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Preface

Come forth into the light of things

Let Nature be your teacher.

— William Wordsworth (1770  –  1850)

Chapters 1 through 4 in this book are composed of articles published by

the authors in the journal of the Society of Exploration Geophysicists, The

Leading Edge (TLE). Chapters 5 through 8 are taken from their unpublished

manuscript, Waves of Discovery. James T. Robertson, member of the TLE

Editorial Board, writes, “The intent is to cogently present the body of

seismic theory that underlies modern exploration seismology in a format

that transfers understanding to the audience. Some readers will be very fam-

iliar with many of the topics; others will be expert in only a few. I suspect

that most of us ought to know more about these subjects than we really

do. If each reader can find an insight or two that were not previously appreci-

ated, this book would accomplish its purpose.”

An important mode of thinking is visual thinking. Visualization is

especially useful in solving problems where shapes, forms, or patterns are

concerned. Visual thinking is used constantly by geophysicists, from the

layout of a seismic survey to the final interpretation. Geophysicists use

visual imagery in the analysis of seismic data and in the synthesis of the

structure of the underground earth. They are called upon to exercise an

acute sense of visual perception in the production of intricate sequences

of images. This process ultimately holds the key to unlocking the secrets

of the heterogeneities of the solid earth. Geophysicists also must make

use of conceptualization in those instances when the desired results are

not at all obvious.

Three kinds of visual imagery are necessary for effective visual think-

ing: (1) perceptual imagery, (2) mental imagery, and (3) graphic imagery.

The first, perceptual imagery, is sensory experience of the physical world.

It is what you see with your eyes and record in your brain. You do not

record everything you observe. One reason is an over-saturation of input.

People tend to see better those things which are more important, or more

unusual, or more easily-recorded.

The second, mental imagery, is constructed in the mind and utilizes

stored information recorded from perceptual imagery. Mental imagery is

important when you examine the computer-generated images formed

from actual seismic data. The clarity of mental images depends upon

several factors. First, it depends on seeing the perceived geological

vii
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objects. Second, it depends upon the image-reproduction mechanism in the

brain. There are individual variations in the ability to imagine things visu-

ally, as there is always a range of answers. Try visualizing a series of

seismic objects and see if you can determine a pattern in your own

imaging ability. Visual images can be consciously enhanced. Are you

better at visualizing two-dimensional objects than three-dimensional? Are

you better at small structures than large ones? Where do you see the

image, in front of your eyes or deep in your mind? Visual imaging ability

depends not only on the ability to form images, but also upon the supply

of pertinent imagery that is stored in the mind.

The third, graphic imagery, is the art of constructing physical

images in order to convey specific information. To take advantage of

visual thinking ability, this third type of visualization is necessary. Compu-

ter graphics allows the recording, storage, manipulation, and communi-

cation of images to fill the pictures generated in the imagination. Graphic

imagery falls into two categories. One category includes pictures formed

to communicate with others, and the other category pictures made for

oneself.

Leonardo da Vinci was one of the greatest masters of the art of graphic

imagery and his mythic stature is well deserved. Some 4000 pages of his

drawings and writings survive, which included a vast array of subjects

such as anatomy, inventions, landscapes, mythology, and cartography. An

essential paradox of his drawings was that they portray nature more

closely than had ever been done before, yet every part of them seems to

be infused with all of the baffling eccentricities of Leonardo.

In contrast to Leonardo, Christiaan Huygens (1629 – 1695) produced

unadorned artwork that precisely conveyed physical and mathematical

knowledge. He invented the first accurate clock and the first astronomical

telescope. His work included early telescopic studies of the rings of

Saturn and the discovery of its moon Titan, the determination of the

speed of light, and major studies of mechanics, optics, and probability. He

was the most influential proponent of the wave theory of light.

After devoting a great deal of conscious thought to the enigmatic struc-

ture of the propagation of waves, it has been said that Huygens discovered

his wavelet construction while watching the ripples on a canal in Holland.

Wavelets were gamboling before his eyes. While the smaller groups contin-

ued to propagate in the background, his mental eye, rendered more acute by

repeated visions of this kind, could distinguish the larger structure of their

manifold action, in circular rows fitting together. The wavelets, all

twining and twisting in their motion, formed the wavefront that whirled

before his eyes. The result of this vision was Huygens’ brilliant insight

viii Basic Geophysics
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that a wavefront is formed by all of the wavelets emanating from the pre-

vious wavefront.

This principle, ever since called Huygens’ principle, is fundamental and

serves as a foundation of geophysical processing. Seismology uses elastic

waves generated by natural earthquakes as well as controlled sources to

probe the internal structure of the earth. How simple it is to look at wave

motion on the surface of the water as compared to wave motion involved

in a seismic survey. Geophysicists must use powerful computers to follow

the seismic waves traveling through the three-dimensional earth. Digital

signal processing originated in exploration geophysics, but now it is used

everywhere to obtain a better estimate of the original form of a distorted

signal. Signal restoration often can achieve amazingly good results.

Throughout, the basic building block is the Huygens’ wavelet.

The figures in this book will help you to see and understand seismic

signals better. You can exercise your perceptual ability by looking at the

figures and redrawing them. Such an activity requires imagining shape

and destination in your mind’s eye. Not only Huygens, but also Galileo, Des-

cartes, Fermat, Newton, Hamilton, Green, Faraday, and Maxwell were

masters of this art, and their mastery allows us to build upon their successes.

We are indebted to the past, and upon it we chart our portion in the continu-

ing course of the growth and development of this profession.

We want to express our sincere thanks to Susan Stamm, Books Manager

for the Society of Exploration Geophysicists. In early discussions, she pro-

vided the inspiration for this book. Her diligence and hard work made this

book a reality. We appreciate all that she has done from the beginning to

the end.

We are most grateful for the honor of having the distinguished Dr.

Tijmen Jan Moser as the editor of this book. His scientific insight and

acumen were invaluable. He contributed the following foreword, in which

he picks out classical drawings of Huygens that portray the essence of reflec-

tion seismology. The drawings in various guises permeate this book.
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Foreword

Classical physics redux

Geophysics is the study of the physics of the earth, its surface, interior,

and surrounding environment in space. An important part of geophysics is

seismology. Seismic waves are vibrations that travel through the earth’s

interior or along its surface. Seismology is the study of how seismic

waves can be used to determine the interior structure of the earth. Earth-

quake seismology is concerned with the structure of the entire earth,

whereas exploration seismology deals with only the upper few kilometers

of the earth’s crust. In earthquake seismology, the source is passive,

because the signals are earthquakes, which naturally occur within the

remote medium (the subterranean earth). In exploration seismology, the

source is active, because the signals are generated intentionally in the acces-

sible medium (the surface or near-surface of the earth).

Exploration seismic data can be used to analyze potential petroleum

reservoirs and mineral deposits, locate groundwater, find archaeological

relics, determine the thickness of glaciers and soils, and assess sites for

environmental remediation. Seismic exploration of the upper crust has

yielded an unparalleled source of knowledge of the geologic history of

the earth. Like the 1895 novel, The Time Machine, by H. G. Wells, which

has a machine that allows its operator to travel back and forth through

time, the upper crust is a kind of time machine. The surface corresponds

to present time, and going down in depth is equivalent to traveling back

in time. The subsurface layers provide a remarkable history of the earth

and its plant and animal life.

At the forefront of every scientific discipline, there are those driven

by a passion to know what is most essential about their subject. Any pene-

trating study requires a great deal of patience and determination. It is a

difficult course, but often the most rewarding. Scientists who know the foun-

dations of their subject are better equipped to tackle new problems and

achieve worthwhile results. Mathematicians need to have command of the

mathematics involved. Geologists must be conversant with the geologic

principles at play. Physicists must draw upon their knowledge of encom-

passing physical principles. Computer scientists must be familiar with the

intricacies of computer hardware and software. Geophysicists make use of

all of the above sciences, as well as the many geophysical principles

involved. Their foremost tool is the traveling seismic wave. Seismic wave

propagation is a source of three-dimensional information, as opposed to

xi
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potential methods, which provide two-dimensional information, and well

logging, which is essentially one-dimensional. The dimensionality of

seismic wave propagation can be expanded to five by adding offset and

azimuth. Multicomponent seismic data even further enrich our information

of the elastic properties of the earth’s interior. Even so, the inversion of

seismic data into interpretable information remains a monumental

challenge.

Waves of one form or another can be found in amazingly different situ-

ations. A wave is a traveling disturbance. Ocean waves travel for thousands

of kilometers through the water. Seismic waves travel through the earth.

Sound waves travel through the air to our ears, where we process the distur-

bances and interpret them. Much of the current understanding of wave

motion has come from the study of acoustics. Ancient Greek philosophers,

many of whom were interested in music, hypothesize a connection between

waves and sound, and that vibrations, or disturbances, must be responsible

for sounds.

Pythagoras (c 580 BC – c 500 BC) has been credited as the founder of

the science of acoustics which, in his time, was the study of the physical

aspects of music, and he believed that sound was composed of vibrations.

Scientific theories of wave propagation became more prominent in the

17th century with Galileo Galilei (1564 – 1642) publishing a clear statement

of the connection between vibrating bodies and the sounds they produce.

Robert Boyle (1627 – 1691), in a classic experiment in 1660, proved that

sound cannot travel through a vacuum, thereby showing that it needs a

medium in which to propagate. Christiaan Huygens (1629 – 1695) wrote

Nouveau Cycle Harmonique, a work that demonstrates his extensive knowl-

edge of the theory of music; the result of his investigations was the discovery

of a better tuning system in which the octave is divided into 31 steps.

Under the tremendous influence of Fermat and Newton, the prevailing

theory in the 17th century was that light propagates as a stream of particles.

In Traité de la Lumière (1690), Huygens made one of the great contributions

to theoretical physics when he postulated that light was a wave, supporting

this postulate with Huygens’ principle. Huygens’ wave theory of light,

however, was in direct opposition to the prevailing theory, so it generally

was disregarded at the time. Yet, Huygens’ principle for the propagation

of waves proved to be useful in explaining many phenomena which geo-

physicists encounter in their daily practice: reflection, refraction, diffraction,

anisotropy, caustics, and multipathing.

Huygens solved a number of problems in optics and mechanics. More

than a decade before Newton published the three laws of motion,

Huygens solved the problem of centrifugal force. In so doing, Huygens

xii Basic Geophysics
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twice differentiated a vector-valued function and made use of the yet-to-be-

published Newton’s second law. Another important achievement of

Huygens was his investigation of evolvents, a concept that he introduced.

Evolvents are connected with another investigation of Huygens, namely

the theory of wavefronts. In using his Huygens’ principle, Huygens discov-

ered that, in certain cases, singularities could appear on the wavefront. Singu-

lar points were important in his investigation of the correspondence between

waves and rays. In this regard, Huygens made use of methods that are now

attributed to the calculus of variations and Hamiltonian mechanics.

In Traité de la Lumière (1690), Huygens presents a drawing that illus-

trates his principle for the propagation of waves—it appears in this book

as Figure 12 of Chapter 3. This seminal book contains four additional clas-

sical drawings, shown in Figure 1, which in one form or another appear in

practically every book on geophysics and optics. In Figure 1, the top-left

Figure 1. Four classical drawings of Huygens from Traité de la Lumière (1690).
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diagram illustrates how the process of reflection is explained by using

Huygens’ principle—it appears in simplified form in this book as

Figure 32 of Chapter 1. The top-right diagram illustrates how the process

of refraction is explained by using Huygens’ principle—it appears in simpli-

fied form in this book as Figure 33 of Chapter 1. The bottom-left

diagram illustrates Fermat’s principle—it appears in simplified form

as Figure 23 of Chapter 1. The bottom-right diagram illustrates how

anisotropy on Icelandic crystal is explained by using Huygens’ prin-

ciple—it appears in simplified form as Figure 2 of Chapter 4. A sixth

figure, appearing here as Figure 2, must be mentioned as well. This classical

figure illustrates how the formation of a caustic and triplicated wave at a

circular boundary is explained by using Huygens’ principle. The envelope

of the elementary waves at the incident wavefront A-F-E generate the

caustic line N-b-e-h-C and the triplicated wavefronts a-b-c, d-e-f, and g-h-

k. Indeed, Huygens’ principle is central in most seismic imaging/migration

Figure 2. Another classical drawings of Huygens from Traité de la Lumière (1690).
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techniques, making it not an exaggeration to call Huygens the first great

geophysicist.

In the 18th century, Jean Le Rond d’Alembert (1717 – 1783) derived

the wave equation, one of the first main partial differential equations of

physics. The wave equation provided a thorough and general mathematical

description of waves and laid the foundations for the study and description

of wave phenomena. A good understanding of the wave equation has been a

great advantage in geophysics. For instance, the superposition principle

stated that individual waves can travel independently and add up when

meeting each other, which has been instrumental in understanding the prop-

agation of seismic waves and their use in seismic imaging.

In the 17th century, the foundations of classical physics were estab-

lished and it gradually became a mature scientific discipline that described

the natural world with remarkable accuracy. In the 1860s, James Clerk

Maxwell (1831 – 1879) extended the framework of classical physics to

take into account electrical and magnetic forces. By the end of the 19th

century, there was a growing sense that theoretical physics would soon be

complete. It was suggested the underlying principles were firmly established

and all that remained were details of determining some numbers to more

decimal places. Of course, shortcomings were evident, but there was a

general feeling that these were mere details that could be resolved easily.

Within the first decade of the 20th century, however, everything

changed. As anticipated, the shortcomings were addressed promptly, but

they proved anything but minor. They ignited a revolution, and required a

fundamental rewriting of nature’s laws. Classical conceptions, which for

hundreds of years expressed the intuitive sense of the world, were over-

thrown. Quantum mechanics and general relativity were developed. The

result, modern physics, became absolutely necessary for the understanding

of the micro-world and the macro-world.

It is true that geophysics is concerned primarily with classical concepts.

Apart from some well logging tools and some concepts in wave propagation,

such as scattering, and inversion, such as uncertainty, quantum mechanics

does not play a major role in geophysics. In the same way, relativity does

not play an important role, perhaps apart from some sophisticated concepts

in inversion. Still, the fact that theoretical physicists were taken so much by

surprise by the revolution caused by quantum mechanics and relativity

ought to be a lesson for geophysicists never to think that there is a single

black-box solution to all geophysical problems.

Throughout this time, classical physics remained valid, but the belief

persisted that there was little left for classical physicists to discover and

they became occupied with filling in small details. As the age of technology
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became ascendant in the last half of the 20th century, however, the emer-

gence of the electronic digital computer allowed scientists to compute

numerical solutions for problems of vast magnitude, something that was

never dreamed possible. Classical physics was once more in demand.

The impossible takes a little longer

In 18th century France, Charles-Alexandre de Calonne was the Minister

of Finance to King Louis XVI. In a commanding tone, Queen Marie Antoi-

nette demanded that the Minister do something that was extremely difficult.

His reply was: “Madame, si c’est possible, c’est fait. Impossible? Cela se

fera.” (Madame, if it is possible, it is done. Impossible? It will be done).

In the 1950s, good images of the subterranean earth were very difficult

to make. Despite unassailable difficulties, geophysics was the first science to

enlist computers for digital signal processing. Geophysicists originated

extensive methods of seismic acquisition and devised new mathematical

algorithms that allowed the construction of better and better subsurface geo-

logic images. A particular challenge in geophysics was that data typically

are incomplete and inconsistent at the same time. Subsurface complexities

showed a fractal character and existed at all scales. Adequate parametriza-

tion of a model of the earth and forward modeling, the prediction of the

seismic wave response of a given earth model, were important problems

to which no universal solution might exist. Inversion of seismic data

recorded at the earth’s surface was known to be ill-posed in the sense of

Hadamard (1865 – 1963). Therefore, geophysicists did not attack the

whole problem but instead judiciously separated the overall problem into

component parts that could be handled by the available computers.

The main thrust of their work was with two-dimensional analyses of

the primary reflections of compressional body waves. Three- and four-

component acquisition and the effects of shear waves, surface waves,

refracted waves, diffracted waves, and anisotropy were left to special

studies. By the last decade of the 20th century, computers and geophysical

instrumentation had advanced to such proportions that three-dimensional

images of the subsurface became commonplace. Visualization made a

similar development starting from relatively simple two-dimensional

seismic sections, to full graphical display of three-dimensional volumes,

and even higher dimensions for pre-stack seismic volumes. Geophysicists,

like the renowned minister Charles-Alexandre de Calonne, could respond,

“If it is possible, it is done.”

Seismic images have continued to improve. Even so, extremely detailed

images of the subterranean earth are impossible to make, and the ultimate

xvi Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



dream of unlimited image resolution is still beyond the horizon. To achieve

this objective, the geophysical industry has assembled elaborate systems of

active remote sensing. The great developments in computers and instrumen-

tation have made possible the recording and analysis of great amounts of

accurate scientific observations. For acquisition, seismic signals are dis-

persed from thousands of sending points. Returns from each of these

signals are received at many receiving points, which can number in the hun-

dreds of thousands. For processing, the most powerful super computers yet

constructed are employed. Intricate computer programs are based upon

advanced physics and mathematics. Developments such as quantum com-

puting are still ahead of us, but may dramatically change the way

geophysicists analyze data and extract information on the earth’s interior

from them.

Today is a most exciting time for geophysicists. Never before have such

a massive array of sophisticated equipment and powerful computers been

available to any scientific endeavor. What is most important is a good

knowledge of geophysical principles. A geophysicist today has the opportu-

nity to do what before would be considered impossible. The response of geo-

physicists is that of Charles-Alexandre: “Impossible? It will be done.”

Tijmen Jan Moser
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Chapter 1

Classical Geophysics

Pythagoras and Archimedes

Recently an acquaintance, who shall be called Jones to protect the

guilty, was mathematically immortal for a few minutes. He discovered a cor-

ollary to the Pythagorean theorem and was immediately overwhelmed with

thoughts about being forever paired with Pythagoras in textbooks. These

were quickly followed by the idea, which he found delicious, of being eter-

nally cursed by all 5th grade students the night before final arithmetic exams.

The Pythagorean theorem (Figure 1) states that, in a right-angled tri-

angle, the square on the hypotenuse (the long side) is equal to the sum of

squares on the two legs (the other two sides). Jones’s involvement with

Pythagoras began when he was asked, by the son of a neighbor, to help

create an 8th grade science project. Jones suggested they attempt

to devise a visual proof of the Pythagorean theorem because it is quite poss-

ibly the most important relationship in mathematics.

Jones began with right triangle abc and

constructed a square on c, the hypotenuse.

Then he added three more triangles around

the square to form the construction dis-

played in Figure 2. It can be shown math-

ematically that the four triangles are

identical; thus, the large box is a square

because all four sides are length a + b and

all of the angles are right angles. The area

of the square, of course, can be expressed as

(a + b)2 .
Figure 1. Pythagorean

theorem.
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However, by inspection, we see the area of

the large square also equals the small square

plus the four triangles, or

c2 + 4
ab

2

( )
.

Because the areas are equal, we can equate them

mathematically,

(a + b)2 = c2 + 4
ab

2

( )
.

After both sides are expanded, the equation reads

a2 + 2ab + b2 = c2 + 2ab .

The ab terms can be subtracted from both sides, leaving the familiar

a2 + b2 = c2 ,

which is what Jones wanted to prove.

Even so, Jones could not leave well enough alone. That night, just before

going to bed, he began to fiddle with the triangles. This time, however, he put

them inside the square of the hypotenuse, resulting in the construction dis-

played in Figure 3. It immediately can be seen that the area of the square of

the hypotenuse equals the sum of the areas of the four identical triangles

plus the area of the small square, with side b 2 a, in the center. Thus,

c2 = 4
ab

2

( )
+ (b − a)2 = 2ab + (b − a)2 .

After writing down the formula, Jones was suddenly struck by what the

terms meant: c2 (i.e., the square of the hypotenuse) equaled 2ab (i.e., twice the

product of the two sides) plus (b 2 a)2 (i.e., the square of their difference).

IMMORTALITY! Pythagoras, after 2500 years, had been extended. Just to

be sure, Jones pulled several ungainly numbers out of the air and plugged

them into his formula. All worked. There was no doubt that Pythagoras

and Jones would be forever linked à la Damon and Pythias, Castor and

Pollux, etc. Then, alas, disillusionment. When Jones expanded the right

side of his equation, the ab terms cancelled out and all that was left was

c2 = a2 + b2 .

Figure 2. Pythagoras-

type proof.

2 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Jones really shouldn’t feel dejected.

He has not, to be sure, made a distinguished

contribution to mathematics, but he has

joined a long, and rather formidable, group

of people who have discovered and rediscov-

ered the Pythagorean theorem over the

centuries.

Although little is known about Pythag-

oras himself, many stories have come

down to us, most of which are, of course,

apocryphal. Pythagoras (c 580 BC – c 500

BC) is a Greek philosopher who, after exten-

sive traveling, settled in the Greek seaport of

Crotona, located in southern Italy, where he founded the famous Pythagor-

ean School, an academy for the study of philosophy, mathematics, and

natural science.

Tradition ascribes to Pythagoras the discovery of the theorem on the

right triangle that now universally bears his name. However, the first

Jones (our name for any person who independently discovered the theorem

or provided a new proof) is a Babylonian of Hammurabi’s time who lived a

thousand years earlier than Pythagoras. The old Babylonian cuneiform text

BM85196 contains the following problem.

A stick of length 30 stands against a wall. The upper end slips down a

distance 6. How far has the lower end moved? The solution of the problem

can be found by means of the Pythagorean theorem as follows. The hypote-

nuse of the right triangle is 30 and the vertical leg is 30 2 6 ¼ 24. The

square of 30 is 900. The square of 24 is 576. We perform the subtraction

900 2 576 ¼ 324. The answer is
����
324

√
= 18.

There is much conjecture as to the proof that Pythagoras himself gave,

but it is generally believed that it was a dissection-type proof—that is,

a geometric version of the proof which our own modern Jones gave. On

the left of Figure 4, we reproduce Figure 2. We see that the large

square (i.e., the square with side a + b) is dissected into five pieces,

namely the square on the hypotenuse and four right triangles congruent

to the given triangle. Let us now dissect the square with side a + b differ-

ently, as shown on the right of Figure 4. We see that the square is now

divided into six pieces, namely the two squares on the legs and four

right triangles congruent to the given triangle. By subtracting the four con-

gruent triangles from both sides of Figure 4, we see that the square of the

hypotenuse (on the left) is equal to the sum of the squares of the legs (on

the right).

Figure 3. Jones’ proof.
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Another Jones is found in China during the Han period (202 BC – AD

220). The illustration shown on the left in Figure 4 appears in the Chou Pei,

a Chinese manuscript that dates back to this period but is believed to contain

much older mathematical material. Although the manuscript contains no

actual proof of the theorem, it does mention the right triangle with integral

sides, 3, 4, and 5.

The discovery also is claimed for India because of the Apastamba-Sulba-

Sutra, the date of which is put at least as early as the 5th or 4th century BC

but whose material is considered much older than the book itself.

The most famous proof of all is that given by Euclid (Book 1, Prop-

osition 47). As many will recall from high school geometry, Euclid’s

proof is somewhat complicated, making use of various construction lines

and a long chain of deductive steps. We will not burden the reader with

the proof, but instead give the diagram (Figure 5) used by Socrates

(in Plato’s Meno) to convince a slave boy of the truth of the theorem.

This proof concerns a special case, and does not prove the theorem, but it

does give a maximum of intuitive insight.

Figure 5. Diagram of Socrates.

Figure 4. Dissection-

type proof.
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Another Jones is the Hindu mathematician and astronomer Bhaskara

who flourished around AD 1150. Bhaskara’s dissection proof of the Pythag-

orean theorem is the geometric version of the second proof of our own Jones.

On the left in Figure 6, we reproduce Figure 3, which shows the square of

the hypotenuse cut into four congruent right triangles plus a square with

its side equal to the difference of the legs on the given triangle. We rearrange

these pieces on the right in Figure 6. Then we carefully draw the dotted

vertical line. On the left of the dotted vertical line lies the square of the

little leg. On the right lies the square of the big leg. Thus, we see that the sum

of the squares on the two legs is equal to the square of the hypotenuse. Bhas-

kara draws the figure but offers no explanation except the word, “Behold.”

(Our own Jones, earlier in this section, supplies the algebraic proof.)

These examples are ample evidence that the (probably misnamed)

Pythagorean theorem has intrigued professional and amateur mathemati-

cians throughout recorded history. Many of the proofs cited are ingenious,

but our admiration for the cleverness of their creators must be tempered

by the realization that they, like our acquaintance Jones, know the answer

before starting. How different are the circumstances facing the original

Jones who, by definition, did not. Although the theorem ultimately boils

down to a very simple equation, the invaluable relationship between the

three sides of a right triangle is a complex concept—not an intuitively

obvious mathematical idea such as the equation for the area of a rectangle.

The original Jones had to discover and then prove this complicated

idea without algebra and using an awkward incomplete number system. It

was, by any measure, a brilliant accomplishment. Because of the primitive

state of mathematics at the time, it is probable the theorem’s discoverer

was not the traditional desk-bound mathematician but a practical man-of-

affairs who gradually recognized the pattern during his daily routine. This

almost certainly involved intimate association with the earth, the measure

of which (as the name implies) led to the evolution of geometry. It is not

Figure 6.
Dissection proof

of Bhaskara.
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farfetched to speculate that the theorem’s discoverer was regularly

employed in tasks which required accurate measurements of the earth.

We concede that this, like much involving Pythagoras and the theorem,

is conjecture; but it seems highly probable and thus the original Jones,

whatever else he was, is also among the first and greatest geophysicists.

We end with a challenge to all potential Joneses. In Figure 7, there are:

(left) a given large square showing a bold small square within, (middle) the

given bold small square by itself, and (right) the large square cut into four

pieces. The problem is to rearrange the given bold small square and the

four pieces into one square. If the two given squares are placed along

the legs of a right triangle, the constructed square can be placed on the

hypotenuse. The problem illustrates the Pythagorean theorem.

Geophysics in the early 1960s became the first science to experience

the digital revolution which today is universal, from high-definition tele-

vision to the latest developments in medicine. But the digital revolution

did not result from new knowledge; it resulted from new technology,

namely the digital computer. If the ancient Greeks had possessed this

technology, mathematicians might never have developed one of their

most beautiful creations—calculus.

Eudoxus of Cnidos, who lived from 408 BC to 355 BC, studied with

Archytas of Tarentum, a follower of Pythagoras. Eudoxus visited Athens

where he attended lectures by Plato, spent over a year in Egypt where

he studied astronomy with the priests at Heliopolis, and then traveled

to Cyzicus in the Propontus where he established a school which proved

very popular and where he is believed to have introduced the method of

exhaustion.

The most famous application of the method of exhaustion was to approx-

imate the area or volume of a figure by adding the areas or volumes of a

sequence of inscribed figures within the given figure. The successive

Figure 7. A challenge.
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inscribed figures, in the limit, exhaust the

given figure. Around 225 BC, Archimedes

of Syracuse used the method of exhaustion

to determine areas and volumes of geomet-

ric figures. In other words, Archimedes

almost invented integral calculus about

1900 years before Newton and Leibniz.

Archimedes uses the method of exhaus-

tion to determine one of the most important

formulas in mathematics, the area of a

circle. In Figure 8, a regular polygon (i.e.,

a polygon with n equal sides) is inscribed

in a circle. The polygon is composed of n

triangles, one triangle for each side of the

polygon and the area of the polygon is n

times the area of one of the triangles:

A = n(area of triangle) = n
bh

2
, (1)

where b and h are, respectively, the base and height of one of the triangles.

This equation yields a discrete approximation for the area of a circle and can

approximate the true value to any degree of accuracy if n is made large

enough. It is, in effect, a type of discrete algorithm that is required for

programming a mathematical operation on a digital computer. If digital

computers had been available in the time of Archimedes, it is conceivable

that his efforts would have stopped here. However, he continues to

analyze equation 1 and rewrites it as

A = h(nb)

2
. (2)

The term nb is the perimeter of the polygon. As n increases and b simul-

taneously decreases (an interplay that is at the heart of integral calculus),

the area of the polygon approaches the area of the circle. The perimeter

becomes closer and closer to the circumference c of the circle, and the

height h of the triangle approaches the radius r of the circle. Thus, Archi-

medes makes the intuitive leap that the area of the polygon would, as it

approximated a circle to an increasing degree, approach the value:

A = rc

2
. (3)

This expression obtains the area of the circle as one-half of the pro-

duct of the radius and circumference. The constant p is the ratio of the

 

Figure 8. Polygon with

twelve equal sides inscribed in

a circle.
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circumference c to the diameter 2r of the circle and substituting this defi-

nition into equation 3 yields the familiar closed expression for the area of

the circle

A = pr2 . (4)

In summary, the approximation given by equation 1 approaches the

true value given by equation 4 in the limit, as n tends to infinity and b

tends to 0. Because equation 4 provides the exact value, it would appear

more useful. However, in order to use equation 4, it is necessary to

know the numerical value of p and, until Archimedes, it was not

known how to compute the value of this fundamental constant. Empirical

estimates of the time, using methods such as wrapping a cord around a

cylindrical object or rolling a circular object along a ruler, range from

3 to 3.2. Archimedes solves the problem with another clever applica-

tion of the theory of exhaustion. He observes that the perimeter of a

regular polygon inscribed in a circle is smaller than the circumference

of the circle and, similarly, the perimeter of a regular polygon circum-

scribed about a circle is larger than the circumference of the circle. Conse-

quently, Archimedes realizes that he could calculate lower and upper

limits on the circumference of the circle, from which he could estimate

the value of p, using equation 1 to determine the areas of these two poly-

gons. The greater the number of sides of the polygons, the closer the

limits would be. Archimedes computes this for polygons of 96 sides and

finds that

3
10

71
, p , 3

1

7
. (5)

In addition to integral calculus, Archimedes also anticipates differential

calculus. His method of finding the tangent to his spiral (the so-called Archi-

medes spiral) is an important early “application” of differential calculus.

However, the Greeks fail to recognize the connection between area prob-

lems and tangency problems—now known (as its name implies) as the mon-

umentally important fundamental theorem of calculus. This connection is

not discovered until the 17th century.

Can the Archimedes approach be applied to modern geophysics?

Indeed, it can determine the path of a seismic ray. In the olden days, a

common method of hand migration uses a wavefront chart, which is a

graph showing wavefronts and raypaths for an assumed vertical distribution

of velocity V(z). The raypaths are found by applying Snell’s law. Each
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raypath is characterized by Snell’s parameter

p = sin i0

V0

.

In this equation, i0 is the angle of incidence and V0 is the velocity at

the horizontal datum plane z0 = 0. We can construct the raypath chart by:

1. dividing the medium into a large number of thin beds, each with constant

velocity

2. for bed n, letting the thickness (the vertical displacement of the ray)

be Dzn

3. letting the horizontal displacement of the ray be Dxn

4. letting the traveltime be Dtn

5. letting in denote the angle of incidence.

Based on Figure 9, we quickly come up with the discrete equations

that would be used in a digital computer to obtain the raypaths and the

wavefronts:

sin in

Vn

= sin i0

V0

= p ,

Vn = V(zn)Dxn = Dzn tan in , (6)

Dtn = Dzn

Vn

cos in .

 

Figure 9. Raypath in thin bed.
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However, in order to obtain a continuous solution, we divide the last

two equations by Dzn and take the limit as n approaches infinity:

sin i

V
= sin i0

V0

= p ,

V = V(z) ,

dx

dz
= tan i ,

dt

dz
= 1

V cos i
.

(7)

Integration then produces the values for x and t:

x =
∫z

0

tan i dz =
∫z

0

pV������������
1 − ( pV)2

√ dz ,

t =
∫z

0

1

V cos i
dz =

∫z

0

1

V
������������
1 − ( pV)2

√ dz .

(8)

Equations 8 will generate an analytic solution for the raypaths and

wavefronts. In isotropic media, raypaths are always perpendicular to the

corresponding wavefronts. In the case of constant velocity, the wavefronts

are concentric circles and the raypaths are straight lines radiating from

the center.

But the applied seismologist rarely has a case with a constant velocity.

In many situations, the velocity function is the linear expression

V = V0 + az ,

where V0 and a are constants. In this case, the wavefronts are circles, but

they are no longer concentric. The raypaths are circles orthogonal to the

wavefront circles. Figure 10 is a wavefront chart showing the circular

wavefronts and the associated circular raypaths. The chart acts as an

analog computer. For each pair of values t and sin i0 measured on the reflec-

tion seismogram, one pair of values of x and z (which gives the underground

position of the reflector) can be read from the chart.

When the velocity functions are more complex than a linear expres-

sion, it is very difficult or impossible to obtain a closed-form solution by

integration. As a result, numerical analysis has to be used to approximate

the integrals. There was no easy way to compute the wavefront charts
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for more complex velocity functions before the advent of the digital compu-

ter. With the lightning speed of the digital computer in the 21st century,

however, such approximations are accomplished very quickly and incred-

ibly accurately. The analog computers represented by the wavefront charts

are no longer needed for seismic migration.

In a sense, mathematics has come full circle. Archimedes is the pioneer

who took computing from discrete approximations to exact analytic expres-

sions. His work is the beginning of the journey that has led to the invention

of calculus and, over the next few centuries, mathematicians spent consider-

able effort looking for “closed form” solutions to increasingly complicated

integrals.

Even so, for most of the interesting problems in contemporary geophys-

ics, the differential equations and/or integral equations, although beautiful

to see, are too difficult or unwieldy to solve analytically. The digital revolu-

tion takes us back (albeit inside the memory of the digital computer) to

numerical algorithms that use the type of discrete approximations as origi-

nated by Archimedes. The more things change, the more they stay the same.

25

4020

50

0

0
Horizontal distance in kilofeet

Depth in kilofeet
θ0=5

θ0=10

θ0=20

θ0=30θ0=40

t=2.4

t=2.8

t=2.0

t=1.6 Figure 10.
Wavefront chart

for a linear

increase of

velocity with

depth.
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Heron and Snell

Heron of Alexandria (c AD 10 – c AD 70), a Greek mathematician who

taught at the Museum in Alexandria, wrote on the measurement of geo-

metric figures and apparently had a flair for invention that was centuries

before his time.

Heron is credited with the first documented steam engine, the aeolipile

or “wind ball” (Figure 11), which consists of a hollow sphere mounted on

a boiler by two pipes. The mounting allows the sphere to rotate and, as

the water boils, steam rises through the pipes into the sphere, ultimately

escaping from the sphere through two bent outlet tubes (canted nozzles).

The escaping steam produces a rotary motion—a principle similar to that

used in jet propulsion. The steam engines of the 18th century are based,

in part, on this design.

Heron also developed instruments for measuring distances and roads

and is credited with the formula that gives the area of a triangle from

its sides. If a, b, and c are the lengths of the sides of a triangle, then the

semiperimeter is

s = (a + b + c)/2 .

Heron’s formula states the area of the triangle is

������������������������
s(s − a)(s − b)(s − c)

√
.

This formula is commonly used in land surveying.

Figure 11.
Heron’s steam

engine, the

aeolipile.
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Heron’s inventions are notable for another modern concept, self-

regulating feedback control systems. For example, one invention is a self-

filling wine bowl which has a hidden float valve that automatically senses

the level of wine in a bowl. Heron perhaps anticipates rotary drilling in

his description of a machine, called the Cheirobalistra, which has a

refined screw-cutting technique that would enable it to bore a tunnel

through a mountain. Heron devised the odometer, which is an instrument

for measuring the distance traveled by a wheeled vehicle. The pace is the

length of two single steps (i.e., left to right plus right to left). A mile consists

of 1000 paces. In English units the pace is 5.28 feet, so the English mile is

1000 paces or 5280 feet. Suppose the circumference of a chariot wheel is 2.5

paces. The wheel turns 400 times in one mile. For each revolution of the

wheel, a pin engages a 400-toothed cogwheel. The cogwheel would make

one complete revolution for every mile. This cogwheel engages another

gear that has holes along its circumference, where pebbles are located

that drop one by one into a box. To know the number of miles driven, the

charioteer would count the number of pebbles in the box.

Heron’s most important contribution (at least to anyone using reflection

seismology) is that he established the law of reflection—that the angle of

incidence is equal to the angle of reflection.

According to Aristotle, there were three kinds of motion: rectilinear, cir-

cular, and mixed. The four elements of the sublunar world tend to move in

straight lines: earth downward, fire upward, water and air falling in between.

Aether, on the other hand, naturally moved in circles. Then it was Gallileo’s

work in the 17th century that began our understanding of modern science.

As Newton wrote in Principia Mathematica (1687), “By the first two Laws

[of motion], Galileo discovered . . . that the motion of projectiles was in the

curve of a parabola.” Until Galileo, people generally accepted Aristotle’s

dictum that most motion appeared to be in either straight lines or circles.

Following this reasoning, the straight line is the shortest (i.e., minimum

length) route between two points. The minor arc of a great circle is the

shortest (i.e., minimum length) path connecting two points on the surface

of a sphere. In contradistinction, the other way around the great circle is

the longest (i.e., maximum length) path between the two points. This

example illustrates how the solution of an extreme problem can obtain

either the minimum or maximum case.

Heron, however, was the first to make use of an extreme principle,

namely minimization. In his Catoptrica, Heron showed that the path

taken by a ray of light reflected from a plane mirror is shorter than any

other reflected path that might be drawn between the source and point of

observation. Heron then proved that, in a mirror, the angle of reflection
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is equal to the angle of incidence. In other words, if the angles differed from

each other, the distance that the light traveled would not be the least

possible. Heron, along with everyone else until the modern scientific

revolution, thought that light travels with infinite speed and can cover any

distance in no time. For this reason, it was natural for him to use the idea

of minimum distance, for the idea of minimum time would not have

occurred to him.

The bending of visual images of objects partially submersed in water

has been noted since antiquity. In modern terminology, when a ray of light

passes from one medium to another, it is bent (refracted). In Figure 12, ui

is the angle that the incident ray makes with the normal (at the boundary of

two layers) and ur is the angle that the refracted ray makes with the

normal. In this example, light is traveling from a less dense medium to a

more dense medium. In such a case, the ray bends toward the normal.

The ancient Alexandrian astronomers intuitively realized the need to

correct for atmospheric refraction in computing times of rising and setting

heavenly bodies. Ptolemy, slightly younger than Heron, made measure-

ments of the angles of incidence and refraction for the passage of light

from air to water and attempted to find a mathematical relationship

between the two angles. However, this problem was more difficult than

the reflection relationship and Ptolemy was unsuccessful. In fact, progress

was not made until 1611 when Johannes Kepler (1571 – 1630) showed

that, for any given pair of materials, the ratio ui/ur is (approximately)

fixed for small angles; that is,

ui

ur

≈ n when ui and ur are small .

A contemporary of Kepler, Willebrord Snell (1580 – 1626) was a Dutch

astronomer and mathematician. He received a Master of Arts degree from

Figure 12. Refraction of

light waves. The ray is bent

toward the normal when it

passes from a less dense to a

more dense medium.

 
s air)
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the University of Leiden in 1608, and he succeeded his father as professor

of mathematics at that University in 1613. In 1617, Willebrord Snell pub-

lished Eratosthenes Batavus, which contains his methods for measuring

the Earth. He was the originator of triangulation, which is now the univer-

sally employed method in surveying and mapping large areas. To make

measurements, he travelled quite widely in the Netherlands. As a baseline,

he used the distance from his house to the local church spire. Then he

devised a system of triangles which allowed him to determine the distance

between the towns of Alkmaar and Bergen-op-Zoom, which was 130 km.

His measurements were surprisingly accurate, allowing him to deduce a

good value for the radius of the Earth. Snell also published several works

on astronomy which contained data from his own observations.

In 1621, Snell discovered the law of refraction now known as Snell’s

law. Because he did not publish this result before his death in 1626, his

law was not widely known at the time. Fortunately in 1703, Christiaan

Huygens published Snell’s law in Dioptrica. Snell’s law stated that the

ratio sin ui/sin ur is fixed for any given pair of materials; that is, Snell’s

law of refraction was

sin ui

sin ur

= n .

The constant n, called the relative index of refraction (or the relative refrac-

tive index), was characteristic of the two media.

Table 1 shows that the relative refractive index for air to water is 1.33

or 4/3. Note that, for small u, we have sin u ≈ u. This explains Kepler’s

version of the law:

n = sin ui

sin ur

≈ ui

ur

for small angles .

Of course, as we all know, Snell’s law is basic to understanding the paths

taken by seismic waves. Seismic waves are mechanical waves, as are sound

waves and water waves. For such waves, the refraction is in the opposite

direction as that of light, as shown in Figure 13.

Both Kepler and Snell, along with everyone else of their day, assume

the velocity of light is either infinite or else the velocity is so great that it

might as well be infinite. Nowhere in their thinking does either of them

make use of the velocity of light. In fact, they have no need to refer to the

velocity of light at all. Their results are established by purely empirical find-

ings such as shown in Table 1. The observational results are the data given in
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columns 1 and 2 in the table. Kepler’s result is confirmed by column 3.

It shows that ui/ur is almost constant for ui less than about 208. From

the same data, Snell finds that sin ui/sin ur (which is given in column 4) is

constant for all ui.

Figure 14 represents in principle an experiment made by Snell. Project

a pencil beam of light from air to water. If the beam is normal to the inter-

face, then no bending occurs. If the beam is oblique to the interface, a bend is

produced. The angle of the beam in the air is the angle ui of incidence. The

amount of the bend varies with the angle of incidence. The angle of the beam

in the water is the angle ur of refraction. In the case of refraction, as in the

case of reflection, the path of a light ray is reversible. If instead the path of

light is from water to air, the path would be the same. Observations of the

Table 1. Refraction of light from air to water.

1. Incident

angle ui in

degrees

(in air)

2. Refraction

angle ur in

degrees

(in water)

3. Kepler’s

ratio n of incident

angle over

refraction angle

4. Snell’s ratio n

of sine of incident

angle over sine of

refraction angle

0 0

10 7.5 1.333 1.33

20 14.9 1.343 1.33

30 22.1 1.357 1.33

40 28.9 1.384 1.33

50 35.2 1.420 1.33

60 40.6 1.478 1.33

70 45.0 1.556 1.33

80 47.8 1.674 1.33

Figure 13. Refraction of

mechanical waves. The ray is

bent away from the normal

(dotted line) when it passes from

a less dense to a more dense

medium.
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two angles ui and ur would be measured for various pairs of materials; for

example, air–water, air–glass, water–glass. For any given pair of materials,

the ratio of the sines of the two angles is constant, independent of the angle

of incidence. Snell’s law is an empirical law.

It is important to note that the law of refraction exists in two versions.

One version is Snell’s version. It is an empirical law which was inferred

by careful study of observational data. The other version is the theoretical

law which is mathematically derived from basic principles. The first great

effort toward the theoretical law is by Descartes, but he was doomed to

failure by the prevalent misunderstanding of the nature of light. The

second great effort is by Fermat, who succeeded in establishing the theoreti-

cal law. In so doing, he makes the first critical leap toward the formulation

of the principle of least action, which remains central in modern physics

and mathematics. The third great effort is by Huygens, who succeeded in

establishing the wave theory of light. He is the first to calculate the actual

speed of light. Huygens’ theoretical proof of Snell’s law is the one given

in every textbook.

Let us say a few words about René Descartes (1596 – 1650), whom we

will discuss in the next section. In addition to being acclaimed as the father

of modern philosophy and having his ideas garner the strict attention

of Europe for nearly 100 years, Descartes is celebrated for constructing

a whole mechanistic scheme of the cosmos. It is important to realize that

Descartes worked in the early part of the 17th century. His era is that of

Johannes Kepler (1571 – 1630) and Galileo Galilei (1564 – 1642). Kepler

is renowned for his Astronomia nova, published in 1609. This book records

Kepler’s discovery of the first two of his three laws of planetary motion.

Galileo is celebrated for his Two New Sciences, published in 1638 by Peter

Elsevier in Leiden. This work contains the basis for all future work in

dynamics.

Figure 14. Refraction of

light waves. The ray is bent

towards the normal (dashed

line) when it passes from a

less dense to a more dense

medium.
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Published in 1637 in Leiden, Descartes’ Discourse on Method is a

significant work in modern philosophy, and it was essential to the develop-

ment of modern science. The book includes three appendices, Optics,

Meteorology, and Geometry. In Geometry, Descartes lays the foundations

of an entirely new area of mathematics: analytic geometry and the Cartesian

coordinate system. Analytic geometry is the bridge between algebra and

geometry. It is the branch of mathematics that addresses geometric proper-

ties using algebraic operations and notation to locate points within a coordi-

nate system.

In Optics, Descartes struggles to find a mathematical model of light.

Descartes assumes that light represents a force of motion that has a direc-

tional quantity. He derives the laws of reflection and refraction by setting

up a model based on an analogy that compares the motion of a tennis ball

to a ray of light. Like others of his time, he assumes the speed of prop-

agation of light is instantaneous and does not understand that light

travels as a wave. As a result, his analogy is doomed at the outset. It must

be remembered that Descartes worked at the same time as Galileo. It is

the very beginning of modern science. Descartes mathematically derives the

same result as the empirical findings of Snell; namely, in refraction, the

ratio of the sines is constant. Descartes’ model on the refraction of

light, although not physically valid, has permanent value because it is the

first concrete example of mathematical model building. Since then, the

Cartesian method of model building has been a mainstay of science.

Descartes makes clear that a model can never provide an impeccable

demonstration in the sense of Euclidean geometry, but it is a heuristic

device that is used to discover laws, such as that of refraction, which can

later be confirmed in experience. In another part of the Optics, Descartes

explains the workings of the eyeball. He then elaborates a vision of the

biological mechanisms that can be explained by the supposed laws of a

mechanistic physics. Descartes’ ideas are more relevant today than they

ever could have been in his lifetime.

With quantum physics, we know much more about light than Descartes

could ever have known in the early 17th century. By the late 17th century,

there is a division. Newton adhers to the particle theory of light; Huygens

adhers to the wave theory of light. The advent of the electromagnetic

waves of James Clerk Maxwell in the 19th century spells the doom of

Newton’s particle theory of light. With Maxwell, light is no longer a

stream of material corpuscles. Light is an electromagnetic wave, traveling

at the speed of light and transporting energy from the source to receiver.

The frequency of the wave determines its color. Infrared light has a lower

frequency than visible red light. Visible red light has a lower frequency
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than visible blue light. Visible blue light has a lower frequency than ultra-

violet light.

The amplitude of a wave is the height of its crests. The intensity of a

mechanical wave is proportional to the square to the magnitude of its

amplitude. Maxwell’s electromagnetic theory says that the energy of an

electromagnetic wave also depends upon its intensity, similar to a mechan-

ical wave. According to Maxwell, the energy of the wave does not depend

upon its frequency. As a result, red light and blue light of the same amplitude

would have exactly the same energy. But what happens in a glowing fire as

its fuel expires? Shakespeare writes:

In me thou see’st the glowing of such fire,

That on the ashes of his youth doth lie,

As the death-bed, whereon it must expire,

Consum’d with that which it was nourish’d by.

A blacksmith with his powerful bellows can make the coals in his

forge burn blue-white. As the fire dies, the coals glow redder and redder.

What happens to the blue light as the fire cools? As the fire cools, its total

energy becomes less by a certain amount. According to Maxwell, the

energy of each component wave would become less by the same amount.

Suppose the total energy is reduced by 50% because of cooling. The blue

energy would be reduced by 50%, and the red energy would be reduced

by 50%. In fact, by the reasoning of Maxwell, the fading coals should

display the same mixture of colors at all temperatures.

Maxwell’s analysis, however, does not agree with reality. It is well

known that hot blue-white coals become red as the fire cools. It is for that

reason that Max Planck suspected something was amiss with the theory of

electromagnetism. What could be done? In 1900, Max Planck proposes a

drastic solution to this problem. He suggests that light is composed of

particles that move in a wavelike manner. These particles of a light wave

are called photons.

Let us describe a photon. Each photon has an energy that increases in

proportion to the frequency of the light wave. Because blue light has a

higher frequency than red light, it takes more energy to activate blue light

than red light. Let us look at this statement by way of analogy. Suppose

that a powerful medieval country has an army of 10,000 red foot soldiers

and 2000 blue knights. Over the years, the country becomes much

weaker, so it cannot field such a formidable army. What would the new

army be like? The obvious answer would be that everything is reduced by

one-half, such as 5000 red foot soldiers and 1000 blue knights. That is the
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answer provided by Maxwell’s theory. Yet that is not what happens in

actuality. The reduced army might still have 6000 soldiers, but they

would be all red foot soldiers and no blue knights at all. Why?

The reason is simple. A blue knight needs a horse, weapons, and armor.

A red foot soldier needs bows and arrows. It takes a certain threshold of

energy to forge steel to make swords and armor. The weakened county

would not be able to meet that threshold. However, the country still

would have enough energy to field a reduced number of red foot soldiers.

How does this apply to photons? Let us go back to the cooling fire.

According to Planck, the energy of each photon depends upon its frequency.

A blue photon has a high frequency, and thus a high energy content. It

requires a high threshold of energy for the fire to activate a blue photon.

When the fire cools, its total energy decreases. The more energetic blue

photons become more difficult to excite. At some point, the cooling fire

would not be able to meet the blue threshold at all. This explains why

blue light is absent in the dying coals in the forge. The lower-energy red

photons can be excited more easily at lower temperatures, as evidenced

by the preponderance of red coals.

Let us now introduce the fundamental equation of quantum physics.

According to quantum physics, electromagnetic energy can be emitted

only in quantized form. In other words, the energy is a multiple of an

elementary unit E = hf . In this equation, E is the energy of a photon, h is

a fundamental constant, and f is the frequency. The intensity of the light

is simply a measure of the total number N of photons in the light wave.

The wave will have the total energy Etotal = Nhf . In other words, the total

energy of the wave equals the number N of photons times the constant h

times the frequency f of each photon.

Let us summarize the contribution of Planck. In effect, Planck shows

that Maxwell’s wave theory does not account for all of the properties of

light. The Maxwell theory predicts that the energy of a light wave

depends only on its intensity, not on its frequency. However, experiments

show that the energy imparted by light to atoms depends on the light’s

frequency, not on its intensity. For example, some chemical reactions are

provoked only by light of a frequency higher than a certain threshold.

Light of a frequency lower than the threshold, no matter how intense,

does not initiate the reaction.

In the way of the analogy, suppose an army of 1000 red archers attack a

castle. A thousand arrows cannot break down the walls. Increase the inten-

sity of the red archers to 10,000. Ten thousand arrows cannot break down the

walls. The destructive power does not depend on intensity of the red archers.

One blue cannon, however, can break down a wall. It is not the intensity but
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the type of weapon that matters. A red archer corresponds to a low-

frequency wave and the blue cannon to a high-frequency wave. The blue

high-frequency wave carries more energy that the red low-frequency wave.

Through the analysis of the thermally produced light, Max Planck is

credited with inventing the fundamental constant h that defines quantum

mechanics. It is called Planck’s constant. In fact, Planck’s constant and

the speed of light are two of the most important physical constants.

Let us now outline the modern theory of how light behaves. According

to Einstein, light can travel only at one speed; it is the speed c of light in a

vacuum which is approximately 300,000 km/s. Under no circumstances can

light speed up or slow down. Hence, light travels as fast in glass as it does in

a vacuum. But light goes slower in glass than in air. There seems to be a

contradiction. How does light travel in a material substance? It is similar

to the way that any other wave is transported, namely, by particle-to-particle

interaction.

An electromagnetic wave (e.g., a light wave) is produced by a vibrating

electric charge. As the wave moves through the vacuum of empty space, it

travels at a speed c. When the photon hits a particle of matter, the energy is

absorbed. If conditions are right, the absorbed energy is reemitted in the

form of light. The new light wave has the same frequency as the original

wave. The new light wave travels at a speed of c through the vacuum

between atoms until it hits a neighboring particle. The energy is absorbed

by this new particle and again the energy is reemitted in the form of a new

wave. It is in this way that the energy is transported from particle to particle

through the medium. Every photon travels between the interatomic vacuum

at speed c. However, because of the time delay in the process of absorp-

tion and reemission, the net speed of light v in the medium is reduced.

For example, for visible light the refractive index of glass is typically

around 1.5, meaning that light in glass travels at c/1.5 ≈ 200,000 km/s.

Now we come to an enigma that held everyone in the dark until the light

of Maxwell. From the time of Pythagoras, people have been familiar

with mechanical waves as exemplified by sound. Sound travels faster in a

dense substance, such as steel, than in a sparse substance, such as air.

Maxwell shows that light is an electromagnetic wave, which is quite differ-

ent from a mechanical wave. Light travels slower in a dense substance, such

as steel, than in a sparse substance, such as air. When rays pass obliquely

from one transparent body to another, they are deflected so they make a

larger angle to the normal for the body with the greater speed. As shown

in Figure 15, refracted sound (having greater speed) bends from the

normal and refracted light (having lesser speed) bends toward the normal.

In conclusion, the contrast in velocity is what determines diffraction, not
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the contrast in density. For electromagnetic waves (such as light), the veloc-

ity is always less in the denser medium, whereas for mechanical waves (such

as seismic waves), the velocity is generally greater in the denser medium.

Descartes as a geophysicist

Not many years ago, a few miles outside of Tulsa, it is said there was an

Oklahoma farmer who had a horse with remarkable mathematical ability.

The animal quickly mastered arithmetic and elementary algebra and then

took on geometry and trigonometry with little difficulty. However, shortly

after beginning his first lesson in analytic geometry, the horse began

balking and kicking in his stall. The farmer racked his brain for an expla-

nation. Finally, it came: “You should never put Descartes (i.e., the cart)

before the horse.”

That probably apocryphal story is evidence that today Rene Descartes’

scientific reputation rests primarily on his mathematical contributions,

chiefly the system of coordinate axes. (It is known as the Cartesian coordi-

nate system because Descartes, in the style of the time, often used a Lati-

nized version of his name—Renatus Cartesius—in signing his writings.)

The value of this discovery, which led directly to analytic geometry and

probably at least indirectly to most modern mathematics, overshadows

Descartes’ importance in many fields, including geophysics which unques-

tionably owes him a great debt. If Descartes’ work had been limited solely to

his geophysical and meteorological investigations and speculations, he

would today be viewed as a great pioneer. Incredibly, that also could be

said of him in an astounding number of intellectually demanding disciplines.

Historians of science list mathematics, physics, astronomy, anatomy, physi-

ology, psychology, metaphysics, epistemology, ethics, and theology—none

of which represents his primary interest.

Figure 15. (left)

Refraction of sound

versus (right)

refraction of light.
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His overwhelming interest, of course, is philosophy. Often he is called

the father of modern philosophy and he is unquestionably one of its towering

figures. Even without his many impressive scientific contributions, Des-

cartes’ importance to science would be immense because of his pivotal

role in ending the centuries-long domination of both science and philosophy

by Aristotle. This revolution is very possibly the critical step in generating

the era of rapid intellectual progress, particularly in science, the world sub-

sequently has enjoyed.

Descartes was born in the village of La Haye (near Tours and now

known as La Haye-Descartes), France in 1596, the son of a lawyer who

apparently always regretted that his obviously brilliant offspring had

failed to devote his great intellect to his own profession. Descartes traveled

extensively from 1616 to 1628 and then settled in Holland where he lived

for the next 21 years (although he changed his residence about 20 times)

and did nearly all of his famous work. In 1649, he accepted a generous finan-

cial offer from Queen Christina of Sweden. Unfortunately, the eccentric

queen demanded that she receive her philosophy instruction at 5 A.M.

Descartes, a late riser all his life, promptly caught pneumonia and did not

survive the harsh Swedish winter. He died in February 1650, only four

months after arriving.

Published in 1637 is Descartes’ most famous book and certainly one

of the most remarkable of all time, Discourse on the Method of Rightly Con-

ducting the Reason and Seeking Truth in the Sciences (usually called simply

Discourse on Method ). Among its many distinctions is its general regard as

a masterpiece of French prose. This is the book which contains the most

famous, and probably most quoted, sentence in philosophy: “I think there-

fore I am.”

The book’s impact on many fields is immense but it is incalculably

important in the evolution of the modern scientific method. In Discourse,

Descartes argues that scientists should avoid vague notions and try to

describe the world by mathematical equations. The results of such research,

he asserts, would be knowledge that would have practical applications

of great benefit to society. Descartes provides examples of the way his

method works in three appendices which describe discoveries he personally

had made using the system. These appendices, particularly the third, are

today more famous than the body of the text itself and they contain a

number of ideas that are central to geophysical exploration.

The first appendix, Optics, contains the first publication of the law of

refraction. This seems strange because, as all geophysicists know, the law

is named after Willebrord Snell who had made the discovery in 1621 but

did not publish it. Although Descartes was accused of appropriating the
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idea without giving proper credit to Snell (who died more than a decade

before Discourse’s publication) and the controversy has been lasting,

opinion currently seems to be that Descartes discovered the law indepen-

dently. Many call it the Snell-Descartes law of refraction. In Optics,

Descartes also discusses lenses and optical instruments, describes the func-

tioning of the eye and several of its malfunctions, and presents a preliminary

version of an enormously important scientific concept—the wave theory

of light.

The second appendix, Meteorology, is the first modern treatment of that

subject. Descartes examines rain, wind, and clouds and provides a correct

explanation for the rainbow. He argues against the concept that heat is an

invisible fluid, correctly concluding that it is a form of internal motion.

The third appendix, Geometry, presents the foundation for the math-

ematical discipline now called analytic geometry. A number of legends

describe the initial hint which prompted Descartes toward this discovery.

One says that the inspiration came while he was watching a fly crawl

about on the ceiling near the corner of his room, from which it strikes

him that the path of the fly could be described by a mathematical relation

connecting the fly’s distances from the two adjacent walls. This concept is

revolutionary because it links geometry, the form of mathematical reasoning

dominant in the West from the earliest times, to algebra, which had been

brought to an advanced state in the East. The union makes it possible

to transform geometric problems into ones expressible in algebraic terms.

Analytic geometry is the mathematical advance that prepared the way for

the invention of calculus about 30 years later.

Of course, the use of coordinate systems of axes is essential to nearly all

geophysical surveys. The familiar seismic sections are two-dimensional

graphs with distance on the horizontal axis and time on the vertical; the

desired results of processing and interpretation are three-dimensional

maps of blocks of the earth’s crust. Descartes has several other geophys-

ical ideas which have been negated as scientific knowledge has grown

but which remain fascinating because of their ingenuity. For example,

attraction, the basic property of magnetism, has been known since very

early times wherever lodestone was present. Lodestone, a magnetized

piece of magnetite, attracts not only other pieces of lodestone but pieces

of ordinary iron as well. After the magnetic compass arrived in the West

from China in the 13th century, various ideas of magnetism began appear-

ing, but Descartes is the first to propose a scientific theory to account for

the phenomenon.

Descartes believed that space was filled with vortexes, inside of

which were some screw-like particles. These particles had left-handed or
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right-handed threads, depending upon from which pole of the vortex they

derived. The particles entered through the north and south poles of the

earth and screwed into holes or pores in its iron or lodestone interior, thus

giving rise to the earth’s magnetism. Lodestone on the earth’s surface, in

order to offer the least resistance to the circulation of these particles, lined

up its holes in the correct direction. Although this concept did not stand

the test of time, the explanation was ingenious enough to account for all

magnetic phenomena known in 1644. (It was only after the experimental

work in electricity and magnetism in the 19th and 20th centuries that

really satisfactory explanations became possible.) Thus, Descartes may be

considered one of the founders of the geophysical discipline of terrestrial

magnetism.

Although early cultures speculated on the creation of the universe and

the beginning of the world, they could do little more than use imagination

and poetry. Scientific reasoning was not an evolving field. Descartes, in

the Principles of Philosophy published in 1644, was the first person to

attempt a scientific explanation. It has long been superseded but remains

interesting, not only for historical value, but because it contains life

cycles for stars, a striking similarity to modern cosmogonies. At that time,

the implications of the entire universe, as we know it, were not appreciated.

The main concern of astronomy was with the comets and planets. Within

his universe, Descartes assumed that everything was arranged as a collection

of vortexes. At the center of each vortex of whirling matter was a star. As

time passed, a skin grew over each star—the spots on our own sun repre-

senting the beginning of the process. In due course, the skin would stop

the star from shining and then the vortex would collapse. The dead star

could become either a comet moving from one vortex to another or a

planet staying in another vortex moving in orbit around the star in the

center. At the time, Descartes’ system appeared a brilliant synthesis for it

was the first new physical scheme of the universe since that of Aristotle.

While Descartes’ theory became untenable with the publication of Sir

Isaac Newton’s concepts in 1687, it was not until the middle of the next

century that the Newtonian universe fully replaced Descartes’ vortexes in

the European scientific community.

The Dane Niels Stensen (known also by the Latinized Nicolaus Steno)

published Prodomus (The Messenger) in 1671, which usually is considered

the advent of scientific geology. Stensen was concerned with the stratig-

raphy of the earth’s outer crust. However, as early as 1644, Descartes

had made some conjectures about the earth’s internal constitution. He,

again in Principles of Philosophy, said that the earth was once molten (as

he believed the sun to be) and that, although the earth had now cooled
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and shrunk on the outside, its inner core was still very hot. He believed that a

layer of material surrounded the incandescent central core. In the 20th

century, geophysics partially repaid its debt to Descartes when earthquake

seismology confirmed the existence of the mantle and showed that his

model essentially was correct.

Descartes assumed that the universe was filled with matter which, due to

some initial motion, had settled down into a system of vortices which carry

the sun, the stars, the planets, and comets in their paths. The Cartesian

system seemed self-evident because no one could admit the idea that the

great masses of planets were suspended in empty space and that they

were held in their orbits by an invisible influence. In contrast, Newton’s

theory proposed that gravitation acts instantaneously, regardless of distance.

In other words, Newton assumed that the universe was governed by action at

a distance. Newton supposed that a change in intrinsic properties of one

system induced a change in the intrinsic properties of a distant system

without any intervening process that carried this influence contiguously in

space and time.

Descartes also plays a role in the science of mechanics, ironically

helping prepare the way for Newton to overturn the Cartesian cosmogony.

The first coherent body of laws of motion is conceived by Aristotle; but,

as the Dark Ages ended in Europe, dissatisfaction arose concerning Aris-

totle’s explanation of the motion of an arrow. At the start of its motion,

the arrow is obviously driven forward by the bowstring. But what keeps it

moving after this? According to Aristotle, as soon as the arrow leaves the

bow, air would rush in to take up the space that the arrow has occupied.

Then this air would act as a force to push the arrow along its course and

thereby cause the motion to continue. Once this force is spent, the arrow

would seek its natural place and fall to the ground, unless it first reaches

the target.

There were obvious flaws in this theory (mainly because it was known

that air offered resistance to the movement of bodies) but the overwhelm-

ing stature of Aristotle deterred serious questioning for centuries. Roger

Bacon expressed doubts in the 13th century but the first steps toward a

new explanation had to wait for Galileo (1564 – 1642). Descartes followed

up Galileo’s work and claimed that a body will continue its motion indefi-

nitely at a fixed velocity and in the same direction unless it suffers a

collision. This statement, now known as Newton’s first law of motion (the

law of inertia), first appeared in Principles of Philosophy. The idea was

demonstrated by an illustration (Figure 16) from Descartes’ Epistolae,

posthumously published in 1668. It showed that a tennis ball falls to the

ground in a smooth parabolic path after being hit.
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There is one additional scientific development, of immense importance

in exploration, with which Descartes was probably at least tangentially

associated. During his years in Holland, he became a friend of the distin-

guished diplomat and poet, Constantijn Huygens, and was an occasional

visitor to his home. There he met Huygens’ son, Christiaan. Descartes is

known to have read and been impressed by the younger Huygens’ teenage

efforts in geometry. Christiaan Huygens, of course, became one of the great-

est of all scientists, ranking second in esteem in his lifetime only to Newton

himself. Among other major scientific accomplishments, Huygens was the

author of the wave theory of propagation, with Huygens’ principle under-

lining the very foundation of reflection seismology. The concepts of mass,

weight, momentum, force, and work were finally clarified in Huygens’ treat-

ment of the phenomena of impact, centripetal force, and the pendulum.

Could Huygens’ interest in science—particularly in the study of light—

have been spurred by his early contact with Descartes? We will never

know for certain, but it is difficult to imagine there was no influence at

all. It is possible, perhaps even probable, that something Descartes said

during their conversations gestated within Huygens for years before

emerging as the wave theory. The wave theory of light does not make

much of an impression initially, primarily because the unassailable

Newton favored particles. Huygens’ principle would lay dormant for

more than a century before being resurrected by the brilliant experiments

of Thomas Young in 1803. In 1816, it is Augustin-Jean Fresnel who

shows that Huygens’ principle, together with his own principle of inter-

ference, could explain both the rectilinear propagation of light and also dif-

fraction effects. Since then, the wave theory has become a key idea in

physics. Ultimately, the recognition of the fundamental duality existing

between the propagation of particles and waves has become the very foun-

dation of modern physics.

In 1663, Huygens was elected to the Royal Society of London, which

had been founded in 1660. In 1666, at the invitation of King Louis XVI,

Huygens moved to Paris as the foremost member the newly formed

Figure 16. Tennis

ball illustration

from Descartes’

Epistolae (1668).
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French Academy of Sciences. The parallel between the works of Huygens

and Newton was noteworthy. Working within the same 17th century milieu,

they both encountered some of the same problems. For example, the wave

theory of light of Huygens and the particle theory of Newton finally came

together in the realm of quantum physics. No other worker in that decisive

era of science approached the level or scope of Huygens and Newton.

The publication priority of the law of refraction remains with Descartes

in his Optics (1637) in which he states his conclusion but presents no exper-

imental verification. Descartes’ discourse on refraction is interesting in

itself—even if it is significantly out of date—because it opens the door to

the physical understanding of light. Remember that Descartes regards

light as a force of motion that has a directional quantity. In other words,

light is a ray with length and direction.

Descartes first considers the law of reflection by harking back to Heron’s

analogy between the motion of a ball (which has finite velocity) and light

(which, according to Descartes, has infinite velocity). He first analyzes the

motion of the ball upon bouncing from a hard surface (Figure 17). The

ball, being impelled from A toward B, meets the surface of the ground at

point B and bounces.

In order to predict the direction that the ball must go next, Descartes

describes a circle centered at B and passing through A. Because the ball

moves at a constant speed, the time it takes to travel from B to another

point on the circumference of the circle must be the same time it takes

the ball to travel from A to B. Descartes draws three straight lines AC,

HB, and FE (each perpendicular to CE and such that CB equals BE).

Figure 17.

Descartes’ law of

reflection.
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Then he says that the time it takes the ball to advance to the right from A to

B must be equal to the time it takes the ball to advance to the right from B

to some point on the line FE. The ball cannot be simultaneously at a point

on the line FE and at a point on the circumference of the circle unless it

is either at point D or point F because these are the only points where the

circle and line intersect. Because the ground prevents the ball from continu-

ing toward D, it must go to F.

Descartes then makes the analogy of the paths of the ball to rays of light.

He asserts that you can easily see how reflection occurs. If a ray coming

from point A falls to point B on a flat mirror, it is reflected toward F in

such a manner that the angle of reflection FBH is equal to the angle of

incidence ABH.

Next Descartes treats refraction and again uses the tennis ball analogy,

as illustrated in Figure 18. Redrawing and labeling the illustration produces

the diagram shown in Figure 19.

Descartes supposes that a ball impelled from A to B does not meet an

unyielding surface at the CBE plane but rather a cloth. Because the cloth

is weak and loosely woven, the ball ruptures it. Descartes then continues

his description, but we will put his words into equations. Both AB and BI

are radii of the same circle. Denote the radius by R; that is,

R = AB = BI .

(This is another example of Descartes’ invention of the use of coordinate

systems in mathematics.) Denote the segment CB by d1. Let u1 denote

Figure 18.

Descartes’ law of

refraction (C

clarified for

reference).
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the angle of incidence CAB. Thus, d1 = R sin u1. Denote the segment BE by

d2. Let u2 denote the angle of refraction BIE. Thus, d2 = R sin u2. Descartes

wishes to find d2 and hence u2. As to horizontal component, he faces two

choices:

Choice (1):
d2

v1

= d1

v2

, Choice (2):
d2

v2

= d1

v1

. (9)

As to component choice, Descartes chooses Choice (1). Descartes makes an

analogy with a tennis ball. As to velocity, he faces two choices:

Choice (1): v2 . v1 , Choice (2): v2 , v1 . (10)

Nobody knows anything about light. Descartes, in talking about a tennis

ball, in effect is talking about a particle of light. Descartes writes, “The

harder and firmer are the small particles of a transparent body, the more

easily do they allow the light to pass.” In other words, it is easier for light

to pass through water than air. Thus, (according to Descartes), the velocity

v2 through water is greater that the velocity v1 through air. Thus, on the v2

choice, Descartes chooses Choice (1). With these choices, Descartes obtains

R sin u2

v1

= R sin u1

v2

. (11)

As a result, the relative refractive index is

n = sin u1

sin u2

= v2

v1

. 1 . (12)

Figure 19. A redrawn and

relabeled representation of

Descartes’ law of refraction

shown in Figure 18.
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By theoretical means alone, Descartes justifies Snell’s empirical law

of refraction, which for air to water is

n = sin u1

sin u2

. 1 . (13)

(In the same vein, Newton in 1678 finds theoretical means of verifying

Kepler’s empirical laws on the motion of planets.) Descartes faces two

choices on each account and, in hindsight, we can see that Descartes is

wrong on both accounts. Fortunately, for Descartes at least, two wrongs

can make a right.

Now let us look at how we can redeem the derivation of Descartes.

In regard to the horizontal component, he should have taken the other

choice; namely,

d2

v2

= d1

v1

. (14)

In regard to the velocity, he should have taken the other choice; namely

v2 , v1. In other words, light slows down in water. Equation 14 becomes

R sin u2

v2

= R sin u1

v1

. (15)

As a result, the relative refractive index is

n = sin u1

sin u2

= v1

v2

. 1 . (16)

Thus, the mathematics is corrected easily. Now we must turn our atten-

tion to the model. It turns out that the diagram of Descartes is correct. How

could it not be correct? It is drawn by the greatest geometer since Euclid.

The analytic geometry of Descartes changes the whole scheme of mathe-

matics and makes possible infinitesimal analysis. In order to explain this,

we must first look ahead to the work of Huygens in 1678.

Huygens sets everything right. Descartes uses a tennis ball as an analogy

for light. In other words, Descartes thinks of light as a particle. Huygens, in

1678, proposes that light travels as a wave. What does that imply? In ancient

times, rowing vessels, especially galleys, are used extensively in the Medi-

terranean for naval warfare and trade. Galleys have advantages over sailing

ships. They are easier to maneuver, capable of short bursts of speed, and able

to move independently of the wind. If the starboard oarsmen and the port

oarsmen each row at the same speed, the galley travels in a straight line.
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If both sides slow down together, the galley maintains its direction. If the

starboard oarsmen slow down as directed but the port oarsmen are late in

slowing down, the galley veers to starboard. A light wave in air slows

down when it hits water. If the light hits the water at normal incidence,

the light wave slows down but continues in the same direction. If the light

hits the water at oblique incidence, however, then one side of the wavefront

hits the water sooner than the other side. Like the galley, the light changes

its direction. The passage of light cannot be explained by a single ray. At

least two closely spaced rays must be used. In an isotropic medium, the

wavefronts are orthogonal to the rays. The distance between two rays

along a wavefront is a measure of the width of the wavefront.

Figure 20 is Huygens’ model (as also will be shown in Figure 34, in the

subsequent section on Huygens’ model). The same model is given by Fermat

(as will be shown in Figure 24). Interface R separates air on top and water

below. There are two raypaths and two wavefronts. We must now show

how these qualities are placed upon Descartes’ model.

Figure 21 is the essence of Descartes’ model. The left semicircle rep-

resents air; the right semicircle represents water. The bent raypath composed

of d1 in air and d2 in water is made straight along the line CBE in Descartes’

model. The interface R appears twice in Descartes’ model. The upper R

represents the air side; the lower R represents the water side.

Transit maps are found in the transit vehicles and at the platforms.

They help people efficiently use the public transport system, including the

stations which function as interchanges between lines. Unlike conventional

maps, transit maps usually are not geographically accurate—instead they

use straight lines and fixed angles, and often illustrate a fixed distance

between stations, compressing those in the outer area of the system and

expanding those close to the center. In effect, Descartes’ diagram is a

transit map of Huygens’ diagram. In Descartes’ transit map, the raypaths

Incident

I

Figure 20. Huygens’ model of Snell’s law.
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are horizontal lines and the wavefronts are vertical lines which, if extended,

would make a perfect orthogonal Cartesian grid.

The vertical lines AC and EI represent wavefronts. The bent ray

is represented by the straight line CE, where B is the point of bend-

ing. The two sides of the interface R are represented by the bent line

ABI, where B is the point of separation of the air side from the water side.

Triangle CAB represents what happens in the upper medium (air). Line

AB is the interface, and angle u1 is the angle between the wavefront and

the interface. The distance d1 is the distance that the wavefront travels in

time t. Thus,

d1 = v1t = R sin u1 . (17)

Triangle BIE represents what happens in the lower medium (water).

Line BI is the same interface, but on the water side. Angle u2 is the angle

between the wavefront and the interface. The distance d2 is the distance

that the wavefront travels in time t. Thus,

d2 = v2t = R sin u2 . (18)

If we divide equation 17 by equation 18, we obtain the Huygens’

equation for refraction

n = sin u1

sin u2

= v1

v2

. (19)

Figure 21. Descartes’ law

of refraction as a transit map

showing rays and

wavefronts.
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Descartes freed geometry from the shackles of diagrams and opened up

the realm of geometric objects defined on a coordinate system. Descartes

immediately used his analytic geometry to build a mathematical model

that would explain refraction. Because Descartes (like everyone else of

his time) did not know how light traveled, his model was in error. Francis

Bacon (1561 – 1626), a contemporary of Descartes, wrote, “Truth comes

out of error more readily than out of confusion.” The validly of Bacon’s

statement was revealed by the fact that Fermat and Huygens, using analytic

geometry, were able to correct Descartes’ error and devise the correct model

for the refraction of light. Analytic geometry almost completely replaced

diagrams with mathematical equations. The last great proof using diagrams

only was Newton’s proof of the law of gravity in 1689 (as will be shown in

our subsequent section on Newton).

Descartes’ Mathematical Problem. As a challenge to the reader, we

present one of the problems posed by Descartes in Geometry. The

problem is to find the roots of the equation z2 − az + b2 = 0. Descartes

does it with the diagram in Figure 17. He makes NL equal to a/2 and LM

equal to b. Then he draws MQR parallel to LN, and with N as a center

describes a circle through L cutting MQR at the points Q and R. The

problem is to show that the two roots are MQ and MR. A second challenge

is to explain what happens to the roots when the line MR is tangent to the

circle and when it does not meet the circle.

Descartes’ Solution. From high school algebra, we recall that the

solutions of the quadratic equation of the form

Az2 + Bz + C = 0

are given by the formula

z = −B +
�����������
B2 − 4AC

√

2A
.

In Descartes’ problem, we have A = 1, B = −a,

C = b2, so in terms of the given quantities the two

solutions are

z = a

2

( )
+

�����������
a

2

( )2

− b2

√
.

Now turn to Figure 22. Draw NP parallel to LM.

Thus, NP also is equal to b. Also draw line NQ,

which is a radius of the circle, so NQ is equal to

Figure 22.
Construction of

Descartes.
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NL, which by construction is equal to a/2. Next use the Pythagorean

theorem, which says that

PR = PQ =
������������

a

2

( )2

− b2

√
.

Finally note that PM equals a/2. Therefore, in terms of the figure, the

two algebraic solutions can be written z = PM + PR and z = PM − PQ,

or in other words the two solutions are MR and MQ. When line MR is

tangent to the circle, both roots are equal, and when line MR does not

meet the circle, the roots are complex.

Fermat and the principle of least time

Descartes indeed has a role in the discovery of the law of refraction

(generally credited to Willebrord Snell), but Descartes’ work has one

major flaw—it essentially puts things exactly backwards! More specifically,

light travels faster in air than in water, but Descartes assumes the opposite.

Moving forward from this “mistake,” however, we have Fermat. Born in

Beaumont-de-Lomagne, France, Pierre de Fermat (1601 – 1665) devises

a principle, now known as Fermat’s principle, which forms the basis of

our understanding of the propagation of seismic waves through the earth.

In his famous (perhaps notorious) “Last Theorem,” Fermat stated—

actually scribbled in the margin of a book—that he had found how the

fundamental equation

xn + yn = zn (n . 2)

did not have a solution in whole numbers and that the proof was simple but

he did not have room to write it in the available space. For three centuries,

mathematicians failed, despite great effort, to confirm his statement, until

1994 when Andrew Wiles published a proof for Fermat’s Last Theorem.

With more than 150 pages, it was described as one of the highest achieve-

ments of number theory. He had accomplished what was considered by

many as impossible. Fermat invented analytic geometry independently

of Descartes (and extended it to three dimensions instead of stopping

at two), apparently intuited the basic principles of differential calculus

before Newton, was at least a co-founder (with Pascal and Huygens) of prob-

ability theory, and inaugurated the modern “theory of numbers.”

It took many years for Fermat to receive credit for much of his amazing

body of work because he was an amateur mathematician—most of his

formal education and his entire career were in law—so he devoted only
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his spare time to the subject. He did not publish in normal mathematical

channels of communication; many of his ideas were circulated only in

letters to friends and these were not published until 1679, 14 years after

his death near Toulouse, France.

Fermat also contributes to physical theory, most importantly with

Fermat’s principle, also known as the principle of least time. This concept

has had tremendous influence on the development of physical thought in

and beyond the study of classical optics (to which Fermat first applied it).

As previously stated, it is absolutely indispensable to our current concept

of seismic wave propagation. A variety of natural phenomena exhibit what

might be called the minimum principle, or its twin the maximum principle.

These principles find expression in certain geometric statements. (For

example, a straight line is the shortest distance between two points on a

plane or a circle encloses the largest area of all closed curves of equal

length on a plane.) Many of these examples are known to the ancients.

One story says that the Phoenician princess Dido obtained a grant from a

North African chief, the grant being for as much land as she could

enclose in an ox hide. Dido cut the hide into long, thin strips; tied the

ends together; and staked out the rectangular area upon which Carthage

was built. She could have obtained even more land if she had laid out the

city in the shape of a circle.

As shown in our previous section, Heron of Alexandria is believed to be

the first to apply an extreme principle to light. He obtains the law of reflec-

tion, namely, the angle of incidence is equal to the angle of reflection.

The related law of refraction, which is basic to geophysical exploration, is

studied experimentally by the Greek-Egyptian astronomer Ptolemy in the

first century AD; however, it is not formulated for another 1500 years.

Johannes Kepler, in his study of optics in the early 17th century, develops

many hypotheses—some shrewd and close to the mark—concerning the

refraction of light, but nothing of the first magnitude results from this

research.

The law of refraction is discovered some years later by Snell and,

independently, by Descartes. Snell formulates it around 1621, after many

years of experimentation as well as the study of Kepler’s Ad Vitellionem

Paralipomena (1604) and Risner’s Optica (1606), both of which quote

lbn al-Haytham and Witelo.

Pierre de Fermat, a contemporary of Descartes, contested this result

because he believed that light must travel slower (not faster) in a denser

medium. Fermat had studied the works of the ancient mathematicians in

the original Greek and, consequently, was inspired to derive the law of

refraction by using Heron’s assumption that light always prefers the shortest
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possible path. However, it was immediately obvious to him that it could not

be the shortest path, as Heron reasoned for reflection, because the shortest

path between a point above water and a point below water would be a

straight line, and there would be no refraction (i.e., no bending) at all.

Explaining this difference caused Fermat to make one of the most important

conceptual leaps in the history of physics. His intuition told him that light

moves slower in the denser medium. Thus, instead of assuming that light

travels along a path that minimizes distance, Fermat reasoned that light

travels along the path that minimizes time. This became Fermat’s Principle

of Least Time.

Fermat’s conceptual leap was astounding because he had to assume

1. the speed of light is finite (which had not yet been demonstrated),

2. light has a fixed characteristic speed in each substance, and

3. counterintuitively the speed is slower in denser media (which is opposite

to the view of Descartes and counter to the physics of sound).

Furthermore, because calculus had not yet been invented, Fermat also

has to do pioneering work in mathematics to derive the law of refraction

based upon his principle of least time. His method of minimization involves

ingenuity that is very close to differential calculus. Figure 23 shows two

neighboring paths, labeled old path and new path, from point A to point

B. The essential component is that Fermat uses two rays, which are critical

to understanding that light travels as a wave not as a particle.

Interface

Figure 23. Derivation

of Fermat’s law of

refraction. The raypath

ADB is a slight

displacement from

raypath ACB.
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In Figure 24, note the perpendicular DD′ to the old path and the per-

pendicular CC′ to the new path. The figure shows the mathematics near

the interface when DD′ is considered infinitesimally small. The upper

segment AD of the new path is shorter (by the amount dp) than the upper

segment AC of the old path. In compensation, the lower segment DB of

the new path is longer (by the amount dq) than the lower segment CB of

the old path. The new path “gains” the time it would take to go the distance

dp, but “loses” the time it would take to go the distance dq. Time is distance

divided by velocity. Thus, the net time difference dt is dp/n1 − dq/n2. Some

basic trigonometry reveals that dp = dx sin u1 and dq = dx sin u2. As a

result, the net time difference can be written

dt = dx
sin u1

n1

− dx
sin u2

n2

.

This can be rearranged as

dt

dx
= sin u1

n1

− sin u2

n2

.

The shortest possible time for light to travel from A to B would occur

when the difference between the two “legs” of the path is 0. Setting dt/dx

to 0 immediately leads to

sin u1

n1

= sin u2

n2

,

Figure 24.

Enlargement of

Figure 14 near the

interface.

38 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



which can be rearranged as Fermat’s law of refraction

sin u1

sin u2

= n1

n2

.

Because Fermat assumes that n2 , n1, then u2 must be smaller than u2

and, in accordance with Snell, a light ray must bend toward the normal

when passing into a denser medium.

Fermat published his findings in 1650 but his derivation was not recog-

nized for several years. In fact, Fermat ignited a major scientific contro-

versy because he had not provided a physical explanation for his

assumption that the light ray would automatically follow a path of least

time. Only a direct measurement of the speed of light in two media with

different refractive indices would suffice. This could not be done at the

time and indeed was not possible until the middle of the 19th century.

Without this knowledge about the velocities involved, it could not be

determined whose derivation was correct and the greatest physicists of

the time (or any time) disagreed. Hooke and Newton were among those

who believed that light travels faster in denser media. Huygens agreed

with Fermat that light travels slower in denser media and used this to

derive the law of refraction based on his wave-theory of light. Perhaps the

clinching confirmation that Fermat was correct came some years later

when his findings could be established by calculus.

Fermat was very critical of Descartes’ work. He was convinced that

there was little merit in Descartes’ proof of the law of refraction and,

in fact, he came to regard Descartes as something of a fraud. As a

result, Fermat undertook his own derivation of the law of refraction as a

point of honor. He embarked on a course of research which eliminated

the bouncing ball analogy. Like Descartes, he reached back to Heron of

Alexandria, not for bouncing balls, but for the idea of minimum path.

However, he altered it by postulating that the path of a light ray connec-

ting two fixed points was the one for which the time of transit, not the

length, was a minimum. His own words were: “Je reconnois premièrement

la vérité de ce principe, que la nature agit toujours par les voies les plus

courtes.”

After several years of hard work, Fermat arrived at the law of

refraction. Fermat was able to give an expression for the constant n in

Snell’s law,

sin ui

sin ur

= n .
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Fermat found that this constant was the ratio of the velocity of the incident

light to the velocity of the refracted light. Fermat’s equation was

n = vi

vr

.

If the incident light was in air, then we could take vi ≈ c. In such a case,

Fermat’s equation became

n ≈ c

vr

.

This equation confirmed that light must travel more slowly in the dense

medium than in a sparse medium. Fermat’s equation was as astonishing

as Maxwell’s equation for the velocity of given by

c = 1����
1m

√ .

Here 1 and m were the dielectric and permeability constants, respectively.

Descartes’ partisans, however, refused to accept Fermat’s proof and

argued that his physical assumption regarding least time was faulty.

Fermat had little chance against what was then the scientific establishment

and he made a less than valiant defense of his discovery, one that would in

time be accepted as one of the most basic physical laws. Fermat’s last word

on this matter was expressed in a letter to one of the principal followers of

Descartes:

I do not pretend nor have I ever pretended to be Nature’s private

confidant. She has obscure and secret ways that I have never pre-

tended to penetrate. I have only offered her a little geometrical

assistance on the subject of refraction if it should be needed. But

since you assure me, Monsieur, that her affairs are in order

without it and that she is content to follow the course that

M. Descartes has prescribed, I surrender to you my supposed phys-

ical conquest and content myself with the purely geometrical

problem.

One should not judge Fermat too harshly by this “surrender.” The the-

ories of Descartes were so entrenched that nearly 100 years passed before

European science dropped them for the model of Isaac Newton. Time,

though, was on Fermat’s side and finally vindicated him, at least scientifi-

cally, long after his death.

Let us now give the modern demonstration of Fermat’s theorem using

calculus. Consider Figure 25. The traveltime between A and I, by way
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of point P, is

t = (a2 + x2)
1/2

v1

+ (b2 + (c − x)2)
1/2

v2

and, according to the fundamental theory of maxima and minima in differ-

ential calculus, the minimum value of t can be obtained by taking the

derivative of this equation and setting it equal to zero. The derivative of t

with respect to x is

x

v1(a2 + x2)
1/2

+ c − x

v2(b2 + (c − x)2)
1/2

.

And, if this is made equal to zero, the result is Snell’s law, because

x

(a2 + x2)
1/2

= sin u1 ,

c − x

(b2 + (c − x)2)
1/2

= sin u2 .

Let us now review Fermat’s principle, which may be used to find the

raypaths. The principle states that the path of a ray between any two

points P1 and P2 is such that the time required to traverse the path will be

a minimum. This principle is valid for media with varying velocities or

for the case in which the ray passes from one medium to a second with a

different velocity.

Figure 25. Derivation

of Snell’s law.
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Consider an arbitrary path connecting

two points P1 and P2 as shown in Figure 26.

We need to find an expression for the time

required to pass along the path from P1 to

P2. The time needed to traverse a portion of

length ds is ds/v, where v is the velocity at

the point where ds is situated. The total time

is then

t =
∫P2

P1

ds

v
.

This integral is a line integral. It will have different values for different paths

connecting the end points P1 and P2. Now suppose we choose a path only

slightly displaced from the one shown in Figure 25. The difference of

time of traversal for the two paths will, in general, be of the same order of

magnitude as that of a quantity determining the displacement of the paths.

Fermat’s principle states that, if we have the correct path, the difference

of time of traversal of it and a neighboring path will be of the order of

magnitude of the square or higher powers of the quantity measuring the dis-

placement of the two paths. This is analogous to the statement in ordinary

calculus that a function f (x) has a minimum (or maximum) at the point

z = a. Suppose we wish the value of this function at a point x close to

x = a. Then by Taylor’s theorem we can write

f (x) = f (a) + df

dx

( )∣∣∣∣
x=a

(x − a) + 1

2

d2f

dx2

( )∣∣∣∣
x=a

(x − a)2 + · · · .

If the function f (x) has a minimum at x = a, then df /dx = 0 for x = a.

In such a case, we have

f (x) − f (a) = 1

2

d2f

dx2

( )∣∣∣∣
x=a

(x − a)2 + · · · .

Thus, the difference in the value of the function at x and at a is of the

order of magnitude of (x − a)2. On the other hand, if there is no minimum

at x = a, f (x) − f (a) is of the order of magnitude of (x − a).

ds P2

P1

Figure 26. The element

ds on a path from one

point to another.
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Huygens’ principle

According to a story, perhaps apocryphal, the great Dutch scientist

Christiaan Huygens (1629 – 1695) dropped a stone into the canal next to

his house, intently observed the circular wave that moved out across the

water surface, and—like Pythagoras and Plato—intuited that a world of

perfection was behind the imperfect visible world and this perfect world

was constructed of perfect mathematical and geometric formulations. Of

course, the waves that Huygens supposedly observed as a boy were never

perfectly circular, but his mind held a clear understanding of a perfect

circle and it can be argued that, in the spirit of Plato, Huygens spent his life

in uncovering the massively important role played by the circle in science.

The Netherlands was a great seafaring nation, and Huygens’ first scien-

tific/technological contributions involved improvements to the two most

important navigational tools of the 17th century, the telescope and the

clock. Huygens, helped by his brother Constantijn, designed a telescope

that was far superior to contemporary devices and, in March 1655, he

discovered Saturn’s moon, Titan. He also was able to explain the curious

extension of Saturn, which had intrigued astronomers since Galileo first

observed it in 1610: Saturn was encircled by a ring, thin and flat, nowhere

touching, inclined to the ecliptic.

In that period, the central problem of navigation was determining

longitude. Longitude could, in effect, be measured by time: if the difference

in local time at two points was known, the longitudinal distance between

them could be computed. However, in the first part of the 17th century,

this was not a practical option because the existing mechanical clocks

were not sufficiently accurate. Galileo had discovered that a pendulum

could be used as a frequency-determining device for a clock (and many

consider him the father of this scientific breakthrough), but he never built

such a clock. Huygens was the true inventor of the pendulum clock in

which the escapement counts the swings and a driving weight provides

the push. In effect, the escapement was a feedback regulator that controlled

the speed of this type of mechanical clock. Huygens produced his first clock

in December 1656, and it was much more accurate than contemporary

clocks. Pendulum clocks became the most accurate clocks in the world

for the next 300 years.

It is not an overstatement to contend that this is one of the great tech-

nological breakthroughs in history. The invention by Huygens of the first

accurate clock can be considered the beginning of the modern world,

which is based on science and technology, because it permitted much

more sophisticated experiments and detailed measurements.
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Huygens was able to construct such a clock because of his investigations

of the mathematics of the circle, and this would lead him to additional dis-

coveries that are of major importance in modern geophysics. Galileo

believed that a pendulum is isochronic; in other words, that the period of

a pendulum does not depend on the amplitude of its swing. Huygens, via

mathematics, found that a pendulum swinging through the arc of the

circle is not isochronic—it only appears isochronic when the length of the

arc is quite short relative to the length of the pendulum. This property

would give a clock with a long pendulum an advantage over a clock with

a short pendulum; however, the pendulums of the early clocks were kept

short and light to minimize the amount of energy needed to keep them in

motion. As a result, the early pendulum clocks had very wide pendulum

swings, which decreased their accuracy.

Huygens had to solve the so-called tautochrone problem in order to con-

struct a perfect clock. More specifically, Huygens had to find the curve down

which a mass will slide under the influence of gravity in the same amount of

time, regardless of its starting point. Huygens used geometrical methods

because calculus had not yet been invented. He showed that the required

curve was a cycloid, instead of the circular arc of a pendulum’s swing,

and therefore that conventional pendulums are not isochronous.

Our analysis will make use of calculus. A simple harmonic oscillator

is an oscillator that is neither driven nor damped. It consists of a mass m,

which experiences a single force F, which pulls the mass in the direc-

tion of the point x = 0 and depends only on the mass’s position x and a posi-

tive constant k. When displaced from its equilibrium position, the restoring

force is

F = −kx .

Newton’s second law F = ma becomes

−kx = m
d2x

dx2
.

Solving this differential equation, we find that the motion is described by the

sinusoidal function

x(t) = A cos(vt + w) ,

where the angular frequency v is given by

v =
�����
k/m

√
.
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Such sinusoidal motion is known as simple harmonic motion. It con-

sists of sinusoidal oscillations about the equilibrium point, with constant

amplitude A and constant frequency v. The motion is periodic, repeating

itself in a sinusoidal fashion. Its period is T = 2p/v, which is the time

for a single oscillation. Its cyclic frequency is f = 1/T , which is the

number of cycles per unit time. The position at a given time t also

depends on the phase w, which determines the starting point on the sinusoi-

dal wave. The period and frequency are determined by the size of the mass m

and the force constant k, while the amplitude and phase are determined by

the starting position and velocity.

A simple pendulum exhibits approximately simple harmonic motion

under the conditions of no damping and small amplitude. Assuming no

damping, the differential equation governing a simple pendulum is

d2u

dt2
+ g

ℓ
sin u = 0 ,

where g is acceleration due to gravity, ℓ is the length of the pendulum, and u

is the angular displacement. If the maximum displacement of the pendulum

is small, we can use the approximation sin u ≈u. The differential equation

approximately reduces to

d2u

dt2
+ g

ℓ
u = 0 .

The solution to this equation is given by

u(t) = u0 cos

��
g

ℓ

√
t + w

( )
,

where u0 is the largest angle attained by the pendulum. The period, the time

for one complete oscillation, is given by the expression

T = 2p

���
g

ℓ

√
,

which is a good approximation of the actual period only when u0 is small.

Huygens seeks to build a clock that will tell the correct time with no such

limitation as the smallness of u0.

Isochronous (from the Greek “equal” and “time”) pertains to processes

that require timing coordination to be successful. A sequence of events

is isochronous if the events occur regularly, or at equal time intervals.
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Isochrony is important in clocks. A property of simple harmonic motion is

that the period T does not depend on the amplitude. Thus, simple harmonic

motion is isochronous. In other words, it takes the same time to make the

same sinusoidal oscillation regardless of the amplitude of the oscillation.

The theory of Fourier series and integrals rests upon this property.

For example, see Figure 27. A mechanical clock is isochronous if it

runs at the same rate regardless of changes in its drive force, so that it main-

tains the same periodic time T as its mainspring unwinds. As we have just

seen, a conventional pendulum is not isochronous. However, if the

maximum angle u0 of swing is small, then a conventional pendulum is

nearly isochronous. Huygens reasons that this limitation is because the

conventional pendulum swings in the arc of a circle. As a result, he

designs a clock whose pendulum swings in the arc of a rolling circle. A

rolling circle (a.k.a. cycloid) is the curve that is generated by a point on

the circumference of a circle as it rolls along a straight line.

The cycloidal clock of Huygens provides the correct time, regardless of

the size of the largest angle attained by its pendulum. In other words, the

cycloidal pendulum is a simple harmonic oscillator, unlike the usual pen-

dulum. In Horologium Oscillatorium (1673), Huygens provides a complete

mathematical description of his cycloidal clock. Its pendulum is forced to

swing in an arc of a cycloid. Huygens accomplishes this by suspending

the pendulum (composed of a bob on a wire string) at the cusp of the

evolute of the cycloid. Such a cycloidal pendulum is isochronous, regardless

of amplitude. The cycloidal clock is extremely accurate, but unfortunately

the movement causes an excessive amount of friction.

Meanwhile, Robert Hooke, another person with a prominent role in

establishing the fundamentals of geophysics, invented the anchor escape-

ment for a pendulum clock. The anchor escapement required a smaller

angle of swing than the angle required by the escapements of the early

pendulum clocks. Pendulum clocks became so accurate that the cycloidal

clock quickly became passé. However, Huygens made one more great

Figure 27. The cycloidal

pendulum is a simple

harmonic oscillator,

whereas the conventional

pendulum is not.

Cycloidal path

Circular path

Conventional 
pendulum

Cycloidal pendulum
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contribution to the measurement of time when, in 1675, he built a

chronometer that used a balance wheel and a spiral spring instead of a

pendulum. Balance wheels and spiral springs were the basis for almost

all watches until the invention of the quartz crystal oscillator in the 20th

century.

Although the cycloidal clock was of practical use for only a limited

time, it is historically important because it can be viewed as the first suc-

cessful design of an intricate apparatus based on higher mathematics.

Heron of Alexandria and Leonardo da Vinci use mechanical principles in

order to design their inventions, but the mathematics involved essentially

is simply Euclidean geometry which dates from about 300 BC. The intro-

duction of higher mathematics to accomplish mechanical design gives

Huygens the distinction of being the father of modern technology.

In Traité de la Lumière (1690), Huygens presents one of the great

contributions to theoretical physics when he postulates that light is a

wave. His postulate is supported with a principle (or construction) known

ever since as Huygens’ principle. The two key ideas of Huygens’ principle

are secondary waves and the enveloping mechanism. Huygens demonstrates

his construction with diagrams such as those displayed in Figure 28. The left

diagram shows how a spherical wavefront propagates. The right diagram

shows how a plane wavefront propagates. In other words, in the spirit of

e

d

c

b

a

E

D

C

B

A
Spherical
wavefront
propagated
(envelope 
of secondary waves)

A

B

C

D

E

a

b

c

d

e

Plane
wavefront
(each point 
emits a 
secondary 
wave)

Plane
wavefront
propagated
(envelope 
of secondary
waves)

Spherical
wavefront
(each point 
emits a 
secondary
wave)

Secondary wave

Secondary wave
Secondary wave

Common
center
of both
wavefronts

Figure 28. An envelope of secondary waves produces a new wavefront.
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Plato, Huygens uses the perfect world of circles to explain the intricacies of

wave motion.

In 1921, at Belle Isle, Oklahoma, USA, J. C. Karcher is the first person

to record a seismic reflection line. Figure 29 shows Karcher’s 1921

migration diagram of the Viola interface as given by an envelope of circular

arcs. Each time a geophysicist records a prestack depth migration, they are

using a method based upon the fundamental concept known as Huygens’

principle.

Huygens’ principle may be summarized as follows. Given a wavefront

at a given instant of time, each point on the wavefront emits a spherical

secondary wave (see Figure 30). The secondary waves are in phase with

the original wavefront and propagate outward with the same speed. The

secondary waves constructively interfere and their envelope forms a new

wavefront. In the same manner, the envelope of secondary waves from

this new wavefront produces the next wavefront.

Figure 29. Viola

interface as given by an

envelope of circular arcs.

Figure 30. Envelope of secondary

waves forms a new wavefront.

Wavefront
(each point 
emits a 
secondary 
wave)

Wavefront
propagated
(envelope 
of secondary waves)

Secondary
wave

Secondary wave
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Huygens imagines that this process repeats itself as the wave propa-

gates. If the medium is homogeneous and isotropic, the spherical second-

ary waves may be constructed with finite radii. On the other hand, if the

medium is inhomogeneous, the secondary waves will have infinitesimal

radii, and the magnitudes of the radii will depend on the wave velocity of

the medium at the respective centers of the secondary waves. Calculus is

needed to deal effectively with these infinitesimals. In inhomogeneous

media, the secondary waves will not be circular anymore, so to consider

them as circular one needs infinitesimal calculus.

A plane wave is a wave for which quantities vary only with time and

with the distance along a fixed direction. The direction vector is denoted

by the unit vector u where |u| = 1. The plane wave propagates in the direc-

tion of u with velocity v. Mathematically a plane wave must be of infinite

extent in order to propagate as a plane wave. However, many waves are

approximately plane waves in a localized region of space. A plane wave

of constant frequency has wavefronts (surfaces of constant phase) that

are parallel planes of constant peak-to-peak amplitude normal to the direc-

tion vector u.

Geometrical seismology is based upon the concept of a ray. The con-

stant-phase surfaces can be described by constructing the normals to these

surfaces (the wave normals or rays), and one can follow the motion of

these surfaces by moving along the directions of these rays. This mode

of description evidently is possible for waves other than plane waves. For

example, in the case of spherical waves in a homogeneous medium, the

rays consist of straight lines radiating in all directions from a common

point, and the surfaces of constant phase are concentric spherical surfaces.

If the direction vector is directed outward from the center, one speaks of a

diverging wave. If the direction vector is directed toward the center, one

speaks of a converging wave. In order to follow the motion of a limited

portion of a wave surface, we can construct a bundle (or pencil) of rays

through this portion of the surface. Such a

pencil of rays is called a beam, and for

plane waves the beam consists of a parallel

bundle of rays. For a spherical portion of a

wave surface, the rays diverge from (or con-

verge on) a point F, known as the focal

point of the pencil. Such a pencil is called

stigmatic (see Figure 31). The portion of a

wave surface which has different radii of

curvature in two mutually orthogonal direc-

tions form an astigmatic pencil and do not
Figure 31. A divergent pencil

of rays.
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pass through a common point. In the case of the propagation of waves in a

homogeneous medium, the rays always are straight lines, and the wave sur-

faces do not change shape as the wave propagates. If, however, the velocity

varies from point to point, the rays will be curved lines, and the wave sur-

faces will not maintain an unaltered shape.

There is an advantage gained by describing wave motion in terms of

rays. Under what condition is it advantageous to use rays instead of

waves? Let us consider what happens when we try to form a narrow beam

from a plane wave by allowing the plane wave to fall on a screen, in

which there is a hole, placed perpendicular to the direction of propagation.

The waves emerging from the hole, in general, will not form a section of a

plane wave with a parallel bundle of rays, but will spread out generally in all

directions. If the wavelengths of the waves are very small compared to the

linear dimensions of the aperture, however, this spreading effect (a.k.a. dif-

fraction) becomes extremely small. Such is the case of light waves, whose

wavelengths are very small compared with the dimensions of ordinary

objects. In such cases, we can neglect diffraction effects and treat the

bundle of light rays emerging from the aperture as strictly parallel. Simi-

larly, an obstacle placed in the path of a beam of light casts a sharply

defined geometrical shadow. The laws of optics and optical systems, to

the approximation in which one can neglect typical wave effects such as dif-

fraction and interference, comprise the subject of geometrical optics.

Geometrical optics, or ray optics, describes light in terms of rays. Of

course, a ray is an abstraction that approximates the path along which

light propagates. Light rays propagate in straight paths as they travel in a

homogeneous medium. A ray will split into a reflected ray and a refracted

ray at the interface between two layers. A ray follows curved paths in a

medium in which the velocity changes. The province of geometrical

optics does not account for diffraction or interference. Rays are useful

when the wavelength is small compared to the size of structures with

which the light interacts. Unfortunately the wavelength of a typical

seismic wave is never small compared to the size of geologic structures of

interest. Despite this limitation, the use of the geometrical theory of

seismic rays is useful and productive.

A number of phenomena cannot be described by geometrical seismolo-

gy, but can be described by wave theory. The principle of superposition is

fundamental to the application of wave theory. This principle is based

upon the fact that the various wave trains which, in their totality, compose

a beam may be considered as being mutually independent so we may treat

the elementary waves as if each exists alone. As a result, the behavior of

the beam as a whole may be computed as the sum of the effects of the
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elementary waves. This is characteristic of all wave motion governed by the

wave equation, which is a linear equation.

Huygens’ principle makes it possible to follow the propagation of

waves. Huygens’ principle may be described in this manner. Suppose that

we know the shape of one of the constant-phase surfaces of a wave, e.g.,

one of the crests of the wave, at some instant of time. We can find the

shape of this wave surface at a later time Dt by considering each point on

the original wave surface as a source of secondary spherical waves which

diverge from these points. Construct spheres at each point of the original

wavefront. Make the radius of each of these spheres equal to vDt, where v

is the velocity of the wave. Then the envelope of these spherical secondary

waves yields the shape of this wavefront at a time Dt later.

Huygens uses his principle in order to find the direction of reflected

rays. As illustrated in Figure 32, line AB is the incident ray and BF is the

reflected ray. The rays in a plane wave are parallel. In particular, ray MC

is parallel to ray AB. Ray CQ is parallel to ray BF. The angle of incidence

is u1 = /NBA. The angle of reflection is uk = /NBF. The velocity in the

medium is v1.

A wavefront is perpendicular to the rays. Lines AM and BP are wave-

fronts of the incident plane wave. Ray AB strikes the interface sooner than

ray MC. More specifically, ray MC must travel an extra time t, in which it

travels the extra distance PC = v1t. As soon as ray AB hits the interface

at B, it initiates a Huygens circular wavelet with the center at B. At time t,

this emergent wavelet has radius v1t. As soon as ray MC hits the interface

at C, it initiates a Huygens’ circular wavelet with the center at C.

Figure 32. Reflected wavefront CF is an envelope of the emergent wavelet and the

embryonic wavelet.
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At time t, this wavelet is embryonic for it has radius 0. In other words, this

embryonic wavelet is simply point C. The envelope of the emergent wavelet

and the embryonic wavelet is the reflected wavefront CF, where CF is the

tangent from point C to the emergent wavelet.

Triangle CBP and triangle BCF are each right triangles. They have a

common hypotenuse BC. Recall that the extra distance is PC = v1t and that

the emergent wavelet has radius BF = v1t. Thus, PC = BF. Thus, right

triangle CPB is congruent to right triangle BCF. From plane geometry,

CBP = u1 and BCF = uk .

Thus, the angle u1 of incidence is equal to the angle uk of refection. This is

Heron’s law of reflection.

Moving to Figure 33, let an incident wave pass from the upper medium

(incident medium) with velocity v1 to the lower medium (refracting

medium) with different velocity v2. In our case, we assume that

v2 , v1 .

Line AB is the incident ray. Let ui be the angle of incidence. Huygens

uses his principle in order to find the direction of the refracted wave.

It takes the same time t to go from P to C as to go from B to G. Thus, PC =
v1t and BG = v2t. A wavefront is perpendicular to the rays. Lines AM and

BP are wavefronts of the incident wave. Ray AB strikes the interface

Figure 33. Refracted wavefront GF is an envelope of the emergent wavelet and the

embryonic wavelet.
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sooner than ray MC. More specifically, ray MC must travel the extra time t,

during which it travels the extra distance PC = v1t.

As soon as ray AB hits the interface at B, it initiates a Huygens’ circular

wavelet (in the lower medium) with the center at B. At time t, this emergent

wavelet has radius v2t. As soon as ray MC hits the interface at C, it initiates a

Huygens’ circular wavelet (in the lower medium) with the center at C. At

time t, this wavelet is embryonic for it has radius 0. In other words, this

embryonic wavelet is simply point C. The envelope of the emergent

wavelet and the embryonic wavelet is the refracted wavefront CG, where

CG is the tangent from point C to the emergent wavelet. Line BG is the

refracted ray and u2 is the angle of refraction.

Triangle CBP and triangle BCG are each right triangles. They have a

common hypotenuse BC. Recall that the extra distance is PC = v1t and that

the emergent wavelet has radius BG = v2t. Thus,

t = PC

v1

= BG

v2

.

From plane geometry,

CBP = u1 and BCG = u2 .

Thus,

PC = BC sin u1 and BG = BC sin u2 .

Substituting for BC and BG, we have

v1t = BC sin u1 and v2t = BC sin u2 .

If we divide these two equations, we obtain

v1

v2

= sin u1

sin u2

.

This is Snell’s law of refraction.

In Figure 34, we see that Snell’s law reduces to two right triangles with a

common hypotenuse R.

The formulation of Huygens’ principle with spherical wavelets has an

obvious defect, because it produces a wavefront traveling backward as

well as one traveling forward. Figure 35 depicts a spherical wavefront AA

emitted by a source S, the forward traveling wavefront BB at later time

Dt, and also the backward traveling wavefront CC also at later time Dt, as

given by Huygens’ construction. The wavefront traveling backward does

not exist.
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To complete the analysis, we must know how the amplitudes of these

secondary waves vary with direction. It turns out that this variation of ampli-

tude with direction of propagation is complicated. This problem is solved by

Fresnel and Kirchhoff. Their more advanced formulation of Huygens’ prin-

ciple states that we can obtain the wavefield at any point by first considering

each point on any closed surface (it may be taken as a wavefront for conven-

ience) as a source of secondary waves and then superposing the effects of

these secondary waves at the point in question. However, these secondary

waves have different amplitudes in different directions. If we take depen-

dence of amplitude and phase into consideration, then the wavefront travel-

ing backward turns out to have zero amplitude. We will not give a rigorous

formulation of the Fresnel–Kirchhoff formulation of Huygens’ principle

here, but instead we will give an approximate treatment.

The principle of superposition of waves states that, when two or more

waves are incident on the same point, the total displacement at that point

Figure 35. Original wavefront

AA, backward traveling

wavefront CC, and forward

traveling wavefront BB.

A

A

B

B

C

C
Radius of 
secondary 
wave is  
    v Δt

S

Figure 34. Huygens’ essence

of Snell’s law.
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is equal to the vector sum of the displacements of the individual waves. If a

crest of a wave meets a crest of another wave of the same frequency at the

same point, then the magnitude of the displacement is the sum of the indi-

vidual magnitudes; this is known as constructive interference. If a crest of

one wave meets a trough of another wave, then the magnitude of the dis-

placements is equal to the difference in the individual magnitudes; this is

known as destructive interference.

Interference and diffraction are terms that describe a wave interacting

with something that changes its amplitude, such as another wave. There

is no important physical difference between interference and diffraction.

It is a question of usage. When there are only a few sources, e.g., two, we

call it interference, but with a large number of sources, we call it diffraction.

Interference is a phenomenon in which two waves superimpose to form a

resultant wave of greater or lower amplitude. If one causes two (or more)

beams from two separate portions of the wavefront to recombine, the result-

ing variations of intensity with position are termed interference effects.

Diffraction refers to various phenomena that occur when a wave

encounters an obstacle. In classical physics, the diffraction phenomenon

is described as the apparent bending of waves around small obstacles and

the spreading out of waves past small openings. Diffraction takes into

consideration the interference effects caused by a limitation of the cross

section of a wavefront. The extended form of Huygens’ construction

allows diffractions. Such diffractions appear in directions other than that

of the incident wave. The diffractions occur in such directions because

the mutual cancellation by destructive interference of the secondary

waves is not complete.

When the cross section of a beam is limited by allowing the wave to

pass through an opaque screen containing one or more apertures, the dis-

tribution of intensity in the transmitted beam as observed on another

screen is called a diffraction pattern. If the diffracting screen (or obstacle)

is placed between source and observing screen, and no lenses or mirrors

are employed, the resulting phenomenon is called Fresnel diffraction. In

general, both source and observing screen are at finite distances from

the diffracting screen. On the other hand, if the incident wave is a plane

wave, and if the diffracted waves are observed on a distant screen, then

the resulting pattern is known as a Fraunhofer diffraction pattern. Funda-

mentally, both types of diffraction are only different aspects of the same

basic phenomenon and are explicable in terms of Huygens’ principle.

Let us examine Huygens’ principle more closely. We will use Figure 36

twice. In the figure, some sort of obstacle (as indicated by the opaque screen)

is inserted between O and P. In the first instance, we will suppose that the
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screen is absent. In the second instance, we will suppose that the screen is

present.

First instance (the screen is absent). Consider a spherical wave diverging

from a source O, and suppose we wish to compute the amplitude of this

wave at a point P, which lies at a distance R from the source O. First,

we construct a spherical surface (wavefront) of radius r1 , R with its

center at O. On this wavefront, we must consider each element of area

dS as the source of secondary waves which in their totality combine at P

to produce the resultant wave motion at P. The relative phases of the sec-

ondary waves arriving at P may be obtained by observing that it takes a

time r/v for a disturbance at dS to reach P. Thus, the relative phases of

these waves are given by 2pr/l. What are the relative amplitudes of

these waves? The relative amplitudes are proportional to dS and the area

of the elementary source on the wavefront, and they are inversely pro-

portional to r. In addition, the relative amplitudes depend on the angle u

in the form (1 + cos u)/2, where u is the angle between the normal to

the spherical surface and r, so that cos u varies from +1 at A to −1 at B.

This so-called obliquity factor (1 + cos u)/2 varies from +1 at A to 0 at

B. Thus, the obliquity factor eliminates the wavefront traveling backward

in the elementary Huygens’ construction. Let us look at the wavefront tra-

veling forward. Without the screen, we have an unobstructed wave. In such

a case, the secondary waves from all elements of area dS mutually destroy

each other by interference at P, except for those originating in a very small

region around the point A; hence, the effect is almost the same as if the

light traveled in a straight line from O to P.

Second instance (the screen is present). The screen blocks the lower hemi-

sphere of the wavefront. Let dS′ on the lower hemisphere be the counterpart

of dS on the upper hemisphere. Now the mutual cancellation of the second-

ary waves from dS and dS′ cannot occur, because the screen prevents the

Figure 36. A wavefront

encountering a screen and the

absence of the screen.
B PAO

R

θdS

dS’

r1 r

Screen

56 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



waves from dS′ from reaching P. This gives rise, then, to diffractions, and

one may obtain even larger intensities at P than without the screen.

Huygens uses his wave theory to finally establish the laws of refection

and refraction which, particularly the latter, had been sought since ancient

times. In Figure 37, a plane interface separates the upper medium from

the lower medium. Assume the wave velocity in the lower medium is

greater than in the upper medium, i.e., n2 . n1. A downgoing plane wave-

front CD in the upper medium is slantwise incident on the interface. As each

point on the wavefront arrives at the interface, it behaves according to

Huygens’ principle and emits two secondary waves, one upward and the

other downward. There are two envelopes—the envelope that produces

the upgoing reflected wavefront GF and the envelope that produces the

downgoing refracted wavefront EF.

The law of reflection and refraction can be derived by analyzing the

part of the incident wavefront that lies between rays AC and BDF as point

C contacts the interface CF. Let Dt represent the time increment needed

for the wave to travel from D to F, which means that DF = n1Dt. The

A

F

E

C

D

B

G

Interface

Upper medium 
with velocity v1

Lower medium 
with velocity v2 

Incident ray Reflected ray 

Refracted ray 

Incident
wavefront
at time t

Reflected
wavefront
at time t+ t

Refracted wavefront
at time t+ t

Lower 
wavelet 

Upper 
wavelet 

t

ri

Figure 37. Downgoing plane wavefront CD, upgoing reflected wavefront GF, and

downgoing refracted wavefront EF.
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two secondary waves emanating from point C are different because the

secondary wave above the interface is a semicircle with radius n1Dt and

the secondary wave below the interface is a semicircle with radius n2Dt.

The envelopes at time t + Dt are given by the tangent lines FG and FE.

The angle ui between incident wavefront CD and interface CF is the

angle of incidence. The angle ur between reflected wavefront FG and

interface CF is the angle of reflection. The angle ut between refracted wave-

front and interface CF is the angle of refraction. These angles are part of

three right triangles (CFD, CFG, and CFE) which have the common hypot-

enuse CF. Thus, the sines of these three angles have a common denominator,

that is

sin ui =
DF

CF
, sin ur =

CG

CF
, sin ut =

CE

CF
.

Also, CF = n1Dt and = n2Dt, which means that the above equations

can be written

sin ui =
n1Dt

CF
, sin ur =

n1Dt

CF
, sin ut =

n2Dt

CF
.

Because sin ui = sin ur, it follows that the incidence angle ui is equal to the

reflection angle ur. It also follows that

sin ui

sin ut

=

n1Dt

CF

( )

n2Dt

CF

( ) = n1

n2

,

which is Snell’s law—one of the mathematical underpinnings of seismology

and a marvelous proof of a relationship that had been sought for centuries.

Snell’s law also can be derived by using Fermat’s principle.

Thus, the wavefront method of Huygens correctly, and with a dramatic

simplicity and elegance, generates the laws of reflection and refraction. The

work of Huygens on the telescope and the clock would secure his place in

the annals of exploration geophysics. Huygens also is known for studying

anisotropy (Icelandic spar), caustics, and polarization. His principle of

constructing wave motion by the use of secondary waves appears in all text-

books on physics. Among all of his other accomplishments, Huygens is one

of the great pioneers of exploration geophysics.
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Isaac Newton and the birth of geophysics

Because Newton’s achievement can be considered the starting point of

modern geophysics and planetary science, this section takes a slight detour

to discuss some of its impact on what geoscientists do today.

Isaac Newton (1643 – 1727) composed Principia during 1685 and

1686. Its first edition was published on 5 July 1687. In the book, Newton

established the mathematical form of the theory of gravity. The practical

application of Newton’s law of gravity arrived pretty quickly (very

quickly, considering the long time that it took for “technology transfer” in

that era). In 1735 – 1745, the French Academy sent expeditions to

Lapland and Peru on which Pierre Bouguer established gravitational

relationships such as the variation of gravity with elevation, the horizontal

attraction caused by mountains, and the density of the earth.

Today, gravity surveying typically is accomplished with a gravimeter,

an instrument consisting of a weight attached to a spring that stretches or

contracts according to an increase or decrease in gravity. It is designed to

measure differences in gravity acceleration rather than absolute magnitudes.

Gravimeters used in geophysical surveys are capable of detecting differ-

ences in the earth’s gravitational field to one part in one hundred million.

We will now present Newton’s geometrical solution to the inverse square

law of gravitation as given in Principia.

Part A. Properties of conic sections

Circles, ellipses, parabolas, and hyperbolas are called conic sections.

All of the conic sections can be characterized as follows. A conic is either

a circle or the locus of a point which moves so that the ratio of its absolute

distance from a given point (a focus) to its absolute distance from a given

line (a directrix) is a positive constant e (the eccentricity). We can use

this characterization to find the polar equation of a conic of eccentricity e

with one focus at the origin O and with the line x = k as the directrix

(where k . 0). As shown in the notation of Figure 38, the focus-directrix

property is PO = e PD. Because the origin and focus are the same, we

have PO = r. Also cos (p− u) = − cos u. Thus,

PD = EC = EO + OC = −r cos u+ k ,

and the focus-directrix property becomes

r = e(−r cos u+ k) ,
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which yields the curve

r(u) = ke

1 + e cos u
(e . 0, k . 0) , (20)

which also can be written as

1

r(u)
= 1

ke
+ 1

k
cos u . (21)

Here r(u) indicates the function with value r at u. Let us define the semi-

latus-rectum ℓ as

ℓ = r
p

2

( )
= ke . (22)

The focus is at origin O. The latus-rectum 2ℓ is the breadth of the curve

at the focus. An apsis is an extreme point in an object’s orbit. In other

words, an apsis is a point of either least distance or greatest distance on

the curve from the focus O. For elliptic orbits about a larger body, there

are two apsides, named with the prefixes peri- (meaning “near”) and ap-

or apo- (meaning “away from”). For example, the Sun is at the focus of

the elliptical path of a planet orbiting it. The point of least distance in the

elliptical path is the perihelion, and the point of greatest distance is the

aphelion. In equation 22, the minimum radius occurs when u = 0, i.e.,

r(0) is the periapsis radius. The maximum radius occurs when u = p, i.e.,

r(p) is the apoapsis radius. The average of the periapsis and apoapsis

radii is

a = r(0) + r(p)

2
= ke

2(1 + e)
+ ke

2(1 − e)
= ke

1 − e2
. (23)

Figure 38. Illustration of

focus and directrix.

r

P

C

L
D

Focus (origin)

E
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O
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The chord passing through the foci is called the major axis of the conic,

and the length of this chord is 2|a|. Thus, we call a the semi-major-axis.

From equations 22 and 23, we have

ℓ = a(1 − e2) . (24)

We now define c as

c = a − r(0) = a − ke

1 + e
= a − a(1 − e2)

1 + e
= ae , (25)

which yields the eccentricity as

e = c

a
. (26)

The distance between the foci is 2|c|. The parameters ℓ, a, and c represent

geometrical dimensions common to all conic sections.

When e = 1, the curve is a parabola. Because the parabola is the border-

line between open and closed curves, the second focus is at infinity, so

a = 1, c = 1, and equations 24 and 26 do not hold. Equations 24 and

26, however, do hold for any conic except a parabola. The special case e =
0 represents a circle; then the foci are at the same point, so ℓ = a and c = 0.

When 0 , e , 1, the curve is an ellipse, and a . 0, c . 0. When

1 , e , 1, the curve is a hyperbola, and a , 0, c , 0. For all conics, the

semi-latus-rectum ℓ is positive.

Part B. Apollonius equation for the ellipse

At this juncture, we would like to say a few words about the ellipse

and consider Figure 39. An ellipse has two perpendicular axes about

which the ellipse is symmetric. Due to this symmetry, these axes inter-

sect at the center of the ellipse (denoted by C ). The larger of these two

axes is called the major axis. The smaller of these two axes is called

the minor axis. The semi-major axis (a.k.a. major radius) is denoted

by a. The semi-minor axis (a.k.a. minor radius) is denoted by b. The

chord of an ellipse that is perpendicular to the major axis and passes

through either one of its two foci is the latus rectum of the ellipse. The

length of each latus rectum is 2b2/a. Accordingly, the semi-latus-rectum

is ℓ = b2/a.

The ancient Greek geometer and astronomer Apollonius of Perga is

credited with developing the theory of conic sections. An ellipse is a com-

pressed circle. A circle of radius a is pushed down so that it becomes

an ellipse with major radius a and minor radius b, where b , a. The
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coordinates of the circle are denoted by (x, z). Thus,

z =
��������
a2 − x2

√
.

The coordinates of the ellipse are denoted by (x, y). Apollonius finds

the equation for y in this way. First, Apollonius writes the proportion

z:a as y:b .

This proportionality can be written as the equation

z

a
= y

b
.

Next, Apollonius takes the square of each side of the equation. The result is

the Apollonius equation for the ellipse,

a2 − x2

a2
= y2

b2
,

which becomes the familiar equation for an ellipse, namely,

x2

a2
+ y2

b2
= 1 .

Figure 39. Ellipse as

a circle that is

compressed.

Ellipse
minor
radius b

Ellipse major radius a

Circle
radius
   a

Circle

Ellipse

Point (x, z)

Point (x, y)

x

Center C
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Part C. Bounding parallelogram and conjugate diameters

A diameter is a chord (such as GP) that passes through the center C of

the ellipse (see Figure 40). For an ellipse, two diameters (such as GP and

KD) are conjugate if and only if the tangent line to the ellipse at an endpoint

of one diameter is parallel to the other diameter. Each pair of conjugate

diameters of an ellipse has a corresponding tangent parallelogram, some-

times called a bounding parallelogram. A bounding parallelogram is skewed

compared to a bounding rectangle. It is well known that all bounding paral-

lelograms for a given ellipse have the same area as the bounding rectangle.

In particular, it follows that the rectangle with sides a and b has the same

area as the parallelogram with sides a1 and b1 (see Figure 41). The area of

the rectangle is ab, whereas the area of the parallelogram is b1 a0, where a0 is

the normal to the line DK from point P. Thus, we have

ab = b1 a0 ,

which yields

a

a0

= b1

b
.

b

A

P

C

B

a

D

b1 a1

G K

Figure 40. The area of the bounding rectangle (with perpendicular sides 2a and 2b)

is equal to area of any bounding parallelogram (such as the parallelogram with

oblique sides 2a1 and 2b1).
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Part D. Apollonius equation in the oblique coordinate system

Considering Figure 42, an ellipse with major radius a and minor radius b

has conjugate radii a1 and b1. An alias transformation is a transformation

in which the coordinate system is changed, leaving points in the original coor-

dinate system “fixed” while changing their representation in the new coordi-

nate system. A rectangular coordinate system (a.k.a. Cartesian coordinate

system) is one whose axes are perpendicular. Let the original coordinate

system be rectangular where the coordinates of point Q are (x, y) and where

x = CM and y = MQ .

An oblique coordinate system is one whose axes are not perpendicular.

Let the axes of the new coordinate system be conjugate diameters of the

ellipse. It is apparent that the new coordinate system is oblique where the coor-

dinates of point Q are (x1, y1) and where

x1 = CV and y1 = VQ .

The Apollonius equation for the ellipse in the rectangular coordinate

system is

x2

a2
+ y2

b2
= 1 or

(a + x)(a − x)

a2
= y2

b2
. (27)

90o

P

A
C

M

B

b=
C

B

a=MC

a0

D

a 1
=CP

b
1 =CD

F

Figure 41. The area of the rectangle (bold solid lines) equals the area of the

parallelogram (bold dashed lines).
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The Apollonius equation for the ellipse in the oblique coordinate system is

x2
1

a2
1

+ y2
1

b2
1

= 1 or
(a1 + x1)(a1 − x1)

a2
1

= y2
1

b2
1

. (28)

Next define u1 as

u1 = VP .

Because a1 = CP, x1 = CV , it follows that

a1 = x1 + u1 .

Thus,

a1 − x1 = u1 and a1 + x1 = 2a1 − u1 .

b=CB

u

A

Q

P

C

B

u1

a=CA

R

D

b1=CD

a1=CP=x1+u1

x1=CV

x

y=MQ

M

V

x=CM

u
y =

Figure 42. Major radius a ¼ CA and minor radius b ¼ CB form rectangular axes.

Conjugate radii a1 ¼ CP and b1 ¼ CD form oblique axes. Point Q has rectangular

coordinates (x, y) and oblique coordinates (x1, y1). In other words, there are two

different designations for the same point Q. The two line segments labeled u are

equal and parallel.
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The Apollonius equation 28 in the oblique coordinate system becomes

y2
1

b2
1

= u1(2a1 − u1)

a2
1

. (29)

Part E. Line EP has same length as semi-major axis a

An ellipse is the set of all points such that the sum of the distances

from two fixed points (i.e., the foci S and H ) is constant. In other words,

as illustrated in Figure 43, the distance from one focus S to any point P

on the ellipse plus the distance from that same point P to the other focus

H is always the same number for a particular ellipse. In fact, the fixed dis-

tance is given by 2a, where a is the major radius CA. Thus, we may write

SP + PH = 2a .

In terms of components, this equation becomes

SE + EI + IP + PH = 2a .

Let PR be tangent to the ellipse at point P. The lines HI and CE are

drawn parallel to the tangent PR. Because the foci are equally distant

from the center, we have SC = CH. It follows that SE = EI.

In addition, it is demonstrated that P is the point of reflection of the

ray IPH. By Heron’s law of reflection, it follows that IP = PH. Thus,

EI + EI + IP + IP = 2a

or

EI + IP = EP = a .

This equation establishes that line EP has same length as semi-major

axis CA.

Figure 43. In the ellipse,

SE ¼ EI and IP ¼ PH, so

EP ¼ CA.

D P

A
C

B R

E

I

Focus H

Therefore a=CA=EP

Equal lengths

Equal lengths

Focus S

Given 2a=2 CA=SP+PH
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Part F. Galileo and the path of a projectile

Modern science began with Galileo. His lasting achievement was

the overturning of the overwhelming influence of Aristotle on physics.

A particular roadblock to progress was Aristotle’s concept of the motion

of a projectile. According to Aristotle, the motion of a projectile was

composed of thrust and descent. The upward thrust was produced by the

source (such as the string on a bow or gunpowder), and the descent

was produced by the natural tendency of an arrow or cannonball to fall to

the ground. Because (as deemed by the conventional wisdom) the two

motions could not occur simultaneously, it was necessary for the upward

thrust to be completed before the projectile could fall. Thus, a projectile

would follow a straight-line path until the upward thrust was consumed;

then it would fall straight down. Aristotle had no notion about the theory

of gravity.

Aristotle’s incorrect theory of the motion of a projectile dominated

theoretical physics for centuries. According to Aristotle, a gunner should

aim straight at the target. However, practical military men knew this pro-

cedure was incorrect, so they would aim above the target. Galileo took

the decisive step to correct Aristotle’s false description. First, he developed

the theory of freely falling bodies based on his realization that a force

directly affects the vertical velocity of a freely falling object. Through

experimentation, Galileo found this force causes the object to gain equal

increments in vertical velocity over equal intervals of time. Thus, the

force of gravity produced a constant acceleration g. Galileo expressed this

phenomenon mathematically by writing the vertical velocity as v = gt,

where t denotes time. This equation held whatever the weight of the

object might be. The weight of the object represented the force of gravity

and could be written as mg, where m denoted mass. Galileo devised a

clever method to integrate the velocity with respect to time. The method

yielded Galileo’s celebrated equation for the fallen distance,

u = gt2

2
. (30)

Generally, it is agreed that this work of Galileo marks the beginning

of physical science as we know it today. However, we should also say the

contemporaneous work of Descartes in analytic geometry marks the begin-

ning of mathematical science as we know it today. In this regard, Huygens

and Newton use the results of both Galileo and Descartes to advance

mathematics and physics.
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Galileo used the Italian word gravita, which was translated as gravity

in English. Next, Galileo applied this result to the calculation of ballistic

trajectories with the revolutionary concept that Aristotle’s thrust component

and Aristotle’s descent component could both act at the same time, resulting

in a parabolic trajectory (Figure 44). Newton stated in Book 1 of the Prin-

cipia: “Galileo discovered that the descent of bodies varied as the square

of time, and that the motion of projectiles was in the curve of a parabola.”

However, Newton neglected to say that Descartes discovered the way to

connect the equation of the parabola (analytic) to the picture of the parabola

(geometry).

Part G. Newton’s Proposition XL Problem VI

Newton puts everything into one diagram, which is shown in Figure 45.

All of the upper-case letters on the diagram represent points. We will use

lower-case letters to label line segments. In Principia, Newton writes:

SECTION III. Of the motion of bodies in eccentric conic sections.

PROPOSITION XL PROBLEM VI.

If a body revolves in an ellipse, it is required to find the law of the

centripetal force tending to the focus of the ellipse.

Let S be the focus of the ellipse. Draw SP cutting the diameter DK

of the ellipsis in E, and the ordinate QV in X; and complete the

parallelogram QXPR. It is evident that EP is equal to the greater

semi-axis.

Note that we have already established this result in Part E. Newton will

now use this result.

Figure 44. Galileo: Parabolic

trajectory with continuing

descent u ¼ gt2/2, which gives

g ¼ 2u/t2.

Aristotle’s trajectory

Galileo’s trajectory

Galileo’s 
continuing
descent

 = g t2 /2

Aristotle’s 
final
descentUpward thrust
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Next, as shown in Figure 46, because triangles EPC and XPV are

similar, we have

PX

PV
= PE

PC

and, as also will appear as equation 34 in Part G,

u

u1

= a

a1

.

Q

P

A

R

S

a=EP

H

T Z

X
V

F

K

D

E

G

u1=VP

a1=CP

B

b=CB

b1=CD

a=CA

h=QX=RP

u=XP=QR

r=SP

h0=QT

C

Figure 46. The diagram

as given in the Principia

with lower-case letters

added to indicate

segments.

Q

P

A

R

S

I

H

T
Z

X
V

F

K

D

E

G

C

Figure 45. The diagram

as given in the Principia.
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Then, as shown in Figure 47, because right triangles QTX and PFE

are similar, we have

QX/QT = PE/PF ,

which is

h

h0

= a

a0

.

Part C also contains

a

a0

= b1

b
.

Thus, we have

h

h0

= b1

b
.

If we square the elements of this equation, we obtain the following equation,

which also will appear as equation 35 in Part G,

h2

h2
0

= b2
1

b2
.

Part H. Newton’s treatment of a planet as a projectile

Newton’s elliptical trajectory PQ has tangential component PR = h and

descending component RQ = u, as shown in Figure 48. According to

Figure 47. Diagram to

illustrate the similar

triangles.

Q

Phh0

A
CS

a=CA

r=SP

h=QX

T
a0

h0=QT

D

H

X
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Galileo, the descending component is u = gt2/2. According to Kepler, the

time for the planet to travel from P to Q is t = rh0/2.

The attracting body is the Sun S. The orbiting body is the planet P.

Newton uses Galileo’s idea by taking the novel approach of treating a

planet as a projectile. Newton reasons that the planet is falling continually

toward the sun (see Figure 48). If there is no gravitational force, the

planet would travel along the tangent line and travel from P to R in

the time interval t (à la the thinking of Aristotle). But there is gravity, so

the planet descends the distance u in the time interval. If the points P and

Q are close together, then the acceleration of gravity is (approximately) con-

stant. Such is the case in Earth-bound satellites. In time t, the planet travels

along the elliptic arc from P to Q, and this arc can be approximated by

Galileo’s parabola. Line SP has length r. Note that RQ is parallel to SP.

Line QX is parallel to the tangent RP. According to Galileo, the descending

component is given by equation 30, which is u = (gt2)/2.

At about the same time as Galileo, Johannes Kepler empirically dis-

covers three very important laws. Kepler’s first law says that a planet,

such as the Earth, travels in an elliptic orbit around the Sun. The Sun S

is at one focus of the ellipse. Nothing is at the other focus. The peri-

helion is the point in the orbit of a planet at which it is closest to the Sun.

The aphelion is the point at which it is furthest from the Sun. These two

points lie at opposite ends of the major axis. The planet’s speed changes

along its orbit. The planet moves fastest at the perihelion and slowest at

the aphelion.

Kepler’s second law states that the radial line SP joining the Sun to a

planet sweeps out equal areas during equal intervals of time. In other

words, the second law says that the time it takes for the planet to travel

from point P to point Q is proportional to the area of the sector PSQ

that the planet sweeps out in that time. Again see Figure 48. There is no

simple formula for the area of a pie wedge cut from an ellipse, but, if

we consider a very short time interval, the area of the sector is very

nearly that of triangle PSQ. The area of the triangle is one-half the

b

uQ

Puhh0

A
C

R

S

B

Bb=CB
a=CB

r=SP
a

h=PR
u=RQ

X
T

Figure 48. Newton’s

elliptical trajectory.
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product of the base r and height h0. According to Kepler’s second law,

the equation for time is

t = rh0

2
. (31)

Newton combines Galileo’s equation 30 and Kepler’s equation 31.

The result obtains Newton’s planetary gravitational acceleration.

g = 2u

t2
= 2u

rh0

2

( )2
= 8u

r2h2
0

= 8u

h2
0

( )
1

r2
. (32)

Unlike Galileo’s earthy g, Newton’s planetary g is not constant but varies

as the planet travels along its orbit. Newton wants to know what happens

at point P when Q approaches P. In other words, Newton wants to find

the limit of the quotient 8u/h2
0 as P � Q. Next we will show what

Newton does.

The Apollonius equation 28 for the ellipse in the oblique coordinate

system may be written as

u1(2a1 − u1)

y2
1

= a2
1

b2
1

. (33)

Newton then turns to the geometry of the ellipse. He uses the two equations

given in Part G, namely,

u

u1

= a

a1

(34)

and

h2

h2
0

= b2
1

b2
. (35)

Multiplying equations 33, 34, and 35, the result is

u1(2a1 − u1)

y2
1

u

u1

h2

h2
0

= a2
1

b2
1

a

a1

b2
1

b2
. (36)

The left side of equation 36 is

u1(2a1 − u1)

y2
1

u

u1

h2

h2
0

= (2a1 − u1)
h2

y2
1

u

h2
0

. (37)
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In Figure 49, line segment u1 is on the x1 axis, and line segment h is par-

allel to the y1 axis. At this point, Newton uses a rudimentary form of calcu-

lus. He is careful to take limits along one or the other of these two oblique

axes. In Figure 49, as point Q approaches point P, two things happen:

(a) VP � 0; thus u1 � 0, so (2a1 − u1) � 2a1.

(b) XV � 0; thus h � y1.

As a result, the right side of equation 37 approaches a limit given by

(2a1 − u1)
h2

y2
1

u

h2
0

� 2a1

u

h2
0

. (38)

We replace the left side of equation 38 by the right side of 36 and obtain

2a1u

h2
0

= a2
1

b2
1

a

a1

b2
1

b2
.

We see that a1 and b1 both disappear and the result is

2u

h2
0

= a

b2
. (39)

Q

P

T

R

u1=VP

h=QX

X

V

y1=QV
u=XP

x1=CV where C is center

h / h0= b1 / b

u / u1= a / a1

h0=QT

u=PX

r=SP where S is
           focus on left of center

Right angle

Figure 49. Enlargement of the elliptical path PQ. Parallelogram PRQX is that

shown in Figure 48. Line segment u ¼ XP is along line r ¼ SP from Sun to planet.

Line segment u1 ¼ VP (as shown in Figure 42) is along major conjugate radius

a1 ¼ CP.
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The term on the right is constant for any given ellipse. The semi-latus-

rectum of the ellipse is

ℓ = b2

a
.

so equation 39 becomes

2u

h2
0

= 1

ℓ
. (40)

Newton’s planetary gravitational acceleration in equation 32 becomes

g = 8u

h2
0

1

r2
= 4

ℓ

1

r2
. (41)

Thus, the planetary gravitational acceleration varies as the inverse square of

the radial distance r from Sun to planet.

The first correct account of centrifugal force is given by Huygens in

1662. Huygens introduces a physical principle, which Einstein later calls

the principle of equivalence. It states that a gravitational acceleration in a

small region of space may be simulated by an appropriate motion of the

frame of reference. Using Galileo’s equation u = (gt2)/2 and the principle

of equivalence, Huygens describes centrifugal force. Huygens uses basic

concepts of the theory of motion, including: the proportionality between

an object’s weight and mass; the relation between force, mass, and accelera-

tion; and the equality of action and reaction.

Although the contribution of Robert Hooke (1635 – 1708) to the theory

of gravity often is overlooked, now it is known he proposes that planetary

motion is simultaneously composed of two motions: one a thrust (due to

inertia) along the tangent line and the other a descent (caused by gravity)

toward the central body (the Sun). Hooke also proposes that the force

exerted by the Sun varies inversely as the square of the radial distance

from the Sun to the planet. However, Hooke is unable to mathematically

prove his ideas. As a consequence, Hooke, in a series of letters in 1679,

sends his propositions to a mathematics professor at Cambridge University,

Isaac Newton, and changes history (and how it is that Hooke claims Newton

obtains the inverse square law from him).

If m is the mass of the planet, the gravitational force is given by F = mg.

Thus, we have obtained Newton’s solution to Hooke’s assertion—the

gravitational force of the Sun on a planet varies inversely as the square of

the distance r from the Sun to the planet. If the Sun exerts a gravitational

74 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



force on the Earth, then the Earth should exert the same force on the Sun.

Thus, Newton arrives at the law of universal gravitation—two objects

attract each other with a force proportional to the product of their masses

and inversely proportional to the square of the distance between them.

The symbol G designates the constant of proportionality.

The universal law says the following. Every point mass attracts every

single other point mass by a force pointing along the line intersecting

both points. The force is proportional to the product of the two masses

and inversely proportional to the square of the distance between them.

The equation is

F = G
m1m2

r2
.

In this equation,

F is the force between the masses,

G is the gravitational constant (6.673 × 1011 N (m/kg)2),

m1 is the first mass,

m2 is the second mass, and

r is the distance between the centers of the masses.

Newton is unable to determine of the value of G. However, another

result by Hooke provides the means to solve this problem. In 1676,

Hooke publishes this important concept (now known as Hooke’s law) in

the form of one word, namely, CEIINOSSITTUU. This fabricated word is

an anagram. In 1679, Hooke reveals its meaning, given by the four Latin

words ut tensio, sic uis, which are usually translated into English as,

“strain is proportional to stress.” A torsion balance measures the value of

an unknown stress by the amount of strain produced. In 1798, Henry

Cavendish (1731 – 1810) constructs a torsion balance that is sufficiently

accurate to measure the gravitational force between two lead balls. The

resulting value of G is very close to the value accepted today. Using the

accepted value of G, the mass of the earth is obtained as 6 × 1024 kg.

Today, Cavendish is remembered as the person who weighed the Earth.

Newton’s solution of the law of gravity, which we have just given,

makes use of Euclidean geometry. Newton is in possession of his own

version of calculus (which he calls the method of fluents and fluxions) at

the time. However, Principia contains no explicit use of calculus (setting

aside a small amount of material that Newton adds in later editions when

trying to solidify his priority of invention). Instead of calculus, Newton

employs such reasoning as “ultimate ratios,” but this reasoning had

Chapter 1: Classical Geophysics 75

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



already been employed in ancient times, notably by Archimedes. Newton’s

reluctance to use calculus is puzzling. Newton uses uncanny ingenuity in his

mathematical arguments, producing again and again a clever geometric

demonstration of a fact that today would be done by calculus. England

did not teach anything but Newton’s geometrical and fluxional methods

for more than a century. In contrast, on the continent, mathematicians gen-

erally discard Newton’s fluxional calculus in favor of the calculus of

Leibniz, which spurs the development of 18th century mathematics.

In this section, we have given Newton’s geometrical solution of the

inverse square law of gravitation. Instead of speculating as to why

Newton does not provide a calculus solution based upon his fluents and flux-

ions, we will now present such a solution. What follows is what might have

been.

If a body is in motion, the polar coordinates r(t) and u(t) specifying its

position are known as fluents. As the body moves, the fluents continuously

change. The rates (with respect to time t) at which they change are known as

velocities or fluxions. The fluxions are denoted by

vr = ṙ ,

vu = r u̇ .

Newton develops algorithms for calculating fluxions. For the gravity

problem, he would need fluxions of fluxions, which represent accelerations

or forces. According to Kepler, the Earth revolves about the Sun in an

elliptical orbit with the Sun at one focus. It is assumed that the Earth is

held in this course by a force exerted upon the Earth by the Sun. It is

assumed that all of the force is exerted in the direction from the Earth to

the Sun. Such a force is called a central force. The central force is

central force = ar = r̈ − r u̇
2
. (42)

Because no sideway force is exerted, it follows that au must be zero; that is,

sideways force = au = r ü + 2 ṙ u̇ = 0 . (43)

This expression for au can be written as

sideways force = au =
1

r
(fluxion of r2 u̇ ) = 0 .
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The above equation yields

fluxion of r2 u̇ = 0 .

If the fluxion is zero, then the fluent r2 u̇ must be constant. The constant is

denoted by C, so

r2 u̇ = C . (44)

The equation for the ellipse is given by equation 21, where e is the

eccentricity and k is the directrix:

1

r
= 1

ke
+ 1

k
cos u . (45)

Taking the fluxion of each side of equation 21, the result is

− 1

r2
ṙ = − 1

k
(sin u)u̇ .

Using equation 44 to replace u̇ , the result is

kṙ = (sin u)C .

Now taking the fluxion of each side of this equation, the result is

kr̈ = (cos u) u̇ C .

Using equation 44 to replace u̇ , the result is

r̈ = C2

k r2
cos u . (46)

Using equation 46 to replace r̈ and using equation 44 to replace u̇ in the

central force 42, the result is

central force = ar = r̈ − r u̇
2 = C2

k r2
cos u− r

C

r2

( )2

.

Thus,

central force = C2

k r2
cos u− k

r

( )
.
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Equation 21 for the ellipse may be written as

cos u− k

r
= − 1

e
.

Therefore,

central force = C2

k r2
− 1

e

( )
= − C2

ke

( )
1

r2
. (47)

Thus, the central force is an inverse square law, which is to be proven.

At the time of Newton’s work, the vortex theory of planetary motion

as given by René Descartes (1596 – 1650) holds sway. Believing in the

impossibility of the vacuum, Descartes claims that matter fills all space.

Matter consists of ordinary matter (which we see), ether (which we cannot

see), and light. Motion results from the impact of particle upon particle. (As

geophysicists, we know that seismic wave motion is caused by the serial

action of each particle of rock impacting the next particle in the path of

the wave.) Movement in Descartes’ universe tends to create a swirl or

vortex. The solar system is an ethereal vortex with the sun at the center

and the planets swirling around it. A subsidiary vortex would carry the

moons around a planet. The universe consists of such vortices, each with

a star as center. The vortices fit together like an aggregation of soap bubbles.

Just as we understand seismic waves, we can understand the mechani-

cal universe of Descartes. But then Newton arrives in 1687 with a theory

that posits the mysterious, occult quality known as gravity. In time,

Newton’ theory would prevail. A major reason is that Newton’s formula

(as derived here) provides the accuracy and predictive scope to explain

geophysical and astrophysical phenomena. We accept that gravity exerts

a force through the vacuum of space, but we cannot comprehend the mech-

anism of action at a distance. In other words, we can grasp what gravity does,

but we are unable to fathom how. We can understand the universe only up to

an insurmountable bound. Beyond that bound, we cannot go. Voltaire

(Letters on the English, Letter XV, On Attraction, ca. 1778) writes:

Vortices may be called an occult quality because their existence was

never proved. Attraction, on the contrary, is a real thing because its

effects are demonstrated, and the proportions of it are calculated.

The cause of this cause is among the Arcana of the Almighty.

Procedes huc, et non amplius. (Thus far shalt thou go, and no

farther.)
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Newton’s geometric proof, just given, is intricate and complicated. In

effect, Newton’s proof brings together Apollonius, Galileo, and Kepler.

Reviewing Newton’s work, however, continental mathematicians and

astronomers have difficulties understanding his arcane geometrical

approach which uses quantities that become vanishingly small. Moreover,

Newton makes no attempt at any systematic use of calculus. Rather, it is

European mathematicians familiar with the calculus of Gottfried Wilhelm

Leibniz who translate Newton’s mathematical language into Leibniz’s

language. Newton’s proof is generally considered the greatest scientific

achievement in the history of mankind, and it is the subsequent contri-

butions, and mathematics, of others that pave the way for further progress.
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Chapter 2

Wave Equation

Seismic ray direction

When Pythagoras was about 18 years old, he went to the island of

Lesbos where he worked and learned from Anaximander and Thales of

Miletus. Thales had visited Egypt and he recommended that Pythagoras

go to Egypt. Pythagoras arrived there around 547 BC when he was in his

early 20s. He stayed in Egypt for 21 years and learned a variety of things,

probably including some geometry that is routinely credited to the Greeks.

The evidence for this is imposing, literally—the Great Pyramid of

Khufu, one of the largest buildings ever constructed. Erected in at least

2500 BC and ranked as the world’s tallest building for the next 43 centuries,

its volume staggers the imagination. According to the Encyclopedia Britan-

nica, St. Peter’s in Rome, the cathedrals in Florence and Milan, and West-

minster Abbey and St. Paul’s in London could all fit inside at the same time.

The precision of this massive construction is impressive even by modern

standards. Although thousands of presumably unskilled laborers were

involved, and the tools they used were very limited, the lengths of the

sides of its base all lie within a band of 20 cm. The lengths are

West side: 230.36 m

North side: 230.25 m

East side: 230.39 m

South side: 230.45 m

When originally constructed in ancient times, the surface of the Great

Pyramid was covered with highly polished Tura limestone blocks, serving

as outer casing stones. Carefully interlocked, these outer stones gave a
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uniform smooth surface to all four sides. As a result, the entire structure

shone brilliant white in the light of the reflected sun. The casing stones

were removed in AD 1300 for various building projects in nearby Cairo.

They were removed, except for a few along the base of the pyramid.

Perhaps if the casing stones were still in place, the sides would be even

more accurate than they are today.

This precision, on such a vast scale, suggests sophisticated mathemat-

ical knowledge. Analysis of the geometry of the King’s Chamber (a rec-

tangular parallelepiped) inside the Great Pyramid is further confirmation.

The perfectly aligned walls, ceiling, and floor are composed of large

polished blocks of pink Aswan granite. These blocks are smooth to within

one-quarter of a millimeter over 6 meter lengths. This granite is so hard

that experts say it would be extremely difficult to reach this accuracy

today with the best machining equipment. The chamber’s dimensions are

length 1048 cm, width 524 cm, and height 586 cm. Thus, modern dimen-

sions lead to the conclusion that the floor is designed to be a double

square, because the length is exactly twice the width.

Is this the intent of the ancient Egyptian architects? Yes, according to

Isaac Newton who establishes to general assent that the floor of the

King’s Chamber is indeed 10 × 20 royal cubits. With the royal cubit as

the distance parameter, the dimensions of the chamber are length a = 20,

width b = 10, and height h = 11.18 (see Figure 1). For the volume to

equal a double cube, the height would have to equal the width. But it does

not—it exceeds the width by 1.18 royal cubits. Why? The builders appar-

ently have taken extreme care to make the floor a double square, so it is

doubtful they simply picked an arbitrary height. And, in fact, they did not,

Figure 1. The King’s Chamber of the Great Pyramid.

82 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



although it will require some arithmetic to answer that question and confirm

that the Egyptians were very advanced in some areas of mathematics that

weren’t “finalized” for several thousand years.

Observe that the floor diagonal is

c =
�����������
202 + 102

√
= 10

��
5

√
= 22.36 .

Thus, the chamber is designed so that its height,

h = 5
��
5

√
= 11.18 ,

is one half the length of the floor diagonal. This, at least mathematically,

relates the awkward-looking parameter 11.18 to another dimension but,

again, we ask why? Observe that the small side of the room has base b =
10 and height h = 5

��
5

√
. As a result, the face diagonal of the small side is

f =
������������
100 + 125

√
= 15 .

The room diagonal d is the hypotenuse of the right triangle with sides f = 15

and a ¼ 20. The result is that

d =
������������
225 + 400

√
= 25

and that the triangle with sides

f = 15, a = 20, d = 25

is a 3:4:5 right triangle. The harmonic proportion of the room shows the inti-

mate relationship between 1:2:3:4:5 and strongly implies that the designers

of the King’s Chamber knew the basic properties of right triangles at least

2000 years before Pythagoras.

The fascinating mathematics of the King’s Chamber can be used to

illustrate some mathematics of importance in applied geophysics, even

how the direction of a seismic ray can be determined. But first a word

about vectors. A vector is specified by magnitude and direction. For

example, sailing orders might be given by the vector expressed as 2 km,

ENE, which means sail 2 km east–northeast. When a grid is imposed, a

vector may be specified by coordinates. If east is the x axis and north is

the y axis, then ENE represents an angle of p/8 radians. (There are p/2

radians in 908, so there are p/8 radians in 908/4.) Thus, the x coordinate

is 2 cosp/8 and the y coordinate is 2 sinp/8, and the above sailing order
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in this grid system would be the vector (1.74661, 0.97435). This means sail

1.74661 km east and then sail 0.97435 km north.

Two vectors can be multiplied in various ways. The most common form

is the dot product, which is simply the sum of the products of the respective

coordinates. The dot product of the vectors (1,2) and (3,4) is

(1 × 3) + (2 × 4) = 3 + 8 = 11 .

The first step in our application to geophysics is to impose a (x, y, t) coor-

dinate system on the lower wedge of the chamber (see Figure 2). In terms

of a traditional two-dimensional seismic survey, the x-axis would be the

horizontal axis, the y-axis would be the vertical axis, the t-axis would

be the traveltime axis, and the plane ABFE would be the traveltime

surface t(x, y). Lines of constant time on the traveltime surface, which rep-

resents the dependence of traveltime t on the horizontal and vertical coor-

dinates x and y, appear on the (x, y) plane as contour lines (or level lines)

which represent wavefronts. For example, line AB represents the wave-

front for traveltime of zero and line CD represents the wavefront for trav-

eltime of FD.

One of the fundamental concepts of calculus is that slope is the rate at

which an ordinate of a point on a line changes with respect to a change in

the abscissa. In other words, the slope is the tangent of the angle of incli-

nation of the line. The angle of inclination a of line AB is zero, so its

slope is tana = 0. The angle of inclination b of line BF is not zero, and

its slope is

tanb = FD/DB = h/b = 11.18/10 = 1.118 .

The partial derivatives of a function give the rate of change of a func-

tion in the directions parallel to the coordinate axes. Thus, the partial

Figure 2. The lower wedge

of the King’s Chamber.
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derivatives of t(x, y) are

∂t

∂x
= tana = 0 ,

∂t

∂y
= tanb = 1.118 .

However, what is really needed is the rate of change of traveltime t in an

arbitrary direction—a directional derivative. In this case, if the specified

direction is that of the floor diagonal AD, the directional derivative is the

slope tan d of the room diagonal; i.e.,

tan d = FD

AD
= h

c
= 11.18

22.36
= 0.5 .

In developing a general formula for the directional derivative, we see

that the height FD equals the rise in the elevation of the surface along the

line AB plus the rise in the elevation of the surface along the line BD. In

other words,

FD = AB tana+ BD tanb ,

which is

FD = AB
∂t

∂x
+ BD

∂t

∂y
.

Therefore, the directional derivative is

tan d = FD/AD = AB

AD

( )
∂t

∂x
+ BD

AD

( )
∂t

∂y
.

If u is the angle that the floor diagonal makes with the x-axis, then

AB

AD
= cos u and

BD

AD
= sin u ,

and the directional derivative

tan d = cos u
∂t

∂x
+ sin u

∂t

∂y
,
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which also can be written as the dot product of two vectors,

tan d = (cos u, sin u) · ∂t

∂x
,
∂t

∂y

( )
.

The first vector on the right side is the unit vector in the required direction,

namely,

u = (cos u, sin u) .

The second vector is called the gradient of t; that is,

grad t = ∂t

∂x
,
∂t

∂y

( )
.

Consequently, the directional derivative can be written more concisely as

the dot product

tan d = u · grad t .

Thus, we have the important result

directional derivative = u · grad t .

The “robustness” of this definition of directional derivative is demon-

strated by analyzing the King’s Chamber if it were rebuilt as indicated in

Figure 3. The traveltime surface is the plane AGHE. This more complicated

design has a rise in elevation along the horizontal axis and along the vertical

axis.

Figure 3. The reconstructed

King’s Chamber.
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The rise in the elevation of the surface is

DH = BG + JH = AB tana+ BD tanb ,

which, as before, provides the required formula

tan d = DH

AD
= AB

AD

( )
tana+ BD

AD

( )
tanb = u · grad t .

Today’s “modern” view of differentiability in two dimensions, x and y,

allows a function t(x, y) of two variables to be differentiated at a point (x0, y0)

if the surface it defines in (x, y, t) space looks (in the limit) like a plane near

the point. The plane that t(x, y) resembles is called the tangent plane, and

thus the formulas derived from the right angles in the King’s Chamber

apply for any differentiable function. The directional derivative is illustrated

in Figure 4.

The modern, full version of Fermat’s principle states that time must at a

stationary value. By a stationary value, we mean a value for which the slope

of f (x) versus x is zero. Equivalently, a stationary value is one for which the

function is either at a maximum or a minimum, or else it occurs at an inflec-

tion point where the (horizontal) tangent is zero (for example, see Figure 5).

For something to think about, convince yourself that the directional

derivative is greatest in the direction of the gradient. (In other words, rays

move in the direction of the gradient of the traveltime.) In this chapter,

we derive the equation

directional derivative = u · grad t ,

Figure 4. The directional

derivative is the slope of the

tangent line to the curve

obtained by intersecting the

surface with the vertical plane

though the direction line.
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where u is the unit direction vector and grad t is the gradient of the travel-

time. Use this equation. The key to understanding difficult mathematics is

to break down the problem into elementary components.

The eikonal equation and Pythagoras

The computation of traveltimes from a velocity function is required in

many seismic processing and modeling schemes—in particular Kirchhoff

depth migration and related methods. One of the most popular methods

uses the eikonal equation, whose derivation goes back to the work of Py-

thagoras about 2500 years ago.

Pythagoras, the Greek philosopher and mathematician, was born on the

small island of Samos in the Aegean Sea about 570 BC, a century before the

golden age of classical Greece. He founded a philosophical and religious

society in Croton on the east coast of the tip of Italy about 532 BC. His

closest followers lived permanently within the gates of the society, had no

personal possessions, were vegetarians, and followed a strict code of

secrecy.

Pythagoras, of course, is best known now for the Pythagorean theorem

in geometry—one of the most famous and important of all mathematical for-

mulas. However, additional mathematical discoveries also are attributed to

Pythagoras, or rather more generally to the Pythagoreans. A central belief of

Pythagoras and his followers is that “everything is number,” which they

describe as a quantity that could be expressed as a ratio of two integers

(i.e., a rational number). The Pythagoreans demonstrate that pitch could

be represented as a simple ratio of the lengths of equally tight strings. The

Pythagoreans also are credited with, by using their own theorems, disprov-

ing their own belief that all numbers are rational. This is the famous demon-

stration that the square root of two (as given by the length of the hypotenuse

of an equilateral right triangle with each leg equaling one) must be irrational.

(According to legend, the Pythagoreans attempted to keep this discovery a

secret, because it invalidates their entire raison d’etre, and the man who

developed the proof was killed.)

Figure 5. The three examples

of stationary values.
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The Pythagoreans knew that the sum of the angles of a triangle is equal

to two right angles and the generalization that the interior angles of a

polygon with n sides have a sum of 2n − 4 right angles and the sum of its

exterior angles equals four right angles. The Pythagoreans knew of the

five regular solids. It was thought that Pythagoras himself knew how to con-

struct the first three, but it was unlikely that he would have known how to

construct the other two.

Furthermore, the Pythagoreans were among the greatest astronomers of

their times. They taught that the Earth was a sphere at the center of the uni-

verse, recognized that the orbit of the Moon was inclined to the equator of

the Earth, and were among the first to realize that Venus the evening star was

the same celestial body as the morning star.

The famous Pythagorean theorem has a close relative, here termed the

“secret” Pythagorean theorem, that is the basis of the modern differential

eikonal equation. Figure 6 shows the right triangle BAO with horizontal

leg OA, vertical leg OB, hypotenuse AB, and altitude OC. The Pythagorean

theorem for this right triangle states that

OA2 + OB2 = AB2

or, in the familiar wording, the sum of the squares of the legs of a right tri-

angle equals the square of the hypotenuse. The “secret” Pythagorean

theorem says that the sum of squares of the reciprocals of the legs of a

right triangle equals the square of the reciprocal of the altitude:

OA−2 + OB−2 = OC−2 .

This strikes many, at first glance, as counterintuitive, but the proof is

straightforward. Draw line OD collinear with OC and with length that is

the reciprocal of the length of OC (i.e., OD = 1/OC). Drop line DE per-

pendicular to the horizontal. Then DE = OD sin u. But sin u = OC/OB.

Figure 6. Right triangle BAO with

horizontal leg OA, vertical leg OB,

hypotenuse AB, and altitude OC.
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The key insight is to recall that, by definition, (OD)(OC) = 1, and, there-

fore,

DE = OD
OC

OB

( )
= 1

OB

or, in words, the length of DE is the reciprocal of the length of OB. Simi-

larly, the length of OE is the reciprocal of the length of OA (i.e.,

OE = OA − 1). Thus, the “regular” Pythagorean theorem for right triangle

ODE, i.e.,

OE2 + DE2 = OD2

is the secret Pythagorean theorem for right triangle BAO, i.e.,

1

OA

( )2

+ 1

OB

( )2

= 1

OC

( )2

.

For example, if OA = 0.5000, OB = 0.8660, and OC = 0.4330, their

respective reciprocals are OE = 2, DE = 1.1547, and OD = 2.3094.

So, how is this secret Pythagorean theorem used in modern applied geo-

physics? In Figure 7, assume O is a point on a wavefront at a given instant of

time. Let line BCA be the wavefront at subsequent time increment Dt. The

distance OA is the horizontal space increment Dx traveled by the wavefront

in time increment Dt. Similarly, distance OB is the vertical space increment

Dy traveled by the wavefront in the same time increment. Because the wave-

front is normal to the raypath, distance OC is the space increment Ds trav-

eled along the raypath by the wavefront in time increment Dt.

The secret Pythagorean theorem in terms of

legs Dx and Dy and altitude Ds is

1

Dx

( )2

+ 1

Dy

( )2

= 1

Ds

( )2

.

If we multiply this equation by (Dt)2, we obtain

Dt

Dx

( )2

+ Dt

Dy

( )2

= Dt

Ds

( )2

,

and suddenly we are practically face-to-face with

the very useful geophysical concept of “slowness,”

which is defined as the reciprocal of velocity.

Figure 7. Wavefront

BCA at subsequent

time increment OC.
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The apparent speed along the horizontal direction is Dx/Dt. Thus, the appar-

ent slowness along the horizontal direction is Dt/Dx. Similarly, the apparent

speed along the vertical direction is Dy/Dt and the apparent slowness along

the vertical direction is Dt/Dy. The actual speed along the raypath direction

is Ds/Dt, and thus the actual slowness along the raypath direction is Dt/Ds.

Therefore, the above equation can be interpreted as saying the sum of

squares of the apparent slownesses in the coordinate directions equals the

square of the actual slowness in the raypath direction. Because the actual

slowness in the raypath direction is the reciprocal of seismic velocity v,

the equation may be written

Dt

Dx

( )2

+ Dt

Dy

( )2

= 1

v

( )2

.

In the limit, as the increments become smaller, this equation becomes a

differential equation, the so-called eikonal equation. If we add the third

spatial dimension, the eikonal equation is

∂t

∂x

( )2

+ ∂t

∂y

( )2

+ ∂t

∂z

( )2

= 1

v

( )2

.

In this equation, the function t(x, y, z) is the traveltime (also called the

eikonal) from the source to the point (x, y, z) and 1/v(x, y, z) is the slowness

(or reciprocal velocity) at that point. This is practically applied by using the

eikonal equation to describe traveltime propagation in an isotropic medium

when the velocity function is known at all points in space and, as an initial

condition, the source or a particular wavefront is specified. Furthermore, one

must choose one of the two branches of the solutions (either the wave going

from the source or the wave going to the source). The eikonal equation then

yields the traveltime field t(x, y, z) in a heterogeneous medium, as required

for migration and other seismic processing needs.

The Pythagorean theorem has many proofs, several of which we detail

in the first section of Chapter 1. The most famous is Proposition 47 from

Book 1 of Euclid’s Elements. We are grateful to Chris Liner for providing

us with another proof of the secret Pythagorean theorem which, like its

more famous relative, can be evaluated from several directions.

The Pythagorean theorem establishes that

a2 + b2 = c2 .
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Furthermore,

ab

2
= cd

2
,

because both equal the area of the same tri-

angle (see Figure 8). The latter can be

rearranged as

c = ab

d
.

Squaring both sides and then substituting for c2 leaves

a2 + b2 = ab

d

( )2

.

Finally, multiplying both sides by 1/(a2b2) produces the secret Pythagorean

theorem

1

a

( )2

+ 1

b

( )2

= 1

d

( )2

.

Michael Faraday and the eikonal equation

It will probably surprise some to see the name of Michael Faraday

(1791 – 1867) because he is rarely, if ever, associated with seismology or

mathematics. Some of Faraday’s concepts, however, provide an effective

analog for some fundamentals of exploration seismology.

As has often been told, Faraday metamorphosed, in a remarkably short

time, from a barely literate apprentice bookbinder into one of the world’s

most influential scientists. His ingenious experiments yielded some of the

most significant principles and inventions in scientific history. He developed

the first dynamo (in the form of a copper disk rotated between the poles of a

permanent magnet), which was the precursor of modern dynamos and gen-

erators. He (and independently Joseph Henry) discovered electromagnetic

induction, and a vast industry resulted from this work. During the 1830s,

he laid the foundations of classical electromagnetic field theory, later

fully developed mathematically by James Clerk Maxwell, and his concept

of a field based on lines of force became a fundamental principle of

modern theoretical physics. Faraday made so many discoveries during his

40-year career that the 1981 edition of the Encyclopedia Britannica

Figure 8. Right triangle with

sides a, b, and c.
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contained six separate entries on the results of his work in addition to a long

biography. The combination of the amazing life and astonishing discoveries

prompted the famous novelist Aldous Huxley to write: “Even if I could be

Shakespeare, I think I should still choose to be Faraday.”

Static or frictional electricity was known to the ancients. Objects

became charged in two ways, called positive and negative, governed by

the rule that like charges repel and unlike charges attract. A field of fixed

charges, an electrostatic field, was described by two physical quantities,

the field strength vector E and the potential f.

The field strength vector is defined as E = F/q, where q is the test

charge and F is the force acting on this charge at the given point in the

field. Faraday proposes the use of lines of force as a means to visualize an

electric field. A line of force is a straight or curved line whose tangent at

each point coincides with the direction of the field strength vector. Lines

of force begin at positive charges and end at negative charges. The

concept of a potential is now almost universally regarded as representing

a powerful advance in knowledge but, as will be discussed later, that was

not always true.

In the electrical case, the potential f at a point is the work per unit

charge that would be necessary to carry a positive test charge from infinity

to that point. The work is then said to be stored in the field as potential

energy. Because potential is a measure of work, potential is not directional.

The potential at a point is represented by a real number (i.e., a scalar), while

the force acting on a test body would be a vector. How is the concept of a

potential used? The answer is that E can be obtained from the potential

by simply taking the gradient (usually designated by grad). Like a sheep

in wolf’s clothing, a gradient is a derivative in vector’s clothing. The

basic equation, which says that the negative gradient of the potential

gives the electric field, is

−gradf = E .

Any problem with specified charges can be solved by first computing the

potential, and then using this equation to obtain the field. There is a physical

significance to this equation. Because E is the gradient of a scalar potential,

it follows from the mathematics of vector calculus that the curl of E must

vanish. This condition represents a fundamental property of electrostatics;

namely, the electric field in electrostatics is curl-free. This equation can

be used to obtain a geometrical description of an electric field. First, the

field lines (that is, lines that are always tangent to the electric field vector)

are drawn. Next, the surfaces of equal potential are drawn. Because the
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electric field vector is the negative gradient of the potential, it follows that

E is perpendicular to the equipotential surface. If E is not, then E would

have a component in the surface and, in turn, that component would be chang-

ing in the surface, which means that the surface would not be equipotential.

Consequently, to avoid this contradiction, the lines of force must be always

perpendicular to the equipotential surface (Figure 9).

In common usage, the quotient of the change in elevation divided by the

change in distance often is called the gradient. For example, if the hill rises

1 m in a horizontal distance of 5 m, the (common-usage) gradient would be

1 over 5. In mathematical language, this (common-usage) gradient is actu-

ally the directional derivative in the direction of the horizontal separation. In

other words, when surveyors speak of gradient, they often mean directional

derivative. In order for the directional derivative to be a gradient (in the

mathematical sense), the direction of the horizontal separation must be in

the steepest direction. It is useful to keep this distinction between directional

derivative and gradient. The gradient is a two-dimensional vector that points

in the direction of the greatest slope. The dot product of a gradient vector and

an arbitrary direction vector gives the rate of change of the function in that

direction.

Figure 9. Field lines (solid) and equipotentials (dashes) for two equal and opposite

point charges. The positive charge is an isolated source, and the negative charge is

an isolated sink. The equipotential surfaces are everywhere perpendicular to the

field lines.
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First developed to solve problems of gravitational attraction, the

concept of potential can be understood in that context. In fact, a simple grav-

itational analogy is helpful in explaining potential. Over a small region,

gravity may be taken as uniform and parallel (simply stated, down). We

do work in carrying an object up a hill. This work is stored as potential

energy, and it can be recovered by descending in any way we choose. An

imaginary terrain, with the accompanying topographic map, can be used

to visualize a potential function.

Topographic maps provide information about elevation of the surface

above sea level by contour lines. Each point on a contour line has the

same elevation, so a contour line represents an equipotential curve. A set

of contour lines tells the trained interpreter the shape of the terrain. Hills

are represented by concentric loops. A valley is an elongated depression

in the landscape formed by the action of water or carved out by glaciers.

Valley bottoms appear as “U” or “V” shaped contour lines with their

closed end pointing toward higher elevation. Steep slopes have closely

spaced contour lines; gentle slopes have widely spaced contour lines. The

contour interval is the elevation difference between adjacent contour

lines. Using our gravitational field analogy, the contour lines on a topo-

graphic map are lines of constant elevation above sea level and hence of con-

stant gravitational potential energy. If we let a ball roll down a mountain, the

ball rolls down a path perpendicular to the contour lines—i.e., down the

steepest descent or negative gradient. So, if we could measure the contour

lines before releasing the ball, we could predict the path it would follow

down the mountain. The downward path is the curve of steepest slope or

negative gradient.

The gradient in three dimensions is an important concept as well.

This brings us (fortunately or unfortunately depending upon individual

predilection) back to the mathematics and the link between Faraday’s theory

about potential fields and exploration seismology. Vectors are those quan-

tities, often denoted in bold face, that have a magnitude and direction. A

fairly detailed description of the basic mathematical manipulation of

vectors can be found in Sheriff’s Encyclopedic Dictionary of Applied Geo-

physics (2002). The key point for this section is that, in a Cartesian coordi-

nate system, a two-dimensional vector may be represented as the ordered

pair of real numbers. If i represents the unit vector in the x direction, and

j the unit vector in the y direction, then r = xi + yj. The magnitude of the

vector is

|r| = r =
��������
x2 + y2

√
.
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Let the two vectors v and w have magnitudes |v| = v and |w| = w. The

dot product of the two vectors is defined as the scalar value

v · w = |v| |w| cos u = vw cos u ,

where u is the angle between v and w. Two nonzero vectors are orthogonal

(perpendicular) if and only if their dot product is zero.

What is the counterpart of potential in seismic theory? We assume, for

simplicity, an isotropic medium. The traveltime function t(x, y) is analogous

to the potential. This function is a scalar function that represents the travel-

time surface as a function of x and y. The x axis is the horizontal axis and the

y axis is the vertical (depth) axis. The gradient (or gradient vector field) of a

scalar function t is denoted ∇t where ∇ (the nabla symbol) denotes the

vector differential operator called del. In the case of two Cartesian coordi-

nates, the operator del is

∇ = ∂

∂x
,
∂

∂y

( )
.

The notation grad t also is commonly used for the gradient. More specifi-

cally, the gradient of t(x, y) is the vector function whose first component

is the partial derivative of t with respect to x and whose second component

is the partial derivative of t with respect to y. In other words, the gradient

of t is

grad t = ∇t = ∂

∂x
,
∂

∂y

( )
t = ∂t

∂x
,
∂t

∂y

( )
.

Let u = (cos u, sin u) be the unit vector in a given direction. The direc-

tional derivative is the dot product

tan d = u · grad t ,

where d is the angle of elevation. An important application of this expression

for the directional derivative is in finding the direction of steepest increase

(or decrease) of the function t(x, y). The directional derivative is greatest for

the direction in which the dot product of u with the gradient vector is great-

est, which is exactly when u points in the same direction as the gradient.

Another application is in finding the direction of no increase (or decrease)

of the function t(x, y). The directional derivative is zero for the direction

in which the dot product of u with the gradient vector is zero, which is

exactly when u points in the same direction as the contour curve. The
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value of the function neither decreases nor increases along a contour curve.

The gradient vector is perpendicular to the contour curve and the magnitude

of the gradient indicates the steepness of the slope.

What is the counterpart of line of force in seismic theory? If the potential

t(x, y) is the seismic traveltime function, then its contour curves represent

wavefronts. A vector field is a rule that assigns a vector, in our case the gra-

dient, grad t(x, y), to each point. In visualizing a vector field, we imagine

there is a vector extending from each point. Thus, the vector field associates

a direction to each point. If the seismic energy (for the most part) moves in

such a manner that its direction at any point coincides with the direction of

the gradient at that point, then the curve traced out is called a seismic ray. A

ray corresponds to the flow line (or the line of force) in other disciplines.

A vector function can be used to represent a space curve. Here, for sim-

plicity, we use only two dimensions, but a third dimension always can be

added. Let s(t) denote arc length measured along the curve. Suppose the

curve is defined by the equations x = x(s) and y = y(s). This curve can be

represented by the vector r(s) = [x(s), y(s)]. The vector extends from the

origin to the point on the curve. As s increases, the tip of the vector traces

out the curve. The arclength s of the curve is defined by ds2 = dx2 + dy2.

From r = (x, y), we have

dr = (dx, dy) .

Thus,

|dr|2 = dx2 + dy2 ,

so

|dr| = ds .

The derivative vector t is

t = dr

ds
= dx

ds
,

dy

ds

( )
= dx

ds
i + dy

ds
j .

The derivative vector points in the direction of movement and thus is tangent

to the curve. The magnitude of the derivative vector t is

|t| = dr

ds

∣∣∣∣
∣∣∣∣ = |dr|

ds
= ds

ds
= 1 .
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Because |t| = 1, it follows that t is the unit tangent vector to the space

curve. The requirement that the unit tangent t and the gradient have the

same direction is

grad t(x, y) = n(x, y) t(x, y)

where n(x, y) is some scalar-valued function. The flow lines of the vector

field n(x, y) t(x, y) are the same as the flow lines of grad t(x, y), because

the scalar-valued function n(x, y) cannot affect the direction. The above

equation grad t = n t can be written as

∂t

∂x
,
∂t

∂y

( )
= n t .

If we take the squared magnitude of the above equation, we obtain

∂t

∂x

( )2

+ ∂t

∂y

( )2

= n2 |t|2 = n2 .

Here, we use the fact that t is a unit vector. The previous section on the

eikonal equation provides that equation as

∂t

∂x

( )2

+ ∂t

∂y

( )2

= 1

v2
.

Thus, the scalar-valued function is the reciprocal of seismic velocity; that is,

n(x, y) = 1

v(x, y)
.

Strictly, velocity is a vector, but in seismology the term velocity usually

refers to speed, that is, the propagation rate of a seismic wave without imply-

ing direction. Another word for speed is swiftness. As a result, n is called

slowness. The vector eikonal equation is

grad t = nt ,

where t is the seismic wavefront, n is the slowness, and t is the unit tangent

to the seismic ray. The left side involves the wavefront, the right side

involves the ray, and the connecting scalar is the slowness. At shallow

depths, the slowness is large, so the gradient is large and the wavefronts

are closely spaced. At large depths, the slowness is small, so the gradient

is small and the wavefronts are widely spaced. In the seismic case,
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instead of equipotential surfaces, we have wavefronts, and instead of lines of

force, we have seismic rays, but the mathematics are the same.

An isochron is a line or curve on a map connecting points of identical

travel time. An equivalent concept is a contour line, which is a line

joining points of equal elevation on a map. In three dimensions, the isochron

or contour line becomes a level surface. In a field of force, a level surface is a

surface perpendicular to all lines of force. In other words, a level surface is

an equipotential (i.e., having the same potential).

The mathematical development given here may seem rather straightfor-

ward and, indeed, rather simplistic to those with basic training in vector cal-

culus. But this was not always the case. Faraday’s initial presentation of

lines of force, on 3 April 1846, was greeted with ridicule by his most

eminent contemporaries. One went so far as to publish the suggestion that

the self-taught Faraday, who had virtually no education in or knowledge

of mathematics, should leave theoretical physics to the properly trained.

This is a depressingly common scenario in science. Great theoretical

breakthroughs are routinely dismissed out of hand by the contemporary

experts, only to be later adopted by younger scientists and rather quickly

proven. The opposite unfortunately is also true, as exemplified by the tenac-

ity of pseudo-science and common misconceptions. Followers of, for

example, the flat-earth theory are using precisely the above arguments to

make their case (“mainstream science ignores us”).

Although Faraday did not gain fame in his lifetime, he certainly did in

the aftermath and now holds a prominent position in the history of science.

James Clerk Maxwell, 40 years younger than Faraday, published the first of

his three famous papers on electromagnetism in 1855, the year that Faraday

retired, and Maxwell had his entire electromagnetic theory worked out in

less than a decade. Galileo and Huygens laid the foundations for Newton,

as exemplified by the three laws of motion, which inaugurated classical

physics. Faraday and Gauss laid the foundations for Maxwell, as exempli-

fied by Maxwell’s equations, which inaugurated modern physics.

Other examples of initially scorned ideas, of more than minimal import

to geophysics, are Fourier analysis and plate tectonics. The very eminent

geophysicist J. Tuzo Wilson told one of the authors of this book (RDC)

that he had been “roundly booed at the AAPG convention” after making a

presentation in support of plate tectonics in the early 1960s.

This initial resistance by great scientists to some of the greatest scientific

breakthroughs is perhaps a bigger mystery than those which Faraday unrav-

eled. A recent entertaining, and well written, account of Faraday’s remark-

able life and career is The Electric Life of Michael Faraday, by Alan

Hirshfield (2006). In Maxwell on the Electromagnetic Field, Thomas
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K. Simpson (1997) provides an almost line-by-line analysis of Maxwell’s

1855, 1861, and 1864 papers which develop the mathematical foundation

of the theory that began with Faraday’s work in the 1830s. Simpson also pro-

vides extensive background on the lives and accomplishments of Faraday,

Maxwell, and Lord Kelvin (who did much of the initial work on the math-

ematics used by Maxwell). The book has extensive illustrations and

commentaries designed to assist readers with limited knowledge of math-

ematics and physics. It is also quite witty in places, which would have

delighted Maxwell, whose fondness for clever wordplay was well known

during his lifetime.

Pressure and particle velocity

Before we address the specifics of seismic exploration, it is helpful

to look into the work of Jean-Baptiste le Rond d’Alembert (1717 – 1783),

the discoverer of a principle now universally known as the d’Alembert prin-

ciple. It is the dynamic analogue to the principle of virtual work for applied

forces in a static system. If the negative terms in accelerations are recog-

nized as inertial forces, the d’Alembert principle is: The total virtual work

of the impressed forces plus the inertial forces vanishes for reversible dis-

placements. Essentially, the d’Alembert principle is a restatement of

Newton’s second law of motion. It says that the second law may be

viewed as a balance between real and fictitious inertial reaction forces.

In 1744, d’Alembert published his Traité de l’Équilibre et du Mouve-

ment des Fluides, in which he applies his principle to fluids; this led to

partial differential equations which he was then unable to solve. In 1745,

he developed the part of the subject which dealt with the motion of air in

his Théorie Générale des Vents, and this again led him to partial differential

equations. A second edition, in 1746, was dedicated to Frederick the Great

of Prussia, and procured an invitation to Berlin and the offer of a pension; he

declined the former, but subsequently, after some pressing, pocketed his

pride and the latter. In 1747, d’Alembert applied differential calculus to

the problem of a vibrating string, and arrived at the wave equation (in

which he assumed that c = 1):

∂2u(x, t)

∂x2
= 1

c2

∂2u(x, t)

∂t2
. (1)

He then showed that the wave equation has the solution

u(x, t) = f (x + t) + g(x − t) , (2)
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where f and g are arbitrary functions. This solution was published in the

transactions of the Berlin Academy for 1747.

The proof begins by saying that, if ∂u/∂x be denoted by p and ∂u/∂t

by q, then we have the exact differential

du = p dx + q dt .

In these quantities, the wave equation 1 becomes

∂q

∂t
= ∂p

∂x
.

Therefore, p dt + q dx is also an exact differential. Denote it by dv, so

dv = p dt + q dx .

Hence,

du + dv = p dx + q dt + p dt + q dx = (p + q)(dx + dt)

and

du − dv = p dx + q dt − p dt − q dx = (p − q)(dx − dt) .

Thus, u + v must be a function of +t, and u − v must be a function of

x − t. We may therefore put

u + v = 2f (x + t)

and

u − v = 2g(x − t) .

By adding, we can eliminate the v terms, leaving

u(x, t) = f (x + t) + g(x − t) ,

which is the d’Alembert solution shown in equation 2.

Euler took up the matter and showed that, for the wave equation 1 with

c= 1, the general solution is

u(x, t) = f (x + ct) + g(x − ct) .

The chief remaining contributions of d’Alembert to mathematics were

on physical astronomy, especially on the precession of the equinoxes, and

on variations in the obliquity of the ecliptic. These were collected in his
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Système du Monde, published in three volumes in 1754. The originator of the

d’Alembert principle must be regarded as not only brilliant but also

inspiring.

Now let us return to seismic exploration. The subsurface rock layers

transmit and reflect seismic waves. Seismic waves travel with a velocity

dependent on the nature of the rock itself. When a seismic wave traveling

in one rock meets an interface with another rock, the wave is partially

reflected back into the first rock and partially transmitted into the second

rock. A seismic source at or near the surface transmits seismic energy into

the sedimentary layers, and because of reflections from the various inter-

faces some of this energy arrives back at the surface over time. The

various arrival times of these reflected events convey intelligence about

the subsurface rock layers.

A primary reflection is a reflection that travels directly down to the inter-

face, and then directly back up to the surface. A multiple reflection is a

reflection that bounces back and forth among various interfaces as it pro-

ceeds on its trip. The reflected waves, both primaries and multiples, are

detected on the surface by receivers. The purpose of digital seismic process-

ing is to transform the raw data into computer-generated images of the sub-

surface geological structures.

On land, the source of energy may be a dynamite explosion, thumping

produced by lifting and dropping a heavy weight, or vibrations introduced

by a vibrator coupled with the earth. The seismic source is generated at or

near the earth’s surface. Preplaced geophones on the ground run in a line

or on a grid, and the signals picked up by these detectors are digitized and

recorded. On marine surveys, a source is actuated every few seconds as

the vessel moves over a predetermined course. The air gun is the predomi-

nant energy source at sea. The seismic signals are picked up by hydrophones

embedded in a cable trailing the vessel below the water’s surface, and, as in

land surveys, the data are digitized and recorded.

The three main types of seismic waves are:

a) P-waves (i.e., primary or compressional waves) are longitudinal waves

that represent particle motion toward and away from the source. They

travel within the earth’s interior, so they are classified as body waves.

Their propagation velocity ranges from about 2 km/sec to 14 km/sec

depending upon the transmission medium.

b) S-waves (i.e., secondary or shear waves) are transverse waves that rep-

resent particle motion at right angles to the direction of propagation.

They travel within the earth’s interior, so they are classified as body

waves. Because they are transverse waves, they do not travel through
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liquid, such as the water layer in exploration at sea. Their propagation

velocity is about 0.6 times that of P-waves.

c) Surface waves, such as Love waves and Rayleigh waves, are classified

as ground roll and considered as noise on the recorded exploration data.

Love waves are transverse horizontal waves that represent particle

motion at right angles to the source direction and in a horizontal plane.

They travel within layers on the earth’s surface, so they are classified as

surface waves. Their propagation velocity is in the range of 3 km/sec to

4.5 km/sec.

Rayleigh waves represent particle motion in an elliptical orbit in a ver-

tical plane through the axis of propagation (the so-called plane of propaga-

tion). They travel along the earth’s surface, so they are classified as surface

waves. Their propagation velocity is in the range of 2.5 km/sec to 4 km/sec.

Elastic waves transfer energy in a solid from one point to another by the

movements of small particles. The particles themselves are not transported,

but vibrate with small displacements about their respective equilibrium pos-

itions. Their movements propagate energy in the form of a wave. A basic

assumption is that the displacements never violate the elastic limit of the

solid. The transfer of energy by an elastic wave in a solid, such as rock or

steel, involves many millions of particles. The dimensions of the elastic

wave, such as its amplitude and wavelength, are large relative to the dimen-

sions of the vibrations of the particles. In fluids, such propagating waves are

called acoustic waves. Our speech is transported by acoustic waves in the

air; in this case, the particles are air molecules. The elastic waves that prop-

agate in the solid earth, as well as the acoustic waves that propagate in the

sea and other bodies of water, are known as seismic waves.

Most seismic interpretation is conducted in terms of models involving

P-wave propagation through a sequence of rock formations. It is common-

place to make the assumption that each formation is homogeneous and iso-

tropic. A seismic wave, as well as other types of waves, represents an

interchange between kinetic and potential energy. The kinetic energy

comes from the physical motion of the particles, and the potential energy

comes from their relative positions with respect to the inter-particle

elastic (or restoring) forces. The rest position of each particle can be

taken as the origin of the coordinate system describing that particle. The par-

ticle vibrates around its rest position. At any instant, we can, in principle,

measure the particle’s velocity and also, if we wish, the particle’s accelera-

tion. In addition, we can measure the degree of compression of the particles

in the form of a pressure or stress. In the case of a homogeneous isotropic

solid, physical theory tells us that we need only two quantities for a complete
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specification of the wave motion resulting from the particle motion. In

seismic work, it is convenient to take for these two quantities the particle

velocity and the pressure.

The simplest wave form is a sinusoidal curve. These are known as sinu-

soidal waves, or by the older terminology as simple harmonic waves. By

Fourier’s theorem, any periodic signal can be synthesized by a superposition

of sinusoidal waves. A sinusoidal wave is a periodic function, that is, a wave

train that involves a succession of crests and troughs of the same shape.

When we do not have sinusoidal waves, but instead have some complicated

wave motion (which is usually the case), then we must perform a Fourier

analysis to determine the spectral distribution (or spectrum) of the wave-

numbers and frequencies present.

In seismic exploration, innumerable situations occur in which we can

picture a single isolated pulse of a seismic disturbance as propagating

from one place to another. Pulses of this sort can be set up by taking a

stretched string and producing in it a local deformation, by pulling one

end and then holding it still. The subsequent pulse travels at a constant

speed. At any instant, only a limited region of the string is disturbed. The

regions before and after are quiescent. The pulse (a.k.a. wavelet) travels

in this way until it reaches the far end of the string, at which point it is

reflected. As long as the pulse continues uninterrupted, however, it preserves

the same shape. How can we relate the behavior of a wavelet to what we

have already learned of sinusoidal waves? The answer is obtained by

Fourier analysis, but in terms of the Fourier integral instead of a Fourier

series.

One way to look at the wave motion is to take a slice through the earth

and take a “snapshot” at one instant of time. We see waveforms, and the

spatial distances between peaks are indicative of the wavelengths l. As

shown in Figure 10, the horizontal axis measures distance from the shot.

This figure shows that, for a fixed instant of time, the high amplitude

has traveled the farthest.

Another way to look at waves is to stay at

one point within the earth and record the wave

motion over time. Again we see waveforms,

and the time distances between peaks are indica-

tive of the periods T. As shown in Figure 11, in

this case the horizontal axis measures vt, where

v is a constant velocity. Thus, the horizontal axis

has the dimensions of distance. The wavelet

shown appears as the reverse of the wave

profile shown in Figure 10. This figure shows

Figure 10. Wavelet at

one instant of time as a

function of distance.
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that, for a fixed spatial point, the high amplitude

appears first.

The reciprocal of the wavelength is called

the wavenumber k; the reciprocal of the

period is called the frequency f. Often we

work with sines and cosines, so it is convenient

to use instead the radian wavenumber k and

radian frequency v, which are respectively

k = 2pk = 2p

l
, v = 2pf = 2p

T
.

Frequently in exploration seismology, we are concerned with P-wave

propagation in layers of homogeneous, isotropic rocks. Such a rock may

be described by two physical parameters: density r and velocity v of prop-

agation. The velocity v is called by various names, such as the wave velocity,

the propagation velocity, or the material velocity. Most often, it simply is

called velocity. These parameters, r and v, can be measured in an oil well

by borehole instruments.

We emphasize the distinction between particle velocity (abbreviated

p. v.) and wave velocity. Wave velocity (more precisely, group velocity)

represents the speed at which seismic energy is transported through the

body of the rock. Typical wave velocities in rock formations are on the

order of thousands of meters per second. Particle velocity represents the

speed of the very small rock particles about their stationary equilibrium pos-

itions. A typical particle velocity is expressed in terms of millionths of a

meter per second. To conceptualize some idea of particle velocity, we can

consider the base-plate of the mechanical vibrator used in the vibroseis

method. The displacement of the base-plate is no more than 1 or 2 cm, so

the particle velocity imparted to the earth at a 10 Hz frequency is on the

order of 1 m/s. This velocity is entirely different, both in concept and in

magnitude, from the wave velocity of the waves leaving the base-plate.

The wave velocity would be on the order of 1000 m/s, or more. The geo-

phones placed on the surface of the ground pick up and record the particle

velocity, which, when amplified, appears as the seismic trace. These re-

ceived signals have much smaller particle velocities than the source

signals. The direct wave from a dynamite source might have a particle ve-

locity of 0.001 m/s, whereas the wave corresponding to a deep reflection

might have a particle velocity of 1028 m/s.

We have characterized the physical properties of a homogeneous isotro-

pic rock formation by its density and velocity. Another important parameter

Figure 11. Wavelet at

one point of space as a

function of time.

Chapter 2: Wave Equation 105

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



is the acoustic impedance (a.k.a. characteristic impedance) Z. It is defined

as the product of density r times velocity v; that is, the acoustic impedance is

Z = rv. To convey a physical feeling for the acoustic impedance, Nigel

Anstey calls it acoustic hardness. This is not exactly the same as what the

geologist refers to as hardness, but it is still a useful characterization.

Suppose, for example, that we have soft shale. Such a rock would have a

low velocity v, so its acoustic impedance, or hardness, would be small.

Hard limestone, however, would have a high velocity, and so its acoustic

impedance, or hardness, would be large.

An analogy might be helpful. The best known one is the electric

analogy. In electrical work, we have current (amps), voltage (volts), and

resistance (ohms). Ohm’s law states:

voltage = +(current)(resistance) .

Thus, for a given voltage, we would have a large current in a material of low

resistance (a conductor, such as copper) and a small current in a material of

high resistance (a dielectric, such as wood). We now make the analogy:

particle velocity � current ,

pressure � voltage ,

acoustic impedance � resistance .

Corresponding to Ohm’s law then, we have the equation

pressure = +(particle velocity)(acoustic impedance) .

Thus, for a given pressure, we would have a large particle velocity in a

material of low acoustic impedance (soft shale) and a small particle velocity

in a material of high acoustic impedance (hard limestone).

Just as an electric wave may be described in terms of either its voltage or

its current, so a seismic wave may be described in terms of either its particle

velocity or its pressure. A seismic trace is a graph of amplitude versus time.

In marine work, the hydrophone measures pressure, so the amplitude of a

marine seismic trace is in terms of pressure. In land work, the geophone

measures particle velocity, so the amplitude of a land seismic trace is in

terms of particle velocity.

The objective of seismic exploration is to delineate the subsurface of the

earth. An important development in the acquisition of seismic data is the use

of dual sensors. A dual sensor is composed of a hydrophone and a geophone.

106 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



The output of a dual signal is pressure as measured by the hydrophone and

particle velocity (p. v.) as measured by the geophone.

The definition of the Fresnel reflection coefficient requires the consider-

ation of both the particle velocity and pressure. In seismic work, the reflec-

tion coefficient of an interface is found by requiring that

a) particle velocity be continuous across the interface and

b) pressure be continuous across the interface.

Downgoing and upgoing waves transport energy to and from reflecting

horizons. Particle velocity and pressure determine the partition of energy at

each horizon. Thus, in seismic exploration, there is interplay of two duali-

ties, namely the duality of the upgoing and downgoing waves and the

duality of particle velocity and pressure. Seismic exploration is concerned

with traveling seismic waves. However, a traveling wave is never recorded

as such in seismic acquisition. The signal recorded by a geophone is the sum

of the downgoing and upgoing particle-velocity waves. Given the geophone

data alone, the separation of the component downgoing and upgoing waves

cannot be done unless some type of traveling-wave assumption is made. The

signal recorded by a hydrophone is the sum of the downgoing and upgoing

pressure waves. Given the hydrophone data alone, the separation of the com-

ponent downgoing and upgoing waves cannot be done unless a traveling-

wave assumption is made.

The wavefield is the sum of two components. One component is the

downgoing wave and the other component is the upgoing wave. Further-

more, there are two wave equations of interest, one is the wave equation

for particle velocity and the other is the wave equation for pressure. The

numbers defining the layers increase with increasing depth. Denote the

density, or mass per unit volume, of layer i by ri. Denote the propagation

velocity in layer i by vi. The product Zi = rivi is the acoustic impedance

of layer i. In layer i, denote particle velocity (p. v.) by Vi, pressure by pi.

Let Di denote the downgoing component of particle velocity and let Ui

denote the upgoing component of particle velocity. Similarly, let di

denote the downgoing component of pressure and let ui denote the

upgoing component of pressure. Thus, we have the two equations

Vi = Di + Ui and pi = di + ui , (3)

where the first equation is for particle velocity (p. v.) and the second

equation is for pressure.

There are two different conventions used in addressing pressure waves

and particle-velocity waves. One is the Anstey (1977) convention and the
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other is the Berkhout (1987) convention. Each has its merits, but we shall use

the Berkhout convention. The two types of traveling waves are pressure

waves and particle velocity (p. v.) waves.

In the Anstey Convention (not used in this book): downgoing pressure

and p. v. waves are 1808 out-of-phase, and upgoing pressure and p. v. waves

are in-phase. The equations are

di = −ZiDi and ui = ZiUi .

In the Berkhout Convention (used in this book): downgoing pressure

and p. v. waves are in-phase, and upgoing pressure and p. v. waves are

1808 out-of-phase. The equations are

di = ZiDi and ui = −ZiUi . (4)

The first equation in expression 4 says that the downgoing pressure

wave has the same polarity as the downgoing particle-velocity wave and

that the two are related by a scale factor given by the acoustic impedance.

The second equation in expression 4 says that the upgoing pressure wave

has the opposite polarity as the upgoing particle-velocity wave and that

the two also are related by the same scale factor.

Let us give an example of a traveling-wave assumption. Figure 12

shows an event. Looking at the event, can we tell whether the event is

upgoing or downgoing? The answer is no. The geophone signal by itself

is not enough to determine whether the event is upgoing or downgoing.

Suppose, however, that we make the assumption that the event is a

primary reflection coming from depth. Such an event is upgoing.

Next Figure 13 represents the use of a dual sensor, so that both the geo-

phone and the hydrophone signal are recorded. Neither the geophone signal

by itself, nor the hydrophone signal by itself, is enough to determine whether

the event is upgoing or downgoing. However, the two signals are out of

phase, so (by the Berkhout convention used in this book) it can be concluded

that the event is upgoing. This result is the essence of the so-called

d’Alembert equations (Robinson, 1999).

Figure 12. An event that

requires a traveling-wave

assumption.
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Land surveys with geophones cannot be tied to marine surveys with

hydrophones without the linkage provided by a traveling-wave assumption.

In fact, deconvolution, migration, and nearly every other method of seismic

processing require representations of traveling waves. The net result is that

seismic processing simply cannot be done with conventionally recorded

data unless one is willing to make traveling-wave assumptions. Does con-

ventional seismic processing face a serious impasse if one is unwilling to

make such assumptions? The answer is that all traveling-wave assumptions

can be avoided. Over the past 30 years, remarkable advances have been

made in seismic instrumentation. One such advance is the dual sensor. It

yields an output of both pressure as measured by a hydrophone and particle

velocity (p. v.) as measured by a geophone. In such a case, the downgoing

and the upgoing traveling waves can be computed directly from the data

by means of the d’Alembert equations.

In terms of the electrical analogy we mentioned previously, seismic par-

ticle velocity corresponds to electrical current, seismic pressure corresponds

to electrical voltage, and the acoustic impedance of the rock corresponds to

resistance. The equation that pressure is equal to the product of particle ve-

locity and characteristic impedance corresponds to the well known equation

that voltage is equal to the product of current and resistance. In order to

install an electric wire, an electrician must know both current and voltage.

For the same reason, a geophysicist should know both particle velocity

and pressure.

Let the dual sensor be placed at the top of layer i. The dual sensor

measures both particle velocity disturbance and pressure disturbance at

that depth. Equations 3 and 4 may be solved for the downgoing and

upgoing particle-velocity waves as follows. Substituting

di = ZiDi and ui = −ZiUi into pi = di + ui,

we obtain

pi = ZiDi − ZiUi.

Figure 13. An

event that does not

require a traveling-

wave assumption.
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Thus, equations 3 become

Vi = Di + Ui and pi = ZiDi − ZiUi .

These equations yield the particle velocity p. v. form of the d’Alembert

equations,

Di =
Vi + pi/Zi

2
and Ui =

Vi − pi/Zi

2
. (5)

The d’Alembert equations are fundamental. For a dual sensor planted in

a given layer, the geophone records the particle-velocity trace Vi and the

hydrophone records the pressure trace pi. If the acoustic impedance of

that layer is known, the d’Alembert equations 5 can be used to find the

downgoing component Di and the upgoing component Ui of the particle-

velocity trace. In the d’Alembert equations 5, the inputs are the particle

velocity Vi, pressure pi, and acoustic impedance Zi, all measured at the

receiver. The outputs are the downgoing wave Di and the upgoing wave

Ui, both occurring at the receiver. In this form of the d’Alembert equations,

the downgoing wave and the upgoing wave are each in terms of particle

velocity (p. v.).

In this book, we address the particle-velocity components Di and Ui. We

shall not make use of the corresponding d’Alembert equations for the two

components di and ui of the pressure trace, which are

di =
ZiVi + pi

2
and ui =

−ZiVi + pi

2
. (6)

It is important to have standards that are followed. Because so many

seismic sections are traded and sold, and because one geographic area

may require the use of geophysical data recorded and processed by

several companies, it is important that everyone follow the same conven-

tions. One such convention is polarity, which refers to which direction is

used as the positive direction for seismic amplitude. When two seismic

lines intersect, we want the reflection observed on the near traces (i.e., the

small offset traces) to be identical. For large offsets, the same event may

be due to reflections from different depth points because of the dips of the

reflecting interfaces. Thus, we should not expect far traces to have identical

reflections. If one company displays positive amplitudes in one direction and

another company in the opposite direction, a great deal of confusion can

result. One convention is:
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1. A positive seismic signal is defined as a positive acoustic pressure on a

hydrophone or a downward motion on a geophone.

2. A positive seismic signal produces a positive number on tape, a positive

deflection (upswing) on a monitor record, and a peak (black area) on a

seismic section.

Now we will consider an explosion in a shot hole buried below the

surface of the earth or, alternatively, an explosion below the surface of

the water. As shown in Figure 14, the resulting downgoing signal will

have a positive particle velocity and positive pressure. The upgoing signal

from the explosion will have a negative particle velocity but a positive

pressure.

Consider the process of the reflection of the downward-traveling

seismic pulse. Once the seismic pulse leaves the immediate area of the

shot, we can assume that the seismic pulse, now of a definite form, propa-

gates through the earth and reflects from rock interfaces in accordance

with the linear laws of elastic wave propagation.

Next we want to consider essentially a one-dimensional problem, in

which we treat only variations along the depth axis z, which points straight

down into the earth. Thus, we disregard the generally spherical form of the

wavefront and treat the problem as that of a plane wave traveling vertically

downward in a direction perpendicular to the flat-lying (horizontal) rock

strata. Suppose at some instant a wave is traveling in a rock layer of

density r1 and seismic wave velocity v1, and then the wave encounters a

different rock layer of density r2 and velocity v2. The result is that a

portion of the energy in the wave will be reflected at the interface and the

remainder will be transmitted. This splitting of the incident wave into a

reflected wave and a transmitted wave at the interface is caused by the

abrupt change in rock density and/or velocity. For the case of normal inci-

dence (which we are addressing here), the reflected and transmitted waves

have identical shape and breadth as the incident wave, but they differ in

Figure 14. Explosion in a buried

shot hole.
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amplitude. The ratio of the amplitude of the reflected wave to that of the inci-

dent wave is termed the reflection coefficient. Similarly, the ratio of the

amplitude of the transmitted wave to that of the incident wave is called

the transmission coefficient. However, the reflection coefficient defined

for a wave in which the amplitude is measured in terms of particle velocity

is different from the reflection coefficient in terms of pressure. The same

statement also holds for the transmission coefficient. Let us now find this

difference.

Suppose that a wave propagating in shale comes to an interface with a

limestone layer. Because the rocks do not rupture at the interface, the par-

ticle velocity on both sides of the interface must be the same; that is, at

the interface, the particle velocity on the shale side must be the same at

all times as the particle velocity on the limestone side. We express this

physical fact in mathematical terms by the statement that particle velocity

must be continuous at an interface. Similarly, pressure must be continuous

at an interface.

An explosion produces a large downgoing pulse, and we assign to it a

positive amplitude in the case of particle velocity and a positive amplitude

in the case of pressure. Suppose the explosion is set off in soft shale

(Z1 = r1v1 is small). The source pulse travels down and hits hard limestone

(Z2 = r2v2 is large). Referring to Figure 15, the incident pulse has a fixed

amount of positive energy flux, given by the product of its positive particle

velocity times its positive pressure. Because the soft shale has a low impe-

dance, the particle velocity is relatively large in magnitude, and its pressure

is correspondingly small. At the interface, some of the incident energy is

transmitted into the limestone and the rest is reflected back into the shale.

The total particle velocity must be the same on both sides of the interface.

The hard limestone, because of its higher impedance, cannot take up all

of the particle velocity present in the soft shale. Hence, only some of the par-

ticle velocity will be transmitted into the limestone. To keep the bookkeep-

ing straight (i.e., continuity of particle velocity), a reflected wave must be

thrown upward, back into the shale. The particle velocity of this reflected

wave must be a negative quantity, so as to cancel out some of the incident

Figure 15. Continuity of

particle velocity at a soft-to-

hard interface. The arrows

indicate the raypath direction,

i.e., the direction of travel.
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positive particle velocity; that is, we have the bookkeeping entry (where p. v.

is particle velocity)

(large incident positive p. v.) + (reflected negative p. v.)

= (smaller transmitted positive p. v.) .

Thus, the particle velocity reflection coefficient is negative, and the particle

velocity transmission coefficient is positive.

Next let us look at pressure and refer to Figure 16. Because the soft shale

has a low impedance, the downgoing incident pressure is relatively small.

By continuity, the pressure must be the same on both sides of the interface.

The limestone is hard and can support more pressure than the soft shale.

Thus, the amplitude of the transmitted pressure wave is greater than the

amplitude of the incident pressure wave. To keep the bookkeeping straight

(i.e., continuity of pressure), a reflected wave must be thrown upward, back

into the shale. The pressure of this reflected wave must be a positive quan-

tity, so as to augment the incident pressure; that is, we have the bookkeeping

entry

(small incident positive pressure) + (reflected positive pressure)

= (larger transmitted positive pressure) .

Thus, the pressure reflection coefficient is positive, and the pressure trans-

mission coefficient is also positive.

Remember that we are only going to consider particle velocity (p. v.)

traveling waves and not pressure traveling waves. Otherwise we would

get bogged down in too much notation to retain the reader’s interest. The

air is layer 1. The ground surface is interface 1. Below is layer 2. In

general, interface i is between layer i above and layer i + 1 below. The

density and propagation velocity of a given layer carry the number of the

layer as a subscript. The Fresnel coefficients carry the number of the inter-

face as a subscript. Suppose a downgoing particle-velocity unit impulse in

Figure 16. Continuity of pressure at

a soft-to-hard interface. The arrows

indicate the raypath direction.
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layer i strikes the interface i. By definition, the resulting upgoing particle-ve-

locity impulse in layer i is the particle-velocity Fresnel reflection coefficient

ri. Also, by definition, the resulting downgoing particle-velocity impulse in

layer i + 1 is the particle-velocity Fresnel transmission coefficient t1.

Figure 17 shows one interface, e.g., interface i, in isolation. Layer i lies

above the interface and layer i + 1 below. When a downgoing wave strikes

the interface, part of the energy is reflected back into the same layer and the

rest of the energy is transmitted into the next layer. Both the particle velocity

and the pressure of the wave motion must be continuous across the interface,

as expressed by the equations

Di + Ui = Di+1 and di + ui = di+1 . (7)

If equations 4 are used, then equations 7 may be written as

Di + Ui = Di+1 and ZiDi − ZiUi = Zi+1Di+1 . (8)

The particle-velocity Fresnel reflection coefficient ci and the particle-veloc-

ity Fresnel transmission coefficient ti are defined as

ci =
Ui

Di

and ti =
Di+1

Di

. (9)

The solution of equations 8 and 9 obtains the Fresnel coefficients in terms of

the acoustic impedances of the two layers; that is,

ci =
Zi − Zi+1

Zi + Zi+1

and ti =
2Zi

Zi + Zi+1

= 1 + ci . (10a)

The reflection coefficient and the transmission coefficient as given by

equation 10a are called Fresnel coefficients because they only address the

interface between the two layers in question, and not the entire system

which can have many layers. Each Fresnel coefficient carries the number

of the interface as a subscript. The Fresnel coefficients in equation 10a are

Figure 17. The Fresnel reflection

coefficient and the transmission

coefficient.
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the coefficients for an incident downgoing particle-velocity wave striking

the interface from above. It is apparaent that the reflection coefficient

must be less than one in magnitude. The corresponding Fresnel coefficients

for a downgoing incident pressure wave can be obtained in a similar manner.

The pressure Fresnel reflection coefficients are of reverse sign to the par-

ticle-velocity Fresnel reflection coefficients.

Consider next an incident upgoing particle-velocity wave in layer i + 1

striking interface i from below. The resulting Fresnel reflection and trans-

mission coefficients carry a prime, and are given by

c′i = −ci and t′i = 1 + c′i = 1 − ci =
Zi+1

Zi

ti =
2Zi+1

Zi + Zi+1

. (10b)

The two-way transmission coefficient through interface i (i.e., passage in

one direction followed by passage in the other direction) is

ti t
′
i = (1 + ci)(1 − ci) = 1 − c2

i . (11)

In the 17th century, Galileo, Huygens, and Newton formulate the foun-

dations of mechanics. The definition of velocity is an essential element in

that formulation. Velocity is a ratio. It is distance over time or, in the

limit, instantaneous distance over instantaneous time. In the late 19th

century, the French mathematician Henri Poincare reaches the conclusion

that the velocity of light is the ultimate signal velocity in the universe. No

signal can ever be transmitted at a velocity greater than that of light

(300,000 km/sec in round numbers). Thus, no physical object, whether a

subatomic particle or an entire galaxy, can travel at a speed greater than

300,000 km/sec. In astronomy, it is usual to measure distances in terms

of the velocity of light; for example, one light-year is the distance which

light travels in one year. Similarly, one light-second is the distance light

travels in one second. In other words, one light-second is the distance

300,000 km. Let us now use the light-second as our distance unit. Light

has a velocity of one light-second per second. A light-second is called a

natural unit because the velocity of light, a basic physical quantity, has

the value of unity. In terms of natural units, Poincare’s conclusion is that

no physical velocity can be greater than one in magnitude—that is,

greater than the speed of light.

What are the implications of the conclusion that no physical velocity can

be greater than one? Suppose we point a telescope in a given direction at the

sky. We see two galaxies E and B. By means of the Doppler redshift, we can

measure the velocity vE = 0.5 with which E is receding from us and the
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velocity vB = 0.7 with which B is receding from us. These velocities are

given in natural units (in which the velocity of light is one). What is the ve-

locity vF at which galaxy B is moving away from E? Einstein says that the

simple subtraction formula

vF = vB − vE = 0.7 − 0.5 = 0.2

does not work. Instead we must use the Einstein subtraction formula

vF = vB − vE

1 − vBvE

= 0.7 − 0.5

1 − 0.7 × 0.5
= 0.3077 . (12)

Now let us apply this thinking to geophysics. Choose a system with n

interfaces, numbered

1, 2, 3, . . . ,a− 1,a,a+ 1, . . . , n . (13)

The Fresnel reflection coefficients of the interfaces are given by

c1, c2, . . . , cn. Interface 1 is the surface of the ground or the surface of the

water as the case may be. The lowermost interface is interface n. All of

the material below interface n is referred to as basement rock. The basement

is one-way in that it accepts downgoing energy but returns no reflected

energy.

In Figure 18, the source is in layer a, which is the layer between inter-

face a− 1 and interface a. Layer a is called the source layer. Partition the

given system into two component systems, denoted by A and B. System A

contains all of the interfaces above the source. System B contains all of

the interfaces below the source and above the basement rock. System A

has the sequence of reflection coefficients c1, c2, . . . , ca−1. System B has

the sequence of reflection coefficients ca, ca+1, . . . , cn.

Figure 18. The two component

systems separated by the source

layer.
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When excited, the source produces a downgoing particle-velocity signal

S as well as an upgoing particle-velocity signal 2S. System A has the system

reflection coefficient R′
A for waves striking the system from below. System B

has the system reflection coefficient RB for waves striking the system from

above.

In Figure 19, the receiver (a dual sensor) is in layer b. Assume that the

receiver is strictly below the source, so b . a. Recall that system B contains

all of the interfaces below the source; that is, system B has the series of

Fresnel reflection coefficients ca, ca+1, . . . , cn. Partition system B into two

component systems, where the upper system E is comprised of the interfaces

between source and receiver, and the lower system F is comprised of the

interfaces between receiver and basement rock. Thus, system E has

Fresnel reflection coefficients ca, ca+1, . . . , cb−1 and system F has Fresnel

reflection coefficients cb, cb+1, . . . , cn.

As we have seen, system B has the system reflection coefficient RB. Let

system E have the system reflection coefficients RE for waves striking the

system from above and R′
E for waves striking the system from below.

System F has the system reflection coefficient RF for waves striking the

system from above.

From the dual sensor data, we can use the d’Alembert equations 5 to

compute the downgoing wave Db and upgoing wave Ub in the receiver

layer. They are related by

Ub = RFDb . (14)

Equation 14 may be written as

RF = Ub

Db

. (15)

Figure 19. The two

component systems

comprising system B

with the separation at

the receiver layer.
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Einstein deconvolution uses this equation to compute RF . We contend

that RF as computed contains only information from the isolated system

F; that is, RF contains no information at all from the overlying systems A

and E. We claim that we have stripped away the influence of all of the

layers overlying the receiver layer b. The source wavelet and all of the

reverberations and ghosts from these upper layers are entirely gone.

System B has the system reflection coefficient RB. The coefficient RB

involves only the Fresnel coefficients in

sequence B = ca, ca+1, . . . , cb−1, cb, cb+1, . . . , cn .

System E has the system reflection coefficient RE. This coefficient RE

involves only the Fresnel coefficients in

sequence E = ca, ca+1, . . . , cb−1 .

System F has the system reflection coefficient RF. The reflection coefficient

RF contains only the Fresnel coefficients in

sequence F = cb, cb+1, . . . , cn .

Certainly,

sequence F = sequence B − sequence E .

Can we conclude that

RF = RB − RE ?

The answer is no! We must use the Einstein subtraction formula

RF = RB − RE

VE + RBR′
E

. (16)

The novelty of this expression rests in the appearance of the all-

pass system VE, which involves only the sequence E. An all-pass system

adjusts the phase without changing the amplitude spectra. This all-pass

system takes the place of the “1” appearing in the Einstein subtraction

formula 12 for velocities.

System F, namely, the system between the receiver and the basement

rock, contains the reflection coefficients of interest in exploration. The

near-surface reflection coefficients, that is, those of the interfaces above

the receiver, give rise to the reverberations and ghosts that we want to
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eliminate. The dual sensor measures both the particle velocity signal Vb and

the pressure signal pb in layer b. In addition, the acoustic impedance pbCb

of the receiver layer must be obtained or estimated.

The Einstein deconvolution method can be described in two steps. The

first step is to convert the particle velocity and pressure signals into the

downgoing wave Db and the upgoing wave Ub in layer b. In order to com-

plete this step, the d’Alembert equations 5 are used. The second step is to

deconvolve the upgoing wave by the downgoing wave as shown by equation

15. The result of Einstein deconvolution is the unit-impulse reflection

response RF of system F.

In summary, the deconvolution of the upgoing wave Ub by the down-

going wave Db yields the unit-impulse reflection response RF of the subsys-

tem below the receiver. The Einstein deconvolution process strips away the

multiples and ghosts caused by the upper system. It should be emphasized

that the Einstein deconvolution process also strips away the unknown

source signature wavelet S.

Let us now look at the mechanisms for ghosts and reverberations in

more detail. Robinson (1966) provides two geophysical processing

methods described in terms of the mathematics of the Z-transform (more

precisely, the generating function). For example, the generating function

(or Z-transform) of the digital signal h0, h1, h0, . . . is defined as

H(Z) = h0 + h1Z + h2Z2 + · · · .

On the other hand, electrical engineers use the z-transform

H(z) = h0 + h1z−1 + h2z−2 + · · · ,

which we never use.

One method is the method for the elimination of seismic ghost reflec-

tions and the other method is the method for the elimination of water-

confined reverberations. The methods are strictly valid only for flat horizon-

tal interfaces and for vertical incidence. The ghost-producing filter is

given by

G = 1 − c′AZn , (17)

where c′A is a constant (of magnitude less than unity) representing the

Fresnel reflection coefficient of the overlying interface for an upgoing inci-

dent wave, and n is a constant (assumed to be an integer) representing the

time delay of the ghost with respect to the primary.

The water reverberation problem in marine seismic operations may be

described as follows. The water–air interface is a strong reflector. Let the
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water-bottom interface also be a strong reflector. In such a case, the water

layer approximates a non-attenuating medium bounded by two strong

reflecting interfaces and hence represents an energy trap. A seismic pulse

generated in this energy trap will be successively reflected between the

two interfaces. Consequently, reflections from deep horizons below the

water layer will be obscured by the water reverberations.

Let cB be the Fresnel reflection coefficient for a downgoing incident par-

ticle-velocity signal striking the water bottom, and let c′A be the Fresnel

reflection coefficient for an upgoing incident particle-velocity signal striking

the water surface. The two-way traveltime in the water layer is n time units.

Let the source be a downgoing unit spike. The reverberation-producing filter

is given by

L = 1

1 − cBc′AZn
. (18)

This expression also holds for an upgoing unit spike source.

The ghost-producing filter G for systems can be obtained from equation

17 by replacing c′AZn with R′
A. The result is

G = 1 − R′
A . (19)

The source produces reverberations in the source layer, that is, in layer

a. The mathematical structure is the same as given for the case of reverbera-

tions between two interfaces. However, now system coefficients must be

used instead of Fresnel coefficients. Thus, the system reflection coefficient

R′
A is used for the layers above the source. Likewise, the system reflection

coefficient RB is used for the layers below the source. The reverberation-

producing filter can be obtained from equation 18 by replacing cBc′AZn

with RBR′
A. Thus, the reverberation-producing filter for this case is

L = 1

1 − RBR′
A

. (20)

The downgoing particle-velocity wave Da in the source layer is com-

posed of the source signature S, the ghost G, and the reverberation L. Thus,

Da = SGL = S(1 − R′
A)

1 − RBR′
A

= SL− SR′
A L . (21)

The direct upgoing wave in the source layer due to the source is

Udirect
a = −S . (22)
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The downgoing wave Da is reflected from System B. The reflection coeffi-

cient is RB. The upgoing reflected wave appears as RBDa in the source layer.

This reflected wave is given by

Ureflected
a = RBDa = SRBGL . (23)

The entire upgoing wave is the sum of the direct upgoing wave, shown

in equation 22, plus the reflected upgoing wave, shown in equation 23;

that is,

Ua = Udirect
a + Ureflected

a = −S + SRBGL . (24)

See Figure 20. The above expression becomes

Ua = −S + SRB(1 − R′
A)L = −S(1 + RBR′

A L) + SRB L

= −S
1 − RBR′

A + RBR′
A

1 − RBR′
A

+ SRB L = −SL+ SRB L .

As geophysicists began to study the earth by using quantitative physical

methods, they visualized the underground in modest and idealistic terms.

The source and the receivers were on or very close to the surface. The

source produced a downgoing wave and the receiver recorded an upgoing

wave. This ideal model did not include effects such as reverberations and

ghost reflections, about which geophysicists had little knowledge.

However, as time went on, geophysicists became aware of the great difficul-

ties presented by these effects. With dual sensors and seismic processing,

reverberations and ghost reflections above a buried receiver could be

stripped away. The resulting seismic data approximated the ideal model

of the past, with the datum no longer being at the surface of the ground,

but at the depth of the receiver.

Figure 20. (left) Components

of Da and (right) components

of Ua.
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Let us now discuss seismic inversion by dynamic deconvolution

(Robinson, 1975). The Lorentz transform (used in relativity theory) can

be written as

t2 = 1

(1 − c2
1)1/2

(t1 − c1x1) ,

x2 = 1

(1 − c2
1)1/2

(−c1t1 + x1) .

(25)

In the Lorentz equations:

a) The variables t1 and x1 are, respectively, the time and space coordinates

of an event in frame 1.

b) The variables t2 and x2 are, respectively, the time and space coordinates

of the event in frame 2.

c) The constant c1 (where |c1| , 1) is the velocity (in natural units such

that the velocity of light is unity) between the two frames.

The Lorentz transformation is a consequence of the invariance of the

interval between events. By direct substitution, it can be shown that the

coordinates of two events satisfy the equation

t2
2 − x2

2 = t2
1 − x2

1 .

Now we want to find the relationship between the waves in the seismic

layered model, shown in Figure 21. As usual, all of the waves are digitized

with unit time spacing. For a downward wave incident on interface i, the

reflection coefficient is denoted by ci. Then, for an upgoing wave incident

on interface i, the reflection coefficient is −ci. We will assume that the

amplitudes of the seismic waves are measured in units such that the

squared amplitude is proportional to energy. Then, for either downgoing

Figure 21. The layered system.

It has n interfaces, with air above

interface 1 and basement below

interface n. The seismic one-way

traveltime between adjacent

interfaces is 0.5 time unit, so the

two-way traveltime is one time

unit.
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or upgoing waves, the transmission coefficient through interface i is

ti = +
�������
1 − c2

i

√
.

Instead of the conventional treatment, we will try to put this relationship into

a more general setting. We know that the waves in each layer obey their

respective wave equation.

Referring to Figure 22, let D1(Z) and U1(Z) be, respectively, the gener-

ating functions of the downgoing wave and the upgoing wave at the top of

layer 1. Let D2(Z) and U2(Z) be the corresponding functions for layer 2. The

symbol Z represents a unit delay operator. Thus, Z1/2 represents a delay of

one-half time unit, and Z−1/2 represents an advance of one-half time unit.

We want to move the waves at the top of layer 1 down to the interface

which is at the bottom of layer 1. The downgoing wave takes one-half

time unit to travel down, so it is delayed by one-half time unit. On the

other hand, the upgoing wave must be depropagated back in time by one-

half time unit, in order for it to go backwards to the interface from which

it came. In other words, the upgoing wave must be advanced by one-half

time unit. Thus, at the bottom of layer 1, the generating functions are

Z1/2D1(Z), Z−1/2U1(Z) .

Just across the interface, the generating functions are

D2(Z), U2(Z) .

We now draw the following analogy between the layered model and the

special theory of relativity. Layer 1 corresponds to frame 1, and layer 2 to

frame 2. The reflection coefficient c1 of the interface corresponds to the

velocity c1 between the two frames. Let Z1/2 D1(Z) correspond to t1,

Figure 22. The layered system.

The wave motion for a layer

(solid arrow) is always measured

at the top of the layer. The dotted

arrows show the wave motion at

the bottoms of the layers.
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Z−1/2 U1(Z) correspond to x1, D2(Z) correspond to t2, and U2(Z) correspond

to x2. Under this correspondence, the Lorentz transformation becomes

D2(Z) = 1

(1 − c2
1)1/2

(Z1/2D1(Z) − c1Z−1/2U1(Z)) ,

U2(Z) = 1

(1 − c2
1)1/2

(−c1Z1/2D1(Z) + Z−1/2U1(Z)) .

(26)

The Lorentz equations 26 describe reflection and refraction at an inter-

face. In matrix terms, these Lorentz equations are

D2

U2

[ ]
= Z−1/2�������

1 − c2
1

√ Z −c1

−c1Z 1

[ ]
D1

U1

[ ]
.

We have shown that, when we cross an interface, the wave motion must

be related by the Lorentz transformation. Even as the velocity c1 (in natural

units) between the two frames must physically be less than one in magni-

tude, so we also know that a physical reflection coefficient c1 must be less

than one in magnitude. (Here we are not including the case of perfect reflec-

tion, in which case c1 is plus one or else minus one). The Lorentz transform

for layered media is a consequence of the invariance of the net downgoing

energy in each of the layers.

Turning to Figure 23, now let us establish the Einstein subtraction

formula by means of the Lorentz transformation. Let the source be the

unit impulse D1(Z) = 1. Let the reflection seismogram be U1(Z) = R1(Z).

Then

D2

U2

[ ]
= Z−1/2�������

1 − c2
1

√ Z −c1

−c1Z 1

[ ]
1

R1

[ ]
,

Figure 23. Source is the

unit impulse D1(Z) = 1.

Reflection seismogram is

U1(Z) = R1(Z).
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which gives

�������
1 − c2

1

√
Z1/2D2 = Z − c1R1 ,

�������
1 − c2

1

√
Z1/2U2 = −c1Z + R1 .

The reflection seismogram R2 is the result obtained by deconvolving the

upgoing wave U2 by the downgoing wave D2; that is,

R2 = U2

D2

= R1 − c1Z

Z − R1c1

. (27)

This equation is the Einstein subtraction formula.

Let us now give the dynamic deconvolution computational scheme for

the inversion of a reflection seismogram. System 1 has n interfaces, num-

bered 1, 2, 3, . . . , n. The Fresnel reflection coefficients of the interfaces are

given by c1, c2, . . . , cn. Interface 1 is the surface of ground or water. The low-

ermost interface is interface n. Below interface n is basement rock, which

accepts downgoing waves but returns no reflected waves.

As shown in Figure 24, the field-recorded reflection seismogram

r1, r2, r3, . . . occurs in layer 1 (the air) just below fictitious interface

0. The generating function of the reflection seismogram is

R1(Z) = r1Z + r2Z2 + r3Z3 + · · ·

= c1Z + (terms in higher powers of Z) .

We know R1(Z) must have this form, because c1Z represents the first bounce

off interface 1. No multiple reflections can appear at the time of the first

bounce.

Figure 24. System 1 has n

interfaces, with air above

interface 1 and basement

below interface n. The

reflection seismogram

r1, r2, r3, . . . is measured

just below the fictitious

interface 0, which is one-

half time unit above

interface 1.
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Remove interface 1. Now the top interface is interface 2. The resulting

system is called system 2, which has n − 1 interfaces, numbered 2, 3, . . . , n.

The Fresnel reflection coefficients of the interfaces are c2, . . . , cn. Interface 2

is now the surface of ground or water. Interface n is the lowermost interface.

Basement rock is below interface n.

Then, as shown in Figure 25, the reflection seismogram for system 2 is

represented by the generating function

R2(Z) = c2Z + (terms in higher powers of Z) .

Here, c2Z represents the first bounce.

Next, remove interface 2. We are left with system 3 with n − 2 inter-

faces, numbered 3, . . . , n. The resulting reflection seismogram has generat-

ing function

R3(Z) = c3Z + (terms in higher powers of Z) ,

where c3Z represents the first bounce.

Thus, we arrive at a suite of reflection seismograms (k = 1, 2, 3, . . .)

with generating functions

Rk(Z) = ckZ + (terms in higher powers of Z) ,

where ckZ represents the first bounce off interface k. Therefore, we can make

the following important conclusion. Given the reflection seismogram for

layer k, we immediately can find the reflection coefficient ck for layer k,

because ck is simply the first coefficient appearing in the seismogram.

We will now give the inversion algorithm of dynamic deconvolution,

given the reflection seismogram R1. This seismogram is the one physically

recorded in the field. The problem is to find the sequence c1, c2, . . . , cn

of reflection coefficients and the suite of reflection seismograms

R2, R3, . . . , Rn.

Figure 25. System 2 has

n − 1 interfaces, with air

above interface 2 and

basement below interface n.

Now the missing interface 1

plays the role of the

fictitious interface.
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The Einstein subtraction formula is given by equation 27, which is

R2 = R1 − c1Z

Z − R1c1

. (28)

We have in our possession R1 (i.e., the field-recorded seismogram). In step

1, we find c1 as the first bounce of R1, and then we compute R2 by the Ein-

stein addition formula 28. So ends step 1.

The next Einstein subtraction formula is

R3 = R2 − c2Z

Z − R2c2

. (29)

In step 2, we find c2 as the first bounce of R2, and then we use the Einstein

subtraction formula 29 to find R3. So ends step 2.

In step 3, we find c3 as the first bounce of R3, and then we find R4 as

R4 = R3 − c3Z

Z − R3c3

.

So ends step 3.

Thus, given R1, we can perform the entire deconvolution and obtain the

sequence of reflection coefficients c1, c2, c3, . . . and the suite of reflection

seismograms R2, R3, R4, . . .. From the sequence of reflection coefficients,

we can compute the impedance function of the earth.

There are many other features of dynamic deconvolution which make it

attractive, such as the option of the determination of the reflection coeffi-

cients in the reverse order cn, cn−1, . . . , c2, c1 (Robinson, 1984). This

reverse order can be useful, because, in many cases, the most harmful

noise appears at the beginning of the reflection seismogram. In such a

case, it is better to work backwards in time on the reflection seismogram,

leaving its noisy beginning to the end of the computations.

Further insight on dynamic deconvolution can be obtained by examin-

ing the role played by the multiple reflections.

Moving to Figure 26, for interface 1, the Fresnel reflection coefficient is

c1 and the two-way Fresnel transmission coefficient is (1 − c2
1). For inter-

face 2, the Fresnel reflection coefficient is c2. System 1 is composed of inter-

face 1, and all of the interfaces below and no interface above. System 2 is

composed of interface 2, and all of the interfaces below and no interface

above. The reflection seismogram for system 1 is R1 and the reflection

seismogram for system 2 is R2.

Then, referring to Figure 27, all wave motion is measured at a point just

below the interface. The unit source pulse is at A. The observed reflection

seismogram is composed of pulses at C, F, I, L, . . .. All multiples encounter
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a two-way transmission though interface 1. The first multiple has one jog in

layer 2. The second multiple has two jogs in layer 2. The third multiple has

three jogs in layer 2, etc.

Per Figure 27, the constituent pulses of the observed reflection seismo-

gram are given by the factors in the second column of the following table.

Reflection Constituent Pulse

Primary reflection = ABC Two-way travel through layer 1: Z

Reflection upward at B: c1

First multiple reflection = ABDEF Two-way travel through layer 1: Z

Two-way transmission through

interface 1: (1 − c2
1)

Reflection upward at D: R2

Second multiple reflection = ABDEGHI Two-way travel through layer 1: Z

Two-way transmission through

interface 1: (1 − c2
1)

Reflection upward at D: R2

Reflection downward at E: −c1

Reflection upward at G: R2

Third multiple reflection = ABDEGHJKL Contributes another factor −c1R2 to

above

Fourth multiple reflection Contributes another factor −c1R2 to

above

· · · · · ·

Figure 26. The refection seismogram is measured just below the fictitious interface

0. The unit source (illustrated by the small downgoing arrow) also occurs at the

same place.

128 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



The reflection seismogram for system 1 is

R1 = primary + first multiple + second multiple + third multiple

+ fourth multiple + · · · .

If we multiply the various factors together, the above table yields

Reflection Result

Primary reflection c1Z

First multiple reflection (1 − c2
1)R2Z

Second multiple reflection (1 − c2
1)R2Z(−c1R2)

Third multiple reflection (1 − c2
1)R2Z(−c1R2)2

Fourth multiple reflection (1 − c2
1)R2Z(−c1R2)3

· · · · · ·

Thus,

R1 = c1Z + (1 − c2
1)R2Z + (1 − c2

1)R2Z(−c1R2)

+ (1 − c2
1)R2Z(−c1R2)2 + · · · ,

which may be written as

R1 = c1Z + (1 − c2
1)R2Z[1 + (−c1R2) + (−c1R2)2 + · · ·] .

Figure 27. The

same diagram as in

Figure 26 but now

with points A, B,

C, . . . labeled.
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Thus,

R1 = c1Z + (1 − c2
1)R2Z

1 + c1R2

.

Combining terms, we obtain the Einstein addition formula

R1 = c1Z + R2Z

1 + c1R2

.

If we solve this equation for R2, we again obtain the Einstein subtraction

formula

R2 = R1 − c1Z

Z − R1c1

. (30)

This equation is the same as equation 27. Knowledge of the Lorentz trans-

form and the Einstein subtraction formula provides valuable insight on the

behavior of seismic waves in the sedimentary earth system.
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Chapter 3

Elasticity

The wave equation

The foundation of seismology is the theory of wave motion, a compli-

cated concept that is still—after centuries of experiments and speculations

by many of the very greatest scientists—an area of active research in

many disciplines. Even simple forms of wave motion are difficult to describe

verbally; but, ironically, the simplest type of wave is remarkably easy to

describe (and subsequently analyze) mathematically.

This is one of those areas where, in the words of Nobel Prize physicist

Steven Weinberg, mathematics has a “spooky” correlation to the physical

world. Although some naturally occurring crystals have perfect geometric

shapes, right triangles are a purely mathematical concept. They exist

outside of our ordinary experience of the physical world. Have you ever

found a rock in your back yard or on a field trip that is in the shape of a

perfect right triangle? Yet we remember from elementary trigonometry

(the mathematical analysis of the properties of triangles) that the graph of

the sine function perfectly represents certain periodic motions, such as the

(small) oscillations of a pendulum. This type of sinusoidal motion is

called simple harmonic motion.

The pure sine curve, u ¼ sin x, is quite restricted. The value of u

never can be greater than 1 or less than 21 and x must traverse a distance

of 2p radians before one cycle of motion is completed. These limitations

are, however, not serious. The sine function is easily tailored to represent

any regularly repeating motion no matter what its height/depth (or ampli-

tude), its frequency of oscillation, or its value when it crosses a “starting”

point (often the x ¼ 0 line). Such an all-purpose sine function can be
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written, supposing u to be the disturbance caused by the motion, as

u = A sin 2p
x

l
− t

T

( )
,

where x is distance and t is time.

The number A (chosen to be positive) represents the amplitude; the dis-

tance between consecutive crests is l (called the wavelength); the quantity T

is the period or the time it takes the wave to complete one cycle. The crest of

the wave moves a distance l in time T. Because l is a distance and T a time,

the quotient l/T equals the wave’s velocity—almost always expressed

simply as v. Therefore, if x is fixed and t is allowed to vary, a wave crest

sweeps past the fixed point with a propagation velocity given by v.

There are other useful ways in which we can write a sine function to rep-

resent wave motion. Instead of wavelength and period, we can use wave-

number k and frequency v where

k = 2p

l
and v = 2p

T
,

and then the sinusoidal wave may be expressed as

u = A sin(kx − vt) ,

which represents a simple harmonic progressive wave. We also can write

this curve as

u = A sin k(x − vt) ,

because v = l/T = v/k.

The quantity v (which is expressed in units of radians per second) rep-

resents angular frequency. It is related to cyclical frequency (expressed in

Hertz) by the equation v ¼ 2pf. Likewise, the quantity k (expressed in

radians per meter) is the angular wavenumber, related to cyclical wavenum-

ber k by the equation k ¼ 2pk. In the expression x 2 vt, substitute x + vt′ for

x, and t + t′ for t. The result is

x − vt = (x + vt′) − v(t + t′) = x − vt + vt′ − vt′ = x − vt .

Thus, x 2 vt reproduces itself when x becomes x + vt′ and t becomes t + t′.
Therefore, any function of x 2 vt can be said to represent a propagating

wave.
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An effective way to illustrate this is to imagine a taut string lying on the x

axis. If the string is displaced perpendicular to the x axis, then the shape of

the resulting curve can be written u ¼ f (x). If the displacements alter in such

a way that the pulse travels with velocity v in the positive x direction without

change of shape, the equation representing the pulse at any time t will still be

u = f (x), provided that we move the origin a distance vt in the positive direc-

tion (see Figure 1). In reference to the old origin, the equation of the pulse

will have x replaced by x − vt or u = f (x − vt).

Therefore, we can state that this is the general equation of a wave with

constant shape traveling in the positive direction with velocity v. Further-

more, every wave of this type must be expressible in this form. Similarly,

a wave going in the opposite direction (i.e., negative x) is represented by

a function u = g(x + vt).

Pythagoras discovered that the pitch of a sound from a plucked string

depends upon the string’s length, and that harmonious sounds are given

off by strings whose lengths are in the ratio of whole numbers. However, sig-

nificant additional progress was impossible until the invention of calculus,

more than 2000 years later, which permitted the English mathematician

Brook Taylor to make the first productive attempt at the quantification of

wave motion.

Consider a stretched string (such as a violin string) with initial shape

f (x). According to basic differential calculus, the slope of the tangent line

at any point represents the rate of change of the function with respect to

x. This rate of change is the first derivative of f with respect to x; in turn,

the rate of change of the slope (or second derivative of f with respect to x)

represents the curvature of the function. A basic assumption is that the dis-

placements never violate the elastic limit of the string.

Now consider the motion of any particular point on the string. We have

seen that the traveling wave can be represented as f (x − vt), which, at the

point x ¼ 0, becomes merely f (−vt). That point is moving up and down

approximately at right angles to the x axis. Returning to basic calculus

recall that the point’s up-and-down velocity is given by the first derivative

Figure 1. Illustration of how

f(x 2 vt) reproduces itself.

Chapter 3: Elasticity 133

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



of f with respect to t and the point’s acceleration is given by the second

derivative of f with respect to t.

When the string is in its equilibrium position (horizontal along the x

axis), there is no net vertical force acting on any point on the string.

However, when the string is curved, the tension in the string exerts a restor-

ing force which attempts to move it back to its equilibrium position. The

more the curvature, the greater is this restoring force (Figure 2). Taylor

notes this feature and reasons that the restoring force is proportional to cur-

vature and, as a student of Sir Isaac Newton, he knew that force is pro-

portional to acceleration. Thus, he writes the equation

curvature = a acceleration ,

where a is a constant of proportionality. Taylor could not fully develop the

properties of this equation because he had no knowledge of partial deriva-

tives. But after their invention, his speculation is confirmed. It also

happens that the constant of proportionality is 1/v2. In modern mathematical

notation, this equation is written

∂2u

∂x2
= 1

v2

∂2u

∂t2

and it is known as the one-dimensional wave equation. When generalized to

three dimensions, it governs the melodies of Pythagoras, the propagation of

seismic energy through the earth, and many other kinds of wave motion. The

three-dimensional wave equation is

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= 1

v2

∂2u

∂t2
.

If we now go back to one of our original equations for simple harmonic

motion,

u = A sin(kx − vt) ,

Figure 2. Force is

proportional to the

curvature of the

string.
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and take second partial derivatives with respect to x and t, and then substitute

these second derivatives into the one-dimensional wave equation, we obtain

−A k2 sin(kx − vt) = 1

v2
(−Av2) sin(kx − vt) .

After canceling common factors, we discover that

k2 = v2

v2
,

which is called the dispersion equation for the one-dimensional wave

equation. It relates wavenumber and frequency. When extended to three

dimensions, this equation becomes

k2
x + k2

y + k2
z = v2

v2
,

where k =
��������������
k2

x + k2
y + k2

z

√
is the wavenumber and kx, ky, kz are the wave-

number components in the three coordinate directions.

The wave equation is an equation in space and time coordinates (x, y, z,

and t), whereas the related dispersion equation is an equation in wavenum-

ber and frequency coordinates (kx, ky, kz, and v). Geophysicists usually

want to look at the data in the familiar time–space display; but often it is

advantageous to transform the data into the frequency–wavenumber

domain for computer processing. The basis for the transformation from

one domain to the other is the mathematical operation known as the

Fourier transform.

The use of frequency–wavenumber analysis is one of the powerful tools

of seismic data processing. Measurement of wavenumber as a function of

frequency provides a reliable means of separating and measuring the

various velocity components on a seismic section. Other important

seismic processing operations (including dip moveout as well as migration)

can make use ofv, k analysis. All of these processing methods are tied phys-

ically to the dispersion equation, which in turn follows from Taylor’s

inspired insight (in 1715)—spatial curvature is proportional to temporal

acceleration—that led to the original formulation of the wave equation.

A wave at a boundary

“Give me a place to stand,” Archimedes said, “a lever and a rock, and I

will move the Earth.” He very likely was the first scientist to speculate about
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moving the Earth, but modern exploration geophysicists were probably the

first to make such a daring idea the very underpinning of their systematic

investigations. For, indeed, moving the Earth—admittedly on a very small

scale, nothing like what Archimedes had in mind—is precisely what we

must do to generate the seismic waves we need to bring us information

about the subsurface.

The part of the wave in which geophysicists are most interested is the

wavefront; i.e., a surface over which the phase of the traveling wave disturb-

ance is the same. If we know the position of a wavefront at a certain time, we

can find its subsequent position at any later time by means of one of the most

elegant and fundamental concepts in seismology—Huygens’ principle.

The great Dutch scientist Christiaan Huygens (1629 – 1695) was one of

the most formidable intellects who followed in the immediate wake of

Galileo. Huygens had first-rank talents in many disciplines—astronomy,

optics, and mathematics in particular. His contributions ranged from the

most far-reaching theoretical speculations to extremely important advances

in contemporary technology. Among the latter were the perfection of the

pendulum clock and innovations in lens grinding (which led to his discovery

of the rings around Saturn). Among the former were some of the basic con-

cepts in the theory of probability and the famous principle of wave motion

which bears his name.

To explain Huygens’ principle, let us recall the three-dimensional

wave equation. In the case of a homogeneous isotropic medium (meaning

the wave velocity is the same at

all places and in all directions),

the wave equation yields a particu-

larly simple and beautiful solution:

the spherical wave. Not surpris-

ingly, a spherical wave is one in

which the successive wavefronts

of wave motion emanating from

a point source are concentric

spheres centered on the source. If

we slice through the three-dimen-

sional physical reality to produce

a two-dimensional cross-section,

the spheres will become circles

(Figure 3).

Huygens’ principle dates from

1690 and thus significantly pre-

cedes the development of theFigure 3. Spherical wave.
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wave equation, but Huygens’ insight was so profound that his principle actu-

ally makes use of the so-called Green’s function in the subsequently con-

firming mathematics. The basis of Huygens’ concept is that each point

along a wavefront may be viewed as a point source that produces a second-

ary spherical wavelet (known as the Huygens’ wavelet), which propagates

away from the point in all directions. In Figure 4, curve AB represents the

instantaneous position of a wavefront. Let v be the wave velocity. In

order to find the location of the wavefront after an interval of time Dt, we

draw many secondary spheres of radius vDt, all with centers on wavefront

AB. A surface tangent to all of the secondary spheres is called an envelope.

The envelope in the direction of propagation is the new wavefront A′B′.
This technique, known as Huygens’ construction, is one of the most

elegant products of classical physics. But, as usual, the physical reality is

more complicated than the theory, because the logical conclusion of

Huygens’ theory is that two, not just one, disturbances would be propa-

gated—one on each side of the wavefront and traveling in opposite direc-

tions. However, it is common knowledge that disturbance occurs only in

the “forward” direction of wave propagation and that the theoretical

Figure 4. Huygens’ construction.
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“backward” disturbance, predicted by Huygens’ principle and shown by

dashed line A′′B′′ in Figure 4, does not appear. Why not?

It took nearly 200 years to obtain a completely satisfactory solution to

the mystery. Fresnel took a major step toward clearing up this thorny ques-

tion when he proposed, in 1826, that the backward wave did not occur

because of destructive interference effects. (Fresnel only introduced an arti-

ficial obliquity factor to achieve this; Kirchhoff completed the theory.) Forty

years later, Kirchhoff developed an integral solution of the wave equation

which shows that the secondary wavelets from the point sources on the

wavefront do destroy each other by mutual interference except on the

forward propagating wavefront A′B′.
Huygens’ principle is particularly valuable when we want a graphical

explanation of the three fundamental ways in which the direction of a pro-

pagating wave can change: reflection, refraction, and diffraction (Figure 5).

Figure 5. A wave at a boundary.
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In most cases, when a wave arrives at a boundary between two different

media, part of the wave’s energy is reflected back into the original medium

and part of it is transmitted into the new medium but at a different direction

(i.e., refracted). The study of reflection and refraction is facilitated by the use

of rays. In an isotropic medium, a ray is a line that is everywhere perpendicu-

lar to the successive wavefronts. While seismic energy does not travel only

along raypaths, the greater part of the energy does indeed follow them.

(Some seismic energy would reach a point by diffraction even if the raypaths

between the point and the energy source were blocked.) Raypaths, therefore,

constitute a very useful method of studying wave propagation. This disci-

pline is called geometrical seismology or geometrical acoustics. It is the

geophysical counterpart of the wellknown subject of geometrical optics.

There is an interesting facet of geometrical seismology which does not

appear in textbooks on geometrical optics. Because light occurs at such high

frequencies and travels at such a high speed, the waveforms of light are not

measured as a function of time. As a result, geometrical optics only deals

with the spatial paths of light rays. In seismic work, however, we routinely

measure waveforms, and the seismic section is the resulting space–time rep-

resentation. In geometrical seismology, therefore, we must consider space–

time paths in addition to purely spatial paths. This space–time feature adds a

whole new dimension to the classic ray theory as found in books on geo-

metrical optics.

Let us initially apply Huygens’ principle to a wavefront that is comple-

tely reflected from a plane surface and see how it specifies the direction and

curvature of the reflected wavefront. Figure 6 illustrates the reflection of a

spherical wave. The surface ABC represents the hypothetical position of

the wavefront if the plane reflecting surface were not present. When the

wave reaches P (the nearest point of the reflecting plane to the source S),

the point P becomes the origin of a secondary wavelet. At immediately suc-

ceeding instants, the adjacent points to the left and right of point P are struck

by the incident wavefront, and, in turn, they also become sources of second-

ary wavelets. The totality of the secondary wavelets emitted by the succes-

sive points on the reflecting plane has the spherical surface AB′C for its

envelope. We notice that the reflected wavefront appears to come from

some point S′ behind the reflecting plane; in fact, it’s a simple matter to

show that S′ is the mirror image of the source point S.

Now let’s use Huygens’ principle to derive the direction of a reflected

ray that is not perpendicular to the reflecting surface. In Figure 7, u is the

angle of incidence (by definition, the angle that the incident ray makes

with the normal to the reflecting interface). The corresponding angle of

reflection is denoted u ′. The incident wavefront falls along the line AB,
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which is shown at the instant point B strikes the reflecting surface. Some of

the energy in the incident wave at point B will reflect toward point D. As the

incident wavefront continues toward the interface, each point between

B and C will successively serve as a point source for secondary wavelets

which will propagate back into the original medium. When the incident

wavefront reaches point C, the reflected wavefront will be on line DC.

The speed of the reflected wave is the same as that of the incident wave,

making the length of line AB equal to that of line CD. Trigonometry then can

be used to establish one of the cornerstones of seismic theory; i.e., that

Figure 7. Law of

reflection.

Figure 6. Reflection of a spherical wave.
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u =u ′, or the angle of incidence is equal to the angle of reflection. This is

called the law of reflection.

Of course, in most cases, all of the energy will not be reflected from the

interface, but some will be transmitted into the second medium. When the

wave (not at vertical incidence) enters another medium with a different

speed, it will change direction—or undergo refraction. Figure 8a illustrates

Huygens’ construction of a refracted wave.

We suppose that the velocity v2 of the wave in the lower medium is

greater than velocity v1 of the wave in the upper medium. When the incident

wave reaches the interface at B, the wavelet radiating from B into the lower

medium travels faster than the wavelet moving from A toward C. Wavelets

from successive portions of the wavefront entering the lower medium will

have longer radii in a given time interval than those traveling in the upper

medium. Thus, the refracted ray will bend away from the vertical; the

angle of refraction u2 will be greater than the angle of incidence.

This concept is illustrated further in Figure 8b, which shows the refrac-

tion construction from Figure 8a overlain by the hypothetical propagation of

wavefront AB as it would have occurred in the absence of interface BC.

Figure 8b makes it apparent that, if the velocity in the lower medium is

greater, the angle of refraction must be greater than the angle of incidence.

Indeed, one of the basic theorems of Euclidean geometry makes it apparent

that u1 could equal u2 only if wavefront AB maintained an identical direction

of propagation as it passed through interface BC.

Now refer to Figure 8a again. In the time Dt that it takes a wavelet to

travel from point A to point C, a wavelet in the lower medium will travel

from point B to point D. Because distance equals velocity times time, we

Figure 8a. Snell’s

law of refraction.
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immediately see that

AC = v1Dt and BD = v2Dt .

Because triangles ABC and BCD are both right triangles and, respectively,

contain angles u1 and u2, we see that

sin u1 = AC

BC
and sin u2 = BD

BC
.

Substituting for AC and BD, respectively, we obtain

sin u1 = v1Dt

BC
and sin u2 = v2Dt

BC
.

Eliminating Dt/BC, we obtain

sin u1

v1

= sin u2

v2

,

which is known as the law of refraction or Snell’s law.

Although this proof of Snell’s law seems remarkably simple to modern

eyes, it somehow eluded mathematicians—unlike the related law of reflec-

tion which was known at least as far back as the Greeks—until relatively

recent times. Snell, reportedly after years of work, discovered the correct

version of the law in 1621, but he did not publish it. Fellow Dutchman

Figure 8b.

Refraction

construction

overlain by

hypothetical

propagation of

wavefront AB.
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Huygens, born three years after Snell’s death, saw this work—which sub-

sequently disappeared—and it was due to Huygens’ efforts that Snell was

given his deserved scientific immortality. In addition, Snell had a second

profound effect on geophysical exploration; by developing a method of

determining distances using trigonometric triangulation, he became one of

the most important pioneers of scientific mapmaking.

In refraction from a medium with lower velocity to a medium with

higher velocity (the usual case in seismic exploration), the rays turn away

from the normal. So, in the case of

v1 sin u2 . v2 ,

what happens? Snell’s law predicts that sin u1 .1 which is an impossibility.

However, the theory does not predict impossibility. Instead, it predicts that

such refraction is impossible. In fact, when u1 = uc, with uc defined by

sin uc = v1/v2, Snell’s law says that sin uc = 1 and, therefore, uc = 90;

such an angle of incidence uc is called the critical angle, and the refracted

ray grazes the interface (see Figure 9).

For angles of incidence greater than the critical angle, there is total

internal reflection; i.e., all of the energy is reflected at the boundary back

into the slower medium. The exploration technique called amplitude with

offset utilizes this property. Because total reflection occurs at angles

greater than the critical angle, reflected waves that originate from distant

sources will have greater amplitude than those from sources that are

“inside” the critical angle.

Figure 9. Critical

angle uc.
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The wave which travels along the interface, after the incident wave

strikes at the critical angle, is known as the head wave (see Figure 10). As

the head wave travels along the interface, it continuously feeds energy

back up into the slower medium. This escaping energy leaves the interface

at the same angle, the critical angle. Naturally, this escaping energy can be

detected at the surface by geophones, and this is the fundamental principle of

seismic refraction prospecting, the most important method of geophysical

exploration for petroleum in the 1920s. It is still used but long ago

yielded its dominant position in exploration to the reflection method.

When waves pass around an obstacle or through an aperture, they tend to

curl around the edges so that the shadow of the obstacle on the downstream

side is not sharply defined. This aspect of wave behavior is called diffrac-

tion. Diffracted sound waves can be heard around corners, and water

waves entering a harbor spread into the area behind the breakwater. The

amount of diffraction can be qualitatively determined by the ratio of the

linear dimensions of the obstacle to the wavelength l. If the obstacle has

a length approximately equal to l, then the amount of diffraction is large

(i.e., many waves easily bend around the obstacle), so that the notion of a

shadow zone becomes meaningless. In fact, a shadow zone of full darkness

exists only in the limit of zero wavelength. For example, on a piano a note at

middle C (264 Hz) has a wavelength of 1.3 m. That is comparable to room

dimensions, so a sound from around a corner is audible. However, if the

obstacle has dimensions very much greater than l, the diffraction into

the hidden region becomes negligible and the shadow of the obstacle is

relatively sharp. Geophysicists are confronted with diffracted events every

day. The most comprehensive treatment of seismic diffraction with an abun-

dance of clear and instructive figures is given in Classical and Modern

Figure 10. Head

wave in a refraction

survey.
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Diffraction Theory and in Seismic Diffraction (Klem-Musatov et al.,

2016a, 2016b).

Diffraction allows us to account for the penetration of wave motion into

regions forbidden by geometrical seismology. The law of reflection and

Snell’s law are not required to hold for diffracted rays. However,

Huygens’ principle does remain in force. Its explanation of the movement

of diffracted waves around an obstacle is shown in Figure 11.

In fact, this use of Huygens’ principle, in particular in its embodiment

in Kirchhoff’s solution of the wave equation, might be interpreted as

basic. In this sense, a reflection may be thought of as the interference

result of diffraction from points lying on the reflector. In other words,

each source of a secondary wavelet may be considered a diffraction

source. Huygens’ construction represents the resulting interference pattern.

Although each individual diffraction point on the reflecting surface does

not obey the law of reflection (because the diffracted rays travel in all direc-

tions), the resulting envelope does yield a wavefront obeying the law of

reflection.

In conclusion, we hesitantly offer a conjecture about Huygens’ prin-

ciple, hesitantly because some seismologists might consider it anathema.

Huygens’ abilities are not limited to science. An accomplished artist, an

example of his art is reproduced in Figure 12. Appearing in the original

publication of Huygens’ Traité de la Lumière, it represents his own

graphical conception of Huygens’ principle. Could it be that such an

Figure 11. Huygens’ construction of

a diffracted wavefront showing how

the wavefront A′B′ curls in behind the

obstacle.
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elegantly beautiful explanation for an ever-present natural phenomenon

resulted more from Huygens’ artistic sensibilities than from rigorous

scientific analysis?

Stress and strain

Elasticity is the property that enables a fluid or solid body to resist

change in size and shape when an external force is applied and to return

to its original size and shape when the force is removed. This concept is a

major building block in seismology because it is the elastic properties of

rocks which allow seismic waves to propagate through the earth.

The theory of elasticity is one of the major achievements of classical

physics. Its architects include many of the colossal scientific figures of the

17th, 18th, and 19th centuries, among whom are Robert Hooke, Gottfried

Wilhelm Leibniz, James Bernoulli and his nephew Daniel Bernoulli, Leon-

hard Euler, Thomas Young, Charles Augustin Coulomb, Augustin Louis

Cauchy, Claude Louis Marie Navier, Simeon Denis Poisson, and George

Gabriel Stokes. The framework, which they and others constructed to quan-

tify and analyze elasticity, derives from the basic concepts of classical mech-

anics known as stress and strain and the mathematical linkage known as

Hooke’s law.

Stresses are forces per unit area that are transmitted through a

material, i.e., forces exerted by one part of a body on a neighboring

part. Stresses that act perpendicularly to a surface are normal stresses;

Figure 12. Huygens’

principle as given in Traité

de la Lumière (1690).
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those that act parallel to it are shear stresses. As an example, consider the

force that acts at the base of a column of rock at depth z (beneath the

ground level) to support the column (see Figure 13). The weight of the

column of cross-sectional area DA is

rgz DA ,

where r is constant density and g is acceleration of gravity. This weight

must be balanced by an upward surface force

szz DA

distributed on the horizontal surface element of area DA at depth z. Here,

we assume that there are no vertical forces on the lateral surfaces of the

column. Thus, the quantity szz is the surface force per unit area acting

perpendicularly to the horizontal surface DA; that is, szz is a normal

stress. In equilibrium, the opposing forces must be the same, so

szz = rgz .

This normal stress, due to the weight of the overlying rock or overburden,

is known as the lithostatic stress.

Vertical subsurface areas also receive normal stresses. The normal stress

acting in the x direction on a plane perpendicular to the x direction is sxx.

The horizontal normal stress components sxx and syy can include large-scale

Figure 13. Normal

stress.
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tectonic forces, in which case

sxx = syy = szz .

However, there are instances in global geophysics in which rock has

been heated to sufficiently high temperatures or was initially sufficiently

weak so that the three normal stresses are each equal to the weight of the

overburden. When the three stresses are equal, they are referred to as the

pressure. This balance between pressure and the weight of the overburden

is called a lithostatic state of stress. Likewise, hydrostatic equilibrium can

exist in the sea, where pressure forces are exerted equally in all directions

and pressure increases linearly with depth.

Of course, forces also can act parallel to an area. Consider the forces

acting on the element of area DA lying in the plane of a strike-slip fault

(see Figure 14). The normal compressive force sxxDA acting on the fault

face is a consequence of both the weight of the overburden and the tectonic

forces which push the two sides of the fault together. The tangential or shear

force syxDA is the frictional resistance that opposes the tectonic forces,

driving the left lateral motion of the fault.

Both types of stress are involved in Figure 15, which is a model of a zone

of continental collision in which (as often happens) a thin sheet of crystalline

rock is overthrust upon adjacent continental rocks by means of a low-angle

thrust fault. The thrust sheet has been put in position as a result of horizontal

tectonic forces. If the influence of gravity is neglected, the total horizontal

tectonic force FT due to horizontal tectonic stress sxx is

sxx HW ,

Figure 14. Strike-slip fault.
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where H is the thickness of the thrust sheet and W is the width of the sheet.

The total resisting shear stress FR is

sxz LW ,

where L is the length of the thrust fault. Often the shear stress sxz is pro-

portional to the normal stress pressing the surfaces together. In such cases,

sxz = cszz ,

where szz is the vertical normal stress acting on the base of the thrust sheet

and the constant c is the coefficient of friction. If we assume szz has the

lithostatic value

szz = rgH ,

then by setting FT = FR, we find that

sxx = crgL .

This quantity is the tectonic stress required to emplace a thrust sheet of

length L.

The double subscript notation is necessary, because the stress on a

surface element in a solid body is not, in general, normal (perpendicular)

to that surface, but impacts the surface element at an angle. However, the

stress can be described by separating it into normal and tangential com-

ponents by the use of appropriate coordinate axes. This is illustrated in

Figure 16, where three mutually perpendicular axes (the traditional x, y, z)

Figure 15. Zone of continental collision.
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are oriented at point P. The stresses acting on the three planes normal to the

three axes, and which pass through P, are indicated. This is one of the most

conventional notations for stress. The symbol s indicates stress; the first

subscript refers to the direction of the force component and the second sub-

script to the direction of the normal to the element of area. Thus, a stress

notation in which both subscripts are identical, such as sxx, represents a

normal stress. A stress notation with differing subscripts indicates a shear

stress.

There are, in theory, as shown in Figure 16, three normal stresses and

six shear stresses. For practical purposes, however, there are only three

independent shear stresses, because

sxy = syx, sxz = szx, syz = szy .

These equalities must hold, because there can be no net torque on the small

cube, otherwise it would be spinning.

Strain quantifies the deformation or distortion that a body undergoes due

to the application of external forces. There are two basic categories: normal

strain and shear strain. The conventional notation for strain is the symbol 1

and two subscripts. Thus, 1xx represents a normal strain and 1xy represents a

shear strain.

A geologic example illustrating normal and shear strain is presented in

Figure 17. Figure 17 (left) shows a family of lines that could model a geo-

logic cross section of flat horizontal beds. Figure 17 (right) shows the same

model after a shearing distortion. The line AB initially is normal to the

family of lines (or parallel beds); but, after folding, this line makes the

angle c with the normal. The angle c is called the angular shear and its

Figure 16. Stresses acting on the three planes normal to the three axes.
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tangent is defined as the shear strain. The ratio of the increased length of

each line in Figure 17 (right) to its original length in Figure 17 (left) is

defined as the normal strain.

Because stress and strain are both expressed as ratios, they often are

confused. However, there are two important differences between them:

stresses are related to force (in fact, one working definition is that stress is

a measurement of a material’s internal resistance to an external force),

whereas strains deal strictly with configuration; and stresses specify con-

ditions at a particular instant, whereas strains compare conditions at two

different times.

For a more formal mathematical development of normal strain, let us

look at a simple situation, called homogeneous strain, in which the strain

is consistent throughout the rock. Suppose that the block of rock in

Figure 18 has been stretched uniformly so that its dimension in the

x-direction has changed. The movement ux of a rock grain initially at x is

proportional to x. The proportionality constant is DL/L, where L is the

original length of the block and DL is the change in its length. Thus,

ux =
DL

L
x .

If the strain is not uniform, the proportionality constant will vary from

place to place; in this case, the proportionality factor is denoted as a kind of

local DL/L which, when the displacement is very small (nearly always the

Figure 17. (left) Flat horizontal beds and (right) the same beds after folding.
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situation in geophysical exploration), can be expressed as

1xx =
∂ux

∂x
.

(Obviously, some mildly complicated calculus is involved. The particulars

can be found in many standard textbooks.)

The number 1xx, called the normal strain, describes the amount of

stretching in the x-direction. In general, there also is stretching in the y

and z directions, and those amounts, 1yy and 1zz, are similarly established

and defined as the normal strains in the y and z directions.

To develop a mathematical description of shear strain, we again begin

with the homogeneous case by isolating a small cube (see Figure 19) in

undisturbed rock. When the rock is deformed, the cube is transformed so

that its initially rectangular cross section has become a parallelogram. If

the strain is symmetric with respect to x and y, the total angle of shear is

composed of two equal parts, u/2. From Figure 19 (right), we see that the

x displacement ux is proportional to the y coordinate, namely,

ux = [tan(u/2)] y .

When an angle is small, it is approximately equal to its tangent, making

ux = (u/2)y and uy = (u/2)x .

Figure 18. (top) Original block

of rock and (bottom) block

stretched uniformly in x-direction.
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This permits the shear strains 1xy and 1yx to be defined as u/2. The

displacement formulas then become

ux = 1xyy and uy = 1yxx .

Now assume a slightly altered situation, as shown in Figure 20. Instead

of having both angles rotate inward toward the diagonal, let both move

Figure 19. Both angles rotate inward toward the diagonal.

Figure 20. Both angles rotate in the same direction.
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in the same direction, so that

ux = − u

2

( )
y and uy =

u

2

( )
x .

In this case, the cube is simply rotated through the angle u/2. There

is no distortion so, by definition, there is no strain. Thus, we must make

certain that our mathematical description of strain eliminates pure rota-

tions such as this. This can be achieved by defining shear strain as

the arithmetic average of the two angles, thus (because small angles

are approximately equal to their tangents, and tangents are equal to deri-

vatives),

1xy = 1yx =
1

2

( )
∂ux

∂y
+ ∂uy

∂x

( )
.

Nine strains (three normal and six shear) can exist in a three-dimensional

body, but, by extending the reasoning which establishes that 1xy = 1yx, it

follows that only three shear strains are independent.

As noted previously, because stress and strain both are expressed as

ratios, they often are confused. The two important differences between

them are as follows. Stresses are related to force (e.g., stress is a measure-

ment of a material’s internal resistance to an external force), whereas

strains deal strictly with configuration; and stresses specify conditions at

a particular instant, whereas strains compare conditions at two different

times. This is emphasized because the “state of strain at a particular

instant” is commonly discussed. This means the strain relating the body at

that instant to some earlier shape, which is almost always the original unde-

formed shape. On the other hand, the stress condition at any particular

instant can be specified completely by the force distribution at that

instant; nothing has to be known about prior force distribution.

Rocks are among the many substances that can be considered in the

context of small, perfectly elastic deformations. Thus, we can assume that

elastic theory in general and Hooke’s law (the mathematical relation-

ship of stress and strain) in particular are applicable to the forces in and

deformations of the earth. This is quite fortunate, because the essence of

Hooke’s law, stress is proportional to strain, is linear—a rarity among

physical phenomena (99% of which are nonlinear) and a great convenience

mathematically (99% of the known techniques are linear).

Seismic waves occur when the equilibrium of the particles in the earth is

disturbed. Hooke’s law can be combined with Newton’s law of motion to

analyze the wave motion. These computational manipulations, and the
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physical inferences that can be extracted from them, will be the themes of

the following sections.

Hooke’s law

In the first section of this chapter, The Wave Equation, the central topic

is traveling waves on a string. These waves propagate along the string, i.e.,

travel from one end to the other (and back). However, each point on the

string vibrates at right angles to the direction of wave motion. This type

of wave, in which particle motion is perpendicular to wave motion, is

called a transverse wave.

A sound wave can travel through any material medium (gases, liquids,

solids). In the fluid case (gas or liquid), sound waves are called longitudinal

waves because the particles of the medium vibrate along the direction of

motion. This is in contrast to a transverse wave. The displacements that

occur as a result of sound waves in air involve the longitudinal displace-

ments of individual molecules from their equilibrium positions. This

results in a series of high- and low-pressure regions called, respectively,

condensations and rarefactions. If the source of the sound waves vibrates

sinusoidally (such as the diaphragm of a loudspeaker), the pressure vari-

ations also will be sinusoidal. The term sound wave includes audible

waves (waves with frequencies within the range of sensitivity of the

human ear, typically from 20 to 20,000 Hz), infrasonic waves (frequencies

below the audible range), and ultrasonic waves (frequencies above the

audible range).

A sound wave that travels through a solid usually is called an elastic or

seismic wave. It can be either longitudinal or transverse. The purpose of this

section is to review the theoretical reasoning and some of the mathematics

which explain why both types of wave motion can propagate in a solid

medium.

Wave motion occurs in many areas, not just those included in physics

textbooks. For example, the ever-present business cycle (of which, in

recent years, geophysicists have been only too aware) represents wave

motion in the economic sphere. What’s the difference between physical

wave motion and other types of waves? The answer is given by the

English mathematician Brook Taylor in 1713. He finds that the velocity

of the traveling mechanical wave on a string depends on the string’s phys-

ical properties (i.e., its tension and density). A basic assumption is that the

displacements of the string never violate the elastic limit of the string.

Taylor finds that the wave velocity depends upon the physics. This is the

type of linkage that makes physics a science. There is no such linkage in
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economics where wave motion also predominates. But wave motion in

geophysics has physical linkage, so also in acoustics, optics, electronics,

quantum mechanics, and every other branch of physics involving wave

motion.

Linkage is the key concept in geophysics. We must link the observed

seismic waves with the physical characteristics of the subterranean rocks.

In order to prepare for this task, it is necessary to consider the fundamental

physical mechanisms involved. Taylor’s expression for the speed v of trans-

verse waves on a string is

v =
��
T

r

√
,

where T is the tension in the string and r is the linear density of the string.

Now consider a sound wave in the air. The compressed and rarefacted

regions of the air composing the wave correspond to variations in the

normal value of the air pressure. If the air has a bulk modulus B and an equi-

librium density r, then the speed of sound in the air is

v =
��
B

r

√
.

Bulk modulus is defined as the ratio of the change in pressure p to the

resulting fractional change in volume V; typically this is written

B = − Dp

DV

V

( ) .

Note that B must always be positive, because an increase in pressure,

which means Dp is positive, results in a decrease in volume. Hence,

Dp/DV is always negative, and multiplying it by −1 will ensure that the

entire expression is always positive. The symbol D indicates the increment

of a quantity in the above equation. The symbol D also is used to indicate a

completely different quantity, called dilatation, but it should be clear from

the context which usage is meant.

It is interesting to compare the two expressions for velocity. In both

cases, the speed of the wave depends upon an elastic property of the

medium (T or B) and on an inertial property r of the medium. In fact, the

speed of all mechanical waves can be determined by an expression of
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the general form

v =
������������������
elastic property

inertial property

√
.

Various elastic constants can be used to describe a solid medium, but

only two independent ones are required to specify the elastic properties.

For theoretical studies, Lamé’s constants often are used. They are the pair

l and m, where m usually is referred to as the shear modulus.

So how are Lamé’s constants determined? To answer this question, we

must return to the early years of the modern scientific revolution and the

very interesting gentleman after whom Hooke’s law is named. Robert

Hooke (1635 – 1703) is most remembered for the simple formula that

stress is proportional to strain, but, in retrospect, that discovery seems

rather incidental among an incredible number of profound speculations

and solid accomplishments in a large number of disciplines.

Hooke developed theories about the wave motion of light and the

inverse-square nature of gravitational force that anticipated Huygens and

Newton. He predicted steam engines, named the basic unit of biology the

cell, speculated that matter was composed of atoms, discovered the hair-

spring which made small chronometers possible, was the first to state that

matter expands when heated, was an ingenious instrument designer and

experimentalist, and a gifted microscopist (the drawings in his famous

book, Micrographia, are admired for their artistic merit as well as their

scientific observations). Finally, he was a skilled architect, playing a key

role in the rebuilding of London after the Great Fire of 1666. (Bethlehem

Royal Hospital, which gave the term bedlam to the language, was designed

by Hooke.)

Although he devoted little time to the earth sciences, some rank Hooke

second only to Nicholaus Steno among the geologists of the era. Hooke

studied fossils, earthquakes, the structure of crystals, and probably discov-

ered independently (and perhaps prior to Steno) the law of constancy of

interfacial angles. He speculated about evolution two centuries before

Darwin and proposed a dynamic earth model three centuries before the

plate tectonics revolution.

Hooke accomplished all of this by age 42. He lived another 25 years but

did little more of importance, spending most of the time arguing over scien-

tific priority—particularly with his greatest contemporary, and bitterest

enemy, Sir Isaac Newton. It has been suggested that the extraordinarily

nasty relationship between Hooke and Newton was a major factor in the
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latter’s nervous breakdown in 1692. However, Newton recovered and his

ideas dominated European science, to the detriment of the reputations of

Hooke and others, for the next two centuries. Hooke’s discovery of the

relationship between stress and strain probably dates from the 1660s, but

he did not publish it until 1678. The mathematics of the time did not

allow him to develop the principle into the sophisticated form that makes

it an invaluable tool in physics. This was done by others, primarily

Cauchy (1823) and Stokes (1845), who produced the modern theory that

is studied today.

Hooke’s scientific work combined the generosity of the new age and the

parsimony of the past. He was active in promoting schemes for cooperative

endeavor, such as weather records, and he was lavish with fruitful sugges-

tions. Hooke, however, also had an anxiety to wear the laurels of priority.

He was the last well known author to use the time-honored device of secur-

ing priority by preliminary announcement in an anagram. He first gave

Hooke’s law as the anagram ceiiinosssttuv two years before he disclosed

the solution ut tensio sic vis in a published description of the experimental

evidence supporting the law.

Hooke’s law says that the pulling power of a stretched string is

proportional to the displacement. This is the case of a body subjected to

deformation in a single direction. Hooke’s law simply says that, for a

linear body, such as a string, normal stress sxx is proportional to normal

strain exx, that is,

sxx = Eexx .

The proportionality constant is called Young’s modulus (named after

English scientist Thomas Young, whose versatility rivals that of Hooke,

but that’s another and later story). For most materials, Young’s modulus

is of the order of a megabar (1012 dynes/cm2).

Even so, this simple form of Hooke’s law does not hold in three dimen-

sions. The concept known as dilatation must be developed before the

3D form of the law can be derived. The stresses and strains in a three-

dimensional body are described in the previous section. There are three

normal stresses sxx, syy, szz and six shear stresses. However, there are

only three independent shear stresses, because

sxy = syx, sxz = szx, syz = szy .

The same reasoning shows that there are three normal strains and six shear

strains but only three independent shear strains.
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The development of a mathematical foundation for seismology requires

that the nine stress components be linked to the nine strain components for

each small piece of rock. The 3D form of Hooke’s law provides this relation-

ship and gives us a vital insight into the nature of wave motion in the earth

(or any other solid body). If it is assumed that the rock is isotropic, i.e., non-

crystalline so that there are no preferred directions, the stress components

must be related to the strain components in a way that does not depend

on the coordinate directions. This means the sxy and exy must be related

in only one form,

sxy = (constant) exy .

This constant is defined to be the Lamé shear modulus cited earlier.

Actually, for mathematical convenience, this constant usually is denoted

by 2m, which produces

sxy = 2m exy, sxz = 2m exz, syz = 2m eyz ,

the mathematical form of the relationship between shear stresses and shear

strains.

An obvious initial assumption is that this form would hold for the

relationship between normal stress and strain (i.e., sxx = 2m exx). But this

is not correct, because normal strains result in a change in area (2D) or

volume (3D). This involves dilatation, the basic concept which brought

mathematical immortality to Gottfried Wilhelm Leibniz (1646 – 1716) as

co-inventor of calculus. Although Leibniz sometimes is called the most bril-

liant intellect in an age when genius was fairly common, he is practically

forgotten in the final years of his life. And, when he initially is resurrected,

it is as the prime target in Voltaire’s merciless satire, Candide (1758).

Ultimately, however, Leibniz reassumes an honored place in this history

of science because his dilatation concept—not the fluxions of Newton—

became the foundation of modern calculus. The Leibniz theory is superior,

because it introduces multiple variables at the outset. And, because it is

based on area instead of Newton’s tangent lines, the fundamental tie with

integration (also based on area) becomes more apparent.

Consider the rectangle (dark portion) with sides u and v in Figure 21.

The product uv represents the area, and the symbolism d(uv), called the

differential of uv, represents an incremental increase in the area (or, in the

physics of Leibniz, a small pulsation). The light portion of Figure 21 rep-

resents the differential d(uv).
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Figure 22 shows that the differential is the simple sum of three elements:

the two slabs udv and vdu plus the tiny section in the corner, du dv, or

d(uv) = udv + vdu + du dv .

Leibniz, more or less by intuition, eliminates the last term, thus deriving

the fundamental equation of differential calculus. It is the masterstroke of

genius, although it was not appreciated at the time. The formal proof is

written by Augustin-Louis Cauchy more than a century later. This often is

cited as the date that rigor (some say rigor mortis) became an integral part

of mathematics.

After elimination of the last term, the percentage increase in area can be

obtained by dividing the differential by the original area,

d(uv)

uv
= dv

v
+ du

u
.

Figure 21. Area (dark

portion) and its incremental

increase (light portion).

Figure 22. The sum of three

elements.
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Analysis of this equation shows that the percentage increase in area is

the sum of the percentage increases of the two sides (which is a very

welcome discovery, because it introduces linearity into the calculations

by replacing a product with a sum). The obvious counterpart for this

equation in elasticity theory is

D = exx + eyy ,

because the definition of normal strain is the ratio of change in length to the

original length. Extension to 3D is straightforward,

D = exx + eyy + ezz ,

which says that the dilatation (the ratio of the increase in volume of a small

piece of rock to the original volume) is equal to the sum of the three normal

strains.

Adding the dilatation to Hooke’s law results in a formula for normal

stress with the basic form

sxx = 2mexx + (constant) D .

This new constant is defined as the other previously mentioned Lamé con-

stant. Hooke’s law for the three normal stresses thus reads

sxx = 2mexx + lD ,

syy = 2meyy + lD ,

szz = 2mezz + lD .

The next sections will explain how the two types of seismic wave

motion, longitudinal and shear, are extracted from Hooke’s law.

Cartesian fields of dilatation

Throughout history, there has always been a struggle in the human

mind between the discrete and the continuous. This difference in view-

point climaxed in the 17th century because of a fundamental conflict in

the cosmologies of Descartes and Newton. The 17th century was arguably

the century of scientific genius: Kepler, Napier, Bacon, Galileo, Descartes,

Fermat, Pascal, Huygens, Hooke, Boyle, Leeuwenhoek, Newton, and

Leibniz.
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Descartes and Newton stand apart from this pantheon of scientific

immortals. The former was the key figure in establishing modern science;

the latter endowed it with concepts that were so consistently successful

that science soon gained the position of respect—if not outright awe—

that it has held ever since.

Both Descartes and Newton saw the necessity of introducing mathemat-

ics into physics; and both are ranked with the greatest mathematicians, even

though both treated mathematics as a tool to further physical investigations

and not as an end in itself.

Their major difference was in style. Descartes gave total freedom to his

imagination which usually outran contemporary experimental results and

mathematical knowledge. Newton operated at the other extreme, exercising

iron control over his scientific intellect. This was perfectly exemplified in his

declaration, Hypotheses non fingo, usually translated, “I do not form hypoth-

eses.” Newton was referring to the distinction between unfounded hypoth-

eses and experimental evidence. In Principia (Book 3, Rule 3), Newton

wrote, “We are certainly not to relinquish the evidence of experiments for

the sake of dreams and vain fictions of our own devising.”

The major difference in the systems proposed by Newton and Descartes

was caused by the controversial concept of “action at a distance.” Newto-

nian science conceded that interaction between discrete and separated par-

ticles must be occurring. An example—indeed, the fundamental example

upon which his entire system rests—was gravitational attraction; another

was electrical attraction between two charged particles. Cartesian science,

conversely, did not allow the possibility of discrete particles interacting

through empty space; instead, it filled all space with an ethereal substance

which acted on bodies (as a chip of wood is carried about by an eddy in a

pool). In this system, the force of gravity on a planet was but a manifestation

of a much different reality—the sweeping of the planet through space by a

Cartesian vortex.

Contemporary debate over these contrasting views was intense and was

put into stark relief by Voltaire when he wrote in Lettres Anglaises,

“A Frenchman who arrives in London finds a great change in philosophy,

as everything else. He left the world full, he finds it empty. In Paris one

sees the universe composed of vortices of subtle matter. In London one

sees none of this.”

The debate lasted almost a century, but Newtonian physics, about 1740,

ultimately gained universal acceptance in Europe’s scientific community.

However, this situation was not permanent. Descartes’ ideas reemerged in

a different guise in the middle of the 19th century. The researches of

Michael Faraday and James Clerk Maxwell on electromagnetism led to
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experimental results which could only be explained by the introduction of

electromagnetic fields.

The fields, like Cartesian vortices, fill all space. From a physical point of

view, the concept of a field is necessary in our attempt to visualize how one

body affects another. Instead of assuming that separated bodies can interact

without anything transpiring through the finite distance between them, we

imagine that an object creates (or is surrounded by) a field. Any other

object which contacts this field is affected by it. The type of field is deter-

mined by the physical characteristics of the object from which it emanates.

The notion of a field is extremely important in geophysics. Consider the

top of a stove with one burner turned on. The heat flows from the burner

to other points on the top of the stove. The temperature distribution on the

stove top represents a field, and the temperature at any point on the stove

top is a function of the spatial coordinates x, y and the time coordinate t.

Because temperature is a scalar quantity (possessing magnitude but not

direction), the set of all temperatures forms a scalar field. The tempera-

ture distribution in the solid earth represents a scalar field with three

spatial coordinates and a time coordinate. A familiar scalar field is a topo-

graphic map, the field being the elevation of the surface of the earth

above mean sea level.

The topographic map is also a convenient way to introduce an important

concept, one that is familiar to everyone who has climbed a mountain. This

is the gradient, abbreviated grad. The gradient is the scalar field manifes-

tation of the mathematical operation known as differentiation in calculus.

As a climber goes up the mountain, he experiences the rate of change of

elevation. The gradient is defined as the vector (because it has both magni-

tude and direction) which points in the steepest direction (i.e., the direction

in which the rate of change is greatest). The magnitude of this vector is the

rate of change of the elevation along this path. Thus, if the climber continu-

ally follows the gradient, he will take the shortest path to the top of the

mountain.

An important property of the gradient is that its direction is always

perpendicular to the contour curve. This is extremely useful because

it means that the gradient is related to the contour curve in a way that is com-

pletely independent of any particular coordinate system. For example, if one

topographic map is made with respect to true north and another with respect

to magnetic north, the gradient on each is the same.

The map of the gradients at all of the points forms a vector field

(because, of course, each gradient is a vector). Geophysics routinely

addresses many different types of vector fields, such as the flow of water

in the ocean, gravity fields, electromagnetic fields, and seismic wavefields.
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A physical quantity is called

a vector if and only if (1) it has a

numerical magnitude, (2) it has a

direction in space, and (3) it

obeys the parallelogram rule for

addition. Three examples of

vectors are displacement, veloci-

ty, and acceleration of a particle.

In a Cartesian (x, y, z) frame, the

three base vectors are i, j, and k.

They point in the x, y, z direc-

tions, respectively. The magnitude of each base vector is one. A vector is

depicted by a pointer having its direction and magnitude. If the vector per-

tains to point P, the tail of the vector is placed at point P. A vector u is

denoted by a boldfaced letter and its magnitude by the corresponding

italic letter u; that is, u = |u|. A three-dimensional vector field u(r) is a func-

tion of position

r = xi + yj + zk = (x, y, z) .

Let u = u1i + u2 j + u3k and v = v1i + v2 j + v3k be two vectors (see

Figure 23). Let the angle between them be u. The dot product (or scalar

product or inner product) is defined as

u · v = u1v1 + u2v2 + u3v3 = uv cos u .

Unless u and v are parallel, they determine a plane. The cross product is

perpendicular to the plane defined by the two vectors. Let u be the angle

between the two vectors. Let n be the unit vector perpendicular to this

plane and pointing in the right-side direction. Then, the cross product (or

vector product) of u and v in that order is defined as

u × v = n uv sin u =
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
∣∣∣∣∣∣ .

The magnitude of the cross product is

|u × v| = uv sin u .

Thus, the cross product provides the area of the parallelogram spanned by

the two vectors.

 

Figure 23. The cross product.
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Taking the two vectors, we can write every combination of components

in the grid shown below.

v1 v2 v3

u1 u1v1 u1v2 u1v3

u2 u2v1 u2v2 u2v3

u3 u3v1 u3v2 u3v3

The elements of the dot product are along the diagonal. The elements of

the cross product are off the diagonal. The dot product measures similarity

because it only accumulates auto-interactions. The cross product measures

cross-interactions.

Define the vector ∇ given by

∇ = ∂

∂x
,
∂

∂y
,
∂

∂z

( )
.

For a scalar function f, the gradient is defined as the vector

∇f ; grad f = ∂f

∂x
,
∂f

∂y
,
∂f

∂z

( )
.

The differential dr is

dr = (dx, dy, dz) .

We have

∇f · dr = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz = df .

Let ds = |dr|. Thus, dr/ds is a unit vector, which is called the unit

tangent vector. The above equation produces

df

ds
= ∇f · dr

ds

( )
.

Because dr/ds is a unit vector, it follows that ∇f · (dr/ds) is the com-

ponent of ∇f in the direction of dr. Thus, the gradient of f is a vector

whose component in any direction is the derivative of f in that direction.

At a given point, the component df/ds will have its greatest value when

dr is in the same direction as the gradient. Thus, the gradient extends in

the direction in which the derivative of f has its maximum value.
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Through each point P in the vector field, there passes a surface given by

f(x, y, z) = constant. On this surface,

∇f · dr = df = 0 .

This result shows that the gradient is perpendicular to every vector dr on the

surface at point P. Consequently, the gradient is normal to the surface.

Corresponding to the dot product and the cross product are the diver-

gence and curl, respectively. (Note: European authors often use the notation

rot u instead of the notation curl u used here.) For a vector u = (u1, u2, u3),

the divergence and curl are, respectively,

∇ · u ; div u = ∂u1

∂x
+ ∂u2

∂y
+ ∂u3

∂z
,

∇× u ; curl u =

i j k

∂

∂x

∂

∂y

∂

∂z

u1 u2 u3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
.

The normal and tangential components of a vector may be defined with

respect to either a line or a surface. Usually, we will make use of a mixture;

that is, the unit vector n that is normal to a surface, and the unit vector t that is

tangent to a line.

Let u be a vector field and let C be a curve in three-dimensional space.

The position vector r is defined as the vector from the origin O to a point P on

the curve. The differential vector dr is called the differential distance vector

at point P. The length of the differential vector dr is the differential arc

length ds along the curve at P. The differential vector dr also gives the

direction of the curve at P. The unit tangent vector t to the curve at point

P is specified by

dr = dr

ds
ds = t ds .

In what follows, we will utilize the scalar differential

u · dr = (u · t) ds .

Let u denote the angle between u and t. Because |t| = 1, this differential

may be written as

u · dr = |u||t| cos u ds = ut ds .
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In other words, the differential u · dr is equal to the product of the com-

ponent ut of u in the direction of the curve at P and the differential length ds.

The line integral of u taken along the curve between two specified end

points P0 and P1 is defined as

∫P1

P0

u · dr =
∫P1

P0

(u · t) ds .

Line integral is a generic term which applies to any vector field, but the

name work integral actually derives from the special case in which the field

is a force field. For the moment, let u represent force. The work done by the

force on the specified path from points P0 to P1 is the work integral

W =
∫P1

P0

u · dr .

The work integral evaluates the integral of the component of u along the

line. This usage of the word “line” includes a curved line as well as a straight

line. Because dr = t ds, we see that

W =
∫P1

P0

u · t ds .

Because |t| = 1, the dot product is

u · t = |u| |t| cos u = |u| cos u = ut .

Here, u is the angle between the two vectors and ut is the component of u on

the tangent to the line. Thus, the work integral is

W =
∫P1

P0

ut ds .

The line integral is a summation of contributions along any arbitrary

curve (not excluding a closed curve) in a vector field. Each contribution is

the product of the vector component in the direction of the path multiplied

by the path length. When the vector represents force, the line integral is

called a work integral because it gives the total amount of work performed

in traveling along that curve. But the usefulness of the line integral is by no

means confined to cases where the vector field is a force field. For example,

in fluid dynamics, the vector may be velocity (so it is a velocity field). If the

curve is closed, the work integral actually defines the circulation around

that curve. The work integral is a scalar quantity because work is a scalar.
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The value of the work integral depends, in general, on the curve C but not on

the coordinate system used in the evaluation.

Generally, the value of the line integral between the given points

depends upon the path chosen. If two different paths join the same end

points, the line integral along one path does not have to be the same as

the line integral along the other path. However, suppose that u is the gradient

of a function f; that is, u = ∇f. Then,

u · dr = dr · u = dr · ∇f = df .

Thus, the line integral becomes

∫P1

P0

u · dr =
∫P1

P0

df = f(P1) − f(P0) .

This shows that, if u = ∇f, then the line integral depends only upon the

end points. In such a case, the line integral about a closed path is zero. Con-

versely, if the line integral about a closed path is zero for every closed path,

then it can be shown that there is a function f such that u = ∇f. The line

integral around a closed path is called the circulation. Thus, the circulation

is zero if and only if u = ∇f. Such a function f is called the potential. Path

independence of the line integral is equivalent to the vector field being

conservative. It is an identity in vector calculus that, for any scalar function

f, it is true that ∇ × ∇f = 0. A field with zero curl is called irrotational.

Thus, a conservative vector field is irrotational.

Using Figure 24, let g be the angle between the unit normal vector n and

a vector u. The normal component of u relative to the surface S is

un = u · n = u cos g .

Figure 24. Normal

component relative to the

surface.
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Next, using Figure 25, let u be the angle between the unit tangent t
and a vector u. The tangential component of u relative to line C is

ut = u · t = u cos u .

Two concepts from integral calculus—the flux integral and the work

integral—are important. The remainder of this section defines the flux inte-

gral and its relationship to divergence. The next section will define the

line integral and its relationship to curl. Ultimately, these concepts will be

integrated into a discussion of Hooke’s law to explain seismic wave

propagation.

Moving to Figure 26, consider a small surface, such as a postage stamp

of area dS. The word “flux” designates the flow of a field through a particular

area. If the vector cuts through the stamp at an angle, the flux is defined as the

area of the stamp times the component of the vector in the direction of the

normal. In the extreme case, the vector is parallel to the stamp, so it does not

cut through the stamp at all. In this case, the normal component is zero, and

thus the flux is zero.

A school of fish is swimming along a flow line. If a net is placed perpen-

dicular to the flow line, the most fish will be caught. It the net is placed

oblique to the flow line, less fish will be caught. If the net is placed along

Figure 25. Tangential

component relative to the

line.

Figure 26. Case in

which a vector cuts the

postage stamp at an

angle. Flux equals

volume of box.
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the flow line, no fish will be caught. However, suppose that the mesh of the

net is so large that the fish pass right through the net. Instead of saying the

number of fish caught, we say the number of fish that pass though the net.

This number is called the flux. Flux is the amount of a quantity passing

through a surface. The flux depends on the strength of the field, the size

of the surface, and the orientation of the surface relative to the direction

of the field. In other words, the flux depends upon the number of fish

going along the flow line, the size of the net, and the orientation of the net

relative to the direction of the flow line.

Let u be a vector field. Let n be a unit normal vector to the surface. Let

the area of the surface be dS. The flux through the surface is determined by

the component of u that is in the direction of n, i.e., by un = u · n = u cos u.

Thus, the flux is

flux = u cos u dS = un dS .

The flux integral is a straightforward extension of this basic definition.

Take any arbitrary surface, such as a geologic interface that has been bent

and deformed, and divide its total area into a lot of contiguous postage

stamps. The flux integral of a vector field through this interface is the sum-

mation of the fluxes for each postage stamp (as the limit of the area of each

stamp becomes infinitesimal).

A surface S is closed if it is the entire boundary of a three-dimensional

region. A sphere is a perfectly round geometrical object in three-dimen-

sional space that has the surface of a completely round ball. In other

words, the sphere is the surface, not the ball inside. A sphere and an egg

shell are examples of a closed surface. A field line crossing S from inside

to outside is said to be leaving the volume. A field line crossing S from

outside to inside is said to be entering the volume. If N1 lines are leaving

and N2 lines are entering, then N1 − N2 is called the net number of lines

emerging from the volume. For convenience, we drop the word “net”

used in this context. We have the statement

outward flux of u = number of lines of u emerging .

The equation is

outward flux of u =
∫∫

S

un dS =
∫∫

S

u · n dS .

In summary, if the surface is closed around a region, then the flux inte-

gral over the surface area yields the total flux of the field emerging out

through the surface.
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Divergence is the rate of flux expansion (positive divergence) or flux

contraction (negative divergence). A positive divergence at a point means

that the point is a source. A negative divergence means that the point is a

sink. A divergence of zero means there is neither expansion nor contraction.

The divergence of a vector is the ratio of the flux of a closed surface divided

by the volume contained by the surface (as the limit of the volume becomes

infinitesimal); that is,

divergence of vector = flux

volume
as volume � 0 .

Divergence is a scalar quantity because both flux and volume are

scalars. Let S be the surface and V be the region. In mathematical terms,

the above word equation is

div u = lim
V�0

1

V

∫∫
S

u · n dS .

A very important result is developed straightforwardly from this defi-

nition. Assume that many small contiguous cells are crowded together

inside a large egg. According to the definition just given, we see each cell

satisfies the relationship

flux = divergence × volume .

Now, add these equations over all of the infinitesimally-small interior

cells that compose the volume inside the closed surface. The summation

of the left side (i.e., the flux) is called the flux integral. This integral gives

the outward flux through the closed surface because all of the interior

fluxes cancel. The flux integral is

∫∫
S

u · n dS .

The summation of the right side (i.e., divergence times volume) is called

the volume integral. The volume integral is

∫∫
V

div u dV .

Chapter 3: Elasticity 171

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



If we equate the above two integrals, we obtain

∫∫
S

u · n dS =
∫∫

V

div u dV

or

∫∫
S

unS =
∫∫

V

div u dV .

This result is called the divergence theorem or the flux theorem. It also is

known as Gauss’s law or as a form of Green’s theorem. This link

between area and volume is of great importance in applied mathematics.

Figure 27 illustrates the divergence theorem, which is as follows. The

surface integral of normal component times surface element (of closed

surface) is equal to the volume integral of divergence times volume

element (of region within the surface).

This result also maneuvers us into a position to adapt the fundamen-

tal idea of Descartes—a wavefield pervading all space—to seismology.

Figure 27. The divergence theorem illustrated—both sums (actually integrals) are

the same.
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We commonly think of a seismic wavefield extending through the subsur-

face rock layers. Its simplest form would occur in an unbounded elastic

solid that is homogeneous (the same at all points) and isotropic (the same

in all directions). In cases where the stresses on this solid are not in equi-

librium, wave motion can result.

Unbalanced stresses cause a small particle to oscillate about its equi-

librium position. This displacement is a vector (usually designated u)

which has length equal to the amount of movement and direction equal to

the direction of displacement. Both quantities vary as time varies. The

vector field u at all points and all times makes up the seismic wavefield, a

direct application of the Cartesian description of nature.

Divergence is the vector form of the calculus concept of dilatation, and

this relationship is a key to the vector treatment of wave motion. Consider

the 1D case shown in Figure 28. All movement occurs along the x axis.

The coordinate of point P in its undisplaced position is x, and its displaced

coordinate is x + u. Thus, the quantity u is the displacement. In order to

define the strain at point P, we must consider how its position relative to

adjacent points has changed. Point Q is very close to P and has coordinate

x + Dx in its undisplaced position. Q’s displacement is u + Du. The Du

can be identified as the flux issuing from the 1D “volume” Dx, so the

divergence of u can be written as

div u = flux

volume
= Du

Dx
,

but the last expression is the normal strain 1xx. Therefore,

div u = 1xx .

Figure 28. Displacements of points P and Q. Both of the above lines should be

superimposed because P and Q lie on the same line, but the diagram is drawn this

way for clarity.
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The 2D case is shown in Figure 29. The flux is the dotted area, making

the total flux

DyDu + DxDv .

The 2D “volume” is DxDy. Thus, the divergence of vector u (with

components u and v) is

div u = flux

volume
,

which is

div u = DyDu + DxDv

DxDy
= Du

Dx
+ Dv

Dy
.

However, the two ratios on the right are, respectively, the normal strains

1xx and 1yy. The sum of these strains is, by definition, the dilatation D and is

equivalent to the divergence of the displacement vector u. Similar reasoning

extends the result to three dimensions, that is,

div u = 1xx + 1yy + 1zz = D .

In other words, div u gives the net amount by which a small box is being

alternately compressed and stretched as a particle oscillates. Divergence,

then, represents motion in the normal directions and none in the tangential

directions. In the forthcoming section on equations of motion, we will show

that, if this small box is in the earth, this dilatation propagates as wave

motion. The resulting waves are known as compressional waves or longi-

tudinal waves or P waves, and they are the most important type of wave

used in seismic exploration for petroleum.

Figure 29. Flux and volume in

the 2D case. Remember that

Leibniz says we can forget the

smallest area (upper right

rectangle) as it is an

infinitesimal of higher order.
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This is a stunningly practical resurrection of the Cartesian vortices,

a concept that once seemed permanently exiled from respectable sci-

entific discourse. Voltaire, in his preface to the French translation of

Newton’s Principia, writes: “If there were still somebody absurd

enough to defend subtle and twisted (screw-formed) matter. . .that produces

gravity, one would say: this man is a Cartesian; if he should believe in

monads, one would say he is a Leibnizian. But there are no Newtonians,

as there are no Euclideans. It is the privilege of error to give its name to

a sect.”

Voltaire’s harsh judgment did not meet the test of time. Today, Euclid-

ean geometry is but a sect of the more general non-Euclidean geometry,

and Newtonian physics is but a sect of quantum physics. And, Newton’s

gravitational attraction through empty space is but a sect of Einstein’s

theory of gravitation (also known as general relativity). In Einstein’s

theory, space itself is curved by twisted and screw-formed matter, and

this curvature is what causes gravitational attraction. This makes Einstein,

in Voltaire’s definition, a Cartesian.

Cartesian fields of rotation

The protracted struggle between the systems of Descartes and Newton

transformed both of them into symbolic figures. One, Newton, embodied

the ideal of modern and successful science, firmly based upon experimental

data which is subjected to precise mathematical treatment. The other, Des-

cartes, symbolized a reactionary and fallacious attempt to subject science to

metaphysics, disregarding experiments and, indeed, replacing them by fan-

tastic and unprovable hypotheses about the behavior of matter. The latter

view was, of course, the one propagated by the Newtonians. The Cartesians

stated the situation somewhat differently.

Rene Descartes (1596 – 1650) was an eminent French scientist and phi-

losopher. His Cartesian system established the ideal of mathematical certi-

tude in metaphysical demonstrations and, by brushing aside the then

familiar scholastic subtleties, introduced modern philosophy and science

of thought. Sir Isaac Newton (1642 – 1727) was a revered English natural

philosopher and mathematician. He has been credited with the invention

of calculus, the formulation of the laws of motion and the law of universal

gravitation, and the discovery of the spectrum of light.

The Cartesians recognized the great superiority of Newtonian precision

as compared to the Cartesian cosmology. But they rejected outright Newto-

nian attraction because they saw instantaneous action-at-distance as an

occult quality or, even worse, as magic or miracle. They did not admit the
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existence of a perfectly void space, that is, the existence of “nothing”

through which gravitational attraction was supposed to act. Descartes’

teachings denied the existence of a void or vacuum and held that spatial

extension and matter were identical.

Voltaire (Letters, c. 1779) wrote: “Geometry, which Descartes had, in a

sense, created was a good guide and would have shown him a safe path to

physics. But at the end he abandoned this guide and delivered himself to

the spirit of the system. From then on, his philosophy became nothing

more than ingenious romance. He created a world that existed only in his

imagination and filled it with vortices of subtle matter, the speed of which

some people even calculated.”

The last comment was a jibe at Huygens, who was the first to calculate

the actual speed of light. Voltaire’s attack was probably prompted by

Huygens’ non-acceptance of Newton’s gravitational theory. Huygens

thought any theory that did not include a mechanical explanation was fun-

damentally flawed. His own ideas about gravity were based on Cartesian

vortices.

Despite the disdain with which Voltaire and other Newtonians treated

Cartesian vortices, the idea was not so ridiculous as their sneering suggests.

Huygens was not the only great name who accepted it and attempted to

extend the theory. Varignon, Leibniz, Kant, and Laplace were all influenced

by the concept of cosmic vortices.

The wholesale shift of Descartes’ thinking back into the forefront of

physics began with the work of Leonhard Euler. This most prolific mathe-

matician of all time developed the mechanics of fluid media, thereby provid-

ing an idealized mathematical model of the transmission of action in a

continuous medium. His mathematics enabled those who thought of

energy as something propagated across space to interpret this concept in a

precise manner. Euler’s work formed the basis of a new metaphor—the

field. A field can be understood roughly as a region of space in which

each point is characterized by quantities (scalar or vector) that are functions

of the space coordinates x, y, z and time t.

Faraday provides the experimental evidence suggesting the existence of

the field in the first half of the 19th century. Maxwell, shortly afterward,

unifies light, electricity, and magnetism with a single formulation—the elec-

tromagnetic field—that is now a cornerstone of physical theory. In electro-

magnetism, the easiest circumstance to treat is the case in which nothing

depends upon time—the static case. All charges are permanently fixed in

space; or, if they do move, they move as a steady flow in a circuit (so

both the charge density r and the current density j are constant). In this

case, the electromagnetic field breaks into two fields that are not
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interconnected. The electric field E and the magnetic field B are distinct

phenomena as long as charges and currents are static.

The electrostatic field, a vector field represented by a vector E which

does not change with time, is due to electric charges represented by the

charge density r. If a small region of space contains positive charges,

then the field vectors E will emanate from that source; and if a small

region contains negative charges, the field vectors will flow to that sink.

Therefore, the source points of the field are those for which the divergence

is greater than zero, and the sink points are those for which the divergence is

less than zero. [Figure 55 in Chapter 2 shows field lines (solid) and equipo-

tentials (dashes) for two equal and opposite point charges. The positive

charge is an isolated source, and the negative charge is an isolated sink.]

Mathematically, the divergence of the electrostatic field E is

div E = r

e0

,

where the sources are represented by the charge density r, and e0 is the elec-

tric constant. This formula is known as Gauss’s law and is one of Maxwell’s

four equations. It also relates to the modern theory of seismic wave propa-

gation (to which we shall return after the introduction of a complementary

concept).

If the density of an electric current (designated j ) through a wire is

constant, a static magnetic field B will surround the wire (Figure 30),

making loops around the currents. There is an electric charge, but there is

no magnetic charge. Magnetic fields do not diverge from a source so, in

every case,

div B = 0 .

Figure 30. The magnetic

field (only two lines

illustrated) outside of an

infinitely long straight wire

carrying a constant electric

current.
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However, the magnetic field does have a rotation or curl that is pro-

portional to the current density; that is,

curl B = m0 j ,

where m0 is the magnetic constant.

Curl is a concept which also can be applied to any vector field. An elec-

trostatic field has sources but no rotation, so in every case

curl E = 0 .

To summarize these concepts—which are of major importance in geo-

physics—an electrostatic field E may be described as a vector field with a

given divergence and zero curl, while a magneto-static field B has a given

curl and zero divergence.

Curl is one of two basic differential operators used on vector fields

(the other is divergence). Curl is best explained via the so-called work

integral. In physics, the quantity known as “work” is defined as the

product of the force component in the direction of a path and the length

of the path. When the path is straight, this definition can be applied

directly. If the path is curved, it is more complicated. The computation

must take into account that the force may vary in both magnitude and

direction, and that the path followed also may change in direction. The

curve must be broken up into many small straight-line segments; then

the work along each segment is computed and all of these are summed.

This summation becomes the work integral (in the limit when each

segment becomes infinitesimal). Let u be the field vector, let r be the

vector from the origin to a point on the line, let ds be the differential of

arc length, and t be the unit tangent vector of the line. The differential

dr is defined by the equation

dr

ds
= t .

Now, let u represent any vector field. Then more frequently, the work

integral is called a line integral.

Let C1 and C2 be two closed curves with a common segment (Figure 31).

Let the line integral be taken around each curve so that the common

segment is traversed in opposite directions. Then, the contribution to the

line integral for each curve is equal and opposite for the common

segment. Thus, the sum of the two line integrals is equal to the single line

integral over the closed curve which consists of the two original curves

less their common segment.
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Let us say a few words before we give the formal definitions of curl. Let

us choose u to represent the velocity field of water, which we take to be

incompressible. The water is swirling. Let us put a small paddle wheel in

the water (Figure 32), which is free to rotate about its axis. The small

wheel would start to spin because the impinging water would exert a net

torque on the paddles. Its angular velocity will vary depending upon the

location of the wheel and the positioning of its axis.

If the wheel turns, then the field has curl at that point. If it does not

turn, then the field has zero curl at that point. If a field has zero curl

Figure 32. A small

paddle wheel rotating

in circularly rotating

water.

Figure 31. The coalescence of two closed curves C1 and C2 into a single closed

curve C. The contributions to the work integral along the common segment cancel

out because of the opposite senses of circulation along this segment.
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everywhere, then the field is called irrotational. If the paddle wheel turns,

the water is pushing harder on one side than the other, making it

rotate. The greater is the rotation, then the bigger is the curl. For a conser-

vative field, the work needed to move from point A to point B, along any

path, is the same. Gravity is an example of a conservative field. The

energy yielded by falling is the same as the energy required for lifting.

Conservative fields have zero curl. If a field has non-zero curl, then it is

not conservative.

The curl is a vector. It has magnitude and direction. The magnitude

represents the amount of rotation at a point. How do you find the direction?

You must orient the axis of the paddle wheel so that you achieve maximum

rotation. In other words, the direction of the curl is the direction that results

in the most rotation.

The line integral provides the means for defining the curl (see Figure 33).

We take a point P within a vector field u. The curl of u is also a vector, which

is denoted by curl u. At point P, we take a fixed unit vector n and consider

any small surface element A with this fixed vector as the normal. This

small surface element is bounded by a small closed curve C. Denote

the angle between curl u and n by u. The normal component (i.e., the com-

ponent in the direction n) of curl u is the scalar quantity given by

curln u = (curl u) · n = |curl u| |n| cos u = |curl u| cos u .

The circulation represents how much the field pushes in traversing

around the path. Accordingly, the circulation is the line integral of a

vector u around the path. Let the path be the circumference of the small

Figure 33. Geometry

used to define the curl.
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closed curve C. Thus, the circulation is

circulation around the closed curve C =
∫

C

u(r)dr .

The normal component curln u is the projection of curl u onto the normal

vector n. It is important to remember that curln u is a scalar. The normal com-

ponent is given by

curln u = circulation around the closed curve C

area A within closed curve C
.

This definition holds in the limit when the area A becomes infinitesi-

mally small. Mathematically, the above equation is

curln u = lim
A�0

1

A

∫
C

u · t ds .

The integrand is the tangential component to the vector; that is,

u · t = |u| |t| cos u = |u| cos u = ut .

Thus, we may write

curln u = lim
A�0

1

A

∫
C

ut ds .

Now, we wish to give a heuristic proof of a very important relationship,

called Stokes’ theorem.

Using Figure 34, we subdivide the surface S into a set of small surface

elements, each approximately rectangular. We will prove the theorem for

Figure 34. Surface S

composed of a set of small

rectangular elements.
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any of these separate small rectangles. This suffices to prove the theorem in

general, because we can sum over all of the small rectangles. The sum of the

surface integrals over the separate rectangles equals the surface integral over

the entire surface. Because the line integrals over interior boundaries cancel

in pairs, it follows that the sum of all of the line integrals equals the line inte-

gral around C.

Then, using Figure 35 to establish Stokes’ theorem for a small rectangu-

lar area, we choose the coordinate axes so that the x and y axes are along the

sides of the rectangle. The z axis is in the direction of the unit normal vector

n. Thus, n = k, where k is the unit vector in the z direction. Define the four

line integrals for the four sides of the rectangle as

L1 =
∫a

0

u1(x, 0)dx ,

L2 =
∫b

0

u2(a, y)dy ,

L3 =
∫0

a

u1(x, b)dx ,

L4 =
∫0

b

u2(0, y)dy .

Then, the line integral around the entire small rectangle is

I =
∫

C

u · t ds =
∫

C

ut ds = L1 + L2 + L3 + L4 .

Next, we wish to evaluate the surface integral

J =
∫∫

S

(curl u) · n dS .

Figure 35. A separate small

rectangle.
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The curl is

curl u =

i j k

∂

∂x

∂

∂y

∂

∂z

u1 u2 u3

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
.

Because n = k, it follows that

(curl u) · n = (curl u) · k = ∂u2

∂x
− ∂u1

∂y
.

Therefore, the surface integral equals

J =
∫∫

S

(curl u) · n dS =
∫b

0

∫a

0

∂u2

∂x
− ∂u1

∂y

( )
dx dy .

We now split the surface integral into the difference of two integrals,

choosing the order of integration differently in the two cases. We have

J =
∫b

0

∫a

0

∂u2

∂x
dx dy −

∫a

0

∫b

0

∂u1

∂y
dy dx .

This may be written as

J =
∫b

0

∫a

0

∂u2

∂x
dx

[ ]
dy −

∫a

0

∫b

0

∂u1

∂y
dy

[ ]
dx .

We integrate the terms in the square brackets to obtain

∫a

0

∂u2

∂x
dx

[ ]
= u2(a, y) − u2(0, y) ,

∫b

0

∂u1

∂y
dy

[ ]
= u1(x, b) − u1(x, 0) .

Thus, the surface integral becomes

J =
∫b

0

[u2(a, y) − u2(0, y)]dy −
∫a

0

[u1(x, b) − u1(x, 0)]dx .
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This can be written as

J =
∫b

0

u2(a, y)dy −
∫b

0

u2(0, y)dy −
∫a

0

u1(x, b)dx +
∫a

0

u1(x, 0)dx .

This yields

J =
∫b

0

u2(a, y)dy +
∫0

b

u2(0, y)dy +
∫0

a

u1(x, b)dx +
∫a

0

u1(x, 0)dx .

This shows that the surface integral is

J = L2 + L4 + L3 + L1 .

Thus, we may conclude that the line integral I equals surface integral J;

that is,

∫
C

u · t ds =
∫∫

S

(curl u) · n dS .

In this equation, C refers to a closed curve in space, S refers to the surface

that is bounded by the curve, ds refers to an element of arc length on the

curve, and dS refers to an element of area on the surface. This result is

known as Stokes’ theorem, which can be stated as: the line integral of u · t
around a closed curve is equal to the surface integral of (curl u) · n over

the area enclosed by the curve.

We recognize (curl u) · n as the normal component curln u. We recog-

nize u · t as the tangential component ut. Thus, Stokes’ theorem also may

be written as ∮
C

ut ds =
∫∫

S

curln u dS .

This equation states that the line integral of the tangential component ut

around the closed curve C equals the surface integral of the normal com-

ponent curln u over the bounded surface S.

Let us summarize. In the previous section, we have a closed surface S

(like an unbroken egg shell) enclosing a volume V (like the inside of the

egg). The divergence theorem is∫∫
©

S

u · n dS =
∫∫∫

V

div u dV .
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In this section, we have a closed curve C (like the perimeter of a blanket)

enclosing a surface S (like the blanket). Stokes’ theorem (which might

well be called the curl theorem) is, as shown in Figure 36,

∮
C

u · t ds =
∫∫

S

curl u · n dS .

The preceding discussion may leave the reader with a feeling of not

knowing exactly what the curl of a vector is. The fact that the curl has some-

thing to do with the work integral around a closed path suggests that the curl

somehow describes Cartesian vortices which are rotating, swirling, or

curling around. An item taken from fluid motion will help make these

impressions clearer. (This example takes us back to the fundamental work

of Euler on fluid mechanics.)

Suppose that a bucket of water is rotated about its axis at a constant

angular velocity v. This velocity vector points in the direction of the

axis and has magnitude denoted by v. At equilibrium, all of the water is

rotating at this angular velocity, so that each small volume of water is under-

going circular motion (Figure 37). Consider a small element of volume at

Figure 36. Stokes’ theorem illustrated. The two sums (actually integrals) are equal.
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radius r. In time t, this small volume traverses a circular arc of angle vt, so

the circular distance traversed is vtr. Thus, the magnitude of its velocity is

the distance vtr divided by t, or vt. The direction of this velocity is the tan-

gential direction. Denote the velocity vector with this magnitude and direc-

tion as u.

Now, let us find the work integral of the velocity around this circle.

Because the velocity vector is tangential to the circular path, the full magni-

tude vr of the velocity is used to compute the work integral. The length of

the circular path is 2pr. Thus, the value of the work integral is magnitude

times distance; that is, the value is 2pr2 v.

Because all of the water in the bucket is rotating at a constant angular

velocity, we would expect the curl of the velocity vector to be the same

everywhere. This is indeed the case; that is,

curl u = constant .

Moreover, we would expect that the curl would point in the same direction

as the axis of rotation, and this is also the case.

Now, let us consider the flux of the curl across the given circle of radius r.

This flux integral is equal to the summation of the curl times the small area

elements composing the circle. Because the curl is a constant, this summation

Figure 37. A small volume element of water. The element is rotating in a circle of

radius r. The angular velocity vector v points in the direction of the axis of rotation,

and the vector has magnitude denoted by v.

186 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



reduces to simply the magnitude of the curl times the area of the circle,

flux of curl u = |curl u|(nr2) .

Stokes’ theorem says that the work integral and flux are equal; that is,

2pr2v = pr2 |curl u| .

Because both v and curl u point in the same direction, this result gives

(upon cancellation of pr2)

v = 1

2
curl u . (1)

The curl of any vector u represents the tangential motion of the vector u.

Traditionally, this tangential motion is called the rotation vector. More

specifically, the rotation vector v is defined by means of equation 1. The

curl records the direction and magnitude of the maximum circulation at a

given point.

The vector concepts of div and curl are discussed because they are an

effective way to define a seismic wavefield. Particle motion is described

by a displacement vector u, which represents the oscillation of a tiny rock

particle. The wavefield allows two kinds of motion—motion in the longi-

tudinal direction (the stretching and shrinking of the particle) and motion

in the transverse direction. Longitudinal motion is given by dilatation

D = div u

and rotational motion by the rotation

v = 1

2
curl u .

When these concepts are combined with Hooke’s law (described in a

previous section), it can be shown that dilatation D and rotation v can

propagate separately, as distinct seismic waveforms.

Equations of motion

Oceanographers have long said that our planet should be called Water,

not Earth, because dry land represents less than a quarter of planetary

surface. Applying this same line of reasoning to the structure of all

matter, we should call—according to the Newtonian perspective—the

whole universe Vacuum. The stars are but tiny isles in the ocean of
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interstellar “near vacuum.” Even the individual atoms making up matter are

nothing but small nuclei with surrounding electrons enmeshed in a sea of

vacuum.

But today, our view of “vacuum” is that of the Cartesians. This omni-

present medium, called “vacuum” since ancient times, is by no means emp-

tiness or nothing. Vacuum influences everything it surrounds. Every

experiment in elementary particle physics demonstrates the interaction of

subatomic particles with one another and with the vacuum.

Johann Wolfgang von Goethe, whose great literary eminence has all but

eclipsed his (not insignificant) scientific contributions, writes in Faust:

Let us fathom it, whatever may befall,

In this, thy Nothing, may I find my All.

Goethe’s metaphor encompasses an insight of the great quantum physicist

Paul Dirac, who realized that some physical objects reveal themselves

only occasionally. An unexcited atom in a minimum-energy state does

not radiate and, consequently, remains unobservable if not subjected to

any action. Each elementary particle is but a manifestation of its own sea.

The particle is unobservable until its sea is acted upon in a definite way.

When a quantum of light gets into this “Dirac sea,” the sea can eject out

of itself an electron of negative energy. A multitude of conclusions have

followed from Dirac’s insight, including the discovery of the positron and

other antiparticles.

During the past half century, the Dirac sea has turned into the ocean

known as physical vacuum, and Dirac himself once said that the problem

of describing vacuum was the primary one facing physicists. The currently

prevailing description, the concept of fields pervading all space, has evolved

from the once-derided Cartesian vortices. And, among the many scientific

ideas dependent on this view is the mathematical foundation of the theory

of seismic wave propagation.

In previous sections, we have discussed the mathematics of stress and

strain for a medium in static equilibrium. This section will elaborate on

that foundation to illustrate why wave motion can result when the stresses

on a solid are not in equilibrium.

More than one mathematical technique can be used to support this

assumption. In this section, we will use the tool commonly known as

vector analysis which in large part is the creation of one of the most remark-

able figures in modern science, J. Willard Gibbs.

Gibbs now is regularly cited as the greatest scientist ever produced in the

United States. In fact, shortly after his death, historian Henry Adams called
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Gibbs “the greatest of all Americans, judged by his rank in science.”

However, during his lifetime (1839 – 1901), he was all but unknown to

U.S. scientific leaders. This resulted from a combination of curious circum-

stances: his own casual interest in recognition (e.g., he never joined the

American Physical Society); a teaching style that was accessible to only

the brightest graduate students; much more interest, by the contemporary

U.S. scientific establishment, in immediately useful ideas rather than

highly theoretical work (e.g., the immense fame of Gibbs’ contemporaries

Bell and Edison); and mathematics far beyond the abilities of most who

read the lightly regarded Transactions of the Connecticut Academy of

Sciences in which he published (in the 1870s) his first important papers.

James Clerk Maxwell did recognize the importance of Gibbs’ ideas;

Maxwell personally made a physical model based on a Gibbs’ concept

and sent it to him. However, Maxwell died before he could convince other

European scientists of the value of Gibbs’ thought. It was not until the last

few years of his life that Gibbs received richly deserved honors (notably

the Copley Medal of the Royal Society) from the scientific community.

A greater honor came half a century later. Albert Einstein, shortly before

his death, was asked to name the most powerful thinkers he had known.

“Lorentz,” Einstein answered without hesitation. Then, after some reflec-

tion, he added: “I never met Willard Gibbs; perhaps, had I done so, I

might have placed him beside Lorentz.”

The rigorous mathematics that Gibbs developed for thermodynamics

and statistical mechanics are his greatest scientific achievements. This

section, though, is built around still another Gibbs concept of monumental

importance—vector analysis. Gibbs developed its present form more than

a century ago—in Elements of Vector Analysis, first printed in 1881. Aston-

ishingly, considering the surgical precision with which vector analysis can

treat many complex physical situations, this idea was greeted with consider-

able open hostility. One reviewer called it “a hermaphrodite monster, com-

pounded of the notations of Hamilton and Grassman.” However, its

usefulness was unanimously recognized by the turn of the century. Today,

vector analysis so thoroughly permeates scientific literature that mathema-

tician/historian Edna E. Kramer called this concept “indispensable to

every serious student of physics.”

Vectors are a most convenient means for mathematically describing and

analyzing seismic waves.

Consider an unbounded elastic solid that is homogeneous (same at all

points) and isotropic (same in all directions). If a disturbance passes

through the material, the displacement of a small particle whose equilibrium

position is the point P(x, y, z) can be specified at any instant as a vector
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u(x, y, z, t). This vector has its origin at the point of equilibrium and points

in the direction of particle displacement. The length of the vector gives the

amount of displacement. As time varies, the length and direction of the

vector alter to represent the oscillation of a small particle about its equili-

brium point.

Adapting basic vector concepts to the mathematical theory of elasticity

requires the introduction of vector fields.

A physical field is a quantity which depends upon position in space. The

simplest possible physical field is a scalar field; i.e., a field which is charac-

terized at each point by a single number. (A good example in geophysics is

the potential field representing the force of gravity. This field does not

change with time. There are scalar fields which do change with time. Con-

sider material, such as the solid earth, that has been heated at some places

and cooled at others. The temperature of the body varies from point-to-

point in a complicated way, and will be a function not only of position

but also of time. This is an example of what is known as a time-dependent

scalar field.)

In geophysics, scalar fields are depicted by means of contours, which

are imaginary surfaces (in 3D) or lines (in 2D) drawn through all points

for which the field has the same value. Contour lines originated, of

course, on maps where they connect points with the same elevation. But

contour lines also can be used in other areas, such as on a temperature

field (where they are called isothermal surfaces or isotherms).

Vector fields, in contrast, are fields in which a vector is attached to each

point in space. The flow of heat in the earth is an example. If the temperature

is high at one place and low at another, there is a flow of heat from the

warmer place to the colder. Thus, heat flow is a quantity which has direction.

A scalar is not a sufficient mathematical description. However, heat flow

can be represented at each point by a vector. This vector varies with both

position and time. Its magnitude indicates the amount of heat flowing at

any point at the designated time, and its direction indicates the direction

of the flow.

When fields vary with time, the variation can be obtained by taking the

derivative (or rate of change) with respect to time. Finding the rate of change

with respect to position is trickier because there are three coordinates instead

of one. Even so, it can be neatly handled by the concept of the gradient

(which is defined as a vector which gives the rate of change of a field

with respect to position). The gradient vector (abbreviated grad) is perpen-

dicular to the contour line at which it originates, points uphill in the steepest

direction, and possesses magnitude equal to the rate of change in that direc-

tion. The gradient has two particularly valuable properties—it indicates the
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direction and amount of the greatest rate of change at any particular point,

and it is independent of any system of coordinate axes.

Another key concept in vector fields is that of the divergence of a vector

(abbreviated div). Divergence, unlike gradient, is a scalar. To obtain a

physical interpretation of divergence, consider a small box in space that is

subjected to elastic wave motion. The displacement of a small particle

(e.g., a micro-grain of sand) in that small box is denoted by the vector u.

As this particle oscillates, each of the six faces of the small box will

undergo normal strain. The divergence of vector u is equal to the sum of

the normal strains in the three coordinate directions. That is, div u indicates

the net amount by which the small box is being alternatively stretched and

compressed (in the normal directions) as the particles oscillate.

The dilatation D is obtained by the equation

D = div u = ∇ · u = ∇ · (ux, uy, uz) =
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
.

Indeed, the divergence (denoted by div u) and the dilatation (denoted by D)

are merely different symbolizations for the same scalar.

The last concept that must be introduced is the rotation v of vector u.

The rotation is obtained by the equation

v = 0.5 curl u .

The rotation v is also a vector. Consider a particle that is undergoing only

shear strain, no normal strain; thus, this particle will be performing some

kind of rotating motion in a plane at right angles to the direction of

propagation.

These concepts—gradient, divergence, and curl—can be combined with

ideas presented in previous sections to derive mathematical expressions

which describe wave motion in elastic solids.

When a body is in equilibrium position, no net force is acting on any

point in the body. When the body is deformed, however, the stresses (due

to internal elastic forces of the body itself) exert restoring force which

attempts to reestablish equilibrium. The more the distortion, the greater is

the restoring force. As we have seen, the English mathematician Brook

Taylor discovered that restoring force is proportional to spatial curvature

in the case of a vibrating string. The greater the curvature, the greater is

the restoring force. The following two identities and the two Laplacians

will be used in our development.
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First identity divergence of curl of a vector is zero:

div curl u = 0 or ∇ · (∇ × u) = 0

Second identity curl of gradient of scalar is zero:

curl grad f = 0 or ∇ × (∇f ) = 0

Scalar Laplacian: used for

dilatational wave equation

∇2D = div gradD or ∇2D = ∇ · (∇D)

Vector Laplacian: used for

rotational wave equation

∇2v = ∇(∇ ·v) −∇ × (∇ ×v) or

∇2v = ∇(∇ ·v) −∇ × (∇ ×v)

But what is spatial curvature in the case of a solid body? It can be rep-

resented by second derivatives of the particle displacement u with respect to

the spatial coordinates (x, y, z). The gradient, divergence, and curl are each

first derivatives; i.e., each represents a slope of one form or another. Second

derivatives represent curvature, and there are only three independent second

derivatives:

second derivative (i) grad div u or ∇∇ · u
second derivative (ii) curl curl u or ∇ × ∇ × u
second derivative (iii) div curl u or ∇ · ∇ × u

The quantity div u (or dilatation) represents the change in volume of

a small region (due to compression and stretching, the internal stresses).

Thus, the second derivative (i), grad div u, is the vector field which rep-

resents the directional slope of the dilatation.

Equation 1 in the previous section can be written as

curl u = 2v . (2)

Thus, the second derivative (ii) is

curl curl u = curl 2v = 2 curlv . (3)

Because curl u involves no change in volume, the divergence of curl u
is zero. Thus, the second derivative (iii) is

div curl u = div(2v) = 2 div(v) = 0 . (4)

Thus, the second derivative (iii) is not a consideration. We will make use of

second derivative (i) and second derivative (ii); namely, grad div u and

curl curl u.
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Now, returning to the reasoning of Taylor (force per unit of volume is

proportional to spatial curvature), the relationship can be written as

force density = (first constant) grad div u

+ (second constant) curl curl u .

The result is that the first constant is l+ 2m and the second constant is

−m, where l and m are Lamé’s constants. This determination of the

unknown constants in the equation is from a direct application of Hooke’s

law. Thus, the above equation becomes

force density = (l+ 2m) grad div u − m curl curl u .

However, Newton’s second law of motion equates force to the product

of mass and acceleration. Thus, the force density is a product of mass density

(denoted by r) and acceleration (written as a second derivative with respect

to time). The above equation becomes

r
∂2u

∂t2
= (l+ 2m) grad div u − m curl curl u , (5a)

which in alternative notation is

r
∂2u

∂t2
= (l+ 2m)∇(∇ · u) − m∇× (∇× u) . (5b)

In seismology, this equation is known as the equation of motion. We will

now show that the equation of motion leads to two different wave equations.

The equation of motion will be written in another form. The first term on

the right involves div u, which is the dilatation D; that is,

∇ · u ; D .

The second term on the right involves curl u, which by equation 2 is

curl u = 2v .

By making these substitutions, the equation of motion 5 can be

written as

r
∂2u

∂t2
= (l+ 2m) gradD− 2m curlv , (6a)
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which in alternative notation is

r
∂2u

∂t2
= (l+ 2m)∇D− 2m∇×v . (6b)

The equation of motion explicitly displays the dilatation D and the

rotation v.

The dilatation D = div u represents a measure of change in volume of a

small region without any rotation. Thus,

curlD = 0 or ∇ × D = 0 . (7)

The rotation v = 0.5 curl u represents movement of a small region without

any change in volume. Thus,

divv = 0 or ∇ ·v = 0 . (8)

We will keep helpful expressions 7 and 8 in mind.

Wave equation for dilatational waves (aka compressional waves).
Take the divergence of the equation of motion in expression 6a. The term

involving v vanishes, leaving

r
∂2 div u

∂t2
= (l+ 2m) div gradD . (9)

The scalar Laplacian is ∇2D = div gradD. In essence, the operator

div grad is encountered so often that it has its own symbol, ∇2, and its

own name, the Laplacian. By using this symbol, the above equation

becomes

r
∂2D

∂t2
= (l+ 2m)∇2D .

If we define a as

a =
��������
l+ 2m

r

√
,

the above equation becomes the wave equation

1

a2

∂2D

∂t2
= ∇2D . (10)
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In rectangular coordinates, this wave equation is

1

a2

∂2D

∂t2
= ∂2D

∂x2
+ ∂2D

∂y2
+ ∂2D

∂z2
. (11)

This three-dimensional wave equation says that the dilatation D propagates

with wave velocity a. These dilatational waves also are known as P-waves,

compressional waves, or longitudinal waves.

Wave equation for rotational waves (aka shear waves). Take the curl

of the equation of motion in expression 6a. The term involving D vanishes,

leaving

r
∂2curl u

∂t2
= −2m curl curlv . (12)

The vector Laplacian is

∇2v = ∇(∇ ·v) − curl curlv ,

which yields

curl curlv = ∇(∇ ·v) − ∇2v . (13)

Equation 8 says that ∇ ·v = 0. Thus, equation 13 becomes

curl curlv = −∇2v .

Equation 2 says that curl u = 2v. Thus, equation 12 becomes

r
∂2(2v)

∂t2
= −2m(−∇2v) ,

which is

r

m

∂2v

∂t2
= ∇2v . (14)

If we define b as

b =
��
m

r

√
,
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then equation 14 (in rectangular coordinates) becomes

1

b2

∂2v

∂t2
= ∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2
. (15)

This again is recognized as the three-dimensional wave equation, and

the interpretation is that the rotation v propagates with wave velocity b.

These rotational waves also are known as S-waves, shear waves, or trans-

verse waves.

The bottom line is that modern theory states there are two types of

seismic body waves. One type results from the normal pulsations due to

the compressional stretching/shrinking of a continuum of small rock par-

ticles; these generate P-waves traveling at velocity a. The second type

results from tangential pulsations due to the rotation of a continuum of

small rock particles; these generate S-waves traveling at velocity b.

We have completed the formidable task of deriving the equation of

motion and thereby obtaining the wave equations for compressional

waves and for shear waves. Readers who have followed the argument can

feel a sense of accomplishment, for this material usually is covered in a

graduate course in seismology.

Now, we want to find out what happens when a wave strikes an inter-

face between two elastic media (see Figure 38). The various known con-

stants are

a1 = P-wave velocity in medium 1 ,

b1 = S-wave velocity in medium 1 ,

a2 = P-wave velocity in medium 2 ,

b2 = S-wave velocity in medium 2 ,

r1 = density in medium 1 ,

r2 = density in medium 2 .

We assume that a plane P-wave with amplitude 1 is incident on

the interface. The angles of reflection and transmission are given by

Snell’s law

sinf1

a1

= sinc1

b1

= sinf2

a2

= sinc2

b2

.
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In this equation,

f1 = angle of reflected P-wave in medium 1 ,

c1 = angle of refracted S-wave in medium 1 ,

f2 = angle of reflected P-wave in medium 2 ,

c2 = angle of refracted S-wave in medium 2 .

At the interface, the stresses and the displacements must be continuous.

In other words, they cannot change abruptly at the interface. For example, if

the normal stress was not the same on each side of the interface, there would

be a net force that would produce an acceleration that would prevent equilib-

rium. Thus, the normal stress must be continuous at the interface. The same

reasoning holds for the tangential stress. Also, the normal component of the

displacement must be continuous at the interface. Otherwise, one medium

either would separate from the other or else would penetrate the other. Like-

wise, the tangential component of the displacement must be continuous at

the interface. Otherwise, one medium would slide over the other.

Karl Zoeppritz uses the continuity of normal and tangential stresses

as well as the continuity of normal and tangential displacements in order

to derive four equations. In this way, he obtains the dependence of the

amplitudes of reflection and transmission coefficients upon the angle of inci-

dence. Let

A1 = displacement of reflected P-wave in medium 1 ,

B1 = displacement of reflected S-wave in medium 1 ,

Figure 38. Incident

P-wave and resulting

reflected and refracted

P- and S-waves.
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A2 = displacement of reflected P-wave in medium 2 ,

B2 = displacement of refracted S-wave in medium 2 .

The Zoeppritz equations can be displayed in matrix form as

Mx = y ,

where

M =

cosf1

a1

b1

sinc1

a1

a2

cosf2 −a1

b2

sinc2

−sinf1

a1

b1

cosc1

a1

a2

sinf2

a1

b2

cosc2

−cos 2c1 −sin 2c1

r2

r1

cos 2c2 −r2

r1

sin 2c2

sin 2f1 −a2
1

b2
1

cos 2c1

r2

r1

b2
2

b2
1

a2
1

a2
2

sin 2f2

r2

r1

a2
1

b2
1

cos 2c2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

x =

A1

A2

B1

B2

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠, y =

cosf1

sinf1

cos 2c1

sin 2f1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ .

The Zoeppritz equations can be solved for the four unknowns, namely,

1. the reflected compressional-wave amplitude A1,

2. the reflected shear-wave amplitude B1,

3. the transmitted compressional-wave amplitude A2,

4. the transmitted shear-wave amplitude B2.

The solution is

x = M−1 y .

We shall discuss the practical use of an approximate solution of the

Zoeppritz equations for P-to-P reflection amplitudes to derive the AVO

attributes. The study of the dependence of amplitude versus offset

between source and receiver is called AVO analysis. It can be employed

to estimate a rock’s fluid content, porosity, density, and velocity, as well

as to give shear wave information. Typically, amplitude decreases with

offset, due to geometrical spreading, attenuation, and other factors. An
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AVO anomaly is commonly expressed as increasing AVO in a sedimentary

section. Often this is where the hydrocarbon reservoir is “softer” (lower

acoustic impedance) than the surrounding shales. An AVO anomaly also

can include examples where amplitude with offset falls at lower rates than

the surrounding reflective events.

AVO is a tool to discover new hydrocarbon reservoirs and to define the

extent and composition of existing hydrocarbon reservoirs. An increasing

AVO curve is normally more pronounced in oil-bearing sediments and

especially in gas-bearing sediments. A primary purpose of AVO is to

detect hydrocarbon-filled sedimentary traps.

An important point to remember is that the existence of abnormal (rising

or falling) amplitude anomalies sometimes can be caused by other factors,

such as alternative lithologies and residual hydrocarbons in a breached

gas column. Modeling of the petrophysical properties and a good under-

standing of the sedimentary succession is paramount for successful hydro-

carbon detection using AVO. Not all oil and gas fields are associated with

an obvious AVO anomaly and AVO analysis is by no means a failsafe

method for gas and oil exploration.

In exploration seismology, we are interested in the angle dependency of

the P to P reflections given by the coefficient A1. The object is to estimate the

elastic parameters of reservoir rocks from reflection amplitudes and relate

these parameters to reservoir fluids.

The exact expression for A1 derived from the solution of the Zoeppritz

equations is complicated and not intuitive in terms of its practical use for

inferring petrophysical properties of reservoir rocks. Instead, we shall use

the approximation provided by Aki and Richards (1980) as the starting

point for deriving a series of practical AVO equations. Now that we only

need to deal with the P to P reflection amplitude A1, we shall switch to

the conventional notation by replacing A1 with R(u) as the angle-dependent

reflection amplitude for AVO analysis.

The computer can easily solve the Zoeppritz equations for the reflected

and refracted P-wave and S-wave amplitudes A1, B1, A2, B2. The most

useful component is the angle-dependency of the P to P reflections given

by the coefficient A1. It can be used to estimate the elastic parameters of

reservoir rocks from the observed reflection amplitudes. Then these param-

eters can be related to reservoir oil hydrocarbons.

Shuey recast P to P reflection amplitude in successive ranges of angle of

incidence and arranged the P to P equation in those terms. His work led to

practical developments in AVO analysis. By assuming that changes in

elastic properties of rocks across the layer boundary are small and propaga-

tion angles are within the subscritical range, he approximated the exact
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expression for R(u) by the approximate equation

R(u) ≈ 1

2

Da

a
+ Dr

r

( )[ ]
+ 1

2

Da

a
− b2

a2

Db

b
− 2

b2

a2

Dr

r

[ ]
sin2 u

+ 1

2

Da

a

[ ]
(tan2 u− sin2 u) .

This equation is known as Shuey’s three-term AVO equation. In the

equation,

a = average P-wave velocity = (a1 + a2)/2 ,

Da = difference of P-wave velocity = (a2 − a1) ,

b = average S-wave velocity = (b1 + b2)/2 ,

Db = difference of S-wave velocity = (b2 − b1) ,

r = average density = (r1 + r2)/2 ,

Dr = difference of density = (r2 − r1) ,

u = average of the P-wave incidence and transmission

angles = (w1 + w2)/2 .

The geophysicist observes changes in reflection amplitudes as a func-

tion of angle of incidence. The quantity Da/a describes the fractional

change in P-wave velocity across the layer boundary and hence may be

referred to as the P-wave reflectivity. The quantity Db/b describes the frac-

tional change in the S-wave velocity across the layer boundary and hence

may be referred to as the S-wave reflectivity. The quantity Dr/r describes

the fractional change in density across the layer boundary.

In other words, we wish to estimate the P-wave reflectivity Da/a, the

S-wave reflectivity Db/b, and the fractional change in density Dr/r. We

make these estimates from the data provided by the observed angle-

dependent reflection amplitudes.

A matter of concern is that the modeled reflection amplitudes are a

function of angle of incidence. However, the observed reflection amplitudes

are available from CMP data as a function of offset. A need then arises either

to transform the model equation for the reflection amplitudes from angle to

offset coordinates or to actually transform the CMP data from offset to angle

coordinates. While the first approach is theoretically appealing, the practical

schemes are based on the latter approach.
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The elastic property that is most directly related to angular dependence

of reflection coefficient R(u) is Poisson’s ratio s.

In Shuey’s three-term AVO equation, the first term,

RP = 1

2

Da

a
+ Dr

r

( )[ ]
,

is the reflection amplitude at normal incidence. At intermediate angles

(0 , u , 308), the third term may be dropped, thus leading to a two-term

approximation

R(u) = RP + G sin2 u ,

where

G = 1

2

Da

a
− b2

a2

Db

b
− 2

b2

a2

Dr

r
.

In this section, we have seen how amplitude versus offset (AVO)

describes the dependency of seismic amplitude with source-and-receiver

offset. By means of AVO analyses, information as to fluid content, porosity,

density, seismic velocity, shear wave properties, and hydrocarbon indicators

can be estimated.

Chapter 3: Elasticity 201

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



ISCO-front.indd   4 9/21/2016   9:48:29 AM

This page has been intentionally left blank

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Chapter 4

Rays, Anisotropy, and Maxwell’s
Equations

Ray equation

Geometrical optics, geometrical acoustics, and geometrical seismology

all are terms which describe the limiting case of wave theory when the wave-

length is small compared with the linear dimensions of the region occupied

by the wavefield. That is, geometric wave theory deals with methods which

can be used when the wavelength is small compared to the scale of dimen-

sions of the physical region in space.

There is a special type of vector called a unit vector. A unit vector has mag-

nitude 1, with no units. A unit vector is represented by a letter marked with a

circumflex, which appears above the letter. It often is referred to as “hat.” For

example, t̂ (read “t-hat”) is a unit vector. In other places in this book, we have

not used the “hat” notation for the three unit vectors i, j, k. Here, we must,

because we want to use the symbol k for the wavenumber vector.

The three unit vectors for Cartesian coordinates are:

1. the unit vector î pointing in the +x direction,

2. the unit vector ĵ pointing in the +y direction,

3. the unit vector k̂ pointing in the +z direction.

Any vector can be expressed in terms of unit vectors. For example, the

vector (x, y, z) can be expressed as xî + y ĵ + zk̂.

We start with the Helmholtz equation

∇2u + k2u = 0 , (1)
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where u is the wavefield and k is the wavenumber. Both u and k depend upon

the spatial coordinates and frequencyv. For simplicity, we consider the two-

dimensional case with coordinates x and z, but everything can be easily

extended to the case of three dimensions x, y, z. The wavenumber can be

written as

k = v

c
.

In this equation, the velocity c may depend upon x and z. As usual, a

point with coordinates x and z can be represented by a vector r, which we

can write in the two equivalent forms given by

r = (x, z) or r = xî + zk̂ .

The wavefield u is a function of position and frequency, so we write u as

u = u(r, v) .

If c depends upon position v, the medium is called inhomogeneous. If c

depends on the direction of the wave, the medium is called anisotropic. At

this point, let us emphasize that we only deal with isotropic media, so c does

not depend upon the direction of the wave. However, we allow inhomo-

geneous media, so generally we write c as c(r).

In the case of a homogeneous isotropic medium, the wave velocity c is a

constant. The resulting solution of the Helmholtz equation is

u(r, v) = A(v) exp(−ik · r) .

In this equation, the vector

k = kx î + kzk̂

is the wavenumber vector and the amplitude A(v) is a function of v. The

surfaces −k · r = constant are plane surfaces of constant phase.

The basic approximation of geometric wave theory begins with an

attempt to find a solution of the Helmholtz equation of the form

u(r, v) = A(r, v) exp(−iA(r, v)) .

In this equation, the function f(r), which we also can write as f(x, z), is

called the phase. As such, this equation is not an approximation, as any func-

tion can be written in such a form. The approximation lies in finding suitable
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expressions for the amplitude A(r, v) and phase A(r, v), which are valid in

the case of small wavelengths.

Now, we want to substitute the above expression for u into the Helm-

holtz equation. Let us first evaluate the individual terms in the Helmholtz

equation separately, and then we will put it all together. The first term is

∇2u = ∂2u

∂x2
+ ∂2u

∂z2
.

Let us evaluate the second partial derivative with respect to x. We

obtain the expression

∂2u

∂x2
= ∂2

∂x2
(Aeif) = A

∂2

∂x2
eif + 2

∂A

∂x

∂

∂x
eif

( )
+ eif ∂

2A

∂x2

= A
∂

∂x
i
∂

∂x
eif

( )
+ 2

∂A

∂x
i
∂

∂x
eif

( )
+ eif ∂

2A

∂x2

= iA
∂2f

∂x2
+ i2A

∂f

∂x

( )2

+ 2i
∂A

∂x

∂f

∂x
+ ∂2A

∂x2

[ ]
eif .

A similar expression holds for the second partial derivative with respect

to z. Adding these two expressions, we obtain

∇2u =
{

iA
∂2f

∂x2
+ ∂2f

∂z2

[ ]
− A

∂f

∂x

( )2

+ ∂f

∂x

( )2
[ ]

+ 2i
∂A

∂x

∂f

∂x
+ ∂A

∂z

∂f

∂z

[ ]
+ ∂2A

∂x2
+ ∂2A

∂z2

[ ]}
eif ,

which is

∇2u = {iA∇2f− A(∇f)2 + 2i(∇A · ∇f) + ∇2A}eif .

In this equation, ∇f is the gradient of f, ∇A is the gradient of A,

∇A · ∇f is the dot product of ∇A and ∇f, and (∇f)2 is the dot product

of ∇f and ∇f. Thus, we have evaluated the first term in the Helmholtz

equation. The second term is easier. It is simply

k2u = k2A eif .

Putting both terms together, we obtain the Helmholtz equation in the

form

[iA∇2f− A(∇f)2 + 2i(∇A · ∇f) + ∇2A] eif = 0 ,
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which yields

−A[(∇f)2 − k2] + i[2∇A · ∇f+ A∇2f] + ∇2A = 0 . (2)

We call this expression the phase form of the Helmholtz equation.

Thus far, we have only written Helmholtz equation 1 in a different form,

namely, the phase form given by equation 2. Now, we are ready for the basic

approximation that will simplify the Helmholtz equation. This approxi-

mation says that the wavelength l is regarded as small compared with the

linear dimensions of the region occupied by the wavefield. In the limiting

case of a plane wave, the phase is

f = −k · r = −ks .

In this equation,

k = |k|

and s is the projection of r on the direction of the vector k. Because

k = 2p/l, we have

f = − 2ps

l
.

This expression for f in the case of plane waves motivates us to use a

similar expression, namely,

f = x

l

in the general case. Thus, our basic approximation involves using an

expression for f containing l explicitly. For f = x/l, we have

∇f = 1

l
∇x .

Thus, the phase form (equation 2) of Helmholtz equation 1 becomes

− A

l2
[∇x− (2p)2] + i

l
[2∇A · ∇f+ A∇2x] + ∇2A = 0 .

This expression has three terms. If wavelength l is small, then it follows that

1/l2 is very large and 1/l is large. Thus, the most significant term is the first,

the next most significant is the second term, and the third term is
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insignificant. Each of these terms, being of different orders of magnitude,

must be set equal to zero separately. If we return now to the notation f,

the first two terms give, respectively, the so-called eikonal equation

(∇f)2 − k2 = 0 (3)

and the so-called geometric spreading equation

2∇A · ∇f+ A∇2f = 0 .

These two equations result from the small wavelength assumption and

are the two basic equations for geometric optics, geometric acoustics, and

geometric seismology.

Next, we want to address eikonal equation 3, which explicitly can be

written as

∂f

∂x

( )2

+ ∂f

∂z

( )2

= 0 . (4)

Thus, the eikonal equation is an inhomogeneous, nonlinear, first-order

partial differential equation. Given the wavenumber

k(r) = v

c(r)
,

we must solve this equation for the phase f(r). Knowledge of the phase

function f(r) lets us visualize the way waves are propagated in an inhomo-

geneous medium. The surface defined by those values of r for which f(r,v)

is constant is a surface of constant phase, i.e., a wavefront. The propagation

of the wavefronts provides a pictorial representation of the propagation of

the wave. In the case of plane waves, the wavefronts are

f = −k · r = constant ,

which are planes. In an inhomogeneous medium, the wavefronts have a

curved shape instead of being planes.

If we operate with

∇ = î
∂

∂x
+ k̂

∂

∂z
(14)

on a scalar function f, we obtain a vector which is called the gradient of

f, i.e.,

gradf = ∇f = î
∂f

∂x
+ k̂

∂f

∂z
.
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Now, let us show that the vector ∇f is normal (i.e., perpendicular) to the

surface ¼ constant. Take an incremental displacement

dr = î dx + k dẑ

on the surface. Because f does not change anywhere on this surface, it

follows that f does not change in the displacement dr. That is,

df = ∂f

∂x
dx + ∂f

∂z
dz = (∇f) · dr = 0 ,

which states that ∇f is perpendicular to any vector which lies in the plane

tangential to the surface

f = constant .

Thus, we have proven our assertion that the gradient is normal to the surface.

In our work, of course, the surface f = constant is the wavefront. In

effect, the function f represents the local phase. The small wavelength

assumption means that the wavenumber vector

k = (kx, kz) = kx î + kzk̂

varies only gradually (i.e., by just a small fraction of its magnitude

k = 2p/l) in one wavelength l. The phase f shows a decrease with x at

a rate equal to kx, which is the x-component of the local wavenumber. Simi-

larly, f shows a decrease with z at a rate equal to kz. Thus, we can write

∂f

∂x
= −kx,

∂f

∂z
= −kz .

These two equations ensure that locally the wave is nearly of sinusoidal

form

exp−i(kx x + kz z) ,

which is required in the small wavelength assumption. These two equations

can be combined into the one equation

∂f

∂x
î + ∂f

∂z
k̂z = −(kx î + kzk̂) ,
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which is

∇f = −k .

This is an important result; in words, the gradient of the wavefront is the

negative of the wavenumber vector. Thus, the wavenumber vector k is

normal to the wavefront.

A ray is defined as a path along which energy propagates. In the case of

an isotropic medium, the energy propagates in the direction of the wave-

number vector k. As we have previously stated, we assume throughout

that the medium is isotropic. Because the wavenumber vector k is normal

to the wavefront, it follows that a ray is a continuous curve that is drawn per-

pendicular to all surfaces of constant phase.

Before we solve the eikonal equation for the phase function f, let us first

find an equation for the rays that does not involve f. Huygens’ principle is

basically a statement of how physical waves propagate. Huygens’ principle

asserts that a wavefront (i.e., a surface of constant phase) must proceed

along a ray with speed c, where c is the wave velocity. Wave velocity in

an inhomogeneous medium depends upon position r, so we write c(r). If r
denotes the position on the ray, then the velocity of the wavefront is

dr/dt. The ray is in the direction of k, so a unit vector in the direction of

the ray is k/|k|, which is k/k. Thus, Huygens’ principle is

dr

dt
= c(r)

k

k
.

That is, the new wavefront at r + dr is obtained from the old wavefront

at r by considering each point r as a source of new waves, each traveling with

the velocity c(r) at that point. The constructive waves are the waves that

travel on the ray, and they travel a distance dr = c(r)dt in the ray direction

(i.e., in the direction of the unit vector k/k).

Let ds be the differential of arc length along the ray. Then,

ds = c(r)dt ,

so Huygens’ principle also can be written as

dr

ds
= k

k
. (5)

This equation states that, if r is the coordinate of a point on the ray, and s is

arc length along the ray, then the unit tangent vector dr/ds to the ray is equal
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to the unit vector k/k. As we have shown in this chapter,

k = −∇f .

Thus, equation 5 for the coordinate r of the ray becomes the ray equation

k
dr

ds
= −∇f .

Recall that we want to find the equation for rays that does not involve f.

Thus, we must eliminate f from the above equation. Let us write down the

two components of the ray equation, namely,

k
dx

ds
= − ∂f

∂x
and k

dz

ds
= − ∂f

∂z
. (6)

We now differentiate the first of the components of the ray equation to

obtain

d

ds
k

dx

ds

( )
= − d

ds

∂f

∂x

( )
= − ∂2f

∂x2

dx

ds
+ ∂2f

∂z∂x

dz

ds

[ ]
.

We then substitute for dx/ds and dz/ds in this equation, making use of the

expressions for dx/ds and dz/ds from the two components of the ray

equation shown in equation 6. Thus, we obtain

d

ds
k

dx

ds

( )
= − ∂2f

∂x2
− 1

k

∂f

∂x

( )
+ ∂2f

∂z ∂x
− 1

k

∂f

∂z

( )[ ]
,

which is

d

ds
k

dx

ds

( )
= 1

2k

∂

∂x

∂f

∂x

( )2

+ ∂f

∂z

( )2
[ ]

.

But, from eikonal equation 4, the expression in square brackets is k2. Thus,

we have

d

ds
k

dx

ds

( )
= 1

2k

∂

∂x
[k2] .
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This equation is

d

ds
k

dx

ds

( )
= ∂k

∂x
.

Similarly, we can obtain

d

ds
k

dz

ds

( )
= ∂k

∂z
.

Combining the above two equations, we find

d

ds
k

d

ds
(xî + zk̂)

[ ]
= î

∂

∂x
+ k̂

∂

∂z

( )
k

or

d

ds
k

dr

ds

( )
= ∇k . (7)

This is the desired ray equation for the position r on the ray. This is a

differential equation for the position vector r as a function of arc length s

along the ray. This equation only requires the value of the wavenumber

k(r) = v

c(r)

as a function of r. Solution of the ray equation provides the equation of the

ray expressed in terms of the vector position

r = (x, y)

on the ray as a function r(s) of the arc length s along the ray.

In the preceding paragraph, we obtain the ray equation 7. Its solution

yields the curve r(s), which expresses a point r on the ray as a function of

arc length along the ray. We now want to derive the equation for the

phase f.

As we know, the surface of constant phase is a wavefront, and the ray

curves are orthogonal to the wavefront. If r(s) is a point on the ray, then

the wavefront through this point is the surface of constant phase f(r(s)).

That is, we can characterize the wavefront by the value of the arc length

s at the point on the ray where the wavefront cuts the ray. Thus, we can

simply write the phase as f(s). The derivative of the phase with respect
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to arc length is df(s)/ds. We now evoke the chain rule to obtain

df(s)

ds
= df

dx

dx

ds
+ df

dz

dz

ds
.

We then substitute for dx/ds and dz/ds the values

dx

ds
= − 1

k

∂f

∂x
,

dz

ds
= − 1

k

∂f

∂z

obtained from the ray equation components shown in equation 6. Thus, we

obtain

df(s)

ds
= − 1

k

∂f

∂x

( )2

+ ∂f

∂z

( )2
[ ]

.

Referring to eikonal equation 4, we see that the expression in brackets is

equal to k2. Thus, we have

df(s)

ds
= −k .

This differential equation can be integrated directly to obtain the following

expression for the phase:

f(s) = f(s0) −
∫s
s0

k(s1) ds1 .

Because the parameter s measures distance along the ray path, we see that

the value of the phase f at s is equal to the initial value f(s0) plus the inte-

gral of the wavenumber k(s1) along the ray from s1 = s0 to s1 = s.

Discovery of anisotropy

Iceland spar was pre-1845 nomenclature for a particularly beautiful type

of transparent calcite discovered on the east coast of Iceland in the middle of

the 17th century. Almost immediately, it became the focus of one of the

most famous scientific investigations of that or any time. The results pro-

foundly affected both physics and geophysics from that point forward. In

fact, for more than a century, a curious optical property of Iceland spar

was a dominating concern at the highest levels of science because of differ-

ing explanations by the world’s two most esteemed virtuosi, Isaac Newton

(1642 – 1727) and Christiaan Huygens (1629 – 1695).
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In the 17th century, virtuoso had a much different meaning than the

current implication of spectacular musical dexterity. Then, it connoted

someone with a great talent for discovering and demonstrating scientific

truth. Most often, this meant the virtuoso combined the attributes of theorist

and experimentalist plus instrument designer and builder—a striking paral-

lel to the demands placed upon the pioneer exploration geophysicists of the

early 20th century.

For most of his adult life, Huygens reigned practically unchallenged

(and this was a period when science overflowed with superlative intellects)

as the supreme virtuoso in European intellectual circles. Before he turned

30, and less than 20 years after Galileo’s death, Huygens had made immea-

surably important extensions of Galileo’s fundamental discoveries in astron-

omy and properties of the pendulum.

Using a telescope of his design (equipped with lenses manufactured via

a Huygens-conceived technique that remained state-of-the-art until well into

the 20th century), Huygens discovered the rings around Saturn. His interest

in astronomy led to a concern for accurate measurement of time, which in

turn led to the development of the pendulum (or grandfather’s) clock. The

pendulum clock increased the accuracy of clocks from about 15 minutes

per day to a few seconds per day and launched the modern era of precision

timekeeping. Isaac Asimov summarized the value of the pendulum clock

dramatically: “It is difficult to see how physics could have advanced

much further without such an invention.”

Despite recurring health problems, Huygens continued to contribute

prodigiously and importantly in a wide variety of disciplines throughout

his life. His interests ranged from the most immediately useful to the

outer boundaries of imagination. His final book, Casmotheoros, speculated

about the existence of life on other planets. He was one of the founders of the

mathematical theory of probability. He wrote the first book on this subject

and another did not appear for many years. It also was in Huygens’ work

that the product of mass and the square of velocity, a relationship of funda-

mental importance, appeared for the first time.

The extent of Huygens’ scientific production was put into perspective by

the effort required by his homeland, The Netherlands, to publish a compre-

hensive edition of his work. The project went into high gear in 1885 and

needed more than 60 years to complete. The 22 volumes in the Oeuvres

Completes have been cited as the best publication of the work of any scien-

tist. A summary of Huygens’ work occupies more than 13 double-column

pages in Scribner’s Dictionary of Scientific Biography and it omits at

least one important contribution—his speculation that the earth is not a

perfect sphere but flattened at the poles.
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Geophysicists are, of course, most familiar with Huygens because he is

considered the founder of the wave theory of light, much of which also

applies to the propagation of acoustic waves. Wave propagation is a compli-

cated process. The mathematics of this subject is still an active field of

experimentation and research, not only in geophysics but in virtually all

physical sciences. Well before the introduction of the wave equation,

however, Huygens devises a procedure—one that remains in accordance

with modern views—to give an approximate description of wave propaga-

tion. This is the very familiar Huygens’ principle in which a wavefront at

any given instant is considered to be composed of many separate point

sources. Each source radiates a secondary wavelet and the superposition

of all of the secondary wavelets gives the wave motion at a later time.

Specifically, the new wavefront is the envelope of the secondary wavelets

in the direction of propagation.

Christiaan Huygens was determined to get a better view of the heavens.

He invented and constructed the first powerful astronomical telescopes. One

of his telescopes had a focal length of 210 feet. He developed the first com-

pound eyepiece for a telescope by using multiple lenses. In 1656, Huygens

devised a new method in order to find the radius of the earth’s orbit, and

found it to be equal to 12,000 earth diameters, a value which was remarkably

close to the true value of 11,728, a distance called one astronomical unit

(denoted by the symbol AU).

The French Royal Academy recruited Huygens and took advantage of

his inventions so as to make the newly formed French Royal Observatory

the most advanced in the world. His inventions made possible extremely

accurate observations of the timing of the eclipses of the satellites of

planet Jupiter. Huygens took up residence in Paris in May 1666. The

French king gave Huygens a generous stipend and a prestigious apartment

in the Academy building.

During his years in Paris, Huygens was a mainstay of the French

Academy. He was recognized as one of the greatest mathematicians in

Europe. He gained fame for his physical theories and inventions. He devel-

oped laws of motion before Newton. In 1669, Huygens sent to the Journal

des Sçavans in France a brief communication that included very clear state-

ments of three of the most fundamental laws of nature: the conservation of

momentum, the conservation of kinetic energy in collisions, and the center-

of-mass law.

The French wanted to map the world. In order to determine longitude,

they needed an accurate chronometer. Unfortunately, a pendulum clock

could not serve as a chronometer because of the jouncing it gets on a ship

or in a carriage. The position of the satellites of Jupiter could serve as a
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natural chronometer. Ships did not provide a stable platform for telescopes,

so the satellite chronometer would only work well on land. At the French

Royal Observatory, Jean-Dominique Cassini laboriously compiled tables

of the eclipses of Jupiter’s satellites for use in the determination of

longitude.

Because of ill health, Huygens took a leave from the French Academy in

June 1676 and returned to his native Holland. At the Academy on 22 August

1676, Cassini reported that light arrived from Jupiter’s nearest satellite,

named Io, with a delay, so that it took between 20 and 22 minutes to

cross a distance equal to the diameter of the annual orbit of the earth. (By

definition, the diameter of the annual orbit of the earth is 2 astronomical

units, i.e., 2 AU.) On 7 December 1676, the Journal des Sçavans published

in French the Roemer report. It described the work of Cassini’s assistant, Ole

Roemer, and reported the delay as 22 minutes. (Note that the Roemer report

chose the upper value of the range “20 to 22 minutes” given earlier by

Cassini.) This result was all that Cassini and Roemer needed, because it

showed that such delays did exist and thereby must be carefully observed

and included in the compiled tables of the eclipses. (Actually, the reported

delay of 22 minutes was in error—to the nearest minute, the correct value is

17 minutes.)

In Holland, Huygens continued his study of light waves, and he solved

the double-refraction problem, which was exhibited by Icelandic spar. On

16 September 1677, Huygens received his copy of the 25 July 1677 issue

of the English journal Philosophical Transactions of the Royal Society.

This issue contained an English translation of the Roemer report that had

appeared in the 7 December 1676 issue of the Journal des Sçavans.

For many years, Huygens had advocated the finiteness of the velocity of

light, for it was essential to the workings of Huygens’ principle. On learning

about Cassini’s report of the delay of x = 22 minutes due to traveling the

distance X = 2 AU, Huygens was more than delighted. He was ecstatic.

He now had distance (2 AU) and time (22 minutes) for the same thing.

They were related by the velocity c of light; that is, Huygens used the

relationship

X = cx .

In so doing, Huygens invented the concept of light-minute; namely, the

light-minute is the distance traveled by light in one minute. Thus, the dis-

tance 2 AU is 22 light-minutes.

Because the Earth moves in its orbit so much faster than Jupiter moves in

its orbit, we may consider the two planets as moving apart for half of the year

and moving together for the other half of the year. Let us use symbols to
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describe the argument that Huygens made in Traité de la Lumière. For con-

venience, we begin with the Earth at the point in its orbit farthest from Jupiter.

It takes one-half year (denoted by t) for the Earth to go away from the point

nearest to Jupiter. It then takes one-half year for the Earth to come back. We

will use an analogy with a journey on an airplane. The clock loses five hours

when you go away by airplane from New York to London, but you gain five

hours when you come back from London to New York. By analogy, the clock

loses 22 minutes (denoted by −x) when the Earth goes away from farthest to

nearest point, but the clock gains 22 minutes (denoted by+x) when the Earth

comes back. Thus, going away takes t − x, but coming back takes t + x. In

scientific terms, the sending period is

s = t − x .

and the receiving period is

r = t + x .

To Huygens, it does not matter whether Jupiter stands still and the Earth

moves, or whether the Earth stands still and Jupiter moves, or if it is a

combination of both. In other words, absolute velocities do not matter.

Only the relative velocity between the two planets matters.

Huygens projects s onto r in two steps. Because of the use of relative

velocity, the same projection factor k (otherwise known as the optical

Doppler factor) applies in each step. The intermediate projection is called

the proper time, which is denoted by p. Thus, we have

ks = p and kp = r .

The above two equations give

k(ks) = r so k =
��
r

s

√
.

The relative velocity (in terms of the velocity of light) is

v = x

t
.

Thus, the optical Doppler factor is

k = p

s
= r

p
=

��
r

s

√
=

������
t + x

t − x

√
=

����������
1 + (x/t)

1 − (x/t)

√
=

������
1 + v

1 − v

√
.
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The optical Doppler effect is appropriate for electromagnetic waves. It is

the counterpart to the acoustical Doppler effect, which is appropriate for

mechanical waves.

Huygens computed the numerical value the velocity of light. As we have

seen, X = cx, so the velocity of light is

c = X

x
= 2 AU

22 minutes
.

As we have noted, Huygens, in 1656, obtained the value of the AU as 12,000

diameters of the earth. The modern value of the AU is 11,728 diameters of

the earth, but Huygens’ value of 12,000 was as close as could be expected in

the mid-17th century. In 1672, Cassini in France and Richer in Cayenne cal-

culated the AU. They had access to the most advanced instruments, and the

French government paid for observations in Paris and French Guiana.

Cassini obtained the value of 11,000 earth diameters for the AU. Cassini

published his result of 11,000 in two papers without any reference to

Huygens. Huygens deferred to Cassini and used Cassini’s value of 11,000

to calculate the speed of light.

Huygens used the system of measurement that was legal in France until

1812, and he took the diameter of the Earth as 2865 leagues. A league was

2282 toises. Thus, Huygens gave the diameter of the Earth as

earth diameter = 2865 × 2282 = 6,537,930 toises .

Let us now convert this value to metric system. One toise (i.e., 1 fathom) is

exactly 6 pieds (i.e., 6 feet). The value 6 pieds is about 1.949 meters. One

meter is 0.001 kilometer. Thus, the earth’s diameter, according to

Huygens, is the value

earth diameter = 6,537,930 × 1.949 × 0.001 = 12,742 kilometers .

According to Wikipedia, the average diameter of the earth, which is referred

to in common usage, is 12,756 km, a difference from Huygens’ value of

14 km.

The diameter of the earth’s orbit is 2 AU. According to Cassini, light

takes 22 minutes to travel that distance. Also according to Cassini, 1 AU

is 11,000 earth diameters. Huygens, in using these values, obtains the veloc-

ity c of light as

c = 2 AU

22 minutes
= (22,000 earth diameters)

22 minutes
= 1000 earth diameters

minute
.
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As Huygens wrote, this makes the speed of light equal to 1000 earth diam-

eters per minute. In other words, the speed of light is 1000/60, which is

16.67 earth diameters per second. An earth diameter is 12,742 kilometers.

Thus, the velocity of light is

c = 1000 × 12,742

60
≈ 212,000 kilometers per second .

Thus, Huygens computes the value of light as 212,000 kilometers per

second, which is short of the correct value of 300,000 kilometers per

second. There are two reasons for this incorrect value.

1. The delay of 22 minutes given by Cassini is in error. Actually the delay

(rounded to the nearest minute) is 17 minutes.

2. The AU value of the 11,000 earth diameters given by Cassini is in error.

The actual value of the AU is closer to Huygens’ value of 12,000 earth

diameters.

If Huygens had used these values (which he did not), he would have

obtained the reconstituted velocity

c = 2 AU

17 minutes
= (24,000 earth diameters)

17 minutes
= 1412 earth diameters

minute
,

which is

c = 1412 × 12,742

60
≈ 299,862 kilometers per second .

The modern value is 299,792 km per second, from which Huygens’ recon-

stituted value for the speed of light was off by 70 km per second. The world

credited Huygens with the first calculation of the speed of light. The world

did not comprehend until the 20th century that Huygens had originated the

optical Doppler effect. Neither Cassini nor Roemer ever tried to calculate

the velocity of light from the delay time. In fact, it never occurred to

them to do so. But why should it have occurred to them? They had solved

the age-old problem of whether the propagation of light was instantaneous

or not. They found that it was not.

The concept of a ray goes back to ancient times. The ancient Greeks

thought that light rays emanate from the eye and intercept objects, which

are thereby seen. The ancient Greeks also thought that the speed with
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which light rays emerge from the eye is very high, most likely infinite. One

reason was that an observer can open his eyes and immediately see the

distant stars. For Euclid, a ray of light was a discrete physical object. The

concept of ray underwent many modifications over the centuries, but the

ray was always regarded to be the physical manifestation of light. Some

would say that a ray was a line; others would say it was a narrow beam.

In either case, the ray by itself had some type of physical reality. The ray

represented the basis for the understanding of light. In the 17th century,

the particle theory of light was sanctioned. A ray was like a string of par-

ticles, in which each particle communicates its motion only to the next par-

ticle in line. Only Ignace Pardies and Christiaan Huygens did not give a

physical reality to a ray. They both reduced the ray to being nothing more

than a mathematical construction. Huygens’ Traité de la Lumière was pub-

lished in 1678. In this masterpiece, Huygens went further than Pardies, in

that he introduced a fundament principle (Huygens’ principle) that depicted

light as a traveling wave generated by a continuous succession of secondary

waves (a.k.a., wavelets).

Christiaan Huygens relegated the ray to a mathematical existence.

Huygens believed that a wavelet was generated around each particle with

the particle at the center. These wavelets reconstituted at any moment the

wavefront of light. If the wavelets were spherical, then the rays would be

orthogonal to the wavefront. The outstanding characteristic of Huygens’

construction was that the wavelets need not be spherical. If the wavelets

were not spherical, then the rays would not be orthogonal to the wavefront.

Instead, they would be oblique to the wavefront.

The Vikings sailed without the use of astrolabes, magnetic compasses,

or any other known device. They could find their way despite clouds, fog,

and the long northern summer twilights. Viking legends speak of the use

of glowing “sunstones” to find the position of the sun on cloudy days and

even when the sun was just below the horizon. It is believed that these “sun-

stones” were Iceland spar, a transparent variety of calcite, or crystallized

calcium carbonate.

Iceland spar splits light into two polarized images. The images have

different brightness depending on the polarization. Sunlight is polarized

when it enters the earth’s atmosphere. The Iceland spar must be oriented

until two images have the same relative brightness. In such a position, the

Iceland spar is aligned to the sun.

In 1669, Erasmus Bartholin (also known by the Latinized name, Bartho-

linus), doctor of medicine and professor of mathematics at the University of

Copenhagen, received a piece of Iceland spar and noted the remarkable

optical phenomenon which he called double refraction. In his text on the
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geometry of crystals (Experimenta crystalli Islandici disdiaclastici quibus

mira & insolita refractio detegitur), Bartholin wrote:

Greatly prized by all men is the diamond, but he who prefers the

knowledge of unusual phenomena will have no less joy in a new

sort of body, recently brought to us from Iceland, which is

perhaps one of the greatest wonders that nature has produced. As

my investigation of this crystal proceeded, there showed itself a

wonderful and extraordinary phenomenon: objects which are

looked at through a crystal do not show, as in the case of other trans-

parent bodies, a single refracted image but they appear double.

If the crystal is rotated, one of the dots remains stationary but the other

(following the crystal’s motion) appears to move in a circle around the first.

The rays forming the fixed dot behave as if they merely passed through a

plate of glass. Bartholin calls them the ordinary (or o) waves. The waves

coming from the other dot, which behave unusually, are known as the extra-

ordinary (or e) waves. As might be expected, the o waves correspond to the

case in which the medium is isotropic and, therefore, the Huygens’ wavelets

are spheres. But calcite is anisotropic, and in such a medium Huygens

reasoned there are two wavelets for each point source: one is spherical (cor-

responding to the o waves) and the other is a spheroid (corresponding to the e

waves). A spheroid, or ellipsoid of revolution, is a quadric surface obtained

by rotating an ellipse about one of its principal axes—in other words, an

ellipsoid with two equal semi-diameters.

Iceland spar provides Huygens with an ideal model upon which to test

his principle. A spherical wavelet spreads with constant velocity in all direc-

tions; a spheroidal wavelet spreads with a velocity which varies with the

direction of the ray. (A spheroid is a three-dimensional geometric surface

generated by rotating an ellipse about one of its axes.) In the case of

calcite, the velocities of both types of secondary wavelets are identical in

the direction of the optic axis, but, in other directions, the velocity of the

spheroidal wavelet exceeds that of the spherical wavelet. The spheroidal

wavelet spreads at its greatest velocity in a plane perpendicular to the

optic axis. In other directions, the velocity of the spheroidal wavelet

ranges between the lower limit of its velocity along the optic axis and the

upper limit of its velocity normal to the optic axis.

A ray represents an energy flow. As shown in Figure 1, a ray for the

ordinary wavelet goes from the origin to a point on the sphere (which rep-

resents the wavefront of the o wavelet). A ray for the extraordinary

wavelet goes from the origin to a point on the ellipsoid (which represents
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the wavefront of the e wavelet). The length of a ray is proportional to the

velocity in the ray’s direction. Obviously, ray velocity is the same in all

directions for the spherical wavelet; but, for the ellipsoidal wavelet, the

velocity is minimum for a ray along the optic axis and maximum for one

perpendicular to the optic axis.

In 1690 (although the work had been completed and presented to the

French Academy in 1678), Huygens published his Traité de la Lumière,

in which he explains the double refraction of Iceland spar. His argument

is diagrammed in Figure 2. Suppose that line AA′ represents the wavefront

at a given time. Each point on AA′ acts as a source of secondary wavelets.

The envelope BB′ of the spherical wavelets locates the wavefront of the o

wave at a later time. The envelope CC′ of the spheroidal wavelets gives

the wavefront of the e wave at the same later time. Energy travels along

rays, so the energy of the o wave is moving vertically down. However, as

can be seen in the figure, the energy of the e wave is moving at angle u to

the vertical.

Both wavefronts, however, are parallel to the horizontal; hence, the

normal vector to each wavefront points straight down. In the case of the o

wave, the ray and the normal to the front both point in the same direction

(vertically down, as shown in Figure 2). In the case of the e wave, the ray

and the normal point in different directions. The ray points at angle u; the

normal points straight down. When something is viewed through a transpar-

ent anisotropic medium, such as calcite, two images are seen. One is due to o

waves (which are traveling in the same direction as the wavefront) and the

other due to the e waves (which are traveling in a different direction). It is a

difficult concept to grasp because it occurs rarely in everyday experience. If

ocean waves worked like this (they do not), it would be possible for two surf-

boarders starting at point A in Figure 2 to approach the shore on different

azimuths. The one riding the o wave would come in along line AB. The

other riding the e wave would approach along line AC.

The elegant simplicity of Huygens’ explanation of double refraction

gave the wave theory of light broad intuitive appeal. More specifically,

Figure 1. Rays for the

ordinary wavelet and for the

extraordinary wavelet.
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Huygens showed that double refraction could be explained by wave theory.

It could not be explained by ray theory. No one, however, took serious

notice of this accomplishment of Huygens. The chief critic was none

other than Sir Isaac Newton. Newton was not satisfied with Huygens’

reasoning and continued to support the particle theory along with everyone

else. By the middle of the 1690s, Newton had become the glamor name in

science because of his work, Philosophiae Naturalis Principia Mathema-

tica (a.k.a. the Principia), published in 1687 and often cited as the greatest

scientific book ever written.

Huygens was ill much of the last five years of his life (1691 – 1695) and

left behind no co-workers or supporters capable of vigorously defending his

views. Newton’s reputation, on the other hand, grew to almost mythic

stature. By the time of this death in 1727, Newton’s prestige in the scientific

community was probably as high as any scientist’s prestige has ever been

during the scientist’s own lifetime. The practically unassailable stature of

Newton virtually prevented any interest in the wave theory for the rest of

the 18th century.

During the 18th century, there was never a battle between the propo-

nents of particle theory versus wave theory. Huygens’ wave theory was

simply ignored. In 1803, however, it was revived by Thomas Young

(known to geophysicists via Young’s modulus), whose brilliant exper-

iments produced results explainable by waves but not by particles. Also

during this time, Etienne-Louis Malus, using highly accurate devices,

established new standards for experimental work in optics. In 1807,

Malus started with a mathematical account of Huygens’ construction and

found excellent agreement between the theory and his experimental find-

ings. A turning point came in 1808, when Pierre-Simon de Laplace

announced that Malus had empirically confirmed Huygens’ construction

for double refraction. Augustin Fresnel extended Young’s work and,

Figure 2.
Huygens’

explanation of

double refraction.

ray
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assisted by a suggestion from Young that light waves were transverse (as

opposed to Huygens’ view that they were longitudinal), finally gave the

complete explanation for the double refraction of Iceland spar—the

crystal splits the light into two plane-polarized beams. Wave theory led

physics for the rest of the 19th century.

Then, in the 20th century, quantum mechanics becomes prevalent. The

photon is the smallest unit of light or other electromagnetic energy. It has

no mass and no electric charge. The photon behaves both as a wave and as

a particle. The photon displays wave-like phenomena, such as diffraction

and interference. For example, a single photon passing through a double

slit exhibits interference phenomena, but only if no measurement is

made at the slit. However, the photon is not a short pulse of electromag-

netic radiation. Instead, the photon seems to be a point-like particle,

because it is absorbed or emitted as a whole by arbitrarily small

systems, such as an atomic nucleus or the point-like electron. Newton is

correct in the sense that light is a particle (photon). Huygens is correct

in the sense that a photon does not travel as a particle travels, but

instead travels spread out as a wave. A photon cannot be at rest; it must

always be in motion, traveling as a wave at one speed, and one speed

only, the speed of light in vacuum.

In summary, a most important milestone was reached when Huygens

demonstrated, in Traité de la Lumière, that only his principle, nothing

else, could determine the direction of the extraordinary ray in Iceland

spar, thereby confirming the wave theory of light. Huygens was the first

to show a candle transmitting waves of light (see Figure 3).

Huygens’ optical Doppler effect has been a mainstay of radar and

astronomy. In the 20th century, it was noticed that the light spectra of

distant galaxies are shifted toward the red end of the spectrum. The

optical Doppler effect says that, if an astronomical object is moving away

from Earth, its light will be shifted to longer (red) wavelengths. In 1929,

Figure 3. Candles were

always drawn emitting

rays (left) until Huygens,

in 1678, drew a picture

that changed the world: a

candle transmitting

waves (right).
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astronomer Edwin Hubble compared the galaxies’ spectra with their dis-

tances, and showed that the amount of “red shift” is proportional to distance.

The most obvious explanation for the “red shift” is that the galaxies are

receding from Earth and each other, and the farther the galaxy, the faster

the recession. If all galaxies are flying apart at high speed, the entire universe

must have been concentrated in a single point at some time in the past

(the big bang). Another important use of the optical Doppler effect is in

the discovery of extra solar planets and brown dwarfs.

Newton ended his scientific researches soon after Huygens’ passing in

1695. Newton published Opticks in 1704, but the experiments had been

done many years earlier. Newton began a second career in 1696 as

warden and then master of the Royal Mint, a post that he held until his

death in 1727. Newton reorganized the Mint, bought new equipment, and

used his alchemical knowledge of metallurgy. Newton instituted the shift

to a strict gold standard, which served English commerce well for more

than 200 years.

Maxwell’s equations

Let us now discuss the wave equation. The variable x is distance and t is

time. The function p is pressure and the function V is particle velocity. The

density, or mass per unit volume, is denoted by r.

First, we want to find the wave equation for V. From Newton’s second

law, it is possible to directly derive the following first-order partial differen-

tial equation:

∂p

∂x
= −r

∂V

∂t
. (8)

A symmetric first-order partial differential equation can be obtained

from Hooke’s law:

∂p

∂t
= −K

∂V

∂x
, (9)

where K is Young’s modulus.

If we take ∂/∂t of equation 8 and ∂/∂x of equation 9, we obtain

∂

∂t

∂p

∂x
= −r

∂

∂t

∂V

∂t
,

∂

∂x

∂p

∂t
= −K

∂

∂x

∂V

∂x
,
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which are

∂2p

∂t ∂x
= −r

∂2V

∂t2
, (10)

∂2p

∂x ∂t
= −K

∂2V

∂x2
. (11)

The left side of equation 10 is the same as the left side of equation 11.

Therefore, their right sides are equal, which gives the wave equation for V as

−K
∂2V

∂x2
= −r

∂2V

∂t2
, (12)

which is

∂2V

∂x2
= 1

K

r

( ) ∂2V

∂t2
. (13)

Next, we want to find the wave equation for p. It follows that, by taking

∂/∂x in equation 8 and ∂/∂t in equation 9, we obtain

∂

∂x

∂p

∂x
= −r

∂

∂x

∂V

∂t
,

∂

∂t

∂p

∂t
= −K

∂

∂t

∂V

∂x
,

which are

∂2p

∂x2
= −r

∂2V

∂x∂t
, (14)

∂2p

∂t2
= −K

∂2V

∂t∂x
. (15)

If we solve equations 14 and 15, we obtain the wave equation for p

given by

− 1

r

∂2p

∂x2
= − 1

K

∂2p

∂t2
, (16)
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which is

∂2p

∂x2
= 1

K

r

( ) ∂2p

∂t2
. (17)

We see that the two wave equations 13 and 17 have the same form. The

constant (K/r) is the square of the propagation velocity v; that is,

v =
�����
K/r

√
.

For non-dissipative and non-dispersive electromagnetic waves,

Maxwell’s equations yield

∇ × E = −m
∂H

∂t
, ∇ × H = −1

∂E

∂t
,

where E and H are the electric and magnetic fields and 1 and m are the

dielectric and permeability constants, respectively. For horizontal polari-

zation of E = (Ex, 0, 0) and H = (0, Hy, 0), Maxwell’s equations give the

symmetric first-order partial differential equations

∂Ex

∂z
= −m

∂Hy

∂t
,

∂Ex

∂t
= − 1

1

∂Hy

∂z
.

By cross differentiation, as before, it is apparent that Ex and Hy satisfy the

wave equations

∂2Ex

∂z2
= 1

c2

∂2Ex

∂t2
,

∂2Hy

∂z2
= 1

c2

∂2Hy

∂t2
,

where the propagation velocity c of light obeys the relation c = 1/
����
1m

√
.

Back in the day, geophysics visualized the underground in modest and

idealistic terms. The source and the receivers were on or very close to the

surface. The source produced a downgoing wave and the receiver recorded

an upgoing wave. This ideal model did not include effects such as reverbera-

tions and ghost reflections, about which geophysicists had little knowledge.

However, as time passed, geophysicists became aware of the great difficul-

ties presented by these effects.

Now, with dual sensors and seismic processing, reverberations and

ghost reflections above a buried receiver can be stripped away. The resulting

seismic data approximates the ideal model of the past, with the datum no

longer being at the surface of the ground, but at the depth of the receiver.
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Chapter 5

Three-dimensional Wave Equation

Wave equation

Many important physical systems can be understood as manifestations

of wave phenomena. It is, therefore, appropriate to begin our discussion

with wave motion. The scalar wave equation governs the wave motion for

many physical phenomena. A significant property of waves is that they

carry energy over time from one spatial point to another. That is, waves

are nature’s way of transporting energy. In studying wave motion, the inde-

pendent variables are x, y, z, t. The first three represent spatial coordinates

and the fourth represents time. The dependent variable u represents the dis-

turbance; i.e., the quantity undergoing wave motion. Here, we assume that u

is a scalar and denote it by u(x, y, z, t). The three spatial dimensional coor-

dinates are x, y, z. The homogeneous form of the three-dimensional wave

equation is

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
− 1

v2

∂2u

∂t2
= 0 . (1)

The three-dimensional wave equation also can be written as

∇2u = 1

v2

∂2u

∂t2
. (2)

Here, ∇ stands for the vector differential operator del whose coefficients in a

Cartesian coordinate system are

∇ = ∂

∂x
,
∂

∂y
,
∂

∂z

( )
.
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The symbol ∇2 is an abbreviation for the inner product or dot product of

∇ with itself:

∇2 = ∇ · ∇ = ∂

∂x
,
∂

∂y
,
∂

∂z

( )
· ∂

∂x
,
∂

∂y
,
∂

∂z

( )

= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

In the wave equation 1, the constant v represents the velocity of the tra-

veling waves. The equation can be derived from first principles. However,

we will assume the existence of this equation as one of the basic equations

of mathematical physics, and then continue from there. Let us look closely at

the wave equation. On the left is the sum of the three second partial deriva-

tives with respect to each of the space variables. Also on the left is the nega-

tive of the second partial derivative with respect to time divided by the

quantity v2. At this point in our discussion, we assume that the quantity v

is a positive constant. The right side of the above wave equation is zero,

so it is a homogeneous partial differential equation.

In the two-dimensional case of x, y, the wave equation reduces to its

two-dimensional form,

∂2u

∂x2
+ ∂2u

∂y2
− 1

v2

∂2u

∂t2
= 0 . (3)

In the one-dimensional case of x, the wave equation reduces to its

one-dimensional form,

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0 . (4)

Now, let us make an important observation about solutions of the wave

equation, namely, that the sum of two solutions is also a solution. More

specifically, if u1 and u2 are solutions, so is c1u1 + c2u2, where c1 and c2

are arbitrary constants. This behavior is known as the superposition prin-

ciple. The one-dimensional wave equation is the easiest wave equation

with which to work. Surprisingly, the next easiest is the three-dimensional

equation, and the most difficult is the two-dimensional equation. With the

advent of collecting three-dimensional seismic data, the three-dimensional

wave equation has assumed its rightful place in seismic analysis.
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One-dimensional wave equation

Jean-le-Rond d’Alembert (1717–1783) was born in Paris. He was aban-

doned by his mother on the steps of the little church of St. Jean-le-Rond,

which then nestled under the great porch of Notre Dame. He was taken to

the parish commissary, who, following the usual practice in such cases,

gave him the Christian name of Jean-le-Rond; it is not known by what

authority he subsequently assumed the right to prefix de to his name. He

was boarded by the parish with the wife of a glazier who lived near the cathe-

dral, and here he found a real home, though a humble one. His schooling

allowed him to obtain a mathematical education. His essay in 1738 on inte-

gral calculus and another essay in 1740 on “ducks and drakes” or ricochets

attracted attention. He was elected as a member of the French Academy in

1740. Nearly all of his major mathematical works were produced during the

years 1743 to 1754. The first of these was his Traité de Dynamique, pub-

lished in 1743, in which he enunciated the principle known by his name,

namely, that the “internal forces of inertia” (that is, the forces which resist

acceleration) must be equal and opposite to the forces which produce the

acceleration. This may be inferred from Newton’s second reading of his

third law of motion, but the full consequences had not been realized pre-

viously. This principle enabled mathematicians to obtain the differential

equations of motion of any rigid system.

In 1744, d’Alembert published his Traité de l’Équilibre et du Mouve-

ment des Fluides, in which he applies his principle to fluids; this led to

partial differential equations which he was then unable to solve. In 1745,

he developed that part of the subject which dealt with the motion of air in

his Théorie Générale des Vents, and this again led him to partial differential

equations. A second edition, in 1746, was dedicated to Frederick the Great

of Prussia, and procured an invitation to Berlin and the offer of a pension; he

declined the former, but subsequently, after some pressing, pocketed his

pride and the latter. In 1747, he applied differential calculus to the

problem of a vibrating string and arrived at the one-dimensional wave

equation. D’Alembert showed that the general solution of the one-

dimensional wave equation takes the form

u(x, t) = f t − x

v

( )
+ g t + x

v

( )
, (5)

where f (s) and g(s) are arbitrary functions of the variable s. Because of the

superposition principle, we can satisfy ourselves with d’Alembert’s solution

by showing that the functions f and g separately satisfy the wave equation.

Because the proofs are similar, we will only conduct the one for f.
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We take the partial derivative of f two times, the first time with respect

to t and the second time with respect to x:

∂f

∂t
= f ′ t − x

v

( )
,

∂f

∂x
= − 1

v
f ′ t − x

v

( )
,

where f ′(s) is an abbreviation for df /ds and s represents the argument

s = t − x/v. We differentiate again, and obtain

∂2f

∂t2
= f ′′ t − x

v

( )
,

∂2f

∂x2
= 1

v2
f ′′ t − x

v

( )
,

where f ′′(s) is an abbreviation for d2f /ds2. These expressions can be directly

combined to give the one-dimensional wave equation 3. The proof for

g follows along the same lines.

The waveform f at time t and point x is

waveform A = f t − x

v

( )
.

Let Dx = vDt. The waveform f at the later time t + Dt and point x + Dx is

waveform B = f t + Dt − x + Dx

v

( )
.

We write waveform B as

waveform B = f t + Dt − x

v
− Dt

( )
= f t − x

v

( )
.

This equation shows that waveform B is the same as waveform A. Assume

that velocity v is positive. Then, point x + vDt lies to the right of point x at a

distance vDt. Thus, we see that the undistorted waveform f moves at veloc-

ity v and goes to the right. A similar argument shows that the undistorted

waveform g moves at velocity −v and thus goes to the left.

In conclusion, the two terms in the general solution shown in equation

13 have the following interpretation. The term f (t − x/v) represents a wave-

form moving at velocity v with no change in size or shape. The term g(t +
x/v) represents a waveform moving at velocity −v with no change in size or

shape.
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Sinusoidal waves

A sense is a physiological capacity of organisms that provides data

for perception. Aristotle (384 BC – 322 BC) gives the traditional classifi-

cation of the five sense organs: sight, smell, taste, touch, and hearing. The

eye is the organ of vision. The spectrum of light to which the eye is sensitive

varies from the color red (composed of lower electromagnetic frequencies of

light) to the color violet (composed of higher electromagnetic frequencies of

light). In other words, the eyes sense frequencies of electromagnetic waves

of light. The ear is the organ of hearing. The human ear can perceive fre-

quencies of sound from 16 cycles per second, which is a very deep bass,

to 28,000 cycles per second, which is a very high pitch. In other words,

the ears sense frequencies of mechanical waves of sound. In order to under-

stand the meaning of frequency, we must appeal to the concept of sinusoidal

waves. A sine wave or sinusoid is a mathematical curve that describes a

smooth repetitive oscillation. It is named after the function sine, of which

it is the graph. Fourier shows that any motion can be expressed in terms

of a sum of sinusoidal oscillations.

Let us consider a sinusoidal wave. A cycle is defined as one complete

performance of a vibration, electric oscillation, current alternation, or

other periodic process. For example, one cycle is marked by two successive

peaks in the wave motion. The wave consists of cycle after cycle, with

no end in sight. We can look at a wave in time t. The time duration of

one cycle is called the period T. Let time t be measured in seconds. To

summarize,

t = number of seconds in question ,

T = number of seconds per cycle ,

1

T
= cycles per second .

Thus,

t

T
= number of seconds in question

number of seconds per cycle

= number of cycles in question .

The angular frequency v is defined as

v = 2p

T
= radians per cycle/number of seconds per cycle

= radians per second .
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The argument of a sine function must be in radians. There are 2p radians per

cycle. The argument is

2p t

T
= vt = radians per cycle × number of cycles in question

= radians in question .

A sinusoidal function would be

cosvt = cos
2p t

T
.

Instead of time, we can use distance. We can look at a wave in distance

x. The spatial duration of one cycle is called the wavelength l. Let time x

be measured in meters. To summarize,

x = number of meters in question ,

l = number of meters per cycle ,

1

l
= cycles per meter .

Thus,

x

l
= number of meters in question

number of meters per cycle
= number of cycles in question .

The wavenumber k is defined as

k = 2p

l
= radians per cycle/number of seconds per cycle

= radians per second .

The argument of a sine function must be in radians. There are 2p radians per

cycle. The argument is

2px

l
= kx = radians per cycle × number of cycles in question

= radians in question .

A sinusoidal function would be

cos kx = cos
2px

l
. (6)
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To summarize, the period T of a sinusoidal wave is the interval of time

over which the shape of the wave repeats. The period represents the crest-to-

crest or trough-to-trough duration in seconds at a given distance. The wave-

length l of a sinusoidal wave is the interval of distance over which the shape

of the wave repeats. The wavelength represents the crest-to-crest or trough-

to-trough length in meters at a given time (see Figure 1).

What is the relationship between wavelength and period of a sinusoidal

wave? The relationship is: the wave moves a distance of one wavelength

l in a time of one period T. Velocity is distance divided by time. Thus,

v = velocity = distance

time
= wavelength

period
= l

T
. (7)

The angular frequency v is

v = 2p

T
. (8)

The wavenumber k is

k = 2p

l
. (9)

As a result, velocity is given by

v = l

T
= v

k
. (10)

The period is given by

T = 2p

v
. (11)

Figure 1. Wavelength

and period.
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As a result, we have

l = vT = v
2p

v
= 2pv

v
. (12)

A sinusoidal traveling wave (in one dimension x) may be represented by

the equation

u(x, t) = A cos 2p
t

T
− x

l

( )
+ u

( )
= A cosf . (13)

Here, the constant A is amplitude of the wave, T is period, l is wavelength,

and u is a constant phase angle. In the context of communication waveforms,

the time-variant angle,

f = 2p
t

T
− x

l

( )
+ u = 2p t

T
− 2px

l

( )
+ u ,

is referred to as the instantaneous phase of the wave at x and t. The instan-

taneous phase also can be written as

f = (vt − kx) + u

or as

f = v t − k

v
x

( )
+ u = v t − x

v

( )
+ u . (14)

Here, v is angular frequency, k is wavenumber, v is velocity, and u is a

constant phase angle. Thus, the sinusoidal traveling wave, shown in

equation 13, may be represented by the equation

u(x, t) = A cos v t − x

v

( )
+ u

( )
. (15)

The sinusoidal wave u(x, t) satisfies our one-dimensional wave equation 3.

Plane waves

Two types of wave are of special interest in the three-dimensional case.

One is the plane wave, which is treated in this section. The other is the

spherical wave, which will be treated in the next section. Suppose you

form a line of soldiers side by side, all facing in a certain direction, such

as northeast. They all march at the same speed in that direction. What you

see is the whole line moving in that direction. It is the same with waves.
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In two dimensions, a line wave is a line composed of the same waveform.

The line wave moves at a given speed in a certain direction. In three dimen-

sions, a plane wave is a plane composed of the same waveform. The plane

wave moves at a given speed in a certain direction.

A plane wave propagates along an arbitrary direction specified by the

unit vector

u = (a, b, g) .

Here, we must be careful to distinguish between the boldface u for unit

vector and the italic u for the quantity undergoing wave motion. By defi-

nition, the unit vector has a magnitude of one; that is,

1 = |u| =
���������������
a2 + b2 + g2

√
.

Let r be the vector

r = (x, y, z) .

Its length is

r = |r| =
��������������
x2 + y2 + z2

√
.

A plane wave traveling in the u direction is

u(r, t) = f t − r · u

v

( )
= f t − ax + by + gz

v

( )
. (16)

Let us verify that equation 16 is a solution of the three-dimensional

wave equation. Because

∂f

∂x
= −a

v
f ′ and

∂f ′

∂x
= −a

v
f ′′ ,

it follows that

∂2f

∂x2
= ∂

∂x
−a

v
f ′

( )
= −a

v

∂f ′

∂x
= −a

v
−a

v
f ′′

( )
= a2

v2
f ′′ . (17)

Thus,

∂2f

∂x2
= a2

v2
f ′′ .
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A similar result holds for y and for z; namely,

∂2f

∂y2
= b2

v2
f ′′ ,

∂2f

∂z2
= g2

v2
f ′′ .

We have

∇2f = ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= a2 + b2 + g2

v2
f ′′ = 1

v2
f ′′ = 1

v2

∂2f

∂t2
. (18)

This equation verifies that equation 16 is a solution of the three-

dimensional wave equation.

If we interpret what equation 16 means, we see that a constant value of

the disturbance u occurs at a given value of t for all values of the position

vector r obeying r · u = constant. This condition describes a plane perpen-

dicular to u. As the value of r · u increases, the plane wave moves in the u
direction. The corresponding expression for a plane wave moving in the −u
direction is

u(r, t) = g t + r · u

v

( )
. (19)

The propagation vector (or angular wavenumber vector) k points in the

propagation direction.

Let us look at the sinusoidal plane wave

u(r, t) = cos v t − r · u

v

( )
+ u

[ ]
. (20)

The propagation vector is the vector given by

k = v

v
u .

Let kx, ky, kz be the three components of k along the coordinate axes.

We have

k = (kx, ky, kz) .

Suppose a, b, g are the three components of the unit vector u.

We have

u = (a, b, g) = a ix + b iy + kz iz , (21)
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which gives

(kx, ky, kz) =
v

v
a,

v

v
b,

v

v
g

( )
. (22)

The magnitude of k is

k = |k| = v

v
. (23)

The magnitude k is called the angular wave number. The wavelength

l = 2pv

v
= 2p

k
(24)

represents the crest-to-crest or trough-to-trough spatial distance between

waves at a given time. This distance is measured in the direction of

wave propagation, i.e., the direction of k. The crest-to-crest or trough-to-

trough distance between waves at a given time depends upon the direction.

If the distance is measured in the x direction, we obtain from equation 22

the x-angular wave number

kx =
va

v
,

from which we obtain the x-angular wavelength

lx =
l

a
= 2p

ka
= 2pv

va
= 2p

kx

. (25)

Similarly, the y-wavelength and z-wavelengths are

ly =
l

b
= 2p

ky

, lz =
l

g
= 2p

kz

. (26)

The period of the sinusoidal wave is

T = 2p

v
. (27)

From equation 24, we see that the velocity v is

v = vl

2p
= l

T
, (28)
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which says that a crest moves a distance l in the k direction in one period

T. In the x-direction, the crest moves a distance lx in one period T, so the

apparent velocity in the x direction is

vx =
lx

T
= l

Ta
= v

a
. (29)

This apparent velocity is greater than the wave velocity v, unless

a = 1, in which case it is equal to v. Similarly, the apparent velocities

in the y and z directions are

vy =
v

b
, vz =

v

g
. (30)

Spherical waves

Of all three-dimensional waves, only the plane wave (sinusoidal or not)

moves through space with an unchanging profile. Thus, the idea of a wave as

a propagating disturbance whose profile is unaltered is not generally true in

the three-dimensional case as it is in the one-dimensional case. However,

there is another special type of three-dimensional wave which retains its

shape but not its amplitude as it propagates. This wave is the spherical

wave. For a spherical wave, we make the assumption that the function

u(rt) has spherical symmetry about the origin; namely, the assumption

that u(rt) = u(rt). The scalar r is the length of the vector r; that is,

r = |r| =
��������������
x2 + y2 + z2

√
. (31)

If we throw a stone into a pool, the surface ripples that emanate from the

point of impact spread out in two-dimensional circular waves. Extending

this concept to three dimensions, we envision a very small pulsating

sphere (i.e., an approximate point source) surrounded by a fluid. As the

source expands and contracts, it generates pressure variations which propa-

gate outward as spherical waves.

An idealized point source is one for which the radiation emanating from

it streams out radially, uniformly in all directions. The source is said to be

isotropic and the resulting wavefronts are again concentric spheres which

increase in diameter as they expand out into the surrounding space. The

obvious symmetry of the wavefronts suggests that it might be more con-

venient to describe them in terms of spherical polar coordinates (see

Figure 2).
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In this representation, the Laplacian operator is

∇2 = 1

r2

∂

∂r
r2 ∂

∂r

( )
+ 1

r2 sin u

∂

∂u
sin u

∂

∂u

( )
+ 1

r2 sin2u

∂2

∂f2
, (32)

where r, u, f are defined, respectively, by

x = r sin u cosf, y = r sin u sinf, z = r cosf . (33)

Remember that we are looking for a description of spherical waves,

waves which are spherically symmetric. In other words, waves that are

characterized by the fact that they do not depend on u and f. In such a

case, we can use the simplified expression

u(r) = u(r, u, f) = u(r) . (34)

Then the Laplacian of u(r) is simply

∇2u(r) = 1

r2

∂

∂r
r2 ∂u

∂r

( )
. (35)

This result also can be obtained in an alternate way. We start with the

Cartesian form of the Laplacian, operate on the spherically symmetric

wave function u(r), and convert each term to polar coordinates. Examining

the x dependence, we know by spherical symmetry that

u(r) = u(r) .

Figure 2. Spherical polar

coordinates.
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We have

∂u

∂x
= ∂u

∂r

∂r

∂x
,

∂2u

∂x2
= ∂2u

∂r2

∂r

∂x

( )2

+ ∂u

∂r

∂2r

∂x2
. (36)

Using

x2 + y2 + z2 = r2 ,

we have

∂r

∂x
= x

r
,

∂2r

∂x2
= 1

r

∂

∂x
(x) + x

∂

∂x

1

r

( )
= 1

r
1 − x2

r2

( )
.

Thus, we have

∂2u

∂x2
= x2

r2

∂2u

∂r2
+ 1

r
1 − x2

r2

( )
∂u

∂r
(37)

and also the two similar expressions

∂2u

∂y2
= y2

r2

∂2u

∂r2
+ 1

r
1 − y2

r2

( )
∂u

∂r
, (38)

∂2u

∂z2
= z2

r2

∂2u

∂r2
+ 1

r
1 − z2

r2

( )
∂u

∂r
. (39)

Adding equations 37, 38, and 39, we obtain the Laplacian of u(r) as

simply

∇2u(r) = ∂2u

∂r2
+ 2

r

∂u

∂r
. (40)

Because

∂2u

∂r2
+ 2

r

∂u

∂r
= 1

r

∂u

∂r
+ ∂u

∂r
+ r

∂2u

∂r2

( )[ ]
= 1

r

∂u

∂r
+ ∂

∂r
r
∂u

∂r

( )[ ]
= 1

r

∂2(ru)

∂r2
,

equation 40 also can be expressed as

∇2u(r) = 1

r

∂2(ru)

∂r2
. (41)
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In the case of spherical waves, the three-dimensional wave equation 2

becomes

∇2u(r) = 1

v2

∂2u(r)

∂t2
. (42)

Using equation 41, wave equation 42 can be written as

1

r

∂2(ru)

∂r2
= 1

v2

∂2u

∂t2
.

Multiplying both sides by r, we obtain

∂2(ru)

∂r2
= 1

v2

∂2(ru)

∂t2
. (43)

Notice that this expression is now just the one-dimensional wave

equation where the space variable is r. The wave function is the product

ru. The solution of equation 43 then is simply

ru(r, t) = f (r − vt)

or

u(r, t) = f (r − vt)

r
. (44)

This represents a spherical wave progressing radially outward from the

origin at a constant speed v, and having an arbitrary functional form f, but

attenuated as 1/r. Another solution is

u(r, t) = g(r + vt)

r
. (45)

In this case, the wave converges toward the origin. A special case of the

general solution,

u(r, t) = c1

f (r − vt)

r
+ c2

g(r + vt)

r
, (46)

is the sinusoidal spherical wave

u(r, t) = A

r
cos k(r + vt) . (47)
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The constant A is called the source strength. At any fixed value of time,

this represents a cluster of concentric spheres filling all space. Each wave-

front, or surface of constant phase, is given by kr = constant. Notice that

the amplitude of the spherical wave in equation 47 is the function A/r,

where the term r−1 serves as an attenuation factor. The attenuation factor

is a direct consequence of energy conservation. Often, the attenuation

factor goes under the name of geometric spreading. That is, unlike the

plane wave, a spherical wave decreases in amplitude, thereby changing its

profile, as it expands and moves out from the origin. As a spherical wave-

front propagates out, its radius increases. Far enough away from the

source, a small area of the wavefront will closely resemble a portion of a

plane wave (see Figure 3).

If we visualize a pencil (very narrow beam) of rays spreading out

radially from the source point, we can see that the intensity (i.e., the flow

of energy across unit area in unit time) decreases as the area increases.

This is the wellknown inverse square law. Because amplitude is pro-

portional to the square root of intensity, the amplitude of a spherical wave

decays as the inverse first power of distance, as given by equation 45.

Thus, the decay, or spherical spreading relation

1

r
= 1

vt
, (48)

is applicable to a constant-velocity medium, for then the rays remain radial

and the wavefront stays spherical. In the real earth, however, the actual

velocity-depth relations result in refraction caused by bending or curving

of the rays, so that the wavefronts no longer remain spherical. In the usual

case, a greater decay results.

The effect of geometric spreading is the dominant effect in producing

the observed decay of the amplitude of the raw seismic traces as time

increases. In comparison with the other complexities observed on a seismo-

gram, the phenomenon of geometric spreading is easy to handle. It is a defi-

nite effect which is observed, it is a major effect, and it is easy to

compensate. All we need to do is multiply each value of the seismic trace

by a factor proportional to the travel distance r.

Figure 3. The radius of the spherical

wavefront increases as it propagates away

from its center.
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Green’s function

George Green (1793 – 1841) was born in Nottinghamshire and lived

there for most of his life. His father was a baker who built and owned a

brick windmill used to grind grain. Green began working daily in his

father’s bakery at the age of about five. He had to move sacks of grain

and adjust the sails of the windmill. Every month, the heavy millstones

had to be replaced or repaired. Air inside the mill was laden with finely

granulated particles, harmful to health. Green was self-taught. He received

only about one year of formal schooling as a child, between the ages of eight

and nine. When Green was thirsty for knowledge, he became a member of

the Nottingham Subscription Library. This membership gave Green the

resources of books from which he could learn mathematics. In 1828,

Green published An Essay on the Application of Mathematical Analysis to

the Theories of Electricity and Magnetism. He published it privately at his

own expense, because no established journal would publish anything by a

person without a formal education. His Essay was purchased by about 50

people, mostly friends who could not understand any of the mathematics.

His Essay introduced several significant advances, among them Green’s

theorem, potential functions, and Green’s functions, all of which are funda-

mental to mathematical physics. Members of the Nottingham Subscription

Library suggested that Green obtain a university education. Sir Edward

Bromhead, one of the library’s subscribers, encouraged Green to apply to

Cambridge. Accordingly, Green turned to learning the Greek and Latin

languages, as required for admission. In 1832, at age of nearly 40, Green

was admitted as an undergraduate at Cambridge. He won the first-year math-

ematical prize. He graduated in 1838 as the fourth highest scoring student in

his graduating class (while mathematician James Joseph Sylvester was the

second highest). The Cambridge Philosophical Society, on the basis of

Green’s Essay and three other publications, elected Green as a fellow. In

the next two years (1838 – 1840), Green published an additional six

papers with applications to hydrodynamics, sound, and optics. In 1840,

Green became ill, and he died a year later at age 47.

Green was the first person to create a mathematical theory of electricity

and magnetism, and his theory formed the foundation for the subsequent

work of James Clerk Maxwell, William Thomson, and others. Green’s

work on potential theory ran parallel to that of Carl Friedrich Gauss.

Green’s work was not recognized during his lifetime. In 1845, however,

William Thomson (then aged 21), later known as Lord Kelvin, discovered

Green’s work and disseminated it for future mathematicians. Green’s

work on the motion of waves anticipated the WKBJ approximation of
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quantum mechanics. Green’s efforts on light-waves and the properties of the

ether produced what is now known as the Cauchy-Green tensor. Green’s

theorem and Green’s functions became important tools in quantum mech-

anics, classical mechanics, and signal processing.

In those cases, there are many advantages of the wavefield being able to

be described by a linear equation. In such a representation, the effect of inde-

pendent inputs is additive. Thus, the effect due to a complicated input can be

analyzed by expressing the complicated input as a superposition of simple

inputs. Once the effect of the simple input is known, then it follows from

the property of linear filters that the effect of the complicated input can be

found. Consider the filter shown in Figure 4. Let us confine our attention

to time filters. The symbol t denotes time.

Let G represent a filter (or operator) that transforms the input signal q(t)

into the output signal u(t). In symbols,

Gq(t) = u(t) .

The filter is called linear if it satisfies:

1. the superposition property—namely, the input q1(t) + q2(t) gives the

output u1(t) + u2(t); and

2. the multiplicative property—namely, the input c q(t) gives the output

c u(t), where c is a constant.

A linear filter G is time invariant if it has the property

Gq(t − t) = u(t − t) .

In other words, if the input q(t) is shifted by t time units, then the output u(t)

also is shifted by t time units.

The Dirac delta function d(t) is equal to zero everywhere on the t axis

except at t = 0. At zero, the delta function is a spike that is infinitely high

and infinitesimally thin. However, the total area under the spike is equal

to one. The most valuable property of the delta function is its sifting prop-

erty; namely,

∫1

−1

q(t) d(t − t)dt = q(t) .

Figure 4. The filter or operator

G transforms the input q(t) into

the output u(t).
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Now, let us now introduce the concept of Green’s function, named after

George Green. This concept applies to linear differential equations (both

ordinary and partial). The concept applies to linear filters (time filters,

space filters, and space–time filters). The three-dimensional wave equation

2 can be written as

∇2u − 1

v2

∂2u

∂t2
= 0 .

This equation is a homogeneous partial differential equation because its

right side is zero. In solving this differential equation, we obtain the output u.

There is no input involved. The inhomogeneous equation is

∇2u − 1

v2

∂2u

∂t2
= q .

In this equation, there is both input q and output u. The inhomogeneous

equation also can be written as

∇2 − 1

v2

∂2

∂t2

( )
u = q .

The expression in parentheses is a differential operator, which we denote

by L. Thus, the inhomogeneous equation is

Lu = q .

This equation says that the operator L acting on the output u is equal to

the input q. Define G to be the inverse of L; that is,

G = L−1 .

We have

u = L−1q or u = Gq .

This equation says that the operator G acting on the input q is equal to the

output u.

For simplicity, we will describe Green’s function for a time-invariant

linear filter G, as shown in Figure 5. Let the input be the delta function

d(t − t). Green’s function g(t) is defined as the resulting output. In symbols,

Gd(t) = g(t) .
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Because the filter is time-invariant, we have

Gd(t − t) = g(t − t) .

Because filter G is linear, it satisfies the multiplicative property

G[q(t)d(t − t)] = q(t)g(t − t) .

Here, q(t) is an arbitrary constant, defined to be the value of a time function

q(t) at some fixed time t. The superposition property says that we may

integrate over all possible values of t. As a result, we obtain

∫1

−1

G[q(t) d(t − t)dt] =
∫1

−1

q(t)g(t − t)dt .

Because G operates on t, not t, we can take G outside of the integral.

Thus, we have

G

∫1

−1

q(t) d(t − t)dt

⎡
⎣

⎤
⎦ =

∫1

−1

q(t)g(t − t)dt .

We can apply the sifting property to the expression within the brackets.

The result is

G[q(t)] =
∫1

−1

q(t)g(t − t)dt .

As we know, the output is

Gq(t) = u(t) .

The final result is

u(t) =
∫1

−1

q(t)g(t − t)dt .

Figure 5. The filter or

operator G transforms

delta function d(t) into

Green’s function g(t).
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The above equation is called the superposition integral. It states that the

output u(t) of a time-invariant linear filter with input q(t) is obtained by (1)

finding Green’s function g(t) and then (2) using the superposition integral to

determine the output u(t). In reflection seismology, the superposition inte-

gral is known as the convolution integral, where the input q(t) is the reflec-

tivity and the output u(t) is the seismic trace. Green’s function g(t) is the

seismic wavelet and L = G−1 is the deconvolution operator.

In electrical engineering, the Green’s function is called the impulse

response function. In optics, the Green’s function is referred to as the

point spread function of a spatially-varying optical filter. In physics and

wave propagation, the Green’s function represents the effect of a linear

wave at point r and time t resulting from an impulsive source applied at

point r0 at time t0. Although the idea behind the Green’s function is the

same, the terminology is different for different fields of science. Regardless

of the area of application, the fundamental fact is that the Green’s function is

the response of a system to an impulsive excitation.

Green’s functions are used in physics, specifically in quantum field

theory, aerodynamics, aeroacoustics, electrodynamics, statistical field

theory, and Born scattering theory. In quantum field theory, Green’s func-

tions take the roles of propagators. Green’s functions are used widely in

electrodynamics and quantum field theory, where the relevant differential

operators are often difficult or impossible to solve exactly but can be

solved in a perturbative manner using Green’s functions. In field theory con-

texts, the Green’s function often is called the propagator or two-point corre-

lation function because it is related to the probability of measuring a field at

one point given that it is sourced at a different point. Green’s functions are

powerful tools for obtaining relatively simple and general solutions of basic

problems, such as scattering and bound-level information. The bound-level

treatment gives a clear physical understanding of questions such as super-

conductivity, the Kondo effect, and, to a lesser degree, disorder-induced

localization.

Next, we would like to make the wave equation easier to understand,

and to do so we will use Green’s function. Let us introduce the source func-

tion, or input, q(x, y, z, t). Accordingly, the inhomogeneous form of the

wave equation 1 is

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
− 1

v2

∂2t

∂z2
= q(x, y, z, t) . (49)

We interpret equation 49 as a linear system with input q and output u, as

shown in Figure 6. In addressing input–output systems, the key factor is the

Chapter 5: Three-dimensional Wave Equation 247

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



determination of the impulse response function. In effect, it is Christiaan

Huygens who discovers this impulse response function, at least empirically,

as 17th-century mathematics was not developed enough to write down its

mathematical form. The study of wave propagation in three dimensions

can be made quite complicated. Huygens’ contribution is discovering how

to make it beautifully simple. He observes that a point source radiates a

spherically symmetric wave-like disturbance, or wavelet. A point source

at the origin can be represented by the product d(x)d(y)d(z) of three Dirac

delta functions. If, in addition, the time function at the source is an

impulse or spike d(t), then an impulsive point source would have the form

d(x)d(y)d(z)d(t) . (50)

We now let the impulsive point source 50 be the input q(x, y, z, t). The

resulting output, by definition, is the impulse response function. Instead of

the terminology “impulse response function,” physicists use the expression

“Green’s function.” Without proof, we write down the Green’s function,

which in the present case is

g(x, y, z, t) =
d t − r

v

( )
−4pr

, (51)

where t . 0 and r is defined as

r =
��������������
x2 + y2 + z2

√
. (52)

We see that r is the length of the vector from the origin to the point

(x, y, z). The quantity r/v is the travel time for the impulsive disturbance

to travel from the origin to the point (x, y, z). The delta function d(t −
r/v) represents a spike disturbance on the spherical shell with the center

at the origin and radius r = vt. This result is in conformity with Huygens,

in that the impulsive point source has produced an impulsive spherically

symmetric wavelet. The divisor −4p in equation 51 is a constant which

comes from the mathematical derivation, while the divisor r in equation

51 represents spherical divergence.

Thus, we have stated that the Green’s function for the three-dimensional

wave equation is an impulsive spherical shell (with a spherical divergence

Figure 6. Green’s

function g transforms

input q into output u.
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factor). The equation for this spherical shell is r = vt or

x2 + y2 + z2 = v2t2 . (53)

In four dimensions (x, y, z, t), this is the equation for a cone with the

vertex at the source point (0, 0, 0, 0). Thus, a spike at the source results

in a spike at all points on this cone, and zero everywhere else. We cannot

draw a four-dimensional figure, but, if we suppress in our minds the y coor-

dinate, this fundamental cone looks like the one depicted in Figure 7.

Because we now know the impulse response function, we can exhibit

the input–output relationship as

input q(x, y, z, t) convolved with
d t − r

v

( )
−4pr

gives output u(x, y, z, t) .

This convolutional relationship between input and output may be written as

output =
d t − r

v

( )
−4pr

⎛
⎝

⎞
⎠ ∗ ∗ ∗ ∗ (input) ,

where the four asterisks indicate convolution with respect to the four inde-

pendent variables. Four-dimensional convolution might seem a little for-

midable at first, but, as we will see, no new principles beyond one-

dimensional convolution are needed.

Figure 7. Fundamental cone describing spherical wave propagation. The circle

represents the three-dimensional spherical shell at time t = r/v. The disturbance is a

spike (with the spherical divergence factor) at all points on this cone, and zero

elsewhere.
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As an example, consider an input given by the point source wavelet

d(x)d(y)d(z)f (t), where f (t) is some transient wave shape. The output

u(x, y, z, t) is given by the convolution equation

u(x, y, z, t) = (Green’s function) ∗ ∗ ∗ ∗ (d(x)d(y)d(z)f (t)) . (54)

The Green’s function in equation 54 is

g(x, y, z, t) =
d t − 1

v

��������������
x2 + y2 + z2

√( )

−4p
��������������
x2 + y2 + z2

√ . (55)

Thus, equation 54 becomes (with each integral running from −1 to 1)

u =
∫

dj

∫
dh

∫
dz

∫
dt

d t−
��������������
j2 + h2 + z2

√
v

( )

−4p
��������������
j2 + h2 + z2

√
× d(x − j)d(y − h)d(z − z)f (t − t) .

We now use the sifting property of the delta function for each of the first

three integrals to obtain

u(x, y, z, t) =
∫1

−1

dt

d t−
��������������
x2 + y2 + z2

√
v

( )

−4p
��������������
x2 + y2 + z2

√ f (t − t) . (56)

The radius is r =
��������������
x2 + y2 + z2

√
. Equation 56 becomes

u(x, y, z, t) =
∫1

−1

dt
d t− r

v

( )
−4pr

f (t − t) . (57)

If we use the sifting property of the delta function, then equation 57 becomes

u(x, y, z, t) = f (t − r/v)

−4pr
. (58)

In most books, this fundamental result is obtained from first principles.

In keeping with our input–output theme, however, we have obtained this

result from the Green’s function. We have written down the impulse

response function, or, in other words, the Green’s function, for the
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three-dimensional wave equation. As we have seen, it is an impulsive

spherical shell (the Huygens’ spherical wavelet) expanding outward from

the impulsive point source as time increases.

Dispersion equation

In exponential form, the pure sinusoidal plane wave 20 is represented by

u(x, t) = exp i vt − u · r

v

( )[ ]
= exp[i(vt − k · r)]

= exp[i(vt − kxx − kyx − kzx)] = exp[if] . (59)

The phase is

f = vt − kxx − kyy − kzz . (60)

Let us now substitute the sinusoidal wave 59 into the wave equation

1. First, we evaluate the derivatives

∂2u

∂x2
= (−ikx)2eif = −k2

xeif ,

∂2u

∂y2
= (iky)2eif = −k2

yeif ,

∂2u

∂t2
= (iv)2eif = −v2eif .

Then, we substitute the above values into wave equation 1 and thus obtain

−k2
x − k2

y − k2
z −

1

v2
(−v2) = 0 ,

which is

k2
x + k2

y + k2
z = v2

v2
. (61)

This equation is called the dispersion equation for the three-dimensional

wave equation. The dispersion equation for the two-dimensional wave

equation 3 is

k2
x + k2

z = v2

v2
. (62)
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The dispersion equation for the one-dimensional wave equation 4 is

k2
z = v2

v2
. (63)

Now, let us look at the one-dimensional case. For a given value of v, the

frequency v and the wavenumber kz must satisfy the dispersion equation 63.

If we solve for v in terms of kz, we obtain

v = +vkz . (64)

Thus, in the case of the one-dimensional wave equation with constant

velocity v, the frequency v is proportional to the wavenumber kz. The con-

stant of proportionality is either +v or −v. The choice +v means that the

wave is

exp if = exp i(vt − kzz) = exp ikz(vt − z) . (65)

This wave is propagating in the positive z direction. The choice −v means

that the wave is propagating in the negative z direction.

Because a crest of a sinusoidal wave moves with velocity v in the direc-

tion of the propagation vector k, it is called a traveling wave. We now come

to an important feature of wave motion, namely, the phenomenon of evanes-

cent waves. As an example, let us solve the dispersion equation 61 for kz.

We obtain

kz = +

��������������
v2

v2
− k2

x − k2
y

√
. (66)

Two cases may occur, namely,

k2
x + k2

y ≤ v2

v2
(67)

and

k2
x + k2

y .
v2

v2
. (68)

In the first case, the quantity kz is real, whereas in the second case the quan-

tity kz is imaginary. In our discussion to this point, we have tacitly assumed

that the first case holds, in which case the crests of the waves travel in either

the plus or minus z-direction. In the second case, define kz by kz = −ikz, so

exp if = exp i(vt − kxx − kyy + ikzz) = exp i(vt − kxx − kyy) exp−kzz .
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Thus, in the z-direction, the wave is not sinusoidal but exponential. There are

no crests, and the wave does not propagate in the z-direction, but instead the

amplitude is attenuated exponentially in the z-direction. Such a wave is

called an evanescent wave (or exponential wave), as opposed to the traveling

wave (or sinusoidal wave) of the first case. The propagation vector of this

evanescent wave has the form

k = (kx, ky,−ikz) , (69)

which has no real component in the z-direction. Note that in the case of the

one-dimensional wave equation, the dispersion relation 64 cannot yield

imaginary values of kz, so evanescent waves cannot occur.

Group velocity

The dispersion relation of a wave equation gives a functional relation-

ship between the components of the k vector and the angular frequency v.

In one dimension, we can plot v as a function of k; that is, we can plot

v(k). In a plot of v versus k, the slope of the straight line from the origin

to some point on this curve, such as point (v, k), is the phase velocity vp =
v/k at this point. The tangent to the curve at some point v is the group

velocity vg = dv/dk at that point. Let us give two examples.

Example 1. The first example is that of a seismic wave in a homogeneous

isotropic medium with material (rock) velocity v. The velocity v does not

depend upon the frequency. Thus, the plot of v(k) is simply a straight line

through the origin; that is, v = vk. The phase and group velocities are

vp = v

k
= v, vg = dv

dk
= d(vk)

dk
= v . (70)

We see that both the phase and the group velocities are equal to the

material velocity v. Because we usually regard a rock layer as homogeneous

and isotropic, this case is important in the analysis of seismic records.

Example 2. In this example, an observer on the surface of the earth measures

only the horizontal component of a wave. Suppose, however, that the wave

is two-dimensional, yet the surface observer is unaware of the depth dimen-

sion. The dispersion relation (equation 62) is

v2 = v2k2
x + v2k2

z ,
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where the constant v is the rock velocity. The surface observer sees this dis-

persion relation as

v2 = v2k2 + v2
0 ,

as our kx is his k, and our v2k2
z is his fixed constant v2

0. His plot of frequency

versus wavenumber is

v(k) =
�����������
v2

0 + v2k2

√
, (71)

so his phase velocity is

vp = v

k
=

���������
v2

0

k2
+ v2

√
, (72)

which always exceeds the rock velocity v. His group velocity is

vg = dv

dk
= v2k�����������

v2
0 + v2k2

√ = v2

vp

= v

vp

v , (73)

which is always less than the rock velocity, so vg , v. Because the energy

and the information travel at the group velocity vg, the observer is unable

to transmit intelligence at a velocity greater than the rock velocity. The

observer cannot transmit a wave of any frequency v that is less than v0.

For, in that case, v− v2
0 = v2k2 is negative, so k is imaginary. It is for

this reason that the observer calls v0 the cutoff frequency; the observer

sees the earth as a low cut (i.e., high pass) frequency filter.

The wavenumber vector k plays a fundamental role in the study of wave

motion. The magnitude k of k is called the wavenumber. A sinusoidal plane

wave (equation 59) has the form (with k and v constant):

exp i(vt − k · r) . (74)

The quantity

f = vt − k · r (75)

is the phase. At a fixed time, a wavefront is defined as a surface of constant

phase. Thus, for this plane wave, the wavefront is the plane k · r = constant,

and is normal to the vector k. A crest of the wave occurs whenever the phase

is a multiple of 2p; i.e., whenever

f = 0,+2p,+4p,+6p, . . . .
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Let us measure distance in the direction of vector k and define the distance l

by l = 2p/k. In this distance (for a fixed time), the phase changes by

−kl = −2p. Thus, the distance l measures the distance (in the direction

of k) between crests at a fixed time t, and hence l is the wavelength. The

wavenumber is equal to the number of wavelengths in a distance of 2p in

the direction of k.

As time increases, each wavefront propagates in the direction of k. Let

us consider the wavefront defined by the crest f = 0. Another wavefront, of

course, would serve equally as well. In the time span from t = 0 to t = t, this

wavefront travels a distance rk in the direction of k, and we can write

f = 0 = vt − krk .

Thus, the velocity v of the wavefront is

v = rk

t
= v

k
. (76)

The velocity

v = v/k

is called the phase velocity vp (see equation 70). It is the velocity of the

wavefront in the direction of the wavenumber vector k. The reciprocal q

of the phase velocity gives the time for the wavefront to move a unit distance

in the direction of k. Because

q = 1

v
= k

v
(77)

represents time per unit distance, it is called the slowness.

Now, we would like to define an important concept, the slowness vector.

The phase velocity v cannot be readily converted into a vector with phys-

ically meaningful components; however, slowness 1/v can be converted

as follows. Because 1/v = k/v, we define the slowness vector q as

q = k

v
. (78)

The magnitude of q is the slowness, that is,

q = k

v
.

We have generalized the expression v = v/k to show dependence upon the

vector k rather than on the scalar k.
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At this point, it would be helpful to express some of the foregoing

vectors in terms of their components. Let a, b, g be the direction cosines

of the k vector. Then, we have

r = (x, y, z) , k = (kx, ky, kz) = k(a, b, g) , (79)

so the phase is

f = vt − kxx − kyy − kzz = vt − k(ax + by + gz) . (80)

The slowness vector is

q = (qx, qy, qz) =
kx

v
,

ky

v
,

kz

v

( )
= k

v
(a, b, g) = 1

v
(a, b, g) . (81)

The components of q are the horizontal slowness for x, the horizontal

slowness for y, and the vertical slowness for z. Their reciprocals

vx =
1

qx

, vy =
1

qy

, vz =
1

qz

(82)

are the x, y, z phase velocities, respectively. However, vx, vy, vz is each

greater than or equal to v, and hence in no way can be considered as the com-

ponents of a velocity vector. Instead, their reciprocals are the components of

the slowness vector.

The wavenumber k = vq depends upon frequency v. Let us plot k =
(kx, ky, kz) in three-dimensional space, with kx, ky, kz plotted on the orthog-

onal axes. If we fix frequency at a given value v, we see that the tip of vector

k defines a surface called the wavenumber surface. This surface can be

designated by

v(kx, ky, kz) = constant . (83)

We recall that the group velocity in the case of one dimension is defined

as

vg = dv

dk
.

Strictly by analogy, we define the group velocity in the case of three dimen-

sions as the vector

vg = dv

dk
. (84)
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Now, we must explain what we mean by this operation. Consider the

vector

vg = dv

dk
= ∂v

∂kx

,
∂v

∂ky

,
∂v

∂kz

( )
. (85)

It is natural to call ∂v/∂kx the horizontal group velocity (as x is a horizontal

direction) and similarly for ∂v/∂ky. Likewise, let us call ∂v/∂kz the vertical

group velocity (as z is the vertical direction). Because

q = k

v
and

∂q

∂k
= 1

v
,

the group velocity vector from equation 85 also can be written as

vg = ∂q

∂k

∂v

∂q
= 1

v

∂v

∂q
= 1

v

∂v

∂qx

,
∂v

∂qy

,
∂v

∂qz

( )
. (86)

Equations 85 and 86 show that the group velocity vector can be

written as

vg = ∇kv = 1

v
∇qv , (87)

where ∇k and ∇q are the gradient operators with respect to the wavenumber

vector k and the slowness vector q, respectively. That is, ∇k and ∇q are

defined as the vector operators given by

∇k =
∂

∂kx

,
∂

∂ky

,
∂

∂kz

( )
, ∇q = ∂

∂qx

,
∂

∂qy

,
∂

∂qz

( )
. (88)

From vector analysis, we know that the gradient to a surface is normal to

this surface. Thus, the gradient ∇kv is normal to the wavenumber surface

v(kx, ky, kz) = constant. Because vg is equal to this gradient, it follows

that the group velocity vector is normal to the wavenumber surface (see

Figure 8). Thus, we have found an important interpretation of group veloc-

ity; namely, that the group velocity can be expressed geometrically in terms

of the wavenumber surface.

An isotropic medium is a medium in which the velocity v(x, y, z)

depends only upon the location of the point (x, y, z) and not upon the direc-

tion in which the velocity is measured. For such a medium, the slowness

q(x, y, z) = 1/v(x, y, z) is, therefore, also independent of direction.

Because k = vq, it follows that, for an isotropic medium, the wavenumber

surface v(kx, ky, kz) is a sphere. A geometrical property of a sphere is that
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constant

Figure 8. Anisotropic medium. The group velocity vector is normal to the

wavenumber surface, but generally does not point in the direction of the propagation

vector. (Note only two dimensions are shown in this diagram.)

Figure 9. Isotropic medium. The group velocity vector is normal to the wave

number surface, which is a sphere, and hence points in the direction of the

propagation vector. (Note only two dimensions are shown in this diagram.)
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the normal to the surface of a sphere is in the same direction as the radius

vector. For the wavenumber surface, the normal is vg and the radius is k.

Thus, we have established a fundamental theorem, namely: For an isotropic

medium, the group velocity vector vg points in the same direction as the

propagation vector k (see Figure 9). Because intelligence travels with the

group velocity, we see that intelligence in an isotropic medium travels in

the propagation direction k. The situation is more complicated in the case

of an anisotropic medium (Figure 8). In that case, the group velocity

vector vg is no longer in the direction of k.
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Chapter 6

Ray Tracing and Seismic Modeling

Hamilton’s equations

The concept of a ray is very useful. It is a line drawn in space that cor-

responds to the direction of the flow of radiant energy. Rays are a geometric

idealization; they have no width. As such, a ray is a mathematical device

rather than a physical entity. In practice, we can produce very narrow

beams or pencils (as, for example, a laser beam), and we might imagine a

ray to be the unattainable limit on the narrowness of such a beam. Similar

to the lines of geometry, rays are a convenient fiction. They exist in the

real world as a beam of light; and beams have width. In the same way, we

may think of seismic rays as idealized beams in the direction of the flow

of seismic energy.

A medium is homogeneous if its properties are not a function of posi-

tion, i.e., if its properties do not vary from point to point. In other words,

a homogeneous medium is identical throughout. Otherwise, the medium

is said to be inhomogeneous or, alternatively, heterogeneous. If a homo-

geneous medium were cut into pieces, then every piece would be identical.

If subsurface rocks found in the earth were figuratively cut into pieces,

differences generally would be observed. Thus, seismology has to deal

with inhomogeneous media.

A medium is isotropic if its properties (such as density and Young’s

modulus) do not depend upon a particular direction. If these properties are

direction dependent, then we can say that the medium is anisotropic.

More specifically, a material is said to be anisotropic if the value of a

measurement of a rock property varies with direction.

Seismic anisotropy can be defined as the dependence of velocity upon

direction. There are many different types of anisotropy. Of particular
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interest are the types that possess an axis of rotational invariance; namely,

if the formation is rotated about such an axis, then the material is still indis-

tinguishable from what it was before. Two cases of seismic anisotropy are of

special interest: one is vertical transverse isotropy (VTI) and the other is

horizontal transverse isotropy (HTI). Vertical transverse isotropy has a ver-

tical axis of rotational invariance. This type of anisotropy is associated with

layering and shale and is found where gravity is the dominant factor. Hori-

zontal transverse isotropy, otherwise known as azimuthal anisotropy, has a

horizontal axis of rotational invariance. This type of anisotropy is associated

with cracks and fractures and is found where regional stress is the dominant

factor.

Glass is an example of a homogeneous isotropic medium. Iceland spar is

an example of a homogeneous anisotropic medium. In glass, the ray is

orthogonal to wavefronts. In Iceland spar, there are two paths of light,

known as the ordinary ray and the extraordinary ray. The ordinary ray is

orthogonal to wavefronts. The extraordinary ray is not orthogonal to

wavefronts.

Rays in a homogeneous medium are straight lines. Rays in an inhomo-

geneous medium are curved lines. The curved line does not have to be

smooth. For example, if the inhomogeneous medium is composed of differ-

ent homogeneous layers, the ray will be straight through each individual

layer but will bend (by refraction) at each interface. Rays in an isotropic

medium are orthogonal to wavefronts; more specifically, the rays are per-

pendicular to the wavefronts at every point of intersection. Accordingly,

in an isotropic medium, a ray is parallel to the propagation vector k.

Except in special cases such as the ordinary ray in Iceland spar, rays in an

anisotropic medium are not orthogonal to the wavefronts.

Anisotropy differs from the rock property called heterogeneity in that

anisotropy is the variation in vectorial values with direction at a point

while heterogeneity is the variation in scalar or vectorial values between

two or more points. Table 1 describes the behavior of rays and wavefronts

for various media.

Often, light can be thought of as rays. A water wave as seen on a pond

appears as a set of moving wavefronts. If a stone is thrown into a pond, the

crests (wavefronts) form a pattern of concentric circles. The energy of the

disturbance travels outward radially from the center. That is, the energy is

propagated along rays at right angles to the wavefront. If we carefully

watch the wave motion, we observe that the longest waves appear at the

outside of the expanding pattern of concentric circles. As we watch the pro-

gress of one of these outside crests, we will suddenly see them disappear.

This is not an illusion, and the next crest coming from behind also
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disappears. More and more crests keep coming from behind and disappear at

the outside edge. On the inside of the ring, new crests keep appearing from

the now calmed central water. The reason for this phenomenon is as follows.

The wave packet represented by the concentric rings moves outward at the

group velocity. The group velocity is the velocity at which the energy of the

disturbance propagates outward. The crests, however, move at the phase ve-

locity. Examining the physics, it can be shown that the group velocity is less

than the phase velocity. Thus, the crest of each wave moves faster than the

wave packet, and the crests move forward with respect to the concentric

pattern. Once a crest reaches the outside of the pattern, it cannot go any

further, because no energy has yet arrived there, and so the crest simply

vanishes.

In many physical problems, we can find the dispersion relation for the

wave equation governing the wave motion. In symbols, we can write such

a dispersion relation as the mathematical equation

v = v(k, r) , (1)

where v is the frequency, r is the position vector, and k is the wavenumber

vector. We may think of v(r, k) as a surface in six-dimensional space. For

a fixed value of r, the subsurface is the wavenumber surface in a three-

dimensional space k. As we have seen in equations 84 and 87 in Chapter 5,

the gradient to this three-dimensional surface is the group velocity

∇kv = ∂v

∂k
= vg . (2)

Table 1. Behavior of rays and wavefronts for varying media.

Homogeneous Inhomogeneous

Isotropic Rays are straight lines.

Wavefronts are orthogonal to

rays.

Example: glass

Rays are curved lines.

Wavefronts are orthogonal to

rays.

Example: typical earth model

Anisotropic Rays are straight lines.

Wavefronts generally are not

orthogonal to rays.

Example: Iceland spar

Rays are curved lines.

Wavefronts generally not

orthogonal to rays.

Example: advanced earth

model
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For a fixed value of k, the subsurface is a surface in three-dimensional

space r. The gradient to this three-dimensional surface is

∇rv = ∂v

∂r
. (3)

These two gradients play an interesting role in the Hamilton theory.

Example. Consider a two-dimensional vertically stratified medium:

r = (x, z), k = (kx, kz), v(x, z) = v(z) . (4)

By definition, the velocity depends only upon the depth coordinate z, and not

on the horizontal coordinate x. The dispersion relation is

v(k, r) = v(z)
��������
k2

x + k2
z

√
= v(z) k . (5)

Thus, v is a function of the form v(kx, kz, z). The group velocity vector is

vg = ∂v

∂kx

,
∂v

∂kz

( )
= kxv

k
,

kzv

k

( )
= (av(z), gv(z)) , (6)

where wavenumber k is
��������
k2

x + k2
z

√
, and where a = sin u, g = cos u are the

direction cosines of the k vector.

As shown in Figure 1, u is the angle that k makes with the z axis. Because

the group velocity is independent of frequency v, there is no dispersion. The

other gradient vector is, by equation 5,

∂v

∂r
= ∂v

∂x
,
∂v

∂z

( )
= (0, v′(z)k) . (7)

This vector has a zero component in the x direction, so that variations can

only take place in the z-direction, as we would expect for a vertically stra-

tified medium.

Let us now develop the Hamilton wave-particle duality. We start our

treatment with the dispersion equation v(k, r). The basic assumption we

make for the medium is that frequency and wavenumber vary slowly.

That is, we assume (1) that the frequency v does not change greatly in

one oscillation period, and (2) that the wavenumber vector k does not

change much in magnitude and direction over a distance of one wavelength.
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We recall that a plane wave in a homogeneous medium can be written in the

form

exp if = exp i(vt − k · r) , (8)

where v and k are constant. The quantity

f = vt − k · r (9)

is called the phase. For such a plane wave, we see that

df = v dt − k · dr = v− k · dr

dt

( )
dt , (10)

so we can write the phase as

f =
∫

df =
∫

v− k · dr

dt

( )
dt . (11)

We now make use of our basic assumption of slow variation of v and

k. That is, v and k are approximately constant with respect to period and

wavelength, respectively. Thus, we assume that, for our slowly varying

Figure 1. Two-dimensional

propagation.
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medium, the same equation holds, namely, the equation

f =
∫t1

t0

v(k, r) − k · dr

dt

[ ]
dt . (12)

In physical terms, the quantity within the parentheses in equation 12 is

called the Hamiltonian and the phase f is called the action. According to

Hamilton’s principle of least action, the required solution for the ray path

is found by minimizing the action; i.e., by minimizing the above integral.

The magnitude of the integral depends upon the mathematical function

chosen for the ray path r(t) as a function of t. In order to examine the

relationship between the action (i.e., phase) f and the function r(t), it is con-

venient to calculate the change in f for the transition from some arbitrary

function r(t) to another infinitely close, but also arbitrary, function r1(t).

Figure 2 shows two such conceivable paths, where time t is plotted along

the abscissa and r is schematically plotted on the ordinate. We assume that

all such paths pass through the same points r0 = r(t) and r1 = r(t) at the

initial time t0 and final time t1, respectively. The vertical distance

between two such paths at some instant of time is called the variation of r
and denoted by dr. At the end points t0 and t1, of course dr = 0 because

all paths coincide at these points by assumption. The reason that the

symbol d is used is that we want to make clear the difference between the

variation d and the differential d. The differential is taken for the same

path at various instants of time, whereas the variation is taken for the

same instant of time between different paths.

The variation in the action (phase) is given by

df = d

∫t1

t0

v(k, r) − k · dr

dt

[ ]
dt , (13)

Figure 2. Schematic

illustration of the

variation dr.
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which is

df = d

∫t1

t0

∂v

∂k
· dk + ∂v

∂r
· dr − k · d dr

dt

( )[ ]
dt . (14)

In equation 14, the two partial derivatives of v are gradients; i.e.,

∂v

∂k
= ∂v

∂kx

,
∂v

∂ky

,
∂v

∂kz

( )
= ∇kv = gradient of vwith respect to k , (15)

∂v

∂r
= ∂v

∂x
,
∂v

∂y
,
∂v

∂z

( )
= ∇rv = gradient of vwith respect to r . (16)

The last term inside the parentheses in equation 13 can be integrated by

parts. Doing so, we obtain

∫t1

t0

−k · d dr

dt

[ ]
dt = [−k · dr]t1

t0
+
∫t1

t0

dk

dt
· dr

[ ]
dt . (17)

Because all curves r(t) pass through the same endpoints (as previously

stated), the integrated part becomes zero. Thus, the variation in the phase is

df =
∫t1

t0

dk · − dr

dt
+ ∂v

∂k

( )
+ dr · dk

dt
+ ∂v

∂r

( )[ ]
dt . (18)

The independent variables are now k and r. The variations dk and dr are

completely arbitrary. Thus, for df to be zero, each of the following two

equations must be satisfied:

dr

dt
= ∂v

∂k
and

dk

dt
= − ∂v

∂r
. (19)

These two equations are called Hamilton’s equations.

Now, we will show that the frequency v stays constant along a ray path.

The rate of change of frequency v(k, r) with time for arbitrary rates of

change of k, r is the total derivative

dv

dt
= ∂v

∂k
· ∂k

∂t
+ ∂v

∂r
· ∂r

∂t
. (20)

Substituting Hamilton’s equations 19 into the right side of equation 20, we

obtain zero. Thus, for the rates of changes along the ray, as given by
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Hamilton’s equations, the derivative dv/dt is zero. Hence, frequency v

remains constant along a ray.

Let us now state Hamilton’s duality between waves and particles. Let

the coordinate vector r represent the coordinates of both the wave and the

particle. Then, the wavenumber vector k of the wave corresponds to the

momentum vector of the particle. The frequency v of the wave corresponds

to the energy of the particle. As we have said, the group velocity

dr

dt
= ∂v

∂k
, (21)

with which the wave packet travels, corresponds to the velocity with which

the particle travels along the ray (see equation 19). Although the wave par-

ticle duality is established by Sir William Hamilton in 1825, the physical

significance of this duality is not understood until 1924, when Prince

Louis de Broglie suggests that an electron has a dual character (that is, an

electron is a particle with laws of motion that are wave-like in character).

This wave particle dualism for the electron matches the wave particle

dualism for the photon as developed by Arthur Compton in 1923.

Ray tracing

If we solve Hamilton’s equation, we can trace the path of the ray. This

procedure is called ray tracing. Let us give some examples.

Example 1. In a constant velocity medium, we have

v(k, r) = kv =
��������
k2

x + k2
z

√
v . (22)

The component form of Hamilton’s equations give

dx

dt
= ∂v

∂kx

= kxv

k
and

dz

dt
= ∂v

∂kz

= kzv

k
(23)

and

dkx

dt
= − ∂v

∂x
= 0 and

dkz

dt
= ∂v

∂z
= 0 . (24)

Equations 24 say that kx and kz are constant. Thus,

k =
��������
k2

x + k2
z

√
= constant .
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Integrating equations 23, we obtain the equations of the ray

x = kx

k
vt + x0 and z = kz

k
vt + z0 , (25)

where x0 and z0 are the values of x and z, respectively, at t = 0.

Thus, the ray is in the direction of the constant propagation vector

(kx, kz). Because k is the magnitude of the propagation vector, we see that

we have a plane wave moving with velocity v.

Example 2. Let us now consider a stratified medium with the dispersion

relation

v(k, r) = kv(z) =
��������
k2

x + k2
z

√
v(z) . (26)

In this case, Hamilton’s equations are the four equations

dx

dt
= ∂v

∂kx

= kxv(z)

k
and

dz

dt
= ∂v

∂kz

= kzv(z)

k
(27)

and

dkx

dt
= − ∂v

∂x
= 0 and

dkz

dt
= − ∂v

∂z
= kv′(z) . (28)

Dividing dx/dt by dz/dt in equation 27, we obtain

dx

dz
=

dx

dt
dz

dt

=

∂v

∂kx

∂v

∂kz

= kx

kz

. (29)

Thus, the rays are in the direction of the wavenumber vector k. The first

equation in 28 gives kx = constant. We now use our previous general result

that frequency v is constant along a ray. Thus, we see that kx/v = constant

along a ray in a stratified medium. If we call this constant px, then we use

equation 26 and have

px =
kx

v
= kx

kv(z)
= constant (30)

along a ray. Referring to Figure 3, we next define u(z) as the angle between

the ray and the vertical. That is, sin u = kx/k and cos u = kz/k.
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Thus, equation 30 is seen to be Snell’s law

px =
sin u

v(z)
= constant . (31)

Using Snell’s law, as shown in equation 31, we have

kx

k
= sin u(z) = pxv(z) and

kz

k
= cos u(z) =

�������������
1 − p2

x v2(z)

√
. (32)

We will now integrate the equation

dx

dz
= kx

kz

= pxv(z)�������������
1 − p2

x v2(z)
√ . (33)

Doing so, we obtain the so-called horizontal distance equation

x =
∫z

0

pxv(z)dz�������������
1 − p2

x v2(z)
√ . (34)

Also, we can integrate the second Hamilton equation shown in

equation 27,

dz

dt
= kzv(z)

k
=

�������������
1 − p2

x v2(z)

√
v(z) , (35)

to obtain the so-called time equation

t =
∫z

0

dz

v(z)
�������������
1 − p2

x v2(z)
√ . (36)

Figure 3. Definition of the angle u.
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Time equation 36 together with horizontal distance equation 34

compose the so-called time–distance relationship for the ray. That is,

equations 36 and 34 give the so-called time–distance curve as a function

of the parameter px of waves originating at z = 0 and traveling to depth

z = constant.

As displayed in Figure 4, each point on the time–distance curve is

determined by a particular value of px. Because each value of px designates

one ray, the time–distance curve summarizes information for all of the

rays reaching depth z.

We can write the horizontal distance equation in another form. The first

of the Hamilton equations 27 is

dx

dt
= kxv(z)

k
= v(z) sin u(z) (along a ray) . (37)

However, Snell’s equation is sin u(z) = pxv(z). Thus, equation 37 is

dx

dt
= pxv2(z) (along a ray) , (38)

so the required alternative form of the horizontal distance equation is

x =
∫t

0

pxv
2(z)dt = px

∫t

0

v2(z)dt . (39)

Remember that Hamilton’s equations 27 and 28 apply for paths along

a ray. A perfect example is equation 38 above.

On the other hand, the time–distance curve applies to all rays (each

characterized by a value of px) which extend to a given depth

z = constant. Now, we want to show that

dx

dt
= 1

px

(along the time−distance curve) . (40)

Time–distance curve
for depth

Figure 4. Time–distance

curve for a given value of

vertical coordinate z.
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The geometric argument, as shown in Figure 5, can be used. From the

diagram, we see that

dx

v dt
= 1

sin u
. (41)

Using Snell’s law px = sin u/v, we obtain the required result, equation 40.

Thus, the slope of the time–distance curve is equal to Snell’s parameter

px; that is,

dt

dx
= px (along the time−distance curve) . (42)

The significance of the parameter px is realized by taking z = 0 in

Snell’s equation,

px =
sin u(0)

v(0)
. (43)

Equation 43 shows that px is proportional to the sine of the incidence angle

u(0) of the ray at the surface z = 0.

In the case of constant velocity, i.e., v(z) = V = constant, the time–

distance curve is the hyperbola

V2t2 − x2 = z2 = constant . (44)

In the case of a stratified medium with velocity function v(z), generally

the shape of the time-distance curve will resemble a hyperbola (see

Figure 6). Suppose a spike at time t = 0 propagates outward from a point

source at z = 0. At some depth (or, alternatively, height) z = constant, we

measure the arrival time t of the spike as a function of the horizontal coor-

dinate x. The result is the time–distance curve, such as the one shown in

Figure 5. Suppose we now fit the time–distance curve to the hyperbola

Figure 5. The horizontal

distance between two

adjacent rays is dx.
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equation 44. The constant velocity V is determined so as to yield the best fit.

The question is—how does the fitted constant velocity V relate to the vari-

able velocity function v(z)?

If we differentiate equation 44 for the hyperbola, we obtain

2V2t dt − 2x dx = 0 , (45)

so

dt

dx
= x

tV2
(on the hyperbola) . (46)

On the time–distance curve, however, we have dt/dx = px. Thus, we set

the two derivatives equal to obtain

px =
x

tV2
. (47)

Thus, the required value of V2 is equal to x/pxt. If we solve equation 47 for V

and make use of equation 39, we obtain

V2 = x

pxt
= 1

t

∫t

0

v2(z)dt . (48)

Equation 48 says that V2 is the mean-square value of v(z) along the ray

path. Thus, if we fit the time–distance curve by a hyperbola, the velocity V

  constant

Pythagorean theorem  

Figure 6. Geometry for determining the time–distance hyperbola in a medium of

constant velocity v.
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that we obtain is the root mean square (RMS) velocity given by

V = VRMS =

�����������
1

t

∫t

0

v2(z)dt

√√√√√ . (49)

In words, we can say that, if we need an average velocity to characterize the

stratified medium to some depth z, an excellent choice is the root mean

square velocity.

Eikonal equation

In the general case for a spatially varying velocity function v(x, y, z) =
v(r), we can always solve Hamilton’s equations numerically or graphically.

The procedure is analogous to that employed in the mechanics of a particle

moving in a three-dimensional potential field, and where acceleration is a

function of position. In order to gain insight, let us recast Hamilton’s equations

in a slightly different form. We assume an isotropic medium. Again we start

from the first principles, and proceed in an intuitive way. The seismic travel-

time field t(r) can be defined as the value of the traveltime from a convenient

reference wave surface S0 to an arbitrary point P with position vector r. It is

implicitly understood that P can be reached by a ray from S0.

See Figures 7 and 8. Denote the point on S0 at the foot of the ray by

P0 with position vector r0. Then, the seismic traveltime field is

t(r) =
∫r

r0

p ds , (50)

where p(r) = 1/v(r) is the slowness and ds is an increment of path length

along the given ray. It is understood, of course, that the path of integration

is along the given ray.

Figure 7. Two wavefronts

and two rays.

Wavefront
Wavefront

Ray

Ray

Origin
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Suppose that a seismic event at time zero is represented by the reference

wavefront S0. Then, at another time, t = constant, the seismic event will be

represented by the wavefront S. Wavefront S consists of all points that can be

reached in the time interval t = constant by rays starting on S0. The equation

defining S is the locus of positions r satisfying

t(r) = t = constant . (51)

Suppose now that we consider another point P1, which is close to P.

The distance from P to P1 is dr. What is the corresponding change in the

traveltime as r moves from P to P1? First, let us construct the ray that

goes from the reference surface S0 to P1. We call this ray P′
0P′P′

1, where

the intermediate point lies on the surface S. The distances P′
0P′ and P0P

are approximately the same, as they are distances between the two wave

surfaces S and S0. Thus, the change in traveltime is due primarily to the

path length |P′P1|. The traveltime increment is

dt = p|P′P1| = p u · dr , (52)

where u is the unit tangent vector at P tangent to the original ray P0P. From

differential calculus, we know that, in general, dt is

dt = ∂t

∂x
dx + ∂t

∂y
dy + ∂t

∂z
dz = ∇t · dr . (53)

Origin

Wave surface  Wave surface

New ray

Ray

Figure 8. An oversimplified diagram showing the essence of Figure 7. In an

isotropic medium, the rays and wave surfaces are orthogonal. For infinitesimal

displacements, the rays are infinitesimally parallel and the wave surfaces also are

infinitesimally parallel.
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It follows, therefore, that the gradient of the seismic traveltime

function is

∇t = pu (54)

or

∂t

∂x
,
∂t

∂y
,
∂t

∂z

( )
= (pa, pb, pg) . (55)

The ray cuts the wavefront at P. This equation says that, at P, the gradient of

the wavefront is equal to the slowness p times the tangent to the ray. There-

fore, the gradient and the tangent both point in the same direction. Because

the gradient is orthogonal to the wavefront, and the tangent is along the ray,

it follows that the ray is orthogonal to the wavefront. The absolute value of

equation 54 gives a result known as the eikonal equation

|∇t| = p . (56)

Because |u| = 1, the eikonal equation, in square form, is

∇t · ∇t = p2

or

∂t

∂x

( )2

+ ∂t

∂y

( )2

+ ∂t

∂z

( )2

= 1

v2(x, y, z)
. (57)

Example. Let us consider a two-dimensional stratified medium, with hori-

zontal coordinate x and depth z, and with velocity function v(z). The surface

of the earth is the line z = 0. The standard time–distance curve which

depicts a seismic event received on the surface of the earth is, in the

present notation,

t(x, z = 0) = t(x, 0) . (58)

Previously, simply t(x) is used for this function. Let the emergence angle

of the ray be u. Then, the unit tangent vector to the ray is

u(a, b) = (sin u, cos u) , (59)
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where a = sin u and b = cos u are the direction cosines of u. The eikonal

equation is (because p = 1/v)

∂t

∂x
,
∂t

∂z

( )
= sin u

v
,
cos u

v

( )
. (60)

The first component,

∂t

∂x
= sinu(z)

v(z)
= px , (61)

states that the derivative of the time–distance curve is equal to the Snell

parameter px.

Ray equations

The seismic ray at any given point follows the direction of the gradient

of the traveltime field t(r). As before, let u be the unit vector along the ray.

The ray in general will follow a curved path, and u will be the tangent to this

curved raypath. We now want to derive an equation that will tell us how u
changes along the curved raypath. We write the vector u as

u = u(a, b, g), where a2 + b2 + g2 = 1 . (62)

In this section, the position vector r always represents a point on a

specific raypath, and not any arbitrary point in space. As time increases, r
traces out the particular raypath in question. Now, let us find how a

general function of position f (r) will change along the raypath curve. For

a general displacement dr, calculus dictates

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz = ∇f · dr . (63)

Because, by assumption, dr is along the ray-path curve, it has length ds.

Thus, we can write

dr = uds , (64)

where u is the unit tangent vector to the raypath curve. Hence, we obtain

df = (∇f · u) ds , (65)

so the directional derivative of f along the raypath curve is

df

ds
= (∇f · u) . (66)
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Because the curve is a raypath curve, eikonal equation 54 (∇t = pu)

holds, so

df

ds
= ∇f · ∇t

p
= ∇f · ∇t

p
. (67)

We now make a special choice for f; namely, f = a/v = pa. From

equation 55, we have

f = pa = ∂t

∂x
. (68)

Thus, equation 67 gives

d

ds
(pa) = d

ds

∂t

∂x
= 1

p
(∇t · ∇)

∂t

∂x
. (69)

Now we use algebra. The dot product in the expression on the right can

be written out in full, and the terms collected to give

d

ds
(pa) = 1

2p

∂

∂x

∂t

∂x

( )2

+ ∂t

∂y

( )2

+ ∂t

∂z

( )2
[ ]

. (70)

The square form of eikonal equation 57 says that the expression in brackets

is p2. Thus,

d

ds
(pa) = 1

2p

∂(p2)

∂x
= ∂p

∂x
. (71)

Similar equations hold for the y and z components. Thus, we are led to

the vector equation

d

ds
(pu) = ∂p

∂r
. (72)

Equation 72, together with equation 64, which we write as

dr

ds
= u , (73)
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are called the ray equations. In summary, the two ray equations 73 and

72 are

dr

ds
= u and

d(pu)

ds
= ∂p

∂r
. (74)

Reduction of Hamilton’s equations to the ray equations

The frequency v, wavenumber k, and velocity v are related by

v = kv . (75)

An increment ds of distance s along a raypath and an increment ds of trav-

eltime t are related by

ds = v dt . (76)

Thus, Hamilton’s equation

dr

dt
= ∂v

∂k
(77)

becomes

v
dr

ds
= ∂(kv)

∂k
(78)

because

dr

dt
= dr

ds

ds

dt
= v

dr

ds
.

The velocity v(x, y, z) is a function of x, y, z, whereas k is considered as

the function

k =
��������������
k2

x + k2
y + k2

z

√
. (79)

Thus, equation 78 becomes

v
dr

ds
= v

dk

dk
. (80)

The gradient of k with respect to the variables kx, ky, kz is the vector

dk

dk
= ∂k

∂kx

,
∂k

∂ky

,
∂k

∂kz

( )
= kx

k
,
ky

k
,
kz

k

( )
. (81)
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We recognize this vector as the unit vector in the k direction. This

unit vector, as we have seen, is the unit tangent vector to the raypath

curve; that is,

dk

dk
= k

k
= u = (a, b, g), wherea2 + b2 + g2 = 1 . (82)

Canceling v from each side of equation 80, we obtain

dr

ds
= u . (83)

This equation is the first ray equation. Thus, we have shown that the first

Hamilton equation 77 is the same as the first ray equation 83.

Next, consider the second Hamilton equation

dk

dt
= − ∂v

∂r
. (84)

We can write this equation as

v
dk

ds
= − ∂(kv)

∂r
, (85)

which is

v
dk

ds
= −k

∂v

∂r
. (86)

Now, we use the equation

k = ku = v

v
u = vpu , (87)

where p = 1/v is the slowness. The second Hamilton equation 84, with the

aid of equation 86, becomes

p−1 d(vp u)

ds
= −vp

∂(p−1)

∂r
,

which is

p−1 v
d(p u)

ds
= vp−1 ∂p

∂r
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or

d(pu)

ds
= ∂p

∂r
. (88)

This equation is the second ray equation. Thus, we have shown that the

second Hamilton equation 84 is the same as the second ray equation 88.

Numerical ray tracing

Let us now consider the general case in which we have a spatially

varying velocity function v(x, y, z) = v(r). This velocity function represents

a velocity field. For a fixed constant v, the equation v(r) = v specifies those

positions r which have this fixed value of v. The locus of such positions

makes up an isovelocity surface. The gradient

∇v(r) = ∂v

∂x
,
∂v

∂y
,
∂v

∂z

( )
(89)

is normal to the isovelocity surface and points in the direction of the greatest

increase in velocity. Similarly, the equation p(r) = p for a fixed value of

slowness p specifies an isoslowness surface. The gradient

∇p(r) = ∂p

∂x
,
∂p

∂y
,
∂p

∂z

( )

is normal to the isoslowness surface and points in the direction of greatest

increase in slowness. The isovelocity and isoslowness surfaces coincide, and

∇v = −p−2 ∇p , (90)

so the respective gradients point in opposite directions, as we would expect.

Now that we have discussed the mathematics, let us talk about how it is

applied. Like flying an airplane, expert boat handling takes both knowledge

and practice. Any twin engine boat is capable of very precise control. If you

put one engine in forward and the other in reverse, the boat will pivot on its

axis. You can steer the boat without touching the wheel. Put one hand on

each of the throttles, with both engines in forward. You control the boat

by using only the throttles. You steer the boat to the left by decreasing the

speed on the left throttle and increasing the speed on the right throttle.

You steer the boat to the right by doing the opposite.

A seismic ray makes its way through the slowness field. As the wave-

front progresses in time, the raypath is bent according to the slowness
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field. For example, suppose we have a stratified earth in which the slowness

decreases with depth. A vertical raypath will not bend, as it is pulled equally

in all lateral directions. However, a non-vertical ray will drag on its slow

side, so it will steer around the curve away from the vertical and bend

toward the horizontal. This is the case of a diving wave, whose raypath even-

tually curves enough to reach the earth’s surface again. Certainly, the slow-

ness field, together with the initial direction of the ray, determines the entire

raypath. Except in special cases, we must determine such raypaths

numerically.

Assume we know the slowness function p(r) and the ray direction u1

at point r1. Considering Figure 9, we now want to give an algorithm for

finding the ray direction u2 at point r2. We choose a small, but finite,

change in path length Ds. Then, we use the first ray equation, which as we

recall is

dr

ds
= u ,

to compute the change Dr = r2 − r1. The required approximation is

Dr = u1Ds

or

r2 = r1 + Dr = r1 + u1Ds .

Thus, we have found the first desired quantity r2. Next, we use the second

ray equation, which we recall is

d(pu)

ds
= ∇p ,

Figure 9. Graphical

integration of the equation

of a ray. The slowness is

increasing in the direction

indicated.
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in the form

d(pu) = ∇p ds .

The required approximation is

D(pu) = ∇pDs

or

p(r2)u2 − p(r1)u1 = ∇pDs .

For accuracy, ∇p may be evaluated by differentiating the known

function p(r) midway between r1 and r2. Thus, the desired u2 is given as

u2 = p(r1)

p(r2)
u1 +

Ds

p(r2)
∇p .

Note that the vector u1 is pulled in the direction of ∇p in forming u2.

This is because +Dp points in the direction of increasing slowness. That

is, the ray drags on the slow side, and so it is bent in the direction of increas-

ing slowness. The special case of no bending occurs when u1 and∇p are par-

allel. As we have seen, a vertical wave in a stratified medium is an example

of such a special case. Thus, we have found how to advance the wave along

the ray by an incremental raypath distance. We can repeat the algorithm to

advance the wave by any desired distance.
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Chapter 7

Reflection, Refraction, and Diffraction

Explanation of terms

In seismic exploration, primarily we are concerned with traveling waves,

and the three most important terms which describe wave propagation are

reflection, refraction, and diffraction. All of these terms imply change in

the direction of the traveling wave due to some interface or obstacle.

When a wave is reflected from an interface, part of the energy is thrown

back and does not pass through the interface. When a wave is refracted at

an interface, part of the energy passes through the interface but the direction

of propagation generally is changed. When a wave is diffracted by an

obstacle or aperture, the wave passes around the obstacle or through the

aperture by bending its direction of propagation and modifying its behavior.

The important thing to remember is that reflection and refraction are

defined in terms of least-time raypaths, whereas diffraction is a phenomenon

which does not have to satisfy the least-time criterion. As a result, we can

formulate the law of reflection (angle of incidence equals angle of reflection)

and the law of refraction (Snell’s law). The phenomena of reflection and

refraction form the basis of geometric raypath theory. In contrast, diffraction

is not a part of geometric ray path theory, so instead we must determine

the theoretical properties of diffraction by means of the wave equation.

The Kirchhoff solution of the wave equation allows us to find approxi-

mations that represent diffracted events in simple cases. In even slightly

more complex cases, no analytic solutions for diffraction are known, so

we must rely on numerical solutions of the wave equation. The difficulty

of such solutions makes us realize how fortunate we are that so many impor-

tant properties of wave propagation can be explained in terms of the geomet-

ric ray theory of reflections and refractions. Despite the fact that diffraction
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is not governed by geometric raypath theory, we can still use raypaths to

visualize point diffraction phenomena. The reason is that, in such cases,

the diffraction occurs at a point at which the laws of reflection and refraction

break down; once we are away from that point, however, we are in well-

behaved media where geometric raypath theory is perfectly valid.

In the treatment of seismic wave propagation, it is convenient to confine

attention to the lines along which the waves travel. Such lines are called

rays, and the theory of wave propagation in these terms is called seismic

ray theory or geometrical seismology. It is possible to obtain quantitative

descriptions of many properties of seismic propagation in terms of geomet-

ric seismology alone, but such descriptions must be considered as only

approximations to a true description, and hence limited in their application.

There is a large class of phenomena that can be understood only in terms

of the wave properties of seismic disturbances. These interference and dif-

fraction phenomena form the subject matter of this chapter; they are general

properties of waves. Thus, here we are discussing material which can be

categorized as physical seismology, the study of the physical nature of

seismic propagation as elastic waves.

The term interference is used in its most general sense to mean any

effect due to the superposition of two waves at a given point in space. We

can show that interference effects broadly defined account for reflection

and refraction and also for diffraction, which is defined as the bending of

waves around obstacles. The term interference, in its classic but more

restricted sense, refers to variations of the total intensity of the seismic

disturbance due to the superposition of two or more independent, interfering

wave trains propagating in straight lines. Although there is no essential

difference between interference and diffraction, the term diffraction is

usually reserved for description of waves spreading around an obstacle or

through an aperture. In such cases, the “interference” is due to the superpo-

sition of secondary wavelets originating at different points of the same

wavefront. The obstacle or aperture acts as a spatial filter, selecting only

certain portions of the original wavefront which will compose the diffracted

wavefront.

Christiaan Huygens shows that the propagation of a wavefront can be

attributed to the superposition of spherical secondary wavelets emitted

from all parts of the wavefront. Furthermore, in general, anything that pre-

vents the emission of secondary wavelets from one or more parts of the

wavefront will alter the nature and direction of succeeding wavefronts.

As we have seen, the term diffraction designates those interference effects

caused by the presence of an aperture or obstacle in the path of a seismic

wave. Such obstructions allow only certain portions of the incident
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wavefront to propagate by the emission of Huygens’ secondary wavelets.

One of the results is that the seismic waves deviate from straight-line

propagation. Thus, diffraction often is said to involve the bending of

waves around obstacles. Because diffraction involves the propagation of a

single wavefront as affected by obstacles in its path, we may say that diffrac-

tion represents the interference of a wave with itself. Diffraction can be

explained by the mutual interference of the Huygens’ wavelets that are

emitted from those portions of the wavefront not obstructed by the obstacle.

Imagine parallel seismic rays incident upon a narrow slit in the rock

formation, passing through the slit, and illuminating a plane interface. If

the plane interface is very close to the slit, a sharp image of the aperture

is formed on the interface. As the interface is moved farther away from

the slit, fringes of varying illumination begin to appear at the edges of the

image. These fringes represent the diffraction pattern. The study of such

patterns is important in the understanding of the seismic events we see on

the record sections.

Huygens’ principle

A wavefront is a surface over which a wave disturbance has a constant

phase. As an illustration, consider a small portion of a spherical wavefront

emanating from a monochromatic point source S in a homogeneous

medium. Clearly, if the radius of the wavefront at a given time is r, at

some later time t it will simply be r + vt, where v is the velocity of the

wave. But suppose instead that the wave passes through a non-uniform

sheet of material, so that the wavefront itself is distorted. How can we deter-

mine its new form? Or for that matter, what will it look like at some later

time if it is allowed to continue unobstructed?

The major step toward the solution of this problem appears publically in

1690 in the book by Christiaan Huygens, Traité de la Lumière, which he had

presented to the French Academy twelve years earlier. In it, he enunciates

what has since become known as Huygens’ principle. The principle states

that every point on a primary wavefront serves as the source of spherical

secondary wavelets such that the primary wavefront at some later time is

the envelope of these wavelets. In more advanced discussions, the envelope

prescription is abandoned, and instead the superposition of the wavelets is

described in detail by means of the Kirchhoff integral. The Kirchhoff

approach also gives rise to the inclination factor which is of considerable

interest. This inclination factor explains why it is valid to neglect back-

radiation in the Huygens’ construction so that the waves propagate only

in the forward direction.
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The search for new inventions often leads directly to mathematical dis-

coveries. A famous example is the Horologium Oscillatorium of Christiaan

Huygens (1673), where the search for better timepieces for the more accu-

rate determination of longitude at sea leads not only to the pendulum clock

but also to important geometrical theorems. Huygens’ ability to bring the

disciplines of mathematics, mechanics, and optics to bear on his interest

in astronomy enables him to design, construct, and operate a telescope

with which he discovers the fourth satellite of Saturn. Eminent as a physicist

as well as an astronomer, Huygens establishes the wave theory of light. It is

intriguing that many of the basic principles of optics are predicated on the

wave theory of light and yet are completely independent of the exact

nature of that wave. It is for this reason that Huygens’ principle can serve

to describe not only light waves but wave motion in other disciplines as well.

As we have seen, a wavefront is a surface over which the wave disturb-

ance has a constant phase. Returning to Huygen’s principle in Traité de la

Lumière (1690): every point on a primary wavefront serves as the source

of spherical secondary wavelets. These secondary wavelets advance with

speed and frequency equal to that of the primary wave at each point in

space. The primary wavefront at some later time is the envelope of these

secondary wavelets. If the medium is homogeneous, the spherical secondary

wavelets may be constructed with finite radii. On the other hand, if the

medium is inhomogeneous, the wavelets will have infinitesimal radii, and

the magnitudes of the radii will depend on the wave velocity of the

medium at the respective centers of the wavelets.

Figure 1 shows a wavefront, as well as a number of spherical secondary

wavelets, which during time dt have propagated out to a radius of v dt. The

wave velocity v in an inhomogeneous medium depends upon the position of

the center of the secondary wavelet. The envelope of all of these wavelets is

the advanced primary wavefront.

The description of Huygens’ principle, which we have just given, is a

physical one. In the words of Huygens (1690): “The result is that around

each particle there arises a wavelet of which this particle is center.”

Figure 1. The propagation of a

wavefront according to Huygens’

principle of 1690. The advanced

wavefront is the envelope of the

spheres.

Spheres with center on wavefront and radius

Wavefront at �me t
Wavefront at �me t
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However, if we go back to Huygens’ earlier work, Horologium Oscillator-

ium (1673), another description of Huygens’ principle is possible. Interest-

ingly, this earlier description fits in more readily with the systems approach

of the electrical engineer and the time series analyst. It is well known that the

appearance of Geometria Indivisibilibus Continuorum of Bonaventura

Cavalieri (1635) stimulated many mathematicians of that time to study prob-

lems involving infinitesimals. Referring to Figure 2, consider the tangent

problem, i.e., the problem of finding a tangent to a given curve at a given

point, which at the time began to take a prominent place beside the

ancient problems of finding volumes and centers of gravity. In this search,

Huygens follows Euclid’s method of geometrical reasoning, and he estab-

lishes himself as one of the great 17th century mathematicians. If we

follow Huygens’ reasoning, his famous principle also may be described as

follows. At every point on the wavefront, construct a sphere of radius v dt

tangent to the wavefront. The locus of the centers of these tangent spheres

is the advanced wavefront.

When comparing Figures 1 and 2, we see that the two statements of

Huygens’ principle, that is, the principles of 1690 and 1673, are equivalent

to the first order. Because the Huygens’ principle of 1690 is treated in every

physics book, we will spend more time with the principle of 1673. For sim-

plicity, we will deal with a homogeneous medium so the spherical wavelets

may be constructed with finite radii all of equal magnitude vDt, where v is

the constant wave velocity andDt is the time increment between wavefronts.

For pedagogical reasons, we make use of only two spatial dimensions, so we

can use circles instead of spheres in our drawings. However, for physical

correctness, readers should make the transition in their minds to three

spatial dimensions. Let us now look at the spherical secondary wavelet,

which, again for pedagogical reasons, we will call Huygens’ circle. For

propagation in the +z-direction, we only require a semicircle. Such a

Huygens’ semicircle is shown in Figure 3.

This semicircle (of radius vDt) is the response at time Dt of an impul-

sive point source at time 0. In engineering terms, the Huygens’ semicircle

Spheres tangent to wavefront and of radius

fr

Wavefront at �me t
Wave ont at �me t

Figure 2. The propagation of a

wavefront according to Huygens’

principle of 1673. The advanced

wavefront is the locus of the centers

of the tangent spheres.
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is the impulse response (i.e.,

Green’s function) for right-

traveling waves. Also in engi-

neering terms, specifically the

relation that the output is the con-

volution of the input with the

impulse-response (i.e., Green’s

function), we can state: the wave-

front at time t + Dt is the convo-

lution of the wavefront at time t

with the Huygens’ semicircle.

As is well known in engineering,

the operation of convolution with

a given function is equivalent to

the operation of correlation with

the reverse of the given function.

The reverse of the Huygens’

semicircle is shown in Figure 4.

When two curves cross, they

contact each other only at one

point, namely, the point of inter-

section. When two curves are

tangent, they contact each other

at one point, namely, the point

of tangency, but the neighboring

points are also very close together.

For this reason, a point of tan-

gency represents a higher-order

contact between two curves than

a straightforward point of intersec-

tion. The practical application of

this geometrical property is that,

when we correlate two curves,

there is a significant output only

when the two curves are tangent

and not when they are merely

crossing each other. When we cor-

relate the input wavefront with the

reverse Huygens’ semicircle, we hold the position of the wavefront fixed,

and let the reverse Huygens’ semicircle sweep out the entire plane.

However, significant output will occur only when the wavefront and the

Figure 4. Reverse Huygens’ semicircle

for propagation in the z-direction.

Figure 3. Huygens’ semicircle for

propagation in the z-direction.
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reverse Huygens’ semicircle are tangent. Such places of tangency are,

indeed, precisely as the tangency points in Huygens’ principle of 1673,

as we have already illustrated in Figure 2. The outputs occur at the

centers of the reverse Huygens’ semicircles. Thus, the locus of these

centers make up the output wavefront. In engineering terms, we can state

the Huygens’ principle of 1673 as follows. The output wavefront is the

convolution of the input wavefront with the Huygens’ semicircle. Equiva-

lently, we may state that the output wavefront is the correlation of the

input wavefront with the reverse Huygens’ semicircle.

Up to this point, we have dealt with only the space aspects of Huygens’

principle. In order to form a basis for digital space–time processing, we

must introduce the time aspects. The Huygens’ circle represents the

spatial manifestation of an event. The spike-like event occurs at time zero

and spreads out in expanding concentric Huygens’ circles as time increases.

Let v be the (constant) wave velocity. As apparent from Figure 5, the

equation for the Huygens’ circle at time t is

x2 + z2 = (vt)2 . (1)

Looking to Figure 6, consider a space–time manifestation on the fixed plane

z = constant. Rearranging equation 1, we obtain

(vt)2 − x2 = z2 , (2)

which is a hyperbola for a fixed value of z.

Figure 5. Huygens’

circle for a fixed value

of time t.
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For propagation in the +z direction, we want the right half of the circle

(i.e., the Huygens’ semicircle). For propagation in the +t direction, we want

the right branch of the hyperbola (i.e., the Huygens’ semi-hyperbola).

Suppose that we have a space–time event measured on plane z. To find

the corresponding space–time event on plane z + Dz, we use the following

counterpart of Huygens’ principle: The output space– time event is the

convolution of the input space– time event with the Huygens’ semihyper-

bola. This Huygens’ semi-hyperbola is the one for vertical propagation

distance +Dz.

See Figure 7, which illustrates Huygens’ space–time principle. The

input space–time event is the fixed semi-hyperbola corresponding to verti-

cal propagation distance z. The convolution is carried out by reversing the

Huygens’ semi-hyperbola for vertical distance Dz and sliding it around

the entire plane. There is significant output only when the two semi-

hyperbolas are tangent, and the output occurs at the center point of the

reversed sliding hyperbola. We see that the output is the semi-hyperbola

corresponding to vertical propagation distance z + Dz.

Now, we want to show that integration of the eikonal equation is equiv-

alent to application of Huygens’ principle. Suppose the wavefront at time t is

S. The wavefront S is the locus formed by the tips of the position vectors r for

which t(r) = t. What is the wavefront at t + Dt? This new wavefront can be

obtained from the old one by advancing each point in the direction of the

normal to S, i.e., in the direction of the ray, by a distance Ds. Over this dis-

tance, t(r) will change by the amount

Dt(r) = |∇t| Ds = pDs . (3)

Figure 6.
Huygens’

hyperbola for a

fixed value of

depth z.

292 Basic Geophysics

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



The first equality follows from the property which says that the gradient

gives the rate of change in the direction of the normal. The second equality

follows from the eikonal equation. From the equation defining S, namely,

the equation t(r) = t, we know that

Dt(r) = Dt . (4)

Thus, Ds must satisfy

pDs = Dt

or

Ds = vDt . (5)

Thus, the new wavefront is obtained by advancing in the direction of

the gradient (that is, along the ray) by an amount vDt. Thus, the new

Point 0,0

Point

Length of dashed line

Length of
do�ed line

axis

Fixed input 
semihyperbola

Reversed sliding 
Huygensʹ 
semihyperbola 

Output
semi-
hyperbola 

Point is tangent point 
for both fixed and reversed 
semihyperbolas output value 
obtained by mul�plica�on

Length of dashed
line 

Center point of reversed  sliding 
Huygens semihyperbola output value occurs here

Common center  point
of both fixed and 
output semihyperbolas

axis

Figure 7. Huygens’ space–time principle.
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wavefront is equivalent to the surface obtained from the envelope of all

forward-moving spherical wavelets of radius vDt originating on the old

wavefront. In fact, each such wavelet touches the envelope at the same

place as the ray does. This entire discussion requires that our increments

be infinitesimal, unless the velocity is constant.

Reflection and refraction

Next, we would like to consider a number of phenomena related to the

propagation of waves and their interaction with material media. In particu-

lar, we shall study the characteristics of waves as they progress through

various substances, crossing interfaces, while being reflected and refracted

in the process. Many of the basic principles of wave motion are predicated

on the wave aspects of the phenomenon and are yet completely independent

of the exact nature of that wave. As we shall see, the most important such

principle is Huygens’ principle.

Suppose the wave impinges on the interface separating two different

media. As we know, a portion of the incident flux density will be diverted

back in the form of a reflected wave, while the remainder will be transmitted

across the boundary as a refracted wave. We now seek to determine the

general principles governing, or at least describing, propagation, reflection,

and refraction. Suppose that we have a monochromatic plane wave incident

on the smooth interface separating two different media. We can determine

the wave’s behavior using Huygens’ construction.

In Figure 8, the angles ui, ur, and ut are the angles of incidence, reflec-

tion, and transmission (or refraction), respectively. The application of

Huygens’ principle gives

sin ui

vi

= sin ur

vr

= sin ut

vt

. (6)

It then follows from the first two terms that the angle of incidence equals the

angle of reflection; that is

ui = ur . (7)

This law of reflection first appears in Catoptrics, a book which is pur-

ported to have been written by Euclid. The first and last terms yield

sin ui

sin ur

= vi

vr

. (8)
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This is the law of refraction. On the basis of some very fine observations,

Claudius Ptolemy of Alexandria finds the expression

ui

ur

= vi

vr

, (9)

which is approximately correct for small angles. Kepler very nearly derives

the law of refraction in his book, Supplements to Vitello, in 1604. Unfortu-

nately, he is misled by some erroneous data compiled earlier by Vitello

(ca. 1270). Finally, the correct relationship seems to have been determined

independently by Snell at the University of Leyden and the French mathe-

matician, Descartes. The law of refraction generally is referred to as

Snell’s law.

Fermat’s principle

The laws of reflection and refraction, and indeed many aspects of the

manner in which waves propagate in general, can be understood by means

of Fermat’s principle. This principle provides an insightful and highly

useful way of appreciating and anticipating the behavior of waves.

Hero of Alexandria first set forth a variational principle. In his formu-

lation of the law of reflection, he asserted that the path actually taken by

light in going from some point S to a point P via a reflecting surface was

Medium with 
velocity

Medium with 
velocity

Case of

Reflected wavefrontIncident wavefront

Refracted wavefront

Figure 8. Angle ui of

incidence, angle ur of

reflection, and angle ut

of transmission (or

refraction).
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the shortest possible one. For more than 1500 years, Hero’s observation

stood alone. Then, in 1657, Fermat propounded his principle of least time,

which encompassed both reflection and refraction. Because a beam of

light traversing an interface does not take a straight line or minimum

spatial path between a point in the incident medium and one in the transmit-

ting medium, Fermat reformulated Hero’s statement to read: The actual path

between two points taken by a beam of light is the one which is traversed in

the least time.

The original statement of Fermat’s principle of least time as given above

is in need of some modification. To that end, recall that, if we have a

function, such as f (x), then we can determine the specific value of the vari-

able x, which makes f (x) have a stationary value, by setting df /dx = 0 and

solving for x. By a stationary value, we mean a value for which the slope

of f (x) versus x is zero. Equivalently, a stationary value is one where the

function has a maximum, a minimum, or a point of inflection having a

horizontal tangent.

Fermat’s principle in its modern form reads: A ray in going from point S

to point P must traverse a path for which the transit time is stationary with

respect to variations of that path. In other words, the transit time for the true

trajectory will equal, to a first approximation, the transit times of paths

immediately adjacent to it. And so there will be many curves neighboring

the actual one, which would take very nearly the same time for the ray

to traverse. This latter point makes it possible to begin to understand

how a ray manages to be so clever in its meanderings. Suppose that we

have a beam of wave motion advancing through a homogeneous isotropic

medium so that a ray passes from points S to P. Particles within the material

are driven by the incident disturbance and they reradiate in all directions.

Quite generally, wavelets originating in the immediate vicinity of a station-

ary path will arrive at P by routes which differ only slightly and will there-

fore reinforce each other. Wavelets taking other paths will arrive at P out of

phase and therefore tend to cancel each other. That being the case, energy

will effectively propagate along that ray from S to P, which satisfies

Fermat’s principle.

The transit time for a ray need not always be a minimum. A non-

minimum situation is depicted in Figure 9, which shows a segment of

a three-dimensional ellipsoidal surface. If the source S and the observer

P are at the foci of the ellipsoid, then, by definition, the length SQP

will be constant regardless of where on the perimeter Q happens to be.

It is also a geometrical property of the ellipse that ui = ur for any location

of Q. All transit times from S to P via a reflection are therefore precisely

equal. None is a minimum, and the transit time is clearly stationary with
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respect to variations. Rays leaving S and striking the surface will arrive

at the focus P. From another viewpoint, we can say that radiant energy

emitted by S will be scattered by the ellipsoidal surface such that the

wavelets will substantially reinforce each other only at P where they

have traveled the same distance and have the same phase. In any case,

if there is a plane interface tangent to the ellipse at Q, the exact same

path SQP traversed by a ray will then be a relative minimum. At the

other extreme, if the mirrored surface conforms to a curve lying within

the ellipse, like the dashed one shown, that same ray along SQP will

now negotiate a relative maximum transit time. This is true even

though other unused paths (where ui = ur) would actually be shorter

(i.e., apart from inadmissible curved paths). Thus, in all cases, the rays

travel a path with a stationary transit time in accordance with Fermat’s

principle. Note that, because the principle speaks only about the path

and not the direction along it, a ray going from P to S will trace out

the same route as one from S to P. This is the very useful principle of

reciprocity.

Suppose that we have a stratified material composed of m layers, each

having a different wave velocity as in Figure 10. Then the transit time

from S to P will be

t = s1

v1

+ s2

v2

+ · · · + sm

vm

or

t =
∑m

i=1

si

vi

, (10)

Ellipsoid 

Tangent

Figure 9. Segment of

a three-dimensional

ellipsoidal surface.
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where si and vi are the path length and speed associated with the ith contri-

bution. For an inhomogeneous medium where v is a continuous function of

position, the summation must be changed to an integral

t =
∫P

S

ds

v(s)
. (11)

Fermat’s principle states that, going from points S to P, the ray paths traverse

the route having the smallest transit time.

Thus far, we have merely stated Huygens’ principle without any justifi-

cation or proof of its validity. In 1814, Fresnel successfully further analyzes

Huygens’ principle; then in 1882, Kirchhoff shows that the Huygens’ prin-

ciple is a direct consequence of the wave equation, thereby putting it on a

firm mathematical base. That there was a need for a bit of reformulation

of the principle is evident from the figures, where we deceptively only

drew hemispherical wavelets. Had we drawn them as spheres, there would

be a back wave moving toward the source; something which is not observed.

This difficulty is addressed theoretically by Fresnel and Kirchhoff, and we

will present this theory in the last chapter. For the present, we merely use

the forward waves when applying Huygens’ construction.

Figure 10.
Stratified material

composed of m
layers, each having

a different wave

velocity.
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Resolution and the Fresnel zone

A modeling program is used to compute the seismic data section that

would result from a given configuration of geologic layers. It is a useful

tool in seismic interpretation for relating the events displayed on seismic

records to the underground structure. A close fit of the data generated by

the model to the data actually observed in nature, however, does not mean

that the model structure is the same as the earth’s structure. Other models

might give approximately the same data. When we change the parameters

of the model so that the generated data conforms to the observed data,

good results do not necessarily mean that we have achieved the true

model. Despite this inherent limitation, models still represent one of the

best approaches to solving the seismic inverse problem.

The shape of a reflector influences the type of reflection seen on the

seismic section. The curvature of the reflector serves to focus or defocus

the reflected energy.

As shown in Figure 11, curvature that is concave upward tends to con-

centrate the reflected energy, thus causing an amplitude increase on the

reflected event. A curvature that is convex upward tends to spread the

reflected energy, thus causing an amplitude decrease. Resolution refers to

the ability to detect separate features that lie close together and may

produce events that overlap. We can speak of time resolution and spatial res-

olution. Our ability to resolve two features depends upon the distance

between them in comparison with the wavelengths of the seismic waves

with which we illuminate them. Thus, shorter wavelengths have higher

resolving power. Although the only way to get smaller wavelengths is to

increase the frequency, there are several practical reasons why we do not

Convex upward

Concave upward

Figure 11. Convex upward curvature spreads reflected energy causing decrease in

amplitude. Concave upward curvature concentrates reflected energy causing

increase in amplitude.

Chapter 7: Reflection, Refraction, and Diffraction 299

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



record higher frequencies on the seismic records. In order to filter out hori-

zontally traveling energy, such as the surface waves known as ground roll,

we combine (mix) the outputs of a group (array) of geophones to produce a

single seismic trace. This ground mix attenuates high frequencies and thus

decreases seismic resolution. Without ground mix, however, the deep

seismic reflections would be lost in the noise represented by the surface

waves. Without adequate resolution, we would not be able to detect the

presence of thin beds or small wedges and pinchouts. Such features

require vertical resolving power.

Spatial resolving power must be a consideration too. We need to know

how large a structure must be in order to be seen on seismic data. Spatial

resolving power involves the concept of the Fresnel zone. From the ray

point of view, seismic energy travels from the source to the reflector

along the raypath. Each ray behaves in a way irrespective of adjacent

rays. According to this interpretation, a reflection involves only a point on

the reflecting interface. Although this ray-theoretical approach is often

useful, it is more realistic to think physically in terms of wavefronts, the

in-phase location of a disturbance moving outward from the source.

Detectors buried within the earth would observe a wavefront as it passes.

As a wavefront reaches a reflector, part of it will be reflected. Consider

a spherical wavefront and a plane reflecting interface. Suppose that the

seismic wavelet consists of approximately 1.5 cycles. As a result, the

disturbance will continue for a region behind the leading-edge wavefront.

Consider the leading-edge wavefront when the part of the disturbance,

which is a quarter wavelength behind the wavefront, is tangent to the

reflector.

As shown in Figure 12, the portion of the reflector between points of

contact with the wavefront is the area which, in effect, produces the reflec-

tion. This area is called the first Fresnel zone. If we take into consideration

two-way traveltime, we see that the energy from the periphery of the first

Fresnel zone will reach a detector at the source location one-half wavelength

later than energy from the center of the first Fresnel zone. Thus, all of the

energy reflected from the first Fresnel zone will arrive at the detector

within one-half wavelength, and will therefore interfere constructively. If

the center point (i.e., the reflecting point) is removed, as by cutting a

small hole in the interface, the reflection will be observed nonetheless.

The concept of Fresnel zone shows that an area instead of a point on the

reflector produces a reflection. This distinction is the essence of understand-

ing spatial resolution. In summary, a Fresnel zone is that portion of a reflect-

ing interface such that all reflectors from that portion will arrive back at

the source point within a half-cycle of each other, thereby producing
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constructive interference. The reflection from the outer edge of the first

Fresnel zone gains one-half wavelength (one-quarter wavelength on the

downward path plus one-quarter wavelength on the upward path) in com-

parison to the reflection from the center. Thus, the edge reflection will

arrive one-half wavelength after the center reflection. All reflections

within the zone are sandwiched between these two limits and add construc-

tively. The first Fresnel zone is surrounded by a second Fresnel zone which

is a ring. The reflected energy from within this ring is delayed by one-half

cycle to one cycle. The third Fresnel zone is a ring which surrounds the

second. The reflected energy from the third Fresnel zone is delayed by

one cycle to one and one-half cycle. Thus, the Fresnel zone concept can

be extended to all higher orders. The higher zones will nearly cancel each

other, however, so the net effect is that of the first zone. The dimension of

the first Fresnel zone is the important factor in finding what part of the

reflecting interface produces a seismic reflection. Because wavelength

depends upon frequency, the dimensions of this zone depend upon the

actual frequencies present in the seismic wavelet. Because a wavelet is com-

posed of different frequency components, first Fresnel zones of different size

are operative in the reflection of a seismic wavelet. Usually, however, we

consider only the first Fresnel zone associated with the dominant frequency

present in the wavelet. The wavelet is smaller for a high-frequency wave,

and thus the zone is smaller. Suppose a wavelet has two dominant frequen-

cies, one high and the other low. A small zone is responsible for the reflec-

tion of the high-frequency component, whereas a large zone is responsible

for the reflection of the low-frequency component. If a change occurs in

Wavefront 

First Fresnel zone 

Figure 12. Cross section of the first Fresnel zone is circular. Subsequent Fresnel

zones are annular in cross section, and concentric with the first. Odd-numbered

Fresnel zones have relatively intense field strengths, whereas even-numbered

Fresnel zones are nulls.
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the reflecting interface, it would affect the low-frequency component more

than the high-frequency component, and the result would be a change in the

wave shape of the reflected wave.

As an example, consider a plane reflecting interface at a depth of 5000 ft

and an average velocity of 10,000 ft/sec. The first Fresnel zone has a radius

of 793 ft for a 40 Hz component, and 1125 ft for a 20 Hz component. Here,

we have assumed that the wavefront is spherical. The radius of the Fresnel

zone depends upon the curvature of the wavefront. For spherical waves orig-

inating at a surface source point, the curvature of the wavefront will decrease

as the depth of the reflecting interface increases. Thus, spatial resolving

power deteriorates with depth. A deep feature must have a larger areal

extent in order to produce the same effect as a smaller feature at less depth.

Diffraction

So far, we have considered only some of the simplest applications of the

wave equation in the presence of matter. Problems in which the acoustic

impedance is described by a continuous function of position cannot be

solved in general. There are no specific variations of the acoustic impedance

of broad general interest for which an integral of the wave equation exists.

Exact solutions, even in situations where the boundaries are only slightly

more complicated than those we have considered, are rare. For example,

there is no exact solution for the propagation of a wave in the presence of

an infinite plane in which there is a hole of arbitrary shape. Where an

exact solution exists, as it does for such special geometries as a semi-infinite

half plane or an infinite circular cylinder, we can discern some general

aspects of the solution.

Next, considering Figure 13, let a plane be drawn from the source to the

edge of the boundary of the half plane, or two planes from the source tangent

to the infinite cylinder; the regions behind these planes are called shadow

regions.

The exact solutions indicate that there are variations of intensity of the

wave in the vicinity of the shadow boundary and that there are alternations

of light and darkness (in the case of light waves) that are appreciable over

distances of the order of ten times the wavelength of light in the shadow

regions. This phenomenon, known as diffraction, is a typical wave phenom-

enon. We think of light as traveling in straight lines, which by and large it

does. Because of this, an object in the path of light casts shadows. The

straighter the line that light travels, the sharper the shadow. Upon close

examination, however, even the sharpest shadow is blurred slightly at the

edges. This is because there is a slight bending of light around the edges
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of the object. This bending of light (or any wave motion) around corners is

called diffraction.

Waves of any kind superimposed on one another produce a resulting

wave that is different than either wave alone. The superposition of waves

and the resulting interference is fundamental to the study of diffraction.

Recall that longitudinal sound waves interfere to produce beats. In a

similar way, the interference of transverse light waves produces colors.

Constructive and destructive interference is reviewed in Figure 14.

Interference of water waves is a common sight. A negative consequence

of seismic wave propagation is the limitation it imposes on seismic explora-

tion. The events due to small objects become less and less well defined

as the size of the object approaches the wavelength of the seismic waves

illuminating it. If the object is smaller than a single wavelength, then

careful data collection, data processing, and data interpretation are required.

Even so, no amount of theory can defeat this fundamental diffraction limit.

Approximation methods for the solution of the wave equation with variable

material parameters and for situations involving complicated boundaries

are available. Some of these methods have been designed to exhibit diffrac-

tion. We will be particularly interested in the Fresnel approximation. The

phenomenon known as diffraction plays a role of the utmost importance

in the branches of physics and engineering that address wave propagation.

In this chapter, we consider some of the foundations of scalar diffraction

theory. The theory discussed here is sufficiently general to be applied in

other fields, such as acoustic-wave propagation, radio-wave propagation,

and physical optics. To fully understand the principle of seismic imaging

Figure 13.

Diffraction

occurs within

distances of a

few wavelengths

from the

boundary of the

shadow.
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and seismic data processing systems, it is essential that diffraction and the

limitations it imposes on system performance be appreciated.

The term diffraction can be defined as any deviation of rays from recti-

linear paths which cannot be interpreted as reflection or refraction. The

classic description of the diffraction of light rays is as follows. An aperture

in an opaque screen is illuminated by a light source, and the light intensity

is observed across a plane some distance behind the screen. The rectilinear

theory of light propagation predicts that the shadow behind the screen

should be well defined, with sharp borders. Observations show, however,

that transition from light to shadow is gradual rather than abrupt. If the

quality of the light source is good, then we would observe more striking

results, such as the presence of light and dark fringes extending far into

the geometrical shadow of the screen. Such effects cannot be satisfactorily

explained by a strict ray theory of light, which requires rectilinear propaga-

tion of light rays in the absence of reflection and refraction. The initial step

in the evolution of a theory that would explain such effects is made by the

first proponent of the wave theory of light, Christiaan Huygens, in the

year 1690. Huygens expresses an intuitive conviction that, if each point

on the wavefront of a light disturbance is considered to be a new source

of a secondary spherical disturbance, then the wavefront at any later

instant can be found by constructing the envelope of the secondary wavelets.

When a wave passes a point in a medium, the resulting disturbance of

the medium at that point is itself a source of a new wave motion of the

same frequency (Huygens’ principle). Consider waves of water incident

from the left upon a barrier with a narrow opening. First, suppose the

opening is small compared to the wavelength of the wave. While the

waves are incident upon the opening, the water sloshing up and down

in the opening acts as a “point” source of new waves. As a result,

Figure 14.

Constructive and

destructive

interference.

Reinforcement 

Add

Waveforms out–of–phase 

Waveforms in–phase 

Cancella�on
Add
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concentric-shaped waves are produced on the other side of the barrier. As

the opening is widened, the waves produced on the other side no longer

emanate from a point-like source, and the resulting waves are less circular

in shape. When the opening is very wide compared to the wavelength of

the waves, the waves from the left side simply pass through unobstructed

with only slight diffraction at the edges. In the case of light waves, this

slight diffraction blurs the edges of a shadow. If the source of light

causing the shadow of an object is very small (preferably a point), fringes

of brightness and darkness can be seen.

The amount of diffraction depends on the wavelength of the wave.

Radio waves are very long, ranging from 176 to 560 meters for the standard

AM broadcast band. As a result, AM radio waves readily bend around

objects that might otherwise obstruct them. The radio waves of the FM

band are much shorter, ranging from 2.8 to 3.4 meters, and do not bend as

much as AM waves. This is one of the reasons that FM reception is often

poor in localities where AM comes in loud and clear. Diffraction, therefore,

aids radio reception.

Seismic waves, which have wavelengths as large as a few hundred

meters, bend around pinchouts, disconformities, and other geologic struc-

tures to various extents. The equation is

wavelength × frequency = velocity .

For example, a wavelength of 10 m for a seismic wave of 100 Hz frequency

traveling in the shallow earth (e.g., the upper 10 m in depth) would have a

velocity of 1000 m/s. A wavelength of 250 m for a seismic wave of 20 Hz

frequency traveling in the deep earth (e.g., depth of 5000 m) would have a

velocity of 5000 m/s.

Diffraction curves

Although seismic reflection traveltime profiles or sections often give a

remarkably direct indication of the structural configuration of the layers

of sedimentary rock lying beneath the earth’s surface, they can be mislead-

ing and often are difficult to interpret geologically even when record quality

(event continuity and the reflection signal-to-background noise ratio) is

excellent. For years, it has been the task of trained and experienced explora-

tion seismologists to interpret the data, sort out and correlate the signal—

“pick the record”—and plot a series of points or a line, representative of

these correlations, on a separate section. When the structure is complex,

showing large deviations from horizontal layering, the subsurface position
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of the reflecting point on the interface does not lie under the shot-receiver

but is displaced to one side or the other of this point. The direction and mag-

nitude of this updip displacement depends on the direction and magnitude of

the inclination or dip of the strata, bedding plane, or seismic interface. In our

analysis here, we address two spatial dimensions only, namely, a horizontal

distance x and depth z. The variable x can take on any value from−1 to+1,

but the depth z must be positive. Also, time t must be positive. Because z and

t must be positive, there is a certain duality between them. There is nothing

in our methods that cannot be extended to three spatial dimensions; the

extension is straightforward and involves no new principles. In this discus-

sion, we will make use of the stacked seismic record section which (approxi-

mately) gives coincident source-receiver geometry, as shown in Figure 15.

Although the travelpaths of energy between surface source locations

and positions along the true reflector surface may be quite complex, we

do know that upward and downward legs must be identical, and that the

travelpath (a raypath) strikes the reflector surface at right angles. This last

fact follows from the law of reflection (incidence angle of 08 equals reflec-

tion angle of 08).
The wave equation describes the motion of the waves generated by a

physical experiment. The stacked record section, however, does not corre-

spond to a wavefield resulting from any single experiment. There are

many sources excited sequentially, but the record section gives the appear-

ance that all of the sources are activated simultaneously. As a result, a

theoretical physical experiment is hypothesized to justify the use of the

wave equation to operate on the wave motion appearing on the stacked

record section. This theoretical physical experiment (Loewenthal et al.,

1976) is called the exploding reflectors model. The theoretical experiment

is the following. The receivers are located on the surface of the ground;

the sources are not at the surface but are distributed within the earth.

More specifically, along every reflector surface, the sources are positioned

Figure 15. Raypaths

for coincident source-

receiver locations.

Ray path

Source and receiver Surface of ground 

Reflector 
surface
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with the strengths that are proportional to the reflection coefficients, and all

sources are activated at the same instant t = 0.

We concern ourselves with upward traveling waves only, that is, waves

traveling upward toward the surface z = 0. We ignore all multiple reflec-

tions, and ignore all transmission effects at the interfaces. As we know, a

record section involves the two-way traveltime from the surface source to

the reflector, and back to the surface receiver. In our theoretical experiment,

however, we are only concerned with one-way traveltime from a reflector

source to the receiver. As a result, we must convert our record section

from two-way traveltime to one-way traveltime. This conversion can be

accomplished simply by dividing our stacked record section time scale by

two. Now, seismic record generation can be stated in the following terms.

The configuration of exploding reflectors is considered as an initial con-

dition for a wavefield governed by the wave equation. Take the upward

traveling waves at the exploding reflectors, run the time clock starting at

time t = 0 so as to propagate the upgoing waves forward in time to the

surface detector positions. This forward propagation to time t can be

viewed as the mechanism that generates the stacked record section (i.e.,

section with coincident source-receiver pairs).

Let us summarize our development to this point. In conventional pro-

cessing, stacking produces a zero-offset (i.e., coincident source-receiver)

section, and this section forms the starting point for our discussion of diffrac-

tion. We will describe the diffraction process in detail. But before introdu-

cing diffraction, we want to discuss some special cases.

The first example is the case of a horizontal plane reflector (see

Figure 16). With a coincident source-receiver, the seismic waves propagate

vertically to the reflector from the source-receiver point and then back again

to the same point. The true depth is denoted by z. The time points appearing

on the seismic record (in the case of coincident source and receiver) rep-

resent the two-way traveltime t, that is, the time down to the reflector plus

the (same) time back up to the surface. The one-way traveltime t/2 is

obtained by dividing the two-way traveltime by two. We may convert

record times t into apparent depths vt/2 by multiplying the one-way times

t/2 by the constant velocity v. Because the raypaths are vertical, the inter-

face appearing on the stacked section (called the apparent interface) is

the same as the geometric interface (called the true interface).

Let us now consider the case for which the true interface is flat but

sloping, as shown in Figure 17. Because we are concerned only with ray-

paths that are normally incident on the true interface, the true interface is

tangent to the incident wavefront. The wavefront can be drawn at each

source point corresponding to half of the measured reflection time. We
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Figure 16. (top) Flat (i.e.,

horizontal) reflector and

(bottom) resulting stacked

section (with time

converted to depth). In this

case (i.e., the case of

horizontal interfaces), the

true depth z is the same as

the apparent depth vt/2.

Flat reflector  
true interface

Reflected events 
apparent interface

Surface of ground

Surface of ground
Coincident source and receiver

Figure 17. (top)

Dipping reflector and

(bottom) resulting

stacked section (with

time converted to

depth). In this case

(i.e., the case of a

sloping interface), the

true depth z is not the

same as the apparent

depth vt/2.

Surface of ground 

Each black circle represents 
a coincident source 

and receiver 

Reflec�ons (a
pparent in

terface)

Sloping re
flecto

r (t
rue interfa

ce)

Surface of ground 
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recall our assumption that the receiver is at the same point as the source point.

Thus, the true interface is the envelope of these wavefronts. Because of the

constant velocity assumption, the wavefronts are arcs of circles.

Figure 18 depicts the case of a sloping reflector in a three-dimensional

figure, with axes x, vt/2, z. The event E is due to depth point D. The distances

OE and OD are the same. We definea as the angle that the apparent interface

makes with the horizontal axis (i.e., the x-axis), and b as the angle that the

true interface makes with the x-axis. Then, from the figure, we see that

tana = OE

OP
and sinb = OD

OP
.

Because OE = OD, we have

tana = sinb . (12)

In the constant velocity case, the geometry of wave propagation may be

described elegantly by the curves known as conies or conic sections. These

curves arise from the intersection of a plane with a cone of revolution. The

intersection formed by a plane that cuts every element of such a cone is an

ellipse. In the situation where the plane is perpendicular to the axis of the

cone, the section is a circle. The intersection formed by a plane which

cuts both napes of the cone is a hyperbola. In the particular case where

the plane is parallel to an element of the cone, the section is a parabola.

The conic sections can be defined metrically as follows. The ellipse is the

locus of points, the sum of whose distances from two fixed points, called

the foci, is constant. The hyperbola is the locus of points, the difference of

whose distances from two fixed points, the foci, is constant. The parabola

Apparent interface

True interface 

Event

Depth point 

Figure 18. Dipping reflector in

space–time diagram.
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is the locus of points equally distant from a fixed point, the focus, and a fixed

line, the directrix.

In seismic work, we are concerned with sources and receivers at the

surface of the earth and reflectors at depth. A certain type of idealization

deserves special study, namely, the case of a point reflector, also called a

point diffractor. When such a diffraction point is illuminated by a surface

source, it is assumed that the diffraction point acts as a secondary source

and hence sets off outgoing wave motion in all directions. If t represents

the two-way traveltime from a surface point to the diffraction point and

back to the same surface point, then we must use the one-way time t/2 as

the time when we regard the diffraction point as the secondary source.

Thus, the one-way equal traveltime locus from this secondary source is

described by the equation

x2 + z2 = vt

2

( )2

. (13)

If z is the fixed depth of the diffraction point, then z is a constant in the

above equation, and thus it becomes the equation for a hyperbola

x2 − vt

2

( )2

= constant . (14)

The seismic energy recorded at the surface is a function of the horizontal

coordinate x and the two-way time t. On the recorded seismic section, shown

in Figure 19, the diffraction point P produces energy which lies on the indi-

cated hyperbola. As a result, such hyperbolas are called diffraction curves.

The important fact to remember is that seismic sections are a function of x

Diffrac�on hyperbola

Origin

Wavefront circle

Figure 19. Point diffractor at P. The space–time distribution of energy lies on the

surface of the cone. The energy observed on the earth’s surface z= 0 lies on the

diffraction hyperbola, whereas at any fixed instant of time the energy lies on a

wavefront circle.
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and t, and on such sections we can see diffraction curves as energy falling on

a hyperbola.

Diffractions differ from true reflections. A shot produces energy that

travels down to a diffraction point. Diffractions represent energy that

returns from the diffraction point without obeying the reflection law

(incidence angle equals reflection angle). Consider an example of a sharp

diffracting edge at a fault. The diffraction events can be seen along the

edges.

Suppose that we could see a cross-section of the earth; that is, a section

that is a function of x and z. If we could take a snapshot of the wave motion at

a fixed time t, then the wave motion due to the diffraction point would appear

as the circle

x2 + z2 = constant . (15)

As a result, such circles are called wavefronts. As time t increases, the

wavefronts are an expanding set of concentric circles with the diffraction

point as center (see Figure 18).

Instead of using a three-dimensional drawing with x, z, and vt/2 coordi-

nates, let us now use a two-dimensional drawing with an x axis and another

axis which depicts both z and vt/2. As depicted in Figure 20, both the z and

vt/2 coordinates appear on the same vertical axis. The true interface is

plotted with respect to the z-axis, while the apparent interface is plotted

with respect to the vt/2 axis.

Let us now plot the wavefront curve and the diffraction curve on the

same diagram. As shown in Figure 21, we observe that the wavefront

Surface of ground

Both and

Figure 20.

True interface

(the reflector)

and apparent

interface (the

reflected seismic

event).
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curve is the semicircle

x2 + z2 = vt

2

( )2

= constant , (16)

while the diffraction curve is the semi-hyperbola

x2 − vt

2

( )2

= z2 = constant . (17)

We see that the wavefront semicircle with center (0, 0) and the diffrac-

tion semi-hyperbola with apex (x, z) intersect at two points, namely, the

apparent reflection point E = (0, vt/2) and the true reflection point

D = (x, z). This fact may be directly verified by substituting each of these

points into the respective equations for the semicircle and the semi-

hyperbola.

The wavefront curve is defined as the snapshot that shows the wave

energy originating from a point source. The true interface is the envelope

of the wavefront curves corresponding to sources at the surface. This true

interface is tangent to the wavefront curves, as shown in Figure 22.

The diffraction curve is defined as the locus of events given by the

reflections originating from a point reflector. The apparent interface is the

envelope of the diffraction curves corresponding to each of the points on

the true interface. The apparent interface is tangent to the diffraction

curves, as shown in Figure 23.

Figure 21. The

wavefront circle

and the

diffraction curve

intersect at two

points E and D.

Each with
length

Length

Wavefront 
circle

Apparent
interface

True interface

Diffrac�on hyperbola

Both and

Surface of ground
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Let us consider the (x, z)-plane for non-negative values of z. We

let z represent depth into the ground, so z = 0 represents the surface.

First, we consider the wavefront that is due to a source at the surface

point (x0, 0), and that has traveled a distance vt/2 to the depth point (x, z).

This wavefront is the semicircle in (x, z) space, shown in Figure 24.

The equation for the circle is

(x − x0)2 + z2 = vt

2

( )2

= constant . (18)

Next, we consider the diffraction curve that is due to a point diffractor at

(x, z). As shown in Figure 25, let the source and receiver be at (x0, 0). The

distance from (x0, 0) to the point diffractor is vt/2, where v is the wave

True interface

Wavefront circles

Surface of ground

Figure 22. The

true interface

(the reflector) is

tangent to the

wavefront

circles.

Origin Surface of ground

Apparent interface

Diffrac�on
hyperbolas

Figure 23. The

apparent

interface (the

reflected seismic

event) is tangent

to the diffraction

curves.
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velocity and t/2 is the one-way time. Thus,

vt

2
=

���������������
(x − x0)2 + z2

√
. (19)

This distance is plotted directly under the source-receiver point (x0, 0);

that is, the event corresponding to the point reflector (x, z) is

x0,
vt

2

( )
= x0,

���������������
(x − x0)2 + z2

√( )
. (20)

Figure 24. The

wavefront due to

a source at the

point (x0, 0) on

the surface of the

earth.

Surface of ground

Wavefront

Origin

True in
terfa

ceDistance vt/2

Figure 25. The

diffraction curve

due to a point

diffractor at (x, z).

Diffrac�on 
curve

Both and axes

Surface of ground

Point diffractor 
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We recall that the diffraction curve is defined as the locus of events

given by reflections from the point reflector for all source-receiver points

(x0, 0). Hence, the diffraction curve is the locus given by equation 19,

which is the semi-hyperbola in (x, vt/2) space for a fixed depth z given by

vt

2

( )2

− (x − x0)2 = z2 = constant . (21)

We recall that the stacked section represents a zero-offset section. That

is, the stacked section depicts events which have the same source and receiv-

er position. Figure 26 depicts a point diffractor. Each line from the surface to

the point diffractor represents a two-way travel path. The length of such a

line is vt/2, where t is the two-way traveltime.

On the stacked section, the event that corresponds to the point diffractor

falls at a distance of vt/2 directly under the source-receiver point, as shown

in Figure 27.

Source–receiver point

Point diffractor

Two–way raypaths

Surface of ground

Distance vt/2

Figure 26. Point

diffractor in the

earth.

Distance  

Diffrac�on curve hyperbolic in shape
due to a point diffractor at  

Figure 27.

Diffraction curve

on coincident

source-receiver

seismic section.
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Diffractions appearing on seismic sections

In the foregoing section, we have learned:

1. A point diffractor in the subsurface produces a hyperbolic-shaped event

(the diffraction curve) on the coincident source-receiver seismic section.

2. A straight-line reflecting interface with dip angle b produces a straight-

line event with dip angle a on the coincident source-receiver seismic

section. Both of these straight lines are assumed to be infinitely long,

both cut the horizontal x-axis at the same point, and their dip angles

are related by the equation tana = sinb.

In this section, as in the foregoing one, we are dealing with two-

dimensional earth cross-sections (lateral coordinate x and depth coordinate z)

and the corresponding two-dimensional seismic sections (same lateral

coordinate x and time coordinate t). Now, however, we want to consider

more practical cases than infinitely long rectilinear interfaces and point dif-

fractors. The understanding of the diffraction process is basic to the compre-

hension of seismic phenomenon. For example, one portion of a reflector

may possess a sharp boundary at which the reflection coefficient suddenly

changes. We would want to be able to tell where that boundary point

occurs. We will see that a discontinuity in the reflection capability of an

interface does not mean a discontinuity in the seismic events which result.

In fact, abrupt discontinuities in seismic events are not present on the

seismic section. In studying the effects of discontinuities in the geologic

structure on the resulting seismic records, resort usually must be made to

numerical calculation. The mathematics that control such calculations are

governed by Huygens’ principle in its mathematical form as the Kirchhoff

integral solution of the wave equation, or by various finite-difference or

finite-element approximations to the wave equation, or by some transform-

ation technique such as with the Fourier transform or the Radon transform

(i.e., slant stacking).

Let us consider the case of a flat reflecting interface that terminates at an

edge (see Figure 28). Suppose that a plane wavefront is incident on the

reflector. A reflected plane wave will result, with angle of reflection equal

to angle of incidence. However, the reflected plane wavefront will not ter-

minate abruptly, but blends into a circular portion with center at the termin-

ation (edge) of the reflector. As a result, energy is diffracted into regions

which are not in a position that is proper for a reflection. The energy that

does not obey the law of reflection is organized by the geometry of the

reflector (in this case a terminating flat interface) and makes up the diffracted
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wave. Huygens’ principle explains how waves are propagated. It states that

the motion of a particle of matter affects all of the surrounding particles.

Each particle acts as a new elementary source and exerts an effect on all

of the surrounding particles. A particle is linked to surrounding particles

by elastic forces. The vibratory motion of a particle about its center of

gravity changes the distances to the surrounding particles, and hence the

elastic forces on them. Thus, these neighboring particles begin to vibrate

about their respective centers of gravity.

To continue this story, let us quote from Traité de la Lumière, by Chris-

tiaan Huygens (1690), and consider Figure 29. (Note that Huygens is dis-

cussing the propagation of light, but his argument is also suitable to

elastic waves in rock which we are discussing.)

Circular por�on 

Reflector Edge

Reflected wavefront Incident wavefront
Figure 28.

Reflector with

edge, incident

wavefront,

reflected

wavefront, and

circular portion

with center at edge.

Figure 29.

Wavelets as

drawn by

Christiaan

Huygens.
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Each particle of the matter in which a wave proceeds not only com-

municates its motion to the next particle to it, which is on the

straight line drawn from the luminous point, but to all the others

which touch it and which oppose its motion. The result is that

around this particle there arises a wave of which this particle is

the center. So if DCF is a wave coming from the luminous point

A, which is its center, the particle B, one of those which is within

the sphere DCF, will set up its particular wave KCL which will

touch the wave DCF in C at the same instant that the principle

wave coming from the point A has reached DCF. It is plain that

the only point of wave KCL which will touch the wave DCF is

the point C which is on the straight line AB. In the same way the

other particles contained within the sphere DCF will each have

made its own wave. But each of these waves can be only infinitely

feeble compared to the wave DCF, to the composition of which all

the other contribute by that part of their surface which is the most

distant from the center A. We see further that the wavefront DCF

is determined by the extreme limit of motion which has gone out

from the point A in a certain period of time, there being no

motion beyond this wave. All the properties of light and those

which pertain to reflection and refraction are explained fundamen-

tally in this manner.

At the top of Figure 30, we see a flat half-plane reflecting interface; at

the bottom, we see the resulting coincident source-receiver seismic

section. This section shows the reflection from the half-plane (the flat

event) and the diffraction from the edge of the plane (the hyperbola). The

reason for the diffraction can be understood in terms of Huygens’ principle.

Figure 30. (top) Flat

reflector with edge and

(bottom) resulting

seismic event

composed of a reflected

portion and a

diffraction curve.

Edge
Flat reflector 

Reflected portion 
with positive polarity 

Diffracted portion 
with positive polarity 

Diffracted portion 
with negative polarity
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The particles near the edge of the reflecting plane radiate energy in all direc-

tions, and the portions of this energy with lateral components do not cancel,

as would be the case if the reflecting plane were infinite in extent. Some of

the important features of diffractions may be seen by examining this figure.

The diffraction event is tangent to the reflection event, and the continuity of

the entire event is maintained at the edge point where the reflection blends

into the diffraction. There is no abrupt phase break to indicate the termin-

ation of the reflectors. Amplitude and wave shape are smooth and continu-

ous. The amplitude of the reflection, however, decreases before the end of

the reflector is reached, and is only half as strong at the end of the reflector

as it is along the body of the reflector. The energy which disappears from the

reflection as the edge is reached instead appears in the diffracted event. The

two arms of the hyperbolic diffraction curve are interesting. The right arm,

which represents the continuation of the reflector, has the same polarity as

the reflected event. The left arm of the diffraction curve, which appears

under the reflected event, has the opposite polarity as the reflected event.

The magnitude of the amplitudes on the two diffraction arms at points equi-

distant from the apex are the same.

Consider the following thought experiment. Suppose we have an infi-

nitely long flat reflector. As we know, it will produce an infinitely long

reflection showing no diffraction. Suppose now we cut it, and consider

only the left-side portion. We obtain a left-side reflection together with a

diffraction hyperbola. If we consider only the right-side portion, we

obtain a right-side reflection together with a diffraction hyperbola of the

opposite polarity. The original infinitely long reflection must be the sum

of the effects of the two half-planes. The two diffraction curves have the

same amplitude but opposite polarity. As a result, they cancel each other

completely. Thus, no diffraction would result at the junction of the

Two diffracted portions with positive polarity

Two diffracted portions
with negative polarity

EdgeEdge

Flat reflector

Reflected portion with positive polarity 

Figure 31. (top)

Finite flat interface

(two edges) and

(bottom) resulting

seismic event

composed of a

reflected portion and

two diffraction curves.
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component parts. At the junction, half of the energy is contributed by the left

half-plane and the other half by the right half-plane (see Trorey, 1977).

In summary, the sign of a diffracted wave must change in going from

one side of an edge to the other. For example, Figure 31 shows a strip

with diffractions at each edge. Each branch (right and left) from each

edge follows the same hyperbolic-like curve in time and distance, but, on

the left-side edge, the diffraction is positive to the left and negative to the

right. The opposite occurs on the right-side edge. The reflection itself is

assumed to be positive, so that the two diffraction branches extending

away from the reflection have the same sign as the reflection. Moreover,

the diffraction causes the composite reflection and diffraction precisely at

the edge to have only 50% of the amplitude of the main body of the

reflection.

For those many readers who wish to probe deeper into the fundamentals

of seismic diffraction theory and to see its many practical applications, refer-

ence is made to Classical and Modern Diffraction Theory and Seismic Dif-

fraction (Klem-Musatov et al., 2016a, 2016b). Whereas the second volume

is replete with working examples of situations encountered in seismic

exploration, the first volume delves into the historical development of the

subject. Here the reader can follow one of the most remarkable develop-

ments in the history of science as put forth in the papers: A physico-math-

ematical treatise on light, colors and the rainbow (Grimaldi, 1665);

Treatise on light (Huygens, 1690); Experiments and calculations relative

to physical optics (Young, 1803); Memoir on the diffraction of light

(Fresnel, 1818); Mathematical analysis to the theories of electricity and

magnetism (Green, 1828); Theory of air vibration in pipes with open ends

(Helmholtz, 1858), On the ray theory of light (Kirchhoff, 1462), and

On the passage of waves through apertures in plane screens, and allied

problems (Rayleigh, 1697).
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Chapter 8

Migration by the WKBJ Method

Geometrical optics and physical optics

The idiom, “seeing is believing,” means that only physical or concrete

evidence is convincing. When we look at the ocean, we see waves, not rays.

Yet, we do see rays of light coming in through cracks in a wall. Light is com-

posed of packets of energy called photons. However, light travels as a wave,

not as a particle. But unlike sound waves or water waves, light waves do not

need matter or material to carry its energy. Unlike sound waves which are

mechanical waves that can only travel through a solid, a liquid, or a gas,

light waves are electromagnetic waves that can travel through a vacuum.

Light waves travel out from their source in straight lines called rays.

Rays do not curve around corners; so, when they hit an opaque object

(one that does not allow light to pass through it), they are blocked from

reaching the other side of that object. We see a dark shadow (geometrical

shadow) in the area from which light is blocked. Even so, some light

(diffracted light) does appear in the shadow zone. Diffraction is the

bending of light around the corners of an obstacle into the region of geo-

metrical shadow. Diffractions can be explained by wave theory. In classical

physics, the diffraction phenomenon is described as the interference of

waves according to the Huygens–Fresnel principle. These characteristic

behaviors are exhibited when a wave encounters an obstacle or a slit that

is comparable in size to its wavelength. Similar effects occur when a light

wave travels through a medium with a varying refractive index, or when a

sound wave travels through a medium with varying acoustic impedance.

Diffraction occurs with all waves, including sound waves, water waves,

and electromagnetic waves. While diffraction occurs whenever propagating

waves encounter such changes, its effects are generally most pronounced
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for waves whose wavelength is roughly comparable to the dimensions of the

diffracting object or slit.

Geometric optics, or ray optics, deals with light rays or “beams” of light.

Light rays are conceptual lines along which the bulk of luminous energy

is propagated. Geometric optics is applicable to the study of prisms,

lenses, mirrors, and optical devices such as microscopes, telescopes, and

cameras. In such cases, the wavelike properties of light become insignificant

as the objects are very large as compared to the wavelength of light.

Geometric optics is applicable if the diffractive effects are negligibly

small. Geometric optics is the limiting case of physical optics when the

wavelength tends to zero. In terms of frequency, geometric optics is the lim-

iting case when the frequency tends to infinity. In geometric optics, the wave

nature of light and the associated diffraction phenomena are not taken into

consideration. In an optically isotropic medium, the light rays are orthogonal

to the wave surfaces and directed toward the outward normals to these sur-

faces. Geometric optics can explain the phenomena of reflection and refrac-

tion. The field of geometric optics is already well developed by the time of

Isaac Newton. The grinding of lenses to assist vision is already common by

1600, and Galileo understands how to make the first astronomical telescope

in 1610. Isaac Newton even begins to understand colors, although he does

not consider light as wavelike.

Fermat’s principle states that the actual path of the propagation of light

from point A to point B is such that the time required to traverse this path

is extremal with respect to that required for any other conceivable path

between these points. Fermat’s principle follows from the Huygens–

Fresnel principle under the condition that the wavelength of the light is infi-

nitely small. It is the most general principle of geometric optics, one from

which all of the fundamental laws of geometric optics can be derived. For

instance, the law of rectilinear propagation of light in an optically homo-

geneous medium follows from Fermat’s principle. The laws of the reflection

and refraction of light also follow from Fermat’s principle. In addition, the

principle of optical reversibility is a consequence of Fermat’s principle.

Suppose a ray in medium 1 is incident to the boundary with medium 2 at

an angle ui. The ray is refracted and enters medium 2 at angle ur. This prin-

ciple states that then a ray from medium 2 falling on the boundary with

medium 1 at angle ur will enter medium 1 after refraction at angle ui.

Maxwell’s electromagnetic theory puts the wave theory of light on firm

footing. Physical optics, or wave optics, is the branch of optics which studies

interference, diffraction, polarization, and other phenomena for which the

ray approximation of geometric optics is not valid. Physical optics takes

into consideration the wave-like properties of light. It develops more
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advanced concepts on the basis of the Huygens–Fresnel principle. It has its

origins in Young’s double slit experiment and consequently with interfer-

ence of light which is a characteristic of waves. Physical optics deals with

diffraction which is noticeable only when the obstacle’s size is of the order

of the wavelength of light. The subject matter of physical optics develops

after the 1801 discovery by Thomas Young that light has wave properties.

In this context, physical optics is an intermediate method between geometric

optics, which ignores wave effects, and full wave electromagnetism, which

is a precise theory. The word “physical” means that it is more physical

than geometric or ray optics and not that it is an exact physical theory.

The diffraction of light is observed in media with sharply defined inho-

mogeneities (for example, holes in opaque screens, the boundaries of

opaque bodies, etc.). In its narrower sense, diffraction refers to deviations

from the laws of geometric optics, such as the bending of light around

small opaque obstacles. A strict mathematical solution of diffraction prob-

lems, based on the wave equation and having boundary conditions depend-

ing on the nature of the obstacle, is exceptionally difficult. It usually

becomes necessary to resort to approximate methods.

Huygens’ principle (in the form as given by Huygens) states that the

position of the front of a traveling wave can be represented at any instant

of time as the envelope of all secondary wavelets. The sources of the second-

ary wavelets are points reached by the front of the primary wave in the pre-

ceding instant of time. The principle explains the laws of the reflection and

refraction of light; however, it cannot explain diffraction phenomena. Its

more advanced form is called the Huygens–Fresnel principle. Consider a

source of a light wave and an arbitrary closed surface surrounding the

source. The Huygens–Fresnel principle states that, at any point located

outside of the closed surface, the primary wave is the result of the superpo-

sition of secondary wavelets which are emitted by elementary sources dis-

tributed continuously along the closed surface. In other words, outside the

closed surface, the primary wave can be replaced by secondary wavelets

which interfere upon superposition. The closed surface is usually made to

coincide with one of the wave surfaces of the primary wave so that the

initial phases of all secondary wavelets are the same.

Migration is a term used in reflection seismology to describe the

process of moving the recorded reflection events to their correct spatial

positions by backward projection (a.k.a. depropagation). Migration has

gone through three distinct phases in the history of the exploration

seismic method; namely,

Phase 1: 1921–1965. Mechanical migration.
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Phase 2: 1965–1995. Computer migration, generally limited to two spatial

dimensions because of severe limitations in computer power and data

acquisition.

Phase 3: 1995–present. Computer migration, generally done in three spatial

dimensions due to great advances in computer power and data

acquisition.

Phase 1. The first reflection seismic survey recognizes that reflections can

occur in any direction (bearing) and hence the reflecting points do not

necessarily lie vertically beneath observation points on the surface of

the earth. J. C. Karcher interprets his earliest reflection data at Belle Isle,

Oklahoma in 1921 (see Figure 1). He assumes a constant velocity, swings

arcs around the surface observation points, and draws the interface as

the envelope of these arcs. Such a process of transforming the observed

seismic events into a map of the reflecting horizons is the process of

migration. Migration refers to the movement of an observed event to its

true spatial position. The pre-computer methods of migration all involve

manual (visual) picking of reflection events before migrating.

As the years passed, a variety of numerical, geometric, and mechanical

schemes were devised to carry out the migration of seismic data. Wavefront

and raypath charts were used, which allowed one to handle various velocity

functions. Such charts could be constructed for arbitrary vertical and lateral

distributions of velocity. However, except in special cases, velocity func-

tions that varied only in the vertical direction were used, that is, velocity

functions of the form v(z). This development culminated in the work of

Hagedoorn (1954) on the conceptual aspect of migration.

Phase 2. In the early 1960s, the exploration seismic industry underwent a

digital revolution. Data were collected in digital form and extensive compu-

ter processing was performed to put the data in their final form. One of the

Figure 1. The Karcher

migration scheme for the first

seismic reflection survey in

1921.
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processes that had to be computer programmed was migration. A major

computational breakthrough occurred when various companies realized

that migration could be accomplished by the use of existing stacking pro-

grams. The process of stacking made use of a level-layered model, that is,

a model in which all of the interfaces are flat and horizontal. Geophysicists

called such a model a layer-cake model.

One of the first steps in seismic processing is to collect or gather all

traces whose respective source positions and receiver positions are centered

around a common midpoint. Such a collection is called a common midpoint

gather (CMP). Under a level-layered model, the curve of traveltime (for a

reflection from a given level interface) versus horizontal offset (i.e., the hori-

zontal distance from source to receiver) is hyperbolic in shape. Empirical

hyperbolas are fitted to the observed hyperbolic-shaped events; the result

is that an empirical velocity function v(z) can be computed. Also, all of

the traces on the common midpoint gather are summed along these hyper-

bolas, and the result is called the stacked trace for that midpoint. The

stacked trace is plotted at the coordinate of that midpoint, and the collection

of many of these stacked traces for a sequence of midpoints is called the

stacked section.

It is the stacked section that forms the starting point for the conventional

migration schemes used in Phase 2. Now we come to the important compu-

tational breakthrough. Hyperbolic-shaped events are observed on stacked

sections, and they are recognized as diffractions from subsurface diffracting

points. By using the velocity function in conjunction with the layer-cake

model, a theoretical diffraction curve can be computed for each subsurface

point. By adding the values of the traces that fall on each curve, we collapse

the energy to the apex, which corresponds to the position of the diffraction

point. Because an interface may be considered as a sequence of closely

spaced diffraction points, this diffraction stack method represents a method

of migration.

Diffraction stack migration was developed independently by many

different oil and geophysical companies in the 1960s. The computational

breakthrough was in place in the 1960s, and technical advances soon fol-

lowed. It was assumed that the CMP stacks represent data with either

primary reflections or diffractions, but no reverberations or other types of

multiple reflections. Various migration schemes based upon CMP stacked

data were developed. They were designated as methods of migration after

stack (i.e., poststack migration). Depth migration was based on schemes

that allowed velocity functions of the form v(x, z), where the lateral dimen-

sion is x and the depth direction is z. However, most of the poststack schemes

usually used a velocity function v(z) that depended only on depth. Such a
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case was called time migration. Poststack time migration usually provided

good results when the dip was small. In order to alleviate problems of

greater dips, poststack migration was used in conjunction with dip

moveout (DMO). Poststack migration was the standard until about 1995.

Phase 3. In the 1990s, large-scale parallel processing made an appearance

and data collection became much less expensive due to advances in instru-

mentation. As a result, three-dimensional velocity functions became cost

effective. Depth migration based upon velocity functions of the form

v(x, y, z) came into widespread use. Three-dimensional seismic methods

became a common exploration and production tool.

The terms geometric acoustics and physical acoustics have the same

meaning as the corresponding terms in optics. The same applies to geomet-

ric seismology and physical seismology. It might be said that the history of

seismic migration follows the history of optics. Phase 1 corresponds to the

drawings of rays found on the stone carvings of ancient Egyptians. Phase 2

corresponds to the rays used in geometric optics. Phase 3 corresponds to

waves used in physical optics. Although depth migration methods have

generally replaced time migration methods, a firm understanding of the

time migration technique remains important for comprehending the pro-

cesses we use and the reasons behind them.

Exploding reflectors model

The paper by Loewenthal et al. (1976) introduces the exploding reflector

model that represents the foundation of time migration techniques. In

the subsequent years, many other algorithms for migration have been

implemented. Some of the early work is that of Bardan (1980), Berkhout

(1980), Bleistein and Cohen (1982), Claerbout (1976), Clayton and

Stolt (1981), Gazdag (1978), Hubral (1977), McMechan (1983), Robinson

(1986), Schneider (1978), Stolt (1978), Weglein (1982), and Yilmaz

(1978). This list represents only a sample of the early papers in migration;

many hundreds of papers have now been written.

The time migration methods can be described as various ways of imple-

menting the classical WKBJ approximation, named after Wentzel (1926),

Kramers (1926), Brillouin (1926), and Jeffreys (1924). The WKBJ

method is a classic approximation for problems involving the propagation

of waves through an inhomogeneous medium. It is used for obtaining an

approximation to the solutions of the one-dimensional time-independent

Schrödinger equation, valid when the wavelength of the solution varies
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slowly with position. The WKBJ method has a long history. In 1838, George

Green publishes On the Motion of Waves in a Variable Canal of Small Width

and Depth. This work of Green anticipates the WKBJ approximation. In

1924, Sir Harold Jeffreys develops the method for use in classical

physics. In 1926, Wentzel, Kramers, and Brillouin also develop the

method and apply it to quantum mechanics. The exploding reflectors

hypothesis depends on an inherent (but, in fact, incidental) assumption

that the amplitude of the seismic pulse is invariant as it is transmitted

through the earth layers. The work of Gray (1984) shows that this assump-

tion is indeed a consequence of the WKBJ approximation, and so is valid

only in those situations where the WKBJ approximation is applicable.

The phase term which makes up the essential element of time migration

(as well as various other types of migration methods) is the WKBJ phase

correction factor, so time migration methods, such as the conventional ver-

sions of Kirchhoff migration, finite-difference migration, and frequency-

wavenumber ( f-k) migration, are not general wave-equation methods but

are simply aspects of the WKBJ approximation.

In seismic acquisition, each source is recorded at a number of geophone

locations and each geophone location is used to record from a number of

source locations. After correcting these data for statics, normal moveout,

and DMO (because dipping reflections do not involve a common reflecting

point), they are added (stacked) to provide a common-midpoint section that

approximates the traces that would be recorded by a coincident source and

receiver at each location. Stacking attenuates random effects and reduces the

effect of events whose dependence on offset is different from that of primary

reflections. When a stacked section is migrated, a migration scheme must be

used that is applicable to data recorded with a coincident source and receiver

(zero-offset). A zero-offset section could be recorded by moving a single

source and a single receiver along the line with no separation between

them. The recorded energy follows raypaths that are normal incidence to

reflecting interfaces. Because such a recording geometry cannot be realized

in practice, the following alternative is employed to produce the same

seismic section. Imagine exploding sources that are located along the

reflecting interfaces. Also, consider one receiver located on the surface at

each CMP location along the line. The sources explode in unison and

send out waves that propagate upward. The waves are recorded by the re-

ceivers at the surface. The earth model described by this experiment is

referred to as the exploding reflectors model (Loewenthal et al., 1976).

The seismic section that results from the exploding reflectors model is

largely equivalent to the zero-offset section, with one important distinction.

The zero-offset section is recorded as two-way traveltime (from source
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to reflection point to receiver), while the exploding reflectors model is

recorded as one-way traveltime (from the reflection point at which the

source is located to the receiver).

Virtually all poststack migration methods, including time migration, are

based upon the exploding reflectors model. The input data for the migration

process consist of a CMP (common midpoint) stacked seismic section. The

CMP section can be defined by its amplitude as a function of one-way trav-

eltime t and horizontal coordinate x along a straight surface line. In the usual

treatments of poststack migration methods, the effects of the migration on

multiple reflections as well as on reflections from locations outside of the

vertical plane of the earth cross-section are not discussed. Finally, an inherent

(but incidental) assumption in the exploding reflectors model is that the

basic seismic pulse is a simple impulse and that its amplitude is invariant

as it is transmitted through the earth layers. The purpose of this section is

to discuss this inherent assumption in connection with time migration.

In the mathematical approximations, there has always been a question of

how to treat the transmission effects. As we have described previously, the

inherent assumption in the exploding reflectors hypothesis is that the ampli-

tude of a seismic pulse is unchanged as the pulse is transmitted through the

layers. In other words, the inherent assumption in time migration is that

there is no transmission loss due to the inhomogeneous earth. In Phase 2,

much effort is spent on trying to calculate an accurate amplitude factor.

The basic difficulty is that the two-dimensional (x, z)-plane is but a slice

of the physical reality of three dimensions (x, y, z). Because so much can

happen out of the two-dimensional plane, it is essentially impossible to

determine an accurate amplitude factor with two-dimensional data. The so-

lution would have to wait until the use of three-dimensional data in Phase 3.

Therefore, not only in phase but also in amplitude, the conventional

theory of time migration rests on the WKBJ method of approximation.

However, the question of the applicability of WKBJ theory to the migration

of actual seismic data from different geological environments (e.g., slowly

varying earth structures, etc.) is a major field of research activity.

Migration

The purpose of reflection seismology is to determine the structure of the

subsurface from seismic traces recorded at the surface. The recorded seismic

data are subjected to various processing operations by means of digital com-

puters in order to transform the data into a valid picture of cross-sections of

the earth which can be interpreted in geological terms. Migration is one of

the last operations to be performed on the data. The reason is that many
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migration methods require that multiple reflections and surface waves be

removed, or at least severely attenuated. In addition, migration requires an

adequate velocity function of the subsurface. The use of receiver arrays,

and the processing operations of CMP stacking and predictive deconvolution,

usually provide adequate removal of multiples and surface waves. For any

given midpoint, a velocity search procedure provides a velocity function

v(z) as a function of depth z. The resulting CMP stacked section is an approxi-

mation to a section which would be obtained if each source and its corre-

sponding receiver were at the same point. Thus, in Phase 2, it is the usual

practice to perform migration on the CMP stacked sections, making use of

the velocity functions obtained by the velocity search procedures.

The definition of terms in migration is important; therefore, at the outset,

we give the following generally accepted definitions.

Prestack migration: Any migration process that starts with the unstacked

traces as input data.

Poststack migration: Any migration process that starts with the CMP stack

as input data. (The material in this chapter is restricted to this type of

migration.) It is assumed that the CMP section corresponds to a

hypothetical zero-offset (i.e., a coincident source-receiver) experiment

in which the exploding reflectors model holds.

Time migration: Poststack migration (as above) in which the depth-point

image is put at the minimum of the reflection time. Time migration is

strictly valid only for a horizontally stratified medium, for example,

one with constant density and vertical velocity variations only.

Depth migration: Any migration (prestack or poststack) that takes into

consideration geologic structure that is not necessarily horizontally stra-

tified; in other words, all migration methods that are not time-migration

schemes.

WKBJ migration: The WKBJ method is not limited to any seismic pro-

cessing scheme in general, or to any migration scheme in particular.

Even so, in this chapter we only discuss the WKBJ method in relation

to time migration and its attendant exploding reflectors hypothesis.

However, the WKBJ method is valuable in tracking raypaths in situ-

ations that do not involve CMP stacking and exploding reflectors. The

WKBJ method is an important tool for geophysicists.

The word migration refers to the movement, or migration, of the

observed events on the stacked section to their true spatial positions. The

input data to a poststack migration program would consist of a CMP

stacked section. Provided that the stacking operation has been successful,
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the primary reflections on this section approximate what would have been

generated in a hypothetical survey composed of a series of source-and-re-

ceiver combinations discretely spaced at some constant increment along

the horizontal seismic exploration line. Because, in this hypothetical

survey, each source and the corresponding receiver is at the same point on

the surface of the earth, the offset (or distance) between each source

and its receiver is zero. As a result, the CMP stacked section often is

described as a zero-offset section. Because, in actuality, the seismic

sources are set off sequentially and not simultaneously, the zero-offset

data do not represent any wavefield resulting from a single seismic exper-

iment. As a result, Loewenthal et al. (1976) introduce a hypothetical phys-

ical experiment to provide an intuitive picture of zero-offset migration: the

exploding reflector model. In this model, the energy sources are not at the

surface of the earth, but they are distributed along the subsurface reflecting

interfaces (the reflectors). In other words, the reflectors are represented by

buried sources, which are all activated at the same time t = 0. Therefore,

in the exploding reflectors model, we need to be concerned only with

upward traveling waves.

Because the actual CMP section involves two-way traveltime (the time

from the surface point to the reflector plus the time back up on the same

raypath to the same surface point), seismic time needs to be converted to

one-way traveltime when using the exploding reflector model. In this discus-

sion, whenever we are dealing with the exploding reflector hypothesis, we

will assume that the conversion has been made so that the variable t rep-

resents one-way time. The conversion is completed simply by dividing

the two-way time by 2. In seismic data processing centers in practice,

however, the time scale of CMP sections is kept unchanged, and instead

the velocity of wave propagation is divided by a factor of 2.

Under the exploding reflectors model, the migration of CMP data can be

described as the depropagation of the primary reflections recorded at the

surface of the earth back in time and down into the earth to their time

origin t = 0. There is an inherent (but, in fact, incidental) assumption that

the basic seismic wavelet is a simple pulse and that its amplitude is invariant

as it is transmitted through the layers of the earth.

The CMP stacked section may be considered as a wavefield measured at

the surface of the earth. Given the approximate velocity variations within the

earth as given by the velocity function, the migration process downward

continues this wavefield into the subsurface and thereby elucidates the

sources of the reflected and diffracted seismic events. Therefore, migration

is the inverse process in which the recorded seismic waves are depropagated

(with time running backward) to the corresponding reflector locations. In the
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process of seismic data acquisition, the upward traveling waves are recorded

at the surface of the earth. In migration, these recorded waves, in the form

of the stacked section, are used either as boundary conditions or initial

conditions for a wavefield governed by the wave equation. Migration is

the inverse propagation (or depropagation) process, which pushes these

upgoing waves back into the earth in reverse time in order to arrive at the

reflector locations.

In Phase 2, there are many implementations of time migration methods.

In this chapter, however, we show that all time migration methods are com-

patible with the amplitude and phase terms of the WKBJ approximation

(or, in other words, geometrical acoustics), which has a long history in

physics, mathematics, and engineering as well as in geophysics. This cat-

egorization of time migration techniques as being consistent with the

WKBJ method (i.e., geometric acoustics) has value in that it brings

together a large segment of recent research in exploration geophysics

with the classical methods used in applied physics, and thus adds to the

unity of science.

Wave depropagation simplified

Migration is a term used in reflection seismology to describe the process

of moving the recorded reflection events to their correct spatial positions.

Migration can be done by depropagating (a.k.a. backtracking) seismic

waves. Let us now give a simple example that explains the mathematics.

Ocean waves have wavelengths comparable to the seismic waves used

in petroleum exploration, but the velocity of ocean waves is much smaller so

that they can be observed easily. Let us imagine a long straight beach which

we take as the x-axis. We let the z-axis point directly seaward, with z = 0

corresponding to the beach line. For this simple example, we still suppose

that the ocean waves are sinusoidal with frequency v, velocity v, and direc-

tion of travel u, all fixed. The angle u is measured with respect to the z-axis.

We now suppose that someone on a ship at sea radios us on the beach that a

large-crested wave has passed the ship at time t = 0. We observe that same

wave hitting the beach at time t = t0. The question is: what is the location

(range and bearing) of the ship?

The part of the question as to the range is easy. The range is R = vt0, so

the ship can be anywhere on a circle of radius R and center at our position on

the beach. Let us now make our analogy with oil exploration. We think of

the beach as the surface of the ground, and think of the ocean as the subsur-

face geologic rock structure. The boat with unknown position corresponds to

an unknown oil reservoir we are exploring. The ocean waves correspond to
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the seismic waves. By auxiliary means, we can find the seismic wave veloc-

ity v, and we can measure the arrival time t0 (in this case, one-way time from

depth to the surface of the earth) of the seismic wavelet due to the oil reser-

voir. Thus, we immediately can determine the range R = vt0 of the oil

reservoir.

We thus know the range of the ship or the oil reservoir. With no other

information, we cannot determine its bearing, so the bearing angle could

be anywhere from −908 to 908. The average value could be zero, so we

could guess that the ship or oil reservoir has made an angle of zero with

the z-axis; that is, the ship or reservoir is at right angles to the beach or

earth’s surface from our observation position. An unmigrated seismic

record makes this assumption. It puts the cause of each event directly

under the position on the earth’s surface where this event is observed. In

other words, an unmigrated seismic record always draws each bearing as

straight down into the earth.

The reasoning for performing the data processing operation of migration

is to compute the true bearing for each event, and then put the cause of the

event at the computed range in the direction of the computed bearing. Of

course, if all geologic rock layers are flat and horizontal, then indeed the

seismic waves from an exploding reflector model go straight up (each

with a bearing angle of zero degrees). In such a case, an unmigrated

seismic section serves perfectly well. It also serves well provided the

dips of the layers are all small and random. However, when there are

many small dips all going in the same direction, or when there are

some large dips as in the overthrust belt of the Rocky Mountains, or a com-

bination of both, then an unmigrated seismic record section does not serve

exploration well.

In order to find the bearing of the ship or the oil reservoir, we must

measure some additional quantities. In Figure 2, we see the necessary

relationships. On the beach, we need a timepiece and a measuring stick,

and we must take measurements at two or more stations on shore. With

the timepiece, we measure the time between two consecutive crests of the

wave at a given station. This time measurement is the wave period T.

With the meter stick, we measure the distance between two stations

where adjacent crests hit the beach at the same instant. This distance

measurement is horizontal (x-coordinate) wavelength lx.

The word “bearing” refers to direction, especially angular direction

measured from one position to another using geographical or celestial refer-

ence lines. With the two measurements T and lx, we can determine the angle

u of bearing as follows. First, we must determine the wavelength of

the wave. The wavelength l is given by l = vT; that is, the wavelength is
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equal to the distance a crest travels during the elapsed time of one period.

The angle u of bearing is given by

sin u = l

lx

. (1)

The same principle applies to all migration schemes. In effect, we find

the bearing angle u and then backtrack along this bearing by letting time run

backwards from the arrival time t0 to the source time 0. When we reach time

0, we know we have reached the source, and the total distance that we have

backtracked is equal to the range R = vt0. Thus, we locate the source of

the event shown on the seismic record section. This process is seismic

migration, and it involves the depropagation of the seismic waves observed

at the surface of the earth.

Migration involves many seismic waves coming from different direc-

tions and various arrival times. In order to make things mathematically tract-

able, we appeal to the power of the Fourier transform. When we do things in

the frequency domain instead of the time domain, we use spatial frequencies

(also called wavenumbers) instead of wavelengths, and we use temporal fre-

quencies (simply called frequencies) instead of wave periods. The well

known relationships are

k = 2p

l
, kx =

2p

lx

, v = 2p

T
, (2)

where k is called the wavenumber, kx the horizontal wave number, and v the

frequency. We also can define the vertical wavenumber kz by the equation

k2
z = k2 − k2

x . (3)

Figure 2. Sinusoidal

plane wave.
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This equation says that kx and kz are the sides of a right triangle with hypo-

tenuse k. The wavenumber k is equal to

k = 2p

l
= 2p

vT
= v

v
. (4)

We define the propagation vector k pointing in the direction of the wave

(i.e., k makes an angle u with the z-axis) where k has length k and com-

ponents

kx = k sin u, kz = k cos u . (5)

The seismic disturbance (wave motion) at any point (x, z) at any time t

may be denoted by the symbol u(x, z, t). The surface of the earth is given by

depth z = 0, so the wave motion which we measure at the receivers on the

ground is u(x, 0, t). We can compute the two-dimensional Fourier transform

of the observed wave motion u(x, 0, t) with respect to x and t to obtain the

surface wavefield spectrum

U(kx, 0, v) =
∫1

−1

∫1

−1

u(x, 0, t) exp[−i(vt − kxx)]dx dt . (6)

Our purpose is to take the wave motion associated with the sinusoidal

wave characterized by kx, v, and then depropagate this sinusoidal wave in

the direction u as determined by

sin u = kx

k
= kxv

v
.

The depropagation terminates when we reach the distance given by t0.

The implementation of this depropagation scheme in the frequency

domain is done as follows. The travel time t has differential

dt = ∂t

∂x
dx + ∂t

∂z
dz .

The derivative dx/dt is the horizontal apparent velocity, so

lx =
dx

dt
T .
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As a result, we have

dt

dx
= T

lx

= 2p

lx

T

2p
= kx

v
.

Likewise,

dt

dz
= kz

v
.

Thus, the time differential is

dt = kx

v
dx + kz

v
dz . (7)

When we depropagate by a time span of t0, we let time run backward.

This means, in engineering terms, that we must introduce a time advance

of t0. A time-advance operator is the pure phase-shift system given in

the frequency domain by exp(ivt0). Let the depropagation path be from

the receiver point (x, z = 0) on the surface of the earth to the source point

at a depth given by the point (x = 0, z). Here, we assume that time t0

is the one-way time from source to receiver. Thus, the time advance is

equal to

∫t0

0

dt = 1

v

∫0

x

kx dx + 1

v

∫z

0

kz dz ,

which (for the constant-velocity medium treated here) is

vt0 = −kxx + kzz .

The observed seismic wave motion has sinusoidal component

U(kx, 0, v) exp(ivt) .

We multiply this component by the phase-shift (pure advance) filter

exp(ivt0) to obtain

U(kx, 0, v) exp[iv(t + t0)] = U(kx, 0, v) exp[i(vt − kxx + kzz)] .

This expression gives the depropagating sinusoidal wave. We thus integrate

this expression over kx and v to obtain the depropagating wave.
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We remember that kz is not an independent variable, but is given by the

positive square root

kz = +
��������
k2 − k2

x

√
= +

�����������
v

v

( )2

− k2
x

√
. (8)

In fact, it is this link of kz to kx and v that makes the operation of depropa-

gation possible. Thus, the required equation for the depropagating wave is

the integral

u(x, z, t) = 1

4p2

∫1

−1

∫1

−1

U(kx, 0, v) exp i

�����������
v

v

( )2

− k2
x

√
z

[ ]

× exp[i(vt − kxx)]dkx dv . (9)

This integral is the inverse Fourier transform of

U(kx, 0, v) exp i

�����������
v

v

( )2

− k2
x

√
z

[ ]
.

Thus, depropagation is achieved by multiplying the surface wavefield

spectrum by the filter

exp i

�����������
v

v

( )2

− k2
x

√
z

[ ]
. (10)

It is for this reason that this filter is called the depropagation (or migration)

filter.

Thus, we have found the wavefield u(x, z, t) at an arbitrary space–time

point (x, z, t) by depropagation. In other words, we have found the correct

bearings. This first step of the depropagation process is called wavefield

reconstruction. The second step of the depropagation process involves stop-

ping at the correct range. We recall that the signal originated at the source at

time t = 0. Thus, we set t = 0 in equation 9 for the depropagating wave in

order to obtain the final answer; namely,

u(x, z, 0) = 1

4p2

∫1

−1

∫1

−1

U(kx, 0, v) exp i

�����������
v

v

( )2

− k2
x

√
z

[ ]

× exp[−ikxx]dkx dv . (11)

This second step is called imaging, as it gives the required sources.
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To this point in our discussion, we have assumed that the velocity v is

constant. A typical geophysical assumption, however, is the stratified

earth assumption in which we assume that v varies in the depth direction

but not in the horizontal direction, so we write v(z) indicating that the veloc-

ity is a function of depth. In the stratified case, the depropagation operator 10

becomes

exp i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦ = exp i

∫z

0

��������������
v

v(z)

( )2

− k2
x

√
dz

⎡
⎣

⎤
⎦ . (12)

The depropagation method given above is known as frequency-

wavenumber (or f-k) migration.

Time migration

Wave depropagation, or migration, as used in seismic reflection

exploration, requires that surface waves and multiple reflections be ade-

quately attenuated, and, in addition, that an adequate velocity function

of the subsurface be supplied by other means. Seismic arrays, CMP stack-

ing, and deconvolution usually attenuate surface waves and multiple

reflections. Velocity analysis methods provide a velocity function v(z)

for each midpoint analyzed, and any given velocity function is assumed

to hold in a certain horizontal range surrounding the midpoint in question.

Moreover, the CMP stacked section is an approximation to a source-

receiver coincident section (zero-offset section), so that the exploding

reflector hypothesis can be used. Thus, it is common practice to migrate

CMP stacked sections into the reflectivity function of the subsurface.

The following analysis illustrates the mathematical steps that are used to

justify time migration.

As usual, we let x represent the coordinate along the surface of the

earth, and z represent the coordinate of depth into the earth, with z = 0

denoting the surface and z being measured positively down. As often

done in theoretical studies in seismic exploration, we shall assume that

density r is constant. Also in this chapter, we consider only two spatial

dimensions x and z. The wavefield u(x, z, t) satisfies the two-dimensional

scalar wave equation

∂2u

∂x2
+ ∂2u

∂z2
− 1

v2

∂2u

∂t2
= 0 . (13)
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The theory of time migration is based on the stratified earth assump-

tion, namely, that there is no lateral velocity variation, so the velocity v is

a function v(z) of depth only. The wavenumber function

k(z) = v

v(z)
(14)

characterizes the stratified earth assumption. Because variation only occurs

in the z-direction, we are motivated to take the Fourier transform of the

wave disturbance u(x, z, t) with respect to each variable except z. Thus,

we form the Fourier transform with respect to x and t, namely,

U(kx, z, v) =
∫1

−1

∫1

−1

u(x, z, t) exp[−i(vt − kxx)]dx dt . (15)

In the wave equation, the second partial derivatives with respect to

each of the variables x, z, and t occur. Our intention is to take the

Fourier transform of the wave equation, so we need the Fourier transforms

of these derivatives. The z-derivative is easy, as we can take the ∂2/∂z2

outside the integral sign. Thus, the Fourier transform (F.T.) is

F.T. of
∂2u

∂z2
= ∂2U

∂z2
.

The other two derivatives can be found by the well known property of

the Fourier transform, namely, that

F.T. of
∂2u

∂x2
= (−ikx)2 U

and

F.T. of
∂2u

∂t2
= (iv)2

v2
U .

Therefore, the Fourier transform of wave equation 13 is

(−ikx)2 U + ∂2U

∂z2
= (iv)2

v2
U . (16)

Because variables x and t have been eliminated, the partial derivative

with respect to z becomes a full derivative, and equation 16 becomes

d2U

dz2
= v2

v2
− k2

x

( )
U = 0 . (17)
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Because v(z) varies with z, this equation is a second-order ordinary differ-

ential equation with a variable coefficient. There is no exact solution, but

an approximate solution can be found as follows.

The coefficient in ordinary differential equation 17 is denoted by k2
z (z);

that is,

k2
z (z) = v2

v2(z)
− k2

x = k2(z) − k2
x . (18)

Both v and kx are constants in this equation. One of two cases must occur,

namely, k2
z (z) is either positive or negative. The case of negative k2

z (z) pro-

duces evanescent waves, whereas the case of positive k2
z (z) produces travel-

ing waves. Here, we will only treat the positive case, so we can define kz(z)

as the positive square root given by

kz(z) = +
�����������
k2(z) − k2

x

√
. (19)

We can write ordinary differential equation 17 as

d2U

dz2
+ v

v

( )2

R2 U = 0 , (20)

where R is defined as the positive square root

R = +

�������������
1 − vkx

v

( )2
√

(21)

and kz = (v/v)R. Under the assumption that v(z) varies with z, it follows

that R(z) also varies with z, and in such a case there is no closed-form

solution of differential equation 20. An approximate solution can be

found, however, by assuming that v(z) and hence R(z) are constants, and

thus the resulting constant-coefficient differential equation 20 can be fac-

tored to obtain

d

dz
+ i

v

v
R

( )
d

dz
− i

v

v
R

( )
U = 0 .
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This factorization yields the two first-order differential equations

dU

dz
+ i

v

v
RU = 0 (downgoing equation) , (22)

dU

dz
− i

v

v
RU = 0 (upgoing equation) . (23)

Now, the assumption that v(z) and R(z) are constants is dropped, but the

two first-order equations 22 and 23 are retained. Thus, in the given approxi-

mate method, the scalar wave equation is replaced by two first-order

equations 22 and 23, the first of which is called the downgoing (one-way)

wave equation, and the second the upgoing (one-way) wave equation.

Neither of these two equations admits multiple reflections. Because the

full wave equation is a second-order equation, two boundary conditions

are required for its solution, such as the values of U and dU/dz on a

surface. In seismic practice, however, we do not record dU/dz. The use of

the full wave equation produces multiple reflections, which complicates

the migration problem to a great extent. There are many ingenious

methods that use the full wave equation. On the other hand, the one-way

equations do provide a viable way to do seismic migration. A one-way

equation requires only a single boundary condition, it has stable numerical

solutions, and it can produce no multiple reflections.

In summary, ordinary differential equation 20 with a variable coefficient

has no closed solution. As an approximation, the coefficient is assumed con-

stant, then the equation is factored, and downgoing equation 22 and upgoing

equation 23 result. Then, the approximation consists of letting the coefficient

again be variable in these two equations. This procedure gives a crude

WKBJ approximation (i.e., the phase term but not the amplitude term).

Let us consider upgoing (one-way) wave equation 23, which we

write as

dU

dz
− ikz(z) U = 0 , (24)

where kz is defined by

kz(z) = v

v
R = v

v(z)

������������
1 − v(z)

kx

v

√
. (25)

This one-way equation is a first-order linear equation, a type of equation

considered near the beginning of every book on differential equations.
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In these text books, it is shown that the solution is of the form

U = A exp i

∫
kz(z) dz

[ ]
, (26)

where A is a constant (with respect to z). We can easily verify that this

form is indeed a solution by substituting it into the differential equation.

We obtain the expression

d

dz
A exp i

∫
kz(z) dz

[ ]{ }
− i kz(z)A exp i

∫
kz(z) dz

[ ]
.

Carrying out the differentiation, this expression becomes

A exp i

∫
kz(z) dz

[ ]
d

dz
i

∫
kz(z) dz

[ ]
− i kz(z)A exp i

∫
kz(z) dz

[ ]
.

Because

d

dz
i

∫
kz(z) dz

[ ]
= kz(z) ,

the expression is zero. Thus, we have verified that the solution is of the

form given above.

The constant A in the solution is determined by an initial condition.

In the classic migration problem, we assume that we have an exploding-

reflectors source given by u(x, z, t = 0) which produces upgoing waves

that appear on the earth’s surface as the seismic section u(x, z = 0, t).

Given that the seismic section is known, the migration problem consists

of finding the exploding-reflectors source. Let us now solve the classic

migration problem using the one-way upgoing wave equation.

We compute the Fourier transform of the seismic section, that is, we

compute

U(kx, 0, v) =
∫1

−1

∫1

−1

u(x, 0, t) exp[−i(vt − kxx)]dx dt .

We then use U(kx, 0, v) as the boundary condition in the solution of the

differential equation. Thus, the constant A is U(kx, 0, v) and the solution
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becomes

U(kx, z, v) = U(kx, 0, v) exp i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦ . (27)

We now take the inverse Fourier transform

u(x, z, t) = 1

4p2

∫1

−1

∫1

−1

U(kx, z, v) exp[i(vt − kxx)]dkx dv ,

which, upon using the above solution 27 of the differential equation, is

u(x, z, t) = 1

4p2

∫1

−1

∫1

−1

U(kx, 0, v) exp i vt − kxx+
∫z

0

kz(z) dz

⎡
⎣

⎤
⎦

⎧⎨
⎩

⎫⎬
⎭dkx dv .

(28)

Equation 28 represents the required wavefield reconstruction. The

required exploding-reflectors source is obtained by setting t = 0 in equation

28; that is,

u(x, z, 0) = 1

4p2

∫1

−1

∫1

−1

U(kx, 0, v) exp i −kxx+
∫z

0

kz(z) dz

⎡
⎣

⎤
⎦

⎧⎨
⎩

⎫⎬
⎭dkx dv .

(29)

Equation 29 represents the required imaging. For computational pur-

poses, we rearrange this double integral as

u(x, z, 0) = 1

2p

∫1

−1

1

2p

∫1

−1

U(kx, 0, v) exp i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦dv

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

× exp (−ikxx)dkx . (30)

We see that the expression in curly brackets merely involves integrating

U(kx, z, v), given by equation 27, over v. Then, we only have to take the

single inverse Fourier transform with respect to kx to obtain the required

u(x, z, 0).
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In the case of constant velocity v, the vertical wavenumber kz(z) reduces

to the constant

kz(z) =
�����������
v

v

( )2

− k2
x

√
.

In this case, we have

∫z

0

kz(z)dz = kz

∫z

0

dz = kzz .

Hence, equation 28 reduces to equation 9 and equation 29 reduces

to equation 11. Thus, we have obtained the same result as we obtained

in our simplified treatment of wave depropagation.

WKBJ migration

The following interpretation can be given to the WKBJ approximation.

The WKBJ approximation for a wave in an inhomogeneous space represents

the primary wave traveling by refractions through the medium. The entire

wave motion is composed of all of the internal reflections and refractions

within the medium. This complete wave motion can be represented by an

infinite series, called the Bremmer (1951) series, each term of which

represents a wave that is produced by a particular number of reflections

inside the medium. The Bremmer series is only valid for large values

of kz. With this model, the WKBJ approximation is the first term in the

series, that is, it is the primary wave that has suffered no internal reflections.

In the language of reflection seismology, the WKBJ wave is the primary,

i.e., the WKBJ wave is not a multiple. The WKBJ wave represents the

high-frequency limit in which the velocity changes are too small to

produce reflections; in this limit, there is no provision for transmission loss.

In all of the typical migration processes used in the seismic industry, it is

assumed that all of the multiples have been removed in advance by stacking

and deconvolution. As a result, each of the usual industrial migration

processes deals only with traveling primary waves. In this sense, all

industrial migration processes have a relationship to the WKBJ method

(i.e., geometric acoustics). Thus, unlike predictive deconvolution, which

was developed explicitly for exploration seismology, migration does not

involve a new model but is simply a straightforward application of classical

wave-propagation techniques.
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Much of the seismic data processing currently in use rests on a basic

assumption known as the stratified earth hypothesis. This hypothesis

states that, for the purposes of wave propagation and wave depropagation,

the velocity function depends only upon the depth coordinate z. Thus, we

can write the velocity function as v(z). This assumption means that the

velocity is the same on any horizontal plane, so the earth is considered a

stratification of these horizontal planes. The velocity function v(z) can

either vary continuously in z or in discrete steps. For computer processing,

however, some discrete approximation is always made, so the earth appears

as a sequence of horizontal layers each of finite thickness. Such a model of

discrete flat horizontal layers is known as the layer-cake model.

Let us now describe the application of the WKBJ method to seismic

time migration. As we will show, the result for the phase change is

exactly the same result as that given in the previous section, Time Migration.

In the derivation which follows, we use the classic treatment of the WKBJ

method. When kz(z) is a constant, the solution of differential equation 17 is

U = A exp(+ikzz) , (31)

where A is a constant and the choice of sign in the exponent depends upon

the direction of the wave. With the motivation of equation 31, let us write the

solution of equation 17 in the form

U = A(z) exp[iu(z)] , (32)

in the case when kz(z) is a variable but changes sufficiently slowly. Equation

32 is the typical high-frequency assumption; decoupling of upward and

downward propagating waves is assumed as in one-way equations 22 and

23. The functions A(z) and du/dz also will be slowly varying, as we see

when we compare equations 32 and 31.

Substituting equation 32 into equation 17, we obtain

A′′ + [2iu ′A′ + iu ′′A] + [k2
z (z) − (u′)2] A = 0 ,

where the prime represents differentiation with respect to z. Let d be the dis-

tance over which the function A(z) and u(z) vary significantly. Sufficiently

slow variation means that d is much greater than the wave length l. The

order of magnitude of the derivatives can be estimated by

A′ ≈ A

d
, A′′ ≈ A′

d
, u ′′ = u ′

d
. (33)
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Also,

kz ≈ k = 2p

l
.

Using these relations, the terms in equation 33 have the estimates

A′′ ≈ A

d2
, (34)

[2iu′A′ + iu′′A] ≈ 3j
u′A

d
, (35)

[k2
z (z) − (u′)2] A ≈ 4p2

l2
A . (36)

Note that, because u′ is itself slowly varying, (u′)2 is a second-order term.

Because, for large d, term 34 is small in comparison with terms 35 and

36, it can be neglected. However, because terms 35 and 36 have different

orders of smallness for large d, they must be set equal to zero separately.

Setting the left side of equation 36 equal to zero, we obtain the eikonal

equation

(u′)2 = k2
z (z) ,

which has the solution

u′ = +kz(z) . (37)

Let zs denote the depth of the pulse source and zr denote the depth of the

received pulse. For a downgoing pulse, we would have zs , zr, whereas,

for an upgoing pulse, we would have zs . zr. If we integrate equation 37

from zs to zr, we obtain

u = +
∫zr

zs

kz(z) dz . (38)

Substituting +kz for u′ in the left side of equation 35 and setting the

result equal to zero, we obtain the equation, known as the first transport

equation,

+[2kzA
′ + k′zA] = 0 .
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This equation can be written as

A′

A
= − 1

2

k′z
kz

. (39)

If we integrate equation 39 from zs to zr, we obtain

log
A(zr)

A(zs)
= − 1

2
log

kz(zr)

kz(zs)
,

which is

A(zr)

A(zs)
=

�������
kz(zs)

kz(zr)

√
. (40)

If we normalize the pulse by requiring A(zs) = 1, then the complete

solution of equation 17 is obtained by substituting equations 38 and 40

into equation 32. The result (with kz(z) . 0) is

U =
�������
kz(zs)

kz(zr)

√
exp +i

∫zr

zs

kz(z) dz

⎡
⎢⎣

⎤
⎥⎦ . (41)

In order to restore wave motion, we must multiply equation 41 by the

factor

exp[(vt − kxx)] .

Then, if the positive sign in the exponent of equation 41 is chosen, we would

have a wave propagation in the negative z-direction (i.e., upgoing waves);

whereas, if the negative sign is chosen, we would have a wave propagating

in the positive z-direction (i.e., downgoing waves). These two waves (i.e.,

upgoing and downgoing) propagate through the medium independently

of one another (as, in advance, assumed by equation 32), as there are no

reflections within the present approximation. This approximation is

known as the WKBJ approximation. It also is called the geometric optics

approximation in optics and the geometric acoustics approximation in

acoustics. The term

∫zr

zs

kz(z) dz

in the exponent of equation 41 is the phase change as the wave travels from

an arbitrary point zs to the point of observation zr. The z-dependence of the
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wave amplitude in equation 41 is given by the factor, called the WKBJ

amplitude factor, �������
kz(zs)

kz(zr)

√
. (42)

The WKBJ amplitude factor is an important result of the WKBJ

solution. However, the amplitude factor is neglected in many of the conven-

tional methods of poststack seismic migration, so we will not consider it

further here.

Under the exploding reflector hypothesis, the source is considered to be

at the subsurface interface at depth z and the receiver on the surface at depth

z = 0. Thus, we have upgoing wave motion, so we choose the positive sign

in the exponent of equation 41. Equation 41, with zs = 0 and zr = 0, with the

positive sign in the exponent and without the amplitude factor, becomes

(with kz(z) . 0)

UWKBJ = A exp i

∫0

z

kz(z) dz

⎡
⎣

⎤
⎦

or

UWKBJ = A exp −i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦ . (43)

We call this expression the WKBJ operator for the propagation of

upgoing waves under the exploding reflector hypothesis. Because u(x, z, t)

denotes the wavefield, we see that u(x, 0, t) denotes the wavefield at the

surface z = 0 of the earth. The Fourier transform of u(x, z, t) with respect

to x and t is U(kx, z, w). We have not transformed it with respect to z

because the wave velocity v(z) varies in the z-direction. The inverse

Fourier transform is then

u(x, z, t) = 1

4p2

∫1

−1

∫1

−1

U(kx, z, v) exp{i[vt − kxx]}dkx dv .

Now, suppose we know the upgoing wavefield u(x, 0, t) at the surface

z = 0 of the earth, and suppose that we wish to use the WKBJ method to

find the upgoing wavefield u(x, z, t) depropagated to depth z. We proceed

as follows. First, we compute the Fourier transform U(kx, 0, v) of the

surface wavefield u(x, 0, t). Then, we multiply this surface Fourier trans-

form by the inverse of the WKBJ filter UWKBJ given by equation 43. This
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inverse is simply the reciprocal, namely,

U−1
WKBJ =

1

UWKBJ

= exp i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦ , (44)

where

kz(z) = +

��������������
v

v(z)

( )2

− k2
x

√
. (45)

Thus, the result of multiplying U(kx, 0, v) with U−1
WKBJ is

U(kx, z, v) = U(kx, 0, v) exp i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦ . (46)

The inverse WKBJ operator, as given by equation 44, is an inverse all-

pass filter in the region where kz(z) is real. Here, we use the term “all-pass”

to designate a causal filter that produces a pure phase shift, and the term

“inverse all-pass” to designate an anticausal pure phase-shift filter. Now,

the required solution is obtained by taking the inverse Fourier transform

of equation 46; that is, the depropagated wave motion at depth z, according

to the seismic WKBJ approximation, is

u(x, z, t)= 1

4p2

∫1

−1

∫1

−1

U(kx, 0,v) exp i

∫z

0

kz(z) dz

⎡
⎣

⎤
⎦ exp{i[vt−kxx]}dkx dv .

(47)

This is the WKBJ equation (without the amplitude factor) for obtaining

the upgoing wavefield depropagated to depth z from the observed upgoing

wavefield at the surface. Because equation 47 is the same as equation 28

in the Time Migration section, we therefore see that WKBJ migration as

given here is the same as time migration, as we wished to show. The

same type of argument also can be applied to other types of migration

methods to show their relationship to the WKBJ method (i.e., geometric

acoustics).

In a uniform medium, the phase of the depropagated wave is

vt − kxx + kzz .
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In a stratified medium, the phase is

vt − kxx +
∫z

0

kz(z) dz ,

as the phase is simply the number of cycles undergone by the wave along its

depropagation path from the surface z = 0 to depth z in the earth.

Time migration is based on the assumption that there is no lateral veloc-

ity variation, so the velocity v(z) is a function of depth only. Depth migration

is based upon three-dimensional velocity functions v(x, y, z). In this book,

we have applied the WKBJ method only to velocity functions of the form

v(z). Even so, the WKBJ method can be applied to more general velocity

functions v(x, y, z) as well.
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acoustic impedance, 106, 108–110, 114,
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acoustic waves, 103, 214, 303

acoustical Doppler effect, 217

“action at a distance”, 26, 78, 162
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Aeolipile, 12

Alexandrian astronomers, 14

alias transformation, 64

all-pass system, 118

AM radio waves, 305

amplitude versus offset (AVO),
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analysis, 198

anomaly, 199

amplitude with offset, 143, 199

analytic geometry, 18, 24

ancient Greeks, 218–219

angle (u), 269–270

angle of incidence, function of, 200

angular frequency (v), 231

angular shear, 150–151

angular wave number, 237

anisotropic calcite, 220

anisotropic medium, 204, 221, 258, 259,

261, 262

anisotropy, 262

discovery of, 212–224

Anstey convention, 108

Apastamba-Sulba-Sutra, 4

apoapsis radius, 60

Apollonius equation, 72

for ellipse, 61–62

in oblique coordinate system, 64–66

apparent interface, 307, 309, 311–313

apsis, 60

Archimedes

spiral, 8

theorem, 1–11

Aristotle

laws of motion, 13, 26, 67

and sense organs, 231

Asimov, Isaac, 213

astigmatic pencil, 49–50

Astronomia nova, 17

attenuation factor, 242

AVO. see amplitude versus

offset (AVO)

azimuthal anisotropy, 262

B
backtracking. see depropagating

backward projection. see depropagation

Bartholin, Erasmus, 219–220

Bartholinus. see Bartholin, Erasmus

basement rock, 116

beam, 49

“bearing”, 332

Berkhout convention, 108

blue photon, 20

bounding parallelogram, 63–64

bound-level information, 247

Bremmer series, 343

bulk modulus, 156

C
calcite, 221

Cartesian coordinate system, 64, 227

unit vectors for, 203

Cartesian fields

of dilatation, 161–175

of rotation, 175–187

Cartesian method of model, 18

Cartesian science, 162

Cartesian system, 26

Cartesian vortices, 163

Casmotheoros, 213
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Cassini, Jean-Dominique, 215, 218

Catoptrica, 13–14

Catoptrics, 294

Cauchy-Green tensor, 244

central force, 76, 77, 78

centrifugal force, 74

characteristic impedance. see acoustic

impedance

Cheirobalistra, 13

Chou Pei, 4

circle, 28, 309

area of, 7–8

circumference of, 7, 28–29

Huygens’, 289, 291

rolling, 46

circular motion, 13

circulation, 167, 168

Classical and Modern Diffraction Theory,

144–145

classical geophysics

Archimedes theorem, 1–11

Descartes as geophysicist, 22–35

dissection-type proof, 4

dissection proof of Bhaskara, 5

Fermat’s principle, 35–42

Heron formula, 12–22

Huygens’ principle, 43–58

Isaac Newton and birth of geophysics,

59–79

Pythagoras theorem, 1–11

raypath in thin bed, 9

Snell’s law, 12–22

wavefront chart, 11

common midpoint (CMP), 325, 328

stacked section, 329, 337

compressional waves, 174, 194–195

Compton, Arthur, 268

computer migration, 323

condensations, 155

conic sections, 309

properties of, 59–61

conies, 309

conjugate diameters, 63–64

conservative field, 168

constructive interference, 55, 304

contour line, 99

convolution integral, 247

critical angle, 143–144

cross product, 164–166

curl, 178, 179, 180, 187, 191

theorem, 185

cycle, 231

cycloid. see rolling circle

cycloidal pendulum, 46

D
d’Alembert, Jean-Baptiste le Rond, 100, 229

d’Alembert equations, 108, 109, 110, 117

d’Alembert principle, 100, 229

da Vinci, Leonardo, 47

delta function, 244

depropagation, 323, 331, 336

depropagating wave, 331, 336

depth migration, 325, 326, 329, 349

Descartes, Rene, 17, 162, 175

Cartesian system, 26

Construction of Descartes, 34

Discourse on Method, 23

as geophysicist, 22

Huygens’ equation for refraction, 33

law of reflection, 28

law of refraction, 29, 30, 33

mathematical problem, 34

meteorology, 24

Optics, 23–24, 28

Principles of Philosophy, 25

relative refractive index, 30

Snell’s empirical law of refraction, 31

solution, 34–35

tennis ball analogy, 29

transit map, 32–33

destructive interference, 55, 138, 303, 304

differential calculus, 8, 35, 37, 41, 100, 133,

160, 229, 275

differential vector, 166

differentiation in calculus, 163

diffraction, 50, 55, 144, 145, 285, 286–287,

302–305, 321

curves, 305, 310, 312

dipping reflector, 308

geometric raypath theory, 285–286

of light, 323

pattern, 55, 287

phenomena, 223

point diffractor, 310–311, 315

seismic reflection traveltime, 305–306
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on seismic sections, 316–320

stack migration, 325

true interface, 307–309, 313

wave equation, 306–307

wave propagation, 309–310

wavefront curve, 311–312

wavefronts, 311, 314

dilatation, 156, 158, 173, 174, 191,

193, 194

Cartesian fields of, 161–175

Dioptrica, 15

dip moveout (DMO), 326

Dirac delta function (d(t)), 244

Dirac, Paul, 188

Discourse on Method, 18, 23

dispersion

dissection-type proof, 4

equation, 135, 251–253

divergence, 171, 173, 191

of electrostatic field, 177

theorem, 172, 184

of vector, 171

DMO. see dip moveout (DMO)

Doppler effect

acoustical, 217

optical, 223

Doppler redshift, 115–116

dot product, 164, 165

double refraction, 219–220, 222

problem, 215

downgoing plane wavefront, 57

downgoing pressure wave, 108

downgoing refracted wavefront, 57

downgoing wave, 107, 114, 121, 123, 226

equation, 340, 346

dual sensor, 106–107, 109

dynamic deconvolution, 125, 126

E
earth, average diameter of, 217

earth model, 327

eikonal equation, 207, 209, 274–277,

292, 345

Michael Faraday and, 92–100

and Pythagoras theorem, 88–92

Einstein addition formula, 130

Einstein, Albert, 189

theory of gravitation, 175

Einstein deconvolution, 118, 119

Einstein subtraction formula, 116, 118, 124,

125, 127, 130

elastic property, 201

elastic waves, 103, 155

elasticity

Cartesian fields of dilatation, 161–175

Cartesian fields of rotation, 175–187

equations of motion, 187–201

Hooke’s law, 155–161

stress and strain, 146–155

theory, 161

wave at boundary, 135–146

wave equation, 131–135

electric wave, 106

electrodynamics, 247

electromagnetic theory, 19

electromagnetic wave, 21, 22

electron, 268

Elements of Vector Analysis, 189

ellipse, 309

ellipsoid, 220

empirical law, 17

Encyclopedia Britannica, 81, 92–93

Encyclopedic Dictionary of Applied

Geophysics, 95

energy, 262

envelope, 137

Epistolae, 26, 27

equations of motion, 187–201

equations of ray, 269

equipotential surface, 94, 99

Eratosthenes Batavus, 15

Euclidean geometry, 47

Euclid’s method, 289

evanescent waves, 252–253

e waves. see extraordinary waves (e waves)

exploding reflector hypothesis, 347

exploding reflectors model,

326–328, 330

exploration seismic method, 323–326

exponential wave, 253

extraordinary ray, 262

extraordinary waves (e waves), 220

F
Faraday, Michael, 92, 162–163

and eikonal equation, 92–100
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Fermat’s equation, 40

Fermat’s Last Theorem, 35

Fermat’s principle, 35–42, 87, 295–298, 322

Fermat’s theorem, 40–41

field theory contexts, 247

first Fresnel zone, 301

first ray equation, 280

first transport equation, 345

flat interface, 318–319

flat reflecting interface, 317

fluents, 76

flux, 170, 171, 174

integral, 169–171

theorem, 172

fluxions, 76

FM band, radio waves of, 305

foci, 309

force density, 193

Fourier principle, 231

Fourier transform, 135, 316, 333, 338

Fraunhofer diffraction pattern, 55

French Royal Academy, 214

frequencies, 105, 333

frequency-wavenumber migration

( f-k migration), 337

frequency–wavenumber analysis, 135

Fresnel, Augustin, 222–223

Fresnel coefficients, 114

Fresnel diffraction, 55

Fresnel–Kirchhoff formulation of Huygens’

principle, 54

Fresnel reflection coefficient, 107, 114, 120,

125, 127

Fresnel transmission coefficient, 114

Fresnel zone, 299–302

frictional electricity, 93

G
Galilei, Galileo, 17

Galileo and path of projectile, 67–68

Galileo’s equation, 74

Gauss’s law, 172, 177

general relativity. see Einstein’s theory of

gravitation

geological environments, 328

Geometria Indivisibilibus Continuorum, 289

geometric(al)/geometry, 18, 24, 176, 180

acoustics, 139, 203

acoustics approximation, 346

optics, 50, 203, 321–326

optics approximation, 346

raypath theory, 285–286

seismology, 49–51, 139, 203, 286, 326

spreading effect, 242

spreading equation, 207

wave theory, 203

geometrical optics, 50

geophysics, 163–164

Gibbs, J. Willard, 188–189

glass, 262

gradient, 94, 163, 190, 191, 207

vector, 190

gravity, 78, 180, 262

Great Pyramid, 81, 82

King’s Chamber of, 82

Green, George, 243, 245, 327

Green’s function, 137, 243, 244, 245, 290

impulse response function, 248,

250–251

linear system, 247–248

motion of waves, 243–244

roles of propagators, 247

spherical wave propagation, 249

superposition property, 246–247

for the three-dimensional wave equation,

248–249

time-invariant linear filter, 245–246

Green’s theorem, 172, 243, 244

group velocity, 253, 263

anisotropic medium, 258

dispersion relation, 253–254

isotropic medium, 257–259

slowness vector, 255–256

wavenumber vector, 254–255

H
Hamilton’s equations, 261, 267–268

electron, 268

Hamilton wave-particle duality, 264–266

light, 262–263

principle of least action, 266

rays behavior and wavefronts for varying

media, 263

reduction to ray equations, 279–281

seismic anisotropy, 261–262

three-dimensional surface, 263–264
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two-dimensional propagation, 265

variation in action, 266–267

Hamilton, Sir William, 268

hat, 203

head wave, 144

Helmholtz equation, 203, 205

Heron of Alexandria, 12, 36, 39, 47

Heron’s formula, 12–22

heterogeneity, 262

heterogeneous medium, 261

homogeneous medium, 261

homogeneous partial differential

equation, 245

homogeneous strain, 151

Hooke, Robert, 46–47, 74

Hooke’s law, 75, 146, 154, 155–161, 224

horizontal distance equation, 270, 271

horizontal transverse isotropy (HTI), 262

Horologium Oscillatorium, 46, 288, 289

HTI. see horizontal transverse

isotropy (HTI)

Hubble, Edwin, 224

Huxley, Aldous, 93

Huygens, Christiaan, 43, 214, 219, 248, 286,

287, 304, 317

secondary wavelets, 287

semicircle, 290–291

space–time principle, 292, 293

spherical wavelet, 251

wave theory, 222

wavelet, 137

Huygens’ circle, 289, 291

Huygens, Constantijn, 27

Huygens’ construction, 137, 145

Huygens’ equation for refraction, 33

Huygens–Fresnel principle, 321, 323

Huygens’ principle, 27, 43, 136, 137, 138,

145, 146, 209, 214, 219, 287, 294,

298, 304, 316–317, 323

cycloidal pendulum, 46

divergent pencil of rays, 49

envelope of secondary waves, 47, 48

Fresnel–Kirchhoff formulation of, 54

geometrical optics, 50

Horologium Oscillatorium, 46

Huygens’ circle for fixed value, 291

Huygens’ circular wavelet, 53

Huygens’ essence of Snell’s law, 54

Huygens’ hyperbola for fixed value, 292

Huygens’ semicircle, 290–291

Huygens’ space–time principle,

292, 293

impulse response, 289–290

law of reflection and refraction, 57–58

obliquity factor, 56

particle, 288–289

from plane geometry, 52

plane wave, 49

principle of superposition, 54–55

propagation of wavefront, 288, 289

propagation of waves, 51

secondary waves, 48

simple harmonic motion, 45

simple harmonic oscillator, 44

tautochrone problem, 44

Traité de la Lumiére, 47, 145–146, 219,

221, 223

wavefront, 287, 293–294

hyperbola, 309

Hypotheses non fingo, 162

I
Iceland spar, 212, 219, 220, 262

idealized point source, 238

imaging process, 336

impulse response function, 247, 248

inhomogeneities, 323

inhomogeneous, 204

equation, 245

medium, 261

inner product. see dot product

instantaneous phase, 234

integral calculus, 169

interference, 55, 223, 286, 303

internal forces of inertia, 229

inverse Fourier transform, 347

inverse propagation process. see

depropagation

inverse square law, 78, 242

inverse WKBJ operator, 348

irrotational field, 168, 180

isochron, 99

isochronous, 45–46

isoslowness surface, 281

isothermal surfaces, 190

isotherms, 190
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isotropic media, 204, 257, 261

isovelocity surface, 281

J
Jeffreys, Sir Harold, 327

Journal des Sçavans, 214, 215

K
Karcher migration scheme, 324

Kelvin, Lord, 243

Kepler, Johannes, 17, 71

Kepler’s law, 15

second law, 71–72

King’s Chamber

of Great Pyramid, 82

lower wedge of, 84

reconstructed, 86

Kirchhoff approach, 287

Kirchhoff solution of wave equation, 285

Kramer, Edna E., 189

L
Lamé’s constants, 157

Lamé shear modulus, 159

law of gravity, 75

law of reflection, 36, 57–58, 140, 141,

145, 322

Snell’s, 53

law of refraction, 36, 57–58, 142,

294–295

Fermat’s, 37, 39

layer-cake model, 325, 344

Lettres Anglaises, 162

level-layered model, 325

level surface, 99

light, 18–19, 21–22, 115, 262

light-minute, 215

light-second, 115

rays, 322

value of, 218

waves, 21, 215, 321

linear equation, 244

linear filters, 245

line integral, 167, 178

line wave, 235

linkage, 156

lithostatic state of stress, 148

lithostatic stress, 147

longitudinal waves, 155, 174

Lorentz equations, 122, 124

Lorentz transform, 122

Love waves, 103

M
Malus, Etienne-Louis, 222

material velocity, 105

mathematical theory of electricity and

magnetism, 243

maximum principle, 36

Maxwell, James Clerk, 18–19, 92–93,

162–163, 189

Maxwell’s electromagnetic theory,

19, 322

Maxwell’s equations, 40, 224–226

Maxwell’s wave theory, 20

mechanical migration, 323

meteorology, 18, 24

method of exhaustion, 6–7

Micrographia, 157

migration, 323, 328–331, 336, 337

exploding reflectors model, 326–328

geometrical optics, 321–326

physical optics, 321–326

time migration, 337–343

wave depropagation simplifying,

331–337

WKBJ migration, 343–349

minimization, 13–14

minimum principle, 36

mixed motion, 13

modeled reflection amplitudes, 200

motion

circular, 13

equations of, 187–201

mixed, 13

Newton’s laws of, 26, 154–155, 193

particle, 187

of projectile, 67

rectilinear, 13

simple harmonic, 45, 46, 131, 134

theory of wave, 131

wave, 262

of waves, 243–244

multiple reflection, 102

multiplicative property, 244
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N
natural unit, 115

net downgoing energy, 124

Newton, Sir Isaac, 25, 59, 82, 134, 162,

175, 224

Apollonius equation for ellipse, 61–62

Apollonius equation in oblique coordinate

system, 64–66

and birth of geophysics, 59

bounding parallelogram and conjugate

diameters, 63–64

elliptical trajectory, 71

first law of motion, 26

Galileo and path of projectile, 67–68

law of gravity, 59

law of motion, 154–155, 193, 224

particle theory of light, 18–19

properties of conic sections, 59–61

Proposition XL Problem VI, 68–70

semi-major axis, 66

theory, 26

treatment of planet as projectile, 70–79

non-dispersive electromagnetic waves, 226

non-dissipative electromagnetic waves, 226

normal strain, 150, 151, 152

numerical ray tracing, 281–283

O
oblique coordinate system, Apollonius

equation in, 64–66

obliquity factor, 56

observed reflection amplitudes, 200

ocean waves, 331

Oeuvres Completes, 213

offset, function of, 200

Ohm’s law, 106

one astronomical unit, 214

one-dimensional wave equation, 134, 228,

229–230

one-way equation, 340–341

one-way traveltime, 328

optical devices, 322

optical Doppler effect, 223

optical Doppler factor, 216, 217

optical reversibility, 322

Opticks, 224

optics, 18, 23–24, 28

ordinary ray, 262

output space–time event, 292

output wavefront, 291

P
Pardies, Ignace, 219

particle motion, 187

particle velocity (p.v.), 100, 105, 107

acoustic waves, 103

Anstey convention, 108

d’Alembert equations, 108, 109, 110, 117

d’Alembert principle, 100

d’Alembert solution, 101

Doppler redshift, 115–116

dual sensor, 106–107

dynamic deconvolution, 125, 126

Einstein deconvolution, 118, 119

Einstein subtraction formula, 124, 125,

127, 130

electrical analogy, 109

Fresnel coefficients, 113–114

Fresnel reflection coefficient, 107, 114,

120, 127

Fresnel transmission coefficient, 114

land surveys, 109

layered system, 122, 123

Lorentz equations, 124

Ohm’s law, 106

one-dimensional problem, 111

quantitative physical methods, 121

refection seismogram, 128, 129

reflection coefficient, 112

seismic inversion by dynamic

deconvolution, 122

seismic waves, 102

sinusoidal waves, 104

traveling-wave assumption, 108, 109

velocity, 115

water–air interface, 119–120

wavelet, 104, 105

periapsis radius, 60

period (T), 231, 233

phase, 204

phase form of Helmholtz equation, 206

phase velocity (vp), 255

Philosophiae Naturalis Principia

Mathematica. see Principia

Philosophical Transactions of the Royal

Society, 215
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photon displays wave-like

phenomena, 223

photons, 19, 20, 21, 321

physical field, 190

physical optics, 321–326

physical seismology, 326

physical vacuum, 188

Planck, Max, 19, 21

plane of propagation, 103

plane wave, 49, 234–238

Poincare, Henri, 115

point diffractor. see point reflector

point reflector, 310

point spread function. see Green’s function

positive seismic signal, 110

poststack migration, 325–326,

328, 329

precise theory, 323

pressure, 100, 148

acoustic waves, 103

Anstey convention, 108

continuity of, 113

d’Alembert equations, 108, 109,

110, 117

d’Alembert principle, 100

d’Alembert solution, 101

Doppler redshift, 115–116

dual sensor, 106–107

dynamic deconvolution, 125, 126

Einstein deconvolution, 118, 119

Einstein subtraction formula, 124, 125,

127, 130

electrical analogy, 109

Fresnel coefficients, 113–114

Fresnel reflection coefficient, 107, 114,

120, 127

Fresnel transmission coefficient, 114

land surveys, 109

layered system, 122, 123

Lorentz equations, 124

Ohm’s law, 106

one-dimensional problem, 111

quantitative physical methods, 121

refection seismogram, 128, 129

reflection coefficient, 112

seismic inversion by dynamic

deconvolution, 122

seismic waves, 102

sinusoidal waves, 104

traveling-wave assumption, 108, 109

velocity, 115

water–air interface, 119–120

wavelet, 104, 105

prestack migration, 329

primary reflection, 102

primary waves (P-waves), 102, 174, 197

propagation, 103–104

reflectivity, 200

Prince Louis de Broglie, 268

Principia, 59, 68, 69, 75–76, 162, 222

Principia Mathematica, 13

principle of least time. see Fermat’s

principle

principle of superposition, 50–51, 54–55

Principles of Philosophy, 25, 26

Prodomus, 25–26

propagation

vector, 236

velocity, 105

propagator function, 247

proper time, 216

Proposition XL Problem VI, Newton’s,

68–70

pulse, 104, 220, 317

p.v. see particle velocity (p.v)

P-waves. see primary waves (P-waves)

Pythagoras-type proof, 2

Pythagoras theorem, 1–11, 35

eikonal equation and, 88–92

Q
quantum field theory, 247

quantum mechanics, 223, 244

quantum physics, 18–19, 20

R
radio waves, 305

Radon transform, 316

rarefactions, 155

ray(s), 209, 219, 261, 262, 286, 321

for ordinary wavelet and for extraordinary

wavelet, 221

ray-theoretical approach, 300

theory of light, 304

time–distance relationship for, 271

velocity, 221
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ray equation, 203–212, 277–279

reduction of Hamilton’s equations to

279–281

ray optics. see geometrical optics

ray tracing, 261, 268

angle, 269–270

constant velocity medium, 268–269

eikonal equation, 274–277

Hamilton’s equations, 261–268

numerical ray tracing, 281–283

ray equations, 277–279

reduction of Hamilton’s equations to ray

equations, 279–281

stratified medium, 269

time–distance curve, 271–274

time equation, 270–271

Rayleigh waves, 103

raypath curve, 277–278

reciprocity, 297

rectangular coordinate system. see Cartesian

coordinate system

rectilinear motion, 13

red color, 231

“red shift”, 224

reflection, 285, 294–295

coefficient, 112

Fermat’s principle, 295–298

geometric raypath theory, 285–286

resolution and Fresnel zone, 299–302

seismology, 328–329

reflectors model, 306

refraction, 285, 294–295

Fermat’s principle, 295–298

geometric raypath theory, 285–286

of light, 16, 322

of light waves, 17

of mechanical waves, 16

resolution and Fresnel zone, 299–302

regional stress, 262

relative index of refraction, 15, 30

relative refractive index. see relative

index of refraction

relativity theory, 122

resolution, 299–302

reverberation-producing filter, 120

reverse Huygens’ semicircle, 290

RMS. see root mean square (RMS)

rock velocity, 254

Roemer, Ole, 215, 218

rolling circle, 46

root mean square (RMS), 274

rotation, 191, 194

Cartesian fields of, 175–187

vector, 187

Royal Mint, 224

S
scalar diffraction theory, 303

scalar field, 163, 190

scalar product. see dot product

scalar wave equation, 227

scattering, 247

Schrödinger equation, 326

Scribner’s Dictionary of Scientific

Biography, 213

second Hamilton equation, 270, 280–281

second ray equation, 281

secondary spherical disturbance, 304

secondary waves (S-waves), 48,

102–103, 196

reflectivity, 200

seismic

acquisition, 327

anisotropy, 261–262

arrays, 337

data processing, 344

diffraction, 144–145

diffractions on seismic sections,

316–320

exploration, 107, 285

inversion by dynamic deconvolution, 122

migration, 333

modeling. see also ray tracing

processing, 325

pulse, 328

seismic trace, 106

seismic traveltime field, 274

seismic ray, 97, 261, 277, 281

direction, 81–88

theory, 286

seismic wave(s), 15, 102, 154–155, 305

propagation, 286

seismogram, 242

seismology, 261

semi-latus-rectum, 60, 74

sense, 231
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shadow regions, 302

shear modulus, 157

shear strain, 150, 151, 152, 153

shear waves. see secondary waves (S-waves)

Shuey’s three-term AVO equation,

200, 201

sideways force, 76

sifting property, 250

simple harmonic

motion, 45, 46, 131, 134

oscillator, 44

simple pendulum, 45

sine function, 131–132

sine wave, 231

sink, 171

sinusoid. see sine wave

sinusoidal

curve, 104

function, 232

plane wave, 333

sinusoidal wave, 104, 231–234

slant stacking, 316

slowness, 90–91, 98, 255

function, 282

vector, 255–256

Snell-Descartes law of refraction, 24

Snell, Willebrord, 14–15

Snell’s empirical law of refraction, 31

Snell’s law, 8–9, 12–22, 39, 58, 142, 143,

145, 272, 285, 295

derivation of, 41

Huygens’ essence of, 54

of refraction, 15

of refraction, 53

Snell’s parameter, 9

solar system, 78

sound wave(s), 155, 321

source, 171

layer, 116

strength, 242

spatial resolving power, 300

spherical polar coordinates, 238–239

spherical wave, 136, 234, 238–242

propagation, 249

spherical wavelet, 220

spheroid wavelet, 220

spike-like event, 291

stacked section, 325, 327

stacked trace, 325

static electricity, 93

steam engine, Heron, 12

Steno, Nicolaus. see Stensen, Niels

Stensen, Niels, 25–26

stigmatic pencil, 49–50

Stokes’ theorem, 182, 184, 185, 186, 187

strain, 146

angular shear, 150–151

normal, 150, 151, 152

seismic waves, 154–155

shear strain, 151, 153

stress and, 154

stratified earth

assumption, 338

hypothesis, 344

stratified medium, 349

stress, 146–155

normal, 147

seismic waves, 154–155

and strain, 154

strike-slip fault, 148

on three planes normal to three

axes, 150

zone of continental collision, 149

strike-slip fault, 148

“sunstones”, 219

superposition

integral, 247

principle, 228, 229

property, 244, 246

Supplements to Vitello, 295

surface waves, 103

T
tangent plane, 87

tautochrone problem, 44

Taylor, Brook, 191

Taylor’s theorem, 42

“t-hat”, 203

theoretical law, 17

theory of elasticity, 146

theory of wave motion, 131

three-dimensional seismic methods, 326

three-dimensional wave equation, 134, 227

dispersion equation, 251–253

Green’s function, 243–251

group velocity, 253–259
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one-dimensional wave equation,

229–230

plane waves, 234–238

sinusoidal waves, 231–234

spherical waves, 238–242

wave equation, 227–228

three-dimensional waves, 238

time-advance operator, 335

time–distance

curve, 271–274

relationship for ray, 271

time equation, 270–271

time invariant, 244, 245, 246, 247

time migration, 326, 329, 337, 344, 349

differential equation, 339–340

Fourier transform, 341–343

one-way equation, 340–341

techniques, 326–327

wave equation, 338–339

topographic map, 163

Traité de la Lumiére, 47, 145–146, 219,

221, 223

Transactions of the Connecticut Academy of

Sciences, 189

transformation technique, 316

transmission coefficient, 112

transverse waves, 155, 196

traveling wave(s), 107, 108, 252

assumption, 108, 109

in seismic exploration, 285

sinusoidal, 234

true interface, 307–308, 309, 311, 312, 313

two-dimensional scalar wave

equation, 337

Two New Sciences, 17

two-point correlation function, 247

two-way traveltime, 120, 122, 307, 310, 315,

327–328, 330

U
unit tangent vector, 165, 275

unit vector, 165, 203, 235, 280

upgoing wave, 107

V
“vacuum”, 188

vector analysis, 188, 189, 257

vector eikonal equation, 98

vector fields, 190

types of, 163–164

vector product. see cross product

velocity, 105, 115. see also particle

velocity (p.v.)

analysis methods, 337

function, 337

vertical transverse isotropy (VTI), 262

Voltaire, 78, 159, 162, 175, 176

volume integral, 171, 172

von Goethe, Johann Wolfgang, 188

VTI. see vertical transverse isotropy (VTI)

W
water–air interface, 119–120

water wave(s), 262, 321

interference of, 303

on pond, 262–263

wave, 285

wave at boundary, 135, 138

critical angle, 143

geometrical seismology, 139

head wave, 144

Huygens’ construction, 137, 145

Huygens’ principle, 136–138, 145, 146

law of reflection, 140

law of refraction, 142

reflection of spherical wave, 140

refraction construction, 142

spherical wave, 136

trigonometry, 140–141

wave depropagation, 331–337

wave equation, 131–135, 224,

227–228, 306

for dilatational waves. see compressional

waves

eikonal equation and Pythagoras

theorem, 88–92

Michael Faraday and eikonal equation,

92–100

particle velocity, 100–130

pressure, 100–130

for rotational waves. see shear waves

seismic ray direction, 81–88

Wave Equation, The, 155

wave motion, 262

wave optics. see physical optics

wave particle dualism, 268
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wave-particle duality, 264–266

wave propagation, 214, 237, 247, 285

geometry of, 309

P-wave propagation, 103–104

seismic, 303

spherical, 249

theory, 286

in three dimensions, 248

wave theory, 57, 222, 223, 321

of light, 18, 24, 27, 28, 39, 214, 221, 288,

304, 322–323

wave velocity, 105

wavefield, 107

reconstruction process, 336

wavefront, 207, 221, 254, 287, 311

curve, 311–312

propagation of, 287

wavelength (l), 132, 232, 233

wavelet. see pulse

wavenumber (k), 105, 204, 333

surface, 256

vector, 254

Weinberg, Steven, 131

WKBJ

amplitude factor, 347

approximation, 243–244, 326,

343, 346

equation, 348

method, 326–327

migration, 329, 343–349. see also time

migration

word “flux”, 169

word migration, 329

work integral, 167–168, 169, 178

Y
Young, Thomas, 158, 323

Young’s modulus, 158

Z
zero-offset section, 307, 315, 327

Zoeppritz equations, 198, 199

Zoeppritz, Karl, 197
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