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Preface

We are stim ulated to write this survey for at least two reasons. F irst, much of the 
information on flow through porous media appears in disparate journals and there is 
little or no interdisciplinary communication. Second, a number of researchers, particu­
larly in petroleum  engineering, have spent considerable effort over the past th irty  years 
developing computationally-efficient algorithms to describe flow through porous media 
with a view to evaluating the properties of subterranean reservoirs. A compilation of 
recent advances should be of particular interest to those involved in the study of partial 
differential equations.

The issues we address arise in a number of scientific and engineering disciplines. 
Much of the im petus for the study of flow through porous media, however, derives 
as a consequence of flow in geologic media—the work of hydrologists, soil physicists, 
and agricultural engineers who work at shallow depths and petroleum  engineers who, 
lured by the need to produce oil and gas more efficiently, operate at deeper levels. 
In chemical engineering, packed bed reactors are used to facilitate various reactions. 
Environmental concerns have also led to an increased interest in flow through porous 
media.

Briefly, these notes may be thought of as a survey of implicit evolution equations 
that arise in classical models of diffusion or convection in composite m aterials. Re­
stricting our attention to linear systems, the m athem atical description of the diffusion 
process in a composite medium consisting of two components leads to the following 
pair of equations:

c\Ut — a \ V 2u H— (u — v) = 0, (1)

and
c2vt -  a2V 2v +  - ( v  -  u) = 0. (2)

Here, the dependent variables w[(x),£] and v[(x); £] denote tem peratures, densities, or 
pressures in the respective components at t > 0, averaged at the point x  E R n over 
a neighborhood containing both components. C\ and c2 are monotone functions that 
represent fluid storage-capacity or heat content, a x and a2 are non-negative functions 
that correspond to permeability or conductivity, and e models the exchange rate be­
tween the two components. Our principal focus is on cases wherein a2/ c 2 >> a\ /c \  
which occur when c2 «  0—the fissured-medium equation, or the Barenblatt problem. 
The B arenblatt problem does not specify details regarding the exchange of fluid be­
tween the two media. We also consider models that examine fluid exchange between 
the m atrix  blocks and the fissures in greater detail.

In most geologic settings, it is not always possible to deal with the porous medium 
as if it were a single layer (even in the contexts noted above). Stratification cannot be



ignored. The extension of (1) and (2) to incorporate the layered nature of the porous 
medium is presented. When developing mathem atical models to many of the settings 
noted above, it is essential to incorporate the existence of extraction points (wellbores). 
In many realistic situations the geometrical shapes of the extraction points can be quite 
complex. Thus, although we consider linear systems of the form noted in (1) and (2), 
procedures to obtain solutions when boundary conditions are incorporated can become 
ra ther formidable.

Simply stated, these notes provide a basis for the development of algorithms for the 
study of unsteady flow in saturated porous media. These algorithms provide for the 
exam ination of three-dimensional problems and complicated boundary conditions that 
are a natu ra l consequence of flow in geologic media. Chapter I presents an overview 
of flow through porous media, previews notation and addresses a few basic issues 
for ease of understanding. Chapter II considers the fundamental solution for flow 
in porous media in Cartesian and cylindrical reference frames subject to Dirichlet, 
Neumann, and mixed boundary-conditions. Chapter III dem onstrates how one arrives 
at the expressions for pressure distributions in porous media that account for the 
extraction points. For illustrative purposes, we assume that the extraction points may 
be represented by lines and discs (circles or rectangles). Chapter IV, the crux of this 
work, is intended to aid those who are interested in developing algorithms for computing 
pressure distributions. Solutions in Chapter III are reformulated with a view to aid 
com putations. The observations noted here are based on our experience, and many 
of the solutions presented here have been computed with the numerical algorithm  of 
Stehfest (Communications of the ACM, January 1970, page 47). Asymptotic forms 
of various solutions are also given here. Chapter V is a natural progression of the 
solutions in C hapter III to more complicated visualizations of flow in porous media.

It is our pleasure to thank four individuals who were indispensable to this work. 
This m anuscript was typed in its entirety by Ms. Jan  Want and we are grateful for 
her patience in going through the myriad revisions of this work. Ms. Kathleen Henzel 
of the Tulsa Public Schools helped us with editing the manuscript. Mr. Chih-Cheng 
Chen of Halliburton Energy Services verified many of the developments given here 
and provided us with valuable comments. We thank Ms. Laura Passiglia for drafting 
the figures. In spite of all the assistance we have received, we are responsible for 
the blemishes that remain. We thank the Society of Petroleum Engineers (SPE) for 
permission to reproduce Figure 5.1 in Chapter V of this book.

R.R.
E.O.



N  om enclat ure

B: boundary
C: ability of wellbore to store fluid per unit change in pressure
c: compressibility (fluid)
Cd - wellbore storage coefficient
CfD- dimensionless conductivity of fracture
ChD■ dimensionless conductivity of horizontal well
Cm • compressibility (porous medium)
ct • compressibility (total)
ch(x): hyperbolic cosine
D: space-time domain, normalized (subscript)
—E i ( —x): exponential integral function
erf(x): error function
erfc(x): complementary error function

/ : source density, fanning friction factor, fissure system (subscript)
f ( M ; t): mass rate

[(*)■ function to incorporate fissured-medium characteristics
f (s): Laplace transform  of F(t)
ft: friction factor
h: thickness
h f : length of a line source
^ro+1 /2(* )̂* modified spherical Bessel function
h ( x ) : modified Bessel function
k: permeability
hf . fracture permeability
ki ’. permeability in the i-direction
K i n(x): repeated integral of I\o(x)
I<m+ I /2W : modified spherical Bessel function
^  i/ (*̂ ) • modified Bessel function
L: diffusion operator
C: Laplace transform  operator
I: characteristic length
L f . half-length of a vertical fracture
L h: length of a horizontal well
L„(x): modified Struve function
L: symbolic Laplace transform of L
L *: formal adjoint of L
m : blocks of fissured porous media (subscript)
Af: point, position vector



n : outward normal to the boundary
p : pressure

P f fissure-system pressure
Ph(x): pressure in the horizontal well

Pi- initial value of p
Pm • m atrix-system  pressure
P m(.r): Legendre polynomial

Legendre polynomial
associated Legendre function

Pwf' wellbore pressure
q: withdrawal rate from porous medium
Q(t): volumetric rate
qhc(x): flow rate at any point in the wellbore
Qpi • point-source density (instantaneous)
Q Pc- point-source density (continuous)
Qsf' influx into the wellbore
Q' volumetric production rate per unit volume
R: subdomain, distance between points P  and P l
r: distance, r-coordinate
Re: Reynolds number
r e: distance to the boundary
Re*: Reynolds number based on production rate
R n\ n-dimensional Euclidean space
5: normalized pressure drop in the skin region
5 : Laplace transform variable
.s/i(x): hyperbolic sine
T: time interval; tem perature
t: time variable
t h ( x ): hyperbolic tangent
u: equals 5 or s f (s )
V: volume, bulk volume

Vf- fluid volume

Vr ratio of the volume of system j  to total volume
v(M; t): fluid velocity
VP: pore volume
Vw: wellbore volume
IVf. width of a vertical fracture
x : distance, x-coordinate
x e: distance to the boundary
y- distance, y-coordinate
Ve- distance to the boundary
z: distance, ^-coordinate



£e: distance to the boundary
a: angle
T: boundary
r(.r): Gamma function
r- fundamental solution, Euler’s constant (0.5772
6 ( M ; t): Dirac-delta, function
1/e: degree of Assuring
T]-. diffusivity
9: angle, coordinate
A: characteristic constant of the fissured system
fi: viscosity
V. angle, order (subscript)

P'- distance, spherical coordinate
pf : radius of a disc source

density
<f>: porosity, angle, coordinate
4>(M; t): test function

¥'■ angle
4>: angle
n-. space domain
lo: characteristic constant of the fissured system
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I. General Theory

Our prim ary interest is to consider three-dimensional flow in porous media, including 
fissured and layered media. We propose to provide for extraction or injection of fluids 
via points th a t are complicated in geometry for a variety of conditions on the boundaries 
of the porous solid. Here, we preview our notation and address a few basic issues for 
ease of understanding.

Our notation is standard. The symbols x ,y , and z denote the space variables in 
Cartesian coordinates and t denotes the time variable. $7 is a bounded domain in 
space and T is the boundary of ft. The position of a point in ft is defined by the 
position vector M  =  (x ,y , 2 ). T  denotes the time interval T ; { t |0 < t < oc}. The 
space-time domain D  =  ft x T  is the product of the region ft and the time interval T. 
An inhomogeneous porous medium occupies ft and a fluid (liquid or gas) flows through 
the porous medium. The porosity, <^(M; £), of the medium (defined as the void volume, 
Vp, per bulk volume, V), and the density, /?(M; t), of the fluid are both scalar functions 
of M  and £, for M  and t E D.  Sources or sinks in D may supply or extract fluid. In 
the following development, we use the term source to denote both the supply and the 
extraction of fluid with the understanding that the strength of a sink is negative. We 
also drop the distinguishing notation for vectors.

1.1. E qu ation s for flow through  porous solids

Let R  be an arbitrary  subdomain of ft with boundary I?, and n be the outward nor­
mal to B.  Let v ( M ; t )  denote the velocity of the fluid, and f ( M ; t ) denote the local 
rate (mass per unit volume per unit time) at which mass is extracted from R.  The 
conservation of mass principle yields

— f p(f)dM = — f pv • ndT — j  (1)
ot J r J b J r

A local version of (1) is obtained by applying the Divergence theorem to the surface 
integral in (1) and is given by

^ )  = - V  • ( H  - / ;  ( 2 )

This development assumes that the functions involved in (2) are continuous and 
hence excludes the existence of sources in D that are impulsive in time an d /o r con­
centrated in space. To incorporate impulsive and concentrated sources, we provide a 
distributional interpretation of (2) in §1.2.

We now assume that Darcy’s Law [1] holds. We restrict our attention to Newtonian 
fluids and isotherm al conditions. Ignoring gravity, the velocity of the fluid is given by

V =  - - V p ,  (3)
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where k is the permeability of the medium, p is the viscosity of the fluid, and p is 
the pressure. For the present, we assume that k — k(M).  Later we will restrict our 
attention to an anisotropic solid in which the permeability of the porous medium is 
independent of position, and the coordinate axes are coincident with the principal axes 
of permeability, see Childs [2].

The isotherm al compressibility of the fluid, c, and the compressibility of the porous 
medium, cm, are defined, respectively, by

\ p  »p ) t  U /  S p ) T

and
_  ( L ? Y r \  ~ ( \ dA

Vp dp ) T ~ dp J T ' ^

where Vf  is the fluid volume and Vp is the pore volume. The total compressibility of the 
system, then, is ct = c +  cm. A comprehensive survey of pore-volume compressibility 
is given by Scorer and Miller [3].

Insertion of the expressions on the right-hand sides of (3)—(5) for the appropriate 
expressions in (2) yields the following diffusion equation in terms of pressure, p :

^ i r  =  v ' ( -  + - c ( v P)2 - i  (6 )dt \ n  J fi

where q = f / p  is the volumetric, production rate per unit volume. Note tha t in (6), 
(j) and ct are functions of pressure. The effects of the variations of <j> and ct with 
pressure can be examined along the lines outlined by Raghavan, Scorer, and Miller [4]. 
Most often this variation is ignored and and ct are assumed to be constants. For 
the purposes of this discussion, we will assume that (j) is a constant and ct =  c. If 
we assume th a t the pressure gradients are small and that the compressibility of the 
fluid and the viscosity of the fluid are constants, then (6) leads to the linear, diffusion 
equation

V . Q  V p ) - fSc | - , ~ = 0 .  (7)

R em ark  1: In the context of heat conduction, p corresponds to temperature, k j f i  
corresponds to thermal conductivity, and (f>c corresponds to the heat content of the 
solid.

R em ark  2: I f  density and viscosity are functions of pressure, then an equation similar 
to (7) can be derived from (2) via the Kirchhoff [5] transformation

T-(p) = f ~ dp'- (8)
J 0 ^

This transformation yields a diffusion equation in terms of m(p) and eliminates the 
need to assume that c(V p)2 w 0. In passing, we note that for flow in simple geometrical
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systems (rectilinear, cylindrical or spherical), the transformation suggested by Cole [6] 
and Hopf [7] renders the assumption c(Vp)2 ~  0 unnecessary.

R e m a rk  3: For a homogeneous and isotropic solid in which permeability is independent  
of position, (7) becomes

(.)
Here, rj = k/((f)C(i) is the “diffusivity” of the porous solid. For solids in which the 
principal axes of permeability coincide with the coordinate axes, (9) will also describe 
the diffusion process in the transformed coordinates V =  i y / k /k {  for i =  x ,y ,  or z 

where k may be chosen arbitrarily and k{ represents the permeability in the i-direction 
(note that if k is chosen arbitrarily, then q (M f;t) is not necessarily equal to q(M;t) ;  
if, however, k is chosen to be (kxkykz) ^ , then d M l = d M  and q(M'; t )  =  q{M]t)) .  I f  
the solid is infinite in extent or is bounded by planes perpendicular to the principal axes 
of permeability, this transformation reduces the problem of flow in an anisotropic solid 
to that of flow in an isotropic solid. In other cases, the bounding surfaces are usually 
distorted.

R e m a rk  4: I f  Q(t) is the volumetric rate at which sources supply fluid in R, then 
Q(t)/(cj)c) is the strength of the sources in R. Because

m
(f)C

j -  [  q(M; t )dM,  (10)
JR

q(M;t)/((f)c) in (10) represents the density of the sources of strength, Q(t)/(<f>c). Note 
that if  V  denotes the volume corresponding to R, and if P  — JR dpdM denotes the 
change in pressure in R  from time t to time t +  dt, then P  =  Q/((j>c)/V.

For generality and to be more concise, (9) can be expressed in terms of the norm al­
ized quantities

zD = i /e,  (11)

where i — £ ,y , or z, and
t o  =  r / t / f  (12)

as follows _

s / D P - W - - T -  = °> (M D; tD) e D D. (13)at D (pC

Here, £ represents the characteristic length of the system, V 2D is the Laplacian operator 
in Z£>, D o  is the space-time domain in terms of normalized quantities, and 5 d /(0 c) 18 
the source density in It is also convenient to define the diffusion operator as

l  = ^ ° ~ w d (14>

and write (13) as

Lp = (Md ’J d ) € Do-  (15)<pc
3



The developments in the later parts of this work are in terms of the Laplace trans­
formation. Application of the Laplace transform ation to (15) yields

Lp(s) — -  p t; (16)
(pc

where /» oo
J(s)  = C { f ( t D) } =  e - si° f ( t D)dtD. (17)

Jo

In (16), pi =  lim*jD_>o+ p represents the initial value of p, and L  represents
the symbolic Laplace transform of L given by

I  =  V 2d -  a. (18)

In passing, we note that the elliptic operator, L, is a self-adjoint operator, whereas the 
parabolic operator, L, is not a self-adjoint operator.

1.2. D iffusion  w ith  im pulsive and concentrated  sources. D istr ib u tio n s

Here, we develop the framework to consider extraction of fluid from porous media 
through sources that are nearly impulsive and almost localized. For notational sim­
plicity, we will assume that the porous medium has unit properties.

Let us consider the diffusion equation

Lp(M ;t )  = f ( M ; t ); (M ;t )  e D.  (1)

In the development in §1.1, the nonhomogeneous term, / ,  of the diffusion equation was 
required to be a continuous function and p was a sufficiently differentiable function that 
satisfied (1) pointwise on D. These requirements are met when /  corresponds to the 
density of a continuous and distributed source. For our purposes, however, we need to 
interpret /  as the density of an impulsive and /o r a concentrated source. This is readily 
accomplished by giving meaning to (1) in terms of the Theory of D istributions. The 
basis for the distributional interpretation of (1) may be found in standard  developments 
of the theory of distributions; see Schwartz [8], Zemanian [9], and Stakgold [10]. For 
continuity, we present the following definitions (from Stakgold [10]).

D efin itio n  I: An infinitely differentiable function, on R n with compact support
is called a test function on R n where R n represents n-dimensional Euclidean space. 
The space of all test functions on R n is denoted by C£°(Rn).

D efin itio n  II: A n n-dimensional distribution, f ,  is defined by the rule

f  = ( f , 4 ) =  I  (2)
JRn

where f ( M )  is a function in R n that is locally integrable and (j>(M) is a test function 
belonging to C£°(Rn).
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D efin ition  III: A distribution f  is said to be regular if it can be defined through the 
rule given by (2) with f ( M )  locally integrable. All other distributions are said to be 
singular. Given a singular distribution, f , we can assign to it a generalized function} 
/ ( M ) ; and still use (2) symbolically.

D efin ition  IV: The distributions f \  and f 2 are said to be equal in the open set ft if 
(fi  — f 2, (j>) = 0  for every test function, <f>(M), with support in ft.

For a given distribution / ,  we can now interpret (1) as a differential equation in 
a distributional sense and require that the distributions Lp  and /  be equal in D.  
Here, p is a distributional solution of (1) if (p, L*(f>) =  ( /, </>) for every test function 
0(M ; t) in C£°(D)  where L* is the formal adjoint of L. If /  is a distribution generated 
by a distributed source density as in §1.1 (that is, /  is a continuous function), then 
the sufficiently differentiable function p  that satisfies (1) pointwise in D  is a classical 
solution of (1). In the context of the distributional interpretation, (1) still makes sense 
even if /  is a singular distribution. We shall now use the distributional interpretation 
of (1) to define /  as the symbolic density of an impulsive and concentrated source.

Let /  be the singular, Dirac-delta distribution; therefore

Lp{M,  M; t) =  <5(M, M ); (M, M; t) E D,  (3)

is a diffusion equation in terms of distributions and the distribution p is a solution of 
(3) if

(p,L*(j)} = (6,<j)) = [  [  8(M,M)</)(M;t)dMdt — I <f>(M;t)dt. (4) 
J t  J q J t

Because f Q S(M, M ) d M  — 1 for M  in ft, we can visualize <*>(M, M )  as the symbolic 
source density for a concentrated source (a point source) of unit strength at M .  If the 
source strength is different from unity, then we define /  =  [q(M; t)/(</>c)]^(M, M ) as 
the source density so that

[  f ( M ,  M; t )d M  = f  M ) d M  =  E M i l l  (5 ) 
J n  J n  4>c <pc

is the strength of the source. Therefore the diffusion equation with a concentrated, 
point source of strength q(M;t)/((f)c) at M  is

L p ( M , M; t) = K W siM ,  M).  (6)
(pc

If we also require that the action of the source be instantaneous at time t = t, then for 
t E T, we must have

[  [  f ( M , M - , t , t  ) d M d t = q^ t l  (7)
J t  J n  v 0
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Thus, the corresponding source density is

and the diffusion equation for an instantaneous and concentrated, point source of 
strength q(M]t  )/(<t>c) located at M  and acting at t = t is

Lp(M,  M \ t , t )  = M)6(t ,  t). (9)
<pc

We shall now extend the above ideas to define the source density for sources that 
are concentrated over a volume, on a surface, or along a line in ft. This issue is of some 
im portance to our discussion.

Let ft be a subdomain in ft with M g  (1 and T  be a time interval T ] { t \ t i  < t < £2}* 
Let us define a functional J~~(M , M; t , t  ) by

Jt Jq (10)

=  (8)

=  -  [  [  )d M dt ,
« J t  Jn

that is, /~ ~(M , M ; t , t  ) = 1/a if M  £ ft and t £ T; otherwise 7~~(M, M ; t , t  ) =  0. It 
is clear that

I ~ ~ ( M , M ; t , t  ) =  -  /  [ s ( M , M ) 6 ( t , t  )dMdt.  (11)
a  J r  J i i

If a =  J - d M d t , then the functional when acting on a test function, 
averages tha t test function over the volume of the domain ft and over the time interval 
T.  From (11), we visualize J~~ as the symbolic source density of a volumetric source 
of strength equal to unity that consists of instantaneous, point sources of strength 1/a 
d istributed over the volume ft and the interval T.  If the strength of the source is 
(5/(</>c), then we define the source density of the volumetric source by

M-,t ,t  ) = L  L  h (M ,M ) 6 ( t , t  )dMdt.  (12)
J T J Q t

In (12), the strength of the point sources in D — ft x T  is q(M]t  )/(<^c). Noting that

/  /  Q~~dMdt  = [  [  ) d M d t =  Q-, (13)
J T J n  iU J t J v <t>c <t>c

it is also possible to interpret q ( M ; t )/(</>c) as the source density (subsequently referred 
to as density) of the point sources in D  =  ft x T. In this interpretation, if the volume 
of the fluid withdrawn from the porous medium through the source (the volume of ft)
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for a period of time T  is Q, then the volume of fluid withdrawn per unit volume of 
the source per unit of time is q( M;t  ). This interpretation is essential for relating the 
given production rate of an actual well with the density of the source representing that 
well. Densities of continuous and instantaneous sources can be obtained from (12). For 
example, if T  = T, then (12) yields the density of a continuous, volumetric source:

Q~c(M,  M; t) =  J  SiM±Q.6(M, M ) d M .  (14)

If T  is an infinitesimal time-interval around t, then (12) provides the density of an 
instantaneous, volumetric source

Q ~ . ( M , M ; t , t ) =  [  ^ M ] t  h ( M , M ) 6 ( t , t ) d M .  (15)
J n  <t>c

Here, q(M ;t  )/((j>c) is the density of point sources in ft; that is, q(M ;t  ) is the volume 
of the fluid withdrawn from unit volume of the source at time t =  t. *

Similarly, if the sources are distributed over the entire space-domain (ft =  ft) and 
are continuous (T  =  T), then we obtain Qnc{M]t) — q(M;t)/(f>c as in §1.1. If ft is a 
spherical region of vanishingly small radius around M , then Q^c =  q(M]t)8(M,  M)/(</>c) 
is the density of the continuous, point source and Qpj — q (M ;t  )8 ( M ,M ) 8 ( t , t  )/(<j>c) 
is the density of the instantaneous, point source.**

The densities of surface and line sources can also be w ritten in a form similar to 
tha t given by (12). If q(M;t  )/(</>c) is the density of an instantaneous, point source 
in D = S  x T  where S  = ft for a volumetric source, S  — T for a surface source, and 
S  — C  for a line source, then

=  ) (16)
(pc

is the density for an instantaneous, point source in D  =  ft x T. Thus, letting 
/(M , M ; t, t ) denote the source density in D, we have

/(M , M ; t , t  ) =  f  l Q pi(M,  M ; t , t  )dSdt,  (17) 
J t  J s

* (15) represents the appropriate limit of (12) if the source-strength remains constant 
while T  becomes a vanishingly small time-interval around t (that is, the strength of 
the instantaneous source is the same as that of an impulsive source acting over a 
time period, T ). This procedure ensures that the superposition of instantaneous source 
densities given in (15) over a time interval T  yields the impulsive source density given 
in (12).
** Here, we take the limit of (12) by keeping the source-strength constant and making 
ft vanish around M .  Similar to the discussion following (15), superposition of the 
point-source densities over the volume of ft yields the density for a volumetric source.
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and may write the diffusion equation as

L p ( M , M ; t , t }  =  /  )  G D. (18)

Because we now work with impulsive and /o r concentrated sources, we expect p to 
have singularities in ft and T. We can, however, apply the Laplace transform ation to 
(18) as in the classical sense (see Churchill [11] and LePage [12]) and obtain

Lp(M,  M ; s J )  = / (M , M ; s J ) - Pl. (19)

Here, L  is defined in 1.1(18) and

f ( M , M ; s , t ) =  f f ^ ^ < $ (M , M )  exp(—st )dSdt  
J t  Js

=  M; S, t)dSdt.

(20)

For a point source at M , we take the limit of (20), by keeping the strength of the source 
constant as S  vanishes. This yields

7  ( M , M ; M ) =  L Q pt( M , M ; s J ) d Z  (21)
J t

Similarly, for an instantaneous source

/(M , M ; M )  =  J ~ Q P,(M,  M; s, t )dS.  (22)

Note tha t for instantaneous sources acting at t =  0, the initial value of p, can be 
discontinuous at the source location. These discontinuities, however, disappear after a 
very short period of time and thus lim*_o+ P =  Pi is continuous at all points except at 
the location of the source. Of particular interest is the density for a continuous source, 
the expression of which is given by

J (M , M; s) — f [  ^ M ', t h { M , M ) e x v ( - s t ) d S d t
J t J j _ 4>c (23)

M )dS.
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1.3. In tegra l rep resen tation  o f so lution s to  th e diffusion equation; 
th e  fundam ental so lu tion

Our interest is in obtaining the integral representation of solutions to the diffusion 
equation (see, 1.2(19)),

L p ( M D , M D ; s , t o )  =  f ( M D, M D; s , t D) — p*; £ ^ d ,  (1)

subject to one of the following boundary conditions,

p \ r D = 9 , (2)

9 p \ - h (3)

dp
dn + P (4)

where d / d n  denotes differentiation along the outward normal of the boundary, To-  
This objective can be accomplished by using the fundamental solution, 7 ( M jj, M'D \ <s, 0), 
th a t corresponds to the operator L  which satisfies

M fD; s,0) = M'd ); ( M d . M'd ;0) G D d , (5)

and the respective, homogeneous boundary-condition of the original problem ((2), (3), 
or (4) with g =  h =  r =  0). As we discussed in §1.2, 7  represents the Laplace 
transform ation of the response of an instantaneous, point source of unit strength located 
at M'd and acting at t'D =  0 with 7  =  0 for t o  < 0 (the casuality condition). We note 
tha t L  is a self-adjoint elliptic operator and the existence of the fundam ental solution 
is assured by the general theory of elliptic PD E ’s. We also note that *

j ( M d i , M d2;s ,0) = 7 (M d 2,M d i ; s ,0 ); (6 )

* To prove (6), we let u = j ( M d ,  *s , 0) and v = M 02] s, 0) be the solu­
tions for Lu  =  — M jji) and Lv  =  respectively. Applying Green’s
identity to Lu and Lv and noting that u and v satisfy the homogeneous boundary- 
conditions, we may write

[  [ t(M d , M q 2] s ,0)8(Md , M d i ) -  j ( M d , M d i , s ,Q)8(Md , M d 2)] d M o  =  0 ,
J  Qn

which, by the fundamental property of the Dirac-delta function, gives (6).
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that is, the fundamental solution is symmetric in space variables and satisfies *

7 ( M D,M'D-,s,0)dMD = l - ( l  + ^ d T o y  (7)

The integral representation of the solution to (1) can be obtained by applying 
G reen’s identity to (1) and (5) as follows:

L m ■m dM°=Lî ~ dr°' (s)
If we substitu te the right-hand sides of (1) and (5) for Lp and £ 7 , respectively, in (8 ), 
interchange M jj and M ’D , and use the symmetry property of the fundamental solution 
(see (6 )), (8 ) yields

p ( M D, M D] s, t D) — I  p t% M D, M fD;s10)dM,D 
JnD

— I  f ( M ,D^ M o , s , tD y y (M D^ M ,D;s^O)dM,D (9)

(9) is the general form of the integral representation of the solution to (1). In the 
following chapters, however, we will assume that the initial pressure distribution is 
uniform and p satisfies (2), (3), or (4) with g =  r =  pt/s,  h — 0 as these assumptions 
hold true for most of the problems of interest in porous media. If we, then, use (7) 
and the condition that the fundamental solution satisfies the respective homogeneous 
boundary-condition of the original problem, we can recast (9 ) as

A p ( M o , M o ; s , t o )  = f f ( M fD, M o ; s Jt o ) :y ( M o , M ,D; s , 0 ) d M ,D, (10) 
JnD

where
A p = j - p .  (11)

(The expression in (10) could also be derived from (8 ) by replacing p by Ap and noting 
tha t the boundary integral in the right-hand side of (8 ) is zero, because 7  and Ap 
satisfy the same homogeneous boundary-conditions.)

* With the aid of Green’s identity, this result is obtained from (5) as follows:

I L j d M o  =  I (Vr>7 ~ s j ) d M o  
J  S7 0 J  Q D

=  /  ^ d r D - s  [  j d M D = - i .
J r D d n  J Ud
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Let us now scrutinize the result given in (10). Substituting the appropriate expres­
sion given in 1 .2 (20 ) for /  in (10), we obtain

Ap(M o ,  Mq;  = f ( [ " r '  D^ ( M fDlM o ) e x p ( —s t o ) d S o d t o  
J q d J t d J s d P c

s ,0)dM,D

-  L  L  M M f ' iD  ̂ e x p ( - s t D) % M D, M d \ s , 0 )dSDdtD.
J t d J s d <Pc

_  ( 12) 
Here, Ap is the response of an impulsive and concentrated source and can be viewed 
as the suitable limit of the response to a continuous and distributed source. If we wish 
to express (12) in terms of the source density q/(<j)c) in D — S  x T, then we use

fo  =  ^ T 9 . (13)

or for instantaneous sources

where n — 0 ,1 ,2 , or 3 for volume, plane, line or point sources, respectively. For 
example, for a continuous source (12) yields (see §1.2 )

Ap ( M d , M d ; s )  = (  ^D  ̂ D’ ^7 (M b,  Mb;  s )dSo  
J s D

= ^  f j ( M D- s ) j (M D, M D]s)dS.
J s

(15)

If q is the volumetric rate at which fluid is extracted from the porous medium (O) 
through the source (5), then J^qdS  = q. If $ d ( ^ d 5 ^d ) known or can be computed 
by independent means, then (12) reduces the problems of unsteady flow in porous me­
dia to finding the fundamental solution (instantaneous, point-source solution of unit 
strength) tha t satisfies the same boundary conditions of the original problem. There­
fore, in Chapter II we discuss how the fundamental solutions can be obtained subject 
to Dirichlet, Neumann, or mixed boundary conditions in the Cartesian and cylindrical 
coordinate systems. Chapter III is devoted to the discussion of the treatm ent of fluid 
extraction points, where we regard the wellbore as a source and evaluate (12) with S b  
representing the wellbore geometry. Computational considerations and applications to 
fissured and layered porous media are discussed in Chapters IV and V, respectively.
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II. The Initial-Boundary-Value 
Problem

As noted in §1.3, the solutions for unsteady flow in porous media reduce to obtain­
ing the fundam ental solution. The fundamental solution will satisfy the homogeneous 
boundary conditions of the original problem. In this chapter, we establish the fram e­
work for examining three-dimensional flow in porous media by deriving fundamental 
solutions subject to Dirichlet, Neumann, or mixed boundary-conditions. Solutions are 
expressed in term s of the Laplace transform ation and are derived by the well-known 
m ethod of images.

2.1 . F low  in an in fin ite m edium

The fundam ental solution, 7 , satisfies the Laplace transform ation of the diffusion equa­
tion,

L'y(Mi) ,  M'd \ s , 0) =  V | ,7  — 57  =  —8 ( M d ,M'd )-, ( M d , M'd -0) G D d . (1)

As noted in §1.2 and §1.3, 7  corresponds to the solution for an instantaneous, point 
source of unit strength that is located at M'D and acts at t'D = 0. For a point source 
located at the origin in an isotropic system, we may write (1) in spherical coordinates 
as follows: _

( P D - P - )  -  s 7 =  ° for M d ^ M ' d , (2)P d  dPD V dP D J
where po  is the radial coordinate. The solution of (2 ) yields the well-known Lord 
Kelvin’s, point-source solution

exp( ~ p Dy/s)
7  47\pD

In the following sections, we use (3) to derive the fundamental solutions for problems 
in Cartesian and cylindrical reference frames by the well-known m ethod of images. (3) 
will be used after translation (to account for the fact that the source may not be at 
the origin), and the influence of anisotropy will be incorporated along the lines noted 
in §1.1.

2.2 . F low  in linear (slab ) porous m edia

We consider flow in a linear reservoir with boundaries at z — 0 and 0 =  ze. As noted 
previously, the fundamental solutions we derive here satisfy the homogeneous boundary
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conditions of the original problem. We consider a system with permeabilities, kx , k y 
and k z in the x , y  and 2 directions, respectively. We will assume that anisotropy is 
incorporated through the coordinate transform ation discussed in C hapter I. The source 
is located at (V ,y ',£ ') .

I. Both ends of the porous solid are impermeable

The fundam ental solution, obtained by the method of images, is given by

7 =h f. {
n =  — oo I

exp - \ / u  V R D +  (ZD -  ZD ~  ^n z eD ) 2

\ J $ £ )  "f" (%D 2n z ej j ) 2

exp
+

— y/u y j R 2d +  (zd +  z*D ~  2nzeo ) 2
(1)

y / R 2D + (zD +  z'D -  2n z eD)2

Here, u =  s; as we shall see in Chapter V, this nomenclature perm its us to use the 
development given here to derive solutions for naturally-fractured porous media by a 
trite  change in nomenclature. In (1)

R 2D — (XD — XD ) 2 +  ( v d  -  v 'd)  ? (2)

t V  kT ' £ \l  k '  kz

and

ZeD = I  V  kz ’

(3)

(4)
(see §1.1, Remark 3). (1) can be recast into a more suitable form for com putational 
purposes by using Poisson’s summation formula (see Carslaw and Jaeger [1], p. 275) 
given by

+00

exp
(£ -  2n?e)2

4 t o
1 +  2 2_^ exp I ------——  ) cos Tax ~~

n - 1 V ?e /  ?e
(5)

After m ultiplying both sides of (5) by t ^ 2 e x p [ -a 2/(4<£>)], where a is real and positive, 
the Laplace transform ation with respect to t o  yields (see Ozkan [2], p. 17)

-f OOE exp - y / u  v 'a 2 +  (£ -  2n £e)2
V a 2 +  (f -  2n & )2

o a ( I k +
n =  l

(6)

14



If we use the sum m ation formula given by (6 ), then the fundamental solution for a 
porous medium bounded by two impermeable planes at z =  0 and z = z e is

1
7 = 27rz,eD

n= 1 eD
_ ZD

ZeD
■ COS U7T- D

ZeD

( 7)

In passing, we note that Poisson’s summation formula given in (5) is equivalent to 
the transform ation formula for theta-functions . In fact, all expressions derived in this 
section can be expressed in terms of theta-functions.

II. Both ends of the porous solid are at the initial pressure
Here, we assume that the boundaries are at a pressure equal to the initial pressure 

of the system. The fundamental solution in this case is given by

7 =
1

Arc

-f-oo

E
exp - y j u  \ / R 2d + (zd -  z'D -  2n z eD)2

\ / R 2d + (zd -  z'D -  2nzeD)2

exp - \ / u  y / R 2D + (zd + z 'd~  2nzeD)2
(8)

\ / R 2d + (zd + z'd -  2nzeD)2

which, by (6 ), becomes 

1
7

TT^eD
Y  i u  ( R d \1 u +

CD

n =  l eD
ZD .sm riTT-----sm n tt
ZeD Ze£) ( 9)

III. One end of the porous solid is impermeable, the other end is at the initial pressure 
Let the boundary at 2 =  0 be impermeable and the boundary at z = ze be at a 

pressure equal to the initial pressure. For this case, the fundamental solution is given
by

+  00

- i ) n
exp y/Rj j  + (zD -  z'D -  2nzeDy

n=~oo

exp
+ —

Noting that

+00

£  ( - 1) ' exp

\ / R 2D + (zd -  z 'd -  2nzeD)2 

— y/u \ J R 2d + (zd + z'D -  2nzeD)2
(10)

k= — oc 
-f 00

y / R 2D + (zd +  z'D -  2nzeD)2 

a(xD -  2 k x eD)21
4£

-tOO s

£  | 2exP
k =  — oo

ci(xd — 2k2x eD) o(xd  — 2 k x eD)2— exp
r  4  ̂ j

(11)
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and using (6 ), we may recast (10) in the following form:

—  If>7 I L ^7 = KZeD .V. n = 1

/  ( 2 n  — l ) 2 7r2 

R d \1 u +
Az I d

7T Z  r) , \ 7^ Z  n
cos(2n — 1) —-----cos(2n — 1) —------

2  Z e [)  2  Z ^ d

(12)

2.3 . F low  in cylindrical porous m edia

We assume that the porous medium is isotropic in the x — y plane and let kr denote 
the permeability in the x — y plane. The vertical permeability will be represented by 
kz . The bounding planes at z = 0 and z = ze may both be impermeable, both  be at a 
constant (initial) pressure, or the plane at z =  0 may be impermeable while the plane 
at z = ze is at a constant (initial) pressure.

We consider two problems: flow in a finite cylinder with the boundary at r = re 
considered to be impermeable or at a pressure equal to the initial pressure, and flow 
in a composite region with a change in properties at r = a.

I. Flow in a finite cylinder
The fundamental solution can be obtained in a formal way (see Carslaw and Jaeger 

[3], C hapter XIV). Considering the development in §2 .2 , however, one can readily 
write down the solutions merely by inspection. We derive the solutions in cylindrical 
coordinates where (r# , 0 , z d ) and (r^>, z'D) are the coordinates of the points M o  and 
M ’d , respectively.

We seek a solution of

1 9 /  d^y \  1  d d 2ly

7 ^ 0 ^  y D» +  + 3 4  ” “ 7 =  ( 1)

in the form
7  = P  + G. (2 )

In (2), P  is a solution of (1) that satisfies the conditions at the location of the source, 
M'd , and also at the boundaries z = 0 and 2 =  ze. It is obvious that one of the solutions 
given in §2.2 for the appropriate boundary conditions at z — 0 and z — z t can be used 
for P.  In addition to satisfying the boundary conditions at 2 =  0 and z = ze, G is 
chosen such tha t P  +  G satisfies the boundary condition at r — re and the contribution 
of G to the flux vanishes as M q —* M'D. This procedure was used by Muskat [4] in the 
study of steady flow in porous media.

Let us first consider the case wherein the boundary conditions at zd =  0, z ^  =  zeD 
and vd — reD are given, respectively, by

<97
dzD

and

ZD=Q, Z eD ( 3 )

Q ^ \ r D =  r eD =  0 .  ( 4 )
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In accordance with the boundary conditions given by (3), we choose P  as the solution 
given by 2.2(7). If we use the addition theorem for the Bessel function K q(ciR o ) (see 
Car slaw and Jaeger [5], p. 377) given by

+  oo

I \o(aRD) =  h ( a r D) K k(arD)cosk(0  -  0'); rD < rD
k——oo

4-co

K 0(a R D) = h{ar'D)Kk(arD) cos k(6 -  6'); ro  > r'D
k= — oo

( 5)

where R D = r 2D +  r'p — 2ror'D cos(9 — O'), we can write P  as

2 n zeD
OO

+ oo

y ,  Ik { V ^ r D) I<k (\fur'D) cos k(6 -  O')
_k= — OG

71=1 

+  oo

zd z'D
COS n 7T-------- COS U 7T

ZeD  ZeD
(6)

£  | \lu + T ' o  ) K* ( \lu + ^ ' o  I cos HO-O')

2^2

k= — oo eD eD

for ro  < r ,D. For r o  > r ’D, interchange r o  and in (6 ). Let

+00

27xzeD

00

.k= — 00
£  ( v ^ d )  cos k{6 — 6')

£  h h i J u + ^ j —r ^ c o s k i O - e ' )z d

n —1

COS U 7 T ---------COS T17T-------
ZeD ZeD k= — 00 eD

( 7)

This choice satisfies the condition given in (3) and the requirement th a t the contribution 
of G to the flux —> 0 as M o  M'D. If a* and bk in (7) are now chosen as

ak
h ( V u r ' D)K'k (y/ureD) 

I'k (y/ureD) (8)

and

bk =  ~ ( 9)'i (vAr+i?r‘D)
respectively, then P  +  G satisfies (4), the condition at r e£>, and therefore the funda-
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mental solution is given by

7 27rzP K q( R d V u)

t ( r~ \ Ik (y/ur'jj) I \ fk (y/ureo) ,
Ik  (y/urD) t* ( rrZ —------- cos K e ~  0 )

k= — oo rk {y/ureD)

+2E
n= 1 
4-oo- E a

cos nir-----cos m r ------
ZeD ZeD

K0 R d \ u +
‘ eD

fu  + t d
k= — oo eD

(\/“ + ‘Sf™ )
cos fc(0 — 0*)

(10)

If, in the above system, we replace the boundary condition given by (4) with

then the function P  would still be given by the right-hand side of 2.2(7), but the 
function G would have to be chosen as

G =
2trzeD
oo

g  h (v^ , d) h ( > e p )  cos k{6 _ fl>}
_k= — oo

h ( \ / u r eD)

71= 1

+  ooE *
k= — oo

ZD ZD cos m r -----cos n 7r —1—2eD ^eD

lu + s ?  ,,, n
— rD ------ /"/-- ;• ,— \----- cos
zeD  / '* (V” + IS7r‘D)

(12)
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Therefore, the solution satisfying the boundary condition given by (11) would be 

1
7 = 27TZe D

+  oo

K o ( R o y / u )

-  E  cos * (# -» ')
. I k W u r e D )k= — oo

oo
Z D

n —1 
-I- oo

COS n 7T-----cos n7T—^~
ZeD ZeD

A  0 I \ u ~$~
e D (13)

-  h  J u  +
k= — oo eD

f» (\/“+!g r°)(\/“+ r <°)cos fc(0 — O’)

In general, after choosing the function P  as one of the solutions given by 2.2(7), 
2.2(9), or 2.2(12) for the appropriate boundary conditions at z =  0 and z — ze, the 
function G can be obtained by replacing the Kq(ciRd)  terms in the function P  with

-f OO
• £  h ( a r D)
k= — oo

j f p _

I k(areD) d rD
= 0, (14)

r D = r e D

and with

+ 00
E r r  ^h(ar'D) K k(areD) ,

Ik{arD) — r -----  cos k ( 6 - 0 )  if 7
k= — c

=  0 .
h ( a r eo )

For r'D =  0, the expressions given in (14) and (15) reduce, respectively, to

=  0

(15)

K 1(areD) d~i 
J o F b ) - -------r  if -----

and

I \ (ar tD ) d r D

K 0(areD) _  
~ Io \arD)~r7Ti— r  lf 7

h { a r eD )
0.

(16)

(17)

II. Composite regions

For illustration, we assume that the planes z = 0 and z — ze are impermeable. The 
inner region extends over a region 0 < r < a (Region 1) and the outer region, Region 2, 
with properties distinct from Region 1, is assumed to be infinite in extent. The source 
is located at r ',  0', z f and r f < a , that is, the source is in Region 1 . Solutions given here
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may be readily extended to other circumstances (source in the outer region, Region 2 
is bounded, etc.)

We decouple the problems for Region 1 and Region 2. The fundamental solution, 
7 i, for Region 1 satisfies

r D +
1 d 27 3 d 2y 1

0 6 2
+ = - 6 ( M d , M ' d -,u , 0) .  (18)

r D d r d  \  d r D /  i D uu- v*.D

If we write 7y1 = P  +  G and follow the development in I, then the solution for Region 
1 is given by

4" oo
7 i =  T n z —  Ik  ( ^ ro )  K k ( V u t d ) c o s  k(0 -  O')2 n z eD

OO

+ *E
_k= — oo

I -f-oo 
ZD ZD COS n 7T------COS U7T------

n — 1 ZeD Z t D
I u +

k= — oo ceD

K k Iu  H----- j— r D ) cos fc(0 — 9') (19)
eD

-foo
+  £  a k o h  ( V u r o )  cos k(0 -  9')

k = — oo
oo / + 00

_ V—> 2/)+  2 > COSn7T------COSn7T------- > C l k n h
^  Ze D Z eD  ' Iu -f —2— r£> I cos

eDn =  1 k = -  oo
for r£) > r*D . For t q  < r'D we interchange and r̂ >.

We now consider an infinite porous medium having the properties of Region 2. The 
counterpart of the fundamental solution, 71 , 72 , for this region, satisfies

1 d d l 2  \  1 <927 2 <927 2
>'d d r D \ r D d ^ j  +  4  a P - +  my “  =  “ •

where the normalized variables are based on the properties of Region 1 ,

~  / k r2 k z i 
ZD — \ ;— z D ,V k r \ k z 2 

U =  7yrD W,
and

The solution 7 2 is given by
4-00

V r D
Vrl _  ki(j)2C2 

T]r2 k 2 (f)l Ci

(20)

(21)

(22)

(23)

1
7 2 = 27r: e D

y :  h o K k  (V u rD  ̂ cos k(9  -  9')
. k =  — oo

z d
4-00

V  > 2  jT) 2-7-) V—T+  2 >  cosn7r —— c o s n i r - ^ -  > bknK k  
“ J ^eD 2eD , ^n = l k= — oo

U +  — --- COS fc(0 -  0 ')^2 " eD

(24)
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where
~  j k r2 k  /OK\
ZeD = ^k^k72ZeD- (25)

The coefficients a^n and bkn in (19) and (24) can now be found by coupling 7 1 and 
72 at r D =  ad- The coupling conditions are given by

7i =  72 at r D =  «D, (26)

and
fcri c?7i _  kr2 d l2 
fj, d r D ix d r D

at rj j  =  a p .  (27)

Because the terms in the summations in (19) and (24) are independent of one another, 
(26) and (27) must hold for each value of the subscripts k  and n.  Thus, we obtain

and

where

, % d K d  ,

= — ■ (29)

I ft> /1 1 I I t i\ 1 I I it ii
^ k n  = ^ r D \ j u  9 ( \ j u  —2 a D I &  k I \ U 2

ceD \  V eD Z*
(30)

Sf +  J u  +  - 2— ad L  u +  — — aD
eD \  V eD /  \  V eD

T x / n2yr2 Tr I n2?r2 \ r- / /~  n2?r2
—-̂ rD W  ̂  “I- ~ ^ 2  & ~ z 2  J  1 y ̂  2̂

(31)

and

A r D  =  H (32)it.r2

In obtaining (28) and (29), we have used the following Wronskian relation of Bessel 
functions (see W atson [6]):

W { U z ) , K A . z ) }  =  I v ( z ) K ( z )  -  r v { z ) K v (z )  =  (33)
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Using (28) and (29), we now write the following expressions for 7 j and 7 2 when
ro  > rD:

7 i

/  -f oo oo I j-oo N
=  -------- I Sko + 2 V '  co sR 7 r-^ -c o sn 7 r^ - Sjt„

27T0eD \ .  1 ^eD ZeD ,\ k =  — oo n — 1 k =  — oo /

and

72 =
V D

+ 00 + 00

where

eD
A* Wu +  —^— rD

eD

A:n

fcn
/fc A/W +  o r D

eD
COS fc(0  — 0 ' ) ,

Rfcn

(34)

, V  i?fco +  2 y ^  cosn7T^-COS 777T^- y  i?*n I ? (35)
27TZe£)ao \  “  ^eD ^eD , )

\ k =  — oo n =  1 k =  — oo /

(36)

( / ^ W r'D)  A'* (\Z5 + ^ T D) cost<#" e,)' (37)

W hen ro  < r'Dj we interchange ro  and r'D in (34).
To obtain the pressure drop for a volumetric, plane, line, or point source, we use 

7 X and 7 2 given in (34) and (35) in 1.3(15). This yields

A p C d  <  « d )  =  p  / j

and
A p(rD > aD) = ~  J ^ q  7 2dS.

(38)

(39)

2.4 . F low  in rectangu lar parallelep ipeds

We consider the fundamental solutions for flow in rectangular parallelepipeds. As in 
§2.2, combinations of boundary conditions are examined. Although obtaining the fun­
dam ental solutions in a rectangular parallelepiped by using the m ethod of images is 
fairly easy, recasting the resulting expressions in a more manageable form for compu­
tational purposes is not straightforward. A triple Fourier series needs to be evaluated. 
The triple sums, however, can be readily reduced to double sums by the procedure 
outlined here. For two-dimensional problems, the triple infinite-series is reduced to the 
com putation of a single infinite-series, and for three-dimensional problems, a double 
infinite-series needs to be computed.

The examples given below permit us to derive solutions for all combinations of 
boundary conditions. Let the porous medium occupy the region 0 < x < x e, 0 < y <
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?/e, and 0 < z < ze, and the source be located at # ',? /, z'. The assum ptions noted in 
§2.2 also apply here.

I. All boundaries of the porous solid are impermeable

The fundam ental solution is obtained by applying the m ethod of images to the 
fundam ental solution for an infinite medium (2.1(3)) and is given by

7 :
- -foo +00 4-00

~ 4 ^  (*$1 , 1 , 1  +  *S2,1,1 +  S i , 2,1 +  52,2,1
k =  — oo m =  — oo n =  — oo

+  5^1,2 +  52,1,2 +  S i,2,2 +  S2,2,2) •

Here, we have defined

(1)

exp - \ / u \ J { x D i  ~  2 k x cD)2 + ( y o j  ~  2 m y eD)2 +  (zDl -  2n z eDf

y f  xpi  ~  2k x tD)2 +  ( yDj -  2m y eD)2 + (z Dl -  2 n z eD)2
(2)

for z, j ,  I = 1 or 2 , where
X D l — XD — x D

X D 2 =  X D +  x'd  

vdi  = y D - y ' D 

VD2 = VD + v'd 
zdi  = zd  — z'd

(3)

and
ZD2 — ZD H" zd -

Physically, each S j j j  represents the contribution of a given instantaneous, point source 
in an infinite array of sources.

We now proceed to rewrite the right-hand side of (1) in a form suitable for compu­
tational purposes. Let Ts  represent one of the triple sums; that is,

-j-OO 4-00 4-00T*= £  £  £  s.
k =  — oo m =  — oo n =  — oo

(4)

where

exp
5  =

- \ f u  Y ( £ d -  2 k x eD)2 +  ( y o  -  2m y eD)2 +  ( z D -  2n z eDf

yJ(xD -  2k x eDf  f  (yD -  2m y eD)2 + (zD -  2n z eDf
(5)

Using Poisson’s sum m ation formula given in 2.2(6) and the integral representation of 
the M acdonald function, K q(z ), given by

(6)
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we obtain

1 ( f° °  +°° 

Ts=̂ \l exp

+00 
£  exp

m =  — 00 

+  00

k =  — oo

u(yD -  2 myep ) 2

i{%D — 2 k x eo ) 2

dA

z d  f  °° ^"°°
+  2 ^ ^ c o s n 7 r ----- / exp(—£) ^  exp

^  0 k— — 00

(«  +  Ip r^ )  (yo -  2m y eD)

n = l

+  00

(m + i^r) (x° ~2 kxeD)2
( 7)

£  exp
771 — — OO 4£ £

Let Ti be the second integral in (7). If we use the version of Poisson’s sum m ation 
formula given in 2.2(5) and then integrate, we obtain

aXeDVeD 1+2f  (rrW)
*=1 \ a x l n  J

+ 2f  (npsr)com = l y 1  +  a y l D J

00 ~  OO /  1
+ 4 ^ c o s A : x |^  7 7 ^ 7 ^

*=1 I e D m = l \ 1 + a ^  +  a ^ I

r x  D 

XeD

VeD
(8)

COS m7T-2/eD

where
n 2 7r2

eD

Because (see Gradshteyn and Ryzhik [7], 1.445-2)

cos fcnx 7r c/i[a7r(l — #)] 1
” 2^2A:2 +  a 2 2a s/z(a7r)

; [0 < x < 2],

( 9)

(10)

where ch(x ) and sh(x)  represent the hyperbolic cosine of x and hyperbolic sine of x, 
respectively, T\ is given by

T ! =
JT__  chy/a(yeD -  yD)

eDy/axeo shy/ay,

2 tt ~  cos k n f ^  c h ^ a +  ^ ( y eD - y D) 

+ X*D h i  y /a +  ^  s h j a  + ztp- yeD

(11)
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Thus, (4) becom es
-J- oo -foe -f OOE E E s

k — — oo m =  — oo n =  — oo

oo ~

+  2 cos k n  °  
k = 1

oo+2E COS 777T 
n = l

oo
_ v~^ X JJ+  2 > COS A:7r

7T j c h s / u ( y eD -  \yD \)

2 X e D Z eD  1 VeD

ch^Ju + (yeD ~ \yD\)

X"D + *'V“+€f »•”
c/l\/M +  ^ eD ~ZD

ZeD

(12)

VeD

k=l X eD r+W+iF^V” k27T2
X 2e D

VeD

We have reduced the triple infinite-series to expressions involving a double infinite- 
series. T h is procedure can be used to evaluate all eight trip le-sum m ation term s in 
(1). Thus, the fundam ental solution for a porous solid in which all boundaries are 
im perm eable is

chy fu  ( y ep  ~  \v d i \) +  c h y /u ( y eD -  y D2)
y / u s h y / u y ,

x D . x D
COS K 7 T ---------

x eD x eD

2 XeDZeD

oo

+  2 cos ^ 7r_ 
k=i :

c h y j u  +  ( y eD — \yo \  |) +  c h f ^ i y , D  — y u  2)

\/M + ̂ 7sVM + ̂ 7yeD
00 ,

^ v~^ z n  -f 2 > co sn 7r -----cosn7r——^ ZeD ZeD

c/ly/w  +  Ŝ - ( y eD -  \ V D \ \ )  + c h y j u  +  ^ ( ( / e D  -j/Z tt)
/ u + ^ s h . / u + ^ y eDV e D  V e D

OO ,

1 x  D 1 % n  +  2 cos kir-----cos k n ------

(13)

*= 1 Xt D XeD

C h j u  +  ^  +  ^ ( VeD -  \VD1 I) +  C h j u  + ^ +  ^ ( V e D  ~  V D 2 )V__________ e D ________  e D ___________________________________v_________  e D ________ e D _______________________

\Arrif+WsV« +  ^  +  ^ y e D
e D  e P
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II. One boundary is at the initial pressure, the others are impermeable

Let the surface x p  =  x eo  be at the initial pressure and all other surfaces be 
impermeable. The fundamental solution for this case is given by

+00 +00 +00
1

7 JL y  y  y  (_i)*
47r k ^ o c m ^ o o n ^ o c  (14)

(Si,!,! +  52,1,1 +  S i,2,1 +  S2,2,1 +  S i,1,2 +  S2,l,2 +  S i,2,2 +  $2,2,2) •

If we let

4-00 +00 +00= E E E (-1)*5. <15>
k =  — oo m =  — oo n— — 00

where 5  is given by (5), then, using 2.2(5) and (6), we have

-j (  poo + °°

T s ‘ ^ \ l  “ P « )  E ( - » ‘ “ P
k  fc =  — OO

u(yD -  2myeD)2_j
£

u ( x d  — 2 k x eD ) 2

4£

4" oo

£  exP
m = —oo 

oo

+ ̂ ECOS n7T-

n =  1

4-oo
y  exp

ZD

ZeD

roo + ° °

/  ex p (-£ ) £  ( - l ) * e x p
J 0 Ik =  — oo

( u +  a) (xD — 2 k x e£>)2

4£

(16)

m — — oo

(« + a ) ( y o  -  2m y t D )2 d t

Here, a is given by n 2Tr2/ z 2D. If we now let T\ represent the left-hand side of 2.2(11), 
then using Poisson’s summation formula, 2.2(5), we obtain

+00

Tj = y (-l)*exp
k =  — oo

2

u(x d  — 2 k x en ) 2

\A'd ^ e D
£ e x p
fc=l

4£

(2k  — 1)27t2£
^ a I eD

(17)
/0 7 IN71"cos (2 A; — 1)--------.

2 £ e£>
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Using (17), we may write (16) as follows

cos(2 fc -  l ) f ^ -_̂_______ '  2 Xep
(2 f c - l ) 27T2

2 7T J n  c o s m T r ^
+  -  V  cos(2 Jb -  1) 5 ^ -  V  ------ —

U ^  v 2 l e n  ^  _____
k= 1 eL’ m = l i +  4ux2„ +  »j,fD

JS,  c o s n 7 r c o s ( 2 &  — l ) ? ^ 2-I 9 \  _______ zeD \  V_______ J 2 Xej)
'' U +  « 1 4- (2fc~ 1)2?r2

n= l  fc=l 4 (w -fa)x2£)

COS 777T-^G- 7j- J n  v— c us ' mv i -----
+  4 y -----------^ y COS( 2 k - i ) ? - ^ -  y  —U + a ^  V 2.TcD ^  1 I (2fc-l)27I-2 .

n —1 k—1 m,—1 4(u4-a')x2„

Using (10), we have

4 (w +  a ) x 2r> 0 + a ) y 2£

r  ^ cos(2 fc -  l ) f  ^  cfcy/u +  ^ ~ 1 ^ 2(yeD -  |yD|)

*«»*«* I  £ 1  t h y f i T ^ ^ y e D

~  ~  COs ( 2 f c - l ) f f ^  
+  2 COS U7T------  2 ^ ------------------------------

----  6 f>n ----- /„. I V̂ iv —x; /I I Tî TT̂
n = l  k—\ \ / U  H------ j~ 2---------h ——

*  e£> e D

(2k - l ) ^

chyju  +  +  ,Jp^-(yeD -  \v d \) 1
s h J u  +  +  t̂ V e D  JV e D  Z e D

Thus, we can w rite the fundam ental solution as
i (  00 /

7 = ---- ----- \  Y  cos(2k -  1) cos(2k -  1)
XeDZeD 2 XeD 2 £ e£>

c, ^ r ™ (yeD -  |yD11) +  ch^Ju +  -  VD2 *)
y ju  +  {2k- ^ 2s h ^ U  +  2/eO

OO ,
_ v —r 2  D Z j j

+  2 > cosn 7r -----cosn 7r ------
“  ^eD ^eDn = l

c h J u  +  +  (2fc4~ ;):;— (t/e£> -  li/Dll) +  +  (2<4~;):!,r-(yeD  “  £02)
V______ fe£>_______, r iP_______________________ V______ _f_D_________  eD______________________

n*Jr2 , (2fe —1)27T2 , / , „ 2̂ -2 , (2t —1)27T2



III. Two boundaries are at the initial pressure, the others are impermeable
We consider two possible combinations. In the first case, the constant-pressure 

boundaries are opposite to each other and in the second case the boundaries are adja­
cent to each other.

A . T he boundaries y D = 0 and yo = yeD are at the in itia l pressure.
The fundam ental solution in this case is

The appropriate expression for 7  can be obtained by using (12) for each sum m ation 
term  in (21 ). Simplification yields

B . T he boundaries x q  — x eD and y o  = y eD are at the in itia l pressure.
The fundamental solution in this case is

+00 +00 +00

k =  —00 m =  — oo n =  — 00 (21)

” £ l,2 ,2  ““ £2,2,2) •

OO

c h ^ u  + yeD -  |2/di I) -  ch^Ju +  yeD -  yDi)

c h y j u  +  2̂ r^ (y eD -  ll/Di |) -  c h ^ j u  + !j f ^ ( y eD ~  Vd t )

OO

(22)

(23)

( S i , 1 , 1  +  +  *5' l ,2,1 +  ‘S’2,2,1 +  5 1 , 1 , 2  +  52 , 1 , 2  +  S\  2,2 +  5 2)2,2) •
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If we let Ts  represent one of the terms in (23), we have, using 2.2(6) and (6),

Ts =
1

2 Z e D  I Jo 
+  ooE (-1)'

m =  — oo 

oo

) +oo

e x p ( - 0  ^ 2  ( ~ 1)* exp
k =  — oo

i ( x q  — 2 k x e o ) 2

exp
u(yD -  2m y eD) d£

00 ~  /*oo +00
+  2 cos mr /  exp(—f) ( —l)*exp

n= 1 ZeD k— — 00

(U -f a)(xD — 2k x eo)  
4^

2 1

-f 00E (-1)"exp -
m =  — oo

(u +  a)(yD -  2m y eD)2 d i

(24)

where a = n 2^ 2 /  z 2D. Using the result given in (17),

Ts —
2 7T

XeDyeDZeDU E ^ - e E cos(2m — l ) fv_________ J  2 yeD

k =  1

+
47r

XeDyeDZeD E
n = l

r_zc_ 00

2  ^eD ^  1 4- t2* - 1 )271-2 1 (2m —l ) 27r2 
r a - 1  4 u X I d  A u y 2e D

£ c o s ( 2 f c  -  1 ) ;

A.= l 2 £ eD

E cos(2m - l ) f ^v ’  2 yeD
 ̂ _|_ (2 fc —1)27t2 (2m —1)2tt2

- 1

(25 )

Because (see Hansen [8], Eq. 17.3.12)

E cos(2A: — l ) f  £ 7r s h 1j - (  1 — a:)
46

0 <  a; <  2, (26)

T c  =

ooE
, fc=l

cos(2 A: — 1)
7T X D sĥJu + -  | i / d |)

\ f *  + 4x 4xJ yeD

n = 1

oo cos(2f c - l ) § ^
t s  r  , (2<.—i ) 27r2

v M + ‘ ^  ■

shyju  +  ^*4- 2̂ ' -  +  ~f^-(yeD -  \VD I) )
+  11 TX

z 2 Z e D c h y /'u +  i J ^ l  +  ^ yeD r

(27)

29



Thus,

-t f 00 /
1 / , x 7T X n  / , X 7T x n

----- < cos(2fc — 1 )  —---cos(2fc — 1 )  — ——
X e D Z e D  2  £ eD 2  £ eD

sh^Ju + —k4x\)2K\yeD - \vdi I) + shyju + —k4x\)**2(yeD - VD2)

u +
(2k- 1 )27T2 l /  , (2/c — 1 ) 2 7T2

y--c/u/lZ + v—73--yeD
eD V * e£>

+ * E
n = l

2 ,
cos n7r--cos nir -

ZeD  ZeD

Sh J u +  - 2ki x 2 n + Ŝ -(VeD - \yDl\) + s h Ju  + -2k y * + n̂ - (y eD — 2/D2 )
V_____________4 I eC___________ ZeD___________________________________V_____________ eD___________ ZeD_______________________

(2k— 1 ) 2 7T2 | n2 7T2 „
4 z 2

(28)

IV. Three boundaries are at the initial pressure, the others are impermeable 

Again we need to consider two cases.

A. The boundaries xp =  xe]j, yu — yeo , and zd =  zeo are at the initial 

pressure.

The fundamental solution in this case is

-f-OO + 0 0  -f-00

=i E E E (-i)*(-ir(-ir
........................  (29)

(‘S'l ,1 , 1  + $2,1 , 1 + $1,2,1 + ^ 2 ,2,1 + Si ,1,2 + £ 2 ,1,2 S i,2,2 + $2,2,2)'

We now proceed to evaluate one of the terms in (29). Let T5 represent this term. We 

first write, using 2.2(6) and 2.2(11),

-f-00 -f-00 -f-00

Ts = E E E
k= — oo m =  — 00 n =  —00

exp [-\AV(£d - 2kxeD)2 + (yD - 2myeD)2 + (zD - 2nzeD)2

y/(xp ~ 2kxeD)2 + (yD - 2myeD)2 + (zD - 2nzeD)2
-f OO -f-OO

= — E E (-D‘(-ir^eD k= — oo m= — oo

E  I<0 \/m + a\/(xo - 2kxeo)2 + {yD ~ 2myeo )2 cos(2n - 1)-^—̂ -, 
i - 2  nn _ l  cav

(30)
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where a = . Using (6), we have

4- oo

4 2 2*ZeD

1 _ , I r °° Z—Z

Ts = —  £ W  exp(-0 £  (- l) ‘ exp
n = l  k=-oo

(w + a)(5f£> — 2 kxeo) 2 1

4-00

E exp
m =  — oo

k= — oo

(m + a)(yp - 2myeD)2

4£

^  I /-o i\7r *D— > cos zn — 1)--- .
i  [ 2 £eP

(31)

Using Poisson’s summation formula, 2.2(5) and 2.2(11), we can write (31) as 

™ 47T--  \ ------ ———Z£JzL.
. z . n ^  (ti + a) t=1XeDVeDZeD

„  cos(2n /0. ^ ^ z p  ^  ,0 j/c

L --- IZTTa--- L  co< 2k - 2  7 ^  £  cos(2m "  1} ‘
n = l eD m = l 2 J/eD

fJo tp(-£)exp (-b£)d(,

where
(2A: — l)27r2 (2m — l)27r2 

4(m + a)x2D 4(u + a)y2eD ' 

Evaluating the integral in (32), and using (26), we have

(32)

(33)

Ts =
27r

X eD zeD E^- .)SE«m S
k = 1

- \vd\)

L .  I (2 f c - l ) 27T2 (2n —1) 27T2 , f  , ,
V U + 4*2d + 4^c c/lV + 4*;d + 4z’_ yeD

(2 fc—l ) 2 ?r2 (2n —1 ) 27t2

(34)

Thus, using (34), the fundamental solution given in (29) is given by

XeDZeD
cos(2n — 1)- —̂- cos(2n — 1)

n= 1
2 2.

D
eD

^  i

V  cos(2A; - 1) J  —  cos(2jfc - 1)
^  2 xeD 2 xe£)fc=i

^  + (3̂ f f i i (yeP - lypi I) + sh ^u T + ilI^ Z (i/eD - yp2)

/„ + + (2n£>lllc h lu + M i l l  +
V 4 I eZ) 4 2 cC  V eD * ZeD

(35)

B. The boundaries x& = a;e£), Vd — 0 and yu = yeD are at the initial 
pressure.

The fundamental solution in this case is given by

1 +00 4-00 4-00

7 = 4 £  £  (“ 1)* ($1,1,1 + 52>1,1 - S i ,2,1 - S 2,2,l
k— — 00 rn— — 00 n—— 00 V '

+  ‘S 'l ,1 ,2  +  £ 2 , 1 , 2  — 5 1 ,2,2 — 5 2>2 ,2 ) •
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We have already developed the appropriate expressions in II. Using the expression 

given in (19), we may write

E cos(2k - 1) | ^ -  cos(2k - 1) ^ ^ -
x e D Z e D  I , ^  x eD  2  X eD\ k =  1

ch^Ju + —^ V ^ iyeD - \yoi\) - c h f T ^ ^ ( y eD - yD2)

\ju + (?k̂Clsĥu +
oo ,

 ̂V—' 2 tj
+ 2 > cosn7r--cosn7r---

^  êD *e£>

ch Ju  + ^ ^  + ^ ( y eD - \yDi I) - chJu  + + ^ ( j /e D  - w>2)
V____________ eD__________  eD________________________________V___________ ^ eD__________  eD_____________________

v/“ T " ^  +
(37)

V. i'owr boundaries are at the initial pressure, the others are impermeable 

We consider two cases.

A. The boundaries xq  = £eD, yo — VeD, ZD =  0? and zd  =  zeD are at the 

initial pressure.

The fundamental solution by the method of images is

=t ~ e e e (-i)*(-ir4tt ^  ^  (38)
k =  — o o m =  — o o n =  — oo V

(Si,!,! + ^2,1,1 + Si,2,1 + S2,2,l — S i ,2 — S2,l,2 “ $1,2,2 ~ $2,2,2) •

We outlined in III the steps to evaluate

-1-00 -(-oo -foo

Ts = E E E (39)
k— — oo m =  — oo n =  — oo

Using the result in (27), the fundamental solution for this system is

2
7 =

oo ,

E ^D . ZDsm n7r-- sm nir -LL-

Z e D Z eD.71=1XeDZeD

oo ,

V cos(2Jfc-l)J-^-cos(2jfc-l)--^-
2 £eD 2 Xe£)

- li/Dil) + s h J u + ^ ^  + ^ ( y eD - yD2)
V____________ eD__________ V D ________________________________v___________ * eP__________ feD ___________________ _

\/u + + s ^- c h Ju  + — + # ^ / eD
V 4X eD 4  V 4 *eZ> 2eD ^

(40)
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B. The boundaries xd = 0, xo =  xeD, V d  =  0, and yo =  V e D  are at the 

initial pressure.

The fundamental solution by the method of images is
1 -f oo +00 +00

7 = — y  y  y
k= — 00 m= — 00 n= — 00 v /

( £ 1 , 1 , 1  ~  £ 2 , 1 , 1  ~  £ l , 2 , l  +  £ 2 ,2 ,1  +  £ l , l , 2  ~  £ 2 , 1 , 2  “  £ l , 2 , 2  +  £ 2 ,2 ,2 )  •

We can use the expression in (12) to evaluate the triple sums in (41). Thus, the 
fundamental solution is given by

1 . , xD . , mx_

X e D
7 ;

XeDZeD
sin kir —— sin kir —— 

' XeDlk=l

ch^Ju +  ^ ^ ( y eD ~ \v d i\) ~ chyju +  ^ r^ (y eD -  Vd i )

u +
(42)

. r> Z D  Z D  - 7  X D  . J X D
+ z >  cosn7r---cosn7r---  > smA;7r---sin &7r---

“  ZeD ZeD "  ^eD ^eDn=l A=1

+ 12~r1 {yeD -  \VD11) -  cfe./« + + 2p r i (?/eD “  J/ZJ2)
V__________X er>________ _______________________________________ V_________  eD________~e£>_______________________

<F+W+~'W‘hiu + ^ i  + ^ l
XeD eD

V e D

VI. Fzve boundaries are at the initial pressure, the other is impermeable

Let the surface xd =  0 be impermeable and the other boundaries be at a the initial 
pressure. The fundamental solution in this case is given by 

.. -foo 4-00 4-oo

7 = ^  E E E M)* (514,1+52,1,1 -51,2,1-52,2,!
k — — oo m =  — oo n =  — oo

—£ i ,1,2 -  £2,1,2 +  £1,2,2 +  £2,2,2) •

Using the results in II (see (19)), we have
( 00 *

1 . s. 7T Xn , , x 7T £

(43)

7 =
XeDZeD .k= 1

cos(2k — 1 ) - —^- cos(2A: — 1) — D

eD

+ —4J ^ ’r-2(yeD - |l/Dl|) - chyju + ~ 4̂ - {yeD ~ VD2)

\Ju + (27 x ^ ^\/m + C2 4 ^ - *y«p

n = l Z e D

ch Ju+  ^  y 2*2- +  ^ P ^ (y eD -  |S/D11) -  chJu  + +  ^-{yeD - J/D2)
V eD ZeD ___________________________  V____________* eD__________  eP_____________________

\F+m̂FTW‘h\r+
(2fc —l ) 2 rr2 , n 2?r2

A T 2MeP
+ '2/eD

(44)
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VII. All boundaries are at the initial pressure

Using the method of images, the fundamental solution is given by

= i _  y  y  y
4̂- /_> ("45')

k =  — o o m  =  — o o n =  — oo V /

( £ l , l , l  ~  £ 2 , 1 , 1  “  £ l , 2 , l  +  £ 2 ,2 ,1  ~  £ l , l , 2  +  £ 2 ,1 , 2  +  £ l , 2 , 2  ~  £ 2 ,2 ,2 )  * 

Using the expression for Ts derived in (12), we have

o ( 00 , 0 0
2 I • ZD  z n  V " '  • 7 X D

7 = ----- < > smn7r---sinn7r—  > sm kn---siuktt——
x e D z eD , z eD z eD “ J %eD x eD\ n =  1 A:=l

c/l /u + ^  + ^ ( j / eD - \yo\ I) - chJu  + ^  + ^ (V e D  -VD2 ) '  (46)
V  eD ZeD___________________________________V_________  eD________ZeD___________________

J u + ^  + ^ s h J u  + ^  ^
V eD V eD eD

VeD

This completes our discussion of the solutions needed to solve for pressure distri­

butions in porous solids that are considered to be rectangular parallelepipeds.
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III . Treatment of Extraction 
Points

A unique feature of the production of fluids from geologic media is that for a variety 

of reasons, the surfaces through which fluid has to be extracted have complicated ge­

ometrical features. The conventional wellbore (the simplest case) is assumed to be a 

cylindrical surface that extends over the entire thickness of the porous medium (in all 

of the following we assume that the porous medium is horizontal). Such a wellbore is 

usually approximated by a line source. When extracting fluids from geologic media, it 

is not unusual for wellbores to be in contact with only a part of the porous medium; 

that is, fluid is not extracted over the entire thickness of the porous medium, and in 

this case, we need to examine flow in three dimensions. Similarly, wellbores are not 

always vertical; in many oil fields, wells are frequently “inclined” and, in some cases, 

even horizontal. In such situations, we must, again, contend with flow in three dimen­

sions. In geologic media that are not very permeable, it is not unusual to extend the 

surface area available for withdrawal by creating cracks known as hydraulic fractures. 

Such cracks are usually filled with sand and can be treated as a porous medium with 

properties distinct from those of the reservoir rock. Because of the prevailing stresses 

in the reservoir rock, such cracks are usually vertical, although horizontal cracks may 

develop at shallow depths. Hydraulic fractures or cracks are usually considered to be 

rectangular or circular sources.

The purpose of this section is to examine the details that are pertinent to the extrac­

tion of fluids for the conditions noted here, and then develop pressure distributions for 

a few cases that will permit us to discuss the essential characteristics of these solutions, 

so that efficient algorithms may be developed for computational purposes.

With the fundamental solutions derived in Chapter II, obtaining pressure distribu­

tions in porous media when fluid is extracted via lines or planes, in most cases, is a sim­

ple matter. If the strength of a continuous, point source located at M ’ is q(M '; t)/((f>c), 

then the pressure distribution in terms of the Laplace transform of Ap(M;t) is

Ap(xD ,yD ,zD) = J^q{x'D,y'D,z'D)^ (x D -x'D,yD -y'D,zD -z'D)dS', (1)

where dSf denotes the element of a line or surface through which fluid is withdrawn. If 

we assume that the source-strength is uniform over time and space, then (1) becomes

A p(xD ,yD ,z D) -  J ^ . l ( xD ~ x'D,yD - y'o,zD - z'D )dS '. (2)

Solutions that satisfy the constraint in (2) are known as the uniform-flux solutions. In 

some cases it is possible to compute the pressure distribution on the source. In such
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cases we will find that the pressure will vary over the source. In many other cases, we 

are interested in imposing the constraint that the pressure distribution (on the source) 

be a function of time, that is, Ap(M;t) = f(t). Such solutions will be referred to as 

infinite-conductivity solutions. We will discuss approximate procedures for obtaining 

infinite-conductivity solutions from the uniform-flux solutions. We shall now document 

solutions for a few systems.

3.1. Pressure distribution in slab reservoirs

In this section we explore the extraction of fluid from a variety of surfaces of interest 

to us. The fundamental solutions in Chapter 2 will be our starting point. Solutions 

given here assume that the top and the bottom of the reservoir are impermeable. The 

fundamental solution, 7 , for this system is given in 2.2(7). Solutions for the other 

boundary conditions readily follow and are given in Ozkan [1].

I. Withdrawal via a rectangular plane source, perpendicular to the z = 0 plane with its 

center at {xw,yw, zw) and parallel to the x-axis

Let 2Lf be the length of the source and hf be its height. If q is the flux, then the 

pressure distribution is obtained by substituting the right-hand side of 2.2(7) in 3(1) 

for 7 and integrating with respect to z* from zw — hf/2 to zw + h f/2 and with respect 

to x' from xw — Lf to xw + Lf. The appropriate expression is

A p =
fit

27rkze

/- f y H

-hs/( 2£) J-.zeD J-hf /(2£) J-Lf/t 

I\0 \/r(*̂ £) “1“ (?/D ywD)2

_  ̂ I XX TT
+ 2 V  Ar0 WuH— 2— v i^D - ^w D y - V iy D - y ^o )2

„  =  1 V Z eD

(1)
COS n 7T-

ZD

ZeD

cosnn— !> dad/3.
z e D  J

Here, £ is the reference length, xwd = xwD + a^/k/kx, zwd — zwd + f3^k/kz, and 

u(s) is the Laplace transform variable with respect to normalized time, tjj. If q is the 

withdrawal rate from the porous medium, then q — P)dotd/3.

Several limiting forms of (1) can be derived. (Of course, they may also be obtained 

directly from the fundamental solution.) If the height of the source, hf, is equal to the 

slab thickness h = \ze\, then q is uniform in 0, and the pressure distribution is given by

A p =
fih

2 Trkz?

r+Lj/z.
/ q{xwD)I< 0 
J — Lf t

XD - XWd ) + (yD - ywDf da. (2)
ZeD J-Lf/t

If, however, fluid is extracted via a line source of length £/*, that is parallel to the
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x-axis with its center at (xw, yw, zw), then the pressure distribution is 

'  r + L hj ( 2£)
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L
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Z eD
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Here, q may be viewed as the flux.

It is convenient to express the solutions in terms of a normalized pressure given by

2tt k h
PD(xD,yD,ZD',tD) = ---  [Pi ~ p(x,y,Z)t)] ,

q\i
(4)

where the pressure at t = 0 is pi, h is the thickness (h = \ze\) and the withdrawal rate, 

q, is constant. In terms of (4), (1) may be written as (with £ = Lf)

P d

i f+h/D y/kz/k/2 /* + ! _

I—  _  /  9 ,d (
rlfD J — hf D y/k Ĵk/2 J -1

xwD") zwd)
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cos nir \dad/3.
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Here, hfjj = hfy/k/kz/L f and q/D ~ (2£//&/$)/<?, where q may be viewed as the flux.

II. Withdrawal from a hollow disc of radii ri and r2 (rj < r2) with its center at 

(^/,?//,^ ,) and parallel to the plane z = 0

We use the fundamental solution in 2.2(7) with the restriction that kx — ky = kr. 

In this case, k = VWz- 

Consider

Ko \ / P \ J { x D  -  x 'D ) 2 +  ( V D  -  y'D f

Using the integral representation of K q(z),

Ko(z) = \ JQ exP (~£ _  ^ )  ne(z2) > °> (6)
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and working in terms of polar coordinates, we have

J  ̂ K0 | [̂ D + rD ~ 2rDr'D cos(6 -9') 21 r'DdO'

= r r b /  « p ( - 0 « p  /. ( ^ )  f

r
= *r'D /

Jo

_  ( 2irr'DI0 (v ^r£>) #o (VfirD) ; rD > r'D 

\ 2Trr'DI0 (y/ftrD) I\q (\Zj3r'D) ; rD < r'D

exp (—7 /?) exp r D  +  r D  [ j  ( r » r ' l ) \  d T

(7)

Thus, if we consider a ring source in a slab reservoir and assume that q is independent 

of 0, then the pressure distribution is given by

__  2 ( rrD _ f f f
Ap = —  j y  qr'DI0 (y/ur'D) K0 (VurD) dr'D
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D

(8)
where <7 is the flux and a n = n27r2/z2eD. If q is the withdrawal rate from the porous 

medium, then q = 2ir J ^  r'cfcr^dr'.

Let en = y/u + n27r2 / z2D, and ~rDi)^/^r be the normalized area of the

source. We will assume that the flux distribution is uniform. The pressure distribution 

is then given by

27r
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+ /
JrD
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+*£■
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rrD2+/

JrD
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III. Withdrawal from a disc of radius pj with its center at (xw, ywizw) and perpendicular 

to the plane z = 0 and at an angle v with respect to the x — z plane (isotropic medium)

Let p and pf be the distances of points P(x,y,z) and P'(V,y',z') from the point 

0(xw,yw, zw), respectively. If we now temporarily consider a coordinate system with 

the point O as the origin, and if (p, 6,(j>) and are the coordinates of the

points P and P*, respectively, then, for a porous medium that is infinite in extent, the 

fundamental solution in spherical coordinates is given by

7 = 47T̂ exP(-VuRD)- (10)

Here, R 2D =  |PP'|2, and by the law of cosines

R2d = |PP*\2 = p2D + pp — 2PdPd cos (11)

where ip is the angle PO P ' and

cos 9? = cos 6 cos 6' -f sin 6 sin 61 cos(<̂  — f). (12)

Using the addition theorem of Bessel functions (see Watson [2] and Abramowitz and 

Stegun [3]), we have

p (-kR D) ( Fm W d ' kP° ) P”*(cos V>y, PD < p'D

= I Em=o (kpo, kp'D) Pm(cos *>); PD > P'D,
\ v PdPd

(13)

where Pm(x) represents the Legendre polynomial and

Fm(a, b) = Km+1/2(a)Im+1/2(b)- (14)

Using (13), we can write (10) as

7 =  J-  E  ( ^ P 'd ,V^Pd ) Pm(cosip), (15)
4?r ^ 0  VPdp 'd

where, for notational simplicity, we have defined

F(a,b) = { „m(}a' bl h, <a  (16) 
v ; \Fm(b,a) b > a. v ’

If we now use the method of images and let 7n denote the solution for the nth image 

in an infinite array of sources, then the fundamental solution for a slab reservoir with 

impermeable boundaries at zjj = 0 and zp — zeo can be written as (see Appendix)

+  oo

7 =  IniPDmPDmVn)-  ( I7)

39



Relating p,Dn,pDn-l and ipn with p'D,pD^ and respectively, and then recasting (17), 

we obtain

-foo +0 0

= --\= Y  Y(2m + 1)
Aw ^  ^V > U  n =  — 00 m =  0

+

■OO 771 =  0

F {\/up'D,y/upDn2) 

\/PDn2

F ( y / u p ' p , y / M ^ P n i)
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Pm( CO S(^n i )

Pm(cosv?n2)

(18)

where

PDni = (PD cos 0 + 2z«,d - 2nzeD)2 + pi, sin2 0,

PDn2 = (/>£> cos 0 ~ 2nzeD)2 + sin2 9, 

cos(fk = cos 9̂  cos 0  ̂+ sin#  ̂sin 0  ̂cos(</i> — <//); k = nl or n2 

PD cos 0 + 2zu;d - 2nzeD
0ni = arccos

$?i2 — arccos

7 11

P D n l  

po cos 0 — 2nzeD

P D n 2

Qf

and

y«2  =  o ' -

(19)

(20) 

(21) 

(22)

(23)

(24)

(25)

The pressure distribution owing to a disc source of radius pfD =  Pf /£-> at an angle 

v with respect to the x — z plane and perpendicular to the plane z = 0 can now be 

written, by using (18), as follows (assuming uniform flux):

" r> — — rr» — fl
l)(Gnl + Gn2)dp'i), (26)

7 7 =  — OO 771 =  0

where

Gk =
F(y/up'p, AJupDk)

y / p D k
I [-̂m(COS (pk)<j>' = u “I- -Pm(cOS tpk) '̂ — ̂ +7r] dO , (27) 

Jo

for k = nl or k = n2. Note that by the addition theorem of associated Legendre 

functions (see Gradshteyn and Ryzhik [4], 8.814),

Pm (cos ip) =  Pm [cos 9 cos O' + sin 9 sin O' cos(<f) — </>')] 

= Pm(cos 9)Pm(cos 9f)

(m fc)‘ P^ (cos 6,)P^(COS (9') COS(^ - [0 < 9,0' < tt],

(28)

—' (m + k)\
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where P^(x) represents the associated Legendre function, we can write

-^m (cO S / “f" P m (COS ( — — 2 P m (cOS 0 ) P m ( c OS 0  )

A  (m - k)\

^  (m + *)!
+ 2 f ~ L' ^^'Pm(CQS ̂ )Pm(COS [COS — + cos &(<£ — ^ — 7r)] •

Also noting that (see Gradshteyn and Ryzhik [5], 8.820)

P„(c os0) = P„(cos0), 

and using the result given in Gradshteyn and Ryzhik [6], 7.132.1, 7.166,

dx2

[r(i + f ) r ( i - f ) ] 2’

we may write the normalized pressure as follows:

+  oo -f oo

PD
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y/PDn2
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[cos £(<̂ — ^) + cos &(<̂> — v — 7r)] I  p l(c o s  o')de'\dp'D,

(29)

(30)

(31)

(32)

where we have used q = np2f<l-

IV. Withdrawal from a line source of length hf with its center at (xw, yw, zw) and 

inclined at an angle ip with respect to the vertical (in an isotropic medium)

For illustrative purposes, we derive the solution in Cartesian and cylindrical coor­

dinates.

A. Solution in Cartesian coordinates

If we consider a reference frame [x\y\zf) that is obtained by rotating the x and 

z axes about the y axis in the clockwise direction by an angle ip, then x1 = x cosip — 

zsinip, yl = y, and z' = x simp + z cos ip.
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For an infinite medium, the pressure distribution is given by

exp
A p =

4:7rk£

JL .
4irk
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rzw-tn

Jz'w-hf

-V/«V/rD + (0D ~ zwd)2

/ 2
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KM)
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Vr'l + iz 'o - ^ D )2 
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dz'L

=1F

q(XwD, VwD, ZwD)

exp

V rD + (ZD ~ z'wD ~ 0 2

- ^ / u y / r j j  +  ( Z D  -  Z w D ) 2

\Ad + (ZD ZwD )

d(

(33)

where r% -  (x'D - x'wD)2 + (y'D - y'wD)2, r^, =  (xD - xwD)2 + (yD - ywD)2, xwD =  

xwd + £s in^ , and zwq =  zwq + £ cos xl>. The solution for a slab reservoir can be 

obtained from (33) by using the method of images along the lines suggested in §2.2, 

and the pressure distribution is given by

A p —
2irkzeD Lhf /(2£)

Ko (rDy/u)

-f 2 Kq (roy/u + a n) cos mr-^- cos nn- ^-  
^  ZeD ZeDn=1

(34)

dt,

n27T2 / z2eD’where a r

The solution given in (18) is especially convenient if the line-source well is inclined 

at an angle ^  with respect to the vertical and tilted at an angle v with respect to the 

x — z plane. Using the fundamental solution given in (18) and assuming uniform flux, 

we obtain the following solution:

rhs/2
A p =

q/j_

kls IJo [y (0' = ^  (f)1 = v) + 7 (#' = = y -f- 7T)] dp'

Anks

+  00 +  00 r t i f / V l )  7 /

53 + / {Gn\ + Gn2)—7= ,
=  - o o m = 0  V P D

hf /(2£) (35)

where for k =  n l or k = n2

Gk —
F{sfup'D ly/upDk)

[-̂m(cOS + Pm{cOS ̂ k')9f = il>J<l>, = i'-\-7r} • (^6)
\fpm

B. Solution in cylindrical coordinates

If the well is in the vertical (x — z) plane (the case for v — 0 in Part A), then 

the solution can also be constructed in cylindrical coordinates. Let the cylindrical 

coordinates of the points (x,z,y) and (x,,z ,,y/) be given, respectively, by (r, 0,y) and 

(rr, 0',y;). The fundamental solution for an infinite medium is given by

7 =
4:7rRo

exp (~y/uRD), (37)
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(38)
R2d = (xD — xD )2 + (zd ~ z'd)2 + (yD — ?/d)2 

= r D + r D “ ^ r D ^ D  COs(0  — 0 ' )  + ( UD — V d ) 2 ’

Therefore, the fundamental solution for a slab reservoir with impermeable boundaries 

at zd = 0 and zd = zeD can be written, by using the method of images, as follows:

where

exp ~\fuyjw2 + (zdi - 2nzeD)2

y/w2 + (zDl - 2nzeD)2

+
exp \ -y/uy/w2 + (zD2 ~ 2nzeD)2

(39)

where

y/w2 + (ZD2 - 2nzeD)2 j ’ 

w2 — x2d + yjj, 

x d  —XD — x'D — rD sin0 — rD sin^^

V D  =  VD ~  Vd  =  VD ~  V w D ,

zdi = zd — z'd = rD cos 0 — rD cos &

ZD2 = ZD + ZD = VD COS 0 - VD COS(0' + 7f) + 2 /̂).

(40)

(41)

(42)

(43)

(44)

Using the summation formula given in 2.2(6), we may recast (39) into the following

form: ________

1
7  = 27TZ{eD

COS TITT-

K0 (y/uw) + 2 E  A'o I \ u + - 
„ = 1  Vv

^U)D'"+̂ DCOsfl %wD “t" COS O’

-w

COS n7T-
ZeD ZeD

(45)

The pressure distribution for an inclined line-source is now given by (assuming 

uniform flux)

au f hf/(2£)

' =  Is J  ^  =  ^  + =  ^  + T)] dr'D

= m  } +h .....
ks J_h/, /m

r+h,!(2i)

27rkzeDS J  —hf /(2£)

7 (0' = ip)drfD

q\i

ZwD+rDc°S0 ŵD T 1 d COS TITT----------  COS TITT------

Kq (y/uxv) + 2 Ao ^ y U +

+ r'D COS 0'

(46)

-w

ZeD ZeD drn-

6' =  xp

Note that

w2 = r^ + rD sin2 ® ~ ^ dt'd s'm & cos £, (47)
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where = (XD-xwD)2 + (yD-ywD)2, zwD + rD cos 6 = and rD cos £ = |xd-Zu;Z>|; 

thus, the solution obtained in (46) is the same as that given in (34). It is also possible 

to use the addition theorem of Bessel functions given in 2.3(5) to express (46) in the 

following form:

A p =
q[L

27T k ze£)S

r-\-h

J-hf

+ hf /( 21)

/(«> it ? *

COS TITT-
Z w D  +  r D COS(

Z eD

Fk( ^ )  + 2 j2 F k
71 =  1

Z w D  +  r n  C O S ^
nir----------

ZeD

I U +

eD
(48)

dr

where

Fk(a)
( Ik(arD)Kk(ar'D sin^)cos£; 
\ Ikiar'D simp)Kk(arD) cos

ru < r 

rjj > r

Di

D sin ip 
D sin ip.

(49)

V. Fluid withdrawal from a rectangular region with properties distinct from the porous 

medium

Here, we examine fluid extraction via a vertical fracture as discussed in the Intro­

duction to this chapter. Let us assume that the vertical fracture can be represented 

by a rectangle in the region — L f  < x < Ly, — W f j 2 < y < W f / 2, (L f  >> W f )  with 

the center of the rectangle at the (0, 0, ze/2). The height of the fracture is equal to the 

thickness of the porous medium. We assume that fluid is withdrawn from the fracture 

at a rate q over a strip (line) of width Wf that is centered at the origin. Fluid enters 

the fracture only along the longer sides of the rectangle; however, the flux distribution 

is unspecified; that is, the flux distribution at \y\ = Wf/2 is unknown and must be 

determined.

Because Lf >> Wf we will assume that pressure gradients in the y-direction are 

negligibly small and thus consider flow only in the x-direction within the fracture. 

Also, flow within the fracture will be considered to be steady because the volume of 

the fracture is negligibly small compared with the porous medium that surrounds it. 

Because of symmetry, we restrict our attention to the first quadrant. We follow the 

ideas of Cinco and Meng [7].

If Pf(x; t) denotes the pressure distribution in the fracture and pfjj is given by (4), 

then we can readily show that pressure distribution is given by

d2p f D

dx l Cf D
- ? d ( x d ) =  o. (50)

Here, Cfo = kfw/(kLf),qo = 2Lfq/q and the reference length is chosen to be Lf. 

Integration of (50), using the appropriate boundary conditions (outer boundary is 

sealed and fluid is withdrawn at a constant rate at x — 0; that is, dpfo/dxjj — —njC fu  

at xo = 0), yields the pressure distribution within the fracture, given by the following 

expression:

77 ( XD r  ~ n it /I
PwD~PfD = - £ j^  xD - s j  J  qD(x")dx"dx' . (51)
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Here, pwo is the normalized pressure at xo — 0.

The pressure distribution in the porous medium (assuming the porous medium is 

an isotropic system) is given by (qjj = q)

Pd (xD,Vd ,s) = ^ J  5(q,s)A'0| (xD - a)2 +y2D 2 \/m| da. 

Using (52) for p jD in (51), we have

-  l  I*1 _  f f
/ q(x',s) {A'o (\x d  - x'\yju) + Ko [{x d  + x') yju\ } dx' 
Jo

(52)

PwD

+
C f D

r  r  - r "/ q(x ,
Jo Jo

\  j  it j  t ^ X Ds) dx dx = —-- .
CfDS

(53)

We shall now solve (53) numerically. Consider the partition 0 = x d i,.. ., x^i, xDi+i ? • • • ? 

%Dn+i = 1. If we assume that the fracture may be divided into n segments, then we 

can write

/ q(x\s) {A'o {\xD - x'\y/u) + Ko [(XD + x') s/u\ } dx'
Jo

r ? D i  + l

= 22 qi(s) / {Ko (\xD - x'\y/u) + Ko [(xD + x') y/u\ } dx'. 
i= 1 J xDi

(54)

The second integral in (53) may be written as

3-1r X D j  f X  _  J + _

/ q (x",s) dx'dx = V  q,
Jo Jo i=l

(*)
Ax2D

+ Axd (xoj - iAxo)

Ax2D-
+—r~qj(s)’

(55)

where xoj is the midpoint of the j th segment and A xd is the width of each segment. 

In addition to the above expressions, by virtue of steady flow, we require

(56)

(53)-(56) constitute the system of equations that needs to be solved to determine the 

unknowns, qt(tD) and pwD- The principal advantage of this scheme is that the system 

can be solved for any time t, and such solutions are independent of the solutions for 

previous times.
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VI. Infinite-conductivity fracture

The development in V permits us to outline the algorithm to compute pressure

We may now use (54) to replace the integral in (52). For an infinite-conductivity 

wellbore, we require that

With the additional constraint given in (56), we may solve the resulting system of

further discussion of this matter until Chapter IV.

3.2. Pressure distribution in cylindrical porous media

We consider two examples for illustrative purposes: a vertically-fractured well in a 

closed, circular cylinder, and a horizontal, line source in a composite region.

I. A vertically-fractured well

We assume that the porous medium is isotropic and the boundaries at z — 0, z = 2C, 

and r = re are impermeable. We consider a vertically-fractured well of height h = \ze\ 

and length 2 Lf. The center of the fracture is at (0, 0, ze/2) and the fracture tips extend 

from (L f ,a  + 7r) to (L f ,a ). The flux distribution is assumed to be uniform.

The fundamental solution for this system is given in 2.3(10). If we use 2.3(10) in 

3(1) for 7 and integrate with respect to z' from zw — hf2 to zw + hf2, we obtain the 

pressure distribution owing to a vertical, line-source well located at the point (r^,#') 

(see also Carslaw and Jaeger [9])

distributions for an infinite-conductivity fracture. The ideas given here were first used 

by Muskat [8] to study steady-flow problems. Consider (52),

* J-i

Pd (xDj) =  P d (xDJ+i) , j  = l , . . .n  - 1. (57)

equations to obtain the flux distribution and the wellbore pressure-response. We defer

Here, R2D = r2D + r'p — 2ror'D cos(0 — 0'), and

Fk =
j  Fk(rD,r'D) 
\Fk(r'D,rD)

) for rD < r'D 

) for rD > r'D ' (2)
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where

Fk{a, b) = I k (ay/u)
Kk {by/u)I'k (reDy/u) - I k (by/u)K'k (reDy/u) 

I'k (reDy/u)
(3)

The second equality in (1) follows from the addition theorem for K0(\/uR d ) given in 

2.3(5).

To obtain the pressure distribution caused by a vertical fracture extending between 

the points (L f ,a  + 1r) and (L/,ce), we integrate (1) with respect to r' as follows:

A~p=
27r kze£)S 

qph

7T kzeDS

-f-oo

£
k— — oo 

+  oo

5 k{6 — a — 7r) I
Jo

7T \ 7r f  ^
cos k f 0 — a — — j cos k— / Fkdr'D. 

_ ' £ / z Jo

£/D fLfD
Fkdr'D + cos fc(0 — a) / Fkdr'D

Jo

LfD

k= — oc

Here, L — Lf /t. In terms of normalized pressure, (4) becomes (with t — Lf)

1 "̂°° 7r 7r /*i
Pd = - ^2  cos k (o - a - cos k^  Fkdr'D,

k= — oo 0

(4)

(5)

where

/ '
Jo

Fkdr D —

for r u >  1

/0r° Fk{r'D,rD)dr'D + /* Fk{rD, r'D)dr'D for rD < 1
(6)

(5) can also be written as follows:

+ oo

E
k= — oo

P D =P D i-  - £  cos k (e - a - 0  cos

f ' h ( r , ^ dr,

I k (reD\/u) J 0

(?)

Here, pDi is the normalized pressure for a vertically-fractured well in a slab reservoir 

(see §3.1 I) and is given by

PDi ~ 2s '  * K°
y f iy fe  + r% - 2rDr’D cos(0 - a)

+ K 0 u V rD + rD ~ 2rDr'D cos(9 - tt)| |dr'D

 ̂ +oo *1

= — [cos k(0 — a — 7r) + cos k(9 — a)] / FikdrL
2s . Jo

(8)

k= — OO
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where /0' Fxkdr’D is given by

Jo I* (rD V^) dr'DK k (rDy/u) for rD > 1

fo° h  (r'D\/u) dr'DK k (rDy/u ) + I k (rDy/u) J* I<k (r'Dy/u) dr'D for rD < 1.

II. A horizontal, line source in a composite region

From the fundamental solution given in 2.3(34) and 2.3(35), the pressure distribu­

tion caused by a horizontal, line-source well of length Lh extending between the points 

(Lh/2 , a + 7r,zw) and (L/*/2 ,a, zw) and with its center at r = 0 and z = zw, is given 

by (assuming uniform flux)

and

where

and

- ( /  A 1 I'Pd v D <  aD) =  ~ \ H r  /
5 V “ l J o

G (O' = a  + 7r, r'D =

+ G (o' — a, r'p — ^y/ki/kri^ d£,

— / . \ ^rD kz\ f
p d \td > aD) =  —  \ H-  

aos V ki Jo
H (e , = a + i 'S D = ty/k1/krl') 

+ H (o' = a y D = ty /h /K ? ) dt,

+  oo oo -foo

G =  y  Sko + 2 cos mr —— cos mv——  5^n,
i ZeD zeDk =  — oo n =  1 k =  — oo

+ 00
Z w ]j

cos n7r —— cos n7r——
Z e D Z eD

-|-oo

(9)

(10)

(11)

(12)
k= — oo n=l fc = — oo

In (11) and (12), Sfcn and are defined by 2.3(36) and 2.3(37), respectively.

3.3. Pressure distribution in rectangular parallelepipeds

The ideas developed in §3.1 can be readily extended to porous media bounded in the x 

and y directions. To demonstrate the procedure we now consider example applications. 

For simplicity, we assume that the flux distribution is uniform. Also, here, h = \ze\.

I. All sides of the porous solid are impermeable

The fundamental solution for this system is given in 2.4(13). We consider two 

examples.

A. A vertical fracture of length 2Lf with its center at (xw, yw, ze/2).

Let h be the height of the fracture. The solution to this problem is obtained by 

substituting in 3(1) the expression for 7 given by 2.4(13), and integrating the right- 

hand side of 3(1) with respect to z' over the interval zw — h/2 to zw + h/2, and with
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respect to xf over the interval xw — Lf to xw + Lf. The expression for the pressure 

distribution is

A p =
q/dhLf

k i X e Q Z e D S

chsJu(yeD -  |yD11) + chy/u{yeD -  yD2) 

y/u shy/u yeD

2xe ^  1 • i Lf >
H--— > — sin A;7r — cos ktt

irLf k t.
J fc=i

UJ I X
-----  COS K7T----

( l )
/ i 2 2 / i 2 2

Ĉ a/m + ^-(VeD -  \ V Dl \ )  + chJu  + -pr-(J/eD - J/£>2)

If we choose the characteristic length £ to be Lf and assume k = kx = ky = kz, then, 

using the definition of pD given by 3.1(4) (with q = 2hqLf)1 we can write (1) as

P d ( x d , V d ) =
XeDS

chy /u(yeD -  \ypi\) + chy /u(y tD  -  yD2)

y[ushyfuyeD

2xeo 1 . , 1 ,
H---- > — smfc7r--- cos ktt

7T k -r.n
k= l

X WD  7 
-------- COS K7T--------

XeD X eD XeD (2)

c h y ju  + VeD -  Wd i  I) + c h y ju  + ĥ { y eD ~  Vp i )

^ /7 + ^ s h y J u  + ^ V e D

B. A line source of length Lh parallel to the plane z = 0 with its center

at (xwiUwiZu;),

This solution is obtained by substituting in 3(1) the expression for 7 in 2.4(13) and 

integrating the right-hand side of 3(1) with respect to x' from xw — Lh/2 to xw + Lh/2. 

Assuming the porous medium to be an isotropic system and using £ = Lh/2, the 

normalized pressure is given by

P p ( x P ,V P ,Z p )  =  P f p ( x P ,V P )  + F i (x d , Vd , z d ), (3)

where pD is defined by 3.1(4) (with q = qLh), PfD the fracture solution given by the 

right-hand side of (2), and F 1 is defined by

— 2tt ^
F 1 =  ---------  y COS T17T Z D  COS T17T Z w £)

XeD $ n = 1

chyju + n2n2L2D(yeD -  \ypi\) + chy/u + n2n2L2D(yep - yp2) 

y/u + n2n2L2D shy/u + n2w2L2Dyep

A 0 0  

4-j—  y cos nirzo cos nirzwo ,
S rC

n = l  k=1

11 > 7- sin kir — 
L' T .

, Xwp , Xp
COS KTT-------- COS K7T--------

XeP  x eP  X eD

(4)

chy/u + + n2ir2L^)(yeD - \ypi |) + ch^Ju + + n2n2L^(yeD - yD2) 

y/u + + n2Tr2L2DshyJu + + n2ir2L2DyeD
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In (4), zd and L jj are defined, respectively, by

zD = z/zt (5)

and

L d =  (6 )
Zze

II. One boundary is at a constant (initial) pressure

We consider an inclined well in an isotropic reservoir and assume that the constant- 

pressure boundary is at = xep. The well length is assumed to be hf and let 

hfjj = hf/i. The center of the well is at (xw,yw, zw) and it is inclined at an angle ip 

to the vertical; see §3.1 IV. Following the ideas in §2.4 II, the pressure distribution is 

given by

+ hfD/ 2 +2° +oo + 00 _

( — 1)  ̂(‘S'l ,1,1 + $2,1,1 + Si,2,1

__  ~ r-rnjD i

E E
" ' J D / *  k =  — o o m =  — o o n =  — c

+ $2,2,1 + S i,1,2 + S2,l,2 + S i,2,2 + S2,2,2)^5

(7)

where

exP -y/uy/(xDi ~ 2kxeo)2 + (VDj ~ 2myci ))2 + [zd£ - 2nzeo)2
SZj }£ = -----^  ... -----.. = ------------ , (8)

y/(xDi - 2kxeo )2 + (yDj ~ 2myeD)2 + (zot - 2nzeD)2

X £)i X £) -j- ( l )  x  yj £) ( ^ )

VDj = VD + (-1 )JVwD (10)

ZDl ~ ZD + (“ I YzwD, (11)

for z, j , t  — 1 or 2. xwp and zwd are given, respectively, by

xwd = xwo + £ sin^ (12)

and

ZwD = zwD + £ COS ip . (13)

In passing, we should note that if we replace x w q  by x w d  and zwq by zwq + £, then we 

will obtain the pressure distribution owing to a vertical well of length hf. The converse 

is also true; that is, to obtain the pressure distribution for an inclined well, we can 

write the pressure distribution for a vertical well of length hf and then replace x w q  

and z w d  by xwjj and z w d , respectively.
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Thus, as in §2.4 II, the expression for the pressure distribution is given by

27r f  + hf D / 2 7T x n  7TX n

Pd (x d ,Vd , z d ) -  ---7--- /  5 > ( 2 * - l ) - -- cos(2fc - 1 ) - - ^
X e D t l fD S  J-hjD/2 2 X eD  2 X eD

chyju + ^ :~ ^ ‘ {yeD - \yv\ I) + ch^Ju + - ^ r - —(yeD - VD2 )

i i (2 A: — 1 )2 7r2 L /  \ ( 2 k -  l ) 27r2

+ * V “ + 4 , ... '■yeD

. 0 ZD z wD 
~r 2  }  cos titt---- cosn7r---

^  Z eQ  Z e D

ch Ju  +  +  B̂ - ( y e D  -  \ y D l \ )  +  chJu  +  +  ^ ( ^ e D  -  J/D 2 )

(14)

III. Two boundaries are at a constant (initial) pressure

We consider a vertical well of length h with its center at (xw, yw, ze/2) in an isotropic 

reservoir and assume that the constant-pressure boundaries are at xq = xep and 

yD — VeD Using the appropriate fundamental solution, 2.4(28), in 3(1) and suitably 

integrating, we find that the pressure distribution is given by

k= 1

'JeD

(15)
sh^/u + ~ ^ ^ - ( y e.D - li/Dll) + sh^ju + —4xV ^  (VeD - VD2)

\ju + ~ ~ ^ r ch\Iu + {2>r ^ ^ y * D

In terms of the normalized variables, (15) becomes

P o ( x D , y D )  =  E cos(2fc - 1 ) ^ — cos(2fc -  1 ) ^ ^ ^

sh^/u+ — (y*D - Ij/Dil) + shyju + - yD2) *16*

IV. Four boundaries of the porous medium are at a constant (initial) pressure

We will assume that the boundaries zq = 0 and zd -- zeo are impermeable and all 

other boundaries are at a constant pressure. The fundamental solution for this system 

is given in 2.4(42). We assume that fluid is produced via a vertical fracture of length 

2Lf and height h in a reservoir that is isotropic.
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This solution can be obtained as in I. Integrating 3(1) with respect to z' from 

zw — h/2 to zw + h/2 after substituting the expression for 7 given in 2.4(42)yields

00
q(i 7 XD

Sill At 7T-----

x eD

(17)

Ap = 7^ — T  sin —  sin kw
K X e D S f —'  X eD ^ e DK=1

c h y ju  + ^ r ^ ( y eD ~ \v d \ |) -  c h y ju  + ^ r ^ { y eD ~  Vd t )

J u + h ^ shsJ u + !^± yeD

Further integration of (17) with respect to x' from xw — Lf to xw + Lf yields

—— 2Lfqfi 1 . ; XD
A p = — -—  > -smfc7r--

7xks ' k XeD
k= 1

x n 1 c h ju  + ^ ^ (y e D  - \VDl\) - chyju + ^r^-(yeD - VD2 )7 xw[) . 1  y ^eD w j.eD
Sin K7r---sin K7T-------------- = = = = = -------- = = = = = --------------------------------- .

XeD XeD yju + 2^-shyJ l i+ ^ V e D

In terms of pD, we have

(18)

2 °° 1 x 
P d ( x d ,V d ) s m k n -- sin for

X wD  • 7 I  
S i n  £ 7 T -

chyju + t^ iy eD  - \udi I) - c h y ju + ^^ (y eD - £02)
(19)
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IV . Computational 
Considerations

The title of this chapter is somewhat of a misnomer. The content is intended to aid 

those who wish to develop efficient algorithms to compute pressure distributions in 

porous media. Brute-force application of the solutions given in Chapter III is compu­

tationally inefficient, and in some cases can be counterproductive. Thus, the aim here 

is to permit reconsideration of the solutions and recast them into forms that should aid 

computations. More importantly, we provide insight into the structure of the solutions. 

For example, we show that the solutions for pressure distributions in a parallelepiped 

contain the solutions for the corresponding system in a porous medium that is infinite 

in areal extent.

In deriving the small-5 and large-6 approximations, we will, for convenience, use 

the following approximations for u

u(s —> oo) = suj (1)

and

u(s —> 0) = s, (2)

respectively. Here, a; is a constant. The rationale for the limiting forms of u will become 

evident when we consider flow in naturally-fractured porous media (see Chapter V).

4.1. The Integral 7 /^A'o - a )2 + Vd da

We first consider the large-5 (t —> 0) and the small-5 (t —> oc) approximations of this 

integral. Subsequently, we consider evaluation of the integral for yjj = 0. Finally, we 

consider the general case. Let I  denote the integral.

I. The large-s approximation

Using the integral representation of Kq(z) given by

K 0(z) =
1

and the result

rb
expfJ  a

(x — a)2u

exp -f

da

; \TZe(z2) >  0] ,

we may write

I  =
2 s fJo tp(-£)exp 4£ J

erf

A b - X ) y / i  _  ( q  -  X )y /U  

2y/l 2 .

(b-xo)y/u (a — xd)\/w

2^ 2v^ y/£u'

(1)

(2)

(3)

55



To obtain the large-5 approximation, we replace u  by s u j , where a; is a constant, and 

thus

lim
3 — ►OO

( b - x D)y/suj ( a - x D)\/su
eri-----—---- erl

2^

where

{2 for a < xj) < b

1 for xd = a or xd = b

0 for x d < a or xd > b.

(4)

(5)

We can thus write

I  =
2s 

7T (3

2y/iUS

r  r ' l  < d(

t  exP {~\yd I V ^ s ) ■

(6)

Application of the Inversion Theorem for the Laplace transformation yields

\v d \
1 = 0 ( - $ J Z )  ~ | M “ fc (7)

The early-time approximation for flow in homogeneous porous media is obtained by 

setting uo — 1.

II. The small-s approximation

We assume that u = s. For small values of its argument, K^{ay/z) can be written

as

K0(ay/z) = — In (e1ay/z/2) + 0(z In \fz), (8)

where 7 is Euler’s constant (0.5772...).

Substituting the right-hand side of (8) for K§(a\[z) in the integrand of I  and 

evaluating the integral yields

I  = + In 4 - 2 7  + 2)4- -a (xD, VD, a, b) ,
Zs s

(9)

where

1

4

VD_

2
xD - a \ ( xD -b

arctan ----  — arctan

(xD,yD,a,b) = j  {(xD - b) In [(xD - b f + y2D] - (xD - a) In [(xD - a)2 + y2D]}

(10)

+ 2 a{xD,yD,a,b). (11)

VD J \ VD

Application of the Inversion Theorem for the Laplace transformation yields

b — a
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III. The case yo = 0

This case is of great importance for it can be used to obtain pressure responses for 

a number of systems of interest to us. Consider

I(VD 0) = - f  K0 \fu^J(xD - a)2 
s J a  I

da. (12)

The Bessel function Ko(z) is real and positive when z > 0. If xjj > b, or if xd < a, we 

can write, respectively,

I(VD

1 I rVu(xD-a) r
0) = —-= / I<0(a)da - I

\ J o  Jo

y/u(xr> —b)
K0(a)da (13a)

and

_ i I r\/u(b-xD) /•
I(yD = 0 ) = — =\ K0(a)da - / K0(a)da . (13b)

SVU \J0 Jo

If a < xd < 6, then we first write

I (ud = 0) = j  |y Ko y/uy/(xo ~ a)2 da + J K0 y/uy/(a - xD)2 ,

fy/u(a-xD)

and, using (13a) and (13b), we have

r Vu ( x D  - a )_ 1 pVU{xD-a) /*
I{VD = 0) = —p  / K0(a)da + /

Syu I/o Jo

y/u(b — XD)
K0(a)da

(14)

(15)

The following power-series expansion for f*  Ko(£)d£ given by Abramowitz and 

Stegun [1] can be used to compute the right-hand sides of (13) and (15):

a x oo

/  I<o{i)d£, =  -  (in |  +  7 )
^0 l— n

(x/2)u

(k'.)2(2k + l)

+ x J2
(x/2)

k=0

2k 00 {„/0\2k k__  {x/2f 1.

I )2 —  (kl)2(2k + 1) 2—i n ’

(16)

^ o (k\)2(2k + iy  ^ {k\)2{2k + l ) ^ n

where 7 is Euler’s constant (7 = 0.5772...). As x —> 00, however, the following relation 

is known: /»o°
jf Ko(£)d£ = (17)

For x > 20, the right-hand side of (16) approaches 7r/2 for all practical purposes. 

Polynomial approximations to compute the integral in (16) are available in Luke [2].
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Another alternative is to use the recurrence relation for the integrals of Bessel 

functions given in Abramowitz and Stegun [3],

£  Zo(t)dt = xZo(x) + y  [-Lo(x)Z1(x) + L 1(x)Z0(x)}, (18)

where Lo(^) and Li(x) are Struve functions, and

Zv(x) = A Iu(x) + Beiv*Kv{x)\ v = 0,1. (19)

In (19), A and B are constants. Using (18) for the integral in (16), the following 

expression is obtained (see also Kuchuk [4] and Gradshteyn and Ryzhik [5], 6.561-4):

r  K0(£)d£ = xKo(-x) + IX  [A'oWMx) + 7i1(a-)L0(a:)]. (20)
Jo ^

In this context, we should note that the integral f*  Ko(£)d£ can be written by using 

(17) as follows:

/ ' a-.
Jo

where /oo
K0((,)d£.

By using the integral representation for Kv(z) given by

pOO
K u(z) — / cosh(^£) exp(—z cosĥ )c?̂ ; |a r g z |<  

Jo

(21)

(22)

we can also write poo poo
h(x) = / dz exp (—(J cosh z) d  ̂

Jo J  x 

=f Jo

exp( — x cosh £)

(23)

(24)

d(.
f 0 cosh£

In passing, we note that the application of the Inversion Theorem for the Laplace 

transformation to (12), assuming u = s, yields

I(xD,yD = 0) = (irtD)1
b - xD a - x D

erl --7= —  eri
2aAd

(I--XD) [ (b - x D)21
+ {<'~ XD)Ei

(a - x D)2'

2 4 to 2 4to

(25)

Here, — Ei(— x) is the exponential integral, J^°exp( —£)''/£/£• (25) was first given by 

Gringarten, Ramey, and Raghavan [6] for a — — 1 and b — +1.
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IV. The general case

Here, we present alternate expressions for the integral I. Let us first write J in a 

form similar to that given in (13) and (15). If xjj > 6, then

— 1 r r V ^ i x D - a )  /  /----------------- \  f y / u ( x D - b )  /  ------------------ \

1=7̂ [l AH V + •

(26)

li xd < a, then

-  1 T f ^ ( b~ xD) / /-----------------\ ry /u (a-xD ) /  ,----------------- \

1=7jz[L ^o(vW )̂^-/
(27)

and, if a < xd < 6, we obtain

1
r V u ( x D - a )  /  ,----------------- \ f V u ( b - x D ) /  .------------------\

J  Ko yy  £2 + uybj d( + J  Ko yy  £2 + uv b j dZ

(28)
It is possible to express the integrals in (26)-(28) in alternate forms. For example, 

using (see Stakgold [7])

Jr. (V F T ? )  .  1 £ ”  (29)
1 [+°° iateXP(-^V/lT 72)

I V C ‘ f  « - I =

we may write

■ ^ . . e xp t (£ + ? l dtd(

= I  / +“  J ^ L dt _  I  / +“  e». exp t-xv^T F ), (30) 
2 J-cv 1 + i2 2 7_ 00 1 + t2

= | exP(-|al) - J  A'0 (V ( 2 + a2)

where we have used (29) to write

j T  jr. ( v ^ n ? ) « -  i  £ °  (31)

We can also use the integral representation of A"0(^) given in (1) to obtain

[  f t  ( v ^ 3) <* = f  I  e*p ( ^ - g )  erf (32)

or we can use (see Abramowitz and Stegun [8])

K0(az) = (  dt\ a > 0, |argz| < ^  (33)
Jo Vt2 + zl I

59



to write

+ \J x2 -f a2 -f t2 

\/a2 + t2
dt. (34)

It does not appear possible to write (32) or (34) in simpler forms in terms of tabulated 

or known functions. The Inversion Integral for (32), however, has been available for 

quite some time; see Uraiet, Raghavan, and Thomas [9]. In passing, we note from (30) 

that
/•OO / x ^

(35)J  K0 (\/^2 + a2) d£ = |exp(-|a|),

which is a result given in Gradshteyn and Ryzhik [10], 6.596-3.

It is also useful to express the integral I  in polar coordinates. Let the polar coordi­

nates of the points (x o ^Vd ) and (x'D,y'D) be given by (r£>,0) and (r^,#'), respectively. 

Consider

b cos 9 '

cos 9 '
U\ (xD - x'D)2 + ( v d  - x'D tan 01)2 (36)

Note that 1(6' = 0) = I. We may also write the integral I  in polar coordinates as 

follows: Let 0 < 6r < tt/2. If 0 < a < b, then

■S Ja
rD + rD “  ~rDr'D cos(9 - O') dr'D.

If a < b < 0, then

rW I
/ Ko 
J\b\

fu\!r2D + rg - 2rDr'D cos(9 - O' - 7r) dr'D.

If a < 0 < b, then 

I Mr k ,
^ J  a cos 9 '

I

u J (x D - x'D )2 + (yD - x'D tan 9')2 dx'.D

l*b cos 9'

+ I Ko xd ~ x'D)2 + (yD - x'D tan 9')2 dx'n

(37)

(38)

(39)

and using (37) and (38), we obtain

Ko 'u\/r2D + rg - 2rDr'D cos(6 — 9' — n) dr'n

+ j  K0 \/u\Jr2D + r'jg - 2rpr'D cos(9 - 9') dr'D \.

(40)
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Integrals appearing in the right-hand sides of (37), (38), and (40) are of the form

h - 1 r
Jc

u\/rb + rD~ 2ror'D cos(a - (3) drfD; 0 < c < d. (41)

Using the addition theorem for Bessel functions given in 2.3(5), we may write

- +°° f0 
II = ^2  COS k(a — (3) I

k=-oo

Fkdr’D, (42)

where J^ Fkdr'D is given by

” h  (r'D\/u) dr'DK k (rDy/u ) ; rD > d 

< h{rD\/u) f c I<k (r'Dy/u) dr'D\ rD <c

, r  Ik (r'Dy/u) dr'DKk (rD\/u) + I k (rD\/u) f*D Kk {r'Dy/u) dr'D\ c < r D < d.

Integrals in (42) can be evaluated numerically. For JQa I v{x)dx, the following infinite- 

series representation is given in Gradshteyn and Ryzhik [11], 6.511-11:

/»a oo

/ I v(x)dx = 2 Y ^(- l)n/1/+2n+i(a); Kc V > -1. (43)
J o  n = 0

A representation of JQa Ku(x)dx in terms of Lommel functions is given in Luke [12].

4.2. The Series cos m tz  cos n n z w
y j  u-f 7l27T2 /  z l D + a 2

exp (- \/u + n2n2 / z2D + a2 yD) ; yD > 0

Here, we first consider a formulation for this series when u is large. We then examine 

the series when u is small.

Let u denote the Laplace transform variable with respect to r, then

E
u + ^  + a2

: exp -\ u +
- e D

a2yD =£{F},

where C denotes the Laplace transform operator and F  is given by

( i )

i
exp I

7TT \ 4 r
exp (—a2r) cos nirx exp ( -- —̂ r

n =  1

n 2 7r2

e D

Using Poisson’s summation formula given by

+  oo

Y j exp
n =  — oo

( £ - 2n6 ) 21

4r u l+ 2 E « P  - ^
n =  1

n 2 7r 2
COS n 7T-

(2)

(3)
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(x - 2n)2z2eD + yj)1

the right-hand side of (2) can be written as

( 2 \ +oc
zeD exp y—a r J ^

F = ----- ---- --> exp
27TT ^ 4 r

exp (“ I? )  exP (_a2r)

The Laplace transform of (4) is

+00

£{F} = ~  E  Ko \/(T ~ 2n)2zeD + vb'/u + a2
exp

2 sfTrr

(-V u  + a2 yD)

(4)

(5)
2\/ u + a2

91- -

Substituting the right-hand side of (5) for £ {F } in (1), we obtain the following relation:

E -

COS U 7TX

n=\ylU + * jL- + a*
: exp - a u + —5— 4 a2 vd

eD

ZeD

7T

eD  

+ OC

E  Ko \j{x ~ 2n)2 z\D + y2D\/u + (6)

exp ( — V'u 4- «2 yo)

2\fu 4 a2

Using the relation given by (6), we finally obtain

£
n = l

COS n  7TZ COS ri7TZw
exp (~enyD)

ZeD
2n

+  OC

y j{z-zw- 2n)2 z\D + y2Dy/u + a (7)

+Ao yj(z + zw - 2n)2z2eD + y2Dy/u + •
exp (-V« + a2 yp) 

2 y/u 4- a 2

Here, en = yju 4- -f a2. As already noted, (7) is useful if u is large.

One other option, which may be rather convenient from a practical viewpoint, is to 

note the result given in Gradshteyn and Ryzhik [13], 1.448-2,

E°° cos kx / , x 1 ,
—  exp(-t!,) = - l„ —

k=1

1

2 exp(—y) cos x + exp(—2y)

Thus, we may write

OO oc

E
COS riTTZ , _
— exp(-enyDj = ^ COS H 7T Z

n = l

exp i- enyD) exp (-mryD/zeD)

nn I zeD
(9)

27r 1 - 2exp(-nyp/zep)cosTrz + exp(-2nyp/zep)'
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This formula is useful when (tz + a2) << n2n2 / z2D.

4.3. The Series £ ~ ,  ( "V ” + + <*2 M>) ; #o > 0

Using ideas similar to those used in §4.2, for large values of u we obtain

/ 11 n 0 
I U -|------ 2------- ^ a  V d

Ze D

E sin nirz sin nnzw 
—= = = = = = = =  exp

»=i J »  + b& l + « 2V eD

Y  ( K 0 \]{z - zw ~ 2n f z2eD f  y2D\/u + a2
ZeD 

27r

A'0 \J(z +  zw -  2n f  z 2d  +  y ' p V u  +  a 2

(1)

If (u -\r d2) n v 2a 2d , then the formula in 4.2(9) should be useful.

a a ThP Series ^ °°  cos<'2n~1)f*cos(2n-l)fzm 
4.4. 1 he Series ^ B=1 v/,+(2B_1)2, V(4t2i>)+o2

exp ■yju + (2n - l )2 k2/(4z2d ) + a2 yD ; v d  >  0

By arguments similar to those in §4.2, we can show that

cos(2n — l)fx
2^-7====^==^=—  exP

(2n — l )2 7r2 2 
u + ^ 5- h a yD

/ I (2n —l ) 27r2 j 0"

n=1V M —^
+ 00 r 1----------------------

^  ( —l)n K0 y (x -  2n)2 z2D + J/I) a/m + a2
ZeD

7T

(1)

Using (1), we obtain the following formula for large

cos(2n — 1)?^ cos(2n — l) fz ?
2 ^ ---- t= 7 ^ ^ t= = ---exP
n =  1

/ i (2n — 1)2 7r2 | 2
V “ + .i ^  + »!

-i/»+
(2n — l)27r2

— 4^ ;ceD

_  ZeD

27T

+ A-0

+ 00

E  (-1)n 1 ^0  \J(z — zw — 2n)2 z\D + y2Dy/u + a2

\J(z + zw ~ 2n)2z2D + y2DV u+  a2

(2)

To obtain a formula that is useful when (u + a2) «  (2n — l)27r2/(2zeD)2> we note
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that (see Gradshteyn and Ryzhik [14]; 1.448-4)

3s(2 k — 1)

(2k - 1 )
k= 1

1 1 + 2 exp(-y)cos:r + exp(-2y) 0_

= i 1” 1 - 2exp(—y)cos j  + exp(—2y ) ' V £  °' ° < * g 2* ’

(3)

and thus obtain

A  cos(2n — l ) f  2 . _
> v---~------exp(-e2n-iyD)

oo
= f c o s(2n - l) ^ .- ( e,,p(: ^ - ' l/Dl - (4)

2 \  « 2 n - l  ( 2 n — 1)tt/(2 Z eo )  J

zeD . 1 + 2e x p [-7ryD/(2zeD)] cos \z + exp (-nyD/zeo)
- j -  ----------  --------------------------------------------------------------------------------------------------------------------------------------------------

27r 1 - 2 e x p [ - 7 r y D/(22eD)]c o s f^  +  exp (-7r yD/zeDY 

where e2n-i =  \/u + (2n - 1)27t2/(4z2d ) + a2.

4.5. The series 1 cos nnzo cos nirzWD

fa Ko V u + n2Tv2L2D ^/{xD - a )2 + y2D

We denote the sum by F  and consider expressions of F for a number of circumstances.

I. Integral representation

Consider first the series cos k7rxK0 ( # +  a2r). If we use the relation (see

Gradshteyn and Ryzhik [15], 3.961-2),

/ r~n;---7 \ f°° exP { — ky/r2 -f a:2) / x
Ko ( V & + a2r ) = / cos ax----. ■; -- -dx\ Tie k > 0, TZe r > 0, a > 0, (1)

 ̂ ' J o  Vr2 + x2

then we can write

oo __________  «oo > oo

7i"o + a2r^ cos kirx = j  —j=====  exp (̂—ky/r2 + £2̂  cos knxd^. (2)

Because (see Gradshteyn and Ryzhik [16], 1.461-2)

o° £

1 + 2 V  e-** cos kx = —-------; t > 0, (3)
^  ch t - cos x w
k=l

and (see Gradshteyn and Ryzhik [17], 3.754-2)

r°° cos
/ ■ r— — ~ <K = K0(af3); a > 0, Tie 0 > 0, (4)
Jo y/p1 + £2
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we obtain
CO

V ' TS ( /TT~,— 2 'I ; 1 f°° COSQ£ shy/r2 + £2 12^ Ao (V *2 + a2r) cos knx = - - = = — - = = ------ df - -A0(ox).
k=1 v y z Jo v r i s ch v r i s cos

Using (5), we obtain the following integral representation for F:
(5)

- - m i
cos y/u/3 sh (nLoy/rl, + P2}

ch (nLoy/rj) + /?2) - c o s ^ o  - zwD)

sh
+

(6)

d/3 — 2Kq (y/uro) /da,
ch (^nLDy/rj) + /?2) — COS7r(z£) -f- ^u,d)J 

where

= (xD - a f  + y2D. (7)

II. Computational formulation

Along the lines discussed in §4.1, we recast F  into one of the following forms ap­

propriate for computations:
1 oo
1 COS T17TZD COS TITTZw D

s

en ( x D - a )  /  --------------------\  r t n ( x D - b )  /  .------------------- \

Ko (y e 2 + e lv l j  di - J  K0 + e lv l j

F (xd > b )= ~ Y ^

I , „Jo \ ' / JO

1 oo
— 1 cos t i t t z d  cos m r z w D  
F (xD < a) = - > -------------

A ^

r t n ( b - x D ) /  ,------------ \ fCn(a-xD)

.. oo
1 cos tittzd cos mrzwd

(8)

Ium> ( \Jt2 + e;\Vd ) dS

(9)

F(a < xd < b) — - V
n = 1

f t n ( x D - a )  /  I------------------- \  f € n { b - x D) / .------------------- \

J  Ko ( y £ 2 + e ly l j  d£ + jf Ko + e ly l j  d i

en ( b - x D)
(10)

where

en = yju + n2ir2L2D. (11)

Although it appears innocuous, the series appearing in the right-hand side of (10) 

converges slowly. To overcome this difficulty, using 4.1(35), we can write (10) as follows:

—  1 COS T17T Z D  COS T17TZW D

(12)

F(a < xD < b) = F 1 - - V
A Z ^

n=l

f  K0 ( J t 2 + eWo) d£+ i  K0 ( J  t 2 + 42/d) dt
J<„(i£i-a) V / J en(b — x d) V '
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where
— 7r cos nnzo cos mtzwD

f . - t E exp(-e„|yD|). (13)

The computation of the series appearing in the right-hand side of (12) does not pose 

difficulties. The series, F i, given in (13), however, must be recast into forms which are 

appropriate for computations for small and large values of 5.

A. Computation of F i for large 5 .

If we use 4.2(7), F i can be written as follows:

; Y j  ( A o  \!{z d  -\- z w d  — 2n)2 /L2d 4- y2D\fu
2L qs

+ Aq \J(zd - ZwD ~ 2n f  /L2D + y2D\/u | -
^exp( — s/u\yp\) 

2 s^/u

(14)

The series in the right-hand side of (14) converges rapidly for large values of 6.

B. Computation of F\ for small s.

Noting the relation given in 4.2(9), we write F\ as follows:

— 7r ^—>
F i —— > cos nirzd cos mrzwd 

s '

+

n = 'l  

l

exp(-e„|j/D|) exp(-mrLD\yD\)

nnLo

4 Lqs 

+ ln

In
1 - 2exp(—'KL]j\yd \) cos tt(zd + zwD) + exp(-27rLD\yD\) 

1

(15)

1 - 2exp(—7rLp\yq \) cos 7t(zd - zwD) + exp(-27r£D|yD|)_ ‘

The series given in (15) converges rapidly for small values of 5.

III. The large-s approximation

Replacing u by us where w is a constant, and using the expressions in 4.1(1), 4.1(2), 

and 4.1(4), we can approximate F  as s —■> oo by the following expression:

F=-
2s E

n = l
poo
/ exp(—£)exp 
Jo

COS T17TZJJ  COS T17TZw D

(a>s + n2TT2L2D) y2D 

4£

d(
(16)

y/(us + n2TT2L2D) £ ’

where

( 2 for a < xd < b

1 for xd = a or xd = b

0 ior xd < a or xd > b.

(17)
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Evaluating the integral in the right-hand side of (16), we obtain

— w/3 ^  cos nirzD cos mrzwD , , , ,
F =  ^7  Z _ -- ;....... -.>_9—2~  exP ( -Vws +n V l d \v d \2s v/uis + n2ir2L2LD

(18)

(This same result is obtained if we evaluate (8)—(10) as 6 —> oo and note the relation 

given by 4.1(35).) If we now use the relation given in 4.2(7), we can recast (18) into 

the following form:

F  — i Ao yj(zD + zwd — 2n) / -f y2D\/ios
4 I/D5 

+ Aq yf{ZD-T^D - 2 n)2 /  + Vpy/tos 

If s is large enough, the leading term of the series in (19) is

K0

7r/3exp(-^ws\yD\)

4s3/2 y/u:

\J(zd - /L2d + y2D\fcs

and, thus, we have

0
F  =

4 Los
An y >D - zU)Dv / +  y2D\/us

7r/jexp(-yc37|yp [)

4s3/2-v/w

The Inversion Theorem for the Laplace transformation, then, yields

F  =  -
0

SLd
Ei

(zp ~ zwp )2 / + j/p 

4<d /' w

V
-ntD

exp
( - 4 W = )  - I 1901' *

\v d \

2y/t~oJu

IV. The small-s approximation

We set u — 0 and write (8), (9), and (12), respectively, as follows:

co s  m t z q  c o s  n 7 r z w D

n —1
n

L

-L

mrL[) (x& —a)

0 ( \J{,2 + n2ir2L2Dy2D \ d(

nnLi) (xd — b)

K 0 (y f(2 + n2tr2L2Dy2D )

(19)

(20)

(21)

(22)
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.. w
1 cos n'Kzq cos n7rzwE)

ttLqs

I
n = 1 

u7tLd (b-xn)

p n n L D ( a - x D ) / .------------------------------ \

- J  K0 y y t2 + n2TC2L2Dy2DJ  d(,

and

1 cos mrzD cos mrzwD
F(a < *I> < S) =F, - —  £

n =  l

In (24), F x is given by

Fi =

[ /  • K0 f y^ 2 + n2n2L2Dy2D ) d£
[JtittLd (%d — a) \ /

+ [°° Ko ( y/t2 + n W l y j j )
JmrLz)(b — XD) \ J

1 oo
1 ^—\ cos nirzD c°s n7rzwo . u 

> , ------------- exp (—n7rLD\yD\).
z_—/ riLqS
n =  1

If we use 4.2(9), then F\ can be written as follows:

F  i =
1

4 Lps 

+ In

In
1 - 2 exp ( - itLD\yD\) cos tv ( z d  + zwD) + exp (-2nLD\yD\)

1 - 2 exp (- itLD\yD\) cos k (zd - zwD) + exp (~2irLD\yD\)

(23)

(24)

(25)

(26)

In particular, for yo = 0 (this case is of considerable interest for computational pur­

poses for it enables us to compute pressure responses which can be measured in prac­

tice), we have

F\(vd = 0) = -
1

2 Lps
In

. . 7T . 7T
4 sin-(2D + 2u,D)sm-(z£> - zwD) (27)

It is possible to derive another small-5 approximation as shown above. Let us 

consider the expression

oo

E  /  K ‘ (
n = l

mtLovd) da cos mrzo-, (28)
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where rd is given by (7). Using the summation formula given in Gradshteyn and 

Ryzhik [18], 8.526-1,

oo s

£>-„(**) ■kit = 2 (7 + ln s ) + 1  {t j t

OO

+ E
m=l

oo

+ £
m= 1

\Jx1 + (2m7r — £x)2 2m7r 

1 1

(29)

; x > 0, £ real,
+ (2m7r + ^ ) 2 2m7r 

where 7 is Euler’s constant (7 = 0.5772...), we may formally integrate (28) to obtain

b a f  L \
S = ——  fin —̂ ---1 j  - a(xD,yD,a,b) + SL(xD1,xD2,zD) , (30)

where

o / ~ \ 1 J , X D1 + \JX D 1 + ?/D + z d / L d
Sl {xd\,xD2,zd ) = rr S ln --- ;—

2.Ld I xd2 + \/xD2 + yD + zd /Ld

+ £
ra= 1 

oo 

+ £

ln
2m

In

*di + \Adi +y2D + (2m + zD)2 /L2d (b - a)L 

xd2 + x2D2 + */£) + (2m + zd)2 /Af)

\/xD i+ yb + (2rn-ZD)2/L2d (b - a)LL%D1 + \/£

^£>2 + \/ + 2/D + (^m ~
2m

■{

and

X D2

v(xD,yD,a,b) j(z£> - b) ln [(xD - b f + yzD

- (xD - a) ln [(xd - a)2 + 2/d]

/  xD ~a xD -b
— 2yD [ arctan------ arctan-----

xd — ci for x/) > 6
b — x d  for x d  < cl,

xd — b for xd > b
a — xd for xd < a,

VD VD }
For xd > &, we can now write

_  1 00
F(xd > b) = — 53 [cosn7r(zD + £wd) + cosnix{zD ~ zwd )\

n = i

/ K0 nnLDy(xD ~ a)2 + y2D 
J a L

(31)

(32)

(33)

(34)

(35)
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and, using (30), we obtain 

1
F(xd >b) =

2s
(b - a) ( In —^ ---1 ) - 2cr(xD, yD, a, b)

+ Sl (xd - a, xd -b,ZD + zwd ) + Sl(xd - a,XD — b,zD — zwd )

Similarly, for 15  < a we have

(36)

F(x d < a)
2s

(6 — a) I In
LDe

2 cr(xD,yD,a,b)
+ S l(6  - xD,a - xD, z d  +  z w d ) + S ^ b  - xD ,a - xD ,z D ~ z w d )

li a < xd <b, then we first write

—  1 °°
F(a < xD < b) = — ^  [cosnv(zD + zwD) + cosn7r(zD - zwD)]

(37)

n=l

f 0 nnLDyJ(xD - a)2 + y2D 

and using (36) and (37), we obtain

da + I<o m r L o J ia  - x d )2 + y2D
J x D L

da

(38)

F(a < xq < b) = (b-a)[  In - 1 2<r{xD,yD,a,b)

+ Sl (xd ~ a, 0, zD + zwD) + Si(xD - a, 0, zD - zwD) (39) 

+ SL(b - id,0, zD + zwD) + SL(b - xD,0,zD - zwD) •

4.6. Flow in a domain bounded by two parallel planes that are impermeable. 

Some applications

Here, we consider a few examples that illustrate the utility of the approximations 

discussed in the previous sections. We consider flow in an isotropic reservoir (k = kx = 

ky ~ kz ) and assume that the boundaries z — 0 and 2 = 2e are impermeable.

I. A horizontal well, uniform-flux wellbore

The center of the well is located at (0, 0, zw) and the flux distribution is assumed 

to be uniform. Let t = Lh/2, where Lh is the length of the well.

As discussed in §3.1, the pressure distribution is given by 

r+i

P d "D - a )2 + y2D da

COS n i T Z o  COS n 7TZw D

n = 1
J K0 \Ju + n2n2L2D^ (x D - a)2 + y2D

(1)

da.
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In (1), zd and Ld are defined, respectively, by

ZD
and

Ld (3)

(2)

I _

^eD

Should we now wish to determine the response along the well (\x d \ < 1?2/d — 0 

and zd — zwd + rwo : where rwo = rw/h and rw is the radius of the well), then using 

4.1(15), we rewrite (1) as follows:

Pd(\xd\ < 1,2/d =  0,2d =  zwD +  rwD) 1

2Sy/U

j >\/u ( 1 - x d )

where

F(xD,ZD,ZwD,Ld )

w+ /
Jo

v/w( 1 + id)
+ F(x d , zd , zwo , I-d),

(4)

£ cos nnzD cos n7r

I

yju + n27T2L2D

Ko (0d(+  [ '  
Jo

yfu-±r\2n2 L 2d(1 - x d ) I ' y/u +  n 2* 2 L 2d ( l +  x D )

K0(C)dC

(5)
Methods to compute the integrals as well as the sum in the above expressions were 

discussed in previous sections. Solutions for \x&\ > 1 and yD ^  0 can be obtained in 

a similar fashion along the lines suggested in §4.1.

II. A vertically-fractured well, uniform-flux solution

We assume a uniform-fiux wellbore and consider the center of the well to be at the 

(0,0, ze/2). Let 2Lf be the length of the fracture, h be its height and let £ = L j . As 

discussed in §3.1, the pressure distribution is given by

Pd(xd,Vd) xD - a )2 + y2D da. (6)

The pressure distribution along the fracture plane (\xp\ < 1 ,yD — 0) *s (see §4-1 III)

1Pd(\xd\ < l,yo =  0) =
2Sy/u L

y /u {  1 ~ X D ) f V u ( \  +  X D )

A 'o(0# + / K0(Z)d{
Jo

(7)

It should be noted that the Inversion Integral of (6) has been available for quite some 

time. Methods to compute the integrals in (6) and (7) were discussed earlier. (7) may 

also be used to obtain the wellbore response at wells produced via infinite-conductivity 

or finite-conductivity fractures.
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III. Infinite-conductivity wellbores

We have already discussed a scheme to compute pressure responses at infinite- 

conductivity wellbores in §3.1 VI. Here, we consider additional schemes to compute 

infinite-conductivity responses. For vertically-fractured wells, Gringarten, Ramey, and 

Raghavan [19] showed that infinite-conductivity responses could be computed by as­

suming that xjj = 0.732 in (7). (A similar scheme was suggested by Muskat [20] for 

steady-state flow.) Because infinite-conductivity and uniform-flux responses are iden­

tical at early times, they suggested that this value of xd could be used for all values of 

time. A refined estimate of xjj has been recently developed by Kuchuk [21]. He rec­

ommends xd = 0.74009714. With regard to horizontal wells, one would expect to use 

an identical value of Some, however, have suggested that xq would be a function 

of Lp.

Another technique to approximate infinite-conductivity wellbores is to assume that 

an integrated average of the uniform-flux solution will yield a good approximation of 

the infinite-conductivity idealization (Hantush [22], Streltsova-Adams [23], Kuchuk, 

Goode, Wilkinson, and Thambynayagam [24].) Wilkinson and Hammond [25] have 

placed this method on a firm footing. We briefly examine this option.

The infinite-conductivity response corresponding to (7) is

Pd
1 [ _

= 2 J  Pd (xd ,Vd = 0, s)dxD

1 -  I\i2 ( 2 y / u )

2 S y / u

where

/
oo

Similarly, the infinite-conductivity response corresponding to (1) is

1 - I\i2 (2 y/u + n2ir2L2D

(8)

(9)

Pd

cos uttzq cos mrzwD

n = 1 n27T2L2rD y/u + n27T2L2D
(10)

These results have been derived independently by Chen [26].

IV. An inclined well, the small-s approximation

Again, we assume a uniform-flux wellbore inclined at an angle 6 to the vertical. 

Let hfp = hf/£ , where hf is the length of the well and t is the reference length. The 

pressure distribution in this case is given by (see §3.1 IV)

Ap =
2ixkze£)S

* hfp 

f  2

%D D
COS n 7T-------COS 777T---------

ZeD Ze£)

(ii)
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and

where

rD = ixD ~ {xwD + asin/9)]2 + (yD - ywD)2 (12)

z wD =  ZwD +  OL COS 6 . (13)

Replacing K q ( z )  by — ln(e72:/2 ) in (11), the small-5 approximation of (11) becomes

A p  =
qfi

2irkz(

(  717T _
A 0 I -- rD

\zeD
71=1

Z D\  . Z D 2
COS TITT----------h COS 727T-------

Ze D Z eD

(14)

da,

where

We thus have

Z D j  = Z D  + (-1 y + 1( z w D  + a cos 0); j  = 1 or 2. (15)

. hn  

f  2 - In
e^rDy/u

2 .da  = -h fD (In  ^
eWu

, 2  _ hfD . . hfD .  ̂
+ a:D,yD,- — - sinfl, sin0

sm 0 V 2 2

where

xd — xd Xŷ D,

Vd  = V d  ~  VwD,

and ct(x d > Vd , a, b) is given in 4.5(34).

Consider
rh 00 / \

S — i An f —~~rD ) cos titt da.
\zeD J  zeD/

b 00

H K°
n = l

(16)

(17)

(18)

(19)

If > 6sin0, then

/»xd —a sin 0 001 r x D —a sin 0 00 /  ---------------

s=—A X>(—fe+sisin0 JXD_bsine \zeD
COS U 7T

zDj + (~1)J£ cotan 0

ZeD
d(. (20)

Similarly, if x# < asin0, then

rhs'mO — xn  0 0-I f b s m  9 — x d  00 /  ^rrr /--------

s  =  - ^  ~ \/^+ sin 0 JasmS — XD n=i \zeD

\ zDj+  ( - iy +1( cotan 0
yi> I cosnw— --- --- -----------dt,. (21)

ZeD

In (20) and (21)

Z D j  =  Z D  + (-1 y + 1(zu>D + ?D cotan 8). (22)
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Using the summation formula given in 4.5(29) and evaluating the integrals, we obtain 

the following expression for 5:

S = ^ ( - 1  -
2 \ 4 zeo )  sin̂  

+ Sh{k,XD\,XD2^Dj)‘

In (23), S i(k ,xDi,x D2 ,zD]) is given by

(xd , Vd , a sin#, b sin#)

SL(k,XD l,XD2,ZDj)

oo /

+ E (hi
m = 1 \ 

oo /

+ £ ( > ■ '

ZeD

2

where

and

ln
\JAx*Dl + 2Bx0i 4 C 4 \/fAxpi + 

yjAx Q2 + 2BxQ2 C + VA.X0 2 4~

=1 \

y/ASPo j +2 Dx pi +E + V Axdi 4- D

VX b —  a \f

\fAx2m +2Dxo24-E 4 \rAxD2 +
D

73 2m Z e D  I

yfAPm +2Fxqi +G -hy/Axpi 4- F

V a b — a  \

y/A*D2 +2 F xD2 +G + y/AxD2 4 F

Va
2mzeD J

k =
1; X[) > 6sin# 
2; J/} < a sin#,

X D l

X D  2

■{
_  f ?D

[ a si

asin6*; X[j>bsm8 

bsinO — xu', ?£><asin#,

b sin xo > b sin 8 

sm8 — xo\ XD<asm0,

A — 1/ sin2 

B = ( — l)J+i'+12£, cotan 8,

C = y>D + z lv 

D = (- l )J+i+1 (2mzeo + ZDj) cotan 

E = y\) + (2mzeo + 2/}j) >

.F = ( —1)J+A (2m.ze£) — z'dj ) cotan 0,

G — yb + (2mzeD - ?D>)2 •

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

If we now use (16) and (24) in (14), we can write the small-s approximation of (11) 
as follows:

W (. - 1A p ■
27r kze£>s

ln
2 zeo\/u

+ St , (35)
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where St is given by

=  $L ^1, x D H--~~ sin#, xD - ~ ~ s in O ,zD + zwD + xD cotan Oj (36)

+ S l ( l , x p  + ~~^sin9 ,x d -- “ -sin0 ,zp  — zwp — xp  cotan ,

St ( x d  <  ~~2~ sin0

(  h h \ 
= Sl ( 2, sin 0 - x d , --^  gin 0 - x o ,zp  + zwp + xo cotan 0 )

\ £ A j

+ S i  j^2, sin0 — XQ ,--^  sin0 — xjj, z jj — zwq — xD cotan 0 j ,

and

^  s  h l RSt { -- —  sin 6 < x d  < sin 9

— S l 11 , xd  + —̂  sin#, 0, zd + zwd + xp  cotan 0

(37)

+ Sl ( l , xd  H— sin0,O, zd — zwd  — i d  cotan #) (38)

/ hfD ~ \
+ Sl { 2, -— sin# - x d ,0, zd + ZwD + xd  cotan 6 )

\ ^ /

+ S L 1 2, sin# - xD ,0 ,zD - zwD - xD cotan 0̂ ) .
v 2 /

4.7. A note on the ratios ch(y/ua)/sh(y/uf3) and sh(y/ua)/sh(y/u/3) for large s

The expressions for the pressure distributions in a parallelepiped contain ratios of hy­

perbolic functions. Although we would rarely use these solutions to compute pressure 

distributions if we expect the boundaries to be infinite in extent in the x and y direc­

tions, the information given here is presented mainly for completeness and continuity. 

We assume u — lus and consider solutions as s —» oo. Consider first the term

chyfu [yeD - (yp + ywp )] + chy/u(yeD - \yD - ywp\)

2y/u shy/u yep
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f chy/u[yep - (yo + ywD)\ + chy/u(yeo ~ \V d  ~  U w d\ )

Now

}
= lim

2 y/ushy/uyeD

e ~y/u\yD - y wD \ _|_ e ~ y / u ( y D + y w D )

and

lim ’ sh^  ̂ VeD ~ ^VD + VwD^  + sh'/u(yeD - |VD - Vwd\)
8—>00

(1)5-̂ 00 I 2 y/U (l — e_2V^^D ) 

j ^ e - \ / u ( 2 y e D - \ y D - V w D  I) _|_ e ~ \ / u [ 2 y eD ~ { v d  + V w d ) }

If we assume that

lim exp (-2\/u?/«£>) ~ 0, (2)
s — ► OO

then (1) can be written as

lim f chy/u [yep - (yp + Vwd)} +ch.\/u{yeD - \yD - ywD\) 1 

s—oo\ 2y/u shy/uyeD j

-  1 p-V^ISD-^Dl I p-\/I(jD + »«,o) (3) 
_  2s/u I +

-j-e ~ \ / " ( 2 SeB - \ v d  ~ V w D I) _|_ e ~ V u [ 2 y eD - ( y D  +  VwD) ]  |

Similarly, assuming that the condition given by (2) holds, we can write

jj f chy/u[yep - (yD + ywD)] - chy/u(yeD - \yD - ywD\) 1 

5-̂ 0° | 2y/ush/uyep J 

—  ̂ / c - V u \ y D - y w D \ c-y/u(yD+ywD) (4) 
2 y/u I

_ ^ e - V u ( 2 y e D - \ y D - y w D \) _  e ~ y / u [ 2 y eD ~ { y D + y wD  )] j

2 y/ushy/uyeD

— _JL_ |e-\A]i/z>-ywD I _j_ e -y/u(yD + ywD) (5)
2 y /u  I

_ e~\/u(‘2yeD-\yD-ywD\) _  e-y/u[2yeD-{yD+ywD)} | ^

If we also assume that the following conditions hold

exp [ - M ud + VwD)] ~ 0, (6)

exP {~\/u(2yeo — \vd — J/u'd|)} ~  0, (7)

exp {-\/u [2yeD ~ (yo + 2/u-d)]} ~ 0, (8)

and let H F  denote the ratios of the hyperbolic functions on the left-hand sides of (3),

(4), and (5), we can write

lim {H F}  = r ^ e x p  (~y/u\yD - ywD\) . (9)
s-̂ oo Zy/U
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(9) can be used to replace the ratios of the hyperbolic functions in the solutions given in 

§3.3 when 5 is large. For example, consider the solution in 3.3(2) (a vertically-fractured 

well in a reservoir wherein all boundaries are impermeable)

P d ( x d ,V d ) =
X eDS

ch\ Ju (yeD  -  |y D  -  y w D |) +  c h y /u [ y eD  -  ( y D  +  y w D )\ 

y /u  s h y / u y eD

, 2XeD 1 . , 1 ,
H------- > - S i n  K7T------COS K7T

7r ^  k  -r-r,
k = 1 x eD

x wD  7 X D  
-COS K7T----

x eD x eD (10)

ch^Ju + ̂~r^(yeD ~ |Vd — Vw d\) + ch^Ju + ̂r^[yeD — (v d + Vw d)}

^ + ^ v‘d

Using (9), and substituting sco for u, we may write (10) as

lim { —~ P D ) =  l A =  exP {-\fsu\VD - Vw d \)
oo I Z7T ) 1\ISUO

x 2xeU f  1 . , 1 
H-----> — sinkn —

7T ' k
k= 1

X WD  7 X D  
• COS rC7T----- COS /C7T----

x eD (ii)

l

2 ^ j s u j  - f -
k2 TV2

(  / k 2 7T2
exp ( -^/su; + -̂ 2— |yD - y^Dl

'eD

If we let suj denote the Laplace transform variable with respect to £, and C denote the 

Laplace transform operator, then, inverting the Laplace transformation of the right- 

hand side of (11) with respect to sco, we may write

exp
(VD ~ VwD f

4£

1 +

exp

2xe d
oo

Er
t 1 i x w D  j X D  

Sm kT T ----  COS K7T----- COS K7T----

7T '  k X eD  x eD x eD
k = 1

(12)

k2 7r2e

LeD

As £ —> 0, the terms within the square brackets in (12) yield /3xeu/4: (see Gringarten 

and Ramey [27]), where

2 for \xjj — xwo\ < 1, 

/? = { 1 for |z£> - = 1, 

0 for |x d  — x w d \ > 1-

(13)

Therefore, (12) may be written as

(yp - ywp )2 

4£ }■
(14)
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Taking the Laplace transformation of the function inside the curly braces on the right- 

hand side of (14) with respect to £, we obtain the following expression:

lim pD = ■ exp {-\fsu\yp - Vw d\) ■
4 Sy/SLO

Thus, the short-time approximation of the vertically-fractured-well solution is

(15)

/?
PD = 2 \ exp (16)

Not unexpectedly, the right-hand side of (16) is one-half the short-time approximation 

given by 4.1(7),

4,8. Flow in cylindrical porous media. Some Applications

Here, we address issues regarding the computation of pressure responses in cylindrical 

porous media. We consider the pressure distribution solution, given in 3.2(7), for a 

vertically-fractured well located centrally in a cylindrical reservoir with all boundaries 

impermeable. If we write

1 I\sn (y/ureD j I\q (y/ureo j

(—1)" I'n (VureD) Io (V u reD) '

and note that; see Watson [28j

+ 00

I 0 (R d \ [u ) -  ^  (— 1)n7nf 7'i )  y/xi)In (r fj j  \/u) cos n (to —  6f),

( i )

(2)

then we can write 3.2(7) as

1 K\ (repy/u) f 1
Pp =  PPi +

2s I i  [reDy/u ) j o 

+ lo

Io V~usjrp + rp - 2r[)r'D cos(0 - a)

\̂u ‘\Jr 'b + ro _  2rDr'D cos(6 - a  - tt) ^dr'D .

(3)

Because (see §4.1 IV)

/»+ cos B!J+ Z  (^\/uRd J d( =  j* | z  y/Uyftrb  + r 'p ~ 2rDr'D cos(0 - O')
J

where

\ fuJr2D + rg - 2rDr'D cos(0 — O' - tt)  .
R 2P =  (xp - xwp - 0 2 + {yp - VwP - ( tan a )2,

dr’p ,

(4)

(5)
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we have

(6)

Although (1) is not a valid assumption by itself, (3) is a very good approximation

of 3.2(7), particularly if reQ is large. Similarly, if we were to compute the pressure 

responses at the center of the fracture (ro — 0), then 3.2(7) simplifies to

The origin of the coordinate system for (1) is chosen to be the bottom, left-hand 

corner of the parallelepiped. The center of the fracture in the x — y plane is given by 

x wd  and ywo , and the lengths of the sides of the rectangular drainage region are xe& 

and yeD- ch(x) and sh(x) denote the hyperbolic cosine and hyperbolic sine functions, 

respectively.

A. The small-5 formulation.

Because the computation of the hyperbolic terms in (1) may pose difficulties for 

small values of 5 (large times), we write

(7)

4.9. Flow in rectangular parallelepipeds. Some applications

We pick up on the results given in §3.3. Our main objective is to recast the solutions 

given there so as to render them suitable for computations.

I. Vertical fracture, all boundaries sealed

We begin with the pressure distribution given by

Pd (x d ,Vd ) =
XeDS

7r chy/u[yeD - |yD - ywp\) + chy/u[yeD - (yD + ywp)] 

y/u shyfuytD

(1)

chyju + ~^-(yep - |yp - ywo \) + ch^Ju + ^T^[yep - (yp + Vwd)}

chyfa (yeD - vp)

sh\Jaycr>
= {exp (- v/ayo) + exp [~\/a(2yeD - y o )]}

(2)OO

m= 1
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If (2) is used to compute the ratios of hyperbolic functions, then the pressure distribu­

tion can be computed by (1) for times tAD > 10“2, where tAD is the normalized time 

based on the drainage area and is given by

tAD — to/Ao- (3)

Here, A jj = A / i2 = xeye/L 2j. This procedure also takes into account the possibility 

that y/ayeo may be small.

B. The large-5 formulation.

For large values of 5 (small times), we rewrite (1) in the following form:

Pd  ~ Pd i + PDbi (4)

where pDi is the solution given by 4.6(6) for a vertically-fractured well in a slab reser­

voir, and pDh represents the contribution of the boundaries in the x and y directions. 

The expression for pob is obtained as follows.

Let 6* = y/u + k2ir2/x2eD, yD\ =  \yD - ywD|, and yD2 =  yo + VwD■ Using (2), we 

recast (1) in the following form:

where

Pd i

Pd  — Pd i +PDbi + Pd&2>

X,„D exp(-€kVDl)

fc=l

7T

I X°  l> "cos kw---cos k7T-
xeD %eD XeD kek

(5)

(6)

PDbi =  ---- 7={ exP (~VuyD 2 ) + exp [-s/u(2yeD - VD2 )\
X e jjS \ y U  I

+ exp (-\fuyDi) + exp [-s/u(2yeD - VDi)\ }

OO

1 + ^  exp ( - 2 m ^ y eD)

'(7)

m=1

and
2 sinfc7r-J— cos kn-3̂  cos kn

JC \ I tO X e D  X e D

PDb2  2 ^ -------------------------------------------------------------------------------------------------------

k=l
kek

exp (-ekyD2) + exp [~ek(2yeD - yD2)]

+ exp [—e* (2yeD ~yDi)\ 1 + X] exp (~2m€kyeD)
m=1

(8)

+ exp(-ekyDi) ^  exp (-2mckyeD)

m = 1
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We note that pDl given by (6) can be written as

Pd i

xwD+l  cos kftZ-udL cos

xeDs Jx,„n-1

If we use the results in §4.2, we can write (9) in the following "form: 

r+i (

Ek =  — oc \

+ Ko '

exp(-ekyDi)dx'wD. (9)

Pd i = 2^ J  E  j  V (x°  ~ XwD ~ ^ xeD - a )2 + (yo ~ Vw d)2 >A

\[{x d  + x wd  — 2kxeo  -  a ) 2 + (yo  -  ywo ) 2V u

ft exp ( — \fu\yp - ywD|)

XeDSs/u

d a (10)

Note that (10) can be written as

Pd i — Pd i +Pd63i (11)

where pD • is the vertical-fracture solution of a reservoir that is infinite in areal extent 

and is given by

PDi — 2S J \fi^D xwD ^  "f" (VD VwD) vG d a , (12)

and pDb3 is given by

r+i

Pob3 = J  K 0 [\/(^d + xwD - a )2 + (yo - Vwd)2y/u

+ ~  J  | A’o \J{xd  — Xwd — 2kxeo — a )2 +

d a

(vd -  Vw d )2\fu

+ K 0 \\/(x d  + xwD - 2kxtD - a )2 + (vd ~ !/»d )2V«] (13)

+ Ao 

+ Ao

\J (x q  — x wd  + 2 kxeo  — a ) 2 + (yo  — Vwd)2V u j 

\/(xd + XwD + 2kxeo  — a ) 2 + (yo — Vwd)2\/uj | da

_  7rexp(-y/u\yD - ywD\)

X e D S y /u

Therefore, the pressure distribution resulting from production via a vertically-fractured 

well in a reservoir that is a closed parallelepiped is given by

Pd ~ PDi + Pd6> (14)
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PDb — PDbl + PDb2 + PDb3’ ( ^ )

In (15), pDhl,pDb2, and pDb3 are given, respectively, by (7), (8), and (13).

The integrals appearing in (12) and (13) can be computed along the lines suggested 

in §4.1. For example, for \xq  — xwo\ < 1, and yD = ywo (along the fracture plane), 

(13) can be written as

1 f /*>/w(x£>+xu'£>+1) [\/u(xd + xwd —1)

p d u  =  7 T ^\  ''■',,('1,/.; - /

where pDi is given by (12) and pDb is given by

ry/u(2kxeD —*D +ZwD +1) ry/u{2kxeD ~%D +XwD ~l)

/  K 0( t )d t-  /
Jo Jo

r>y/u(2kxeD+XD — XWD + l) r  >/u(2k X e D  + X D  ~ * w D  ~ 1)

/ K 0 (O dZ-  K 0(Z)dt
Jo Jo

k =  1
r v/w(2fcXe£)+X£) — -f 1) [ y / u ^ k X z D + X D —XwD ~ 1)

+
Jo Jo

py/u(2kxeD —XD—XWD~1-1) />y/u(2kxeD - XD — X w D — ̂ )

+ K 0{ t)d t-  Ko(Od£
Jo Jo

ry /u^kXeD+XD+XwD+l) f  y/u(2kxeD + ££> + %wD — 1)

+ / - / *<>(0# 
Jo Jo

7T

(16)

XeDSy/u

It is interesting that we have been able to “extract” the solution for the infinite 

domain from (1); see (12). The development given here is useful, from a computational 

viewpoint, for large values of 5.

C. Large- and small-5 approximations.

We have already presented a large-5 approximation in 4.7(16). The same approxi­

mation can be obtained from (14) by noting that as 5 —► oo, the leading term of (14) 

is pDi and then using the result given in 4.1(7).

A small-5 approximation is derived as follows. The pressure distribution is

pD = H  H— sinfc7r---cos k n -™D

(17)
 ̂ ^eD xeDk=1

xD chek(yeD ~Vd i ) + chek(yeD ~ VD2)
cos kir------------ ---- --------------- ,

XeD k€k sh €kyeD

where

tj _  *  j chy/u(yeD - y Di) + chy/u(yeD - y D2) \ 

XeDS | s/u shy/uyeD J ‘

From Gradshteyn and Rhyzhik [29] (see 1.445-2) we have



and therefore we may write

1

y/u

c h ^ ( y eD ~ y D) 1 2 ^  c o s rrn r^  i

E ------r -252- + ------ ’ (20)yeD ^  MyeDshy/u yeD

where em =  y/u + to27t2/y2D . Using (20), we can recast (18) in the following form:

2?r 2tr ~ cosmTr^-+ costott^
H  =  ------- + -------  > ----- ^2— ------ (21)

xeDyeDsu xeDyeDs ^

For small 5, replacing u by s and 5 + a by a, and noting the relation given in Gradshteyn 

and Ryzhik [30] (see 1.443-3),

00 7 2 2E coskx  7r 7rx ar . ^ ^ ^

—  = - 6 - - Y  + T ; [ » S * S 2 ,1 ,  (22)
k= 1

we can approximate H , given by (21), as

lim fo-1 2n , 2^ D  'T ' 1 /  , ^D2 < i/ > =  ------ - H------> —- I cos TO7T----- 1- cos mir---
« - > 0 l J xeDyeDsl nxeDs ^  m2 \ yeD yeD

_  2?r 27ryeD /1 _  yp i + yp2 yp i + y p2
(23)

XeD V eD S2 X e D S \3 2 j/eP  4  ?/2D

The long-time approximation of the second term in (17) is obtained by assuming 

u «  k27r2/ x2d . Thus, application of the Inversion Theorem for the Laplace transfor­

mation to (17) yields

V e D  /I V D 1 +  V D 2  . Vr,\ + y|)2
p D  =  2irtAD + 2n--- ( ----- -------- +  2

x eD  \3 2yeD 4yleD

. %xeD 1 . 7 I ;
H-------> —  Sin/C7T-----  COS K7T

7r '  k 2
—  Sin AC7T----  COS AC7T-----

7r f-f k2 xeD xeD
k = l

Xn chkniyeD'» Dl) +chk7r(y‘D' ^ D2) 
c o s ib r^- ------

a:eD sh kK ^^XeD

II. Horizontal well, all boundaries impermeable

As shown in §3.3, the dimensionless pressure for a horizontal well in an isotropic 

reservoir (k =  kx =  ky =  kz) with all boundaries impermeable is given by

Pd  —  P fD  +  (25)
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where p jD is the vertical-fracture solution given by (1) and F i is given by

-  2tt A
F i = ---  > cos nixzq cos mxzw jj

xeDs ^
n =  1

chen(yeD - yD1) + chen (yeD - yp2)

e„sheni/eD ("ocn
oo 1 1 (26)

. 4  1 . 1  7 X wo  7 %D  
H—  y cos tittzo cos ri7rzwD > — sm/j7r---cos /c7r--- cos/C7r---

>5 K X e£> X eo  X e£>

ch e k ,n (y e P  ~  V D l )  +  chek^n j l/eD  ~  V D l )

€k ,nSh tk ,nyeD

Here, en =  1/ i t  + n2ir2L 2D , ek:H =  y/u + k2ir2/x2eD + n2ir2L 2D, =  |yD - 

yD2 = -f and zd and L# are defined by 4.6(2) and 4.6(3), respectively. In 

(25), the bottom, left-hand corner of the reservoir is assumed to be the origin. The 

location of the center of the well is ( xw£>, ywp , zwq ). The sides of the rectangular region 

are xeo  and yeo . ch(x) and sh(x) denote the hyperbolic cosine and the hyperbolic 

sine functions, respectively.

Points pertinent to the computation of the fracture solution, Pfjj, were discussed 

above. Computational issues pertinent to the computation of F\ are given below.

A. The small-5 formulation for F i.

Using the procedure for the computation of the fracture solution, Pfp , for tAD > 

10-2, F i  can be computed from (26) without difficulty provided that the relation given 

in (2) is used to compute the ratio ch(y/ua)/sh(y/u/3).

B. The large-5 formulation for Fi.

Using the relation given by (2), we have

O oo
—  Z7T COS TITTZ n  COS 77 7TZwn _
F i =  exp ( — eny o i) + F 2 + F b 1 + F b2, (27)

xeDS
n = 1

where

_ 4  sin kir—~— cos k7r̂ -UL̂- cos kir-̂ -̂ -
F 2 = -  cos U7TZ£) COS Tl7TZwo ---- — ------— ------——

A n= 1 k=1

exp(-efc)nyDi) ,

o 00— 27r v cos tiitzd cos n7vzwD f
F  61 = ---  2 ,  ---------------  \

XeD* “  In= 1

27r ^  cos n n z o  cos ri7rzw n  1 1 ^x  ^  WU  1 1 —€nyD2 e ~ € n { 2 y e D —y D 2 )

+ e -tni^yeD-yDl)
1 + eXP (_ 2 me" 2/«D)

m = l

+e_e"yci exP(-2me„yeD) i ,

(29)

m=1
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and

■ £
cos h t t z q  cos n 7 r z w o

1 sin kTr —— cos cos &7r£jiLi2-
\ _ _______ X e D _________ X e p _________ X e p

h~ i 1 ^k.nn —1 k= 1 ’

^  ^ 6 _  €k ' n y D2  -j- g ~  efc»n (2?/eD  ~ V D 2  )  _j_ Cfc , n i ^ V e D  ~  y D  1)

1 + ]L  exp (~ 2mek,nyeD)
7 7 1 = 1

+ e fk,nVDi exp(-2m€kt„yeD) > .

m=l

(30)

Let us now consider F 2 given by (28). We may write

A ^— 4 7r
F 2 = -  /  cos TITTZD COS n7TZwO---

5 2xeD
n = l

cos k n ^ 12- cos kTTJLD-
X eD_____________ X eD

r X w D -M ^  

/  , £  1 * = 1
tk.n

exp (—£k,nyD\) dx[w D •

(31)

Using the relation given in §4.2, we can put F 2 in the following form:

—  1 °°
F 2 ^  COS nTTZjj cos mrzwo

n = 1 

r + l + °°
Y ' | A'o \ / ( x d  

-1 t=-oo

- 2kxeD - a )2 + (yD - ywD)2en

+ A”o + x wD -  2kxeD — a ) 2 -f (yo  — ywD )2£n |• da

O  OO
Z7T cos riTTZp COS TITTZWD

XeDS £
n=l

exp(-e„|yD - ywD\

(32)

We can then write

27r ^  cos uttzjj cos nrrzwD 
F 2 =  F  + F 63 — ~— 7 2_^---

n= 1

exp (—en|j/p — VwdI) ■, (33)

where

_  1
F  =-  7 COS UTTZd COS TITTZw d  

S '
71 =  1

/*+! r __________

J  A'o v  ( f d - X\vD — a )2 + (?/D - 2Iw d )2 7̂1 da ,

(34)
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and

F  b 3 =  - \  COS UTTZo COS U7TZwo 
s

n —1

r+l

_  1

X D  + X WD - a)2 +  ( y D  -  V w D ) 2 dau>
00 r+l ( r _____________________________________

+ ^ J | V(XD - x wD - 2kxeD - a )2 + (yo  ~ VwD)2£n

+ K q [\/(xD + xwD - 2kxeD - a )2 + (yD - ywD)2̂ n 

+ Ko y /(x o  ~ x wD + 2kx eD -  a ) 2 + (yD -  VwoY^n

+/v0 y/(xD + XWD + 2kxtD - a )2 + (yD - ywD)2en \da\ .

(35)

From (27) and (33), we obtain

F\ =  F  + Ft, 1 + Fb 2 +  ^63- (36)

Therefore, the horizontal well solution, pD, given by (25) can be written as

Pd  =  PfD + F  + F b, (37)

where

F b =  F bl + F b2 + F b3- (38)

The integrals in (34) and (35) may be computed by the relations given in §4.1. For 

example, for \xo — xwD I <  1 and yo =  V w D ? (34) and (35) can be written, respectively,

.. oo
— 1 cos uttzo  cos nixzwo 
F { X o , X w D ,  Z D ,  ZWD , L o ) = -  >  ----------------------

n =  1

/»e„[l-(a:D-x^d)] /*
/  K0({)dt +
Jo Jo

en[H(iD-a:WD)]

A 'o (£R  , 

(39)
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and

— 1 v-  ̂ cos uttzd cos n7TZwo

F “ = ; E
n= 1

/*en(zz)+:ru,.D+l) -1)
-  [

Jo

00 I" r^n(2kxeD — ip +Xu,d + 1) r

+ £  / K o itW -  Ko(t)dt
k= i l Jo Jo
/*e„ (2kxer> +xd — +1) /•

+ / K o t fW -  K 0{t)dt
Jo Jo

ren(2kxeD — %d — %wD + 1) f

+ / * o ( £ K  - /
Jo Jo

/»en(2fcXeD-|-XJD+a:WjD+l) /*e„(2fcxeD+^D+^u;D-l)

+ /  /  * o m
Jo Jo

Ko(()d{

Cn ( 2 k x e D  — X D  + X WD  — 1 )

€n ( 2 k x eD-\-XD - X w D - l )

(40)

In light of the remarks in §4.5 II, we finally obtain the following alternate forms for 

the functions F  and F&3 for large values of 5 when \x& — x wq \ < 1 and yp =  ywo'-

1 +°° r /

n — — rx~\ - xn =  — oo 

1 00 

£

\%d  — z wD — 2n\y/u\ ( \zo + zwq ~ 2n\y/u\

--- L i--- ) + A° I Lo

cos tittzd cos mrzwD

2 sJu $ , £n
n = 1

-A l\ {^n [I D ^wZ))]} H- Azj [l -J- (x£) / ?

(41)
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and
1 00 

n *  =  - Z
n=l

COS TITTZD COS T\TTZwd

j / i i i  [tn(xD + xwD + 1)] - I\ii {en(xD + xwD - 1)]

OO

+ {K ll [en{2kxeD -  XD + XwD + 1)]

k=l

(42)
Kl\ [£n(2hxeD Xd  “h x wd  1)]

+ Ki\ [en(2kxeD + xd  ~ x wd + 1)]

Kl\ [tfii^kxeD “h Xd Xwd 1)]

+ Ki\ [en(2kxeD - xD - xwD + 1)]

- Ki\ [en(2kxeD - xd  - x wd - 1)]

+ Ki\ [en(2kxeD + xd  + x wd  + 1)]

—Ki\ [en(2kxeD + xD + xwD - 1)]}|.

In (41) and (42), Ki\(x) is defined in 4.1(22).

C. The large- and small-5 approximations.

To obtain a large-,s approximation, let u  =  u js  and note that in (37) as s 

oo, F  »  Fb. Then, substituting the large-5 approximations for p jD given in 4.7(15) 

and for F  given in 4.5(20), we obtain the following large-5 approximation for pD:

P
Pd  =

4Ld $
Ko y ( zD - z w d ) 2 / L 2d  + (yo -  y w D ) 2 V ^ (43)

where
2 for |xd  ~ xwd | < 1,

/? = { 1 for \xD ~ x wd \ = 1, (44)

0 for |xd  — x wd \ > 1.

Application of the Inversion Theorem for the Laplace transformation to (43) yields

PD =
'8 L d

( z d  -  z w d ) 2 / L 2d  + (yD ~  V w d )g .  \̂d *wd) /^p- ryyp  ywDj 

L 4tD/u  J

To obtain a small-5 approximation we first consider F \. A small-5 approximation 

for F i can be obtained simply by setting u to 0. Let en and 6k,n be the values of en 

and 6jrespectively, when u =  0. Thus, F\ is given by

F  i -
xcd L ds £

71=1

1
■ cos nitZD cos m r z w D

chen(yeD - y p i)  + chen(yeD ~ VD2) 

she„yeD

+ 1E5 t—1
n = l

chkk,n(yeD

COS TITTZd  COS TITTZw d

sin krr— cos k n ^ 11- cos kTT
\ ________ Xe D__________ * e P __________ X ep

k= 1

(46)

yp i) + chek,n{VtD - VD2 ) 

sheh,nyep



and by the application of the Inversion Theorem for the Laplace transformation we 

obtain

PD =  PfD  + *Fij (47)

where p fp  is given in (24) and Fi is given by

00 1 

E 1rix 6d L d  , n
71— 1

cos rnrzo cos mrzwD
chen(yeD - yD l) + chen(yeD -  yD2)

sh^nyeD

SZy sinkir-^— cos k n cos kn JLD- 
+ 4 2_^ cos nTvzjj cos mrzwD 2 ^ ---- — ------— ------

n = 1 fc=l

c/zefc,n(?/eD — ^Dl) + ch€k,n(yeD ~ VD2)

(48)

^h€kynVeD

For computational purposes it is better to replace the right-hand side of (48) by

F\ = F  + F& i + F ^  + Fi 3 .

Expressions for F, F&^F^, and F&3 are given, respectively, by

00

F  =  COS T17TZd  COS n7TZwo  

n =  1
r+iJ K 0 \nnLDyf(xD - - a ) 2 + (vd - Vwd)2 da,

Fb, =
XeoLo n

— cos n7rz^ cos mrzwD < 0 nirL£) yD 2

e “  m rLD (2yeD -yzu) e - n n L D (^yeD-yD2)

1 + £  exp(-2rrm7rLD2/e£>)

m = l

~  00
^  e-nnLDyD1 ^  exp(-2mnir L Dy e D)

m= 1

^62 =  4 E COS TITT ZD  COS niVZwD

00 1 sin fc7r-̂ — cos kir-^12- cos k n ^ 112-
______XeD_______£eD_______ *eP

^  jfc
n = l  A:=l

^k.n

e — ̂ k,nVD2 _j_ e-Ck,n(2yeD ~2/Dl)

+ e -efc,n(22/e£> -?/jD2)
1 + £  6XP (~2m^,nDeD) 

m= 1

+ e~ek'nVDl ^  exp(-2mkk,nyeD) f,

(49)

(50)

(51)

(52)

m=1
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and

Fb3 = E cos nirzp cos mtzwp

n = 1

r+iJ K 0 mrLD \/{xD + xwD - a )2 + (yD - ywD)2 

00 /-+1

da

nwLD \/(xD - xwD - 2kxeD - a )2 + (yD -
(53)

+ A'0 jrnrLpy^zjr) + - 2kxeo ~ a )2 + (yo - Vw d ) 2

+ A q m tLD \JxD - xwD + 2kxeD - a )2 + (yD - ywo )2

+ Ko m rLoy/ixD  + xwD + 2kxeo - a )2 + (Vd ~ Vw d )2 j d a j .

The computation of the functions given above is straightforward. To compute the 

functions F  and F ^  given by (50) and (53), respectively, the relations given in §4.1 are 

useful.

III. Inclined well, one boundary at the initial pressure

As noted in §3.3 II, the solution for the pressure distribution is given by

27r /-+W
Pd

e p h fp $

r+hJD/ 2 oo

/  E COS(2fc_1)9 
J-hJD/ 2 k=1

^ L cos{2k-
X eD  2 X eD

che2k-i(yeD ~ VDl) + che2k-i(yeP - VDl) 

e2k-\sh (e2fc_iyep)

. 0 ZD
-f 2 > cosn7r-- cos mr

^  ZeP

zwp che2k__î n(yep - yp\) -f che2k^i^n(yep  - yp2)

71=1
ZeP £2k-i,7ishe2k-ijny'eP

da.

(54)

Here,

C2k- 1  =  \JU + (2k - l ) 2TT2/ (4x2D),

=  \JU + (2k -  ! ) 27r2/(4a:eD) + n2* 2l zlDit2k-l

xwp  =  xwD + a  simp, zwD = zwD + acos^, ym  = |yD - ywD |, and yD2 =  yD +

We now note a few computational issues.

A. A small-5 formulation.

For small 5 (tAP > 10-2, where tAP is given in (3)), the pressure distribution can 

be computed from (54) by using (2).

90



B. A large-5 formulation.

For large 5, noting the relation in (2), we may write (54) as

Pd  — Pd i  + Pds + Pd&i + PDb2•

The various expressions for the right-hand side of (55) are given below:

(55)

r + h , D /2 oo 

 ̂ it/D/* k = l
P d i  —

ZeD^/DS
cos(2 k — 1)

2 xfD

exp(-e2k-iyDi)

(56)

da.
e2k - l  

47r /- + fc/D/2^

PD3
XeD^fDS

f  V" to i  -n71” x °  ( o i  XwD/ 2_j cos(2A; — 1) —---cos(2& — 1) — -
2 XeD 2 XeD

E ^D ^u;D / ~ \
cos n7T-- cos n7r--- exp ( —e2fc-i>nyDi j

_  z eD ZeD ’ C2fc- l,n

27T
r+ h f D /2 ™

/  £  cos(2fc —1)
J - h f D / 2 fc=1

P D 61
eD^fDS

PDb2 ~

n XD ,OI xwD tl , da 
o T-  cos(2Ar —1) — -— /(e2fc-i)----
2 XeD  2 X eD ^2k — 1

47T
r+hjo/2 oo r r  n 

j ^^cos(2fc — 1) —---cos(2k — 1)— u;
J - h f D /  2  k = 1eDhfDS J-

E
ZD Zwd \ 
COS U7T--- COS 727T-----/  (e2fc- l,n j

^eDn=l

ZwD_

ZeD

2 XeD 

da

^2k — l ,n

(57)

(58)

(59)

In (58) and (59), /(?) is given by

/(e) = { exp [-e(2yeD - VDi)] + exp (-e yD2)

+ exp[-e(2yeD - yo2)] 1 + y % x p (- 2leyep) (60)

+ exp (—e yDi) £  exp (—2feyeD) •

*=i

Using the result in §4.4, we can write

P d i - t 1 -  e  (- 1)*' k » k *
hfD s J - h ,Di 2 j f r U  I L

xwD 2hxe£)) “I- (yD ytvD )̂ \/^

+ Ac x/(a-p + !„,£) - 2kxeD)2 + (yD - ywD)2\/u >da.

(61)
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(61) may be rewritten as 

where

Pd \ ~ P d h  + PDb3i

^  t + h f D / 2  _________________ ________________

7--- / I<0 v (^D  - Xwd)2 +
nfDS J-hfD/2 L

and

Pdh

PDb3

j _  , + h/D/ 2 j 

f D S  J-h, D/2 { ̂

(62)

{vd -  Vwd)2V u  d a , (63)

hfDS

oo

+ " Y i - r f f k  [K0(x d , Vd , V u )]

y /(x D + x wD)2 + (yp  -  Vw d Y V u

\da,

k=l

where

fk [Ko(xD,yD,e)\ =  ^0 >/(®D - XWD - 2kxeo )2 + (yD - Vwd)2̂  

+ K0

+ K0 

+ K0

Similarly, we can write (57) as

y/(xD + xwd — 2kxeD)2 + (yo — Vwd)2£ 

y/(xo — %wD + 2kxeo )2 + (yo ~ Vwd)2£ 

y(xD  + xwo + 2 kxeo )2 + (vd — Vwd)2z

where

PD3 — PDi2 + PDb^  

f + hfo/ 2 002 l'~rnfD/* ^  p

P D i2 = u ---- /  E  A_0 V ( X ~ XwD)2 +h fDs J _ hjD/2 ^  L
(y o  -  VwD)2tn

ZD z w D j  
COS U7T---  COS 777T---- d a ,

^eD ^eD

and

PDb4 —

r + hJD/2 °o

J- h jD/2 n=1
cos n ir-- cos n7r---

2eD ^eDhfos

| a 0 [\/(x D + Xw d )2 + (yD -  VwD )2^

oo 'J

+ fk  [A'o(xD ,yD ,tn)\  \da.

k=l

(64)

(65)

(66)

(67)

(68)

In (67) and (68) /*[I<0(xD,VD,f)} is given by (65) and e„ =  y/u + n27T2/z2D. Thus, in 

essence, we can write (54) as

Pd = Pd ;+ P d 6> (69)
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where

PDi — PDil + PDi2 (70)

and

PDb — PDbl + PDb2 + PDb3 + PDbi- (71)

The solution for a vertical well as well as that for a horizontal well in a reservoir that 

is infinite in areal extent are contained in the above solution.

IV. Vertical well, two boundaries at the initial pressure

Let the constant pressure boundaries be at xo =  xep  and yo =  VeD• The pressure 

distribution is given by (see §3.3 III)

A. The small-5 formulation.

Similar to the solutions discussed in I, computation of the hyperbolic terms in (72) 

may pose difficulties. If we use the relation

s t l €2k - l ( y e D  -  V Dl )  + s h e 2k - \ ( y e D  -  y p 2) 
e2k-ich(e2k-1yeD

(72)

where e2k-\ =  yju + (2k -  l ) 27r2/(4x2D).

shy/a(yeD - yD) 

chy/ayeD
{exp (-\/ayp) - exp [~y/a(2yeD - yD )\ }

(73)00

1 + £  (-1)™ exp(—2my/ayeD) ,

m= 1

then pD can be computed from (72) for small values of 5 (tAP > 10 2, where t^D  is 

given in (3)).

B. The large-5 formulation.

For large values of 5, using (73), we may write

Pp ~ Pp 1 + Pp  2> (74)

where

exp ( —e2fc-i^Di) (75)
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and

2tt ^ c o s ( 2 f c - l ) f ^ c o s ( 2 f c - l ) ^

p d 2 -  r r r  2 ^XeoS
k = 1

e2k- l

exp ( —e2fc-iJ/D2) — exp [—e2jt- i(2yeD ~ Vd i )]

- exp [—e2*_i (2yeD - Vd *)] 1+ T X - l ) m exp(-2me2k-iyep)
m — \

+ exp(-e2fc_iyDi) £  (- l) ra exp(-2rae2(t_ iyeD) >•
m=1

Using the result in §4.4, pD1 can be written as

Pd i = P d i + P d 3,

^here

and

Pd , =  - K o  \ V (x d  -  x wd ) 2 +  ( y D  -  V w d Y ^ u
S L

PD3 =  ~ | ^ °  V ( XD + Xw d )2 + (VD -  ywo)2\/u

OO

+ £ ( - l ) " / n  [A'o(XD,VD,\/u)]

n =  1

where

fn [K 0 (xD,yD,e)] =  Ko y/(xD - xwD - 2nxeD)2 + (yD - ywD)2

+ #0 

+ -K"o

Thus, again, we have

where pDb =  pm  + pD3.

\/(a;D + xwD -  2n x eD)2 + (yD - ywo )2t 

y/(xD - XwD + 2n x eD)2 + (yD - ywD)2'( 

\/(xD + x wD + 2nx eD)2 + (yD - yWD)2(

Pd  = P D i+ P D b ’

V. Vertically-fractured well, four boundaries at the initial pressure

Let the boundaries xq  =  0, xo = Vd  — 0 and yo =  yeD be at c

pressure. The pressure distribution can be written as (see §3.3 IV)

XD f xwD , 1 

xeD

2 °° 1
pD =  - — sin kn—— sin kir WLJ sin kn

s z ' k
k= l

xeD xeD

chek(yeD - yD\) - chek(yeD - ym ) 

tkshekyeD
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(77)

(78)

(79)

(80)

(81)

constant

(82)



where ek =  y / u  + k 2w2/x 2eD, ym  =  \yD -  ywD\, and yD2 =  yD + V w D ■

A. The small-.s formulation.

For small 5, we follow the ideas noted in I.

B. The large-5 formulation.

Using (2), we write

Pd  — Pd i  + Pd 2'>

where

2 ^ 1  xD xwD . 1 exp(-ekyD1) 
pDl =  - 2_^ ^  sm kw---sin kir--- sm kn------ --------

5 k= 1

SXeD

XeD X e[) X e]j €k

XD . k n K!D_dx ' exp(- e ky p i )
uiD T  J

• 7 XD [>sm /t7r--- I

k = i  XeD J xwD- i

sm t 1 wD
X eD Ck

and

2 ^  sin kn -zn- sin kn sin kir —
—  _  \ X eD  X eD  X eD

pD2 -  ~ 2_^
k= 1

kei

jexp [—ejt(2yeD - yD1)} - exp (- e kyD2)

exp\-ek (2yeD -  VD2)\} 1 + E  exp(-2mekyeD)

m =  1

m =  l

If we use the result given in §4.3, then

\ /* f r
Pd i  =  ^  E  /  j  K ° V ( XD -  XwD -  2kxeD -  a ) 2 + (yD -  ywo ) 2V u

>daKo y /(x o  + x wD  -  2 kxeD -  a ) 2 + (yo  -  Vi v d ) 2 '

(86) may be split into the two terms

P D i

 ̂ /* + ! r _____________________________
=  ^ y  K 0 \/(x d  -  x wD -  a ) 2 + (y D -  Vw d )2 V u d a ,

(83)

(84)

(85)

(86)

(87)
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and

I<o k/(x£) + xwD - a )2 + (yD - ywD)2y/u da

 ̂ 00 /•+!

(t=l J ~X
(88)

+ A'0 \/{x d  -  X WD  + 2kxeD - a ) 2 + (yo - ywD)2Vu

Thus, we may write the pressure distribution in the form

Pd  =PD i+ PDb> (89)

where p Db =  p D2 + p D3.
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V. Flow in Fissured and 
Layered Porous Media

Here, our objective is to extend the solutions discussed in Chapters III and IV to 

a wide class of problems. First, we begin with a discussion of variable-rate solutions 

using Duhamel’s [1] integral formula. Second, we discuss production of fluids via a 

wellbore at a constant rate at the surface as opposed to a constant rate at depth. This 

problem is known as the “wellbore-storage problem” and was first discussed by van 

Everdingen and Hurst [2]. We also briefly explore the influence of a region of altered 

permeability around the wellbore that results from the drilling of the well. Third, we 

consider extending the applicability of our solutions to naturally-fractured or fissured 

porous media. Specifically, we examine the model considered by Barenblatt, Zheltov, 

and Kochina [3]. We then extend these results to more complicated visualizations of 

fissured porous media. Fourth, we consider flow in layered porous media wherein there 

is communication between the strata only via the wellbore (commingled production). 

Fifth, we examine methods to couple wellbore hydraulics (pipe flow) with flow in the 

porous medium, permitting us to explore the interaction between the porous medium 

and the wellbore through which the subterranean fluid must first flow to be produced 

at the surface.

5.1. Duham el’s [1] formula

Let pou represent the normalized response of a system that is produced at a constant 

rate. If this system is produced at a variable rate, then the well-known theorem of 

Duhamel provides the following expression for the pressure distribution:

a d [ D
p(M D;tD) = P i -  2nkhdt^ J  q(tr> ~ t)pdu(M d ;t)<It,

rtD
/  q(tD~T)p'Du(M D-,T)dr.

JO
= P i-

(i)

27xkh j 0

Here, p 'd „ (M d ;<d ) = dpDu(M D -,tD)/d tD-

I. Production at a constant pressure

If we now assume that the wellbore pressure, pw/, is a constant, and if qo given by

" r t r i  =  n f "  >■ <2>27vkh(pi - pwf)

is the normalized rate for the constant-terminal-pressure case, then we obtain the 

important result (see van Everdingen and Hurst [2])

PwDuQD =  (3)
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where the bars denote the Laplace transformation, and pwDu is the wellbore response 

for the constant-terminal-rate case. This result will serve us in good stead when we con-

from the constant-terminal-rate case. If the well is produced at a constant-terminal- 

pressure, the pressure distribution in the porous reservoir is given by

where po =  [pi — p(M o] to )}/(Pi ~ Pwf), and qD is given by (3). (4), of course, can be 

used for the general case when both the wellbore pressure and the production rate are 

functions of time and in this case P d ^ d ' ^ d )  would have to be redefined.

II. The wellbore-storage and skin effects

Suppose Vw represents the volume of the wellbore, c is the compressibility of the 

fluid, p is the density of the fluid, and C  represents the ability of the wellbore to store 

or unload fluid per unit change in pressure, that is C =  Vwc. If we consider the wellbore 

to be the control volume, and if Apw is the change in pressure in the wellbore over a 

time St, then from a mass balance, we have

Here, the subscripts s and w denote the surface and wellbore, respectively. The first 

term in (5) represents the influx from the porous medium to the wellbore, the second

If times are large enough, we would not expect (5) to hold, and qsf =■ q. In passing, we 

should note that the condition given in (7) is akin to the situation wherein we consider 

conduction of heat in a solid with its surface in contact with a well-stirred fluid (or 

a perfect conductor) so that the fluid temperature may be assumed to be constant 

throughout; see Carslaw and Jaeger [4].

sider layered geologic media. (3) is also important in that it permits us to simply write 

down the expressions for the production rate for the constant-terminal-pressure case

Pd (M o ) — sq d Pdu(M d ) (4)

term reflects the ability of the wellbore to store fluids, and the third term reflects 

the production at the surface. Assuming density differences can be ignored, if qsf 

represents influx into the wellbore, and q =  qs, then

(6)

In terms of normalized pressure and normalized time, we have

(7)

where

D 27T(f)hc£2
(8)
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Because of the manner in which wellbores are drilled, one has to contend, in practice, 

with the region of reduced permeability around the wellbore (skin effect). This region 

is treated in a manner similar to that of a poor conductor such as scale, grease or oxide 

that might exist on the surface of a conducting material in heat-conduction problems 

(see Carslaw and Jaeger [5]). Because of its size, one normally ignores the details of 

the properties of this region, and its effect is modelled via a normalized pressure, 5. If 

this region is to be included, then the mathematical model satisfies the condition

PwD ^ d ) = P d ( ^ d + ;  I d ) + (9)

Here, Pd (M wd +] to ) represents the wellbore pressure responses derived in Chapters III 

and IV. If times are long enough, then qsf /q =  1. Note that the pressure distribution 

in the reservoir is unaffected by the skin region.

Solutions for the well response, subject to the wellbore-storage boundary condition, 

can be obtained by Duhamel’s formula. Combining (4), (7), and (9) after applying the 

Laplace transformation (assuming, of course, that (4) applies to the general case), we 

have the following result for the wellbore response:

PwD =  T T £ W% -  " • (10)1 + CDs2pwDu

Here, pwiDu is the constant-terminal-rate solution and may include the existence of 

the skin effect. The important point here is that (10) applies to all the porous-media 

visualizations and wellbore conditions discussed in these notes (including those yet to 

be discussed).

5.2. Flow in naturally-fractured or fissured porous media

The classical treatment of flow in such a medium is given by Barenblatt, Zheltov, 

and Kochina [3]. In this scheme, the porous medium consists of a system of fissures and 

a system of porous, permeable blocks. The porous blocks are separated by the system 

of fissures, and the distribution of the fissures is such that direct diffusion between 

adjacent blocks is not possible. The fissures are assumed to have a negligible volume, 

and thus the blocks provide for the storage of mass. The flow capabilities of the fissures 

provide the flow path for diffusion to take place. Thus, in this scheme, at each point two 

fluid pressures exist— the pressure in the fissures, p/, and the pressure in the blocks, 

pm, and each pressure is an average over a neighborhood that contains a substantial 

number of blocks.

A slightly different scheme has been proposed by Kazemi [6] and further improved 

by de Swaan [7]. In this scheme (see Fig. 5.1), the fissure system and the matrix 

system consist of alternate layers of porous media with the storage capacity of the 

“fissure layers” being negligibly small when compared with the storage capacity of the 

“matrix layers”. The key ingredient of this model is that horizontal flow in the fissure 

system produces a vertical gradient in the matrix system which in turns feeds the 

fissure system. Like the scheme proposed by Barenblatt et a l [3], the matrix blocks
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do not directly communicate with the wellbore. We shall now discuss the features of 

these models and demonstrate methods to incorporate them in the scheme we outlined 

in Chapters II and III.

FISSURE

MATRIX

* • !aIaI*IaIa1a! • # • • * |Ia1a2a1a1a2/ ' • ̂IaIâaIâ *
\v.v.v.v.vxv.wwiv .v.vv.v.v.wv.v.w

REPETITIVE
ELEMENT

Figure 5.1. Fissured-Media Schematic of Kazemi (©  courtesy SPE, from Ref. 8).

I. The Barenblatt model

The volume rate of the exchange of fluid between the blocks and fissures per unit 

volume of the porous medium is given by km(pm - pf)/((ie ), where 1/e is the charac­

teristic of the medium that reflects the degree of Assuring or the surface area available 

for flow between the blocks and the fissures. For an isotropic system, the conservation 

of mass principle yields

V • (k fV A p f) =  + (V</>c)m^ Apn (1)dt ' r , m r  a  '

Here, A pj =  Pi — Pj (j  =  f ,  m), and Vj is the ratio of the volume of System j  to the 

102



total volume. Also,

^ ( A p m  - Apf ) =  -{V(j)c)m^ ^ ~ .  (2)

If we now define normalized time by

where

fD =  j t ,  (3)

-------- (4)
[{V<t>c)f + (V <f>c)m]n'

and the characteristic constants of the fissured porous medium A and lo are given, 

respectively, by

A =  ^ 12 (5)
ekf

and

(y *c )f + ( v t c ) „ ’

then we can write (1) and (2) as

V72 A D A p f   ̂ D A p m  ^

v ° Ap> =  “ - m ^ + <1- u ) - m r  (7)

and

A(A Pm - A pf) = -(1 - u) dQtPJ  , (8)

respectively.

Applying the Laplace transformation to (7) and (8), we may write

v d a P/ - sf{s)Apf  =  0, (9)

where

= < 1 0 >

(9) is known as the fissured-medium equation.

If we replace u by s f ( s ) in the kernals of the appropriate expressions, then we note 

that all the solutions that we have derived for the homogeneous reservoir case can be 

used to write expressions for the pressure distribution in the fissures of the system. 

Furthermore, from (10) we note that

f ( s  -+ 0+) = 1, (11)

and

f ( s  -> + 00) =  w. (12)
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A third approximation may also be used when A <<  (1 — w)s and uj < <  A/[(1 — u;)s]. 

Under such circumstances we have (see Streltsova-Adams [9])

=  (T ^ j7 -  (,3)

When (12) applies, support from the matrix system is negligible and the reservoir 

behaves as if it were a homogeneous system with a porosity-compressibility product 

equal to (V(f)c)f. At late times, when f(s  —► 0+) = 1, the system behaves as if it were a 

reservoir with an effective porosity-compressibility product equal to (V <f>c)f + {V(j>c)m.

(13) applies at intermediate times and the wellbore pressure during this time period is 

approximately constant.

Based on this development, it is clear that by a simple change in the nomenclature, 

it is possible to derive a solution for the pressure distribution in the fissure system of 

a naturally-fractured reservoir by using the solutions that apply to the homogeneous 

reservoir. The pressure distribution in the matrix system can also be readily obtained.

II. The Kazemi-de Swaan model

Although first introduced by Kazemi [6], the impetus for much of the analytical 

development of this model is a result of de Swaan’s [7] work. As noted earlier, in 

this scheme horizontal flow in the fissure system causes vertical flow in the matrix 

blocks. We consider one of the symmetrical elements in Figure 5.1. Application of the 

conservation of mass principle to a control volume in the fracture system yields

<H)

Here, qm is a source term that accounts for fluid influx from the blocks. The pressure 

distribution in a matrix block is given by

& Apm _ (V(j)c)mfl C?Apm

dz2 “  K, d T '  1 j

If we now scale z with respect to hm/ 2, then (15) in terms of (3) may be written as

d2A pm k fh ^  9Apm

_ 9 4 _ - ( 1 _ " ) 4 C p ^ '  (16)

The variable A for this model is given by

19k f 2

A = w  (i7)

and the variable uj is identical to that given in (6). Thus, (16) may be written as

d2A pm _  3(1 - u ) dApm 

dz2D ~ A d tD ' { *}
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If we let zd =  0 be the top of the repetitive element in Fig. 5.1 and zq =  1 be the 

interface of the matrix block and the fissure, then using the no-flow boundary condition 

at zd  =  0 and the requirement that pressure be continuous at Z£> =  1, we obtain

__  c h ( y ^ s z D ) __
Apm =  ..- \  W / AP/, (19)

ch iy r js )

where rj =  3(1 — cj)/A and ch(x) is the hyperbolic cosine of x. We can now show that

<2°)

Here, the symbol th(x) represents the hyperbolic tangent of x. Using (20), we may 

write

v d a P/ - sf(s )A p f =  0, (21)

where ________

f i s ) = U } + ] j K ^ . t h y ^ ^ ^ j ,  (22)

Again, this development emphasizes the fact that by a simple change in nomenclature 

the solutions for a homogeneous reservoir can be used for a fissured reservoir.

It is possible to obtain four approximations for f(s). As x —* 0+,th(x) «  x, and 

thus

f(s  -> 0+) = 1. (23)

Also, as x —> +cx3, th{x) «  1, and thus

f(s  -> +oo) = u. (24)

If we assume that uj «  1 and that th(x) «  1, we have (Bourdet and Gringarten [10], 

Dontsov and Boyrchuk [11], Streltsova [12], Serra, Reynolds, and Raghavan [13])

m <25)
We may also use the approximation th(x) w x — x3/3 in which case we have (Ozkan, 

Ohaeri, and Raghavan [8]),

/ «  = 1 - (26)

5.3. Layered porous media

Here, we examine flow in a medium that may be considered to consist of distinct 

layers or strata that are separated by impervious layers. Communication between the 

layers is possible only because of the existence of wellbores. The properties of each
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of these layers are assumed to be distinct. Such a system is often referred to as a 

commingled or no-crossflow system. Our intent here is to obtain pressure distributions 

when the entire system is produced at a constant rate for combinations of wellbore 

configurations and outer-boundary conditions that may vary from layer to layer.

The algorithm to attain this objective, outlined by Spath, Ozkan, and Raghavan

[14] is a rather simple one if we make note of the result obtained by van Everdingen 

and Hurst [2]; see 5.1(3). If we consider the constant-terminal-pressure case, then we 

note the simple fact that the layers are decoupled. Each layer produces fluid at a rate 

(against the common pressure) that is independent of the production rate of the other 

layers. Thus, if we let qj represent the fluid withdrawal rate from Layer j ,  q be the 

total withdrawal rate, and n be the total number of layers, we have

n

<l =  Y qi- W
j  =  1

If we now normalize the production rate q in terms of kh where kh =  ]CJ=i k jh j an<̂  

the production rate from Layer j  by k jh j , then (1) may be written as

n

= (2) 
j  =  1

where a j =  k jh j/ (k h ) and the qo^s are normalized according to 5.1(2). Obtaining 

the wellbore response when the layered system produces at a constant-terminal-rate 

becomes a simple matter if we use 5.1(3). Thus, if pwQ is the Laplace transformation 

of the wellbore pressure, pwD-> then we have

P w D o 71 — ’ (3)
52 £ i = i  <*jqDj

We may again use the relation given in 5.1(3) at the local level (at the level of the 

layers) and write

qDj =  (4)
 ̂ P wDu j

and thus,

P w D 11 /— * (5)
1 ® j  /  P wDuj

(5) is a rather convenient result in that all the solutions we have derived thus far 

(including those for fissured or naturally-fractured porous media) can be used to obtain 

the wellbore response of a layered porous medium! Interestingly, no restrictions are 

placed on the wellbore or outer-boundary conditions of a given layer. For example, in 

a two-layer system we may assume that one layer is produced by an inclined well and 

the other layer by a horizontal well. Such schemes are not unusual. Wellbore-storage 

effects can be incorporated by considering 5.1(10). The skin effect in each layer should
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be incorporated in the pwDuj term. The only ramification we need to address is that 

we must express all solutions in terms of the same time scale which is a rather simple 

matter.

The expression for the production rate of each layer can also be obtained by 

Duhamel’s [1] formula. Let the production rate of Layer j  expressed as a fraction 

of the total production rate be qpj] that is, ?Dj — 1* Thus, from Duhamel’s

formula we may write

3 „ P wD / r \
q° J = 3 I t,--- ’bP wDuj

where pwjj is given in (5). Again, it is interesting that the layer rates can be obtained 

only by using wellbore information. Using (6), the pressure distribution in any layer 

may be computed by Duhamel’s formula.

In some cases, because of conditions that have taken place over geologic time, it is 

possible for the initial pressures in the layers to be such that hydrostatic equilibrium 

does not exist. That is, for all practical purposes the initial pressures in the various 

layers are unequal at t =  0. The wellbore pressure in this case is given by

_ S "= l PjPoDj 1 m

PwD E " = i  Pj s’ Z U f t '

where

Pj = (8)

and _
27Tfvh , . / -  v

PODj  =  --- ( P r - P j i ) -  (9)
qfi

Here, pr is a reference pressure and pji is the initial pressure in Layer j .  The sandface 

rate in Layer j  is given by

~ a l ( P w D  ~ P 0 D j )  , im
qD, = --- ^ ' (10)

s P wDu j

5.4. Wellbore hydraulics

Often it is advisable to couple flow in the wellbore with flow in the reservoir because 

fluids have to be produced at the surface. For illustrative purposes, we consider flow 

in a horizontal well of length, Lh- Because the volume of the wellbore is small, we 

consider steady flow within the wellbore. At the producing end (x =  0) the producing 

rate, q, is assumed to be a constant and the other end (x — Lh) is sealed. Fluid enters 

the wellbore at an unspecified rate along its length. Thus, if qhc(x) is the flow rate in 

the wellbore at any point x, and qu is the flux, then

rLh

qhc(x ,t)=  / qh(x',t)dx'. (1)
J X
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Some insight into the variables that affect the performance of the system can be 

ascertained if we examine flow under steady conditions. If we consider steady flow of 

a Newtonian fluid in a pipe, we have

2„57r r dph

' - ' i f * -  <2>

Here, p is the density of the fluid, /  is the Fanning friction factor, rw is the pipe radius 

and dph/dx is the pressure gradient. In terms of the Reynolds Number, iie, based on 

the pipe diameter, (2) may be written as

= dph , . 

^ fiRe f dx

If we assume that the porous medium is isotropic, then we have

(4)

dr / *
rw,x=£

where r2 =  x2 + z2. From (3) and (4), we have

(<dp/dr) r w t X r3w
(5)

dph/dx kLhRt f

Similarly, if we consider regions far from the horizontal well, we will find that

(dp/dv)Xiy—¥00 _

(dph/dr)rW9X=t -  h ’ 1 J

where h is the thickness of the porous medium. Thus, we expect a group of the 

form r^/(khL h ) to influence the pressure drop in the wellbore. Therefore, for conve­

nience we will define dimensionless conductivity (that is akin to dimensionless fracture- 

conductivity) by the expression; see Ozkan, Sarica, Haciismoglu, and Raghavan [15]:

where, in all of the following, Lh/ 2 is taken as the reference length. The mathemati­

cal development given below also confirms the arguments developed here on physical 

grounds. It is also clear that for laminar flow, ChD will play an important role because 

the product Re f  =  constant.

From (1), we may write

d2Ph _  p (  2 df_ _  \

dx2 7r2r* V hcdx 2fqhcqh) ■ W
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Integrating (8) twice, we have

Ph(x;t) -  pwf(t) = dxndxf (9)

Here, f t is the friction factor based on the total production rate q, and pwf ( t ) is the 

pressure at x = 0 .

If we now use the definitions of normalized pressure, pp, normalized time, tp , and 

normalized distance, xp, we may write (9) as

PwD^D) ~ Piid (x d ; ^d ) —
Retft tt 

16 C ud
2xi

+ r r'D ̂ i(2
i o +  Jo+ R et ft V

Re df

fR e t dx"D
j, 2qhD ) dxjjdx'p

(10)

Here, the subscript t is used to denote conditions at xp  = 0 ,  and qhD =  QhLh/q- 

Because

df  1 df  *  n n:RetqhD (11)
dxi

and if we let

2 dRe

df
D  =  Re2- ^  + 2Re f , (12)

then

PwD^D) ~ PhD(xD ; ^d ) =
R ttft k x d f f DqhDdx"Ddx'D . (13) 

Jo+ */o+8 ChD 16ChD J 0+ Jo+

If flow is laminar everywhere, then Re f  =  16; that is, D =  16, and (13) becomes

fxD rxD

t o+ J  o+
PwD(iD) - P h D ( x D ; ^d) = 7 ;—  (  2 x d  -  I  I  qhDdx"DdxD J .

ChD \ J 0+ J 0+ /
(14)

The numerical procedure to be followed when using (13) or (14) is similar to the 

one discussed in §3.1 V. We will now consider two cases to demonstrate the coupling 

of the wellbore and the porous medium. Let the horizontal well be parallel to the 

boundaries and located at an elevation, zw. We consider flow in a slab reservoir with 

both boundaries impermeable.

I. The long-time solution

The long-time pressure-response for this system is given by

pD(0 < x D <  2,rwD+;*£>) = - ln ——
I  e 1

+ / qhD(x'D )[v(xD ,x'D ) + F (xD ,x lD,z wD,r wD+ ,L D)\dxlD ,
Jo

(15)
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a(xD ,x'D) =  ~-\n\xD - xD\ (16)

and

oo

F(xD ,x 'D ,z WD ,rwD,L D) =  E cos ri7r(zwD + rwp) cos mrzw£>J\o(n7rLp\xp ~ xp \)•
n = 1

(17)

In writing (15), we have made use of the fact that

/  ^hp(x,p)dx'D ~ 2. (18)
Jo

For long enough times, rigorous calculations suggest that qhp(xD]tp) is independent 

of time. Thus, the right-hand side of (15) without the time-dependent term may be 

used for Php(xp ] tp ) in (13) or in (14), and the resulting expression solved for qup- 

(The time-dependent terms cancel because the left-hand sides of (13) and (14) involve 

differences in pressures.)

II. The large-s (short-time) approximation; laminar flow

Let us now consider laminar flow in the wellbore and examine responses for times 

that are small enough. In this case qhp is independent of xp and is given by

« d =  - 2 Id ( ? d (19)

where r jj = y2D + (zo — zwq )2/ L 2D . Thus, the counterpart of (14) is given by 

d2PhD 2-irLDrwDy/s Ki(y/srwD)_

d x l ChD K 0( ^ I r wD)PhD ~ {ZU)

Using the conditions

where

and

dPhD

dxo

dPhD 

dx

=  0 , (21 )
X D =  2

D xD =0 +

27T

ChDs ’
(22)

the pressure distribution in the wellbore is

<23>
where

2 _ ^7rL p rwp\fs I^\(\/srw (oa\

Chd I< o ( ^ r wD)
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At the producing end (x q  — 0)

- - 27r 
PwD ~ C hDsa th(2a)'

Approximate forms for pwp  can now be derived if 5 is assumed to be large enough. If 

th(2a) PS 2a, then

PwD 2jp (26)

and

= _ _ L £ , ( _ | i ) .  (27)

Here, — E i (—£) is the exponential integral.

If a  is such that th(2a) & 2a — (2a)3/3, then

and

PwD 2L d s K ° + 3ChDs ^
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App endix—Fundament al 
Solution for Slab Reservoirs

Consider an infinite reservoir and let 0 ( x wd , VwDi z wd )  denote the origin of a spher­

ical coordinate system. If P'(p'D , O', <f>') is the location of the source, P (p d ? 0, is any 

point in the reservoir, and ip is the angle P O P ' where

cos ip =  cos 0 cos O' + sin 0 sin O' cos(0 — 0'), (1)

then the fundamental solution is given by

7  =  T -  £  ^2 /-— ~ r  F  V ^ d ) P m  ( c o s  y>). ( 2 )

m^O V W D

In (2), Pm(a;) represents the Legendre polynomial and we define

F(a’6)={pm!r tfe>a (3)[ Fm(6,a); b > a,

where

Fm(a,i) = ^ m+i(a )/m+i(6). (4)

Let us now consider the image system shown in Fig. A-l.

Figure A-l. Schematic of Image System
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If we consider, temporarily, a new reference frame centered at O u(x wd ? VwD, %wD + 

nze£)), then the point P  is defined by P(pDm  $n, )̂> the nth image of the source is 

located at P ^ p 'd i and Vn is the angle P^OnP where

cos (pn = cos 0n cos 9'n + sin 0n sin 9’n cos(<j> — (f)1). (5)

Therefore, the solution corresponding to the nth image of the source is given by

= T~ £  ^ ^ = = F ( y / u p 'D ,y/upDn) P m (cOS>fn). (6)
4K m^O VPDnP'o

We may now relate pDmOm and 0'n to pD,®, and 6'. Consider, for example, the image 

corresponding to n =  — 1 (see Fig. A-2).

Figure A-2. Image for n =  — 1

We may write

PDn =  (ZD - ZwD + 2zwD f  + p2D sin2 8 

=  (pD cos 0 + 2zwD)2 -)- p2D sin2 0,
(7)

a zd zwd  2zwd  pd  cos 0 -i- 2zwd  ,0x
cosvn = ------------- = ------------- (8)

PDn PDn

or
PD COS 6 + 2zwD

(fn =  arccos------------ , (9)
PDn

and

(io)

By similar arguments, we may write

f [pd c o s  6 + 2zwD -  (n + l)zeL>]2 + /»d sin2 0; n =  ±1, ±3, ±5,...
PDn =  \ , „ , o 9 2 /i (!1 )

[ (pocosO — nzeo) +/9|,sin 0; n = 0, ±2, ±4,...
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p D cos 6 + 2zw D - ( n  + l ) z eD 
arccos-----------------------; n =  ±1, ±3, ±5,..

PDn

Pd cos 6 — nzeD

61

PDn

7T-0'; n = ±1, ±3, ±5,. 

0'; n = 0, ±2, ±4,...

; n = 0, ±2, ±4,..

(12)

(13)

Using (6), (11), (12), and (13), the fundamental solution for a slab reservoir with 

impermeable boundaries at z =  0 and z = ze may be written as

+ 0 0  00

47r-7 7 = E E(2m + 1)
V <D n= — 00 m=0

Fm nl r, / \ . Fmn2 t-j / \
P m (COS (pn l ) + ---Pm (COS ( f n2)

.yJPDn D ti 2

where we have defined

Fmk =

for k =  n l or n2, and

W ^P 'd ) 4>+ § {V upD k) PDk <  Pd

A'm+i (y/upDk) W ^ p 'd ) ! PDfc > Pd,

PDni =  (/?D cos 0 + 20u,p - 2nzeD)2 + ^  sin2

PDn2 = (pd cos 0 - 2 nzeDf  + Pp sin2 6, 

cos <£>* =  cos 9k cos 0̂ . + sin6k sin 0̂  cos(0 — (j>)\ k = n l or n2,

P d  cos <{) +  2 z w d  ~  2 n z eo
0nl =  arccos ■

0no =  arccos

P D n l  

p D  cos <j) — 2nzeD

PDn2 

0'n2 = «'•

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Similarly, if the boundaries at z = 0 and z — ze are at a constant pressure equal to 

the initial pressure, then we have

.. + 0 0  00

= i E  E(2m+1)
V r u  n= — 00 m = 0

Fmn2 7-) / \ Prani 7-, ✓ >
:Pm(cos^n2) ---7= = P m(cos(^ni >

. y/PDn2 yJpDnl
(23)

If the boundary at 0 =  0 is impervious and the boundary at 2 = ze is at a constant 

pressure equal to the initial pressure, then we obtain

-f-00 00

47r
K r  E £<2m + i)(-i)”
V Pd  n= — 00 m=0

F mn l  j-, / \ . F mn 2 . .
-Pm  (COS C^nl) "1“ . ~ - P  m (cOSC^n 2)

.y/PDnl y/PDn2

(24)
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