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Preface

This Brief takes readers, in particular environmental scientists, through the
important steps of a geostatistical analysis. Most properties of the environment,
such as rainfall, plant nutrients in the soil and pollutants in the air, are measured
effectively at points between which there are large gaps. The environment is con-
tinuous, however, and environmental scientists and their clients typically want to
know the values of those properties between the points, in the gaps; they want to
predict in a spatial sense from their data, taking into account the locations of their
observations. Geostatistics comprises a set of tools that enable them to do that
optimally by methods established for properties that appear to vary randomly in
one, two or three dimensions. The variogram is the central tool of geostatistics.
It enables scientists to assess whether their data are spatially correlated and to what
extent. With a suitable model for it they can combine it with their data to predict by
kriging, which in its simpler forms is one of weighted averaging. Kriging is an
optimal method of prediction in that it provides unbiased estimates with minimum
variance. The technique is now available in many statistical packages so that users
can apply it at the press of a few buttons without any idea of what their experi-
mental variogram is like or whether an appropriate model has been fitted to it.
We warn against the practice.

We take readers through the stages of computing a reliable experimental vari-
ogram from sufficient data and the fitting of suitable mathematical models. These
are the most important stages of a geostatistical analysis. If they are done with
proper care kriging provides the best possible predictions from data.

Chapter 1 introduces the background to geostatistics with examples of the breadth
of current applications. Almost all statistical analyses of environmental data,
including geostatistics, depend on sample data, and in this chapter we introduce the
basic concepts of sampling: the specification of variables, the support and suitable
sampling designs. Chapter 2 describes random variables and regionalized variable
theory briefly; this is the theory that underpins geostatistics. For readers who wish to
know more of the theory we recommend further reading. Chapter 3 explains how to
compute the experimental variogram from regular and irregular sampling designs,
the factors that affect the reliability of the variogram and how to model the
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experimental values reliably. Most users of geostatistics are eager to obtain maps
of the variables that interest them, and Chap. 4 illustrates how to do this optimally
with kriging. The theory of ordinary kriging is described, and we show how the
choice of model for the variogram affects the kriging weights. The way the weights
are obtained in kriging makes the method different from other interpolators. In
Chap. 5 we return to sampling to meet the needs of spatial analysis. We consider the
situation where nothing is known about the scale or pattern of spatial variation and
for which a nested survey and analysis provide a solution. We suggest other ways of
determining the spatial scale to sample for mapping that use variograms from
existing data, either of the variables of interest or of intensive ancillary data, such as
those from satellites or aerial photographs. Finally, in Chap. 6 we explore the
difficulties that spatial trend poses for geostatistical analysis and how they can
be overcome by residual maximum likelihood estimation of the variogram and
universal kriging.
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Chapter 1
Introduction

Abstract Geostatistics, developed originally in the mining industry from the 1950s
onwards, is now being applied widely in environmental science for mapping,
monitoring and management. It is based on the theory of random spatial processes.
There are numerous examples in soil science, meteorology, agronomy, hydrology,
ecology and some aspects of marine science. By taking into account and modelling
spatial correlation, geostatistics provides unbiased predictions of environmental
variables with minimum and known variance in ways that no other method does.
The general technique of prediction is known as kriging. It requires a mathematical
model to describe the spatial covariance, usually expressed as a variogram, which in
its parameterized form has become the central tool of geostatistics. Successful
kriging and estimation of the variogram depend on sampling adequately without
bias and with suitable spatial configurations and supports. These differ somewhat
from design-based estimation with its emphasis on random sampling.

Keyword Geostatistics � Environmental sciences �Mapping � Random processes �
Autocorrelation � Variogram � Kriging � Sampling

1.1 Background to Geostatistics

Geostatistics, developed originally in the mining industry, is now applied widely in
the environmental sciences––on the land, in the atmosphere and at sea. Environ-
mental scientists want to make maps of the properties that interest them for more or
less large continuous areas over which they often have only sparse sample data at
finite numbers of places on small supports. In these circumstances the best that they
can do is to estimate or predict in a spatial sense values between sample points.
They can use geostatistics to predict at points and over larger blocks in one, two and
three dimensions. The techniques have proved valuable, particularly in our own
field of soil science for mapping properties such as the concentrations of plant
nutrients and potentially toxic chemicals in the soil with known confidence. Their
value is general, however, and they are applicable almost whenever there is a desire

© The Author(s) 2015
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to predict and map an environmental variable from sparse data such as in hydrol-
ogy, geology, petroleum engineering, agriculture, fisheries, meteorology, remote
sensing and public health.

Numerous techniques have been proposed over the last 100 years for interpo-
lating from sample information. Some depend on the stratification of regions into
discrete classes and prediction from data within those classes. The technique was
standard practice in geology and soil survey. Thiessen polygons (Voronoi polygons,
Dirichlet tiles), originally proposed for interpolating weather from isolated stations,
also depend on a discretization of space and prediction from the stations within the
polygons Thiessen (1911). At the other extreme are models of smooth variation in
which data at sample points are assumed to lie on or close to mathematically defined
surfaces. These include splines, and local and global forms of trend surface analysis.
With the availability of such tools, why, you might ask, do we need geostatistics?

The mathematical models are based on assumptions of deterministic relations
between the sample locations and the variables of interest. No model can describe in
full the variation in the natural world, and any technique for interpolation or spatial
prediction will produce results that are more or less in error. It is here that geosta-
tistics has its role because it can provide estimates of those errors. It too is based on
an underlying model, but one that incorporates uncertainty. What has made geo-
statistics especially attractive is that its predictions are in principle unbiased and with
minimum and known variance or error. No other technique can match it in general.

Geostatistics comprises a body of statistical technique based on the theory of
spatial random processes (see Chap. 2). This is the principal reason why geosta-
tistics has found application in so many fields. It allows us to deal with properties
that vary in ways that are far from systematic and at all spatial scales. Geostatistics
is now established in the earth sciences as the ‘Theory of Regionalized Variables’
and due largely to Matheron (1963, 1965). Matheron and co-workers developed it
originally for mining, following the empirical work by Krige (1951) for estimating
the grades of ore from drill cores in the gold mines of South Africa.

Geostatistics is based on a model of spatially correlated random variation, and
estimating the spatial autocorrelation is the first step in a geostatistical analysis. The
autocorrelation or variogram functions (see Chap. 2), which can be approximated
from sample data, can be described by fairly simple mathematical functions. The
parameters of these functions lead to the second important step of geostatistical
prediction known as kriging.

1.2 Applications of Geostatistics

1.2.1 Mining and Engineering

As mentioned above, the first applications of geostatistics were in gold mining by
Daniel Krige, a mining engineer in the gold fields of the Witwatersrand in South
Africa. The motivation was largely profit: are the local concentrations of metals in
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ores sufficient to make extraction worthwhile? Further, managers and planners,
knowing the errors, can balance the financial value of the information against the
costs of obtaining it. Geostatistics is also applied to predict diamonds in kimberlites.
Bush (2010) describes the use of mixed support kriging to optimize the prediction
of diamond concentrations from all available data on different sizes of support.
Geostatistics now plays a wider role in mining with matters such as the flow of
methane in coal mines and the disposal of waste and its subsequent fate.

The organization, Application of Computers and Operational Research in the
Mineral Industry (APCOM), holds frequent conferences that include accounts of
geostatistical applications in mining. These are reported in the published pro-
ceedings of the organization.

Perhaps the most telling application of geostatistics in civil engineering is that in
the design of the Channel Tunnel, the railway tunnel between England and France
(Blanchin and Chilès 1993; Chilès and Delfiner 2012). The engineers wanted to
bore three tunnels in parallel through the Cretaceous Chalk Marl, a stratum of soft
chalky clay. Chilès and colleagues at the Bureau de Recherches Géologiques et
Minières (BRGM) analysed the depths of the top and bottom of the stratum
recorded from bore holes and mapped the configuration of the Marl and its upper
and lower bounds. As the tunnels were bored, the engineers reported the discrep-
ancies between the kriged predictions of the upper and lower limits of the stratum
and what they encountered refined their predictions with the new information.
Chilès and Delfiner conclude: ‘… the observations were generally in good agree-
ment with the geostatistical model and its predicted accuracy.’ The whole operation
was a huge success.

1.2.2 Environmental Pollution

In the last couple of decades scientists in research institutes and universities have
harnessed geostatistics to estimate and map potentially toxic substances in the
environment and to identify sources of pollution. In 2008 Soares (2010), in
reviewing that progress, was concerned that governments and industry had been
slow to recognize it and to implement the technology, but the situation is changing.
Governments world-wide are recognizing the damage caused by the pollution of
water, soil and air, and the risks to public health. Geostatistics is playing an ever-
increasing role in delineating zones affected and the degree to which they are
affected. The literature of the last 3 years is rich in reports of case studies.

A search of the SCI data base with key words ‘pollution’ and ‘geostatistics’
revealed more than 600 papers, of which at least 100 have been published since the
beginning of 2012. Refining the search by the addition of ‘environment’ still listed
more than 340 papers describing the outcomes of geostatistical analyses of survey
data. We can mention but a few of them.

A paper by Komnitsas and Modis (2009) exemplifies the effects of mining.
Several million cubic metres of waste from coal mines have been spread in an area
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of 39 km2 some 200 km south of Moscow, Russia. As a result concentrations of
arsenic (As), zinc (Zn), nickel (Ni) and chromium (Cr) in the soil widely exceed
local tolerable thresholds. The authors mapped the risks they pose. Similarly,
Zhong et al. (2014) mapped the distributions of As, Cr, cadmium (Cd), lead (Pb)
and mercury (Hg) in the soil of an area of 33 500 km2 of the Yunnan–Guizhou
plateau in southern China where non-ferrous metals have been mined for hundreds
of years. Their maps show the close association between large and potentially toxic
concentrations of As, Cd, Hg and Pb and metallurgical plants from which the
elements have been distributed. Chromium, in contrast, seems to derive locally
from the rocks. An unusual application of geostatistics to pollution is that of
Meerschman et al. (2011). They sampled the soil around Ypres, Belgium, where a
battle was fought during the First World War. They identified ‘hot spots’ of copper
(Cu), Pb and Zn where concentrations of the metals, the residues from ordnance,
exceeded the national sanitation thresholds for soil.

Toxic concentrations of elements in some regions are entirely natural. For
example, arsenic (As) concentrations in the ground water in Bangladesh. These have
serious consequences for public health because 97 % of the people there draw on the
ground water for drinking. Gaus et al. (2003) analysed geostatistically measurements
from more than 3 000 boreholes and estimated the probabilities of concentrations in
excess of the World Health Organization’s guide limit of 10 μg As l−1 and the more
lenient Bangladesh limit of 50 μg As l−1. The ground water beneath large tracts of
the south of the country had concentrations of As that exceeded the above thresh-
olds, and tens of millions of people were at risk of poisoning by drinking the water.
In some regions toxic metals in soil derive from both rocks and industry. Sollitto
et al. (2009) used factorial kriging to distinguish short-range variation in Zn, Pb, Cd
and Ni, which they attributed to local inheritance from the rocks, from long-range
variation caused by diffuse pollution and deposition from the air.

In yet other cases investigators have used geostatistics to map distributions of
potentially toxic elements in the search for sources of pollution only to discover
later that the local concentrations were entirely natural. Atteia et al. (1994), for
example, mapped Cd in the topsoil around La Chaux-de-Fonds in the Swiss Jura to
search for sources of pollution where previous sampling had revealed extraordi-
narily large concentrations of the element well in excess of the safety threshold. The
result did not match supposed pollution from the town, and only after a series of
surveys targeted in the patches of large concentrations did Dubois et al. (2002) find
the explanation: the underlying rock in those patches was rich in Cd.

1.2.3 Precision Agriculture (PA)

About 25 years ago agronomists realized that geostatistics could be harnessed for
precision agriculture, and they have made substantial progress in the technology
since. It is used for the site-specific management of crop nutrients, pH, irrigation,
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weeds and crop pests (see Oliver 2010, for examples). Infestations of weeds, pests
and diseases vary in intensity within arable fields and paddocks. In many instances
their distributions are patchy, and farmers want to treat the land where they occur
and not where they are absent. The technology to target types of weeds based on
kriged maps is developing apace, but there is still some way to go before it becomes
standard practice because the costs of the technology exceed the possible savings in
herbicides, which are cheap, and gains from increased yields in treated patches.
Castrignanò et al. (2012) used cokriging to delineate zones of Bactrocera olea, the
olive fruit fly, to optimize their monitoring effort. The spatial pattern of the fly
changed over the monitoring period, and they were able to recommend different
monitoring zones for summer and October because the population density distri-
bution of the fly was spatially structured over large areas and changed over time.

Among the most serious agricultural pests are nematodes; they are thought to
cause losses of the order US$100 × 109 per year worldwide. Like weeds, their
distributions within fields tend to be patchy, and they have also been analysed
geostatistically (see Webster 2010; Hbirkou et al. 2011). Unlike weeds, their dis-
tributions cannot be seen or inferred until the pests have done their damage. Any
assessment of their presence, their numbers and their spatial distributions must be
based on sample counts made before the crops start to grow. Webster and Boag
(1992) devised an extreme form of unbalanced nested sampling to identify for
modest cost the approximate sizes of patches of the cyst nematodes of the genera
Heterodera and Globodera, and from their results they sampled on a grid with a
suitable interval to map the patches by kriging. Evans et al. (2002, 2003) built on
that research to estimate, map and control the potato cyst nematodes Globodera
pallida and G. rostochiensis on commercial farms. They calculated the savings that
potato growers in Britain could make by fairly dense sampling and not treating with
expensive nematicide the uninfested patches.

Ge et al. (2008) used geostatistics to map the spatial variation of several com-
ponents of the quality of cotton fibre in the USA. The ranges of spatial correlation
for the properties were similar as were the patterns of spatial variation, although
some properties had inverse relations with one another. The spatial variation of ECa

was also similar to those of the quality of the cotton fibre. Ge et al. (2008) combined
the maps of individual fibre properties with the United States Department of
Agriculture—Commodity Crop Corporation Loan Schedule for Upland Cotton to
create a loan rate map related to fibre quality. There was a loan rate difference of
20 cents kg−1 in the field, which can have a large impact on the producer’s revenue.

An interesting application of geostatistics to PA was by Araújo e Silva Ferraz
et al. (2012) to the variation in force required to detach coffee berries. Coffee
growers want to harvest only mature berries from which the best coffee derives.
Mature berries detach more readily than green immature ones, and so growers who
use machines for harvesting can use kriged maps of detachment force to decide
where and when to harvest the mature berries selectively to ensure the quality of
their coffee.
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1.2.4 Fisheries

Petitgas (1993, 2001) explained to fishery scientists how geostatistical theory and
methods might be applied to estimate and map fish stocks in the sea. However,
surveys are problematic because the main species of commercial interest are
mobile, and so estimates must be up-to-date and based on rapid survey. Abun-
dances of fish can be sensed acoustically, and despite the complex relations between
the signals and actual abundance there have been successes. For example, Jardim
and Ribeiro (2008) in a study of sampling designs could map the abundance of hake
on the continental shelf off the coast of Portugal.

Mapping the abundances of shell fish is much simpler; the individuals do not
move far or fast, they are confined to shallow water, and their numbers and sizes
can be determined on well-defined supports, typically within quadrats of fixed
dimensions. Adams et al. (2010) surveyed two regions of Georges Bank, close to
Nantucket Island, USA, annually from 1999 to 2007 inclusive. They used an under-
water camera to enable them to count sea scallops, Placopecten magellanicus. They
analysed their count data geostatistically and mapped their estimates of species
density. The authors were able to recommend strategies for sampling Georges
Bank, and for managing the fishery in zones identified by their mapping so that the
stocks of scallops are never severely depleted anywhere on the Bank.

1.3 Sampling

Above we mention that the environment is continuous and that its properties cannot
always be measured everywhere; quantitative information about such properties can
derive only from samples. Much information now derives from either remote or
proximal sensors that provide full cover of areas of interest. Such sources may
result in too much information that is also often noisy and would benefit from sub-
sampling. Sound sampling is crucial therefore. We may require sample information
for one of three purposes, or perhaps all:

(a) to estimate average values or total quantities for particular regions,
(b) to predict local values at sites unvisited during survey, or
(c) to sub-sample intensive data from sensors.

We usually want also that the estimates or predictions on average equal the true
values, i.e. that they are unbiased. A second requirement is that the estimates or
predictions lie within a tolerable error; we want ones in which we can have con-
fidence. For this the sampling must be sound in design and sufficient.

The theory of sampling for estimation was developed during the 1930s and has
provided the basis for sampling in many spheres of endeavour. Cochran (1977)
draws on that theory to set out the principles of sound design and the statistical
analyses that follow from them. We call this the classical approach. Spatial
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prediction depends on a somewhat different set of principles based on the theory of
regionalized variables and leads to different designs and different forms of analysis,
and this is what geostatistics is about. De Gruijter et al. (2006) distinguish the two
forcefully before going on to describe the methods and the analyses of the data that
accrue from sampling. Webster and Lark (2013) develop the ideas further by
examining the practical and financial constraints faced by environmental scientists
and managers in addition to the technical details.

In the classical approach random selection is essential to guarantee unbiased
estimates with known variance. Simple random sampling of the environment is
usually inefficient in that large samples are needed to provide adequate confidence.
Various kinds of stratification, including classification into types of rock or soil,
will usually allow investigators to narrow confidence intervals for a given effort or
achieve adequate confidence with smaller samples.

One can also build in prior knowledge to increase the efficiency of designs (see
Webster and Lark 2013). De Gruijter et al. (2006) call the whole process ‘design-
based estimation’.

Geostatistics is also concerned to estimate unknown quantities. These quantities
are not the mean values of whole regions; rather they are values at points or in small
blocks of land or rock, or bodies of water or air; they are estimates of actual values
at unvisited places rather than of unknown parameters of populations. Again,
practitioners want their estimates, or predictions as they are usually known to
distinguish them from estimates of parameters, to be unbiased on average and to lie
within tolerable error. One could use design-based methods, but they would be very
inefficient because they would fail to take into account the spatial dependence in
data. Instead geostatistics assigns randomness to the environment; it is based on a
model in which the actual values of a variable, say z, and which we might want to
predict, are the outcomes of random processes. In other words, we have to have in
mind a model of the real world that incorporates randomness. What it means in
practice is that we need no longer select sites for sampling at random because the
randomness is in the model. De Gruijter et al. call the process of prediction ‘model-
based prediction’ for this reason. We shall usually want to avoid bias in the
selection, but our principal concern will be to sample enough to enable us to predict
accurately throughout the regions of concern, and to make maps, for example.
Designing such schemes for sampling requires an understanding of the random
spatial model (see Chap. 2) and its practical consequences for prediction.

1.3.1 The Domain

The region to be sampled must be defined. It might be a farm or a field on a farm, a
catchment or an administrative district, and it will be bounded geographically. Each
of these taken as a whole could constitute the geographic domain.

We have to consider next what part of the material within that region we are to
sample. In each case we must define what part of the environment is to be studied. It
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must lead to a rule or set of rules that can be followed unequivocally and easily and
suit the circumstances of the study. This rule or these rules define the total domain,
which in classical statistics is known as the ‘population’ or the ‘frame’.

1.3.2 The Variables

The properties of the material in the domain must also be defined. In the farming
context, these are likely to be the soil’s pH and concentrations of potassium and
phosphorus. If we are concerned with air pollution then properties of interest are
likely to be the concentration of oxides of nitrogen, NOx, and particles of diameter
smaller than 2.5 μm, the PM2.5 of the air.

1.3.3 Units and Support

A sample of a material in the environment comprises a set of units, which for
statistical purposes we must regard as discrete and on which we make our mea-
surements. To map the distribution of rainfall our units would be rain gauges. In a
survey of soil the units might be auger cores, or sets of auger cores from small
quadrats and bulked. Agencies monitoring pollution take known volumes of air on
which to make their measurements.

The size of these units matters a great deal because the variation that can be
observed from measurements on them depends on their size. Some cores of soil
taken with an auger of 2 cm diameter are likely to include large root channels and
holes made by burrowing animals whilst others do not. Most cores of 80-cm
diameter are likely to include such channels, and so measurements of porosity are
smoothed. Similarly, bulking soil from small cores from larger quadrats for labo-
ratory analyses leads to a kind of averaging. The support of a rain gauge is strictly
the area of its top. In general, the larger are the units the more variation they
encompass and the less variation lies between them for us to observe; variation
within the units is effectively hidden. We must specify at the outset of a survey the
dimensions of the units—not only their size, but also their shape and orientation.
This combination is known as the support of the sample. It should be held constant
throughout a survey, and it should be stated when results are reported.

1.3.4 Practical Matters

We deal in detail with plans for sampling in Chap. 4. There we describe how to
choose the positions of the units for mapping and to estimate the crucial
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intermediary, the variogram or covariance function. Here we mention some of the
snags that surveyors almost inevitably encounter.

One of the most common snags is that a point designated by its spatial coor-
dinates for a survey of some attribute of the land falls on a road or in a river. If the
aim of the survey is to predict and map some property of the soil then that point
must be rejected. Nevertheless, even coverage is desirable for mapping, and one
would not want large gaps in it, so one might choose a substitute nearby. Such
eventualities should be anticipated, and some rule for substitution should be set
beforehand. It might be: choose another point y metres away in direction θ. The
distance y should be a small proportion of the average distance between neigh-
bouring points so as to fill the gap.

Less clear is what a surveyor should do if he finds that a predetermined point lies
in a gateway or falls in a hedge. In both situations the soil there is likely to be
atypical. The points lie within the geographic domain; but are they part of the
population to be investigated? Again, the question should have been anticipated and
a rule provided.

1.4 The Essence of Geostatistics

In this brief we set out the essentials of geostatistics for environmental applications.
These include a short chapter, Chap. 2, on the theory of spatial random processes

and their mathematical representation in terms of covariances and variograms. It is
followed by a longer Chap. 3 on the estimation of covariance functions and vari-
ograms, and their modelling by permissible functions. We emphasize the need to
give attention to the issues raised in this chapter. In Chap. 4 we describe ordinary
kriging for predicting values of stationary environmental variables at unobserved
places at points or over larger blocks of land without bias and with minimum
variance. The parameters of a variogram model are crucial for this, and we show
how the models chosen and fitted to sample variograms affect the outcome of
kriging. Estimated variograms and kriged predictions depend on the intensity of
sample data and their configurations, and sampling for both is the subject of Chap. 5.
Finally in Chap. 6 we introduce readers to the problem of trend, i.e. non-stationary
processes, and mixed models. The last four chapters are illustrated with data from
case studies.
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Chapter 2
Regionalized Variable Theory

Abstract Many physical, chemical and biological processes have acted to create
the current environment with the result that the variation appears to be random.
Practical geostatistics treats the results as if they were the outcomes of correlated
random processes and is underpinned by assumptions of stationarity. Variation may
be treated as second-order stationary and represented by covariance functions. The
somewhat weaker assumption of intrinsic stationarity leads to a more general
analysis based on the variogram as a description of the variation. Quasi-stationarity
limits stationarity to local areas, and with sufficient data the assumptions can be
applied locally. If there is trend then more complex assumptions are needed; these
usually comprise a combination of deterministic spatially smooth trend plus random
residuals that are spatially correlated and stationary to some degree.

Keywords Random function � Random variable � Regionalized variable �
Stationarity � Intrinsic hypothesis � Quasi-stationarity � Trend

2.1 Random Variables and Regionalized Variable Theory

The processes that act in the environment obey the laws of physics, and are in that
sense deterministic: the variation we observe has its physical causes. Nevertheless,
numerous processes have combined and interacted to produce the current envi-
ronment, and the results are so complex that the variation appears as though it were
generated randomly (Webster 2000). In geostatistical terms, we regard the grades of
ores, properties of the soil, or the rainfall of a region, of almost any size, as the
realizations of random processes.

Based on this view the value of, for example, a soil property such as its pH, at
any place, x denoting its coordinates in two dimensions, is just one of the infinitely
many that are possible there. We associate with each place x not just one value but a
whole suite of values with a mean, a variance and higher-order moments of a
distribution. The actual value at x is regarded as just one value from that
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distribution, allocated at random. Thus the value of the variable at x is treated as a
random variable, which we denote with the capital Z. The set of random variables
for all x in ℜ constitutes a random function, random process or stochastic process.
Random variables in the real space, which may be one-, two- or three-dimensional,
are also called ‘regionalized variables’, and hence we have the theory of region-
alized variables mentioned above.

A random function has no mathematical description in the way that a deter-
ministic one has, i.e. it cannot be written as an equation. Nevertheless, it may have
‘structure’ in that there is correlation in space, or in time (for signals). This means
that values at different places may be related to one another in a statistical sense.
Intuitively, we expect the features of the environment at places near to one another
to be similar, whereas those at widely separated places are less likely to be. This
intuition is formalized in the theory of random functions. We must realise that the
randomness is a mental model of the world and not a property of the environment.

2.1.1 Stationarity

Stationarity underpins the practicality of geostatistics; it is an assumption that
enables us to treat data as though they have the same degree of variation over a
region of interest. We can represent the random process by the model

Z xð Þ ¼ lþ e xð Þ; ð2:1Þ

where μ is the mean of the process and ε(x) is a random quantity with a mean of
zero and a covariance, C(h), where h is the separation in space and known as the
lag.The covariance is

C hð Þ ¼ E½e xð Þe xþ hð Þ�; ð2:2Þ

which is equivalent to

C hð Þ ¼ E½fZ xð Þ � lg Z xþ hð Þf g � lg ¼ E� ½ Z xð Þf g Z xþ hð Þf g � l2�: ð2:3Þ

Here Z(x) and Z(x + h) are the values of the random variable Z at places x and
x + h and E denotes the expectation. This covariance depends on h and only on h,
the separation between samples in both distance and direction; it is a function of h.
The assumption on which this is based is that of second-order stationarity. In the
real world, we often encounter situations in which we cannot assume that the mean
is constant, and if so the covariance cannot exist. Such a situation need not be a
stumbling block; we can simply weaken the assumption of stationarity to that of
what Matheron (1963) called intrinsic stationarity in which the expected differences
are zero,

12 2 Regionalized Variable Theory



E Z xð Þ � Z xþ hð Þ½ � ¼ 0; ð2:4Þ

and the covariance of the residuals is replaced by the variance of the differences to
measure the spatial relations:

var Z xð Þ � Z xþ hð Þ½ � ¼ E Z xð Þ � Z xþ hð Þf g2
h i

¼ 2c hð Þ: ð2:5Þ

Here γ(h) is the semivariance at lag h, and as a function of h it is the variogram. The
variogram is based on differences, and provided Eq. (2.4) holds locally it is valid.
This property makes the variogram more generally useful than the covariance
function. In Chap. 3 we describe how to compute the covariance and variogram
functions. We focus on the variogram because of its generality and go on in Chap. 3
to describe variogram modelling.

For second-order stationary processes the covariance function and variogram are
equivalent:

c hð Þ ¼ C 0ð Þ � C hð Þ; ð2:6Þ

where C(0) = σ2 is the variance of the process.
A process that appears stationary at one scale might at another scale appear to

embody trend, that is, a systematic component. At this scale we might have to
elaborate the simple model represented in Eq. (2.1) by

Z xð Þ ¼ u xð Þ þ e xð Þ; ð2:7Þ

in which u(x) is a deterministic trend term that replaces the constant mean, μ. Its
variogram,

cðhÞ ¼ 1
2

E eðxÞ � eðxþ hÞf g2
h i

; ð2:8Þ

is no longer the same as

cðhÞ ¼ 1
2

E ZðxÞ � Zðxþ hÞf g2
h i

; ð2:9Þ

of Eq. (1.5). It is the variogram of the residuals from the trend. We explain what to
do to estimate the variogram in the presence of trend in Chap. 6.
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Chapter 3
The Variogram and Modelling

Abstract Accurate estimates of variograms are needed for reliable prediction by
kriging and subsequent mapping and for optimizing sampling schemes. Sample
variograms are usually computed by the method of moments at a sequence of lags,
and one or more ‘authorized’ functions are fitted to them. A variogram may be
computed along transects or on grids at regular intervals or in bins from irregularly
scattered data. Accuracy of the variogram depends on the size of sample, the
number of lags at which it is estimated and the lag interval relative to the spatial
scale of variation, the marginal distribution of the variable, anisotropy and trend.
Robust estimators can deal with extreme values, outliers. Variograms may be
bounded (for second-order stationary processes) or unbounded (intrinsically sta-
tionary only), and there are few simple authorized functions for modelling them.
The parameters of the models summarize the spatial variation and are needed for
subsequent kriging. Computing the variogram in at least three directions can
identify anisotropy if it is present. Diagnostics including residual mean squares and
the Akaike Information Criterion help in the selection of the best fitting model.

Keywords Experimental variogram � Method of moments � Model parameters �
Lag interval � Spatial scale �Marginal distribution � Anisotropy � Outliers � Robust
estimators � Nugget variance � Sill variance � Model diagnostics

The variogram is the cornerstone of many geostatistical applications. The experi-
mental variogram and any model fitted to it should be accurate. Only then can the
model describe the variation reliably. Kriging requires a variogram, and it is by
ensuring its accuracy that you will eventually obtain minimum-variance predictions
by kriging. If the variogram describes the variation poorly then the kriged pre-
dictions are likely to be poor also, and they might have little or no validity no matter
how ‘pretty’ the map. The term ‘cartographic pornography’ has been used by those
who realize that no confidence can be placed in many of the beautiful smooth maps
that exist because of sparsity of the data that underlies them (see Chap. 4). Further,
the parameters of the variogram model may be used later for sample design and the
kriged estimates for decision-making; computing experimental variograms and
modelling them should not be treated in a cavalier fashion.
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This chapter illustrates the essential steps in obtaining reliable experimental
variograms by Matheron’s (1965) method-of-moments (MoM) and modelling them.
In some geostatistics packages and several GISs, computing the variogram and
kriging from the data is automated. As a consequence of such a ‘black box’ approach,
the variogram is computed and modelled, and the parameter values from the model
are inserted into the kriging equations without any intervention or assessment by the
user. As a result the user has no idea of the variogram’s form (it might even be pure
nugget) or whether the model is a good fit. There are many other reasons for poor
variograms and their models, for example too few data (Webster and Oliver 1992),
unsuitable models, poor fitting, faulty processing and misunderstanding. These are
matters that form the basis of this chapter. Our aim is to prevent researchers from
wasting time on analyses for which their data are unsuitable, and to guide them
through the stages that will ensure that their variograms are ‘fit-for-purpose’.

3.1 The Experimental Variogram

The first task in turning theory into practice is to estimate the variogram from
sample data, say z(x1), z(x2),…, where x1, x2,… denote the positions of the sample
in two-dimensional space. We assume that those positions have been selected
without bias. They need not be random, as in design-based estimation, because we
treat the variables as the outcomes of random processes. Therefore, we can take a
relaxed attitude to the sampling design, which may be systematic, random, nested
or some combination (see Chap. 5). The usual equation to compute the variogram is
Matheron’s method of moments (MoM) estimator:

ĉðhÞ ¼ 1
2mðhÞ

XmðhÞ
i¼1

zðxiÞ � zðxi þ hÞf g2; ð3:1Þ

where z(xi) and z(xi + h) are the observed values of z at places xi and xi + h, and m(h)
is the number of paired comparisons at lag h. By changing hwe obtain an ordered set
of semivariances; these constitute the experimental or sample variogram. The way
that Eq. (3.1) is implemented as an algorithm depends on whether the data are
regularly spaced in one dimension, are on a regular grid or are irregularly distributed
in two dimensions.

3.1.1 Computing the Variogram from Regular Sampling
in One Dimension

Regular sampling in one dimension may be horizontal or vertical (e.g. down
boreholes or through the atmosphere) along transects. The lag, h, becomes a scalar
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h ¼ |h| that replaces h in Eq. (3.1). Semivariances, ĉðhÞ, can be computed only at
multiples of the sampling interval. Figure 3.1a shows how the comparisons between
pairs of points are made; first for h ¼ 1 and then for h ¼ 2; 3; . . .. This results in a
set of semivariances, ĉð1Þ; ĉ 2ð Þ; ĉ 3ð Þ,…, i.e. a one-dimensional experimental vari-
ogram which we can plot as a graph of ĉðhÞ against h as in Fig. 3.1b. There may be
positions along a transect where, for various reasons, there are no observations.
These missing data do not present a problem; they simply result in fewer com-
parisons for Eq. (3.1).

Transects may be aligned in several directions, for example to identify anisot-
ropy when at least three directions should be used (see Sect. 3.2.5). The same
procedure may be used to compute these variograms, and Eq. (3.1) will provide a
separate set of estimates for each direction.

(a)

(b)

Fig. 3.1 a Comparisons for
computing a variogram for
three lag intervals from a
regular sample every 10 m
along a transect and
b semivariances plotted
against the first three lag
intervals to form the sample
variogram (other possible
semivariances shown as
crosses)
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3.1.2 Computing the Variogram from Regular and Irregular
Sampling in Two Dimensions

Data from regular grid sampling in two dimensions can be analysed in one of three
ways. First, the grid can be treated as a series of transects in two dimensions—it is
one way in which you can investigate anisotropy, i.e. directional differences, in the
variation. The variogram can be computed as above, but in several directions of
the grid separately, for example, along the rows and columns of the grid and on the
diagonals. Second, the variogram can be computed in two dimensions as follows:

ĉðp; qÞ ¼ 1
2ðm� pÞðn� qÞ

Xm�p

i¼1

Xn�q

j¼1

zði; jÞ � zðiþ p; jþ qÞf g2 ;

ĉðp;�qÞ ¼ 1
2ðm� pÞðn� qÞ

Xm�p

i¼1

Xn
j¼qþ1

zði; jÞ � zðiþ p; j� qÞf g2 ;
ð3:2Þ

where p and q are the lags along the rows and down the columns of the grid,
respectively. In general, the lag interval is that of the grid. The variogram is
computed for lags from −q to q and from 0 to p. The output from this is then plotted
as a two-dimensional variogram as in Fig. 3.2.

Third, the variogram can be computed over all directions (omnidirectional) for
both regular and irregular sampling designs. For a grid the initial nominal lag interval
should be that of the grid spacing, whereas for irregularly scattered data the choice is
wider because the observations may be separated by potentially unique lags in both
distance and direction. Figure 3.3 explains how we can obtain semivariances over all
directions in two dimensions by placing the lags into bins. We choose a nominal lag
interval in both distance and direction as shown in grey in the figure. The width in
distance is designated w, which for irregularly scattered data could be the average

Fig. 3.2 Two-dimensional
anisotropic experimental
variogram of a simulated field
of 100 000 values computed
to 11 intervals on the
principal axes
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distance between neighbouring sampling points. The angular width is the angle a.
All pairs of comparisons that fall within that bin and contribute to ĉ are attributed to
its centroid at H with nominal lag h, # and where # is the lag direction. The lag is
usually incremented in steps of w and # so that each paired comparison falls into one
and only one bin. To compute the omnidirectional variogram, the angular width of
the bins is set to a ¼ p (i.e. 180°). We may also compute the variogram in a set of lag
directions, #, (see Sect. 3.3.2).

3.2 Factors Affecting the Reliability of Experimental
Variograms

3.2.1 Sample Size

The accuracy of the variogram depends primarily on one’s having enough data at a
suitable density or separating interval. It also depends on the design or configura-
tion of the sample because of the way that the variogram is usually computed. The
random function model (see Chap. 2) enables us to have the multiple realizations
required by theory; we treat each comparison between any pair of data as a single
realization of the process. Therefore, for every lag interval we require many
comparisons to ensure reliability of the estimated semivariances. At the shortest
lags or separating distances, we might have rather few paired comparisons for two-
dimensional data. As the lag interval between data increases, however, the number
of comparisons increases (see Table 3.1). At some distance that depends on the
number of data the number of pairs for comparison starts to decrease, although the

Fig. 3.3 The geometry in
two dimensions for
discretizing the lag into bins
by distance and direction
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numbers might still be much larger than for the first few lags (Table 3.1). The larger
numbers do not imply greater reliability, however, because individual data are used
repeatedly, and the estimated semivariances are more or less correlated with one
another. As a result, you should not rely on the number of comparisons as a guide to
the reliability of your variogram when you have too few data to ensure accuracy.

We illustrate the effect of sample size with data on exchangeable potassium in
the topsoil (0–23 cm) from a survey at Broom’s Barn Farm (an experimental farm
of 80 ha in Suffolk, England), which was first analysed by Webster and McBratney
(1987). Table 3.2 summarizes the statistics. There were 434 sampling sites at an
interval of 40 m on a square grid. The data were transformed to common logarithms
(log10) because the skewness coefficient is 2.04 (see Table 3.2 and an explanation in

Table 3.1 Lag intervals,
semivariances and counts for
log10 K

+ at Broom’s Barn
Farm

Lag/m Semivariance Counts Lag/m Semivariance Counts

48.0 0.00726 1 545 55.3 0.00818 53

92.5 0.00971 2 793 100.1 0.01245 90

131.9 0.01128 3 217 135.7 0.01439 124

169.3 0.01280 3 592 167.7 0.01715 137

212.6 0.01488 5 456 210.3 0.01808 223

253.0 0.01661 4 562 252.9 0.01617 190

293.0 0.01777 5 524 292.2 0.01647 230

334.8 0.01905 5 792 337.2 0.02171 243

374.8 0.01936 5 226 374.6 0.02059 193

414.3 0.01996 5 699 414.6 0.01616 236

453.0 0.01960 4 918 452.0 0.01949 174

492.2 0.02016 5 447 490.8 0.02363 236

534.5 0.01930 5 484 534.3 0.01786 226

575.6 0.01881 4 513 574.7 0.01706 187

614.5 0.01877 4 189 615.1 0.02181 167

653.5 0.01806 3 524 653.9 0.02363 139

693.2 0.01866 3 572 692.4 0.02228 142

734.9 0.01792 3 136 733.5 0.01774 123

775.1 0.01766 2 689 773.5 0.01832 119

Table 3.2 Summary statistics of potassium at Broom’s Barn Farm

K+/mg l−1 log10 (K
+) K+/mg l−1 log10 (K

+)

Number of data 434 434 87 87

Minimum 12.0 1.0792 14.0 1.146

Maximum 96.0 1.9823 70.0 1.845

Mean 26.31 1.3985 26.7 1.404

Median 25.0 1.3979 26.0 1.415

Standard deviation 9.039 0.1342 9.403 0.138

Variance 81.71 0.0180 88.42 0.019

Skewness 2.04 0.39 1.760 0.395
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Sect. 3.2.4). Figure 3.4a shows the experimental variogram of the full set of data
(symbols); the estimates lie on a smooth curve. The exchangeable data were sub-
sampled to 87 sites, and Fig. 3.4b shows a much more erratic experimental vari-
ogram. The result is therefore likely to be less reliable, and it is not clear what kind
of curve would fit it best.

Figure 3.4 gives the number of comparisons for each computed semivariance from
both the full set of 434 sites and from the sub-sample of 87 sites. The semivariances
computed on 434 data, Fig. 3.4a, have more than 1 000 comparisons at the first lag,
and they increase to more than 5 000 at the longest lags. The variogram computed
from 87 data, Fig. 3.4b, computedwith the same step and bin width as in Fig. 3.4a, has
many fewer comparisons at all lags. Nevertheless, the number of comparisons at
some of the longer lags exceeds 200. Many authors have been misled into thinking
that they can obtain reliable estimates of γ(h) based on 50 comparisons, or even fewer;
they cannot, as is clear from this result with 87 data—variograms computed on small
sets of data are unreliable (see Webster and Oliver 1992).

Fig. 3.4 Experimental
variograms of the common
logarithm of exchangeable
potassium, log10 K

+, in the
topsoil of Broom’s Barn
Farm, Suffolk; a computed
from data at 434 sampling
quadrats and b computed
from all 87 quadrats. The
numbers attached to the
points are the numbers of
paired comparisons from
which the semivariances are
computed. The lines are the
best fitting spherical models
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Over the years we have seen many erratic variograms computed on too few data,
in some cases as few as 25. Twenty years ago we explored the sampling fluctuation
in variograms (Webster and Oliver 1992). We concluded that one should aim for
150 data where variation is isotropic and set 100 as a minimum. Brus and de
Gruijter (1994) came to a similar conclusion via a different route, and the message
is reinforced with examples in Webster and Lark (2013) and in Oliver and Webster
(2014).

For this chapter we have revisited the matter by repeated independent sampling
from a much larger correlated random field of 400� 400 ¼ 160 000 with an iso-
tropic spherical variogram: 0.283 + 0.700 × sph(h|24) and variance of 1.0. See
Eq. (3.10) for a full definition of the function. Figure 3.5 shows the results of 15

Fig. 3.5 Experimental variograms computed from repeated sampling on grids of 7 × 7, 9 × 9,
12 × 12 and 18 × 18 points. The solid lines are those of the isotropic spherical model fitted to the
exhaustive experimental variogram, and the dashed lines join the 5 and 95 % quantiles, and the
circles are the mean values at the lags. The model is γ(h) = 0.283 + 0.700 × sph(h|24) for a field
with variance 1.0
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independent repeated samplings for four grids of sizes 7� 7 ¼ 49, 9� 9 ¼ 81,
12� 12 ¼ 144 and 18� 18 ¼ 324 sampling points. Evidently with 144 points the
estimates of γ(h) at the shorter lag distances lie close to the variogram used to
generate the field, the solid curve in the figure, but diverge at the longer lags. The
same is true for the much larger samples of 324 points. Sample sizes in the range
100–150 should be adequate where the variogram is required for kriging, but
estimates of sill variances will be erratic. Where variation is anisotropic, i.e. not the
same in all directions, more data are required to identify it and define it mathe-
matically. We deal with anisotropy below (Sect. 3.2.5).

3.2.2 Sampling Interval and Spatial Scale

The choice of a suitable sampling interval depends on the scale of variation that the
practitioner wishes to resolve, e.g. experimental plot, field, farm, catchment,
administrative region and so on. If you have rough variograms of the properties of
interest or variograms from related ancillary data such as aerial images then choose
a sampling interval that will give you at least five estimates of γ(h) within the
effective range. Alternatively, you can use an accurate existing variogram of a
property of interest to determine the kriging errors and so determine an optimal
sampling interval for kriging, see Chap. 5 (Burgess et al. 1981; Webster and Lark
2013). If the lag interval exceeds half the range or effective range of variation the
resulting variogram is likely to be flat; it will not capture the correlated structure and
so will not describe adequately the spatial variation present, as in Fig. 3.6. The
experimental variogram of topsoil sand in this figure was computed from a stratified
random sample of the soil of the Wyre Forest, England (Oliver and Webster 1987).
The average distance between neighbouring sampling points was 165 m, and the
experimental variogram was computed with a lag interval of 75 m. The resulting

Fig. 3.6 Experimental
variogram of topsoil sand
from a stratified random
survey in the Wyre Forest,
England. The variogram is
pure nugget
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variogram appears as ‘pure nugget’—it shows no spatial structure. Further surveys
revealed that the range of spatial dependence of topsoil sand here was approxi-
mately 70 m. In other words, all of the variation occurs over distances less than
70 m, which is much less than the average sample spacing in the first survey.

3.2.3 Lag Interval and Bin Width

As mentioned above, where data are on a regular grid or at equal intervals on
transects the natural step is one interval. Where they are irregularly scattered, the
comparisons must be grouped by distance as described in Fig. 3.3. The practitioner
must choose both the length of the step, h, and the limits, w, within which the
squared differences are averaged for each step. Usually the two are coordinated
such that each comparison is placed in one and only one bin. Choosing the width of
bins requires judgement. If the steps are short and the bins narrow then there will be
many estimates of γ(h), which can lead to a ‘noisy’ variogram because the semi-
variances are calculated from few comparisons. If in contrast the steps are large and
the bins wide then there might be too few estimates of the semivariances to reveal
the form of the variogram. The choice is thus a compromise; it is not one that
should be automated. The practitioner should graph the experimental values, as in
Fig. 3.7, so that the selection can be made objectively.

We illustrate the effect of lag interval and bin width with irregularly scattered
data on cadmium concentrations in the soil of a region to the south east of the
Madrid metropolitan area, Spain (Vázquez de la Cueva et al. 2014). The region is
35 km from west to east by 30 km from north to south. The topsoil (0–15 cm) was
sampled at 125 sites. The design comprised two superimposed grids, one at 5-km
intervals and the other at 1-km intervals. From the possible 1 116 nodes 74 were
chosen at random, and 51 points were added 200 m from the 74. At each site five
cores of soil were taken from a circle of radius 5 m and bulked for laboratory
analysis. Table 3.3 summarizes the statistics. The coefficient of skewness of 1.71
indicates a long upper tail in the distribution (see Sect. 3.4) that might be reduced
by transformation. After transformation to natural logarithms the skewness is
somewhat reduced to −1.11, but remains outside the generally advised limits
(Sect. 3.4). The experimental variograms in Fig. 3.7 were computed from the
natural logarithms of cadmium concentrations: those in Fig. 3.7a–c were computed
with a lag interval of 1 km and that in Fig. 3.7d with an interval of 3 km. The
variogram computed at 1-km intervals is very erratic because of the small number
of comparisons in each estimate. There is no clear indication from the experimental
values of the kind of model that will fit best. The sequence of points in Fig. 3.7d
computed with a lag interval of 3 km is now smoother and has a clearer structure.
This example shows that the lag interval and bin width give different pictures of the
spatial correlation: contrast Fig. 3.7a–c with d.
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3.2.4 Statistical Distribution

Geostatistical analysis does not require data to follow a normal distribution.
However, variograms comprise sequences of variances, and these can be unstable
where data are strongly skewed and contain outliers. If your data do not have a

Fig. 3.7 Experimental variograms of cadmium in the topsoil of a region south east of Madrid
computed from 125 sampling points, a–c at 1-km intervals with bins 1 km wide, and d at 3-km
intervals with bins 3 km wide. Models have been fitted by GenStat as follows: a spherical model to
30 km with range set initially to 25 km (dashed), iterated once (dotted) and iterated twice (solid);
b spherical model to 30 km with range set initially to 10 km (dashed) and exponential model fitted
to 30 km with distance parameter set initially to 3 km (solid); c spherical (dashed) and exponential
(solid) models fitted to 15 km with same initial values for distance parameters as in (b); d spherical
models with range initially set to 3 km (dashed) and iterated once (solid) and with range set
initially to 10 km (dotted)
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near-normal distribution and have a skewness coefficient outside the limits ±1,
because of a long tail, you should consider transforming them. So, transform the
data in some appropriate way, say by taking logarithms, and examine variograms
computed on both raw and transformed values. Do the resulting variograms differ
substantially apart from a scaling factor? In some cases the answers will be ‘no’; in
others ‘yes’.

Kerry and Oliver (2007a) explored the effects of varying skewness and sample
size on simulated random fields with asymmetry. Their results showed that for a
large sample size of 1 600 data (on a 5-m grid), the change in shape of the variogram
with increasing asymmetry was small, even for a skewness coefficient of 5. For a
sample size of 400 (on a 10-m grid), the change in shape of the variograms was not
large with increasing skewness and transformation. With 100 data (20-m grid), the
semivariances at the first two lags proved to be similar to the generating function of
the simulated field, but beyond that they departed progressively as the skewness
increased, and for the skewness coefficient of 5 the variogram appeared as pure
nugget. Our advice is to transform if it makes a difference to the variogram, but
otherwise work with the original data (Table 3.2).

The variogram is sensitive to outliers in the data, i.e. unexpectedly large or small
values beyond the limits of the main distribution. Box-plots, Fig. 3.8, are an ideal
way to identify outliers. All outliers should be investigated and considered as
potentially erroneous values before they are allowed to remain as part of the data
set. For contaminated sites, however, the largest values will be of most interest. We
mentioned above that the same data can contribute to several estimates of γ(h), and
so outliers inflate the averages. If there are few outliers relative to the whole data,
removing them often reduces skewness, and this is a reasonable approach. The
values removed can be returned to the data for kriging if desired. Transformation
often fails to improve the distribution when outliers are present and can even make
matters worse. The alternative is to use one of the robust estimators, such as those
of Cressie and Hawkins (1980), Dowd (1984) and Genton (1998).

Cressie and Hawkins’s (1980) estimator, ĉCHðhÞ; is based on taking the fourth
root of the squared differences and dampens the effect of outliers from the sec-
ondary process. It is given by

Table 3.3 Summary
statistics of cadmium in soil
of Madrid region

Cd/mg kg−1 ln(Cd)

Number of data 125

Minimum 0.005 −5.298

Maximum 0.48 −0.734

Mean 0.137 −2.138

Median 0.11 −2.207

Standard deviation 0.0802 0.589

Variance 0.00643 0.347

Skewness 1.71 −1.107
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2ĉCHðhÞ ¼
1

mðhÞ
PmðhÞ

i¼1 zðxiÞ � zðxi þ hj j12
n o4

0:457þ 0:494
mðhÞ þ 0:045

m2ðhÞ
: ð3:3Þ

The denominator in Eq. (3.3) is a correction based on the assumption that the
underlying process to be estimated has normally distributed differences over all lags.

Dowd’s (1984) estimator, ĉDðhÞ; and Genton’s, ĉGðhÞ; estimate the variogram
for a dominant intrinsic process in the presence of outliers. Dowd’s estimator is
given as

2ĉDðhÞ ¼ 2:198fmedianðjyiðhÞjÞg2; ð3:4Þ

where yi(h) ¼ z(xi) − z(xi + h), i ¼ 1, 2,…, m(h). The term within the braces of
Eq. (3.4) is the median absolute pair difference (MAPD) for lag h, which is a scale
estimator only for variables where the expectation of the differences is zero. The
constant is a correction that scales the MAPD to the standard deviation of a nor-
mally distributed population.

Genton’s (1998) estimator, ĉGðhÞ; is based on the scale estimator, QNh, of
Rousseeuw and Croux (1992). The estimator, QNh, is given by

QNh ¼ 2:219 Xi � Xj

�� ��; i\ j
� �

H
2ð Þ; ð3:5Þ

where the constant 2.219 is a correction for consistency with the standard deviation
of the normal distribution, and H is the integral part of N=2ð Þ þ 1: Genton’s (1998)
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Fig. 3.8 Box-plot computed
from a field of 400 values
simulated with a spherical
variogram function with zero
nugget and contaminated with
five outliers resulting in a
skewness coefficient of 1.5,
where filled squares represent
the far outliers which are three
times beyond the interquartile
range and filled circles are
near outliers
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estimator uses Eq. (3.5) as an estimator of scale applied to the differences at each
lag; it is given by

2ĉGðhÞ ¼ 2:219 yiðhÞ � yjðhÞ
�� ��; i\ j

� �
H
2ð Þ

� �2
; ð3:6Þ

but with H being the integral part of fmðh=2Þg þ 1.
Kerry and Oliver (2007b) examined the effects of outliers and sample size in

detail with fields of simulated data. They concluded that skewness caused by
outliers must be dealt with regardless of the number of data. Furthermore, their
results indicated that practitioners should act when skewness exceeds 0.5 rather
than the limits mentioned above which are those generally used. Although the
robust estimators provided a reasonable solution, they did not perform equally well
in all the situations Kerry and Oliver examined. They therefore recommended the
removal of outliers before computing the variogram as the current ‘best practice’
where outliers are randomly located and will not be returned to the data for kriging.
Where outliers are crucial to the investigation, as on contaminated sites, practi-
tioners should compute several robust variograms and compare them by cross-
validation.

A field of 400 values was simulated on a 10-m grid by a spherical function with
zero nugget, a sill of 1 and range of 75 m (Kerry and Oliver 2007b), i.e. c0 ¼ 0,
c ¼ 1 and r ¼ 75 m, see Eq. (3.10). Five of the values were contaminated by
another process to give a skewness coefficient of 1.5. Figure 3.8 shows the box-plot
of these values; the outliers are >4. An experimental variogram was computed from
all the values and modelled, Fig. 3.9a. The nugget variance has increased dra-
matically to 0.617 showing the effect of adjacent disparate values. The sill variance
is 1.341, which is an expression of the increase in variance, and the range has
decreased to 67.5 m. The dashed line in Fig. 3.9a is the generating function of the
simulated field. Figure 3.9b shows the experimental variogram and model for the
same values, but with the outliers removed. The nugget variance is zero, the sill
variance is almost 1.0 and the range is 73.6 m. This result shows how important it is
to deal with outliers in data.

3.2.5 Anisotropy

Variation can vary from one direction to another, i.e. it can be anisotropic. You
should therefore check your data for fluctuations in directional variation. In many
instances the anisotropy is such that it could be made isotropic by a simple linear
transformation of the spatial coordinates. Imagine that the region sampled is placed
on a rubber sheet, which could be stretched in the direction in which variation
seemed shortest. If the stretching eventually produces variation that is the same in
that direction as that in the perpendicular direction then the anisotropy is known as
geometric. The equation for the transformation is
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Xð#Þ ¼ A2cos2ð#� uÞ þ B2sin2ð#� uÞ� �1=2
; ð3:7Þ

where Ω defines the anisotropy, u is the direction of maximum continuity and # is
the direction of the lag.

For a spherical or exponential variogram, A is the distance parameter in the
direction of greatest continuity, i.e. the maximum value, and B is the distance
parameter in the direction of least continuity or greatest variation, the minimum. For
an unbounded variogram, the roles of A and B are reversed, and A has the larger
gradient in the direction of the greatest rate of change and B has the smaller gradient
in the direction of least change. Figure 3.12 shows an example in which there are
differences in the ranges for a bounded variogram (see Sect. 5.1).

Anisotropy can also occur as preferentially orientated zones with different means
that result in changes in variance with change in direction and fluctuations in the
sill. This is known as zonal anisotropy.

Fig. 3.9 Experimental
variograms (symbols) and
fitted models (solid lines)
computed from a field of 400
values simulated with a
spherical variogram function
with zero nugget (dashed
line): a contaminated with
five outliers resulting in a
skewness coefficient of 1.5
and b with the outliers
removed
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3.2.6 Trend

In Chap. 1 we mentioned trend. We consider it briefly here in relation to the
variogram, but Chap. 6 is devoted to the matter, and readers should turn to that
chapter for detail. We can always calculate an experimental variogram by Eq. (3.1),
but it estimates the theoretical variogram γ(h) only where the underlying process is
random. If there is trend then this equation gives a false summary of the random
part of the process. Typically, where trend is present the experimental variogram
increases without bound, and if it dominates then the experimental sequence
becomes increasingly steep as the lag distance increases (see Fig. 6.11). If you
obtain such a result then examine your data by fitting simple linear and quadratic
polynomials on the coordinates. Alternatively, map the data by some simple
graphical procedure before doing a statistical analysis; if the map shows gradual
continuous change across the region then there is trend with more or less patchiness
superimposed.

3.3 Modelling the Variogram

The experimental variogram consists of semivariances at a finite set of discrete lags.
These semivariances are estimates based on samples; they are therefore subject to
error, which itself varies from one estimate to the next. In addition, the underlying
function is continuous for all h, Eqs. (3.5) and (3.8). The next step in variography is
to fit a smooth curve or surface to the experimental values, one that describes the
principal features of the sequence (see Sect. 3.3.1) while ignoring the point-to-point
erratic fluctuation. Not any plausible-looking curve or surface will serve; it must
have a mathematical expression that can legitimately describe the variances of
random processes. It must guarantee non-negative variances of combinations of
values, and there are only a few simple functions that do so. They are known as
conditional negative semi-definite (CNSD) because the matrices to which they
contribute are themselves conditional negative semi-definite (see Webster and
Oliver 2007, for a full account).

3.3.1 Principal Features of the Variogram

(1) An increase in variance with increasing lag distance from the ordinate
In Fig. 3.10a the variogram shows a monotonic increase in variance as the lag
distance increases. The slope shows the change in the spatial autocorrelation
or dependence between sampling points as the separation distance increases.
In other words at short lag intervals, |h|, the semivariances, γ(|h|), are small
indicating that values of Z(x) are similar, and as |h| increases they become
increasingly dissimilar on average.
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(2) An upper bound, the sill variance
If the process is second-order stationary then the variogram will reach an
upper bound, the sill variance, after the initial increase as in Fig. 3.10b. For
some variograms the sill remains constant, whereas for others it is an
asymptote, which we explain below. The sill variance is also the a priori
variance, σ2, of the process.

(3) The range of spatial correlation or dependence
A variogram that reaches its sill at a finite lag distance has a range, which is
the limit of spatial correlation where the autocorrelation becomes 0, Fig. 3.10a.
Places further apart than this are spatially uncorrelated or independent. Vari-
ograms that approach their sills asymptotically have no strict ranges; in
practice, however, we use an effective range at the lag distances where they
reach 0.95 of their sills.

(4) Unbounded variogram
The variogram may increase indefinitely with increasing lag distance as in
Fig. 3.10a. It describes a process that is not second-order stationary, and the
covariance does not exist. The variogram, however, does exist and fulfils
Matheron’s (1965) intrinsic hypothesis (see Sect. 2.1, Chap. 2).

(5) A positive intercept on the ordinate, the nugget variance
The variogram often approaches the ordinate with a positive intercept known
as the nugget variance, Fig. 3.10b. Theoretically, when h ¼ 0 the semivari-
ance should also be 0 (see Chap. 2). The term ‘nugget’ in this context was

Unbounded Bounded 
variation variation

(a) (b)

V
ar

ia
nc

e

Lag distance

c

c0

a

Range

Sill variance

Nugget variance

Spatially 
dependent

Spatially 
independent

Fig. 3.10 Examples of: a unbounded and b bounded variogram models with annotations to
illustrate the parameters of a bounded model function
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coined in gold mining because gold nuggets appear to occur at random and
independently of one another. They represent a discontinuity in the variation,
an uncorrelated component, because the gold content no longer relates to that
at neighbouring sites. For properties that vary continuously in space, such as
the amount of water vapour in the atmosphere or the pH of the soil, the nugget
variance arises from measurement error (usually a small component) and
variation over distances less than the shortest sampling interval.

(6) Directional variation anisotropy
Spatial variation might vary according to direction, as mentioned above, and
we need to be able to take this into account in our analysis and modelling.

3.3.2 Variogram Model Functions

There are two principal kinds of function, namely bounded and unbounded
(Fig. 3.10). We give the equations and illustrate the three most popular models;
power function (unbounded), spherical (bounded) and exponential (asymptotically
bounded). If none of these appears to fit the experimental values then more complex
functions may be fitted. Such functions may be any combination of simple CNSD
functions; these combinations are themselves CNSD.

Theoretically, the variogram model should intercept the ordinate at the origin
according to theory as in Eq. (3.8) and Fig. 3.10a. In practice the experimental
variogram frequently, indeed usually, appears to approach the ordinate at some
positive finite value. To make the curve fit one adds a nugget component to the
simple function as in Eqs. (3.8)–(3.11) and Fig. 3.10b where there is a nugget
variance and a structured component. A more complex function is required where
there are two or more distinct scales of spatial dependence, i.e. a nested model. We
illustrate this scenario with two spherical functions, one nested within the other,
plus a nugget variance, Eq. (3.12) and Fig. 3.11. We describe the models in their
isotropic form; they are symmetric about zero lag, but we define them for |h| ≥ 0
only.

The equations for the four models are as follows.

Power function. This is an unbounded function

cðhÞ ¼ ghb for 0 \ b \ 2; ð3:8Þ

where g describes the intensity of the variation and b describes the curvature. If
b ¼ 1, the variogram is linear and g represents the gradient. The limits 0 and 2 are
excluded because β ¼ 0 indicates constant variance for all h > 0 and β ¼ 2 that the
function is parabolic with zero gradient at the origin. The latter means that the
process is not random. Figure 3.10a gives an example of an unbounded variogram
with no nugget variance as in the equation above. If such a function had a positive
intercept at the ordinate the equation would be
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cðhÞ ¼ c0 þ ghb for 0 \ b \ 2; ð3:9Þ

Spherical model. This is

cðhÞ ¼
c0 þ c 3h

2r � 1
2

h
r

� �3n o
for 0\ h� r

c0 þ c for h[ r
0 for h ¼ 0;

8><
>: ð3:10Þ

where c0 is the nugget variance, c is the variance of spatially correlated component
and r is the range of spatial dependence. Figure 3.10b illustrates a spherical

Fig. 3.11 Wheat yield recorded in 1999 in Football Field on the Shuttleworth Estate a the
experimental variogram (symbols), b the solid line is an exponential function fitted to the
experimental values, c the solid line is a spherical function fitted to the experimental values and
d the best fitting nested spherical model (solid line). The model was decomposed to illustrate the
individual model components as shown by the ornamented lines
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variogram with annotations of the main features as described above. The quantity
c0 + c is known as the sill variance.

Exponential model. This is

cðhÞ ¼ c0 þ c 1� exp � h
a

� �� �
; for 0\h

0 for h ¼ 0

	
ð3:11Þ

where a is the distance parameter. This function approaches its sill asymptotically,
and so it does not have a finite range. For practical purposes it is usual to assign an
effective range, aʹ, which is approximately equal to 3a. Figure 3.11b shows an
example of a fitted exponential function.

Nested spherical. This is

cðhÞ ¼

c0 þ c1 3h
2r1

� 1
2

h
r1


 �3
	 �

þ c2 3h
2r2

� 1
2

h
r2


 �3
	 �

for 0\ h� r1

c0 þ c1 þ c2 3h
2r2

� 1
2

h
r2


 �3
	 �

for r1\h� r2

c0 þ c1 þ c2 for h[ r2
0 for h ¼ 0;

8>>>>>><
>>>>>>:

ð3:12Þ

where c1 and r1 are the sill and range of the short-range component of the variation,
and c2 and r2 are the sill and range of the long-range component. A nugget com-
ponent can also be added as above. The yield of wheat in Football Field, Shut-
tleworth Estate, Bedfordshire, was recorded in 1999, and an experimental
variogram was computed from the values. Figure 3.11a shows the experimental
values and Fig. 3.11b and c the fitted exponential and spherical functions,
respectively. It is clear that the spherical function, Fig. 3.11c, fits poorly and that the
exponential model, Fig. 3.11b, fits reasonably. The fit of the latter emphasizes the
small change in slope evident in the experimental variogram at about lag 30 m and
another change at around lag 140 m. Figure 3.11d shows the nested spherical
function, which provides a near-perfect fit to the experimental values with a smaller
nugget variance than the exponential model and follows the values closely. The
variously ornamented lines in Fig. 3.11d show the components of the nested model;
the nugget, short-range and long-range. Table 3.4 gives the parameters of these
models; they show that the spherical function has a larger nugget variance than the
other two models and a smaller range of spatial dependence. The parameters of the
exponential model are closer to those of the nested spherical with a smaller nugget
variance and an approximate effective range (3a) of 140 m. The diagnostics in
Table 3.4 reflect the visual observations. The residual sum of squares (RSS) is much
larger for the spherical function than for the exponential and nested spherical
models, and that for the exponential is larger than for the nested model.

If your models have the same number of parameters and the ones fitted seem to
fit well then choose the one with the smallest residual sum of squares (RSS) or
smallest mean square. You may wish to fit more complex models, but you should
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be cautious because you can always diminish the RSS by increasing the number of
parameters in the fitted model. For example, the double spherical model with
nugget has five parameters, whereas the simpler single spherical model with nugget
has only three. Are the two additional parameters justifiable? To ensure parsimony
in our fitting we can compute an estimate of the Akaike Information Criterion (AIC)
(see Webster and Oliver 2007, for more detail) if, as in our comparisons above, the
models have unequal numbers of parameters as for the nested spherical model. The
AIC is estimated by

AIC ¼ n ln
2p
n


 �
þ nþ 2

	 �
þ n ln Rþ 2p; ð3:13Þ

where n is the number of points on the variogram (16 in this example), p is the
number of model parameters and R is the mean square of the residuals (RMS in
Table 3.4). The quantity in braces is constant for any one experimental variogram,
and so we need compute only

Â ¼ n ln Rþ 2p: ð3:14Þ

We then choose the model for which Â is the least. In Table 3.4, Â is markedly
smaller for the nested spherical model than for the exponential and spherical func-
tions, and so we would choose the more complex function as providing the best fit.

Anisotropic model
To examine data for both types of anisotropy compute the variogram in at least four
directions to start with: along the rows, down the columns and on the principal
diagonals if data are on a rectangular grid (see Fig. 3.12). The semivariances can be
plotted in these directions, and no information is lost. For irregularly scattered data,
we have to group the separations by direction as well as distance as in Fig. 3.3. The
angle, a, within which data are included in estimating the semivariance should
allow complete cover to start with, i.e. p=4 for four angles, which will include all
data in those directions. Note, however, that this procedure loses some directional
information. If it reveals directional variation then reduce a to identify the direction
of strongest anisotropy, but realize that the smaller a becomes the fewer will be the

Table 3.4 Parameters of models fitted to yield from Football Field, Shuttleworth Estate,
Bedfordshire, UK recorded in 1999

Model type Estimates of parameters Diagnostics

c0 c1 c2 a1/m a2/m r/m RSS RMS %
variance

AIC

Exponential 0.2437 1.291 47.33 3 802 292.5 99.5 96.86

Spherical 0.4516 0.9994 118.4 14 896 1 146 97.8 118.7

Nested
spherical

0.1975 0.4318 0.8415 33.88 137.8 1 052 95.63 99.8 82.97
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number of comparisons and the greater will be the error in the estimated semi-
variances. Choosing a is therefore a compromise between a stable estimate based on
many comparisons that will underestimate the directional effect with a wide angle
and one that is subject to greater error but reflects the anisotropy more closely.

Figure 3.12a, b shows the experimental variograms of pH and exchangeable
potassium (as log10 K+), respectively, at Broom’s Barn Farm computed in four
directions. The directional variogram of pH shows a longer range of variation in the
north–south (90°) direction and a shorter range in the east–west (0) direction,
whereas for log10 K

+ no anisotropy is evident. The directional variogram for pH has
been fitted with an anisotropic exponential function:

cðh; #Þ ¼ c0 þ c 1� exp � hj j=Xð#Þ½ �f g; ð3:15Þ

where |h| is the modulus of the lag and Ω(#) is defined in Eq. (3.7). The model
parameters are given in Table 3.4 and Fig. 3.12a shows the envelope of the model
as the dotted lines. An isotropic exponential function was also fitted; the parameters
of this are given in the table and the model is the solid line in Fig. 3.12a.

Fig. 3.12 Experimental variograms computed in four directions: a pH; the solid line is the
isotropic exponential model and the dotted lines form the envelope of the fitted anisotropic
exponential model and b log10 K

+ with the fitted isotropic spherical function
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3.4 Factors Affecting the Reliability of Variogram Models

There are operational aspects that we need to consider when computing the exper-
imental variogram and fitting models. They include the effects of poor choice of lag
or bin interval and of maximum lag, and sample size on the reliability of the model
parameters that will then be used for kriging. The experimental variogram should be
computed and modelled only as far as it is reliably estimated. We recommend that
you compute it to a maximum lag of no more than a third to one half of the extent of
the data. Table 3.1 shows how the number of comparisons (counts) starts to decrease
after a certain lag distance. It is at this lag distance (about 530 m) that the semi-
variances also start to depart from the smooth curve; this is a sign that the estimates
are becoming increasingly unreliable (Fig. 3.13). Table 3.5 shows how the model
parameters of the fitted spherical models also change for log10 K

+ when the model
was fitted to a maximum lag of 900 m compared with 550 m.

3.4.1 Fitting Models

Fitting models remains controversial in geostatistics, yet it is one of the most
important stages to get right. Some practitioners fit models by eye, which we do not
recommend because the observed semivariances may fluctuate too much from point
to point and their accuracy is not constant, which makes this approach unreliable.
Fitting models with ‘black box’ software can also produce poor results because
there is no choice, judgement or control over the process. We recommend a pro-
cedure that involves both visual inspection and statistical fitting in steps as follows.

Fig. 3.13 Experimental
variogram computed and
modelled to a maximum lag
of 900 m for log10 K

+ at
Broom’s Barn Farm
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1. First, plot the experimental variogram, the black discs in Fig. 3.14.
2. Choose several models with a similar shape and fit each in turn by weighted

least squares, the curves in Fig. 3.14.
3. Plot the fitted models on the graph of the experimental variogram and assess

whether the fit looks reasonable. If all plausible models seem to fit well, choose
the one with the smallest residual sum of squares (RSS) or smallest mean
square. If the models have unequal numbers of parameters as for the nested
spherical model then compute the Akaike Information Criterion (AIC) and
choose the model for which the AIC is least as above.

Figure 3.14a, c and e shows the experimental variogram computed from
log10 K+ with 87 data. None of the three models chosen, power, spherical and
exponential Eqs. (3.9)–(3.11), respectively, and displayed above in Sect. 3.3.2,
appears to fit well. Without the diagnostic information in Table 3.5 it would be
difficult to choose between them. The exponential function has the smallest residual
mean square (RMS) and accounts for the most variance, albeit only 44 %. The
difference between the parameters of the two bounded functions, spherical and
exponential, Eqs. (3.10) and (3.11), is marked, especially in relation to the nugget
variance, c0. The power function, Eq. (3.7), provides the next best fitting model,
although it is clear from the variogram of the full set of data, Fig. 3.14b, that the
underlying process is second-order stationary and requires a bounded function. For
the same functions fitted to the experimental variogram of the full data, 434 sites,
the best fitting function is clearly the spherical one which has a very small RMS and
accounts for 99.4 % of the variance (Table 3.5). The exponential and power
functions fit less well both visually and from the diagnostic values. The importance
of an adequate sample size is clear from this example, which illustrates the poor fit
of all functions to the experimental values from the sample of 87 and the small
percentage variance accounted for compared with those for the full set.

Finally, we compare the effect of choice of lag interval and bin width for the data
on the cadmium in the soil near Madrid, again with data from Vázquez de la Cueva
et al. (2014). Figure 3.7 shows experimental variograms computed with a lag
interval of 1 km in Fig. 3.7a–c and of 3 km in Fig. 3.7d. The variogram computed
with a lag of 1 km is so erratic that none of the functions provides a good fit.
Several of the exponential and spherical models fitted appear to be as good as any
other, whereas for Fig. 3.7d it is clear that the model represented by the dotted line
(spherical with range of 10 km and no iteration) provides the best fit. Table 3.6 lists
the parameters of the functions fitted to the two experimental variograms. Different
initial values for the non-linear parameter, r, for the spherical model were used and
also different numbers of iterations which give increasing weight to values near to
the origin. Because the experimental semivariances are based on different numbers
of paired comparisons, m(h) in Eq. (3.1), and because confidence in the estimate of
variance decreases as its value increases, we generally weight the semivariances by
the number of counts when fitting the models. The inverse relation between the
reliability of an estimate of variance and the variance itself led Cressie (1985) to
propose a more elaborate weight, which has the form
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mðhjÞ
�
c�2ðhjÞ; ð3:16Þ

where c�2ðhjÞ is the value of semivariance predicted by the model. The quantity
c�2ðhjÞ is inserted into the weighting vector and the fitting is repeated, and the

Fig. 3.14 Experimental variograms computed from 87 data for log10 K+ Broom’s Barn Farm,
Suffolk and fitted with: a spherical model, c exponential model and e power function, and
experimental variograms computed from 434 data and fitted with: b spherical model, d exponential
model and f power function
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whole process is iterated to convergence, i.e. until there is no perceptible change in
c�2ðhjÞ. However, McBratney and Webster (1986) discovered that one iteration was
usually sufficient, and so in GenStat, for example, only one repeat is programmed.

The second iteration is a refinement of the former proposed by McBratney and
Webster (1986):

mðhjÞĉðhjÞ
�
c�3ðhjÞ; ð3:17Þ

where ĉðhjÞ is the observed value of the semivariance at hj. Both iterations give
more weight to estimates close to the origin, which is usually desirable for kriging.

Table 3.6 Models fitted to experimental variograms of cadmium in soil of Madrid region

Fitting Estimates of parameters Diagnostics

c0 c a/km r/km MSE MSDR Correlation

Lag interval 1 km

Spherical to
30 km, initial
25 km

0.2766 0.2011 76.0 0.3422 1.112 0.144

After one
iteration

0.2329 0.1259 18.5 0.3480 1.201 0.145

After two
iterations

0.1665 0.1833 10.6 0.3581 1.341 0.167

Spherical to
30 km, initial
10 km

0.1654 0.1868 10.75 0.3594 1.350 0.164

Exponential
to 30 km,
initial 3 km

0.1907 0.1762 6.63 0.3424 1.219 0.1898

Spherical to
15 km, initial
10 km

0.1575 0.1685 8.57 0.3392 1.284 0.228

Exponential
to 15 km,
initial 3 km

0.1012 0.2261 2.54 0.3371 1.292 0.241

Lag interval 3 km

Spherical to
30 km, initial
3 km

0.2754 0.2062 76.8 0.3422 1.115 0.144

After iteration 0 0.3415 4.32 0.3602 2.125 0.258

Spherical to
30 km

0.1536 0.1978 10.08 0.3574 1.364 0.181

c0 is the nugget variance, c is the sill variance of the correlated structure and a is the range of the
spherical model and r is the distance parameter of the exponential model
MSE is the mean squared error and MSDR is the mean squared deviation ratio
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The initial value of the non-linear parameter, r, for the spherical model, can
seriously affect the final model fitted: contrast the three curves in Fig. 3.14d. The
weights given to the semivariances, ĉðhÞ, can also seriously affect the final model if
the distance parameter is chosen poorly initially: see Fig. 3.7a and d and the
parameters in Table 3.6.

Another fairly popular way of choosing models for variograms is by cross-
validation. This procedure involves leaving out each and every value in the data in
turn and kriging the value there using the surrounding data and the given model
parameters. The kriged values ẐðxiÞ are compared with the observed ones z(xi). The
mean squared error (MSE) between the predictions and the observed values, the
mean squared deviation ratio (MSDR) and the median of the squared deviation ratio
are calculated and used as criteria of the goodness of the models. The precise nature
of these quantities will be apparent when we have described kriging and so they are
defined at the end of the next chapter, Chap. 4.
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Chapter 4
Geostatistical Prediction: Kriging

Abstract Kriging is the geostatistical method of prediction. It is a best linear
unbiased predictor on punctual or block supports; best in the sense that its pre-
diction error variances are minimized. It is in practice a weighted moving average in
which the weights depend on the variogram and the configuration of the sample
points within the neighbourhood of its targets. Ordinary kriging is by far the most
popular method, partly because it is robust with respect to departures from the
underlying assumptions. There are, however, numerous more advanced types of
kriging for specific tasks. Examples illustrate the effects on the kriging weights, the
predictions and the prediction variances of changing the variogram parameters and
the sample configurations. Punctual and block kriging are compared for mapping
the predictions and errors. Kriging in the presence of anisotropy, simple kriging and
lognormal kriging are also illustrated. A solution for back-transformation to the
original scale is given for lognormal kriging. Punctual kriging can be used to
identify suitable variogram models from the diagnostic statistics of ‘leave-one-out’
cross-validation.

Keywords Interpolation � Best linear unbiased predictor � Ordinary kriging �
Lognormal kriging � Simple kriging � Punctual kriging � Block kriging �Weights �
Neighbourhood � Mapping � Cross-validation

4.1 Introduction

In Chap. 1 we made the point that the environment is continuous and that scientists
can measure its properties at only finite numbers of places on small supports. Yet
those scientists or their clients often want to know values of those properties at
unvisited places in between, in principle everywhere, and to map them; they want to
interpolate from their measurements.

Several mathematical interpolators and regression (trend surface analysis) have
been used with varying success for making maps from sparse data. None, however,
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provides sound estimates of the errors in its interpolations. Kriging, the geostatis-
tical method of interpolation, does that. Further, it minimizes the errors and is best
in that sense, and because its predictions are also unbiased it is often known as a
best linear unbiased predictor (BLUP).

The term krigeage was coined by P. Carlier in recognition of D.G. Krige’s
pioneering innovation for estimating concentrations of gold and other metals in ore
bodies. Matheron (1963) later introduced it into the English language as ‘kriging’,
and his doctoral thesis (Matheron 1965) placed the technique within the general
framework of the theory of random processes. Matheron’s work was not in isola-
tion; Kolmogorov (1939, 1941), Wold (1938) and Wiener (1949) had already come
close to kriging, but in time rather than in space (Cressie 1990).

Kriging predicts values at unvisited sites from sparse sample data based on a
stochastic model of continuous spatial variation. It does so by taking into account
knowledge of the spatial variation as represented in the variogram or covariance
function. Ordinary kriging requires no other information than that plus the mea-
surements and their geographic coordinates. It is by far the most popular kind of
kriging, and with good reason; it serves well in most situations with its assumptions
easily satisfied. It is also robust with regard to moderate departures from those
assumptions, and therefore we focus on it. More elaborate forms of kriging have
been developed to tackle increasingly complex problems in petroleum engineering,
mining and geology, meteorology, soil science, precision agriculture, pollution
control, public health, fishery, plant and animal ecology, remote sensing and
hydrology. We devote another chapter, Chap. 6, to kriging with drift, but others are
beyond the scope of this brief, and we refer you to our fuller text (Webster and
Oliver 2007) for descriptions of several of them.

4.2 Theory

Ordinary kriging is based on the assumption that variation is random and spatially
dependent, and that the underlying random process is intrinsically stationary with
constant mean and a variance that depends only on separation in distance and
direction between places and not on absolute position. The assumption is the same
as that on which the variogram is based—see Eqs. (2.1) and (2.4).

A kriged prediction is a linear sum of data, which may be in one, two or three
dimensions. Most applications in environmental science are in two dimensions, and
so we treat the matter as two-dimensional. Predictions can be made for points (i.e.
having the same support as the measurements) or blocks, and we formalize the
procedure for both punctual and block kriging below.

Suppose that values of a random variable, Z, have been recorded at sampling
points, x1, x2, …, xN to give N data, z(xi), i = 1, 2, …, N. For punctual kriging, we
predict Z at any new point, x0, by

44 4 Geostatistical Prediction: Kriging

http://dx.doi.org/10.1007/978-3-319-15865-5_6
http://dx.doi.org/10.1007/978-3-319-15865-5_2
http://dx.doi.org/10.1007/978-3-319-15865-5_2


Ẑðx0Þ ¼
XN
i¼1

kizðxiÞ; ð4:1Þ

where λi are the weights. To ensure that the estimate is unbiased the weights are
made to sum to 1:

XN
i¼1

ki ¼ 1: ð4:2Þ

The expected difference is E[Ẑðx0Þ � zðx0Þ� ¼ 0; and the prediction variance is
given by

var Ẑðx0Þ
� � ¼ E Ẑðx0Þ � zðx0Þ

� �2
h i

¼ 2
XN
i¼1

kic xi � x0ð Þ �
XN
i¼1

XN
j¼1

kikjc xi � xj
� �

; ð4:3Þ

where the quantity γ(xi – x0) is the semivariance of Z between the sampling point xi
and the target point x0 and γ(xi – xj) is the semivariance between the ith and jth
sampling points. The semivariances are derived from the variogram model, partly
because there is no measure of the semivariances between the data points and the
target points where we have no observed values and partly because only by doing
so can we guarantee that the variances are not negative. If a target point also
happens to be a sampling point then punctual kriging returns the observed value
there and the estimation variance is zero. Punctual kriging is an exact interpolator in
this sense (see Sect. 4.2.5).

Practitioners often want to predict average values within areas that are larger
than the supports of the data; for that they need block kriging. The above formulae
for ordinary punctual kriging are readily adapted to block kriging. The estimate for
any block is still a weighted average of the data, z(x1), z(x2), …, z(xN):

ẐðBÞ ¼
XN
i¼1

kizðxiÞ; ð4:4Þ

and the weights sum to 1 as before. The prediction variance of Z(B), however, is
now

var Ẑ Bð Þ� � ¼ E Ẑ Bð Þ � z Bð Þ� �2
h i

¼ 2
XN
i¼1

ki�c xi;Bð Þ �
XN
i¼1

XN
j¼1

kikjc xi � xj
� �� �c B;Bð Þ; ð4:5Þ
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where �cðxi;BÞ is the average semivariance between data point xi and the target
block B, and �cðB;BÞ is the average semivariance within B, the within block
variance.

The next step in kriging is to find the weights that minimize the kriging variances
subject to the constraint that they sum to 1. Equations (4.1)–(4.3) for a point lead to
a set of N + 1 equations in the N + 1 unknowns:

XN
i¼1

kicðxi � xjÞ þ wðx0Þ ¼ cðxj � x0Þ for all j

XN
i¼1

ki ¼ 1:

ð4:6Þ

The quantity ψ(x0) is a Lagrange multiplier introduced to achieve minimization.
The solution of the kriging equations provides the weights in Eq. (4.1), and the
prediction variance can be obtained as

r2ðx0Þ ¼
XN
i¼1

kicðxi � x0Þ þ wðx0Þ: ð4:7Þ

The kriging equations can also be written in matrix form. For punctual kriging
they are given by

Ak ¼ b; ð4:8Þ

where the matrix A represents the semivariances between the ith and jth sampling
points, λ is the vector of weights and b is the vector of semivariances between each
sampling point and the target point. Matrix A is inverted, and the weights and
Lagrange multipliers are obtained as

k ¼ A�1b: ð4:9Þ

The kriging variance in matrix form is

r̂2 x0ð Þ ¼ bTk: ð4:10Þ

The equivalent kriging system for blocks is

XN
i¼1

kicðxi � xjÞ þ wðBÞ ¼ �cðxj;BÞ for all j

XN
i¼1

ki ¼ 1;

ð4:11Þ
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and the block kriging variance is obtained as

r2ðBÞ ¼
XN
i¼1

ki�cðxi; BÞ þ wðBÞ � �cðB;BÞ: ð4:12Þ

In the matrix representation for block kriging, b in Eq. (4.8) is the vector of
semivariances between each sampling point and the target block and the kriging
variance becomes

r̂2 Bð Þ ¼ bTk� ĉ B;Bð Þ: ð4:13Þ

The variances of block kriging are in general smaller than those of punctual
kriging because any nugget variance is contained entirely in the within-block
variance, �cðB;BÞ, and so it disappears from the block-kriging variance, as is evident
in Eq. (4.9). There is also somewhat less fluctuation among the block kriged pre-
dictions than among punctual ones, and so kriged surfaces made by block kriging
are smoother than those made by punctual kriging (see Sect. 4.2.3).

The equations above show clearly the crucial role played by the variogram in
kriging, and it is for this reason that we emphasized its importance in Chap. 3.

4.2.1 Kriging Weights

Equations (4.6) and (4.11) show that the kriging weights depend on the variogram;
they are functions of the semivariances between the sites in the neighbourhood,
γ(xi – xj), and those between each sampling point and the point or block to be
predicted, or γ(xi – x0) or �cðB; xiÞ, respectively.

When one solves the kriging equations in practice one usually finds that only
points near to the target carry significant weight and that most can be disregarded.
Kriging is seen to be a local predictor. Further, it means that only points near to the
target need to be included in the kriging systems which can be much smaller than
one that includes all N data points and is computationally more tractable. Kriging
for mapping then proceeds within a moving window. We illustrate these effects in
the following examples. We use a set of data on log10 K

+ recorded on a 4 × 4 grid at
Broom’s Barn Farm (a farm of 80 ha in Suffolk, England). The best fitting model to
these data was a spherical function (see Fig. 3.4a),

cðhÞ ¼
c0 þ c 3h

2r � 1
2

h
r

� �3n o
for 0\h� r

c0 þ c for h[ r
0 for h ¼ 0;

8><
>: ð4:14Þ

in which c0, the nugget variance, is 0.004, c, the variance of spatially correlated
component is 0.016 and r, the range of spatial dependence, is 426 m.
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4.2.1.1 Effect of the Ratio of the Nugget:Sill Variances

We have pointed out elsewhere (Oliver and Webster 2014) that the nugget:sill ratio,
c0: c0 + c, obtained from data is strictly a characteristic of the empirical model fitted
to an experimental variogram. Because we use the model for kriging, however, the
ratio can have important consequences. First for punctual kriging, we show the
effect of changing this ratio on the kriging weights, the predictions and the pre-
diction variances. We keep the range constant as for the best fitting spherical
function given above. Figure 4.1 shows the layout of the 16 data points with the
target at the centre. In Fig. 4.1a the weights are for a variogram model with zero

–0.0126 –0.0100 –0.0100 –0.0126

–0.0126 –0.0126–0.0100 –0.0100

–0.0100

–0.0100–0.0100

–0.0100 0.2825 0.2825

0.28250.2825

Estimate:  1.4457 Estimate:  1.4218

Estimation variance:  0.001555 Estimation variance:   0.009159

0.0063 0.0063

0.0063 0.0063

0.0377 0.0377

0.0377

0.0377

0.03770.0377

0.0377

0.0377 0.1683 0.1683

0.1683 0.1683

0.0935 0.0930

0.09300.0935

0.0625 0.0625

0.0625 0.0625 0.0625 0.0625

0.0625

0.0625

0.0625 0.0625

0.0625 0.0625 0.0625

0.0625 0.0625 0.0625

0.0433 0.0433

0.0433 0.0433

0.0563 0.0563

0.0563

0.0563

0.0563

0.05630.0563

0.0563

(a) (b)

(c) (d)

Estimate:  1.4030 Estimate:  1.3942

Estimation variance:   0.01388   Estimation variance:  0.02125

Fig. 4.1 Punctual kriging weights for 16 (4 × 4) log10 K
+ data from Broom’s Barn Farm (Suffolk,

England) based on a spherical function with a range of 426 m. The nugget:sill ratio was changed as
follows: a c0 = 0:c = 0.02, b c0 = 0.004:c = 0.016, c c0 = 0.012:c = 0.008 and d c0 = 02:c = 0
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nugget, a sill of 0.02 and range of 426 m. The four points closest to the target carry
almost all of the weight, and the weights of all of the other points are negative. The
points at the four corners, which are furthest from the target point, have the smallest
absolute weights.

Figure 4.1b shows the weights for the spherical function with a nugget:sill ratio
of 0.2. Its distribution of weights differs markedly from that in Fig. 4.1a; the four
central points have about 60 % less weight, more weight is given to the next nearest
points and to the four corner points, which still carry the smallest weights. Fig-
ure 4.1c shows what happens if the nugget:sill ratio is increased to 0.6. The four
points closest to the target have much smaller weights than before, whereas the
outer points now have considerably larger weights. The overall effect of the larger
nugget variance is to weaken the effect of the closest points. Figure 4.1d shows that
when the variogram is pure nugget the weights are all the same because all that can
be estimated is the mean of these 16 points or of the points in the kriging neigh-
bourhood (see Sect. 4.2.2). Table 4.1 shows how the predictions and prediction
variances change with the increasing nugget effect; the variances increase, and in
this instance because of the configuration of the data the predicted values decrease.
We assume that the most likely value at the point is 1.424 because this was
predicted with the best fitting model. Although the estimation variance is smallest
for the variogram with zero nugget variance, we should want to be sure that such a
model was realistic before placing our trust in the outcome; we should not want the
potentially false sense of security that it might give.

These results show how sensitive the weights and prediction variances are to the
model parameters and confirm the importance we give in Chap. 3 to computing and
modelling the variogram accurately. This is illustrated further in Fig. 4.2 in which
the model is anisotropic. The weights near to the target are small in the direction of
maximum variation and large in the direction of minimum variation.

If the target point to be predicted is away from the centre of the grid cell the data
point closest to it has the largest weight. The weights of the other three central
points are still larger than the outer weights, but they are no longer all the same. The
latter also applies to the outer weights. Where the target point coincides with a
sampling point the weight of the latter is 1 and elsewhere the weights are zero. The
predicted value is the value of the datum, and the kriging variance is zero. This
illustrates that punctual kriging is an exact predictor, as shown in Fig. 4.10a, b.

Table 4.1 Punctually kriged estimates, estimation variances and Lagrange multipliers determined
from 16 log10K

+ data from Broom’s Barn Farm, Suffolk, with a spherical model, a set range and
different nugget:sill variances

Model properties Punctual kriging

Spherical—range 426 m Kriged estimate Estimation variance Lagrange multiplier

c0 = 0; c = 0.02 1.446 0.00156 –0.0000436

c0 = 0.004; c = 0.016 1.422 0.00599 –0.0002657

c0 = 0.008; c = 0.012 1.410 0.00998 –0.0000744

c0 = 0.012; c = 0.008 1.403 0.01380 0.0002919

c0 = 0.02; c = 0 1.394 0.02125 0.001250

4.2 Theory 49

http://dx.doi.org/10.1007/978-3-319-15865-5_3


4.2.1.2 Changing the Range

In this example, we show the effect of changing only the variogram range; the
nugget variance, c0, and spatially dependent component, c, are kept constant with
the values of the best fitting spherical model for the data. If the range is much
shorter than the sample spacing, for example half (20 m) the sampling interval, then
the weights are all the same as for a pure nugget variogram. We see in Table 4.2
that the predicted value and its variance are the same as for the pure nugget example
in Table 4.1. Simply, in the model all the variation o ccurs over distances less than
the sampling interval. For a range of 120 m, Fig. 4.3a, the weights of the four
central points are much larger than the next circle of points and those at the four
corners are negative. As the range increases, the weights of the inner circle of points
decrease and those of the outer points increase although they are still negative for a

Table 4.2 Punctually kriged estimates, estimation variances and Lagrange multipliers determined
from 16 log10K

+ data from Broom’s Barn Farm, Suffolk, with a spherical model, a set nugget:sill
variance and different ranges

Model properties Punctual kriging

Spherical—c0 = 0.004;
c = 0.016 (m)

Kriged estimate Estimation variance Lagrange multiplier

Range, r, = 20 1.394 0.02125 0.001250

Range, r, = 120 1.439 0.00959 0.0000634

Range, r, = 280 1.428 0.00676 –0.000308

Range, r, = 426 1.422 0.00599 –0.000266

Range, r, = 680 1.416 0.00541 –0.001682
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Fig. 4.2 Punctual kriging weights for 16 (4 × 4) log10K
+ data from Broom’s Barn Farm (Suffolk,

England) based on an anisotropic spherical function with the direction of maximum variation
(minimum range), φ = 45°, a minimum range of 250 m, a maximum range of 480 m and anisotropy
ratio of 2. The nugget:sill ratio was changed as follows: a c0 = 0:c = 0.02 and b c0 = 0.004:
c = 0.016
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range of 280 m, Fig. 4.3b. For the two longest ranges in this example, 426 m,
Fig. 4.3c and 680 m, Fig. 4.3d, the inner weights become smaller and the outer ones
larger. The predicted values have no clear pattern, and, apart from the very short
range, the values are similar to one another. The prediction variances decrease with
the increase in range, which reflects the implied increase in continuity of the pro-
cess. These results show that if the nugget variance is estimated correctly then the
range is less important for kriging. This is because kriging uses only semivariances
near to the ordinate of the variogram. However, for sample design and interpreta-
tion of the variation, it is important to ensure that the range is also estimated
precisely (see Chap. 5).
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Fig. 4.3 Punctual kriging weights for 16 (4 × 4) log10K
+ data from Broom’s Barn Farm (Suffolk,

England) based on a spherical function with a nugget variance, c0 = 0.004 and sill variance,
c = 0.016. The range was changed as follows: a a = 120 m, b a = 280, c a = 426 m and d a = 680
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4.2.1.3 Block Kriging

We kriged log10K
+ in cell-centred blocks of side of 60 m from the same data with

the best fitting spherical function given above. With c0 = 0, c = 0.02 and r = 426 m,
the weights of the centre four points are less than those for punctual kriging, the
next circle of weights are small but positive, and the outer four points have negative
weights close to zero. With the parameters of the best fitting model, the inner four
weights are smaller than for the equivalent punctual kriging, and the outer weights
are all somewhat larger. Table 4.3 lists the predicted values and block kriging
variances; the predicted values are similar to those for punctual kriging, but the
variances are an order of magnitude smaller than for punctual kriging for a vari-
ogram with a zero nugget variance.

4.2.1.4 Kriging with Irregularly Scattered Data

In the final example, we selected 11 irregularly distributed sites and used the best
fitting model for punctual kriging. Figure 4.4 shows the distribution of the 11 data
points and the target point to be estimated. The weights for the variogram with zero
nugget have a markedly different distribution from those on the grid, Fig. 4.4a. The
closest point to the target has a substantially larger weight than the other closest
points. The distribution of the weights, however, illustrates some other effects on
the weights. The weight of the point to the north east of the target is smaller than
that of the point to its left—this is because it is somewhat further from the target and
its weight is also affected by the proximity of this point. The point to the north of it
has a negative weight because it is in the shadow of the nearer point. The point to
the east of the target has a larger weight than that to the north east of the tar-
get although it is further from the target. This is because no other points lie close to
it. The outermost point in the south west corner has a larger weight than that to its
north because it is not in the shadow of any other points, whereas the point in the
north east corner has a negative weight because it is in the shadow of another.
Figure 4.4b shows the result for the best fitting spherical function to the log10K

+

data. There is still a marked difference between the closest point to the target and

Table 4.3 Block kriged estimates, estimation variances and Lagrange multipliers determined
from 16 log10K

+ data from Broom’s Barn Farm, Suffolk, with a spherical model, a set range and
different nugget:sill variances

Model properties Block kriging

Spherical—range 426 m Kriged estimate Estimation variance Lagrange multiplier

c0 = 0; c = 0.02 1.437 0.000149 –0.000050

c0 = 0.004; c = 0.016 1.417 0.000706 –0.000196

c0 = 0.008; c = 0.012 1.407 0.000960 –0.0000079

c0 = 0.012; c = 0.008 1.401 0.001104 0.0003590

c0 = 0.02; c = 0 1.394 0.001250 0.001250
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the next closest, but these weights are considerably smaller. Of interest is the weight
of the point to the east of the target—this is now smaller than that of the point to the
north east. The effect of the nugget variance is to even out the weights, and this
effect appears greater for irregularly spaced data than for the grid. The results for the
irregularly spaced data emphasize the greater need for accuracy in computing a
variogram from irregularly spaced data (see also Chap. 3) (Fig. 4.4).

4.2.2 Kriging Neighbourhood

We pointed out that kriging is essentially local, and the above examples show that it
is so provided the nugget:sill ratio of the model is small. The matter does not rest
there, however.

The local nature of ordinary kriging means that we can accept the assumption of
local stationarity (or quasi stationarity), which means that we can restrict the
assumption of stationarity of the mean to that within the kriging neighbourhoods.
What happens over distances larger than that across the neighbourhood is of little
consequence for the predictions, and the underlying assumptions of the method are
not violated in practice. Another aspect of the matter is of greater significance; the
kriged predictions and especially their associated variances depend very much on
that part of the variogram model close to the ordinate, i.e. over lag distances shorter
than the distances between target points and their nearest neighbours. This means
that you should estimate and model the variogram well there. It supports the idea of
giving more weight to the experimental semivariances near to the origin when you
model the variogram specifically for kriging (see Chap. 3).
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Fig. 4.4 Punctual kriging weights for 11 irregularly scattered log10K
+ data from Broom’s Barn

Farm (Suffolk, England) based on a spherical function with a range, a, of 426 m and nugget:sill
variance: a c0 = 0:c = 0.02 and b c0 = 004:c = 0.016
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There are no rules for defining the kriging neighbourhood, but we provide the
following guidelines.

1. If the data are dense and the variogram is bounded and has a small nugget
variance then the radius of the neighbourhood can be set close to the range or
effective range of the variogram because data beyond the range will have
negligible weight.

2. For a variogram with a large nugget variance, the radius of the neighbourhood
could be greater than the range because distant points are likely to carry sig-
nificant weight, see Fig. 4.1c. The same applies if the data are sparse and points
beyond the range may carry sufficient weight to be important (see Fig. 4.4).

3. You may choose to set the neighbourhood in terms of a minimum and maximum
number of nearest data to the target; we usually recommend a minimum n ≈ 7
and a maximum n ≈ 20. The minimum is needed for targets near to the boundary
of the region.

4. If the data are very unevenly scattered it is good practice to divide the neigh-
bourhood into octants so that there are at least two points in each. The good
sense of this is evident in Fig. 4.4.

5. When you start to analyse new data examine what happens to the kriging
weights as you change the neighbourhood, especially where the data are
irregularly scattered and you use a moving window for mapping.

4.2.2.1 Effect of the Kriging Neighbourhood

To illustrate the effect of the kriging neighbourhood, we use an example of readily
extractable cobalt (Co) in the topsoil from the Borders Region of Scotland. The data
are from an original study by McBratney et al. (1982). There were almost
2 000 measured concentrations in the eastern part of the region, and the values in
mg kg−1 were transformed to their common logarithms to reduce the skewness and
so stabilize the variances. Table 4.4 summarizes the statistics of the log10Co data.

Table 4.4 Summary
statistics of cobalt and
log10Co from the Borders
Region of Scotland

Co/mg kg−1 Log10Co

Number of data 1980 1980

Minimum 0.050 –1.301

Maximum 1.00 0

Mean 0.254 –0.639

Median 0.220 –0.658

Standard deviation 0.123 0.195

Variance 0.0151 0.0379

Skewness 1.606 0.140
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An isotropic experimental variogram was computed by the method of moments,
and it was fitted by an isotropic exponential function which was used for kriging.
The exponential function is given by

cðhÞ ¼ c0 þ c 1� exp � h
a

� 	
 �
; ð4:15Þ

where c0 is the nugget variance, c is the variance of spatially correlated component
and r is the distance parameter. Table 4.6 lists the model parameters and Fig. 4.5
shows the variogram; the symbols are the experimental values and the solid line is
the fitted model. The prediction grid was 100 m × 100 m, and the size of the moving
kriging neighbourhood (or window) was varied as follows to include: (1) a maxi-
mum of 20 points, a minimum of 17 points; (2) maximum of 40, minimum of 37;
(3) maximum of 80, minimum of 77 and (4) maximum of 140, minimum of 137. It
is usual to set a window size with a much larger maximum number of points than
the minimum, but here we have used a larger minimum to ensure that we know how
many points are in the neighbourhood. Figure 4.6 shows the result of mapping the
kriged predictions of log10Co for the various neighbourhood sizes. Figure 4.6a for
the smallest neighbourhood size shows detail that is not apparent in the maps for the
larger neighbourhoods. Figure 4.6b shows more variation than Fig. 4.6c, d; these
latter maps show a similar degree of variation. As the neighbourhood size increases,
the detail decreases to a point at which it becomes stable.

Figure 4.7 shows the maps of kriging variances for the four neighbourhood
sizes. The kriging variances are largest for the smallest neighbourhood of 20 points,
Fig. 4.7a, and they decrease considerably for the second neighbourhood size of 40
points, Fig. 4.7b, and by a decreasing amount for the third neighbourhood size of 80

Fig. 4.5 Experimental
variogram of log10Co
(symbols) in the Borders
Region of Scotland with a
fitted exponential model
(solid line)
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points, Fig. 4.7c. There is no further decrease in the kriging variances for the largest
kriging neighbourhood of 140 points, Fig. 4.7d.

Evidently automation without regard to the nugget effect can produce unwar-
ranted detail. The larger is the nugget:sill ratio in your model the larger should be
the neighbourhood within which to search for data.
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Fig. 4.6 Maps of ordinary punctually kriged predictions of log10Co in the Borders Region of
Scotland with the kriging neighbourhood set as follows: a 20 maximum points, 17 minimum
points, b 40 maximum points, 37 minimum points, c 80 maximum points, 77 minimum points and
d 140 maximum points, 137 minimum points
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4.2.3 Punctual and Block Kriging for Mapping

We have already distinguished punctual and block kriging. We illustrate the dif-
ference with data from a case study by Webster and McBratney (1987) on available
phosphorus, P, in the topsoil of Broom’s Barn Farm. Table 4.5 summarizes the data
from the survey at 40-m intervals on a square grid. The data are strongly skewed
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Fig. 4.7 Maps of ordinary punctual kriging variances of log10Co in the Borders Region of
Scotland with the kriging neighbourhood set as follows: a 20 maximum points, 17 minimum
points, b 40 maximum points, 37 minimum points, c 80 maximum points, 77 minimum points and
d 140 maximum points, 137 minimum points
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(the skewness coefficient is 3.95), and so we transformed the measurements to their
common logarithms, log10P, for which the skewness coefficient is only 0.364. The
variogram was computed on the transformed data, and the experimental semi-
variances were fitted best by a circular model given by:

cðhÞ ¼
c0 þ c 1� 2

p cos
�1 h

r

� �þ 2h
pr

ffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

r2

qn o
for 0\h� r;

c0 þ c for h[ r;
0 for h ¼ 0:

8><
>: ð4:16Þ

Figure 4.8 shows the experimental variogram (symbols) and the fitted circular
model (solid line), and Table 4.6 lists the model parameters. The circular function
was then used for both punctual and block kriging. We set the maximum radius of
the neighbourhood to 380 m and the minimum number of points in the

Table 4.5 Summary
statistics of three variables
from Broom’s Barn Farm

P/mg l−1 Log10(P) pH

Number of data 433 434 435

Minimum 0.4 –0.398 5.50

Maximum 49.0 1.69 8.60

Mean 4.865 0.546 7.272

Median 3.5 0.544 8.0

Standard deviation 5.150 0.338 0.644

Variance 26.52 0.114 0.415

Skewness 3.946 0.231 –1.30

Kurtosis 21.47 0.364 0.952

Fig. 4.8 Experimental
variogram of log10P (symbols)
at Broom’s Barn farm
(Suffolk, England) with a
fitted circular model (solid
line)
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neighbourhood to seven and the maximum to 20. We kriged at the nodes of a 10-m
grid. For block kriging we chose blocks of 20 m × 20 m.

Provided the measurements are free of error, punctual kriging at sampling points
returns the data values there with a variance of zero. Figure 4.9a shows the kriged
map that includes predictions at sampling points. It appears spotty because of the
isarithms, ‘contours’, that surround many of the sampling points. The effect arises
largely because of the nugget variance, which is 28 % of the sill variance. The
nugget variance represents a discontinuity, which is present in the kriged results.
Figure 4.10a is a perspective diagram of these punctually kriged estimates; the
spikes above and below the surface at many of the sampling sites illustrate the
discontinuity. The spikes represent the measured values at the sampling points;
elsewhere the predictions are weighted averages of data in the neighbourhoods. The
kriged estimates effectively comprise two parts, namely an uncorrelated component
represented by the nugget variance, and the spatially correlated component, rep-
resented by c in Eq. (4.12). The larger is the nugget variance in relation to the total
variance, the greater is this effect. If all the variance were nugget, the surface would
become flat between sampling points because punctual kriging simply returns the
means of the data within the neighbourhood.

Figure 4.9c is a map of the punctual kriging variances. Because the prediction
grid coincides with the data grid, the values at the sampling points are zero. In the
perspective diagram, Fig. 4.10b, they are represented by holes in the surface
descending to zero. The perspective diagram shows another effect of punctual
kriging, i.e. that the surface appears to be sitting on a platform. This is the nugget
variance; the minimum possible kriging variance with punctual kriging away from
the data points is set by the nugget variance.

We also examine the effects of punctual kriging on a prediction grid that was
offset from the sampling grid. For practical situations we should avoid kriging at the
data points because the values are already known there and because of the adverse
effects that arise when the variogram has a nugget variance as mentioned above.
The resulting map from prediction with the grid offset from the sampling points is
smoother, Fig. 4.9b; it no longer appears spotty. The perspective diagram,
Fig. 4.10c, no longer has spikes at the data points; it is more like that for block

Table 4.6 Parameters of models fitted to readily extractable cobalt in the Borders Region of
Scotland and exchangeable phosphorus and pH in the topsoil at Broom’s Barn Farm, Suffolk,
England

Model type Estimates of parameters

c0 c r/m a/m φ (rad) A/m B/m A/B

Exponential—log10Co 0.02967 0.009784 5750.0

Circular—log10P 0.03103 0.08036 225.8

Exponential—pH 0 0.3588 85.2

Anisotropic
exponential—pH

0 0.3710 2.735
(156.7°)

126.9 61.96 2.048
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kriging, Fig. 4.10e. The map of the kriging variances, which has been plotted with
the same scale of values as for the grid that coincided with the sampling grid,
Fig. 4.9d, has lost the mattress-like appearance of Fig. 4.9c and the errors appear
larger. We advise you to offset your prediction grid to get a clear impression of the
variation without the distractions of discontinuities in the surface. Figure 4.10d, the
perspective diagram of the kriging variances with the grid offset is similar to that in
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Fig. 4.9 Punctual kriging of log10P at Broom’s Barn Farm (Suffolk, England) with the prediction
grid coinciding with the sampling grid: a kriged predictions and c kriging variances, and with the
prediction grid offset from the sampling grid: b kriged predictions and d kriging variances
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Fig. 4.10b—the effect of the nugget variance remains in the kriging variances
despite the grid’s being offset.

We also kriged over blocks of side 20 m with the prediction grid positioned to
coincide with the sampling grid. The kriged estimates are similar to those from

Fig. 4.10 Perspective diagrams of log10P at Broom’s Barn Farm (Suffolk, England): a punctually
kriged predictions, prediction and sampling grids coincide, b punctual kriging variances,
prediction and sampling grids coincide, c punctually kriged predictions, prediction and sampling
grids are offset, d punctual kriging variances, prediction and sampling grids are offset, e block
kriged predictions, prediction and sampling grids coincide and f block kriging variances,
prediction and sampling grids coincide
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punctual kriging, but are smoother, as shown by the map in Fig. 4.11a and per-
spective diagram, Fig. 4.10e. Such a map is one a farmer would want for managing
fertilizer applications.
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Fig. 4.11 Block kriging of log10 P at Broom’s Barn Farm (Suffolk, England) with the prediction
grid coinciding with the sampling grid and the correct model function: a kriged predictions and
c kriging variances, and with the variogram forced through the origin to give zero nugget variance
b kriged predictions and d kriging variances
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Farmers are not the only people who want block kriged predictions. For miners
block kriging is crucial because they must estimate the grades of blocks of ore from
small core samples. Agencies responsible for managing rivers and water supply
need to estimate rainfall over portions of their catchments from rain gauges. Block
kriged predictions are required also by those agencies responsible for cleaning up
contaminated sites.

Although the predictions are similar to those of punctual kriging, the kriging
variances are now substantially smaller, Fig. 4.11c, d. This implies that the pre-
dictions are more precise than are those from punctual kriging. In block kriging, the
nugget variance disappears from the block-kriging variance because it is contained
in the within-block variance. This is clear from the perspective diagram of the block
kriging variances; the platform representing the nugget variance in Fig. 4.10b, d has
now disappeared as the theory indicates.

Before we leave this matter we should clarify what the nugget variance is. In
theory it is a spatially uncorrelated component of variation; it is white noise in
engineering terms. In environmental science the variables of interest, such as the pH
and phosphorus content of the soil, are continuous; there is no uncorrelated com-
ponent. In practice, however, we can rarely observe the environment continuously;
we have to sample to determine quantities such as the pH and phosphorus content
of the soil. We cannot therefore know the form of the variogram as the lag distance
approaches zero from the shortest sampling interval. Instead we take a conservative
approach: we fit models to the ordered set of calculated semivariances and
extrapolate them to the ordinate to obtain the nugget variance. This nugget variance
therefore consists largely of variance within the shortest sampling interval; it is
largely not the variance of white noise. It does include measurement error, which
may be regarded as white noise, but its variance should be much smaller than the
spatial variance.

A consequence of this practice is that the errors of punctual kriging are likely to be
somewhat exaggerated, whereas those of block kriging are likely to be underesti-
mated for the reasons mentioned above. If you wish to improve matters then you need
to elaborate the sampling scheme with numerous closely spaced observations in
addition to any coarse grid, as described by Webster and Lark (2013) and in Chap. 5.
Only by so doing can you estimate the form of the variogram near the ordinate.

4.2.4 Anisotropy

We now examine the effect of anisotropy with an example, again from Broom’s
Barn Farm where the pH of the soil was measured. The variogram of pH appears
anisotropic, as shown in Fig. 3.12. We fitted the anisotropic exponential model (the
model parameters are given in Table 4.6), and we block kriged with this function
(Fig. 4.12).
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Fig. 4.12 Block kriging of pH at Broom’s Barn Farm (Suffolk, England): a kriged predictions
with the correct anisotropic exponential function, b kriged predictions with the poorer fitting
isotropic exponential function, c kriging variances with the anisotropic variogram and d kriging
variances with the isotropic function
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where Ω(ϑ) is

Xð#Þ ¼ A2 cos2ð#� uÞ þ B2 sin2ð#� uÞ� �1=2
: ð4:18Þ

Figure 4.12a shows the result; the anisotropy is evident with more variation in a
south west to north east direction than in the perpendicular direction, especially in
the northern part of the farm. We also kriged with the less well-fitting isotropic
exponential model; the model parameters are given in Table 4.6. The mapped
estimates made with this function have a similar general pattern, but with some loss
in detail, Fig. 4.12b. The maps of the kriging variances appear similar, but those for
the anisotropic function, Fig. 4.12c, are a magnitude larger than are those from the
isotropic function, Fig. 4.12d. These results again emphasize the importance of
choosing the most appropriate model for prediction; the results from the isotropic
function give a false sense of security of the accuracy of the predictions.

4.2.5 Simple Kriging

Ordinary kriging has become the ‘workhorse’ of geostatistical prediction with its
assumption of intrinsic stationarity easily satisfied and its robustness in the face of
departures from that assumption. There are circumstances in which we can draw on
the somewhat stronger assumption of second-order stationarity of constant mean,
which we might know or can assume. In these circumstances we can improve our
predictions by simple kriging. The kriged predictions are still linear sums of the data,
but now they incorporate the mean, μ. The equation for simple punctual kriging is

Ẑðx0Þ ¼
XN
i¼1

kizðxiÞ þ 1�
XN
i¼1

ki

( )
l: ð4:19Þ

The weights, λi, are the weights as in ordinary kriging, but they are no longer
constrained to sum to 1. Inclusion of the second term on the right-hand side of
Eq. (4.19) ensures that the predictions are unbiased. Another change is that we have
to work with covariances, C, rather than semivariances in these circumstances. The
equations to be solved as expressed in the simple punctual kriging system are

XN
i¼1

kiCðxi; xjÞ ¼ Cðx0; xjÞ for j ¼ 1; 2; . . .;N ð4:20Þ

There is no Lagrange multiplier because the mean is assumed to be known; there
are only N equations in N unknowns.
The simple kriging variance is given by

4.2 Theory 65



r2SKðx0Þ ¼ Cð0Þ �
XN
i¼1

kiCðxi; x0Þ; ð4:21Þ

where C(0) is the variance of the random process.
The simple kriging system can be elaborated for predicting values over blocks,

B, larger than the supports of the data; all we have to do is to replace the covariance
C(x0, xj) on the right-hand side of Eq. (4.20) by the average covariance C(B, xj).

As in ordinary kriging, we can usually replace N by some much smaller value
n by kriging within a moving window for mapping. Simple kriging, whether
punctual or block, is somewhat more precise than its ordinary counterpart because
there is no longer any uncertainty in the mean, and it is in that sense that it is an
improvement. However, simple kriging is limited by the need to know the mean.

4.2.6 Lognormal Kriging

Environmental data often approximate a lognormal distribution. Converting the
data to logarithms produces distributions that are approximately normal and this
leads to lognormal kriging. The data z(x1), z(x2), …, are transformed to their
corresponding natural logarithms, say y(x1), y(x2), …, which represent a sample
from the random variable Y(x) = ln Z(x), which is assumed to be second-order
stationary. The variogram of Y(x) is computed and modelled and then used with the
transformed data to predict Y at the target points or blocks by either ordinary or
simple kriging.

The predictions are logarithms, and where an index of soil fertility is wanted the
logarithms can serve well. However, in many other disciplines, such as mining,
exploration geochemistry and pollution monitoring, surveyors want estimates
expressed in the original units and the logarithms must be transformed back to
concentrations.

The back-transformation of a punctual estimate is fairly straightforward. If we
denote the kriged estimate of the natural logarithm at x0 as Ŷðx0Þ and its variance as
σ2(x0) then the formulae for the back-transformation of the estimates are, for simple
kriging,

ẐSKðx0Þ ¼ expfŶSKðx0Þ þ r2SKðx0Þ=2g; ð4:22Þ

and for ordinary kriging,

ẐOKðx0Þ ¼ expfŶOKðx0Þ þ r2SKðx0Þ=2� wðx0Þg; ð4:23Þ

where ψ is the Lagrange multiplier in ordinary kriging. The estimation variance of
Ẑðx0Þ for simple kriging is
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varSK½Ẑðx0Þ� ¼ Ẑ2ðx0Þ exp r2SKðx0Þ
� � ½1� expf�r2SKðx0Þg�: ð4:24Þ

Notice that the distribution around each prediction now depends on the pre-
diction itself and therefore on the observed values in the neighbourhood. Other
things’ being equal, the larger are those observed values the larger will be the
prediction variance. See also Papritz and Moyeed (1999) and, for further details,
Cressie (1993), pp. 135 and 136.

In many fields of application people prefer to work with common logarithms.
The variogram of log10 Z(x) replaces that of ln Z(x), and the back-transform for
ordinary kriging, is given by

Ẑðx0Þ ¼ exp½fŶðx0Þ � ln 10þ 0:5r2Yðx0Þ � ðln 10Þ � wðx0Þ � ðln 10Þg�: ð4:25Þ

Journel and Huijbregts (1978) point out that the expression in Eqs. (4.22) and
(4.23) for the back-transformation, is sensitive to departures from lognormality and
that in consequence the estimates of Z can be biased. They suggest a check for bias
by comparing the mean of the estimates, Ẑ, with the mean of the data, z(xi), i = 1, 2,
…, N. If we denote the ratio of the means, mean[Ẑ]:�z, by Q then we modify
Eq. (4.22) to

ẐSKðx0Þ ¼ Q expfŶSKðx0Þ þ r2SKðx0Þ=2g; ð4:26Þ

or Eq. (4.23) similarly if we have used ordinary kriging. In our experience Q has
always been so close to 1 that we have not needed the elaboration. For more
information see Cressie (2006).

4.3 Cross-Validation

The examples above show how the choice of model for a variogram affects the
kriging weights and the kriging variances, even though the kriged predictions are
little affected. Further, given that several models with substantially different nugget:
sill ratios can appear to fit an experimental variogram equally well, one might
wonder how to choose the most suitable for kriging. Minimum variance is attrac-
tive, but we do not want that if it leads to a false sense of security. Rather, we want
a model that leads to variances that are ‘correct’ in the sense that they match the
squared errors between the predictions and the true values. One could compare
competing models by predicting values with those observed at an independent set
of sampling points. In practice that would waste valuable, possibly very expensive,
information. The alternative is to make the comparisons by cross-validation.

Let us assume that we have two or more plausible models. For each model we
proceed as follows. We remove one datum from the whole set and use either all the
others or those in the surrounding neighbourhood and the parameters of the given
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model to krige its value and calculate its kriging variance. We return that datum to
the set, and repeat the procedure for each and every one of the remaining data. The
kriged values ẐðxiÞ are compared with the observed ones z(xi), and we then cal-
culate the following statistics from the results.

1. The mean deviation or mean error, ME:

ME ¼ 1
N

XN
i¼1

fzðxiÞ � ẐðxiÞg; ð4:27Þ

where N is the number of observations, z(xi) is the true value at xi and ẐðxiÞ is
the predicted value there;

2. The mean squared deviation or mean squared error, MSE:

MSE ¼ 1
N

XN
i¼1

fzðxiÞ � ẐðxiÞg2; ð4:28Þ

3. The mean squared deviation ratio, MSDR, computed from the squared errors
and the kriging variances, r̂2 xð Þ;

MSDR ¼ 1
N

XN
i¼1

fzðxiÞ � ẐðxiÞg2
r̂2ðxiÞ : ð4:29Þ

The ME should ideally be 0: kriging is unbiased. The calculated value is a weak
diagnostic because kriged values are insensitive to changes in the model, as we
have seen. We might want to minimize the MSE in the same way as we krige to
minimize the prediction variance. We should like the MSE to be small, but it is not
an especially good diagnostic; it does not discriminate as well as the MSDR.
Ideally, we should like the squared errors to equal their corresponding kriging
variances, so that the MSDR is 1. The best model in this sense is the one for which
the MSDR is most nearly 1.

The results of cross-validation do not necessarily resolve or justify a choice of
model. In the example in Chap. 3 in 3.4.1, the MSDR is closest to 1 for the
spherical models with ranges well beyond the limit of the experimental variogram,
yet Fig. 3.6d strongly suggests that the best fitting model is spherical with
r ≈ 10 km

Table 4.7 records the calculated values of the criteria for the spherical, expo-
nential and power models fitted to the experimental variograms of models of
log10K

+ at Broom’s Barn Farm listed in Table 3.4. The mean errors are all small in
accord with expectation. The mean squared errors are remarkably similar for both
the full set and subset of the data and do not discriminate between the models. The
MSDRs, in contrast, do discriminate. The spherical model fitted to the full set of
data is clearly good for kriging in that its MSDR is close to 1. The exponential and
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power models for the full set have MSDRs that exceed 1, meaning that their kriging
variances underestimate the squared errors, and are less good. The MSDRs for all
three models fitted to the experimental variograms of the subset of 87 data are
substantially less than 1. Evidently the kriging variances overestimate the squared
errors, and the models are poor for kriging therefore. This should serve as a further
warning against sampling too sparingly.

Even if one chooses a model for which the MSDR is close to 1 for kriging the
kriging variances can provide optimistic assessments of the reliability of predic-
tions, especially in the neighbourhood of outliers, and compensate by under-esti-
mating the reliability elsewhere. In such a situation the distribution of the
deviations, zðxiÞ � ẐðxiÞ, has long tails; the distribution is leptokurtic, and this
property can be identified by the median of the squared deviation ratio: medSDR.
Lark (2000) has suggested that the medSDR be used as a diagnostic. Ideally the
SDR is distributed as χ2 with one degree of freedom and its median has the value
0.455. Smaller values suggest leptokurtosis and the presence of outliers—see Li
et al. (2015) for an example. Medians exceeding 0.455 mean that the kriging
variances underestimate the squared errors, medians less than 0.455 mean that they
overestimate. Our experience with this diagnostic has been mixed, mainly because
the actual distributions have been erratic. If you intend to use it then we recommend
that you examine your distributions of the errors.

4.4 Summary

Early workers in the field were held back by the lack of computer power, but this is
no longer the case. Investigators must understand the need for a reliable and well-
modelled variogram. Ensure that you know at the outset whether you require
punctual or block kriging; the latter is usually chosen for land management,
whereas the former would be desirable where the values at points are required. The
kriging neighbourhood must be set in relation to what you know about the
variation.

Table 4.7 Cross-validation criteria, the mean error (ME), the mean squared error (MSE) and the
mean squared deviation ratio (MSDR) for models listed in Table 3.5 fitted to the experimental
variograms of log10K

+ at Broom’s Barn

Model type Full set, 434 data Subset, 87 data

ME MSE MSDR ME MSE MSDR

Spherical 0.000362 0.007614 1.031 0.000659 0.007961 0.732

Exponential 0.00776 0.007349 1.197 0.000957 0.007316 0.876

Power 0.000682 0.007556 1.559 0.000836 0.007825 0.646
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Chapter 5
Sampling

Abstract Reliable analysis and kriging demand sound sampling, which must be
sufficient and have an acceptable configuration. Sampling to estimate the variogram
is problematic because the spatial scale of variation is often unknown, yet there
must be numerous pairs of sampling points within the correlation range, if it exists.
One might determine the spatial scale from visible features such as landforms and
vegetation on the ground or from remote sensing. If that is not possible a nested
survey and hierarchical analysis, by either analysis of variance or residual maxi-
mum likelihood (REML), can provide a first approximation to the variogram and a
guide for subsequent sampling. Variograms from previous surveys or from ancillary
data, in particular aerial image data, may also be used to guide sampling. Once a
variogram with known parameters is available sampling for kriging can be opti-
mized so that some tolerable kriging error is met but never exceeded. Alternatively,
if the budget for sampling is set the kriging equations can be solved to determine
the kriging errors everywhere within the region of interest and in particular the
maximum absolute error.

Keywords Model-based sampling � Spatial scale � Ancillary information � Nested
sampling � Hierarchical analysis of variance � REML � Kriging variance � Optimal
sampling � Tolerable error � Mapping

In Chap. 1 we introduced the need for sampling of the environment because of the
extent of area usually covered and because the variation is usually continuous.
We mentioned design-based and model-based approaches, and here we focus on the
latter where our principal concern will be to sample adequately and without bias to
enable us to predict accurately throughout the region. This requires sample data that
are suitable to estimate both the variogram and to krige. If one knows the variogram
of a variable for a particular region and can specify the maximum tolerable error in
predictions using it then one can optimize one’s sampling scheme (see Sect. 5.2).
In most instances, however, one must first estimate the variogram, and we therefore
describe the associated problems and the way to tackle them before dealing with the
kriging.
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5.1 Sampling for the Variogram

Sampling to estimate the variogram is one of the most problematic tasks in geo-
statistics. It receives too little attention among both research workers and practi-
tioners with the result that in many instances the data are too few or the spacings are
unsuitable for reliable estimates of the variogram. There have been several attempts
to optimize sampling for variograms, but without knowing the true variogram one
cannot succeed. Lark (2002) and Webster and Lark (2013) show that without prior
information on a variogram’s likely form and model parameters designing a sam-
pling scheme is little better than guesswork. In particular, one must guess the limit
of spatial dependence, if such exists in the region. In Oliver’s (Oliver and Webster
1987) initial survey of the soil the Wyre Forest in England, the sampling with even
coverage was too sparse; the distances between neighbouring sampling points
exceeded the range of spatial correlation in the soil variables.

We return to our search for that range below. Before that we state some general
principles.

1. The maximum lag to which you compute the variogram should exceed the
correlation range, and if it exists the sampling plan should ensure that.

2. The steps by which the lag is incremented should be small enough and the number
of lags large enough for the experimental estimates to reveal the functional form
of the variogram. Ideally you should aim for about six estimates within the
correlation range, if it exists, and another four beyond, and sampling should be
designed to provide them.

3. The size of sample should be large enough to place the estimates of the semi-
variances within acceptable confidence limits. A good working rule is to aim for
at least 100–150 sampling points.

You might be able to judge the first from your understanding of the environment
and from visible features of the landscape; physiography is a good guide. Alter-
natively, or in addition, you might already have or know of empirical variograms
for similar land nearby. Item 2 depends to some extent on item 1, because only if
you know the correlation range can you decide the interval between estimates and
the sampling intervals on the ground to provide them. If you want the variogram
solely for kriging then you should have one that is well estimated at short lag
distances, and you should design a scheme that includes many pairs of points
separated by short distances. Therefore, for a grid survey sample more intensively
from randomly selected nodes to provide such pairs of points (Fig. 5.5).

Item 3 is widely misunderstood. You cannot apply the classical formula based
on χ2 to obtain confidence intervals on the experimental variogram calculated by the
method of moments, Eq. (3.1), because the same data are used many times over and
successive estimates are correlated. The advice in several texts to aim for 30–50
pairs of comparisons in each estimate, m(h) in Eq. (3.1), is seriously misleading. It
implies fewer than 50 points for a grid in two dimensions, and we know from
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empirical studies (Webster and Oliver 1992) that it leads almost inevitably to poor
estimates and to erratic variograms.

We have already drawn attention to this shortcoming in Chap. 3, and we rein-
force the matter in Fig. 3.5. That figure shows confidence intervals on experimental
variograms computed from samples of four sizes. The upper two, Fig. 3.5a, b, in the
figure for samples of size 49 and 81 are wide at all lags. As we have stated before,
you should aim to sample at 100–150 points to obtain a reliable variogram.

5.1.1 Nested Sampling

Surveyors often have little or no idea of the range of spatial dependence or of the
form of the variogram within its range. This is especially true when they begin
investigations in unfamiliar regions. Guesswork can be expensive, either because
the sampling is too sparse resulting in a variogram that is all nugget and is useless
for kriging or because it is unnecessarily dense. In these circumstances sampling
can be staged, with the first stage one of nested sampling followed by hierarchical
analysis of variance (ANOVA) or its equivalent by REML.

The aim of such a scheme is to estimate efficiently the contribution made to the
variation over scales ranging widely from fine to coarse in the region. The general
principle was first proposed by Youden and Mehlich (1937) for sampling soil.
Although the authors’ original paper lay buried for a long time the technique was
rediscovered and is now well documented in texts by Webster and Oliver (2007)
and Webster and Lark (2013). The latter includes several novel options in an
attempt to optimize the approach. Here we concentrate on the basic features of the
strategy.

Stages are defined in terms of spacings between sampling points. At the lowest
stage pairs or triplets of points are separated by the shortest distance of interest. At
the highest stage, stage 1, pairs or triplets of groups are separated by the largest
distance of interest. In between are several stages with points separated by inter-
mediate distances. The distances progress in geometric sequence such that at any
stage above the lowest the distance is at least 3 times that of the one below. The
separating distances are fixed, but the orientations of the separations are chosen at
random. The effects of distance are assumed to be random, and so the appropriate
model for the analysis of variance is Model II of Marcuse (1949).

For a design with p stages the model of variation is

Zijk...m ¼ lþ Ai þ Bij þ Cijk þ � � � þ eijk: ð5:1Þ

The quantity μ is the mean, and the Ai, Bij, Cijk, …, εijk…m are independent random
variables associated with stages 1, 2, 3, …, p, respectively, with means of zero and
variances r21; r

2
2; r

2
3; . . .; r

2
p. These latter are the components of variance for the

p stages, and each one is a measure of the variation attributable to that stage, i.e. to
that separating distance. Together they sum to the total variance:
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r2 ¼ r21 þ r22 þ r23 þ � � � þ r2p: ð5:2Þ

Miesch (1975) pointed out that if estimates of these components are accumu-
lated, starting with that at the smallest spacing, they form a first approximation to
the experimental variogram, thus:

br2
p ¼ bc hp

� �
br2
p�1 þ br2

p ¼ bc hp�1
� �

br2
p�2 þ br2

p�1 þ br2
p ¼ bc hp�2

� �
;

ð5:3Þ

and so on, where the hp, hp−1, hp−2, …, h1 are separating distances equivalent to the
lag distances in geostatistical convention.

The analysis of variance for Model II above can be set out as in Table 5.1 in
which there are four stages and N data, each of which belongs to one and only one
group in each stage.

The table is quite general. It can be extended for more than four stages, and it can
be simplified for fully balanced designs in which the same number of divisions is
made at any particular stage into groups at the stage below. Balanced designs are
attractive statistically because they lead to a straightforward analysis, and the
variance components are readily calculated from the table because, for example,
u3,3 = u2,3 = u1,3 and u2,2 = u1,2. Their big disadvantage is that the number of
sampling points increases exponentially, at least two-fold for each additional stage,
as the number of stages increases and soon becomes unaffordable.

Balance is not necessary, however, because one does not need the very many
degrees of freedom in the low stages to obtain reliable estimates of the components.
Unbalanced designs can still be analysed by ANOVA, but calculating the com-
ponents of variance is more complex because their coefficients, the u in the table,
change from stage to stage. Gower (1962) devised formulae for calculating the
coefficients, and a worked example appears in the 6th edition of Statistical Methods
of Snedecor and Cochran (1967), but not in later editions. For theoretical reasons
we now prefer to estimate the components by residual maximum likelihood
(REML) as described by Webster et al. (2006).

For balanced designs the results are the same, but for unbalanced ones they
generally differ somewhat.

Table 5.1 Hierarchical analysis of variance

Stage Degrees of freedom Parameters estimated by mean squares

Stage 1 f1 – 1 u1;1r21 þ u1;2r22 þ u1;3r23 þ r24
Stage 2 f2 − f1 u2;2r22 þ u2;3r23 þ r24
Stage 3 f3 − f2 u3;3r23 þ r24
Residual (stage 4) N − f3 r24
Total N − 1
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5.1.1.1 Illustrative Example: Nested Sampling in the Wyre Forest

Following the initial survey of the soil of the Wyre Forest Oliver (Oliver and
Webster 1987) planned a second one to discover the scale(s) of variation in the soil.
The sampling comprised nine principal nodes on a grid at intervals of 600 m; this
was stage 1. The points for stage 2 were selected 190 m from each node in a random
direction. From each point in stage 2 a point was selected 60 m away to form stage 3,
and from each of those points another was chosen 19 m away (stage 4). Finally,
from half of the stage 4 points, points were chosen 6 m away to form the fifth stage.
This gave 9 × 2 × 2 × 2 = 72 sampling points in the first four stages plus a further 36
in the fifth stage, giving 108 points in all. The structure of the scheme is shown as a
topological tree in Fig. 5.1. The hierarchy is unbalanced in that at stage 4 only half of
the sampling points have pairs in stage 5. Figure 5.2 shows the sampling configu-
ration on the ground for one node.

The design might not have been optimal, but it was almost certainly a better use of
resources than a balanced design, and, perhaps surprisingly, better than a design that
distributes the degrees of freedom equally among the stages (Webster and Lark 2013).

Oliver and Webster originally estimated the components of variance by Gower’s
method, but later they re-analysed their data by REML (Webster et al. 2006),
Table 5.2 lists the resulting components for three depths.

Fig. 5.1 Topology of one
branch of the nested sampling
scheme by Oliver (see Oliver
and Webster 1987) to sample
the soil of the Wyre Forest.
Notice that only half of the
branches at Stage 4 (19 m) are
divided in the unbalanced
design
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By accumulating the components from the bottom of the table upwards, as in
Eq. (5.3), we obtain the variograms shown in Fig. 5.3. The variograms are erratic,
but all three have maxima at 60 m.

Evidently, the range is roughly half of the distances between neighbouring points
in the first survey. The figure also shows that for the first and second depths, 0–5 cm
and 25–30 cm, a large proportion of the variance is between 6 and 60 m. Oliver
(Oliver and Webster 1987) went on to sample the region at 5-m intervals on transects
at various orientations and obtained accurate variograms by the method of moments
and modelled them for kriging from data on a grid with nodes at 20-m intervals.

The above shows something of what can be achieved by splitting survey into
distinct stages. Marchant and Lark (2006, 2007) developed this line of investiga-
tion, combining estimation of the variogram and kriging in stages such that the
information gained in one stage is used to adapt the sampling in the next, and so on
with the hope that eventually one would be able to predict and map a variable with
acceptable confidence within specified budgets, starting, as it were, with a blank

Fig. 5.2 Sampling plan of
sites for one of the main
branches from a grid node in
the Wyre Forest with
distances 190, 60, 19 and 6 m
(Oliver and Webster 1987)

Table 5.2 Components of
variance of percentage of sand
in the soil of the Wyre Forest
estimated by REML (from
Webster et al. 2006)

Source (stage) Distance/m Components of variance

Depth/cm

0–5 25–30 50–55

1 600 38.12 16.68 33.75

2 190 –58.03 –90.02 –100.19

3 60 102.50 198.51 314.81

4 19 131.50 131.96 –38.89

5 (residual) 6 54.9 108.56 303.26
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sheet of paper. We leave the reader to pursue their strategy in the papers mentioned
and in the book chapter by Marchant and Lark (2010).

What should you do if you must do the field work in a single stage? This is often
the case, perhaps because of logistic difficulties and costs of getting to remote
regions, perhaps because clients want quick assessments, perhaps because money is
available for only a single season in the field. In these situations surveyors find that
they must sample in such a way as to estimate the variogram and model it and krige
from the same set of data. They cannot expect to optimize any of the steps.
Pragmatically, a surveyor must start somewhere. One starting point, mentioned
already, is prior knowledge of the region, especially of the landscape and physi-
ography if one is dealing with attributes of the soil or land more generally. That
should enable one to decide sampling intervals on transects for estimating the
variogram and perhaps wider ones on a grid for the kriging. One will not know
what the maximum errors are until one has finished, and that is a hazard.

The example below shows how variograms of ancillary data from aerial photo-
graphs, sensors and yield monitors, and existing variograms of the properties of
interest can be used to guide sampling for future surveys. The data are from a 23-ha
field on the Yattendon Estate, Berkshire, England (Oliver and Carroll 2004). A
colour aerial photograph for 1991 was digitized and the variogram computed from
the digital numbers for the red waveband. Figure 5.4a shows the experimental
variogram and the fitted nested spherical model, Eq. (3.12), and Table 5.3 lists the
model parameters. The yield of wheat was recorded in the field in 1995 and the
variogram was computed and modelled. Figure 5.4b shows the experimental values
and the fitted nested spherical function, and Table 5.3 lists the parameters of that
model. The topsoil (0–15 cm) was sampled on a 30-m grid with additional samples at

Fig. 5.3 Approximate
variograms of percentage
sand at three depths from the
nested survey of the Wyre
Forest obtained by
accumulating the components
of variance estimated by
REML
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Fig. 5.4 Experimental variograms and fitted models of: a red waveband of a digitized colour aerial
photograph taken in 1991, b wheat yield recorded in 1995, c potassium of the topsoil (0–15 cm)
and d subsoil pH (30–60 cm) for a field on the Yattendon Estate, Berkshire, UK

Table 5.3 Model parameters of soil and ancillary data for the Yattendon Estate

Variable Model type Estimates of parameters

c0 c1 c2 a1/m a2/m

Soil

Potassium—0–30 cm Spherical 318.4 1065.0 140.1

pH—30–60 cm Circular 0.0824 0.152 109.8

Ancillary

Aerial image
1991—red waveband

Double spherical 16.86 24.91 74.52 32.66 126.8

Yield—1995 Double spherical 0.995 1.494 1.311 32.37 127.6
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randomly selected grid nodes 15 m apart, and the subsoil (30–60 cm) was sampled
on a 60-m grid with additional samples at selected grid nodes 15 m and 30 m apart.
The experimental variogram and fitted spherical function, Eq. (3.10), of topsoil
available potassium are shown in Fig. 5.4c, and the model parameters are listed in
Table 5.3. Figure 5.4d shows the experimental variogram of subsoil pH with a
circular function fitted, Eq. (4.16); the model parameters are listed in Table 5.3. Note
that the variogram ranges of the longer structure for the aerial photograph and yield,
and the ranges for potassium and pH are similar.

Kerry et al. (2010) suggested after repeated sampling of a large set of simulated
values that sampling at 0.33 or less of the variogram range would provide an
adequate basic grid. The average range of the variograms examined in the above
example is about 126 m, and sampling at 0.33 times the range of the variogram
would give an interval of 42 m for the grid. However, we recommend strongly
that additional samples are taken at intervening intervals as above for the field at
Yattendon to ensure that the variogram is estimated well near to the origin.

Aerial photographs are an excellent source of information for environmental
surveys where the patterns of variation they show are linked with those of the
variables of concern. Variograms can be computed from the digitized values prior
to field work and used to guide the sampling. Milne et al. (2010) made good use of
them in their analysis of gilgai patterns in Australia.

An alternative starting point is the budget; that will determine the total number of
sampling points. If all the points are placed on a grid then the interval might be too
large to estimate the variogram; there might be no comparisons from which to
estimate the semivariances at short enough lags.

Atteia et al. (1994) planned their survey, which had to be done in a single
season, with random nested sampling around 23 of their grid nodes. More often
practitioners place their additional sampling points on some of the grid lines joining
the nodes, as in Fig. 5.5. In Fig. 5.5a the additional points are 1.1 and 1.3 units

Fig. 5.5 Configurations for additional sampling at the node of a square sampling grid. The
supplementary sampling points are shown as crosses at distances of: a 0.1 and 0.3 times the grid
interval from the central node marked by a circle and b 0.2 and 0.4 times the interval
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away from the central node. This would allow one to compute semivariances, ĉ hð Þ,
at lag distances 0.1, 0.2, 0.3, 0.4, 0.6, 0.7 and 0.9 units on the principal axes. In
Fig. 5.5b the additional points are placed 0.2 and 0.4 units away from the central
node, and that allows one to compute ĉ hð Þ at lag distances of 0.2, 0.4, 0.6 and 0.8
units. These schemes are not optimal, but both are better than a strict grid in that
they enable one to compute and model the variogram over lags distances shorter
than the grid interval and which one needs for predicting values between the nodes.

5.2 Sampling Plans for Mapping

The prediction of variables at unvisited places without bias is a central aim of
geostatistics, and in Chap. 4 we presented the kriging equations to achieve that. The
kriging equations also minimize the variance of any prediction, and their solution
leads to an estimate of the kriging variance or error. In addition to being able to map
a variable at a fine resolution from sample data we can also map the kriging variance
or its square root, the kriging error. Such a map might show where extra sampling is
needed to diminish the error and increase confidence. We can also use the kriging
equations to plan sampling to map within some tolerable error—provided we have
an accurate model of the variogram.

You can see that Eqs. (4.3) and (4.5) contain only semivariances, which derive
from the variogram and the configuration of the sampling points in relation to the
target point or block. They do not depend on the observed values at the sampling
points. If you know the variogram then you can add points to the kriging systems
where data seem to be too sparse and calculate what the kriging variances would be
if you sampled at those points. To some extent choosing the additional sampling
points is a matter of trial and error. You add a point where the existing kriging
variance is greatest and solve the new kriging system, and you repeat the procedure
until the kriging error is small enough everywhere.

If you know the variogram beforehand you can plan a sampling that is nearly
optimal in that it will minimize the maximum kriging variance for a given cost. In
general, the further a target point is from data the larger is the kriging variance. You
can minimize the maximum distance between target and data by sampling on a grid;
in those circumstances the maximum distance is from the centre of a grid cell to the
nearest grid nodes. For punctual kriging the kriging variance is greatest there.

These maximum distances are minimized for a given sampling density with
triangular configurations, and the maximum kriging variance is least. Figure 5.6
shows the situation. For a square grid the maximum distance is 1=

ffiffiffi
2

p � 0:7071
units, whereas for an equilateral triangular grid with the same density the maximum
distance is 0.6204 units. Square grids are more convenient, however, and as the
maximum distance between a target point and the distance to the nearest sampling
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points is little more than for triangular grids of the same density and there are four
near points instead of three the maximum kriging variance is only slightly larger:
see Fig. 8.23a in Webster and Oliver (2007) and Fig. 9.7a in Webster and Lark
(2013).

Note, however, that kriging variances tend to increase as the margins of the
region are approached and that for irregularly shaped regions a regular grid should
be modified to achieve best results.

The following procedure, proposed by Burgess et al. (1981) and reiterated by
Webster and Lark (2013), will enable you to plan a grid.

1. Set up the kriging equations for a square configuration of sampling points with
the target point or block at its centre.

2. Solve the equations for a small sampling interval, the smallest that is likely to be
feasible, and compute the kriging variance.

3. Increase the sampling interval in steps and repeat the calculations in 2 above at
each step.

4. Draw a graph of kriging variance (or its square root, the kriging error) against
the sampling interval and link the points by a smooth curve.

5. Draw a horizontal line on this graph at your chosen maximum variance or error
to cut the curve, and drop a perpendicular from the intersection to the abscissa.

That perpendicular gives the required sampling interval, from which you can
determine the number of sampling points for mapping and hence the budget.
Alternatively, if the budget for survey is fixed then that will determine the sampling
interval, and you follow step 5 in reverse. You draw a perpendicular from the
abscissa to cut the curve and read the corresponding maximum kriging variance or
error on the ordinate.

Fig. 5.6 Distances between the centres of grid cells and nearest sampling points for square and
equilateral triangular grids with the same sampling density of one point per unit area
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5.2.1 Illustrative Example: Sampling to Map Chromium
in the Swiss Jura

Atteia et al. (1994) sampled the topsoil of part of the Swiss Jura in a survey of
potential toxicity caused by heavy metals, among which was included chromium
(Cr). From 366 measurements they obtained the omnidirectional experimental
variogram shown by the points plotted in Fig. 5.7 and to which they fitted an
exponential model with equation

cðhÞ ¼ 19:98þ 98:34� 1� exp � h
174

� �� �
: ð5:4Þ

Here h is the lag distance, and the distance parameter, a = 174, is in metres.

Using this variogram we can calculate the maximum kriging variances or errors
for points or blocks of any reasonable size against sample spacing by following
steps 1 to 4 above. Usually we shall be interested in blocks, and in Fig. 5.8 we show
the maximum kriging errors for two sizes of block, 50 m × 50 m (= 0.25 ha) and
100 m × 100 m (= 1 ha), as the curves.

If the grid interval is much shorter than the side of the block the maximum
kriging variance can occur for blocks centred on grid nodes (Burgess et al. 1981;
Webster and Lark 2013), but the differences between it and that from cell-centred
blocks are small and of little practical significance.

Let us suppose that in some future survey the maximum kriging error is to be no
more than 10 % of the tolerable maximum concentration. The threshold for Cr set in
the VSBo of 1986 for Switzerland (FOEFL 1987) is 75 mg kg−1 of soil. That leads

Fig. 5.7 Variogram of
chromium in the topsoil in the
Swiss Jura. The line is the
fitted exponential model with
the parameters shown on the
graph
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to a maximum tolerable kriging error of 7.5 mg kg−1. So we draw a horizontal line
at that value to cut the curves and drop the perpendiculars shown in the figure. For
0.25-ha blocks the spacing is 245 m, and for the 1-ha blocks it is 322 m.

5.3 Summary

We can provide guidelines for sampling for geostatistical interpolation and mapping
if you have a satisfactory model for the variogram. The best advice is to sample on
a grid, for which either the survey budget or the maximum tolerance on a prediction
determines the grid interval. If you have to estimate the variogram first and have
little idea of its form then the best approach is to survey in stages, beginning with a
nested scheme with analysis by REML to estimate the spatial components of
variance, followed by systematic sampling to estimate the variogram and model it,
and finally a grid for the mapping. If the survey cannot be staged then your best
approach is to survey on a grid with its interval determined by whatever information
you can glean from existing sources and an understanding of the landscape―or by
the budget if that is fixed―and augment the grid with additional sampling points
between the grid nodes.

Fig. 5.8 Maximum kriging
errors for chromium in the
topsoil in the Swiss Jura for
square blocks of 0.25 and
1 ha. The horizontal line is
drawn at concentration
7.5 mg kg−1, which is 10 % of
the tolerable maximum set in
the VSBo (FOEFL 1987)
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Chapter 6
Dealing with Trend

Abstract Where there is trend, i.e. smooth variation in space, also known as drift,
the experimental variogram of the observations is no longer a function solely of a
random variable. The assumption of stationarity no longer holds. An experimental
variogram that increases with ever increasing gradient as the lag distance increases
is usually symptomatic of trend. In these circumstances the process should be
modelled as a combination of a deterministic trend plus spatially correlated random
residuals from the trend. Estimation of the trend by ordinary least squares regres-
sion and a separate analysis of the residuals lead to bias in the variogram. Best
practice is to estimate the trend and the parameters of the variogram by residual
maximum likelihood (REML). Once this has been achieved, one can use Mather-
on’s universal kriging for prediction. The technique embodies simple functions of
the coordinates that take the trend of given order into account. The methods are
illustrated with an example of trend in the soil’s sand content of a field.

Keywords Trend � Deterministic variation � Ordinary least squares � Residual
maximum likelihood (REML) � Universal kriging � Empirical best linear unbiased
predictor (E-BLUP)

6.1 Trend

The assumption of intrinsic stationarity, which underlies the analyses in Chaps. 2
and 3 and which has seemed easily satisfied, is not satisfactory in two situations.
One is where there is pronounced geographic trend, known to geostatisticians as
‘drift’.

What is regarded as trend depends to some extent on the scale at which the
variation is viewed, but the basic idea is that trend is smooth systematic non-
random variation. It might be regional, i.e. systematic variation over the whole
region of interest, or local from point to point within the region. You might detect
the first in one dimension by plotting the data from a transect as in Fig. 6.1a and
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in two dimensions on a ‘posting’ with symbols of size proportional to the recorded
values. Alternatively, you might use a standard interpolation routine in a graphics
package to produce an isarithmic (‘contour’) map that might reveal the presence of
long-range trend. Realize, however, that the interpolated values are not necessarily
sound statistically. Trend also manifests itself in experimental variograms of data.
Almost always it appears as ever-increasing semivariances with increasing lag
distance. The experimental variogram of the data in Fig. 6.1a, shown by the black
discs in Fig. 6.1b, increases without bound and is a symptom of a regional trend.
Such a trend violates the assumptions of stationarity, and we must express the
variation in a way that includes the trend. The solution to the problem posed in this
particular instance is explained below.

This kind of change can be described by a deterministic function such as a trend
surface, and values can be predicted by a mathematical function.

Recall from Chap. 2 that in the stationary case we can express the variation
simply as

Z xð Þ ¼ uðxÞ þ e xð Þ; ð6:1Þ

in which u(x) = μ is the mean of the process, a constant for all x, and ε(x) is a
spatially correlated random residual. If there is trend then u(x) is no longer constant
but depends on x. Further, the experimental variogram of the data, z(xi), i = 1, 2,…,
no longer estimates the variogram of the random residuals, ε(x), as it does in the
stationary case. Instead we want an estimate of the variogram of ε(x) = Z(x) – u(x);
that is the variogram needed for kriging.

If we have a function, γ(h), for ε(x) then we can predict Z at any x0 by what
Matheron (1969) called ‘universal kriging’. Such a prediction is still a linear sum:

Fig. 6.1 a Simulated sequence of 350 values with a linear trend plus realization from a correlated
random process superimposed. The straight line is that of the trend estimated by REML.
b Variograms of the trace. The black discs are the experimental semivariances estimated by the
method of moments with a power model fitted; the lower line is the spherical model fitted to the
residuals from the trend estimated by REML
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Ẑðx0Þ ¼
XN
i¼1

kifkðxiÞ; ð6:2Þ

with weights λi, i = 1, 2, …, N. In addition are the fk. These are simple functions of
the spatial coordinates, which are best referred to the target point x0. For a linear
trend there are three (K + 1 = 3), with values

f0 ¼ 1; f1 ¼ x1; and f2 ¼ x2:

For quadratic trend there are three additional functions:

f3 ¼ x21; f4 ¼ x1x2; and f5 ¼ x22;

giving K + 1 = 6 in all. These are incorporated in the universal kriging system, which
is no more than an augmentation of the ordinary kriging system (see Sect. 4.2), thus:

A ¼

cðx1; x1Þ cðx1; x2Þ � � � cðx1; xNÞ 1 f1ðx1Þ f2ðx1Þ �� fKðx1Þ
cðx2; x1Þ cðx2; x2Þ � � � cðx2; xNÞ 1 f1ðx2Þ f2ðx2Þ �� fKðx2Þ
� � � � � � � � � �� �
� � � � � � � � � �� �
� � � � � � � � � �� �
cðxN ; x1Þ cðxN ; x2Þ � � � cðxN ; xNÞ 1 f1ðxNÞ f2ðxNÞ �� fKðxNÞ
1 1 � � � 1 0 0 0 �� 0
f1ðx1Þ f1ðx2Þ � � � f1ðxNÞ 0 0 0 �� 0
f2ðx1Þ f2ðx2Þ � � � f2ðx1Þ 0 0 0 �� 0
� � � � � � � � � �� �
� � � � � � � � � �� �
fKðx1Þ fKðx2Þ � � � fKðxNÞ 0 0 0 �� 0

2
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3
7777777777777777777775

k ¼

k1
k2
�
�
�
kN
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�
�
wK
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and b ¼

cðx1; x0Þ
cðx2; x0Þ
�
�
�
cðxN ; x0Þ
1
f1ðx0Þ
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�
�
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2
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;
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or in matrix notation

Ak ¼ b: ð6:3Þ

Notice that there are now three Lagrange multipliers, ψ0, ψ1 and ψ2, for a linear
trend and three more, ψ3, ψ4 and ψ5, for a quadratic trend. As in ordinary kriging,
matrix A is inverted, and the weights and the Lagrange multipliers are obtained as

k ¼ A�1b: ð6:4Þ

The weights are inserted into Eq. (6.2), and the kriging variance is given by

r2UK ¼ bTk: ð6:5Þ

Also as in ordinary kriging, we can usually work within a window with many fewer
data than the whole set of size N, and once we have decided the size of the window
the procedure is automatic.

6.1.1 Variogram and Model

Although the universal kriging system appears as a simple augmentation of the
system for ordinary kriging, the semivariances in matrix A and vector b are not
those of variable Z itself; instead, they are the semivariances of the residuals from
the trend as we indicated above. To estimate them we must separate the trend, a
deterministic term, from the residuals, which we treat as random. Matheron did not
say how this might be done, and for some three decades there was no entirely
satisfactory way of estimating without bias the two components of the model or of
combining them for prediction.

The breakthrough came when Stein (1999) pointed out that the several kinds of
kriging then current are all forms of an empirical best linear unbiased predictor,
E-BLUP, (universal kriging is one) and that the two components of the model could
be estimated simultaneously by likelihood methods. We now know that the result is
best achieved by residual maximum likelihood (REML) (Lark et al. 2006; Minasny
and McBratney 2007). For this we re-formulate Eq. (6.1) as

Z xð Þ ¼ wbþ e xð Þ; ð6:6Þ

in which the vector w, with K + 1 columns, contains the elements 1, x1,…, xK of the
trend function and vector β contains the coefficients.
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We can represent the data similarly:

z Xdð Þ ¼ Wdbþ e Xdð Þ: ð6:7Þ

For N data, matrix Xd with N rows and two columns for the two spatial coordi-
nates contains the positions of the data (denoted by subscript d). The vectors z and ε
also have N rows. Vector w of Eq. (6.6) is replaced by Wd, known as a ‘design
matrix’, with N rows and K + 1 columns. We assume that the random components
are second-order stationary and jointly normally distributed with means of zero and a
covariance matrix Cdd. This matrix is obtained from the covariance function, C(h),
which because the process is assumed to be second-order stationary is equivalent to
the variogram of the residuals:

c hð Þ ¼ C 0ð Þ � C hð Þ; ð6:8Þ

where C(0) = σ2 is the variance of the random process.
The variogram is necessarily bounded, and as in Chap. 2, it can usually be

described by a simple function with three parameters, namely a nugget variance c0,
a sill of the correlated structure c and a distance parameter a. These parameters, which
are of the random component ε(x) in Eq. (6.1), must be estimated from data; and for
this the random component must be separated from the trend. Otherwise the param-
eters would be biased because they would depend on β. The solution to the problem
is to maximize the log-likelihood of the residuals, given the data: L[c0, c, a |z(Xd)].
The values of c0, c and a that maximize L are found numerically, and with those one
can obtain estimates of the fixed effects of β by generalized least squares
approximation.

You can find a full account of the solution in Webster and Oliver (2007).

6.2 Example

As an example we examine the data displayed in Fig. 6.1a. Evidently the sequence
of values has a strong linear trend. Table 6.1 summarizes the statistics. The
sequence’s experimental variogram computed by the method of moments appears
as the black discs in Fig. 6.1b. It increases with an ever increasing gradient, and it
can fitted by a power function, which is shown by the line passing through the
points. The exponent of the model is 1.29 (Table 6.2), and it lies within the tolerable
range, i.e. 0 < α < 2, for a purely random process, yet the process is clearly far from
purely random. We cannot accept that variogram as a description of the process; we
must separate the random process from the trend.

Given that the trend is so obviously linear, we can propose the following model
for the whole one-dimensional process:
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Z xð Þ ¼ lþ xbþ e xð Þ; ð6:9Þ

in which μ is the mean of the process, β is a coefficient, and ε(x) is a correlated
random residual with covariance function C(h) and variogram γ(h). We can estimate
the parameters from the data by REML. By assuming that the variogram belongs to
the spherical family, we obtain the estimates listed in Table 6.3. The spherical
component appears in Fig. 6.1b as the curve lying well below the experimental
variogram of the raw data.

6.3 Illustration from a Case Study

We illustrate the procedure with data from a case study in a field on the Yattendon
estate in southern England where there is a significant trend in the sand content of
the topsoil. The field was sampled at 30-m intervals on a square grid. Topsoil
(0–15 cm) was taken with a 3-cm-diameter auger from rectangles of 5 m × 2 m and
mixed to form bulked or composite samples. The sand content was measured

Table 6.1 Statistical
summary of simulated
transect

Number of observations 350

Minimum −1.575

Maximum 10.09

Mean 5.117

Median 6.456

Variance 12.802

Standard deviation 3.578

Skewness −0.304

Table 6.2 Parameters of the
power function fitted to the
experimental variogram of the
simulated trace in Fig. 6.1a

Model parameters

Nugget, c0 0.0283

Gradient, g 0.01641

Exponent, α 1.288

The model is given by c hð Þ ¼ c0 þ gha

Table 6.3 Parameters of
linear trend of the simulated
trace in Fig. 6.1a and of a
spherical variogram of
residuals from the trend
estimated by REML

Trend Variogram

Mean Gradient c0 c R

5.013 0.03283 0.0004 0.9016 45.9

The model is given by

cðhÞ ¼
c0 þ c 3h

2r � 1
2

h
r

� �3n o
for 0\ h� r

c0 þ c for h[ r
0 for h ¼ 0;

8><
>:
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on each bulked sample by laser diffraction. Additional observations were made
likewise at 15-m intervals along several short transects from randomly selected grid
nodes. Table 6.4 summarizes these data. The experimental variogram of the raw
data appear as the grey triangles in Fig. 6.3. The semivariances increase with
increasing lag distance, apparently without bound. Their behaviour is characteristic
of global trend in the data. They are not those of the random term ε(x) in Eq. (6.1),
to which we might fit a model for kriging.

One can remove the trend by the once-popular trend surface analysis, which is
simply ordinary least-squares (OLS) regression of the measured values on the
spatial coordinates. In this instance we have done so by fitting a quadratic trend
surface, which accounted for approximately 46 % of the variance. Figure 6.2 dis-
plays the data in pixel form, in which the quadratic trend is evident from the small
values in both the NE and SE of the map.

The experimental variogram of the OLS residuals is shown in Fig. 6.3 by the
black discs. We fitted a spherical model to the experimental values, the dotted line,
and the model parameters are listed in Table 6.2. The variogram is clearly bounded:

Table 6.4 Statistical
summary of data on the sand
content (%) in the topsoil at
Yattendon

Number of observations 230

Minimum 14

Maximum 83

Mean 50.8

Median 51

Variance 207.41

Standard deviation 14.4

Skewness 0.02

Fig. 6.2 Pixel map of the sand content, as percentage by weight, of the topsoil at Yattendon
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the residuals can reasonably be regarded as the outcome of a second-order sta-
tionary process. They are, however, correlated, and therefore the assumption of
independence on which the OLS regression is based is violated. We also know that
this variogram is biased, and the bias increases with increasing lag distance (Cressie
1993).

By estimating simultaneously the parameters of the trend, in β above, and the
variogram by REML we obtain the two other curves shown in Fig. 6.3. The dashed
curve is of the spherical model and the solid line is that of the exponential model.
The values of their parameters are listed in Table 6.5. The spherical and exponential
models obtained by REML appear substantially different from one another, but we
may choose the latter as the better of the two in that its deviance is somewhat
smaller.

We used the parameters of the variogram estimated by REML (Table 6.5) for
universal kriging taking into account the quadratic trend. Predictions were made on
a fine grid with a 5-m interval. Figure 6.4a shows the contour map of kriged
predictions and Fig. 6.4b that of the prediction variances. The map shows a patchy
distribution that reflects the bounded form of the model. The patches have a random

Fig. 6.3 Variograms of the sand content of the topsoil at Yattendon. The grey triangles are the
experimental semivariances of the measurements. The black discs are the experimental
semivariances of the residuals from the ordinary least squares quadratic trend surface with the
spherical model fitted to them by weighted least squares approximation. The solid line is the
exponential variogram of the residuals from the quadratic trend estimated by REML, and the
dashed line is the analogous spherical variogram
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extent, which one would expect from an exponential function with its asymptotic
upper bound. The white linear patches in the map of kriging variances represent the
short transects along which sampling was more intense. The kriging variances
within the circles are also small; these are in the vicinity of the sampling points. The
largest kriging variances are at the edges of the field and around a small copse in the
centre of the field that has been excluded from the map. The errors are large in these
places because there were few samples from which to predict (Fig. 6.4b).

Fig. 6.4 Maps of a punctually kriged predictions and b punctually kriged predictions variances of
sand content at Yattendon made by universal kriging and taking into account the quadratic trend
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6.4 Summary

Where there is evident trend in a variable of interest the variogram is by definition
that of the residuals from the trend, and it cannot be approximated by the experi-
mental variogram of data computed by the method of moments. The trend must be
separated from the residuals so that a variogram of the residuals can be estimated.
Best practice is now to separate the two by residual maximum likelihood. Having
done so, one can then predict values at unobserved places by universal kriging for
mapping.

Table 6.5 Model parameters for variograms of the residuals from the quadratic trend of sand
content (%) in the topsoil at Yattendon

OLS spherical REML spherical REML exponential

Nugget, c0 17.1 0 0

Structured component, c1 105.6 139.4 171.5

Distance parameter (m) 116.8 93.4 70.9

Deviance 1261.2 1255.4
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