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“In general, an ounce of geology is worth a pound of geostatistics; this may be 

disappointing to geostatisticians with no geological background. Tough.” 
 

 – Harry Parker 
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Preface 
This book was written for Resource Analysts, especially if you are new to generating 

resource models.  Based on a collection of hints and tips, the purpose here is to help 

accelerate your learning of the estimation process by focussing on the implications of 

decisions rather than on the mathematics of geostatistics.   

It has been a pleasure to work with so many commodities in a variety of geological settings 

around the world.  Best of all, working in the mining industry has exposed me to the 

wonderful world of reconciliation.  The opportunity to generate a resource model and follow 

it through mining and reconciliation provides true learning of what works when. 

Having presented geostatistical/resource estimation courses since 1990, I have learnt from a 

diverse range of course participants’ questions and perspectives.  I owe so much to those of 

you who have helped direct my learning through your questions and observations.  Your 

questions have always had a practical basis and have spurred my interest in the side of 

geostatistics that really matters – the practical let’s-build-a-model-of-reality side of 

geostatistics.  After all, geostatistics and all the techniques are just tools.  How we use them, 

what we think about before and when we use them, and what we assume and know when we 

use them really shape our resource models.   

This is not a book where you will learn the theory of geostatistics – there are many of those 

already.  You will not find detailed discussions about formulae or debates about the current 

topical Geostatistical technique.  This book is about the practical side of generating a 

resource model.  The focus is on the process and an evidence-based approach to selecting the 

most appropriate geostatistical tools and parameters.  I have attempted to distil the learning 

my mentors have shared with me.  

You will encounter many vagaries during resource estimation.  These are in response to the 

uniqueness of the orebodies we want to model.  Like people, each orebody has its own 

personality, its own history and it is our challenge to describe the richness of these orebodies 

in as much detail as we can through our geostatistical toolset. 

Here is to your learning  

and the great opportunity to understand the world a little better. 

Jacqui Coombes 

www.coombescapability.com.au  
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Introduction 
 

Resource estimation is the process of creating a three-dimensional reflection of in situ 

mineralisation based on sparse samples, current geological thinking and a truck load of 

common sense.   

 

The challenge is to combine qualitative understanding of geological processes with the 

patterns exhibited in the quantitative data to create accurate spatial predictions that 

ultimately help mining engineers plan, design and extract mineralisation economically.   

 

Geostatistics provides an avenue for exploring and understanding patterns in the sample 

data.  However, without an intelligent handle on the geology, geostatistical analysis is 

reduced to alchemy in a mathematical fantasyland. 

 

My objective in writing this book is to wrest the process of resource estimation out of 

the hands of mathematicians (or pseudo-geostatisticians who hide behind the veneer of 

introduced complexity for the sake of beautiful mathematics – often at the expense of 

geological common sense) and return the process to its rightful owners – the geologists.  

The geologists, who have worked with the data collection, looked at and touched the 

rocks, examined the nuances and linked the patterns between drillholes, are the people 

who should be building these three-dimensional models.  Their experience of the 

patterns and nuances is invaluable to the process, the result and the mining decisions 

that follow.    

 

I believe the two common serious weaknesses in the generation of resource models 

today are insufficient geological support and deficient data integrity.  Too often 

resources are estimated based on assumed data integrity.  Frequently the only quality 

test presented in resource estimation reports are scatterplots between the original assays 

and laboratory duplicates.  However, these say nothing about either the suitability or 

the quality of the sample collection.  I have included a section in this book on sampling 

and quality control.  In particular there is a conceptual exposé of the fundamental 

sampling error (FSE) followed by an explanation of how statistical tools are used to 

investigate sampling integrity.  My hope is this will bring a more enlightened 

understanding to the management of drilling programs as well as sample collection 

prior to laboratory analysis. 

 

The geologist who can understand data quality, include their geological knowledge and 

combine these with resource estimation skills is in a strong position to create accurate 

reflections of the in situ mineralisation. 

 

No doubt, some geologists will seek to know more than is provided in this book.  You 

are encouraged to read other books such as Isaaks and Srivastava’s “Introduction to 

Geostatistics” or the ultimate geostatistical reference book “Mining Geostatistics” by 

Journel and Huijbrechts.  Other valuable references are listed in the bibliography. 

 

Ultimately, this book is designed to get you to understand the fundamentals of resource 

estimation and to encourage you to use all opportunities to examine and understand 

data from both the qualitative (geological) and quantitative (statistical) perspectives.  

When this happens, you improve the chances of the mined resources reflecting your 

original estimates and have a chance to experience the thrill of great reconciliation 

between estimate and actual. 
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Put the “geo” back into geostatistics 
 

Resource analysts depend on the geological modelling to define volumes (domains) that are 

stationary (no dominant trends, no extreme grades, no mixed populations and the continuity 

between samples is the same wherever you are in the volume).  In my experience, when the 

geological domain is well defined, the statistical side of geostatistical modelling is so simple 

and reconciliation so much closer.   

Fundamental to any resource model is the realism used to constrain the estimation 

parameters.  Without due consideration to the geological context, geostatistics becomes a 

numbers game with, at best, a chance of being somewhere in the ball park of reality.  When 

we inject our geological understanding into a resource model, we create an opportunity to 

understand, and then use, the patterns we observe in the data. 

I believe geological domaining is the most important step in resource estimation.  Resource 

analysts often gloss over the geology input due to time constraints, but this only creates 

problems and horrendous pressure later in the process.  It is the one aspect that resource 

analysts, particularly with a good geological background, can do well and where they will 

have the most significant impact on the resource model. 

This book emphasises how and when to incorporate geological understanding and 

interpretation into a resource model and how to validate choices (method and parameters) 

using statistical tools. 

 

A generic resource estimation process 
 

The flow of this book is structured around the four phases in resource estimation: 

1. Preparation 

2. Investigation 

3. Model Creation 

4. Validation 

The first phase (Preparation) involves the collection of relevant data and information 

required for a quality resource estimate.  This includes due consideration and assessment of 

the data quality and the database integrity.  All models are conditional to our efforts to secure 

a firm basis on which to make assessments in the data continuity and connectivity.  Central 

to the quality of a resource model is the quality of the data. 

Within the preparation phase are detailed analyses of the geological controls as well as how 

the sample grades correlate to the controls.  A fundamental and inherent assumption in 

estimation techniques is that the data is stable: from a single grade population within a 

homogeneous geological unit and with a single orientation of grade continuity.  Good 

geological input results in clear grade domains. 

The second phase (Investigation) involves detailed investigation of the grade patterns within 

domains.  Here we investigate the statistical patterns as well as the spatial patterns.  Clear 

analysis of the sample data provides a stable platform for selecting the most appropriate 

estimation technique and the associated parameters. 
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The third phase is the model-building phase.  Excellent work in the first two phases makes 

this phase simple.  The work reduces to selection of the most appropriate estimation method 

and setting up correct estimation parameters. 

The final phase tests the validity of the model created.  There are several basic tests to run to 

ensure fair representation of the data.  In addition to comparing models to the input data, 

reconciliation of production and grade control against the model is invaluable for detecting 

inconsistencies and including nuances in model updates. 

Reporting guidelines 
 

Reporting guidelines in the western world provide professionals in the mining industry with 

a technical context within which to perform.  Although the codes tend not to be prescriptive, 

they do emphasize a spirit of professionalism.  In particular, the codes call on us to report 

according to principles of Materiality, Transparency and Competence.   

Operating within a principle of Materiality ensures we communicate all that is relevant and 

can influence how decisions are made.  It enforces us to have a broader understanding of the 

context within which each person’s technical work is done.  This guiding principle 

encourages us to focus on what matters to the project and to be aware of the scale of impact 

of our professional actions and decisions. 

The guiding principle of Transparency calls us to be honest with data, with the process and 

with the quality of results, analyses and decisions.  The code also charges us to be 

transparent in our communications regarding our work so that others may make informed 

decisions. 

The third guiding principle of Competence exists for us to take responsibility for our roles 

and the impact of our decisions.  To do this we naturally take due care in our tasks and seek 

to understand the broader impacts of our work.  We are also responsible for continual 

investment in our own professional development. 

The reporting codes encourage us to act professionally at all times.  In this way, we uphold 

our reputations as well as the trust investors have in our industry. 

Ensure you have a good understanding of the code under which you report (the JORC code, 

NI43-101, SAMREC and others).   

As you progress through each resource estimation, ensure you make time to reflect on how 

the data quality, data density as well as your decisions, analyses, parameters and 

interpretations affect your confidence level in the resource model you will ultimately provide 

for decision making. 
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How to use this book 
 

The purpose of this book is to foster resource estimation skills within the mining industry.  

As such, this book follows the four phases of resource estimation for ease of implementation 

and reference. 

There are several ways to use this book; however, it is primarily designed to help you work 

through the phases.   

The gist of this book is to provide guidelines to understand the purpose within each phase.  

Since no two orebodies are alike – they may be similar, but are as unique as the people in our 

industry – each data set you encounter will have its own nuances that need to be understood. 

Alternatively, the tips, hints and rules of thumbs included in this guideline may help to 

enrich a process you already adopt. 
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  Phase 1: Preparation  
 

Purpose 
 

The purpose of the Preparation phase is to ensure the quality of data and information you are 

working with.  When we only assume data quality, without checking its integrity, we fall 

into the trap of believing too fastidiously in false data.  Alternatively, when we operate under 

constant doubt about the data integrity, it is difficult to extract valuable information to guide 

our decisions.  

In this section, we look at: 

 Evaluating the quality of our data, 

 Understanding the results from QAQC process measurements, and  

 How we interweave the geological information with a deeper understanding of our 

database to establish estimation domains. 

You will need the following information to apply the learning in this section: 

 QAQC reports on drilling, sampling and laboratory test work 

 A valid database containing 

o Geological logging data 

o Assays 

o Any relevant structural, lithological or weathering information  

o Geochemistry data 

 Geological information 

o Geological, geotechnical reports and technical papers 

o Interpreted geological features 
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Project quality is a function of data quality 
 
Nowhere is the old adage of garbage in, garbage out more appropriate than in the mining 

industry.  We rely on a miniscule sample size to make enormous decisions regarding the 

set up of a mining project.  The quality of these decisions rests most significantly on the 

quality of the data. 

 

Our purpose here is to introduce some fundamental concepts and tools to ensure excellent 

quality data collection.  The format is practical with a focus on tools and concepts rather 

than theory.  There are plenty of references should you wish to pursue the topics in more 

detail. 

 

Resources classified according to the reporting codes (such as JORC, SAMREC, NI 43-

101 and others) require meticulous attention to data collection, data representativity and 

database integrity.  The data collection is the foundation of all subsequent decisions.  The 

integrity of the data collection is too often treated as an afterthought, only once a project is 

viewed as commercially interesting. 

 

A positive Quality Assurance and Quality Control (QAQC) is the database’s stamp of 

approval.  Without this stamp, all the effort put into complex geological interpretations, 

mathematical estimations and resource classification is called into question.  Poor QAQC 

practice is equivalent to generating resource estimates in the dark. 

When do we put effort into QAQC?  Well, it is a process that should be analysed as data is 

collected.  QAQC should accompany every parcel of data.  QAQC is most effective if used 

during a drilling campaign to MONITOR data collection and call a halt to a campaign or 

laboratory that is underperforming.  Running a QAQC at the end of the data collection 

program is an ineffective way to manage project quality. 

The objective here is to shed light on the tools and techniques available to assess the 

various stages of the process of data collection. 
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Sampling basics 
 
Concepts 
 

Population and representative samples 

When it comes to mining, we aim to extract the economic portion of a population (the 

portion that makes a profit).  We do not know our full population.  Instead, we rely on a 

miniscule subset of the population (the samples) to make our decisions.  If we are to 

make reasonable decisions, the samples we rely on must represent the total population. 

 

What makes a sample set representative?  In statistical terms, this means the samples 

we collect of the population provide a fair indication of how the population behaves.   

 

A histogram is a useful plot for understanding the population and for measuring of the 

population distribution.  A histogram is a plot of the count of data points within 

successive intervals (see an example histogram for copper in Figure 1).  This bar chart 

provides a summary of typical spread of grades in the data set. 

 

 

 

 
Figure 1 Example of a histogram  Figure 2 Example of a histogram on log-scale 

When a data set has a positive skew, most of the sample values are low grade with a small 

percentage of more extreme high grades.  This means most of the samples occur within a 

few intervals of the histogram (see the left hand bars of the histogram in Figure 1).  A useful 

option is to change the intervals for the histogram.  The easiest way to do this is to apply a 

log-transform to the data.  A log-transform maintains the data order, so the same low grades 

samples on a normal scale are low grades on a log-scale, and the highest sample on a normal 

scale is still the highest sample on the log-scale.  Figure 2 is a log-scale histogram of the data 

presented in Figure 1.  A log-transformation effectively magnifies the lower grade end of the 

distribution and contracts the higher grade scale. 
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A sample histogram is a representative reflection of the population histogram when it 

accurately reflects the total population (Figure 3).  

 

 
Figure 3 Histogram of samples and population 

 

A good way to ensure a representative data set is to have fair coverage of the 

population (no bias introduced by clustered drilling) and even sampling within each 

geologically controlled population (as best as can be achieved – often samples are 

collected over variable lengths to represent the various geological units or population 

controls).   

 

In addition, for a sample to be representative the difference between the sample value 

we obtain and the true value should be as close as possible.  If we take numerous repeat 

samples at the identical location, the difference between them should be small and the 

average of all of them should be as close to the true value as possible.  This means the 

samples are precise (small overall error) and accurate (close to the true value).  The 

consistent difference between the average of the repeat samples and the true value is 

called a bias. 
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Precision, accuracy and bias 

In reality, data collection errors lead to a mismatch between what we sample and the 

population we are trying to represent.  This difference can occur in the following ways: 

 

 Precision describes our ability to be specific about a grade – the number of 

decimal places we report describes our ability to be precise.  Precision is 

measured by comparing repeat samples. 

 Accuracy describes how well the average of the repeat samples targets the 

true (but unknown) grade. 

 

 
Figure 4 Accuracy and precision – target example 

 

Bias is the measure of the systematic difference between the average of our repeat 

samples and the true grade. 

 

In statistical terms, the histograms of the repeat samples either reflect the true unknown 

value or not according to a shift in the average away from the true mean (a bias), or a 

wider than acceptable spread (lack of precision) as described in Figure 5. 

 

In reality, samples invariably incur a degree of imprecision and inaccuracy.  We need 

to ensure that through proper sampling practices the errors incurred are as small as 

possible.  
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Figure 5 Accuracy and precision in statistical terms 

 

 

Samples and lots 

Samples are collected at different volumes - consider the difference between the 

volumes of 1m of RC chips compared with the volume of the pulp that is eventually 

analysed in the laboratory.  Pierre Gy describes these differences as the “lot” or the 

“sample”, where the sample is the volume ultimately analysed for grade, while the lot 

is the volume of material collected for sampling.  

 

 
Figure 6 The difference between a “lot” and a “sample” 

 

Other examples of lots are: blasthole cone, diamond core, development face chips and 

stockpiles.  Examples of samples are half diamond core, riffle split sample, mill pulp 

and fire assay sample. 
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Activity 
 

Consider a 48 kg lot that contains precious grains.  We are interested in the number of 

grains per kg.   The lot is divided into 48 one-kilogram samples. 

 

1. Count the grains per kilogram within each sample (record in count template). 

 

 
 

2. Calculate the overall average of the samples ___________.  This is the grade of 

the lot. 

 

3. How well does each sample reflect the grade of the lot?  To answer this 

question, plot a histogram of the sample grades.   

 

 
Highlight the lot grade on the histogram.  Compare the sample grades to the lot 

grade. 

 

Calculate the variance and standard deviation.   

What does this tell you about the precision of the samples? 
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4. Suppose we take bigger samples, say 6kg samples.  How precise will these 

samples be?  To answer this, calculate each 6kg sample’s grade as grains per 

kilogram. 

 

 
 

Calculate the overall average.  Calculate the standard deviation.  How does this 

compare to the standard deviation of the 1kg samples? 

 

The change in standard deviation or precision can be attributed to the volume-variance 

effect at the sampling scale (see page 151). 
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5. Suppose there is a problem with your counting apparatus.  For each 1kg 

sample, a grain is lost.  With this adjustment, recalculate the true grade of the 

lot.   

 

     
 

 

Recalculate the standard deviation of the samples and plot the histogram of the 

problem data.   

 

 

 
What do you observe? 
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Heterogeneity and sampling 
 

The fragments within the sample will not be uniform units as we had in the previous 

activity.  Instead, particles will have different shapes and sizes to each other (Figure 7) 

and there will be a preferential distribution of similar particles (Figure 8).  These two 

types of heterogeneity are: 

 

1. Constitution heterogeneity: describes how the fragments vary internally.  This 

heterogeneity increases when the differences in composition between each 

fragment particle increases.  

 

2. Distribution heterogeneity: describes how the fragments are distributed within 

the lot. 

 

 

 
Figure 7 Individual fragments within a lot can be very different to each other  

(After Gerlach and Nocerino, 2003) 

 

 

 
Figure 8 Different types of fragments may distribute differently within a lot  

(After Gerlach and Nocerino, 2003) 
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Constituent Heterogeneity means that within an individual sample, each fragment will 

influence the sample grade differently.  Contrast the sample drawn in Figure 9 with the 

grain samples in the previous activity. 

 

 
Figure 9 Different types of fragments will influence a sample differently  

(After Gerlach and Nocerino, 2003) 

 

 

Distribution Heterogeneity will mean sample grades will be influenced by where 

samples are taken from within the lot – compare the components of the three samples in 

Figure 10. 

 

 
Figure 10 Samples affected by distribution heterogeneity 

(After Gerlach and Nocerino, 2003) 
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In addition, the heterogeneity will affect how fragments move or settle as the lot is 

extracted from the ground.  For example, heavy fragments within a lot from an RC 

drillhole will land differently to lighter or finer fragments (Figure 11).  Merely spearing 

the lot to collect a sample could result in a sample grade that does not represent the lot. 

 

 
Figure 11 Different samples fall and settle differently (after Pitard 1993) 

 

 

Remember our objective is to take a sample that will be representative of the lot.  We 

need to ensure we do not introduce more heterogeneity than already exists, since this 

will increase the bias between the sample and the lot. 

 

Since samples are costly, we want to take as small a sample as is feasible.  However, 

there is a physical lower limit on the number of particles contained within a sample.  If 

the sample is too small, there may not be enough of the mineralised component to 

represent the lot.   

 

Designing a sampling protocol to suit the geological characteristics is the purpose of a 

sampling nomogram (see page 28). 
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Overview of sampling errors 
 

Sampling errors occur at each stage of the sampling process.  Consider those listed in 

Table 1. 

  

Table 1 Pierre Gy’s Seven Sampling Errors (after Pitard, 1993) 

Type of 

Error 
Description Mitigation 

Fundamental 

sampling 

error 

The error (or loss in precision) due 

to the physical composition and 

structure of the material being 

sampled.  This error includes 

particle size distribution 

(Constituent heterogeneity) 

Use sampling  nomogram to manage 

FSE for various crush-split protocols 

 

Grouping 

and 

segregation 

error 

Attributed to the non-random 

physical distribution of particles 

(Distribution heterogeneity) 

Managed by homogenising and 

splitting the sample 

Increase sample volume 

Long-range 

heterogeneity 

error 

Refers to the non-random 

differences due to location of 

sample within the orebody 

Use variograms to analyse spatial 

variability and manage the effect of 

spatial differences by taking several 

sub-samples to form a sample 

Periodic 

heterogeneity 

error 

Describes spatial or temporal 

fluctuations 

(e.g. phases caused by periodic 

weathering) 

Managed by compositing samples 

before analysing the grade 

relationships between samples 

Increment 

delimitation 

error 

The error due to inappropriate 

sampling design and/or incorrect 

sampling equipment selection 

Care in sample design and 

equipment selection 

Increment 

extraction 

error 

Occurs when the correct sampling 

procedure is not followed 

Easiest to manage through correct 

sampling design and adherence 

Preparation 

error 

Occurs when some of the sample is 

lost, contaminated or altered 

Strict adherence to field and 

laboratory protocols is essential 

 

Pitard (2003) discusses both the causes and the mitigation of these and other errors in 

detail.  By way of introduction to the concepts, let us look at some of these from a 

practical perspective. 
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Fundamental Sampling Error (FSE) 
 

The Fundamental Sampling Error (FSE) describes the bias between the sample and the 

lot it is representing due to the constituent heterogeneity.  The fundamental sampling 

error is the “error that remains when the sampling operation is perfect” (Pitard, 1993).   

 

The FSE is the only error that can be estimated ahead of the actual sampling. 

 

The FSE is calculated as 

 

FSE = [variation due to volume] * [variation due to fragmenting] * [mass 

variation] 

  

where 

 The variation due to volume is affected by the following factors: 

o the shape of the fragments (shape factor) 

o the particle size variability (granulometric factor) 

o actual size of the particles (particle size) 

 

 The variation due to fragmentation is controlled by the following 

factors: 

o the heterogeneity of the particles (mineralogical factor) 

o how well the particles separate (liberation) 

 

 The mass variation is a comparison of the sample mass to the mass of 

the lot. 

 

The FSE equation in terms of these factors is 
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For most situations, the mass of the sample is so much smaller than the mass of the lot 

that the FSE equation is simplified to   
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These terms are described and discussed next. 
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Shape factor (f) 

There are two extremes of shape considered in the FSE.  These are the cube and the sphere 

(Figure 12).   

 

 
Figure 12 Shape factor as a cube or a sphere 

 

A shape factor is also known as the coefficient of cubicity because it describes the shape of 

a particle relative to a cube.  The shape factor for a cube is one, while the relative volume of 

the sphere within the cube gives a shape factor of a sphere.  For a cube with a length of one, 

the volume is 1 x 1 x 1 or a shape factor of one. For a diameter of one, the volume of a 

sphere is 0.52 and so the shape factor is 0.52.   

Most ores have a shape factor of around 0.5.  Flaky minerals have volumes that are flatter 

and more rectangular than a cube and so their volume is reduced to effectively the anisotropy 

of the rectangle shape (for example 0.1 for a flaky mineral whose height is about 10% of its 

length).  Soft homogeneous minerals (such as gold) have a shape factor of 0.2. 

Particle size (d3) 

The particle size describes the volume of the cube within which the particle fits (Figure 13).   

 

 

 
Figure 13 Particle size factor 
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Granulometric factor (g) 

The granulometric factor, or particle size distribution factor, describes the particle size 

distribution (Figure 14).  The size of each particle is not a constant. This factor accounts for 

the varying particle sizes when estimating the fundamental error.   

The granulometric factor describes the range of particle sizes in a sample.  When particles all 

have the same size (or diameter), g is set to one.  Particles in crushed samples, the g factor is 

typically around 0.25.  For particles retained between screenings, g is 0.55. 

 

 
Figure 14 Granulometric factor describes the size distribution 

 

Due to the log-normal distributions used to describe the size distributions, for most 

cases the P95 (95% mass passing size) samples have a granulometric factor of 0.25.   

 

Mineralogical factor (c) 

The mineralogical factor (c) describes the composition and heterogeneity when all the 

particles are liberated (Figure 15).  The mineralogical factor is essentially the proportionally 

weighted density of the mineralisation and the density of the gangue.  

 

 
Figure 15 Mineralogical factor concept 
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Liberation factor (l) 

The liberation factor is the fraction of the mineralised particles that can be separated as pure 

mineralisation from the gangue (Figure 16).   

 
Figure 16 Liberation factor concept 

 

One way to calculate the liberation factor is to compare the diameter of the particles needing 

liberation to the size of P95 screening diameter.  This ratio is typically scaled by raising to a 

power of one for high-grade concentrates and up to no more than three for other minerals.  

Mass factor (MS and ML) 

The mass factor describes the mass of the sample relative to the mass of the lot.  The 

inverted mass of the lot is subtracted from the inverted mass of the sample.  The closer the 

sample mass to the lot the more similar these values and the less the difference between 

them.  Ultimately for large samples relative to the lot mass, the mass factor is small and then 

so too is the FSE.  

The FSE equation 

The factors described above are multiplied together to provide a measure of fundamental 

error in the sample of the lot due to the nature of the material we are working with:    

 
11

      2 3











LS MM
lcdgf

FSE
  

Or the simpler 
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Understanding the nature of the material, or the Fundamental Sampling Error of the material, 

allows us to plan a sampling strategy – how big the sample should be relative to the lot size, 

how much homogenisation is required, when and how we can split a sample and how close 

we can get to a representative sample. 
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Solving practical sampling problems 
 

The fundamental sampling error provides a useful guide for solving practical sampling 

problems, including: 

 To what diameter should we be crushing? 

 How big should our sample size be if we want to maintain a precision of at least 10%? 

 

Let us tackle each of these by way of an example. 

Suppose we have mineralisation in material with the following properties: 

 The screen diameter is 1.25cm for 95% of material.  This is the particle diameter (d). 

 The mineralogical factor (c) is 15000000 

 The fragments are spherical (f = 0.52) 

 The granulometric factor (g) is 0.25 (typical for gold) 

 The liberation factor (l) is 0.000025 

 The sample mass is 10kg (10000 g) 

The simpler FSE equation gives us an error variance factor of 
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Taking the square root of this value gives us a precision of 11.5% 
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What do we need to do to get the precision below 10%? 

Either we could crush the sample to pass through a finer screen or we could take a larger 

sample.  Let us investigate these two options. 

To investigate the required diameter we need to re-arrange the formula and substitute 10% 

for the precision (i.e. 0.12 for the
2

FSE ) 

 

2
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To achieve a precision of 10%, the material will need to be crushed to 95% passing 1.14 cm. 

Alternatively, we could take a larger sample.  Re-arranging the formula again gives us: 
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By taking a slightly larger sample of 13.33 kg, we can improve the precision to 10%. 

In practice, both options need to be evaluated for practicality – what makes more sense:  

crush more or take a bigger split?  
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Grouping and segregation errors 
 

Grouping and segregation occurs when a lot or sample is moved (for example in a conveyor 

or as a sample blasts through to surface in an RC drillhole).   

Grouping and segregation is due to differences in fragment density, fragment size or 

fragment shape.  Other causes include air turbulence (for example when a riffle split is fed 

too quickly or has no door panels to keep the fines within the sample). 

Consider the examples described by Pitard (1993) presented in Figure 17 to Figure 21.  Note 

that these errors cannot be undone, fixed up or cancelled out in the rest of the sampling 

process.   

Impact of density variation 

Variability in density is the main cause of segregation and grouping - consider the density of 

gold (19.3 g/cm3) compared with gangue (2.6 g/cm3) and the impact of this on the sampling 

process. 

In other deposits the density of the critical component tends to be double that of the gangue 

(for example: mineral sands the zircon and ilmentite have densities around 4.7 g/cm3 

compared with about 2.6 g/cm3 for the clay and quartz gangue.   

 

 

Activity 
 

Consider the projects you work on.   

 How different is the density of the critical component to the gangue?   

 What are the stages of sampling in your project where density would cause segregation 

and grouping? 

 What do you do or can you do to reduce segregation and grouping on your sampling 

process? 
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Figure 17 Segregation of dense fragments from 

lighter ones in the same fraction (Pitard, 1993) 

 

 
Figure 18 Segregation of fine particles from 

larger fragments with the same density (Pitard, 

1993) 

 

 

 

 
Figure 19 Fines sift inside the pile while coarse 

fragments role down the outside (Pitard, 1993) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20 Segregation generated by different 

angle of repose (Pitard, 1993) 

 

 

 

 
Figure 21 Segregation generated by different 

friction rate (Pitard, 1993) 
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Minimising grouping and segregation 

Pitard (1993) measures the grouping and segregation error as the product of two factors (the 

grouping factor and the segregation factor) and the FSE: 

Grouping and segregation error (GSE)  = grouping factor x segregation factor x FSE 

Homogenisation (or mixing) is the ideal process used to minimise the grouping and 

segregation error.  This, however, is costly on large lots and so has limited appeal. 

An alternative is to take increments or sample subsets in an attempt to generate a 

representative sample.  When we take increments to create a sample (say spearing an RC 

sample), the more increments we take the more likely we are to get a representative 

proportion of the lot.  

Consider the example in Figure 22.  The overall lot shows a third of the fragments are 

mineralised (15 out of 45 fragments).  This is not what is reflected within each increment (1 

out of 8; 2 out of 5 and 4 out of 8).  Individually the increments do not represent the lot.  A 

sample made up of increments, however, is representative of the lot (7 out of 21). Pitard 

(1993) recommends 30 such increments.  This is consistent with requirements in statistical 

theory (for example in the central limit theorem). 

                          
Figure 22 Increments improve representativity when fragments are grouped and segregated 

 

When the grouping and segregation is due to stratified or bedded material, we need to ensure 

the samples are collected at right angles to the bedding, thereby achieving a sample 

representative of the bedded lot. 
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Sampling collection errors 
 

Sample collection errors differ from the FSE since the sample collection errors can be 

reduced.  Consider these three avoidable errors: 

1. Poorly delineated sample.  Before the sample is even collected, errors can occur 

because the target geometric volume is incorrectly or poorly defined. 

2. Poorly extracted sample.  As the sample is extracted, the target volume is not 

collected (for example poor core recovery) and either too little or too much material 

is collected. 

3. Incorrect preparation occurs when the sample is changed before assaying.  

Examples include: 

 Contamination (for example downhole smearing or dust contamination) 

 Loss of either part of the critical component or the gangue (for example 

loss in the high grade mineralised fines to the water used whilst cutting 

core)  

  Alteration 

 Unintentional faults such as dropping the sample or equipment failure 

 Intentional error (such as fraud or sabotage). 

 

The objective of sampling theory is to understand sampling errors so we can be more 

aware and manage or minimise them through QAQC processes. 

 

 

Sampling for density 
 

Lipton (2001) provides a comprehensive summary of the approaches to sampling for 

density.   
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Sampling nomograms 
 

Sampling nomograms are used in the design of a sampling protocol.  Various scenarios 

of crushing and splitting can be assessed before a drilling program.   

 

The idea behind the sample nomogram is to evaluate various crushing and splitting 

options according to the fundamental sampling error, practical and cost considerations.   

 

The nomogram plots the FSE against the sample mass.  Both axes are plotted on a log 

scale.  The FSE of the sampling protocol is tracked on the nomogram (Figure 23). 

 

 

 
 

 
Figure 23 Example of a sampling protocol and a Nomogram 

 

The slopes of the FSE are based on a test of the material to be sampled.  In this test, 

typically 50 points are assessed for the shape, granulometric, mineralogical and 

liberation factors.  Naturally, these factors will vary according to changes in the 

geological units.  

 

Once these factors are estimated, the FSE equation needs only the fragment size, the lot 

mass and the sample mass.  The guidelines on the nomogram are simply the FSE values 

for changes in sample mass for a given P95 fragment size. 
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QAQC 
 

Introduction 
 

The purpose of the Quality Assurance and Quality Control (QAQC) is to ensure the quality 

of data and information used to make decisions on project value and project progression are 

sound.  The quality of mining and project decisions is fundamentally contingent on data 

quality. 

In this section, we discuss the use of statistical tools to monitor sample quality. 

A positive QAQC is the database’s stamp of approval.  Without this stamp, all the effort on 

complex geological interpretations, mathematical estimations and resource classification is 

called into question.  Poor QAQC practice is equivalent to generating a resource blindfolded. 

When do we put effort into QAQC?  Well, it is a process that should be analysed as data is 

collected.  QAQC should accompany every parcel of data.  QAQC is most effective if used 

during a drilling campaign to MONITOR data collection and call a halt to a campaign or 

laboratory that is underperforming.  Running a QAQC at the end of the data collection 

program is an ineffective way to manage data collection.  

A good QAQC process is one that is active, ongoing and reviewed as data is collected; it is 

easy to understand, makes sense and gives you sufficient information to take timely 

corrective action on your rig, with your sampling procedure or at the laboratory. 

Let us look at ways to analyse data quality. 
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Statistical process control 
 

Process control is the act of checking the quality of a process.  In simplest terms, we take a 

value we know (standards and blanks) and insert them into the assaying process.  We then 

plot the assay values returned by the laboratory for these known values and evaluate how 

close they are to the actual value.  Some variation is expected, however, we want to ensure 

the returned value as well as the variability of the returned values is reasonable. 

Run charts 

Run charts are simply a plot of values measured over time.  The value measured is plotted on 

the y-axis.  These values are plotted against time on the x-axis. 

Run charts are useful for tracking trends.  For example, a run chart on turnaround time at the 

laboratory may indicate a trend of increasing turnaround time (Figure 24).  In particular, run 

charts are useful for spotting non-random patterns (Figure 25). 

 

 
Figure 24 Turnaround time as an example of a Run Chart 

 (Maxwell’s QAQCR program) 
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Figure 25 Look for non-random behaviour 
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Control charts 

Control charts are run charts with control limits.  Control limits provide a sense of when to 

start worrying about a process or when the process is out of control.  The control limits are 

predefined (expected standard grade and variability). 

In Figure 26 instance 46 is out of the control limits.  Notice the erratic values that precede 

instance 46 and the sudden run of three almost identical values …. mmmmm makes me 

wonder?! 

 
Figure 26 Example of a control chart  

(Maxwell’s QAQCR program) 

A plot with all the standards and blanks on a single graph helps identify consistent patterns in 

the batches (Figure 27). 

 
Figure 27 Example of a control chart with simultaneous plotting of results 

 

Another useful grade to plot on the control chart is the grade of the sample just prior to the 

standard grade analysed as well as the grade returned for the standard sample.  This is useful 

for checking for sample smearing in the laboratory assaying procedure. 

 

Instance 46 is out of control limits 
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Looking for patterns 

Bias 

Typically, we look out for a consistent bias or patterns in the control charts.  This is revealed 

when the laboratory delivers sample values for the standards that are consistently high or 

low.  However, how many consistently high (or low) samples do we need to be confident 

that there is a problem? 

If the laboratory is producing random high and low grades around the standard, we will 

expect to see this plotted as a sample value either above or below the expected grade.   

Consider what a random variability around the standard value should look like.  For one, it 

should look random.  But how do we know when a pattern is random or not?  The simplest 

and best-known random process is flipping a coin.  Flip a coin and you have an even chance 

of either a head or a tail.   

Let us simulate the probability of getting random high grades back from the laboratory.  In 

flipping a coin, we will record a head as a grade above the expected standard value and a tail 

as a grade below the expected standard value.  

If we submit only one standard sample we will see either the grade as either above or below 

the expected standard grade.  There is thus a 50% chance the standard value is higher than 

the expected value.   

Now, if we submit two standards we are essentially flipping two coins.  The two resulting 

standard values are one of head-head, head-tail, tail-head or tail-tail.  Therefore, there is a 

25% (one in four) probability that the two consistently high standard values delivered by the 

laboratory are due to random errors. 

Consider three standard values.  The random patterns are associated with the flipped coin are 

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT 

So there is a one in eight (or 12.5%) probability that three consecutive higher than expected 

standard values is due to random noise.  Three consecutive high values do not tell us enough 

about the presence of a bias in the laboratory. 

But what about four consecutive high values?  How random is this? The probability of four 

consistently high grades is one in 16 (or one out of 2 x 2 x 2 x 2), which is a 6.25% 

probability that four consecutive high values is random. 

And five consecutive high grades?  … one in 32 or 3.125% probability. 

And just for good measure, the probability of six consecutive high grades is one in 64 or 

1.5625% probability.   

Similarly, there is a one in 128 (or less than 1% probability) that there will be seven 

consecutive high grades. 

A good dose of common sense is invaluable when interpreting control charts of standards 

and blanks.  We expect the laboratory to have a degree of error in the standards we submit.  

We do not want to see consistent bias in our data (either above or below the expected 

standard grades). 
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Non random patterns 

We expect to see random fluctuations about the expected standard grade.  Any 

discernable patterns should be a warning to interrogate the batch of data further. 

Patterns include: 

 Consistently higher (or lower) grades than expected 

 Cyclical increasing and decreasing grades 

 Increasing (or decreasing) variability in the standard values 

 Grades trending up (or down) or  

 Standards returning identical values. 

 

 
Figure 28 Examples of warning patterns in control charts 
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Setting control limits 

Control limits provide a warning that the laboratory is returning standard grades that 

are out of bounds of the natural variability expected in the standard data.  Useful 

control limits2 are typically 10% either side of the expected standard grade.  Laboratory 

supplied standard values outside this range are a warning to check the batch of data 

provided by the laboratory.  

 

 
Figure 29 Example of a laboratory in control 

 

 

 
Figure 30 Example of a laboratory with two standards with grade outside the ±10% control interval 

 

 

 

 

 

 

                                                      

2 Upper and lower control limits should be set at reasonable percentages for each standard.  Here we use 

10% as an example. 
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Warning signals used within Minitab software’s control charts include: 

 

 One point more than three standard deviations from the centre line 

 Nine points in a row on same side of the centre line 

 Six points in a row, all increasing or all decreasing 

 Fourteen points in a row, alternating up and down  

 Two out of three points more than two 2 standard deviations from the 

centre line (same side) 

 Four out of five points more than one standard deviation from the centre 

line (same side) 

 Fifteen points in a row within one standard deviation of the centre line 

(either side) 

 Eight points in a row more than one standard deviation from the centre line 

(either side) 

 

Activity 
 

Assess the following three control charts.  Are there any batches of samples you would 

question? 

 

 
Figure 31 Control Chart Activity – chart 1 

 

 

 

 

 



The Art and Science of Resource Estimation 

 

- 37 - 

 
Figure 32 Control Chart Activity – chart 2 

 

 

 
Figure 33 Control Chart Activity – chart 3 
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Evaluating reproducibility 
 

Scatterplots 

QAQC checks include comparisons between duplicate and repeat samples against the 

original sample grade on a scatterplot3 (Figure 34). 

 

 
Figure 34 Scatterplot between duplicates and original sample grades 

 

We look for both accuracy (lack of bias) and precision (degree of reproducibility) in a 

scatterplot.   

Firstly, the scatter between the duplicate (or repeat) sample and the original sample should 

lie roughly along the one-to-one line.  This indicates there is no bias in the data.  The 

example in Figure 35 shows duplicates are consistently higher than the original sample 

grades. 

 

 

 

 

 

 

                                                      
3 Quick tip:  The original or oldest data set is plotted on the X-axis of a scatterplot. 
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Figure 35 Scatterplot between duplicates and original sample grades with a bias 

 

Secondly, the scatter around the one-to-one line gives us a clue about how different the 

duplicates (or repeats) are to the original samples.  Figure 36 illustrates increasing variability 

between the original and the duplicate sample grades.  Notice that even a 20% typical 

difference between original and duplicate shows up as a reasonable scatter. 

Scatterplots allow a quick assessment of both the bias and possible differences between the 

duplicate and original samples and they should be generated as data becomes available.   
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Figure 36 Scatterplots with decreasing precision (log-scale and grade scale) 
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Comparing histograms (Q-Q plots) 

Q-Q plots (or quantile-quantile plots) compare two data sets by plotting the respective 

percentile grades against each other. This is equivalent of creating a scatterplot between the 

histograms (Figure 37).  Practically, Q-Q plots are generated as follows: 

1) Sort each data set in ascending order 

2) Calculate the percentiles for each data set 

3) Plot the percentiles from the two data sets against each other  

Examples are presented in Figure 38 and Figure 39. 

 

 
Figure 37 A Q-Q plot provides a comparison of two histograms 
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Figure 38 Example of a Q-Q plot (grade scale) 

 

 
Figure 39 Example of a Q-Q plot (log scale) 
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Box-and-whisker plot 

A box-and-whisker plot provides a quick way to compare the spread of data from 

several sources.   

 

The box describes the grade of the 25th percentile, the median and the 75th percentile 

(the quartiles).  This is equivalent to the middle half of the data.  The whiskers usually 

describe how far the minimum and maximum extend beyond the quartiles.  Some 

packages plot the whiskers to the 10th and 90th percentiles and 

the remaining extremes at the actual values. 

 

Box-and-whisker plots are useful for comparing several data 

sets – those with similar boxes and whiskers are likely to have 

similar histograms and statistics.  A Q-Q plot between the 

similar data sets should be used to confirm this assumption. 

 
Figure 40 compares the spread from four laboratories.  Notice 

the range of grades from laboratory 3 is lower than the other 

laboratories.  We need to question whether the laboratory 

results are based on the same source of data, or why results 

from laboratories 2 and 3 are so much lower than from 

laboratories 1 and 4. 

 

 
 

 
Figure 40 Example of a box-and-whisker plot 
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Measuring precision 
 

The scatterplots tell us something of the bias as well as something of the repeatability, but 

how precise are the duplicates or repeat samples?  How do we quantify precision? 

Relative difference plot 

An easy way to look at precision is to plot the difference between the duplicate and the 

original samples (scaled by the original sample grade) plotted against the original sample 

grade. 

 

 
Figure 41 Relative difference plot 

 

Ideally, relative differences should be within 10% of the sample grades.  High relative 

difference could indicate poor sampling practice, poor assaying or a high inherent nugget 

effect in the mineralisation.  If the reason for high relative differences is an inherent nugget 

effect, this could be an indication that the sample volume is too small to generate 

representative sample grades. 
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Precision plot 

 

A precision plot is similar to a relative difference plot.  Instead of a relative difference, we 

calculate the absolute difference, halved, between each original-duplicate pair of samples 

and plot this against the original sample grade. 

Note that the precision lines (5%, 10% and 15% limits) are created as the respective 

percentages of the original grades.   

The precision plot in Figure 42 indicates the duplicate data tends to have a precision of no 

more than 10% of the original samples.  So, duplicate samples are expected to have values 

within 10% of the original sample values. 

Higher precision is expected in a laboratory assaying process than in a field duplicate – the 

material is expected to be more homogenised by the time it reaches a laboratory. 

 

 
Figure 42 Precision plot 
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Activity 
 

Assess the quality of the Fe and SiO2 data using the following. 

 

 
Figure 43 Scatterplot between duplicate and original 

 

 
Figure 44 Log-Scale Scatterplot between duplicate and original 
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Figure 45 Normal scale Q-Q plot between duplicate and original 

 

 
Figure 46 Log-scale Q-Q plot between duplicate and original 
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Figure 47 Relative difference plot (relative difference against original grade) 

 

 

 
Figure 48 Log-scale relative difference plot (relative difference against original grade) 
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Figure 49 Precision plot (1/2 absolute difference against average of original and duplicate) 

 

 

 
Figure 50 Scatterplot between duplicate and original 
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Figure 51 Log-scale scatterplot between duplicate and original 

 

 
Figure 52 Normal scale Q-Q plot between duplicate and original 

 

10% 

10% 
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Figure 53 Log-scale Q-Q plot between duplicate and original 

 

 
Figure 54 Relative difference plot for SiO2 (relative difference against original grade) 
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Figure 55 Log-scale relative difference plot for SiO2 (relative difference against original grade) 

 

 

 
Figure 56 Precision plot for SiO2  (1/2 absolute difference against average of original and duplicate) 
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Building domains from geology 
 

Geology is the cornerstone of any accurate resource model.  In my opinion, geology 

contributes 90% of the accuracy of a resource estimate.  The time spent on the geology 

rarely reflects this importance.   

 

However, the better the geological model, the simpler the resource estimation (and the 

simpler the mathematics required to generate a representative resource model!) 

 

 

 
 

 

What is so important about geology? 
 

In resource estimation, we create blocks of grade based on the nearest sample data.  If 

the block grade is to be relevant, then the samples it is based on must be relevant.  In 

other words, we need to identify the populations of interest that are relevant to the 

block we want to estimate.  This means we need to understand the boundaries of the 

populations to constrain the relevant samples.  But what makes a sample relevant?  And 

how can we know we have sub-divided the data into groups of relevant samples?  

Building domains is about: 

 using our understanding of the geological controls on mineralisation to create 

the limits of each mineralisation population 

 using statistical tools to validate our interpretation of the mineralisation 

populations 

 understanding and defining domains before creating three dimensional 

envelopes of the populations 

 

Let us look at some examples of geological interpretations and the effect on the mining. 
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Example 1 

Consider two interpretations of geological controls on mineralisation that are based on 

identical data: lithological control or structural control.   

 

 
(a) lithological model 

 

 
(b) structural model 

 
Figure 57 Lithological versus structural interpretation 

 

Either interpretation of the geology is plausible given the available data.  However, the 

lithologically interpreted model results in a pit optimisation that is shallow with a low 

strip ratio.  The optimum pit on the structural model extends deeper and has a higher 

strip ratio.  The structural model also results in a significantly higher Net Present Value 

(NPV).   

 

So, the geological interpretation and its role in constraining the mineralisation affects 

the economic expectation of a project. 
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Example 2 

Consider the situation of a high-grade supergene zone.  If this zone is not recognised 

nor interpreted as a separate high-grade zone, then the high grades will be smeared 

either into the oxide or into the fresh material, thereby over-estimating both grade and 

tonnes in these zones. 

 

 
(a) Constrained estimation of high grades within supergene 

 

 
(b) Unconstrained high grade smeared into oxide profile 

Figure 58 Constraining supergene enrichment 
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Example 3 

Another situation to consider is whether mineralisation pre- or post-dates the structural 

events.  In the first instance, mineralisation is interpreted to occur only within the 

lithological layers, whilst the interpretation of mineralisation post-dating the faulting 

allows additional ribbons of mineralisation to be interpreted. 

 

 

(a) Mineralisation pre-dates faulting 

 
 

 

 

(b) Mineralisation post-dates faulting  

 
 

Figure 59 Mineralisation and structural events 
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Geological models 
 

Understanding mineralisation populations requires us to understand genesis, lithology, 

deposition, structural controls, weathering, mineralogy and any other factors that may 

influence our understanding, definition and delineation of the mineralisation volumes. 

 

Take a moment to describe the regional controls on your deposit. 

 

Regional controls … 
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Now focus in a bit more locally.  Describe the significant geological structures, 

lithologies, impact of weathering or any other relevant features. 

 

Local controls … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using your geological understanding, you should be able to build a three-dimensional 

model containing significant geological structures and controls on mineralisation.  The 

big secret here is to be open to alternatives and to distance yourself emotionally from 

your interpretation.   

 

So take time to explain your model, ask for other people’s insights and suggestions that 

may improve your geological interpretation.  Update your model to reflect a wide range 

of experience. 
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The purpose of a geological 

interpretation is  

to synthesize all information and 

experience to  

minimise the element of surprise  

when it comes to mining an orebody 
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Mineralisation models 

 

The geological model forms a context within which to build a mineralisation model.  

Take a moment to describe the mineralising events of the deposit and how these relate 

to the geological interpretation(s). 

 

Mineralising event(s) and relation to geological context … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we use our understanding of the geological controls and the mineralising events 

to interpret mineralisation envelopes.  Here we are looking for the relationship between 

geology and economic mineralisation, and aim to describe the spatial envelope of the in 

situ mineralisation population. 

 

Ideally, each sample in your database is logged for the factors affecting mineralisation.  

We can use this information to build a statistical image of the mineralisation 

populations and define domains.  
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Building domains 
 

What is a domain?  For resource estimation, the domain is a spatial volume where: 

 

1. the geology is consistent (homogeneous) 

2. contains a single grade population 

3. has a single orientation for search 

One expects different geological units to mineralise differently.   It naturally follows 

that the homogeneity of the geology lends support to the mineralisation envelope – 

when we can understand the origin of the mineralisation, we will be more confident in 

how far to extrapolate the mineralisation continuity (Figure 60). 

 

 
Figure 60 Domains contain consistent (homogeneous) geology 

 

 

The second requirement of a domain is that it contains a single grade population.  

When we fail to meet this criterion, our estimates reflect neither the lower nor the 

higher-grade population.  The estimates we produce tend to be over-smoothed between 

the two underlying populations (Figure 61).  When the histogram shows evidence of 

two populations, we need to return to our data and attempt to separate the populations 

spatially (Figure 62and Figure 63). 
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Figure 61 Mixed populations 

 

 

 

 

 



The Art and Science of Resource Estimation 

 

- 63 - 

 
Figure 62 Histogram of data with mixed populations 

 

 
Figure 63 Domain with a single grade population 

The third requirement of a single orientation of continuity ensures the search ellipsoid 

and variograms are orientated in the best alignment for the grade continuity during 

estimation.  Mineralisation volumes that have undergone folding post mineralisation 

should be unfolded prior to data analysis.  This way the appropriate samples can be 

aligned for analysis and estimation (Figure 64). 
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Figure 64 Domains are restricted to a single orientation of continuity 

and can sometimes be unfolded to create a single orientation of continuity 
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The purpose of building and defining domains is to control the use of sample data 

during estimation – we only want to use what is relevant to the volume we are 

estimating.  Domains highlight changes in geological texture, statistical population 

and/or orientation of continuity. 

 

Consider the geological context below.  Can you identify the domains? Consider 

structural, lithological and weathering controls, as well as changes in orientation and 

anisotropy. 

 

 

 

 
Figure 65 Weathering profiles, structure and minerlisation example 
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Processes for investigating domain control 
 

Breakdown and concatenate approach 

One process for exploring controls is to breakdown the mineralisation to the lowest 

common collection of data and then to build these up by comparing the statistics of the 

various groups.  Let us look at an example of this: 

 

Consider a data set where each assay interval in the database is coded according to 

lithology, structural logging and weathering. 

 

1. The first step in the process is to create a new code constructed as a 

concatenation of the three codes (LITH:STRUC:WEATH)4. 

 

2. Secondly, we plot histograms of the data subdivided by concatenated codes5. 

 

3. Next, we group typically lower, medium and higher grade subdomains.  This 

grouping requires us to compare the mean, mode and medians of the 

subdomains. 

 

4. Once we have a broad categorisation of the data, we then overlay the 

histograms on a light-table to establish how similar each sub-domain is.  New 

groups are created to reflect similar typical grade and similar grade 

distributions (as reflected by the peak and possibly the spread of in the 

histograms). 

 

5. The groups should then each be given a group code.  This may require manual 

entry6. 

 

6. Then visualise the groupings in 3D, colour coded by group.  Identify the 

controlling mechanisms on the grade populations.  Sometimes these are easily 

reflected by a single aspect of the geological logging.  Most times, however, 

there is an interplay between geological controls. 

 

7. Once you have confirmed the controls, apply the combination to define the 

domains to reflect single grade populations and single orientation controls. 

 

 

 

 

 

 

 

 

 

 

 

                                                      

4 Deciphering codes later is made easier if codes within each field are the same length 

5 Plot the histogram about twice the size of a business card to facilitate quick comparisons 

6 The Filter option in Microsoft’s Excel program is useful for this. 
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Cluster Analysis approach 

Another approach is to apply the statistical technique of cluster analysis7.  This 

approach works well for multiple elements.   

 

Let us look at a zinc project as an example.  This particular dataset has zinc, lead, silver 

and sulphide.  The geological controls for this project are difficult to discern and limits 

are required to identify the single core high-grade population.   

 

The total zinc population shows mixed populations, with a higher-grade population 

evident above about 1% zinc (Figure 66).  Note the low-grade spikes reflect the 

detection limits for various ages of data.  The true population is more like the dotted 

line. 

 

 
Figure 66 Example of mixed zinc population 

Cluster Analysis groups data according to a measure of similarity.  The process goes 

something like this: 

1. Firstly, you nominate a number of groups (in this zinc example we nominate 

three:  one for the high grade, one for a possible medium grade and a third for 

the waste).   

2. Next, the first samples (three in our example) are taken to represent the groups 

(you have to start somewhere!) and the difference between each and every 

sample grade and these samples is calculated.  This difference will incorporate 

the difference between all the other nominated elements as well (in this case 

lead, silver and sulphide). 

3. Samples are separated according to how close the grades across all elements 

are to these three initial groups. 

4. The group averages are updated. 

5. The difference between each and every sample and the three group averages is 

recalculated and the grouping updated to reflect which samples are closest to 

the group averages. 

                                                      

7 I use the Cluster Analysis option in the Minitab software program. 
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6. This is repeated until the differences and the averages settle down. 

7. The final groups then contain those samples that are most simular to the sample 

average. 

 

The cluster analysis approach for the zinc data produced three populations: 

 a typically higher grade population (Figure 67) 

 a lower grade or waste population, and 

 a data set with too few points to define a domain.  

 

 
Figure 67 High-grade Zinc population identified using Cluster Analysis 

The three groups also tend to be spatially separate (Figure 68).  

 

The next step is to investigate the groupings relative to the geological logs, any 

available core and the grade trends.  This will help define the domain controls and form 

a basis to develop the domain boundaries by creating a digital solid (also called 

wireframing). 

 

 
Figure 68 Sectional projection of domain codes with outlines of groups from Cluster Analysis 
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Validating mineralisation domains 
 

Validation of domains is best done before detailed wireframing (to save valuable time 

if the interpretation is not valid).   

 

To check whether we have domained our mineralisation well, we must check against 

the three criteria: 

 

1. geological homogeneity 

2. single grade population 

3. single orientation. 

 

Geological homogeneity 

We test for geological homogeneity by checking whether there is geological evidence for the 

population and its spatial context.  This involves checking the logs and any information that 

exists to build a reasonable explanation for the population.   

If there is no evidence to support the definition of the domain, it is likely that the domain will 

be called into question at some stage of the project. 

 

 
Figure 69 Domains should be supported by geological evidence 
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Single grade population 

Statistical tools are particularly helpful when validating domains.  Remember domains 

ideally contain a single grade population.  To validate this simply plot the histogram of 

all composite grades within the interpreted domain.  A single population on the 

histogram indicates a single population within the interpretation.  However, sometimes 

mixed populations can be masked in a histogram.  In these cases, the probability plot 

more clearly exposes mixed populations.  Below are two created examples to 

demonstrate how useful probability plots are. 

 

Sample set one is a single population following a normal distribution with a mean of 

2.0 and a variance of 0.7.   Notice the single bell-shaped histogram and the straight line 

in the probability plot (Figure 70). 

 

Sample set two is a mix of two normal distributions: one half of the data follows a 

normal distribution with a mean of 2.0 and a variance of 0.7, while the other half 

follows a normal distribution with a mean of 3.0 and a variance of 1.0.  Notice the 

histogram suggests a single population with a slight evidence of additional high grades 

(Figure 71).   The mixed populations are easier to pick on a probability plot.  An 

attempt to fit a straight line to the probability plot proves quite difficult (Figure 72a).  

Instead, two lines fit better, suggesting the presence of two populations (Figure 72b).     
 

 

Figure 70 Histogram and probability plot for a single population 

 
 



The Art and Science of Resource Estimation 

 

- 71 - 

 
Figure 71 Histogram for a created mixed population 
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(a) inadequate fit of straight line  

    
 

(b) better fit with two lines 

 
 

Figure 72 Probability plot with a mixed populations 
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When data is positively skewed, it is more useful to view these plots with the grade axis 

on a log scale (Figure 73). 

 

 
Figure 73 Comparison of original and log-scale grade axes 
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Single orientation 

We check whether a domain has a single orientation of continuity by visualising the data in 

three dimensions and identifying any significant changes in orientation.  Sub domains may 

need to be created to allow the search parameters to follow continuity of the overall domain 

in a way that best suits the data.   

Alternatively, a domain may need to be unfolded (Figure 74). 

 

 
Figure 74 Example surfaces in unfolded (top) and original co-ordinates (bottom) (After Deutsch, 

2005) 

 

 

 

 

 

 

Note in the discussions here about validating domains, equal sample lengths are assumed.  If 

samples are not equal in length, it may be necessary to composite the data to get 

representative statistics (see page 77).   
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Phase 2: Investigation 
 

Purpose 
 

The purpose of this phase is to build our understanding of the data set we are working with: 

What are the typical values we are coming across?  How different are samples?  Are there 

any patterns we should take note of?  How nuggety is the data?  Are there any relationships 

between samples in space?   

So, this is all about grabbing hold of the data and twisting and squeezing it until you get the 

clearest picture you can from the available information.  Our tools here are primarily 

statistical; however, these are meaningless unless we bring our geological knowledge and 

understanding to the analysis. 

It is common for people to shy away from statistics: this is unnecessary.  When dealing with 

long streams of data we need some way of synthesizing and consolidating the information - 

and this is where statistics can be useful. 

Here we will focus on the concepts and their relevance to resource estimation. 

For resource estimation, we use statistics to: 

 Monitor and validate QAQC data 

 Check whether we can combine different data sources  

(say from different drilling campaigns) 

 Validate domains 

 Understand the grade patterns within domains 

 Validate the final resource model 

 

We will address two aspects of investigation here.  These are: 

1. Descriptive data analysis 

    and  

2. Variography. 
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Descriptive data analysis 
 

Once we understand the geological controls, we need to describe, compare and contrast 

the data in the various domains.  Statistics is a simple way of distilling the streams of 

sample data into summary numbers. 

 

Layout of the information 
 

Before embarking on any data analysis it is wise to understand where data is coming from, 

what it represents and how the data has been collected. 

Next, we should view the data in 3D to build our understanding of where typically high 

grades lie relative to lower grades in the data set.  Here our geological understanding of the 

orebody can play a major role in helping 

build our perceptions of the data and our 

expectations of a resource model.  

Specifically, we want to understand whether 

there are any trends in the data – along 

strike? with depth? and how do these relate 

to the geological model? 

We would also want to have an idea of 

which domains tend to have the higher 

grades and how the domains compare with 

each other. 

Viewing boundary conditions also helps 

us define how the data is used during 

estimation: are the grades transitioning 

gradationally or is there an abrupt 

difference in grade at boundaries? 

A location map is useful for conveying 

drill spacing and coverage.  By looking at 

the drilling coverage, we also get an idea 

of whether the data may need to be 

composited and/or declustered. 

 



The Art and Science of Resource Estimation 

 

- 77 - 

Compositing and declustering 
 

For our statistics to be representative, we need to ensure even coverage of the sampling 

(and drilling).  For example: any over-sampling of high grades (through more intense 

drilling at known high grade locations or short intercepts of high grades mixed with 

long intercepts of low grades) will result in high grading the statistics. 

 

Declustering  

Consider a regularly sampled data set with a single grade population (Figure 75 and 

Figure 76). 

 

 
Figure 75 Regularly spaced data 

 

 
Figure 76 Histogram for regularly spaced data 
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Now suppose an additional 18 samples are taken in the high-grade area (Figure 77).  

This is reflected as additional high grades in the histogram as well as an increase in the 

overall mean grade (Figure 78). 

 

 
Figure 77 Clustered data 

 

 
Figure 78 Histogram for clustered data 
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Since clustering can have an effect on the statistics, which describe our data and help us 

select estimation parameters, we need to temper the impact of the clustering through 

declustering techniques.  Three different declustering techniques are presented below: 

1. declustering by removal of specific drillholes, 

2. keep a single sample per grid cell, and 

3. weight samples by the number of samples within a grid cell. 

Decluster by specific removal 

Physically remove the cluster from the data being analysed (Figure 79).  For 

example, a drillhole oriented down plunge can be excluded from the analysis by 

filtering out sample data with the drillhole’s hole-id. 

 

 
Figure 79 Decluster approach 1: Physically remove samples that create the cluster (shown in bold) 
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Decluster by thinning 

Cover the data with a grid at the declustered scale and select only a single sample 

(or drillhole) within each cell of the grid (typically the sample closest to the 

centroid of the cell). 

 

 
Figure 80 Decluster approach 2: Select only the sample closest to the grid centroid (shown as stars) 
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Decluster by cell weighting 

 

Cover the data with a grid at the declustered scale and weight each sample 

according to the number of samples within the cell.  For example, samples within a 

cell with three samples would each be weighted by a third, while samples within a 

cell with ten samples would each be weighted by a tenth.  So, a high grade in a cell 

of many samples will have a smaller impact on the mean grade than a high-grade 

sample in an area of sparse data. 

 

 
Figure 81 Decluster approach 3: weight each sample according to number of samples within grid cell 

(five example cells with weights shown) 
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Be careful, however, of the impact that this third approach can have on perfectly 

regular data with curved boundaries.  Notice how the peripheral cells have fewer 

samples and so receive a higher weight than samples in a central cell (Figure 82). 

 

 
Figure 82 Impact of curved edge on declustered weights 

 

In my experience, this approach works well for declustering underground fan drilling.  

A good way to evaluate the impact is to view the weights in 3D, colour coded from low 

to high weights. 
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Compositing 

Compositing is essentially a downhole declustering technique to ensure samples have 

comparable influence on the statistics.  If the samples are collected over variable 

lengths, then there is a risk of introducing a bias into the data analysis.  The effect of 

compositing is to weight sample grades according to the corresponding interval length. 

 

Composite intervals should be as close to the original sampling interval as possible.  As 

such, a histogram of sample length is useful for deciding on a composite interval.  A 

scatterplot between the grades and sample length provides an indication of the 

selectivity for sampling interval.  

 

Sample data can be composited according to many different controls in the software 

you use.  The main considerations are:   

 the boundary conditions, and  

 whether the high grades are situated on the hanging wall or footwall. 

 

If the interpreted domain boundary is abrupt, then the compositing should be 

constrained within the domain.  In contrast, if the boundary is gradational it is usually 

advisable to composite across the boundary. 

 

It is also preferable to composite in a direction that allows the range of grades within 

the envelope to be represented fairly.  So if high grades are situated on a footwall and 

the compositing regime dictates only keeping a composite interval if at least 50% of the 

composite length is captured, it may be advisable to composite upwards in each 

drillhole. 

 

If samples are all at the same sample length, there is no reason to composite. 

 

 
Figure 83 Composite grades created by length weighting sample grades 
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Statistics to describe a data set 
 

Once we have made sure our data provides us with a representative sample (through 

compositing and declustering), we need to understand the data behaviour.  Questions 

we may consider include: 

 What grades are typical for each domain?   

 How variable is the data – are we dealing with mostly homogenous grade, or is 

our sample set littered with extreme grades? 

 Is our data so skew that the extreme grades will bias our estimation? 

 Are there any similarities or significant differences between domains? 

 

When we understand the typical grade values, the variability and can compare domains, 

we position ourselves to more accurately reflect these patterns when we build a 

resource model. 

 

There are two sets of statistics used to describe a data set: 

1. measures of what is typical, and 

2. measures of how different values are from the typical 

 

 

 

Let us look at these two sets of statistics: 

 

Measures of what is typical 
 

The mean is the sum of the sample values divided by the number of samples. 

valuesofnumber

valuesofsum
mean   

 

The median is the middle value when the samples are sorted in grade order. 

Sort samples in increasing order of grade 

Pick the middle sample 

This is the median 

 

 

The mode is the most typical sample value and is usually read as the peak of the 

histogram.  When a histogram has two peaks, we describe it as “bi-

modal” 

 

Examine a histogram 

The interval with the most samples is the mode 
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Measures of difference 
 

The range is the difference between the maximum and minimum sample value. 

Find the maximum 

Find the minimum 

Range = maximum - minimum 

 

The inter-quartile range is the difference between the top and bottom quarter 

values when the data is sorted in grade order. 

Sort samples in increasing order of grade 

Pick the middle sample 

This is the median 

 

Look at the samples from lowest to median 

Pick the middle sample in this lower half of data 

This is the lower quartile value  

 

Look at the samples from the median to highest 

Pick the middle sample in this upper half of data 

This is the upper quartile value  

 

Inter-quartile range = upper quartile – lower quartile 

 

 

The variance is the typical difference between each sample value and the mean 

grade.  We measure this difference by subtracting the mean from each 

sample grade.  Next, we square the differences to ensure the positives 

and negatives do not cancel out.  Once we have summed all these 

squared differences we divide by the number of samples less one.  

This “less one” accounts for the degrees of freedom we lose because 

instead of comparing the sample grades to the true (unknown) 

population mean, we compare them to the sample mean.  We lose a 

degree of freedom when we use one statistic to calculate another. 

 

 

 
 1

var

2






samplesofnumber

meanvaluesampleeachofsum
iance  

 

 

The standard deviation is the square root of the variance and brings the number 

back into a grade sense rather than a grade-squared sense. 

 

riancevadeviationndardsta   
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Other statistics used in resource estimation 
 

Other statistics that are useful for understanding data during resource estimation include: 

 coefficient of variation, 

 Sichel’s mean, and 

 percentiles. 

Let’s take a quick look at these. 

 The Coefficient of Variation (also called the COV or CV) is the variability 

relative to the mean grade.   

 

mean

deviationndardsta
ianceoftcoefficien var  

The COV is useful for comparing the variability between data sets whose 

typical grades may be quite different.  The COV is also a useful guide for 

deciding whether a data set needs to be top cut (see pages 99 and 100). 

 

Sichel’s mean (also called the log-estimated mean) is the unbiased mean when a 

data set is log-normally distributed.  The assumption of log-normality 

is absolutely necessary for the Sichel’s mean to be meaningful.  So 

while calculating the Sichel’s mean is not difficult, it is only valid 

under the strict condition of a data set having a log-normal 

distribution (see page 88).  The Sichel’s mean is calculated as    
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varlog
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iance

meanmeansSichel  

The Sichel’s mean is a useful guide when selecting a top cut for log-

normally distributed data (see page 99). 

 

Percentiles describe the grade at which the percentage of data lies below.  A tenth 

percentile grade has 10% of the sample data less than the value and 

90% greater than the value.  The percentiles are generated by sorting 

the data from lowest to highest grade, then selecting the sample 

values for which the corresponding percent of the data set lies below.  

A series of percentile grades provides an assessment of the relative 

grade distributions. 
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Statistics in action 
 

Consider these examples of statistical analysis used to describe a data set. 

Table 2 Example of gold data statistics for five domains 

Statistic 
Domain 

A B C D E 

Samples 309 276 4921 567 242 

Minimum 0.02 0.01 0.005 0.03 0.005 

Maximum 37.8 25.37 201 39.5 165 

Mean 1.21 1.17 2.12 1.72 2.52 

Standard deviation 2.53 1.96 5.23 2.92 5.81 

Coefficient of variation 2.08 1.68 2.46 1.70 2.30 

Variance 6.39 3.85 27.38 8.55 33.71 

Log mean -0.44 -0.53 -0.09 -0.11 0.01 

Log variance 1.20 1.59 1.70 1.29 2.06 

Sichel’s mean 1.17 1.30 2.14 1.72 2.83 

p
e

rc
e
n

ti
le

 

10% 0.17 0.12 0.2 0.21 0.18 

20% 0.29 0.25 0.4 0.40 0.40 

30% 0.44 0.4 0.52 0.54 0.54 

40% 0.51 0.49 0.69 0.71 0.76 

50% 0.62 0.63 0.90 0.95 1.04 

60% 0.79 0.81 1.20 1.20 1.48 

70% 1.08 1.1 1.69 1.55 2.12 

80% 1.52 1.51 2.53 2.17 3.14 

90% 2.31 2.51 4.53 3.49 5.71 

95% 3.45 4.28 7.21 5.38 9.42 

97.5% 5.48 5.29 11.30 9.00 12.80 

99% 8.73 8.2 20.74 14.23 20.75 

 

Statistical observations from the above table include: 

 Domain E is the highest grade domain.  Domain E also has the highest coefficient 

of variation, which suggests a high degree of variability in the data.  The percentiles 

for Domain E reflect the a high percentage of higher grades than the other domains. 

 The Sichel’s mean is typically higher than the raw mean, suggesting the data set is 

NOT log-normal (the high degree of variability is observed in the log-variance) and 

impacts the Sichel’s mean calculation. 
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Typical data distributions in the mining industry 
 

A representative sample data set should reflect the underlying grades for the entire domain.  

The distributions of these populations, though never truly or completely known to us, do 

tend to follow common patterns for different commodities. 

A key difference between populations of various commodities is the relative distribution of 

lower and higher grades within the rock mass (Figure 84).  Commodities that take up a large 

proportion of the rock matter, for example iron, tend to reflect negative skewness (most of 

the grades are high with a smaller proportion of lower grades).  At the other extreme 

precious metals, measured in parts per million or grams per tonne, take up a miniscule 

proportion of the rock mass compared with the gangue.  Distributions of precious metals are 

always positively skewed - most of the samples report low grades with a small percentage of 

extreme high grades.  Moderate to high grade base metals (in the range 7.5 to 15%) tend to 

have no dominant skew.  Base metals from domains with lower grades tend to have a small 

positive skewness.   

 

 

Figure 84 Typical distribution shapes by commodity type 
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Other useful graphs 
 

Cumulative probability plot 

A useful plot for examining the distribution of grades is a cumulative probability plot.  This 

plot is created by sorting the data from lowest to highest grade and then plotting the order of 

grade (or percentile) against the grade (Figure 85).   

 
Figure 85 Example of a cumulative probability plot 

 

This cumulative probability plot is a summary of the proportion of samples that occur below 

each grade.  For example, 85% of the samples have a grade less than 5% (Figure 85).  The 

grades associated with the steep part of the cumulative probability plot are the more frequent 

grades.  So with the data presented in Figure 85, the lower grades are more frequent, 

indicating a positively skewed data set. 
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Probability plot 

An alternative plot used for analysing the population distribution is the probability plot.  The 

probability plot is a cumulative probability plot, but with the probability axis adjusted in 

such a way that if the probability plot produces a straight line, the distribution follows a 

Normal bell-shaped curve.  

A probability plot is essentially a Q-Q plot of the data set against a Normal distribution, 

where the scale of the Normal distribution is a probability scale.  If the probability plot 

presents as a single straight line then the data set reflects a Normal distribution (Figure 86).  

Since most of the available statistical techniques are based on an assumption of Normality 

(that the data has a Normal distribution), any data set that does have a Normal distribution is 

likely to be easier to model.  Normal distributed data tends to be well behaved – there are no 

extreme grades and the variability relative to the mean is stable.  High-grade base metals can 

have Normal distributions. 

 
Figure 86 Example of a probability plot with a single straight line 

When the grade scale is converted to a log-scale and the probability plot presents as a single 

straight line then the data set reflects a log-normal distribution (Figure 87).  Precious metals 

and low-grade base metals often have log-normal distributions.  This occurs so often that 

when I see a gold distribution that is not following a log-normal distribution I immediately 

check the domaining protocol.  In most cases where a grade boundary has been used to 

delineate gold mineralisation, the presenting distribution is not log-normal.  When the 

domaining protocol on the same data is reviewed to reflect geological controls, log-normal 

gold distributions result.  This is not always easy to achieve and often a compromise is 

needed.  However, whenever geology is injected into the process, there is a greater chance 

that the distributions are clear.    

 



The Art and Science of Resource Estimation 

 

- 91 - 

 
Figure 87 Example of a log-scale probability plot with a single straight line\ 

 

When a data set follows a log-normal distribution, then the over-bearing influence of the 

extreme grades can be managed by transforming the data.  In addition, the Sichel’s mean is 

likely to be a representative unbiased estimate of the true mean and can be used to guide 

selection of a top cut value (see page 99). 

(Note the discussion on page 70 regarding mixed populations and domains.) 

On the opposite extreme to positive skew is negative skew.  A histogram of higher grade 

iron, for example, is dominated by high grade samples with a few low grade samples.  Given 

the scale of the grades (typically 50 to 60% Fe), there is no extreme influence of the lower 

grades (typically 20 to 30%) since these lower grade values are still in a similar order of 

magnitude to the typical grades.  There is no reason, therefore, to transform the data to obtain 

representative statistics.  

 

Other graphs that are useful for understanding the data patterns include: 

 Trend plots 

 Boundary plots 

 Q-Q plots 

 Box-and-whisker plots. 

 

Each of these is examined next. 
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Trend plot 

Trend plots provide a summary of the grade trends in the data.  There are at least two 

approaches to investigating the trends in the data: 

 Trend in a three dimensional model, and 

 Trend along the northing, easting and elevation axes. 

 

A simple way to generate a three-dimensional trend model is to run a nearest neighbour 

or an unconstrained estimation model.  

 

Some sort of simple 3D modelling (nearest neighbour or a quick inverse distance) is a 

good way to get a feel for any spatial trends – in particular are any of the domains 

showing regions of higher grades?  Remember one of the fundamental assumptions is 

that the sample data within the domain is “stationary” or stable – i.e. there are no 

trends!   

 

Another useful trend plot can be generated by calculating the average grade in slices 

(say by bench or by northing) and plotting the slice-averages against the bench or 

northing slice value (Figure 88).  Notice the number of samples for each slice is 

presented as bars.  This provides a sense of how much support each slice average has.  

We are less likely to respond to variations with low support than we are to changes in 

trend where there is more data. 
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Figure 88 Vertical trend plot 
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Boundary plot 

Boundary plots offer us a deeper insight to the grade behaviour at the boundary of our 

interpretation.  This is useful later when we have to decide whether to access samples 

across the boundary during estimation.   

 

A boundary plot is generated by: 

1. Identifying the point in each drillhole where the drillhole intersects the 

boundary. 

2. Collecting and averaging: 

a. all the samples one composite interval before the intersection 

b. all the samples two composite intervals before the intersection 

c. all the samples three composite intervals before the intersection 

d. all the samples one composite interval after the intersection 

e. all the samples two composite after before the intersection 

f. all the samples three composite intervals after the intersection. 

3. Graphing these averages against the number of composite intervals from the 

boundary. 

 

Figure 89 illustrates two boundaries – one gradational and another abrupt. 

 

 
Figure 89 Boundary plot (single element) 
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Q-Q plot 

Q-Q plots provide valuable comparisons between domains, vintages of data and types 

of drilling.  When each data source is attempting to sample the same population, it is 

reasonable to assume the resulting statistics will be similar (i.e. a straight one-to-one 

line on the Q-Q plot). 

 

Remember to constrain data comparisons within volumes you expect to see similar 

statistics (Figure 90 and Figure 91).  Comparing deep diamond samples to shallow RC 

samples does not provide a fair platform for comparison. 

 

 
Figure 90 Comparisons should be made within a common volume 

 

 
Figure 91 Q-Q plot between gold samples from two sources (DDH and RC) within common volume 
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Box-and-whisker plot 

 

Box-and-whisker plots are useful for comparing domains (see section on page 43 for 

more details on constructing a box-and-whisker plot).  The Box-and-Whisker plot in 

Figure 92 shows Domain 2 is consistently higher than Domain 1.  

 

 
Figure 92 Example of a box-and-whisker plot for two domains 

 

Box-and-Whisker plots help quickly identify the grade patterns across several domains 

(Figure 93).  

 

 
Figure 93 Example of a box-and-whisker plot for ten domains 
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Selecting top cuts 
 

Extreme grades, or outliers, can bias the calculation of the average towards the extreme 

value, particularly when there are only a few samples.  Table 3 illustrates the effect the 

maximum grade of a data set has on both the mean and the standard deviation.   

 

Table 3 Effect of maximum grade on coefficient of variation 

 Data set 

sample number 1 2 3 4 5 

1 1.1 1.1 1.1 1.1 1.1 
2 1.2 1.2 1.2 1.2 1.2 
3 1.4 1.4 1.4 1.4 1.4 
4 2 2 2 2 2 
5 3 3 3 3 3 
6 3.5 3.5 3.5 3.5 3.5 
7 5 5 5 5 5 
8 6 6 6 6 6 
9 8 8 8 8 8 

10 12 25 50 100 150 

average 4.3 5.6 8.1 13.1 18.1 
standard deviation 3.5 7.2 14.9 30.6 46.4 

COV 0.8 1.3 1.8 2.3 2.6 

 

This effect is greater when the distribution is positively skewed.  The statistic we use to 

understand the degree of skewness and the need to apply a top cut is the coefficient of 

variation (COV): 

Coefficient of variation =  
standard deviation 

mean 

 

The COV value increases for more positively skewed data (Table 3). 

Wellmer (1998) illustrates COV values expected for typical grades (Figure 94).  Note the x-

axis is presented in percent.  This means minerals measured in grams per tonne or parts per 

million will correspond to percentages less than one.  

According to Wellmer’s guide in Figure 94, extreme grades for low intensity mineralisation 

(typical grades less than 1%) exerts a significant influence when the COV is higher than 1.5.  

When the COV is between 0.9 and 1.5, normality is not possible. 

Rules of thumb you may find useful include: 

 Data sets with COV greater than 1.2 generally need to be top cut. 

 Data sets with COV less than 1.0 generally do not need to be top cut. 

 Note: an inordinately high COV (say greater than 3) is indicative of mixed distributions and 

more domaining may be necessary.  

To top cut a data set means to re-set any composite grades that are higher than the top cut 

value to the top cut value.  So for data set 3 in Table 3, a top cut of 30 would mean the 

sample grade of 50 is re-set to a value of 30 with no change to the other sample values.  If, 

however, the top cut was 7, then the top two samples would be cut back to 7 since they both 

have grades higher than 7.  This ensures the high grades are still included in subsequent 

analyses, but the extremity of their grades does not overly influence the statistics. 
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NOTE:  I have come across the practice of evaluating the suitability of a top cut by 

examining the COV of the top cut data.  There is absolutely no scientific reason or rationale 

to look at the top cut COV – it is meaningless.  The COV of the raw data provides a guide as 

to whether there is a need to top cut or not. There is a risk of top cutting too severely if one 

attempts to achieve a suitable COV of top cut data.  The COV can be used to decide whether 

a top cut is necessary and not used to judge the suitability of a top cut value. 

 
Figure 94 Coefficient of variation as a guide to the need to top cut 

(after Wellmer 1998) 

 

All approaches to selecting a top cut are subjective.  An evidence-based approach to 

selecting top cuts considers the following: 

1. Top cuts are evaluated independently for each domain.  Where sufficient geology has 

been used to guide the delineation of a single grade population, the top cut is more likely 

to produce a fair representation of the underlying population mean. 

2. Where necessary, data should be declustered before selecting a top cut value.  This 

ensures the data set you are working with is representative of the mineralisation 

population. 

3. Ideally, reconciliation information provides the best guide to the top cut value.  A series 

of resource models are generated based on a range of potential top cut values.  The 

resulting models are compared within the reconciliation volume to both the grade 

control and the production grade.  The top cut value that results in a resource estimate 

closest to the production grade is selected as the top cut for the domain.  This approach 

is of course only helpful once mining has commenced. 

4. If the data is log-normal, use the Sichel’s’ mean as a guide to selecting a top cut value.  

See explanation below.   

5. If the data set is not log-normal, then the top cut is typically based on the point of 

disintegration of the high-grade tail in a log-scale histogram.  See explanation below. 

6. Note that if the high-grade samples are scattered within a domain, they are likely to have 

more of a biasing influence than if they are grouped close together.  Top cutting matters 

more when high grades scattered throughout a domain, so take a moment to visualise the 

data in 3D – where are the typically high grades relative to the rest of the data? What 

influence are these high-grade samples likely to have on local estimates?    
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Sichel’s mean to guide top cutting 

The Sichel’s mean is an unbiased mean for a log-normally distributed data set.  For a 

confirmed log-normal distribution, the Sichel’s mean provides a more stable estimate of the 

true mean than the average of the data values.   

The Sichel’s mean is calculated as follows: 

 Calculate the natural log-transform8 for each sample grade. If the data follows a log-

normal distribution, then the log-transformed data follows a normal distribution 

(bell-shaped curve).   

 Calculate the average of the natural log-transformed values.  Since the data is log-

normal, this transformed data set will be normal and the mean, mode and median 

will coincide. 

 The back-transformed9 average of the log-values is called the geometric mean.  

Since the data order is preserved and the mean and median coincide, the geometric 

mean corresponds to the median, rather than the mean.  This value, however, is too 

low an estimate for the population mean.  

 Herbert Sichel is credited as providing the empirical work to establish the Sichel’s 

factor which, when applied to the geometric mean, provides the unbiased Sichel’s 

mean.  The Sichel’s factor is the back-transform of half the variance of the log-

transformed data. 

 













  2

logvar

log expexp'

gradesdtransformeofiance

gradesdtransformeofmeanmeansSichel The 

Sichel’s mean is often called the log-estimated mean. 

 

Since the Sichel’s mean is the unbiased mean for a data set, we can use this as a guide for 

testing a range of top cuts.  The process is: 

 Iteratively top cut the sample grades and calculate the average of the top cut data.   

 The top cut value that gives a top cut mean close to the original Sichel’s mean is 

selected as most suitable.  

 

 

 

 

 

 

                                                      

8 Microsoft Excel’s function for the natural log transform is “=LN( )” 

9 Microsoft Excel’s function for back-transforming the natural log is “=EXP( )” 
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Disintegration approach to top cutting 

   When a data set is not log-normally distributed, the usual approach to selecting a top cut is 

to identify the point at which the number of samples supporting a high-grade tail diminishes. 

 
Figure 95 Disintegration approach to top cutting (log-scale probability plot) 

 

 

 
Figure 96 Disintegration approach to top cutting (log-scale histogram plot) 
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Multi-variate data analysis 
 

The first step in any multi-variate data analysis is to compare each element against 

every other element – preferably as scatterplots or as a matrix of scatterplots (Figure 

97).  This provides a quick assessment of whether there are obvious relationships 

between the elements, and whether these relationships are positive (as one element 

increases so does the other) or negative (as one element increases in grade the other 

decreases in grade). 

 

 
Figure 97 Matrix scatterplot between Ni%, Co%, Mg% and Fe% 

 

Sometimes it may be necessary to differentiate the relationships according to domain 

(Figure 98).   

 

The correlation coefficient provides a statistic to summarise the strength of the 

relationships (Table 4).  The closer the correlation coefficient is to +1.0, the stronger 

the positive relationship.  Conversely the closer the correlation is to -1.0 the stronger 

the negative relationship.  Correlation coefficients close to zero imply no relationship 

exists between elements.   

 

Typically, in the Mining Industry, an absolute correlation coefficient greater than about 

0.6 is a signal of a strong relationship.  

 

High absolute correlations also indicate the variability in one variable is closely related 

to the variability in the other variable. 
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Figure 98 Scatterplot coloured by domain (Mg% and Ni%) 

 

 

Table 4 Example of correlation between elements 

 Ni Co Mg Al 

Co 0.736    

Mg -0.518 -0.463   

Al 0.198 0.156 -0.266  

Fe 0.814 0.618 -0.532 0.468 

 

 

It is possible to model the relationship and to predict one element from another for 

those variables that have a pattern in the scatterplot and have strong correlations.  This 

modelling is called regression.  Regression is the process of fitting a line to data and 

providing the best-fit equation. 

 

Do be careful though, just because your computer program can generate a regression 

does not mean the regression is appropriate.  For example, a single point that is very 

different from the rest of the data can sway a regression significantly.  These points are 

called leverage points. 
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Figure 99 Regression line fit between elements  
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Statistical data analysis - summary 
  

The main reason for conducting a data analysis is to understand the data we are 

working with.  Summary statistics help create an idea of typical grades and variability 

as well as the need to top cut.  As a minimum, your data analysis should include 

summary statistics, histogram (log-scaled if necessary), probability plots and comments 

contrasting the domains and characteristics of the data.  In addition, and this is 

important, the statistical analysis should be linked backed to the geological context.  If 

one domain is reporting higher typical grades, it is your responsibility to understand 

that enrichment.  Observe and then seek to understand. 
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Analysis of continuity 
 

Essentially, analysis of grade continuity (or variography) is about comparing samples 

according to the distance and orientation between the samples.  The premise is:  If we 

can understand how samples relate to each other in space, we can use this information 

to build an expectation of a block grade based on weighting the surrounding samples 

according to the variogram. 

 

 

 
Figure 100 Understanding the relationship between samples helps weight samples 

 

 

There are four stages to a variogram analysis:  

1. Preparation for variography – check due consideration of factors influencing 

calculation and interpretation of variograms. 

2. Variogram calculation – purposeful use of parameters to generate a 

representative variogram. 

3. Variogram modelling – describe the likely underlying population continuity 

through curve fitting. 

4. Interpretation – explain  the likely patterns of continuity and possible 

consequences for estimation, mining and future data collection. 
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Preparation for variography 
 

Preparation for variography relates to understanding the context of the data you are 

working with.  These aspects include the data collection/quality, geological context and 

statistical properties of the domain. 

 

The following assumptions are inherent when calculating variograms: 

1. the sample grades are sourced from a single grade population (see  domain 

discussions on page 70), and  

2. the difference in grades between pairs is consistent everywhere in the domain 

(see domain discussions on page 69 and 74). 

 

It is worth validating these assumptions prior to calculating a variogram on the data. 

 

Data integrity 

Nothing can replace decent data collection.  Errors in the data collection affect the 

nugget effect and the perceived continuity of grades. 

 

In addition, the variogram analysis assumes representative samples.  However, if the 

sampling volume is too small (narrow drilling diameter), or there is insufficient 

homogenising in the sampling process, or the assaying technique is inappropriate, then 

the calculated variogram will be distorted. 

 

Compositing the data goes some way to ensuring comparable sample support.  

However, if compositing involves splitting too many samples, the variogram on the 

resulting data set can present as a lower than expected nugget effect. 

 

Geological context 

Building an understanding of the controls on sampled mineralisation is central to 

preparation for variography.  For example: understanding structural controls on 

mineralisation is useful in complex ore bodies with multiple, possibly cross-cutting 

structures.   

 

Understanding the perceived grade continuity or the structural elements on a stereonet 

provides background for the analysis of the grade continuity. 

 

Awareness of multiple phases of mineralisation (or enrichment, remobilisation, 

faulting, folding or whether structural events pre- or post-date mineralisation) all 

provide a basis for subdividing the data or the requirement for unfolding (or 

unwrinkling). 

 

Domains and statistical analysis 

Understanding the variability within a domain, as well as the expected differences 

between domains, helps govern your expectations of the data set when comparing 

samples spatially.  For example a highly variable data set (say with a high coefficient of 

variation) is likely to have extreme grade samples that will dominate the variogram 

calculations.  In this scenario, it may be necessary to transform the data prior to 

calculating the variogram.  Another domain may be less variable and require less effort 

to understand the spatial relationships. 
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Misinterpreted domains can also lead to mixed patterns in the variograms.  These show 

up as nonsensical continuity or higher than expected nugget effects. 

 

The types of transformations we typically look at are the log-transformations, normal 

score transformations or the Hermite polynomials.  These transformations are an 

attempt to convert the data to a data set with a more normal distribution.  

 

Other variogram types also exist to dampen the effect of extreme grades. 
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Variograms – concepts behind the calculations 
 

Consider collecting all pairs in a data set that are separated by a given distance (say 

20m).  Let us tell the samples apart by calling the left-most sample of the pair the “left 

sample” and the right-most sample of the pair the “right sample”.   

 

We can then plot the grade of the pairs of samples in a scatterplot with the left sample 

plotted against the right sample (called an h-scatterplot) 

 

   

 

 

Now consider the h-scatterplot of samples 2 x 20m apart. 

   

 

 

…. And 3 x 20m apart? 

   

 

What difference do you expect to see in the cloud of points? 
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As the separation between pairs of samples increases, the grades of the pairs become 

more different, and the cloud of points becomes broader or less correlated.   

 

One measure of the broadness of the cloud at each separation is the correlation 

coefficient.  When this is expressed as a function of the separation distance, the 

measure becomes the correlation function or the correlogram. 

 

The variation expressed as a function of separation distance is the covariance function. 

 

Another way to express this variation is the “moment of inertia” about the one-to-one 

line.  The “moment of inertia” is probably best understood when imagining an ice-

skater doing a pirouette.  At first, the ice-skater begins with her arms outstretched.  As 

she pulls her arms in, she reduces her “moment of inertia” and spins faster.  This is also 

referred to as “conservation of momentum”.  Think of the one-to-one line as the ice-

skater’s spine and the cloud of points as the amount of space taken up by the ice-skater.  

The formula for the “moment of inertia” is the semi-variogram formula, where the ½ 

reflects our interest in the perpendicular difference from the one-to-one line: 

Half average square difference between pairs. 

 

Note that any “odd” sample pair will have leverage in all three approaches to 

calculating the variability according to separation. 
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Calculating variograms 
 

A variogram10 is a plot of the typical differences in grade plotted against the distance 

separating samples. 

 

A variogram may be orientated so the typical differences between samples may be 

based only on the samples that are in a specific orientation (give or take a few degrees). 

 

To calculate a point on a variogram plot: 

 collect all the samples pairs in the database that are separated by a specific 

distance, 

 calculate the difference between the sample grades, 

 square the differences (to prevent positives and negatives cancelling out), 

 add up all the square differences, 

 divide by the number of pairs, 

 scale the variogram by a half so that the population variance and the plateau of 

the variogram (also called the sill) are the same, and 

 plot the point on the graph of variogram values against the separation distance. 

 

 

 

The variogram formula for a specific distance is 

 

 

  
 comparedbeingpairsofnumber

awayncedistaspecificvaluesamplevaluesamplesum

separationspecificaforriogramva






2

2  

 

 

 

 

 

 

 

 

                                                      
10 Note: here I call this the “variogram”.  To be theoretically correct I should call this the “semi-variogram”.  Since 

I tend to use standardised variograms – all the semi-variogram values are scaled by dividing each semi-variogram 

point by the overall population variance – the variogram to me is more about the relative change between the 

calculated points than the actual points themselves. 
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Variogram terms 
 

Features used to describe a variogram are: 

 

The nugget effect: the typical difference between the samples where we to take 

samples almost adjacent to each other.  Imagine splitting core and submitting 

both halves.  The difference between the grade of the core halves would be the 

nugget effect.  Precious metals are expected to have a higher nugget effect than 

based metals. 

 

The sill: as the separation between samples increases, so the difference between them 

increases, until we reach a distance beyond which the difference between 

sample grades is not dependent on their separation, but is the same as the 

background variability or the population variance.  This plateau in the 

variogram value is called the sill. 

 

The range:  the range is the distance beyond which the samples are no longer spatially 

correlated.  The range is the distance at which the total sill is reached. 

 

 

 

 

 
 

Figure 101 Variogram terms 
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Directional variograms 
 

By comparing variograms for pairs restricted to directions, we can evaluate the 

direction of lowest difference for longest range (or the orientation of mineralisation). 

 

 
Figure 102 Calculating directional variograms 

 

 

 

An easier way to view and interpret variograms for direction is to plot the variogram 

values according to distance within a direction and then to contour the variogram 

values.  The direction with the lowest variability for the longest range is the direction of 

maximum continuity. 
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Study this progression to understand how a horizontal fan can be calculated and 

interpreted. 

 

         

         

        
 

Figure 103 Build up of a variogram map 
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Once we have interpreted a mineralisation strike, we can investigate the dip (which will 

have an azimuth at 90 to the strike) by repeating the process above, except we restrict 

the direction analysis to all possible dip directions with an azimuth of the strike + 90.  

Once we have the strike and dip, we have the dip plane.  The plunge of the 

mineralisation should be evident as the direction of greatest continuity on the dip plane. 

 

 

Establish strike: 

Variograms with zero dip to 

establish mineralisation strike 

(direction with strongest 

correlation for longest 

separation) 

 

Establish dip: 

Variograms with azimuth ±90 

to strike and dip components 

between 0 and -90 to establish 

mineralisation dip (direction 

with strongest correlation for 

longest separation at 90 to 

strike) 

 

Establish plunge: 

Variograms within the dip plane 

(joining strike to dip) to 

establish the plunge of 

mineralisation (direction with 

strongest correlation for longest 

separation within the dip plane) 

Figure 104 Process for interpreting orientation of mineralisation continuity 
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Establish strike: 

Variograms with zero dip to 

establish mineralisation strike 

(direction with strongest 

correlation for longest separation) 

 

Establish dip: 

Variograms with azimuth ±90 to 

strike and dip components between 

0 and -90  to establish 

mineralisation dip (direction with 

strongest correlation for longest 

separation at 90 to strike) 

 

Establish plunge: 

Variograms within the dip plane 

(joining strike to dip) to establish 

the plunge of mineralisation 

(direction with strongest 

correlation for longest separation 

within the dip plane) 

Figure 105 Real example of interpreting mineralisation orientations 
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Consider how these three planes fit together to describe an ellipsoid of continuity. 

 

 

Horizontal for strike 
 

 

Across-strike for dip 

 

Dip plane for plunge 

Figure 106 Integrated three-dimensional view of variogram maps 
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Selecting directions for modelling 
 

Once we have determined the orientation of mineralisation continuity, we need to 

model the variability.  The purpose here is to establish the grade continuity for all 

possible distances and orientations.  This will help during estimation, particularly when 

the distance and orientation between a block to be estimated and a sample is very 

different to the configuration of the sample data.  Variogram models also make the 

estimation process more efficient – entering an equation into the process provides a 

quick calculation of expected variability for any distance and orientation and it is more 

than possible that the separation between a sample and the block is not available in the 

sample-to-sample comparison.  We build a three-dimensional weighting relationship by 

modelling the variogram in three-dimensions to mimic the patterns we see in the data.   

 

The easiest way to get to the directions of continuity for variogram modelling is (see 

the stereonet in Figure 107): 

1. Analyse all possible strike directions (all variograms with zero dip) for the 

direction with lowest variability for the longest range (see “A: strike”) 

2. The dip direction is at 90 to strike, so analyse all possible dip directions 

(variograms with an azimuth of strike + 90 and all possible dip components) and 

determine the dip direction as the direction with lowest variability for the longest 

range (see “B: dip”) 

3. The strike and dip directions define the dip plane, which will contain the plunge 

component11.  Analyse the variograms in the dip plane to determine the direction 

with lowest variability for the longest range (see “C: plunge”) 

4. We model the variogram in the plunge direction, which is also called: the major 

direction, the primary direction or direction 1. 

5. The second direction for modelling is at 90 to the plunge within the dip plane is 

the direction with the shortest continuity within the dip plane (see direction 2 in 

Figure 107).  This direction is also called the semi-major or secondary direction. 

6. The third direction for modelling is at 90 to both direction 1 and direction 2 (see 

direction 3 in Figure 107).  This direction is the shortest overall direction and is 

also called the minor or tertiary direction. 

 

 
Figure 107 Schematic stereonet of significant variogram directions 

 

                                                      

11 If there is no plunge the direction of greatest continuity will be either the strike or the dip direction. 
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Calculation parameters 
 

The parameters used to calculate variograms include: 

 the lag spacing – the increment in separation distance to calculate each point on the 

variogram, 

 the lag tolerance – typically set at ½ the lag spacing, 

 the number of directions to calculate the directional variograms, 

 the angular tolerance – the tolerance in angle either side of the direction used for 

collecting pairs of samples, and 

 the maximum separation distance for calculating variograms. 

 

Types of variograms 
 

There are a variety of types of variograms – all designed to overcome some effect in 

the data (Table 5).  Each type of variogram is based on the variogram calculation 

presented above.  The types of variograms differ in the way data is transformed before 

the calculation, or on the way the variogram is scaled or standardised once the 

differences between the sample values are calculated.   

 

In this section, the same data set is used for the each of the variograms described in this 

section to help you gauge the impact of various transformations (Figure 109 to Figure 

117).  Typically, you can expect a difference in the interpreted nugget effect (relative to 

the total sill) with the model ranges remaining close to stable. 
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Table 5 Selection of variogram type 

Situation Variogram type 

Non-skew or negative skew 

 

Traditional variogram 

Normal Score variogram 

Indicator variogram 

Covariance 

Correlogram 

Positive skew 

 

Log-normal variogram 

Normal Score variogram 

Indicator variogram 

 

Low number of samples 

 

Pairwise relative variogram 

Variograms designed to pacify mathematicians 

ΓΔΏΘλδβμστυ 

Semi-rodogram 

Semi-madogram 

Describe variability in cross-cutting, rotating or 

multi-phase/mixed mineralisation 

 

Indicator variograms 

Describe relationship between elements Cross-variograms 
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Variograms for non-skew data 
 

Traditional variogram 

The traditional variogram is the basis for describing the relationship between samples 

behind the kriging algorithm.  A key assumption is that the grades compared come 

from the same population and that the difference between the grades depends only on 

their relative separation.  

 

A variogram value for a given separation distance is calculated as:  one half the average 

square difference in grade between pairs of samples separated by a given distance. 

 

Let us look at a simple example (Figure 108).   

 

 
Figure 108 Example of three equidistant samples to compare 

 

The traditional variogram value for the distance separating these three samples is: 

 (Au(1) – Au(2))2 + (Au(1) – Au(3)))2 + (Au(2) – Au(3))2 

2 x 3 
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Figure 109 Example of traditional variogram 
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Covariance 

The covariance is calculated by averaging the product of the sample grades from the two 

samples separated a given distance apart and then subtracting the product.  This gives us: 

[average(sample grade 1 * sample grade 2)] 

Minus 

[the average grade from the first samples * the average grade from the second samples] 

 

For the example in Figure 108, this is the same as: 

[(Au(1) x Au(2)) + (Au(1) x Au(3))) + (Au(2) x Au(3))] ÷ 3 

 

-  [average (Au(1), Au(1) ,Au(2))  x  average (Au(2), Au(3) ,Au(3))] 

 

 
Figure 110 Example of covariance variogram 
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The first and second set of samples could be from the same set of data, or from two different 

elements.  When the two samples represent different elements, the covariance is the sample 

cross-covariance. 

 

 

Correlogram 

The correlogram is the covariance standardised by: 

(Standard deviations of all the first sample grades) 

x (Standard deviations of all the second sample grades) 

 

For the example in Figure 108, this is the same as: 

[(Au(1) x Au(2)) + (Au(1) x Au(3))) + (Au(2) x Au(3))] ÷ 3 

 

-  [average (Au(1), Au(1) ,Au(2))  x   average (Au(2), Au(3) ,Au(3))] 

[std dev (Au(1), Au(1) ,Au(2))  x  std dev (Au(2), Au(3) ,Au(3))] 

 

 

 
Figure 111 Example of correlogram variogram 

 

{ } 
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When the two sample sets refer to different elements, then the nugget effect should 

correspond to the correlation between the two elements. 

 

 

 

Variograms to limit the influence of extreme grades (skewed data) 
 

General relative 

The general relative variogram is the traditional variogram standardised by the square root of 

the average between the mean grade for the first set of samples and the average of the second 

set of samples.   

(Au(1) – Au(2))2 + (Au(1) – Au(3)))2 + (Au(2) – Au(3))2 

2 x 3 

 

 

Square root{ [average (Au(1), Au(1) ,Au(2))  x  average (Au(2), Au(3) ,Au(3))]} 

 

In practice, I have not found this variogram to be particularly useful for mining data sets. 

 

 
Figure 112 Example of general relative variogram 

{ } 
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Log-variogram 

The log-variogram is useful for revealing structures when the underlying data is positively 

skewed.  The log-variogram is simply the variogram calculated on the logarithmic 

transformation of the grades. 

For the example presented in Figure 108, the log-variogram is: 

(Ln(Au(1))– Ln(Au(2)))2 + (Ln(Au(1)) – Ln(Au(3)))2 + (Ln(Au(2)) – Ln (Au(3)))2 

2 x 3 

 

The modelled log-normal variogram parameters need to be re-scaled to reflect the variability 

of the data.  One way to do this is to rescale the nugget affect according to the log-variance 

and then to distribute the remaining variability according to the sills (David, 1977). 

The formula to do this is … 

Nugget % =   (log-variance * nugget)  

total sill 

 

Transformed Nugget = 1 -       [exp(Logvariance – Nugget %) – 1] 

[exp(Logvariance) – 1] 

 

The sills for the various model structures can be calculated by distributing the remaining 

variability (total sill – transformed nugget) according to the relative proportions of sills 

modelled in the log-variograms.  The ranges remain unaltered. 

Here is an example of log-variogram transformation in a spreadsheet: 

 

 

 

 

 

 

 

 

{ } 
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Figure 113 Example of log-variogram 
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Normal score variogram 

The normal score variogram controls the influence of extreme grades by converting the 

grade distribution to a standard normal distribution before calculating the variogram. 

The normal score transform works by calculating the percentile of each sample and reading 

off the value for a standard normal distribution corresponding to the same percentile    

(Figure 114).  

The normal score variogram is a required variogram for Sequential Gaussian Simulation 

(SGS).  The normal score variogram model parameters are used directly in the SGS 

algorithms and, in this case, do not require any transformation. 

Use of the normal score variogram model parameters to be used in direct grade estimation 

requires the parameters to be transformed back to reflect grade variability rather than normal 

score variability.  The Hermite Polynomial approach is useful for this. 

 

 
Figure 114 Normal score transformation 
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Figure 115 Example of normal score variogram  
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Variograms for low number of samples 
 

Pairwise relative 

The pairwise relative variogram is generated by standardising each square difference 

between pairs by the square average of the pair of grades. 

Following the example in Figure 108, the pairwise relative variogram is calculated as  

(Au(1) – Au(2))2  

[(Au(1) – Au(2))] ÷2 
 

+  
 

(Au(1) – Au(3)))2  

[(Au(1) – Au(3))] ÷2 
 

+  
 

(Au(2) – Au(3))2 

[(Au(2) – Au(3))] ÷2 
 

2 x 3 

The pairwise relative variogram is stable when there are a limited number of samples and the 

underlying data distribution is positively skewed.  In these circumstances, the pairwise 

variogram can reveal ranges that are not clear in other variogram types. 

{ } 
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Figure 116 Example of pairwise relative variogram  

 

 

Variograms designed to pacify mathematicians 
 

The following variograms are usually included in software for completeness rather than 

significant practical application. 

Semi-rodogram  

This type of variogram is calculated as:  half the average square root of the absolute 

difference between each pair of the sample grades. 

 

Semi-madogram  

This type of variogram is calculated as:  half the average absolute difference between each 

pair of the sample grades. 
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Figure 117 Example of madogram variogram 

 

 

 

 

 

 

Variograms to describe variability in cross-cutting, rotating or multi-

phase/mixed mineralisation 
 

Indicator variogram 

An indicator variogram is the traditional variogram calculated on the indicator codes rather 

than the grades. 

Indicator variograms are useful for describing rotating anisotropy, for example, where low 

grades are orientated differently to higher grades or in cross-cutting structures. 

More information and details on indicator variograms are presented on page 167.  

 

Variograms to describe relationship between elements 
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Cross-variogram 

The cross-variogram is calculated as:  half the average  

[Difference in grades for element 1] *[Difference in grades for element 2] 

 

 

The example presented in Figure 108 becomes Figure 118 when considering multi-

elements.   

 

 
Figure 118 Example of three equidistant multi-element samples to compare 

 

 

 

 

 

The corresponding cross-variogram calculation is then: 

 

[(Au(1) – Au(2)) x (Cu(1) – Cu(2))] 

 

 +  

 

[(Au(1) – Au(3)) x  (Cu(1) – Cu(3))] 

 

+  

 

[(Au(2) – Au(3)) x  (Cu(2) – Cu(3))] 

 

 

2 x 3 

 

The cross-variogram results in negative values when the elements are negatively 

correlated, for example iron and silica (Figure 119).   

 

{ } 
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Figure 119 Example of cross variogram between iron and silica 
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Variogram modelling 
 

Before considering the variogram equations, it is worth noting that modelling the 

variograms is no more complicated than fitting a line/curve to a series of points.   

 

Activity 
 

Try fitting curves to the line plots in Figure 120. 

 

 

 

 
 

 

 

 
 

 

 

 
Figure 120 Calculated variograms to model 
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Special shapes 

There are several pre-defined shapes that are known to work well within the kriging 

system.  These include: 

 

 

 

 
 

 

 

 

 
 

 

 

 
Figure 121 Special shape variogram models 
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More complex shapes can be constructed by adding (or “nesting”) these pre-defined 

shapes.  

 

 

 

 

 
Figure 122 Construction of nested structures for variogram models 
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Practical process for variogram modelling  
 

There is no one right way to model variograms.  This lack of structure and guidance 

can be daunting to a first-time (or even a several time!) modeller.   

 

Contemplate the exercise above where the purpose was to fit a line/curve to the points.  

This is essentially all that is required of the modelling process.  However, we need to 

ensure the variograms in three orthogonal directions are modelled – each with the same 

set of nested variogram types and each with the same sills.  The ranges, however, 

should reflect the anisotropy we expect in the mineralisation. 

 

The approach I find convenient (although there is a degree of iteration involved) is: 

1. Use the variogram in the downhole direction (or specifically a downhole 

variogram) with lags at the sample length to model the nugget effect 

2. Apply this nugget effect to the three directions 

3. Model the variogram in direction 1 (aim for a good fit; use nested variogram 

models if necessary) 

4. Copy this variogram model to direction 2 and adjust the ranges of the 

variogram to get the best fit 

5. If you need to adjust the sills to get a reasonable fit, do so  

6. Apply the updated model for direction 2 on the variogram for direction 1 and 

adjust the ranges for the model in direction 1 you get a good fit 

7. Model direction 3 in the same way as steps 4 to 6 above – now ensuring the 

sills for  directions 1 and 2 and 3 are consistent 

Remember, each variogram point is actually the average of a collection of differences.  

This means each point is surrounded by a set of differences that are less than and 

greater than the point plotted.  The pair differences could be plotted as a box-and-

whisker plot for each location and used to temper the variogram model fit. 

 

 
Figure 123 Each variogram point corresponds to an average of many differences 

 

Since the points plotted are essentially averages based on the available pairs of samples, the 

variogram may not present as a perfect variogram shape often presented in textbooks.  As 

more data becomes available (for example grade control) , the variograms become smoother 

and better defined.  
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Modelling “difficult” variograms 
 

There is no such thing as a “difficult” variogram.  Rather there are situations where we do 

not have enough data to enable us to model variograms easily.  This is an important 

differentiation because once we get over it we can use the available geological information 

and understanding to help fill the gaps.  A more challenging variogram to model is the 

equivalent of a low-pixel digital image.  We just do not have the resolution of data to see 

what the picture is and we need to squint and take a best guess.   

Of course, if you know the commodity and the geological setting, you immediately have a 

sense of the nugget effect – gold is likely to have a moderate to high nugget, while sulphide 

nickel is  likely to have a low nugget with a short to moderate range (depending on the 

degree of undulation in the mineralisation envelopes).  Iron typically has a lower nugget with 

long range, but the phosphorus contaminants in iron will be more nuggety with a shorter 

range.  Within the context of our expectation, we stand a better chance of taking a best guess 

when we squint and model the variogram.   

The fewer samples we have, the more likely the variogram will vary point to point.  Some 

adjustments I commonly make to the calculation parameters include: 

 A revisit of the domains to ensure the criteria are met.  Adjustments may include 

sub-dividing the data according to a change in orientation of the mineralisation 

envelope. 

 If the data is positively skewed and the variogram is challenging, I will apply a log-

normal or normal score transform. 

 If the number of samples is insufficient, I will test increases in the lag interval and 

tolerance angle (one parameter at a time) until a get enough statistical mass to 

produce a meaningful variogram.  Be careful of the modelled ranges when the 

expected anisotropy is high.  By increasing the tolerance angle one risks smearing 

the anisotropy ratio. 

 Check whether the data should be and can be unfolded (especially if the unit is thin 

because subtle variations in the thin wireframe can lead to hanging wall samples 

being compared with footwall samples when this is not the intention).  Sometimes 

the unfolding I apply is more of an unwrinkling where the unfolding involves 

calculating a new orientation (say the elevation) as a relative distance from the 

hanging wall.  This simple straightening out of the envelope often “cleans” the 

variogram.  
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Examples of dealing with challenging variograms 

Example 1:  “I can’t get a variogram even though I have thousands of samples” 

This is common when data is positively skewed.  This data set has 2466 samples, a single 

grade population and a high coefficient of variation (2.3). 

 
Figure 124 Difficult variograms: data set 1 histogram 

 

The down dip traditional variogram for this data set is erratic – it only has one point below 

the overall sill (standardised variogram value of 1.0) and all other points are 50% higher than 

the total sill (Figure 125).  A log-variogram, however, produces a variogram that is easier to 

model (Figure 126).  
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Figure 125 Traditional variogram (difficult data 1) 

 

 

 

 
Figure 126 Log-variogram (difficult data 1) 
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Example 2:  “The variogram is too variable” 

Figure 127 illustrates a variogram that is erratic and looks too difficult to model.     

 
Figure 127 Highly variable variogram (difficult data 2) 

 

 

Figure 128 shows the variograms at different lag sized using the same data set. 

The variogram smooths out as the lag size increases.  The variogram that is now easiest to 

model is at lag size 35m (Figure 128). 

The real test is whether this model is reasonable and robust across the different lag sized.  To 

test this I replot the model against the variogram for the different lag sizes (Figure 130).   

The model appears to fit the highly variable data set well (Figure 131). 

If the calculated variogram does not smooth out when the lag size is increased, I test a series 

of tolerance angles. 

 

 

 

 

 

 

 



The Art and Science of Resource Estimation 

 
 

- 142 - 

 

 

 

  
Lag size 10m Lag size 15m 

  
Lag size 20m Lag size 25m 

  
Lag size 30m Lag size 35m 

Figure 128 Adjusting the lag (difficult data 2) 
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Figure 129 Variogram modelled at 35m (difficult data 2) 
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Lag size 10m Lag size 15m 

  
Lag size 20m Lag size 25m 

  
Lag size 30m Lag size 35m (used for modelling) 

Figure 130 Model against various lags (difficult data 2) 
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Figure 131 Model against highly variable variogram (difficult data 2) 
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Phase 3: Model Creation 

Purpose 
 

Up until this stage, the work involved in resource estimation is primarily to analyse and 

understand the context of the mineralisation: 

 

1. Interpreting geological controls 

2. Assessing data quality 

3. Identifying and constructing mineralisation volumes or domains 

4. Understanding the statistical properties of the data within domains 

5. Interpreting the orientation of grade continuity within domains 

and then  

6. Modelling the variability or spatial connectivity (variograms). 

 

These tasks all involve understanding the geological context and patterns in the grade. 

 

The next phase is to develop a three dimensional representation of grade within the domains 

that accurately reflects our understanding of the domains and the geological controls.  The 

steps to do this are: 

1. Create a three-dimensional model of the domains (wireframes) 

2. Select the most suitable estimation method 

3. Select the most appropriate estimation parameters 

4. Run the estimation 

Here we discuss the information required to achieve these four steps. 
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Wireframing 
 

A wireframe is a three-dimensional solid that encompasses a domain.  This can be 

constructed in numerous ways, but typically the process is to interpret the domain 

boundaries on section and then to tie the interpreted polygons together.   

The specifics of the process are software dependant.  Ultimately, the volume defined by the 

blocks within the wireframe should closely reflect the volume of the wireframe. 

 

Figure 132 Example of wireframe models for four domains 
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Estimation 
 

 

Central to building the three-dimensional model is selection of the estimation method 

and the estimation parameters to control the estimation process. 

 

Let us look at three of the more common techniques before getting to grips with 

selecting parameters: 

 

1. Inverse distance 

2. Ordinary Kriging and  

3. Indicator Kriging 

 

Inverse distance 
 

Inverse distance is the simplest estimation technique to implement.  This is because 

there are only a few parameters to select.  The remaining controls are implicit in the 

estimation technique. 

 

The rationale behind inverse distance is that closer samples are more like the block 

grade than samples further away.  

 

The inverse distance method presumes samples closer to the point of estimation are 

more likely to be similar to the sample at the estimation point than samples further 

away. So closer samples should get more weight and the easiest way to control this is 

simply invert the distance.   

 

The inverse of the separation distances are rescaled so they sum to one. This ensures 

the estimated grade is unbiased when compared with the sample grades. 

 

Selecting a power 

The inverse distance weights can also be raised to a power. Typically, the power is 

selected arbitrarily. However, we can consider the impact the power has on an estimate: 

 

One way to think about the power parameter is to consider its effect on a weight.  

Consider two samples near a point to be estimated, say one is 5m away and the other is 

15m away.  The sample weights are proportional to 1/5 and 1/15 respectively.  Now, if 

we raise these inverse distances to a power of two, the sample weights become 

proportional to (1/5)2 and (1/15)2, or 1/25 compared with 1/225.  The closer sample gets 

significantly greater emphasis when the power is increased. 

 

So in selecting a power for inverse distance we should consider how reproducible close 

samples are.  For situations where we have no faith in the data reproducibility, for 

example alluvial gold, we may be more comfortable with an extremely low power.  

Ultimately, a power of zero gives samples weights proportional to (1/distance)0, and 

any value raised to zero is equal to one so all samples receive the same weight.  The 

estimate becomes an average of the samples selected. 
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The nugget effect on the variogram is a useful guide for selecting the power.  A low 

nugget effect indicates good reproducibility in the sample data. This means samples 

close to an estimation point can be trusted to be similar to the grade at the estimation 

point, implying the use of a high power.  On the other hand, a high nugget effect 

suggests poor reproducibility and hence the use of a low power for inverse distance. 

 

 
Figure 133 Relationship between nugget effect and selection of power 

 

 

Defining the search neighbourhood 

 

Most estimation methods require a maximum limit on the number of samples to be 

used for estimating any one point.  This is mainly to speed up the estimation process 

rather than a theoretical requirement.  Since there is no theoretical basis, we need to 

invoke a bit of logic and common sense. 

 

Typical rules of thumb are:   

 At least 30 to 40 samples are usually sufficient to generate robust estimates, 

however, these estimates may be too smooth for your understanding of the 

grade continuity, especially when the mineralisation is expected to be more 

selective. 

 The search ellipsoid used for collecting samples should be orientated in the 

direction of mineralisation continuity. 

 The ranges of the variogram in the down plunge, across plunge and across dip 

directions are good starting points for selecting the search ellipsoid ranges in 

the respective directions. 

 Select a power commensurate with the nugget effect. 

 

Defining the search neighbourhood 

 

Be wary of octants.  Octants were introduced to control weight distribution to clustered 

samples.  However, many software packages do not align the octants with the search 

and/or represent eight segments in the shape of orange segments.  When a dip plane 

cuts through this segment-style octant with a steep dip, the volume represented by each 

segment is no longer equal, thereby INTRODUCING clustering rather than reducing 

the effects of clustering. 
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Ordinary kriging 
 

A brief history 

Danie Krige, a South African Mining Engineer, ran empirical comparisons between 

estimated and actual grades from gold mines in the Witwatersrand, South Africa.  

Interestingly, he discovered a consistent pattern – estimated high grades were lower than 

predicted and estimated low grades were higher than predicted.  This prompted Krige’s 

(along with French engineer Georges Matheron) discovery of the volume-variance effect, 

which is the cornerstone for understanding mining reconciliations and resource estimation. 

Krige refers to his observation as the “Regression Effect”.  The implications are that panels 

or volumes estimated as having high grade were over predicted.  So for example, a panel or 

volume estimated as 7.5 g/t could return a grade of 6.9 g/t, while a panel estimated at 2.9 g/t 

returned a grade of 3.2 g/t (see diagram).  This effect is observed repeatedly – low-grade 

stockpiles often return grades higher than anticipated, while high grades running through the 

mill continue to disappoint.   

 

Figure 134 Krige’s observation between actual and estimated grades 

 

So why does this happen?  It is to do with the volume-variance effect. 

 

 

http://en.wikipedia.org/wiki/Mining_Engineering
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Engineer
http://en.wikipedia.org/wiki/Georges_Matheron
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The volume-variance effect 

The volume-variance effect describes the increase in grade dilution as we select larger 

volumes. 

To understand the volume-variance effect, think about a coarse gold orebody represented by 

a 44-gallon drum.  

If we mine this “orebody” with teaspoons, some teaspoons will contain pure gold nuggets 

while others will be completely barren. The sampled grades range from extremes of 

completely barren to pure grade. 

Now, if we mine the exact “orebody” with buckets, each bucket may contain some grade, 

but it is extremely unlikely there will be a beach bucket full of nuggets. The surrounding 

barren material dilutes the grade nuggets.  Similarly, beach bucket samples are unlikely to be 

completely barren. So, the range in beach bucket grades is narrower than the range in 

teaspoon grades. 

If we increase our sample volume to a third of drum, then we have even more dilution and 

an even narrower range in grades.  Ultimately, a sample volume equivalent to the entire 

drum gives us a single value and, hence, no range in grades. 

 
Figure 135 The volume-variance effect 

 

In summary, the larger the volume, the lower the variability in grades.  This is purely due to 

the diluting effect of decreased selectivity. 

In a mining sense, if we use sample grades to represent mining units, say in a polygonal 

estimate when we define dig lines using grade control samples without accommodating for 

the volume-variance effect, we will continue to over-call high grades and under-call low 

grades.  We are implicitly sampling with teaspoons and mining with buckets. 

Implications are we need to adjust estimates to reflect the volume we will be mining to when 

we report or apply selectivity criteria to a resource model.  In addition, we should state the 

degree of selectivity we are using for reporting. 
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Birth of a new technique 

Krige’s observation of the volume-variance effect using empirical data from the 

Witwatersrand led him to work with Georges Matheron on creating an estimation 

technique that would accurately reflect the selectivity at mining. 

 

They set out to create a linear estimation technique that, of all possible linear 

estimation methods, would have the least overall difference between predicted and 

actual mined grades.  This technique also had to be unbiased. 

 

A linear estimation means the weights are applied directly to the sample grades to 

produce an estimate.  No fancy transformations required! 

 

So two conditions: 

least overall difference between predicted and actual 

and 

unbiased 

 

In mathematical terms, these can be rewritten as: 

 

(predicted – actual grade)2 is minimised 

and 

sum of weights is equal to one 

 

Let us rewrite this in a bit more detail: 

 

((sum of weights x grade) – actual grade)2 is minimised  

and 

sum of weights is equal to one 

 

We can combine these two conditions to: 

 

[((sum of weights x grade) – actual grade)2 – (sum of weights minus one)] 

 

which we want to minimise. 

 

Notice the “” that has crept in.  This is called a LaGrange Multiplier and it 

essentially measures the degree of bias that exists without this condition to get the 

weights to sum to one.  When the surrounding sample points are clustered, sparse or 

there is significant extrapolation required, “” will be larger. 

 

You may be wondering where we get the “actual grade”.  This is where the variogram 

comes in handy.  Recall a variogram is calculated by comparing pairs of actual 

sample values, and so the variogram inherently carries information about the “actual 

grades”. 

 

Now, using a bit of calculus, we can “differentiate” or optimise this system to find the 

weights that result in these two conditions being met. 
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Without going into the detail of the differentiation, the result is a series of equations 

where the weights are the values we are trying to calculate.  These equations can be 

summarised in matrix form: 
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A bit of explanation … 

 

The first matrix summarises the variogram values between each sample near the block 

to be estimated.  The symbol  is shorthand for “the variogram” and the numbers 

attached to the  symbol conveys the number of the sample being compared - 12 is the 

variogram at a separation distance between sample #1 and sample #2. 

 

The C0 is shorthand for the nugget effect. 

3  represents the average variogram between sample #3 and the discretisation12 

points in a block.  By taking the average of the variability between a sample and all 

discretisation points within a block, the kriging system is applying a volume-variance 

correction.  The discretisation points within small blocks will be closer together than 

discretisation points within larger blocks.  This means a more similar span of 

separation distances between sample and discretisation point and, therefore, more 

similar variogram values.  In contrast, discretisation points within larger blocks are 

further apart and thus use a wider range of variogram values to calculate the average 

variability between the sample point and the block.  

 

Ultimately, the system is reduced to a calculation of the weights (and ).  These 

weights are applied to the respective sample grades to produce an ordinary kriged 

estimate. 

 

So, the kriging system generates weights that ensure an unbiased linear estimate that, 

of all possible linear estimates (yes even inverse distance), has the least overall 

variability between predicted and actual. 

 

Notice the weights are essentially a function of the variogram model.  This means 

each domain’s unique character can be used to control the weights.  Consequently, the 

variogram model should accurately reflect the variability observed in the data.  For 

this reason, I prefer to review variogram models against the calculated variogram 

values as a plot rather than a table of variogram parameters.  The variogram plot 

highlights the variogram fit and how reasonably the model reflects the calculated 

variability. 

 

 

                                                      

12 Discretisation points are regular points within a block – typically at least two in each direction (2 x 2 x 2) 

that provide a sense of change in volume between the samples and a block. 
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Kriging variance 

The kriging variance can also be calculated based on the kriging system.  Historically, 

the kriging variance was used as a selling point for kriging since it provides a measure 

of confidence in the estimate.  This measure is based on the sample configuration 

surrounding a block and the variogram. 

 

The kriging variance is calculated as the weighted sum of the variograms between the 

sample and the block, plus the LaGrange multiplier () less variability contained 

within the block. 

 

  
  

multiplierLaGrange

sizeblockintpointiondiscretisaeveryandeachbetweenariogramvaverage

weightkrigingncedistablocktotpoinriogramvasumriancevaKriging







 

The kriging variance can be summarised as =  

 sum of the point to block variability weighted by the kriging weights 

 minus variability within a block 

 plus LaGrange Multiplier 

 

Let us take a closer look at each of these components: 

point to block variability: This is the average of the variogram values for 

each of the sample to discretisation points (Figure 136). 

 

sum of the point to block variability weighted by the kriging weights: The 

contribution of each sample to variability (or confidence) in the block is 

summarised by adding up all the sample to block variabilities, but weighting 

them according to the influence each sample has had on the estimated (i.e. the 

kriging weights). 

 

variability within a block: This is the average of the variogram values based 

on the distances between each and every discretised point inside the block 

(Figure 137).  For large blocks, this average will be large and, since it is 

subtracted in the formula, will mean a reduced kriging variance. 

 

LaGrange multiplier: The LaGrange multiplier increases when the data 

surrounding a block has a sub-optimal geometry (clustered, sparse or 

resulting in an extrapolated estimate).  Inadequate data configuration results 

in an increased LaGrange multiplier and, therefore, a higher kriging variance.  
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Figure 136 Sample to block variability 

 

 
Figure 137 Variability within a block 
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At no stage are sample values incorporated into the kriging variance.  The true 

variance or uncertainty surrounding the estimate will depend on the sample values 

used to calculate the estimate.  This means the two blocks in Figure 138, which are in 

the same domain and therefore using the same variogram, will result in identical 

kriging variances. 

 

Conditional simulation is an alternative to generating some measure of grade 

variability on a local scale. 

 

The kriging variance, however, provides a relative measure of data coverage 

surrounding blocks, which provides a useful guide for resource classification. 

 

 
Figure 138 Kriging variance for two blocks (same sample geometry, but different grades) 
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A kriging example in action 

Let us step through an example … 

 

 

 

Six samples surround a block, which has been 

discretised into 2 x 2 in the X and Y directions 

respectively. 

 

 

 

 

 

 

 

 

The first step in any estimation process is to 

search the database to find the closest sample 

points.  These points should come from the same 

domain and may include samples from adjacent 

domains if the boundary conditions are 

gradational.  Note the search ellipsoid is centred 

on the block for the search process. 

 

 

 

 

 

 

 

The distances between each sample and all the 

discretisation points are then measured. 

 

These distances are used to read of the 

corresponding variogram values (based on the 

variogram model parameters) 

 

 

 

 

 

 

These variogram values are averaged to get a 

sample-to-block variogram value for each 

sample.  This is repeated for every sample 

selected within the search ellipsoid. 

 

The distance between each sample and every 

other sample is also measured and used to look 

up the expected variogram value for every pair 

of samples. 
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This information is placed in the kriging 

system, which calculates the weights. 

 

The weights are applied to the respective 

sample grades to generate an ordinary 

kriged estimate for the block. 

 

This process is repeated for every block 

within the domain.  Each domain may use a 

unique set of parameters. 
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Selecting estimation parameters 
 

 

When selecting estimation parameters, common sense should prevail.   

 

Consider the following when selecting parameters 

 Domaining - The way the data is domained will have a significant impact on the quality 

of the model.  The boundary conditions (sharp or gradation change in grade at the 

boundaries) are a guide to identifying how the data will be used for estimation. 

 Block size - The block size is critical to the selectivity and the degree of volume-variance 

correction.  When blocks are too small, there is a false sense of selectivity built into the 

model.  Adjacent blocks tend to have very similar grades, which means the model is too 

smooth and the selectivity in the model is actually for a larger bulkier scenario.  Kriging 

Neighbourhood Analysis (see page 178) is useful for establishing confidence in the block 

size.  Typically, the industry standard is for blocks to be no smaller than half the drill 

spacing.  

 Discretisation - Typically more than four discretisation points in any direction is more 

than sufficient.  

 Search ellipsoid - The anisotropy and orientation of the search ellipsoid can be based on 

the variography.  Pay careful attention to the continuity you expect to see based on your 

understanding and interpretation of the geology.  The variogram range is a useful guide 

to selecting the search range.  

 Minimum and maximum number of closest samples can influence the degree of 

smoothing in the model.  Consider the selectivity you would like the model to reflect – 

for high selective zones, you may want to limit the maximum number of samples.  

Remember you are building a MODEL of the grade, so take time to establish your 

expectations of what the model should reflect of the data.  

 Samples per drillhole – some packages allow you to control the number of samples per 

drillhole.  This constraint is useful for controlling smearing in alternating bands of grades.  

In selecting parameters, be guided by the data geometry relative to the grade 

continuity.  Draw a picture of a block with the surrounding samples.  How far are the 

closest say 40 samples?  What does this mean for the search criteria? 

 

Remember, the objective is to build a three-dimensional model of what you believe the 

mineralisation to look like, given all the available facts, data, information and 

inferences you have collected during the data analysis phase. 
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A note about negative weights 
 

Negative weights result from the declustering process within kriging.  When samples are 

screened by samples closer to a specific block, the samples effectively add no value to the 

estimate.  This screening and the forced unbiasedness (reflected in the weights summing to 

one) can necessitate negative weights. 

The negative weights are typically very small negative values and usually do not create any 

problems.  Sometimes, however, the small negative weights are applied to relatively high 

grades.  This means a high negative contribution to the overall kriged value, which can result 

in a negative estimate. 

 
Figure 139 Negative weights result from screened samples 

There are some practical, though not necessarily theoretically correct, ways to deal with 

negative weights:  

1. The most common is to set the negative weights to zero – they are typically very 

small.  The impact of this is that the weights do not end up summing to one.  

Theoretically, this produces a biased result.  I like to run a model without this setting 

as well as with the setting and then to compare the two approaches in a scatterplot 

between the two resulting block models.  Most block estimates should lie on the 

one-to-one line, while those affected by the “set negative weights to zero” setting 

will lie off the one-to-one line.  The degree of difference is the measure of the 

impact of this setting.  Ideally, only a few blocks should be affected and the grade of 

those blocks should be carefully validated against the surrounding sample data. 

2. An alternative is to re-run the estimation for the affected blocks (i.e. blocks with 

negative estimates) with a reduced number of samples (either by limiting the 

number of samples per drillhole, or reducing the maximum number of samples). 

3. A setting I would like to see in commercial packages is the option to ignore samples 

with negative grades.  When this is done, the remaining samples are treated as the 

samples within the search and their weights then add up to one, thereby creating an 

unbiased estimate.  This would require a re-run of the kriging process for all blocks 

where negative grades are encountered.  We have the technology and the computer 

power to be open to this option.  

4. When all else fails the block grades could be manually adjusted to a grade the 

resource analyst believes represents the volume.  Reporting codes require principles 

of materiality, transparency and competence.  Within this spirit, block grades can be 

manually identified and classified accordingly.  
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Indicator kriging 
 

Indicator kriging is useful when we have spatially integrated populations (say cross 

cutting structures with multiple phases of mineralisation).  Indicator kriging should 

NEVER be used in place of good geology and domaining. 

 

Data analysis for indicator kriging 

Since the underlying data distributions are mixed, the standard statistics used to 

describe the data tend not to be representative.  Consider a data set made up from two 

different distributions.  The mean of the data set represents neither population and, 

whilst central, does not say much about the two individual populations. 

 

 
Figure 140 Mixed populations 
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When populations cannot be separated spatially (and sufficient domaining has been 

attempted!), then an indicator is typically adopted to allow variable weighting of the 

samples according to their most likely population characteristics. 

 

The data analysis required for indicator kriging includes: 

 adequate demonstration of spatial integration of populations 

 description of modes – what are the typical grades for each of the mixed populations? 

 description of inflections – at what grade does one population become more dominant? 

 demonstration of spread of higher grades relative to lower grades in 3D 

 the deciles (10 percentiles) based on ranking the sample grades, or the grade 

corresponding to 10 percentile increments in metal 

 the inflection percentiles  

 additional percentiles at the high grade tail 

 average and median grade between the reported percentiles 

 

Indicator coding 

The indicator approach requires generating a set of binary codes for each percentile reported 

in the data analysis (for example at the 10 percentile increments).  These percentiles are 

called Indicators or Thresholds. 

The coding function is: 

 If a sample grade is less than the indicator grade set the code to “1”. 

 If a sample grade is greater than or equal to the indicator grade set the code to “0”. 

 

All data within a domain is coded according to a series of thresholds (sometimes called 

indicators or cut-offs).  Ideally, the range of thresholds should adequately describe the spread 

of the data.  Figure 142 highlights location of indicator thresholds using only the nine grade 

deciles.  Additional indicators at the 95th and 97.5th percentiles provide better high grade tail 

definition (Figure 142). 
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(a) nine deciles only (log scale)     

 

 
 (b) nine deciles only (normal scale)      

 
Figure 141 Location of indicator thresholds on probability plots – nine indicators only 
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(a) additional indicators (log scale) 

 

 
(b) additional indicators (normal scale) 

 
Figure 142 Location of indicator thresholds on probability plots – additional indicators 
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To help us understand indicator kriging, let us follow through the steps using a simple data 

set with nine samples (Figure 143), and we are interested in the grade for the block located in 

the centre of the data.  

 

 
Figure 143 Example block to be estimated 

 

When we code the data at indicators13 (for illustration purposes we will only look at 

three threshold grades 0.95 g/t, 2.10 g/t and 2.93 g/t (Figure 144)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      

13 In practice typically one would use between nine and 12 indicators 
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(a) coded at 0.95 g/t 

 

 

(b) coded at 2.10 g/t 

 

 

(c) coded at 2.93 g/t 

 

Figure 144 Indicator coded samples for three indicators 
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Indicator variography 

Indicator variography is identical to the process used for any other variogram study.  We use 

the same modelling techniques and philosophies we use for traditional variogram modelling 

– the only difference is that instead of calculating the typical difference between sample 

grades for different separations, we use the codes in place of the grades.  This means that if 

there are 11 thresholds, there will be 11 sets of indicators and therefore 11 sets of 

variography analyses (one for each set of codes per threshold).   

Importantly, the parameters should vary gradually between indicators.  This will prevent 

order relation problems during estimation.  If parameters are erratic, then the differences 

between estimated indicators can cause negative variances.  Typically, one would expect the 

nugget effect to increase with increasing indicators and the ranges to decrease within 

increasing indicators. 

Following our example through, let us suppose the indicator variogram models for the 0.95 

g/t, 2.10 g/t and 2.93 g/t coded data are the ones presented in Figure 145.   

 

 

 

Indicator estimation 

Indicator estimation involves repeatedly running ordinary kriging on the coded data: one run 

per indicator.  Let us work through an example: 

 

The variograms are used to weight the codes at each indicator, using the respective 

indicator variograms (Figure 146). 
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(a) variography on 

codes for 0.95 g/t 

 

 

(b) variography on 

codes for 2.10 g/t 

 

 

(c) variography on 

codes for 2.93 g/t 

 

Figure 145 Variograms for each of the three indicators 
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(a) kriging codes at 

0.95 g/t using 

respective variogram 

 

 

(b) kriging codes at 

2.10 g/t using 

respective variogram 

 

 

(c) kriging codes at 

2.93 g/t using 

respective variogram 

 

Figure 146 Ordinary kriging for each of the three indicators 
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The estimated codes will be between zero and one and represent a probability that the 

unknown grade is less than the indicator grade.  Notice that the proportion of “1” codes 

increases with increasing indicator and so the raw average of the codes increases with 

increasing indicator.  The kriged codes are essentially a similar average, only each sample 

code is weighted according to the respective indicator variogram. 

Let us assume the estimates for each indicator are as follows: 

 At the 0.95 indicator the estimated probability is 0.275. 

 At the 2.10 indicator the estimated probability is 0.695. 

 At the 2.93 indicator the estimated probability is 0.925. 

This means there is 

 a 27.5% probability that the grade is less than 0.95, 

 a 69.5% probability that the grade is less than 2.10, and 

 a 92.5% probability that the grade is less than 2.93. 

Converting these to the probability of the unknown grade being between the indicators 

means 

 a 27.5% probability that the grade is less than 0.95, 

 a 42.0% probability that the grade is greater than or equal to 0.95 and less than 2.10, 

 a 23.0% probability that the grade is greater than or equal to 2.10 and less than 2.93, 

and 

 a 7.5% probability that the grade is greater than or equal to 2.93. 

Now, suppose we know from our data analysis that the average grades for each interval 

between indicators are: 0.52, 1.76, 2.45 and 4.5 respectively.  We can apply the probabilities 

of each interval to the average grades to estimate the overall expected grade. 

Working this through: 

27.5% x 0.52 

+ 42.0% x 1.76 

+ 23.0% x 2.45 

+ 7.5% x 4.5 

= 1.783  

This is the indicator kriged grade. 
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Figure 147 Example of indicator kriged grade 

 

Often the average of the top interval is biased due to a few extreme grades.  One way to 

manage this is to use the median instead of the mean of the sample data within the last 

interval. 

Order relations 

Order relation problems occur when the estimation parameters change dramatically with 

increasing indicators.  An order relation occurs when the probability of the estimate being 

below a higher indicator is lower than the probability of being below the next smaller 

indicator.  This will result in a negative probability (interval probability = probability less 

than a higher indicator less the probability of being below the lower indicator).  This is 

nonsensical.  Most programs build in a smoothing mechanism to correct for order relation 

problems and report the size and number of corrections. 

It is best to minimise order relation problems by ensuring gradual changes in indicator 

variogram parameters with increasing indicators (Figure 148 and Figure 149). 
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Figure 148 Nugget and sill proportions should vary gradually between indicators 

 

 

 

 
Figure 149 Stereonet illustrating gradual and systematic change in continuity directions 

 

 

 



The Art and Science of Resource Estimation 

 

- 173 - 

Selecting an estimation method 
 

Simplicity.  I recommend you use the simplest method necessary for your domained data set.  

With each new complication in a method comes a new layer of parameters as well as a new 

set of assumptions. 

Ordinary kriging works well in most situations where there is sufficient domaining.  The 

advantages over inverse distance include the built in declustering process and the weighting 

of samples according to observed and modelled variability rather than an arbitrary power. 

Indicator kriging is useful when populations are spatially integrated. However, indicator 

kriging should not replace sound domaining. 

Other non-linear methods are useful for maintaining good volume-variance control.  These 

methods, however, tend to be confined to highly specialised software. 

Types of Grade Arrangements 

There are two typical arrangements of grade continuity: 

Mosaic and Diffuse 

The mosaic model describes disjointed grade continuity – much like mosaic tiles.  In a 

Mosaic model high grades can juxtapose low grades in a seemingly disorderly pattern 

(Figure 150). 

Where grades are more gradational, high and low grades are separated by medium grades 

the pattern is called a diffusion-type model (Figure 150). 

A mix of the two models is created when the higher grades follow a mosaic model while the 

lower grades are more diffuse.  This pattern is called an indicator residual-type model. 

 

 
Figure 150 Example of (a) Mosaic Model (b) Diffusion-Type Model  

Indicator estimation inherently assumes a mosaic model.  This assumption allows each 

indicator to be kriged independently.   

How can we test this assumption?  One way is to measure the correlation between the 

indicators – if there is a correlation then the assumption of a mosaic model is flawed.  If there 

is no correlation, then the assumption holds. 
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The way to measure the correlation is by generating a cross-indicator variogram between 

indicators.  Standardising this cross-indicator variogram against the variogram of the lower 

indicator provides the probability that sample pairs are either side of the indicator, for each 

lag.  Under the mosaic model this probability will be close to constant across all lags.  

A diffusion model exists when the probability of a difference between the pairs gradually 

increases with increasing lag.  The lower the probability for short lags, the more likely is a 

diffusion model applies.  In this case, the mosaic model assumption is discredited and a 

Gaussian approach is more appropriate.   

The Gaussian method of disjunctive kriging is often recommended.  This is the kriging 

approach through a hermite polynomial transformation.  Conceptually, the disjunctive 

kriging involves kriging of the factors of the hermite polynomials and back-transforming to 

produce a block estimate of grade.  Strict stationarity is required for this approach. 

 

Density modelling 
 

A three-dimensional density model allows us to estimate the tonnage of mineralisation in the 

resource.  With sufficient information, a tonnage can be estimated into each block from 

density samples in the same way as grade is estimated.   

Often there is insufficient density data and density values are assigned to blocks based on the 

position relative to geological contacts (for example weathering profiles). 

In cases where the density is a function of a sampled variable (say sulphide or lead), a 

regression equation is often used to estimate density in blocks based on the relationship 

between density and the more widely sampled variable. 

Whatever your approach to density modelling you should be explicit in your description of 

how you have generated a density model.  This is particularly important when reporting to 

principles based code such as JORC, SAMREC or NI43-101, where Transparency and 

Materiality are two of the three guiding principles. 
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Optimising processes 
 

Measures of goodness of fit 
 

Danie Krige (1996) proposed goodness of fit statistics to evaluate the appropriateness 

of the set of parameters used for estimation.   

 

Central to the argument was the concern of conditional bias.  Estimated blocks are 

conditionally biased when higher grades are under-estimated and lower grade blocks 

are over-estimated.  One extreme situation of this occurs when the estimated blocks are 

much too small to represent 

accurately the grades at the 

locations of the small blocks. 

 

Here we have a distribution of 

block grades, but when we 

compare them with the true 

block grades the tails of the 

estimated histogram show that 

the estimates are too smooth. 

 

If we compare the estimates to the true grades on a block-by-block basis, we see a good 

relationship between the estimated and actual high-grade blocks and the estimates and 

low-grade blocks.   

 

However, there appears to be a 

consistent bias – the estimated high 

grades are lower than the actual high 

grades and, conversely, the estimated 

low grades are higher than the actual 

low grade blocks.  So instead of a 

1:1 relationship, which would 

produce a slope of “1” in a 

regression between the estimated and 

actual data, we have a conditional 

bias where the extreme grades tend 

to be smoother than they should be.  

The regression between the 

estimated and actual produces a 

slope that is less than one.  The 

lower the slope, the more smooth the 

tails of the distribution of the 

estimated block grades.  

 

The goodness of fit statistics used to approximate the phenomena described above are: 

 the kriging efficiency, and 

 the slope of regression. 
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The kriging efficiency estimates the percent overlap expected between the estimated 

block histogram and the histogram of the true block grades.  When a block has a 

kriging efficiency of 100%, we expect a perfect match between the estimated and true 

grade distributions.  As the data becomes more sparse, is clustered or blocks are 

extrapolated more than interpolated, the kriging efficiency drops.  Sometimes the 

kriging efficiency can even be negative, signalling extremely poor estimates. 

 

The slope of regression estimates the slope of the regression equation between the 

estimated and true block grades.  When the slope is “1.0”, the estimated high grades 

and estimated low grades correspond accurately to the respective true high and low 

grades. 

 

 

The kriging efficiency (KE) and slope of regression (slope) are estimated as: 

KE% = block variance – kriging variance 

         block variance 

 

where the block variance is the total sill less the variance contained within a block. 

 

Slope = block variance – kriging variance + || 

              block variance – kriging variance + 2|| 

 

Note when an estimated block has good sample coverage, the kriging variance and  

are low.  An extreme is a kriging variance of zero.  In this case, the kriging efficiency 

becomes 100% and, when the  is negligible, the slope becomes one, a perfect 

estimate. 
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Test block size 1 

Test block size 2 

Test block size 3 

Optimising block size 
 

The kriging efficiency and slope statistics provide a useful means of estimating the 

block accuracy and conditional bias ahead of estimation.  Estimates at a block size that 

maximise the kriging efficiency and the slope statistic are expected to be more 

accurate.  In the process described below, the objective is to test a range of parameters 

and then to select the parameter that maximises the kriging efficiency and slope 

statistic.     

 

 

Consider this process for optimising the block size: 

 

Decide which block sizes you believe are reasonable 

for the model.   

 

At this stage, you should have a variogram model and 

the sample data (this can be either the actual data or 

pseudo data at planned drilling intervals). 

 

Fix the following estimation parameters to extremely 

high values: 

 Discretisation14 (say to 8x8x8), 

 Search ranges (for example to three time 

variogram range), and 

 Maximum number of samples (say 150). 

 

Define a test volume (say 100m x 100m x 100m) and 

set up one block model for each block size you would 

like to test. Calculate kriging efficiency (KE) and 

slope for all blocks in each test block model. 

 
 

 

 

 

Plot the range of KE and slope values against block size and select the block size that 

maximises KE and slope.  

 

 

 

                                                      
14 My preference is to optimise the block discretisation after the search parameters are optimised. 

 

block size options 
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Optimising search parameters 
 

The two search parameters used to collect samples prior to estimation are the search 

ellipsoid (as defined by the search range and the rotation) and the maximum number of 

samples within the search to retain for estimation. 

 

Consider this process for optimising the search parameters: 

 

Search ellipsoid 

Decide which search ellipsoids are reasonable for estimation.   

 

At this stage, you should have a variogram model and the sample data (this can be 

either the actual data or pseudo data at planned drilling intervals) as well as the block 

size. 

Fix the following estimation parameters to 

extremely high values: 

 Discretisation (say to 8x8x8), and 

 Maximum number of samples (say 

150). 

 

Define a test volume (say 100m x 100m x 

100m) and set up one block model for each 

search ellipsoid you would like to test.  

 

Calculate KE and slope for all blocks in 

each test model.   

 

 

Plot the range of KE and slope values against search ellipsoid and select the search 

ellipsoid that maximises KE and slope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Search ellipsoid options 
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Maximum number of samples per block 

 

Next, decide what the least maximum number of samples are needed to produce a 

reasonably accurate estimate.   

 

 

 

 

 

 

Using the variogram, sample data, block size used above; and the search as selected 

above, fix the discretisation to extremely high values (say to 8x8x8). 

 

Based on the same test volume (say 100m x 100m x 100m), set up one block model for 

each value of maximum samples you would like to test.  

 

Calculate KE and slope for all blocks in each test model.   

 

Plot the range of KE and slope values against number of samples and select the number 

of samples that maximises KE and slope.  Here my preference would be to choose the 

lowest maximum number of samples that still provides reasonable KE and slope.  This 

allows the estimation to respond to local variations – too many samples can overly 

smooth out local patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example options for  
maximum number of samples … 

15, 25, 30, 35, 40, 50, 60 

Options for maximum number of samples 
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Discretisation 

 

Finally, optimise the discretisation, using the same philosophy as above. 

 

Decide on a series of discretisation options to test.   

 

 
 

Set all other parameters according to the selection criteria as selected above.  Define a 

test volume (say 100m x 100m x 100m) and set up one block model for each 

discretisation option you would like to test.  

 

Calculate KE and slope for all blocks in each test model.   

 

Plot the range of KE and slope values against the discretisation scenario and select the 

discretisation scenario that maximises KE and slope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discretisation options 
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Getting practical 

 

We need to temper the optimisation process described above with reality.  The first 

practical aspect to consider is the volumetric definition.  The “optimisation” process 

described above is performed within a test volume.   

 

If, for example, the orebody is tightly constrained, then a theoretically optimal block 

size may be too large for the wireframe and whilst sub-celling does a fine job of 

honouring a wireframe volume, the estimates are generally run on the “parent” blocks.  

This can result in estimation based on extrapolations to discretisation points inside the 

parent block, but outside the wireframe.  One way to check that this is not the case is to 

plot up the kriging efficiency and slope model as part of the model validation process.  

If these statistics are reasonable, the issue may be minor.   

 

Consider incorporating a check on the kriging efficiency and slope block models are 

part of your model validation process.  

 

Another practical issue to consider are the mining limits.  In an ideal world, the block 

volumes should mimic the minimum mining volume.  This is not always possible when 

data is still too widely spaced.  However, being reasonable in selection of dimensions 

can help the mine planning process (for example setting a block height equivalent to 

the bench height). 

 

In my opinion and experience, the current approaches to optimising search parameters 

using kriging efficiency and slope offer limited value in truly optimising parameters.  

Until we are able to use computer grunt to calculate the kriging efficiency and slope on 

a continuum of parameters, and then to do this for each continuum against each and 

every other parameter’s continuum, we are testing the best of a limited choice.  When 

we truly optimise we test for an overall optimum set.  In the meanwhile, I believe the 

various forms of kriging efficiency and slope testing processes currently used in the 

mining provide guidance until the impacts of each parameter are understood. 

 

Kriging efficiency and slope are more valuable when testing and selecting between drill 

patterns and spacing (see page 183). 
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Optimising drill spacing 
 

Kriging efficiency and slope can be used to optimise drill spacing and/or patterns.  

Again, we can adopt the same philosophy as described for optimising estimation 

parameters. 

 

Let us say you have an idea of the selectivity (i.e. the block size).  Other parameters 

you will need include the variogram model and a set of search parameters. 

 

Set up several test patterns.   These could include different orientations, drilling density 

and sampling frequency (note: there is no need to allocate a grade).   Below we have 

five test patterns. 

 
Now estimate kriging efficiency and slope in the blocks for each scenario.   Since the 

scenarios are based on different number of samples and each sample has approximately 

the same unit cost, the kriging efficiency and slope statistic can be plotted against the 

number of samples to provide cost/benefit information.  Ideally we would like the 

lowest number of samples that still provides good KE and slope statistics. 

 

 

 

 
 

 
Sample configuration options  



The Art and Science of Resource Estimation 

 
 

- 184 - 

Conditional simulation  
 

Conditional simulation is a process for describing grade uncertainty within a geological 

context.   

 

Conditional simulation models are used to evaluate the risk associated with mining 

decisions such as: 

 Delineation of ore/waste in grade control 

 Impact on grade, tonnes and metal (and subsequent consequences) of changing 

a bench height 

 Risk associated with pit optimisations and designs 

 Variability/uncertainty in estimated grade and metal of stope designs 

 Quantified risk classification  

 

The process of generating conditional simulation models is closely related to the 

resource estimation or grade control processes.  Conditional simulation models require 

just as much QAQC and geological input as resource estimation.  

 

The data preparation and interpretation steps that precede the conditional simulation 

process are identical to the steps that precede an estimation run.  These include: 

 QAQC 

 Geological analysis and interpretation 

 Domaining and wireframing 

 Data analysis 

 Variography 

 Parameter selection (including choice of method) 

 

The same assumptions regarding stationarity still hold and are probably more important 

than for estimation. 

 

The outcomes from conditional simulation are a series of equally likely models (say 

50), which can be used to test consequences of decisions.  Rather than represent 

smoothed estimates of grade like the resource and grade control models do, the 

conditional simulation models reflect the variability or grade texture as described by 

the variogram model.  Since this is a better representation of the variability in adjacent 

grades, the conditional simulation models provide an opportunity to trial different 

decisions on the same model.  There is also the opportunity to measure the range of 

impact of the grade variability on the decision over several equally likely models.  

 

Here we will describe the two more popular methods of conditional simulation for a 

single variable: 

 

 Sequential gaussian simulation (SGS), and 

 Sequential indicator simulation (SIS). 
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Sequential gaussian simulation 
 

Let us follow through an example to understand the mechanics of sequential gaussian 

simulation.  Note that this process is applied within a single domain, although samples 

may be accessed across a domain boundary. 

 

Step 1: Transform input data to normal distribution (NSCORE transform – see 127) 

 

 
Step 2:  Model NSCORE variogram 

 

 
 

Step 3:  Create a grid of very small nodes 

 

 
 

Step 4:  Set up a random path to visit each node once only 
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Step 5:  Go to first node and search for nearest samples 

 

 
 

Step 6:  Krige using the nearest samples 

 
 

 

Step 7:  Use kriged estimate and kriging variance to define a normal distribution 

 
 

 

Step 8:  Convert distribution to cumulative distribution 
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Step 9:  Use Monte Carlo to randomly sample the cumulative distribution 

 
Note: if there are many close samples, the cumulative distribution will be steep and the 

range of possible simulated values small.  However, in areas of less certainty, the 

distribution will be less certain, flatter and result in a wider range of possible values. 

 

Step 10:  Place simulated value at node 1 

 
 

 

Step 11:  Go to node 2 

 
 

Step 12:  Repeat search on samples and previously simulated nodes 
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Step 13:  Repeat estimation and Monte Carlo sampling to generate simulated value for 

node 2  

 
 

Step 14:  Repeat for all nodes in path 

 
 

Step 15:  Transform simulated values back to original grade distribution 

 

                      
 

Step 16:  Repeat conditional simulation process using a new random path 
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Sequential indicator simulation 
 

Sequential indicator simulation follows the same process as Sequential Gaussian 

Simulation, except for the following steps … 

 

Step 1:  Transform input data using indicators 

 

 
 

 

 

 

Step 2:  Model indicator variograms 
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Steps 7 and 8:  Use indicator kriging to define cumulative distribution 

 

 
 

Step 15: There is no need to back transform since the simulation is directly on the 

distribution. 
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Multi-variate simulation 
 

Multi-variate stepwise simulation is a neat process for building correlated simulation 

models.  The technique works by transforming correlated data into uncorrelated data 

(and storing the transformation); then simulating the transformed variables 

independently before re-introducing the correlations. 

 

Stepwise transformation 

The method for generating correlated conditional simulation models incorporates a 

stepwise transformation (Leuangthong and Deutsch, 2003).  

 

The steps for creating correlated conditional simulation models are: 

 

1. Select sequence of elements for transformation 

2. For each domain: 

a. validate correlation 

b. stepwise transformation of multivariate data 

c. validate transformation 

3. Generate several (say 50) conditional simulations for each of transformed 

variables 

4. Validate conditional simulations of transformed data 

5. Reverse stepwise transformation 

6. Validate correlated conditional simulations against input data. 

7. Re-block simulations to required selectivity 

 

This process depends on the stepwise transformation. 

 

A practical implementation of the stepwise co-simulation on the Vermelho nickel 

laterite project, Brazil, is presented in “Exposing Uncertainty in Schedules for 

Proactive Stockpile Planning” (Coombes et al, 2005). 
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Stepwise transformation in action 

Let us look at an example of the stepwise transformation.  There are two elements in 

this example: nickel and iron.  Since the project is a nickel project, nickel is selected as 

the primary variable for the transformation process. 

 

There is a high correlation (0.81) between nickel and iron (Figure 151). 
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Figure 151 Scatterplot between iron and nickel (an example data set) 

Next, we transform nickel to a normal distribution using a normal score transform 

(Figure 152)15.  This is achieved by sorting the data into ascending order; calculating 

each sample’s percentile and then looking up the corresponding normal score value for 

each percentile. 

 

1.21.00.80.60.40.2

200

150

100

50

0

Nickel (Ni%)

Fr
e

q
u

e
n

c
y

Histogram of Nickel

    
3210-1-2-3

90

80

70

60

50

40

30

20

10

0

Nscore Nickel

Fr
e

q
u

e
n

c
y

Histogram of Nscore Transformed Nickel

 
 

Figure 152 Normal score transform of nickel 

 

 

 

 

 

                                                      

15 See Normal score explanation on page 127 
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Next, we transform the iron data to a normal distribution.  The difference is we do this 

in slices of nickel grade.  In other words, we break the nickel distribution up into 

intervals and independently normal score transform the iron values within each interval 

(Figure 153).   

 

Therefore, a value of iron (for example 7.22%) will have a different percentile in each 

of the nickel intervals (Figure 154 and Figure 155).  
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Figure 153 Iron values within intervals of nickel  
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Figure 154 Iron values lie differently depending on nickel interval  
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Since these sub-sets are each transformed to a normal distribution with a mean of zero 

and a variance of one, the final distribution of transformed iron is normal.  In addition, 

the relationship between the transformed nickel and transformed iron shows no 

correlation (Figure 158). 
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Figure 155 Iron distributions within nickel intervals  
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Figure 156 Each iron distribution is transformed to normal independently  
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Figure 157 Stepwise normal score transform of iron 
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Figure 158 Transformed data is uncorrelated  

Since the transformed data is uncorrelated, simulations for the two transformed variables can 

be generated independently.  This is typically done using Sequential Gaussian simulation 

(see page 185). 

Once the simulations of the transformed data are validated and complete, the simulation 

models are back-transformed.  This is done by reversing the normal score process for the 

transformed nickel data first. 

Next simulated transformed iron samples are cross-referenced to the nickel data to identify a 

nickel interval.  The normal score process used for the specific slice is used to back-

transform the simulated transformed iron value to an iron value. 

Once this is complete, the correlations between the models are validated by plotting a 

scatterplot between the simulated nickel and simulated iron grades. 

 

 

 

 

 

 

 

 

Scatterplot between transformed data sets 
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Conditional simulation applications 
 

Conditional simulation is a tool for a completely different set of problems to those requiring 

estimation.  Estimation is equivalent to the mean, median and mode.  Estimation models are 

therefore useful when we want to know typical grades at various locations.  If, however, we 

are interested in how different we believe the true grade is likely to be to the estimated grade, 

we would generate conditional simulation models.   

Situations that would require conditional simulation models include: 

 Evaluating the impact of short term grade variation on scheduled grades. 

 Evaluating the range of possible economic impacts of changing mining equipment. 

 Evaluating the economic risk associated with thickness variations.   

 Evaluating the variation in multi-element stockpiles and subsequent risks for product 

quality management. 

 Evaluating the degree of uncertainty or risk associated with Measured, Indicated and 

Inferred resources. 

As these examples imply, the ultimate value of conditional simulation models is in the 

communication of uncertainty by the resource analyst to the engineer.  Instead of assuming a 

typical 10% error on an estimated resource, the engineer is able to transfer the in situ risk 

through a mine plan and ultimately measure the expected risk associated with any portion of 

the mine plan.  
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Recoverable resource estimation 
 

The dilemma 
The cost constraint of data collection means exploration data or data available at the time of 

resource estimation tends to be as widely spaced as possible for the assumed grade and 

geological model of the deposit.  This means the block optimisation tends to suggest larger 

blocks for estimation than the selectivity that will be used during mining.  Additional grade 

control drilling is necessary to estimate local grades accurately to facilitate the mine/waste 

decision. 

 
Figure 159 Mining selectivity and variability 

Recall the volume-variance effect.  Large blocks are less variable than the smaller Selective 

Mining Units (SMU).  Therefore, the variability in grades observed in the resource model is 

less than the variability that is likely to occur at the time of grade control.  Consider how the 

histogram of grade changes as the selectivity changes.  At the sample scale, the grades have 

a wide low histogram.  As the volume increases, the histogram narrows and peaks more.  

 
Figure 160 Volume-variance and grade distribution 
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Figure 161 Impact of volume-variance effect on grade-tonnage relationship 

Consider the differences in reported tonnes and grade above the same cut-off grade (Figure 

161).  Large volumes have no estimates above the higher cut-off grades.  Conversely, the 

entire volume is selected at low cut-offs. This pattern is evident when the tonnes and grades 

above cut-off are presented on a grade-tonnage curve. 

Recoverable resource estimation is the process of adjusting the variability in the resource 

model to provide an estimate of likely tonnes and grade at the time of grade control (i.e. for a 

smaller block size). 

 

Approaches to adjusting the volume-variance 
 

There are several approaches to adjusting a resource model at one scale to reflect the likely 

recoverable resource at the mining scale.  These include the global approaches: 

 Global affine correction 

 Global indirect log-normal approach 

and the more local approaches 

 Local affine correction 

 Local indirect log-normal approach 

 Uniform conditioning 

Another approach is to use conditional simulation to simulate the likely changes in 

variability for different scales of selectivity. 

Each of these is discussed below. 
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Global approach 
 

The global approach is to take the large block estimates and stretch the distribution by 

adjusting to the SMU variance before reporting the likely proportion and tonnes above cut-

off.  Note there can be no spatial context to this style of report.   

 

 
Figure 162 Generating a recoverable estimate 

Global Affine Adjustment 

The steps for the global affine transformation are: 

1. Calculate the variance correction factor. 

2. Calculate the theoretical block variance at the scale of the large blocks  

Total sill - (the average variogram value between discretisation points  

within a block at the resource model scale) 

3. Calculate the theoretical block variance at the mining scale. 

4. The change in variance is the ratio between the SMU variance and the variance at 

the large block scale. 

5. For each estimated block calculate: 

SMU grade = mean grade + (model grade – mean grade) x variance ratio 

6. Report the tonnes and grade above cut-off grade.  

NOTE:  These SMU grades have no spatial context and SHOULD NOT be used as a spatial 

grade model. 
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Global Indirect Log-Normal Adjustment 

The indirect log-normal approach follows the same philosophy as the Affine approach.  The 

shape of the distribution, however, is assumed to become more normal (Gaussian) as the 

block size increases.  This is sensible in light of the Central Limit Theorem, which describes 

how the distribution of averages becomes more normal (Gaussian) as the number of samples 

within the sample sets increases, regardless of the sample distribution shape.   

Each block grade is adjusted to an equivalent SMU grades as: 

SMU-temp grade = a x (Block grade)b 

where: 

a = [mean / square root (f x COV2 + 1)] x [square root (COV2 + 1)/mean]b 

and 

b = square root [natural log(f x COV2 + 1)/ natural log(COV2 + 1)] 

 

Then to get the new distribution centred on the mean … 

SMU grade = [mean/average of SMU-temp grades] x SMU-temp grade 

This is repeated for each block grade.  The tonnes and grades are then reported above cut-off 

grade to present the expected recoverable resource at the SMU scale. 

NOTE:  These SMU grades have no spatial context and SHOULD NOT be used as a spatial 

grade model. 
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Local approach 
 

The local approach is to take each block estimate, impose an uncertainty distribution around 

the estimate and adjust the variance of the local distribution according to a volume-variance 

correction.  These estimates present a proportion and expected grade above cut-off for each 

block.   

A key assumption (or leap of faith!) behind this approach is that probability and proportion 

are equivalent.  Is this possible?   

Variances of lower confidence estimates are wider than estimates that have greater 

confidence (for example due to closer data).  When variances are wide, there is more chance 

of presenting a probability of a high grade.   

This is not the same as being certain of the presence of a small proportion of high grade. 

 

 
Figure 163 Proportion or probability? 
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The steps for the Local recoverable adjustments are identical to the Global approach, expect 

the process is repeated for each block: 

1. Calculate the variance correction factor  

2. Calculate the theoretical block variance at the scale of the large blocks  

Total sill - (the average variogram value between discretisation points  

(within a block at the resource model scale)). 

3. Calculate the theoretical block variance at the mining scale 

4. The change in variance is the ratio between the SMU variance and the variance at 

the large block scale 

5. For each block:  

a. Assume a distribution of grades within the block.  For indicator kriging, the 

indicator distribution is assumed while for an ordinary kriging approach a 

normal distribution with a fixed variance is assumed. 

b. Adjust the variance according to the variance correction factor. 

c. Report the proportion of block and associated grade above cut-off. 

d. If the proportion is less than a minimum proportion set the proportion to 

zero. 

e. Adjust proportions to multiples of SMUs by “diluting” the SMU grades.  

6. Report the tonnes and grade above cut-off grade.  

Note:  While these models can be used in a spatial context, there is an inherent assumption 

that probability reflects proportion. 

The Affine approach adjusts each block by a simple ratio change to the variance of the 

distribution, while the indirect log normal approach adjusts the distribution shape according 

to the affect the central limit theorem would have on a log-normal distribution shape. 
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Uniform conditioning 
 

Uniform conditioning tends to be applied as a local correction.  The steps in uniform 

conditioning are: 

1. Use Hermite polynomials to model the grade distribution and transform it to a 

normal distribution. 

2. Calculate and model the variogram based on the transformed data. 

3. Check the data is bi-variate normal by observing concentric circles on the 

h-scatterplot (see page 108). 

4. Calculate the anamorphosis function (the variance factor) for the SMU and for the 

large block size. 

5. Transform the estimated resource model blocks to a normal distribution through the 

anamorphosis function. 

6. Adjust each transformed block distribution according to the SMU anamorphosis 

variance. 

7. Report the proportions and values above cut-off. 

8. Back-transform the estimates to grades. 

9. Accumulate the tonnes and grades above cut-off for each block to present a global 

recoverable resource. 

Again, note the key assumption here is that probability reflects proportion. 

 

Conditional simulation approach 
 

Conditional simulation allows close points to be simulated.  Whilst conditional to the 

variogram model, they do provide an estimate of the likely change in tonnes and grades for a 

change in selectivity. 

The approach is simply to simulate on a fine grid and to reblock the simulations to both the 

resource model and the mining scale.  For each simulation report the percent change in 

tonnes and grade at the cut-off of interest.  This can be used to guide the expected change in 

tonnes and grade of the resource model to the SMU scale selectivity. 

Journel and Kyriakidis (2004) provide a detailed application of the conditional simulation 

approach. 
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Multi-variate recoverable estimation 
 

When multi-elements are correlated, the relationship between the samples can be carried 

through to the recoverable estimation stage.   

Consider an example of correlated elements - say iron and nickel in a nickel laterite data set 

(Figure 164). The correlation is about 68% and tends to have a curvilinear relationship 

(Figure 165). 

 
Figure 164 Scatterplot between iron and nickel (example data set)  

 

 
Figure 165 Scatterplot between iron and nickel and polygonal fit  
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Consider applying a volume-variance correction to each of the two data sets from point 

distribution to the selective mining unit according to their respective variograms (Figure 166 

and Figure 167).   
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Figure 166 Histogram of nickel (sample and SMU volumes)  
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Figure 167 Histogram of iron (sample and SMU volumes)  
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If the volume-variance adjustments made to the sample grades are done in such a way that 

the pair relationship is maintained, then the SMU-adjusted distributions would plot on a 

scatterplot as in Figure 168. 

 
Figure 168 Scatterplot of volume-variance adjusted data  

Now we have a measure of the expected relationship at the scale of the Selective Mining 

Units.  We call this relationship the Reference SMU relationship between nickel and iron.  

This means that for a given SMU nickel grade we have an idea of the likely iron grade at that 

selectivity. 

The next step is to run a standard recoverable estimate on our primary variable (nickel in our 

example above).  This means generating a block model for nickel and producing a 

recoverable estimate (see pages 200 and 202). 

Let us suppose we have a resource model block whose nickel grade is 0.4 % Ni.  When we 

adjust the block to report a recoverable estimate above a cut-off of 0.5% Ni, the proportion is 

37.6% of the block with an SMU grade of 0.72% Ni.   

To look up the corresponding iron grade we feed the recoverable nickel grade into the 

reference distribution and report the nearest corresponding iron grade (Figure 169). 
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Figure 169 Look up SMU iron value for given SMU estimated nickel value  

This approach can be expanded to more than two elements.  The steps are: 

1. Apply the volume-variance correction to each element’s sample distribution 

(maintain the order of the data). 

2. Generate a recoverable estimate for the primary element.  Use each primary 

recoverable estimate to look up the corresponding recoverable secondary elements 

from the volume-variance adjusted distributions. 
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Phase 4: Validation 
Purpose 
 

Validation should be a natural part of every stage of your work, rather than a retrospective 

force fit: 

 When you wireframe, calculate the volume and apply a nominal density and check 

whether the tonnes you get make sense for the dimensions of the orebody.   

 When the blocks are coded, check the volume of the blocks against the wireframe to see 

whether the volumes are comparable.   

 When data is composited, check whether the total length of the composites is 

comparable with the total lengths of the samples. 

Here we look at specifically how to validate an estimated block model and conditional 

simulation models. 

 

Estimation validation 
 

The four-point check 
 

Model validation is the process of confirming the model you produce is an accurate 

reflection of the data you supply to the system.  An ideal situation occurs when we can 

validate our model (at least partly) against a degree of reality through reconciliation with a 

grade control model and production. 

A “4-point check” for validating a resource model against the input data is presented in 

Figure 170. 

Remember to include only the blocks that make sense to validate.  Extrapolated blocks will 

bias the first three checkpoints.  Similarly, sub-blocks should be volume weighted if the 

comparisons between the input and output are to be fair. 

Evaluation of a model’s kriging efficiency values provides an indication of the degree 

of accuracy in the model. 
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1. Output average should resemble input 

average for each domain 

 

 

 

 
 

 

 

2. Output histogram shape should resemble 

input histogram shape for each domain, with 

some degree of smoothing and normalising 

 

 

 

 

3. Output trend in depth, northing and 

easting should reflect the corresponding 

trends in the input data 

 

 
 

 

4. Block grades should reflect the tenor of local 

drillhole grades and boundary conditions 

evident in drilling 

 

 
 

Figure 170 Four-point model validation  

 



The Art and Science of Resource Estimation 

 
 

- 212 - 

Conditional simulation validation 
 

A basic assumption in conditional simulation is that the simulated models accurately reflect 

(in addition to the typical input grades and trends) the variability as described by the spread 

of the input data and the spatial variability as described by the variogram. 

The assumptions need to be verified by plotting the conditional simulation models against 

the input data in Q-Q plots to verify the spread in the simulations reflects the spread in the 

sample data (Figure 171 and Figure 172).  

 
Figure 171 Q-Q plot validation of simulations against input sample data  

 

 
Figure 172 Q-Q plot validation shows simulations with wider spread than sample data  
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The variograms calculated on the simulations are plotted against the input variogram model 

to test whether the spatial patterns have been reproduced (Figure 173). 

 
Figure 173 Variogram validation shows simulations reflect model variogram used for simulations  

 

A graph of the average simulated grade plotted against the simulation number verifies 

random variability about the overall sample average and ensures there are sufficient 

simulation runs (Figure 174).  

 

 
Figure 174 Average simulation value and cumulative simulation average against sample average  
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A note about classification 
 

Recall our original objective to generate a three-dimensional model of mineralisation that is 

useful to mining engineers.  Whilst we aim to estimate accurately, some portions of the 

model will be more accurate than others.  Often there are volumes where we believe we need 

more information – either more drilling or improved information.  The vehicle for 

communicating our confidence is the reporting code (for example the JORC guidelines, 

SAMREC guidelines and National Instrument 43-101). 

These codes provide the scaffolding for communicating the confidence we have in our 

estimates.  For example, Table 1 in the JORC code provides a series of items to consider 

whilst building our case for the classifications we apply to a resource model. 

The confidence categories are subjective and rely on our competence, transparency in our 

intentions and the scale or materiality of the report.  The three resource classification levels 

are:  Measured, Indicated and Inferred.  Very conceptually we can think of these criteria as 

describing the amount of work necessary to be confident in the accuracy of the resource 

estimate. 

The highest confidence category is Measured and essentially describes the portion of the 

resource that is exhaustively drilled, has a high degree of quality in the sample collection, 

assaying, logging and surveying, and there is sufficient evidence to support both the  

interpreted geological controls on mineralisation as well as the spatial estimates of 

mineralisation.  In addition, the density values applied to establish tonnages are accurate. 

When any one or more of these criteria is lacking, we need to downgrade the respective 

volumes of the resource to either Indicated or Inferred - according to the degree of 

confidence in the criteria.  Indicated is a higher confidence category than Inferred and 

typically refers to that portion of the resource model that is on the brink of conversion to 

Measured, but lacks data, information and/or quality for a few criteria.  Inferred refers to that 

portion of the resource model that has the lowest confidence and requires significant 

amounts of data, information and/or quality to convert to Indicated resources. 
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Concluding comments 
 

My philosophy to resource estimation is to build models that accurately reflect our 

understanding of the orebody.  This means we cannot be prescriptive about the technique, 

nor about the parameters that we choose to use.  Yes, people have their favourites, but this 

has no bearing on whether the set of parameters or approach works for every situation.   

I believe when our choice of approach, method and parameters is evidence-based and we 

can support our choices through a thorough analysis of the data, we are better able to predict 

resources accurately.  We need to focus on creating a three dimensional representation of 

what we believe the orebody to look like – this means there is no one-size fits all recipe, but 

rather a process of exploring the data and gathering evidence to support parameters and 

decisions. 

Modelling a resource is a process for communicating mineralisation expectations to 

engineers who ultimately decide on the method, the timing and extraction of the ore.  

Resource analysts are responsible for reflecting an orebody’s characteristics and subtleties in 

a three-dimensional model in a way that limits the element of surprise when it comes to 

actually mining the orebody.  This responsibility is best taken up when we spend more time 

reflecting on the information and data at hand than force-feeding data through pre-scripted 

macros. 

Give the geology a chance.  Give the data a chance.  Moreover, respect the individuality of 

these orebodies.  There is so much to learn about them – no two orebodies are the same.  Yet 

each reflects an opportunity to enjoy the thrill of mining.  You have a chance to present a fair 

representation of each orebody and, in so doing, play your role in preventing 

disappointments or lost opportunities. 

George Box, noted statistician, explains 

“All models are wrong but some models are useful”. 

 

Let us do our part in creating really useful models. 

 

 

 

See www.coombescapability.com.au for more hints and tips for resource estimation. 

 

 

 

 

 

 

 

http://www.coombescapability.com.au/
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Selected model answers 
Activity page 11 

 
 

Overall average of the samples is 6.92 grains per kilogram.  This average 

represents the grade of the lot.   

 

The standard deviation is calculated by subtracting the mean from each sample and 

squaring the difference (see below).  These are then summed and divided by the 

number less one to get a standard deviation value of 2.43. 
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6 kilogram sample: 

 

 
 

The overall average is still 6.92 grains per kilogram, but the standard deviation is lower 

at 1.37.  

 

Losing a grain per sample: 

 

 
The overall average drops by a grain per kilogram to 5.92 grains per kilogram, whilst 

the standard deviation remains at 1.37.  
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Control chart activity on page 36 

 

The control charts show a myriad of problems including: 

Chart 1: Changes in variability, bias below the expected value, values out of the control 

limits 

Chart 2: Value outside control limit, changes in variability, 6 values trending down 

Chart 3: Sudden trend upwards to a run of values outside control limit, run of identical 

values 

 

QAQC activity on page 46 

 

The iron data is behaves poorly with poor precision.  There is, however, no bias (see 

the Q-Q plot). 

 

The SiO2, in contrast, shows high precision as well as no bias. 

 

 

H-scatterplots for page 108 
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Suggested results for page 134 
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