 6 287 (1985); W. R. Smythe, Static and Dynamic Electricity,
McGraw-Hill (1950).
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The boundary conditions are σiz |z=0= Pi, where σij = c22uij + (c21 −
2c22)divu · δij is the stress tensor, uij = 1

2 (∂iuj + ∂jui) is the strain
tensor and Pi are the components of the force acting upon the surface
(force per unit cross-section area divided by the density of the body).14

For a free surface (Pi = 0) we get the boundary conditions

(g′ + kf) |z=0= 0 ,
[
c21f

′ − (c21 − 2c22)kg
]
z=0

= 0 ,

h′ |z=0= 0 ;
(13.9)

for a fixed surface the boundary conditions are f, g, h |z=0= 0 (u |z=0=
0). For Fc = 0 and a free or fixed surface the solution of the third
equation (13.8) is h = 0. We are left with the equations

c21f
′′ + c22κ

2
2f − (c21 − c22)kg

′ = m
2π δ

′(z − z0) ,

c22g
′′ + c21κ

2
1g + (c21 − c22)kf

′ = mk
2π δ(z − z0) ,

(13.10)

where κ2
1,2 = ω2/c21,2 − k2. The system of homogeneous equations

(13.10) has the eigenvalues κ2
1,2; therefore, the free solution is

f0 = Aκ1e
−iκ1z + iBke−iκ2z + c.c ,

g0 = iAke−iκ1z +Bκ2e
−iκ2z + c.c ,

(13.11)

where the (complex) coefficients A and B are determined by the
boundary conditions (κ1,2 �= 0). We use the convention of replac-

ing κ1,2 =
√
ω2/c21,2 − k2, ω2/c21,2 − k2 > 0, by iκ1,2 for κ2

1,2 =

k2 − ω2/c21,2 > 0. A particular solution of equations (13.10) is ob-
tained by Fourier transforming these equations with respect to the
variable z; we get the particular solution

fp = sgn(z − z0)
m
4c21

eiκ1|z−z0| + c.c ,

gp = −i mk
4κ1c21

eiκ1|z−z0| + c.c .
(13.12)

14L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of

Elasticity, Elsevier, Oxford (1986).
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Finally, by making use of the boundary conditions for the free surface
(equations (13.9)), we get the full solution

f =
(κ2

2−k2)2−4κ1κ2k
2

Δ
m
4c21

e−iκ1(z+z0)+

+
(κ2

2−k2)k2

Δ
m
c21
e−iκ1z0−iκ2z+

+sgn(z − z0)
m
4c21

eiκ1|z−z0| + c.c

(13.13)

and
g =

i[(κ2
2−k2)2−4κ1κ2k

2]k
κ1Δ

m
4c21

e−iκ1(z+z0)−

−i (κ2
2−k2)κ2k

Δ
m
c21
e−iκ1z0−iκ2z−

−i mk
4κ1c21

eiκ1|z−z0| + c.c ,

(13.14)

where
Δ = (κ2

2 − k2)2 + 4κ1κ2k
2 (13.15)

is the determinant of the system of equations arising from the bound-
ary conditions. For a fixed surface the solution is

f = k2−κ1κ2

k2+κ1κ2

m
4c21

e−iκ1(z+z0)−

− k2

k2+κ1κ2

m
2c21

e−iκ1z0−iκ2z+

+sgn(z − z0)
m
4c21

eiκ1|z−z0| + c.c ,

g = i(k2−κ1κ2)k
κ1(k2+κ1κ2)

m
4c21

e−iκ1(z+z0)+

+i κ2k
k2+κ1κ2

m
2c21

e−iκ1z0−iκ2z−

−i mk
4κ1c21

eiκ1|z−z0| + c.c .

(13.16)

The above formulae give the functions f(ω, k; z) and g(ω, k; z). By
inserting these functions in the first equation (13.4) and performing
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the k-integrations we get the solution u(ω;R); it can be represented
as

u(ω;R) = ez
´
dkkf(ω, k; z)J0(kr)−

−er
´
dkkg(ω, k; z)J1(kr) + c.c. ,

(13.17)

where J0,1(kr) are Bessel functions and er is the radial unit vec-
tor. Finally, a frequency Fourier transform gives the desired solution
u(t,R). This completes formally the solution of the forced vibration
problem.15 We may perform first the ω-integration. If the force is
a harmonic oscillation with frequency ω0, i.e. if m(t) = m cosω0t
(m(ω) ∼ πmδ(ω − ω0) + πδ(ω + ω0), the solution looks like

u(t,R) = [ez
´
dkkf(k; z)J0(kr)−

−er
´
dkkg(k; z)J1(kr)] cosω0t+ c.c. ,

(13.18)

where f(k; z) = f(ω0, k; z) and g(k; z) = g(ω0, k; z) are analytic func-
tions and m(ω0) is replaced by m. If the functions f(ω, k; z) and
g(ω, k; z) have poles at some frequency ωs, then contributions of the
form ∼ δ(ωs ± ω0) may appear, which indicate resonances (for ω0 =
±ωs). The solution given by equation (13.18) has the typical form
of a vibration, with the time dependence separated from the position
dependence.

The description given above can also be applied to a two-dimensional
space (a half-plane), defined by the coordinates r = (x, z), z < 0, with
the source placed at x = 0, z = z0 ≤ 0. The vector functions given
by equations (13.3) become Z(k;x) = ez

eikx√
2π

and G(k;x) = iex
eikx√
2π

(the function C(k;x) is irrelevant). The displacement is given by

u(ω; r) = ez
1√
2π

´ +∞
−∞ dkf(ω, k; z)eikx+

ex
i√
2π

´ +∞
−∞ dkg(ω, k; z)eikx + c.c.

(13.19)

(a result which can be obtained straightforwardly from equation (13.17)
by integrating over y).

15It is an old saying that "a problem is solved when it is reduced to quadratures".
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13.1.4 Surface-wave contribution

Let us perform first the ω-integration in equations (13.17), and assume
a smooth function m(ω). The main contribution to this integration
comes from the zeros of the denominators in equations (13.14) and
(13.16), if they exist. The branch lines associated to κ1,2 are from
−c2k to c2k, from −∞ to −c1k and from c1k to +∞; they bring no
special contribution. For a fixed surface the denominators in equa-
tions (13.16) do not vanish (κ1 �= 0). The so-called "lateral waves"
associated to κ1,2 = 0, i.e. waves which do not depend on the coor-
dinate z, are not produced by a source, so the boundary conditions
cannot be satisfied and the solution remains undeterminate. For a free
surface the determinant Δ (equation (13.15)) is vanishing for only two
acceptable frequencies given by ωs = ±c2ξ0k, where ξ0 varies between
0.87 and 0.95 (it depends on the ratio c2/c1, which varies between
1/
√
2 and 0).16 We note that this solution corresponds to damped

waves (κ1,2 → iκ1,2). These are the well-known Rayleigh surface
waves. We need to compute the residues of the ω-integration of the
functions f and g given by equations (13.14). To this end, we expand
the determinant Δ in the vicinity of ωs,

Δ � k2

c22
√
1− ξ20

(ω2 − ω2
s) . (13.20)

Here and in all the subsequent computations we use the (numerical)
approximations ξ0 � 1 and c22/c

2
1 � 1, wherever appropriate. In

addition, we limit ourselves to surface vibrations (z = 0). We get for
the residues of the functions f and g

fs � gs/2
√
1− ξ20 �

�
√
1− ξ20

c2k
2c21

sgn(t)Im
[
m(ck)eickt

]
e−k|z0| ,

(13.21)

where c = c2ξ0 (ωs = ck). For a harmonic oscillation m(ck) ∼ δ(ck ±
ω0) with frequency ω0, we get the vertical (z) and the radial (horizon-
tal, r) surface displacements uz,r ∼ sinω0 | t | e−ω0|z0|/cJ0,1(ω0r/c),
16L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of

Elasticity, Elsevier, Oxford (1986); B. F. Apostol, "On the Lamb problem:
forced vibrations in a homogeneous and isotropic elastic half-space", Arch.
Appl. Mech. 90 2335 (2020).
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according to equations (13.18). It is worth noting that equation
(13.21) includes waves propagating in both time directions, i.e. it
has an acausal structure, specific to vibrations.

If the force is absent the boundary conditions (equations (13.9)) give
a homogeneous system of equations for the coefficients A and B of the
free solutions (equations (13.11)), which leads to A,B ∼ δ(ω2 − ω2

s)
(arising from Δ(A,B) ∼ (ω2 − ω2

s)(A,B) = 0); the solutions are
free oscillations (vibrations, normal modes) proportional to cosωst,
sinωst, whose spatial dependence remains undetermined (as expected).

Now we examine the special case of a temporal-impulse source m(t) =
mTδ(t), where T is the short duration of the impulse. This is an
improper case, since a temporal-impulse source requires causal con-
ditions, while the vibration solution obtained above is acausal. The
result which is obtained below for this special case is unphysical. How-
ever, we include it here for the sake of completeness and for the interest
it may arouse in regard to the seismic waves. The main contribution
to the vertical displacement (fs) becomes

uz �
√
1− ξ20

mc2T

2c21

ˆ ∞
0

dkk2 sin ck | t | e−k|z0|J0(kr) . (13.22)

By analytic continuation of the Weyl-Sommerfeld integrals,17 we get
´∞
0 dke−k(|z0|−ic|t|)J0(kr) = 1√

r2+(|z0|−ic|t|)2 =

=
[
(R2

0 − c2t2)2 + 4c2z20t
2
]−1/4

eiχ/2 ,

(13.23)

where R2
0 = r2 + z20 and

tanχ =
2c | z0t |
R2

0 − c2t2
(13.24)

(z0 �= 0). The vertical displacement becomes

uz � −
√
1− ξ20

mT

2c2c21

∂2

∂t2
I(t, r) , (13.25)

17A. Sommerfeld, Partielle Differentialgleichungen der Physik. Vorlesungen ueber

Theoretische Physik, Bd. VI. Akad. Verlag. Leipzig (1966).
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where

I(t, r) =
[
(R2

0 − c2t2)2 + 4c2z20t
2
]−1/4

sin
χ

2
. (13.26)

The function I(t, r) is vanishing for r → ∞ and any time, and for
| t |→ ∞ and any position; it has a (scissor-like) double-wall be-
haviour around R0 = c | t |; this feature propagates on the surface
with velocity c. The propagating double-wall comes from the surface
waves and the temporal-impulse m(t) = mTδ(t). The infinite spatial
extension of this solution and its dependence on | t | are specific to
vibrations, while its propagating character reflects waves. This dual,
hybrid result, arising from treating a propagating-wave problem as a
vibration problem, is different from the seismic main shock, as shown
by seismograms, which has a causal nature and exhibits an abrupt
wall-like structure, vanishing for distances beyond the wall position.
For z0 = 0 the displacement on the surface is zero.
As a consequence of the sharp jump of the angle χ from π/2 to −π/2
(equation (13.24)) in the vicinity of R0 = c | t |, the function I(t, r) can
be represented in this vicinity as I =

√
2
2 (2R0 | z0 |)−1/2 sgn(R0 − c |

t |), such that the vertical displacement is represented as

uz � −
√
1− ξ20

mc2T

2c21

1√
R0 | z0 |

δ′(R0 − c | t |) . (13.27)

A similar representation is valid for the main contribution to the radial
(horizontal) displacement

ug � −
(
1− ξ20

) mc2T

c21r

√
| z0 |
R0

δ′(R0 − c | t |) . (13.28)

As expected, these displacements are very different from the propagat-
ing waves generated by a temporal-impulse, which go like ∼ δ′(R0 −
c1,2t)/R0. A similar calculation for a half-plane (according to equa-
tions (13.19)) leads to two bumps for the displacement components,
placed at x = ±

√
z20 + c2t2 and propagating with velocities±c. These

solutions are very different from the propagating waves in two dimen-
sions, generated by a temporal impulse, which are divergent (propor-

tional to δ(r − c1,2t)/
√
c21,2t

2 − r2). Finally, we note that the decom-

position in vector plane waves given by equation (13.4) can also be
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13 Vibrations

used for the propagating-wave problem. It can be checked easily that
this method leads straightforwardly to the spherical-shell waves gen-
erated by the temporal-impulse tensorial point force. Also, the vector
plane waves can be used for other vibration problems with cylindrical
geometry, as the vibrations of a plane-parallel slab18 or the vibrations
at the plane interface of two solids.19

13.1.5 Waves

By using the vector plane-waves functions the Navier-Cauchy equa-
tions (13.6) for the force given by equation (13.8) become

∂2f
∂t2 − c21f

′′ + c22k
2f + (c21 − c22)kg

′ = −m
2π δ

′(z − z0) ,

∂2g
∂t2 − c22g

′′ + c21k
2g − (c21 − c22)kf

′ = −mk
2π δ(z − z0) ,

∂2h
∂t2 − c22h

′′ + c22k
2h = 0 ,

(13.29)

where the time is restored and m stands for m(t) = mTδ(t). We
represent the functions in these equations as Fourier integrals with
eiqz , and retain the restriction of these functions to the half-space
z < 0. The third equation (13.29) represents free waves, which we are
not interested in. The remaining two equations are

∂2f
∂t2 + (c21q

2 + c22k
2)f + i(c21 − c22)qkg = − imq

2π e−iqz0 ,

∂2g
∂t2 + (c22q

2 + c21k
2)g − i(c21 − c22)qkf = −mk

2π e−iqz0 .

(13.30)

In these equations we perform a time Fourier transform, with fre-
quency ω, which according to the causality principle should have a
small negative imaginary part (ω → ω+iε, ε→ 0+). Indeed, in the ω-
integration

´
dωe−iωt... this condition leads to 0 for t < 0 (integration

over upper half-plane) and to a non-vanishing result for t > 0 (inte-
gration over the lower half-plane, where the poles exist, ω = ...− iω).

18A. E. H. Love, Some Problems of Geodynamics, Cambridge University Press,
London (1911) (Dover, NY (1967).

19R. Stoneley, "Elastic waves at the surface of separation of two solids", Proc.
Roy. Soc. London A106 416 (1924).
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Equations (13.30) become

(c21q
2 + c22k

2 − ω2)f + i(c21 − c22)qkg = − imTq
2π e−iqz0 ,

(c22q
2 + c21k

2 − ω2)g − i(c21 − c22)qkf = −mTk
2π e−iqz0 .

(13.31)

It is easy to see that the determinant of the homogeneous system of
equations (13.31) is (ω2 − c21K

2)(ω2 − c22K
2), where K2 = q2 + k2.

Therefore, the free solution is

f0 = iqAeic1Kt + kBeic2Kt + c.c. ,

g0 = kAeic1Kt + iqBeic2Kt + c.c. ,
(13.32)

where the constants A and B are determined by the initial condi-
tions. In our case, the force which is proportional to δ(t) determines
the inital conditions, and it is sufficient to limit ourselves to the par-
ticular solution of equations (13.31). The particular solution of these
equations is

f = iq
ω2−c21K

2
mT
2π e−iqz0 , g = k

ω2−c21K
2
mT
2π e−iqz0 . (13.33)

The ω-Fourier transform gives

f = − iq
c1K

θ(t) sin c1Kt · mT
2π e−iqz0 ,

g = − k
c1K

θ(t) sin c1Kt · mT
2π e−iqz0 .

(13.34)

We leave aside the factor θ(t) (Heaviside function 1 for t > 0 and 0
for t < 0). Further on, it is convenient to do first the k-integration,
according to equations (13.17) and (13.18). We limit ourselves to the
vertical component uz(q; t, r), which implies the integral20´ +∞

0
dkk 1

K sin c1Kt · J0(kr) =

=
´ +∞
|q| dK sin c1Kt · J0(r

√
K2 − q2) =

=

⎧⎨⎩
0 , 0 < c1t < r ,

cos
(
|q|
√

c21t
2−r2

)
√

c21t
2−r2

0 < r < c1t .

(13.35)

20I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th
ed.,Academic, NY (2000), p. 714, 6.677 (1).
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Finally, the vertical displacement is given by

uz(t, r, z) =
mT

(2π)2c1

θ(c1t−r)√
c21t

2−r2
·

· ´ dq(−iq)eiq(z−z0) cos
(
q
√
c21t

2 − r2
)

.

(13.36)

This integral implies a derivative ∂/∂z and the functions δ(z − z0 ±√
c21t

2 − r2); these functions can be transformed in δ(t−R/c1), where
R =

√
r2 + (z − z0)2. In the far-field zone we get

uz(t, R) = −mT (z − z0)

4πc1R2
δ′(R− c1t) , (13.37)

which is precisely the result obtained previously for seismic waves.21

13.2 Vibrations of an elastic sphere

13.2.1 Solid sphere

The long-standing interest in the vibrations of a solid sphere is related
to the seismic vibrations of the Earth.22 After a relatively short burst
of energy in an earthquake the Earth continues to vibrate freely for
a long time. Though with a liquid outer core and a viscous man-
tle, the Earth is still approximated by a solid sphere. The great
progress in studying the vibrations of a homogeneous and isotropic
elastic sphere was made since the beginning, when Lamb introduced
the vector spherical harmonics (Hansen vectors).23 The relevant ein-
genfrequencies were computed numerically as early as 1898.24 We dis-
cuss herein a natural simplification of this problem, which arises from
21See, for instance, B. F. Apostol, Seismology, Nova, NY (2020).
22K. Aki and P. G. Richards, Quantitative Seismology, University Science Books,

Sausalito, CA (2009); A. Ben-Menahem and J. D. Singh, Seismic Waves and

Sources, Springer, New York (1981).
23H. Lamb, "On the vibrations of an elastic sphere", Proc. London Math. Soc. 13

189 (1882); "On the oscillations of a viscous spheroid", Proc. London Math.
Soc. 13 51 (1881); W. W. Hansen, "A new type of expansion in radiation
problems", Phys. Rev. 47 139 (1935).

24T. J. I’A. Bromwich, "On the influence of gravity on elastic waves, and, in
particular, on the vibrations of an elastic globe", Proc. London Math. Soc.
30 98 (1898).
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the fact that a large radius of the sphere is a natural cutoff. Apart
from giving formally the general solution of vibrations generated by
the seismic tensorial force, we show that a large radius simplifies ap-
preciably the boundary conditions, leading readily to the estimation
of the eigenfrequencies (normal modes). The particular case of a fluid
sphere is treated to a larger extent.

The elastic vibrations of a homogeneous and isotropic solid are de-
scribed by the equation

μcurl curlu− (λ+ 2μ)grad divu− ρω2u = F(ω) , (13.38)

where u is the local displacement, ρ is the density, μ and λ are the
Lame elastic moduli, ω is the frequency, and F (ω) is the force.25 The
components of the seismic tensorial force are

Fi(ω) = Mij(ω)∂jδ(r − r0) , (13.39)

where Mij(ω) is the Fourier transform of the seismic moment, r0 is
the position of the point where the force is placed and i, j, ... = 1, 2, 3
are cartesian labels.26 An equivalent form of equation (13.38) is

c22Δu+ (c21 − c22)grad divu+ ω2u = −f , (13.40)

where c1 =
√
(λ+ 2μ)/ρ is the velocity of the longitudinal elastic

waves, c2 =
√
μ/ρ is the velocity of the transverse elastic waves and

f(ω) = F (ω)/ρ (also, mij(ω) = Mij(ω)/ρ). As it is well known, equa-
tion (13.40) is separated in two inhomogeneous Helmholtz equations

c21ΔΦ+ ω2Φ = −ϕ , c22ΔA+ ω2A = −h , (13.41)

by u = gradΦ + curlA (divA = 0), f = gradϕ + curlh (divh = 0),
where ϕ and h are given by Δϕ = divf , Δh = −curlf (Helmholtz
potentials). We get

ϕ = − 1
4πmij∂i∂j

1
|r−r0| , hi =

1
4π εijkmkl∂j∂l

1
|r−r0| (13.42)

25L. Landau and E. Lifshitz, Course of Theoretical Physics, Theory of Elasticity,
vol. 7, Elsevier, Oxford (1986).

26B. F. Apostol, "Elastic waves inside and on the surface of an elastic half-space",
Quart. J. Mech. Appl. Math. 70 281 (2017); "Elastic displacement in a half-
space under the action of a tensor force. General solution for the half-space
with point forces", J. Elast. 126 231 (2017).
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(where εijk is the totally antisymmetric tensor of rank three), such
that we are led to consider the equation

c2ΔF + ω2F =
1

r
(13.43)

with solution

F (r) =
1− cos kr

ω2r
, k2 = ω2/c2 ; (13.44)

This solution results immediately from the vibration Green function
G = − coskr

4πc2r of the Helmholtz equation c2ΔG + ω2G = δ(r). We get
a particular solution of equation (13.40)

up
i = 1

4πmij∂jΔF2(| r − r0 |)+

+ 1
4πmjk∂i∂j∂k [F1(| r − r0 |)− F2(| r − r0 |)] .

(13.45)

For a fluid, where c2 = 0 (μ = 0) and mij = −mδij , this solution
becomes

up = − m

4πc21
grad

cos k1 | r − r0 |
| r − r0 | . (13.46)

In order to apply these results to a sphere we need to use expansions
in series of (orthogonal) vector spherical harmonics, defined by27

Rlm = Ylmer ,

Slm = ∂Ylm

∂θ eθ +
1

sin θ
∂Ylm

∂ϕ eϕ ,

Tlm = 1
sin θ

∂Ylm

∂ϕ eθ − ∂Ylm

∂θ eϕ ,

(13.47)

l �= 0, where Ylm are spherical harmonics and er,θ,ϕ are the spheri-
cal unit vectors. The functions Rlm and Slm are called spheroidal
functions, while the functions T lm are called toroidal functions. The
series expansion reads

up =
∑
lm

(fp
lmRlm + gplmSlm + hp

lmTlm) , (13.48)

27R. G. Barrera, G. A. Estevez and J. Giraldo, "Vector spherical harmonics and
their applications to magnetostatics", Eur. J. Phys. 6 287 (1985).
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where fp
lm, gplm and hp

lm are functions only of the radius r. A similar
series holds also for the free solution uf of equation (13.38).

The explicit form of the coefficients fp
lm, gplm and hp

lm is extremely
cumbersome. We prefer to work formally with equation (13.38) and
series expansions of the full solution u = up+uf and the force F (ω),
with coefficients flm, glm and hlm and F r,s,t, respectively. Making
use of such series expansions and the properties of the vector spherical
harmonics, we get the equations

f
′′

+ 2
r f

′

+ ρω2

λ+2μf −
[
2 + μl(l+1)

λ+2μ

]
1
r2 f+

+ (λ+3μ)l(l+1)
(λ+2μ)r2 g − (λ+μ)l(l+1)

(λ+2μ)r g
′

= − F r

λ+2μ ,

g
′′

+ 2
r g
′

+ ρω2

μ g − (λ+2μ)l(l+1)
μr2 g+

+ 2(λ+2μ)
μr2 f + λ+μ

μr f
′

= −F s

μ ,

h
′′

+ 2
rh

′

+ ρω2

μ h− l(l+1)
r2 h = −F t

μ ,

(13.49)

where, for the sake of simplicity, we dropped out the suffixes lm.

We turn now to the boundary conditions. The force P acting (in-
wards) on the surface r = R of the sphere, where R is the radius
of the sphere, with the spherical components Pα (α = r, θ, ϕ) is
Pα = nβσαβ = σαr, where the stress tensor is given by σαβ =
2μuαβ + λuγγδαβ; we get

2μuθr = Pθ , 2μuϕr = Pϕ ,

2μurr + λdivu = Pr

(13.50)

(for r = R), where divu is written in spherical coordinates,

divu =
∑
lm

[
1

r2
d

dr
(r2flm)− glm

r
l(l + 1)

]
Ylm (13.51)

(by using the properties of the vector spherical harmonics equations).
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We compute the strain tensor uαβ in spherical coordinates28

urr =
∂ur

∂r , uθθ = 1
r
∂uθ

∂θ + ur

r ,

uϕϕ = 1
r sin θ

∂uϕ

∂ϕ + uθ

r cot θ + ur

r ,

2uθϕ = 1
r

(
∂uϕ

∂θ − uϕ cot θ
)
+ 1

r sin θ
∂uθ

∂ϕ ,

2urθ =
∂uθ

∂r − uθ

r + 1
r
∂ur

∂θ ,

2uϕr =
1

r sin θ
∂ur

∂ϕ +
∂uϕ

∂r −
uϕ

r

(13.52)

by using the spherical components

ur =
∑

lm flmYlm ,

uθ =
∑

lm glm
∂Ylm

∂θ +
∑

lm
hlm

sin θ
∂Ylm

∂ϕ ,

uϕ =
∑

lm
glm
sin θ

∂Ylm

∂ϕ −∑lm hlm
∂Ylm

∂θ

(13.53)

of the expansion of the displacement vector and the definition of the
vector spherical functions (equations (13.47)). Similarly, we decom-
pose the force P in vector spherical harmonics (with coefficients P r,s,t)
and identify its spherical components. The boundary conditions given
by equations (13.50) lead to

2μf
′

+ λ
[
2
r f + f

′ − g
r l(l+ 1)

]
|r=R= P r ,

μ
(

g
r − g

′ − f
r

)
|r=R= −P s ,

μ
(

h
r − h

′

)
|r=R= −P t ,

(13.54)

where we dropped the subscripts lm.

28L. Landau and E. Lifshitz, Course of Theoretical Physics, Theory of Elasticity,
vol. 7, Elsevier, Oxford (1986).
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13.2.2 Vibration eigenfrequencies for large radius

The solutions f , g and h of equations (13.49) consist of free solutions
(solutions of the homogeneous equations (13.49)) plus particular so-
lutions. The homogeneous third equation (13.49), which describes
toroidal vibrations, is the equation of the spherical Bessel functions
jl(kr), k =

√
ρω2/μ = ω/c2. For F t = 0 and P t = 0 (a free surface)

the third equation in the boundary conditions (13.54) gives

jl(kR) = kRj
′

l (kR) ; (13.55)

this equation has an infinity of solutions βln, labelled by integer n,
such that we get the eigenfrequencies

ωln =
c2
R
βln . (13.56)

We can get an estimate of the numbers βln by using the asymptotic
expression of the spherical Bessel functions29

jl(kr) � 1

kr
cos

[
kr − (l + 1)

π

2

]
, kr 
 1 ; (13.57)

for kR
 1 equation (13.55) becomes

tan
[
kR− (l + 1)

π

2

]
= − 2

kR
, (13.58)

which has the approximate zeros

βln � nπ + (l + 1)
π

2
, (13.59)

where n is any (large) integer. We can see that the frequencies are
dense for large R (Δωln = πc2/R). The free toroidal solution is a
superposition of jl(klnr), where kln = ωln/c2 = βln/R, with undeter-
mined coefficients.

In general, for F t �= 0 and P t �= 0 the free toroidal solution is Cljl(kr),
where the constants Cl are determined from the boundary condition.

29M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables, National Bureau of Standards,
USA Government Printing Office, Washington (1964).
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It is easy to see that these coefficients include singular factors propor-
tional to ∼ 1

ω−ωln
, such that, the integration over frequencies leads

to toroidal vibrations governed by the eigenfrequencies ωln. In gen-
eral, the solution hlm depends on two integration constants, which are
determined by the boundary condition and the condition of a finite
solution at the origin.

We pass now to the spheroidal components which involve the functions
f and g in equations (13.49) and (13.54). We note that the two coupled
equations (13.49) for the functions f and g include Bessel operators
for spherical Bessel functions. We can get a simplified picture of these
equations for large values of r. Indeed, it is easy to see that in the
limit ωr/c1,2 
 l2 the free solutions are

f � A
r cos(ωr/c1 + ϕ1l) , g � B

r cos(ωr/c2 + ϕ2l) , (13.60)

where the coefficients A and B and the phases ϕ1l,2l remain undeter-
mined. In this limit the boundary conditions are f ′ |r=R= g′ |r=R= 0
and the eigenfrequencies are given by ωnlR/c1,2 + ϕ1l,2l = nπ, where
n is any integer (the roots of the equation sin(ωR/c1,2 + ϕ1l,2l) = 0).

The condition ωr/c1,2 
 l2 is satisfied for a large r and a reasonably
large range of frequencies and parameter l. For instance, for r close
to Earth’s surface, which is the spatial region of interest, we get ωR/c
of the order � 103ω for a mean radius of the Earth R = 6370km and
a mean velocity of the elastic waves c = 5km/s. Indeed, frequencies
as low as ω = 10−3s−1 are known for Earth’s seismic vibrations.30

We can see that there are two branches of spheroidal eigenfrequencies
(corresponding to the velocities c1,2), which are dense (continuous)
for large R, very similar with the infinite space (as expected for large
R); the ω(2)-branch, although close to the toroidal branch, is distinct
(there is a total of three branches of eigenfrequencies, corresponding
to the three degrees of freedom; in the limit of the rotations of the

30J. Mendiguren, "Identification of free oscillation spectral peaks for 1970 July
31 Colombian deep shock using the excitation criterion", Geophys. J. Roy.
Astron. Soc. 33 281 (1973); "High resolution spectroscopy of the Earth’s
free oscillations, knowing the earthquake source mechanism", Science 179 179
(1973); F. Gilbert and A. M. Dziewonski, "An application of the normal mode
theory to the retrieval of the structural parameters and source mechanisms
from seismic spectra", Phil. Trans. Roy. Soc. (London) A278 187 (1975).
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sphere as a whole their frequencies go to zero (acoustic modes)). For
non-vanishing forces we have spheroidal vibrations driven by these
forces, as discussed for the previous cases. The set of all eigenfre-
quencies is called the (seismic) spectrum. Earth’s eigenmodes with
eigenfrequencies of the order 10−3−10−4s−1, excited by earthquakes,
are known.

The numerical solution of equations (13.49) indicates that the lowest
mode (the fundamental mode) is Slm with l = 2 and n = 0 (there-
fore, we may denote it as S

(n=0)
l=2,m);31 it is denoted by 0S2, and its

eigenfrequency is denoted ω20; the corresponding period is approx-
imately 1 hour. Much later, the Earth’s crust was modelled as a
series of superposed layers, with welded interfaces; the vibrations of
such a stack of layers can be computed and long periods of the fun-
damental modes have been obtained; the dispersion relation of these
modes (i.e., the dependence of the frequency on their label n) can
give information about the inner crustal structure.32 The first obser-
vation of "free oscillations of the Earth as a whole" was made for the
Kamchatka earthquake of November 4, 1952;33 they were followed by
many observations of the Earth’s vibrations caused by the great Chile
earthquake of May 22, 196034 (with magnitude greater than 8, which
saturated the scales35). Today, eigenoscillations of the Earth can be
recorded even for small earthquakes.36

31T. J. I’A. Bromwich, "On the influence of gravity on elastic waves, and, in
particular, on the vibrations of an elastic globe", Proc. London Math. Soc.
30 98 (1898).

32N. A. Haskell, "The dispersion of surface waves in multilayered media", Bul.
Seism. Soc. Am. 43 17 (1953); M. Ewing, W. Jardetzky and F. Press, Elastic

Waves in Layered Media, McGraw-Hill, NY (1957).
33H. Benioff, B. Gutenberg and C. F. Richter, Progr. Report, Trans. Am. Geo-

phys. Union 35 979 (1954).
34H. Benioff, F. Press and S. W. Smith, "Excitation of the free oscillations of

the Earth by earthquakes", J. Geophys. Res. 66 605 (1961); N. F. Ness, J.
C. Harrison and L. B. Slichter, "Observations of the free oscillations of the
Earth", J. Geophys. Res. 66 621 (1961); L. E. Alsop, G. H. Sutton and
M. Ewing, "Free oscillations of the Earth observed on strain and pendulum
seismographs", J. Geophys. Res. 66 631 (1961).

35H. Kanamori, "The energy release in great earthquakes", J. Geophys. Res. 82

2981 (1977).
36B. Block, J. Dratler and R. D. Moore, "Earth and normal modes from a 6.5

magnitude earthquake", Nature 226 343 (1970).
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From studies of propagation of the seismic waves it was inferred the
Earth’s solid inner core37 of radius� 1000km and the outer liquid core
of radius � 2000km. The inner-outer core discontinuity is called the
Bullen, or Lehmann, discontinuity. The temperature of the inner core
is � 6000K (iron and nickel) and the pressure is � 1012dyn/cm2. The
buoyancy at this boundary could be the source of convection currents
which generate the Earth’s magnetic field (geodynamo effect). The
next layers are a viscous mantle of thickness � 3000km and the solid
crust of thickness � 70km. The boundary between mantle and crust
is known as the Mohorovicic discontinuity.

13.2.3 Fluid Sphere

For a fluid sphere the shear modulus μ is zero (μ = 0); equations
(13.49) become

f
′′

+ 2
r f

′

+ k2f − 2
r2 f − d

dr

[
l(l+1)g

r

]
= −F r

λ

1
r f

′

+ 2
r2 f − l(l+1)

r2 g + k2g = −F s

λ ,

(13.61)

where k2 = ρω2/λ = ω2/c2; the boundary condition reads[
2

r
f + f

′ − g

r
l(l + 1)

]
|r=R=

P r

λ
. (13.62)

Let us introduce divu, given by equation (13.51), which includes

d = f
′

+
2

r
f − g

r
l(l+ 1) . (13.63)

Then the boundary condition becomes

d |r=R=
P r

λ
, (13.64)

37I. Lehmann, "P
′

". Publications du Bureau Central Seismologique International,
Serie A, Travaux Scientifiques, 14 87 (1936); A. M. Dziewonski and F. Gilbert,
"Solidity of the inner core of the Earth inferred from normal mode observa-
tions", Nature 234 465 (1971).
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the second equation (13.61) reads

d

r
+ k2g = −F s

λ
(13.65)

and the first equation (13.61) is

d
′

+ k2f = −F r

λ
. (13.66)

Hence, we have

g = − d

k2r
− F s

λk2
, f = − d

′

k2
− F r

λk2
. (13.67)

Now we introduce these functions in equation (13.63) and get

d
′′

+
2d
′

r
+ k2d− l(l+ 1)

r2
d = − (F r)

′

λ
− 2F r

λr
+

F s

λr
l(l+ 1) . (13.68)

For free vibrations this is the Bessel equation for spherical Bessel
functions d = jl(kr); the boundary condition (13.64) leads to the
eigenfrequencies ωln = (c/R)βln, jl(βln) = 0. In a fluid we have only
pressure p, and the stress tensor is σij = −pδij (σij = 2μuij +λukkδij
with μ = 0); therefore, for a fluid p = −λuii = −λdivu; equations
written above for d are in fact equations for the pressure p. It is
convenient to introduce the decomposition in Helmholtz potentials
u = gradΦ + curlA, divA = 0 and F = gradϕ + curlh, divh = 0;
then, p = −λΔΦ and the equation of motion ρü = λgrad ·divu+F =
−gradp+ F becomes ρΦ̈ = λΔΦ + ϕ, where the potential ϕ is given
by Δϕ = divF and h = 0, A = 0. For vibrations this equation
reads c2ΔΦ + ω2Φ = − 1

ρϕ and for F = −Mgradδ(r − r0) we get

ϕ = −Mδ(r − r0), Φ = −m cosk|r−r0|
4πc2|r−r0| (m = M/ρ) and the solution

up given by equation (13.46).

13.2.4 Static self-gravitation

A gravitational force

FdV = GρdV
m

r2
=

4π

3
Gρ2rdV (13.69)
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acts upon a volume element dV placed at distance r from the centre
of a sphere, where G = 6.67×10−8cm3/g ·s2 is the universal constant
of gravitation, ρ is the density of the sphere (assumed incompress-
ible) and m = (4π/3)ρr3 is the mass of the sphere with radius r.
If the sphere is compressible, the gravitational potential ϕ is given
by the Poisson equation Δϕ = 4πGρ and the gravitational force per
unit mas is F = −gradϕ; the condition of (hydrostatic) equilibrium
(for a non-rotationg sphere) reads gradp = ρF = −ρgradϕ, such
that div [(gradp)/ρ] = −4πGρ; the dependence of the pressure on the
density is given by the equation of state; for a constant density the
pressure for a self-gravitating sphere of radius R at rest with free sur-
face is p = (2π/3)Gρ2(R2−r2) (it seems that the pressure in the inner
Earth’s (solid) core is � 300GPa = 3× 1012dyn/cm2). Making use of
equation (13.69), the equation of the elastic motion reads

ρü− μΔu− (λ+ μ)grad divu = F = −γr , (13.70)

where γ = (4π/3)Gρ2. Since Y00 = 1/
√
4π, we may write

F = −γr = −
√
4πγrY00er , (13.71)

whence we can see that F has a series expansion of spheroidal and
toroidal functions with all the coefficients zero, except the coefficient
F r
00 = −√4πγr of the function R00; it follows that the motion may

include all the eigenmodes Slm and Tlm, as well as all the eigenmodes
Rlm, the latter with l �= 0; for l = 0 , m = 0 the motion, described
by f = f00, is driven by the gravitational force. We note also that
the force in equation (13.70) is static, which means that its Fourier
transform is proportional to δ(ω). For l = 0 the first equation (13.49)
includes only the function f , i.e. fδ(ω); this equation reads

f
′′

+ 2
r f

′ − 2
r2 f =

√
4πγ

λ+2μ r . (13.72)

It is easy to see that a particular solution of this equation is
[
√
4πγ/10(2μ + λ)]r3, while the homogeneous part of this equation

has the solution C1r+C2/r
2, where C1,2 are constants of integration;

we must take C2 = 0 , because the solution is finite at the origin. We
are left with the solution

ur = Ar3 + C1r , A =
γ

10(2μ+ λ)
. (13.73)
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This solution must satisfy the boundary conditions at the surface of
the sphere; making use of equations (13.53), we have the strain tensor
urr = u

′

r and uθθ = uϕϕ = ur/r; the force on the surface is −σαr |R,
where the stress tensor is given by σαβ = 2μuαβ + λuγγδαβ

; for a free
surface we get the boundary condition

(2μ+ λ)u
′

r + 2λ
ur

r
|r=R= 0 (13.74)

(σαr |R= 0), whence we determine the constant C1 = −[(6μ+5λ)/(2μ+
3λ)]AR2 and, finally, the radial displacement

ur = Ar
(
r2 − 6μ+5λ

2μ+3λR
2
)
=

= γ
10(2μ+λ)r

(
r2 − 6μ+5λ

2μ+3λR
2
)

;

(13.75)

we note that the radial displacement ur is negative, as expected. It is
worth estimating the radial displacement at the surface due to gravi-
tation

ur |r=R= − γ

5(2μ+ 3λ)
R3 ; (13.76)

making use of ρ = 5g/cm3, λ, μ � 1011dyn/cm2 (parameters for
Earth), we get γ � 10−6g/cm3s2and ur |R� 10−18R3cm � 108cm =
103km, for the Earth’s radius R � 6 × 108cm; this is a distance of
the order of the Earth radius. Moreover, the strain is of the order
1/6, which may cast doubts on the validity of the linear elasticity
used in this estimation. In addition, we note that the density suffers
an important change due to the static gravitational field. Indeed,
the change in density is δρ = −div(ρu) = −ρ0divu, where ρ0 is the
uniform initial density; with u given by equation (13.75) we get

δρ

ρ0
= A(3αR2 − 5r2) , α =

6μ+ 5λ

2μ+ 3λ
, (13.77)

which is of the order unity. The proper estimation of the static effect
of the self-gravitational field on the elastic sphere is to solve simulta-
neously the equation of elastic equilibrium (13.70) with F = −ρgradϕ
and the Poisson equation for the gravitational field ϕ, Δϕ = 4πGρ.
With spherical symmetry we have

F = − 4π

3r2
Gρ

ˆ
0<r′<r

dr
′

ρ
r

r
; (13.78)

253



13 Vibrations

the Poisson equation for the gravitational potential may be written
as Δ(F/ρ) = −4πGgradρ, such that the problem involves two equa-
tions and unknowns, u and ρ. Since this is a more difficult problem it
is preferable to consider the density ρ as an empirically known func-
tion of r (a parametrization in powers of r can be used for ρ and a
variational approach can be applied to the problem). Even so, the
equations governing the influence of the gravitational field upon the
elasticity of a self-gravitating sphere are difficult.

13.2.5 Dynamic self-gravitation

Let us assume a spheric, non-rotating, homogeneous, elastic Earth at
equilibrium under the action of its own gravitational field; we consider
small elastic deformations of this equilibrium state; in first approxi-
mation, we have a small change denoted by K in the gravitational
potential as a consequence of the small changes in density −div(ρu),
i.e., we have

ΔK = −4πGdiv(ρu) , (13.79)

where ρ is a known function of r. The equation of elastic motion reads

ρü− μΔu− (λ + μ)grad divu = −ρgradK . (13.80)

These two coupled (vectorial) equations are difficult to be treated by
an analytical method, due to the non-uniformity of the density. For a
uniform density, taking the div in equation (13.80) and using equation
(13.79) we get for D = divu

ρD̈ − (λ+ 2μ)ΔD = 4πGρ2D , (13.81)

an equation which indicates that the frequency ω changes by

Δ(ω2) = −4πGρ ; (13.82)

for frequencies as low as ω = 10−4s−1 the variation given by equa-
tion (13.82) is large. Let us use the Helmholtz decomposition u =
gradΦ + curlA, divA = 0; then, from equation (13.79) we have
K = −4πGρΦ and from equation (13.80) we get ΔΦ + k21Φ = 0,
ΔA+ k22A = 0. These are the same equations as those which hold in
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the absence of the gravitational field, except that k21 is changed into
k21 → k21 + 4πρG/c21. Moreover, we can see that only the spheroidal
modes are affected by gravitation (since divTlm = 0). It follows that
the spheroidal frequencies (i.e., the branches ω(1,2)) are given by the
same relations of the type ω = (c/R)β, where β denote the zeros the
spherical Bessel functions in the limit of large R; for c = c1, this rela-
tion reads ω2+4πρG = (c21/R

2)β2. Hence, we may see that we should
have the inequality (c21/R

2)β2 > 4πρG, or (λ + 2μ)β2 > 4πρ2GR2.
The term in the right side of this inequality is, up to an immaterial
numerical factor, the pressure due to the gravitation at the origin; it is
much larger than the elastic pressure λ+2μ. The inequality is not sat-
isfied for small values of β (as required by experimental observations).
It follows that the model of an elastic solid Earth is not valid for the
interior of the Earth. In those central regions the elasticity is not
able to sustain the gravitational pressure. Likely, an additional pres-
sure exists there, which compensates the gravitational pressure. The
large dimensions of the mantle and liquid outer core complicates the
matter, and such an Earth’s model may exhibit very low frequencies
(undertones).38 If so, we may leave aside the effects of the gravitation
in estimating the elastic vibrations of the Earth. In this case, with
c = 5km/s we get a period T � (2.2/β) hours; the smallest zero of
j
′

2 (corresponding approximately to the mode 0S2) is β = 3.6;39 we
get T � 37 minutes (for a velocity c = 3km/s the period is T = 61
minutes, which agrees with the experimental observations).

13.2.6 Rotation effect

If a vector a rotates, its change is δa + δα × a, where δα is the
infinitesimal rotation angle; therefore, its velocity is ȧ+Ω× a, where
Ω is the angular velocity; its acceleration is ä+ Ω̇×a+2Ω× ȧ+Ω×
(Ω × a). Let us apply this relation to the displaced position a = r+u;
we get the acceleration ü+ Ω̇× (r+ u)+2Ω× u̇+Ω× [Ω× (r + u)];
we can see that additional forces appear in rotation: −2Ω × u̇ is

38C. L. Pekeris and Y. Accad, "Dynamics of the liquid core of the Earth", Phil.
Trans. Roy. Soc. London A273 237 (1972).

39M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables, National Bureau of Standards,
USA Government Printing Office, Washington (1964).
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the Coriolis acceleration and −Ω × [Ω × (r + u)] is the centrifugal
acceleration. The Earth rotates with a constant angular velocity Ω =
2π/T , T = 24 hours, oriented along the z-axis. We write the equation
of elastic motion as

ρü+ 2ρΩ× u̇ = F , (13.83)

where F includes the elastic force (i.e., Fi = ∂jσij) and other external
forces and the centrifugal force is omitted since Ω is much smaller than
the eigenfrequencies of the Earth (an estimation of the longest periods
of the Earth’s eigenmodes gives an order of magnitude 2πR/cβ � 37
minutes, for the wave velocity c = 5km/s and β = 3.6 where R is the
Earth’s radius).

In the absence of the Coriolis force in equation (13.83) we decompose
the force F and the displacement u in normal modes by using the
spheroidal and toroidal functions. Let us focus on one normal mode,
for instance a toroidal mode u

(n)
lm = h

(n)
l Tlm, corresponding to the

eigenfrequency ωln = (c2/R)βln, where βln is, approximately, a zero
of the function jl(k

(n)R); the eigenfunctions h
(n)
l are given by the

spherical Bessel functions jl(k
(n)r); it is preferrable to multiply these

functions by constants and fix these constants such as
ˆ

dr · r2h(n)
l (r)h

(n
′

)
l (r) = δnn′ ; (13.84)

we recall that the toroidal functions are orthogonal, i.e.

ˆ
doTlmT∗

l′m′
= δll′ δmm′ . (13.85)

Since Ω/ωln � 1 we solve equation (13.83) by a perturbation-theory
method. First, we drop the labels l, m and n and use the notations
u
(n)
lm = u0, ωlm = ω0; we seek the solution as a series in powers of

Ω/ω0

u = u0 +
Ω

ω0
u1 + ... , (13.86)

where u1, to be determined, is assumed orthogonal on u0,40 with
respect to the scalar product defined as the integration over the whole
40F. A. Dahlen and M. L. Smith, "The influence of rotation on the free oscillations

of the Earth", Phil. Tras. Roy. Soc. London A279 583 (1975).
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space, i.e. ˆ
dru1u0 = 0 . (13.87)

A similar series is valid for the frequency

ω = ω0 +
Ω

ω0
ω1 + ... . (13.88)

Introducing these series in equation (13.83), with time Fourier trans-
forms, we get

−ρω2
0u0 = F ,

−ρω0Ωu1 − 2ρΩω1u0 − 2iρω0Ω× u0 = 0 ;
(13.89)

the first equation (13.89) defines the function u0; in the second equa-
tion (13.89) we take the scalar product with u0 and use the orthogo-
nality of u0 with u1; we get

ω1 = − iω0

l(l + 1)

ˆ
drez(u0 × u∗0) , (13.90)

where we put Ω = Ωez, ez being the unit vector along the z-axis. Here
we use ez = cos θer − sin θeθ, u0 = h

(n)
l Tlm and Tlm from equations

(13.47); we get immediately

ω1 = ω0
m

l(l+ 1)
, (13.91)

where m denotes all integers from −l to l. It follows that the frequen-
cies ωln, which are degenerate with respect to m, are split into 2l+ 1
branches

ωln → ωln +Ω
m

l(l + 1)
; (13.92)

using ω1 thus determined, we can get u1 from the second equation
(13.89). Higher-order contributions can be obtained in a similar man-
ner. An m-band occurs for each ωln, of width 2Ω/(l + 1), with the
separation frequency Ω/l(l+ 1). For a typical eigenperiod of 60 min-
utes the ratio Ω/ω0 is approximately 1/20� 1.
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13.2.7 Centrifugal force

The equation of the elastic motion for a body in rotation with a (con-
stant) angular velocity Ω reads

ρü+ 2ρΩ× u̇+ ρΩ× [Ω × (r + u)] =

= μΔu+ (λ+ μ)grad divu+ F ,
(13.93)

where F is an external force. We note that the centrifugal term ρΩ×
(Ω × r) is static, so we can write it as

Fc = ρΩ(Ωr)− ρΩ2r , (13.94)

where we denoted by Fc the centrifugal force and dropped any other
external force (F = 0); we may neglect u in the centrifugal force, since
it is very small in comparison to r. The angular velocity is oriented
along the z-axis, Ω = Ωez. Making use of ez = cos θer − sin θeθ and
the spherical harmonics

Y00 =
1√
4π

, Y20 =

√
5

16π
(1 − 3 cos2 θ) , (13.95)

it is easy to see that we can write Fc as a series expansion

Fc = −ρΩ2r (αR00 + 2βR20 − βS20) (13.96)

in spheroidal functions, where α = 2
√
4π/3 and β =

√
16π/5. We

seek a similar expansion for the displacement u,

u = f1R00 + f2R20 + gS20 ; (13.97)

equations (13.49) lead to

f
′′

1 + 2
r f

′ − 2
r2 f1 = − ρΩ2α

λ+2μr ,

f
′′

2 + 2
r f

′

2 − 2(λ+5μ)
λ+2μ

1
r2 f2 +

6(λ+3μ)
λ+2μ

1
r2 g−

− 6(λ+μ)
λ+2μ

1
r g
′

= − 2ρΩ2β
λ+2μ r ,

g
′′

+ 2
r g
′ − 6(λ+2μ)

μ
1
r2 g +

2(λ+2μ)
μ

1
r2 f2+

+λ+μ
μ

1
r f

′

2 = − ρΩ2β
μ r .

(13.98)
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We seek solutions of these equations of the form f1,2, g = Arn; the
solution of the homogeneous equations (regular in the origin) corre-
sponds to n = 1; we get

f1 = − ρΩ2α

10(λ+ 2μ)
r3 + C1r (13.99)

and

f2 = C2r , g =
ρΩ2β

6λ
r3 + C3r , (13.100)

where C1,2,3 are constants of integration. These constants are deter-
mined from the boundary conditions given by equations (13.54) for a
free surface. Finally, we get the displacement

u = − ρΩ2

3λ { λ
5(λ+2μ)r

(
r2 − 5λ+2μ

3λ+2μR
2
)
−

−R2r(1 − 3 cos2 θ)}er+

+ ρΩ2

3λ r{r2 − 2(3λ+μ)
3λ R2} sin θ cos θeθ .

(13.101)

It is worth estimating the equatorial displacement (θ = π/2) for the
Earth radius R = 6370km; with ρ = 5g/cm3 and λ, μ = 1011dyn/cm2

we get u = ur � 10km.

13.2.8 Earthquake "temperature"

Let us multiply by u̇ the equation of the elastic motion,

ρü+ μcurl curlu− (λ+ 2μ)grad divu = F ; (13.102)

integrating by parts, we get the law of energy conservation

∂E
∂t

= −divS+ w , (13.103)

where

E =
1

2
ρu̇2 +

1

2
μ(curlu)2 +

1

2
(λ+ 2μ)(divu)2 (13.104)

259



13 Vibrations

is the energy density,

Si = μ(u̇j∂jui − u̇j∂iuj)− (λ+ 2μ)u̇i∂juj (13.105)

are the components of the energy flux density and w = u̇F is the
density of mechanical work done by the external force per unit time.
It is worth noting that the energy density given by equation (13.104)
differs from the energy density derived from the other form of the
equation of motion, e.g.,

ρü− μΔu− (λ+ μ)grad divu = F , (13.106)

by the divergence of a vector; it follows that the energy density and
the energy flux density are not unique (well defined).

Making use of equations (13.43), (13.44) and (13.47) we can write
symbolically

curlu = h
r l(l + 1)R+ 1

r
d
dr (rh)S+

[
f
r − 1

r
d
dr (rg)

]
T ,

divu = 1
r2

d
dr (r

2f)− g
r l(l+ 1) .

(13.107)

We compute the total energy E by introducing these expressions for
curlu and divu in equation (13.104), integrating over the solid angle
and integrating by parts over the radius r; for large values of R the
boundary conditions given by equations (13.54) for free vibrations
ensure the vanishing of the "surface terms" in the r-integration by
parts; in addition, for large values of R we may neglect the f -term in
curlu and the g-term in divu; making use of the equations of motion
(13.49), we get finally

E � 2l+ 1

8π

ˆ
drρω2

[
f2 + l(l+ 1)g2 + l(l + 1)h2

]
, (13.108)

where the summation over l is omitted (the factor 2l + 1 arises from
the summation over m). The functions ωf , ωg and ωh in equation
(13.108) are superpositions of their own normal modes (labelled by n);
for large values of R all these eigenmodes may be taken as the spherical
Bessel functions and the eigenfrequencies are given by the zeros of
the derivatives of the spherical Bessel functions; we note that these
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eigenmodes are orthogonal with respect to the r-integration; the f -
part in equation (13.108) is related to the velocity c1 (the combination
of λ + 2μ of the elastic moduli), while the g- and h-parts are related
to the velocity c2 (modulus μ).

Let us write the energy given by equation (13.108) for the normal
modes as

E � 1

8π

∑
lmn

ˆ
dr
[
ρω

(r)2
ln f2

ln + ρω
(s)2
ln g2ln + ρω

(t)2
ln h2

ln

]
, (13.109)

where the summation over m is restored and the coefficients l(l+1) are
included in gln and hln. We may use approximately the asymptotic
expressions for the functions fln, gln, hln of the form fln = aln cos[kr−
(l+1)π/2]/kr (spherical Bessel functions), with amplitudes aln; and,
similarly, for gln and hln with amplitudes bln and cln. Effecting the
integral, we get

E � 1

4
R
∑
lmn

[
ρc21a

2
ln + ρc22b

2
ln + ρc22c

2
ln

]
, (13.110)

where R is the radius of the sphere and c1,2 are the wave velocities.
This is a simple expression, of the form

E =
∑
s

ρRc2a2s , (13.111)

where s is a generic notation for the normal modes.

Let us assume that energy E is given to the vibrating sphere; we ask
how it is distributed among the normal modes. It is reasonable to
assume that, after many reflections from the surface, the distribution
of energy reaches an equilibrium state, in the sense that it does not
depend anymore on the time. This state is characterized by a prob-
ability density w, which is multiplicative for different spheres; lnw is
additive and function

S = −w lnw (13.112)

should have a maximum value in the equilibrium state, correspond-
ing to a maximal "disorder"; this represents our idea of equilibrium.
Obviously, the function S given by equation (13.112) is the entropy.
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Its maximum value for constant energy is reached for the extremum
of the function S−βwE, where β is a Lagrange multiplier; we get the
Boltzmann (canonical) distribution

w = const · e−βE , (13.113)

or, for one mode,

w =
√
βρRc2/πe−βρRc2a2

. (13.114)

The mean energy per mode is

e =
1

2

√
ρRc2T (13.115)

and the mean value of the square amplitude is

a2 =
1

2

√
T

ρRc2
, (13.116)

where we introduced the temperature T = 1/β. The total mean
energy is E = Ne = N

√
ρRc2T/2 , where N is the total number of

modes; this equality gives the temperature parameter.

Making use of the asymptotic expressions of the spherical Bessel func-
tions (for the radial functions) we get the normal modes given by
klnR = (2n + l + 1)π/2; hence, we see that the normal modes are
equidistant; the corresponding wavelengths are λln = 4R/(2n+ l+1).
We may take, tentatively, a cutoff of short wavelengths of the order
1cm (corresponding to a frequency � 500kHz, for velocity 5km/s); it
is reasonable to admit that below this distance the homogeneous elas-
tic qualities of the Earth do no hold anymore. For this cutoff, we get
a maximum number 2n+ l+1 of the order Nc = 109 and a number of
modes of the order N = N3

c = 1027. For an energy E = 1026dyn · cm
(corresponding to an earthquake of magnitude Mw = 7) we get, from
equation (13.115), a temperature T = 10−22erg (i.e.,� 10−5K, since
1.38 × 1017K = 1erg = 1dyn · cm); the quantity ρRc2 in equation
(13.115) is ρRc2 � 1020g/s2 (for ρ = 5g/cm3, R � 6 × 108cm and
c = 5km/s). The estimation of the temperature is very sensitive to
the number of eigenmodes N ; for instance, for a cutoff wavelength
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10cm we get a temperature T � 10K. Part of the energy released in
an earthquake is spent in mechanical work associated with the motion
of the rocks, soil and the damage produced at the Earth’s surface;
the remaining is dissipated as heat, after a long while; we may see
that a big earthquake (Mw = 7) may raise the Earth’s temperature
by as much as cca 10−5K − 10K (the inner Earth’s temperature is
� 6000K). We note that the cutoff wavelength, which affects essen-
tially the numerical estimation of the temperature, corresponds to the
mean inter-atomic distance in the Debye estimation of the statistical
equilibrium of the elastic vibrations (phonons) in a crsytal.

Finally, we note that apart from self-gravitation and rotation, the
inhomogeneities may bring an important effect upon the vibrations
of the solid sphere. For instance, from equation (13.38), a (uniform)
change δρ in density cause a change δω/ω = −δρ/2ρ in frequency.
The effect of similar changes in the elastic moduli λ and μ can be
estimated by using the changes in the wave velocities c in the relation
ωln � (c/R)βln.41

41K. Aki and P. G. Richards, Quantitative Seismology, University Science Books,
Sausalito, CA (2009).
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14.1 Seismic waves in two dimensions

A two-dimensional problem of elastic motion views the elastic solid
as a three-dimensional solid whose motion does not depend on a co-
ordinate, say z. The Navier-Cauchy equation depends on time and
only on two coordinates, say x and y. This is an unphysical situation,
which may lead to divergences. For instance, the force is not placed in
a point, but along a line (along coordinate z, a line load). The interest
for such a problem resides in its somewhat simplifying calculations,
though the divergent solutions make it useless.
Let us consider the equation of elastic waves in a three-dimensional
solid with a tensorial force localized at R = 0 is

ü− c2tΔu− (c2l − c2t )grad divu = F , (14.1)

where u is the displacement, cl,t are the longitudinal and transverse
velocities,

Fi = mijTδ(t)∂jδ(R) (14.2)

are the force components (per unit mass), mij is the (symmetric) ten-
sor of the moment per unit mass and T is the duration of the force; the
cartesian indices are i, j = x, y, z.1 The tensor mij is mij = Mij/ρ,
where Mij is the moment tensor and ρ is the density of the body.
Let us distribute uniformly the source along the z-axis at points of
coordinates za, denote the solutions by ua and sum up the equations:∑

a üia − c2t
∑

a Δuia − (c2l − c2t )
∑

a gradi divua =

= mijTδ(t)∂jδ(r)
∑

a δ(z − za) ,
(14.3)

1B. F. Apostol, The Theory of Earthquakes, Cambridge International Science
Publishing, Cambridge (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishing, Cambridge (2017); Seismology,
Nova, NY (2020).
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where R = (r, z). We may pass to integration in the a-summation,
and see that the equation becomes a two-dimensional equation

v̈i − c2tΔvi − (c2l − c2t )gradi divv = miαTδ(t)∂αδ(r) , (14.4)

where v =
´
dz′u(r, z − z′) and α = x, y (and the div is two-

dimensional). This is a cylindrical equation, with solution
´
dzu(r, z).

We note that integrating equation (14.1) with respect to z leads to
a solution which exists for all z but does not depend on z. Alter-
natively, we may replace the function δ(z) on the right in equation
(14.1) by 1/d, where d is a small cutoff thickness of a source, and
get a two-dimensional equation with the surface density ρd in the
denominator on the right. In the two-dimensional limit ρd → 0 we
get an infinite right-side term of the equation. We may keep d small
but finite, but this introduces an uncertainty of the order d in the
position r. It may be taken as the dimension of the, otherwise unde-
termined, two-dimensional source. Rigorously speaking the equation
of the elastic waves in two dimensions is unphysical, and a cutoff
procedure should be employed in order to give sense to solution. A
similar situation occurs also in one dimension (although, in contrast to
the one-dimensional case, in two dimensions the wavefronts are diver-
gent). These equations and their physical parameters are, in general,
different from the wave equations in thin rods and plates (shells), or
strings and membranes.2

For i = 3 equation (14.1) reads

ü3 − c2tΔu3 =
m3α

d
T δ(t)∂αδ(r) , (14.5)

with solution

u3 = Tm3α

2πctd

´
dr′ θ(ct−|r−r

′|)√
c2t2−(r−r′)2

∂αδ(r
′) =

= Tm3α

2πctd
∂α

θ(ct−r)√
c2t2−r2

.

(14.6)

2L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Theory of Elas-

ticity, Elsevier, Oxford (1986); A. N. Tikhonov and A. A. Samarskii, Equations

of Mathematical Physics, Dover, NY (1963).
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Indeed, the Green function of the propagating-wave problem in two
dimensions, i.e. the solution of the equation

G̈− c2ΔG = δ(t)δ(r) (14.7)

can be obtained immediately by Fourier transformations and by plac-
ing the poles in the lower ω-plane, according to the causality principle;
also, we need the Weyl-Sommerfeld integrals3

´
0
dxJ0(x) cosλx = θ(1−λ)√

1−λ2
,

´
0 dxJ0(x) sin λx = θ(λ−1)√

λ2−1

(14.8)

(λ > 0). The Green function is

G(t, r) =
θ(ct− r)

2πc
√
c2t2 − r2

. (14.9)

The derivative ∂α 1√
c2t2−r2

is a solution of the free equation, such that,
according to the regularization procedure, we retain only

u3 = −Tm3αnα

2πctd

δ(ct− r)√
c2t2 − r2

, (14.10)

where n = r/r. This solution is divergent, due to the factor
1/
√
c2t2 − r2. According to the above discussion, we may replace√

c2t2 − r2 for ct = r by
√
rd (for any fixed t). (Also, δ(ct−r) may be

viewed as 1/d for ct = r). Therefore, we may represent this solution
as

u3 = −Tm3αnα

2πctd
√
d

δ(ct− r)√
r

. (14.11)

Let us solve the remaining equations (14.1)

üα − c2t∂β∂βuα − (c2l − c2t )∂α∂βuβ = fαδ(t)δ(r) , (14.12)

where fα =
Tmαβ

d ∂β . We introduce the Helmholtz potentials Φ and
A = (0, 0, A) by

uα = ∂αΦ+ εαβ3∂βA , (14.13)

3I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th
ed., Academic, NY (2000), p. 709, 6.671 (1,2).
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where α, β = 1(x), 2(y),3 = z and εαβ3 is the totally antisymmetric
tensor of rank three; we can see that the second term on the right in
this equation is a curl. Similarly, we write

fαδ(t)δ(r) = ∂αϕ+ εαβ3∂βh , (14.14)

such that equations (14.12) are split in two equations

Φ̈− c2lΔΦ = ϕ , Ä− c2tΔA = h , (14.15)

where the potentials ϕ and h are given by

Δϕ = [fα∂αδ(r)] δ(t) ,

Δh = ε3αβ [fα∂βδ(r)] δ(t) .
(14.16)

The solutions of these Poisson equations are obtained by making use
of the Green function 1

2π ln(r) of the laplacian in two dimensions. We
get immediately

ϕ = 1
2π δ(t)fα∂α ln(r) ,

h = 1
2π δ(t)ε3αβfα∂β ln(r)

(14.17)

and equations (14.15) become

Φ̈− c2lΔΦ = 1
2π δ(t)fα∂α ln(r) ,

Ä− c2tΔA = 1
2π δ(t)ε3αβfα∂β ln(r) .

(14.18)

These equations lead to the functions Fl,t given by

F̈ − c2ΔF = δ(t) ln(r) ; (14.19)

indeed, Φ = 1
2π fα∂αFl and A = 1

2π ε3αβfα∂βFt, such that the solution
can be represented as

uα =
1

2π
fα∂β∂βFt +

1

2π
fβ∂α∂β(Fl − Ft) . (14.20)

The solution of equation (14.19) can be written as

F = 1
2πc

´
dr′ θ(ct−|r−r

′|)√
c2t2−(r−r′)2

ln(r′) =

= 1
2πc

´
dr′ θ(ct−r′)√

c2t2−r′2
ln | r − r′ | .

(14.21)
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By using an integration by parts, we get

F = t ln(r) + 1
2c

´ ct
0

dr′
√
c2t2−r′2

r′ +

+ 1
4πc

´ ct
0

dr′
√
c2t2−r′2

r′ (r′2 − r2)
´
dϕ 1

r2+r′2−2rr′ cosϕ .

(14.22)

The ϕ-integral is a Poisson integral; it can be performed by the sub-
stitution tan ϕ

2 = t; we get
ˆ

dϕ
1

r2 + r′2 − 2rr′ cosϕ
=

2π

| r2 − r′2 | (14.23)

and
F = t ln(r) + 1

2c

´ ct
0 dr′

√
c2t2−r′2

r′ −

− 1
2c

´ ct
0 dr′

√
c2t2−r′2

r′ sgn(r − r′) .
(14.24)

We need the spatial derivatives of the functions Fl,t in order to get the
solution uα. We note that t ln r is a solution of the free wave equation,
so, according to the regularization procedure, we leave this term aside
(indeed, it is unphysical, because it lacks an adequate cutoff). Next,
we notice that the second term on the right in equation (14.24) does
not depend on r, so it does not contribute to the spatial derivatives
of the function F ; we leave it aside. Then, although we can do the
remaining integral, we notice that we need it not: we need only its
spatial derivatives. Consequently, we get from equation (14.24)

∂F

∂r
= −1

c

√
c2t2 − r2

r
θ(ct− r) . (14.25)

Indeed, by taking the laplacian in equation (14.19), we can see that
ΔF is the Green function of the wave equation, ΔF = 1

c
θ(ct−r)√
c2t2−r2

; by

using Δ = 1
r

d
dr (r

d
dr ), we can integrate this equation, and the result is

precisely that given by equation (14.25).
We introduce the notations u1α = 1

2π fα∂β∂βF and u2α = 1
2π fβ∂α∂βF

(equation (14.20)). Making use of the results obtained above, we get

u1 = T
2πcdm

r
(c2t2−r2)3/2

θ(ct− r)−

− T
2πcdm

1
(c2t2−r2)1/2

δ(ct− r)
(14.26)
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and
u2 = T

2πcd [(2m+m0n)
2c2t2−r2

r3(c2t2−r2)1/2
−

−m4n
8c4t4−12c2t2r2+3r4

r3(c2t2−r2)3/2
]θ(ct− r)−

−m4n
1

(c2t2−r2)1/2
δ(ct− r) ,

(14.27)

where m0 = mαα, m is the vector with components mα = mαβnβ ,
m4 = mn and n = r/r. The solution is divergent at the wavefront
ct = r. According to the discussion made above we replace 1/(c2t2 −
r2) for ct = r by 1/rd. The θ-terms contribute to the near-field zone
(r � ct), while the δ-terms can be associated to the far-field zone
(wavefront); both terms have the same kind of divergences. The full
δ-part of the solution is

uδ = − T
2πcld

m 1
(c2l t

2−r2)1/2
δ(clt− r)−

− T
2πctd

(m−m4n)
1

(c2t t
2−r2)1/2

δ(ctt− r) .
(14.28)

We can see that the velocity cl is associated to longitudinal waves,
while the velocity ct is associated to transverse waves. This property
is not shared by the θ-terms. The structure of the solution is very
similar to the structure of the solution in three dimensions.

14.2 Seismic main shock in two dimensions

Once arrived at the plane surface of a half-space, the seismic waves
generate a boundary force which, according to Huygens’s principle,
is the source of secondary waves. These waves are the seismic main
shock on the surface. The wavefronts of the seismic waves intersect
the plane surface along two circles, corresponding to their velocities
cl,t, which increase their radii with velocities vl,t greater than cl,t.
Along these circles wave sources appear, which are proportional to
δ(r − vl,tt)δ(z), for the Helmhotz potentials, where r is the distance
from the epicentre, z is the coordinate perpendicular to the surface
and the time t is measured from the moment the waves arrive at the
epicentre. The secondary waves generated by such sources go like
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(c2l,tt
2 − r2)−3/2 for cl,tt > r and 0 for cl,tt < r on the surface. We

can see that we have two wall-like main shocks, one propagating with
velocity cl (radial component) and another propagating with velocity
ct (angular and vertical components); the calculations are valid for a
free surface and vl,t � cl,t.4

In two dimensions the waves intersect the surface line in two points, so
the source is proportional to δ(| x | −vl,tt)δ(z). The secondary waves
are obtained by using the Green function given by equation (14.9) for
such a source. We are led to the integral

I =

ˆ
dx′

θ
[
c(t− | x′ | /v)−

√
(x− x′)2 + z2

]
√

c2(t− | x′ | /v)2 − [(x− x′)2 + z2]
. (14.29)

For v � c this integral is

I = −
√
c2t2 −R2

|| x | −ct | , ct > R , (14.30)

and 0 otherwise, where R =
√
x2 + z2. On the surface line (z = 0)

the spatial derivatives of this integral give displacements proportional
to (ct− | x |)−3/2 for ct >| x | and zero for ct <| x |. The main
shock(s) in two dimensions is (are) similar to the main shock(s) in
three dimensions.

14.3 Vibrations in two dimensions

A convenient means for the Navier-Cauchy equation in two dimensions
is the orthogonal vector plane waves

Z(k) = ez
eikx√
2π

, G(k) = iex
eikx√
2π

, (14.31)

constructed by analogy to the vector plane-wave functions in three
dimensions, where ex,z are the unit vectors along the x, z-directions.
For vibrations the Navier-Cauchy equation reads

c22curl curlu− c21grad divu− ω2u = F , (14.32)

4See, for instance, B. F. Apostol, Seismology, Nova, NY (2020).
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where c1,2 are the velocities of the elastic waves, ω is the frequency
and F is the force per unit mass. We use the expansions

u =

ˆ
dk(fZ + gG) , F =

ˆ
dk(FzZ + FgG) (14.33)

for a seismic tensorial force

F i = mij∂jδ(r − r0) (14.34)

placed at r0, where mij = mij(ω) is the Fourier transform of the
seismic moment per unit mass and i, j = x, z. We choose a half-
plane z < 0, where r0 = (0, z0), z0 < 0, and an isotropic moment
mij = −mδij . Equation (14.32) becomes

c21f
′′ + (ω2 − c22k

2)f − (c21 − c22)kg
′ = m√

2π
δ′(z − z0) ,

c22g
′′ + (ω2 − c21k

2)g + (c21 − c22)kf
′ = mk√

2π
δ(z − z0) ,

(14.35)

where the derivatives are taken with respect to the variable z. We
can see that the structure of these equations are the same as in three
dimensions, as expected. We follow the analysis done in three dimen-
sions and get the solutions

f =
(κ2

2−k2)2−4κ1κ2k
2

Δ
m
√
2π

4c21
e−iκ1(z+z0)+

+
(κ2

2−k2)k2

Δ
m
√
2π

c21
e−iκ1z0−iκ2z+

+sgn(z − z0)
m
√
2π

4c21
eiκ1|z−z0| + c.c

(14.36)

and
g =

i[(κ2
2−k2)2−4κ1κ2k

2]k
κ1Δ

m
√
2π

4c21
e−iκ1(z+z0)−

−i (κ2
2−k2)κ2k

Δ
m
√
2π

c21
e−iκ1z0−iκ2z−

−im
√
2πk

4κ1c21
eiκ1|z−z0| + c.c ,

(14.37)

where
Δ = (κ2

2 − k2)2 + 4κ1κ2k
2 (14.38)
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and
κ1,2 =

√
ω2/c21,2 − k2 ; (14.39)

we use the convention κ1,2 → iκ1,2 for κ2
1,2 = k2 − ω2/c21,2 > 0.

As it is well known from the analysis in three dimensions the determi-
nant Δ has two zeros ωs = ±c2ξ0 | k |, where ξ0 varies between 0.87
and 0.95 (it depends on the ratio c2/c1, which varies between 1/

√
2

and 0). We note that this solution corresponds to damped waves
(κ1,2 → iκ1,2). In the vicinity of these zeros we have

Δ � k2

c22
√
1− ξ20

(ω2 − ω2
s) , (14.40)

where we use the (numerical) approximations ξ0 � 1 and c22/c
2
1 � 1,

wherever appropriate. In equation (14.33) we perform first the ω-
integration. This integration is given by the residues fs, gs in the
poles generated by Δ = 0. For m(t) = Tδ(t), x = 0 and the numerical
approximations above, we get

fs(k) =
√
2π(1− ξ20)

mc2T

2c21
| k | sin c | kt | e−|kz0| (14.41)

and the component

uz = −
√
1− ξ20

mc2T
c21
·

· ∂
∂|z0|Re

´ +∞
0

dk sin ck | t | e−k|z0|eikx
(14.42)

of the displacement, where c = c2ξ0. The intervening integral is

I =
´ +∞
0

dk sin ck | t | e−k|z0|eikx =

= c|t|
[(z2

0−x2+c2t2)2+4x2z2
0]

1/2 e
iχ ,

(14.43)

where

tanχ =
2x | z0 |

z20 − x2 + c2t2
. (14.44)

This integral is vanishing for | x |→ ∞ for any moment of time, as
well as for any position x and | t |→ ∞; it exhibits a bump placed at
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x0 = ±
√
z20 + c2t2, of the order c | t | /x2

0 | z0 |, which propagates with
velocity ±c. This behaviour is specific to a vibration, which affects
the whole surface line, the bump arising from the temporal-impulse
character of the force, which requires, in fact, a propagating-wave
treatment. A similar behaviour is valid for the component ux.

The vector plane waves given by equation (14.31) can also be used for
the propagating-wave problem; in two dimensions it is treated exactly
the same as in three dimensions, leading to the results given above
(we should perform simultaneously the double integral with respect
to k and q, and get a Weyl-Sommerfeld integral).
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15 A Critical History of
Seismology

(contributed by Marian Apostol)

15.1 Elasticity

Earthquakes are known since long. Sometimes, in some places, the
ground begins suddenly to shake; this motion ceases in a relatively
short time, though small tremors may be felt long after the shaking.
Something, a more or less violent motion occurs beneath the Earth’s
surface, and this motion is transmitted to the surface. The first great
advance in understanding such motion was made by Hooke, around
1660, who realized that bodies are elastic, and the elastic force is pro-
portional to the displacement (elongation, compression): ut tensio,

sic vis. On this discovery, around 1821− 22, Navier and Cauchy built
up the mathematical theory of elastic continuous media, known as the
Navier-Cauchy equation. This was a great advance in science. Around
the same time Poisson showed that in homogeneous and isotropic elas-
tic solids there exist two kinds of elastic waves, one compressional and
another transverse. In 1848 Kelvin computed the equilibrium of an
elastic body under a point force and in 1849 Stokes computed the
waves generated in an elastic body by a point force. In 1880 Lamb
computed the vibrations of an elastic sphere and in 1885 Rayleigh
discovered the so-called surface waves. At the beginning of the 20th
century Love and Stoneley computed the vibrations of an elastic slab
and an elastic interface. A series of equilibrium problems of static
elasticity have been solved at the end of the 19th century and in the
first half of the 20th century by Boussinesq, Cerruti, Flamant, Melan,
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Mindlin. With these works the development of elasticity ended,1 al-
though there exist many unsolved problems, in particular the appli-
cation of the theory of elasticity to Seismology. Such attempts have
not been very happy.

15.2 Seismological problem

The great progress in Seismology was made by the invention of the
seismograph, at the end of the 19th century by Milne and others.2

The seismograph is a pendullum, capable of recording local motion at
Earth’s surface (displacement, velocity, acceleration) in all the three
directions. The recordings of the seismograph are called seismograms.
Under the action of the motion of the Earth’s surface a pendullum
starts to move. Thereafter, it follows a combination of the external
motion and its own motion (the so-called eigenmodes). From the
outset we may see that not all the features of a seismograms are
caused by the motion of the ground; some arise from the seismograph
own motion. This observation was made early, but it seems it has
been forgotten in the modern times. At that time, improving the
seismographs was considered a challenge to the modern Seismology.

In 1897 Oldham published an influential paper where he identified
on seismograms three types of motion: two faible tremors followed in
a short time by a big motion.3 The two tremors are short, almost
structureless, the first one is a longitudinal motion, the second is a
transverse motion. Undoubtedly, they are the elastic waves discovered
by Poisson and Stokes. They have been called the P (longitudinal)
and S (transverse) seismic waves. These waves seem to be spherical-
shells. The longitudinal motion in the P wave helped to identify, by

1See B. F. Apostol, The Theory of Earthquakes, Cambridge International Sci-
ence Publishers, Cambridge (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishers, Cambridge (2017); Seismology,
Nova, NY (2020).

2J. Milne, "Notes on the horizontal and vertical motion of the earthquake of
March 8, 1881", Trans. Seism. Soc. Japan 3 129 (1881); Bakerian Lecture,
Proc. Roy. Soc. London A77 365 (1906).

3R. D. Oldham, Report on the Great Earthquake of 12th June, 1897, Geol. Surv.
India Memoir 29 (1899); "On the propagation of earthquake motion to long
distances", Trans. Phil. Roy. Soc. London A194 135 (1900).
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triangulation, the position of the source of these waves, the earth-
quake focus: the focus is almost pointlike, placed at depths of a few
hundreds of kilometers at most. Since the P and S waves are short
in time, it follows that the seismic activity in the focus is short; the
earthquake’s source is practically localized in time, it is a temporal
impulse. This point is often overlooked nowadays. Of course, there
may exist structured foci, whose activity lasts more, or such foci may
even propagate. But the typical, elementary earthquake has a point-
like focus with a temporal impulse seismic activity.

In 1910, by using various considerations, Reid came up with his re-
bound theory.4 This theory claims that in the Earth’s crust and man-
tle (in lithosphere) there are tectonic plates, which may move slightly,
one against the other. Such a motion, localized in a fault, generates
earthquakes. Therefore, the earthquake foci are shearing faults. In
1974 Kostrov made insightful observations concerning the shear mo-
tion in an elastic fault, which passed unnoticed.

With the third, large motion, seen on seismograms, Oldham was not
so lucky: he assigned it to Rayleigh surface waves. This motion, which
succeeds the P and S seismic waves, has an abrupt wall, with a long
tail and many oscillations. It is called main shock. This assignation
is improper. The only waves produced by the focus are the P and
S seismic waves. What would the cause of the main shock be? The
Rayleigh surface wave is a plane wave moving along the surface and
damped along the direction perpendicular to the surface. It satis-
fies the boundary conditions of a free surface. Consequently, it is a
(damped) vibration perpendicular to the surface (or a guided wave).
The P and S seismic waves are localized waves, not extended waves,
like the plane waves. The P and S seismic waves are localized in
time. Consequently, they may not satisfy boundary conditions, be-
cause they have not the time, nor the place. Spherical waves localized
in time and space (like the P and S waves) can be decomposed in
plane waves (by the so-called Weyl-Sommerfeld expansion), but the
members of this decomposition (plane waves) are not real waves. The
explanation of the seismograms, especially the main shock, becomes
the seismological problem.

4H. F. Reid, Mechanics of the Earthquake, The California Earthquake of April

18, 1906, vol. 2, Carnegie Institution, Washington (1910).
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Lamb attacked the seismological problem in 1904, by what looks like
a historical seismological error.5 He used plane-wave expansions for
a temporal-impulse source, as for propagating waves, and impose
boundary conditions, as for vibrations. This is improper. Moreover, in
effecting the intervening integrals, he saw cuts in the complex plane
where none exists. Among other unphysical things, he obtained a
small main shock existing long before the earthquake begins. The
procedure is somewhat reformulated following Knott and Zoeppritz,
who, around the same time, computed reflection and refraction coef-
ficients of plane waves, by boundary conditions at the surface.6 The
identification of such reflected or refracted waves in seismograms is
one of the main activity nowadays. The seismological problem has
been forgotten.

Furthermore, the motion in the Rayleigh surface waves is in the prop-
agation vertical plane, with the magnitude of the two components
comparable. The seismograms show a large motion perpendicular to
the propagation vertical plane. To the rescue of the surface-wave
assignation the Mohorovicic discontinuity between Earth’s crust (ap-
proximately 70km depth) and Earth’s mantle (down to 3000km) was
invoked.7 The crust vibrates like a solid slab, and these vibrations
have a large horizontal amplitude, as seen on seismograms. They are
the Love waves (vibrations). Moreover, vibrations on interface may
occur, as Stoneley showed (Stoneley waves). It remains to have a
convincing knowledge of the sharp Mohorovicic discontinuity.

The seismological problem was never solved. One cause is the lack
of knowledge of the force acting in the focus. The Stokes solution
for a point force is used for a couple of forces, such that the total
force should be zero. But a couple of forces has a non-zero angular
momentum (torque), so we put a double couple. But the double cou-
ple is arbitrary and depends on the reference frame. Therefore, the

5H. Lamb, "On the propagation of tremors over the surface of an elastic solid",
Phil. Trans. Roy. Soc. (London) A203 1 (1904).

6C. G. Knott, "Reflection and refraction of elastic waves with seismological ap-
plications", Phil. Mag. 48 64 (1899); K. Zoeppritz, "Ueber Reflection und
Durchgang seismischer Wellen durch Unstetigkeitsflaechen", Erdbebenwellen
VIIb, Gottingen, Nachrichten 1 66 (1919).

7A. Mohorovicic, "Das Beben von 8 Okt. 1909", Jahrb. Meteorol. Obs. Zagreb
9 1 (1909).
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seismic source depends on the reference frame, which is unacceptable.
The seismic force has been established in 2017; it implies the tensor
of the seismic moment.8 In particular the static deformations of a
half-space have been computed for this force,9 as well as the effect of
an internal discontinuity. The P and S seismic waves produced by
this force come up as scissor-like sphericall shells, localized in time
and space, exactly as seen on seismograms. We call them primary
waves. Once arrived on Earth’s plane surface (where they propa-
gate faster than the elastic waves!), these primary waves leave behind
sources of secondary waves, according to Huygens’ principle. These
secondary waves have the shape of an abrupt wall with a long tail,
which subsides slowly (actually, two neighbouring such structures, for
displacement components, corresponding to the two P and S waves).
This is the main shock (or shocks), propagating on Earth’s surface.
Its oscillatory structure, which cannot be accounted for, may arise
from: structured focus, structured primary waves, reflection on the
neighbouring portions of the spherical surface of the Earth, or seis-
mographs’ eigenoscillations.

For our distance scale the Earth’s surface may be approximated by a
plane (and the Earth by a half-space). However, after shorter or longer
times, the secondary waves, which propagate in the whole Earth, are
reflected by the spherical surface of the Earth, and multiple reflec-
tions may appear, so we may expect the setting of a vibration regime.
Indeed, normal modes of the spherical Earth, some with long periods,
may be identified by seismographs, in accordance with Lamb’s theory
of vibrations of an elastic sphere.

The calculations for the seismological problem are done for a homo-
geneous and isotropic half-space. The Earth is inhomogeneous. It
is expected that the inhomogeneities affect much the nature of the
elastic waves propagating in the Earth. This problem is considered to
be a challenge to the modern Seismology. It is not. The problem is
irrelevant. Indeed, the localized spherical waves, which are the seismic
waves in a homogeneous and isotropic medium, are made of a super-

8B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Q. J.
Mech. Appl. Math. 70 289 (2017).

9B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor
force. General solution for the half-space with point forces", J. Elast. 126 231
(2017).
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position of all the frequencies (wavelengths), with equal weights. Very
likely, the inhomogeneities are distributed in size according to a power
law, i.e. those with a small size are the most numerous. Consequently,
we expect an influence on the short-wavelength part of the spherical
waves, which means that they may only acquire a fine structure due
to the inhomogeneities, but their localized nature is preserved.10 The
roughness of a surface may lead to localized waves.11 Sub-surface
inhomogeneities may resonate and produce local amplification fac-
tors.12 Designing earthquake-resistant buildings on Earth’s surface is
considered another challenge to the modern Seismology. Here the phi-
losophy is simple. We should build on high-elasticity ground, where
the motion may be large but it is transmitted away. On soft soils the
damping collects all the energy on the building.

15.3 Inverse problem

The large energies involved by earthquakes made reasonable the intro-
duction of a logarithmic measure of earthquake’s size, called magni-
tude. Though related to earthquake’s energy, the magnitude was first
defined by the logarithm of the local displacement, in certain con-
ditions. This is the local magnitude, introduced by Gutenberg and
Richter.13 There are many conventions for defining the local magni-
tude, and many local-magnitude scales. Later, Hanks and Kanamori
related the magnitude to the logarithm of the seismic moment.14 In-
10B. F. Apostol, "The effect of the inhomogeneities on the propagation of elastic

waves in isotropic bodies", Mech. Res. Commun. 37 458 (2010; "Scattering of
longitudinal waves (sound) by defects in fluids. Rough surface", Centr. Eur.
J. Phys. 11 1036 (2013).

11B. F. Apostol, "Elastic waves in a semi-infinite body", Phys. Lett. A374

1601 (2010); "Scattering of electromagnetic waves from a rough surface", J.
Mod. Optics 59 1607 (2012); "The effect of surface inhomogeneities on the
propagation of elastic waves", J. Elas. 114 85 (2014).

12B. F. Apostol, "Amplification factors in oscillatory motion", Roum. J. Phys.
49 691 (2004); "A resonant coupling of a localized harmonic oscillator to an
elastic medium", Roum. Reps. Phys. 69 116 (2017).

13B. Gutenberg and C. Richter, "Frequency of earthquakes in California", Bull.
Seism. Soc. Am. 34 185 (1944); "Magnitude and energy of earthquakes",
Annali di Geofisica 9 1 (1956) (Ann. Geophys. 53 7 (2010)).

14H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981
(1977); T. C. Hanks and H. Kanamori, "A moment magnitude scale", J. Geo-
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deed, it was realized that the seismic force acting in the focus is gov-
erned by the tensor of the seismic moment, so, the magnitude defined
this way, which is called the moment magnitude, characterizes the
earthquake. However, the relation between the seismic moment and
the earthquake’s energy is lacking. Moreover, the use of the seismic
moment for defining the magnitude was favoured by a certain way
of estimating the seismic moment as μSd, where μ is the shear elas-
tic modulus, S is the area of the rupture at Earth’s surface and d
is the slip of the rupture. It is thought that the ruptures produced
by an earthquake at Earth’s surface may provide an estimate of the
magnitude of the seismic moment.15 We can see how approximate is
such a procedure. Also, by making use of the double-couple compu-
tations, it is claimed that the seismic moment may be derived from
the form of the seismic waves recorded at Earth’s surface.16 On one
side, such calculations depend on the reference frame; on the other,
the correct results of computing the seismic waves imply a regulariza-
tion of the solutions, because the use of auxiliary functions in solving
the Navier-Cauchy equation, like potentials, may introduce spurious
features.17 Apart from not being in the public domain, the procedure
of wave-form inversion does not pay attention to such precautions.

The derivation of the tensor of the seismic moment from data mea-
sured at Earth’ s surface is called the inverse problem in Seismology.

The inverse problem of the Seismology was solved in 2019.18 The

phys. Res. 84 2348 (1979).
15D. Wells and K. Coppersmith, "New empirical relationships among magnitude,

rupture length, rupture width, rupture area, and surface displacement", Bull.
Seism. Soc. Am. 84 974 (1994).

16A. M. Dziewonski abd D. L. Anderson, "Preliminary reference earth model",
Phys. Earth planet. Inter. 25 297 (1981); A. M. Dziewonski, T. A. Chou
and J. H. Woodhouse, "Determination of earthquake source parameters from
waveform data for studies of global and regional seismicity", J. Geophys. Res.
86 2825 (1981); S. A. Sipkin, "Estimation of earthquake source parameters by
the inversion of waveform data: synthetic waveforms", Phys. Earth planet. In-
ter. 30 242 (1982); G Ekstrom, M. Nettles and A. M. Dziewonski, "The global
CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes",
Phys. Earth Planet. Int. 200-201 1 (2012).

17M. Apostol, "On unphysical terms in the elastic Hertz potentials", Acta Mech.
228 2733 (2017).

18B. F. Apostol, "An inverse problem in seismology: derivation of the seismic
source parameters from P and S seismic waves", J. Seismol. 23 1017 (2019).
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seismic-moment tensor was derived from measurements of the P and
S seismic waves at Earth’s surface. The solution was given in a con-
sistently covariant form. In addition, the relationship E = M/2

√
2

has been established, between the energy E of the earthquake and
the mean seismic moment M = (M2

ij)
1/2, where Mij is the seismic-

moment tensor. The logarithmic connection between energy and mag-
nitude, known also as the Gutenberg Richter law, was suggested long
ago.19 Besides the tensor of the seismic moment other parameters of
the seismic focus have been computed, like the size of the focal region,
the duration of the seismic activity in the focus and the orientation
of the fault. Moreover, from near-field data in the epicentral region,
we may infer the seismic moment and, especially, the tendency of the
seismic activity in a seismogenic region.20

15.4 Statistical Seismology

The number of small-magnitude earthquakes is extremely large. Con-
sequently, a logarithmic law is appropriate. This is (another) Gutenberg-
Richter empirical law, which relates the logarithm of the magnitude
density of earthquakes to magnitude.21 Obviously, it is a statisti-
cal law. The use of statistical laws may induce the idea of possible
prediction of earthquakes. However, a relevant use of statistical laws
requires the understanding of their origin, e.g. the origin of the proba-
bilities in earthquakes’ distributions. Moreover, there exist deviations
from the logarithmic Gutenberg-Richter law, like the roll-off effect
at small magnitudes. Very likely, such deviations imply correlations,
which again require the understanding of the occurrence probability
of the earthquakes. The correlations imply the idea of accompanying
seismic events, like foreshocks and aftershocks, associated to a main

19T. Utsu and A. Seiki, "A relation between the area of aftershock region and
the energy of the mainshock" (in Japanese), J. Seism. Soc. Japan 7 233
(1955); T. Utsu, "Aftershocks and earthquake statistics (I): some parameters
which characterize an aftershock sequence and their interaction", J. Faculty of
Sciences, Hokkaido Univ., Ser. VII (Geophysics) 3 129 (1969).

20B. F. Apostol, "Seismic moment deduced from quasi-static surface displacement
in seismogen zones", J. Theor. Phys. 279 (2017); "Near-field seismic motion:
waves, deformations and seismic moment", J. Theor. Phys. 328 (2021).

21B. Gutenberg and C. F. Richter, loc.cit.
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shock. Also, there exists another empirical law, known as Bath’s law,
which states that the highest aftershock is by 1.2 smaller in magni-
tude than the main shock.22 The foreshock and aftershock distribu-
tions deviates from the Gutenberg-Richter standard distribution of
regular, background earthquakes.23 Finally, the aftershocks follow an
inverse-time law in their distribution, known as the Omori law.24 The
intervention of the time in statistical laws induces the idea of a rela-
tion between the earthquakes’ energy and the accumulation time of
this energy, which is the earthquake’s occurrence time.

Such problems have never been recognized as important problems in
Seismology.

"We do not have yet a physical theory regarding the processes that
take place at and near the earthquake source, neither prior to the event
nor even at the time of its occurrence. ... So, just sprinkling the face
of the Earth with seismographs, and hooking up these instruments to
computers and satellites is not the answer either. ...1992, 14 April,
Unpredicted earthquake of magnitude 6 in the heart of Europe, amids
hundreds of seismographs, computers, and professors of seismology ...
the strongest shock in central Europe since 1755".25

The time-energy accumulation law in the focus has been derived in
2006.26 Then, the geometric parameter of the growth model has been
introduced. The basic notion is the fundamental earthquakes, which
imply an energy threshold and an accumulation time threshold. On
this basis the Gutenberg-Richter distribution law in magnitude has
been derived, together with the recurrence time. The basic parameters
of background-earthquakes distribution have been indentified.27 The

22M. Bath, "Lateral inhomogeneities of the upper mantle", Tectonophysics 2 483
(1965); C. F. Richter, Elementary Seismology, Freeman, San Francisco, CA
(1958) p. 69.

23L. Gulia and S. Wiemer, "Real-time discrimination of earthquake foreshocks
and aftershocks", Nature 574 193 (2019).

24F. Omori, "On the after-shocks of earthquakes", J. Coll. Sci. Imper. Univ.
Tokyo 7 111 (1894).

25A. Ben-Menahem, "A concise history of mainstream seismology: origins, legacy
and perspectives", Bull. Sesim. Soc. Am. 85 1202 (1995).

26B. F. Apostol, "Model of Seismic Focus and Related Statistical Distributions of
Earthquakes", Phys. Lett. A357 462 (2006).

27B. F. Apostol, Seismology, Nova (2020); B. F. Apostol and L. C. Cune, "En-
tropy of earthquakes: application to Vrancea earthquakes", Acta Geophys. doi:
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recurrence time, known also as the periodicity problem, is considered
sometimes as a challenge to the modern Seismology. By updating the
regular-earthquakes background parameters, we were able to identify
an increase of the recurrence time of the big earthquakes in Vrancea.
Further on, the Omori law was derived,28 the correlated distribution
was established and Bath’s law, the roll-off effect and time-magnitude
correlations were identified.29 By making use of the time-magnitude
correlations of the foreshocks a short-term prediction procedure has
been established.30

15.5 Practical Seismology

We focus on a seismic region, where we have a large data set of earth-
quakes accumulated in a long period of time. The parameters of
the magnitude (M) distribution of the regular (background) earth-
quakes (the Gutenberg-Richter distribution) are the slope β and the
inverse of the seismicity rate t0 (− ln t0). We update the Gutenberg-
Richter distribution periodically (say, every five years), to see possible
changes in these parameters. This helps to update the recurrence time
(tr = t0e

βM ) of the big earthquakes.
The seismic activity is a non-equilibrium process, i.e. it is a pro-
cess with a decreasing entropy (S = 1 − lnβ); therefore, the param-
eter β exhibits a slow increase in time, due to the accumulation of
small-magnitude earthquakes, interrupted from time to time by big
earthquakes, which decrease the parameter β. We update β weekly,
for each year. If an increase appears in its steady slope, it follows
that the non-equilibrium was accentuated, and we may expect big
earthquakes.
The number of the successors of any (big, or moderate) earthquake
(main shock) is distributed in time as an inverse-time law (Omori

10.1007/s11600-021-00550-4 (2021).
28B. F. Apostol, "Euler’s transform and a generalized Omori’s law", Phys. Lett.

A351 175 (2006); B. F. Apostol and L. C. Cune, "Short-term seismic activity
in Vrancea. Inter-event time distributions", Ann. Geophys. 63 SE328 (2020);
doi: 10.4401/ag-8366.

29B. F. Apostol, "Correlations and Bath’s law", Res. Geophys. 5 100011 (2021).
30B. F. Apostol and L. C. Cune, "On the time variation of the Gutenberg-Richter

parameter in foreshock sequences", J. Theor. Phys. 323 (2020).
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law), for various magnitudes; this is a conditional probability distri-
bution, for aftershocks. By updating periodically such distributions
(say, every five years), we are able to tell what is the probability for
an earthquake with a given magnitude to occur in the next one, two,
three,... days after the occurrence of a main shock (next-earthquake
distributions).

Some precursory seismic events (foreshocks) are correlated to the main
shock. They show themselves as a short magnitude-descending se-
quence in the proximity of the main shock. Their magnitude obeys
the law M(t) = 2

3 ln
tms−t

τ0
, where t is the time till the occurrence

moment tms of the main shock. The parameters tms and τ0 are fit-
ting parameters. By fitting this law to short magnitude-descending
sequences of earthquakes, we can predict the occurrence time tms of
the main shock. This is a short-time prediction, which may be at-
tained by monitoring daily (hourly) the seismic activity. By using
τ0 = rt0e

−b(1−r)M0 , where r = β/b, b = 3.45, we can find the magni-
tude M0 of the main shock.

We have an approximate procedure of determining the earthquake pa-
rameters and the parameters of an earthquake focus. The mean seis-
mic moment is given by M = 8πρc2(Rv)3/2, where ρ (= 5.5g/cm3)
is the Earth’s density, c (= 5km/s) is a mean velocity of the seis-
mic waves and v is a mean amplitude of the P and S seismic waves
measured on Earth’s surface at distance R from the focus. The du-
ration T of the seismic activity in the focus is given approximately
by cT = (2Rv)1/2; the focal volume is V = π(cT )3 (l = V 1/3 is the
fault slip). The energy of the earthquake is E = M/2

√
2, the moment

magnitude M is given by logE = 3
2M + 15.65 and for a local magni-

tude we can use Ml = M − 3. By measuring v we can get an estimate
of all these parameters. The procedure can also be applied to explo-
sions (less the magnitude). A more exact procedure is given in the
Earthquake Parameters chapter, for determining the tensor Mij of the
seismic moment (M = (M2

ij)
1/2), the fault slip and the fault orienta-

tion. The determination of earthquake parameters and the foreshock
prediction can be reported periodically in a Seismological Bulletin.

The gradual accumulation of the seismic stress may be periodically
discharged by small, static deformations of Earth’s crust in the epi-
central region. As shown in the Quasi-Static Deformations chapter,
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by measuring these static deformations we may give an estimate of
an average seismic moment, the depth and the volume of the focus
and even the tensor of the seismic moment. More important, by mon-
itoring continuously the crustal deformations in a seismogenic zone,
we can assess the possibility of the occurrence of an important earth-
quake, because after a silence period we may expect an important,
sudden discharge.

The structures built on Earth’s surface can be viewed as (embed-
ded) elastic bars. Under the action of a seismic motion they develop
vibrations, according to their eigenmodes. An interesting particular-
ity is that these vibrations may exhibit an amplification factor c/lα,
where c is the velocity of the elastic wave, l is the length of the bar
and α is the time attenuation factor. The data recorded by sensors
installed in these buildings can be used to get information for the
behaviour of such buildings under a seismic motion. A sub-surface
local inhomogeneity acts as a buried bar. Under a seismic action, this
inhomogeneity may vibrate, with a large amplification factor close to
resonance. The measurements of such site amplification factors can
give information about sub-surface inhomogeneities.

The spectral analysis of the local displacement (velocity, acceleration)
produced by the P and S seismic waves exhibits a frequency maxi-
mum, which is related to the focal dimension and the (local) velocity
of the elastic waves. This is the site (spectral) response; it depends
on direction. The identification of this maximum gives information
about the focal dimensions and local conditions. Site amplification
factors may appear.
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16 Appendix

16.1 Geometric-growth model of energy

accumulation in focus

We consider a typical earthquake, with a small focal region localized
in the solid crust of the Earth.1 The dimension of the focal region is so
small in comparison to our distance scale, that we may approximate
the focal region by a point in an elastic body. The movement of the
tectonic plates may lead to energy accumulation in this pointlike focus.
The energy accumulation in the focus is governed by the continuity
equation (energy conservation)

∂E

∂t
= −vgradE , (16.1)

where E is the energy, t denotes the time and v is an accumulation
velocity. For such a localized focus we may replace the derivatives
in equation (16.1) by ratios of small, finite differences. For instance,
we replace ∂E/∂x by ΔE/Δx, for the coordinate x. Moreover, we
assume that the energy is zero at the borders of the focus, such that
ΔE = −E, where E is the energy in the centre of the focus. Also, we
assume a uniform variation of the coordinates of the borders of this
small focal region, given by equations of the type Δx = uxt, where u is
a small displacement velocity of the medium in the focal region. The
energy accumulated in the focus is gathered from the outer region
of the focus, as expected. With these assumptions equation (16.1)
becomes

∂E

∂t
=

(
vx
ux

+
vy
uy

+
vz
uz

)
E

t
. (16.2)

1B. F. Apostol, "A model of seismic focus and related statistical distributions of
earthquakes", Phys Lett A357 462 (2006).
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Let us assume an isotropic motion without energy loss; then, the two
velocities are equal, v = u, and the bracket in equation (16.2) acquires
the value 3. In the opposite limit, we assume a one-dimensional mo-
tion. In this case the bracket in equation (16.2) is equal to unity. A
similar analysis holds for a two dimensional accumulation process. In
general, we may write equation (16.2) as

∂E

∂t
=

1

r

E

t
, (16.3)

where r is an empirical (statistical) parameter; we expect it to vary
approximately in the range (1/3, 1). We note that equation (16.3) is
a non-linear relationship between t and E. The parameter r may give
an insight into the geometry of the focal region. This is why we call
this model a geometric-growth model of energy accumulation in the
focal region.
The integration of equation (16.3) needs a cutoff (threshold) energy
and a cutoff (threshold) time. During a short time t0 a small energyE0

is accumulated. In the next short interval of time this energy may be
lost, by a relaxation of the focal region. Consequently, such processes
are always present in a focal region, although they may not lead to an
energy accumulation in the focus. We call them fundamental processes
(or fundamental earthquakes, or E0-seismic events). It follows that we
must include them in the accumulation process, such that we measure
the energy from E0 and the time from t0. The integration of equation
(16.3) leads to the law of energy accumulation in the focus

t/t0 = (E/E0)
r . (16.4)

The time t in this equation is the time needed for accumulating the
energy E, which may be released in an earthquake (the accumulation
time).

16.2 Gutenberg-Richter law. Time

probability

The well-known Hanks-Kanamori law reads

lnM = const+ bM , (16.5)
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where M is the seismic moment, M is the moment magnitude and b =
3.45 (32 for base 10). The relation M = 2

√
2E has been established,

where M =
(∑

ij M
2
ij

)1/2
(mean seismic moment), Mij is the tensor

of the seismic moment and E is the energy of the earthquake.2 If we
identify the mean seismic moment with M in equation (16.5) we can
write

lnE = const+ bM (16.6)

(another const), or
E/E0 = ebM , (16.7)

where E0 is a threshold energy (related to const). Making use of
equation (16.4), we get

t = t0e
brM = t0e

βM , (16.8)

where β = br. From this equation we derive the useful relations
dt = βt0e

βMdM , or dt = βtdM . If we assume that the earhquakes
are distributed according to the well-known Gutenberg-Richter distri-
bution,

dP = βe−βMdM , (16.9)

we get the time distribution

dP = β
t0
t

1

βt
dt =

t0
t2
dt . (16.10)

This law shows that the probability for an earthquake to occur be-
tween t and t+ dt is t0

t2 dt; since the accumulation time is t, the earth-
quake has an energy E and a magnitude M given by the above formu-
lae (equations (16.7) and (16.8)). The law given by equation (16.10) is
also derived from the definition of the probability of the fundamental
E0-seismic events (dP = − ∂

∂t
t0
t dt).

3 We note that this probability
assumes independent earthquakes.

In addition, the definition of the entropy S = − ´ dMρ ln ρ with the
distribution ρ = dP/dM given by equation (16.9) leads to the entropy

2B. F. Apostol, "An inverse problem in seismology: derivation of the seismic
source parameters from P and S seismic waves", J. Seismol. 23 1017 (2019).

3B. F. Apostol, "Correlations and Bath’s law", Results in Geophysical Sciences
5 100011 (2021).
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S = 1 − lnβ.4 A series expansion in powers of a small subsequent
time t of the time distribution given by equation (16.10) (conditional
probability) leads to Omori’s law.5

16.3 Correlations. Time-magnitude

correlations

If two earthquakes are mutually affected by various conditions, and
such an influence is reflected in the above equations, we say that they
are correlated to each other. Also, we say that either one earthquake
is correlated to the other. Of course, multiple correlations may ex-
ist, i.e. correlations between three, four, etc earthquakes. We limit
ourselves to two-earthquake (pair) correlations. Very likely, corre-
lated earthquakes occur in the same seismic region and in relatively
short intervals of time. The physical causes of mutual influence of
two earthquakes are various. Three types of earthquake correlations
are identified.6 In one type the neighbouring focal regions may share
(exchange, transfer) energy. Since the energy accumulation law is
non-linear, this energy sharing affects the occurrence time. We call
these correlations time-magnitude correlations. They are a particular
type of dynamical correlations. In a second type of correlations two
earthquakes may share their accumulation time, which affects their to-
tal energy. We call such correlations (purely) dynamical correlations.
Both these correlations affect the earthquake statistical distributions;
in this respect, they are also statistical correlations. Finally, addi-
tional constraints on the statistical variables (e.g., the magnitude of
the accompanying seismic event be smaller than the magnitude of the
main shock) give rise to purely statistical correlations.

Let an amount of energy E, which may be accumulated in time t,

4B. F. Apostol and L. C. Cune, "Entropy of earthquakes: application to Vrancea
earthquakes", Acta Geophys. doi: 10.1007/s11600-021-00550-4 (2021).

5B. F. Apostol, "Euler’s transform and a generalized Omori’s law", Phys. Lett.
A351 175 (2006); B. F. Apostol and L. C. Cune, "Short-term seismic activity
in Vrancea. Inter-event time distributions", Ann. Geophys. 63 SE328 (2020);
doi: 10.4401/ag-8366.

6B. F. Apostol, "Correlations and Bath’s law", Results in Geophysical Sciences
5 100011 (2021).
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be released by two successive earthquakes with energies E1,2, such as
E = E1 + E2 (energy sharing). According to the accumulation law
(equation (16.4))

t/t0 = (E/E0)
r = (E1/E0 + E2/E0)

r
=

= (E1/E0)
r(1 + E2/E1)

r ,
(16.11)

or
t = t1

[
1 + eb(M2−M1)

]r
, (16.12)

where t1 = t0(E1/E0)
r is the accumulation time of the earthquake

with energy E1 and magnitude M1, and M2 is the magnitude of the
earthquake with energy E2. From equation (16.12) we get

b(M2 −M1) = ln
[
(1 + τ/t1)

1/r − 1
]

, (16.13)

where t = t1 + τ , τ being the time elapsed from the occurrence of the
earthquake 1 until the occurrence of the earthquake 2. If τ/t1 � 1,
as in foreshock-main shock-aftershock sequences, this equation gives,
after some simple manipulations,

M2 =
1

b
ln

τ

τ0
, τ0 == rt0e

−b(1−r)M1 . (16.14)

We can see that τ differs from the accumulation time of the earthquake
2 (compare to equation (16.8)); it is given by parameters which depend
on the earthquake 1 (M1). If the earthquake 1 is viewed as a main
shock, then the earthquake 2 is a foreshock or an aftershock. These
accompanying earthquakes are correlated to the main shock (and the
main shock is correlated to them).

16.4 Correlations. Dynamical correlations

Let us assume that an earthquake occurs in time t1 and another earth-
quake follows in time t2. The total time is t = t1 + t2, so these earth-
quakes share their accumulation time, which affects their total energy.
These are (purely) dynamical correlations. According to equation
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(16.10) (and the definition of the probability), the probability density
of such an event is given by

− ∂

∂t2

t0
(t1 + t2)2

=
2t0

(t1 + t2)3
(16.15)

(where t0 < t1 < +∞, 0 < t2 < +∞). By passsing to magnitude
distributions (t1,2 = t0e

βM1,2), we get

d2P = 4β2 eβ(M1+M2)

(eβM1 + eβM2)
3 dM1dM2 (16.16)

(where 0 < M1,2 < +∞, corresponding to t0 < t1,2 < +∞, which
introduces a factor 2 in equation (16.15)). This formula is a pair,
bivariate statistical distribution. By using the pair correlations the
Bath’s law was established and the foreshock short-term prediction
procedure was devised.7 If we integrate this equation with respect
to M2, we get the distribution of a correlated earthquake (marginal
distribution)

dP = βe−βM1
2

(1 + e−βM1)
2 dM1 ; (16.17)

if we integrate further this distribution from M1 = M to +∞, we get
the correlated cumulative distribution

P (M) =

ˆ ∞
M

dP = e−βM 2

1 + e−βM
. (16.18)

For M 
 1 the correlated distribution becomes P (M) � 2e−βM and
lnP (M) � ln 2− βM , which shows that the slope β of the logarithm
of the independent cumulative distribution (Gutenberg-Richter, stan-
dard distribution e−βM ) is not changed (for large magnitudes); the
correlated distribution is only shifted upwards by ln 2. On the con-
trary, for small magnitudes (M � 1) the slope of the correlated dis-
tribution becomes β/2 (P (M) � 1− 1

2βM + ... by a series expansion
of equation (16.18)), instead of the slope β of the Gutenberg-Richter
distribution (e−βM � 1−βM+ ...). The correlations modify the slope
of the Gutenberg-Richter standard distribution for small magnitudes.
This is the roll-off effect.
7B. F. Apostol, loc. cit.
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16.5 Seismic waves and main shock

The components of the seismic tensorial point force (per unit volume)
are

Fi(R, t) = MijTδ(t)∂jδ(R −R0) , (16.19)

where Mij is the tensor of the seismic moment of the focus placed at
R0, for a time-impulse seismic activity which lasts a short time T .
The far-field seismic waves produced by this force are8

uf
i (R, t) = T

4πct

mijxj

R2 δ
′

(R − ctt)+

+ T
4π

mjkxixjxk

R4

[
1
cl
δ
′

(R− clt)− 1
ct
δ
′

(R − ctt)
]

,

(16.20)

where mij = Mij/ρ, ρ is the density of the body, xi are the carte-
sian coordinates of the position R and cl,t are the velocities of the
elastic waves. In this equation we can identify immediately the P
(longitudinal) and S (transverse) seismic waves (primary waves). The
derivation of this solution of the Navier-Cauchy equation requires the
regulariztion of the Helmhotz, or Hertz, potentials.9

The displacement in the main shock on Earth’s surface is given by

ur � χ0τl
4cl

· r

(c2l τ2
l −r2)

3/2 ,

uϕ � −h0zτt
4ct

· r

(c2tτ
2
t −r2)3/2

,

uz � h0ϕτt
4ct

· c2tτ
2
t

r(c2tτ
2
t −r2)3/2

(16.21)

in cylindrical coordinates, where r is the epicentral distance, τl,t are
times slightly smaller than the time from the moment the primary
waves reach the epicentre and χ0, h0 are Helmholtz potentials of the
order of M/4πρRl2, where M is the magnitude of the seismic moment

8B. F. Apostol, "Elastic waves inside and on the surface of a half-space", Quart.
J. Mech. Appl. Math. 70 289 (2017).

9M. Apostol, "On unphysical terms in the elastic Hertz potentials", Acta Mech.
228 2733 (2017).
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and l is the dimension of the focus. We can see the abrupt wall and
the long tail in this main shock; actually, there are two main shocks,
slightly displaced, corresponding to the difference between clτl and
ctτt. Equations (16.21) are valid for intermediate distances of the
order of the depth z0 of the focus.10

The near-fied displacement is given by

un
i = − T

4τct

mijxj

R3 δ(R− ctt)+

+ T
8πR3

(
mjjxi + 4mijxj − 9mjkxixjxk

R2

)
·

·
[

1
cl
δ(R− clt)− 1

ct
δ(R− ctt)

]
.

(16.22)

The deformations produced in homogeneous and isotropic half-space
by a static tensorial force given by equation (16.19) have also been
computed.11

16.6 Earthquake parameters

Apart from a consistently covariant procedure for detrmining exactly
the seismic moment and the earthquake parameters, we have also
an approximate procedure. The mean seismic moment is given by
M = 8πρc2(Rv)3/2, where ρ (= 5.5g/cm3) is the Earth’s density, c
(= 5km/s) is a mean velocity of the seismic waves and v is a mean
amplitude of the P and S seismic waves measured on Earth’s surface
at distance R from the focus. The duration T of the seismic activity in
the focus is given approximately by cT = (2Rv)1/2; the focal volume is
V = π(cT )3 (l = V 1/3 is the fault slip). The energy of the earthquake
is E = M/2

√
2, the moment magnitude M is given by logE = 3

2M +
15.65 and for a local magnitude we can use Ml = M−3. By measuring
v we can get an estimate of all these parameters. The procedure can
also be applied to explosions (less the magnitude).12

10B. F. Apostol, loc. cit.
11B. F. Apostol, "Elastic displacement in a half-space under the action of a tensor

force. General solution for the half-space with point forces", J. Elast. 126 231
(2017).

12B. F. Apostol, Seismology, Nova (2020).
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self-gravitation, 253
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site response, 146, 147
spectral response, 152
sphere vibrations, 248
static deformations, 128
statistical correlations, 53
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surface force, 184
surface localized waves, 202
surface scattered waves, 201
surface waves, 181
surface-wave contribution, 238

T
tensorial force, 82, 112
thermodynamic ensemble, 67
time probability, 19
time-magnitude correlations, 41
transverse wave, 116
two-dimensional main shock, 271
two-dimensional vibrations, 273
two-dimensional waves, 269

V
vector plane waves, 232
vector spherical harmonics, 245
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W
wave dispersion, 216
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