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PREFACE 

This volume contains the lectures presented at the NATO 
ADVANCED STUDY INSTITUTE that took place at Newark, Delaware, U.S.A., 
July 14-23, 1985. The objective of this meeting was to present and 
discuss selected topics associated with transport phenomena in 
porous media. By their very nature, porous media and phenomena of 
transport of extensive quantities that take place in them, are very 
complex. The solid matrix may be rigid, or deformable (elastically, 
or following some other constitutive relation), the void space may 
be occupied by one or more fluid phases. Each fluid phase may be 
composed of more than one component, with the various components 
capable of interacting among themselves and/or with the solid matrix. 
The transport process may be isothermal or non-isothermal, with or 
without phase changes. 

Porous medium domains in which extensive quantities, such as 
mass of a fluid phase, component of a fluid phase, or heat of the 
porous medium as a whole, are being transported occur in the practice 
in a variety of disciplines. For example, we encounter transport 
in porous media in Civil Engineering, in connection with the flow 
and pollution of groundwater, or the movement of moisture and heat 
through building materials, in Soil Mechanics, in dealing with soil 
compaction and land subsidence, in Reservoir Engineering, where we 
encounter multiphase flow, often under non-isothermal conditions, 
or in connection with enhanced oil recovery techniques, in Geothermal 
Reservoir Engineering, and in Chemical Engineering, where processes 
take place in packed beds. In all these cases, decisions related 
to the operation of the system have to be made. Rate and location 
of water injection in an oil reservoir, rate of pumping, or 
artificial recharge of an aquifer and rate of production from a 
geothermal reservoir, may serve as examples of such management 
decision. To make these decisions, the planner needs a tool that 
will represent the excitation-response behavior of the system. This 
tool is the model. The model is a simplified version of the complex 
real system, that simulates the behavior of those parts of the real 
system that are relevant to the management problem. It enables the 
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planner to predict the outcome of implementing proposed management 
schemes. The type of model and its required accuracy are, therefore, 
also dictated by the model's use. 

The first step in constructing a model for a given problem of 
transport, in a given porous medium domain, is to state the 
simplifying assumptions that transform the real (complex) world 
into the model. We often refer to this set of assumptions as the 
conceptual model. The model is then cast into a mathematical (or 
numerical) format. For most cases of practical interest, due to 
the complexity of the model, only a numerical solution is possible. 

No model can be used, unless the numerical values of the various 
coefficients appearing in it are known. These can be estimated by 
solving the "inverse problem". In such problems, the input is data 
on field observations and the output includes the values of the 
model's coefficients, or parameters. Although some methods for 
solving the inverse problem are available, many problems still 
remain unresolved. Among them we may mention the question of 
uniqueness and criteria for obtaining the best set of coefficients. 

Because of the heterogeneity inherent in the real porous medium 
domain, and in view of the relatively small number of samples, or 
observations, that we have in large heterogeneous domain, there is 
always uncertainty associated with the values of the domain's 
parameters and their spatial distribution. This means that 
uncertainty is also inherent in the model's predictions (that serve 
as input to the management problems). This feature of uncertainty 
should, therefore, be represented in the transport model. In recent 
years, much progress has been made toward this goal. 

With this background in mind, a small number of subjects was 
selected for presentation and discussion in the 1985 NATO/ASI. 
These lectures are assembled in this volume. 

Chapter 1 is devoted to the modeling of heat and mass transport 
in porous media. Both single and multiple fluid phases are 
considered. The treatment of porous medium deformability is also 
included. Chapter 2 introduces the topic of particle transport in 
porous media as encountered in reservoir engineering and in 
filtration. Chapter 3 deals with transport phenomena in fractured 
rock and fractured porous rock domains. The first section presents 
the theory and the practice of water flow and the transport of 
pollutants in fractured domains. 

Chapter 4 introduces the important subject of uncertainty in 
models, arising from the complexity of the modeled system, and 
especially the spatial variability of the porous matrix properties. 
The question of the sensitivity of the model's predicted results 
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(here water levels) to changes in model parameters is introduced in 
a number of sections. The problem of parameter estimation is also 
presented and discussed. 

In recent years, there is a growing interest in two numerical 
methods, the Eulerian-Lagrangian models and point (or particle) 
tracking techniques. Although numerical methods was not a central 
topic in the 1985 NATO/ASI, it was felt that some advances in these 
two techniques should be included. 

Chapter 5 includes lectures on these two techniques, in addition 
to lectures on numerical models of multiphase flow, a subject 
discussed in detail in Chapter 1. 

In a way, this volume is a sequel to the book that contains the 
lectures of the 1982 NATO Advanced Study Institute (published in 
1984 by Martinus Nijhoff Publishers). For convenience, the table of 
contents of the 1984 book is included at the end of this volume. 
A number of lectures in the present volume include references to the 
previous one. 

A number of persons have contributed their invaluable time and 
effort to the organization of the ASI and/or the preparation of this 
book, and without their help such a task could not be undertaken. 
We take great pleasure in acknowledging the contributions of M. OZden 
Corapcioglu, Nancy Diffenderfer, Akhter Hossain, Sorab Panday, 
and Carol Wong at various stages of organization and manuscript 
preparation. 

We greatly appreciate the financial support of NATO without 
which this Institute would not be possible. We are also grateful 
to the authors for accepting the invitation to lecture and to prepare 
written papers, and to all the participants for their contributions 
during the discussions. 

We hope that this volume, like the 1984 one, will serve as a 
further step in the formulation of a unified approach to the modeling 
of transport in porous media. 

July, 1985 

J. Bear M. Y. Corapcioglu 
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ON THE CONCEPT AND SIZE OF A REPRESENTATIVE ELEMENTARY 
VOLUME (REV) 

Yehuda Bachmat 

Director 
Hydrological Service 
Jerusalem, Israel 

ABSTRACT 

Jacob Bear 

Albert and Anne Mansfield 
Professor of Water Resources 

Department of Civil Engineering 
Technion, Haifa 32000, Israel 

This chapter discusses the concept of the Representative 
Elementary Volume (REV) that serves as a cornerstone in the continuum 
modeling of transport phenomena in porous media (4). Following the 
presentation of the concept, quantitative criteria are presented for 
the selection of the size of the REV. 

1. INTRODUCTION 

The concept of a Representative Elementary Volume (REV) under­
lies the continuum approach to the modelling of transport of exten­
sive quantities in porous media. At the microscopic level of 
description, the transport of an extensive quantity of a phase is 
modelled in terms of state variables at points inside the domain 
occupied by that phase. Interphase surfaces serve as boundaries. 
In the continuum approach, a passage is made from the microscopic 
level of description to a macroscopic one, in which to every point 
within an investigated porous medium domain, we assign values to 
state variables of all phases present in the domain. The macroscopic 
model is then expressed in terms of these macroscopic state variables. 
The value of a macroscopic state variable at a point is obtained by 
averaging the microscopic values of this variable over a certain 
volume of porous medium, centered at that point. This characteristic 
volume is called the Representative Elementary Volume. 

It is worth noting that although the continuum model of a porous 
medium eliminates the need for specifying the microscopic configu­
ration of interphase boundaries, its effects appear at the macros­
copic level in the form of matrix coefficients. Similary, the 



6 

effects of the microscopic variations of state variables within 
each phase also appear at the macroscopic level. To express these 
effects in terms of averaged quantities, statistical models of the 
microscopic variations will, in general, be required. 

The continuum approach to modelling transport in porous media, 
using the REV concept, is well known and need not be repeated here 
(see, for example, 1, 2, 4, 5, 7, 8, 9). Also the concept of the 
REV has been around for some time. (In addition to the above referen­
ces, see also: 3, 10, 11, 12). The objective of this paper, which 
may be considered as supplementing the authors' paper presented at 
the 1982 NATO Advanced Study Institute (4), is to re-examine this 
concept and its usefulness and to propose criteria for determining 
the size of an REV. 

2. THE POROUS MEDIUM 

For the purpose of this work we define a porous medium as a 
multiphase material body characterized by the following distinct 
features: a) A Representative Elementary Volume (REV) can be deter­
mined, such that no matter where we place it within the porous medium 
domain, it will always contain two persistent subdomains: a solid 
phase and a void space. b) The void space of any REV contains a 
multiply-connected subdomain referred to as the interconnected void 
space. c) The size of the REV is such that parameters that represent 
the distribution of void and solid within it are statistically 
meaningful. The quantification of this requirement is discussed 
in detail below. 

In principle, any Arbitrary Elementary Volume (AEV) may be 
selected as an averaging volume for passing from the microscopic 
level of description to the macroscopic one. Obviously, different 
AEV's will yield different averaged values for each quantity of 
interest and there is no sense in asking which of them is more 
"correct". The selection of an averaging volume in any particular 
case depends only on the model's objectives. Also, the size of the 
"window" of the instrument that measures an averaged value should 
correspond to that of the selected AEV, so that, within the range 
of error introduced by the conceptual model of the process, the 
predicted and measured averaged values always be the same. The main 
drawback of this approach is that since every averaged value may 
strongly depend on the size of the selected AEV, it must be labelled 
by the size of the AEV (like a yardstick) over which it was taken. 
To circumvent this difficulty, rather than selecting the volume of 
averaging arbitrarily, we need a universal criterion which is based 
on measurable characteristics of any porous medium and that deter­
mines, for any given porous medium, a range of averaging volumes 
within which these characteristics remain, more or less, constant. 
As long as instrument's "window" is in that range, observed and 
computed values will be close, within a prescribed level of error. 
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An averaging volume which belongs to that range will be referred to 
as a Representative Elementary Volume (REV). 

3. SELECTION OF REV SIZE 

Let the spatial distribution of the void space in a porous 
medium domain, (D), be represented by the characteristic function 

1 if x is in the void space 
(3.1) 

o if x is in the solid matrix 

where ~ denotes the position vector of a point and t is time. Also, 
let (U) be a domain centered at a point x within (D). Consider 

-0 
the averages 

y(~) I 
x ,U 
-0 

- ~ J y(~) dU 
(U) 

1: J dU 
U (U) v 

n(x ,U) 
-0 

(3.2) 

where n is the porosity of the medium within (0), and dOv represents 
a volume element of the void space, 

o 0 I 1 J y(~) y(~ + ~) - U [y(~) 
x ,O,h (0) 
-0 -

y(x )][y(x +~) 
-0 -

(3.3) 

- y(x 
-0 

+ h)]dU= 1: I y(~)y(~ + ~)dO - n(~o,o)n(~o + ~,O) 
- U (0) 

where ~(~) = y(~) - y(x ), x e(O).Eq. (3.3) is a measure of the 
distribution of the voig sp~ce within (U). 

A particular case of Eq. (3.3) is 

2 
Y (x ,0) }dU 

-0 n(l - n) I 
x ,0 
-0 

(3.4) 
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The construction of a mathematical continuum model of a porous 
medium imposes certain restrictions on the size of the REV. Foremost 
is the requirement that the value of any averaged geometrical 
characteristic of the microstructure of the porous material at any 
point in the porous medium domain be a single valued function of 
the location of that point and of time only, but independent of the 
size of the REV. 

Accordingly, we now define a volume U=U as a Representative 
El t V l (REV), 1'f 0 emen ary 0 ume 

an(x ,U) ay(x ,U) 
-0 -0 

0 au - au U=U U=U 

(3.5) 

0 0 

and 

0 0 

~) Ix U ay(~) y(~ + 
-0' 

Iu=u aU 0 (3.6) 

0 

In principle, one can visualize an experiment consisting of a 
succession of gradually increasing volumes U1<U 2<U 3 •••• ~a~l~l~ ____ __ 
centered at *0' and a concurrent determination of V and ~(~)~(~ + b). 
hoping that a U=U , which satisfies both Eqs.(3.5) and (3.6), will 
be found. After ~epeating this experiment at all points x € (D), 
one can replace the actual porous medium within (D) by a ~gdel of 
a fictitious continuum, provided U=U is uniform throughout (D). 
However, this is obviously an imposs~ble task since it is impractical 
to observe all points within (D). 

The question then arises as to the possibility of making inferen­
ces about the size of U from its relationships with macroscopic 
measurable parameters o~ the microscopic configuration of the void 
space. 

An answer to this question can be obtained by regarding y(x) 
as a random function of position,~. Thus, if y(~) is a statio~ary 
random function of x, i.e., if the domain under consideration,(U ), 
is statistically ho~ogeneous with respect to the geometrical cha~ac­
teristics of the void space, as expressed by the moments of y(~), 
and if y(~) possesses the ergodic property, then, for a sufficiently 
large (Uo ) (13) 

Y(x ) = ~ J y(x)dU 
-0 U 0 (U) -

o 
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o 0 
y(~) y(~ + 1].) 

o 0 
y(~)y(~ + ~)dU - Cov (h) 

y -
(3.7) 

where Var Y 
values of y 
n (=U IU) 
withiRvu ~ 

o 

T (0) 
Y 

Var[y(x )]T (h) = n(l - n)T (h) 
-0 y - y -

= n(l-n),T (h) is the correlation coefficient 
at points rp~ced an oriented distance h apart 
is the porosity, where U denotes the-volume 
By definition ov 

1· , T (h) + 0 as 
y -

I~I + 00 

between 
and 
of voids 

(3.8) 

In fact, the volume U of an REV should be sufficiently large, 
so that the volumetric ave~ages can be considered as satisfactory 
estimates of all relevant population parameters of the void space 
configuration at x , i.e., estimates which are free of errors caused 
by the size of th~Osample and its random choice. 

As was shown by Debye et al. (6), for an isotropic porous 
medium 

hi ~ = 
Clh h=O 

1 
(3.9) 

4l1(l - n) 

where ~=U Is is the hydraulic radius of the void space (volume 
U and ~leavsof Contact with the solid,S). An approximate 

ov . f (h) f . . d· vs . h d express~on or T ,or an ~sotrop~c me ~um, w~t a ran om 
distribution of ~oid and solid spaces, is given by Debye et al. (6), 

T - exp{ - h/4~(1 - n)} y h 

It follows that a necessary condition 
estimates of the geometric characteristics 
any point x which serves as a centroid of 
diameter Q,:ois 

h Q, » ~ 
max 

(3.10) 

for obtaining nonrandom 
of the void space at 
a sphere of volume U and 

o 

(3.11) 
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The magnitude of ~. is determined by the chosen accuracy and 
reliability levels of tw~nparameter estimates. Thus, as a conceptual 
experiment for estimating the porosity, n, of a porous medium at a 
point x , let the volume U of a cubical REV centered at that point 
be spli~ into N disjoint e~ementary subdomains, oU = Uo/N, such 
that in each of them one may encounter (more or less) either solid 
or void. The average of y over the N samples is taken as an estimate, 
n, of the porosity, n, at ~o' i.e. 

By 

N 
n = E y. /N 

i=l 1 

definition and 

1 N 
a~ E 

n N2 p=l 

1 N 
NoU E 

i=l 
y. au) 

1 

Eq. (3.7), we have 

N n(l 
E Cov(y ,y ) 

q=l P q 
- n) 

N2 

2 . 
where an 1S variance of the estimate of n, 
the distance between points x and x . 

-p -q 

Employing Eq.(3.l0), we obtain 

(3.12) 

N N 
E E Ty(hpq ) 

p=l q=l 
(3.13) 

and h =Ix - x I is pq -p -q 

a~ 
n 

N N 
+ E E exp{ 
p=l q=l 

- h /4(1-n)~}) pq 
(3.14) 

Ptq 

From Eq. (3.14) it follows that, since h is expressed in 
units of ~, N = N(n,afi)' pq 

Figure 1 shows the relationship a~(n,N). For example, for 
n 

n = 0.3, N = 8000, a~ = 0.00347, 
n 

Thus, for a cubical REV, U . (=~(~)3) 
elementary volume OU (C~~)3, s~mfi~ve m1n 

(n) 
~ . m1n 

1/3 
{N(n,a~)} C~~; 

n 
C~ -

NoU, with each 

(3.15) 

In the above example, this means ~(~) = 20C~~, where we have 
added superscript (n) to emphasize thatm~~ have been considering 
the porosity, n, as the macroscopic geometrical characteristic. 
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According to Chebyshev's inequality, the probability that the 
magnitude of the estimation error exceeds a prescribed level, say E, 

is bounded from above by 

p(lft-nl (3.16) 

Let S denote a probability such that a~/E2 =S. Then, N would 
represent the smallest number of subdo£ains of (U ) which is 
sufficient to ensure, with a reliability 1 - S,thgt the estimation 
error In - nl will not exceed E. In the above example, this means 
for example, that for E = 0.1, S = 0.35. Obviously, any reduction 
of E and S(in this example) will require a larger value of N. 

It is of interest to note that in order to determine i~~~ by 
Eq. (3.15), one has to make use of a preliminary estimate or nand 
C","'. 

The requirement of ergodicity also sets an upper bound on the 
size of the REV, namely i < i ,where i is the distance between 

. . h d· dmax . b dmax . h h d . f p01nts 1n t e porous me 1um oma1n eyon wh1C t e oma1n 0 
averaging ceases to be statistically homogeneous with respect to 
the moments of y(~). 

-I 
10 

a~ 
n 

-I 
10 

-.!!...·0.4 

--~ 
:::::;;;;;:;:: 0., 

== 0.05 

:---l"- i-

--- --. 
-:--

~ 

10' 

""" 
~ 

... 
I""" ........ 

;---.. r-. 
r-- ... ~ " ". 

"- " "~ \'·0 
\ \ 

" 
N 

Figure 1. Variance of the estimate, ~, of porosity as a function of 
number, N, of elementary subdomains. 
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In reality, the requirement of homogeneity is seldom satisfied 
as the macroscopic parameters of the void geometry usually vary 
from point to point. However, even for a domain that is heterogeneous 
with respect to these parameters, one can define around every point 
a sufficiently small subdomain, within which these parameters may 
still be considered uniform, up to a prescribed error level. The 
size of such a subdomain at a point serves as the upper bound for the 
size of the REV at that point. 

In order to determine this upper bound, let us define a domain (U) 
centered at a point x as homogeneous, if for all ~ 6(U) 

-0-

Ey(~) - n(~) Constant n 
0 

and 
Cov[y(~ + ~),y(~)l f(~) 

Then 
Var y(~) = f (0) = Constant = n (1 - n ) 

o 0 

For a heterogeneous domain (U), n = n(~). However, for a suf­
ficiently small (U), any continuous and differentiable function 
n(~) can be estimated by its linear part (Figure 2). Therefore, we 
may select an estimator n(~) that has the linear form 

~(~) n + g·b 
0 

where b grad nix By 

-0 

~(~) n(25) + £(25) 

Assuming that E£(25) 
tor of n(25). 

n - nl250 
; h 25 - x 

0 - -0 
(3.17) 

definition 

(3.18) 

o for all ~, ~(~) is an unbiased estima-

We shall refer to the domain (U) as approximately homogeneous 
if for any point x(=x +~) within it, we have 

- -0 

~~l 
~ 8 

n 
0 

and 0 < 8 S; 1 
an acceptable 
by no. 

n 
o 

n 
o 

(3.19) 

is an arbitrarily selected small number, representing 
average relative error introduced by replacing n(25) 



Figure 2. 

n 

n 
o 

o x 
o 

n(x) 

x + U (n) 
o max 

Conceptual determination of £(n) by Eq. (3.19). 
max 

13 

x 

From Eq. (3.17) and the deftnttion of 0, it follows that the 
sought upper bound, denoted by £ n , is given by 

max 

£(n) 
2n 

0 0 (3.20) 
max Igrad nl x 

-0 

Thus 

£(~) « £(n) « £(n) (3.21) 
mln max 

The distance £(n) (with respect to porosity) is thus the upper limit 
for the size opafhe REV at a point x , at the selected error level. 
We have to scan all points x withi~Othe given domain in order to 
determine the smallest valu~oof £(n) 

max 

If £(n) ~ £(~) at x , an REV ctn~ot be defined there. On the 
other han~~xif a W6R-zer;Orange of £ n can be found, which is 
common to all points within a given spatial domain of a porous 
medium, one can adopt the continuum model for the porous medium 
within that domain. 

Finally, we have to*relate £(n) to the dimensions of the 
considered domain. If L is a characteristic length of the domain, 
we require that 

£ (n) « L * (3.22) 
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in order to en~ure that the boundary region of the domain, which 
has a width i,n), and in which the continuum approach is not 
applicable, be small compared to the size of the domain itself. 

So far, the concept and size of the REV have been related to 
porosity as a geometrical porous medium property. We have indicated 
this fact by using the superscript (n). Whenever, additional charac­
teristics of the porous medium appear in the macroscopic model 
describing a transport problem, e.g., permeability, a range for REV 
has to be determined for each of them. If a common REV range can 
be found, a continuum model of the porous medium can be employed. 

One of the requirements for the range of the REV is that 
an/aU = 0 within it, as defined by Eq. (3.5). This does not 
necessarily imply that n(x) is uniform within U. To illustrate 
this point, consider the ratio U (x )/U(x ), wh~re U(x ) is the 

v -0 -0 -0 
volume of a sphere centered at an arbitrary point ~ w1thin (D) and 
U (x ) is the volume of the void space within U(x )? v -0 -0 

~~~~~~~~~~Olid particles 

Domain of I 
microscopic 
inhomogeneit+Domain of porous medium 

1.0 

::l n 

'" 
> 

::l 

~ -g 
a: 

, Domain of possible 
~,c~-------macroscopic 

, __ __ I inhomogeneity 

~HOmOgeneou, medium 
Inhomogeneous media honge for 

I 
U~ I 

I I 
0 
~----____ ~ __________ L-________________ ~Volume U 
0 Umin Umox 

Figure 3. Definition of i(~), Representative Elementary Volume and 
. m1n 

poros1ty at ~o. 
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Figure 3 shows the variations of the ratio U /U as U increases. 
For very small values of U(x ), the above ratio iX one or zero, 
depending on whether ~ happ~ns to fall in the void space or in 
the solid. As U(x ) igcreases, we note large fluctuations in U /U. 

-0 Y However, as U contlnues to grow, these fluctuations are gradual y 
attenuated, until, above some value U=U . , they decay, leaving only 
small amplitude fluctuations around somW1gonstant value. 

In order to examine the behavior of the function n(x ) in the 
domain in which 3n/dulx = 0, consider a domain of averag~ng in the 

-0 
form of a rectangular prism conte red at x , with edges parallel to 
the coordinate axes. By definition, its-~olume is u1x =~xl~x2~x3 
and -0 

n(x ) - y(x ) 
-0 -0 

xlO+~~xl x20+~~x2 x30+~~x3 

1 f f f y(xl,x2,x3)dxldx2dx3 
~xl~x2~x3 

xlO-~~xl x20-~~x2 x30-~~x'3 

(3.23) 

where 

x20+~~x2 x30+!~x3 

-1 1 

f f y (xl,x20,x30) 
~x2~x3 y(xl,x2,x3)dx2dx3 

x20-~~x2 x30-~~x3 

is the areal average of y over a surface normal to the x - axis. 
1 
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Now 

an 1 

/::,X 
-l( 1 ] + Y x lO + -2-) 

= _1_ { - n(x ) +! [y1(XlO 
/::,x l 

x20 ' x30) /::,x l -0 2 + -2-' 

-l( 
/::,x l 

x20 ' x30)]} + Y xlO - -- , 
2 

Hence, for an/a(/::,x l ) 
we obtain 

0, in the range (/::,x l ) . < /::,x l < (/::,x l ) , 
m1n max 

n(x ) - y (x ) 
-0 -0 

Assuming that yl(Xl' x 20 ' x30) is differentiable with respect 
to xl in the domain IXI - xlol ~ /::,x1 /2, and expanding the terms on 

the R.H.S. into power series about xlO ' we obtain 



L'lxl 2 
(-2-) + ... 

Substituting these expressions into Eq. (3.24), yields 

n(x ) 
-0 

L'lx l 
(-2-)6 + .... 

4 
2 Cl yl 

+ 4T ~x Ix 
o 1 -0 

L'lx l 4 
(-) 

2 
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(3.25) 

In order that y(~ ) retains its value for any L'lx l in the range 
where Cln/Cl(L'lx l ) =°0, all terms containing L'lx1 in the last equation 

must vanish, i.e., yl must be a linear function of xl in that range, 
i. e. , 

However, since 

/(X ) = l(x ) 
-0 -0 

y3(x ) 
-0 
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it follows that 

a + b 
o 

x b Constant (3.26) 

It may thus be concluded that if the function n(UI~o) has a 

plateaux within a given range of U, then n(~lu) is a linear function 
of ~ in that range, and vice versa. 

If U(x ) is further increased, say beyond some value U = U , 
-0 max 

we may observe a trend in the considered ratio, due to a systematic 
variation in the latter. The Representative Elementary Volume is 
that volume U (x ), within the range of U . < U < U that will o -0 m1n max 
make the ratio U /U independent of U, and hence a single valued 
function of x oXly . For U = U , the ratio U /U represents the 

-0 0 v 
porous medium's porosity~ n, at x. By definition, for the REV, the 
volumetric fraction of the solid;ol-n, is also a single valued 
function of x . 

-0 

Following the discussion leading to the definition of ~(n) 
by Eq. (3.20), the upper limit for ~(n), for a given 0, is max 

defined by ~(n), which, in turn, depends on U that indicates the max max 
point of deviation from the plateaux, produced by the linearity of 
n(~o) in the vicinity of ~o. 

We note that the determination of the size of the REV and the 
porosity (and other geometrical parameters') distribution for a 
given REV is an iterative process, due to their dependence on each 
other. 

Once an REV has been selected, we use it to define the averaged 
values of all state variables within the context of a continuum 
approach. 
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n 
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ADVECTIVE AND DIFFUSIVE FLUXES IN POROUS MEDIA 

Jacob Bear 

Albert and Anne Mansfield 
Professor of Water Resources 

Department of Civil Engineering 
Technion, Haifa 32000, Israel 

ABSTRACT 

Yehuda Bachmat 

Director 
Hydrological Service 
Jerusalem, Israel 

Advective, dispersive and diffusive fluxes appear in the mac­
roscopic balance equation of an extensive quantity (e.g., mass, 
mass of a component, heat) transported in a porous medium domain 
(2). The objective of this chapter is to develop expressions for 
the macroscopic advective and diffusive fluxes of mass and heat in 
terms of macroscopic state variables. 

1. INTRODUCTION 

In the 1982 NATO Advanced Study Institute, the authors presented 
the continuum approach to modelling the transport of such extensive 
quantities as mass of a phase, mass of a component of a phase, 
momentum and energy, in porous medium domains (2). The passage 
from the microscopic level of description to the macroscopic one 
was achieved by averaging the former over a Representative Elementary 
Volume (REV) of the porous medium. The reader is referred to the 
above mentioned reference. Three kinds of macroscopic fluxes appear 
in the balance equation of any extensive quantity: an advective flux, 
a dispersive one and a diffusive one. Our objective in this chapter 
is to modify and expand the chapter on macroscopic fluxes appearing 
in that reference, focusing our attention on the advective and 
diffusive fluxes of fluid mass and of heat in a porous medium 
domain. 
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2. ADVECTIVE MASS FLUX OF A PHASE 

The macroscopic advective mass flux of an a-phase, ~a' is 
expressed by 

(2.1) 

where 6a is the volumetric fraction of the a-phase,Pa is its density 

and Ya is its volume averaged velocity. The symbol ~a denotes the 
intrinsic phase average of ( ) taken over the volume Uoa occupied 
by the a-phase within the REV of volume Uo (2). Our objective in 

-a 
what follows is to express Ya for a fluid a-phase in terms of 
macroscopic (averaged) state variables (e.g., fluid pressure). We 
shall limit the discussion to 6a = n = porosity, i.e., to the case 
of a single fluid that occupies the entire void space, with some 
comments on multiphase flow. 

As a point of departure, we start from the microscopic momentum 
balance of an a-phase 

(2.2) 

ma 
where; V is the mass weighted velocity of the a-phase, T is the 

::;a 

viscous stress tensor, p is the pressure, z is the vertical 
a 

m 
coordinate (positive upward) and D a( )/Dt denotes the material 
derivative of ( ) with respect to an observer moving at the velocity 

ma 
V By averaging Eq. (2.2) over the REV, we obtain 

where we have introduced the approximation 

Dt Dt 

6 P g'\7za 
a a (2.3) 
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assuming also that V.Y~ 
within Uoa . 

0, i.e., isochoric mass motion prevails 

Let us assume that pressure varies monotonously, i.e., with no 
minimum or maximum, within (U ). Such pressure distribution is 

oa 
characterized by 

(2.4) 

In Eq. (2.3) we have averages of spatial derivaties of state 
variables, e.g., in the form of Vp~. In order to express such 
averages in terms of derivatives of the averages of state variables, 
we have developed a modified form of the averaging rule for a spatial 
derivative (e.g.,(2)). In view of Eq. (2.4), we may now apply 
Eq. (5.8) of Appendix A to Pa' obtaining 

e 

--a 
ap 

a 
a ax. 

J 

* 1 
Taij + U 

o 
(2.5) 

Our next objective is to study the boundary condition ap lax; 
on (S ). a 

as 

Assuming that in the vicinity of the fluid-solid interface, the 
inertial force of the fluid is small relative to the viscous resis­
tance, and that the components of the resistance force normal to 
this interface, (V.T ).v . are much smaller than the tangential ones, 

:::a -a 
we obtain 

or 

(V. T ). v 
:::a -a 

(Vp + P gVz).v - 0 a a -a 

v . 
al 

on (S ) 
as 

on (S ) as 

(2.6) 

(2.7) 

where z = x3. By inserting this expression into Eq. (2.5), we obtain 

(2.8) 
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. a C!. 
Assum1ng that PC!. « PC!. ' the last term on the R.H.S of Eq. (2.8) may 
be approximated by 

o 
P g6 3 .x.v .dS 

C!. 1 J C!.1 - pC!.C!. g -ul f ~.v 3dS 
o (S ) J C!. 

C!.s 

(2.9) 

In writing Eq. (2.9), we have made use of Eq. (5.9) and of the 
relationship 

f 0 f x.v .dS + 
(S ) J C!.1 (S) 

c!.s C!.C!. 

o 
x.v .dS 

J C!.1 
U 6 .. 

OC!. 1J 

The last term of the R.H.S of Eq. (2.3) can be expressed by 

C!. az 
8C!.pC!. g ax. 

J 

(2.10) 

(2.11) 

By inserting Eq. (2.8), Eq. (2.9) and Eq. (2.11) into Eq. (2.3), we 
obtain 

--C!. 
dTC!. •• 1J 

__ C!. 

aT 
~ 
ax. 

1 

a-C!. 
PC!. 

- (-
ax. 

1 

az -Ci * + PC!. g TC!.ij (2.12) ax. 
1 
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Making use of (5.1), the first term on the R.H.S of Eq. (2.12) can 
be rewritten in the form 

-a 
de TN" a ~lJ 

dX i 
(2.13) 

Our next objective is to express the internal viscous resistance 
force, v.e Ta , appearing in Eq. (2.13) in terms of the averaged a-a 
fluid velocIty. We shall first limit the discussion to an incomp-
ressible Newtonian fluid, for which the constitutive relationship 
is given by 

dV~a 
1 

]la (ax:-­
J 

(2.14) 

Other types of fluids may be considered by the same methodology. 
By using Eq. (5.1) to average Eq. (2.14), we obtain 

--a 
de V~a f + a J ) + ]la (V~av . + 

dX i U 0 (S ) 1 aJ 
as 

rna ) VJ' v . dS 
al 

(2.15) 

where ]la is assumed constant within the REV. 

As a special case of interest, let us assume that (a) the fluid 
(that occupies the entire void space) adheres to the solid (= no slip 

m I ---a -s . condition, i.e., V a = V I ), and (b) V = Vs ' l.e., the 
- Sas -s Sas -s-

solid is approximately rigid, and, therefore, its averaged velocity 
on (Sas) is equal to its average over (Uos)' Then Eq. (2.15) can 
be approximated by 

1i'la 1i'let 
--et 

dnV.et dnV.et 
dn --s dn } { ( 1 J (v-:s n T = ]let + - + V sj -) etij dX j dX i Sl dXj dX i 
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--a --a 
rna -s rna -s -s -s 

Cln(Vi Vsi ) Cln(Vj - V sj) ClVsi ClV . 
l1 a { + + n(-- +~)} (2.16) 

Clxj Clx i Clx j Clx i 

in which n replaces 8a and we have made use of the relationship 

(2.17) 

derived by applying Eq. (5.1) to Ga =8a . Since we have assumed that 
the solid is approximately (macroscopically) rigid, and hence 

ClVs . ClVs . 
Sl +~ 0 (2.18) 

Clxj Clx i 

Eq. (2.16) reduces to 
rna --a 

-s rna -s 
__ a Cln(Vi a - Vsi ) an (V j - V sj) 

} n Taij = l1 a { + (2.19) 
Clxj Clx i 

Henceforth, we shall use Eq. (2.19) as an approximation of 
Eq. (2.16) also for a non-rigid solid phase. 

From Eq. (2.19), we now obtain 

--a rna 
--a Cl2n(v~a -s -s 

ClnTaij - V si) Cl 2n(V. a Vsj ) 
J l1 a { + } (2.20) 

Clx i Clx i dX j Clx i Clx i 

where 
-s - Ys ) is the mass weighted fluid velocity 



relative to that of the solid, and ~~a is the relative (mass 
weighted) specific discharge. 

-s 
For a stationary solid (or approximately so, i.e., ys = 0), 
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and neglecting the diffusive mass flux of the fluid due to molecular 
diffusion (i.e., assuming yma~ Ya = volume weighted velocity), 
Eq. (2.20) reduces to 

--a 
ailT eli; 

aXi 
+ (2.21) 

m 
where ~a ( = ~ar = nV a ~ n~a) is the fluid's specific discharge 

relative to a fixed coordinate system. 

For the special case of macroscopically isochoric flow~ where 
V.q = 0, Eq. (2.21) reduces to 

-a 

(2.22) 

-a 
For a macroscopically uniform flow~ where ~a = const., V.n~a O. 

We now turn to the evaluation of the surface integral over 
(Sas) in Eq. (2.13), that expresses the transfer of momentum from 
the solid to the fluid. Actually, this term expresses the force 
resisting the flow of the fluid per unit volume of porous medium. 
Let us assume that 

m 
av. a 
_J_ 
ax. 

1 

m 
av· a 

+ __ J_t ,. 
as t , al 

m 
av·a 

J + ___ t". 
as t " al 

(2.23) 

where ~a' t~, t~ are the normal unit vector (=principal normal) and 
the two tangential ones on (Sas) in the "local coordinates" at a 
point on (Sas).By employing the approximation avja/axi~(av~a/aSV)Vai, 
we have neglected the components of the velocity gradient in the 
local tangent plane to (Sas)' 
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With this approximation, and for the incompressible Newtonian 
fluid considered here, the surface integral in Eq. (2.13) becomes 

-----as 
where Sv is the length measured along ~a and vaivaj 

= ~ J vaivajdS is a coefficient that is related to the 
as (Sas) 

microscopic configuration of the Sas - surface. 

We now introduce the approximation 

--a 

(2.24) 

dS 

-s rna 
_V_s_i __ V_i_ Sas 

Uo 

(2.25) 

-maas 
where Vi is the average velocity of the a-phase on the Sas 

surface. Since we have assumed that the fluid adheres to the solid 

---as -s 
We now add the approximation Vsi ~ Vsi' 
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with the approximation sign changing into an equality one when the 
solid (not the solid matrix!) is rigid. 

The distance 6 appearing in Eq. (2.25) is a characteristic 
distance from the solid walls to the interior of the phase. In a 
granular material, it is some measure of the size of pores. For 
example, it can be taken as proportional to the hydraulic radius, 
i.e., 6 = CaUoa/Sas' where Ca is a shape factor. With this defini-

tion of 6, Eq. (2.25) becomes 

-s 
- V .)/62 

Sl 
(2.26) 

Thus, in terms of the fluid's mass weighted specific discharge 
--a 

m m -s 
gra = n(y a - ys), the averaged momentum balance equation for a 
single incompressible Newtonian fluid that completely fills the void 
space, is 

__ a 
m 

()V· a 
J 

(at 

Finally, for the sake of 
molecular diffusion flux, due 
neglected, so that yma = Ya' 

Ca Ila ------as 
+ -----;;z- (Vai Vaj o 

(2.27) 

simplicity, let us assume that the 
to VPa ~ 0 within (Uoa )' can be 
Then Eq. (2.27) reduces to 
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o (2.28) 

Eq. (2.28) is commonly used as a good approximation also for a 
compressible fluid. 

To recapitulate, the first term on the L.H.S. of Eq. (2.28) 
represents the inertial force, the second term represents the resis­
tance force due to shear inside the fluid, the third term represents 
the force acting on the fluid as a result of pressure gradient and 
gravity and the last term expresses the force exerted by the solid 
phase on the flowing fluid. 

Let us mention two special cases of Eq. (2.28): 
a)When the inertial effects are negligible, and so are the effects 
of internal friction, Eq. (2.28) reduces to the well known Darcy law. 

-s 
- Vsj ) (2.29) 

where 

(2.30) 

is a coefficient related only to macroscopic parameters that describe 
the microscopic configuration of the fluid-solid interface. The 
coefficient kujm - a second rank symmetric tensor - is called the 

Permeability of the porous medium. We recall that r* is defined 
"U by Eq. (5.9) and (5.15). 

Eq. (2.29) is the basic form of the motion equation for saturated 
flow in an anisotropic porous medium at low Reynolds numbers(defined 
by NRe = qp~~/~u). 

b) When the inertial effects are negligible, but we do wish to include 
the effects of internal friction, then Eq. (2.28) reduces to 
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+ -a Clz) 
Pa g Clx. 

J 

o (2.31) 

For an isotropic porous medium, T~ = ~ T~ii' and macroscopically 
rna ) isochoric flow, i.e., V.gr = 0, Eq. (2.31 reduces to 

o (2.32) 

This equation, with qma replaced by qN,without the coefficient 
-ar -~ 

and without the gravity term, was proposed by Brinkman (3) and 
known as Brinkman's equation. 

l/nT* 
. a 
~s 

The entire discussion presented above can also be extended to 
multiphase flow, i.e., when two or more immiscible fluids occupy the 
void space. Without going into a detailed discussion, let us accept 
the conceptual model in which each fluid occupies a certain portion 
of the void space. In principle each fluid then has an interface 
with the solid as well as with each of the other fluids. Momentum 
can then be transferred across any of these internal surfaces. 
Accordingly, if we consider two fluids: a wetting (w) one and a 
nonwetting (nw) one, we should replace the integral over Sas in 
Eq. (2.26) by a sum of integrals over the surfaces Sws' Swnw. If 
then we assume Sws » Swnw' Snws » Swnw' and that, therefore, the 
fluid-fluid momentum transfer is much smaller then the fluid-solid 
one, we rewrite Eq. (2.28) twice: Once for the wetting fluid, with 
a replaced by wand 8a by 8w,and once for the nonwetting fluid, with 
a replaced by nw and n replaced by 8nw . In the modified equations, 
we shall then identify the effective permeabilities, kwij (8w' ~w(8w)) 

and knwij(8nw' ~nw(8nw)) for the wetting and non-wetting fluids, 
respectively, with the possibility that the relations ~w(8w) and 
~nw(8nw) are non-unique. 

3. DIFFUSIVE MASS FLUX 

m 
The diffusive mass flux, lay , of the mass of a y - component 

of an a-phase continuum (i.e., at the microscopic level) is defined 
by 
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(3.1) 

m 
where p is the density of the y-component of the a-phase,y aYis its ay 
mass weighted velocity and V is the volume weighted velocity of 

-a 
the a-phase. We also refer to this flux as molecular diffusion. 

m 
Note that (~)Jay r 0, except when Yma ~ Ya (single component). 

At the microscopic level, disregarding coupling between transport 
phenomena, this flux, denoted by J~y' is expressed by Fick's law. 
For a binary system this law takes the form 

d 
J -ay 

d 

d 
- D Vc ay ay 

(3.2) 

where Day is the coefficient of molecular diffusion of the y-component 
in the a-phase and Cay is the concentration of the y-component in 
the a-phase. We assume that D~y is independent of Cay 

The macroscopic flux of molecular diffusion is obtained by 
applying the averaging rule of spatial derivatives (e.g., 2) to 
Eq. (3.2). We obtain 

(3.3) 

tn which 8ay denotes the deviation of Cay from its average over the 
REV, i.e., 8ay(~, t; ~o) = Cay(~' t; ~o) - c&y (~o' t). The 
difficulty in employing Eq. (3.3) as an expression for the macros­
copic diffusive flux is that the integral appearing in it involves 
information on the microscopic configuration of the Sas - surface 
and on the distribution of Cay on it. We need a way to overcome 
albeit as an approximation, the lack of this information. 

Let us assume that (a) the y-component does not interact with 
the solid, e.g., in the form of adsorption (this interaction is con­
sidered in (1)), and (b) that no sources of yare present within Uo . 
Under such conditions, at a 'given instant of time, the concentration, 
Cay' varies monotonously within (Uoa ) and hence, satisfies the 
condition 

o (3.4) 
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In view of assumption (a) above, the a-phase - solid interface 
(Sas),acts as a material surface for the y-component, i.e. 

o 

where y is the velocity of (Sas)' 
microscopic level, states that no 
by advection or by diffusion. 

(3.5) 

Note that Eq. (3.5),written at the 
y-component crosses Sas' whether 

At the same time, the solid acts also as a material surface with 
respect to the total fluid a-phase mass, and, therefore, (Ya-~)'~a=O. 

Hence, in view of Eq. (3.5), we have 

0, or (3.6) 

with c satisfying Eqs.(3.4) and (3.6 ), the case under considera­
tion c~lresponds to Case A defined by Eqs. (5.3) and (5.10), with 
Ga=cay . Hence, making use of Eq. (5.11), the macroscopic flux in 
this case takes the form 

d d d--a 
J =-D Vc = - nDroy VCroy -ay ay ay ........ 

or, in indicial notation 

(3.7) 

where n is porosity and D~~ = D~yr~ , a second rank symmetric tensor, 
is the coefficient of molecular diffusion in a porous medium. The 
coefficient r~ is defined and discussed in Appendix B. We have 
thus achieved our objective of replacing the missing microscopic 
information by a macroscopic coefficient that represents it. 

In a multiphase system, the fluid a-phase occupies only part 
of the void space. Then the interface between the a-phase and all 
other phases within the REV is a material surface with respect to 
both the total mass of the a-phase and the mass of the y-component. 
Therefore, the discussion presented above remains valid. Replacing 
the porosity n by the volumetric fraction,e a , of the a-phase, we 
obtain 
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d* d* 
except that in this case, D = D (8) 

" cry "ay a· 

4. DIFFUSIVE HEAT FLUX 

( 3.8) 

We now consider the diffusive heat flux (=heat conduction) 
within a fluid a-phase that completely fills the void space of a 
porous medium. We shall first assume that both the fluid a-phase 
(denoted here by f) and the solid phase (denoted here by s) may 
conduct heat, with thermal conductivities Af and As' respectively, 
assumed constant within an REV. 

h 
The diffusive heat flux, !f' within the fluid phase occupying 

Uof ' is expressed by Fourier's Law 

(4.1 

where Tf is the temperature of the fluid phase. To. obtain t?e 
corresponding macroscopic flux, we employ an averaglng rule In 
the form of Eq. (3.3 ) in which Cay is replaced by Ta. As in the 
case of molecular diffusion, here also we have to overcome the 
lack of information on the (microscopic) configuration of (Sfs) and 
the distribution of Ta on it. 

To achieve this goal, similar to the case of molecular diffusion, 
let us assume that no sources or sinks of heat are present within 
CU f) and (U ),and that within each phase, the temperature(Tf in the o os 
fluid phase and Ts in the solid one) varies monotonously, such that 

o o (4.2 ) 

However, in this case, the total heat flux leaving one phase, 
say the fluid, is absorbed, without any loss, by the other phase. 
This observation is expressed by the conditions 

v .1 Sl . 
s-slde 
of (Sfs) 

( 4.3) 

and 
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(4.4) 

(i.e., the interphase surface is no more material with respect to 
heat). Because the solid is impervious to fluid, the (Sfs) - surface 
is material with respect to fluid mass, and hence no heat advection 
takes place through it. 

By comparing Eq. (4.3) and Eq. (4.4) with Eqs. (5.12) and (5.13 
we conclude that the case on hand is identical to Case B of 
Appendix, with Tf = Ga and Ts = GS' 

Hence, making use of Eq. (5.17), the expression for the 
macroscopic heat flux of a fluid phase that fills the entire void 
space (8 f - n) takes the form 

(4.5) 

An analogous expression, in terms of 8s = 1 - nand 8 T* = 
S"s 

§ - efI~ (see Eq. (5.15)) can be written for the macroscopic heat 
flux, in the solid phase. 

We have thus achieved our goal of expressing the macroscopic 
heat fluxes in terms of the macroscopic state variables. 

It is interesting to note the basic difference between Eq. (3.8) 
and Eq. (4.5). Because the fluid-solid interface is "impervious 
to the diffusive mass flux", the relationship between the micros­
copic flux and the macroscopic one, expressed by Eq. (3.8), depends 
only on what happens in the fluid phase. The coefficient I~ may 
be called a tortuosity (of the void space, or of the (Sfs)-configu­
ration). On the other hand, in the case of heat transport, the 
(Sfs)-surface is "pervious to heat", with conditions (Eqs. (4.3) 
and (4.4)) on it. Hence, we note the coupling between the heat 
transport in the two domains, (Uof ) and (Uos)' Heat is exchanged 
continuously between the two phases. Under such conditions, I~ has 
still the meaning of a tortuosity of the fluid phase. 

-f 
Let us consider the special cases Tf 

reduces to 

-s 
T s . Then Eq. (4.5) 
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( 4.6 ) 

which is similar to Eq. (3.7), with ~~ = Af!~. This result is 
obvious since we have no heat exchange (on the average) between the 
two phases. Hence, Eq. (4.6) is also valid for As = 0 

-f -s 
When Tf = Ts ' the total heat flux in both phases is given by 

h h 
~f + ~s ( 4.7 ) 

where ~ = nA; + (l-n)~= is the thermal conductivity of the saturated 
porous medium as a whole. 

5. APPENDIX A 

The objective of this Appendix is to develop, following Bachmat 
and Bear (1) a modified form of the commonly used averaging rule for 
a spatial derivative 

----0. 
aG'k n 
~-.. -.-

80. aXi 
(5.1) 

where G'k n is a tensorial property of a phase, Uo is the volume J ;c ••• 

of the REV, 80. is the volumetric fraction of the o.-phase, S0.8 is the 
surface areao.0f contact of the o.-phase with all other phases within 
the REV, () denotes the intrinsic phase average and ~o. is the 
normal outward unit vector on (S0.8) (e.g. Bear and Bachmat (2». 

The integral on the R.H.S. of'Eq. (5.1) requires information on 
both the geometry of the S0.8 - boundary and on the values of Go. 
on it (first type boundary condition). Let us develop a modified 
form of Eq. (5.1) for a scalar Go. in which the required information 
is on the normal component of VGo. on (S0.8) (i.e., second type 
boundary condition for which information is sometimes available). 
To this end, consider the quantity ~jaGo./axi. 

By Gauss Theorem applied to the domain (UOo.) of volume Uoo. of 

an o.-phase within the domain (Uo) of volume Uo ' we obtain 
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(5.2) 

where (Soa) is the total surface of the closed area surrounding 
(Uoa)· 

We shall limit the following discussion to Ga's that satisfy 
the following two conditions: 
(a) Ga attains no maximum or minimum value within (Uoa ) , i.e., Ga 
varies monotonously within (Uoa ). Under this condition we have (4) 

a2 G 
a 0 within (Uoa ) (5.3) 

dxi aXi 

(b) 

----aa -a 

f 
aGa 0 

aGa f ~jVaidS 
aGa f ~.v .dS xjVaidS - aXi 

- "axi dxi ( ) J al. 
(Saa) (Saa) Saa 

where (5.4) 

----aa aGa aG 
1 

f 
a dS (5.5) 

aXi Saa aXi 
(Saa) 

i.e., we assume that the average of the gradient of Ga on the a-a 
portion of the outer surface of the REV is equal to the gradient 
of the average of Ga over the volume Uoa of the a-phase within the 
REV. 

By definition, and by Eq. (5.3) we have 

(5.6) 

Hence, Eq. (5.2) reduces to 
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or, with Eq. (5.4) 

--a -a 
aGa aG 

+ _1_ f 
aGa a * 0 

Taij Xj dxi 
vai dS (5.8) 

aXi aX i U Oa (SaS) 

where 

* 1 

f 
0 (5.9) Taij Uoa XjVai dS 

(Saa) 

Thus, Eq. (5.8) is another form of the averaging rule for VGa , 

this time requiring information on VGa'~a on (SaS)' 

Two cases, the physical interpretation of which is presented in 
this paper, may be considered. 

o (5.10) 

In this case, Eq. (5.8) reduces to 

(5.11) 

Case B. 

In this case, we have aG /av # 0 on (SaS)' Let the following two 
boundary conditions holdaon (SaS): 

and 

A~ 
S av 

S Is-side 
of (SaS) 

(5.12) 
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Ga I 
a-side 

Gi3 I 
i3-side 

(5.13) 

of (Sai3) of (Sai3) 

where Aa and Ai3 are two coefficients that depend on the physical 
nature of G and the a and 13 phases, respectively, and Gi3 denotes the 
value of G in (Uoi3)' 

By applying Eq. (5.8) first to the a-phase and multiplying the 
result by Aa , then to the i3-phase and multiplying the result by Ai3 
and adding the two resulting equations, employing Eq. (5.12), we 
obtain 

Now, by Eq. (5.9) 

whence 

Uo IS •• 
1J 

(5.14) 

(5.15) 

Also, by writing Eq. (5.1) twice, once for the a-phase and once for 
the i3-phase and adding the two equations, employing the condition 
Eq. (5.13), we obtain 

--a -13 -a -13 

8a 
dGa 

+ 613 
dGi3 d(6 aGa ) 

+ 
d(6 i3Gi3 ) 

(5.16) dX j dX j dX j dX j 

Finally, multiplying Eq. (5.16) by Ai3 and subtracting the result 
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from Eq. (5.14), yields 

1 
-a -S a (6 a (Ga-G S» 

ax. 
J 

(5.17) 
where Eq. (5.13) and the relationship 6a+6 S = 1 were employed. 

In the particular case AS=O, Eq. (5.17) reduces to Eq. (5.11), 
corresponding to Case A. The same holds when AafAS' but G~ = G~ 
throughout the entire porous medium domain. 

6. APPENDIX B: THE COEFFICIENT I~ 

* ) . The coefficient Ia ' defined in Eq. (5.9 represents the stat~c 
moment of oriented areal elements of Saa , with respect to planes 
passing through ~o' per unit volume of the a phase within (Uo )' 

* To obtain an estimate of the magnitude of the components Tai ·, 
consider a spherical REV oL radiusR. Then, Eq. (5.9) can be writ-ten 
in the form 

* 1 

f dS Taij 6a Do Rv ai Vaj 
(Saa) 

s s 
6a SoR 

1 f 3ea -----aa {- vaivaj dS} vai vaj (6.1) 
eaDo Saa (S ) ea 

aa 

s 
where ea ( = Saa/So) denotes the a.-a fraction of the surface So' and 
-----aa 
Vai\)aj represents the average of v .V . on lS ). al aJ aa 

The term vaivaj is a symmetric second rank tensor. Hence, 

v~iv~ja which is a linear combination of vaivaj ' is also symmetric. 

Therefore, there exists at least one set of three mutually orthogonal 
planes of symmetry for v~iv~~a ,and three principal axes normal 
to these planes. In the coo~dinate system of the principal axes, 

-----aa 
vaivaj can be expressed in the form 
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(6.2) 

where a l , a 2 and a3 are the principal values of v~iv~ja ,i.e., 

-:2 -aa . 1 
and va3 ,respect1ve y. Hence 

for i 1, 2, 3 

For an isotropic porous medium, with respect to v~iv~ja 

al a2 = a3 = a, and Eq. (6.2) reduces to 

definition, 

1 
a = 3 

1. Hence 

(6.3) 

(6.4) 

(6.5) 

By inserting this result into Eq. (6.l),we obtain for an isot­
ropic porous medium 

(6.6) 

For porous media for which 6~ < 6a (5), Eq. (6.6) yields 

* o < Taii < 1 for any i (6.7) 
(no summation on i) 

However, in the general case 

e: -z-aa -z-aa -z-aa 

3 e (val °liOlJ· + Va2 021· 02J·+ va3 ° 3 .° 3 .) 
a 1 J (6.8) 
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Hence * Ta.ii < 1 , when 

The ratio e~/ea. is a measure of the tortuosity of the void space, 
----_a.a. while the term va.iva.j represents the effect of anisotropy on the 

tortuosity (1). 
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ABSTRACT 

The flow of fluids through natural reservoir bodies is compli­
cated, particularly for multiphase processes and especially if there 
is mass transfer. Physical modeling using visual techniques can give 
some of the necessary descriptions leading to the proper formulation 
of mathematical models for predicting reservoir performance. This 
chapter describes the micromodel techniques developed at Imperial 
College, highlighting particularly those involving pore scale events 
which depend on network and pore morphology. 

1. INTRODUCTION 

Fluid flow in porous media, with or without mass transfer, needs 
to be understood for many applications, including petroleum reservoir 
engineering, especially enhanced oil recovery, groundwater hydrology, 
soil science and waste water disposal. An accurate description of 
reservoir characteristics is therefore required on many length scales, 
ranging from 1-100 ~m for pore-scale features, through 1-100 cm for 
core samples to 1-100 km for reservoir bodies; a range of lOll. 
Such a description can only be achieved through a thorough under­
standing of the geological setting combined with geological, 
geophysical, and petrophysical data from well tests, logs and cores. 

Single phase bulk fluid transfer in porous me~ia at a continuum 
level is described by Darcy's law, and is fully discussed elsewhere 
(e.g., 3, 10, 12). Displacement processes, when there are differen­
ces in physical properties, such as viscosity, density or interfacial 
tension, (e.g., water displacing oil, salt water intruding into 
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potable water) cannot be described so easily, and when the matrix 
itself has non-uniform properties the processes become very complex. 
However, physical descriptions must be sought before mathematical 
models can be devised and the equations solved to predict the 
behavior of some specific field operation be it a potential aquifer 
or hydrocarbon reservoir depletion plan, nuclear waste site or other 
application. 

1.1. The Scaling Problem 

Physical experiments must be performed in order to gain the 
understanding of the mechanisms of flow, displacement and entrapment 
at both the qualitative and quantitative level. Initially the 
objectives are to identify mechanistic processes using simple models, 
using an ever increasing range of fluids with diverse physical 
properties, and ultimately to develop scaled models representing as 
realistically as possible the various scaling groups relating model 
to prototype obtained through dimensional or inspectional analysis 
(3). 

Clearly, caution must always be exercised to ensure that 
experimental conditions, such as flow rates, pressure gradients, 
interfacial tensions, wettability and flow regimes are similar and 
do not invalidate any scaled conclusions, especially as normally 
some scaling criteria have to be relaxed. The physical processes 
occurring need to be understood at the scale one lower than that 
required to be predicted, as well as at the actual level and possibly 
even one level higher, although here the properties can usually be 
modeled directly through the choice of equation coefficients, (an 
example can be found in Haldorsen and Lake (14) and Begg, Chang and 
Haldorsen (4». Care must always be taken,as emphasized throughout 
this chapter, that the physical processes are being properly 
described and averaged in the scale-up. 

Although it has been recognized for some time that transport 
through porous media depends on the microstructure of the pore space, 
the macroscopic effects cannot, as yet, be interpret ted in terms of 
simple cause and effect relationships due to the microscopic events. 
Correlating a change in one variable with a change in another is a 
long way from demonstrating that one is the cause of the other. 
Because of such difficulties, studies on simple model systems are 
particularly valuable in clarifying our understanding. However, any 
one model can often highlight only a few components although a good 
model will emphasize the most important features and ignore 
inessential detail. Therefore a series of models are needed, each 
focussing on a number of key features, and at a range of length 
scales. Clearly the scale of detail explicit in the pore scale 
cannot be approached in the larger scale, and a whole hierarchy of 
models are needed to handle the description of phenomena on different 
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length scales. 

The motivation for our work can be summarized by the vital 
questions: 

1) Where is the oil in the pore structure? 
2) How does the oil move to the well-bore (mobilization)? 
3) Why does the oil stop moving (entrapment)? 
4) Can the oil be remobilized (enhanced oil recovery)? 

In this chapter, some of our microscopic, pore level modeling 
studies (1-1000 ~m) carried out at Imperial College will be outlined, 
(fuller details are referenced later.) Our objectives have been to 
gain a better understanding of the basic parameters affecting the 
mechanisms of displacment of immiscible and miscible systems with 
and without mass transfer. This is of particular relevance in our 
case to petroleum reservoir engin~ering especially for improving 
oil recovery. Consequently the rest of this chapter refers to oil 
recovery, although most of our observations are applicable to other 
processes. We shall describe the micromodeling techniques used 
(Sections 2 and 3) and give a few examples of qualitative work with 
emulsions (Section 4.1), a quantitative study of diffusional mass 
transfer processes using micromodel (Section 4.2) and live-fringe 
holographic methods (Section 4.3) and an indication of the effects 
of pore structure in displacements, such as snap-off and entrapment 
due to pore space morphology, and hydrodynamic instabilities due to 
mass transfer and capillary pressure changes (Section 5). 

2. MICROSCOPIC BEHAVIOR 

The pore structure, when examined under the Scanning Electron 
Microscope, is seen to be extremely complicated (31) as can be seen 
in Figure 1. The pores are microscopic and are considered to be on 
average no more than a few micrometers in size (perhaps 2-100 ~m). 
If the reservoir drawdown area has a radius of some 1 km, the fluids 
from the outer boundaries will have passed through some tens of 
millions of pores. Since there are some 109 pores in a 1 cm3 sample 
and within the pore space, oil, water and sometimes gas distribute 
themselves, it therefore seems pertinent ~o understand fully the 
behavior of multiphase fluids within the network system. 

In multiphase systems capillary forces will dominate the fluid 
distributions and control fluid flow behavior with the capillary 
number (V~/y) - the ratio of viscous to interfacial forces - being 
an important parameter. (Various other definitions of capillary 
number are used in the literature (5, 19, 20, 35).) Unfortunately 
even today, a piece of reservoir rock is essentially a black box 
when it comes to observing the detail of multiphase flow. One can 
measure input and output flow rates and compositions and pressure 
profiles along the core, but the exact distribution of fluids cannot 
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Figure 1. Micrograph of a North Sea Sandstone showing the pores as 
areas impregnated with dark resin. Note the irregularitie 
in the shape. 

be determined except in a few cases, (e.g., filling cores with 
plastics and solids and then destructive examination of them by 
sectioning (6) or tomography experiments using "brain scanners", 
(e.g., 9, 15, 16, 34), although here the resolution is still 
insufficient, or perhaps certain radioactive tracer methods, (2).) 
A fuller discussion of pore structure has been given recently by 
Quiblier (32). More specifically the need is to understand the 
mechanism of fluid flow and tracer transport in order to have a 
physical basis for interpolation and extrapolation (e. g. to per.haps 
3 phases, oil, water, gas or a second liquid phase) of the limited 
experimental data. Often the measurements have to be made on small 
samples and the results scaled upwaras towards reservoir dimensions. 

It is therefore essential to model the porous system using 
simplified networks and fluids which imitate the reservoir fluids, 
so that saturation patterns can be followed, and displacement 
sequences understood (28, 30). The pore space is treated as an 
assemblage of pore segments and transport is governed by rules 
incorporating pore level mechanics which determine where the fluids 
go during a transport process and which, when suitably averaged, giv 
rise to the calculation of the macroscopic properties. The geometry 
of the network and its degree of interconnection are important in 
determining the transport within the matrix. Individual segments 
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of the network vary in size; those which are larger are termed 
"pore bodies", and these are connected by numerous smaller passage­
ways termed" pore throats ". The sequence of bodies and throats give 
a transport path which has a converging-diverging character. The 
distribution of the multiple phase within the porous matrix is 
usually important in determining the nature and magnitude of the 
transport. Here, wettability strongly affects the distribution but 
this itself depends on the actual fluids present in the porous 
medium and how they arrived there. Transport relevant to multiphase 
flow with mass transfer, including condensate recovery (excluding 
thermal effects) requires an understanding of: 

1) the flow of each phase, 
2) the transport of each chemical species within each phase, 
3) mass transfer at the interface. 

The complexity of the pore geometry makes it difficult to scale 
effects observed in one pore to those occurring at reservoir 
dimensions, but the randomness of the pore structure can sometimes 
allow one to statistically average over a continuous volume that is 
large with respect to the size of an individual pore yet small with 
respect to the size of the sample, and large compared to the length 
scale of the phenomenon being studied. This enables one to scale 
from the microscopic behavior to a macroscopic average (1, 3, 12). 

Clearly there are also a number of size scales even at the 
micro-level. One can examine in detail the morphology of the clay 
infillings within a pore (e.g., 29); or observe diffusion, (24), or 
surfactant transfer mobilizing residual oil within a pore as is 
described later, (8), or events over a few pores, such as ganglion 
backflow (26), or over a few thousand pores to obtain average 
saturations, (27). 

3. PORE LEVEL PHYSICAL MODELS - THE MICROMODEL 

Micromodels are 2-D flow cells which represent idealized porous 
media. They have a network of flow channels and are constructed in 
transparent material to enable the fluids to be directly observed 
and recorded as displacement and mass transfer occur. 

Etched network models have been used in our work because of 
the advantageous control over network design and pore geometry 
(size and shape), since these determine the interfacial curvatures 
and hence the interfacial forces, i.e., capillary pressure. There 
are several ways micromodels and their results may be used: (1) as 
a purely visual aid to gain insight into the physics of displacement 
within porous media, (2) to measure the volume average properties 
such as fluid saturation, permeability and dispersion coefficients, 
and relate these to network parameters, (3) to study pore level 
events, such as the mechanics of oil ganglia and fluid snap-off, in 



54 

terms of local pore topology and imposed boundary conditions (velocity 
and pressure fields). 

The first of these ways has proved to be valuable to us and is 
also the forerunner of any more quantitative studies. The essence 
of micromodeling is not only to seek the answers to questions of 
fluid flow, but also to pose the questions which need to be answered 

3.1. Micromodel Construction 

The networks are produced by etching into silica glass or 
photoetching into nylon from which replicas in epoxy resin are cast. 
The glass models have a surface chemistry similar to that of clean 
sandstone and are water-wet when clean. The resin models demonstrate 
a mixed wettability: decane completely wets them, whereas water show 
a finite contact angle. For decane-water-alcohol systems the 
aqueous phase tends to wet the resin completely, but not spontaneously 
when the surfaces are initially contacted by decane. 

Figure 2 shows the complete method of producing glass micro­
models. It has been developed from that described by McKellar and 
Wardlaw (27) and involves six stages: (1) photographing a hand-drawn 
or computer-drawn pore network, (2) coating a glass base-plate with 
a photoresist, (3) projecting the photographed network design onto 
the casting with UV light, (4) washing away the unpolymerised 
(unexposed to UV) sections of the coating, (5) etching the design 
into the base-plate with HF, (6) sealing on a cover plate by heating 
in a furnace. 

The epoxy resin model production procedures have been described 
fully previously (22,26). In our very early work we performed flow 
experiments directly with the etched nylon film but these were found 
to suffer from significant absorption of dyes and solvents which 
ruined the models. Consequently we now use the etchings as patterns 
for silicone rubber moulds, from which rigid non-absorbent epoxy 
resin replicas are cast. The casts accurately reproduce the micro­
structure of the nylon model. A flat epoxy resin film is sealed on 
top of the casting to produce the 2-D micromodel. Inlet and outlet 
ports are drilled into the model and fine tubing sealed in place 
with epoxy cement. The arrangement of valves helps to eliminate 
fluid mixing in the entry tube thereby ensuring injection of 
uncontaminated fluid. The model is mounted on the stage of a 
microscope and fluids pumped through it using microsyringe pumps at 
typical reservoir rates (typically less than 1 m/day). The flow move 
ments can be observed through a microscope and recorded in colour 
on videotape or still photographs. 
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(a) Hand-drawn parallel layer model with serial heterogeneities. 
This was designed to yield realistic and predictable relative 
permeability and capillary pressure functions. 

(b) Computer drawn regular network of curved channels with reducing 
pore throat sizes, to investigate fines movement and entrapment. 

(c) Computer drawn doublet network with a variation of pore para­
meters and having abrupt pore necks. This was designed to 
demonstrate the effects of two pore sizes in parallel and in 
series. 

Figure 3. A selection of micromodel networks. 
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(d) Part of a computer-drawn model having dead-end pores (sometimes 
known as ink bottle pores) in high conductivity channels. This 
waS designed to study the effects of diffusion into stagnant 
regions by holography. It is also a possible model of some 
carbonate rocks. 

(e) Heterogeneous network to 'study bypassing arid'entrapment. The 
middle section has D different pore throat/body size from the 
surrouiUling mattix and therefore different' capillary pressure 
and per~~abilitv. 

(f) A 

Figure 3. A selection of micromodel networks (Cont.) 
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Sensitive pressure transducers can be attached to the micro­
models to allow the fluid movements and pressure events to be related. 
Often one of the fluids is dyed so that it can be distinguished. 
Dyes can also be used to follow dispersion patterns within a single 
phase although they are surface active and their effects on 
wettability must be taken into account when analysing results. 

3.2. Network Design 

The photomasks used to control the etching procedures can be 
produced either by hand-drafting or by computer graphics and micro­
film facilities, allowing both design flexibility and control over 
the network parameters. Figure 3 gives a number of examples. This 
degree of control over network parameters, such as pore body and 
throat size distributions and network connectivity, offers the 
opportunity to test theoretical models on a microscopic scale to an 
extent not yet possible in a real porous system and to obtain 
wherever necessary quantitative data to confim the principles 
observed. By these methods pore networks have been fabricated with 
well controlled geometries down to pore throat dimensions of about 
15 ~m. 

The pore dimensions can be made realistically small to ensure 
that capillary forces are of the correct order of magnitude as occur 
in reservoir rocks (they decrease as pore size increases) and the 
neck to pore cavity ratios can be representative of real porous 
media (i.e., 1:2 to 1:10). It is important to ensure that the 
capillary number and other dimensionless groups are of the correct 
order of magnitude as found in the field. We also vary pore size 
and shape, pore wall irregularity and roughness to represent the 
various aspects of porous media which affect oil movement and 
entrapment. The effects of heterogeneities, where areas of oil may 
be bypassed, and methods of contacting and remobilising this oil can 
also be studied. Models incorporating random distributions of pore 
bodies and pore throats or defined non-random heterogeneities are 
now being developed with pore roughness and network heterogeneity 
based on a fractal approach (18, 33, 36). 

The two dimensional nature of the models will affect some 
global aspects of the behavior, in particular the simultaneous 
continuity of two phases is not topologically possible in two­
dimensions but is in three dimensions. However this is not a major 
problem if one is more interested in the local pore-level physics. 
The global aspects of the behavior can be understood in terms of 
invasion percolation theory, (e.g., 19, 35), which should help to 
determine which features are artefacts of two dimensions and which 
are not. For instance at breakthrough in two dimensions the displaced 
phase will no longer be continuous. Care must also be exercised 
when considering local grain contact effects, for instance there are 
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difficulties in modeling "pendular" rings of wetting phase in micro­
models. The shape may be totally different. Also there is the 
problem of any "unseen" curvature between the top and bottom of the 
model, and which could in some circumstances dominate the curvature 
seen in the plane. It is therefore erroneous to measure micromodel 
permeability, dispersion coefficients and fluid saturations, and to 
treat these as absolute quantities which can be compared directly 
with values derived from real, three-dimensional media. Measurements 
of, for instance, residual oil saturations can be valuable in a 
relative rather than absolute sense. 

The actual shape of the pore may have some effect. For instance 
our glass micromodels are sealed by sintering which tends to round­
the corners, whereas our resin models tend to have sharp corners. 
This allows the resin models to have a "groove effect" for the 
wetting phase to bypass residual phase or transport chemical to the 
interface. Such phenomena have been discussed by Lenormand and 
Zarcone (21) although they suggest some of the effects are due to 
a surface roughness factor. 

Nevertheless, in spite of these limitations we feel that many 
microscopic aspects of fluid flow in reservoir rocks can be 
realistically modeled. 

4. MICROMODEL STUDIES 

In this and the following section a few examples will be given 
of our microscopic visualisation studies which demonstrate the scope 
of the method. 

4.1. Qualitative Studies 

Our initial objectives were to understand the microscopic 
mechanics of miscible displacements, then the immiscible displacement 
of water flooding, the usual method of secondary oil recovery. 
Following then to study the unproven but promising techniques 
of enhanced oil recovery, particularly those utilising low interfacial 
tension and miscible processes (23). Recently discovered surfactant 
mixtures can lower the oil/water interfacial tension some four orders 
of magnitude to values below 10-3 mNm-1 . In miscible processes the 
solvent either dissolves the oil/water interfaces on first contact 
or after a period of mass transfer involving diffusion and interfacial 
instability (Marangoni effects) and other solubilizing events. Model 
fluid systems are used to simulate reservoir behaviour as hydrocarbon 
reservoirs are at high temperatures and pressures (often near 1000 C 
and 500 bar) experiments at real conditions are difficult and 
expensive. Alcohols are suitable fluids since the wide variety 
allows a spectrum of single to mu1tiple-contact-miscib1e to immis­
cible systems to be studied with variations in such properties as 
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viscosity, density, interfacial tension, solubility and diffusion 
coefficient. 

In these studies (23,25), not only were the phase effects 
studied, but also the pore network geometry and its effect on 
capillary pressure, displacement and entrapment by varying size 
distribution, pore shape and throat sizes, and the connectivity of 
the pores. Further discussion of this work is given in Section 5. 
Another interesting phenomenon was observed with a study of displace­
ment from dead end pores. We found that oil can be displaced by 
water moving into the pore along the wetting film. This model was 
preferentially water-wet. 

4.2. Quantitative Studies 

There are many facets of reservoir behaviour which must be 
studied and quantified, apart from the purely visual description, 
which is how micromodels have been used previously, such as 

1) the effects of network and pore structure (topology, 
connectedness, the shape of the diverging-converging 
connection, roughness and irregularities of the pores, 

2) the effects of shapes and sizes of the pore elements 
(pore bodies and throats), 

3) the effects of flow rate, 
4) the effects of viscosity, 
5) the effects of density differences, 
6) the investigation of wetting preferences of immiscible 

phases, 
7) the study of one, two or perhaps even three mobile phases, 
8) the effects of low interfacial tensions. 

The phenomena become even more challenging when the system is 
close to a critical point, such as is found in retrograde condensate 
systems (11, 37) or when the phases are in the form of an emulsion 
(7, 8). This is an important area of study for when the oil is 
mobilized, emulsions are frequently formed, especially if surfactant~ 
or thermal methods are being used. Figure 4 shows a still photograpr 
taken from a video-taped sequence of an oil-in-water emulsion 
(interfacial tension about 10-2 mNm- l ) flowing through a curved pore 
channel network. This study demonstrated beyond doubt that the 
interconnectivity of the pores affects the flowing properties of the 
emulsion. It showed that the previous work on emulsion movement 
through single straight capillary tubes may not be readily extended 
to porous media. We have shown that the emulsion droplets do not 
all move at the same velocity; some slip or stick against the pore 
walls whereas those in the centre of the pore move far more readily. 
This affects the rheology as well as the creaming and coalescence 
properties of the emulsions (7). 

Figure 5 shows photographs taken from the video monitor showing 
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.Figure 4. Oil-in-water emulsion flowing (left to right) within a 
curved pore channel. 

Figure 5a. Detail of square-grid 
model after a surfactant solu­
tion (white) has begun to dis­
place oil (black) by breaking 
it into smaller droplets (flow 
is left to right). 

Figure 5b. Close-up of a moving 
oil droplet at the instant of 
snap-off from a trapped oil blob. 
The elongated forms of the oil-
aqueous surfactant interfaces 
are due to the very low interfacial 
tension (about 10-3 mNm-1) between 
the oil and surfactant. 
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the interfacial shapes that can be obtained as a surfactant solution 
contacts entrapped oil. The interfacial tension increases the ratio 
of viscous to capillary forces by some 4 orders of magnitude because 
there is now only a very small resisting capillary pressure. The 
trapped oil droplet's interfaces can now distort and manoeuvre 
through the pores; this can lead to improved oil recovery. Inter­
facial forces can still however be very influential in such low 
tension systems. 

4.3. Mass Transfer Quantification Using Holographic Interferometry 

A novel approach to study and quantify diffusional mass transfer 
at the pore scale is by holographic interferometry using a micromodel 
as the porous medium, (24). By this technique we are able to follow 
quantitatively fluid concentrations as a function of both position 
and time. The speed at which mass transfer occurs is very influential 
in the recovery of oil by chemical agents. Absorption of light by 
dyes can be exploited to show dispersion and diffusion through the 
pore system but the quantitative effects of the tracers may be 
different to those of the fluids. By using live fringe holographic 
interferometry, which exploits the refractive index differences of 
the liquids it is possible to map lines of constant composition over 
the whole pore showing the direction and rate of diffusion and any 
convective component of mass transfer. Figure 6 (a and b) illustrate~ 

an example of diffusion effects within a single dead-end pore in the 
network shown in Figure 3d. The model creates stagnant fluid in the 
pores. Here we can see the development of the fringe pattern as the 
concentration field changes. The flow channel is inclined at 45 0 

to the vertical and the fringe pattern shows gravity segregation 
plus diffusion. 

For partially miscible systems, where the interface is held by 
capillary forces, the convective mass transport due to unstable 
density gradients is limited because mass must diffuse across the 
interface. The diffusive flux across the interface is controlled by 
the composition gradient at the interface in both phases. Convective 
transport within each phase due to buoyancy forces increases the 
gradients at the interface and therefore increases the diffusive flux 
across it. Thus the mass transfer coefficient is larger for the 
gravity unstable case. 

The contribution of convective transport will become even more 
apparent when mass transfer occurs into systems of interconnected 
pores rather than single dead-end pores. As a result calculations 
of mass transfer using only diffusion coefficients measured in bulk 
fluids, and pore size parameters will be erroneous when density 
effects are present. 

These experiments demonstrate the possible importance of the 
influence of gravity on the microscopic mass transfer between 
fluids od different density, previously always assumed to be 
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Figure 6. Live fringe holo­
graphic interferogram in a 
single dead-end pore; the 
model was held vertical with 
the channels inclined at 45 0 • 

Flow within the wide channel 
is from bottom left to top 
right. 

a. Model filled with oil. 
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(b) 

b. After introducing solvent of 
greater density and refractive 
index than the oil; the dis­
placement is complete in the 
channel while the curved 
fringes indicate a diffusion 
zone within the dead-end pore. 

negligible. Full details have been given in Mahers (22) and 
Mahers and Dawe (24). 

5. CAPILLARY PRESSURE, MASS TRANSFER AND HYDRODYNAMIC INSTABILITY 
IN DISPLACEMENT 

In this section we show an example of the quantitative scope 
of the micromodel demonstrating the effects of pore geometry (23, 
25, 26). 

Hydrodynamic instability during displacement processes can 
occur due to dynamic capillary pressure phenomena where there is mass 
transfer across interfaces. It is most pronounced when the 
residual oil distribution is not uniform and relatively large volumes 
of "continuous oil" are present: this can occur for instance in a 
heterogenous zone of the pore network. The chemical solute may 
only contact part of the oil/water interface, thereby setting up 
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-concentration gradients across the interface. 

5.1. Hydrodynamic Instability - Haines Jumps - Drainage Displacement 

Figure 7 illustrates the displacement of water by oil in a water 
wet pore. The oil-water interface in the right hand pore is a head 
meniscus, and any pore constrictions are termed pore throats or 
necks. In order for the head meniscus to pass through the throat, 
the capillary pressure must be greater than the threshold value of 
the throat: 

p 
c 

p - p 
o w (5.1) 

where P ,P and P are the capillary, oil and water pressures 
respecttvel? y isWthe interfacial tension and R is the throat 
radius, defined as the harmonic mean curvature ot the largest ellipse 
that will pass through the pore neck. The pore body radius, RB, is 
defined as the harmonic mean radius of curvature of the largest 
ellipsoid that will fit into the pore. 

As the meniscus passes through the throat and enters the pore, 
its interfacial curvature decreases (R2 increasing), reducing the 
capillary pressure and thereby lowering the pressure in the oil in 
the right hand pore. The water pressure at the meniscus is 
increased and the resulting pressure gradients accelerate the 
meniscus, termed a Haines Jump. When the radius of curvature R2 
equals RB and more oil then enters the pore, R2 must begin to 
decrease and the capillary pressure correspond1ngly rises. The 
meniscus becomes stationary when the capillary pressure equals the 
local difference in pressure between the two phases, and further 
displacement produces an increase in capillary pressure. 

5.2. Imbibition Displacement 

Imbibition is illustrated by Figure 8. As the interface is 
displaced from point A to point B the interfacial curvature increases, 
increasing the capillary pressure and thus increasing the pressure 
gradients in both phases near the meniscus, so accelerating the 
meniscus; we now have a Haines jump in imbibition mode. As the 
meniscus passes point B, the capillary pressure will decrease, and 
meniscus will become stationary when the pressure difference equals 
the capillary pressure. 
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Figure 7. Oil invading a water-wet pore. 

Figure 8. Haines jump in imbibition mode. 

2aRT 

Figure 9. Toroidal pore throat. 
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5.3. Interfacial Instability - Snap-off 

Let us now consider the stability of an oil-water interface 
during displacement, and further examine the configuration shown in 
Figure 7. If we let the pressure in the non-wetting oil phase be 
approximately constant then 

PI - P 2 - P3 (5.2) 

Eq. (5.1) gives P P 
w 

P c' a 
and therefore, 

P4 P3 
2Y -
R2 

(5.3) 

P5 P -
Y + Y 

P -
2Y 

2 RI R' 2 ART 1 
(5.4) 

where 

1 RT 1 1 
A 2 Rl -Ri 

1 

Subtracting eqn. (5.3) from eqn. (5.4) gives 

1 1 
P5 - P4 2Y ( 

R2 AR ) 
T 

(5.5) 

since P2 ~ Pl· The oil filament within the pore throat will become 
unstable if P5 - P4 < 0, because the water will flow into the 
throat. Thus, if 

(5.6) 

snap-off may occur. The limiting value of R2 is RB, the pore body 
radius. Therefore for snap-off, 

(5.7) 
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R /RT is the pore aspect ratio, and therefore A can be defined as 
t~e critical pore aspect ratio. For a long, straight throat, 
R1~ RT and Ri = 00 , so A = 2. For the toroidal throat shape shown 
in Figure 9, 

1 
aR ' T 

(5.8) 

and 

A 2a /(a- 1) 

where a is the throat length to width ratio. If a 
also A + 2 as a = 00 and A + 00 as a + 1. 

2 then A 4; 

The snap-off analysis is valid for both drainage and imbibition 
displacements, however for drainage, snap-off occurs during the rapid 
Haines jump and therefore does not always take place. For imbibition, 
snap-off occurs during the slow displacement step, although at very 
high flow rates there may again be insufficient time for snap-off. 

Further details of displacement mechanisms and residual oil 
formation within networks in drainage and imbibition modes and the 
ganglion stability towards remobilization are given in Mahers (22) 
and Mahers and Dawe (23, 25). 

5.4. Instabilities due to Mass Transfer and Interfacial Tension 
Non-uniformities 

If we consider a large discrete volume of oil occupying several 
pores, which is anistropically contacted by a solute which changes 
the interfacial tension, then the interfacial curvature must change 
to maintain constant capillary pressure, as shown in Figure 10. In 
Figure lOa, the fluid boundary layer surrounding the oil is water 
and the interfacial tension (1FT) will be constant and equal to y. 
The capillary pressure is constant and therefore the interfacial 
curvature is also constant. The end lobe of the oil is hemispherical, 
and if assumed to be as shown, the capillary pressure is: 

p 
c 

(5.9) 

If the 1FT is changed only in the end pore by oy, then, to 
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~ 
FLOW 

(b) 

Figure 10. Instability due to non-uniform interfacial tension. 

I 

Figure 11. Solute contacting ganglion. 

AQUEOUS 
PHASE 
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maintain constant capillary pressure, the curvature must increase. 
The limiting curvature is when the oil invades the pore throat 
(Figure lOb) and: 

p 
c 

2(y + oy)/RT (S.lO) 

If P is maintained constant, i.e., stable structure, then Eqs. (5.9) 
and tS.lO) may be equated and 

(y + oy) /RT (S .11) 

Thus the fractional change required in the interfacial tension for 
invasion of the next pore is: 

(S.12) 

To conserve mass when invasion of the pore occurs, oil must 
retract elsewhere. This may be from adjacent pores, where the 
interfacial tension may also be changing. Retraction will increase 
interfacial curvature, thereby maintaining capillary pressure. 
Although thi.s mechanism depends on the. structure of the immobile 
phase and the local velocity field. It is a feasible method for 
mobilization of some of the bypassed oil. 

Figure 11 illustrates hydrodynamic instability of relatively 
small residual oil ganglia powered by interfacial tension 
gradients. This work was described by Mahers, Wright and Dawe 
(26) with illustrations of more simple oil-water displacements. 
The 1FT gradients are due to the concentration gradients of the 
solvent, propan-l-ol, in the continuous aqueous phase. The ganglia 
moved in a direction opposite to the direction of flow, i.e., in 
the direction of the concentration gradient. 

From Figure 11, 

(S.13) 

if, 

0, (S.14) 
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the ganglion will be immobile, but if, 

the ganglion will move forward, and if, 

the ganglion will move backward. If the ganglion is initially 
immobile and Y1 = Y2 = y, then from equation (5.13), 

(5.15) 

(5.16) 

(5.17) 

! is the vector length of the ganglion. If the interface is 
subsequently contacted by solute, then, substituting for VP.I 
from Eq. (5.17), Eq. (5.13) becomes: 

(5.18) 

if Y 2 < Y l' the ganglion moves backwards until the interfacial 
curvature changes sufficiently to balance the 1FT effect. If 
interface 1 is then at a pore throat, assuming the contact angle 
between the fluid interface and the pore surface is zero, and 
interface 2 has a radius of curvature equal to R1 , then: 

(5.19) 

For further backflow, the radius of curvature of interface 1 must 
be equal to ~ and from Eqs. (5.13) and (5.19), 

(5.20) 

If we let Y2 = Y1 + oy, then Eq. (5.20) gives: 

(5.21) 
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If initially R2 RT , then, 

(5.22) 

The maximum value for oy/y is 1, with Y1 
reduces to: 

o and Y2 =y, then Eq. (5.22) 

(5.23) 

If initially Rl = RB, then the maximum aspect ratio for backflow 
would be RB/RT = 2. However, obviously Rl can be less than RB and 
R2 greater than RT , thus allowing backflow at larger aspect ratios. 

This programme of work shows that oil droplets will move 
along the local pressure gradient, which may not be in the 
general flow direction and is created by non-uniform interfacial 
tensions. We have demonstrated that pore sizes and shapes, especially 
the pore/body aspect ratio and network geometries are important and 
snap-off and residual oil formation are partially controlled by 
these factors. 

6. CONCLUDING REMARKS 

It is clear that micromodel studies are a very useful and 
necessary tool in identifying and describing the microscopic 
mechanisms controlling the various transport phenomena within the 
pore structure and in assessing the influence of pore space 
morphology. This paper has given just a few of our studies of 
imbibition and drainage displacements, residual oil formation, 
emulsion flow and mass transfer effects on the pore scale. (There 
are many more projects underway). The observations point out 
clearly that many of the descriptions and mechanistic assumptions 
previously accepted are too simple. The control over network 
parameters and design flexibility now available in our micromodel 
manufacture enable critical studies of the effects of pore space 
morphology and matrix-fluid interactions such as wettability on these 
processes. For instance, as shown in Section 5, the capillary 
pressure and the pore geometry, especially the pore/throat aspect 
ratio playa major role in the physics of immiscible displacement. 
For low aspect ratios snap-off processes do not occur whereas in 
high aspect ratio networks they do, and residual oil is found in most 
pores as small ganglia stretching over only one or two pore bodies. 

The quantitative experiments with emulsions and condensate 
fluids mentioned in Section 4.2 are demonstrating clearly the 
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importance of the influence of the pore space structure on the 
rheological, creaming and coalescence properties of the fluid mixture. 
Previous studies of emulsion movements through straight capillary 
tubes are totally inadequate for modeling the behaviour in real 
porous media. The holographic interferometry techniques used in the 
studies to quantify mass transfer on the pore scale, the first time 
such techniques have been used on such a microscopic scale, show 
that buoyancy forces play a greater role in the transport at the 
pore scale than previously thought. Also we find that dynamic and 
local non-equilibrium interfacial forces are very important in 
remobilising residual phases. 

However, although giving much information and occasionally 
beautiful demonstrations,it must always be remembered that micromodelE 

must not be considered in isolation. The problems associated with 
the two-dimensional nature of the models must be confronted and 
methods of scaling-up the microscopic observations, including the 
changes of the balance of the forces at the different scale lengths, 
must be developed to provide the macroscopic descriptions sought by 
industry. This will be achieved by pursuing micromodel studies in 
conjuction with larger scale models, laboratory experiments and 
computer studies which model other key features. There are of course 
a multitude of different and essential factors to be examined. 

Hopefully this intimate description of the rock-fluid behaviour 
provided by our and other micromodel studies will be integrated with 
the other approaches to yield a more satisfying picture of transport 
processes in porous media. 
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ABSTRACT 

When the temperature of the saturating fluid phase in a porous 
medium is not uniform, some flows induced by buoyancy effects may 
occur. Commonly called free or natural convective movements, these 
flows depend on density differences due to temperature gradients and 
boundary conditions. Generally speaking, convective movements which 
tend to homogenize the whole fluid volume where they take place have 
two main effects: produce a non-uniform insitu temperature distribu~ 
tion characterized by hot and cold zones, and increase the overall 
heat transfer. 

Due to its numerous applications in geophysics and energy­
related engineering problems, natural convection ili porous media has 
been receiving increased interest over the last few decades (1,2). 

In this review, we deal mainly with the presentation of funda­
mental results obtained through the ~tudy of this phenomena in 
dispersed saturated porous media. Beginning with the formulation of 
basic equations and boundary conditions, we then successively review: 

- first, the results concerning natural convection in homoge­
neous isotropic porous layers of wide lateral extent in 
horizontal or inclined positions, 

- second, the studies on natural convection in confined porous 
media, i.e., when the lateral extent of the layer is of the 
same order of magnitude so that the thickness and the lateral 
thermal boundary effects are taken into account, 

- and finally, the problems related to natural convection in 
more complex configurations, such as anisotropic porous layers 
or porous layers saturated by a fluid of non-constant 
properties. 
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1. INTRODUCTION: THE DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

The analysis of flow and heat transfer is usually based on the 
transport equations resulting from the differential balance laws. 
Prediction of global effects such as flow resistance or heat flux 
from a given object requires detailed information of the surrounding 
velocity and temperature fields. For a continuous medium, this 
information is extracted from the solution of the associated 
microscopic transport equations subject to pertinent boundary condi­
tions. 

When a flow through a complex structure such as a porous medium 
is involved, these local or microscopic equations are generally 
still valid within the pores. However, the geometric complexity of 
the internal solid surfaces that bound the flow domain inside the 
porous medium prevents general solution of the detailed velocity and 
temperature field. 

To overcome these difficulties, physical phenomena in porous 
media are generally described by "macroscopic" equations valid at 
the level of a block of porous medium: the Representative Elementary 
Volume (REV) containing many pores. "Macroscopic" equations are 
either established using "a priori", an equivalence between the 
heterogeneous porous medium and a fictitious continuum, or rigorously 
derived from microscopic equations by means of a volume averaging 
technique (3,4,5,6,7). These equations are assumed to be represen­
tative on the REV of average values of microscopic quantities. 

Such is the case, for instance, of the two most frequently used 
quantities, the porosity £ and the filtration velocity V. These 
quantities are the mean values in the REV of parameters that are 
different from zero only in the pore space, and respectively equal 
to 1 and to the local microscopic velocity. 

As far as the thermal behavior of a porous medium is concerned, 
having a given thermal and hydrodynamic state with a moving or 
motionless fluid phase, for any geometrical point and its associate 
representative elementary volume, we can define two average 
temperatures, Ts for the solid phase and Tf for the fluid one. Ts 
and Tf characterize the thermal state of each phase in the same 
elementary volume. In the mathematical modeling for the heat 
transfer, two alternate methods are used, depending on the difference 
between Ts and Tf (8). 

In the first method, the difference Ts - Tf is assumed to be 
negligible, and the thermal behavior is described by a single 
equation for the average temperature T = Ts = Tf . 

This approach, which is the most commonly used, is valid when 



the flow velocity is not too high, and if both phases, solid and 
fluid, are well dispersed. 

The second method applies when it is not possible to assume 
that Ts - Tf is negligible. Then it is necessary to distinguish 
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the two phases and to explicitly define the interphase heat transfer. 
The medium is considered as equivalent to two continua, and two 
equations are used. 

The "dividing line" between the two models has been recently 
explored (9). This has led to a series of constraints that must 
be satisfied if the homogeneous model is to be used with confidence. 

1.1. Basic Equations 

Due to the general complexity of heat transfer phenomena in 
porous media, most studies are based on simplified mathematical 
model in which it is assumed that: 

- the solid matrix is homogeneous, non-deformable, and chemical­
ly inert with respect to the fluid, 

- the fluid is single phase and Newtonian; its density does 
not depend on pressure variations, but only on variations of 
temperature, 

- no heat sources or sinks exist in the fluid; thermal 
radiation and viscous dissipation are negligible. 

-+-
Under these conditions, filtration velocity V and temperature 

T distributions are described by the following set of equations: 

Mass conservation equation: 

E ~ + V.(pV) = 0 at 
Momentum conservation equation: 

State equation: 

(1.1) 

(1. 2) 

and energy equations for the solid and the fluid phases when a 
distinction is made between the average temperatures of the solid 
phase, Ts ' and the moving fluid phase Tf are 

aT = 
s * (1 - E)(pC)S ~ = V.(A s . VTs) + h(Tf - Ts) (a) (1. 4) 
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When Ts = Tf , the energy equation for the fictitious continuum 
medium equivalent to the real dispersed medium is 

* aT =* -+-(pC) a;:=V.(A • 'VT) - (PC)fV. 'VT (1. 5) 

In these equations, a, p, ~ are respectively the volumetric 
thermal expansion coefficient, the density, and the dynamic viscosity 
2f the fluid; g is the gravitational acceleration; P is the pressure; 
K and E are the permeability tensor and the porosity of the porous 
media; and To is a reference temperature level for which p is equal 
to po. 

For the energy equations, (pC)~ and (pC) are the heat 
£apacities of the solid and the flutd phases for constant pressure; 
-* -* Af and X are the equivalent thermal conductivity tensors of the 
dispersea structures of the solid and the fluid phases; h is the 
heat transfer coefficient between the two phases, and (pC)* and 
~* are the heat capacity and the equivalent thermal conductivity 
tensor for the saturated porous media. Due to the addition of 
equations (1.4.a) and (1.4.b), the following relations may be 
derived from the hypothesis Ts = Tf ! 

* (pC) (1 - E) (pC) s + dpC)f 

As we can see, a mathematical model of heat transfer based on 
equations (1.4) is rather difficult to a~ply because we need an 
estimate for three unknown quantities~ A ~ A; and h. Despite the 
existence of formal descriptions for X*,sX; and h, computation of 
these coefficients, which depend on th~rmaI conductivity A and 
Af of the phases, on porosity, on structural properties ofsporous 
media, and on hydrodynamic dispersion is generally impossible and 
their experimental determination very difficult (10). Fortunately, 
in most actual situations, the approximation T = Tf is valid, and 
it is possible to use the simple modeldescrib~d by Eq. (1.5) in 
which only the value of ~* is needed. As indicated in Eqs. (1) and 
(11), two methods may be used to determine the components of this 
coefficient: theoretical estimation through a model or physical 
measurement. Like ~* and ~;, this coefficient is also a complicated 
function of A , Af , ~f the porosity, of the structural properties, 
and of the hyarodynamic dispersion. 
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For the momentum equation (1.2), a generalized form of the 
experimental Darcy's law is used, pending a complete and rigorous 
development from theoretical studies in progress. 

Boussinesq's approximation and some other standard assumption: 

Due to the complexity of the previous set of equations, other 
approximations or assumptions are commonly added to facilitate the 
theoretical approach of convection. Satisfied in numerous practical 
cases, these assumptions and approximations are: 

- the thermophysical properties of the saturating fluid, p, ~, 
a, are assumed to be constant, except in the buoyancy term 
pg where variation in fluid density clarifies the real cause 
of thermal convection (Boussinesq assumption), and 

- ~~e thermal physical characteristics of the porous=wedium~ 
X and (pC) , are also assumed to be constant with A and K 
isotropic. 

With these assumptions, equation sets (1.1), (1.2), (1.3) and 
(1.5) yield: 

~ 

'V • V = 0 

* aT (pC) at 

~ l:!. ~ 
- '1P + pg - K V 

* 2 ~ A 'V T - (pC) f V • 'IT 

1.2. Inspectional Analysis 

(1. 6) 

(1. 7) 

(1. 8) 

(1. 9) 

Equations (1.6) to (1.9) may be rendered dimensionless by ~s~2of 
the following reference parameters: H for the length scale, (PC) ~~ 
for the time scale, ~T for the telnperature scale, A*/(pC)fH for the 
velocity scale, and A*~/K(pC)f for the pressure scale. The dimension­
less equations for an incompressible fluid are therefore employing 
the same symbolic representation as before: 

~ 

'IV = 0 (1.10) 

~ 

'1)V) '1P - V + Ra* k T (1.11) 
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aT 
at 

-)-

(1.12 ) 

-)-

where k = -g-

IIg II 
is the unit accelerator vector and P = P + pogz. 

The following dimensionless terms appear in the equations: 

* 
a(pC)f K * (PC)f\) K Ra = g 

,,* 
llT H Pr 

,,* 
F HZ 

\) 

(PC)f 
(1.13) 

M 
(pC) * 

where Ra* is the filtration Rayleigh number'dzPr* th~ equivalent 
Prandtl number for the porous media, F = ~ H2 with d the mean 
diameter of the pore or grain size of the material making up the 
porous medium, and d/H is a scale factor which characterizes the 
fineness of the medium. As this ratio is generally very small, 

-)-

*-1 1 av 1 -)- -)-
Pr MF (- ~ + -z (V . V)V) may be neglected in the momentum 

E at E 

equation. Natural convection in porous media aipears as only 
dependent on the filtration Rayleigh number, Ra , and on the boundary 
conditions. 

The equations we have used for this inspectional analysis are 
consistent only in a specific area of validity, i.e., a unique heat 
transfer equation, Boussinesq's approximation, and fluid and solid 
matrix properties are assumed to be constant. 

More extensive analyses are possible from more thorough 
descriptions of the phenomena which yield additional dimensionless 
numbers. This is the case, for instance, when the dimensionless 
description of heat transfer is derived from Eq. (1.4): 

aT 
(1 - EM)(l + fl.) at S 

in which three complementary dimensionless numbers appear: 

,,* 
E A 

s 

,,* f 

x 

(1. 14) 

(1.15 ) 

(1.16) 
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1.3. Boundary Conditions and Physical Configurations 

The context of free thermal convection study is defined by 
hydrodynamic boundary conditions, thermal boundary conditions, and 
the shape of the volume containing the porous medium. 

For hydrodynamic boundary conditions, two situations can be 
found: 

- impervious surface on which the normal com~onent of the 
filtration velocity is equal to zero, V . n = 0 (~ unit 
vector normal to the surface), or 

- free surface on which the pressure is constant, P = cte. 

Two extreme cases of thermal boundary conditions are also 
possible: 

- isothermal boundary, i.e., uniform temperature on the surface, 
or, 

- and adiabatic or ~erfectly insulating boundary, i.e., heat 
flux density -A* n . VT = 0 on the surface. 

Between these two extreme cases, thermal boundary condition 
is formulated by stating the continuity of heat flux density through 
the limiting surfaces of the porous medium and the external parts. 

The number of natural or laboratory configurations studied 
theoretically as well as experimentally has continually increased 
during the last few decades. After the simple case of an homogeneous 
layer with constant thickness and large lateral extent, researchers 
are now interested in more sophisticated configurations, such as 
confined and heterogeneous porous medium, or porous medium saturated 
by a fluid of non-constant properties. 

From a dimensionless standpoint, the geometrical configurations 
are characterized by aspects ratios, for instance Lx/H, Ly/H, Lz/H, 
with Lx, Ly ' Lz dimensions of the porous medium along three orthogonal 
axes. 

1.4. Brief Look at the Existence of an Equilibrium 

If we look for the conditions required f~r the existence of 
an equilibrium state of the saturating fluid (V = 0), the equation 
of motion (1.2) gives: 

+ 
- VP + pg o (1.17) 

and by taking the curl of each' term of Eq. (1.17) 

Vp A g = 0 (1.18) 

Moreover, the equation of state of the fluid yields: 
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ap 
vp = aT 

Then combining Eq. (1.18) and (1.19): 

+ 
VT A g = 0 

(1.19) 

(1.20) 

Hence, the condition required for equilibrium is defined by 
the fact that in the entire volume concerned, the temperature 
gradient and the body force are colinear. 

As the condition expresGp.d by Eq. (1.20) is only a necessary 
condition for equilibrium, a distinction has to be made between: 

- the configurations for which there is no motionless state 
satisfying Eq. (1.20) and for which convective movements always 
exist, for instance, in sloped layers or around heated surfaces 
embedded in an infinite porous medium, and 

- the configurations for which a motionless state satisfying 
Eq. (1.20) exist. In this last case, it is not possible to conclude 
with the previous simple analysis, and the stability conditions must 
be derived from an extensive theoretical study based on the Eqs. 
(1.10), (1.11), (1.12) or (1.14), (1.15) associated with the boundary 
conditions imposed on the medium. Such is particularly the case 
of the horizontal porous layer. 

Specific theoretical approaches have been used to study the 
criterion for the onset of natural convection in horizontal porous 
layers as well as the stability of any convective movements, or the 
transition criterion. Based on the well-known Hydrodynamic 
Stability Theories, they have been respectively: 

- the linear stability analysis founded on the study of the 
reactions of the saturating fluid phase to perturbation of small 
amplitude, allowing the linearization of the equations (12), and 

- the non-linear stability analysis founded on the study of 
finite amplitude perturbation, using variational technique or pertur­
bation expansion for weakly non-linear convection, or numerical 
simulation for fully non-linear convection (13), (14). 

In the following paragraphs, we shall see the possibilities of 
using these methods to determine criteria for the onset of the 
convection, the form of convective movements, and the mean heat 
transfer. 

2. NATURAL CONVECTION IN HOMOGENEOUS AND ISOTROPIC POROUS LAYER 
OF WIDE LATERAL EXTENT 

Numerous studies have been completed during recent years 
describing natural or free convection in porous media. Most have 
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been devoted to the case of homogeneous and isotropic porous layer 
of uniform thickness H and of large lateral extent L » Hand 
W » H, bounded by impervious surfaces maintained at different 
temperatures Tl for the upper cold boundary and T2 = Tl + ~T with 
~T > 0 for the other boundary (Fig. 1). 

2.1. Horizontal Porous Layer 

2.1.1. Linear theory: onset of natural convection 

This situation satisfying the condition given by (1.20), a 
motionless state of the saturating fluid, may exist. For the 
dimensionless boundary conditions: 

T 

+ 
V 

1 

+ 
n 

at z o 
o 

T 

+ 
V 

o 
+ 
n 

at z 1 (2.1) 
o 

+ * z:l 
it is defined by Vo = 0 ; To = 1 - z; Po = Ra (z - ~) + cte (2.2) 
and corresponds to an equilibrium for which the heat Eransfer is 
essentially due to the conduction. 

The first uses of the linear theory applied to the study of 
the stability of fluid saturating a porous layer are attributable 
to Horton and Rogers (17), Lapwood (16) to Katto and Masuoka (15). 

Extensively described by Chandrasekhar (12), the mathematical 
treatment of a problem of instability generally proceeds along 
the following lines: 

a) the solutions corresponding to the initial flow, representing 
a stationary state, are disturbed by perturbations of infinitesimal 
amplitude; 

b) the new solutions, i.e., disturbed initial solutions, are 
put into the governing equations of. the phenomena, and by using the 
initial solutions, give the perturbation equations; 

c) the perturbation equations are linearized by neglecting all 
products and powers (higher than the first) of the perturbations; 
and 

d) the perturbation equations are finally resolved by expressing 
an arbitrary disturbance as a superposition of certain possible 
basic modes and examining the stability of the system with respect 
to each of these modes. 

The use of this procedure to study the stability of the 
saturating fluid of an horizontal porous layer heated from below 
yields the following perturbation equations: 
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Figure 1. The porous layer. 
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-7 
'JV 0 (2.3) 

* -7 -7 
- 'JTf + Ra k8 V 0 (2.4) 

a8 
'J~8 

at - w (2.5) 

-7 
where V, 8 and Tf are respecti'lely the velocity, the pressure, and 
the temperature perturbations of the initial state such as: 

-7 -7 -7 -7 -7 -7 
V = 0 + V V iu + jv + kw 

By eliminating the pressure in Eq. (1.20), and by looking for 
8 and w, a two-dimensional perturbation such as 

8 8(z) exp (i(lx + my) + at) (2.6) 

w w(z) exp (i(lx + my) + at) (2.7) 

we obtain for Eqs. (2.4) and (2.5) with D d/dz 

o (2.8) 

(D2 - a~ - 0)8 + w = 0 (2.9) 

associated to the boundary conditions: 

8 = w = 0 at z = 0 and z = i (2.10) 

Equations (2.8) and (2.9) define an eigenvalue problem the 
solution of which is simplified by the so-called principle of 
exchange of stabilities. This principle states that when Re{a} = 0, 
then also Im(a) = O. Thus, the neutral curve defining the transition 
between the convective regimes is given by a = 0, and the eigenvalue 
problem requires only real-valued arithmetic. 

The solutions obtained for 0-7= 0 corresponding to the existence 
of a stationary convective flow (V I 0) of the saturating phase are: 

when 

8(z) = Asin(sTfz) 

* Ra 

w(z) Bsin(sTfz) (2.11) 

(2.12) 

1 

S is an integer, a = (1 2 + m2 )2, and A and B are respectively the 
wave number, and the amplitudes of the perturbations left undeter­
mined by the linear analysis. 
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Equation (2.12) determines the critical filtration Rayleigh 
number as a function of the convective mode s, and the wave number 
a. The variations of Ra* corresponding to the first mode s = 1 are 
displayed in Figure 2. All the points located below this curve are 
related to a sta~le situation (a < 0, no convection), and the 
minimum value Rac(ac ) obtained for (dRa*/da)s=l = 0, correspons to 
the neutral stability. In other words, the transition between the 
conductive state and the convective state is equal to 4n 2 for a c n. 
This value, which is the lowest value of Ra*, is commonly called 
critical value for the onset of the convection for an horizontal 
layer of wide lateral extent, i.e., the occurrence of convection is 
defined by Ra* ~ Ra~ = 4n 2 • 

In principle, the curve of Figure 2 means that for supercritical 
Ra* number, the entire range of wavenumbers are possible. In fact, 
when non-linear analysis gives a curve which is inside the neutral 
stability curve, then the range of allowed, a, is restricted (in 
infinite geometry). The presence of lateral boundaries in the layer 
restricts again the allowed range of, a, (case of finite geometry). 

Another method in which not only small but also arbitrary 
disturbances may be considered has been used for the computation of 
the stability criterion (14), (19). Based on the study of the 
temporal evolution of a linear combination of kinetic and thermal 
energies of perturbations when t + 00 : 

(where <.> = ~dw/~ dW,A is a coupling parameter such as 9 

and Q the volume of the porous medium. 

(2.13) 

The stability is defined by the condition ~ <9 2 > ~ 0 when 
t > O. For the problem in which we are interes~~d, this variational 
technique called global stability analysis gives the same result as 
the linear theory. 

The Physical Reasons of a Critical Threshold Ra~ 

Consider a spherical portion (radius r ~ K~) of the fluid 
submitted to the constant gradient of temperature ~T/H. If we move 
this sphere of fluid from a warm to a cold region, for example, the 
relaxation time of its temperature will be: 

r2 K 
T = -; (pC)f ~ -; (pC)f. This means that if this sphere moves with 

A A 
a constant velocity w at a given instant, the temperature of this 
portion of fluid is that of its surroundings at an earlier instant 
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of time t-T. Thus, at time t, the temperature difference aT between 
the sphere and the surrounding porous media is: 

LlT aT 
LlT K 

(pC) f aT = - WT or H w>:"* H 
(2.14) 

This produces a buoyancy force: 

Fa = Po a aT r3g = Po g a 3 liT K 
(PC)f r - w "A* H 

(2.15) 

On the other hand, the viscous drag is: 

Fd - 6'IT flrw (2.16) 

If the buoyancy force Fa overcomes the drag force Fd, the motion 
tends to amplify and the system becomes unstable. The ratio Fa/Fd 
clearly increases with r, and roughly, we can say that the instability 
of the layer will begin with fluid portions of the maximum size, 
i.e., H the distance of horizontal boundaries of the layer. 

So, the instability criterion Fa > Fd is: 

a(pC)f K * 
g v "A* LlT H > cte (or: Ra > cte * Ra ) 

c 
(2.17) 

This simple analysis confirms that the dimensionless number 
which controls the stability of the layer is the Rayleigh number, and 
that the balance between destabilizing effects and stabilizing ones 
produces the existence of a critical threshold for the appearance of 
fluid motion. If Ra* < Ra~ in spite of the thermal gradient applied 
to the porous layer, the fluid remains at rest. 

Shape of convective movements: 

When the filtration Rayleigh number is marginally higher than 
Ra~, the perturbations are of finite amplitude and a steady state 
convective flow exists. From the result giving the horizontal wave 
number, a, two kinds of frequently encountered configurations may 
be deduced: 

- the first one corresponds to two-dimensional contrarotative 
rolls, i.e., to the value of 1 or m = 0 given the reduced size of 
each roll l/H = 1, 

- the second consists of a juxtaposition of polyhedral cells, 
the solution of which is given by Christopherson (12) and corresponds 
to hexagonal cells of side l' such as l'/H = 1.33 (Fig. 3). As in 
Busse and Riahi (20), the preference for hexagonal pattern would be 
the result of non-symmetrical boundary condition with respect to 
the midplane. 
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As shown in theoretical studies devoted to the problem of non­
linear thermal convection at small amplitude in a horizontal porous 
layer with finite conducting boundaries (18), (20), (21), critical 
Rayleigh number, horizontal wave number, and shape of convective 
movements largely depend on thermal boundary conditions. An 
example of neutral curves for different conductivity ratios Ab/A* 
(Ab = thermal conductivity of the lower and upper surfaces) is 
presented in Figure 4. 

2.1.2. Non-linear Theory - Mean Heat Transfer 

When amplitude A increases for supercritical Rayleigh numbers, 
the non-linear self interactions of the first order mode becomes 
important and cannot be neglected in the perturbation equations if 
we want to keep a satisfying description of the phenomena. Such 
is the case, for instance, when we want to compute the influence of 
the convective flow on the mean heat transfer. 

Generally described by means of a dimensionless 
(Nusselt number) equal to the ratio of the mean heat 
when convective movements exist on the mean heat flux 
to the thermal conduction alone, this number is equal 
Ra* ::: 41T:.! (conductive regime), then increases for Ra* 
vective regime). 

* number Nu 
flux density 
density due 
to 1 for 
> Ra* (con­c 

The analytical expression of the mean temperature gradient 
dT/dz computed from the complete heat transfer perturbation equation 
yields (1): 

dT 
1 + ew - r ew dz (2.18) 

dz 
0 

and for the Nusselt number * J aT I do dTI Nu 
az z=O dz z=O 

f\e 
L 

* 1 + dz Nu (2.19) 
0 

where T and we are average values on horizontal planes of surface L. 

Equation (2.18) exhibits how a linear temperature gradient in 
the absence of motion is modified by the presence of motion and, 
as a consequence, the relative influence of conductive and convectiv 
mechanisms on the heat transfer in the different parts of the layer. 

The typical vertical temperature profiles through the porous 
layer respectively for conductive and convective state deduced from 
Eq. (2.18) are presented on Figure 5. 
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As there is no phase shifting (see Eq. (2.4)) between 6 and W, 
<6.W> is at a maximum and dT/dz is at a minimum in the horizontal 
midplane z = 1/2. On the contrary, when <6W> is low, i.e., along the 
isothermal boundaries, IdT/dzl is at a maximum. 

This explains the cause for the development of high temperature 
gradients along the impervious isothermal surfaces, and the non linear 
term V . V6 is the reason this zone becomes unstable when Ra* 
increases. 

Weakly non-linear analysis 

Since any product of disturbance components is omitted by the 
basic assumption, the linear theory is unable to describe the 
evolution of the temperature profile through the porous layer. Nor 
is it able to describe the increase in the mean heat transfer or the 
component 1 and m of the horizontal wave number. 

The only systematic method for analyzing the numerous three­
dimensional non-linear steady solutions of (1.10), (1.11), (1.12) 
is the perturbation approach based on the amplitude A of convection 
as small parameter. This approach is particularly appropriate in 
the case of convection because the instability occurs in the form 
of infinitesimal disturbance. Obviously, the perturbation expansion 
is of limited usefulness when the filtration Rayleigh number is 
increased much beyond its critical value. In this case, direct 
numerical methods must be used to solve the problem of fully non­
linear convection. 

Among the existing different weakly non-linear approaches 
(22,23,24), the Malkus-Veronis which is the one we used (1) for the 
study of natural convection in porous media is based on the properties 
of integral relations governing the steady convection. Obtained by 
multiplying the equations of motion and the heat transfer equation 
by the disturbance components, these integrals are respectively: 

Jl (u2 + v2 + ;2) dz Ra* Jl~ dz (2.20) 

0 0 

1 1 1 1 

J 6.W dz + f 6V26 dz J 6W2 dz - ( f 6W dz)2 (2.21) 

0 0 0 0 

Due to its nonhomogeneity versus the disturbance components, 
the equation (2.21) derived from the energy equation can be used 
to compute the amplitude, provided that analytical form of 6 and W 
is known. Assuming that Wand 6 are the solutions of the linearized 
equations, the amplitude of the perturbations is: 
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(2.22) 

(where Ra~s is the critical Rayleigh number corresponding to 
the successive convective modes, s), and the Nusselt number computed 
by Eq. (2.19) is: 

* 
* 

Ra 
00 

k (1 - ~) Nu 1 +s~l Fig. 6 (2.23) 
s * Ra 

* * 2 for Ra > Ra 
with k 

cs 
* s and Ra 4S 2 7T 2 

* < * cs 
0 for Ra Racs 

Numerical come.utation 

Different numerical techniques such as the finite difference 
method, the finite elements method, or the spectral method have 
been used to resolve the governing equation of natural convection 
in porous media (28 - 35). 

The spectral method (36) based on the well-known Galerkin 
method consists of developing the temperature and velocity solutions 
using a set of linearly independent trial functions: 

L M N 
T (1 - z) + E E E a l (t) cos 17Txcosm7Tysinn7Tz 

1=0 m=o n=o mn 
(2.24) 

L M N 
ln7T 2 u = _ A2 E E E b sin17Txsinm7Tycosn7Tz (2.25) 

1=0 m=o n=o lmn 

L M N 
b l mn7T 2 cos17Txsinm7Tycosn7Tz v - B2 E E E (2.26) 

1=0 m=o n=o mn 

L M N 
w E E E b (1 2 + m2 )7T 2 cos 17Txcosm7Tysinn7Tz 

1=0 m=o n=o lmn 
(2.27) 

satisfying boundary conditions: 

T = 1 0 for O· ar 
0, 0 for x 0 and x A w = Z = U , ax 

T 0 0 for l' 
aT 

0, 0 for y o and y B w Z , ay v 
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Figure 6. 

Figure 7. 

40 100 200 400 1000 2000 

* * A theoretical relationship Nu (Ra ) 

Three-dimensional flow 
Ra* = 100 T = 0.5 (1,1,1) mode 
(after Caltagirone and Meyer (31» 



where A and B are the aspect ratios respectively in the x and y 
directions : A = L/H; B = W/H. 

The method consists of finding the remainder by means of a 
trial function on integrating over the whole volume. After 
eliminating the pressure term by applying the divergence theorem 
and by taking into account the continuity equation, the motion 
equation allows the determination of the explicit relationship 
between the b, 'k and a, 'k coefficients. 

1.J 1.J 
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If solutions given by Eqs. (2.24) and (2.27) are introduced into 
the energy equation, the following differential system is obtained: 

da, 'k 
~ 

dt N(a,b) 

(2.28) 
where+N(a,b) is a non-linear operator corresponding to the convective 
term V.VT. The initial conditions are represented by the temperature 
coefficients a, 'k(O). 

1J 

Numerical results obtained from the computation of the non-linear 
differential system (2.28) show different types of evolution 
according to the value of the filtration Rayleigh number (31): 

* - for Ra < 4rr2, the perturbation induced by initial conditions 
decreases and the system tends to the pure conduction solution, 

* - for 4rr2 ~ Ra < 300, the initial perturbation develops to 
give a stable convergent solution (which does not depend on the 
intensity or nature of this perturbation), and different stable 
tridimensional convective flows are observed : contrarotative rolls 
(2D), superposition of contrarotative rolls (3D), and polyhedral 
cells (3D) (Fig.7). To these flows, among which polyhedral cells 
appear as the less stable, correspond the Nusselt-Rayleigh correla­
tion given on Figure 16. This correlation has been computed for a 
two-dimensional roll of reduced size H/l, starting from the Malkus's 
hypothesis that a flow evolves to a steady*configuration that 
maximizes the heat transport (1), i.e., Nu given for the maximum 
of the curve Nu*(H/L)Ra*' 

Unfortunately, there has been no rigorous demonstration of the 
validity of this proposal, and some numerical simulations do not 
support it (38). 

* - for Ra ~ 240-300, a stable regime cannot be reached. 
Described as a fluctuating convective state, this situation is 
characterized by a continuous fluctuating in situ temperature and 
velocity distribution inside the porous layer, and by a relative 
ir.crease of heat transfer compared to the state we previously 
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described. 

Caused by the instability of the thermal boundary layer at 
horizontal boundaries, the existence of such a state has been 
deduced from a stability analysis of the finite amplitude two­
dimensional solutions (38) (Figure 8). It has been interpreted 
(28,33) as continuous creations and disappearances of convective 
cells, even in the thermal steady state, in the area of highest 
temperature gradients (Figure 9) (30). 

Sophisticated model with the heat transfer coefficient 

In order to more accurately explain the experimental results, 
as well as to examine the influence of the parameter A and X on the 
convection, the sophisticated heat transfer model (1.14) and (1.15) 
has been also used (1). With this model, all aspects of convection 
appears as affected by the three numbers Ra*, A and X, and 
particularly the Nusselt number that in this case is defined by: 

with 

* * Nu = f(Ra , A , X) 

A = A*/A* f s and 

(2.29) 

(2.30) 

Influence of the parameters on heat transfer. As in the case of the 
simple model (1.15) for given Ra*, A and X values, the variation of 
NU* versus H/L shows the existence of a maximum. The H/L value, for 
which this maximum is reached, is not very different from (1.15) and, 
to specify the influence of A and X on the heat transfer, we look 
in particular at the case Ra* = 200 with H/L = 1 (Figure 10). 

* For a given value of A , Nu is an increasing function of X 
which tends, when h + 00, toward the value computed with the simple 
numerical model. Indeed, since A is constant, when the conditions 
for the heat transfer between the solid and fluid phases are 
improved, the porous medium tends to behave like a single continuum. 

The influence of A, when X is maintained constant, may be 
explained by considering the relative contributions of the solid and 
fluid phases to the overall heat transfer. If A increases, i.e., 
if the contribution of heat conduction by the solid phase becomes 
negligible, then Nu* tends toward the value given by the simple 
model. On the contrary, when heat conduction throughout the solid 
phase is very large, the Nusselt number decreases (Nu* + 1 if 
A + O. 

Preferential zones for heat transfer between solid and fluid phases. 
The computed temperature distributions reveal the existence of two 
specific zones where the difference between the temperatures of the 
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Figure 8. The region of stable two-dimensional solutions. Only 
within the closed region are finite amplitude two­
dimensional solutions stable (after Straus and Schubert 
(38)). 

solid and fluid phases is at a maximum; these zones are the upper 
part of the upward current and the lower part of the downward 
current (Figure 11). 

This result, which can be intuitively forecast, explains the 
main role of the solid phase as a heat exchanger in those areas in 
which the assumption of the equivalence of the real porous medium 
with a single continuum may thus be questionable. 

Influence of texture of the porous or cracked medium. Through the 
influence it has on both parameters A and X, the texture of the 
porous or cracked medium, as well as the thermal characteristics of 
the solid and fluid phases, strongly influences the phenomenon. 
However, the influence of texture is mainly appreciable by studying 
the variation of x. Let d be a characteristic length of the porous 
structure, for instance, the average bead diameter for an uncon­
solidated aquifer, or the average length of a matrix block for a 
cracked medium. Parameter X can be written : 
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Figure 9. Fluctuating convective state. Evolution of two­
dimensional rolls (after Caltagirone and Cloupeau 
(37)) • 
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Figure 10. Influence of X and A on mean heat transfer. 
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Figure 11. Dimensionless temperature difference between solid and 
fluid phases for a stable two-dimensional solution 
Ra* = 200 A = 0.5 X = 1000 
(after Combarnous and Bories (1)). 

h H2 h • K H2 h d2 (-!!/ (2.31) X * --*- K * 
Af Af Af 

d 

The two factors in the right term of this equation take into 
account, respectively: 

- the influence of heat transfer on the local scale, pore scale, 
or block scale, 

- the influence of a scale factor H2/K or (H/d)2 which describes 
the extent of division of the structure compared with the vertical 
extent of the layer. When the scale factor is high, the porous 
medium can be considered as a very thorough blend of solid and fluid 
phases. When it is low, then the porous medium is more heterogenous. 

The main result obtained by using the sophisticated model, with 
two heat transfer equations, explains the influence of this scale 
factor on the mean heat transfer. Let us assume that h does not 
depend on the filtration velocity and is affected solely by the 
thermal characteristics of the constituting phases as well as the 
texture of the medium. We will find, from the numerical results, 
that the mean heat transfer which, in addition to A, depends solely 
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on X = (h . H2)/A; , is affected by the height H of the layer. The 
higher the scale factor is, the better the description is of the 
porous medium as a single continuum by the simple numerical model 
with a sole heat transfer equation. The influence of these different 
parameters on the fluctuating regime has been also studied (39). 
2.2. Sloped Porous Layer 

It is well known that in a sloped, saturated, porous layer 
bound by isothermal planes, the fluid phase is always moving, and 
the basic flow which develops is of a unicellular two-dimensional 
type. The structure of this flow and its stability are defined not 
only by the filtration Rayleigh number and the slope ~, but also by 
the parameter Land W (39,40,51,52). 

2.2.1. Stability of the flow in an infinite extension layer 

If the porous layer is of infinite extension in the x and y 
directions, the solution corresponding to the basic unicellular flow 
can be readily found, and leads to the following expressions for the 
temperature and the velocity fields: 

To = 1 - z ; * 1 Uo = Ra sin~(2 - z) v 
o 

o W = 0 , 0 (2.32) 

Equations of perturbation relative to this flow deduced from 
the (1.10), (1.11), (1.12) system become: 

sin~(-2l - z) ~ + W ax 
ae 
at (2.33) 

o (2.34) 

Developing the perturbations into complex exponential functions 
of the spatial coordinates x, y and of time t and eliminating w, 
Eqs. (2.33) and (2.34) are reduced to one equation in : 

* (D2 - a 2)e - a(D 2 - a 2)e - Ra cos~a2e 

- ilRa* sin~«% - z) (D2 - a 2)e + De) = 0 (2.35) 

in which 1 represents the component of the wave number a = (12 + m 
a = (12 + m2)~ of the perturbation in the direction of the slope 
and D = d/dz. 

The problem of eigenvalues (Eq. (2.35)) corresponding to the 
stationary solution, i.e., a = 0, can be solved by means of the 
Galerkin method developed in the following form: 
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e E ak sin knz 

k=l 

By subtitution, Eq. (2.35) can be written in the form: 

~ 
s=l 

* { Ra * - i Ra 
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o (2.36) 

Let us say L(a) = 0 gives a homogeneous linear s~stem accepting only 
a non-zero solution for a particular value of Ra such that det(L)=O. 
The analysis of three-dimensional linear stability enables three 
flow domains to be distinguished in the (Ra*,~) plane: 

- for Ra* and ~ such that Ra*cos~<4n2, only the basic two 
dimensional unicellular flow T , U remains; 

- when the Ra* - ~ coupleois ~uch that Ra*cos~>4n2, the a f 0 
three-dimensional flow becomes steady, and the Ra*cos~ = 4n 2 condi­
tions (39,40,41) correspond to the appearance of a flow in a lon­
gitudinal coil of wavelength 2n/l = 2H; 

- when Ra* and ~ gives representative points located over the 
transition defined by Eq. (2.36), the flow can be steady with trans­
verse rolls: a = 1 f 0 and generally with polyhedral cells 
a = (12 + m2)~ with 1 f 0 and m f 0 corresponding to the superim­
position of several groups of rolls. 

When the angle ~ increases, at a fixed Ra*, the slope for 
which the transition between polyhedral cells or transverse and 
longitudinal rolls appear is theoretically found equal to ~t = 310 48' 
(Fig. 12). When ~ < ~t' it has been observed that initial conditions 
have a great influence on the setting up of the stationary flow (47). 

2.2.2. Mean heat transfer 

Concerning the mean heat transfer, as for the horizontal layer, 
the Malkus technique may be used and produces a relationship similar 
to Eq. (2.23) in which Ra* is replaced by Ra*cos~. 

2.3. Experimental Observations 

In the case of porous layers of wide lateral extent bounded by 
isothermal planes, numerous experimental results are now available 
that describe the criterion between the different configurations of 
flow, the convective movements, and the mean heat transfer. 
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Horizontal layers 

* - the criterion for the onset of natural convection, i.e., 
Ra ~ 4TI2, is well confirmed by experimental results presented in 
(41) through (47), starting with the evolution of the correlation 
NU*(Ra*) (Figure 13). 

- the convective flows deduced through in situ temperature 
measurements in the medium plane of the layer or by visualization 
tests were proven to be consistent with the linear theory predictions, 
i.e., convective steady state is characterized by adjacent poly­
hedral cells or two-dimensional rolls, the reduced size of which are 
respectively l'/H = 1.33 and l/H = 1 (Figure 14). 

Also, the horizontal extent of convective cells was observed 
to be a slightly decreasing function of Ra* (Figure 15). 

When Ra* is higher than a critical value which lies in the 
range 240-300 (depending on the porous medium), the fluctuating 
convective state, characterized by a continuously fluctuating in 
situ temperature distribution inside the porous layer and by a 
relative increase of the mean heat transfer (Figure 13), has been 
proven to exist (30). 

Concerning the mean heat transfer due to convection, where the 
standard mathematical study leads, as for the case of a fluid layer, 
to a unique relationship between the Rayleigh and Nusse1t numbers, 
experimental data have shown that the mean heat transfer does not 
depend solely on the Rayleigh number, but also on the thermal 
characteristics of the constituting phases, the solid matrix, and 
the saturating fluid (Figure 16). 

As we can see on Figure 16 where a comparison between experimen­
tal, numerical, and theoretical Nu*(Ra*) correlation is presented, 
numerical results are in good agreement with the average experimen­
tal results. However, the results are unable, contrary to the more 
sophisticated model, to explain the influence of the porous medium 
characteristics on the heat transfer. The theoretical prediction 
is restricted to a small range of variation of Ra* near Ra~l' 

Sloped layers 

In the case of sloped porous layers whose extension is greater 
than their thickness, published experimental studies are not very 
numerous (39,40,41,49,50,51,52). 

The experimental heat transfer results put in the form of a 
relation between NU* and Ra*cos~ (Figure 17) show that the correla­
tion Nu*(Ra*cos~) is quite good, and that despite the finite extent 
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A picture of the upper free surface of a horizontal porous layer 
with polyhedral cell ; the lower boundary is impervious and 
isothermal. 

(a) 

A picture of the streamlines in convective stable cells appearing 
in a vertical two-dimensional Hele-Shaw model bounded by isothermal 
impervious boundaries. 

(b) 

Figure 14 (a), (b). 
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Figure 17. 

Figure 18. 
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of the experimental model, the criterion for transition between the 
two-dimensional unicellular flow and the three-dimensional flows is 
well defined by relationship Ra*cos~ = 4n 2 • 

The experimental observation, deduced through visualization and 
in situ temperature measurements, for the convective movements is 
presented in a synoptic manner in Figure 18. These observations 
confirm the theoretical and numerical computations , except for the 
value of the transition angle between the structures of type II and 
III, where ~exp ~ 150 < ~t' 

3. NATURAL CONVECTION IN CONFINED POROUS MEDIA 

When the porous layer is not of large lateral extent, i.e., when 
all dimensions are of the same order of magnitude, convective 
movements are influenced by geometrical dimensions and lateral 
thermal boundary conditions. This influence is appreciable for the 
convection criterion, the organization of convective movements, and 
for the overall heat transfer. It has also has been investigated 
for two basic configurations, i.e., horizontal or inclined porous 
boxes. 

3.1. Natural Convection in Horizontal Porous Boxes 

When the horizontal porous layer is laterally bounded by a 
solid material, complementary conditio~s corresponding to the imper­
meability of the lateral surface, n . V = 0, and to the thermal 
conditions at the interface porous material vertical boundaries, 
have to be taken into account. Three cases of lateral thermal 
boundary conditions have been investigated: 

- perfectly insulating wall, A* ~.VT = 0 (35,52,53,54,55), 
- perfectly conducting wall, T = T(z) (55,56); 
- and finally, imperfectly conducting wall for which the heat 

conduction in the region bounding the porous zone must be taken into 
account (55,57). 

In this last case, the equation govern the heat conduction 
inside the wall is: 

aT 
(PC)p ~ = A V~T (3.1) at p p 

where p characterizes a parameter defined in the wall, 
associated to the boundary conditions: 

(3.2) 

at the interface between the porous material and the side wall, 

(3.3) 
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+ 
at the interface between the wall and the outside (n 

+ 
cp) charac-

terizes the heat transfer between the wall and the surrounding), 
has to be simultaneously solved with the governing equations of 
the phenomena inside the porous medium. 

Such a problem was studied in (58) for the case of a porous 
material confined in a vertical circular cylinder horizontally 
bounded by two impervious isothermal surfaces and laterally by an 
impervious wall of given thermal conductivity and thickness (Figure 
19). For this physical system, linearized steady state perturbation 
equations and supplemented boundary conditions become: 

v:le + w 0 in the porous medium (3.4) 

V:lw - Ra*Vie 
2 2 d 

0 with Vl =V 
dZ 2 

(3.5) 

v 2 e p 0 in the wall (3.6) 

with e ep 0 at z = 0 and z 1 (3.7) 

~ * 
e ep ' A~ 

1 
Ro 

H A 
A 

dT dr at r 
2Ro D A 

P 

(3.8) 

de 
H -P. + + 

dr n cp at Re 
De (3.9) 

+ + 
V n = 0 on the impervious surface (3.10) 

The eigenvalue problem associated to this set of equations was 
solved to determine the influence of the aspect ratios Ro' Re and 
of the conductivity ratio A = A*/Ap upon the mean features of natural 
convection in confined porous media (55), (56), (58). 

3.1.1. Criterion for the onset of the convection 

Results obtained through the linear stability theory (55), (58) 
for two extreme values of A, i.e., A = 0 (perfectly conductive wall) 
and A + 00 (perfectly insulating wall) and for an infinite thickness 
of the wall Re + 00, are presented in Figure 20. 

These results, like those previously obtained (52), show that 
it is only for relative tall and slender cavities Ro » 1 that the 
lateral walls have much effect, such as tending delay the appearance 
of natural convection. This lack of influence of the walls on Ra~ 
for Ro ~ 1 is to be expected since, unlike the corresponding case of 
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Figure 19. The porous cavity (after Bories and Deltour (55». 
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Figure 20. Critical Rayleigh number and preferred convective modes 
(l,m) (after Deltour (58». 



112 

a continuous fluid, there is no viscous dissipation at the lateral 
walls. This result justifies the choice of aspect ratios marginally 
higher or lower than 1 generally used for the numerical simulation 
of convective movements in a large extent porous layer. 

In confined porous media, the only influence of the wall is thus 
to select the cellular modes, i.e., the shape of the convective 
structures. 

For high values of Ro ' an estimate of the order of magnitude of 
each term appearing in the energy equation shows that d2T/dz~ « 
d2T/dr2; hence, the representative length scale of the convection is 
not H but D. As a consequence of the sim~lifications derived from 
this inequality, the critical value of Ra built on the diameter of 
the cavity appears as independent of H when Ro > 6 (Figure 21). 

As for the influence of the thermal conductivity Ap,a similar 
effect for the confinement has been observed, i.e., a tendency to 
stabilize the fluid by damping the perturbations of temperature on 
the side wall, when Ap is increasing. 

At low filtration Rayleigh number, this result, as well as the 
following concerning the mean heat transfer and the shape of 
c0nvective movements has been found in good agreement with 
experimental observations (58). 

3.1.2. Mean heat transfer 

The weakly non-linear analysis based on the Malkus technique 
has also been used to derive the relationship between the Nusselt 
number and the filtration Rayleigh number in confined horizontal 
porous layer (54), (57), (58). Since the influence of the aspect 
ratio and of the lateral thermal boundary condition is only to select 
the cellular modes, it has been proven (54), (55), (58) that the 
aualytical expression Nu*(Ra*) is the same as for the large extent 
porous layer, i.e., : 

* Nu 

with k 
s 

* 

1 + 
00 

~ ks(l -
s=l 

2 for Ra 

0 for Ra 

* Ra 
cs 
* 

(3.11) 
Ra 

* * 
> Ra 

cs 
(3.12) 

* * 
< Ra 

cs 

and Ra which is the critical value of appearance of the selected 
modes a~pending on R , Rand A. 

o e 
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Figure 22. Isotherms and streamlines for various ¢ values 
Ra* = 100 A = 8 (after Caltagirone and Bories (51». 
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3.1.3. The convective structure 

In the case of a porous media confined in a circular cylinder, 
the preferred convective modes for the. two lateral boundary condi­
tions, i.e., A = 0 and A + 00, are indicated (l,m) on Figure 20. 

These results show that in the case of slender cavities, the 
convective modes are nonaxisymmetric, and that for low R values, 
they tend to become polycellular. As thoroughly describ~d in (59), 
(52), between these extreme cases, different two- or three-dimensional 
solutions exist, depending on the geometry of the lateral walls and 
on initial conditions (57). This question is very delicate and not 
yet well understood. 

3.2. Sloped Porous Layer of Finite Lateral Extent Bounded by 
Perfectly Insulating Wall (51) 

3.2.1. Stability of the unicellular flow 

According to the modifications introduced to the basic flow by 
the variations of the lateral dimension L, the stability criterion 
Ra*cos¢ = 4n 2 is no longer satisfied when the extension of the layer 
in the direction of the inclination takes finite values. In order 
to determine the influence of this parameter upon the stability 01 
unicellular flow, it is then necessary to know the new field To' Vo 
to be intr~duced into the perturbation equations. Noting+that+in + 
this case Vo has two components which are not zero, say: Vo=Uoi + Wok, 
this has been determined from (1.10), (1.12) using the Galerkin 
method previously described. 

Restricting the approximation rank to N 
basic flow can be stated as follows: 

To (1 - z) + a02sin 2nz + allcosnx sinnz 

Uo - Ra*n 2 A2 b11 sin nx cos nz 

* n2 bll W Ra cos nx sin nz 0 

2, the solution of the 

(3.l3) 

(3.14) 

(3.15) 

* where the coefficients aio are dependent on the (Ra ,¢) couple. 
Substituting the basic solution (3.13) to (3.15) into the linearized 
equation of the perturbation gives the following set of equation: 

~ dU + 1 dV + dW 
A2 dX B2 dy dZ 

* + + - Vn + Ra k 8 - V 

o (3.16) 

o (3.17) 
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o (3.18) 

(3.19) 

corresponding to the restating of Eqs. (1.10), (1.12), using an 
orthogonal reference system with differently distorted coordinates. 

Since the transition we are searching for corresponds to the 
change from a unicellular regime to longitudinal coils, the 
perturbation is taken as two-dimensional, and then the x component 
of the velocity perturbation is equal to zero (U = 0). 

The solution of the eigenvalue problem carried out by adopting 
the following forms: 

N 
e cos mTIZ ~ As sin STIZ 

s=l 

v 
N 

- Ra* TI2 B2 m sin mTIy ~ s Bs cos STIZ 
s=l 

* N w Ra TI2 m2 cos mTIy ~ Bs sin STIZ 
s=l 

(3.20) 

where A and B coefficients are indeterminate using linear theory, 
gives tlie resu~ts shown in Figure 18 for different values of L. 
It can be observed that with a given angle, the critical Rayleigh 
number is always greater than Ra*cos¢ = 4TI2 corresponding to an 
(L + 00) infinite aspect ratio. 

This result, the analytical relation of which has been 
previously given (60): 
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(3.21) 

where M is a decreasing function of L, (M + 0 when L + 00), emphasizes 
the stabilizing role of longitudinal confinement upon the unicel­
lular flow. 

As for the case of the inclined fluid layer, experimental and 
theoretical studies are still necessary in order to provide a good 
understanding of the influence of small aspect ratios and high 
Rayleigh numbers on both convective flows and mean heat transfer. 

3.2.2. Two- and three-dimensional flows 

Numerical computation based either on the Galerkin method or on 
the finite difference method (51) has been used to predict the 
structures of the convective flows and their evolution as functions 
of the inclination and aspect ratio L. 

Two examples respectively for two- and three-dimensional flows 
are shown on Figure 22 and 23. Figure 22 illustrates the different 
transitions explaining the number rolls decreasing when the angle ¢ 
increases for a two-dimensional flow. Figure 23 shows the existence 
of solutions corresponding to longitudinal coils for Land W » H, 
but finite in the domain IlIon Figure 18. 

A few other numerical results (53,62,63) are also available in 
the literature describing natural convection in inclined porous 
boxes, such as L ~ H. 

3.3. Vertical Porous Layers 

Due to its fundamental importance in thermal insulation 
engineering, two-dimensional steady natural convection in rectangular 
porous cavities bounded by vertical walls at different temperatures 
and adiabatic horizontal walls has been extensively studied during 
the last two decades. 

Theoretical work reported on this problem includes boundary 
layer solutions (66,67,68), integral analysis (67,69,70), and 
numerical results (71,72,73,74,75,76,77,78). Based on these studies, 
different flow regimes, temperature profiles, and Nusselt number 
correlations have been presented as functions of the Rayleigh number 
and aspect ratios. 

For the observed convective flows, a distinction has to be 
made between the tall cavities A » 1 in which the convective flow 
is always unicellular and the shallow cavities A « 1 in which the 
convective flow may be multicellular when the Rayleigh number 
greatly increases (78). In spite of these structural differences at 



Figure 23. Three-dimensional flow: longitudinal rolls 
isotherm T = 0.5 Ra* = 100 A = 6 B = 4 
(after Caltagirone and Bories (51)). 
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Figure 24. Isotherms and streamlines for a porous cavity for 
Ra* = 1000 and A = 5 (after Prasad and Kulacki (78)). 
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high Rayleigh numbers, the same flow patterns are evident for both 
configurations, i.e., 

- the conduction regime in which the isotherms are almost 
parallel to the vertical walls for Ra* + 0 and A is finite or Ra* 
is finite and A + 00 or A + 0, 

- and the asymptotic and boundary layer states characterized 
by a stratified core in which the temperature gradient is quite 
modest, surrounded by thin thermal layers on the cavity walls when 
A is finite Ra* increases (Figure 24). 

Numerous correlations for the mean transfer function, a 
synthesis of which can be found in (70), have been proposed to 
describe the evolution of the average Nusselt number when Ra* and A 
vary. For boundary layer regimes, the most generally used correla­
tions are, respectively, Weber's correlation for tall enclosures, 

Nu* = (3)~(Ra*)~(A)~ and the Walker-Homsy correlations for shallow 
* 1 * 2 4 enclosures, Nu 120 (Ra ) (A) . Between these two extreme cases, 

numerical results snow that Nu* goes through maxima. Depending on 
Ra*, these maxima are obtained for A varying from 1 to 30 when the 
Rayleigh number is varying from 20 to 300 (71,72,78) (Figure 25). 

This influence of the reduced extension on the Nusselt number 
is due to the fact that heat transfer caused by the displacement of 
the saturating fluid is mainly concentrated on the vertical or 
horizontal ends respectively in tall or shallow cavities. 

A thorough description of the convective flows, temperature 
fields, and overall heat transfer for a large range of aspect ratios 
and filtration Rayleigh numbers can be found in papers recently 
published (77,78). Among the main features of these numerical 
studies, we shall mention: 

- the definition of criteria for flow regimes in tall and shal­
low cavities; 

- the testing, applicability, and accuracy of the analytic 
correlation given to estimate the heat transfer; 

- the finding of solutions corresponding to multicellular flow 
in shallow cavities; and 

- the study of the effect of a constant heat flux on one 
vertical wall compared to the case of a cavity with two vertical 
walls at constant temperatures. 

Free convective heat transfer in cylindrical annuli filled with 
a saturated porous medium has been also studied. For an annuli 
whose inner wall is heated at constant temperature and outer wall 
is isothermally cooled, the top and bottom being insulated (82,83, 
84,85), heat transfer results have been obtained for a wide range 
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Figure 25. Summary of heat-transfer theories (after Bejan (72)). 

Figure 26. Streamlines and isotherms in a vertical porous annuli: 
Ra* = 100, A = 1, C = 6 (after Prasad (82)). 
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of Rayleigh numbers, aspect (height to gap width) ratios, A, and 
radius ratios, C. Results obtained through a numerical study show 
that the curvature effects are significant, and completely disturb 
the centrosymmetrical nature found in the vertical cavity case 
(Figure 26). Though the effect of the Rayleigh number and the aspect 
ratio are qualitatively similar to what has been observed for the 
vertical cavity, the correlations for the average Nusselt number 
requires modification in order to include the influence of the 
curvature C. 

4. NATURAL CONVECTION IN MORE COMPLEX CONFIGURATIONS 

In the previous sections, we have presented the main aspects 
of thermal convection occurring in porous media which was considered 
to be homogeneous and isotropic. Likewise, the saturating fluid was 
considered as obeying the Boussinesq assumption. If the study of 
these simple cases is an essential step toward a better understanding 
of the phenomena, it is not sufficient to analyze the effect of 
convection in more complex cases like those generally encountered in 
natural or industrial situations. 

For the simple geometrical configuration of an horizontal porous 
layer of large lateral extent, for instance, it is often necessary 
to consider that the porous material is not homogeneous or isotropic 
and that the physical properties of the saturating fluid are dependent 
upon the temperature. Such is the case in the modeling of geotherma 
fields and in the study of the insulating material submitted to large 
temperature gradients. 

4.1. The Multilayered Porous Medium 

The multilayered system studied by several authors is assumed 
to comprise n separately homogeneous layers of total thickness H 
saturated by a fluid obeying the Boussinesq's assumption. Beneath 
layer 1, the system is bound by an impermeable isothermal surface 
at temperature T2 = TI + ~T, where Tl is the temperature of the 
isothermal top surface which is considered to be either impermeable 
or at constant pressure. The porous material contained in layer i 
of thickness Hi' has a permeability tensor Ki and an equivalent 
thermal conductivity tensor ~ .. Within each layer, the usual 
equations of conservation of iliass, momentum, and energy hold, and 
appropriate continuity considerations for the temperature, the 
vertical component of the velocity, of the heat flux, and of the 
pressure determine boundary conditions at the interface between the 
layers (Figure 27). 

For this physical system, the formalism required to determine 
the criterion for the onset of convection has been developed using 
a straightforward stability analysis (86,87). The post-onset 



121 

Z 

1------------------ .... --

K. )..*. <ED 
--~~-~~------x----

T, P, W, A dT/dz continuou 

o 

Figure 27. Schematic diagram of a layered porous medium. 

Ra* 

55 

K J /K2 

50 

45 

40 

o 0,5 

Figure 28. Criterion for the onset of convection in a two-layered 
porous media (after Richard (87), and Richard and 
Combarnous (88)). 
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behavior provides an estimate of the heat transported by convection, 
for slightly supercritica1 Rayleigh numbers, by means of the 
perturbation approach based on the amplitude A of convection as 
small parameter (88) (weakly non-linear analysis). 

The method proceeds by introducing the series expansion: 

* * A Ra~(l) + A2 *(2) Ra. Ra. + Ra. (4.1) 
1 lC 1 1 

8 A 8 (1) + A2 8(2) + ... (4.2) i i i 

(where i = 1 ... n characterizes every layer), and analogous expres~ 
sions for V. and P. into the equations of the perturbations, and by 
solving sucEessively the linear equations corresponding to each 
power of A associated with the boundary conditions at each interface. 
Since only steady solutions are considered, the a/at terms vanish 
and in the order A, the problem becomes identical to the linear 
problem. In the higher-order, inhomogeneous linear system equations 
determine the amplitude of the perturbation, hence the Nusse1t number. 
A second order approximation for the Nusselt number yields: 

* Nu 1 + K(l - (4.3) 

* where K depends on the amplitude of the perturbation and Ra is a 
Rayleigh number defined in terms of the thickness and temperature 
drop of the whole system and the conductivity and permeability of 
layer 1. As shown in (87,88,89,90), A and Ra* are dependent upon 
the number of layers, layer depths, layer per~eability and conduct­
ivity ratios and cell width. 

An extensive study of this problem has been developed (see 
(87 ~92)), for multilayered porous media, the layers of which have 
different thickness, permeability, and conductivity ratios. For 
two-dimensional convection patterns, a wide variety of possible 
configurations and values of parameters has been ~tudied. 

* Some results(87) stud~ing the evolution of Ra function of 
Kl /K2 and Hl/H with A~ = A for a two-layer system of isotropic 
porous media are shown in tigure 28, and the streamlines corresponding 
to a four-layer system of isotropic porous media are in Figure 29 
(89) . 

These results show clearly that the presence of layers of 
different permeability can have great influence on the convective 
flow in porous media heated from below, and that the modeling of 
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such systems by a homogeneous layer may give quite erroneous predic­
tions as far as convection and heat flux are concerned. 

4.2. The Homogeneous Anisotropic Porous Layer (93,94) 

= =* If K and A are respectively the dimensionless tensors of 
permeability and thermal conductivity such as: 

= + + + + + + 
K = k = L i + k2 j. j + k.k 

1 
(4.4) 

=* + + + + + + 
A Al Li+ A2 j.j + k.k 

with: 
* * 

kl 
Kl 

k2 
K2 

Al 
Al 

A2 
A2 

K3 K3 * * A3 A3 

(4.5) 

* * * = where Kl , K2 , K3 , Al ' A2 , A3 are the principal components of K and 
=* A , the Rayleigh number for the onset of convection is found to be: 

* Ra 
k m2 + k 12 

1 2 

with a 2 = l~ + m~ horizontal wave number and: 

* Ra 
g a ~T H K3 (PC)f 

* \i A3 

= =* defined in terms of the vertical components of K and A. 

Minimizing Eq. (4.6) with respect to 1 and m, yields the 
critical Rayleigh number: 

* Ra 
c 

A 1 2 
(-.1) 2 } + 1) 
k2 

Three cases can be considered: 

(4.6) 

(4.7) 

Al/kl < A2/k2 which gives rolls aligned in the y direction: 

1 o (4.8) 



Al/kl > A2/k2 which gives rolls aligned in the x direction: 

Al/kl = A2/k2 which gives the critical wave number vector: 

+ + + 
a = Ii + mj such as: 

In the case of horizontal isotropy with kl k2 
Al A2 = A, we obtain: 

Ra* = TI2«A/k)~ + 1) 
2 

and a = TI(A k)-i 
c 

k 

125 

(4.9) 

(4.10) 

(4.11) 

For this configuration, two relations can be used for the 
filtration Rayleigh number: Ra~ defined in terms of K3 and A; or 
Ra~ = Ra; defined in terms of Kl = K2 and A~ = A;. Criterion for 

onset of corresponding convection, i.e., Ra*3 and Ra*l' are presented 
in Figure 30 for different values of the ra~10s K3/K~ and A;/A~. 

For supercritical conditions, the steady non-linear problem has 
been investigated both numerically and analytically. Regions of 
stable wave numbers and Rayleigh numbers have been found for two­
dimensional motion. The results obtained show that the Nusselt 
number and the stability regions depend on the anisotropic parameters 
only through the ratios kl/Al and k2/A 2 . 

Some experiments performed in anisotropic porous layer (95,96), 
seem to confirm the validity of the relations giving the critical 
Rayleigh number and the mean heat transfer. However, this problem 
needs further experimental studies. 

4.3. Natural Convection in a Porous Layer Saturated by a Fluid of 
Non-Constant Properties 

All the studies reviewed until now assumed that fluid properties 
such as thermal expansion a, viscosity ~, and specific heat remain 
constant. In addition, each also involved the Boussinesq approxima­
tion that the fluid density p is constant, except in so far as it 
affects the buoyancy forces. Valid when the differences of 
temperature in the porous layer are small, these assumptions are 
not relevant at high temperature differences. 

The influence of variable viscosity due to large temperature 
differences at the onset of natural convection and horizontal 
platform of the cellular motion has been studied in (114), and both 
the variations of viscosity and density have been taken into account 
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in (115,116,117). For these two cases, solutions derived from the 
linear stability analysis show that the critical Rayleigh number is 
lower than 4TI~, and depends on the coefficient of variation of the 
viscosity with the temperature and on the state equation of the 
fluid. 

For a porous medium saturated with an ideal gas at constant 
pressure such as: 

~ (1 + yeT - T » m m 
and (4.12) 

where y is a constant and ~ and p , the dynamic viscosity and the 
volumetric mass at mean tem~eratur~ T = (Tl + T2)/2, it was shown 
that the critical filtration Rayleighmnumber and the wave number of 
the perturbatio~ are dependent upon y, ~T, Tl : Ra~(y, ~T, Tl ) ; 
ac(y, ~T, Tl ) w1th: 

* Ra 
g aCT ) p2(T)C ~T K H 

m m p 

* ~(T ) A m 

(4.13) 

based on the physical properties of the saturating gas at mean 
temperature. An example of the correlation Ra*(~T/T ) is given on 
Figure 31 in the case of a dry air-saturated pgrous layer. In the 
range of temperature varying from 80 to 3000 K, Ra~ tends toward the 
maximum 4TI2 when ~T tends toward zero, i.e., when the Boussinesq 
assumption becomes relevant. 

A few other results have also been published on natural 
convection near 277 0 K in water-saturated porous media. For the 
preceding cases, due to the non-linear relationship between water 
volumetric mass and temperature near 4°C the linear Boussinesq 
approximation is not applicable (118). 

4.4. Free Convection Around Surfaces and Concentrated Heat Sources 
in Infinite Porous Media (External Convective Flows) 

Steady free convection around heated surfaces or concentrated 
heat sources embedded inside an infinite porous media i.e., external 
convective flows, also plays an important role in numerous geophysi­
cal and engineering applications (108). 

Among the most frequently studied configurations, we shall 
mention horizontal or inclined surfaces (97 - 108) and concentrated 
heat sources (109 to 113). 

Based on the boundary layer approximations derived from the 
scale analysis of the problem, similarity solutions, i.e., solutions 
giving a similar temperature profile from one location, x, on the 
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Figure 31. Criterion for the onset of convection in a porous layer 
saturated by a perfect gas (after Epherre et al. (117)). 

Figure 32. The eigenvalue ~c as a function of dimensionless permea­
bility (R = 4TI~H2/K) (after Walker and Homsy (121)). 
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surface to another, have been obtained for two-dimensional free 
convection on a heated vertical cylinder (98), and on a horizontal 
and inclined heated surface (see (99 - 108». 

In the case of a horizontal heated surface, a linear stability 
analysis has been also made to determine the conditions of appearance 
of secondary flow in the boundary layer when the prescribed wall 
temperature is a power function of distance (101). Starting from a 
basic external flow corresponding to the steady two-dimensional 
buoyancy-induced boundary layer flow, disturbance equations have 
been solved numerically in order to obtain the critical Rayleigh 
number governing the stability of the boundary layer and the shape 
of perturbations. From these computations, it has been proved that 
the transverse rolls correspond to the most stable solution and 
that the wall temperature plays an important role on the stability 
of the layer; the existence of a temperature gradient along the 
surface has a stabilizing effect. 

Natural convection in an infinite porous medium with concentrated 
heat sources has been studied recently (112,113). For a unique heat 
source point which is continuous in time and is suddenly embedded in 
a infinite fluid-saturated porous medium, the transient time-depen­
dent temperature and flow pattern around the source and the steady 
regime obtained as time approaches infinity was investigated (112) 
using a standard perturbation analysis. 

* Ra 

Solutions presented as a function of the Rayleigh number: 

= g 
a(pC)f K 

v A*zQ 
based on the source strength Q (rate of energy 

release) and the permeability of the medium, show that the transient 
flow pattern consists of an expanding vortex ring situated in the 
horizontal plane containing the source, and that the steady state 
of an upward flow pattern becomes very intense near the source. 
Due to the approximations chosen in the expansion series (first 
order for the transient state and third order for the steady state), 
solutions are only valid for small Rayleigh numbers. 

For the study of a variety of isolated heat sources (113), 
thermal and flow fields have been approximately determined through 
an analytical approach based on the superpositions of solutions. 
Limited to the linear system derived from the first term of the 
expansion series, the solutions are only valid for Ra* + O. 

4.5. The Boundary Effects on Natural Convection in Porous Media 

Due to increasing use of high porosity media in thermal 
insulating techniques, a thorough understanding of boundary layer 
effects, either in the vicinity of an impermeable surface or in the 



transition zone between a porous material and a fluid, has become 
more and more important. 
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As the Darcy's law is unable to describe the hydrodynamics 
phenomena occurring on these interfaces, another momentum equation 
has been proposed to study these problems. Known as the Brinkman 
model (119), this momentum equation may be considered as an extension 
of the Darcy's law. Generally written: 

)l + + + 
- V = - I7P + pg + )l17 2 V 
K 

(4.14) 

it includes the viscous forces term, and consequently, is able to 
satisfy the no-slip conditions on an impermeable surface or the 
continuity in stress on the interface bet~een a porous media and a 

fluid. In a few cases, inertial terms 
into account (120,121). 

av + + at + (V . 17) V were taken 

When the Brinkman model is used instead of the Darcy's law, it 
appears that natural convection does not only depend on the Rayleigh 
number, but also on the ratio K/H2 = Da known as the Darcy-Brinkman 
number. 

This dimensionless number emphasizes both the influence of the 
porosity and grain size, or pore diameter, on the phenomena. As 
shown in a study concerning the onset of free convection in an 
horizontal porous layer of large lateral extent bounded by isothermal 
impermeable surfaces, this influence is negligible as far as 
Da ~ 10-4 , (Figure 32). 

Among the results recently published on the use of the Brinkman 
model to study convective heat transfer, we mention: 

- natural convection in vertical porous enclosures (122) where 
a thorough analysis of the influence of Da and A, both on the 
boundary layer and mean heat transfer, is developed. For a given 
value of A, these results confirm the influence of Da previously 
derived in (121), i.e., a satisfactory a~proximation of the phenomena 
by means of the Darcy's law for Da ~ 10- ; 

- natural convection on a semi-infinite vertical flat plate in 
a porous medium (123), where it is found that the no-slip boundary 
conditions have a lesser effect on the heat transfer than on the 
vertical velocity profile; and 

- natural convection in a vertical fluid cavity divided by a 
permeable porous layer (124), where a numerical simulation of both 
the hydrodynamics and the heat transfer is developed by means of a 
sole conservation equation of the Brinkman type with inertial terms 
added. In this case, the transition from the fluid to the porous 
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medium is realized via the 
of the spatial coordinate. 
condition at the interface 
preceding cases, the limit 
confirmed for Da ~ 10-4 . 

5. CONCLUDING REMARKS 

permeability which is the chosen function 
Thus, the need to state a boundary 

of the two media is avoided. As for the 
of the validity of Darcy's law is also 

This review surveys a set of papers that have been published 
during the last decade on natural convection in saturated porous 
media. 

Despite the great number and the variety of studied configura­
tions, further experiments and theoretical analysis are still 
necessary to improve the most fundamental aspects of the problem. 

Focusing our attention on the sole thermal phenomena, many 
questions have to be solved in order to give an undeniable predictive 
character for the use of mathematical formulation. 

Of general interest for studies of heat transfer in saturated 
porous media, these questions especially concern: first, the 
definition of conditions that must be satisfied in order to use with 
confidence the homogeneous model based on a unique heat transfer 
equation, and second, how to accurately estimate the coefficients of 

=* =* =* equivalent thermal conductivity tensors A ,As' Af and the heat 
transfer coefficient, h. 

Nevertheless, when the porous medium is a very thorough blend 
of solid and fluid phases, and the equivalent thermal conductivity 
is known, results obtained on natural convection confirm the validity 
of the approach based on the homogeneous model. 
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8. LIST OF SYMBOLS 

A 
a 

aijk 

aijk(O) 

B 
bijk 

Da 
d 
Fa 
Fd 
g 
H 

h 

Aspect ratio in x direction 
Wave number 
Coefficient 

Initial condition 

Aspect ratio in the y direction 
Coefficient 

Darcy-Brinkman number 
Characteristic length of the porous structure 
Buoyancy force 
Viscous drag force 
Gravitational acceleration 
Reference parameter for length scale; thickness 
of the layer 
Heat transfer coefficient between two phases 

Permeability tensor = 
Principal components of permeability tensor K 
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Lx 

Lx /H 

Ly 

Ly/H 

L z 

Lz/H 

N(a,b) 

Nut 

n 
P 

* Pr 
Q 
Ra 
Ra* 

* Ra c 

* Ra cs 

A. 
l 

t 
V 

a. 

Dimension of porous medium 

Aspect ratio in x direction 

Dimension of porous medium 

Aspect ratio in y direction 

Dimension of porous medium 

Aspect ratio in z direction 

Non linear operator 

Nusselt number 

along 

along 

along 

Unit vector normal to the surface 
Pressure 
Equivalent Prandtl number 
Rate of energy release 
Aspect ratio, HID 
Filtration Rayleigh number 
Critical Rayleigh number 

x axis 

y axis 

z axis 

Critical Rayleigh number corresponding to the 
successive convective modes 
Radius of spherical portion of fluid 
Temperature 
Temperature for fluid phase 
Reference temperature 
Temperature for solid phase 

Average values of temperature on horizontal 
planes of surfaces 
Equivalent thermal conductivity tensor 
Time 
Filtration velocity 

Volumetric thermal coefficient 
Constant 
Porosity 
Temperature perturbations 
Temperature perturbation in the wall 

Thermal conductivity ratio 
Coupling parameter 
Thermal conductivity of lower and upper surface 
Thermal conductivity of liquid phase 

Thermal conductivity of solid phase 

Equivalent thermal conductivity tensor for 
saturated porous media 
Equivalent thermal conductivity tensor for the 
dispersed structure of the fluid phase 



=* A 
s 

w 

Equivalent thermal conductivity tensor for the 
dispersed structure of the solid phase 

Dynamic viscosity of the fluid 
Dynamic viscosity at mean temperature 

Pressure perturbations 
Density of fluid 
Reference density 

Volumetric mass at mean temperature 

Slope; ¢t=theoretical slope 
Volume of the porous media 
Velocity of the sphere(constant) 
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Geothermal reservoirs are generally more complex than reservoirs 
of groundwater or petroleum. Physical states of the hydrothermal 
fluid fall into four categories: vapor-saturated, two-phase boiling, 
liquid-saturated and supercritical. Liquid-saturated reservoirs and 
liquid-dominated or vapor-dominated reservoirs of the two-phase 
boiling type are the most common types exploited so far. There is 
growing interest in submarine geothermal systems and heat extraction 
from hot rock or magma bodies, where the hydrothermal fluid circu­
lates at supercritical temperatures and pressures. Meteoric water 
dominates in continental systems and ocean water in submarine systems. 
The contribution of magmatic water is small at upper levels in the 
crust, but may increase as magma bodies are approached. The larger 
fumarolic fields have magma as a heat source. The rate of heat 
transfer required to sustain the intense heat output of such fields 
remains problematic, unless an intimate contact between circulating 
fluids and hot boundary rock of the magma is maintained over the 
lifetime of the activity. Convective downward migration of fluid 
along existing fractures and water penetration by thermal cracking 
of hot rock are important processes in this respect. Two-phase 
convection is of major importance in geothermal reservoirs. The 
phase change instability mechanism induces convection prior to the 
onset of ordinary buoyancy-driven thermal convection. Mathematical 
modelling of geothermal systems has greatly advanced the understanding 
of the dynamic nature of geothermal reservoirs and their response 
to exploitation. 
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1. INTRODUCTION 

Geothermal reservoirs have many features in common with ground­
water and petroleum reservoirs, and geothermal technology has 
naturally drawn on the experience gathered within these disciplines. 
This applies to drilling technology, as well as theoretical attempts 
to define reservoir properties and estimate production capacity. 
Geothermal reservoirs are, however, more complex than their counter­
parts in the other disciplines. Efficient utilization of geothermal 
resources requires understanding the physics of fluid flow and heat 
transport in fractured rocks. The aim is to extract heat, but the 
fluid serves as carrier for the heat energy to be mined. The first 
systems to be exploited were vapor-dominated systems yielding steam 
for the generation of electricity and hot groundwater systems deli­
vering water for space heating. The most common type of reservoirs 
exploited in recent years is the liquid-dominated type, which under 
utilization develops into a boiling reservoir. Interest is growing 
in experiments to extract heat from hot impermeable rocks by cont­
rolled hydraulic fracturing and injection of fluid to carry the heat 
to the surface. Similar ideas are developing towards heat extraction 
from magma bodies. Geopressured geothermal reservoirs have been 
found in association with petroleum reservoirs. Submarine geothermal 
systems have been discovered, rich in metals and minerals. Although 
these systems will hardly be exploited for heat energy, their inves­
tigation may cast light on the processes that govern the formation 
of meta11oferous deposits in the roots of continental geothermal 
systems. This great variety in geothermal phenomena illustrates 
that the physical processes of interest are not limited to subcritica1 
temperatures and pressures, but may range to magmatic temperatures 
and 1ithostatic pressures at a depth of about 10 km. 

This chapter discusses evidence on the source of fluid and heat 
in geothermal systems. Geothermal reservoirs are classified according 
to the physical state of the reservoir fluid using pressure, density, 
and volume saturation of phases as parameters. Conceptual models 
of the dynamic natural state of geothermal reservoirs are described 
by examples. The importance of considering the effects of tempera­
ture on the physical properties of the fluid is emphasized, as well 
as the physics of convection in geothermal systems where boiling 
occurs. The chapter concludes with an outline of recent developments 
in mathematical modelling of geothermal systems and the application 
of these models to obtain quantitative descriptions of the natural 
state of geothermal reservoirs and to study the response of reser­
voirs to exploitation. 

This chapter draws heavily on a related review by Stefansson 
and Bjornsson (95). Useful discussions were also found in the reviews 
of Mercer and Faust (69), Garg and Kassoy (49), Donaldson and Grant 
(35) and the recent textbook by Grant, Donaldson and Bix1ey (52). 
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2. SOURCE OF FLUID 

In geothermal reservoirs, heat is mainly transported by the 
hydrothermal fluid. The fluid consists of liquid water with dissolved 
solids, water vapor, and gases dissolved in the liquid and free in 
the vapor. Generic types of water as a hydrothermal fluid [White 
(102,103,108), Ellis and Mahon (42)] are defined as: 

Meteoric water. Water recently involved in atmospheric circulation. 

Ocean water. Water penetrating into the crust of ocean floor spread­
ing centers. 

Juvenile water. "New" water from mantle-derived magma and which has 
not previously been part of the hydrosphere. 

Magmatic water. Water derived from magma, but not necessarily 
juvenile water, since magma may incorporate meteoric or ocean water 
of deep circulation, or water from sedimentary material. 

Connate water. "Fossil" water incorporated in sediments of the time 
of deposition. 

Metamorphic water. Modified connate water, derived from hydrous 
minerals during their recrystallization to less hydrous minerals 
during metamorphic processes. 

Systematic studies of stable oxygen and hydrogen isotopes in geo­
thermal water (2,28,29,30) have established meteoric water to be 
the dominant source of fluid in most active continental geothermal 
systems. Evidence for this origin of thermal waters was further 
strengthened by Ellis and Mahon (40,41), and Mahon (62), who showed 
experimentally that the chemical composition of most waters could 
be attained by the solvent action of hot water on the local volcanic 
rocks. 

The role of ocean water, and the possibility of submarine geo­
thermal systems on oceanic ridges, was first pointed out by Elder 
(39). Geothermal systems on land where ocean water is the main 
source of fluid have been described by Bjornsson et al. (8,9), 
Arnorsson (3), and Kjaran et al. (57). Submarine geothermal systems 
have recently been discovered at a number of sites near ocean spread­
ing centers [reviews by Rona and Lowell (83) and White and Guffianti 
(109), Spiess et al. (92)]. It is now well established that hydro­
thermal circulation plays a major role in the thermal balance of 
ocean ridges where ocean water is the dominant fluid source. 

Although the contribution of magmatic or juvenile water appears 
to be minor, there is growing evidence for magmatic influence on 
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thermal fluids (31,58,64,94). 

Distinction between ocean water and meteoric water might seem 
to be of little importance, but the chemical composition of ocean 
water has a large effect on the solvent action of the geothermal 
fluid. When seawater is heated within the rock matrix, the removal 
of Mg from the seawater generates acidity which maintains heavy 
metals in solution at moderate temperatures (about 3000 C) (88). This 
acidity, and the higher hydrostatic pressure, influences the chemical 
output of submarine geothermal systems towards much higher metal 
concentration as compared to geothermal systems fed by meteoric 
water (7,87). 

In geothermal systems in the Imperial Valley, U.S.A., fluids 
of both high salinity and high temperature (3500 C) are found. 
Metallic concentration is unusually high in these fluids (71). In 
the Krafla geothermal reservoir in Iceland, the fluid is of very 
low salinity, but high metallic (mainly Fe) concentrations have 
been encountered in some wells. These high concentrations result 
from a very low pH value of the thermal fluid due to intermittent 
flow of volcanic gases (S02' C1 2) into the hydrothermal system (1,4). 
Ore deposits in fossil hydrothermal brine systems are suggestive of 
a brine fluid at the time of deposition (105,106,110). One of the 
early signs of submarine hydrothermal systems was the observation 
of the metallic content of sediments near the East Pacific Rise 
(23,24). The significance of these observations was not generally 
recognized until the physical evidence for submarine hydrothermal 
systems became commonly known. 

3. MAGMA AS HEAT SOURCE 

A recent and extensive review of the literature on the heat 
source of geothermal systems is given by Stefansson and Bjornsson 
(95). The following discussion is based on that review. 

Of the numerous speculations about the nature of thermal 
activity, the work of Einarsson (38) is the first quantitative treat­
ment. He contended that the hot springs of Iceland were not physic­
ally different from ordinary cold springs, except for the greater 
depth of penetration of the water. The heat comes simply from the 
conductive heat flux from the interior of the earth. Bodvarsson 
(11,13,14) elaborated this concept further. He agreed with Einarsson 
on the nonvolcanic origin of low-temparature fields, but concluded 
on the basis of energy balance considerations, that the conduction 
process involved in the heating must be of a transient nature. 
Bodvarsson (15) suggested that the deglaciation of Iceland has ge­
nerated the hydrological and elastomechanical impulses that activated 
the hydrothermal circulation. Noting that there is a strong positive 
correlation between temperature and the mass flow of the systems, 
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Bodvarsson (16) concluded further that convective downward migration 
of fracture spaces along the walls of mafic dykes appeared to be a 
dominant thermomechanical process in the development of the low 
temperature systems. The mechanism of this process involves concepts 
suggested earlier (12) for the case of the high temperature systems 
in Iceland, and by White (107). Convective fluid motion in open 
vertical fracture spaces is associated with the withdrawal of heat 
from the formation at the lower boundary, resulting in thermoelastic 

contraction of the adjacent rock and opening of additional fracture 
spaces at the bottom. A single fracture or system of fractures har­
boring such convective fluid motions can therefore migrate downward 
by the process. Since the walls of dykes are not welded to the 
country rock, the downward migration process does not involve thermo­
elastic fracturing of solid rock. 

The intense heat output of the high temperature fumarolic fields, 
which is of the order of 100-1000 MW thermal over periods of 104 

years, cannot be explained by the normal conductive heat flux of 
the earth. The concentrated source of heat must be magma or hot, 
recently solidified rock. Limited surface area and slow thermal 
conduction through solid rock require intimate contact between the 
rock and the percolating fluid. 

Lister (59,60,61) has presented a conceptual model of the 
downward penetration of water into hot rocks by a process of cooling 
and thermal cracking. Evidence in support of water penetration into 
hot rock boundaries of solidifying magma is reported by Bjornsson 
et al. (10). Watering of a molten lava flow demonstrated a heat 
extraction efficiency of 40 KW/m 2 • The authors conclude that this 
process of heat extraction is required to explain the sustained 
heat output of 5000 MW of the subglacial Grimsvotn geothermal area 
in Iceland. Hydrothermal vents jetting out water at 3800 C have been 
discovered on the axis of the East Pacific Rise at a water depth of 
2500 to 2900 m (92). These submarine systems may also be regarded 
as evidence for convective downward migration of water into the 
oceanic crust. 

White (102,107) found that a magma supply of at least 10 2-103 

km3 was required to support the Steamboat Springs system through 
its life of 105 - 106 years. He considered that a batholith intru­
ded into the shallow crust, and then remaining static as it cools 
and crystallizes, is not a satisfactory model, unless the fissure 
system controlling the circulating water can gradually extend deeper 
into the batholith as stored heat is removed at higher levels by 
circulating water. As an alternative for the heat-flow problem, he 
suggested convection within the magma chamber to maintain magmatic 
temperatures near the base of the hydrothermal circulation (107). 
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Irvine (55) has studied the relation between temperature in a 
magma body and a crystallization mechanism where crystal fractionation 
is a major process. He described a convective process in the magma 
body where crystals are accumulated in the lower part of the intru­
sion, but the temperature near the top remains close to or above the 
liquidus temperature of the magma. This process allows higher rate 
of heat loss and solidification than would occur if the crystals 
were frozen to the roof of the magma chamber. Convective processes 
of this nature appear to be capable of providing sufficient heat 
transfer to the hydrothermal fluid to explain the heat output of 
most geothermal systems. 

Although magma bodies are considered to be a common heat source 
of geothermal systems, direct evidence on the existence of these 
bodies and their relationship to the geothermal systems is rather 
scarce. S-wave shadows have indicated a small magma body at 3 to 7 
km depth beneath the Krafla geothermal system in the axial rift zone 
of NE-Iceland (37). Similar conditions are apparently found in the 
geothermal system of the Puna district on Hawaii (48) and its rela­
tion to the summit magma chamber of Kilauea. Gravimetric, magnetic, 
and seismic data have shown anomalous zone under the Avachinsky vol­
cano on the Kamchatka Peninsula. This is suspected to be a periph­
eral magma chamber (45). 

Teleseismic P-wave delays have been used extensively to infer 
velocity structure at several geothermal systems. At the Geysers, 
a molten chamber about 14 km in diameter is inferred with its top 
about 7 km beneath the volcanic field (56). At the Coso Geothermal 
area, an intense low-velocity body, which coincides with the surface 
expressions of late Pleistocene rhyolitic volcanism, high heat flow, 
and hydrothermal activity, is resolved between 5 and 20 krn depth (82). 

Eroded central volcanoes are widely distributed within the 
Tertiary basalt formations in Iceland (99,100). The volcanic centres 
are places of unusually vigorous volcanic activity. This is shown 
by the great concentration of dykes and intrusive sheets. Walker 
(100) estimates that the intrusions amount to at least 50% of the 
rock in some of the complexes. Each centre has a down-sagged core 
region. The hydrothermal alteration , typically found in the col­
lapsed core, bears witness of ancient geothermal activity, which is 
attributable to the basic sheet swarm in the core. The zones of 
intense hydrothermal alteration appear to have hosted large hydro­
thermal reservoirs, each with a volume of the order of 100 km3 • 

To summarize this discussion, one may conclude that the heat 
source of the major geothermal systems is magma. The intense loss 
of heat observed in some geothermal fields is, however, difficult 
to explain unless the heat transfer from the magma to the hydrother­
mal fluid is caused either by downward penetration of water and 
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cracking of the hot intrusion, or that convection is taking place 
within the magma body in such a way that the boundary between the 
magma and the hydrothermal fluid remains relatively thin for a con­
siderable time. 

4. PHYSICAL STATES OF GEOTHERMAL SYSTEMS 

There have been many attempts to define basic types of geother­
mal systems. The classification chosen in this review is by the 
physical state of the reservoir fluid as discussed by Stefansson and 
Bjornsson (95). Geothermal systems are generally of a complex nature 
and contain zones representing different physical states. Figure 1 
uses pressure and density of the reservoir fluid to recognize four 
regions of physical states. These are the vapor-saturated region, 
the two-phase boiling region, the liquid-saturated region, and the 
supercritical region. These regions are separated by the Clapeyron 
curves for saturated vapor and liquid, the isothermal T , for 
P > P , , and the isobar P ,for T > T " In three c6f t the re-

, crlt ,crlt, crlt h h l' 'd glons, the thermal fluld occurs as a slngle-p ase. T e ~qu~-

saturated region contains the class of geothermal systems where the 
temperature never reaches boiling. Most important of these are 
hydrothermal systems in the ocean crust. Hydrothermal circulation 
at hydrostatic pressures exceeding the critical pressure for the 
fluid will not reach boiling, unless it is induced by the release 
of volatiles from geothermal fluid. These pressures are found 
beneath oceans of 2.2 km depth. Hydrothermal circulation in the 
ocean crust is thus generally a single-phase convection of seawater. 
Geothermal systems belonging to the vapor-saturated region are found 
on active volcanoes and low pressure superheated steam is common at 
shallow depth in geothermal fields. Exploitation also leads to dry­
out of water in vapor-dominated rocks near production wells. Super­
critical conditions are expected in geothermal systems that penetrate 
deep into the crust to supercritical pressures, where young igneous 
intrusions have generated supercritical temperatures. On land, these 
conditions could be found below 3.5 km depth in the crust, assuming 
boiling conditions in the hydrostatic fluid above. On the sea floor, 
the hydrostatic head of the ocean may exceed the critical pressure, 
and supercritical temperatures can therefore exist at shallow depth 
beneath the floor. The presence of dissolved salts in geothermal 
fluids has an important effect on phase transitions. The temperature 
and pressure of the critical point increase with increased salinity 
(9l)(see also Fig. 21), displacing the conditions for supercritical 
fluid to greater depth, Secondly, the saline fluid has lower vapor 
pressure (53). This effect delays the initiation of boiling in an 
ascending saline fluid. 

The most important region for the discussion 
systems is the two-phase boiling region enveloped 
curves at subcritical temperatures and pressures. 

of geothermal 
by the Clapeyron 

To uniquely define 
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Figure 1. Physical states in hydrothermal systems [After (95)] 

1. Vapor-saturated region, where the density is less than the 
density of saturated steam (pvs ) and the pressure is equal 
to or less than the critical pressure (P .). cr1t 

2. Boi~ing region, where two phases are present. The region is 
enveloped by the Clapeyron curves for saturated vapor (p ) vs 
and saturated liquid (PIs) at subcritical temperatures ana 
pressures. 

3. Liquid-saturated region, where the temperature is less than 
the critical temperature (T .) and the density is greater 
than the density of saturat~a1£iquid (PI ) for all P ~ P . 
and greater than P (T . , P) for all P >s P. cr1t 

cr1t crit 

4. Supercritica~ region, where both temperatures and pressures 
exceed the critical point values (Tcrit ' Pcrit )' 
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physical conditions within this region, an additional parameter such 
as the water saturation, i.e., the volume fraction of water in the 
fluid, is needed. In the three single-phase regions, the vertical 
pressure gradient is proportional to the density of the respective 
fluid. In the two-phase region, the situation is different. 
Physical states with an intermediate mixture of liquid and vapor are 
not stable, although they may exist as transient phenomena. Gravity 
segregation of the phases leads to separation of the reservoir into 
a lower zone with high water saturation and a pressure gradient 
dominated by liquid density, and an upper zone with low water satu­
ration where vapor density controls the vertical pressure gradient. 

Geothermal reservoirs are often referred to as either liquid­
dominated or vapor-dominated, depending on the phase which controls 
the vertical pressure gradient (Fig. 2). The liquid-dominated reser­
voirs are either liquid-saturated or boiling with a small vapor 
saturation. The vapor-dominated reservoirs are either vapor-satu­
rated or boiling with a high vapor saturation. The majority of known 
geothermal reservoirs is of the liquid-dominated type, although 
vapor-dominated fields have been favored for the generation of 
electricity. 

5. CONCEPTUAL MODELS OF GEOTHERMAL SYSTEMS 

The aim of exploratory surveys and exploratory drilling is to 
gather information on the physical state and nature of a prospective 
reservoir. The evidence brought forward by different disciplines 
is combined in a descriptive and qualitative model of the geothermal 
system. This conceptual model incorporates the essential features 
of the system and guides further exploratory and appraisal studies. 
It also provides the basis for numerical modelling of the natural 
state of the reservoir before withdrawal of fluid affects the physic­
al state. A frequently cited model of large-scale circulation of 
fluid in the natural state of a geothermal system was presented by 
White (104) as shown in Figure 3. Cold groundwater percolates down 
faults, dykes, and fissures to considerable depth, where it picks 
up heat in permeable hot rocks. The density difference between the 
cold and the hot water results in buoyancy imbalance, which drives 
the hot water back to the surface along permeable channels. The 
heat source may be a magma chamber at greater depth, or just the 
general heat flow from the interior of the earth. The latter case 
represents, e.g., the so called low temperature systems where the 
temperature at the base of circulation is generally below l500 C. 
A few samples of temperature profiles in such systems in Iceland 
are shown in Figure 4. The profiles for Laugaland and Reykjavik 
are typical for upflow zones. If the conventional model of Figure 5 
is applied, the base of circulation appears to lie below 2000 m, 
but the inflow temperature is only about half of that predicted by 
the regional geothermal gradient. The dyke convector model (Fig. 6), 
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a) Liquid-dominated b) Vapor-dominated 

Figure 2. Fluid distribution in pores and fractures [After (46)] 

a) Liquid dominates in the open channels although bubbles of 
steam and gas are present. 

b) Vapor dominates in the open channels, but liquid fills most of 
the intergranular pore space. 

proposed by Bodvarsson (16), resolves this discrepancy by assuming 
that the recharge enters the dyke along some relatively shallow path, 
but sinks through cracks or fractures along the walls of the dyke 
where it takes up heat from the hot adjacent rock. Convection within 
the dyke transports heat from lower lying rocks and delivers excess 
heat to the upper layers. In this way, the convection equalizes 
the temperature within the convector. As water in a liquid-satura­
ted reservoir ascends to lower pressure, it eventually reaches satu­
ration pressure and begins to boil (Fig. 3). Below the boiling 
level, the temperature is practically constant and equal to the base 
temperature. Above the boiling level, the temperature and pressure 
are related by the Clapeyron curve for saturated liquid. Ignoring 
the dynamic pressure drop caused by the upflow, usually less than 
10% of the static gradient (35), the temperature and pressure in 
the rising column may be found approximately by summing up the static 
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Figure 3. Model by White (104) of the large-scale circulation of 
fluid in the natural state of geothermal system. 

weight of a column of water whose temperature is everywhere at satu­
ration for the local pressure. Examples of such boiling point curves 
are given in Figs. 7 and S. If noncondensible gas is present, its 
partial pressure adds to the vapor pressure and initiates boiling 
at greater local pressure than for pure water (Curve E in Fig. 7). 
A boiling column of reservoir fluid implies vertical upflow of steam 
and, in most cases, also that of water. Structural control and 
regional groundwater flow usually impose some component of lateral 
flow. 

Exploration of geothermal systems is usually limited to the 
exploitable part of the reservoir which is the region of upflow. 
Most conceptual models therefore describe only that part of the 
system. Examples of conceptual models of upflow regions in several 
reservoirs are given in Figs. 9 to 13. These models illustrate that 
the natural state and the initial fluid distribution in the reservoir 
are controlled by a dynamic balance of mass and heat flow. 

The examples presented above are all of the liquid-dominated 
category of reservoirs. A general conceptual model of vapor-domina­
ted reservoirs in their natural state was presented by White et al. 
(110) as shown in Fig. 14. The main part of the reservoir is domina­
ted by vapor ascending from a layer of boiling convecting brine. 
At the top of the reservoir, impermeable cap rock prevents escape 
of the steam. Heat is lost to surface and boundaries by conduction. 
This heat loss is balanced by condensation of steam. The condensate 
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Figure 4. A few samples of temperature profiles in boreholes in 
Iceland [After Bodvarsson (16), based on data by Palmason 
(74)]. Regional conductive gradient in Reykjavik is near 
lOOoe/km but about 60oe/km near Laugaland. 

trickles against the rising steam down to the brine. In this counter­
flow of steam and condensate, the steam occupies the wider channels 
but the water favors small pores and channels because of its high 
surface tension. D'Amore and Truesdell (32) suggested a modified 
model as shown in Fig. 15. The natural upflow of steam from the 
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Figure 5. The conventional model for low temperature systems [After 
Bodvarsson (16)]. 
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Figure 7. Depth-temperature relations for boiling solutions [After 
Fournier (47)]. Depth-pressure relations for curve A fixed 
by the weight per unit area of a free-standing column of 
cold water extending to the surface. Depth-pressure rela­
tions for curves B to E fixed by the weight per unit 
area of free-standing columns of the given solutions every­
where at their boiling temperatures, and extending to the 
surface. Curves A and B for pure water, curve C for 10 
weight percent aqueous NaCl, curve D for 20 weight percent 
aqueous NaCl, and curve E for water plus a partial pressure 
of C02 of 10 bars. 
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Figure 8. Depth-pressure relations for boiling and cold columns of 
pure water and boiling aqueous NaCl solutions. [After 
Fournier (47)]. 
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Figure 10. Conceptual model of the Krafla reservoir, Iceland [After 
Bodvarsson et al. (18)]. A gas rich steam-water mixture 
of at least 3400 C temperature flows from the west in the 
lower reservoir and rises through a fracture zone where 
it mixes with 3000 C fluid from an eastern upflow zone. 
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servoir at a temperature about 200oC. 
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Figure 12. Schematic cross section of the Cerro Prieto field, Mexico 
[After Ellis and Mahon (42), based on Mercado (66)]. 
The system is capped by some 700 m of plastic clay, for­
cing the hot fluids to flow horizontally away from the 
fractured upflow zones mainly toward west. Interaction 
of the hot fluids with cold water in the east causes 
precipitation of calcite and silica. 
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Figure 13. Conceptual model of the natural flow in Cerro Prieto 
[After Grant, Donaldson and Bix1ey (52), based on Mercado 
(67)]. Numbers are Na/K - ratios in the reservoir fluid. 
Low ratio indicates high temperature. 
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and Bix1ey (52), after White et a1. (110)]. 
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Figure 15. Conceptual model of the natural state of a vapor-dominated 
reservoir [After Grant, Donaldson and Bixley (52). and 
D'Arnore and Truesdell (32)]. 

boiling brine occurs in a limited area, from which the stearn spreads 
laterally through the reservoir. This model fits well with observed 
variations in stearn chemistry in the Lardarello and the Geysers 
reservoirs. Figure 16 presents a model for the geothermal system 
beneath the Lassen volcano [Muffler et al. (70)]. A relatively 
shallow vapor-dominated reservoir is underlain by 2400 C liquid­
dominated reservoir rich in chloride. A local 240 0 C stearn zone of 
a similar water reservoir in Kenya is illustrated by Figure 17. 
Lateral flow of the boiling fluid to lower pressures leads to an 
increased thickness of the stearn zone. 

White et al. (110) suggested that phorphyry copper mineraliza­
tion may occur in the zone of boiling brine below the vapor-dominated 
systems. Porphyry copper deposits occur in tertiary and older 
orogenic-volcanic belts around the world. Isotope and fluid inc­
lusion studies have shown that in a number of deposits, the develop­
ment of the characteristic ore alteration pattern involved the in­
teraction of meteoric groundwaters with saline fluids evolved from 
magma. 

Henley and McNabb (54) considered the nature of the interaction 
between a buoyant thermal plume of a low density and salinity mag­
matic vapor carrying copper and other ore components and cooler 
groundwater in an essentially hydrostatic environment. They presen­
ted the model shown schematically in Figure 18 to explain porphyry 
copper emplacement. Condensation of the vapor creates a high sali­
nity brine with dissolved acids. A neutral, chloride rich solution, 
of moderate salinity and dominated by meteoric water evolves above 
and at the sides of the acid-altered rock and hot gas region. In­
teraction between the two fluid systems leads to copper ores and 
alteration patterns. The acid alteration and precipitation of 
quartz from the hydrothermal fluid above, due to retrograde solubility 
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Figure 16. Schematic cross section of the Lassen geothermal system 
[After Fournier (47), based on Muffler et al. (70)]. 
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Figure 18. Thermal plume model for a developing porphyry copper 
deposit [After Henley and McNabb (54)]. Low salinity 
magmatic vapor carries metals into a hydrostatic envi­
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vapor condenses into a high-salinity liquid. The high 
salinity phase is diverted toward the margins of the 
two-phase region where refluxing occurs. Groundwater 
is progressively entrained into the magmatic vapor plume 
(% M.W: Percentage of magmatic water). 

at temperatures above 350-400o C (Fig. 19), may lead to a self-sealed 

envelope [Fournier (47)] in the country rock close to the magmatic 
intrusion (Fig. 20). Fluid within the envelope is then at lithosta­
tic pressure, whereas the hydrothermal system above circulates at 
hydrostatic pressures. 
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Solubilities of quartz in water up to 900 0 e at the 
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region of retrograde solubility [After Fournier (47)] . 

."..---:-""" ....... 

-,::<'~~'~ 
,~~~ .. 

Mixing ~ / M,x,ng 

t ~ Chloride It 
Water 

Figure 20. Schematic cross section of a hydrothermal system with 
a self-sealed envelope separating geopressured fluid 
from a hydrostatically pressured convecting fluid 
[After Fournier (47)]. 



166 

6. CONVECTION AND BOILING 

Thermal convection is a fundamental process of heat transport 
in hydrothermal systems. Although single-phase convection of water 
has received most attention in the literature, two-phase convection 
of water, steam and, gases is probably the dominant mode of convec­
tion in most geothermal reservoirs. The following section reviews 
some important studies on single-phase and two-phase convection in 
geothermal systems [See also Stefansson and Bjornsson (95)]. 

6.1. Single Phase Convection of Water 

A thorough review of the basic characteristics of free convec­
tion of a single-phase fluid in porous media is included in Whit­
herspoon et al. (Ill). A linear stability analysis shows that 
thermal convection in a liquid-saturated porous layer is initiated 
when a critical value of the Rayleigh number, Ra, is exceeded. In 
a horizontal layer of thickness H and a temperature difference 6T 
across, the Rayleigh number can be expressed, 

where: 

a.g.6T.H.p2. cp . K 

~.A 

a = coefficient of thermal expansion of the fluid 
g acceleration of gravity 
p fluid density 

c p specific heat of the fluid at constant pressure 

K permeability of the rock 
~ dynamic viscosity of the fluid 
A thermal conductivity of saturated rock 

The most common approximation in the extensive literature on 
the subject of thermal convection is to consider the viscosity, the 
permeability, the thermal conductivity, the thermal expansivity, 
and the specific heat as constant values in the convection process 
[Boussinesq (25)]. Variations in density are included in the buoy­
ancy term of the vertical balances of forces, but otherwise density 
is assumed to be constant. Straus and Schubert (96) studied the 
conditions for the onset of thermal convection in a water-saturated 
porous layer. They used an accurate representation of the equation 
of state for liquid water and an empirical formula for the viscosity 
of water as a function of temperature and pressure. The properties 
of water considered were:density p, thermal expansion coefficient 
a, isothermal compressibility S, specific heat at constant pressure 
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c , adiabatic temperature gradient agT/c , and dynamic viscosity ~. 
B~ allowing for variations in the therma~ properties of water, Straus 
and Schubert determined the critical Rayleigh number for the onset 
of convection for various thicknesses of the porous layer, as well 
as for various thermal gradients in the layer. They found that the 
permeability necessary for convection is seriously overestimated when 
the thermal properties of water are assumed to be constant values. 
Due to the effects, of variable water properties, convection can 

occur for smaller vertical temperature differences in rock of a 
given permeability or for smaller permeability at given temperature 
difference. The primary reasons for increased tendency to initiate 
convection are the substantial increase of thermal expansivity and 
the decrease of viscosity with increased temperature. Variations 
in the specific heat, the adiabatic temperature gradient, and the 
compressibility were found of minor importance in the cases consi­
dered by Straus and Schubert (96). 

6.2. Two-Phase Convection 

In many geothermal systems, the flowing water reaches the sa­
turation pressure due to release of pressure, and boiling is ini­
tiated. The fluid becomes a two~phase mixture of steam and water 
with thermodynamic and transport properties different from those 
of liquid water. Where steam and water are in thermodynamic equilib­
rium, the fluid temperature and pressure are uniquely related by 
the Clapeyron equilibrium equation which determines the boiling 
(Clapeyron) curve separating the steam and water phases on a p-T 
diagram. The thermodynamic properties of each phase are unique 
functions of temperature (or pressure) only. The two-phase flow 
is generally assumed to be laminar. This assumption, however, might 
not be valid where rapid boiling occurs. Darcy's law is generally 
applied separately to the steam and water phases, introducing 
relative permeability factors to account for the restricted flow of 
each phase in the presence of the other. The relative permeability 
factors are expressed as functions of the volume fraction of each 
phase, S denoting the volume saturation of water and l-S that of the 
steam. These functions are still poorly defined, however, and im­
portant values such as the water saturation at which the water 
becomes immobile are inadequately known. In view of the difficulties 
met in defining the relative perm~ability, the use of complex rela­
tions is hardly warranted. Many authors simply assume that the 
relative permeability factor for ~ach phase is equal to the satura­
tion value of the respective phase. 

The Darcy flow of either phase is driven by the pressure gradient 
in excess of the static gravity gradient of each phase. Donaldson 
(34) considered boiling processes within a one-dimensional steady 
upflow of hot water. He found that a two-phase zone of steam and 
water formed for vertical massflow rates above a threshold value. 
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The steam ascended more rapidly than the water, and was condensed at 
the upper boundary of the two-phase zone. Sheu et al. (89) extended 
the model of Donaldson (34) to include a more complete energy equa­
tion and more realistic thermodynamic properties. For flow rates 
below a critical value, only liquid water existed at all depths. 
Above the critical value, three zones exist, consisting of a near­
surface water layer, an underlying two-phase zone of water undergoing 
pressure release boiling, and a deeper zone of liquid water. 

Schubert and Straus (84) studied the conditions for the onset 
of convection, and the nature of that convection, in a three-dimen­
sional porous medium containing a steam-water mixture or water at 
saturation temperature at all depths. The steam-water mixtures 
were described by a homogeneous model, in which a single Darcy­
velocity specifies the mass flow of the mixture, and the thermo­
dynamic and transport properties of the mixture depend only on the 
properties of the individual phases and their relative amounts. The 
tendency of these fluids to convection is quite different from that 
governing the instability of an ordinary single-phase fluid. The 
ordinary Rayleigh instability is driven by buoyancy forces which 
cause relatively hotter, lighter fluid elements to rise and rela­
tively colder, heavier fluid parcels to sink. The two-phase convec­
tion proceeds by way of a phase change instability mechanism asso­
ciated with the requirement that the fluid temperature and pressure 
always lie on the equilibrium Clapeyron curve. Temperature varia­
tions are directly responsible for the pressure gradients which 
drive convection. A perturbed hotter region of the fluid is also 
at somewhat higher pressure than its surroundings, and fluid will 
flow horizontally away from the hot spot. Conservation of mass 
then requires that the horizontal divergence of fluid out of the 
hotter region be balanced by a vertical influx of fluid. Condensa­
tion and boiling occur to achieve a balance of forces in the ver­
tical. The most striking aspects of this type of convection are 
the small lateral dimensions of the cells and the concentration of 
the flow, phase changes, and temperature variations toward the 
bottom of the porous layer. The saturated liquid convection cells 
are only about half as wide as those of ordinary buoyancy-driven 
convection in water, two-phase cells are still narrower, and the 
flow more concentrated toward the bottom. This phase change insta­
bility mechanism induces convection prior to the onset of ordinary 
buoyancy-driven thermal convection [Schubert and Straus (84)]. 
Although buoyancy-driven convection has been assumed to dominate 
in many hydrothermal systems, the real geometry of convection cells 
has never been observed in nature. One reason for this might be 
that phase change driven convection dominates the convective pattern 
with narrower cells and concentration of the convective flow near 
the bottom of the system. 
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Many properties of the fluid change rapidly as the thermodynamic 
critical point is approached. For pure water, the critical point 
is found at 374°C and at 221 bar pressure. Increasing salinity of 
the fluid raises the critical point both in temperature and pressure 
(Fig. 21). Theoretically, as the critical point is approached, the 
specific heat at constant pressure, coefficient of volume expansion, 
compressibility, and thermal conductivity become infinite (93). 
Straus and Schubert (96) analyzed the onset of natural convection 
in porous media near the critical state, which they found signific­
antly influenced by large property variation as th~ critical point 
is approached. Norton and Knight (72) calculated heat flux and 
fluid movement in hydrothermal systems surrounding cooling plutons. 
The fluid circulation was found to be effectively controlled by 
expansion coefficient, specific heat, and viscosity variation near 
the critical point. Dunn and Hardee (36) presented data from labora­
tory experiments with natural convection in a permeable medium which 
showed the expected significant increase in heat transfer rates near 
the critical point. 

The presence of gases in geothermal fluids may greatly enhance 
convective instability. In geothermal systems where chemical equilib­
rium is attained for all major components incorporated in alteration 
minerals, the concentration of gases (C02 , H2S, H2 and CH4) is 
directly related to the temperature of the geothermal fluid. The 
concentration of CO2 in geothermal systems near 3000 C is sufficiently 
large to profoundly influence the physical state of the system (5, 
6,50,63,94). Boiling in water-C02 fluid occurs where the sum of 
the partial pressures of CO2 and steam exceeds the ambient pressure 
in the fluid. Boiling refers thus to the phenomenon in which CO2 
and vapor create a gaseous phase in equilibrium with the liquid 
phase at the ambient pressure. The boiling temperature of the water­
CO2 fluid is well below the saturation temperature for pure water 
at the same ambient pressure (Fig. 7). The ascending fluid ini­
tiates boiling at greater depths than pure water. The boiling point 
curve within a water-C02 geothermal system is displaced to progres­
sively greater depths as the partial pressure of the CO2 increases 
with temperature and depth. Straus and Schubert (97) showed that 
the buoyancy of the geothermal fluid depends critically on the pre­
sence of CO2 , because of the large volume changes that occur when 
CO2 enters or leaves the solution and forces water to simultaneously 
change phase. While the presence of CO2 can, in principle, enhance 
or inhibit convection in geothermal fluids, the general effect is 
to strongly enhance convection for most temperatures and pressures 
of interest. 

6.3. Steam Water Counterflow In Vapor-Dominated Systems 

In the discussion of single-phase and two-phase convection 
above, it has implicitly been assumed that water is the continuous 
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Figure 21. Density-temperature relations in the system NaCl-H20 
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lines are isobars. The dotted-dashed line is the 
critical curve [After Fournier (47)]. 

phase throughout the system and thus provides control. Pressure in 
such systems is near hydrostatic values. This appears to be the 
most common state of geothermal reservoirs. There are however 
important exceptions, such as the vapor-dominated reservoirs, where 
the steam is the continuous, pressure-controlling phase, although 
liquid water is also present. 

An essential feature of a two-phase vapor-dominated system is 
the counterflow of rising steam and descending water, which has 
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been termed one-dimensional convection as opposed to single-phase 
convection which can only occur in two or three dimensions. The 
large difference in density between steam and water provides the 
driving force that tends to segregate the two phases. Martin et al. 
(65) demonstrated that one-dimensional, vertical two-phase, steady 
state, convective, and conductive heat flow is theoretically possible 
in geothermal reservoirs (See also Schubert and Straus (85)). Martin 
et al. assumed steam to be generated at depth by heat conducted from 

below. The steam flows upward and an equal mass of hot water flows 
downward within the geothermal reservoir. At the top of the geother­
mal reservoirs, the steam condenses into hot water which then flows 
downwards. Above the reservoir the heat flow is again only conduc­
tive. Martin et al. (65) found that in many cases two water/steam 
volume ratios satisfy the same heat flow rate. One is a high ratio 
in which liquid water is the principal mobile phase. The pressure 
gradient is approximately that of hydrostatic water. The other ratio 
corresponds to a high vapor saturation in which steam is the prin­
cipal mobile phase and the pressure gradient is approximately that 
of static steam. 

One characteristic of both liquid- or vapor-dominated two phase 
geothermal systems is that some wells produce superheated steam 
(86,94,98). As first pointed out by Bodvarsson (12) in a considera­
tion of the thermodynamic behavior of the Lardarello system, the 
superheat can be explained by assuming that steam flowing to producing 
wells receives heat from the reservoir rock. In this early study, 
Bodvarsson also concludes that the steam produced at Lardarello must 
originate from liquid water in the reservoir, and that the heat 
capacity of the reservoir rock contributes significantly to the 
energy withdrawn from the system. These features of the Lardarello 
system are found in many later models (See e.g. 33,79,98). 

7. MATHEMATICAL MODELLING OF GEOTHERMAL SYSTEMS 

Mathematical modelling related to geothermal systems has 
advanced rapidly in the last decade. Empirical methods fitting 
analytical functions to data, and analytical methods including 
lumped-parameter models are being replaced by distributed-parameter 
models (numerical simulators). A useful review of the development 
of numerical simulators and the status of numerical modelling of 
geothermal systems is given by Bodvarsson (17). Other valuable 
references on geothermal reservoir modelling are, e.g., Witherspoon 
et al. (111), Faust and Mercer (43,44), Mercer and Faust (68,69), 
Castanier and Sanyal (26), Cheng (27), Pinder (75), Wang, Sterbentz 
and Tsang (101), Pruess et al. (81), Pruess and Truesdell (80), 
Pruess and Narasimhan (78), Garg and Kassoy (49), Donaldson and Grant 
(35), and Grant, Donaldson and Bixley (52). The present status in 
numerical modelling of geothermal systems is presented in a recent 
review by Bodvarsson, Pruess and Lippmann (22). The discussion here 



172 

will therefore be brief. 

To account for spatial and temporal variations in the physical 
properties of the fluid and the reservoir rocks as well as the 
effects of gravity segregation of steam and water, a general model 
must be a distributed-parameter model with the capability of three­
dimensional simulation. The model must not only accommodate the 
transient flow of single-phase fluid, but also allow for phase 
changes and temperature changes. The general governing equations 
consist of mass, momentum, and thermal energy balances for each 
phase (Table 1) and sets of constitutive relationships between 
variables. For general two-phase reservoir applications, the 
constitutive relationships concern thermodynamics, capillary pressure, 
relative permeability, viscosity, reservoir consolidation, thermal 
exchange between phases, and thermal dispersion-conduction. Spacing 
of joints and fractures is an important variable in the mathematical 
treatment of flow through fractured rock. In geothermal systems, 
fracture geometry is usually poorly known. The spacing of discon­
tinuities is, however, small in comparison to the size of the 
reservoir being considered and, consequently, the fractured rock 
can in many cases be treated as continuous medium with anisotropic 
permeability. The fissured rock mass is then represented by an 
equivalent porous media of anisotropic and spatially varying 
permeability. There are, however, situations in which the fractured 
nature of the rock cannot be ignored, such as thermal changes during 
cold water advance and heat transfer in fractured reservoirs with 
boiling. A double-medium theory is in development, which models 
the fractures and the rock matrix as two interpenetrating media with 
fluid and heat transfer between them (76,78). Another simplifica­
tion in most studies is to treat the pore fluid as a pure water 
substance. Effects of noncondensible gases and dissolved solids are 
thereby neglected, although they may be significant (73). Coupled 
equations for consolidation, fluid flow, and heat transport in 
geothermal reservoirs may be derived and solved, but consolidation 
is not the process of concern in many studies. The movement of 
steam and water is in most cases sufficiently slow to assume that 
phases of the fluid and the rock matrix are in local thermal 
equilibrium. 

In order to solve the governing equations, hydrodynamic and 
thermal boundary and initial conditions must be specified. The 
hydrodynamic boundary conditions are generally: (1) constant 
pressure, (2) impermeable surfaces, and (3) specified mass flux. 
The corresponding thermal boundary conditions are: (1) constant 
temperature, (2) insulated surfaces, and (3) specified heat flux. 
When sources or sinks are present, their pressures or massflow rates 
must be specified. Initial conditions specify the physical state 
of the reservoir before the simulation. Numerical models for the 
simulation of geothermal systems are mainly of two categories: 
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(1) studies of the natural conditions prevailing in the reservoir 
prior to exploitation. (This study aims at estimates of heat flow, 
recharge rates, and the initial distribution of fluid in the system), 
and (2) studies of the response of the reservoir to exploitation. 
Well test data are used to infer the distribution of permeability 
and porosity in the reservoir. The l~mited data generally available 
require sensitivity studies of these parameters and also the 
reservoir dimensions, initial distribution of the reserves, and 
possible recharge. The simulation considers different exploitation 
alternatives and provides preliminary estimates of the generating 
capacity of a field, appropriate well spacing, and production depths. 
As data on the production performance accumulate, a simulation, 
matched for the production data of individual wells, yields predic­
tions of future field performance and the longevity of the field 
according to a given exploitation scheme. Simulation models are 
also found useful to study different alternatives for fluid 
injection into producing reservoirs. 

Numerical modelling of geothermal systems has provided insight 
into the processes of mass and heat transfer that govern the physical 
state of geothermal reservoirs. Quantitative models have replaced 
qualitative conceptual models. Numerical simulation has also become 
a valuable strategic tool for the optimum exploitation of geothermal 
systems. Examples of the results obtained in various fields are 
given by Garg and Kassoy (49), Donaldson and Grant (35), and Grant, 
Donaldson and Bix1ey (52). More recent studies include Sigurdsson 
et a1. (90) that presents a summary of reservoir engineering studies 
of low-temperature reservoirs in Iceland and Bodvarsson et a1. (18, 
19,20), Pruess et a1. (77), and Bodvarsson et a1. (21) that 
describe extensive modelling studies of the boiling reservoirs of 
the Krafla Field in Iceland and the 01karia Field in Kenya. 

In line with Mercer and Faust (69), we may conclude that the 
mathematical tools that have been developed for numerical modelling 
are capable of solving the most difficult problems encountered in 
geothermal reservoirs, but the conceptual basis of these mathematical 
models is still weak and awaits further study. 
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Table 1. Governing Equations for the Physical Processes in 
Geothermal Systems [After Mercer and Faust (69)] 

Mass Balance 

Momentum Balance 

~krs dPS 
ps~) 'fs ---

dX j 
-

J.l s 

~krw dPW 

~w -- -- - P g) 
J.lw 8x j w_ 

Energy Balance 

d(q,SSPSUs ) d dA ays -s + -- (psUs'fs) + -- + Ps 
dt dX i dX i dX i 

+ qshs + Qws + Qrs 0, 

° 

° 

(7.1) 

(7.2) 

(7.3) 
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(7.7) 



175 

8. REFERENCES 

1. Armannsson, H., Gis1ason, G., and Hauksson, T., "Magmatic Gases 
in Well Fluids Aids the Mapping of the Flow Pattern in a 
Geothermal System," Geochimica et Cosmochimica Acta~ Vol. 46, 
1982, pp. 167-177. 

2. Arnason, B., "Groundwater Systems in Iceland Traced by 
Deuterium", Rit Societas Scientiarum Islandica~ Vol. 42, 1976, 
p. 236. 

3. Arnorsson, S., "Major Element Chemistry of the Geothermal Sea­
water at Reykjanes and Svartsengi, Iceland", Mineralogical 
Magazine~ June 1978, pp. 209-220. 

4. Arnorsson, S., "Mineral Deposition from Icelandic Geothermal 
Waters:Environmenta1 and Utilization Problems," Journal of 
Petroleum Technology~ Vol. 33, Jan. 1981, pp. 181-187. 

5. Arnorsson, S., "Gas Pressures in Geothermal Systems," Chemical 
Geology~ Vol. 49, 1985, pp. 319-328. 

6. Arnorsson, S., Gunn1augsson, E., and Svavarsson, H., "The 
Chemistry of Geothermal Waters in Iceland. III, Chemical 
Geothermometry in Geothermal Investigations," Geochimica et 
Cosmochimica Acta~ Vol. 47, 1983, pp. 567-577. 

7. Bischoff, J.L., and Seyfried, W., "Hydrothermal Chemistry of 
Seawater from 250 to 3500 C," American Journal of Science~ 
Vol. 278, 1978, pp. 838-860. 

8. Bjornsson, S., Arnorsson, S., and Tomasson, J., "Exploration 
of the Reykjanes Brine Area," Geothermics~ Special Issue 2, 
1970, pp. 1640-1650. 

9. Bjornsson, S., Arnorsson, S., and Tomasson, J., "Economic 
Evaluation of Reykjanes Thermal Brine," Bulletin of the American 
Association of Petroleum Geologists~ Vol. 56, 1972, pp. 2380-
2391. 

10. Bjornsson, H., Bjornsson, S., and Sigurgeirsson, Th., "Penet­
ration of Water Into Hot Rock Boundaries of Magma in Grimsvotn," 
Nature~ Vol. 295, 1982, pp. 580-581. 

11. Bodvarsson, G., "Geophysical Methods in the Prospecting for 
Hot Water in Iceland," (in Danish), Journal of the Iceland 
Association of Engineers~ Vol. 35, 1950, pp. 48-59. 

12. Bodvarsson, G., "Report on the Hengi11 Thermal Area," (In 
Icelandic with a Summary in English), Journal of the Iceland 
Association of Engineers~ Vol. 36, 1951, pp. 1-48. 

13. Bodvarsson, G., "Physical Characteristics of Natural Heat 
Resources in Iceland," Jokull~ Vol. 11, 1961, pp. 29-38. 

14. Bodvarsson, G., "Elastomechanical Phenomena and the Fluid 
Conductivity of Deep Geothermal Reservoirs and Source Regions," 
presented at the Dec., 1979, Fifth Workshop on Geothermal 
Reservoir Engineering, held at Stanford University, Stanford, 
California. 

15. Bodvarsson, G., "Glaciation and Geothermal Processes in 
Iceland," Jokull~ Vol. 32, 1982, pp. 21-28. 



176 

16. Bodvarsson, G., "Temperature/Flow Statistics and Thermomechanics 
of Low-Temperature Geothermal Systems in Iceland," Journal of 
VoZcanology and Geothermal Research~ Vol. 19, 1983, pp. 255-
280. 

17. Bodvarsson, G.S., "Mathematical Modelling of the Behavior of 
Geothermal Systems under Exploitation," LBL-13937~ Lawrence 
Berkeley Laboratory, University of California, Berkeley, 
California, Jan. 1982, 353pp .. 

18. Bodvarsson, G.S., Benson, S.M., Sigurdsson, D., Stefansson, V., 
and Eliasson, E.T., "The Krafla Geothermal Field, Iceland:l. 
Analysis of Well Test Data," Water Resources Research~ Vol. 20, 
No. 11, Nov. 1984, pp. 1515-1530. 

19. Bodvarsson, G.S., Pruess, K., Stefansson, V., and Eliasson, E.T., 
"The Krafla Geothermal Field, Iceland: 2. The Natural State of 
the System," Water Resources Research~ Vol. 20, No. 11, Nov. 
1984, pp. 1531-1544. 

20. Bodvarsson, G.S., Pruess, K., Stefansson, V., and Eliasson, 
E.T., "The Krafla Geothermal Field, Iceland: 3. The Generating 
Capacity of the Field," Water Resources Research~ Vol. 20, No. 
11, Nov. 1984, pp. 1545-1559. 

21. Bodvarsson, G.S., Pruess, K., Stefansson, V., Bjornsson, S., 
and Dj iambo, S.B., "A Summary of Modeling Studies of the East 
Dlkaria Geothermal Field, Kenya," presented at the August 26-
3D, 1985, Geothermal Resources Council International Symposium 
on Geothermal Energy, held at Kailua-Kona, Hawaii. 

22. Bodvarsson, G.S., Pruess, K., and Lippmann, M.J., "Modeling 
of Geothermal Systems," presented at the March 27-29, 1985, 
Society of Petroleum Engineers California Regional Meeting, 
held at Bakersfield, California (LBL-18268) 

23. Bostrom, K., and Peterson, M.N.A., "Precipitates From Hydro­
thermal Exhalations of the East Pacific Rise," Economic Geology~ 
Vol. 61, 1966, pp. 1258-1365. 

24. Bostrom, K., and Peterson, M.N.A., "The Drigin of Aluminium 
Ferromanganoan Sediments in Areas of High Heat Flow on the 
East Pacific Rise," Marine Geology~ Vol. 7, 1969, pp. 427-
447. 

25. Boussinesq, J., Theorie Analytique de la Chaleur~ Gauthier­
Villars, Paris, Vol. 2, 1903, p. 172. 

26. Castanier, L.M., and Sanyal, S.K., "Geothermal Reservoir 
Modeling - A Review of Approaches," Transactions~ Geothermal 
Resources Council, Vol. 4, Sept. 1980, pp. 313-314. 

27. Cheng, P., "Heat-Transfer in Geothermal Systems," Advances in 
Heat Transfer~ Vol. 14, 1978. 

28. Craig, H., "The Isotopic Geochemistry of Water and Carbon in 
Geothermal Areas," Nuclear Geology on Geothermal Areas~ 
E. Tongiorgi, ed., Consiglio Nazionale Delle Ricerche, Labor­
atorie di Geologica Nucleare, Spoleto,Pisa, 1963, pp. 17-53. 



177 

29. Craig, H., "The Isotopic Composition and Origin of the Red Sea 
and Salton Sea Geothermal Brines," Science, Vol. 154, 1966, 
pp. 1544-1548. 

30. Craig, H., Boato, G., and White, D.E., "Isotopic Geochemistry 
of Thermal Waters," Nuclear Processes in Geological Settings, 
Series Report 19, National Research Council Communications on 
Nuclear Science, 1956, pp. 29-38. 

31. Craig, H., Lupton, J. E., Welham, J .A., and Poreda, R., "Helium 
Isotope Ratios in Yellowstone and Lassen Park Volcanic Gases," 
Geophysical Research Letters, Vol. 5, 1978, pp. 897-900. 

32. D'Arnore, F., and Truesdell, A.H., "Models for Stearn Chemistry 
at Lardarello and the Geysers," Proceedings of the Tenth Work­
shop on Geothermal Reservoir Engineering, Stanford University, 
Stanford, California, Jan. 22-24, 1985, pp. 113-121. 

34. Donaldson, loG., "The Flow of Stearn and Water Mixtures Through 
Permeable Beds. A Simple Simulation of a Natural Undisturbed 
Hydrothermal Region," New Zealand Journal of Science, Vol. 11, 
1968, pp. 3-23. 

35. Donaldson, loG., and Grant, M.A., "Heat Extraction from Geo­
thermal Reservoirs," Geothermal Systems: Principles and Case 
Histories, L. Rybach and L.J.P. Muffler, eds., Wiley Inter­
science, New York, N.Y., 1981, pp. 145-174. 

36. Dunn, J.C., and Hardee, H.C., "Superconductive Geothermal 
Zones," Journal of Volcanology and Geothermal Research, Vol. 11, 
1981, pp. 189-201. 

37. Einarsson, P., "S-wave Shadows in the Krafla Caldera in NE­
Iceland, Evidence for a Magma Chamber in the Crust," Bulletin 
Volcanologique, Vol. 41, 1978, pp. 1-9. 

38. Einarsson, T., "Ueber das Wesen der Heissen Quellen Islands," 
Rit Societas Scientiarum Islandica, Vol. 26, 1942, p. 91. 

39. Elder, J.W., "Physical Processes in Geothermal Areas," Terrest­
rial Heat Flow, W.H.K. Lee, ed., American Geophysical Union 
Monograph 8, 1965, pp. 211-239. 

40. Ellis, A.J., and Mahon, W.A.J., "Natural Hydrothermal Systems 
and Experimental Hot-Water/Rock Interactions," Geochimica et 
Cosmochimica Acta, Vol. 28, 1964, pp. 1323-1357. 

41. Ellis, A.J., and Mahon, W.A.J:, "Natural Hydrothermal Systems 
and Experimental Hot-Water Rock Interactions (Part II)," 
Geochimica et Cosmochimica Acta, Vol. 31, 1967, pp. 519-538. 

42. Ellis, A.J., and Mahon, W.A.J., Chemistry and Geothermal 
Systems, Academic Press, New York, 1977. 

43. Faust, C.R., and Mercer, J.W., "Geothermal Reservoir Simulation 
1: Mathematical Models for Liquid- and Vapor-Dominated Hydro­
thermal Systems," Water Resources Research, Vol. 15, 1979, 
pp. 23-30. 

44. Faust, C.R., and Mercer, J.W., "Geothermal Reservoir Simula­
tion 2: Numerical Solution Techniques for Liquid- and Vapor­
Dominated Hydrothermal Systems," Water Resources Research, 
Vol. 15, 1979, pp. 31-46. 



178 

45. Fedotov, S.A., Balesta, S.T., Droznin, V.A., Masurenkov, Y.P., 
and Sugrobov, V.M., "On a Possibility of Heat Utilization of 
the Avachinsky Volcanic Chamber," Proceedings of the Second 
United Nations Symposium on the Development and Use of Geo­
thermal Resources~ Vol. 1, 1976, pp. 363-369. 

46. Fournier, R.O., "Application of Water Geochemistry to Geother­
mal Exploration," Geothermal Systems: Principles and Case 
Histories~ L. Rybach and L.J.P. Muffler, eds., John Wiley and 
Sons, Inc., New York, N.Y., 1981, pp. 109~143. 

47. Fournier, R.O., "Active Hydrothermal Systems as Analogues of 
Fossil Systems," The Role of Heat in the Development of Energy 
and Mineral Resources in the Northern Basin and Range Province~ 
Special Report No. l3~ Geothermal Resources Council, Davis, 
California, 1983, pp. 263-284. 

48. Furumoto, A.S., "The Relationship of a Geothermal Reservoir to 
the Geological Structure of the East Rift of Kilauea Volcano, 
Hawaii," Transactions 2~ Geothermal Resources Council, 1978, 
pp. 199-201. 

49. Garg, S.K., and Kassoy, D.R., "Convective Heat and Mass Transfer 
in Hydrothermal Systems," Geothermal Systems: Principles and 
Case Histories~ L. Rybach and L.J.P. Muffler, eds., Wiley­
Interscience, New York, N.Y., 1981, pp. 37-76. 

50. Grant, M.A., "Broadlands - A Gas - Dominated Geothermal Field," 
Geothermics~ Vol. 6, 1977, pp. 9-29. 

51. Grant, M.A., and Studt, F.E., "A Conceptual Model of the 
Tongonan Geothermal Reservoir," presented at the 1981, Fourth 
GEOSEA Conference. 

52. Grant, M.A., Donaldson, I.A., and Bixley P.F., Geothermal 
Reservoir Engineering~ Academic Press, New York, N.Y., 1982, 
p. 369. 

53. Haas, J.L., Jr., "The Effect of Salinity on the Maximum 
Thermal Gradient of a Hydrothermal System at Hydrostatic 
Pressure," Economic Geology~ Vol. 66, 1971, pp. 940-946. 

54. Henley, R.W., and McNabb, A., "Magmatic Vapor Plumes and Ground­
Water Interaction in Phorphyry Copper Emplacement," Economic 
Geology~ Vol. 73, No.1, Jan.-Feb., 1978, pp. 1-20. 

55. Irvine, T.N., "Heat Transfer During Solidification of Layered 
Intrusions. I. Sheets and Sills," Canadian Journal of Earth 
Sciences~ Vol. 7, 1970, pp. 1031-1061. 

56. Iyer, H.M., Oppenheimer, D.H., and Hitchcock, T., "Large Tele­
seismic P-Wave Delays in the Geysers - Clear Lake Geothermal 
Area, California," Science~ Vol. 204, 1979, pp. 495-497. 

57. Kjaran, S.P., Halldorsson, G.K., Thorhallsson, S., and Eliasson, 
J., "Reservoir Engineering Aspects of Svartsengi Geothermal 
Area," Transactions~ Geothermal Resources Council, Vol. 3, 
1979, pp. 337-339. 



179 

58. Kononov, V.I., and Polak, B.G., "Indicators of Abyssal Heat 
Recharge of Recent Hydrothermal Phenomena," Proceedings of 
Second United Nations Symposium on the Development and Use of 
Geothermal Resources~ Vol. 1, 1976, pp. 767-773. 

59. Lister, C.R.B., "On the Penetration of Water into Hot Rock," 
Geophysical Journal of the Royal Astronomical Society~ 
London, Vol. 39, 1974, pp. 465-509. 

60. Lister, C.R.B., "Qualitative Theory on the Deep End of Geother­
mal Systems," Proceedings of the Second United Nations Symposium 
on the Development and Use of Geothermal Resources~ Vo1.1, 
1976, pp. 459-463. 

61. Lister, C.R.B., "Qualitative Models of Spreading - Center 
Processes, Including Hydrothermal Penetration," Tectonophysics~ 
Vol. 37, 1977, pp. 203-218. 

62. Mahon, W.A.J., "Natural Hydrothermal Systems and the Reaction 
of Hot Water with Sedimentary Rocks," New Zealand Journal of 
Science~ Vol. 10, 1967, pp. 206-221. 

63. Mahon, W.A.J., and Finlayson, J.B., "The Chemistry of the 
Broadlands Geothermal Area, New Zealand," American Journal of 
Science~ Vol. 272, 1972, pp. 48-68. 

64. Mamyrin, B.A., Tolstikhin, I.N., Anufriev, G.S., and Kamensky, 
I.L., "Isotopic Composition of Helium in Thermal Springs of 
Iceland," Geokhimiya (USSR), No. 11, 1972, p. l396. 

65. Martin, J.C., Wagner, R.E., and Kelsey, F.J., "One-Dimensional 
Convective and Conductive Geothermal Heat Flow," Summaries of 
the Second Workshop on Geothermal Reservoir Engineering~ 
Stanford University, Stanford, California, Dec. 1976, pp. 251-
261, (SGP-TR-20). 

66. Mercado, S., "Geoquimica Hidrothermal en Cerro Prieto, B.C., 
Mexico," Commision Federal de Electricidad~ Mexicali, Mexico, 
1967. 

67. Mercado, S., "Movement of Gecthermal Fluids and Temperature 
Distribution in the Cerro Prieto Geothermal Field, Baja 
California, Mexico," Proceedings of the Second United Nations 
Symposium on the Development and Use of Geothermal Resources~ 
Vol. 1, 1976, pp. 487-494. 

68. Mercer, J.W., and Faust, C.R., "Geothermal Reservoir Simulation 
3: Application of Liquid- and Vapor- Dominated Hydrothermal 
Modeling Techniques to Wairakei, New Zealand," Water Resources 
Research~ Vol. 15, 1979, pp. 653-671. 

69. Mercer, J.W., and Faust, C.R., "The Physics of Fluid Flow and 
Heat Transport in Geothermal Systems," Sourcebook on the 
Production of Electricity from Geothermal Steam~ J. Kestin, ed., 
United States Department of Energy, Washington, D.C., 1980, 
pp. l21-l35. 

70. Muffler, L.J.P. Nehring, N.L., Truesdell, A.H., Janik, C.J., 
Clynne, M.A., and Thompson, J.M., "The Lassen Geothermal 
System," Proceedings of the Pacific Geothermal Conference 1982~ 
incorporating the Fourth New Zealand Geothermal Workshop~ 



180 

Part 2, 1982, pp. 349-356. 
71. Muffler, L.J .P., and White, D.E., "Active Metamorphism of Upper 

Cenozoic Sediments in the Salton Sea Geothermal Field and the 
Salton Trough, Southeastern California," Geological Society 
of America~ Bulletin~ Vol. 80, 1968, pp. 157-182. 

72. Norton, D., and Knight, J., "Transport Phenomena in Hydrothermal 
Systems: Cooling Plutons," American Journal of Science~ Vol. 
277, 1977, pp. 937-981. 

73. O'Sullivan, M.J., Bodvarsson, G.S., Pruess, K., and Blakeley, 
M.R., "Fluid Flow in Gas-Rich Geothermal Reservoirs," presented 
at the 1983, Society of Petroleum Engineers 58th Annual Tech­
nical Conference and Exhibition, held at San Francisco, 
California. 

74. Palmason, G., "Heat Flow and Hydrothermal Activity in Iceland," 
Geodynamics of Iceland and the North Atlantic Area~ L. Krist­
jansson, ed., Reidel Publishing Company, Dordrecht, Netherlands, 
1974, pp. 297-307. 

75. Pinder, G.F., "State-of-the-Art Review of Geothermal Reservoir 
Modeling," Geothermal Subsidence Research Management Program~ 
LBL-9093~ Earth Sciences Division, Lawrence Berkeley Laboratory, 
University of California, Vol. 5, March 1979, p. 144. 

76. Pruess, K., "Heat Transfer in Fractured Geothermal Reservoirs 
with Boiling," Water Resources Research~ Vol. 19, 1983, pp. 
201-208. 

77. Pruess, K., Bodvarsson, G.S., Stefansson, V., and Eliasson, 
E.T., "The Krafla Geothermal Field, Iceland: 4. History Match 
and Prediction of Individual Well Performance," Water Resources 
Research~ Vol. 20, No. 11, Nov. 1984, pp. 1561-1584. 

78. Pruess, K., and Narasimhan, T.N., "A Practical Method for 
Modeling Fluid and Heat Flow in Fractured Porous Media," 
presented at the 1982, Society of Petroleum Engineers 6th 
Symposium on Reservoir Simulation, held at New Orleans, La. 

79. Pruess, K., and Narasimhan, T.N., "On Fluid Reserves and the 
Production of Superheated Stearn From Fractured Vapor-Dominated 
Geothermal Reservoirs," Journal of Geophysical Research~ Vol. 
87, No. Bll, 1982, pp. 9329-9339. 

80. Pruess, K., and Truesdell, A.H., "A Numerical Simulation of the 
Natural Evolution of Vapor-Dominated Hydrothermal Systems," 
Summaries of the Sixth Workshop on Geothermal Reservoir 
Engineering~ Stanford University, Stanford, California, Dec. 
1980. 

81. Pruess, K., Zerzan, J.M., Schroeder, R.C., and Witherspoon, 
P.A., "Description of the Three-Dimensional Two-Phase Simulator 
SHAFT 78 for Use in Geothermal Reservoir Studies," presented 
at the 1979, Society of Petroleum Engineers AIME Fifth Symposium 
on Reservoir Simulation, held at Denver, Colorado, (SPE 7699). 

82. Reasenberg, P., Ellsworth, W.L., and Walter, A., "Teleseismic 
Evidence for a Low-Velocity Body Under the Coso Geothermal 
Area," Journal of Geophysical Research~ Vol. 85, 1980, 



181 

pp. 2471-2483. 
83. Rona, P.A., and Lowell, R.P., "Hydrothermal Systems at Ocean 

Spreading Centers," Geology~ Vol. 6, 1978, pp. 299-300. 
84. Schubert, G., and Straus, J.M., "Two-Phase Convection in a 

Porous Medium," Journal of Geophysical Research~ Vol. 82, 1977, 
pp. 3411-3421. 

85. Schubert, G., and Straus, J.M., "Steam-Water Counterflow in 
Porous Media," Journal of Geophysical Research~ Vol. 84, 1979, 
pp. 1621-1628. 

86. Sestini, G., "Superheating of Geothermal Steam," Geothermics~ 
Special Issue 2~ Vol. 2, Part 1, 1970, pp. 622-648. 

87. Seyfried, W., and Bischoff, J.L., "Hydrothermal Transport of 
Heavy Metals by Seawater: The Role of Seawater/Basalt Ratios," 
Earth and Planetary Science Letters~ Vol. 34, 1977, pp. 71-77. 

88. Seyfried, W.E., and Bischoff, J.L., "Experimental Seawater­
Basalt Interaction at 300oC, 500 bars, Chemical Exchange, 
Secondary Mineral Formation and Implications for the Transport 
of Heavy Metals," Geochimica et Cosmochimica Acta~ Vol. 45, 
1981, pp. 135-147. 

89. Sheu, J.P., Torrance, K.E., and Turcotte, D.L.,"On the Structure 
of Two-Phase Hydrothermal Flows in Porous Media," Journal of 
Geophysical Research~ Vol. 84, 1979, pp. 7524-7532. 

90. Sigurdsson, 0., Kjaran, S.P., Thorsteinsson, Th., Stefansson, 
V., and Palmason, G., "Experience of Exploiting Icelandic 
Geothermal Reservoirs," presented at the August 26-30,1985, 
Geothermal Resources Council's International Symposium on 
Geothermal Energy, held at Kailua-Kona, Hawaii. 

91. Sourirajan, S., and Kennedy, G.C., "The System H20-NaCl at 
Elevated Temperatures and Pressures," American Journal of 
Science~ Vol. 260, 1962, pp. 115-141. 

92. Spiess, F.N., MacDonald, K.C., Atwater, T., Ballard, R., 
Garranza, A., Cordoba, D., Cox, C., Diaz Garcia, V.M., 
Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, 
R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., 
MacDougall, J.D., Miller, S., Normark, W., Orcutt, J., Rangin, 
C., "East Pacific Rise; Hot Springs and Geophysical Experiments,' 
Science~ Vol. 207, 1980, pp. 1421-1433. 

93. Stanley, H.E., Introduction to Phase Transitions and Critical 
Phenomena~ Oxford University Press, New York, N.Y. 1971. 

94. Stefansson, V., "The Krafla Geothermal Field, Northeast 
Iceland," Geothermal Systems and Case Histories~ 1. Rybach and 
L.P.J. Muffler, eds., John Wiley and Sons, New York, N.Y., 
1981, pp. 273-294. 

95. Stefansson, V., and Bjornsson, S., "Physical Aspects of Hydro­
thermal Systems," Continental and Oceanic Rifts~ G. Palmason, 
ed., Geodynamic Series, Vol. 8, American Geophysical Union, 
Washington, D.C., 1982, pp. 123-145. 



182 

96. Straus, J.M., and Schubert, G., "Thermal Convection of Water in 
a Porous Medium: Effects of Temperature and Pressure-Dependent 
Thermodynamic and Transport Properties," Journal of Geophysical 
Research~ Vol. 82, 1977, pp. 325-333. 

97. Straus, J.M., and Schubert, G., "Effect of C02 on the Buoyancy 
of Geothermal Fluids," Geophysical Research Letters~ Vol. 6, 
1979, pp. 5-8. 

98. Truesdell, A.H., and White, D.E., "Production of Superheated 
Steam From Vapor-Dominated Geothermal Reservoirs," Geothermics~ 
Vol. 2, 1973, pp. 154-175. 

99. Walker, G.P.L., "The Breiddalur Central Volcano, Eastern 
Iceland, Quarterly Journal of the Geological Society~ London, 
Vol. 119, 1963, pp. 29-63. 

100. Walker, G.P.L., "Acid Volcanic Rocks in Iceland," Volcanologique~ 
Vol. 29, 1966, pp. 375-406. 

101. Wang, J.S.Y., Sterbentz, R.A., and Tsang, C.F., "The State-of­
the-art of Numerical Modeling of Thermohydrologic Flow in 
Fractured Rock Masses," LBL-l0524~ Lawrence Berkeley Laboratory, 
Berkeley, California, Feb. 1980. 

102. White, D.E., "Thermal Waters of Volcanic Origin," Geological 
Society of America~ Bulletin~ Vol. 68, 1957, pp. 1637-1658. 

103. White, D.E., "Magmatic, Connate, and Metamorphic Waters," 
Geological Society of America~ Bulletin~ Vol. 68, 1957, 
pp. 1659-1682. 

104. White, D.E., "Some Principles of Geyser Activity, Mainly From 
Steamboat Springs, Nevada," American Journal of Science~ Vol. 
265, 1967, pp. 641-684. 

105. White, D.E., "Mercury and Base-Metal Deposits with Associated 
Thermal and Mineral Waters," Geochemistry of Hydrothermal Ore 
Deposits~ H.L. Barnes, ed., Holt, Rinehart and Winston, Inc., 
New York, 1967, 575-631. 

106. White, D.E., "Environments of Generation of Base-Metal Ore 
Depth," Economic Geology~ Vol. 63, 1968, 301-335. 

107. White, D.E., "Hydrology, Activity, and Heat Flow of the Steam­
boat Springs Thermal System, Washoe County, Nevada," U.S. Geo­
logical Survey Professional Paper 458-C~ 1968, p. 109. 

108. White, D.E., "Diverse Origin of Hydrothermal Ore Fluids," 
Economic Geology~ Vol. 6, 1974, pp. 954-973. 

109. White, D.E., and Guffianti, M., "Geothermal Systems and Their 
Energy Resources," Revie1iJs~ Geophysics and Space Physics~ 
Vol. 17, 1979, pp. 887-902. 

110. White, D.E., Muffler, L.J.P., and Truesdell, A.H., "Vapor­
Dominated Hydrothermal Systems Compared With Hot-Water Systems," 
Economic Geology~ Vol. 66, 1971, pp. 75-97. 

111. Witherspoon, P.A., Neuman, S.P., Sorey, M.L., and Lippmann, 
M.J., "Modeling Geothermal Systems," presented at the March 
3-5, 1975, Academia Nazionale dei Lincei International Meeting 
on Geothermal Phenomena and its Applications, held at Rome, 
Italy, (LBL-3263). 



9. LIST OF SYMBOLS 

kr 
P 
Pcrit 

p 
Q 
q 
Ra 
S 

T 
Tcrit 
U 
y 
z 
0-

S 
tJ. 
A 

6 
II 
P 
cp 

Critical Point 
Specific heat at constant pressure 

Rate of vaporization 

Gravitational acceleration 
Gravitational acceleration vector 

Thickness of layer 
Enthalphy per unit mass 
Permeability of the rock 
Local intrinsic permeability tensor 

Relative permeability 

Pressure 
Critical pressure 

Pressure 
Interphase heat transfer term 
Source term 
Rayleigh number 
= Sw = Volume saturation, where Sw + Ss 

Temperature 
Critical temperature 
Internal energy per unit mass 
Phase average velocity 
Depth 

1 

Coefficient of thermal expansion of the fluid 
Isothermal compressibility 
Difference 
Thermal conductivity of saturated rock 
Combined conduction-dispersion vector 
Dynamic viscosity 
Average density 
Porosity 

Subscripts and Superscripts: 

Is 
vs 
r,s,w 

Saturated liquid 
Saturated vapor 
Rock,Steam,Water 
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THERMOHYDRAULICS OF AN AQUIFER THERMAL ENERGY STORAGE 
SYSTEM 

Chin-Fu Tsang 

Earth Sciences Division 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720, USA 

ABSTRACT 

The thermohydraulics of an aquifer thermal energy storage system 
is reviewed. The storage of hot or chilled water in an aquifer 
involves three major physical processes: (1) buoyancy flow, (2) forced 
convection, (3) thermal conduction and thermal dispersion. This 
chapter is divided into two parts. The first part presents an 
analysis of buoyancy flow causing the tilting of the interface 
(thermal front) between hot and cold water. The second part 
describes a numerical approach that studies the thermohydraulics 
of an aquifer thermal energy system where all three processes are 
taken into account. 

1. INTRODUCTION 

The need for energy storage arises from the disparity between 
energy demand and production. The development of viable storage 
methods will play a significant role in our ability to implement 
alternative energy technologies and use what is now waste heat. The 
ability to provide heat at night and during inclement weather is 
a key factor in the development of solar energy. Conversely, winter 
cold, in the form of melted snow or water cooled to winter air 
temperatures, can be used as a coolant or for air-conditioning. 

Practical storage systems would also allow us to capture the 
heat that occurs as a by-product of industrial processes and power 
production. Industrial plants and electric utilities generate 
tremendous amounts of waste he~t which are usually dissipated through 
an expensive system of cooling towers or ponds to avoid thermal 
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pollution. Because periods of heat demand do not generally coincide 
with electricity generation or industrial production, a viable 
storage method is essential if this heat is to be used. Such a 
method would not only utilize what is now waste heat, but would 
significantly decrease the necessary investment in cooling and backup 
heating systems. 

In recent years, aquifers have been actively studied as a very 
promising means of long-term, large-scale thermal energy storage(18, 
22). Aquifers are physically well-suited to thermal energy storage 
because of their low heat conductivities, large volumetric capacities, 
and in the case of confined aquifers, their ability to contain water 
under high pressure. 

A basic aquifer thermal energy storage system is illustrated 
in Figure 1. The aquifer is penetrated by two wells some distance 
apart. These two wells are connected by a closed hydraulic arrange­
ment so that water pumped from one well is injected into the other 
with the net withdrawal of groundwater being kept at zero. Waste 
heat from a power plant is transferred to the groundwater by means 
of a heat exchanger. When heat is to be stored, the flow follows 
the open arrow in the figure. The hot water is stored around the 

Hot Water 
From Waste 
Heat Source 

Recovered 
Stored Heat 
To Be Used 

Heat Exchanger 

Confining Layer 

Cold 

Confining Layer 

Figure 1. Basic concept of an aquifer thermal energy storage system. 
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hot water well. The broken line in the figure indicates the location 
of the front of injected fluid, but the thermal front is retarded 
due to heat transfer to the porous rock medium. After a period 
ranging from several days to a few months, the hot water is withdrawn 
(indicated by the solid arrow) when its use for space heating or 
process heat is required. 

In this application, it is critical to know not only the thermal 
behavior of the groundwater system, but also the amount of energy 
that can be recovered during withdrawal, and the temperature varia­
tions of the produced water. 

Figure 2 is a schematic diagram of the physical processes 
operating in the groundwater system during injection or withdrawal 
of hot water. The well is represented by the double line at the 
left of the figure, with radial symmetry about this line. The 
injected hot water is shown with a tilted front at an angle a with 
the vertical. The tilting of the front is due to the lower density 
of the hot water with the resulting buoyancy flow. 

T 
o Caprock 

H Aquifer 

1 
Bedrock 

E = ( I -/:l Ec ) ( I-/:l Eo ) 

Figure 2. Physical processes involved in an aquifer thermal energy 
storage system. 
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The physical processes involved are: (1) buoyancy flow, (2) 
thermal conduction and thermal dispersion, and (3) forced convection. 
Forced convection occurs whenever hot water is injected or withdrawn 
from the aquifer. Thermal conduction from the hot water to the 
native cold water and to the confining layers is a primary cause of 
heat loss from the stored heat. Dispersion is present due to the 
tortuosity of the fluid flow paths in the porous medium. This result! 
in an additional mixing of the stored hot water with the surrounding 
cold water. Buoyancy flow causes the hot water to move above the 
cold, so that during withdrawal, both hot water from upper layers of 
the aquifer and cold water from the lower layers are produced. 

Many hydrogeological factors have to be studied when considering 
aquifer storage:formation geometry, aquifer permeability and 
storativity, inhomogeneity, confining layer leakage, regional ground­
water flow, and geochemistry of injected and native waters in the 
aquifer. 

The paper is divided into two parts. In the first part an 
analysis of the motion of the interface between hot and cold water 
in an anisotropic porous medium is presented. This is commonly 
referred to as the thermal front tilting problem. In the second 
part a numerical study of an aquifer thermal energy storage system 
involving the three physical processes listed above is described. 
Detailed application to a series of field experimental studies is 
presented. The materials in this paper are based primarily on work 
performed in collaboration with Buscheck, Claesson, Doughty, and 
Hellstrom over the last few years (3,7,11,12,20,21). 

2. THERMAL FRONT TILTING PROBLEM 

In this section, we present the methodology to calculate the 
motion of the interface that occurs when fluid of one density and 
viscosity is injected into an aquifer stratum containing fluid of 
another density and viscosity. The interface region constitutes a 
transition zone between aquifer regions with different fluids. 
Initially, the interface is primarily vertical. This situation is 
intrinsically unstable due to the difference in density between the 
two fluids. Buoyancy will cause the fluid of lower density to flow 
towards the upper part of the aquifer. The two-fluid interface will 
gradually tilt. Forced convection will act on the differences in 
viscosity, and hence the differences in flow resistance, along 
different flow paths, and thereby influence the tilting. Depending 
on the situation, the forced convection may either reinforce or 
counteract the pure buoyancy tilting. It is often of great interest 
to be able to predict the rate at which the two-fluid interface 
tilts. 
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2.1. Thermohydraulic Equations 

The coupled groundwater and heat flow process in the aquifer 
stratum is governed by two partial differential equations. The 
volumetric ground water flow q is related to the pressure gradient 
and the gravity force through the empirical law of Darcy: 

q = - ~ (VP + pgz) 
~ 

The intrinsic permeability is k. The water density p and the 
viscosity ~ are temperature dependent. 

(2.1) 

Equation (2.1) assumes isotropic permeability in the aquifer. 
In this paper we will also consider cases where the aquifer has 
different permeabilities in the horizontal (x,y) and vertical (z) 
directions. Horizontal and vertical permeabilities are denoted k 
and k', respectively. We then have: 

k ap 
qx = - ~ ax ' 

k ap 
q =-y ~ ay , 

k' ap 
qz = - ;- (az + pg) (2.2) 

Compressibility effects are neglected, and the divergence of 
the groundwater flow q is then zero at each point: 

V.q = V. [- ~ (VP + pgZ)) = 0 (2.3) 

The aquifer temperature satisfies the equation for convective­
diffusive heat transfer: 

C aT = V.(AVT - TCwq) 
at (2.4) 

where C and Cw are the volumetric heat capacities for the aquifer 
(matrix plus water) and water, respectively. The thermal conduc­
tivity is denoted by A. 

is 
The convective heat flow is given by TCwq. The thermal velocity 

(2.5) 

which represents the convective displacement of the temperature 
field. 
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The aquifer stratum is confined by impermeable layers at which 
the perpendicular groundwater flow component vanishes. 

2.2. Buoyancy Flow 

A non-uniform temperature field in the aquifer gives a variable 
fluid density and an ensuing buoyancy flow in the aquifer. We will 
in particular consider the situation where the aquifer is divided into 
a warm region (T = Tl ) and a cold region (T = TO). These regions 
are separated by a thermal front zone, through which the temperature 
falls from Tl to TO. The idealization of an infinitely thin or sharp 
thermal front will also be considered. This is often quite a useful 
approximation. 

Let r be any closed curve in an isotropic aquifer (k' = k). 
The line integral along r of the pressure gradient is automatically 
zero. Darcy's equation (1) then gives: 

Ir t q.dr = - g2. Ir pdr (2.6) 

The right-hand term represents a net driving force due to density 
variations along r. The left-hand side gives an integral of the 
tangential component of the flow q along r. The flow is weighted 
with the flow resistance coefficient ~/k. The right-hand side is 
known when the temperature, and hence the density field, is given. 
Equation (2.6) provides some information on the magnitude of the 
flow velocities. 

Figure 3 shows a case when the curve r crosses a sharp thermal 
front. The density and the viscosity on the warm and cold sides 
are denoted Pl' ~l and PO' ~O respectively. The vertical distance 
between the two points where r crosses the thermal front is H. It 
follows from equation (2.6) that 

I ~o 
k q.dr 

r o 

(2.7) 

Let Lr denote the a~c length of r, and qr a suitable mean 
tangential component of q along r. Equation (2.7) may then be 
written: 

k(P O - P )g 2H 1 (2.8) q = 
Lr r ~O + ~l 

The first factor will appear often in the following. We will 
call it the characteristic buoyancy flow qO: 
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I 
/ 

Figure 3. Closed curve r in an aquifer with a sharp thermal front 
(dashed line). 

(2.9) 

2.3. Analytical Solutions 

Based on equations (2.1 - 2.3), it is possible to derive 
explicit expressions for the pressure distribution and the buoyancy 
flow pattern in some idealized situations. Figures 4a-h show the 
eight cases, A-H, explained in detail below. The permeability may 
be different in the horizontal (k) and the vertical (k') directions 
in all cases except in case H. We will use the notation 

K=~ (2.10) 

Case A is a sharp, vertical thermal front in an infinite aquifer 
bounded by two impermeable horizontal planes. The thickness of the 
aquifer stratum is H. A vertical cross-section through the aquifer 
becomes an infinite strip. The expressions for the pressure distri­
bution and the flow field are derived in Appendix A. The flow field 
is shown in Figure 5. A solution of a limited version of this prob­
lem for two fluids with different density, but equal viscosity 
(~o=~l) and isotropic permeability (k'=k) has previously been given 
by de Josselin de Jong (6). Verruijt (23) solved the problem with 
different viscosities for the two fluids in an isotropic porous 
medium. 
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A. B. C. D. 

HI:E EE EE P1f.l1 Pof.lO 

L 
; 
, 

L L 

E. F. G. H. 
C~, 

:IE 
C~, 

P1 f.l1 POf.lO P1f.l POf.l 

, 
; 

0 ,,<---,< L L ~ 2R 
Rw D 

Figure 4. Cases considered for analytical solutions: (a) Infinite 
strip, (b) Semi-infinite strip with impermeable left 
boundary, (c) Semi-infinite strip with constant-head 
left boundary, (d) Cylindrical case with no horizontal 
flow at the inner boundary, (e) Cylindrical case with 
constant-head inner boundary, (f) Infinite strip with 
thermal front thickness D, (g) Cylindrical case with 
thermal front thickness D, (h) Circular disc. 

z -
H 

0.5 
A ~I~ 

, .... 
A I III 

\ 
, 

0 + Q1J-l1 
t t 1 \ \ 

Qol-lo X 

,\ l t ~ -
H 

A "- iii ! 
, 

A 
I , 

-0.5 
-1 0 1 

Figure 5. Velocity flow field for case A and isotropic medium. 



195 

The cross-section of the aquifer stratum is a semi-infinite 
strip in cases Band C. There is a sharp, vertical thermal front. 
The warmer region to the left has a horizontal thickness L. The 
left boundary is impermeable in case B. In case C the hydrostatic 
pressure P - Plgz prevails along the left, vertical boundary. 

Cases D and E consider an infinite aquifer with cylindrical 
symmetry bounded by two horizontal planes. The warmer region 
occupies a cylindrical volume with radius L. There is no 
horizontal flow at the inner boundary in case D. In case E there 
is hydrostatic pressure P = - Plgz at the inner boundary at radius 
r = ~. 

In case F we have, as in case A, an infinite aquifer bounded 
by two horizontal planes. The thermal front has a thickness D. 
The viscosity in this case is assumed to be constant, i.e., 
~=~o=~l' The density is Pl in the warm region and Po in the cold 
region. The density is assumed to increase linearly through the 
thermal front region. 

Case G is similar 
horizontal flow at the 
front of thickness D. 
and the density varies 
region. 

to case D with cylindrical symmetry and no 
inner boundary, but with a diffuse thermal 
The viscosity is constant, i.e., ~=~o=~l' 
logarithmically through the thermal front 

In case H the aquifer is an infinite circular cylinder. A 
vertical cut perpendicular to the cylinder axis becomes a circular 
disk (Figure 4h). The permeability must be isotropic (K=l) in this 
case. 

The analytical solutions for these cases are derived in 
Appendices A-H. The given expressions are only valid at the moment 
when the thermal front is vertical. 

The motion of the thermal front is determined by the magnitude 
of groundwater flow across the front. The vertical coordinate is 
denoted by z, and z=O is the mid-point of the aquifer. The horizon­
tal groundwater flow across the front is denoted qf(z). The follow­
ing expressions are obtained for the considered cases: 

A. Infinite strip: 

l+sin(~) 1 
l-sin(n:) 

(2.11) 
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B. Semi-infinite strip; impermeable left boundary: 

(2.12) 

C. Semi-infinite strip; hydrostatic pressure conditions at the 
left boundary: 

4 00 (_l)n 
Kq • - L: --, 

o 'TT n=O 2n+l 

. [(2n+lh z) 
Sln H 

~ h[(2n+l)'TTKL) + + tan H 
).10 ).11 

D. Cylindrical case; no horizontal flow at inner boundary: 

where 

e 
n 

(2n+l)'TTKL 
H 

Here we have used the modified Bessel functions Kn and In. 

E. Cylindrical case; hydrostatic pressure conditions at inner 
boundary: 

(2.13) 

(2.14) 

(2.15) 

(2.16) 



where 
(2n+l)ITKl\, 

H 

(2n+l)ITKL 

H 

F. Infinite strip with diffuse thermal front: 
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(2.17) 

(2.18) 

1 - e 

D 
(2n+l)ITK} 

. ((2n+l)ITZ) 
• Sln H 

H 
(2.19) 

The flow qf(z) refers to the middle of the thermal front region. 
For large values of D/H, equation (2.19) becomes: 

Z 

D 

G. Cylindrical case with diffuse thermal front: 

2 

1 ((L+D/2») 
n (L-D/2) 

where the function ¢ is defined by: 

Kl (8~)] . [(2n+l)ITZ] 
--_ 'Sln H 

Ko(8n ) 

(2.20) 

(2.21) 
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<I> (en) 
1 1 

- 0 

en II (en) Kl (en) 

Io(en ) 
+ 

Ko(en ) 

(2.22) 

and 

e+ (2n+l)'lTK(L+D/2) 
n H (2.23) 

eO (2n+lhKL 
n H 

(2.24) 

e~ 
(2n+l)'lTK(L-D/2) 

H 
(2.25) 

The flow qf(z) refers to the middle of the thermal front region 
(r L) . 

H. Circular disk: 

qf(z) 
1 (1+(~)2) oln 1+ i]_ 2'~] q 

0 'IT 1- ~ z 
R 

The flows qf(z) are all odd functions of z. 
these analyses are given by Hellstrom et al. 

2.4. Tilting of a Thermal Front 

(2.26) 

Further results of 
(12) • 

The buoyancy flow will cause a thermal front to tilt. A 
quantitative measure of the rate of tilting is of great interest. 
For the case when there is no forced convection, the tilting rate 
may be defined as follows. 

Consider a straight, vertical thermal front at a time t. The 
total water flow across the upper half of the thermal front is 
called the tilting flow. The same amount passes in the other direc­
tion through the lower half of the front. The tilting flow Qt is 
defined by: 

H/2 

Qt = f qf(z)dz 
o 

o 

(2.27) 

Figure 6 illustrates the tilting of a vertical front. Each 
point on the front is displaced a length vTdt during a small time 
increment. The displacement in the normal direction of the front 
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c. 

Figure 6. Definition of angular tilting rate wt : (a) thermal front 
at time t; (b) thermal front at time ttdt; (c) linear 
approximation of situation; (d) with the same total flow. 

is vTn.dt, where vTn is the thermal velocity component perpendicular 
to tfie thermal front. The curved thermal front (Figure 6b) is 
approximated by an appropriate straight line (Figure 6c). The front 
is tilted an angle wtdt during the time increment dt. A heat balance 
for the thermal front gives: 

(2.28) 

The time increment is small, so tan(wtdt) 
then becomes: 

wtdt. The tilting rate 

8 w = - • 
t H2 

(2.29) 

The tilting flow Qt is obtained by integrating qf(z) over the 
interval 0 ~ z ~ H/2. The integration of each term in the different 
series of equations (2.11-2.14, 2.16, 2.19, 2.21, 2.26) is straight­
forward. 

The tilting flow for case A is found to be: 

Q = ~ KqoH t 1T 
(G = 0.915 ... Catalan's constant) (2.30) 

The corresponding rate of angular tilting is: 

32G • K • 
CwqO 1 [~ , 3.0] -(2.31) Wo ~ C H 
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The corresponding tilting time to is then: 

n2(~O+~I) 

32G(P O-P I )g (2.32) 

The second factor on the right hand side is a function only of the 
temperatures To and TI . 

In case H, the circular disk, it is possible to obtain an 
analytical solution for the case when the straight thermal front is 
tilted at an angle a from the vertical direction (see Appendix H). 
The tilting flow and the tilting rate in case H become: 

2 
qoR • cos (a) (2.33) Q =-t n 

8 Cwq I I [~" 2.5] wt -.~ n C 2R cos(a) 

The tilting rate is thus reduced in the proportion 2.5/3.0, when an 
infinite strip (case A with K=l) is compared to a corresponding 
circular disk with a vertical thermal front. 

3. NUMERICAL THERMOHYDRAULIC STUDIES 

An analytic approach is useful for providing physical insight 
and functional dependence for a given process. However, in general, 
a study of the coupled effects of buoyancy flow, forced convection 
and thermal conduction in an aquifer thermal energy storage system 
requires a numerical approach. In this section we introduce the 
numerical code PT (2), which has been extensively used at Lawrence 
Berkeley Laboratory for such studies. The code is briefly described 
and some generic results are presented. Then, several field applica­
tions are given to demonstrate the approach and methodology used in 
applying a numerical code to study the thermohydraulics of such a 
system. 

3.1. Numerical Code 

The three-dimensional computer code PT, developed at LBL (2), 
is capable of calculating coupled liquid and heat flows in a water­
saturated porous or fractured-porous medium. The governing equa­
tions for PT consist of the conservation equations for mass and 
energy, and Darcy's law for fluid flow. Pressure and temperature 
are dependent variables. One-dimensional consolidation of the rock 
matrix can be considered as well, using the theory of Terzaghi. The 
mass and energy conservation equations are coupled through the fluid 
flow in the convection term of the energy equation and the pressure 
and temperature dependent fluid and rock properties. The rock matrix 
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and fluid are considered to be in local thermal equilibrium at all 
times. Energy changes due to fluid compressibility, acceleration, 
and viscous dissipation are neglected. 

The following physical effects are included in PT calculations: 
(1) heat convection and conduction; (2) regional groundwater flow; 
(3) multiple heat and/or mass sources and sinks; (4) constant pres­
sure or temperature boundaries; (5) hydrologic or thermal barriers; 
(6) gravitational effects (buoyancy); (7) complex geometries due to 
heterogeneous materials; and (8) anisotropic permeability and thermal 
conductivity. 

PT carries out the spatial discretization of the flow regime 
using the Integral-Finite-D£fference method (8,17). This method 
treats one-, two-, or three-dimensional problems equivalently. An 
efficient sparse solver is used to solve the linearized mass and 
energy matrix equations. The equations are solved implicitly to 
allow for large time steps. PT adjusts the time step automatically, 
so that the temperature or pressure change in any node during one 
time step is within user-specified limits. Mass and energy balances 
are calculated for each node at every time step. 

PT has been verified against the following analytical solutions: 

(1) Theis problem (19); 
(2) Cold water injection into a hot reservoir (1); 
(3) The temperature variation at a production well due to cold 

water injection (10); 
(4) Radial conduction outside a constant temperature cylinder 

( 4); 
(5) Two-node problem, transident conduction heat transfer 

between two adj acent blocks (4); 
(6) The rate of thermal front tilting when hot water is 

injected into a cold reservoir (11); 
(7) Pressure response in a well intercepting a finite 

conductivity vertical fracture ( 5); 
(8) Pressure response in a well intercepting a (uniform flux) 

horizontal fracture ( 9). 

3.2. Some Generic Results 

To give some physical insight into the thermohydraulic behavior 
of an aquifer thermal energy storage system, results of calculations 
using PT on a few hypothetical cases are given here. This particular 
set of calculations is for the case of high-temperature hot water 
storage in a deep, low-permeability aquifer. The temperature of 
the injected water is assumed to be 2200 C (in liquid phase under 
pressure) and the instrinsic permeability of the deep aquifer is 
assumed to be la-13m2 • 
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With injection and production ranges equal to 106 kg/day for a 
90-day injection, 90-day storage and 90-day production cycle, the 
energy balance is calculated as shown in Table 1. Figures 7,8 and 
9 show the thermal front advancement and diffusion at the end of the 
injection period for an inhomogeneous aquifer (Figure 7), an aquifer 
with a clay lens (Figure 8), and an aquifer with both an injection­
production well and a supply well (Figure 9). These figures show 
the buoyancy flow effects and in the last case, the influence of a 
neighboring well. 

10 
> ..... 
G> 
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c::: 

c::: 
o 
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Effect of reservoir inhomogeneity - cycle 1 
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Figure 7. Temperature contours at the end of 90-day injection period 
and at the end of 90-day production period for an 
inhomogeneous two-layer aquifer. 
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Figure 8. Temperature contours at the end of gO-day injection 
period and at the end of gO-day production period for an 
aquifer with a clay lens. 

3.3. Field Study Using a Numerical Code 

Application of the numerical code PT to a set of field experi­
ments has the goal of studying the thermohydraulics of a practical 
field situation and of verifying the validity of the numerical code 
against field data. The field experiments by Auburn University 
described below were chosen for this purpose. First, PT was used 
to do a history match of the first two cycles of the field experi­
ment. All data from the experiment were available to the modelers. 
Second, PT was used to make a double-blind prediction of the next 
two cycles of the field experiment. Only the design parameters of 
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Cycle 1 (after 90 daysl injection) 

Plane view 

Production Injection 
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II 20·C 
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II t t t II ~Hj 1m 

Cross section 

Figure 9. Temperature contours for a two-well system after 90-days 
of injection. 

the experiment were available to the modelers, not the results. 
Third, PT was used to do optimization design studies for a planned 
cycle of the field experiment; subsequently, results of the actual 
cycle were compared with the PT calculations. Progressing from 
each stage to the next provided a more stringent test of the 
numerical model of the thermo hydraulics of the system, as the code 
was used more and more as a predictive tool. At each stage of the 
calculation, a number of parameter sensitivity studies were made to 
determine which parameters affected the results of the experiment 
most significantly. Study of the discrepancies between the 
calculated and observed field results gave insight into possible 
physical processes not included in the numerical model, and provided 
direction for future work. 

3.3.1. History match 

The Water Resources Research Institute of Auburn University 
initiated a two-cycle injection-storage-production field experiment 
in a shallow aquifer in northeastern Mobile County, Alabama in 1978 
(13,14,15,16). A single injection/production well was screened in 
the upper half of a confined 21-m-thick aquifer. The aquifer matrix 
consists primarily of medium to fine sand, with approximately 15 
percent interstitial silt and clay. The aquifer is located from 
about 40 to 61 m below the land surface and is capped by a 9-m-thick 
clay sequence; it is bounded below by another clay sequence of 
undetermined thickness. Above the upper clay unit lies another 
aquifer, which provided the injection water. A number of observation 
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wells were located around the injection/production well; each was 
completed with thermistors that measured temperature at six depths 
in the aquifer. Each injection-storage-production cycle lasted six 
months and involved the injection and recovery of about 55,000 m3 

of water heated to an average temperature of 55 0 C. The ambient water 
temperature of the supply and storage aquifers was 200 C. A convenient 
quantitative measure of each cycle is the recovery factor, defined 
as the ratio of the energy produced to the energy injected, with 
energies measured relative to the ambient groundwater temperature. 
The first-cycle recovery factor was 0.66 and the second-cycle recovery 
factor was 0.76. 

Well tests were done to determine the hydraulic properties of 
the aquifer, and laboratory tests were made on samples to determine 
thermal properties of the aquifer and clay layers. Several of the 
material properties needed for the numerical calculation were not 
provided; in these instances reasonable values from the literature 
were used. Whenever possible, sensitivity studies were done to 
examine the effect of the variation of such parameters. Table 2 
summarizes the material properties used for the different layers. 
Field measurements indicated very small regional groundwater flow, 
so an axisymmetric model was devised for the calculation. The 
spatial discretization for a model considering combined heat and 
fluid flow from a central well must be done with care. For the 

Table 2. Parameters Used in the History Match Calculation 

Formation thickness Aquifer 21 m 
Aquitard 9 m 

Thermal conductivity Aquifer 2.29 J /m s °c 
Aquitard 2.56 J/m s °c 

Heat capacity of rock 1.8lxl06 J/m3 °c 
Density of rock 2600 kg/m3 

Aquifer horizontal 0.53xl010 m2 

permeability (53 darcies) 
Vertical to horizontal 0.10 
permeability ratio 

Aquitard to aquifer 10-5 

permeability ratio 
Porosity Aquifer 0.25 

Aquitard 0.15 
Storativity Aquifer 6xlO-4 

Aquitard 9xlO- 2 
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pressure calculation, the size of the nodes should logarithmically 
increase with increasing radial distance from the injection well; 
for the temperature calculation, the size of the nodes should 
decrease. A compromise of equally spaced nodes within the region 
of thermal influence, about 60 m, was used. Beyond this region, 
the size of the nodes steadily increased out to a distance of 20 km, 
where there was a constant pressure boundary. The vertical spacing 
of the nodes was made fine wherever sharp gradients in temperature 
were expected, such as at the bottom of the well screen, and in the 
clay layers adjacent to the aquifer. To assure that the spatial 
discretization (the calculational mesh) was adequate for the problem, 
alternative meshes were devised and used for parts of the first 
cycle calculation, and results compared to results from the primary 
mesh. Figure 10 shows a vertical section of the central portion of 
the primary mesh. 

After the calculation for each cycle was carried out, the 
calculated temperature distributions in the aquifer at various times 
were compared to measured temperatures (20). The overall match was 
very good; however, the calculated temperature profiles, shown in 
Figure 11, appeared to be sharper than the observed ones, indicating 
that the mathematical model underpredicted thermal diffusion. This 
is because the model did not include the heterogeneities of the real 
aquifer that caused fingering, leading to a diffuse front. By 
comparing the calculated temperatures with temperatures from obser­
vation wells located in different directions from the injection/ 
production well, some deviation from axisymmetry was noted. 
However, the calculated temperature of the produced water agreed 
very closely with the observed data, as shown in Figures 12 and 13, 
since the production temperature is the average temperature of water 
produced from all directions around the injection/production well. 
The time-average of the production temperature is proportional to 
the recovery factor. PT calculated recovery factors of 0.68 and 
0.78 for the first and second cycles, respectively, as compared to 
experimental values of 0.66 and 0.76. This excellent agreement 
indicated that the small heterogeneties of the system tended to 
balance out, and that on the whole an axisymmetric model of the 
system was appropriate. 

One of the properties of the aquifer not determined by the 
well tests was the permeability anisotropy, the ratio of vertical 
to horizontal permeability in the aquifer. A value of 0.10 was 
chosen for the model, based on previous modeling studies done at 
this site. A sensitivity study was carried out for the first cycle 
using values of 1.0 and 0.02 for permeability anisotropy. For the 
smaller value of anisotropy (i.e., smaller vertical permeability) 
there was less buoyancy flow of the injected water than in the 
original first cycle calculation, resulting in a more compact hot 
plume with a lower surface-to-volume ratio. This led to smaller 
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Figure 11. Temperature contours in an aquifer after first cycle 
injection. Temperature values at observation wells 
are also indicated. 

conductive heat losses, hence a higher recovery factor -- 0.71. 
For the larger value of anisotropy, buoyancy flow was increased, 
creating a more elongated plume with larger heat losses, leading to 
a recovery factor of 0.57. The large variation in recovery factor 
indicated that the permeability anisotropy is an important parameter. 

In summary, the history match indicated that the numerical code 
PT and an axisymmetric model could match the results of the injec­
tion-storage-production cycles very well. Detailed comparisons with 
individual wells showed some discrepancies, but they tended to cancel 
out when integrated results such as production temperature and 
recovery factor were considered. A parameter study indicated that 
the permeability anisotropy is a very important parameter affecting 
the results of the experiment. The mesh variation demonstrated the 
range of mesh spacing appropriate for this particular problem, and 
showed that numerical dispersion may mimic physical dispersion 
caused by aquifer heterogeneities. 
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Figure 12. First cycle production temperature. 

3.3.2. Double-Blind prediction 

In contrast to the history match, in which all the experimental 
results were available to us throughout the course of the modeling 
study, in the double-blind predictio~, we were provided with only 
the basic geological, well test, injection flow rate and injection 
temperature data, and the planned production flow rate. Numerical 
simulations were conducted to predict the outcome of each cycle 
before its conclusion. During the course of the study, we were not 
informed of the experimental observations and the experimenters were 
not informed of our calculated results. Thus we call this a "double­
blind" prediction. It was only after both parties concluded their 
work that detailed comparisons between the calculated and experimental 
recovery factors, production temperatures and in situ temperature 
distributions were made. Our double-blind prediction studies were 
carried out in the following fashion. 
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Figure 13. Second cycle production temperature. 

The third, fourth and fifth cycles of the Auburn experiments 
were conducted in 1981 and 1982 in a new area of the aquifer, located 
about 120 m from the site of the first and second cycles. A fully 
penetrating injection well was used. Rather than using water from 
the overlying aquifer, a supply well penetrated the storage aquifer 
itself, creating an injection-supply doublet. During the third cycle, 
25,000 m3 of water at an average temperature of 590 C was injected 
over a period of one month. The water was then stored for one month 
and subsequently produced. During the fourth cycle, a total of 58,000 
m3 of water at an average temperature of 82°C was injected over a 
period of 4.5 months, then stored for one month. Production began 
using a well screen open to the full aquifer thickness. After two 
weeks production stopped and the well screen was modified to withdraw 
water from only the upper half of the aquifer. Production then 
resumed and continued until the total water volume produced equaled 
the volume injected. 

Parameter studies done during the first- and second-cycle history 
match indicated that the temperature field was not very sensitive 
to the pressure field in the aquifer. Therefore, in the development 
of a numerical grid for the later cycles, emphasis was placed upon 
accurate calculation of the temperature distribution. An estimate 
of the radial extent of the hot region in the aquifer around the 
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injection well, i.e., the thermal radius, can be made based on 
conservation of energy. The thermal radius was calculated to be 
about 25 m for the third cycle and 38 m for the fourth cycle. These 
values are small compared to the doublet spacing (240 m), and large 
compared to displacement caused by regional flow. Therefore, an 
axisymmetric model of the aquifer system centered at the injection/ 
production well was used for the calculation. 

The wellbore was modeled by a column of nodes 0.1 m wide with 
a porosity of 1 and a very high vertical permeability. Injection 
and production were accounted for by a source or sink element 
connected to the top wellbore node. Well tests conducted prior to 
the third cycle included a test to determine the vertical permeabil­
ity of the aquifer. A value of 0.15 was determined for the 
permeability anisotropy, and used in the mathematical model. Other 
material properties remained similar to those shown in Table 2. 

The third-cycle calculation predicted a recovery factor of 0.61 
as well as the production temperature curve and calculated 
temperature distributions in the aquifer as a function of time. 
Subsequently, the experimental recovery factor was found to be 0.56. 
Although this is somewhat below the calculated value, it is an 
acceptable prediction. However, the experimental temperature 
distributions in the aquifer at the end of the injection period 
appeared rather different from the calculated results, as shown in 
upper part of Figure 14, where two experimental plots show perpen­
dicular cross sections through the aquifer. Apparently, there is 
a high-permeability layer in the middle of the aquifer into which 
the injected fluid preferentially flows. After some parameter 
studies, we decided to use a three-layer-aquifer model in which the 
middle layer has a permeability 2.5 times that of the upper and 
lower layers. This three-layer-aquifer model reproduced the 
experimental temperature distributions and production temperature 
quite well, as shown in Figures 14 and 15, and predicted a recovery 
factor of 0.58, much closer to the experimental value than the 
previous one-layer-aquifer model. This is significant because 
layering is difficult to detect through conventional well test 
analysis, which typically gives a single average permeability value 
for a heterogeneous medium. 

The fourth-cycle predictive calculation was made with the three­
layer-aquifer model also. This cycle involved injection of much 
hotter water (82°C) than had been used before. Calculated results 
(3) indicated that for this large temperature, buoyancy effects 
were very large, and over-shadowed the preferential flow into the 
high permeability layer. Based on the original production plan, 
which called for a fully penetrating production well, the recovery 
factor was calculated to be 0.40. However, due to low production 
temperatures, the experimenters modified the production well during 
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the third cycle injection period. 
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the production period to eliminate production from the lower half 
of the aquifer. By following this procedure, the calculated recovery 
factor was 0.42, as compared to the experimental value of 0.45. 
This agreement was acceptable, but a comparison of the experimental 
and calculated production temperature curves, shown in Figure 16, 
indicated a moderate discrepancy. The calculated production 
temperature started about 100C higher than the experimental value, 
but decreased much more rapidly, so that by the time of the well 

modification it underpredicted the experimental temperature. When 
production resumed after the two days of well modification, the 
calculated result again overpredicted the experimental value, 
although by just 2°C. Again the calculated temperature decreased 
more rapidly than the experimental curve, and ended up underpredict­
ing it. This discrepancy of production temperatures was most 
noticeable for the fourth cycle, but the pattern of early over­
prediction followed by late underprediction was evident in the third­
cycle production temperature curves as well. It was much smaller 
for the first and second cycles, suggesting that it might be related 
to the wellbore model,which was first incorporated in the model for 
the third-cycle calculation. 

In summary, the double-blind prediction made using the code PT 
yielded reasonable results. The third-cycle comparison of one-layer 
and three-layer aquifers indicated the importance of aquifer 
layering. The higher injection temperature of the fourth cycle 
caused buoyancy flow to be a dominant effect in the aquifer. PT can 
adequately model the fourth cycle, although there is a larger 
discrepancy between the calculation and the experiment than for the 
earlier cycles. 

3.3.3. Optimization design studies 

Because of the decrease in recovery factor from the third to 
fourth cycles (0.56 to 0.45) corresponding to the increase in injec­
tion temperature, an optimization design study was done before the 
fifth cycle of the field experiment in an attempt to design an 
experiment that would yield an optimal recovery factor for an 80 0 C, 
three-month cycle. A series of injection-production schemes using 
different well-screen open intervals were simulated. Each assumed 
a constant injection flow rate of 112 gpm (7 kg/sec) at 82 0 C. The 
three-layer-aquifer model developed for the third-cycle calculation 
was used. Two variations in cycle design were considered: the first 
assumed injection, storage, and production periods of one month 
each; the second assumed a two-month injection period (resulting in 
double the volume of hot water injected), no storage period, and a 
one-month production period (at double the injection flow rate). 
Making use of the results of the fourth cycle calculation, which 
indicated that buoyancy flow had a dominant effect on the system, 
three general approaches were taken in the design studies (Fig. 17): 
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Figure 17. Schematic diagram showing design study alternatives. 

(a) simply inject into and produce from the upper portion of the 
aquifer where most of the hot water would naturally flow because of 
buoyancy effects; (b) inject hot water at the top of the aquifer 
while simultaneously producing water from the bottom in order to 
have a vertical flow field with minimal buoyancy effect; and 
(c) inject into the upper portion of the aquifer, then while 
producing from the upper portion, produce (and discard) colder water 
from the lower portion of the aquifer through a "rejection well" 
located next to the injection/production well, thus eliminating any 
upward flow of cool water that would lower production temperature. 
Table 3 summarizes the results of the calculations. Cases A,B and 
C correspond to the three approaches listed above. The reference 
case considered an injection/production well screened over the entire 
aquifer thickness. For a cycle consisting of one month each of 
injection, storage, and production, the maximum recovery factor was 
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Figure 18. Fifth cycle production temperature. 

about 0.52, representing an improvement of about 0.12 over the refer­
ence case. For the larger injected volume a recovery factor of 0.66 
was possible. Hence, for this system, the volume of fluid injected 
is as important as the manner in which it is injected and produced. 
In general, the third method appears to be most successful in 
yielding a high recovery factor. 

After the optimization design studies were completed, the fifth 
cycle was carried out, using 800 C wa~er and an injection-production 
scheme patterned after case C. The injection/production well was 
screened over the upper 9 m of the aquifer and the rejection well, 
located less than 2 m away, was screened over 9 m in the lower half 
of the aquifer. Instead of a three-month cycle storing 18,000 or 
36,000 m3 , as in the design studies, the fifth cycle lasted seven 
months, and 56,700 m3 of water was injected, making a direct check 
of the design study calculations impossible. The recovery factor 
for the fifth cycle was 0.42. A history match calculation yielded 
a recovery factor of 0.44. As in the case of the fourth cycle, the 
calculated production temperature, shown in Figure 18, initially 
overpredicted the experimental value, then decreased more rapidly, 
and finally underpredicted it. The calculated temperature from 
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the rejection well consistently underpredicted the experimental 
value, indicating that the model may have somewhat overpredicted 
buoyancy flow. This finding was consistent with the larger produc­
tion -temperature discrepancy noted for higher temperature (greater 
buoyancy flow) cycles. 

In summary, the optimization design studies investigated a 
variety of possible injection-production schemes, and indicated the 
range of recovery factors for them. Although the actual fifth cycle 
was quite different than the design studies, the relative results of 
the design studies proved to be useful in the choice of the fifth­
cycle injection-production scheme. 

4. SUMMARY 

The thermohydraulics of an aquifer thermal energy storage 
system are reviewed and discussed. Effects of thermal conduction, 
buoyancy flow and forced convection are studied and calculated. 
Both an analytic approach and a numerical method are presented to 
familiarize the readers with these techniques. 

5. APPENDIX A: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL 
FRONT IN AN INFINITE STRIP 

An analytical expression for the pressure distribution in case 
A, which is shown in Figure 4a, will be derived in this appendix. 
The aquifer stratum occupies the region - 00 < x < 00, - H/2 < z < H/2. 
The thermal front is located at x = 0, - H/2 < z < H/2. 

Let P(x,z) denote the pressure distribution in the aquifer. 
In region 1, x < 0, - H/2 < z < H/2, the pressure satisfies: 

(Al) 

In region 0, x > 0, - H/2 < z < H/2, we have: 

(A2) 

The upper and lower boundaries are impermeable: 

~+ ° ± 
H 

° Plg z = , < x < 
dZ 2 (A3) 

dP 
0 

H h + pog z = ± , ° < x < 00 

2 (A4) 
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Hydrostatic conditions prevail far away from the thermal front: 

x + 

p + - pogz 

The pressure and the groundwater flow are continuous 
front: 

P(-O,z) P(+O,z) 
H H 

< z < 
2 2 

k ap k ap 
0, H 

ax ax 
x = - 2: 

III Ilo 

We start with the following expressions: 

where 

00 

x < 0: P(x,z) - Plgz + n~O anun(x,z) 

x > 0: P(x,z) 

U ( ) _ . (2n+l)TIz) n x,z - Sln H . e 

_ (2n+l)TIKlxl 
H 

< z < 

(AS) 

(A6) 

at the thermal 

(Al) 

H (AB) 
2 

(A9) 

(AlO) 

(All) 

It is not difficult to verify that these expressions satisfy (Al-A6) 
for any choice of the coefficients an and b~. The coefficients are 
determined by the two remaining conditions ~A7) and (AB): 

~ • ~. (_l)n 

k TI2 (2n+l) 2 

In particular we have for the flow across the thermal front: 

k ap 
Ill' ax = Kq 0 • 

4 r (_l)n 
TI n=O 2n+l 

. r(2n+l)TIz) 
• Sln l H 

(A12) 

(A13) 

(A14) 

The series may be expressed in the simpler form of equation (11). 
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6. APPENDIX B: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL 
FRONT IN A SEMI-INFINITE STRIP: IMPERMEABLE LEFT 
BOUNDARY 

An analytical expression for the pressure distribution in case 
B, which is shown in Figure 4b, will be derived in this appendix. 
The aquifer stratum occupies the region 0 < x < 00, -H/2 < z < H/2. 
The thermal front is located at x = L, -H/2 < z < H/2. 

Let P(x,z) denote the pressure distribution in the aquifer. 
In region 1, 0 < x < L, -H/2 < z < H/2, the pressure satisfies 
equation (AI). In region 0, x > L, -H/2 < z < H/2, we have equation 
(A2) • 

The upper and lower boundaries are impermeable: 

ap 

° +!! az + Plg z = -2 , 0 < x < L (Bl) 

ap 
+ pog 0 +!! L = z = , < x < 00 

az -2 (B2) 

Hydrostatic conditions far away from the thermal front give (A6). 
The left boundary is impermeable: 

ap 
ax o x = 0, (B3) 

The pressure and the groundwater flow are continuous at the thermal 
front: 

P(-L,z) P(+L,z) (B4) 

k ap k ap 

\.11 ax \.1 0 ax 
x = L, (BS) 

We start with the following expressions: 

o < x < L: P(x,z) - Plgz + n~O ansin( (2n;lhrz) (B6) 

h(2n+l)1fKx) cos H 

x > L: P(x,z) + '?' b . (2n+lhz) - pogz n~O nS1n H (Bl) 

(2n+l)1fK(x-L) 
H 

e 
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These expressions satisfy (Al-A2), (Bl-B3), and (A6) for any choice 
of the coefficients an and bn : The coefficients are determined by 
the two remaining conditions (B4) and (B5). 

where 

_ qoH].Jl • 
k 

(2n+l)'lTKL 
H 

1 4 
.~ 

(B8) 

(B9) 

(BlO) 

Finally we obtain the flow across the thermal front (Eq. (2.12» by 
differentiation of Eqs.(B6) or (B7). 

7. APPENDIX C: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL 
FRONT IN A SEMI-INFINITE STRIP; HYDROSTATIC PRESSURE 
CONDITIONS AT THE LEFT BOUNDARY 

An analytical expression for the pressure distribution in case 
C, which is shown in Figure 4c, will be derived in this appendix. 
The aquifer stratum occupies the region 0 < x < 00, -H/2 < z < H/2. 
The thermal front is located at x = L, -H/2 < z < H/2. 

Let P(x,z) denote the pressure distribution in the aquifer. 
In region 1, where 0 < x < L, -H/2 < z < H/2, the pressure satisfies 
equation (AI). In region 0, where x > L, -H/2 < z < H/2, we have 
equation (A2). 

The upper and lower boundaries are impermeable, which implies 
the boundary conditions (Bl-B2). Hydrostatic conditions far away 
from the thermal front give (A6). Hydrostatic conditions prevail 
at the left boundary: 

(Cl) 

The pressure and the groundwater flow are continuous at the thermal 
front as expressed by (B4) and (B5). We start with (B7) for x > L 
and the following expression for 0 < x < L: 

P() + ~ . [(2n+l)'lTz) . h[(2n+lhKx) x,z = - Plgz n~O ansln H • Sln H (C2) 
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Expressions (C2) and (B7) satisfy (Al-A2), (Bl-B2), (Cl), and (A6) 
for any choice of the coefficients an and b~: the coefficients are 
determined by the two remaining conditions tB4) and (BS). 

b =­n 

where en is 

qoH)11 

k 

)10 
- • cosh(e ) • a 
)1 n n 

1 
defined by (BlO). 

1 

(C4) 

The flow across the thermal front (Eq. (2.13» is obtained by 
differentiation of Eqs. (C2) or (B7) with a and b given by Eqs. 

n n 
(C3) and (C4) respectively. 

8. APPENDIX D: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL 
FRONT IN THE CYLINDRICAL CASE; NO FLOW AT THE INNER 
BOUNDARY 

An analytical expression for the pressure distribution in case 
D, which is shown in Figure 4d, will be derived in this appendix. 
Cylindrical coordinates, rand z, are used. The aquifer stratum 
occupies the region 0 < r < 00, -H/2 < z < H/2. The thermal front 
is located at r = L, -H/2 < z < H/2. 

Let Pl(r,z) denote the pressure distribution in region 1, 
o < r < L, -H/2 < z < H/2. The pressure satisfies: 

1 3 k 3Pl 3 [k' 
3P l 

PIg) J 3r 
(- r ar-) + az )11 

(- + = 0 (Dl) r )11 3z 

In region 0, r > L, -H/2 < z < H/2. We have for the pressure 
Po(r,z): 

1 3 k 3P o 3 [k' 
3P o 

+ P og) J 3r 
(- r ar-) + az ~ (- = 0 (D2) r )10 dz 

The upper and lower boundaries are impermeable: 

3P l 
+ = 0 +!! 

3z PIg z = -2 , 0 < r < L (D3) 

3P o 
0 +!! + pog z = , L < r < 00 (D4) 

3z -2 
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At the inner boundary, r=O, symmetry requires that: 

= 0 (DS) 

Hydrostatic conditions prevail far away from the thermal front: 

p 
o -+- - (D6) 

The pressure and the groundwater flow are continuous at the thermal 
front: 

P1(L,z) P (L,z) o 

k 

llO 

H 
2 

H 
< z < 2 

H H 
r = L , - 2 < z < 2 

We start with the following expressions: 

P1 (r,z) 

E b . (2n+1)nz) • K (2n+1)nKr) pogz + n=O ns~n H 0 H 

(D7) 

(DB) 

(D10) 

Here we make use of the modified Bessel functions In and Kn. These 
expressions satisfy (D1-D6) for any choice of the coefficients an 
and bn . The coefficients are determined by the two remaining 
conditions (D7) and (DB). 

4 (_l)n 
• ~ (2n+1)2 

llO I 1 (8n ) 

III K1 (8n ) 

where 8n is given by (B10). 

1 1 

(Dll) 

(D12) 
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Finally we obtain the flow across the thermal front (Eq. (2.14)) 
by differentiation of Eqs. (D9) or (DlO). 

9. APPENDIX E: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL 
FRONT IN THE CYLINDRICAL CASE; HYDROSTATIC PRESSURE 
CONDITIONS AT THE INNER BOUNDARY 

An analytical expression for the pressure distribution in case 
E, which is shown in Figure 4e, will be derived in this appendix. 
Cylindrical coordinates, rand z, are used. The aquifer stratum 
occupies the region ~ < r < 00, - H/2 < z < H/2. The thermal front 
is located at r = L, - H/2 < z < H/2. 

Let Pl(r,z) denote the pressure distribution in region 1, where 
~ < r < L, - H/2 < z < H/2. The pressure PI satisfies equation 
(Dl). For the pressure Po(r,z) in region 0, r > L, - H/2 < z < H/2, 
we have equation (D2). 

The upper and lower boundaries are impermeable, which implies 
the boundary conditions (D3-D4). Hydrostatic conditions far away 
from the thermal front give (D6). We also have hydrostatic pressure 
conditions at the inner boundary, r = ~: 

(El) 

Pressure and groundwater flow are continuous at the thermal front 
as expressed by (D7) and (DB). 

We start with the following expressions: 

co co 

Pl(r,z) - Plgz + L anun(r,z) + n~O bnvn(r,z) (E2) 
n=O 

00 

Po(r,z) - pogz + n~O cnvn(r,z) (E3) 

where 
. [(2n+l) 7Tz l • Io[(2n+l~7TKrl un(r,z) s~n H (E4) 

vn(r,z) = sin[(2n+~)7Tz) • Ko[(2n+~)7TKr) (E5) 

These expressions satisfy (Dl-D4) and (D6) for any choice of the 
coefficients an' bn , and cn . The coefficients are determined by 
the three remaining conditions (El), (D7), and (DB). 

qaHfll • 
k 

(E6) 
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1 

)10-)11 
L KO(en ) R IO(en ) )11 

L Io(en ) )10 
L KO(en ) 

--- . + ---. +-- • 
L R L L 

)10+)11 II (en) Ko(en ) )10+)11 I 1(en ) )10+)11 K1(en ) 

R 

bn 
Io(en ) 

(El) 
R 

• an 
KO(en ) 

L 

[1 + 
L . Io('~)l· )10 II (en) . Kl (en) 

cn L L an 
)11 K1 ( n) II ( n) Ko( n) 

(E8) 

where 

eR 
n 

(2n+l)1TK~ 

H 
(E9) 

eL = (2n+l)1TKL (ElO) 
n H 

Finally we obtain the flow across the thermal front (Eq.(2.l6)) 
by differentiation of Eqs. (E4) or (E5). 

10. APPENDIX F: ANALYTICAL SOLUTION FOR AN INFINITE STRIP WITH 
DIFFUSE THERMAL FRONT 

An analytical expression for the pressure distribution in case 
F, which is shown in Figure 4f, will be derived in this appendix. 
The aquifer stratum occupies the region - 00 < x < 00, - H/2 < z < H/2. 
The thermal front region, which has a thickness D, is located at 
- D/2 < x < D/2, - H/2 < z < H/2. The viscosity is constant in this 
case ()1=)10=)11). The density is PI in region 1, where x < - D/2, 
- H/2 < z < H/2, and Po in region G, where x > D/2, - H/2 < z < H/2. 
The density in the thermal front region varies linearly with x 
between PI and Po 

(Fl) 

The pressure distribution P1(x,z) in region 1 satisfies (AI) 
with )11=)1. For the pressure Po(x,z) in region 0, we have equation 
(A2) with )10=)1. The pressure PD(x,z) in the thermal front region 
is the solution of: 

_d k dPD 
(- -) 

dX )1 dX 
d [k I dPD 1 +az;- (a;-+ p(x)g) = 0 (F2) 



The upper and lower boundaries are impermeable, so that 

ap + pg = 0 
dZ 

H 
Z = ±2" 
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(F3) 

for the different regions. Hydrostatic conditions far away from 
the thermal front give (A5-A6). 

The pressure and the groundwater flow are continuous at the 
interfaces between the thermal front region and the surrounding 
regions: 

Pl (-D/2,z) PD(-D/2,z) H 
- "2 < z < 

PO(D/2,z) PD(D/2,z) H 
- 2" < z < 

k dP l k dPD 
- D/2, ax- ax- x = 

].J ].J 

k dP O k dPD 
D/2, 

dX dX 
x = 

].J ].J 

We start with the following expressions: 

where 

00 

Pl(x,z) - Plgz + E n=O 

00 

Po(x,z) - pogz + E n=O 

anun(x,z) 

bnvn(x,z) 

(2n+l)1TKx 
H . [(2n+l)1Tz] S1n H • e 

( ) . [(2n+l)1Tz] vn x,z = S1n H • e 

(2n+l)1TKx 
H 

H (F4) 2 

H (F5) 2 

H H (F6) - "2 < z < 2 

H H (F7) 2 
< z < 

2 

(F8) 

(F9) 

(FlO) 

(Fll) 

(Fl2) 

These expressions satisfy (AI-A2), (F2-F3), (A5-A6) for any choice 
of the coefficients an' bn , cn ' and dn . The coefficients are 
determined by the four remaining conditions (F4-F7): 
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qaHJ.l . i- . (-l) n • H 
an --

2k 71 2 (2n+1) 2 D (2n+l)71K-
2 

(Fl3) 

D D 

[e -

(2n+1)71KZ (2n+1:',,] 
H 

- e 

bn - an (Fl4) 

D (2n+1)71KZ 
qaHJ.l • 4 (_l)n • H H 

cn • e 
2k 71 2 (2n+1) 2 D (2n+1)7TKZ 

(F15) 

(F16) 

In particular we have for the flow across a vertical cut in the 
middle of the thermal region: 

k 

J.l 
x = 0 

The result may be expressed as the series of Eq. (2.19). 

(Fln 

11. APPENDIX G: ANALYTICAL SOLUTION FOR THE CYLINDRICAL CASE 
WITH DIFFUSE THERMAL FRONT 

An analytical expression for the pressure distribution in case 
G, which is shown in Figure 4g, will be derived in this appendix. 
The aquifer stratum occupies the region 0 < r < 00, - H/2 < z < H/2. 
The thermal front region, which has a thickness D, is located at 
L-D/2 < r < L+D/2, -H/2 < z < H/2. The thermal front region must 
not extend into the well, i.e. D < 2L. The viscosity is constant 
in this case (J.l=J.la=J.lI). The density is PI in region 1, 
o < r < L-D/2, -H/2 < z < H/2, and Pain region 0, r > L+D/2, 
-H/2 < z < H/2. The density in the thermal front region varies 
with r between PI and Po according to: 

((L+D/2)1 (r) 
Pllnl r J + Pa ln (L-D/2) 

P (r) (Gl) 
1 ((L+D/2») 

n (L-D/2) 
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The pressure distribution Pl(r,z) in region 1 satisfies (Dl) 
with ~l =~. For the pressure Po(r,z) in region 0, we have equation 
(D2) with ~o =~. The pressure PD(r,z) in the thermal front region 
is the solution of: 

1 a k aPD + _a (_kl aPD ) 
- -(- r ~r) ~z 11 (~z + p(r)g) = 0 r ar ~ a 0... a 

(G2) 

The upper and lower boundaries are impermeable, so that 

ap + 0 az pg = (G3) 

for the different regions. There is no horizontaL flow at the inner 
boundary, r = 0, and hydrostatic conditions far away from the ther­
mal front give (D5-D6). 

The pressure and the groundwater flow are continuous at the 
interfaces between the thermal front region and the surrounding 
regions: 

Pl (L-D/2,z) 

Po(L+D/2,z) 

k 
~ 

k 

~ 

aPl 
ar 

PD(L-D/2,z) 

PD(L+D/2,z) 

k 
~ 

k 

~ 

aPD 
ar 

H 
- "2 

H 
- "2 

r = L-D/2, 

r = L+D/2, 

We start with the following expressions: 

< z < H 
2 

H < z < 
2 

H H 
2 <·z < 2 

H H 
2 < z < 2 

(G4) 

(G5) 

(G6) 

(G7) 

(G8) 

(G9) 

(G10) 

where the functions un(r,z) and vn(r,z) are given by (E4) and (E5) 
respectively. 

These expressions satisfy (Dl-D2), (G2-G3), (D5-D6) for any 
choice of the coefficients an' bn , cn ' and dn . The coefficients 
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are determined by 

_ 2Q OH]J 
an ---

k 

bn 
2QOH]J 

=--
k 

2Q oH]J 

the four remaining 

1 4 
112 

1 [(L+D/2») 
n (L-D/2) 

[.(e~) _ 
Io(e~) 

.(e~) 1 
Io(e~) 

1 4 • ---z • 

1 [(L+D/2») 
11 

n (L-D/2) 

[.(9~) _ 
Ko(e~) 

.(9~) 1 
Ko(e~) 

1 

1 [(L+D/2») 
n (L-D/2) 

1 4 

conditions 

(_l)n 
(2n+l) 2 

(_l)n 
(2n+l) 2 

(_l)n 
dn ---. ~. (2n+l)2' k 11 

1 [(L+D/2») 
n (L-D/2) 

where the function <p is defined by: 

<p(en) 1 1 

en Il(en) Kl(en) 

Io(Sn) 
+ 

Ko(Sn) 

and 

e+ = (2n+l) 11K (L+D/2) 
n H 

(G4-G7) : 

(Gll) 

(G12) 

(G13) 

<p(e~) 

Ko(e~) 
(G14) 

(GIS) 

(G16) 
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(Gll) 

In particular we have for the flow across a vertical cut in the 
middle of the thermal region: 

k 

lJ 
r = L 

The result may be expressed as the series of Eq. (2.21). 

(G1S) 

12. APPENDIX H: ANALYTICAL SOLUTION FOR A SHARP THERMAL FRONT IN 
A CIRCULAR REGION 

An analytical expression for the pressure distribution in case 
H, which is shown in Figure 4h, will be derived in this appendix. 
The aquifer has the shape of an infinite circular cylinder with an 
horizontal symmetry axis. A vertical cut through the cylinder 
becomes a circular disk with radius R. We first consider the case 
with a vertical thermal front. Both polar coordinates (r,¢) and 
cartesian coordinates (x,z) are used. Here ¢ denotes the angle 
with respect to the upward vertical direction, which is denoted z. 

Let Pl(r,¢) denote the pressure distribution in the left part 
of the circular region, 0 < r < R, - 'II < ¢ < O. In the right part, 
o < r < R, 0 < ¢ < 'II, the pressure is Po(r,¢). The pressure Pl 
and Po both satisfy: 

1 a (r~) 1 a2 p 
r ar ar + rz a¢2 o (Hl) 

The periphery of the disk is impermeable. Let rand z denote unit 
vectors in the radial and vertical direction respectively. Then 
we have: 

aP l 
+ 0 R, < ¢ < 0 (H2) 

ar Plgz.r r = - 'II 

ap o 
+ pogz.r = 0 r = R, 0 < ¢ < 'II (H3) 

ar 

The pressure and the groundwater flow are continuous at the thermal 
front: 

O<r<R, ¢ o and ±'II (H4) 
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k 
].10 

o < r < R, ~ o and ±'IT 

where x is a horizontal coordinate. 

We start with the following expressions: 

00 r 2n 
Pl(r,~) = - arcos(~) + n~l an(i) • sin(2n~) 

(H5) 

(H6) 

(H7) 

These expressions satisfy (Hi) for any choice of the coefficients 
a, an' and bn . The coefficients are determined by the four remaining 
conditions (H2-H5): 

(].10P 1 + ].11 PO)g 
a = 

].10 + ].11 

qoR].11 
an --k-

].10 
b = - • an n ].11 

4 
'IT 

1 
(2n+l) (2n-l) 

The pressure in the aquifer is now: 

(H8) 

(H9) 

(H10) 

(].10 PI + ].11~) gz qoR].1i - r (Hll) 
P.(r,~) = - - -k- P (-R'~) 
~ ].10+].11 

where i = 0 for 0 < ~ < 'IT and i = 1 for - 'IT < ~ < O. We have 
introduced a dimensionless pressure: 

P(r' ,~) 4 'f 1 ( ') 2n (2) 
'IT n=l (2n+l)(2n-l)' r • sin n~ (H12) 

This series may be expressed in closed form with the use of the 
complex number 

w = r'cos(~) + ir'sin(~) = (z+ix) /R (H13) 

The dimensionless pressure (H12) may then be written: 

P 1 
Im[ (w- 1:) 1 (l+w) L 1 Im[f(w)] (H14) n-r 'IT w l-w 'IT 

The symbol 1m denotes the imaginary part. An evaluation of the 



complex function few) gives: 

p 1 (r' - -rl ,) cos(~)' t (2r'Sin(<p)) ~ arc an 1-(r')2 

+ ~ Cr' + ~,)SinC</» • ln [1+(r')2+2r'COS(<P) lJ 
1+(r,)2-2r'cos(<P) 

In particular we have for the flow across the thermal front: 
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(H1S) 

(H16) 

Here Re denotes the real part. The result is given in Eq. (2.26). 

In this particular case it is possible to solve the problem 
with a straight thermal front which is tilted an angle a from a 
vertical position. By making the substitution: 

<P' = <P - a (H17) 

we find that equations (Hl-H7) remain unchanged except that the 
gravitational constant g is replaced by g.cos(a). This means that 
all pressures and flows are reduced by the factor cos (a) when the 
thermal front is tilted an angle a. 
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15. LIST OF SYMBOLS 

C 

C 
w 

D 

d 
f bt 

fft 

f t 

fl 

G 
g 
H 
k 
k' 

Aquifer volumetric heat capacity (matrix plus 
water), J/m~K 
Volumetric heat capacity of water, J/m~K 

Thickness of diffuse thermal front in cases F and 
G, m 
Dispersivity, m 
Buoyancy tilting function 

Forced-convection tilting function 

Basic tilting function 

= 0.235 

Catalan's constant (= 0.915 ... ) 
Standard gravity, 9.81 m/s~ 
Thickness of aquifer stratum, m 
Permeability (horizontal), m~ 
Vertical permeability, m~ 
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L 

n 
P 
Pb 

Pfc 

Qt 

Qbt 

Qft 
Ql 

q 

qb 

qfc 

qx 

qy 

qz 

qf 

qo 

R 
Rs 

~ 
r 
S 
s 
T 
To 

Tl 

t 
t 

0 

vT 
x 
Y 
z 

Horizontal thickness of region left of the thermal 
front in case B, C, D, E, and G, m 
Effective porosity of porous medium 
Pressure, Pa 
Pressure for buoyancy flow part of Eq. (35), Pa. 

Pressure for forced convection part of Eq. (35), 
Pa. 
Tilting flow, m3 H20/s. 

Buoyancy tilting flow, m3 H20/s. 

Forced-convection tilting flow, m3 H20/s. 
Forced-convection flow rate through aquifer, 
m3 H20 / s . 
Volumetric groundwater flux, m3 H20/m2s. 

Volumetric groundwater flux for buoyancy flow 
part of Eq. (35), m3 H20/m2s. 
Volumetric groundwater flux for forced convection 
part of Eq. (35), m3 H20/m2s. 
x-component of q, m3 H20/m2s. 

y-component of q, m3 H20/m2s. 

z-component of q, m3 H20/m2s. 

Horizontal buoyancy flow across thermal front, 
m3 H20/m2s. 
Characteristic buoyancy flow defined by Eq. (9), 
m3 H20/m2s. 
Radius of circular region in case H, m. 
Retardation factor for solute transport 

Radius at inner boundary in case E, m 

Radial coordinate, m 
Tilting function defined by Eq. (82) 
Tilting parameter equal to Ktana. 
Temperature, °C. 
Temperature of region 0, °C; ambient temperature, 
°c. 
Temperature of region 1, °C; injection temperature, 
°c. 
Time, s. 
Characteristic tilting time defined by Eq. (33), s. 

Thermal velocity equal to Cwq/C, m/s. 

Horizontal coordinate, m. 
Horizontal coordinate, m. 
Vertical coordinate, m. 



a' 
8 
y 

Tilting angle. Angle between straight thermal 
front and vertical axis. 
Tilting angle for isotropic case ( K = 1) 
Viscosity factor equal to ~O/~l 
Forced-convection tilting parameter defined by 
Eq. (77). 
Energy recovery factor 
Anisotropy factor, equal to Ik'/k 
Thermal conductivity, W/mK 
Dynamic viscosity, kg/ms 
Dynamic viscosity in region 0, kg/ms 

Dynamic viscosity in region 1, kg/ms 

Density, kg/m3 
Density in region 0, kg/m3 

Density in region 1, kg/m3 
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Angular tilting rate defined by Eq. (30), rad/s 

Angular tilting rate for case A, given by Eq. (32), 
rad/s 
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MECHANICS OF FLUIDS IN LAYERED SOILS 

Arnold Verruijt 
Dept. of Civil Engineering 
University of Delft 
2628 CN Delft, The Netherlands 

ABSTRACT 

Frans B.J. Barends 
Delft Soil Mechanics Laboratory 
P.O. Box 69 
2600 AB Delft, The Netherlands 

In this chapter the mechanical behaviour of layered porous, 
saturated soils, typically consisting of strata of clay and sand 
is discussed, from the viewpoint of phenomena such as subsidence 
due to the extraction of fluids from the aquifer. Special attention 
is paid to the influence of permeability contrasts such as occurring 
in a soil system consisting of layers of clay and sand, and the 
relative importance of the compressibilities of the various layers. 
In many existing models the deformations of the clay layers are 
disregarded, so that all surface settlements are due to deformations 
of the sandy aquifers. This may be acceptable for relatively thin 
layers of stiff clay. In many circumstances, however, such as may 
occur in delta's of large river systems, it may be necessary to 
take into account the deformation of the clay layers. For such 
situations two possible approximate models are presented. The 
models are compared to a full numerical solution, which can be 
considered to represent the true solution of the coupled problem. 

1. INTRODUCTION 

Natural soils often consist of layers of different properties, 
with layers of high permeability (sand layers) interspersed with 
layers of low permeability (e.g. clay). For the prediction of the 
subsidence of such a system due to the withdrawal of groundwater, 
or due to an external loading of the soil, the compression of all 
strata must be taken into account. 

The problem is of a transient nature, with the propagation of 
pore water pressure differences being retarded by the combined 
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effect of flow of groundwater and the compression of the soil. The 
process can be considered to be a generalization of the steady state 
type problems of groundwater flow in layered soils. For problems 
of this type two types of approach are available, which can be 
denoted as the aquifer model and the more general three 
dimensional Biot model. In the aquifer model, first used by 
De Glee (7), vertical flow is assumed in the clay layers (the 
aquitards) and horizontal flow in the sand layers (the aquifers). 
This leads to relatively simple equations. In the general three 
dimensional model, which is due to Biot (3) no assumptions with 
regard to the flow field or the deformation field are necessary, but 
as a result the system of equations is of a more complicated form. 
The two types of models can be related by a process of averaging, 
see e.g. Corapcioglu and Bear (5). 

The actual transient behaviour of a soil system is determined 
on one hand by hydraulic properties, such as permeability, and on 
the other hand by mechanical properties, such as compressibility and 
shear resistance. One of the main characteristics of the process 
is the difference in accuracy of these parameters. Darcy's law, 
which is the basis of the hydraulic part of the process, is generally 
considered to be a rather accurate description of the fluid flow in 
a porous medium. The description of the mechanical behaviour of a 
soil, by compressibility coefficients and shearing resistance, is 
of a much more controversial nature, involving uncertainties such 
as geological history (pre-consolidation, pre-shearing), shear 
failure, dilatancy, and creep. A review of possible models has 
been given by Corapcioglu (6). 

It is postulated here that a well-balanced description of the 
physical processes should be of the following general nature. First 
of all a realistic description of the geometry should be used, taking 
into account the layered structure of the soil, with different 
permeabilities and compressibilities. The coupling of the fluid 
flow and the deformation can be taken into account by an analysis 
in two stages. In the first stage the pore pressures are calculated, 
disregarding the feedback from the deformation process, but instead 
using a simplified unique relation between effective stresses and 
pore pressures. This is certainly not justified in many problems 
from soil mechanics practice, in which the fluid flow is generated 
by external loading of the soil. In groundwater hydraulics, however, 
the underlying assumption that the total stresses are constant in 
time, is acceptable, at least as a first approximation. The defor­
mations of the soil due to the pore pressure variations can be 
calculated in a second stage, using the pore pressures determined 
from the hydraulic model as input in the deformation model. It may 
be noted that the same approach is generally used in reservoir 
engineering (8). 
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In this chapter the aquifer approach will be used, without 
going into the possible justification of this model, perhaps 
involving such refinements as horizontal deformability of the soil 
layers. A first order model, due to Jacob (10) and Hantush (9), is 
to take into account the compression of the aquifers only, disregard­
ing the compression of the aquitards. A large number of solutions 
for this type of model, to be denoted as the first order model, have 
been obtained, especially by Hantush (9). Physically speaking this 
may not be a realistic set of assumptions, because clay layers are 
often more compressible than sand layers, and therefore disregarding 
their compression is not justified, except in case of clay layers 
of very small thickness. 

In order to account for the deficiencies of the first order 
model more refined models have been developed, in which the compres­
sibility of the aquitards is taken into account, by Neuman and 
Witherspoon (11). It follows from this theory that the influence 
of the compressibility of the aquitards may be considerable. Unfor­
tunately the exact solutions of the problem are mathematically rather 
inconvenient, and for that reason a simplified approach has been 
proposed by Barends (1). This approach, to be denoted as the pseudo­
exact model, will be presented in this chapter, together with an 
approximate model, to be denoted as the second order model, in 
which the pressure variation in the aquitard is represented in a 
simplified way. It will be shown that these models can be useful 
tools for the prediction of the progress of subsidence. 

A deficiency of most existing transient theories of subsidence 
is that the deformation properties of the soil are usually highly 
schematized, in order to keep the system of equations amenable to 
mathematical analysis. This may mean that the accuracy of the 
prediction of the ultimate subsidence is less than what might be 
attained for, taking into account the achievements of non-linear 
soil mechanics. Thus the long term problem of subsidence at constant 
pore pressures should be considered separately, taking into account 
phenomena such as creep. 

2. DEFINITION OF THE MODELS 

In this section the two approximate theories will be presented. 
For reasons of simplicity the considerations will be restricted to 
the simple system of a single aquifer and a single aquitard. The 
theories can easily be generalized to systems of more layers, 
however. 

The first approximate approach is to consider the flow in the 
aquifer to be horizontal, and in the aquitard to be vertical, to 
take into account the compressibility of the aquifer and the 
aquitard, and then to use the Laplace transform technique with 
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Schapery's inversion formula to solve the system of equations (1). 
In this way it is assured that the solution is correct for t=O and 
for t + 00. For smooth processes the Schapery approximation is often 
very good, and it will be shown that in the present case the approx­
imation is at least reasonably good. This approximation will be 
denoted as the pseudo-exact model. 

As an alternative a physical approximation will be presented, 
to be denoted as the second order model, in which the flow in the 
aquitard is represented by a parabolic variation of the head. This 
can be considered to be analogous to a finite element approximation, 
using a single second order element to represent the flow and comp­
ression in the aquitard. This model will appear to be less accurate 
for small values of time, but somewhat better for large values of 
time. 

2.1. The Second Order Model 

Consider the non-steady flow of groundwater in a layered soil 
consisting of an aquifer and an aquitard, which separates the aquifer 
from another layer in which the groundwater head is constant in time 
and space, (see Fig. 1). This constant will be taken as the 
reference level for all other heads. The heads are influenced by 
a certain action in the main aquifer, for instance a well that starts 
operating at time t=O. 

The basic flow mechanism to be considered is the same as in the 
first order theory: mainly horizontal flow in the aquifer, and ver­
tical flow in the aquitard. 

The groundwater head in the aquifer will be denoted by~. Under 
conditions of steady flow the head in the aquitard would vary 
linearly from 0 at the top (z=O) to ~ at the bottom (z=d). In the 
beginning of the transient state the head in the aquitard will lag 

Figure 1. Leaky aquifer. 
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behind the value in the aquifer, however, and the final state will 
be reached only after completion of the consolidation process of 
the clay. In order to describe the head in the aquitard in an 
approximate way such that the physical process of consolidation as 
well as the ultimate steady state can be described, it is assumed 
that at all times this head can be written as 

h = 4(z/d)(1 - z/d)~ + (z/d)(2z/d - l)¢ (2.1) 

where ~ is the head in the center of the aquitard (for z = ~d). It 
can be seen from Eq. (2.1) that for z = 0: h = 0, for z = ~d: h = ~, 
and that for z = d: h = ¢. The expression (2.1) actually represents 
a quadratic function defined by the three values 0, ~ and ¢, at the 
top, in the center, and at the bottom, respectively. If ~ = ~¢ 
(in the final steady state) the formula reduces to a straight line. 

The parabolic variation of the head in the aquitard can be 
considered to be a first refinement of the classical theory, in 
which the flow rate in the aquitard is constant at all times, which 
corresponds to an assumed linear variation of the head. Considering 
the classical theory due to Jacob (10) as the first order theory 
the present approach can be denoted as a second order model. Further 
refinements can be made by assuming a higher order variation of the 
head. 

It follows from Eq. (2.1) that 

(2.2) 

This means that the second derivative is constant over the 
thickness of the aquitard. Another consequence of Eq. (2.1) is the 
following expression for the leakage from the aquitard to the 
aquifer 

L = - k(dh/dz)z=d = - (3¢ - 4~)/c (2.3) 

where c is the resistance of the aquitard (c = d/k). In the final 
steady state, when ~ = ~¢, one obtains L = - ¢/c, as in the classical 
theory. 

The equation describing the process of consolidation of the 
clay layer is (13) 

(2.4) 

where Cv is the consolidation coefficient, defined by 

(2.5) 
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Here rnv is the compressibility of the clay, and Yw is the volumet­
ric weight of water. For the sake of future convenience a storativ­
ity Sc is now defined as 

Physically speaking this quantity represents the settlement of the 
clay layer if the effective stresses in it are uniformly increased 
by a pressure of 1 meter water, in agreement with the usual defini­
tion of storativity. 

The consolidation equation (2.4) cannot be satisfied uniformly, 
but only on the average. This leads to the following condition 

4d~/dt + d~/dt = l2(~ - 2~)/tc (2.7) 

where 

(2.8) 

This quantity is a measure for the duration of the consolida­
tion process. In the case of uniform consolidation of a layer 
drained on both sides the consolidation process is usually said to 
be practically completed (for 99%) if cv t/d2 = 0.5, or t = tc. 

Equation (2.7) is one of the basic equations of the present 
theory. It describes a relation between the head ~ in the aquifer, 
and the head ~ in the (center of the) aquitard. 

2.1.1. Flow in the aquifer 

The flow in the aquifer can be described by the following 
equation, which is based on Darcy's law, assuming horizontal flow, 
and the continuity condition, 

(2.9) 

where T is the transmissivity of the aquifer, assumed to be constant, 
and Sa is the storativity. The leakage from the aquitard is given 
in Eq. (2.3). Substitution of that expression into Eq. (2.9) gives 

(2.10) 

where A is the leakage factor, 

(2.11) 

Equation (2.10) is the second basic equation of the theory 
presented here. The governing differential equations of the problem 
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considered are Eqs. (2.7) and (2.10), which should be solved together 
with the appropriate initial and boundary conditions. Some examples 
will be considered later. First it will be verified whether the 
present equations are compatible with some well-known limiting cases. 

2.2. Rigid Aquitard 

If the aquitard is completely rigid Sc = 0, and it then follows 
from Eq. (2.8) that tc = 0, and from Eq. (2.7) that ~ = '¢' This 
means that Eq. (2.10) reduces to 

(2.12) 

This is indeed the familiar differential equation for non-steady 
flow in a leaky aquifer, disregarding the compression of the aquitard. 
The coefficient in the right hand side is usually written as (S/T). 
It can be concluded that the present model is indeed a generalization 
of the classical theory of Jacob (10). It should be noted that the 
case of a single aquifer, with no leakage at all, is of course also 
included in the model. For A + 00 the third term in Eq. (2.12) 
vanishes. Thus the solutions of Theis (14) and Hantush (9) are 
special cases of the second order model. 

2.3. Response of Aquitard to Step Function 

Another interesting limiting case is the response of the 
aquitard to a sudden change of the head in the aquifer. This is a 
standard problem from the theory of consolidation. For the case 
that the head ¢ jumps at time t = ° from its original zero value to 
~¢ the solution of the consolidation equation (2.4) can be determined 
by using the Laplace transform technique. The solution is 

h A",{~ + ~ ';: (_l)k 2 2 2 
ti~ d n k~l k sin(knz/d) exp[-k n cvt/d ]} 

The head in the center (for z = ~d) is found to be 

h 
m 

(2.13) 

(2.14) 

It can be shown that the value for t 
sum of the series then is n/4. 

° is indeed zero, because the 

A quantity of special interest is the deformation of the entire 
layer. In general one may write 
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d 

f ah dz 
- mvyw at 

o 
(2.15) 

where ~ is the displacement of the top of the layer, with respect to 
its bottom. After performing the necessary differentiations and 
integrations one obtains, with Eq. (2.6), 

(2.16) 

The negative value obtained for t + 00 indicates that the soil 
expands if the head increases. For t = 0 the deformation is zero, 
because the sum of the series is then precisely TI2j8. 

The analytical results will now be compared with the results 
obtained from the second order theory presented above. The equation 
to be solved in this case is Eq. (2.7), where ¢ is the step function 
defined before. The solution of this problem, which can be obtained 
most conveniently by using the Laplace transform technique, is 

(2.17) 

For t + 00 this indeed approaches the steady state value ~~¢, 

but for t=O the solution gives a step value of -*~¢, which is 
perhaps unexpected. This behaviour of the approximate solution is 
caused by the (implicit) condition in the theory that at the moment 
of loading no net loss of water can be generated, so that the average 
head must be zero. If the head at the lower boundary is increased 
this must be balanced by a reduction of the head in the center. 

The deformation can be calculated from Eq. (2.15) and Eq. (2.4) 
and (2.2). The result is 

(2.18) 

The initial and ultimate values of this expression are both in 
agreement with the exact solution [Eq. (2.16)]. Apparently the 
initial step in the head in the center is necessary so that the 
settlement at t = 0 is zero, or that the average head remains zero. 

The exact and approximate solutions for the total deformation 
are shown in Figure 2. The approximate formula [Eq. (2.18)] is 
indicated as "2nd order". The agreement appears to be reasonably 
good, except for small values of time. 
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Figure 2. Exact and approximate solutions for the deformation. 

As an alternative approximation the results of a pseudo-exact 
model are also shown in Figure 2. These results have been obtained 
by following an approach proposed by Barends (1), which is based 
upon an exact description of the consolidation process in the aqui­
tard. By using the Laplace transformation to transform the two 
basic differential equations, for the vertical compression of the 
aquitard, and the horizontal flow in the aquifer, a solution in the 
domain of the Laplace transform parameter can be obtained. As an 
approximation to the inversion of this solution Schapery's approx­
imate formula is then used. The result is 

(2.19) 

It can be seen from Figure 2 that this approximation is better for 
small values of time, but somewhat less accurate for large values 
of time. Both approximations seem to be sufficiently accurate for 
engineering purposes. 

Another interesting quantity is the leakage from the aquitard 
into the aquifer. The exact solution for this quantity, for a step­
wise variation of the head in the aquifer, is 

00 

L -(6¢/c){1 + 2 L exp[-k 2 TI 2 c t/d 2 ]} 
k=l v (2.20) 



250 

The approximate solution for the second order model is, from 
Eq. (2.3) and (2.17), 

L = - (~~/c){l + 3exp(-6t/tc )} (2.21) 

The pseudo-exact solution, using Schapery's inversion formula, 
is 

L (2.22) 

A comparison of these exact and approximate solutions for the 
leakage from the aquitard into the aquifer is shown in Figure 3. 
Again the approximation by using Schapery's inversion formula is 
(much) better for small values of time, whereas the approximation 
based upon a parabolic variation of the head in the aquitard is 
better for large values of time. The failure of the second order 
model for small values of time must be due to the fact that at all 
times the head in the aquitard is approximated by a parabola, see 
Eq. (2.1), and this is inaccurate immediately after a stepwise 
variation at one of the boundaries. The leakage into the aquifer, 
which is infinitely large in the exact and pseudo-exact models, is 
actually underestimated. The deformation and the average head are 
approximated much better. Actually the curves shown in Figure 2 
can also be considered to represent a comparison of the average 
head, for which the approximation is reasonably good. It can also 
be expected that for more gradual changes of the head at the boundary 

1 

l/L 

-o 
0.001 

2nd ONe. 
~ ~ 

ex~~io""" 
-. elldo-exact 

II "I T 
0.01 

I) r 

/ 
A ,;' 

/. V V 
.#J V 

II'" /" 
~ .... ~ 

0.1 

Figure 3. Exact and approximate solutions for the leakage. 
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a parabolic approximation may be sufficiently accurate. 
sections it will be found, from other comparisons, that 
order model may be a useful tool, despite its inability 
describe variations of high frequency. 
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In later 
the second 
to correctly 

The two special cases investigated above can be considered as 
the two extreme situations. In the case of a rigid aquitard the 
storage in the aquifer is dominant, and in the second case the 
principal phenomenon considered is the storage in the aquitard. In 
general it can be concluded that the second order model, based upon 
a parabolic variation of the head in the aquitard, gives a good 
approximation of the subsidence, especially after some time. The 
response immediately after a stepwise variation of the head is 
approximated somewhat better by the pseudo-exact model, using 
Schapery's inversion formula. 

As a next step in the presentation of the theory the solution 
of some particular problems will be considered. 

3. ONE-DIMENSIONAL FLOW 

Perhaps the simplest example is that of one-dimensional flow 
in a semi-infinite aquifer, bounded by a long canal in wh~ch the 
groundwater head is increased from its initial value 0 to a value 
~o at time t=O. 

Two special cases of this problem can be used for the purpose 
of reference, namely the steady state solution, and the solution for 
a single aquifer in the absence of leakage. The steady state 
solution is the standard formula for a leaky aquifer, 

~ = ~o exp(-x/A) (3.1) 

The solution of the problem in the absence of leakage can be 
obtained from Eq. (2.9), by taking L = O. This solution is found 
to be 

~o erfc(x/(S/4Tt)) (3.2) 

For t = 0 the value of ~ is 0, and for t + 00 the solution 
approaches ~o' everywhere, as it should. 

The solution of the general problem for the approximate model 
can be investigated by using the Laplace transform technique (4). 
If the Laplace transforms of ~ and ~ are denoted as @ and ~, 

respectively, the first basic equation, the transform of Eq. (2.7), 
is as follows 

4s~ + s@ l2(@ - 2~)/tc (3.3) 
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where s is the Laplace transform parameter. It follows from this 
equation that ~ can be expressed in terms of T, 

The Laplace transform of the second basic equation, Eq. (2.10), 
is 

(3.5) 

The head ~ in the aquitard can be eliminated with the aid of 
Eq. (3.4). This gives 

(3.6) 

where ta is a parameter characteristic for the time scale in the 
aquifer itself, defined by 

(3.7) 

It is to be noted that this expression is of the same form as 
Eq. (2.8). The process appears to contain two different time scales, 
one for the aquifer response and one for the response of the aquitard. 

The solution of Eq. (3.6) subject to the boundary conditions 
at infinity and at x = 0 (x = 0: ¢ = ¢o) is 

(3.8) 

The mathematical problem now remaining is to determine the 
inverse Laplace transform of Eq. (3.8). Unfortunately this is not 
a standard inversion, and therefore only an approximation will be 
presented. 

3.1. Schapery Approximation 

A simple approximate inversion formula, applicable to non­
oscillating phenomena, is the so-called Schapery approximation, 
already introduced and used in the previous chapter. This approxima­
tion is exact for t = 0 and for t = 00 (12). In the case of Eq. 
(3.8) the result is 

(3.9) 

For t = 0 the head is zero everywhere, as it should be, and for 
t = 00 the solution reduces to the familiar result of a simple 
exponential function, defined by the leakage factor A. 

It is interesting to note that the solution can also be written 
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in the general form 

¢/¢o = exp{-X/A*} (3.10) 

where A* is a time-dependent leakage factor, defined by 

(3.11) 

where, as defined in Eqs. (2.8) and (2.16), 

(3.12) 

The concept of a transient leakage factor was introduced by 
Barends (1), using the pseudo-exact approach, as follows. The 
consolidation of the aquitard is described by the differential 
equation (2.4). The Laplace transform solution of this equation, 
satisfying the boundary conditions that h = 0 for z = 0, and h = ¢ 
for z = d, is 

(3.13) 

This means that the leakage into the aquifer is, with Eq. (2.8), 

(3.14) 

Substitution into the Laplace transform of the differential equation 
(2.9) for the head in the aquifer gives 

d2~/dx2 = ~/(A#)2 (3.15) 

where A# is a modified leakage factor, depending upon the Laplace 
transform parameter s. After solution of the differential equation 
and inverse transformation by Schapery's approximation the result 
is again of the simple form of Eq. (3.10), with now the time depen­
dent leakage factor defined as 

(3.16) 

Formula (3.16) is an alternative to Eq. (3.11). Both expres­
sions tend toward A if t + 00, and they vanish if t = O. Some more 
insight in the behaviour of the solutions can be obtained by plot­
ting the expressions (3.11) and (3.16), (see Figure 4 and Figure 5). 
In these figures the transient leakage factor is plotted for 5 
values of tc/t~ namely 0.1, 1, 10, 100 and 1000 (from left to right 
in the figures). Values of tc/ta smaller than 0.1 (down to 0) give 
the same result as for tc/ta = 0.1. This means that the classical 
solution is correct if the storativity of the aquitard is less than 
10% of the storativity of the aquifer, or, as indicated by the 
figure, even if the two storativities are of the same order of 



254 

1 

* A /A 

---o 
0.001 

./ 
,,'" 

"" 

0.01 

~ 

o~ 

# ;I 

o. ..110 ~oo 
/ ",'" :..-

~v r;;;-

I~ ~ 

0.1 10 

Figure 4. Transient leakage factor, Eq. (3.11) 

1 ",-

~'" 
/" 

W * A /A 

'L / 

/ V 

o. l~1 0 1 

~ 

v 

~~ 

i".--~ 

V-
V 

~ 

~ ;I /" Vr"" 

o 
0.001 

.....eI 

0.01 

/ 
~~ ,/ 

0.1 

""'~ 
".,. 

". 

1 10 

Figure 5. Transient leakage factor, Eq. (3.16). 

./ ~ 

v 
~O(~ 

100 1000 

", 

I 

/' 

100 1000 



255 

magnitude. If the storativity of the aquitard is large compared to 
the storativity of the aquifer the classical solution, disregarding 
the storage in the aquitard, is no longer applicable. 

For t = ° the value of the transient leakage factor is indeed 
zero, which indicates that for small values of time the drawdown 
is restricted to the immediate vicinity of the disturbance at x = 0. 
For larger values of time the transient leakage factor increases, 
indicating a growing region of influence. For large values of time 
the transient leakage factor approaches the steady state value A. 

For very large values of the parameter tc/ta (that is for 
relatively stiff aquifers) the solution (3.11) seems to have a 
plateau at the level L =~. Actually this is confirmed by the 
behaviour of the original transformed solution. If the aquifer is 
completely rigid one obtains ta = 0, and then the transformed 
solution (3.8) reduces to the following form 

(3.17) 

As is well known (see e.g. 4) the behaviour of a function for 
small values of time can be obtained by taking the transform para­
meter s very large. It follows from Eq. (3.17) that for large 
values of s 

(3.18) 

Inverse transformation now shows that for small values of time 
the solution is approximately, 

(3.19) 

This is the steady state solution, with A replaced by ~A. 

It should be noted that the particular behaviour of the second 
order model, with the plateau at half the maximum level, is a 
mathematical property, which is caused by the particular type of 
approximation of the head in the aquitard, namely the parabolic 
variation, and has no physical significance. The parabolic approx­
imation underestimates the leakage at the beginning of the process. 
It has been found that a higher order approximation, involving a 
third order approximation, leads to a better approximation for 
small values of time. As compared to the direct Schapery approxima­
tion for an aquitard of finite thickness, which is more accurate for 
small values of time, the second order model has the advantage that 
it consists of a complete set of differential equations, and thus 
can easily be extended to nonhomogeneous soil layers. This model 
also admits a numerical solution, which will be presented below. 
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4. NUMERICAL SOLUTION 

As the analytical approach followed above did not lead to a 
closed form solution, even for the simple one dimensional case, but 
only lead to an approximate solution, the accuracy of which remains 
unknown, it may be illuminating to attempt a numerical solution of 
the problem. On the basis of the results obtained above it seems 
reasonable to distinguish between two types of problems: one for 
rigid or almost rigid aquifers, in which case there is an immediate 
response followed by a gradual adjustment, and one for systems in 
which the storativity of the aquifer is of the same order of magni­
tude, or even larger, than the storativity of the aquitard. In 
the latter case it can be expected that the response of the aquitard 
is semistatic. 

The system of equations to be solved is, for the one-dimensional 
case, see Eqs. (2.7) and (2.10), 

4a~/at + a¢/at = l2(¢ - 2~)/tc (3.20) 

a¢/at = (A2/2ta)a2¢/ax2 - (3¢ - 4~)/2ta (3.21) 

The simplest way to approximate this system of equations is 
by an explicit finite difference scheme. An explicit expression for 
a~/at can be obtained by elimination of a¢/at from the two equations, 
and then both the increment of ~ and of ¢ can easily be calculated, 
using a central finite difference for the second order spatial 
derivative. The main disadvantage of such an approximation is that 
the time steps must be taken rather small in order to maintain 
stability. Therefore a somewhat better approximation is to use a 
central finite difference in time or a backward difference, in 
which case an implicit system of equations is obtained. 

An elementary computer program performing the numerical solu­
tion by a fully implicit scheme, using a constant spatial finite 
difference, is reproduced below. The program has been written in 
BASIC, with input entered interactively, with the program asking for 
values of A, the space step ~x, the two time parameters tc and t a , 
the time step ~t, and some output parameters. Output consists of 
a list on the screen or the printer, of the head in the aquifer and 
the head in the aquitard, both expressed as a ratio of the final 
steady state value of the head in the aquifer, exp(-X/A) , in a single 
point of the system. The data calculated are also stored in a data­
file, for later processing, for instance the construction of a graph. 
The program itself gives a suggestion for the magnitude of the first 
time step, which is based upon the stability criterion for the 
explicit process, and which has been derived in the usual way, by 
requiring that all possible distributions of errors are damped by 
the numerical process. After each time step the magnitude of the 



Table 1. Computer Program for One Dimensional Flow 

100 CLS:PRINT"Aquifer-Aquitard":PRINT:DEFDBL A-H,O-Z:DEFINT I-N 
110 DIM F(lOOO),G(iOOO),DF(lOOO),DG(lOOO):NN=lOOO 
120 DIM TJ(1000),FJ(1000),GJ(1000):NT=1000 
130 INPUT"Leakage factor ............... ";Z 
140 INPUT"Space step ................... ";DX:IF DX>Z/2 THEN DX=Z/2 
150 INPUT"Characteristic time clay ..... ";TC 
160 INPUT"Characteristic time sand ..... ";TA 
170 N=INT(5*Z/DX+.5):IF N)NN THEN N=NN 
180 A$="####.####":B=l+DX*DX*(7+72*TA/TC)/(4*Z*Z) 
190 Tl=2*TA*DX*DX/(B*Z*Z):B=1+7*DX*DX/(4*Z*Z):T2=TA*DX*DX/(B*Z*Z) 
200 PRINT"Suggestion 1 for time step ... "; : PRINT USING A$;Tl 
210 PRINT"Suggestion 2 for time step ... ";:PRINT USING A$;T2 
220 INPUT"Time step .................... ";DT 
230 PRINT"Output on printer (Y/N) ...... ? ";:GOSUB 480 
240 INPUT"Output for node number ....... ";J 
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250 INPUT"Name of datafile ............. ";D$ 
260 CLS:T=O:FF=EXP(-J*DX/Z):FOR 1=0 TO N:F(I)=O:G(I)=O:NEXT I:F(O)=l 
270 IF P$="N" THEN 300 
280 LPRINT"Leaky aquifer, tc/ta = ";:LPRINT USING A$;TC/TA 
290 LPRINT"x/L = ";:LPRINT USING A$;3*DX:LPRINT 
300 FOR 1=0 TO N:DF(I)=O:DG(I)=O:NEXT I 
310 AC=DT/TC:AA=DT/TA:A=Z*Z/(DX*DX):A2=AA/2:C=(1+(1.5+A)*AA):D=4+24*AC 
320 K=K+l:FOR IT=l TO N:FOR 1=1 TO N-l 
330 B=A2*(A*(F(I+l)-2*F(I)+F(I-l)+DF(I+l)+DF(I-l»-3*F(I)+4*(G(I)+DG(I») 
340 DF(I)=B/C:B=12*AC*(F(I)+DF(I)-2*G(I»-DF(I):DG(I)=B/D 
350 NEXT I:NEXT IT:FOR 1=1 TO N:F(I)=F(I)+DF(I):G(I)=G(I)+DG(I):NEXT I 
360 T=T+DT:B=G(J)/F(J):TJ(K)=T/TA:FJ(K)=F(J)/FF:GJ(K)=G(J)/FF 
370 PRINT" t/ta = ";:PRINT USING A$;T/TA; 
380 PRINT" .f/ff = ";:PRINT USING A$;F(J)/FF; 
390 PRINT" g/ff = ";:PRINT USING A$;G(J)/FF; 
400 PRINT" g/f = "; : PRINT USING A$;B:IF P$="N" THEN 450 
410 LPRINT" t/ta = ";:LPRINT USING A$;T/TA; 
420 LPRINT" f/ff = ";:LPRINT USING A$;F(J)/FF; 
430 LPRINT" g/ff = ";:LPRINT USING A$;G(J)/FF; 
440 LPRINT" g/f = ";:LPRINT USING A$;B 
450 DT=1.2*DT:E=1-F(J)/FF:IF E).OOOI AND K(NT THEN 310 
460 OPEN "O",#l,D$:PRINT#l,K:FOR 1=1 TO K:PRINT#l,USING A$jTJ(I) 
470 PRINT#l,USING A$;FJ(I):PRINT#l,USING A$;GJ(I):NEXT I:CLOSE #l:END 
480 P$=INPUT$(l):IF P$="Y" OR P$="y" THEN P$="Y":PRINT"Yes":RETURN 
490 IF P$="N" OR P$="n" THEN P$="N":PRINT"No":RETURN 
500 GOTO 480 
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time step is mUltiplied by a given factor 1.2, in order to accelerate 
the process. Experience with the program, on an IBM-PC, has shown 
that it is working reasonably well, although it may be slow, 
especially when using small space steps. Of course the calculation 
speed can be improved by using a compiler, or an arithmetic 
coprocessor. 

For four values of tc/ta namely 0.1, 1, 10 and 100, the results 
of the numerical solution are shown in Figure 6. Figure 7 shows the 
approximate solutions obtained for the second order model by using 
Schapery's inversion formula, and Figure 8 shows the results 
obtained from the pseudo-exact model, again using Schapery's inver­
sion formula, but now on the basis of the exact expression for the 
Laplace transform of the solution. All results apply to the point 
x = A. 

The numerical solutions shown in Figure 6 agree reasonably well 
with the approximate solutions shown in Figure 7, which indicates 
that the simple approximation by Schapery's formula is sufficiently 
accurate. Again for large values of the ratio of the response times 
of aquitard and aquifer a solution consisting of two waves (at least 
on the semi-logarithmic scale used) is observed. This is probably 
unrealistic, as can be seen from Figure 8, which shows the Schapery 
approximation of the exact solution. Actually a better approxima­
tion to the true solution might be obtained by using a more refined 
numerical inversion scheme, involving a series of terms rather than 
the single term used here. The advantages of a simple analytical 
result is somewhat lost then, however. 

5. COMPLETE NUMERICAL SOLUTION 

In order to compare the approximate results presented above, 
in the Figures 7 and 8, with the exact solution a fully numerical 
model for the complete system of aquifer and aquitard has been 
developed. This model is again based upon the usual assumptions 
that the flow in the aquifer is horizontal, and that the flow in 
the aquitard is strictly vertical. The head in the aquifer is 
approximated by a finite element scheme, and then in each node of 
the network a vertical inflow (leakage) is entered from a vertical 
column. The soil in this column (representing the aquitard) is 
consolidating under the influence of the boundary condition on its 
lower boundary. The column is subdivided into a number of one 
dimensional elements (say 10). This means that the number of 
unknown values of the head equals the number of nodes in the finite 
element mesh, multiplied by the number of points in the columns. 
This may be a rather large number, but because of the simple geomet­
rical structure of the system (see Figure 9), with horizontal connec­
tions only in the lower plane only, the system matrix can be set up 
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in such a way that solution of the system of linear equations takes 
advantage of that structure. 

A numerical model for this problem has been written, again in 
BASIC for the IBM-PC, using a finite element approximation in the 
x,y-plane and a fully implicit finite difference approximation in 
the vertical columns. The one dimensional problem considered in 
the previous section can be analyzed by using a simple network of 

a line of elements (as shown schematically in Figure 9). The results 
are shown in Figure 10, again for the point x = A. The numerical 
solution shown in Figure 10, which can be considered to be a close 
approximation of the "true" solution, compares reasonably well with 
the approximate solutions shown in Figures 7 and 8. It again 
appears that the classical first order model is justified if the 
storativity of the aquitard is less than the storativity of the 
aquifer. 

6. FLOW TOWARDS A WELL 

An important problem is the case of radial flow towards a well. 
In this case the simplest transient solution known is the solution 
of Theis (14) for a well in a completely confined aquifer. This 
solution can be considered to be a limiting case of the more general 
system considered here, applicable for situations in which there is 
no leakage, or when the permeability of the aquitard is so small 
that it can hardly contribute to the flow in the aquifer. The 
Theis solution is 
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(6.1) 

where El(x) is the exponential integral, and Q is the discharge of 
the well. 

For the case of a leaky aquifer the first order solution, in 
which the storage in the aquitard is disregarded, is due to Hantush 
(9) , 

(6.2) 

The function W(u,x) has been tabulated by Hantush, or can be 
calculated by an appropriate numerical subroutine, which can easily 
be programmed. 

The approximate solution obtained from the second order or 
pseudo-exact theory is of the form 

(6.3) 

where Ko(x) is a (modified) Bessel function of order zero, and A is 
the transient leakage factor, defined either by Eq. (3.11) for the 
second order model, or Eq. (3.16) for the pseudo-exact model. 

For four values of tc/ta' namely 0.1, 1, 10 and 100, the 
approximate solutions are shown in the Figures 11 and 12. These 
results apply to the point r = A. 
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A good approximation of the complete solution can again be 
obtained by the numerical model outlined in the previous section, 
using a wedge shaped mesh of finite elements. The results of these 
calculations are shown in Figure 13. 

In Figure 13, the limiting solution for small values of the 
storativity of the aquitard (Hantush's solution) is also shown, 
indicated by the value "0". This indeed seems to be a limiting 
curve of the numerical results. 

The general shape of the approximate solutions is similar to 
the shape of the numerical solution. This means that the approximate 
solutions might well be used as a good indication of the behaviour 
of the system. 

It should be noted that the simple character of the approximate 
solutions presented in this paper enables the application of super­
position of solutions, for instance for systems involving a large 
number of wells, each perhaps with its own discharge function. 



264 

1 

o 
0.01 

..... 1li1i~ 
0.1 

II 

II 
~ JlI 

~ 
(I 

If, J 

II/ 1I 
1/ V 
/ 

i,.,.-' 

1 

~ V 
l/i-' 

"V 7 
V 

II 
[7 

7 

10 100 1000 

Figure 13. Drawdown in radial flow, complete numerical model. 

7. CONCLUSION 

10000 

Two approximate approaches for the analysis of non-steady 
groundwater flow in a layered soil, consisting of a permeable aquifer 
and an aquitard of low permeability, have been presented. Although 
these approximations suffer from the unavoidable deficiency that 
they are unable to describe the behaviour of the systems in all its 
details, the solutions are an improvement on the classical first 
order theory, in which the deformation of the aquitard is completely 
ignored. Compared to the exact solutions available for simple 
systems (11) or to a full numerical solution using a three-dimen­
sional finite element method, the present solutions are much simpler 
to use. The concept of a transient leakage factor may be particul­
arly useful. 
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ABSTRACT 

The migration and capture of particles, such as colloidal 
materials and microorganisms, through porous media occur in fields 
as diverse as water and wastewater treatment , well drilling, 
and in various liquid-solid separation processes. In liquid waste 
disposal projects, suspended solids can cause the injection well 
to become clogged, and groundwater quality can be endangered by 
suspended clay and silt particles migrating to the formation 
adjacent to the wellbore. In addition to reducing the permeability 
of the soil, mobile particles can carry groundwater contaminants 
adsorbed onto their surfaces. Furthermore, as in the case of 
contamination from septic tanks, the particles themselves may be 
pathogens, i.e., bacteria and viruses. 

In this chapter, the equations governing the transport and 
capture of suspended solid particles have been studied in two 
categories. The first category includes transport and deposition 
of particles in an established porous medium. In this category, 
following the review of governing equations and various capture 
mechanisms in deep bed filters, the transport equation for microbial 
particles has been studied. For microbial particles, the governing 
equation for bacterial transport is coupled with a transport equation 
for the bacterial nutrient present in the suspension. The deposition 
and dec logging mechanisms are incorporated into the model as a rate 
process for bacteria and as an equilibrium partitioning for viruses. 

Formation of a cake by deposition of solid particles on a 
filter cloth or on a previous cake constitutes the second category. 
Following a literature survey, a governing equation for cake 
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thickness is obtained by averaging the conservation of mass equation 
for solid particles along cake thickness. Then, the resulting 
equation is solved with known average porosity functions. In 
addition to the balance equation for solid particles, the fluid 
flow equation has been averaged and solved simultaneously to obtain 
an expression for cake thickness. Furthermore, temporal 
and spatial variation of pore liquid pressure across filter cake is 
obtained with a variable total stress expression. 

1. INTRODUCTION 

The transport of suspended particles in a liquid through porous 
media has great importance from the view point of engineering 
practice and industrial applications. The migration and capture of 
particles, such as powders and microorganisms through porous media, 
occur in fields as diverse as water purification (101), waste­
water treatment, activated sludge processes (4), oil and water well 
drilling (35,55), sugar and paper pulp drying, and in many other 
industrial liquid-solid separation processes (102). In addition 
to the filtration processes which separate solids in a liquid slurry, 
the retention of suspended particles in drilling fluids in water 
and oil well drilling operations is another important phenomenon 
(55). The accumulation of these suspended particles on perforated 
well screens causes a pressure drop, and sometimes causes the shut­
down of the well (60,118). By a similar mechanism, unwanted 
perforations in a well case can be closed by squeeze cementing 
operations (10). As noted by Avogadro and others (6,86), colloids 
are released to geologic environments from radioactive waste 
materials. In petroleum reservoirs, the use of diverting agents, 
which are fine ground polymer or resin particles, requires the 
employment of a wellbore model to simulate the behaviour of these 
agents (42). 

In addition to suspended solid particles, microbial particles, 
such as bacteria and viruses, can be introduced to soils and ground­
water from septic tanks and cesspools or by land application of 
municipal wastewater. Although some authors found the microbial 
mass transport negligible for granular filters and soil-microbial 
mass systems (e.g., Wollum and Cassel, 128; Sykes et al., 100), many 
others considered the transport of microorganisms the most signifi­
cant, and used bacteria and viruses to trace groundwater movement 
in much the same manner as chemical tracers are used. A review 
presented by Keswick et al (58) finds that bacterial viruses appear 
to be the microorganisms most suited as a microbial tracer because 
of their size, ease of assay, and lack of pathogenicity. 

The transport and capture of suspended solid particles in a 
porous medium can be studied in two categories. The first category 
is deep bed filters made of granular materials. Suspended 
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particles in a slurry are accumulated onto the grains of an 
established porous medium. The deposited particles decrease the 
available pore volume, and change the geometry and the structure 
of the medium and the nature of the grain surfaces. In constant 
velocity filtration operations, pressure drop across the filterbed 
increases due to the loss of permeability, and eventually, filtration 
efficiency is reduced. Usually, this type of filtration technique 
is used for liquid suspension with a particle concentration in the 
range of 100 ppm. In constant head10ss operations, the liquid flux 
decreases during filtration. Formation of a cake by deposition of 
solid particles on a filter cloth or on a previous medium constitutes 
the second category. This type of filter media is known as filter 
cakes. These cakes are compressible, and during filtration, the 
cake is compacted while fresh solid particles are laid down on the 
cake surface, thereby gradually increasing the thickness. This type 
of mechanism which is used for concentrated slurries, causes a time­
dependent cake build-up. When the cake is deposited at the surface, 
it has a high porosity and large liquid content. As a new filter 
cake is built up, the previous cake surface passes into the cake 
interior, and the liquid is squeezed out as the cake is compressed 
during filtration. In this case, the cake is relatively less 
permeable to permit the build-up of a head of slurry, and the liquid 
flow through the filter cake does not approach steady-state condi­
tions due to changes in compaction and cake thickness. A schematic 
representation of these two types of filtration is given in Figure 1. 

The main objective of this primarily theoretical study is to 
review and present mathematical statements of particle transport 
and capture in porous media. We will consider both types of porous 
media noted above. We should note that one possibility in modeling 
particle transport in porous media is to treat the filter bed as 
an assemblage of individual collectors instead of description by 
phenomenological equations. The former leads to expressions for 
isolated collectors which can be integrated to obtain expressions 
for the entire assemblage. For a detailed discussion of this 
approach, the reader is referred to Yao et al. (130) or Spielman 
(96). On the other hand, phenomenological methods to be 
reviewed in this chapter would yield partial differential equations 
either at the microscopic or macroscopic level depending on the 
size of the differential element of filter volume. Microscopic 
level equations can be transformed to macroscopic ones by volume 
averaging over the representative elementary volume. All 
governing equations developed in this study are at the macroscopic 
level. For a microscopic level treatment of filtration equation, 
the reader is referred either to the paper by Willis (126) 
or to Bear and Bachmat (8) in the prp.vious volume. 
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2. PARTICLE TRANSPORT THROUGH A FIXED BED (DEEP BED FILTRATION) 

Deep bed filtration has been studied by various researchers. 
Ives (48,50), Tien and Payatakes (103), Tien (102), Rajagopalan and 
Tien (78), O'Melia (75), Adamczy et al. (1), McDowell-Boyer et al. 
(69), Sakthivadivel and Irmay (85), Spielman (96), Irmay (45) and 
Herzig et al. (41) provide detailed reviews of various aspects of 
deep bed filtration studies that include theoretical considerations. 

As noted earlier, when a liquid (filtrate) carrying suspended 
particles flows through an established porous medium, the particles 
are transported to the surface of the filter grains (collectors). 
Particles are captured on collectors by mechanisms caused by the 
action of fluid-mechanical forces along with other forces 
acting between the particles and collectors (96). Therefore, we 
will first review these mechanisms. 

2.1. Governing Mechanisms 

To describe the dynamic behavior of deep bed filtration at the 
macroscopic level, we make use of the conservation of mass equation 
for suspended solid particles in a liquid flowing through a porous 
medium, the conservation of mass equation for captured particles 
on solid grains composing the filter bed, and particle capture 
relationships for the deposition of suspended particles onto the 
grain surfaces. 

2.1.1. Transport mechanisms 

The conservation of mass equation for suspended solid particles 
in a single phase fluid flowing through a saturated fixed bed can 
be expressed as 

a(nC) + R = - V.[Cq - nDVC - nD*VC] + S 
at a (2.1) 

where n is the porosity, C is the mass of suspended particles per 
unit volume of liquid (filtrate), R is the rate of depositi~n of 
particles on grains by various part~cle capture mechanisms, q is 
the specific discharge vector, D is the coefficient of convective 
dispersion,and D* is the coefficient of molecular diffusion. Both 
D and D* are second rank tensors. Eq. (2.1) is known in the 
literature as the equation of hydrodynamic dispersion. The term 
Cq in Eq. (2.1) represents the convective transport. The dispersive 
flux represented by nDVC exists only at the macroscopic level,and is 
obtained by volume averaging of microscopic level equations. We 
assume that the dispersive flux is expressed as a Fickian type law 
as given in Eq. (2.1). The term S denotes the growth or decay of 
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suspended particles. One possibility is the decay of radioactive 
colloids or the death or growth of microbial particles. 

The most common types of fixed bed filters used in 
engineering practice are rapid granular-medium filters, deep bed 
filters, and slow sand filters. The first two types of filters are 
essentially the same except for the depth of the filter bed and the 
size of the filtering media. The latter one has a depth of 1-3 
meters. Slow sand filters have a shorter depth with a removable sand 
bed which is replaced when clogged. The filtration rate is in the 
range of 2-5 liters/m2 .min with a head loss from 0.05 m initially 
to 1.25 m when clogged (101). The range of filtration rate in all 
three types of filters justifies the assumption of plug flow. 
Furthermore, Herzig, et al. (41) has noted that particle diffusion 
is negligible when the particle size is larger than 1 micrometer 
(see Fig. 2). With these assumptions, Eq. (2.1) would reduce to 

a(nC) + R 
at a 

+ 
V.Cq + S 

10-1,--------,-------,----------,-------;".-, 

• = Numerical solution 

Vo = 2gpm/sq.ft. 

d = O.5mm 

'Pp = 1.05 gm/cm3 

T = 25·C 

10-4L--_____ ~ ______ ~_~ _ _L~_-L ______ ~ 

10-2 10-1 10 102 

Size 01 the suspended particles (micrometers) 

(2.2) 

Figure 2. Comparison of various capture mechanisms [after Yao et 
al. (130)]. 
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At this point, we can introduce the conservation of mass 
equation for captured solid particles. Assuming that the bed and 
deposited particles are completely rigid, and there is no diffusion 
in the solid phase, we can write 

a(p 0) 
s 

at R 
a 

s 
c 

(2.3) 

where p is the density of the particles and 0 is the volume of 
particl~s per unit volume of filter bed. It is also referred as 
the "absolute specific deposit". S denotes the growth or decay 
rate of deposited particles. As a ~pecial case, if we assume 
constant particle density and neglect the growth or decay term, and 
combine Eqs. (2.2) and (2.3), we obtain 

+ 
\7.Cq (2.4) 

This equation is the widely accepted filtration equation in the 
literature (e.g., Tien(102,103), Rajagopalan and Tien (78)). The 
first term at the left hand side of Eq. (2.4),which describes the 
rate of change of mass of suspended particles in a filtrate, can be 
neglected due to the fact that "in a flowing process [through a 
filter bed] the quantity of liquid contained within the bed is 
usually small compared with the volume of liquid passing through 
the bed" (101). In other words, moving particles are neglected in 
comparison to captured particles. Gruesbeck and Collins (37) and 
Deb (25) have included this term in their formulation to study 
migration of fine particles in petroleum reservoirs. The assumption 
stated earlier would be invalid in such an environment. As 
an alternative to total omission of this term, Tien (102,103) has 
introduced the concept of corrected time variable, S' in an axial 
flow filter as 

jz 
S' t - ~ dz 

qz 
o 

where z is the vertical coordinate and q In is the superficial 
velocity of filter bed in the z-directiofi. Herzig et al. (41) 
names S' as "retention age". Then, (nz/qz) is the time required for 
suspension to reach the bed depth z to replace the clear liquid 
initially filling the porous bed. Then in terms of variables z and 
S', Eq. (2.4) becomes 

o (2.5) 
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Tien (103) has noted that "the difference between t and 8' is 
usually small [due to the length of filtration operations which 
takes several hours]. However, it may become important in the 
interpretation of data from small experimental filters". For the sake 
of obtaining a solution, as seen in Eq. (2.5), either C should 
be expressed in terms of a or vice versa. Such a relation would 
actually quantify the particle capture mechanism. The conservation 
of mass equation given by either Eq. (2.1) or Eq. (2.5) with various 
assumptions stated earlier is totally independent of particle 
capture mechanisms. However, the relationship between C and a is 
a function of physics of particle capture mechanisms and surface 
properties of collectors , including the chemistry of surfaces and 
the type of filtrate. 

2.1.2. Capture mechanisms 

As noted by Spielman (96), the capture mechanism of suspended 
particles on grain surfaces of a porous medium is governed by 
the combined effect of various forces of "fluid-mechanical origin", 
in addition to forces acting between the suspended particle and 
grain which acts as a collector. Various researchers adopted the 
collector approach and studied elementary mechanisms of particle 
capture by utilizing idealized geometrical models of collectors 
(i.e., spherical, cylindrical and constricted tube). Among them, 
Payatakes et al. (76), Spielman and Fitzpatrick (97), Yao et al. 
(130), Herzig et al. (41) ,and Ives (46) can be given as represent­
ative studies. For a review of particle capture mechanisms, the 
reader is referred to Ives (49,50), Spielman (96), McDowell-Boyer 
et al. (69), and O'Melia (75). 

The mechanisms of particle capture can be listed as straining, 
sedimentation, interception, Brownian diffusion, inertial impaction 
and hydrodynamic action. Once a suspended particle is brought to 
the vicinity of a solid surface by one or a combination of these 
forces, London-van der Waals forces and electrical forces at 
interfaces which both act between the particle and collector 
contribute to the attachment of particles colliding with collectors. 
Furthermore, when the flow velocity is increased either locally by 
microscopic changes or throughout the medium by filter operation, 
the deposited particles can be detached from grain surfaces and 
returned to suspension in the flow. This process is known as 
detachment or reentrainment or decolmatage or scouring. At this 
point, we should note that the particle capture process is also 
known in the literature as colmatage or clogging. Following 
Corapcioglu and Haridas (21), we will review these elementary 
capture mechanisms briefly. 

Straining in the contact zones of adjacent pores: Straining 
takes place when a particle in suspension flowing through a pore 
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is larger than the pore opening, resulting in the accumulation of sus­
pended particles on grains. Theoretically, a particle of any 
diameter may wedge in a void between two grains; this is no longer 
valid if the ratio of suspended particle diameter to grain diameter 
is small, since it can be assumed that the particle lies on a surface 
site due to some other mechanisms (e.g., surface forces) (41). 
Although this process is not important in many filtration problems, 
it has been reported to be one of several limitations for bacteria 
traveling through soils (Krone et al. (61), Krone (62) and Gerba 
et al. (33)). To estimate the significance of this effect, Herzig 
et al. (41) gave the following expression for the volume of deposited 
particles with uniform shape per unit volume of total porous medium 
based on purely geometric considerations: 

(2.6) 

where n is the initial porosity; d and d are suspended particle 
and gra~n mean diameters, respectively; aftd Z is the coordination 
number which indicates the interconnectedness in the network of a 
porous medium. Herzig et al. (41) have shown that for n = 0.40 
and Z = 7.0, the retention by this mechanism is importan~ if 
dId ~ 0.05. For bacteria with d = 1 ~m and silt with a mean grain 
dia~eter, 0.01 mm, Eq. (2.6) would give a = 3.02% which is not a 
negligible amount. For very small particles such as viruses, the 
limit could hardly be reached. For a polio virus with a mean dia­
meter of 0.01 ~m in the same soil, it would give a = 3.l0-5%,which 
is practically negligible. Therefore, for large particles, the 
effect of straining should be taken into consideration, but for 
colloidal particles, the effect of straining can be neglected. 

Sedimentation in the pores: Gravitationa~ deposition on grains 
can occur if the particles have a density different from that of the 
liquid. Due to their extremely small size, viruses and some bacteria 
are neutrally buoyant and therefore do not tend to settle. Then, 
any term in the conservation of mass equation characterizing the 
effects of gravitational settling can be neglected. But, Gerba 
et al. (33) reported that the sedimentation could be a mechanism of 
removal for some large bacteria. Yao et al. (130) noted that 
gravitational settling plays a significant part only in the capture 
of relatively large particles ( > 5 micrometers) (Fig. 2); for these 
particles the removal efficiency is proportional to d2 • The 
gravitational velocity as expressed by Yao et al. (130) can be 
used as a criterion to measure the significance of sedimentation: 

v 
g (l-p /p )(mdg/3TI~ d) wsw 

where Ps' d and md are the density, diameter and mass of the 

(2.7) 
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particles, respectively; and p and ~ are the density and viscosity 
w w 

of the water, respectively. 

Interception: Even with exactly the same density as the fluid, 
some suspended particles, owing to their large size, would not be 
able to follow the smallest tortuosities of the fluid streamlines, 
and they will thus collide with the walls of the convergent 
areas of the pores. 

Brownian Diffusion: Colloids, like bacteria and viruses, also 
partially rely on Brownian motion for their movement. Brownian 
motion is a random motion, caused by the thermal motion of molecules 
following their collision with other molecules or with colloids. 
The mass discharge of colloids, J B, by Brownian motion is expressed 
by 

(2.8) 

where C is the concentration of the particles and DB is the diffusion 
coefficient of the suspended particles, which could be estimated 
by the Stokes-Einstein equation: 

(2.9) 

where kb is the Boltzman constant (energy per degree); T is the 
absolute temperature; ~wis the fluid viscosity; and d is the 
diameter of the particles. Smaller particles are collected more 
efficiently due to their greater Brownian motion. Yao et al. (130) 
have shown that for suspended particles smaller than 1 ~m, removal 
efficiency increases with decreasing particle size which is 
accomplished by Brownian diffusion. Many bacteria (7-0. 2 ~m) and 
viruses (0.5-0.01 ~m) in soils are within this range. In deep bed 
filtration, the diffusion process is neglected when the particle 
size is larger than l~. McDowell-Boyer et al. (69) calculates 
DB = 4.3xlO-9 cm2 /sec for 1 ~m diameter particles in water at 20o C. 
Tfiey conclude that although it is a small number,it can be 
significant within soil pores. Avogadro and deMarsily (6) have 
noted that due to Brownian diffusion colloidaL particles may move 
with an average velocity that is faster than that of water in ground­
water. This is known as hydrodynamic chromatography. 

Inertial Impaction: If the particles are massive enough, the 
inertia will force them to collide with the grain instead of 
following the flow streamline. This type of mechanism is determined 
by the Stokes number 

S = ffidU/6ITa ~ a 
t p w 

(2.10) 
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where U is the superficial velocity, a is the collector radius, 
and a is the particle radius. For liquid-borne particles, S is 
very ~mall because ~w is large (Spielman, (96».Therefore, ineftial 
impaction is important for gas-borne particles only. 

Hydrodynamic Action: This type of capture mechanism is caused by 
a no~-uniform drag force on particles due to varying shear field. 
Ives (49) has noted that this phenomenon has been observed for 
different Reynolds numbers in a flow field. As noted by O'Melia 
(75), in many studies hydrodynamic retardation was neglected based 
on the assumption of balance between the hydrodynamic drag increase 
and Van der Waals forces. But when interception and gravitational 
deposition are important, hydrodynamic retardation reduces the filter 
bed removal efficiency by 10% for suspended particles with a radius 
of 1 ~m (75). 

Surface forces,which include London-van der Waals and electri­
cal forces,contribute to the attachment of particles to the collec­
tor surfaces. The van der Waals forces, also called secondary 
bonds or intermolecular forces, are the result of the mutual interac­
tion of electrons and nuclei of molecules or atoms. Although Van 
der Waals forces are always attractive, the electrical forces can 
be either repulsive or attractive depending on the surface charges. 
Sharma et al. (88) has shown that there is an excellent correlation 
between surface charge alterations and bacteria transportability in 
sandpack columns. 

When suspended particles accumulate on the grain surface, the 
straining effect increases with particle accumulation and eventually 
captured particles behave like a filter and remove finer particles. 
When the accumulations grow and become unstable, clusters break off 
which are transported by the flow and may be removed by straining 
and sedimentation. When the clusters break off, particles saturate 
the straining sites below, and the saturated front progresses 
(61). The rate of removal depends on the flow rate, size and 
density of the particle clusters. The deposition of the suspended 
particles by various mechanisms and sloughing off clusters 
(dec logging) are usually simultaneous and caused by changes in the 
flow field. 

In practice, the particle capture mechanism takes place with 
more than one particular mechanism dominating the filtration process. 
The superimposed equations of motion of the mechanisms listed 
above will yield equations predicting the particle trajectory at 
the microscopic level. However, such an approach is theoretically 
more rigorous; its usefulness is limited in solving a macroscopic 
equation such as Eq.(2.5). Instead, empirical equations can be used 
to express a in terms of C or vice versa, and the parameters of 
such a relation can be determined by functional relations obtained 
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by theoretical considerations. Such an approach is similar to 
using mathematical relationships to describe the sorption of 
reactive solutes by soil grains. A survey of mathematical sorption 
relationships can be found in Travis and Etnier (115); their review 
of equilibrium models of adsorption processes include the 
linear, Freundlich, Langmuir and others. First order kinetic 
sorption models include reversible linear, reversible nonlinear, 
kinetic product,and several others. 

Equilibrium sorption isotherm developed by Langmuir to 
quantify the adsorption of gases by solids has very limited use in 
particle capture mechanism in porous media. Various studies such 
as Drewry and Eliassen (Z9), Filmer, et al. (31), and Burge and 
Enkiri (13) have shown that data on capture of viruses by soils 
were found to fit a Freundlich isotherm,and were not describable 
by a Langmuir isotherm. Despite this general consensus, Cookson 
(16) has utilized the Langmuir isotherm in his study for virus 
removal through packed beds. Saltelli et al. (86) utilized the 
following form of Langmuir isotherm to study the filtration of 
microcolloids such as anionic Am(C03 )Z- or cationic Am(HC03 )Z+ in 
glauconitic sand columns. 

C (Z .11) 

where C is the dimensionless concentration of captured microcolloids, 
a2 is a measure of the bond strength holding the microcolloids on 
tne grain surface, and the ratio (a1/aZ) is the maximum amount of 
microcolloids that can be captured oy the grains. The Langmuir 
isotherm given by Eq. (Z.ll) has been employed to explain the 
observed early adsorption of Americium colloids,in addition to a 
second order kinetic model to explain capture mechanism. In other 
words, Eq. (Z.4) would yield to 

[ ~ + ae ) at at 
-+-

'ii'.Cq (Z.lZ) 

It was assumed that the parameters of Eq. (Z.ll) are independent 
of the parameters of o%t. 

The use of equilibrium models like Langmuir isotherm requires 
that the two-phase system (liquid-solid) is at equilibrium after a 
sufficient time period so that the concentrations C and 0 are 
constant. However, equilibrium is not easily obtained in filtration 
columns,or when non-colloidal suspended particles migrate in 
natural soils. In this case, it is much more appropriate to use 
a kinetic model to describe the particle capture mechanisms. 
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Sorption-desorption relationships for reactive solutes in soil are 
usually represented by first order reversible linear models which, 
in general, can be expressed as 

ao 
at k ~ C - k20 

1 p 
s 

(2.13) 

where kl and k2 are sorption (clogging) and desorption (declogging) 
coefficlents,6 is the volumetric water content (6=n when the soil 
is saturated with water), and psis the particle density. In terms 
of particle capture mechanism, Eq. (2.13) states that the rate of 
particle capture is proportional "to the difference between what 
can be [captured] at some concentration and what has already been" 
[captured] (115). In sorption studies, usually kl and k2 are 
constants. But, in filtration studies, not only the state of the 
collector surface, but also the concentration of suspended particles 
participate in the deposition reaction. Therefore, the rate of 
deposition is faster than the one expressed by a first order linear 
model. Then, in a most general way, we can write a higher order 
model as 

ao 
at (2.14) 

where fl .... fn are the variables governing the capture mechanism, 
for example; 

fl C (2.15) 

f2 = 0 (2.16) 

f3 qz (2.17) 

f4 n (2.18) 

f5 Ps (2.19) 

f6 6 (2.20) 

By any means, this list is not comprehensive. Any other variable 
which governs the capture mechanism can be included, provided that 
a functional form of ~ can be obtained either experimentally or 
theoretically. Obviously, the dependence of ~ on C and 0 is 
fundamental due to the change in particle concentration during 
filtration and change in grain and pore characteristics by deposi­
tion. 
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By rewriting Eq. (2.5), we obtain 

q ae' 
z 

ae 
az (2.21) 

In 1937, Iwasaki (52) for slow sand filters and later, Ives 
(46) for rapid sand filters have assumed that the amount of captured 
particles within the filter at a depth of z is proportional to 
particle concentration. This may be written as 

ae 
- = - Ae az (2.22) 

The proportionality parameter A is known as the filter coefficient 
in the literature. It is usually assumed that A is a function of u 
and independent of e due to change in pore geometry. Tien (103) 
notes that the change of e with z is initially linear,and as time 
increases, a non-linear behavior is observed. Iwasaki (52) assumes 
that 

A = A + Au 
o 

(2.23) 

where A is a constant and A is the initial clean filter coefficient. 
A is a function of local v~locity, grain size, and density of 
p~rticles. An empirical clean filter expression assuming additive 
particle capture mechanisms by Brownian motion, interception,and 
gravitational sedimentation is available in the literature (69). 

A 
o 

* 

+ 2.4xlO-3A (~S)1.2(~ )-0.4) 
g 

where A is the Hamaker's constant, V is the Stokes settling 
S 

velocity, and 

1_(1_n)5/3 

A general nonlinear relation could be written as (103) 

(2.24) 
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A = A ¢(o,Q.) 
o 1 

(2.25) 

A general form of ~ has been suggested by Ives (40) as 

~ 
* t\ * 82 83 (1+B8 ~) (1-8 ~) (1- ___ 0_) 

n n 0 
(2.26) 

o 0 max 

where 8 , 82 , 83 are constants, n is the initial filter porosity, 
8* is t~e bulking factor, and B i~ the packing constant. Ives (50) 
stated that "The first term is based on the changes in geometry 
of a spherical grain due to accumulating deposit, and accounts for 
the initial rise in filter efficiency [ripening state] which is 
observed in practice [due to larger surface area, see also the 
initial increase of A with 0 in Fig. 3]. The second term is based 
on the internal coating of a cylindrical capillary, reducing the 
surface area. The third term is derived when the interstitial 
velocity reaching [increasing] a critical value at 0 when no 
further deposition takes place." [rate of detachmentm~~uals that 
of adherence]. Existence of critical velocity above which no 
particle deposition occurs has been experimentally verified by 
Maroudas and Eisenklam (64,65). The bulking factor 8* is defined 
as 

* 8 = l/(l-n ) 
d 

where nd is the porosity of deposited particles. 
of the filter bed would be 

* n = n - 8 0 
o 

(2.27) 

Then, the porosity 

(2.28) 

as the pores become clogged with deposited particles. Herzig et 
al. (41) suggest that since particle concentratiions in deep filtra­
tion are quite low, n in ~q. (2.4) can be replaced by n . 

o 

When 0 reaches 0 ,the filter coefficient reduces to zero, 
then complete shutoffmg! the filter is reached. Usually 0 

varies from 0.2n to 0.4n (72). Various functional forms ~rxA 
reported in the ~iteratur~ are listed in Table 1. A graphical 
comparison of these expressions are given in Figure 3. Wright(129) 
notes that as seen in Fig. 3, even though the filter coefficient 
increases initially, it will decrease after some time due to 
particle deposition. 

Sakthivadivel (84) has proposed an expression for A,considering 
also the dependence on C 

* A = A [1 + a (o+nC/p )] 
o s 

(2.29) 
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Figure 3. Variation of the filter coefficient,A according to 
various researchers [after Ives (48)]. 

Table 1. Functional Forms of A as Compiled from Ives (48) 

Researcher 

Ives(46) 

Mackrle et al. (63) 

Diaper and Ives (26) 

Maroudas and Eisenklam (64) 

Shekhtam (91) 
Heertjes & Lerk (40) 

Expression for A 

* *2 2 * A + as 0 - bS 0 (n -S 0) 
o 0 

* u l * u 2 
A [l+a'S o/n] [1- S o/n] 
000 

* 2 A - ailS 0 
o 

A [1 - 0/0 ] o max 

* A [1 - S o/n ] 
o 0 
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* where a is a constant. Eq. (2.29) is erroneous since only captured 
particles can affect the filter coefficient due to the change in 
pore geometry (41). Suspended particles would not have any subs­
tantial effect on this phenomenon. 

As noted earlier, if the declogging (colmatage) and clogging 
mechanisms are simultaneous, the rate equation proposed by Mints 
(70) can be utilized 

acr - A C/p -at - qz 0 s 

* 

* a a (2.30) 

where a (=k2 in Eq. (2.13)) is the scour coefficient. The first 
term is the particle capture rate, whereas the second one represents 
the declogging rate. When the limit condition is reached? i.e., 
a = a ,aa/at = 0 and C C is the inlet concentration at the 
filte~aSed surface. Then 0 

* a 

* This implies that a is constant. However, Ives (40) notes that 
the experimental evidence is against such an implication. 

Although head loss has an effect on the rate of deposition, 
with the exception of Adin and Rebhun (3), it has been generally 
neglected in filter coefficient expressions. They proposed 

aa 
at 

, 

, * aH 
kl q (a - a)C/p - a a ~z z max s a 

(2.31) 

where k is a deposition coefficient, aH/dz is the hydraulic 
gradient along the filter bed and approximately a linear function 
of a(50). Adin and Rebhun note that hydrodynamic shear forces 
acting on captured particles are represented by the hydraulic 
gradient. 

Wnek et al. (127) present a model which contains no empirical 
factors to be determined from filter runs. The effect of forces 
between the collector and the particle due to electrical double 
layer and Van der Waals interactions was introduced to the formula­
tion by treating the collector surface with first order reaction 
kinetics. The rate constant is taken as a function of the stability 
ratio of colloid chemistry. 

Gruesbeck and Collins (37) introduced a conceptual partitioning 
of the pore space into two classes which they call plugging and 
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non-plugging pathways. For the volume of deposited particles in 
the non-pluggable pathways, 0 

np 

dO 
np 

at * * u l (U - U ) 0 + 61 e 
np c np 

(2.32) 

where U and U are the volumetric flux density of fluid flowing 
throughngon-plu~gable ~athways and the critical volumetric flux 
respectively. ul and 61 are dimensional constants. The first term 
on the right hand side is zero for U < U. In the pluggable path­
ways they assumed that the volume ofn~lug ~eposits, 0 increase as 
the rate of deposit increases. p 

dO 
-.E. 
dt 

(2.33) 

where U is the volumetric flux density of fluid flowing through 
the plu~gable pathways. Y~ and o~ are dimensional constants. We 
should note that 

* n 0 = n [f 0 + (l-f)o ] o 0 p np 
(2.34) 

* where f is the dimensionless fraction of pore space containing 
pluggable pathways. 

Maroudas (67) has shown that based on data obtained earlier 
(66), two different modes of deposition lead to entirely different 
forms of A. The blocking mode of deposition, which is assumed to 
be applicable to granular beds and to suspensions of particles 
under comparable conditions of shape and size range, results in the 
blocking of flow paths; the ratio between the porosity, n, and the 
surface area available for deposition per unit volume of bed, s 
remains constant. Then, 

de 
dZ 

(K ~).l.- e 
1 n q z 

(2.35) 

where ~l is the volume fraction of particles depositing in unit time 
per un1t area. The quantity within the paranthesis is constant. 
However, if the deposition results in the gradual constriction of 
flowpaths rather than in blocking, the product of the porosity and 
velocity remains constant during the run, while the surface area 
available for deposition may vary, Then, 

de 
dZ 

(2.36) 
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The connection between the macroscopic equations considered in 
this chapter and the microscopic properties of individual filter bed 
elements is introduced by Rajagopalan and Tien (78). They assumed 
that, since the physical dimension of each unit bed element, i*, is 
always small, A is constant over this distance. Hence, they 
obtained 

A = - [3(1-n)/2d 1 in(l-n) 
c (2.37) 

where d is the collector diameter and n is the filter efficiency, 
which i~ the ratio of amount of particles captured to the amount 
in the feed. n is usually in the order of 10-3. 

Various researchers have used statistical techniques to model 
particle transport in porous media. Donaldson et al. (28) developed 
a random walk model using Poiseuille's capillary flow equation and 
the actual pore size distribution to calculate the pressure drop 
across the core. Particles are selected using a random number 
generator and the actual particle size distribution. Travis and 
Nuttall (114) and Nuttall (73) have solved the population balance 
equation with log-normal population density distribution for the 
mass concentration of colloids. 

Khilar et al. (59) developed a capillary model to predict 
piping and plugging of clay particles. Their model included mass 
balance equations for eroding particles in water and in solid phase. 
Khilar et al. considered convective transport, rate of erosion, rate 
of capture,and rate of change of mass of suspended clay particles. 
The rate of erosion term was assumed to be proportional to the 
difference of flow rate and shear stress at a pore wall. The 
capture term is proportional to suspended particle concentration 
through a coefficient,which is in turn proportional to the flow rate. 

2.1.3. Solutions of filtration equations 

There are various attempts to simultaneously solve the conserva­
tion of mass equation for suspended particles with the rate 
equation. In some cases, a close form analytical solution is 
possible for simple rate equations. For others, numerical techniques 
can be applied. 

The simplest solution can be obtained by integrating Iwasaki's 
(52) equation 

dC -- = - AC dZ 

The solution for a constant A 

C = C exp(-A z) 
o 0 

(2.22) 

A and C(z=O)=C would be 
o 0 

(2.38) 
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Shekhtman's (91) and Heertjes and Lerk's (40) model 

ae 
az * J... (1-8 aln )e 

o 0 

can be simultaneously solved (48,50) with 

ae + ~ aa = 0 
oz q at 

z 

(2.39) 

(2.40) 

Eq. (2.40) is identical to Eq. (2.5) except the fact that 8' is 
replaced by t 

e 
e 

o 

a 
n 

o 

* exp(J... 8 q e t/(n p )) o zoo s 

* exp(J... z)+exp(J... 8 e q tin p )-1 o 0 oz os 

* exp(J... 8 q e t/(n p )) o zoo s 

* exp(J... z)+exp(J... 8 q e t/(n p )-1 o 0 zo os 

(2.41) 

(2.42) 

Diaper and Ives (26) obtained various analytical solutions which 
are reviewed in Ives (50) for different conditions. Furthermore, 
as shown by Ives (48), the Mint's Equation [Eq. (2.30)] yields to 

by differentiating Eq. (2.30) and substituting Eq. (2.40). The 
exact solution of Eq. (2.43) is given by Ives (48) as 

e 
e 

o 
* exp -(J... z+a t) 

o 
r: (2.44) 

i=o 

where I. is the modified Bessel function of the first kind of order 
i. Ive~ (48) has shown that Mint's (70) solution is an approximation 
to Eq. 2.44. Hall (38) assumes that some particles deposited on 
grains creep slowly over the grain surfaces at a rate q' under the 
combined effect of pressure gradient and shear stresses. This causes 
the progress of saturated front deeper into the filter bed. Hall's 
approach is an alternative representation of dec logging mechanism in 
the filtration equation instead of rate equation (Eq. 2.30). Then, 
Hall proposed the following equation 
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o (2.45) 

where the last term denotes the creep flow. 

Sakthivadivel and Irmay (85) provide a detailed review of 
Shekhtman's (91) development of a governing equation for u 

* 

au 
at o (2.46) 

where A is a dimensional constant. Eq. (2.46) is a non-linear 
hyperbolic one, and solved by Shekhtman by the method of characteris­
tics. 

Irmay (45) notes that Sakthivadivel (84) also obtains a 
hyperbolic nonlinear equation for u 

(2.47) 

where a is a dimensional constant. Sakthivadivel (84) obtained a 
numerical solution agreeing fairly well with experimental data. 

Herzig et al. (41) obtained a rate equation based on 
probabilistic analysis of the filtration mechanism 

au 
at 

* * where Kl and K2 are dimensional probabilities of clogging and 
declogglng respectively. 

1 
n C/p 

s 

au 
at 

1 
u 

au 
at 

(2.48) 

(2.49) 

Herzig et al. shows the existence of a clogging front moving at a 
velocity of q C/(p u) 

z s 

Since the governing equations of filtration processes are 
hyperbolic, the method of characteristics has been employed to 
solve them by various researchers. Ring (81) has employed a simple 
numerical technique to solve resulting first order equations. Among 
others, Hsieh et al. (43) and Adin (2) can be noted. A general 
trend of resulting solutions can be represented graphically as shown 
by Ives (50) in Figure 4. 
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Figur, 4. Variation of sUSpend'd particle ,one'ntration, and 

amOUnt of depoSit'd partiel,s with d'Pth and time 

[After Ives (50)] 
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The solution of filtration equation critically depends on the 
type of rate equation to be used. Wright (129) shows that in 
general rate equations can be represented by 

(2.50) 

Wright notes four possible cases in use (i) ml > 0, m2 = 0, m3 < 0, 

ffi4 = 0, (ii) ffi l > 0, ffi2 < 0, ffi3 < 0, (iii) ffi l > 0, ffi2 < 0, ffi3 = O,and 
(lV) m1 > 0, m2 > 0, m3 = 0, m4 < 0. The first three correspond to 
reverslble rate equations (Eqs. (2.30), (2.31), (2.48)), and the 
last one represents an irreversible reaction (e.g., Eq. (2.35) or 
(64), (91), and (40)). 

2.1.4. Pressure drop due to deposition and permeability reduction 

Due to clogging, the permeability of the filter bed reduces, 
and pressure drop Lp builds up, reducing the efficiency of the 
filter. Various empirical formulas are reported in the literature 
to calculate the pressure drop as a function of deposited particles. 
They all alter the porosity terms in the permeability expression of 
the Kozeny-Carman equation. Ives and Pienvichitr (51) present a 
theoretical development and proposes the expression 

L n2 
~ = (l-n t) 
Lp 1 

o 
(2.51) 

where Lp is the initial pressure drop along the filter bed, and 
nl and n~ are constants; n2 can take either sign. A review of 
various expressions are given by Ives and Pienvichitr (51). 

The permeability reduction due to clogging by captured 
particles is the subject matter of numerous studies. In 
petroleum engineering, bacteria and/or colloidal particles commonly 
found in water injected into oil-bearing formations to increase 
recovery might cause plugging of the adjacent formation (7,79). 
Sharma et al. (88) used a statistical approach and general popula­
tion balance equations to model the entrapment of fines at pore 
throats. The equations are solved for open pore densities and 
size distributions and based on these solutions,the permeability 
has been calculated. Swartzendruber and Uebler (99) have obtained 
an equation for hydraulic conductivity as an exponential function 
of the volume of suspension inflow,with a clogging coefficient based 
on the data obtained by Uebler and Swartzendruber (116). Since 
Uebler and Swartzendruber's data are obtained with constant 
difference in hydraulic head, the expression derived is valid under 
this condition. Their expression is given by 

-K = K exp[-CV/A(H+L)] 
s 

(2.52) 
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where K is the hydraulic conductivity, A is the cross sectional 
area, V is the cumulative volume of flowing suspension, H is the 
depth of water on the top of the sand column, L is the length of 
column, and C is the clogging coefficient. When V=O, K=K . 

s 

Gruesbeck and Collins (37) assumed different approximate forms 
for permeability in the pluggable (k ) and non-pluggable (k ) 

p ~ pathways, which are expressed by Eqs. (2.32) and (2.33) 

kp kpi exp(-a~ a:) 

* k k ./(l+bl a ) 
np npl np 

* * 

(2.53) 

(2.54) 

where k ., knpi ' a l and bl are phenomenological constants to be 
specifiga. 

Wright (129) has suggested a cubic expression to estimate the 
hydraulic conductivity in terms of specific deposit a and 
theoretical filter capacity,F, denoting the amount of retained 
material per unit volume of filter bed that could clog the pores 
completely 

where K is the initial value of hydraulic conductivity. 
o 

2.2. Transport of Bacterial and Viral Particles 

(2.55) 

Microbial particles such as bacteria and viruses enter soil 
and groundwater through various ways, such as by land application 
of wastewater or through the septic system. Rain infiltrating 
through sanitary landfills and artificial recharge of groundwater 
aquifers by treated sewage water are additional sources. While 
natural processes can, in some cases, help to reduce the pollution, 
some biological contaminants can travel considerably through the 
~arth. 

A literature survey presented by Corapcioglu and Haridas (21) 
shows evidence that microbial contamination of groundwater does 
occur when human wastes enter into the soil, and that microbes 
under proper conditions can travel long distances in groundwater. 
Romero (82) reviewed various case studies of microbial groundwater 
pollution until 1970. Butler et al. (14), Hagedorn (39), Vaughn 
et al. (117), and Smith et al. (95) studied the underground movement 
of bacteria and viruses in soil columns and in pilot scale field 
studies. Gerba (34) and Keswick and Gerba (57) investigated the 
factors affecting the migration and survival of viruses in ground­
water. They conclude that bacteria may travel little more than 
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5 feet in moist or dry fine soil, but will travel much further 
through such means as root channels and rodent holes. Zyman (131) 
studied the migration of organisms in sludge-soil mixture columns, 
and reported that heavy rainfall rates appear to promote significant 
vertical migration of viable indicator organisms to the bottom of 
the 20.3 cm columns. Zyman also noted an increase in die-off rates 
due to an increase in desiccation. 

The transport of bacteria through porous geological materials 
has received attention from various researchers due to its 
significance in microbiaZ enhanced oiZ recovery (53,54,90). This 
tertiary recovery process is achieved through injection with 
nutrient,followed by a period of static incubation during which 
cells multiply and migrate. Jang et al. (54) has found that 
bacteria can migrate 1 ft/day through the sandpack columns saturated 
with nutrient broth. Jang et al. (53) have shown that the presence 
of oil in the sandstone core can facilitate bacterial penetration. 
Furthermore, they have shown that certain types of bacteria (e.g., 
B.subtilus) due to the phenomenon called chemotaxis, can migrate in 
nutrient saturated Berea sandstone cores without applying any pres­
sure gradient.Laboratory experiments have shown that the adsorption 
of bacteria becomes an important factor in bacterial transport, 
provided that the rock has a high permeability and the inflow 
bacterial concentration is low. Otherwise, a filter cake develops 
at the inlet surface with a decrease in effluent bacterial concent­
ration. Sharma et al. (88) found out that the use of polyanionic 
species alters the surface charges on sand grains as well as 
bacteria. This charge alteration causes facilitated transport of 
organisms through a porous medium. 

Although the problem has great practical importance, the 
mathematical statement of the phenomenon has been attempted only 
in a few recently published studies. The first conceptual model 
for bacterial movement in soils was presented by Matthess and 
Pekdeger (68). Later, Sykes et al. (100) presented a model to 
predict the concentrations of leachate organics, measured as 
chemical oxygen demand in groundwaters below sanitary landfills. 
Simultaneous substrate utilization and microbial mass production 
equations, with convection and dispersion included for the former, 
are used for modeling biodegradation. The only processes considered 
for the latter are microbial growth and decay. None of these 
modeling studies presents a complete picture of the phenomenon,that 
is, complete coupling of microbial and substrate mass conservation 
equations, transient conditions, convective transport of microbial 
population, etc. The migration of viruses in soils and groundwater 
has been studied by Vilker(119) and Grosser(36), by using the 
conventional solute transport equation with a retardation factor 
due to viral adsorption. Although Filmer et al. (31) have used an 
equation similar to Eq. (2.5) to simulate viral transport in soils, 
Filmer and Corey (30) have utilized a diffusion equation. Corapcioglu 
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and Haridas (22) recently presented a coupled mathematical model 
for the transport and fate of bacteria and viruses in soils and 
groundwater in the presence of a substrate. The model is designed 
to predict how long a given population of microorganisms can live 
in soils and how far they can spread while they are alive. 

2.2.1. Biomass transport 

The details of the following mathematical model can be found 
in Corapciog1u and Haridas (22). Here we will repeat the basic 
steps of the derivation. 

We start with the macroscopic mass conservation equation for 
suspended microbial particles in porous media, 

R 
a 

+ (l(SC) 
--at (2.56) 

where C is the concentration o£ suspended particles (bacteria or 
viruses), R is the rate of deposition of particles on grains, Rd 
and Rg areathe decay and growth terms of the suspended partic1esf 

respec€ive1y, and S denotes the volume occupied by the flowing 
suspension per unit total volume. Some of the removal mechanisms 
of bacteria and the transport processes are summed up in the term 
denoted by J,which is the specific mass discharge of suspended 
particles. 

2.2.2. Microbial capture 

The capture of suspended microbial particles from water passing 
through soil are dominated by mechanisms discussed in section 
(2.1.2). The important ones for the capture of bacterial particles 
are straining and sedimentation. Due to the very small size of 
viruses and microco110ids such as Americium particles, adsorption 
is the major removal mechanism. 

The accumulation of bacteria on grain surfaces forms clusters 
called dendrides. The straining effects increase with dendridic 
growth, resulting in further growth, until the clusters become 
unstably large and break off. The rate of removal depends on the 
flow rate and the size and density of the bacterial clusters (61). 
If the deposition (clogging) of the bacteria by various mechanisms 
(straining and sedimentation) and sloughing off of clusters 
(dec10gging) are simultaneous, the conservation equation for the 
deposited material may be written as 

(lpa 
at (2.57) 
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where Rg and Rd are the growth and decay terms respectively in 

the depo~ited st~te, P is the density of bacteria,and 0 is the 
volume of deposited bacteria per unit volume of bulk soil. The 
term R can be expressed by a kinetic equation 

a 

R 
a 

h = k (n-o)C - k po 
c y 

(2.58) 

where k and k are the clogging and declogging rate constants 
respectrvely, ~nd h is a constant. Eqs. (2.57) and (2.58) are 
similar to Eq. (2.30) proposed by Mints (70). 

In the case of viruses,since adsorption is the major removal 
mechanism, Eq. (2.57) should be replaced by 

apc 
at Ra + Rd (2.59) 

s 

where C is the mass of adsorbed phase per unit mass of the solid 
part of the porous medium and is related to C by an equilibrium 
isotherm. Note that Rg 0 for viruses, since viruses reproduce 

s 
only inside an appropriate host cell. 

Adsorption of viruses relies heavily on various factors (33): 
(a) the physical and chemical nature of viruses and (b) the pH of 
the solution, (c) the characteristics of the flow, and (d) the degree 
of saturation. Soil type, ionic strength of soil solution, amount 
of organic matter and humic substances are all considered in the 
first category. High salt content in groundwater would increase the 
adsorption due to double layer compression. Also, it is usually 
agreed that fine-textured soils like clay retain more viruses (11, 
12,29,33) and bacteria (39) than do sandy soils. Increasing 
adsorption occurs with the reduction of pH below 8.0 and with the 
addition of cations, especially the divalent species (11). It was 
also concluded that retention mechanisms by soil were due to an 
adsorption mechanism which increases with decreasing soil moisture. 
Bitton et al. (12) critically examined the various methods frequently 
used to assess soils' potential to retain viruses. 

As noted earlier, various studies (29,31,13) have shown that 
adsorption data of viruses to soils were found to fit a Freundlich 
isotherm,and were not describable by a Langmuir isotherm. 

In summary, due to surface and electrokinetic forces, R is a 
rate-controlled reaction for bacteria, and an equilibrium co~trolled 
reaction for viruses. 
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2.2.3. Chemotaxis and tumbling of bacteria 

The land application by primary treatment effluent or the 
seepage of raw sewage water from septic tanks can provide enough 
substrate concentration to support the microbial activity in soil 
and groundwater. In solutions like wastewater existing substrate 
concentration gradients stimulate response from microbes. Some 
microbes move systematically toward a richer food supply, and this 
motion, induced by the presence of a solute gradient, is termed 
chemotaxis. 

The chaotic, random movement of motile bacteria which was 
referred to as "tumbling" (56),gives rise to an effective diffusivity 
or motility coefficient DT. The random movement may be assumed to 
be superimposed upon any systematic migration induced by substrate, 
so the two effects (random and systematic) may be considered to be 
additive. Note that although this random motion is a sign of 
vitality, the Brownian motion is exhibited by any particle. Keller 
and Segel note the additive property of Brownian and chemotactic 
particle migration by saying that "the chemotactic response of 
unicellular microscopic organisms is viewed as analogous to 
Brownian motion. Local assessments of chemical concentrations 
made by individual cells give rise to fluctuations in path. When 
averaged over many cells, on a long time interval, a macroscopic 
flux is derived+which is proportional to the chemical gradient." 
The total flux J CT ' due to chemotactic movement and tumbling,can 
be expressed by tfie following equation (24) 

(2.60) 

where k is the migration rate constant, C is the substrate 
concent~ation, and DT is the motility coefFicient. Chemotaxis is 
reported in nutrient saturated sandstone columns by Jang et al. 
(53,54). Since the anatomy of viruses is very different than that 
of bacteria, chemotaxis is irrelevant for viruses. 

2.2.4. Decay and growth of microbial particles 

Gerba et al. (33) conclude that in most cases, 2 to 3 months 
is sufficient for reduction of pathogenic bacteria to negligible num­
bers once they have been applied to the soil. The decay mechanism 
of viruses is similar to that of bacteria, but certain types which 
are more resistant to environmental changes might survive longer 
(1 to 6 months) than their bacterial counterpart. Gerba et al. (33) 
also conclude that the survival of the enteroviruses in soil is 
dependent on the nature of the soil, temperature, pH,and moisture. 

The death of microorganisms is expressed as an irreversible 
first order reaction, for bacteria 
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Rd = - kd ec 
f 

- k po 
d 

(2.61) 

and similarly for viruses 

(2.62) 

where kd is the specific decay rate, Rdf is the decay term in free 
state in water, and Rd is the decay rate in adsorbed state. We 
assume that kd is the s same in free and adsorbed states. 

Bacterial growth occurs with the utilization of the substrate. 
The growth of bacteria is assumed to follow the Monod equation (71). 
This equation describes a relationship between the concentration 
of a limiting nutrient and the growth rate of microorganisms. As 
stated earlier, nutrients needed for proper biological growth can 
be present in a sewage water. Bacterial growth in a subsurface 
environment is slow,and the Monod equation may be safely used. 
Similar to the decay process, we assume that bacteria can grow at 
the same rate in the deposited state as well as in the suspension. 
A generalized Monod equation can then be written as 

~ec (2.63) 

where ~ is the specific growth rate and Rand R denote the 
gf gs 

growth terms in free and adsorbed states respectively. The 
functional relationship between ~ and an essential nutrient's 
concentration CF was proposed by Monod (71) as 

(2.64) 

Here ~ is the maximum growth rate achievable when CF »K and the 
m s 

concentration of all other essential nutrients is unchanged. K is 
s 

that value of the concentration of 'the substrate where the specific 
growth rate has half its maximum value; roughly speaking, it is 
the division between the lower concentration range where ~ is 
linearly dependent on CF ' and the higher range, where ~ becomes 
independent of CF. 

2.2.5. Substrate transport 

The substrate, CF ' which is consumed by the microbes at a 
rate RF, is assumed to be transported by various mechanisms. 
Thus, the mass conservation equation for the concentration of 
dissolved substrate, CF may be written as 
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(lp'S 
s F 

at (2.65) 

where CF is defined as mass of substrate per unit volume of water 
and SF as mass of adsorbed substrate per unit mass of soil grains. 
Hence p' is bulk density of dry soil. 

s 

Assuming the existence of a stoichiometric ratio, Y, between 
mass of substrate utilized and microbes formed, the net rate of 
substrate consumption becomes 

- ~ (po + eC) 
Y 

(2.66) 

where Y is called the yield coefficient. Experiments show Y to be 
constant. An equilibrium isotherm 

(2.67) 

relates CF and SF' k and m are experimentally determined constants. 
a 

2.2.6. Complete set of governing equations 

After substitution of Eq. (2.61) and Eq. (2.63) into the 
macroscopic mass balance Eq. (2.56), we obtain 

(lec 

at (2.68) 

+ 
Based on the earlier discussion, the flux of bacteria, J, 

comprises Brownian diffusion, dispersion, convection, chemotaxis 
and gravitational settling. Therefore 

+ 
J = - DeVC + uec (2.69) 

where D is the coefficient of hydrodynamic dispersion, and u is 
the total velocity. The term R in Eq. (2.68) representing the 
net mass transfer rate is givenaby Eq. (2.58). 

The mass conservation equation for adsorbed bacteria is 
obtained from Eqs. (2.57), (2.61),and (2.63) as 

apo 
at (2.70) 

where a is defined as the volume of adsorbed bacteria in unit volume 
of bulk soil and p is the density of bacteria. In a saturated 
porous medium with deposition of suspended particles on soil grains, 

e = n-o (2.71) 
where n is the porosity of the medium. 
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Eq. (2.68) is modified for viruses with equilibrium 
adsorption and no growth, as discussed previously. Assuming 
negligible pore volume change due to adsorbed viruses, i.e., 6=n, 

apc + anC 
at at 

(2.72) 

where J, the flux of viruses, includes hydrodynamic dispersion and 
convection. Therefore 

apc + anC = _ V.(-DnVC + vfnC) - Kd(nC + pC) (2.73) 
at at 

A special case of Eq. (2.68) may be written for deep bed 
filtration without leaching substrate,resu1ting in no growth, i.e., 
]..1=0 and u=v 

f 

a6C 
at 

(2.74) 

where R is given by Eq. (2.58) and J = -D6VC + v f 6C. The equation 
for adsgrbed microbes remains as given by Eq. (2.70). Note that 
Eq. (2.74) is identical to Eq. (2.1),which is given for suspended 
solid particles. 

The model of Matthess and Pekdeger (68) contains some of the 
terms of Eq. (2.68). The missing features are kinetically 
controlled deposition and resuspension, sedimentation, growth,and 
chemotaxis. No solution of the equation is given. 

The model of Sykes et a1. (100) predicts leachate organic 
concentration under sanitary landfills. An immobile microbial mass 
biodegrades the organics. These assumptions would reduce Eq. (2.68) 
and Eq. (2.65) to 

(2.75) 

(2.76) 

2.2.7. Model parameters 

Microbial growth parameters, ]..I , K , Y, k are available for 
heterogeneous populations in commer~ia1suse (32). Sykes et a1. 
(100) present the following values of parameters for populations of 
organic 1eachates under sanitary 1andfi11s:]..I = 0.144 - 0.072 day-1 

m -1 ' 
Ks = 2000 - 4000 mg/1 of COD, Y = 0.04,and kd = 0.015 day The 
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leachate and microbial concentrations were estimated to be 1000 mg/l 
each in the landfill. This was used as a first kind boundary 
condition for their model. 

Adsorption of substrate onto soil particles depends on para­
meters k and m as given in Eq. (2.67). Estimates from two 
sources ~re given as: k = 0 for landfill leachate by Sykes et al. 
(100); k = 0.2 mg/l, ma = 1 for 204 herbicide on sand, ka = 2.0 
mg/l, ma = 1 for 2-4 herbicide on clay by Selim et al. (87). 

Filtration studies are a source for mass transfer coefficients, 
k and k as in Eq. (2.58). Experimenting with anaerobic filters 
c§mposedYof crushed stones of diameter 20 mm and 50% porosity, 

-5 -1 Polprasert and Hoang (77) determined k = 1.06xlO s ,ky ~ 0 
for fecal coliforms; k = 6.25xlO- 6s- l : k ~ 0 for bacteriophages. 

c y 
Based on experiments with latex suspensions (0.04 vm) filtered 
through glass beads (diameter 0.397 mm, porosity 0.35), Ring (81) 
used a similar rate expression to model adhesion and suspension. 
He obtained kc = 6.5xlO- 3s- l , ky = 4.35xlO-4s- l for negatively 
charged latex particles on glass beads. 

The other parameters required are density of bacteria p, and 
bulk density of soil p. Bacteria were assumed neutrally buoyant 
for the purposes of this model, i.e., p = 1 g/ml. p' was taken 

s 
as 1. 75 g/m1. 

2.2.8. An analytical solution 

An examination of the governing equations shows the complex 
nature of the model equations, with a high degree of non-linearity 
and coupling. It is very difficult, if not impossible, to obtain 
closed form solutions for C, 0, and CF,even for a one-dimensional 
space. Therefore, a numerical solution will be sought for a 
coupled solution of the governing equations. However, a simplified 
analytical solution is needed to test the validity of the numerical 
results. Therefore, we will solve the coupled set of Eqs. (2.68), 
(2.58) and (2.70) as 

ac' 
R = D 

a 2 c' ac' 
k' C' (2.77) - + 

ax 2 
- u -+ 

at a ax 

* dO' * R ko (2.78) 
at a 

* R = k C' - k ° (2.79) 
a c y 

* where C' = ec, ° = po and k' = V - k d . The effective porosity, 
e = n - 0, flow velocity, u, and k are all assumed to be constants. 
We also assume h = 1 in Eq. (2.58). Eqs. (2.77) - (2.79) are 
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solved for a semi-infinite column (0 $ x $ + 00) with boundary and 
initial conditions. 

C' 

c' 
c' 

* a 

The 
Applying 
obtained 

* Co at x = 0 

0 at x = > 00 

0 at t 0 

0 at t 0 

solution technique is similar to that of Ogata (74) . 
the Laplace transform on t, Corapcioglu and Haridas 
(22) 

2 ux 
exp[ 2D + k't] 

fIT J 
x 

21Dt 

x 2 
- k (t - -Z )} . {I 

Y 4Ds 0 

2 
X + (k -k') exp[-(k -k')(t - -z )] 

y Y 4Ds 

2 

(t 
x 

--z 

J 

4Ds 

exp [-(k -k' h] 
y 

2 
X k k 1: 

---C"""2-"-y d 1: ds 
Ds 

0 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

The solution given by Eq. (2.84) is computed and plotted in Figure 
5. 

2.2.9. Numerical solution 

The Galerkin Finite Element method was used to solve Eq. (2.65) 
and Eq. (2.68) simultaneously for a one-dimensional soil column. 
The method involves the approximation of the solution with a known 
set of basic functions. The rest of the model equations, Eqs. (2.57), 
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(2.64), (2.70), (2.71), (2.66) and (2.67),were incorporated into 
the numerical technique as explained in Corapcioglu and Haridas (22). 
For the model parameters given in Table 2, the largest time step 
was 60 seconds and the smallest time step was taken as 1 second. 
There are ten space elements ranging from O.S to 2 cm. The scheme 
was executed using a Fortran computer code. Plots of C, CF and 
(n-o) for spatial and temporal variations are given in Figs. 6-8. 

The soil column is assumed to be initially free of bacteria and 
substrate. As seen in these figures, the soil surface (i.e., x=O) 
is 3% clogged after 1.4xl06 seconds. At this time, the bacteria 
are almost totally removed in the upper 7 centimeters of soil, 
although the substrate in the seeping wastewater travels up to 9 cm. 
The clogging of the soil is negligible after a depth of 6 cm. 
Another interesting feature is that the substrate concentration has 
a peak value at an early time,and then decreases gradually due to 
bacterial consumption. As shown again in Figure 9, for a smaller 
declogging rate constant, substrate concentration values will have 
larger values. Also, when the velocity and dispersion coefficients 
were taken as a tenth of the values in Table 1, all other parameters 
being the same, as seen in Fig. 10,a larger time is required to 
reach the steady state values. Similar results have been obtained 
for a two-dimensional field by Corapcioglu and Haridas (22). 

Table 2. Numerical Model Parameters 

Dispersion coefficients 

Density of bacteria and dry soil 

Clogging rate constant 

Dec10gging rate constant 

Specific decay constant 

Monod half constant 

Maximum growth rat.e 

Maximum cell yield 

Flow velocity 

Porosity 

Surface bacteria concentration 

Surface substrate concentration 

D=Df =4xlO-2 cm2/s 

p= 1 g/ml; P =1.74 g/ml 
-3 s 

k =6.Sx10 s-l 
c 

k =4.3SxlO- 4 s-l 
y -6-1 

kd=lx10 s 

K =2x10-3 g/ml 
s -S-l 

II =4.2xlO s 
m 

Y=0.04 

u=3xlO-2 cm/s 

n=0.6 
-3 

CO=lO g/ml 

C =10- 3 g/m1 
FO 
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3. FORMATION OF A BED (CAKE FILTRATION) 

Cake filtration process is used in water treatment process and 
industrial processes to remove suspended solids. Compressible 
filter cakes are formed when a liquid with suspended particles 
are forced through a thin membrane (septum) which allows the liquid 
transport but retains solid particles by straining and sedimentation 
mechanisms. During filtration, the filter cake is compacted while 
new solid particles are laid down on the cake surface (Fig. lb). 

In general, cake filtration is primarily employed for more 
concentrated slurries. The filtrate from a cake filtration may 
contain small particles passed through the medium, which must be 
removed in a polishing step. In addition to industrial filtration 
processes, the formation of filter cake is important in groundwater 
and oil wells where drilling fluid contains suspended particles. 
The accumulation of these suspended particles on perforated well 
screens causes a pressure drop in the well. This particular 
problem has been discussed by Binkley et al. (10), Muecke(72), 
and Kovacs and Ujfaludi (60). 

This work is directed at finding mathematical solutions based 
on a theoretically and physically consistent mathematical model 
presented by Corapcioglu (18,19). Also, the purpose of this 
research is to obtain direct results which can be used to predict the 
cake thickness (L) and the time (t) at different conditions of 
porosity, particle concentration, and pressure drop. 

3.1. Previous Studies on Cake Filtration 

Studies governing laws of cake filtration may be found 
scattered through the literature in different disciplines (e.g., 
17,27,92,93,105,106,107,110,121,123). Based on the analysis of 
various investigators, both cake and filter septum can be considered 
as porous masses exerting resistance against the moving laminar 
liquid flow. 

Binkley et al. (10) (also in Collins, 17) present the most 
pertinent features of a mathematical analysis of the factors 
affecting the rate of deposition of solids by filtration in 
unfractured perforations during cement slurry injection operations 
in oil wells. Binkley et al. assume steady state conditions 
throughout the cake. Their analysis is based on simple volumetric 
balance of solid and fluid phases (see Eq. (3.7)). In von 
Engelhardt (120), experiments show that for filtration times up 
to one hour, the cake thickness varies linearly with time. However, 
investigations over longer periods (several hours) show that this 
assumption would not hold as more filtrate is continually collected 
that can be predicted by a parabolic function. Experimental 
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observations by Ruth (83) and Carman (15) imply that the average 
porosity is constant regardless of cake compressibility. 
According to Ruth the total filtrate rate can be approximated 
through an expression which is proportional to the square root of 
time. The proportionality constant includes the resistivity of 
the filter cloth (septum resistance) which is a source of non­
parabolic behaviour. Willis et al. (lZ4) present evidence which 
shows that average porosity is constant throughout a filtration, 
and the septum clogging determines the extent of deviations from the 
parabolic relation. Rietema (80) has defined non-compressible 
filter cakes as the ones whose mean specific resistance 
does not change with the filtration pressure. All others are called 
compressible. Rietema has observed a form of "retarded packing 
compressibility" in which early layers of the cake do not compress 
gradually until a critical cake thickness is reached. Tosun and 
Willis (lIZ) conclude that, based on multiphase theory, the classifica­
tion of filter cakes as compressible and incompressible is unneces­
sary. Furthermore, they also stated that although parabolic 
behavior can be achieved by proper septum selection, it is not an 
optimum condition,due to the need for more energy in comparison to 
non-parabolic behavior. 

Tiller and Cooper (105) pointed out the variation of internal 
flow rate throughout the cake,and derived a relationship between 
rate of porosity change and internal flow rate variation. Shirato 
et al. (9Z) performed an experiment to determine the liquid pressure 
drop as a function of the distance through the cake. With the 
hydraulic pressure p known, the cake compressive pressure p can 
be calculated as Ps = Pz - p, where Pz is the applied filtr~tion 
pressure. Knowing p , one can estimate the porosity distribution 
from ccmpression per~eability cell measurements. Shirato et al. 
(93) present an analytical method for apparent velocity variations 
of both liquid and solids through filter cakes, and it has turned 
out that the effects of the velocity distributions of liquids and 
solids could not be theoretically neglected, especially for highly 
concentrated slurries. Tiller and Shirato (106) demonstrated that 
due to nonuniform flow rate the conventional parabolic relation 
between filtrate volume and time needs to be modified to include 
a correction factor, as 

dv 
dt ]J (JaRw+R ) w m 

(3.1) 

where v is the filtrate volume, g is the conversion factor,]J is 
the viscosity, w is the total mas~ of dry solids per unit area~ 
R is the medium resistance, aR is the conventional filtration 
r~sistance, and J is the correction factor due to nonuniform flow 
rate. We should note that these studies assume the validity of 
the compression-permeability cell tests to determine filter cake 
resistivity. A study by Atsumi and Akiyama (5),which also utilizes 
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the same test resu1ts,describe the transient nature of the problem 
with a non-linear partial differential equation. A moving boundary 
condition describing the growing cake surface has been incorporated 
in Atsumi and Akiyama's model. They solved the following cake 
filtration equation numerically 

}e = ~ {c* ~ } 
at aw p aw 

(3.2) 

where w is the mass of*solid per unit filtering area from the medium, 
e is the void ratio. C is a variable coefficient associated with 

p 
permeability and compressibility. The boundary condition at the 
moving boundary is 

~I aw 
w. 

1 

where e. is the void ratio at the cake surface. 
1 

(3.3) 

Also, Wakeman (121) developed a theoretical analysis for a 
similar problem recognizing cake filtration as a moving boundary 
problem and utilizing a variable compressibility coefficient in 
the form of an exponential function of a normalized porosity. His 
basic partial differential equation describing liquid movement and 
cake volume change is 

an 
at 

a 
ax ( l-n) ~ ap an) + ( k 

~w an ax ~w 
ap an ) 
an ax 

x=O 

an 
ax 

(3.4) 

where nand k are the porosity and the liquid conductivity 
(permeability) of the cake and p is the hydraulic pressure. After 
filtration has started, a cake is deposited on the septum with a 
porosity varying from n at the septum surface to n. at the cake/ 
slurry interface. The location of the moving cake/§lurry interface 
is unknown, hence a further condition is required 

I n -n I I an 0 i ~ an dx 
ax = 1-no ki ap dt 

x. x. X. 

(3.5) 

1 1 1 

which is the boundary condition to be satisfied at the cake surface. 
Wakeman (122) concludes that in all cases the pressure loss across 
the filter cloth decreases with time. However, at higher filtra­
tion pressures, the loss over the cloth decreases more rapidly due 
to the more rapid formation of a thicker cake with a greater 
specific resistance. The pressure loss across the cake-forming 
layer remains reasonably constant after the initial period of 
filtration. 
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Von Engelhardt (120) has obtained an expression in his study 
of filter cake formation in the bore hole during well drilling 
operations. Drilling mud used to cool and lubricate the drilling 
bit is a suspension of clay particles in water. Under pressure, 
a cake of clay particles forms on the wall of the boreho1d. 

L (3.6) 

where ~ denotes the viscosity of the filtrate, k is the permeability 
of the ~ake, and b is the dimensionless specific volume of filter 
cake (volume of filter cake per cubic centimeter of filtrate). 
Note that the derivation of Eq. (3.6) assumes constant permeability 
and porosity of the cake. 

As noted earlier, Collins (17) suggested a mathematical 
description of deposition processes with various assumptions. We 
should note that Collin's study has been previously published by 
Binkley et a1. (10). Based on steady state conditions and hydro­
static pressure distribution along the cake, Collins (17) obtains 
an expression for the cake thickness. 

* * k L * 2k 
]
1/2 

L 
c 
K 

* where L is the thickness of the 
permeability. p is the applied 

a * viscosity of the filtrate, k is 
c 

cake, and w is a factor related 
e 

c 
w t 

e 
(3.7) 

porous plate septum and K is its 
pressure, t is the time, ~ is the 

w 
the permeability of the filter 

to the volume fraction of solids. 

Willis and Tosun (123) found experimentally that the discharge 
is usually a parabolic function of time for a constant 
pressure filtration. Also, they stated the relation between 
the cake thickness, L, and time as follows 

1363L2 = t L[cm.] and t[sec.] (3.8) 

Tosun and Willis (113) mentioned the derivation of the parabolic 
filtrate discharge equation,which is restricted to one dimensional 
filtration. They presented the following equation 

(3.9) 

where q is the superficial fluid velocity at the filter septum, 
o 

qi is the superficial fluid velocity at the cake surface, L is the 



314 

cake thickness, n is the average porosity,and n L is the porosity 
at the cake surface. The two terms on the left represent the 
difference between the inlet and outlet flow rates, while the first 
term on the right side is proportional to the change in the cake 
thickness. The second term on the right hand side is a compaction 
effect caused by changes in the average porosity. 

Tiller et al. (108) have obtained the following expression for 
the pressure variation along the cake. 

1 - (1 _ ~ )l/(l-d'-f') 
L 

(3.10) 

where Pz is the applied filtration pressure. d' and f' are dimension­
less empirical constants. A plot of Eq. (3.10) is given in Fig. 11 
for different values of (d'+f'). Furthermore, Tiller et al. (109) 
have proposed the following expression for the porosity variation 
with cake compressive pressure, p 

s 

(3.11) 
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Figure 11. Variation of hydraulic pressure with distance for 
different compressibility coefficients, [After Tiller 
et al. (108) J. 
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where r' is an arbitrary parameter. Eq. (3.10) is an alternative 
to another empirical expression suggested by Tiller in 1953. A 
review of this work is given by Tiller and Crump (109) as 

* d' 
1 - n = r Ps for p ~ Pi (3.12) 

s 

* d' 
1 - n = r p. for Ps 2:. Pi (3.13) 

~ 

* where r is a dimensionless empirical constant, and p. is the pressure 
~ 

below which n is assumed to be constant. The cake permeability, k, 
is expressed as a function of porosity and specific cake resistance, 
a*, by Tiller (104) as 

k 
1 (3.14) 

* p ex (l-n) 
s 

wzere ps is the true density of solids. The specific cake resistance 

ex is expressed as 

* ex 

* 

d' 
(3.15) 

where ex L is the specific cake resistance at the cake surface where 

p = O. In his "revised theory", Tiller multiplied the average 
c~ke resistance by an exponential function of mass of particles to 
take "cake blinding" into account. 

From the review presented in this section, one may conclude 
that porosity decreases with filtration time, but on the contrary, 
pressure loss across the deposited cake increases with filtra­
tion time. Also, the filtrate discharge is a parabolic function 
of time for a constant pressure, and it is known that 
hydraulic pressure variation is liniar with distance (94). 

Tosun (Ill) has provided a critical review of Tiller's work. 
Tosun's review includes other works of Tiller which are not referred 
to in this study; therefore, the reader is referred to Tosun (Ill) 
for a more in-depth discussion of Tiller's work. 

As an alternative, Willis and his co-workers (123,126) present 
a multiphase theory which includes conservation of mass and conser­
vation of momentum equations for liquid and solid phases. Willis 
et al. (124) has shown through a dimensional analysis that deviations 
from parabolic behavior cannot be attributed to non-Darcian 
behavior, but rather to septum permeability. They have 



316 

demonstrated that dominant forces in the conservation of mass 
equation for the liquid phase are gravitational, pressure and drag 
forces. Similarly, in the solid phase conservation of momentum 
equation, the deformation and gravitational forces can be retained. 
Then, for a Newtonian liquid and non-deformable solid particles, 
conservation of momentum equations lead to relative Darcy's law 
and 

aT 
s 

dZ 
= 0 

where T is the intrinsic solid phase stress. Willis et al. 
(124) h~s shown that if the slurry concentration is constant, the 
average cake porosity, n, is constant at all times and is independent 
of cake pressure drop. The coupled solution of two conservation 
equations in terms of porosity, pressure, permeability, and solid 
velocity would require either additional information such as stress­
strain relations between porosity and pressure,and Kozeny-Carman 
relation between porosity and permeability (not applicable to filter 
cake studies due to uncertainties and associated restrictions such as 
pore structure) ,or experimental determination of any two of these 
four variables. Willis and Tosun (123) used measured porosity and 
pressure profiles to calculate internal velocity and permeability 
distributions. Willis et al. (125) have also presented a "two 
resistance model" by neglecting the solid's velocity and assuming 
a conventional Darcy's law instead of a relative one. They fitted 
the resistance and porosity data as a function of the compressive 
pressure from compression-permeability cell tests in a form given 
by Eq. (3.13). The cake thickness is obtained in the form of 
Eq. (3.10). Willis et al. (125) have shown that this particular 
model assumes that the porosity is not a function of time,andthat the 
local fluid velocity is uniform throughout the cake at any instant. 

Dillingham et al. (27),and later Stephenson and Baumann (98), 
present governing equations of diatomite filtration. In diatomite 
filtration, diatomite is added to the influent water as a body feed 
to form a porous incompressible cake. The diatomite filter aid 
forms a rigid porous mat to accommodate the suspended particles. 
The filter aid placed on the septum,or filter aid support,before 
the start of a filter run is called the "precoat". The diatomite 
filter aid fed continuously to the influent during filtration is 
called the "body feed". The filter cake is composed of suspended 
solid particles and body feed,and is housed over the precoat. 
Dillingham et al. (27) assumes (1) equal pre coat and filter cake 
porosities, (2) negligible contribution of suspended solids to the 
mass and the porosity of the filter cake, (3) 100% solid particle 
capture in the filter cake, and (4) constant flow rate. Following 
these assumptions, the change in volume of the filter cake V is 

. b c glven y 
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c 
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(3.16) 

where CD is the body feed concentration, A is the cross sectional 

area, PD is the density of diatomite, and E is the porosity of 

precoat layer.At the beginning of a filter ~un, the filter housing 
is full of clean water from the precoating operation. The mixing of 
unfiltered influent with the clean water in the filter housing 
occurs in a transition period till the filter housing contains same 
quality of water as that of the influent. This transition period of 
dilution as stated by Dillingham et al. affects V and therefore 

c 
CD is obtained from 

(3.17) 

where CD is influent body feed concentration, and Vf is the volume 
i 

of filter housing. 

V from Eq. (3.16). c 

The solution for CD is substituted to obtain 

V /A would give the thickness of 
c 

filter cake which is used to calculate the pressure drop across 
the cake thickness from the Darcy's law. 

3.2. Deposition of Particles on the Cake Surface 

In this section, we will obtain an expression to estimate the 
cake thickness during a solid-liquid separation by cake filtration. 
As shown in Fig. 1, the slurry is fed from the center with a 
driving force which produces filtration through the cake while 
simultaneously increasing its thickness. We will assume that, under 
the existing pressure conditions during filtration, the liquid iSprac­
tically incompressible,and that the solid particles are also assumed 
incompressible. However, the solid matrix as a whole is compressed 
due to porosity change in time and space. The formulation in this 
section is based on the theoretical work of Corapcioglu (19), and 
closely follows that reference. 

3.2.1. Formulation by averaging along the cake thickness 

Concentration of suspended solid particles in the slurry (or 
the concentration of suspended particles) per unit volume of the 
liquid is denoted by C. Under these assumptions, the conservation 
of mass equation for solid particles is given by Corapcioglu (18,19) 
as 

d[Ys(l-n») _ d(nC) 

dt dt 

+ + 
d(CnVL) dry (l-n)V ) 

+ ____ s~------s_ 
dX dX 

(3.18) 
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where y and n are the specific weight of solid particles per unit s + + 
volume of solid and the porosity of the cake. Vs and VL denote the 
solid and liquid velocity vectors,and x, which varies with time t 
denotes the distance measured from the medium to the surface 
of the cake. The total flux of solids, in Eq. (3.18) given by 
+ + + 
J = nVLC + y (l-n)V. Note that Cn is the concentration of suspen-
ded partic1e~ per u~it volume of cake (total volume), and y (l-n) 
is the weight of solids in cake per unit volume of cake. I~ this 
study,we define the concentration in terms of weight rather than mass. 

If we integrate Eq. (3.18) along x from 0 to L, 

d [y (l-n)L] 
s 

dt 

(3.19) 
where overbar denotes the averaged quantities, L is the cake thickness, 

+ + 
llL' CL' VSL and VL are the surface porosity, surface concentra-

tion and the solid akd liquid velocity at the cake surface and n , 
+ 

C , V 
o s 

+ 0 
and VL are the porosity, concentration,and the solid and 

ve1ocit? at the filter septum, respectively. liquid 

Assuming that all suspended particles are filtered within the 
cake and a rigid septum; the last term in brackets in Eq. (3.19) 
would be zero, i.e., C = 0 and V = O. By rearranging Eq. (3.19), 

o s we get 0 

dL + 

dt 
[y n - y n + nC - nLCL] + y s (l-nL) V VF 2 s L s sL 

(3.20) 

L[n de + - dn dn 
] 

+ 
+ C- - Y s dt + CLnL VL .VF2 0 dt dt 

L 

The solid's velocity at the cake surface can be expressed as 

+ + 
V . V(x-L) = V 

sL sL 

+ 
k (3.21) 

If we re-write Eq. (3.20) 
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(3.22) 

At this point, we can assume that all suspended particles are 
totally filtered on the cake surface (i.e., C = 0). This assumption 
rules out the possibility of existence of fine particles suspended 
in the liquid inside the cake. We realize that this may not be true 
for colloidal particles. Then, Eq. (3.22) becomes 

-+-
+ CLnLVL .VF2=0 

L 
(3.23) 

Eq. (3.23) is subject to a general boundary condition at a moving 
surface F2 , which is defined as 

F2 = F = x - L(t) (3.24) 

The no-jump condition for the continuity of the mass flux of the 
solid phase at the cake surface between the filter cake and the 
slurry can be written in the form 
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+ 
[C(q 

+ + + 
nu) + y (l-n)(V - u)] . ilF s s cake side, 

slurry side 

o 
(3.25) 

where n den~tes the porosity, C denotes the concentratio~ of solid 
particles, u is the velocity of the moving surface, and Vs is 
the solid particle's velocity. The bracket shows the jump from 
one side (cake) of the moving surface (cake surface) to the other 
(slurry) carrying suspended particles. Due to conservation of 
mass principle with no source or sink terms on the surface, the 
right ~and side of the equation should be equal to zero. Further­
more, q denotes the specific discharge and can be determined 
from Darcy's law. For a deforming porous medium 

+ 
q (3.26) 

+ 
where qr is the relative discharge, and VA is the velocity of solid 

particles. Rewriting Eq. (3.25), we obtain 

+ + + + 
[C(q - nu) + y (l-n)(V -u)] k .ilF = s s ca e 

-+-+ -++ 
[C(q-nu) + y (l-n)(V -u)] 1 .ilF s s surry 

(3.27) 

The last term at the right-hand side of Eq. (3.27) is equal to zero, 
since the porosity is equal to unity in the liquid side of the 
surface. At this point we will assume that solid particles in the 
slurry are carried by the liquid without any resistance. In other 
words, we neglect any drag force developing on solid particles in 
the slurry. 

Then 

+ 
V 

s ilF ! = q 
2 slurry p 

Also, for a moving surface 

+ <IF 
u . ilF + at = 0 

. ilF2 ! 
slurry 

- q 
p 

Substitution of Eq. (3.24) into Eq. (3.29) yields 

+ 
u . ilF d(x-L) 

dt 
dL 
dt 

(3.28) 

(3.29) 

(3.30) 

Inserting Eq. (3.28) and (3.30) into Eq. (3.27), and rearranging, 
we obtain 



321 

C + 'ilF dL C 
pqp. 2 - dt p 

(3.31) 
+ 

where C and q are the concentration and the flow rate in the 
p p 

slurry side,and 
+ 

nL' CL' VL 
L 

denote the porosity, concentration 

and the liquid velocity respectively at 

Cnt I 'ilF 

cake 

and 

C n ~ I p p 

slurry 

dL 
~dt 

'ilF C dL 
P dt 

the cake surface. That is 

(3.32) 

(3.33) 

Then by rewriting Eq. (3.31) and substituting into Eq. (3.23), we 
obtain 

a (3.34) 

where C and q are the concentration and the flow rate of the in­

jected ~lurry.¥his corresponds to the slurry concentration which 
is a controlled parameter in operation (total weight of suspended 
particles in a certain volume of liquid). Eq. (3.34) represents 
the cake filtration equation with the assumption that all material 
is captured on the surface and the filter septum is rigid. If the 
slurry concentration is expressed as the mass fraction of particles 
in the slurry and denoted by s, then C = y s. Furthermore, if we 
express the slurry flow rate in terms gf sl~rry volume V , then 

p 
V = q At where A is the filter area. 

p p 

3.2.2. An analytical solution for the cake thickness with known 
average porosity functions 

Few investigations of porosity variation have been reported in 
the literature. Hutto (44) concludes that porosity decreases 
relatively rapidly near the liquid face of the cake,and then 
continues at a slower, almost linear rate of decrease down to 
minimum porosity at the filter septum. Tiller and Cooper (105) and 
Shirato et a1. (94) pointed out that the porosity decreases at each 
point with respect to time. Based on their observations ,we can 
propose an average porosity function decreasing in time. Further­
more, such a linear function can be obtained from the definition 
of matrix compressibility of a moving solid with an assumption of 
constant average pressure change in time as shown by Bear, 
Corapcioglu,and Balakrishna (9). 
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n '" At + B (3.35) 

where A is a negative constant and B is a positive constant which 
is equal to B '" ~ - A to where n is the porosity at t '" t . 

o 0 0 

Equation (3.34) can be written as 

dL + P(t)L '" Q(t) dt 
(3.36) 

where d~ 

pet) 
-Ys dt (3.37) 

[y (l-~)-C ] 
s p 

and 

Q(t) 
cEqp 

(3.38) 
[y (l-~)-C ] 

s P 

Eq. (3.36) is a general first order linear differential equation 
with variable coefficients and an initial condition L(t"'O)"'O. 
Then the solution will be 

L 
C q t 
E E 

[l-~]y -C 
s p 

(3.39) 

For n - 0.000178t + 0.864, the variation of L with t is shown in 
Rig. 13 (curve a). Other model parameters are given in Table 2. 
In fact, the solution given in Eq. (3.39) is more general than it 
implies. For example, for an exponential variation of average 
porosity in time, we would obtain an identical solution. Wakeman 
(122) has obtained experimental results showing an exponential 
decrease of mean cake porosity. If we assume an exponential 
distribution for ~ as 

~ '" 0.864 exp(-0.0002t) (3.40) 

The temporal variation of L obtained by Eq. (3.40) is shown in 
Figure 13 (curve b). 

Following the results obtained by Willis et a1. (124), the 
average cake porosity can be taken constant. Then for ~ '" 0.70, 
the variation of C is illustrated by curve C in Figure 13. 
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Figure 13. Temporal variation of cake thickness with different 
functions of average porosity, (a) linear average 
porosity [Eq. (3.35)], (b) exponential average porosity 
[Eq. (3.40)], (c) constant average porosity = 0.70. 

Table 3. Model Parameters 

Concentration of solid particles 
in the slurry 

Flow rate 

Specific weight of soil 

Specific weight of water 

Viscosity of water 

Pressure drop 

Average hydraulic conductivity 
of the cake 

Average cake porosity 

K 

n = 

-3 3 2xlO (N/cm) 
-3 2xlO (cm/sec) 

-2 3 
2.lxlO (N/cm) 

-3 3 9.8lxlO (N/cm) 
-7 2 lxlO (N sec/cm ) 

15 (N/cm2 ) 

-6 0.7 xlO (cm/sec) 

0.7 
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3.3. Simultaneous Solution of Conservation of Mass Equations for 
Liquid and Solid Phases 

In Section (3.2.1) we made use of the conservation of mass 
equation for solid particles in the slurry to obtain an expression 
for the cake thickness in terms of time. The solution for L 
given by Eq. (3.39) is obtained in terms of slurry flow rate, slurry 
concentration and a known average porosity value. In filtration 
practice, usually the filtrate volume, Vf , is the operational 
parameter. To obtain a solution in terms of Vf , we will start with 
the conservation of mass equation for liquid to determine the 
difference between the volume of slurry filtered, V , and filtrate 
collected. This derivation has been obtained by Cor~pcioglu (19). 

One-dimensional conservation of mass equation for an incom­
pressible liquid in deformable porous media with incompressible 
solid particles can be written as 

(3.41) 

Averaging Eq. (3.41) along x from 0 to L, and introducing the 
condition at the cake surface as discussed in section (3.2.1), would 
yield 

(3.42) 

The no-jump condition for the continuity of the mass flux of the 
incompressible liquid phase at the cake surface between the filter 
cake and the slurry can be written in the form 

-+- -+-
[q - nU]cake side, . VF o (3.43) 

slurry side 

If we write Eq. (3.43) at x L 

-+- dL -+- VF _ dL 
qL VF2 - nL dt qp 2 dt (3.44) 

and at x = 0 

qo VFl qf VFl (3.45) 

where qf is the filtrate rate. The substitution of Eqs. (3.44) and 
(3.45) into Eq. (3.42) would yield 

q = q + (n - 1) dL + L dn 
p f dt dt (3.46) 
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If q in Eq. (3.39) is expressed by Eq. (3.46) for a cake with 
p 

constant average porosity 

L 
[y (l-n) -

s 
nC 1 

p 

(3.47) 
A[p (l-n) - np sl 

s w 

where Pf and P are slurry and particulate densities respectively. 
A comparison with the data of Willis et al. (124) show that Eq. 
(3.47) gives very reliable results in predicting cake length in terms 
of filtrate volume or vice versa (Fig. 14). The linearity of L 
with VF indicates the constancy of average porosity throughout the 
filtration. 

3.4. The Variation of Cake Thickness with Cake Pressure Drop 

If we rewrite Eq. (3.43) in terms of relative discharges 
(Eq. (3.26)) and use Eq. (3.30), we obtain 

Ii dL + L dn _ dL -+-
nL dt + qr dt dt 

L 

Noting that in Eq. (3.48), 
-+-
V 

(3.48) 
dL/dt, 

s 
0 

- dL -+- -+-
n 

dt + qr I1F - q I1Fl 2 r 
L 0 

o (3.49) 

The difference between the relative fluxes on the top and bottom 
of the cake can be approximated in terms of average relative flux. 
By definition of averaging and Darcy's law as shown by Corapcioglu 
and Bear (20) 

or 

qr = f f qr dx = f f [-KI1~] dx (3.50) 

K [ ~ + Ll 
L yw 

(3.51) 

where K is the hydraulic conductivity of the cake and y is the 
specific weight of water. ~p = P2 - Pl is the pressure wdrop . P2 
denotes the applied pressure on the cake surface and Pl is the 
pressure at x = O. We realize that the cake thickness L is 
relatively small, i.e., at the order of a few centimeters. The the 
grav~ty terms in Eq. (3.51) are much smaller than the pressure 
term. Then, 
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Figure 14. Comparison of theoretical results given by Eq. (3.47) 
with the experimental data (124). Filtrations of Lucite 
in water were measured at three different levels of s. 
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Figure 15. Temporal variation of cake thickness for Eq. (3.54). 
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(3.52) 

To obtain an analytical solution for the cake thickness, we 
insert Eq. (3.52) into Eq. (3.49) 

- dL _ g lip 
n dt L y 

w 
o 

The solution of Eq. (3.53) for L(t=O)=O would be 

(3.53) 

(3.54) 

where k is the average cake permeability, and ~ is the viscosity. 
This solution is similar to the empirical solution obtained by 
Collins (17) and by von Engelhardt (120) which are discussed in 
section (3.1). Using the model parameters given in Table 3, a 
graphical representation of Land n versus t is given in Figure 15. 

3.5. Pressure Variation Along the Cake Thickness 

To obtain an equation for pressure variations in filter cakes 
with variable thickness, we follow the procedure given by 
Corapcioglu et al. (23). As shown by Corapcioglu and others (20,23) 
in a one-dimensional cake by neglecting the fluid's compressibility, 
and the gravity, we obtain the following equation for pore 
pressure p. 

C 
a 2 p ~ + y' 

aL 
v ax 2 at at 

(3.55) 

where 

y' [ny + (l-n)y 1 
w s 

(3.56) 

and 

C 
k 

v ;-a' 
w 

(3.57) 

a' is the compressibility coefficient of the cake. With an applied 
pressure on the cake surface, p(L,t) = P2' a constant pressure at 
the filter-septum interface, p(o,t) = Pl' and a constant initial 
pressure, Eq. (3.55) would yield a solution for L as expressed by 
Eq. (3.54) 
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where 

p P2Y _ y'M(l-y) + [Pl + y'M] [exp (- M:~2) 
It It v 

M2 ) - ~ if -y exp(- 4C 2 C 
v v 

[erf ( 
M 

2~ 
v 

) - erf( ~)]) 
2~ 

v 

(3.58) 

M __ j 211pk· 
)l , y = x/L (3.59) 

A plot of Eq. (3.58) is given in Fig. 16 for different values of 
C. An examination of Fig. 16 reveals that when C decreases, P/P2 
r¥aches to a linear distribution. This implies thXt when C 
decreases, the filter cake becomes more and more compressibYe. As 
shown in Fig. 11, this phenomenon has been observed by Tiller et al. 
(108) and has been illustrated by Tosun (111). 
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Figure 16. Variation of non-dimensionalized pressure along the 
cake thickness for different values of C (cm2/sec). 
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4. SUMMARY AND CONCLUSIONS 

In this paper, the equations governing the transport and capture 
of suspended solid particles have been studied in two categories. 
The first category includes transport and deposition of particles 
in an established porous medium. In this category, following a 
review of governing equations and various capture mechanisms in deep 
bed filters, the transport equation for microbial particles has been 
studied. For microbial particles, the governing equation for 
bacterial transport is coupled with a transport equation for the 
bacterial nutrient present in the suspension. The deposition and 
declogging mechanisms are incorporated into the model as a rate 
process for bacteria,and as an equilibrium partitioning for viruses. 
While the decay is assumed to be a first order reaction and the 
growth of bacteria is assumed to follow the Monod equation, the 
model equations exhibit nonlinearity and coupling. Coupled one­
dimensional numerical solutions are obtained at spatial and temporal 
locations of interest. 

Formation of a cake by deposition of solid particles on a 
filter cloth or on a previous cake,constitutes the second category. 
This type of filter media is called filter cakes. During filtra­
tion, the cake is compacted while new solid particles are laid down. 
Following a literature survey, a governing equation for cake 
thickness is obtained by averaging the conservation of mass equation 
for solid particles along the cake thickness. Then, the first order 
ordinary differential equation is solved with known average porosity 
functions,with the assumption of total deposition of solid particles 
on the cake surface. Results show that the cake thickness changes 
linearly for constant average cake porosity. In addition to the 
conservation of mass equation for solid particles, the conserva­
tion of mass equation for liquid has been averaged and solved 
simultaneously with the preceeding one to obtain expressions for 
the cake thickness in terms of filtrate volume. Excellent agreement 
has been observed between experimental and theoretical results. The 
resulting expression shows that the cake thickness is proportional 
to the square root of time for a constant cake pressure drop. 
Furthermore, the spatial variation of pore liquid pressure across 
the filter cake is obtained with a variable total stress expression. 

One very important note should be made in regard to the use of 
these predictive filtration equations. The user should ensure 
that the model parameters are either experimentally or theoretically 
available,and that the governing equations represent the system under 
consideration. This is the only approach to derive reliable 
results from such studies. Finally, we would like to emphasize 
that in view of various assumptions and approximations, the results 
which are obtained by numerical or analytical solutions should be 
viewed as estimates. These estimates, however, should be useful 
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for assessing the efficiency of a filtration operation or the outcome 
of a particular wastewater management scheme. 
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THEORY OF FILTRATION 

Max S. Willis, Steve Bybyk, Ray Collins, Jagadeeshan Raviprakash 

Chemical Engineering Department 
The University of Akron 
Akron, Ohio 44325 USA. 

ABSTRACT 

The objective is to describe a fundamental analysis which 
provides a filtration mechanism that can be used to select filters 
and filter media. 

General multiphase balances are developed from the principles 
of volume averaging and the new continuum requires constitutive 
equations which may be different from those of the individual 
phases. Linear constitutive equations are developed which are 
function of mUltiphase variables. For the filtration analysis, 
governing equations for both non-Newtonian and Newtonian fluids are 
derived. 

Combination of the constitutive and general balance equations 
is subjected to dimensional analysis to determine that the 
dominant terws are the pressure and drag forces for both classes of 
fluids. 

Filtrate rate expressions are derived for non-Newtonian and 
Newtonian fluids, one dimensional cylindrical and circular leaf 
filters. All are governed by an analogous rate expression. 

Experimental data shows the effect of cake pressure drop, 
filter area, particle size, particulate phases, and filter cake 
geometry. 
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1. RESEARCH PERSPECTIVE 

Selection of filtration equipment (6,19) relies on (i) dupli­
cation of existing operational equipment, (ii) industrial standards 
when there are few variations from plant to plant, and (iii) pilot 
plant runs which closely approximate actual operations. 

Filter media selection relies on (i) the permeability of the 
medium as determined from the passage of clear filtrate, (ii) the 
retention properties relative to the particle size, and (iii) pore 
size distributions. The data considered most reliable for media 
selection are obtained from full size equipment in plant tests. 

The analysis of filters is largely empirical and consists of 
correlations in which the design parameters are determined from 
data obtained from pilot plant or full size equipment. These 
correlations (16,21,23) normally attribute the dominant resistance 
to the filter cake and neglect the resistance of the filter media. 

The objective here is to describe a fundamental analysis which 
provides an experimentally verified filtration mechanism and a 
predictive capability for the selection of filters and filter media 
that current practice does not have. This fundamental approach 
(27,28,29) is based on the general multiphase continuum theory and 
the following generalized design procedure. 

1.1 Theory and Experiment in Single Phase Systems 

Engineering design problems require integration of theory and 
experiment and can be placed into one of three levels that depend 
on the number of independent variables required to describe the 
problem. Table 1 summarizes this interaction for single phase 
systems. 

Table 1. The Interaction of Theory and Experiment at Three Levels 
for Single-Phase Engineering Design Problems. 

Microscopic 
Level (~,t) 

Macroscopic 
Level (-,t) 

Equilibrium 
(-,-) 

Theory 

Equations of Change 

Design Equations 

Thermodynamic Laws 

Experiment 

Constitutive 
Equations 

Process 
Correlations 

Property 
Correlations 
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1.1.1 Theory 

In Table 1 under the theory column, the equations of change 
at the microscopic level are the conservation of mass, momentum, 
chemical species, energy, and entropy. These equations are spatial 
and time dependent partial differential equations. 

The macroscopic level design equations of Table 1 are obtain­
ed from the equations of change by integrating (2) over an 
arbitrary engineering volume which exchanges mass and energy with 
the surroundings. For example, when the microscopic level mechan­
ical energy balance is integrated over the arbitrary engineering 
volume it becomes the macroscopic level Bernoulli equation. 

The thermodynamic laws of Table 1 are the conservation of 
energy and the second law restrictions that apply to spatial and 
time invariant equilibrium conditions. 

1.1.2 Experiment 

The microscopic level experimental information shown in Table 
1 and termed constitutive equations refers to the additional equa­
tions which, when combined with the equations of change, comprise 
a determinate mathematical system. These constitutive equations 
include thermo-mechanical equations and equilibrium equations of 
state. The use of equilibrium property relations at the position 
and time dependent microscopic level is justified by the assump­
tion of local equilibrium or the continuum hypothesis. 

If the required number of constitutive equations is not 
available, then the mathematical description at the microscopic 
level is indeterminate and the design procedure then appeals to a 
process correlation to replace the analytical solution (i.e., the 
Fanning friction-factor correlation for turbulent tube flow). 

All process correlations are limited to a specific geometry, 
equipment configuration, boundary conditions, and substance. Con­
versely, the macroscopic design equations are intrinsically 
independent of these factors. The combination of the process 
correlation and the macroscopic design equations provides design 
specification only for those processes which have the same 
geometry, configuration, boundary conditions, and substance as 
that for the process correlation. 

The property correlations shown in the experiment column of 
Table 1 are obtained under conditions of thermodynamic equilibrium. 
Examples are equations of state, such as the ideal gas law, and 
the caloric equations of state for heat capacity. 
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This design procedure has evolved to reduce the cost of 
experimentation. For example, the use of dimensionless numbers, 
which are obtained from the dimensionless form of the microscopic 
level equations, reduces the number of independent experimental 
parameters that must be measured to obtain the process correlation. 
The experimental effort associated with the search for thermo­
mechanical constitutive equations is reduced by constitutive 
theory. The kinetic theory of gases provides the temperature and 
pressure dependence of transport properties with a corresponding 
reduction in experimental effort. On the other hand, the analysis 
of multiphase systems has relied entirely on experimental process 
correlations obtained at the macroscopic level. 

1.2 Theory and Experiment in Multiphase Systems 

Traditionally, the analysis of multiphase design problems has 
been done by analogy with single phase concepts where the only 
essential difference is that the experiments that define a process 
correlation are executed on multiphase systems. If this analysis 
of multiphase systems is compared to that for single phase systems, 
as is done in Table 2, the absence of microscopic multiphase 
equations of change, constitutive relations, and design equations 
is apparent. 

Table 2. The Interaction of Theory and Experiment at Three Levels 
for Multiphase Engineering Design Problems. 

Microscopic 
Level (~,t) 

Macroscopic 
Level (-,t) 

Equilibrium 
(-,-) 

1.2.1 Theory 

Theory 

Thermodynamic Laws 

Experiment 

Process 
Calculations 

Property 
Correlations 

The essential element that is missing in the analysis of 
multiphase systems, such as filtration, is the microscopic level 
equations which will permit the determination of a mechanism and 
the macroscopic design equations. The lack of a multiphase con­
tinuum theory has not, however, prevented mechanisms from being 
postulated for multiphase systems since there is always a need to 
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explain macroscopic observations. Mechanisms postulated solely on 
the basis of macroscopic measurements must, however, be viewed with 
caution. This caution can be justified by appeal to the mean value 
theorem. 

<f> f f(x)dx/ f dx (1.1) 

A given function f(x) has a unique average value, <f>, but the 
reverse procedure in which a function is sought which gives a 
prescribed average value is not unique since there are an infinite 
number of functions that will give the same average value. 

When mechanisms are postulated from only macroscopic level 
information, it represents only one of an infinite number of 
plausible mechanisms since, in essence, it is equivalent to using 
the mean value theorem in reverse. Regardless of the plausibility 
of the mechanism, it is certainly not unique and the acceptance of 
such postulated mechanisms depends solely on persuasiveness but the 
discrimination among these postulated mechanisms requires micro­
scopic level theoretical and experimental information. 

The only way to uniquely understand why a multiphase system 
exhibits the observed macroscopic behavior, is to initiate the 
analysis at the most general formulation of the fundamental prin­
ciples at the microscopic level. Proceeding in this fashion will 
not violate the implications of the mean value theorem and will 
insure the determination of a unique mechanism. 

1.2.2 Experiment 

If only microscopic level experimental data is acquired, it is 
equivalent to having constitutive equations without the equations 
of change. Such data by itself cannot provide a mechanism 
because the meaning of this data cannot be discerned due to the 
absence of microscopic multiphase balance laws. For example, it 
would not be possible to obtain the laminar flow velocity profile 
in a tube with only Newton's law of viscosity. Constitutive 
relations and the microscopic level equations of change are both 
essential to the design process. 

Microscopic level measurements in multiphase systems are not 
only difficult to measure but also difficult to define. For 
example, a probe designed to measure a velocity profile in the 
interstices between 1 ~m particles would be extremely difficult 
to fabricate and manipulate. Larger probes would be easier to use 
but what interstial velocity are these larger probes measuring? 
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A similar problem occurs with porosity. The measurement and 
definition of porosity is no problem at the macroscopic level, but 
how is a local value of porosity measured and defined such that it 
is a continuous function of position? 

The understanding, analysis, and design of multiphase systems 
would be considerably improved and the experimental effort reduced 
if a microscopic level continuum and constitutive theory, that is 
analogous to that for single phase systems, were also available for 
multiphase systems. This rationale justifies the effort (12,13,14, 
15) that has been expended toward the development and application 
of a general continuum and constitutive theory for multiphase 
systems. 

2. MULTI~HASE THEORY 

The theoretical approaches for describing the thermo-mechanical 
behavior of homogeneous and heterogeneous mixtures are based on the 
fundamental work of Truesdell, Toupin, and Noll (24,25) which in­
cludes the development of the general balance equations and the 
constitutive theory. Two approaches that are extensions of this 
basic framework are the continuum theory of mixtures (1,3) and the 
principle of local volume averaging (11,12,13,14,15). 

In the principle of local volume averaging, phases are viewed 
as interpenetrating continua, each occupying only part of the space 
and separated by highly irregular interfaces. Every property is 
assumed to be continuous throughout each phase but discontinuous 
at the phase interfaces. The classical single phase equations, 
together with the appropriate interfacial restrictions, are postu­
lated for each of the individual phases but the arduous task of 
solving these equations for the complicated geometry of the inter­
stices is circumvented by averaging these single phase equations 
over a representative element of volume. The averaged results 
represent an entirely new continuum with its own constitutive 
equations that are distinct from those of the individual phases. 

The theory of mixtures views the mixture as a superposition of 
overlapping continua and is a better description of multiple 
components in a single phase mixture rather than multiphase sys­
tems. The more realistic conceptualization of the multiphase 
material is obtained from the volume averaging principle and it is 
used here to develop a mechanism for filtration. 

2.1 Volume Averaging 

The averaging volume is shown in Figure 1. The centroid of 
the volume is located at a position xi and any point in the 
averaging volume is located relative to the origin by the 
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position vector r. and relative to the centroid of the averaging 
l 

volume by ~. such that 

r. 
l 

l 

The phase distribution function is defined as 

y 
a 

Y (r.,t) 
a l 

1, if r. E V 
l a 

(2.1) 

(2.2) 

On the interfaces between the two phases Y is not defined but its 
left and right limits exist there. This f~nction not only 
describes the distribution of the phases, but it also accounts for 
the points over which the averages are taken. 

An average value is obtained by integrating over all the 
points ~. of the averaging volume. For example, the volume of the 
a-phase in the averaging volume is obtained by 

Xl 

X-Inertial Frame 

Fig. 1. Reference frames for the averaging volume V with surface 
area A containing a- and 6-phases. 
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v (x.,t) 
a l 

IV Y (x.+E,.,t) dE,V 
all 

(2.3) 

where dE,V indicates an integration over the position variable E,i. 

Another averaging volume is superimposed over the first and 
the averaging operation is repeated until each point xi of the 
initial averaging volume is filled with a continuum of average 
values for each of the phases. This procedure is repeated until 
the entire multiphase body is composed of a continuum of values for 
each phase at each point x. in the body. 

l 

This averaging procedure then permits the local value of the 
porosity to be defined as 

E (x.,t) 
a l 

(l/V) Iv Y (x.+E,.,t)dE,V 
all 

(2.4) 

and a corresponding value ES for the S-phase can be also obtained 
such that 

1 (2.5) 

2.1.1 Averaging Operators 

For a given averaging volume, the following factors (13) 
should be taken into account when averaging operators are defined. 

First, the intrinsic nature of the property being averaged 
should be taken into consideration. For example, the stress, which 
is a surface force, should be averaged over the surface points on 
which it is acting. The internal energy, on the other hand, should 
be averaged over the points within the prescribed averaging volume. 

Second, the quantities being averaged must be additive. For 
example, if A is a quantity defined per unit of mass, then A is not 
additive, AdV is not additive, but pAdV is additive. 

Third, the result of averaging must be a quantity that is 
observed and can be measured. For example, velocities are mass 
averaged quantities, therefore, the definition of a volume averaged 
velocity should also reflect the mass average characteristic 
normally associated with velocity. 

These factors lead to the following definitions for averaging 
operators: 



Volume Average Operator, < > 
a 

<f> (x.,t) = (l/V) fV f(x.+E,.,t) Y (x.+E,.,t) d~V 
al 11 all c, 

a Intrinsic Volume Average Operator, < > 
a 

Mass Average Operator, -a 

rex. ,t) 
1 

fV f(x.+E,.,t) Y (x.+E,.,t) p(x.+E,.,t)d~V 
1 1 all 1 1 c, 

fv p(x.+E,.,t) Y (x.+E,.,t) d~V 
1 1 all c, 

Area Average Opera tor, L.J a 
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(2.6) 

(2.7) 

(2.8) 

'::'b. 
f (x.,t) 

1 
(l/A)fA f.(x.+E,.,t)n.(x.+E,.,t)Y (x.+E,.,t)d~A (2.9) 

Jll Jll all c, 

2.1.2 Averaging Theorems and Fluctuations 

The establishment of balance equations for a volume averaged 
continuum is achieved by averaging the single phase balance 
equations over the representative averaging volume. To obtain 
spatial and time derivatives of averaged quantities, the following 
theorems (11,13) are used. For these theorems, the averaging 
volume, V, is constant as it moves throughout the multiphase 
system. 

Average of a Time Derivative 

f ~ Y d V a as = ~t fV fY~d~V - fA f w.n. d~A 
V at a E, 0 ~ c, as 1 1 c, 

(2.10) 

Average of a Spatial Derivative 

(2.11) 
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The first term on the right side of the average of a spatial 
derivative, Eq. (2.11), can be written as 

(2.12) 

since the averaging volume is not a function of position. The 
divergence theorem is used for the term on the right of Eq. (2.12) 
to obtain an alternate form for the average of a spatial derivative. 

Average of a Spatial Derivative (Alternate Form) 

(2.13) 

In the derivation of the averaged balance laws, it is necessary 
to convert the average of a product to the product of average values. 
The introduction of deviations, or fluctuations, 

(2.14) 

permits this transformation to be accomplished. These deviations 
are valid and defined only for those spatial points used to 
determine the average value. 

To determine the average value of deviations, the first step 
is to establish the set of points, from the phase distribution 
function, over which the average value f(xi,t) is determined and 
then for these same set of points, determine the deviation by 
subtracting the average value from the local values f(xi+~i,t) in 
V. There is a deviation for each f(xi+~i,t) but there is only one 
average value which remains the same during the averaging of the 
deviations over the points ~i in V. The following identities can 
then be established. 

-a 
fa 0 (2.15) 

and 

--a Aa-a 
f g 0 (2.16) 
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L..-------I a 
f pf. ad V 0 
V l ~ 

(2.17) 

'a 
f pf. a-ad V 0 
V l g ~ (2.18) 

(2.19) 

2.2 General Balance Laws 

These principles and theorems of volume averaging are now 
applied to the single phase equations which hold for each of the 
phases in the multiphase system. It is more efficient to volume 
average a general single-phase equation to obtain a general multi­
phase balance law. In either case, these general balance equations 
can be converted to specific balances for mass, momentum, energy, 
and entropy by proper definition of the general dependent varia­
bles. 

2.2.1 Single Phase Balance Laws 

The general balance law for a single phase system is 

pG (2.20) 

where ~ is an arbitrary thermodynamic property, qk is the surface 
flux of ~, h is the external supply of ~, and G is the net pro­
duction of ~. 

The interactions between phases is important and these inter­
actions are governed by the general interface balance 

I as I as {p~(w.-v.)+q.} n. + {p~(w.-v.)+q.} Sn. 
l l l al l l l l 

o (2.21) 

2.2.2 Multiphase Balance Laws 

The application of the volume averaging principles to the 
single-phase equation, Eqs. (2.20), gives the general macroscopic 
balance law for multiphase systems. 
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a = a =-a ! {-«p> rI ) + -«p> rI v. )}d V 
v at a ax. a ] x 

] 

- !v{(l/V)!A Prl(w.-v.)n.aSd~A}d V 
as 1 1 1 .., X 

- ! {(l/V)!A q.n.aSd~A}d V 
V as J J .., x 

o (2.22) 

The new terms in the multiphase balance equation are identi­
fied with the following notation and physical significance. 

The term 

a 
e as (l/<p> V)!A prl(w.-v.)n. d~A 

a as 1 1 1 .., 
(2.23) 

represents the exchange of the property rI across the interfaces 
between the a- and S-phases within the averagin~ volume V due to a 
phase change. The term 'phase change' is used in a general context 
that includes interphase transport of chemical species as well as a 
change of state such as evaporation. The tensorial order of ea is 
dependent on that of rI. 

The term 

(l/<p> V)!A q.n.aSd A 
a as ] J ~ 

(2.24) 

represents the exchange between the a- and S-phases within V due to 
the surface flux vector q. of n. If the surface flux vector were 
momentum, then Fa would bJ the interfacial drag on the particulates 
due to the fluid motion. 

When the flux at the volume averaged level is defined by 

(2.25) 
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then the term which represents the flux through the area A enclosing 
the averaging volume V can be written as 

(2.26) 

where the divergence theorem has been used for the integral over 
the area A. As a result, Eq. (2.26) can now be written as 

ACi.A Ci. } d Ci. 
fv{(l/V)fA(qk-P~ vk )YCi.nkd~A dxV = fv dX.<qj >Ci. dxV 

J 
(2.27) 

Since the general macroscopic level multiphase balance, Eq. 
(2.22), is an integral over an arbitrary volume, it follows that 
the integrand must be zero and the general microscopic level 
multiphase balance equation is 

d -Ci. d -Ci.- Ci. 
"t «P> ~ ) + - «P> ~ v. ) 
a Ci. dX j Ci. J 

o (2.28) 

where the first term represents the accumulation of ~, the second 
term represents the convection of ~, the third term represents the 
diffusion or conduction of ~ at the volume averaged level, the 
fourth term represents the transport of ~ across the interfaces 
ACi.S between the phases, the fifth term represents the body source 
of ~, and the last term represents the generation of the property 
~. 

The multiphase balance at the interfaces between the phases 
is obtained by applying the principles of volume averaging to the 
jump balance, Eq. (2.21), with the result 

o (2.29) 
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To obtain specific mu1tiphase balance equations for the con­
servation of mass and momentum for isothermal flow through a 
porous media in which there is no transfer of species between 
phases or phase changes, the general dependent variables are 
specified as follows, 

Mass 

a ~ 1, <q. > = 0 
J a 

ca 0, 

Momentum 

-a 
v. 

1 

-a 
gi 

ea,mom 0 

Fa = 0, 

a 
<q. > 

J a 

ca = 0 

-a 
h = 0 

ea,mass 0 

F a 
i 

and the mu1tiphase continuity and motion equations are 

a-Phase Mass 

a a a a- a 
-- (E <P> ) + --- (E <P> v. ) 
at a a ax. a a J 

J 

o 

f3-Phase Mass 

o 

a-Phase Momentum 

a a- a a a- a- a 
-(E <P> v. ) + --(E <P> v. v. ) 
at a CI. 1 ax. a a 1 J 

J 
a (a) a a a a 
-~--. t.. - Ea<P>a g1. - E <p> F. 
oX j 1J a a 1 

f3-Phase Momentum 

a f3 
-a-(t .. ) 

Xj 1J 

o 

o 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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where the drag forces between the two phases are related by 

o (2.34) 

Eqs. (2.30)-(2.34) govern the isothermal motion of a multi­
phase system composed of an 0.- and S-phase in which the only 
exchange occurring between the phases is the transfer of momentum. 
These equations apply to all systems that meet these restrictions. 
Further identification of the continuum composed of an ~-phase and 
a S-phase requires constitutive equations for t .. 0., t .. S, and F.a. 
The application of the axioms of constitutive tfiJory ~te used t6 
develop constitutive relations for these functions. 

The notation can be made more compact with the following 
changes, which will be used henceforth. 

<p> 
a. 

3. CONSTITUTIVE THEORY 

a. 
v. 

1 

The results of volume averaging represent an entirely new 
continuum with its own constitutive equations that are distinct 
from those of the individual phases. 

Without exception, the number of unknowns exceeds the number 
of fundamental balance equations. The additional relations requir­
ed to make the problem determinate are called constitutive 
relations and these relations are determined by combining the con­
stitutive theory with experiment. The basic axioms and principles 
of constitutive theory (7,18) are generally accepted, although in 
some details there are still different opinions and approaches (1). 

The axioms of constitutive theory require that all of the 
constitutive equations be functions of the same set of independent 
variables (i.e., equipresence), that the constitutive function is 
an ibsolute invariant relation that is completely independent of 
observing coordinate frames (i.e., objectivity), that the consti­
tutive function must not violate the entropy inequality, and that 
the constitutive equation must be consistent with equilibrium 
conditions represented by the absence of gradients. 

The following is an overview (20) of the procedure for the 
development of constitutive equations. 

1. A set of arbitrary independent variables is selected according 
to the axioms of equipresence and objectivity. Since velocities 
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and velocity gradients are not objective, tgey are replaced by such 
variables as the difference in velocity, v. , and the rate of 
deformation tensor, d .. a. l 

lJ 

2. The entropy inequality is then applied to the constitutive 
functional. This condition requires that the coefficients of all 
variables which are not independent variables must vanish to main­
tain a positive entropy production. 

3. The linear constitutive theory approximates the constitutive 
functions with an appropriate tensorial order polynomial. Mate­
rial isotropy is normally assumed and, as a result, the coeffici­
ents are limited to isotropic tensor forms. The entropy inequality 
and equilibrium requirements are then applied to the polynomial 
form of the constitutive equation to determine the algebraic signs 
of the coefficients in the polynomial. 

Constitutive equations for the fluid a-phase are taken to 
depend on the following independent variables (12,15,20). 

f . . a (p a , E , Ta , E ., Ta ., d.. a, v. d) 
lJ a a, l , l lJ l 

(3.1) 

a a a a a d 
h. (p ,E ,T ,E ., T ., d.. , v. ) 

l a a, l ,l lJ l 
(3.2) 

If a constitutive equation were developed for t ij S and used in 
the momentum balance, Eq. (2.33), the result would be the displace­
ment of the particulate S-phase or, equivalently, the porosity 
variations. For filtrations, instead of doing this, the porosity 
profiles are determined directly from electrical conductivity 
measurements. 

Application of the entropy inequality and equilibrium condi­
tion (12,15) provide the following modifications to the a-phase 
constitutive functionals. 

a pac .. + a a a 
Ta a d 

(3.3) t .. -E T.. (p ,E , T , E 
a,i' 

. , d .. , v. ) 
lJ a lJ lJ a ,l lJ l 

S paF.a pas a a a 
Ta a d (3.4) 

a,i 
+ 'II. (p ,E,T,E ., . , d .. , v. ) 

a l l a a,l , l lJ l 

h ad a h d' .. f h .. were T i . an 'IIi are t e lsslpatlve parts 0 t e constltutlve 
relation~ and vanish at equilibrium. 
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3.1 Multiphase Stress Tensor 

The constitutive function for the multiphase stress is taken 
to be a second order polynomial (9,10,18,20) and then the assump­
tions are made that the porous media is isothermal with no tempera­
ture gradients, and that the gradient of porosity and the velocity 
difference between the phases does not affect the multiphase stress 
tensor. The remaining terms in the polynomial for the multiphase 
stress tensor are 

t .. a = (Y ) .. + (Y 1 ) .. d a + (Y 2 ).. d ad 
1J 0 1J 1Jmn mn 1Jmnpq nm pq 

a (3.5) 

The multiphase continuum is assumed isotropic and, as a result, the 
odd order tensor coefficients are all zero and the even order 
tensor coefficients must be represented by the following isotropic 
tensor relations (10,18). 

13 0 .. o 1J 

(Y 1) ijmn 13 1 0 .. 0 + 13 2 (0. o. + o. o. ) 
1J mn 1m In 1n Jm 

(Y 3) .. 1330 .. 0 0 + 1340 .. 0 0 + SSOijOmqOnp 1Jmnpq 1J mn pq 1J mp nq 

1360. o. 0 + 1370. o. 0 + SaO. o. 0 1m In pq 1m JP nq 1m Jq np 

(3.6) 

(3.7) 

+ 

+ 

1390. o. 0 + 13100. 0. 0 + 13110. 0. 0 + 1n Jm pq 1n JP mq 1n Jq mp 

13 120. o. 0 + Sl30. o. 0 + 13 14°. 0. 0 + 1p Jm nq 1p In mq 1p Jq mn 

13 o. o. 0 + 13 60. o. 0 + 13 o. o. 0 (3.8) 
15 1p Jm nq 1- 1q In mp 17 1q JP mn 

The insertion of Eqs. (3.6)-(3.8) into Eq. (3.5) and the 
utilization of the equilibrium condition results in the following 
expression for the fluid a-phase constitutive equation, 

_~ pa~.. 2 dad a a ~ a u 1J + n 1 ij + n 2 irn drnj (3.9) 

where the coefficients have the following functional dependence, 
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a a a ad a) (3.10) n1 n (p ,s ,T , d 
rom ' 

d 
1 a mp pm 

a a a d ad a) (3.11) n2 n2 (p ,sa,T , d 
mm ' mp pm 

and where the last two independent variables are the first, II' and 
second, 1 2 , invariants of the rate of deformation tensor d ..• 

1.J 

If the dependence on porosity is removed from these two 
constitutive parameters then they are converted from multiphase to 
single phase material properties and if, in addition, a first order 
approximation is presumed for t .. a, such that, 

1.J 

(3.12) 

then the multiphase stress tensor becomes 

(3.13) 

3.2 Multiphase Drag 

The constitutive equation for the multiphase drag, Fi a , 
represented by the functional relation given by Eq. (3.2), is 
determined by the same procedure as that for the multiphase shear 
stress. 

A second order polynomial expansion of Eq. (3.2), combined 
with the assumptions that the multiphase system is isothermal, 
results in the following expression for the interfacial drag in 
multiphase systems 

F a 
i 

(Y 0). s + (Y ). 1.m a ,m 1 1.m 
d 

(Y 3). d v 1.mnp mn p 

v d + (Y) d a 
m 2 imnp mn s 

a,p + 

(3.14) 

Utilization of Eqs. (3.6) and (3.7) and the equilibrium con­
dition results in the following expression for the multiphase drag 

If, as with the multiphase stress tensor, a first degree 
approximation is presumed, then the multiphase drag becomes 

(3.15) 
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v. 
l 

d 
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(3.16) 

(3.17) 

The residual multiphase entropy inequality (12,15) for the 
liquid a-phase is 

a 
T •• 
lJ 

d a a d 
- ;TTl' V l' > 0 ij 

(3.18) 

The dissipative parts of the multiphase stress and drag can be 
obtained from Eqs. (3.13) and (3.16) and are, respectively, 

T •• 
lJ 

a 
TI. 

l 

a 
(3.19) 

(3.20) 

and when these two expressions are substituted into the entropy 
inequali ty, Eq. (3.18), then 

m > 0 

(-Je ) > 0 o 

4. DIMENSIONAL ANALYSIS AND DOMINANT TERMS 

(3.21) 

(3.22) 

The 6-phase momentum balance is replaced with a direct experi­
mental determination of the porosity distribution since the 
combination of a 6-phase constitutive equation and the 6-phase 
momentum balance would give the displacement of the particulate 
6-phase or, effectively, the distribution of the porosity. 

However, for the liquid a-phase, the general balance equa­
tions, Eqs. (2.30) and (2.33), and the two constitutive equations, 
Eqs. (3.13) and (3.16), can now be combined to obtain balance 
equations for that class of multiphase materials that are describ­
ed by these two constitutive equations. 
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The accumulation and convection terms in the a-phase motion 
equation, Eq. (2.32), can be combined with the a-phase mass 
balance, Eq. (2.30), to obtain 

d aa d aaa 
-~-(E p v. ) + -~-(E P v. v. ) 
ot a loX. a l J 

J 

dV. a 
_l) 
dx. 

J 

(4.1) 

and upon insertion of the constitutive equations for t .. a and F.a, 
Eqs. (3.13) and (3.16), the a-phase motion equation be~6mes l 

dV. a dv. a 
E pa( __ l + v. a ___ l ) 

a dt J dx. 
J 

4.1 Dimensional Analysis 

+ E 
a 

d 
Ie v. o l 

o (4.2) 

Characteristic quantities are defined (5,20,28,29) as follows 

L Characteristic length = L 
c 

V Characteristic velocity = ViAE '1, 
a 

T Characteristic time = L AE '1, Iv 
c a 

S Characteristic stress P 
0 

c 

where the terms on the right are the filtration variables that 
correspond to the characteristic quantities. The following dimen­
sionless variables can now be defined. 

L x k >" a 
V v k * x = v k k 

d 
V 

d>" 
T t* v k = vk t 

p Pi,S + p a * 
0 gk g gk 

d 
L 

d d T _d_ 
dX* dXk 3"t* dt k 
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4.1.1 Non-Newtonian Fluid 

Utilization of these dimensionless quantities permits Eq. 
(4.2) to be written as 

" * ov. 
l 

Ea(Re)(dt* 
dV.* 

+V.* __ l) 
J dX * j 

dP* + E (Np) -
a dX.* 

l 

__ 8 --~{2(I *)(n- I )/2 d a*} _ E (Re/Fr)g.* + (Nd)v. d* 
dX n 2 iJ· all 

j 

where 

Re 

Fr 

Np 

Nd 

a • (2-n) n 
p V L 

c 

meA E *) (2-n) 
a 

gL (A E ,~)2 
c a 

'n 
m V 

'(n-I) 
m V 

o (4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The magnitude of the normalized a-phase momentum balance 
coefficients reflects the relative importance of the individual 
terms, and each dimensionless coefficient represents the ratio 
of forces from which the dominant effects can be deduced. The 
dimensionless numbers (Re). (Re/Fr).(Np), and (Nd) represent, 
respectively. the ratios of the inertial, gravity, pressure, and 
drag forces to the viscous force. Their values are estimated from 
the data of Christopher and Middleman (8) for the flow a 1% solu­
tion of carboxymethylcellulose (CMC) in water through glass beads 
with diameters between 710 and 840 microns which gave a packed bed 
with a porosity of 0.370. The results are shown in Table 3. 

Neglecting the porosity dependence and assuming the functional 
dependence given by Eq. (3.12) for nl converts this constitutive 
parameter from that for a multiphase fluid to a single phase fluid 
and, as a result, it is permissible to use the values of m and n 
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from the data of Christopher and Middleman to calculate the dimen­
sionless numbers shown in Table 3. 

Table 3. Dimensionless Numbers for the Flow of 1% CMC in Water 
through a Packed Tube (Christopher and Middleman, (8)) . 

. 
V Re Np Nd Re/Fr 
cm3 /s 

1.08 0.028 6.35xl0 3 2.11xl0 3 82.8 

5.16 0.28 6.55xl0 3 4.5 xl0 3 36.1 

Increasing the Reynolds number by a factor of 10 left the 
pressure force, Np, relatively unchanged, increased the drag force, 
Nd, and decreased the effect of gravity, Re/Fr. The magnitude of 
Np and Nd indicate, for flow of CMC in a packed bed of glass beads, 
that the inertial, gravity, and viscous forces can be neglected. 

4.1.2 Newtonian Fluid 

If n 1 is assumed to be independent of the invariants, Ii and 
12 , of the multiphase rate of deformation tensor, and the porosity 
E: then 

a 

a a n 1 (p ,T ) 

This is equivalent to taking n 

a a) ~ (p ,T 

(4.8) 

1, m ~ in Eq. (3.12) such that 

(4.9) 

where ~ now is a single phase Newtonian viscosity rather than a 
multiphase Newtonian viscosity and it is also now a thermodynamic 
variable since it is a function of only the pressure and the 
temperature. The expression for the multiphase stress tensor, Eq. 
(3.13) becomes 

(4.10) 

and the a-phase momentum balance, Eqs. (4.2) becomes 
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dV. 
a 

dV. 
a 

a l _l) + 
dpa 

EaP (at + v. (lx. ] dX. 
] l 

d 
d .. ) 

a a 
AOV. 

d 
(4.11) ~ .. -(2)J - E p gi 0 

dX. lJ a l 
] 

and the normalized a-phase momentum balance, Eq. (4.3) becomes 

dV.* 
l 

E (Re) (~* 
a dt 

dV * 
i ._) 

dX.* 
] 

3P* 
+E (Np) ~ 

a dX. * 
l 

d (2d . . a*) _ E (Re/Fr)g.* + (Nd)v. d* 
dX. * lJ all 

] 

The dimensionless numbers for n 

Re 

Fr 

Np 

Nd 

a V L 
p c 

)J A E * a 

V2 

gL (A E *)'2 
c a 

P 0 L AE * 
c c a 

)J V 

(-Ao)L~ 
)J 

1 become 

o (4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

These dimensionless numbers are estimated from filtrations 
executed with water slurries of Lucite, Solka Floc, Celite, and 
talc. The filter media used in these filtrations were a fine 
porosity Whatman No. 3 with a particle retention of 5 microns or 
larger and a coarse porosity Whatman No.4 with a particle reten­
tion of 25 microns or larger. Porosities of the filter cakes of 
Lucite, Solka Floc, Celite, and talc were, respectively, 0.391, 
0.906, 0.826, 0.616. The results are shown in Table 4. 

Again the values of the dimensionless numbers shown in Table 4 
reflect the assumption that the viscosity is independent of the 
porosity and this permits single phase viscosity values to be used 
in the calculation of the dimensionless numbers shown in Table 4. 
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It is evident from the relative values of the dimensionless 
numbers shown in Table 4 that the pressure, drag, and gravity 
forces dominate the flow and that the inertial and viscous forces 
can be neglected. 

Table 4. Dimensionless Numbers for the Filtration of Water 
Slurries of Lucite, Solka Floc, Celite, and talc. 

Material Re Np Nd Re/Fr 
Media 

Lucite (5%) 
No. 3 10.90xl02 5.2xl0 8 5.l8xl0 8 3.60xl0 6 

Lucite (5%) 
No. 4 8.90xl02 6.7xl0 8 7.44xl0 8 4.29xl0 6 

Solka (2%) 
No. 4 3.78xl02 l3.3xl0 8 51. 50xl0 8 8.43xl0 6 

Celite (5%) 
No. 3 1. 37xl0 2 l2.4xl08 11. 00xl0 8 19.40xl0 5 

Celite (5%) 
No. 4 1.42xl02 32.4xl0 8 11. 30xl0 8 20.l0xl0 6 

talc (5%) 
No. 3 .27xl02 19.6xl0 8 19.50xl08 4.05xl0 6 

talc (5%) 
No. 4 .25xl02 21.lxl0 8 20.70xl0 8 4.39xl0 6 

5. GOVERNING EQUATIONS FOR FILTRATION 

In general, the linear constitutive relations for the multi­
phase stress tensor and the interfacial drag represent material 
functions for the fluid a-phase in the presence of the particulate 
S-phase and may not be related to the constitutive equations for 
the individual phases. However, neglecting the porosity in the 
development of Eqs. (3.13) and (4.10) eliminates this distinction 
for these two constitutive equations but this distinction still 
exists for the multiphase drag coefficient, (-AO)' whose functional 
dependence is given by Eq. (3.17). 

5.1 Multiphase Non-Newtonian Fluid 

The dimensional analysis shows, for a fluid a-phases governed 
by the Eq. (3.13), that the dominant terms in the momentum balance, 
Eq. (4.2), are the pressure and drag forces. For a one-dimensional 
axial filtration (20) in which the z-coordinate is located at the 
cake-media interface and the positive direction is opposite to the 
fluid motion, the governing balance equations are 
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d a d a a 
0 -at(EaP ) - -(E P V ) 

dZ a Z (5.1) 

a S 
a-r(ESP ) 

d 
a;(Esp 

S v S) 
Z 0 (5.2) 

apa 
(-A )(v a_v S) 0 E dZ a o Z Z (5.3) 

1 (5.4) 

in which the functional dependence for (-A o) is 

a a a 
AO(p ,E ,T ,v ) a z,z (5.5) 

The six unknown functions to be determined are 

and since there are only four governing equations, two additional 
relations must be determined experimentally. In filtrations, it is 
possible to measure the internal porosity and pressure profiles and 
these profiles, in conjunction with the governing equations, permit 
the internal profiles of all the unknown functions to be determin­
ed. 

The particulate S-phase motion equation together with a multi­
phase constitutive equation would add another equation and provide 
the displacements of the particulate S-phase. In the formulation 
as given by Eqs. (5.1)-(5.4), this displacement of the particulate 
S-phase is replaced by the direct measurement of the local porosity 
distribution. 

These governing equations for multiphase non-Newtonian fluids 
indicate that the viscous force is small relative to the pressure 
and drag forces but that the viscous force is sufficient to reduce 
the effect of the gravity force as reflected in the relatively 
small value of (Re/Fr). The absence of a viscous force term in the 
momentum balance also implies that the momentum transfer is 
predominantly from the fluid a-phase to the particulate S-phase 
with very little, if any, transfer to the containing walls of the 
filter cake. 
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5.2. Newtonian Fluid 

The dimensional analysis shows, for a fluid a-phase governed 
by Eq. (4.10), that the dominant terms in the momentum balance, Eq. 
(4.11), are the pressure, gravity, and drag forces. For a one 
dimensional filtration, the governing balance equations are Eqs. 
(5.1), (5.2) and the momentum balance 

o (5.6) 

where the functional dependence of A is given by Eq. (5.5) and the 
o six unknown functions are the same as those given previously. 

The first invariant of the deformation, d a = v ,in Eq. 
(5.5) reflects the deformation of the fluid ph~e at ~&~ volume 
averaged level. If A were independent of the porosity and hence 
the particulate phase~ then the interstitial liquid viscosity could 
become an independent variable in A by Eq. (4.10) in the form 

t 
zz 

a 

o 

(5.7) 

It is more likely that v a is small and that the viscosity, 
(a thermodynamic variable) ap~~~rs as an independent variable in A 

o 
through the temperature and the Theory of Corresponding States, 

Ta = T T (ll/ll ) c r c 
(5.8) 

The functional dependence for A , when v a is negligible, is 
o z ,z 

and the permeability, K, can be defined by 

where 

(-A) 
o 

-1 
K 

-1 a 
K (p ,£ ,T ,ll ) 

a c c 

(5.9) 

(5.10) 

(5.11) 
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The gravity and pressure terms in Eq. (5.6) can be combined by 
defining 

P a 
o 

P 
o 

with the result that Eq. (5.6) becomes 

ClP a 
o 

Clz 
a 6 (E ll/K)(v -v ) 

a z z 
o 

(5.12) 

(5.13) 

and the governing equations for the one-dimensional axial filtra­
tion of a Newtonian liquid a-phase are Eqs. (5.1), (5.2), (5.4), 
and (5.13). 

5.2.1 One-Dimensional Cylindrical Filtration 

To obtain the filtrate rate expression for a one-dimensional 
cylindrical filtration of a Newtonian a-phase liquid, the governing 
equations, Eqs. (5.1), (5.2), (5.4), and (5.13) are combined with 
an external macroscopic material balance that equates the differ­
ence between the mass of slurry filtered and filtrate to the mass 
of the filter cake 

which can be written as 

where 

AL 
c 

G 

GV 

a 
sp 

(5.14) 

(5.15) 

(5.16) 

Eq. (5.15), which holds at each instant in the filtration, 
implies that the average porosity is constant if the slurry 
concentration remains fixed and that this linear relation is also 
independent of the fiiter cake geometry. 
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These observations can be verified experimentally by deter­
mining whether or not the cake length is linear with filtrate 
volume for two filter cake geometries (i.e., cylindrical and leaf 
filter cakes). 

The average porosity is defined by 

and is constant if 

dE * a 
dt 

o 

E (z,t)dz 
a 

To meet this requirement ~ * 
satisfies Eq. (5.18) sincea 

o 

E (0. where [, 
a 

(5.17) 

(5.18) 

z/L (t), which 
c 

(5.19) 

For the average porosity to be a function of fractional cake 
volume, [" means that the shape of the porosity profile remains the 
same throughout the filtration. 

For a constant density liquid and particulate phase, the 
change in independent variables from (z,t) to (["t) converts the 
governing equations for a one dimensional filtration, Eqs. (5.1), 
(5.2), and (5.13) to 

dE 
['L a + a ( a) 0 (5.20) 

c az- aE; EaVz 

. dES d S 
[,L ~ + af(ESVz ) 0 (5.21) 

c 

o (5.22) 

where 



and 

P * o 

P 0 
c 

P alP 0 
9. c 

P 
o 

in which P is the applied filtration pressure. 
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(5.23) 

(5.24) 

The filtrate rate is obtained by evaluating the fluid a-phase 
momentum balance, Eg. (5.22), at the exit of the filter cake where 

and 

v 
z 

S 

o (5.25) 

o (5.26) 

This boundary condition defines an interface which is called the 
"septum" to distinguish it from the filter medium. The septum then 
is the location in the filter medium where the velocity of the 
particulate S-phase is zero. The result of applying this boundary 
condition to Eg. (5.22) is 

J - (wL /K P o)(V/A) 
o c 0 c 

o (5.27) 

where J is the ratio of the pressure gradient at the septum to the 
pressurg gradient across the entire filter cake 

and 

J 
o 

(ClP a/'dz) I o(P oIL )-1 
o E,= c c 

and K is the permeability at the septum. 
o 

(5.28) 

(5.29) 
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It is common practice to interpret filtration data by plotting 
the reciprocal rate versus the filtrate volume, 

(5.30) 

where Eq. (5.30) indicates that reciprocal rate is linear in V if 
J , K , and po are all constant. 

o 0 c 

The objectives of experimental studies are to verify the 
linearity between the cake length and filtrate volume and to deter­
mine the effect of (i) septum permeability, (ii) cake pressure 
drop, (iii) filter area, (iv) particle size, (v) different B­
phases, and (vi) filter cake geometry on Eq. (5.30). 

• 0 
Measurement of V, V, G, A, ~, and P permits the determina-

tion of the product K J from Eq. (5.30)~ Separation of this 
product requires the ge~surement of internal pressure profiles and 
the subsequent calculation of J • 

o 

The reciprocal rate expression, Eq. (5.30), holds for 
Newtonian and multiphase non-Newtonian liquids since both classes 
of fluids are described by momentum balances, Eqs. (5.3) and (5.13), 
that are the same. The only alteration to Eq. (5.30) would be the 
substitution of (-A O) for (£a2~/K). 

5.2.2 Leaf Filtrations 

The effect of filter cake geometry (5) is determined from a 
filtration on a circular leaf on which the shape of the filter cake 
assumes the form of an approximate oblate spheroid. Previous 
studies (4,17) have indicated that Darcy's law may not be valid for 
circular leaf filtrations. 

The oblate spheroidal coordinate system that is used for these 
circular leaf filtrations is shown in Figure 2 and the transforma­
tion from rectangular to oblate spheroidal coordinates is 

x = (5.31) 

y (5.32) 

z = RYn (5.33) 
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z 
w 

'1= 0.95 

Y = 0.0 

" 
L_--, '1=0.1 

'1 =0.0 

t= R ---.I a ____ ~.j 

Fig. 2. Oblate spheroidal coordinates. 

for O<Y<oo, O<n<l, O<w<2n. The outer dimensions of the oblate 
spheroid are-given by 

a = 

b RY 
e 

(5.34) 

(5.35) 

where R is the radius of the filter media and Y is the value of 
that coordinate on the surface of the filter cake. The scale 
factors are (16) 

h R(y2+n2)1/2/(1+y2)1/2 (5.36) 
Y 

h R(y2+n 2)1/2/(1_n2)1/2 (5.37) 
n 

h 
w 

R( (1+y2)112(1_n2))1/2 (5.38) 
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The objective is to obtain a filtrate rate expression for 
circular leaf filters from equations that are analogous to Eqs. 
(5.20), (5.21), and (5.22) in which the transformation to frac­
tional cake volume, ~, which is equivalent to a constant average 
porosity, has been utilized. 

The transformation of Eqs. (5.1),(5.2), and (5.13) to oblate 
spheroidal coordinates gives the governing equations (5) 

d a 1 ~(E a rl a) 0 -at(EaP ) R(yz+nZ) elY a P Y 
(5.39) 

"3 S 1 el S S 0 3t"(ESP ) - R(yz+nz) elY (ESp rly ) (5.40) 

elP a E llR(y2+n2)1/2 
(rl a_rl S) 0 a 0 

dY M(l+y2)IJ2 Y y 
(5.41) 

where M is the permeability and is assumed to be different from 
that for an axial filtration. The scaled velocities are 

a 
E rl (Y, t) 

a y 
(5.42) 

(5.43) 

a S where the coefficients of E vY and E v account for the area 
change as the fluid moves tgward the ~irter media. 

An external macroscopic material balance 

(5.44) 

gives a linear relation 

GV (5.45) 

that is analogous to Eq. (5.15). In this case, the masses of each 
phase and the filter cake volume are given by 
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M p ex E *6. 
ex ex 

(5.46) 

MS pSE *6. 
ex 

(5.47) 

6. (2/3)1TR3(y 3+y ) 
e e 

(5.48) 

and G is given by Eq. (5.16). 

The average porosity 

y 1 21T 

E * = (1/6.) J ef J EexhyhnhwdwdndY ex o 0 0 

(5.49) 

must be independent of time which means that the local porosity is 
a function of only fractional cake volume, 

E 
ex 

E (tJ 
ex 

(5.50) 

and where the fractional cake volume for the circular leaf filter 
cake is given by 

(5.51) 

The conversion of Eqs. (5.39),(5.40), and (5.41) from (Y,t) to 
(~,t) requires the use of the chain rule 

:l (3y2+1) d 
dY (y 3+y e) d~ e 

(5.52) 

dE 6 (3y 2+1) dE 
ex e e ex 

:It (Y 3+y e) d~ e 
(5.53) 

and the elimination of Y by rearranging the definition of frac­
tional cake volume, Eq. (5.51) to obtain the cubic equation 

y3 + Y _ ~(Y 3+y ) 
e e 

o (5.54) 
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which has the solution (22) 

Y S + T 

where 

S(~,Y ) 
e 

The final result (5) for the transformation of the Eqs. 
(5.39), (5.40), and (5.41) to fractional cake volume is 

where 

(lP * 
o 

o 

o 

o 

S (~,Y ) 
m e 

{(3(S+T)2+1)«S+T)2+1)}/(R(Y 2+1» 
e 

S (O,Y ) = l/(R(Y 2+1» 
m e e 

(5.55) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

The analogy between the governing equations for axial fil­
trations, Eqs. (5.20), (5.21), (5.22), and the cylindrical leaf 
filtrations, Eqs. (5.58), (5.59), (5.60) is apparent. 

The filtrate rate expression can be obtained by evaluating 
Eq. (5.60) at the septum where 
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E; 0 (5.64) 

Y 0 (5.65) 

rl S 0 (5.66) 
Y 

(E rl a) I 0 
a y y= 

V/2'iTR2 (5.67) 

R(Y 3+y ) GV/(2/3)'iTR2 (5.68) 
e e 

with the final result (5) for the reciprocal rate expression for 
circular leaf filtrations 

V-I {~G/«4/3)A2J M P )}V 
000 

(5.69) 

where M is the permeability at the septum for a circular leaf 
filter. o If the filter medium, particulate S-phase, and liquid 
a-phase are the same, then M = K. This is further evidence that 
the permeability is a multipRase gonstitutive property. 

Except for the (4/3) in the denominator of Eq. (5.69), the 
reciprocal rate expressions for the axial cylindrical filtration 
and the circular leaf filtration, Eq. (5.30), are the same. 
Although the rate equations are similar, it does not mean that the 
filtrate rates are the same since the difference in geometries will 
affect the pressure gradient, J , and hence the filtrate rates. 

o 

6. EXPERIMENTAL RESULTS 

The factors affecting the reciprocal rate expression given by 
Eq. (5.30) 

V-I (5.30) 

are examined with a filtration apparatus (28,29) which is capable 
of measuring, in addition to the normally acquired macroscopic data 
of filtrate volume, time, and applied pressure, the filtrate rate, 
the cake pressure drop, the medium pressure drop, and the micro­
scopic level variables of local porosity and pressure. 
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The apparatus also is fitted with a pressure controller which 
enable both constant applied pressure and constant cake pressure 
drop filtrations to be performed. The local porosities are 
determined by electrical conductivity probes located axially in the 
wall of the cylindrical filter chamber. Small (1/16 inch) pressure 
probes are also located axially inside the filter chamber and 
connected to transducers which record the internal axial pressure 
profiles. 

6.1 Assumptions and Filtration Mechanism 

The assumptions which are associated with Eq. (5.30) are that 
the viscous and inertial forces are negligible and that both the 
liquid a-phase and particulate S-phase have constant densities. 
The viscosity is constant since it is a function of only the 
temperature and such variations are assumed to be insignificant. 

6.1.1 Filtration Hechanism 

The mechanism deduced from the theoretical development indi­
cates that the liquid a-phase velocity profile is essentially flat 
and a function of only the axial coordinate. Momentum is trans­
ferred from the a-phase to the particulate S-phase while little, if 
any, is transferred to the wall of the filter chamber. These con­
clusions are deduced from the dimensional analysis where it is 
shown that the viscous force is very small. 

Continuity conditions for both phases, Eqs. (5.20) and (5.21), 
indicate that the porosity distribution determines the liquid a­
phase velocity and the particulate S-phase velocity. Pressure 
profiles are adjusted, via the liquid a-phase momentum balance, Eq. 
(5.22), to accommodate the mass flow rates and velocities specified 
by the continuity requirements. This is just the opposite of 
single phase tube flow where the linear axial pressure profile 
specifies the flow rate. 

The location with the m1n1mum porosity will have the highest 
local liquid a-phase velocity and in filtrations, this minimum 
porosity must occur at the septum, which is located somewhere 
inside the filter media. This then should also be the location of 
the largest pressure gradient. It is not unexpected then that the 
filtrate rate depends on the septum permeability, K , and the 

o 
pressure gradient, J as indicated in Eq. (5.30). 

o 

6.2 Medium and Pressure Gradients 

Eq. (5.30) indicates that the pressure of interest in filtra­
tion is the pressure drop across the filter cake and not the 
applied pressure. Experimental data (28,29) indicates that the 
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pressure drop across the filter medium, in some cases, can be as 
large as the pressure drop across the filter cake. 

If it is required to obtain a specific pressure drop over the 
filter cake, the rate at which the pressure increases to this 
prescribed pressure is influenced by the pressure gradient across 
the filter media. A coarse porosity filter paper, such as Whatman 
No.4, (retention of 25 ~m) has an open structure and a low pres­
sure gradient relative to that of a fine porosity Whatman No.3 
filter paper (retention of 5 ~m). 

If, for example, an increment of pressure drop, ~P, is fixed 
at a specified value, then the filtration with the Whatman No. 4 
will reach this prescribed pressure with less filter cake and in a 
shorter time than that required for the fine porosity Whatman No. 
3. Figure 3 illustrates this effect of the medium pressure gradi­
ent on the cake pressure gradient for a fixed increment of 
pressure, ~P. 

6.3 Effect of Pressure on Reciprocal Rate 

The initial reciprocal rate is a finite, positive quantity and 
represents the flow through a clean media. As particulates just 
begin to deposit, both P 0 and filtrate volume are zero, but the 
ratio is finite and prop5rtional to the initial filtrate rate, 

FIL TRATE - CAKE SLURRY 

-1- MEDIUM 

FLowl ® 
-CJ.P 

I 

IFLOW: 
I I 
I-I 
I I j I I 
I I 

CAKE I I 

- -~--t----1 
t---CJ.k--I 
I ~ I 
I 
&.--CJ.k. 
I & 

Fig. 3. Interaction of filter medium and cake pressure gradients. 
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. 
V (6.1) 

As the filtration progresses from this initial condition, there 
will be curvature in the reciprocal rate which will persist until 
all of the quantities, K , J , and P in the slope of Eq. (5.30) 
become constant. 

o 0 c 

To isolate the effect of the cake pressure drop, the combina­
tion of a Whatman No. 3 filter paper and Lucite 4F molding powder 
gives a constant value for the product KoJ o and this combination 
is filtered at two values of cake pressure drop. The results are 
shown in Figures 4 and 5. 

The data in Figure 4 shows, for the filtration executed at the 
higher pressure of 100kPa, that the induced curvature in the 
reciprocal rate persists for a longer time since it takes longer 
for the pressure drop across the filter cake, as shown in Figure 
5, to reach the specified value of 100kPa. 

....... 
'" E ..... 

CIl ..... 
~ 
I 

0 

x 
I 

.> 

6.0 

5.5 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

LUCITE 
8" CHAMBER 
WHATMAN No 3 

035 kPa 
0100 kPa 

100.0 200.0 300.0 400.0 500.0 

V x 10 4 (m 3 ) 

Fig. 4. The effect of cake pressure drop on reciprocal rate. 
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Fig. 5. Cake pressure drops for the reciprocal rate data of Fig. 4. 

In addition, the slopes of the reciprocal rates for the two 
pressure drops vary inversely as the cake pressure drops and the 
reciprocal rate becomes a linear function, which extrapolates 
through a displaced origin, when all of the factors in the slope 
become constant. These observations are all consistent with the 
behavior predicted by Eq. (5.30) and demonstrate the isolated 
effect of cake pressure drop on the early part of reciprocal rate 
data. 

The origin of the reciprocal rate is displaced to the right of 
the measured origin because the filter chamber is initially filled 
with clear liquid and the concentration of slurry must increase 
until it reaches that of the incoming slurry. The displaced origin 
represents a zero value of the filtrate volume which would corres­
pond to a filtration executed with the filter chamber initially 
filled with slurry rather than clear liquid. 

6.4 Pressure, Area, and Mean Porosity 

The relation between cake volume and filtrate volume given by 
Eqs. (5.15) and (5.16) indicates that the slope G is constant if 
the slurry concentration and average porosity are constant. For a 
cylindrical axial filtration, the cross sectional area of the 
filter cake is constant and hence the cake length is linear in 
filtrate volume. 
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Filtrations performed in Plexiglas filter chambers of differ­
ent diameters (D = 4in, D = 8in) and each at two different cake 
pressure drops (39 kPa, 100 kPa and 30kPa, 100 kPa) indicate that 
the cake length is a linear function of filtrate volume. The data 
are shown in Figure 6. 

Since these filtrations were executed with a constant slurry 
concentration, then it must be concluded that the average porosity 
is constant throughout a filtra~ion and that this conclusion is 
independent of the cake pressure drop and the size of the filter 
chamber. The ratio of the slopes of cake length versus filtrate 
volume shown in Figure 6 is, within experimental accuracy, in­
versely proportional to the filter areas. 

The effect of slurry dilution in the filter chamber at the 
start of the filtration is again evident. As expected, this 
dilution effect is greater with the larger diameter filter chamber 
and, as a consequence, the displacement of the origin is corres­
pondingly greater. In subsequent graphs, this dilution effect, 
which is approximately equal to the volume of the filter chamber 
and the liquid in excess of that in the slurry, it subtracted from 
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Fig. 6. Cake length versus filtrate volume at constant slurry 
concentration. 



385 

the filtrate volume and the origin is correspondingly translated 
to compensate for this effect. 

6.5 Filter Medium and Septum Permeability 

The filtration mechanism and the expression for the reciprocal 
rate, Eq. (5.30), implies that the location of minimum porosity 
will have the highest pressure gradient and liquid velocity. To 
retain particles and form a cake, the smallest openings must occur 
at the location in the medium where the particulates stop. This 
interaction between the particulates and the filter medium should 
be dependent on the relative size and shape of the particulates and 
the openings in the filter media. 

The interfacial permeability, Ko ' is determined from the pro­
duct KoJo which is obtained from the macroscopic measurements 
dictated by Eq. (5.30) and then this product is separated by 
determining J from the pressure profiles that are directly 
measured. 0 

The effect on septum permeability is isolated by performing 
filtrations in which the slurry concentration, average porosity, 
particulate phase, and cake pressure drop are all maintained, to 
within experimental error, at the same values. The only difference 
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Fig. 7. Septem permeabilities for the Whatman No. 3 filter medium. 
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in the filtrations are the filter media and two media are examined, 
a fine porosity Whatman No. 3 (retention of 5~m) and a coarse 
porosity Whatman No.4 (retention of 25~m). The results are shown 
in Figures 7 and 8. Early estimates of the pressure gradient and 
interfacial permeability are not reliable since only one or two 
pressure probes are submerged in the filter cake and these early 
values are correspondingly discounted. 

Figure 7 shows replicate runs with water slurries of Lucite at 
a cake pressure drop of 68.9kPa and a slurry concentration of 7.5% 
using the fine porosity Whatman No. 3 filter paper. It is evident 
that the septum permeability resists clogging and maintains a 
constant, reproducible value throughout each of the four filtra­
tions. 

Under identical conditions, the septum permeability of the 
coarse porosity Whatman No. 4 shows a reproducible decay during the 
four replicate filtrations shown in Figure 8. Since the only 
difference between the two filter media are the dimensions of the 
pores, it must be concluded that the continual penetration of 
Lucite particulates into the pores of the Whatman No. 4 filter 
medium accounts for the declining interfacial permeability. 
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A conceptualization of what is occurring within the two media 
is shown in Figure 9. For the fine porosity Whatman No. 3 filter 
media, the pores are so small that the location (i.e., septum) 
where the particulates stop is either at the cake-media interface 
or only slightly below the surface as shown in the sketch on the 
left side of Figure 9. 

Conversely, for the coarse porosity Whatman No.4 filter 
media, shown in the sketch on the right in Figure 9, the location 
(i.e., septum) where the particulates stop is considerably removed 
from the cake-media interface and there is a zone in the filter 
media which is susceptible to further penetration of the Lucite 
particulates. The net result is a corresponding decrease in the 
septum permeability, K (t) during the course of the filtration. 

o 

The evidence thus far indicates that the layer of particles 
adjacent to the medium accounts for the major resistance to flow, 
and that the applied pressure increases the stress within the cake 
but does not alter the porosity. 

6.6 Septum Permeability and Reciprocal Rate 

Isolation of the effect of septum permeability on reciprocal 
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Fig. 9. Location of the septum and clogging zone in Whatman No. 3 
and No. 4 filter media. 
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rate is demonstrated by keeping cake pressure drop (103 kPa) , 
particulate phase (Lucite), and slurry concentration (5%) fixed for 
filtrations (D = 4in) with the Whatman No. 3 and No. 4 filter media 
whose characteristics are shown in Figures 7 and 8. 

The upper two curves in Figure 10 show the cake pressure drops 
for the two filtrations. The Whatman No. 3 filter medium rises 
more slowly to the prescribed cake pressure drop than the Whatman 
No. 4 filter medium. This is due to the larger pressure gradient 
across the fine porosity Whatman No. 3 filter media and this effect 
was discussed previously in regard to Figure 3. 

The two lower curves in Figure 10 show the septum permeabil­
ities for the Whatman No. 3 and No.4 filter media and these curves 
exhibit the same characteristic form for these two filter media, 
when they are exposed to Lucite particles, that is shown in 
Figures 7 and 8. 

Reciprocal rate data, shown in Figure 11, reveals that curva­
ture disappears for the Whatman No. 3 filter media as soon as the 
cake pressure drop becomes constant but persists for the Whatman 
No. 4 filter media even after the cake pressure drop becomes 
constant. The persistent curvature must be attributed to the 
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Fig. 11. Reciprocal rates for the Whatman No. 3 and No. 4 septum 
permeabilities shown in Fig. 10. 

decreasing septum permeability as the governing equation for 
reciprocal rate, Eq. (5.30), indicates. 

To summarize, curvature in the initial portion of reciprocal 
rate data can be attributed primarily to the pressure drop across 
the filter cake but at later times, persistent curvature ~s 
indicative of lower values of the septum permeability due to 
penetration and clogging of the media with the particulate phase. 

6.7 Particle Size and Septum Permeability 

The effect of particle size on the septum permeability is 
determined by separating the spherical Lucite particles into two 
segments, one of which contains particles in the 125-149 ~m range 
and the other in the 63-90 ~m range. These size-graded segments 
are obtained by using a standard series of screens on an electro­
magnetic shaker. Photomicrographs of the respective segments 
revealed that there were no particles in the range of the filter 
media openings (5 ~m to 25 ~m) for the particles in the 125-149 ~m 
segment. 

Figure 12 is a comparison of the interaction of the septum 
permeabilities for the two size-graded segments of Lucite with the 
Whatman No. 3 and No. 4 filter media. The top curve in Figure 12 



390 

6.50 

6.00 

5.50 

5.00 

4.50 
..... 

'" 4.00 E ..... 
'" 3.50 
0 

3.00 
)( 

0 2.50 
~ 

2.00 

1.50 

1.00 

0.50 

000 ($)0> 0 OQ.~n_~nO 0 0 
--0-0 0 d~LJODDOo~iJ 00000 

o 
o 

00 

a 

/:) 
o 

40.0 

125 - 149JJm 
o WHATMAN No 3 
a WHATMAN No 4 

63 - 90J,lm 
/:) WHATMAN No 3 
o WHATMAN No 4 

80.0 120.0 160.0 200.0 

V x 104 (m 3 ) 

Fig. 12. Effect of Lucite particle size on the septum permeability 
of Whatman No. 3 and No. 4 filter media. 

indicates (i) that limiting the Lucite particles to those which are 
about five times the pore openings (25 ~m) on the Whatman No. 4 
filter medium moves the septum closer to the surface of the filter 
medium and diminishes pore penetration and clogging of the filter 
medium, and (ii) that this constant septum permeability is about 
twice that shown in Figure 7 for the unsegmented Lucite. 

The lower curve in Figure 12 reveals that the Lucite segment 
with the smaller particulates (63-90 ~m) precipitates pore pene­
tration and clogging in the Whatman No. 3 filter media with the 
smaller (5 ~m) openings and the behavior is indistinguishable from 
that of the Whatman No. 4 filter media with the larger (25 ~m) 
openings. The decreasing values of septum permeabilities for the 
63-90 ~m segment of Figure 12 are about the same as those shown in 
Figure 8 for the unsegmented Lucite. 

It is evident that individual characterization of the filter 
media or particulate phase is of little value since it is the 
interaction of the particulates with the filter media through the 
septum permeability, K , that affects the filtrate rate. 

o 



391 

6.8 Particle Shape and Septum Permeability 

It has been demonstrated that the size of the spherical Lucite 
particulates relative to the opening in the filter media has a 
measurable effect on the septum permeability, Ko' It is reasonable 
to expect that particle shape will also influence the values of the 
septum permeability and three additional shapes are considered, 
fibers (Solka Floc SW-400), lattices (Celite grade 319), and 
platelets (Vertal talc grade 77). To maintain a basis of 
comparison, the same two filter media, Whatman No. 3 and No.4, are 
used for the determination of the effect of particle shape on 
septum permeability. 

Septum permeabilities for these substances are determined in 
the same way as those for the Lucite particulates, that is, the 
product KoJ o is separated by determining J o from the measured 
internal pressure profiles. 

The upper two curves on Figure 13 show the septum permeabil­
ities for the diatomaceous earth (Celite) which indicates, (i) that 
Celite exhibits penetration and clogging of both filter media, 
(ii) that the unique interaction between the Celite and the Whatman 
No. 3 and No.4 filter media is characterized by a sharp initial 
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decline to a relatively constant value of Ko ' and (iii) that the 
permeabilities for the ~fuatman No. 4 are lower than those for the 
Whatman No.3. 

The fibrous material (Solka Floc), which is the bottom curve 
in Figure 13, exhibits a sharp initial decline in the septum 
permeability which is followed by a continuous, but slower decline, 
in the latter two-thirds of the filtration. The two types of 
filter media, however, do not have any effect on the septum permea­
bility for Solka Floc. This can be attributed to the structural 
similarity between the cellulose fibers of Solka Floc and the paper 
filter media. 

The interaction of submicron platelets (talc) with the two 
types of filter media is shown in Figure 14. The septum permea­
bilities with either medium are smaller than all of the previous 
materials filtered on the Whatman No.3 and 4 filter media by 
roughly a factor of ten. As with the Solka Floc, the two differ­
ent filter media do not have any effect on the septum permeability 
for talc. The reason, in this case, is that the openings in both 
filter media are so much larger than the talc particulates that 
pore penetration and clogging, as evidenced by the decreasing 
septum permeability, are significant for both the Whatman No. 3 
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and No. 4 filter media. 

The shape of particulates does not, however, affect the 
average porosity during the course of the filtration as is illus­
trated in Figure 15 where the cake length of a function of filtrate 
volume is plotted for Celite, Solka Floc, and talc. 

Under conditions of constant cake pressure drop, the cake 
pressure drop per unit length decreases as the length of the cake 
increases. If the medium does not clog, J o remains at a value of 
unity indicating that the pressure gradient at the septum inside 
the filter medium is also decreasing in proportion to the overall 
pressure gradient. For a material such as talc, filtered with 
either the Whatman No. 3 or 4 filter media, the clogged interface 
demands an elevated pressure gradient to satisfy the fluid a-phase 
continuity condition and, consequently, dissipates a greater 
fraction of the overall pressure gradient. During this entire 
process, regardless of the shape or size of the particulates, or the 
cake pressure drop, or the filter area, the average porosity 
remains constant. 

E 
~ 

0 

x 
....J 

2.0 ,..--------------------, 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

CELITE 
o WHA TMAN No 3 
6 WHA TMAN No 4 

TALC 
g WHATMAN No 
!I WHATMAN SOLKA FLOC 

o WHATMAN 

0.0 ~~~~---L_----1-_L____L_~ 
0.0 20.0 40.0 60.0 80.0 100.0120.0140.0 

V x 10 4 (m 3 ) 

Fig. 15. Effect of particle shape on cake length versus filtrate 
volume for constant slurry concentration. 



394 

6.9 Effect of Filter Cake Geometry 

For a cylindrical leaf filter, the factors affecting the 
reciprocal rate expression 

V-I (5.69) 

are the same as those of xhe one-dimensional axial filtration. If 
the same filter media and particulate phase are used for the 
cylindrical leaf filtrations as are used in the one-dimensional 
filtrations, then the filtration mechanism and conclusions, with 
regard to media and particulate phase, will also apply to the leaf 
filtrations. The isolated factor, then, is the filter cake 
geometry. 

The experimental procedure involves performing a circular leaf 
filtration and a one-dimensional axial filtration in which the 
filter area, filter media, particulate phase, slurry concentration, 
and cake pressure drop are, within experimental error, the same. 
The circular leaf filter permits the filter cake to grow in three 
directions and this is most easily accomplished with a vacuum 
rather than a pressure filtration. Vacuum filtrations, however, 
are inherently less reliable than pressure filtrations since the 
filtrate rates cannot be measured directly due to the degassing and 
slugging that occur in a rotameter with liquids under a vacuum. As 
a result, filtrate rates are determined by differentiating the 
filtrate volume and this is a source of error. 

Internal pressure profiles are not measured because it is 
difficult to locate and maintain the probes along an n-coordinate 
during the course of the filtration and the probes also distort the 
shape of the oblate spheroidal filter cake. Hence, the effect of 
filter cake geometry depends on the interpretation of the behavior 
of the product K J • 

o 0 

Even with these experimental deficiencies, the results shown 
in Figure 16 clearly indicate that the product KoJo for the leaf 
filter is significantly larger than the same product for the 
cylindrical filtration executed under the same conditions. In 
Figure 17, the reciprocal rates for the leaf filter are less than 
those for the cylindrical filter or, in terms of filtrate rates, 
the leaf filter exhibits significantly higher filtration rates. 

This behavior can be explained by the filtration mechanism 
described earlier. Using a Whatman No.4 filter medium implies 
that the septum permeability is decreasing during the course of the 
filtration and this dominance of Ko is evident for the axial 
filtration. Conversely, the product KoJ o for the leaf filter is 
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Fig. 16. Comparison of the KoJo product for an axial filtration 
and a circular leaf filtration. 

increasing and this increase must be attributed to the dominant 
effect of the pressure gradient relative to the decreasing value of 
the septum permeability. 

This dominance of the pressure gradient at the septum for the 
circular leaf filter is attributed to the significantly larger 
surface area relative to the filter area. This area difference 
means that the mass of liquid entering the leaf filter cake must 
exit through the filter medium, which is a smaller area that has 
been reduced ever further by the c1?gging of the filter medium. 
To assure that the mass flow rate at any instant is the same at 
both the entrance and exit surfaces requires a proportionate in­
crease in the septum pressure gradient and velocity as dictated by 
Eq. (5.69). 

Filter cake geometry then has considerable influence on 
filtrate rates. Cake geoffietries in which the cake surface is larg­
er than the filter surface, other factors being equal, will exhibit 
higher filtration rates. For example, if inward and outward radial 
filtrations are to be compared on the basis of maximizing filtrate 
rates, then an inward radial filtration is superior to an outward 
radial filtration. 
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7. SUMMARY 

Based on the general multiphase continuum and constitutive 
theory, a filtration mechanism is deduced for the flow of multi­
phase non-Newtonian and Newtonian fluids in axial and circular leaf 
filters. 

Except for a geometric factor of (3/4), the filtrate rate 
expressions for axial and circular leaf filters are the same. 
Non-Newtonian multiphase fluids are also governed by the same rate 
expression except that the permeability, K, must be properly 
replaced by (-A O)' These rate expressions assume that the viscous 
and inertial forces are negligible and that the flow is dominated 
by the pressure and drag forces. 

The mechanism deduced from the governing equations for fil­
tration dictates that the porosity distribution determines the 
liquid and particulate velocities within the filter cake. Pressure 
gradients within the filter cake adjust to meet the flow require­
ments specified by the porosity and velocity distributions. 

The location with the highest velocity and pressure gradient 
occurs in the filter medium at an interface, called the septum, 
where the solid particulate velocity vanishes. The filtrate rate 
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is controlled by the product of the permeability and pressure grad­
ient at this interface within the filter media. 

If the septum is located at the surface of the filter media, 
where it contacts the particulates of the filter cake, then the 
filter medium does not clog. If the septum is located at some 
point within the filter medium, then there is a zone between the 
septum and the surface of the filter medium in which particulate 

penetration causes clogging of the filter medium pores and a 
decline in the septum permeability during the course of the 
filtration. 

Septum permeability is a characteristic property of the filter 
medium and particulates and this property reflects the interaction 
of the pore openings in the filter medium and the size and shape of 
the particulates. However, septum permeabilities alone do not 
govern filtrate rates. High pressure gradients, J o ' can compensate 
for low permeabilities, K , and it is the product of these two 
factors that determines tRe filtrate rate. 

The interpretation of data based on this filtration mechanisw 
indicates that initial curvature in the reciprocal filtrate rate is 
due primarily to the developing pressure drop across the filter 
cake. At later times, persistent curvature in the reciprocal rate 
data is indicative of particulate penetration and clogging of the 
filter medium. 

The local porosity is a function of only fractional cake 
volume and the average porosity is constant and unaffected by the 
size and shape of the particulate phase or the cake pressure drop 
and filter area. 

Altering the ratio of the surface area to the filter area of 
a filter cake can have significant effect on filtration rates. An 
entrance surface which is larger than the exit surface at the 
filter medium can induce increases in the dimensionless pressure 
gradient at the septum and thereby enhance filtration rates. 
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TRANSPORT EQUATIONS FOR FRACTURED POROUS MEDIA 

Allen M. Shapiro 
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Reston, Virginia 22092, USA 

ABSTRACT 

With the advent of analyzing geological settings as possible 
sites for hazardous waste isolation, the modeling of transport 
phenomena in fractured rock has been a topic of increasing interest. 
In studies to date, the means by which transport phenomena in 
fractured rock have been mathematically visualized has taken two 
distinct routes. The need for different conceptualizations of 
fractured rock has arisen due to the diverse nature of fracturing 
in rock formations. Usually, the length scale of a given transport 
problem, in relation to the intensity of fracturing, varies from 
one rock formation to the next. In some instances, there may exist 
only a few significant fractures (of a given fracture family) over 
the length scale of the transport problem. In other situations, 
the length scale of the transport problem may encompass large numbers 
of interconnected fractures. These observations have led to 
conceptualizations of fractured rock as either a system of 
individual and possibly interconnected fractures in a permeable or 
impermeable host rock, or as one or more overlapping fluid continua, 
in a manner similar to the mathematical treatment of granular 
porous materials. The assumptions implicit in the use of each of 
these conceptualizations are discussed in this chapter along with 
a selective review of the recent literature. A detailed analysis 
of the discrete fracture and continuum conceptualizations of 
fractured rock is provided by developing the appropriate equations 
of mass, momentum and energy transport for each conceptualization. 
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1. INTRODUCTION 

1.1. Physical Description of Fractured Rock 

In our conceptualization of the subsurface, we commonly 
hypothesize the void space to consist of openings having characteris­
tic lengths and widths of approximately the same dimensions. Under 
saturated flow conditions, the void space then offers a highly 
tortuous path to fluid movement through openings in the subsurface 
which are assumed to be similarly shaped (Figure 1). Usually, we 
visualize the subsurface to have such characteristics near the 
ground surface, and in shallow, unconsolidated, granular deposits. 

In contrast, indurated deposits exhibit void space, which in 
addition to having openings such as that described above, possess 
additional void space that is characterized by openings having 
lengths which far exceed their associated widths (Figure 2). 
Depending on their origin, we refer to this additional void space 
as either fissures, joints, faults, or generically, as fractures. 
The fractures are usually considered to be a secondary void space 
of the rock; the primary void space being that associated with the 
initial formation of the rock itself. Fractures are commonly a 
result of secondary processes such as tectonic activity, weathering, 
dissolution of the rock, or other chemically or thermally induced 
phenomena (17,78). Fractures may also be the result of man-induced 
phenomena that arise from altering the local stress conditions, as 
often occurs during quarrying or through hydraulic fracturing in 
the vicinity of boreholes (43). 

Regardless of the rock type, there usually exists more than 
one family of fractures distributed throughout the formation, each 

Figure 1. Schematic drawing of the void space and flow lines in a 
granular porous medium. 
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Figure 2. Schematic drawing of the void space and flow lines in an 
indurated deposit possessing intrinsic void and a single 
fracture. 

fracture family arises from a different secondary process. For 
example, dissolution channels may constitute one family of fractures, 
while fractures that arise from different tectonic stresses may 
constitute additional fracture families. Furthermore, these fracture 
families need not have the same geometrical characteristics. Micro­
fissures, for example, arising from the cooling of crystalline 
formations, are not as areally extensive as tectonically induced 
fractures. Also, fractures arising from different tectonic stresses 
are known to have unique orientations within a given formation. In 
Figure 3, several interconnected fracture families are depicted, 
each having a different areal intensity. 

As a consequence of the above discussion and in contrast to 
our original description of granular porous material, we can usually 
visualize more than one flow regime within a fractured formation. 
If the rock exhibits an intrinsic void space, it offers a highly tor­
tuous path to fluid movement in a similar manner to granular 
porous materials. The existence of fractures, depending on their 
interconnectivity, constitutes a second, and usually a less tortuous 
path to fluid movement. In fact, we may wish to subdivide the 
characteristics of the flow regime even further by considering the 
influence of each fracture family, or by grouping several fracture 
families together and considering their combined influence. 

The fact that fractured rock is characterized by more than one 
type of void space that are distinctly dissimilar has led many 
investigators (3,24,48,52,66,70,87) to question whether the classical 
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Figure 3. Schematic drawing of several fracture families, each 
having a different areal intensity. 

theories applied to mathematically modeling transport phenomena in 
(granular) porous materials are equally applicable to the descrip­
tion of such phenomena in fractured rock. That is to say, can we 
classify all void space in a fractured rock as one, and define bulk 
parameters that describe the transport processes? Or, is it neces­
sary to formulate alternative mathematical conceptualizations of 
transport phenomena in fractured rock which account for the multiple 
characteristics of the void space? 

We are unable to supply generic answers to the questions above 
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due to the diversity of physical situations where fractured forma­
tions are of hydrologic significance. The geometrical characteris­
tics of fractures in the subsurface differ from one formation to 
the next; hence, we cannot characterize all fractured rock with 
one mathematical conceptualization as is done with granular porous 
materials. 

In the recent literature, several mathematical conceptualiza­
tions have been employed in the description of transport phenomena 
in fractured formations. It is the purpose of this article to 
identify and discuss these various mathematical conceptualizations. 
At first, our discussion shall be directed toward a general 
description of these conceptualizations of fractured rock, paying 
particular attention to the physical situations where each 
conceptualization is most applicable, and the assumptions that are 
implicit in their use. In subsequent chapters, a more detailed 
analysis of these conceptualizations is to be carried out by 
developing the transport equations for mass, momentum and energy. 

1.2. The Continuum Hypothesis - Granular Porous Materials 

Mathematical analysis of transport processes in granular 
porous materials employ properties such as the hydraulic conductiv­
ity and porosity. These properties are, in actuality, concepts 
associated with visualizing the void space and rock matrix of a 
porous material as continua. The continuum hypothesis is a corner 
stone of the mathematical modeling of transport phenomena in 
(granular) porous media. And since fractured rock, in essence, is 
a porous material (although, not granular in nature), we can 
visualize the applicability of the continuum hypothesis to fractured 
rock. In the following paragraphs, we shall provide a brief 
explanatory discussion of the continuum hypothesis as it is 
applicable to granular porous materials. The applicability of the 
continuum hypothesis to fractured media is to be discussed in a 
subsequent section. 

With the continuum hypothesis, instead of describing the 
actual void space of the medium for the purpose of mathematically 
defining the physics of transport phenomena, we consider the 
transport processes on a scale which enables us to employ 
distributed parameters, such as the hydraulic conductivity and 
porosity, at points in the medium. These parameters are the 
manifestation of the geometric and material properties of the 
medium on a length scale that is much larger than the actual 
heterogeneities of the porous material, i.e., a length scale much 
larger than the individual void openings and solid grains. 

The continuum conceptualization no longer considers the actual 
physical structure of the medium. The continuum, in essence, is 
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a fictitious medium where smoothly varying, spatially averaged 
values are assigned to each mathematical point. Each mathematical 
point in the continuum is associated with a volume in the actual 
medium of discontinuous phases (e.g., fluid and rock) over which 
average values are taken (Figure 4). The explicit mathematical 
location in the actual medium, which corresponds to the location 
in the continuum, may lie in any phase; however, associated with 
this position in the continuum are properties of all phases present 
in the averaging volume. 

We refer to the volumetric dimensions of the scale on which 
we can invoke the continuum hypothesis as a Representative Elementary 
Volume (REV) (4). Conceptually, we can visualize the definition 
of the REV by considering a continuum quantity defined over succes­
sively larger averaging volumes about a given point in the actual 
multi-component medium. For example, considering the porosity 
(volume of void space per total volume) over successively larger 
volumes, we anticipate fluctuating values for small averaging 
volumes due to the disproportionate amount of the void space or 
rock matrix which is initially encompassed in the volume (Figure 5). 
As the size of the volume increases these fluctuations are expected 
to dissipate as more proportionate amounts of the void space and 

MUL TI-COMPONENT 
MEDIUM 

Figure 4. A multi-component medium and its associated continuum 
representation. 
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Figure 5. Porosity of a porous medium as a function of the 
averaging volume size (after Bear (5)). 
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rock matrix are included. The assumed stationarity of the porosity 
with respect to the averaging volume size indicates a parameter 
which is indicative of the continuum scale, and also dictates the 
size of the REV (54). Extending the size of the averaging volume 
beyond this point may result in further fluctuations due to 
heterogeneities on yet a larger scale. 

Crucial to the validity of the continuum concept is the 
assumption that the averaging volume size is independent of the 
location in the medium, and the parameter that is being averaged. 
Parameters of all transport processes, e.g., fluid movement, 
contaminant and thermal migration, etc., must be defined on the 
same scale due to the coupling of these phenomena. In addition, 
because the REV acts as the smallest discernible dimensions that 
are indicative of the continuum scale, the REV concept also has 
practical implications. If measurements are conducted over dimen­
sions smaller than the REV, they will not be indicative of the 
continuum since they are biased by the disproportionate amount of 
the void space or rock matrix which is encompassed in the measure­
ment. 

In actuality, we do not measure an REV for a given field 
situation; the continuum hypothesis is invoked and equations 
describing transport phenomena are developed based on this assump­
tion. Only through the comparison of field measurements and the 
predictions from the continuum equations can the validity of the 
continuum hypothesis be judged. In addition, one must realize 
that the applicability of the continuum hypothesis is also based 
on the premise that the scale of the transport phenomenon of interest 
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is orders of magnitude larger than the heterogeneities associated 
with the individual void openings in the porous material. If the 
transport problem of interest is of the same length scale as the 
individual void openings, then we are unable to hypothesize the 
existence of an REV that will define meaningful continuum parameters. 
In such instances, we can no longer neglect the geometric intricacies 
of the void openings, which would greatly influence the transport 
problem. 

For most practical problems in porous materials that are 
granular in nature, the phenomenon of interest is much larger than 
the heterogeneities associated with the individual soil grains and 
void openings. In addition, our measuring instruments sample 
volumes that are much larger than these heterogeneities. Hence, 
the application of the continuum hypothesis is viewed as an 
acceptable assumption from both a theoretical and a practical 
point of view. In some circumstances, however, we may be interested 
in phenomena which is significant on a smaller scale, e.g., the 
specific surface chemistry between the rock matrix and the fluids 
in the void space. Ultimately, however, it may be necessary to 
describe this phenomena at the continuum level in order to 
incorporate such physics into problems on the larger scale where 
we cannot effectively account for the geometry of the individual 
soil grains and void openings (see, e.g., James and Rubin (47)). 

1.3. Mathematical Conceptualizations of Fractured Rock 

In contrast to the treatment of granular porous materials, the 
mathematical conceptualization of transport phenomena in fractured 
rock depends highly on the intensity of fracturing in relation to 
the problem scale. For fractured rock, we may not always have the 
luxury of assuming the existence of an REV for all fracture families 
in a given formation. In many instances, the scale of the transport 
problem may of the same length scale as the (geometric) hetero­
geneities of one or more fracture families. Hence, conceptualiza-­
tions other than a continuum conceptualization may be necessary in 
describing transport in fractured rock. 

Furthermore, even if we are able to invoke the continuum 
hypothesis for all fracture families of a given rock formation, 
the dissimilarities in the character of the void space may make the 
equivalent porous medium conceptualization unacceptable with regard 
to the mathematical description of transport phenomena. In the 
following sections we shall discuss several conceptualizations of 
fractured rock which are indicative of a variety of field situations 
one would anticipate encountering in the description of transport 
processes in fractured rock. In addition, a selective review of 
the literature descriptive of each conceptualization accompanies 
the discussions. 
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1.3.1. Discrete fracture conceptualization 

Under certain geologic circumstances, we may visualize a 
problem scale for transport phenomena such that only a single 
fracture, or several interconnected fractures are of significance. 
For example, if we are interested in identifying the hydrologic 
responses in the immediate vicinity of a hazardous waste repository, 
we may encounter relatively few extensive field scale fractures 
(Figure 6); the site of the repository most likely would be chosen 
such that these fractures are relatively few in number. Under such 
circumstances the geometric intricacies of these few fractures will 
have a direct impact on the transport problem. The sparse number 
of fractures (of this particular family) prohibits the use of a 
continuum conceptualization. Thus, in order to accurately describe 
the transport problem, the geometrical properties of the fractures 
need to be defined. 

Each fracture would be visualized in the rock as an irregularly 
shaped void space having a characteristic length which exceeds its 
associated width. In addition, the walls of the rock which 
constitute the fracture need not be planar and the fracture width, 
or aperture, would vary from point to point such that at some 
locations the walls of the fracture come in contact, yielding and 
obstruction to flow. Usually, more simplified interpretations of 
the fracture geometry are invoked for modeling purposes. Usually, 
parallel plates or some distribution of parallel plate apertures 
within a given fracture is assumed (see, e.g., Snow (77), Wither­
spoon et al. (91), Neuzil and Tracy (63» . 

....-Borehole 

Figure 6. Schematic diagram of a repository site with few field 
scale fractures in the vicinity. 
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The rock in which the few significant fractures exist may 
either be impervious, i.e., there being no void space, or it may 
have additional void space of a different character than the large 
fractures. In the latter case, fluid movement would take place in 
both the fractures and in the adjacent host rock. If there exists 
void space in the rock adjacent to the fracture, the void space may 
either be similar to a granular porous medium as we may expect in 
a sandstone, or the void space in the host rock may result from 
fracturing on yet a smaller scale, i.e., fracture families whose 
fractures are less arealy ext~nsive than those few significant 
fractures. For example, the fracturing which may arise as a result 
of cooling in crystalline formations would be on a smaller scale 
and more densely packed than the tectonic fractures. Once again, 
this is a scale dependent observation. We could, for example, be 
interested in the scale of transport phenomena associated with 
these micro-fissures, in which case we would consider the adjacent 
rock to be impervious. Throughout the present discussion, however, 
we will assume that if void openings appear in the rock adjacent 
to the one or more significant fractures at the scale of the 
transport problem, they occur in such profusity and with such 
interconnectivity that we can conceptualize the host rock as a 
continuum in a similar manner to our treatment of granular porous 
media. Thus, we are invoking the continuum hypothesis (inclusive 
of the assumptions implicit in its use) with respect to the void 
space in the host rock. 

Employing the discrete fracture conceptualization in some rock 
formations is attractive since it is descriptive on a scale to 
which the majority of field instrumentation has been adopted. For 
example, in rock formations where fractures of a given family are 
separated by tens of meters or more, field instrumentation would 
allow hydraulic measurements associated with only one or two 
fractures of this family, and thus would not be representative of 
a continuum measurement. However, even though field measurements 
are adaptable to the discrete fracture conceptualization, this would 
still not alleviate the problem of identifying the specific 
geometric characteristics of all significant fractures in the rock 
formation at the scale of interest, e.g., the aperture and its 
spatial variation, the areal extent of each fracture, etc. Hence, 
we can anticipate that large field investigations using the discrete 
fracture conceptualization are not conceivable unless the fracture 
geometry is treated statistically (see, e.g., Schwartz et al. (69), 
Smith and Schwartz (76)), where possibly, we have some information 
with regard to some, but not all fractures in the domain (see, e.g., 
Andersson et al. (1)). 

In addition, although we consider the fracture aperture as a 
descriptive parameter of the discrete fracture conceptualization, 
in actuality, we rarely measure the specific aperture size. 
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Usually, only the hydraulic properties of a single fracture are 
measured (see, e.g., Wang et al. (86», and an effective aperture 
size is interpreted by an assumed geometric description of the 
fracture, e.g., parallel fracture walls. Furthermore, in the 
modeling of transport phenomena in a single fracture, we rarely 
consider the void space of the fracture in three-dimensions. 
Usually it is reduced to a two-dimensional surface in the axis of 
the fracture by assuming the fracture to be relatively narrow. To 
this two-dimensional surface, the fracture aperture is no longer 
of significance. Instead, we assign tbe bulk hydraulic properties 
which were originally measured. Thus, the added step of defining 
the fracture aperture is an unnecessary and a potentially confusing 
procedure since it depends upon our conceptualization of the fracture 
geometry. 

The discrete fracture conceptualization has been widely applied 
in describing transport phenomena in fractured formations. For the 
most part, however, analyses that have employed the discrete 
fracture coneptualization have been directed toward the description 
of fluid movement. Only recently, with the advent of analyzing 
rock formations as possible geologic settings for hazardous waste 
isolation, has emphasis been placed on using the discrete fracture 
approach in the study of contaminant and thermal migration. 

The concepts associated with modeling transport phenomena 
using the discrete fracture approach ate easily conceptualized 
because they draw upon our knowledge of modeling transport phenomena 
in porous media (that is, if the host rock is permeable) and also, 
transport in conduits or parallel plates which are assumed to 
represent the fractures. Each flow regime is considered separately, 
and they are coupled through auxiliary conditions imposed at the 
boundaries that delimit the host rock from the fractures. 

In almost all analyses that have employed the discrete fracture 
conceptualization, fluid movement in the fractures is assumed to 
be Darcian. With this assumption, the discrete fracture model then 
resembles a porous medium simulator with bands of high conductivity 
to represent the individual fractures. Although there has been 
research conducted into turbulent flow in conduits having porous 
walls (see, e.g., Whitehead and Davis (89), Chu and Gelhar (14), 
Munoz Goma and Gelhar (59» such work has not been extended to the 
mathematical modeling in discrete fracture networks. This is 
especially surprising since a majority of discrete fracture models 
have analyzed fractures in the vicinity of boreholes, or fractures 
that intersect boreholes, where one would expect high velocity 
flows. 

Early studies which employed the discrete fracture conceptual­
ization used electric analog representations of fractured permeable 
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reservoirs subject to steady-state flow conditions. Among other 
analyses, studies were made of vertical fissures intersecting wells 
(16,56), and isolated fractures between pumping and recharge wells 
(29). Much of this work was initiated in the petroleum industry 
where the presence of fractures is often of great significance in 
the management of producing formations. Kiraly (51) also developed 
an electric analog model with an anisotropic permeability tensor 
based on fracture geometry in an impermeable host rock. This model 
parallels a porous media simulator having anisotropic permeability. 

Later, analytical techniques offered greater flexibility in 
analyzing transport phenomena using the discrete fracture conceptual­
ization. Analytical solutions for the cases of vertical and 
horizontal fractures of finite extent intersecting a well bore were 
developed by Hartsock and Warren (38), Gringarten and Ramey (32) and 
Gringarten et al. (33). The applicability of these solutions to 
field situations was demonstrated by Gringarten et al. (34). Other 
analytical solutions were developed by de Swann (18) and Boulton 
and Streltsova (10) who considered the radial flow to a well 
intersected by an infinite horizontal fracture. 

Numerical techniques such as finite difference and finite 
element methods of approximating solutions to the governing 
equations made analyses of more intricate fracture geometries and 
more complicated transport phenomena possible. Russel and Truitt 
(68), Kazemi (48), Wang et al. (86), Narasimhan and Palen (61), 
and Narasimhan (60) numerically investigated the responses of 
fractures intersecting boreholes. In addition, regional aquifer 
responses using the discrete fracture conceptualization have been 
made by a number of investigators (see e.g., Wilson and Witherspoon 
(90), Shapiro and Andersson (73)). Gale et al. (28) considered the 
combined effect of flow and fracture deformation. Shapiro and 
Andersson (74) developed a model to treat three-dimensional 
fracture networks, where fractures are of arbitrary orientation and 
areal extent in the formation. 

Recently, studies that have analyzed contaminant migration in 
discrete fracture systems have also been conducted. Grisak and 
Pickens (36) numerically modeled solute transport in a single 
fracture of uniform thickness to analyze the effect of diffusion 
into the adjacent permeable matrix. Noorishad and Mehran (64) also 
numerically solved contaminant movement in a single fracture coupled 
with a porous medium. Tang et al.(82) and Sudicky and Frind (80,81) 
developed analytical solutions which investigate contaminant 
migration in a single fracture and a series of parallel fractures, 
respectively. Recently, Brown (13) analyzed the stochastic nature 
of flow and solute transport in a single fracture resulting from 
a variable fracture aperture. 
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Contaminant migration for field scale problems using the 
discrete fracture conceptualization have also been conducted. 
Rasmuson et al. (67) used numerical methods to solve the advective 
dispersive equation in the fractures and porous matrix. In contrast, 
Schwartz et al. (69) and Smith and Schwartz (76) considered an 
impermeable host rock while using a particle tracking technique to 
investigate the movement of the contaminant. 

1.3.2. Equivalent porous medium conceptualization 

The discrete fracture conceptualization is applicable to 
fractured rock on whatever scale we wish to observe it, that is, 
provided the geometric information which describes the fractures 
is well defined. If there exists a large number of interconnected 
fractures, the use of the discrete fracture conceptualization 
becomes computationally intractable, as does the possibility of 
geometrically describing all fractures. In this, we recognize 
similarities with granular porous materials, where the persistent 
complex geometry of the void openings makes the solution of the 
equations governing transport phenomena infeasible. Instead, we 
assume that the void space and solid matrix are amenable to treatment 
as continua. Similarly, if we are considering a problem scale in 
a fractured formation where there are a profuse number of inter­
connected fractures of all fracture families, then as an assumption, 
the rock matrix and the void space (inclusive of all fracture 
families and the intrinsic void space of the rock itself) can be 
represented as continua. Since all void space is to be characterized 
as a single continuum, as is assumed in granular porous materials, 
we refer to this approach of modeling transport phenomena in 
fractured rock as an equivalent porous medium conceptualization. 

By invoking the continuum hypothesis we must assume that the 
fractured medium satisfies restrictions similar to those discussed 
in section 1.2. That is, continuum parameters for both the rock 
matrix and the void space must exhibit stationarity in being 
averaged over a volume of the fractured formation. We would expect 
that a sufficient number of fractures from all fracture families 
must exist in the averaging volume in order for the continuum 
variable to be independent of the averaging volume size. Otherwise, 
increasing the averaging volume size would result in fluctuating 
continuum values as an additional fracture from a given family is 
included within the averaging volume. Thus, we would likely 
anticipate two or more plateaus where the continuum properties 
exhibit stationarity with the averaging volume size (Figure 7). 
If the host rock possesses an intrinsic void space, the first 
plateau would be associated with a continuum representation of this 
void space in a similar manner to the description of a granular 
porous medium. Enlarging the size of the averaging volume would 
include different fracture families, and thus, a second plateau is 
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Figure 7. Porosity of a fractured rock as a function of the 
averaging volume size. 

anticipated for the void space of the fractures combined with the 
intrinsic void space of the host rock. Depending on the frequency 
of fractures and the nature of the fracture families, additional 
plateaus of stationarity in the continuum coefficients are also 
conceivable. The largest averaging volume size that yields 
stationary continuum coefficients would be indicative of the REV 
for the equivalent porous medium conceptualization of the fractured 
medium. The size of the averaging volume depends on the fracture 
family which is least pervasive. Because the character of fracture 
families varies from one rock formation to the next, it is impossible 
to estimate one REV size that would characterize all fractured rock 
formations. Depending on the character of the fractures, we may 
anticipate a linear dimension of the REV to be tens of centimeters 
in some formations, while in others the REV conceivably can be tens 
of meters or more. 

For an example of where one might apply a continuum concept­
ualization of fractured rock, let us return to the example given 
in section 1.3.1 where for th~ discrete fracture conceptualization 
we considered the immediate vicinity of a waste repository. 
Carrying this example one step further, we could hypothesize the 
use of the equivalent porous medium conceptualization, not in the 
immediate vicinity of the repository, but rather to describe 
transport processes on the field scale, which may possibly extend 
for tens of kilometers. Over such dimensions, the relatively 
infrequent fractures which appeared in the vicinity of the 
repository, may occur in sufficient numbers on the field scale to 
justify the continuum hypothesis. 
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Since the REV is assumed to be the smallest discernible volume 
which is representative of the continuum, field measurements taken 
on a smaller scale will not be indicative of continuum behavior. 
Consequently, measuring devices should encompass a significant 
number of fractures from all fracture families. In most field 
situations, it is highly unlikely that a measuring instrument would 
accommodate such a restriction, especially if the fractures from one 
family are relatively infrequently spaced. This constitutes a 
problem in measuring field responses from which we may obtain 
parameters that describe the transport processes at the continuum 
level. 

There have been attempts to alleviate this problem of parameter 
identification at the continuum level by theories that express the 
continuum coefficients in terms of the fracture geometry. This 
approach has only been adopted for coefficients associated with 
fluid movement; continuum coefficients defining contaminant and 
thermal migration have not been considered. Snow (77) defined the 
tensorial nature of the hydraulic conductivity of a fractured rock 
solely in terms of the fracture geometry. Shapiro and Bear (75) 
extended this work by considering the fact that the hydraulic 
gradient in the individual fractures is not necessarily the same as 
the gradient of the average hydraulic head, which is the driving 
force for flow at the continuum level. In contrast, Long et al. 
(55) evaluated the two-dimensional hydraulic conductivity of a 
fractured rock by actually solving the problem of steady-state flow 
through a network of fractures. In this latter work, the assumption 
of an equivalent porous medium continuum for a network of discrete 
fractures was evaluated by examining if the hydraulic conductivity 
tensor could be represented by an ellipse in its rotation. 

The equations of fractured rock as an equivalent porous medium 
are the same as those which have been classically used in analyzing 
granular porous materials as continua. The values of the material 
coefficients that are used to describe a fractured medium (e.g., 
the hydraulic conductivity and porosity), are significantly 
different from those employed in the modeling of a granular porous 
medium. Many investigations have been conducted in fractured 
formations using an equivalent porous medium approach. The majority 
of these studies, however, consider only single phase fluid movement 
(see, e.g., Elkins (25), Elkins and Skov (26), Grisak and Cherry 
(35)). For this transport problem, it has been widely recognized 
that using an equivalent porous medium conceptualization is 
acceptable in describing fluid movement in fractured rock. Only 
in the very early transient responses will the explicit effect of 
the fractures become evident (31,87). For the most part an 
equivalent hydraulic conductivity, which is usually anisotropic 
and accounts for all fracture families and the intrinsic void space 
of the rock can be employed to describe fluid movement. 
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There are studies, however, which have been conducted in 
analyzing contaminant migration in fractured rock using the equivalent 
porous medium conceptualization (see, e.g., Grove and Beetem (37), 
Shapiro and Andersson (72), Dougherty (19)). The acceptability of 
such an approach for contaminant and thermal migration becomes 
questionable because such processes are highly dependent on the 
actual fluid velocities in the individual void openings. The 
equivalent porous medium conceptualization assumes that one continuum 
velocity is representative of the average of all velocities in the 
void space of the medium. Although this may be true in granular 
porous materials, we would anticipate significant variations between 
the fluid velocity in the intrinsic void space of the host rock and 
that in the fractures. Although the deviation in velocity between 
the average continuum value and the velocities in the void space is 
incorporated into the definition of mechanical dispersion (see, e.g., 
Bear and Bachmat (6)),it is questionable whether two field parameters 
alone (longitudinal and transverse dispersivity) are adequate in 
describing the dispersion process in this complex medium. In 
addition, we must question the use of the classical dispersion theory 
since it is based on the assumption of an isotropic porous medium, 
while rock formations invariably are anisotropically fractured. 

1.3.3. Dual porosity conceptualization 

Due to the diverse nature of the void space in fractured 
formations that is anticipated, and the fact that the physics of 
the transport processes may be significantly different in each flow 
regime, a natural extension of the equivalent porous medium 
conceptualization is to consider the fluid in the fractures and the 
fluid in the intrinsic void space of the host rock as separate 
continua. Hypothesizing mixtures of fluids and solids as overlapping 
continua has long been considered in the field of continuum 
mechanics (see, e.g., Bowen (11)). Barenblatt and Zheltov (2) and 
Barenblatt et al. (3) were the first to consider the application of 
this theory in the description of isothermal flow in fractured 
porous media. In their analysis, continuum equations of fluid mass 
conservation are written separately for the fluid in the fractures 
and the fluid in the porous matrix, i.e., 

o (1.1) 

o (1. 2) 

where Pa is the mass density per unit volume of the a-fluid continuum, 
Ea is the volume fraction (or porosity) of++the a-fluid continuum'Ya 
is the velocity of the a-fluid continuum, Mf denotes the rate of 
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exchange of fluid mass between the fractures and the porous matrix, 
and the subscripts f and p denote properties of the fluid in the 
fractures and properties of the fluid in the porous matrix, 
respectively. Barenblatt et al. (3) further assumed that the 
specific discharge for each fluid continuum could be described by 
a Darcian relationship, i.e., 

(1.3) 

where ga is the specific discharge of the a-fluid continuum, ~a 
is the hydraulic head of the a-fluid continuum and ~a is the 
hydraulic conductivity tensor of the a-fluid continuum. In addition, 
the first term in both Eqs. (1.1) and (1.2) can be expanded such that 
the fluid mass accumulation for each fluid continuum is defined in 
terms of the time rate of change of the hydraulic head and a 
storativity coefficient, Sa' 

(1.4) 

Introducing Eqs. (1.3) and (1.4) into (1.1) and (1.2) yields~ 
set of two equations in terms of three unknowns, i.e., ~f' ~p and Mf . 
Hence, we require an additional constitutive relationship to describe 
the exchange of fluid mass between the fracture fluid continuum and 
teh porous matrix fluid continuum. 

In this conceptualization of fractured rock, we have introduced 
an artificial separation of the fluid occupying the void space. 
In actuality, for saturated flow conditions, the fluid in the entire 
void space is continuous. Although this conceptualization is a 
sophistication in describing the physics of transport (which we 
may consider as an advantage because it is more representative of 
the processes in the rock), we are also faced with a disadvantage 
in that we have introduced an artificial separation of the fluid 
phase, and we must subsequently describe the interaction between 
the two fluid continua in terms of quantities that are defined on 
the continuum scale. 

In the discrete fracture conceptualization, the exchange of 
fluid mass between the fractures and the porous matrix is directly 
handled by boundary conditions that are imposed at the interface 
between the two regimes. In the continuum hypothesis, however, 
boundaries between fractures and porous matrix are no longer 
recognizable, i.e., we consider transport on a scale that is much 
larger than the individual geometric heterogeneities of the rock. 
In the volume over which the average values at the continuum level 
are defined, a net exchange of f~uid mass between fractures and 
porous matrix is represented by Mf in Eqs. (1.1) and (1.2). 
For this quantity, Barenblatt et al. (3) assumed the following 
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relationship 

(1. 5) 

where B is a coefficient describing the intensity of the rate of 
fluid mass exchange between the fractures and the porous matrix. 
Barenb1att et a1. (3) assumed that B is proportional to the product 
of the porous matrix permeability and the specific surface area of 
the fractures. However, B, eventually will require field evaluation 
to determine its specific value for a given fractured formation. 
Methods of evaluating B from pumping test information have been 
suggested by Warren and Root (87) and U1drich and Ershaghi (84). 

By adding Eqs. (1.1) and (1.2), and assuming that the 
fluid mixture density, Pm' is essentially equal to the densities of 
the fluid in the fractures and the fluid in the porous matrix, we 
obtain 

a (Pmn) 
at + y. (PmnYm) = 0 (1. 6) 

where n is the porosity defined with respect to the entire void 
space of the rock and Ym is the velocity of the fluid mixture. The 
quantities Pm and Ym are defined as 

(1. 7) 

(1. 8) 

Eq. (1.6) is a statement of mass conservation for fluid in all 
void space of the rock. Thus, it is the fluid mass balance equation 
which is employed in the equivalent porous medium conceptualization 
discussed in section 1.3.2. Consequently, we can explicitly identify 
the relationship between the equations describing transport phenomena 
in the conceptualization of fractured rock described above and that 
of the previous section. 

Since continuum coefficients are assigned to each fluid regime, 
e.g., conductivities and porosities for the fluid in the fractures 
and the fluid in the porous matrix, respectively, this approach 
to modeling fluid movement in fractured rock is usually referred to 
as the dual porosity conceptualization. In theory, we could extend 
these ideas to a further subdivision of the flow regime by consider­
ing different families of fractures as different fluid continua. 
However, we have seen that in extending the equivalent porous media 
conceptualization to two fluid continua there is an added complexity 
due to the additional continuum coefficients which require 
specification, e.g., B in Eq. (1.5), and the conductivities and 
porosities of each flow regime. Considering a further subdivision 
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of the flow regime would introduce additional parameters not only 
for fluid movement, but also for the other transport processes. 
Not only would we face the difficulty of formulating field 
experiments to evaluate the additional continuum coefficients, but 
also it would be necessary for us to hypothesize constitutive 
relationships that describe the interaction between each fluid 
continuum for all transport processes. 

The restrictions associated with the continuum hypothesis that 
were discussed in section 1.2 are also applicable to the dual 
porosity conceptualization of fractured rock. Here, however, we 
must assume stationarity of the continuum averages for each flow 
regime and for the rock matrix. In addition, the averaging volume 
used to define properties associated with the fluid in the fractures 
must be the same as that which is used to define properties of fluid 
in the porous matrix (Figure 8). We must adhere to this restriction 
since the responses of the two fluid continua must be defined on 
the same scale due to their interconnected nature. Furthermore, 
the size of the REV, which one would anticipate for this 
conceptualization, would be similar to that which was discussed in 
section 1.3.2. Hence we are faced with similar problems of parameter 
identification due to field instrumentation (see, e.g., Uldrich and 
Ershaghi (84)). 
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Figure 8. The dependence on the averaging volume size on the 
porosity of the porous matrix and fractures in a 
fractured porous medium. 
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A considerable amount of effort has been directed toward the 
analysis of the dual porosity conceptualization for fluid movement. 
Warren and Root (87), Kazemi et al. (49), Streltsova (79) and 
Dougherty and Babu (20) considered fluid movement using a 
conceptualization similar to that of Barenblatt et al. (3). Warren 
and Root (87) analyzed pressure buildup information in a well using 
an analytical solution to the governing equations. Kazemi et al. 
(49) developed a numerical simulator for the same purpose. These 
results indicated that the characteristic behavior of a fractured 
reservoir is different than an equivalent porous medium in the early 
pressure responses. At later times an equivalent porous medium 
conceptualization adequately describes the reservoir behavior. 
Streltsova (79) analytically solved the governing equations of radial 
flow to obtain characteristic drawdown functions from which type 
curves were generated for different parameter values. Dougherty 
and Babu (20) developed analytical solutions for radial flow to a 
well partially penetrating a confined fractured formation. 

Multi-phase (oil-water) fluid movement in fractured porous 
media was considered by Bokserman et al. (9) and Verma (85). These 
analyses proved to be very restrictive since oil movement in only 
the fractures was considered, and the porous matrix was initially 
assumed to be saturated with oil. Kazemi et al. (50) considered 
a more general numerical simulation to this same problem. In 
addition, Dougherty (19) has demonstrated that an equivalent porous 
medium conceptualization of multi-phase flow in a fractured porous 
medium does not adequately represent the physics of fluid motion due 
to the effect of capillarity and the non-linearity of the fluid 
mobilities. In addition, Dougherty (19) compared the equivalent 
porous medium conceptualization with a dual porosity model for 
contaminant migration under single phase, isothermal conditions. 

In analyses of the dual porosity conceptualization, a consider­
able amount of effort has also been directed toward a rigorous 
derivation of the equations governing transport phenomena, especially 
with regard to the development of constitutive relationships to 
define the exchange of fluid mass, momentum and energy between 
the porous matrix and the fractures. Braester (12) and Bear and 
Braester (7) used a hypothetical capillary tube representation to 
develop a function to describe the exchange of oil and water between 
fractures and a porous matrix. Duguid and Lee (24) also used a 
capillary tube model coupled with an analytical solution to describe 
the exchange of fluid mass under isothermal, single phase flow 
conditions. In both of these analyses the constitutive relationships 
were developed from considering the interaction of one fracture (or 
capillary tube) with an adjacent porous matrix. Thus, it is 
questionable whether these results truely represent a continuum 
constitutive function since the averaging volume for the continuum 
encompasses more than a single fracture. In addition, the 
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constitutive relationships were ultimately defined in terms of 
parameters such as a characteristic "porous block dimension". 
Hence, this approach uses attributes of the discrete fracture 
conceptualization in formulating the continuum equations. Yet, it 
is questionable if highly idealized shapes of porous blocks such as 
spheres and cubes actually represent the complex geometry of a 
fractured medium. This type of approach has also been incorporated 
into the numerical procedures of Neretnieks and Rasmuson (62) and 
Huyakorn et al. (44), (45) in analyzing contaminant migration in 
fractured porous media. 

O'Neill (66) analyzed thermal transport in a fractured porous 
medium. The thermal exchange between the fluid in the fractures 
and the porous matrix was hypothesized in a form similar to that 
given in Eq. (1.5), i.e., 

(1. 9) 

++ 
where Qf is the rate of energy transfer between the fluid in the 
fractures and the porous matrix, Ta is the temperature of the 
a-fluid continuum, and a is a coefficient describing the intensity 
of the thermal exchange between the two continua. O'Neill (66) 
evaluated this coefficient by observing different geometries of a 
single porous matrix block surrounded by a fracture. 

In contrast, Shapiro (70) used mixture theory to define the 
functional form of the constitutive relationships for the exchange 
of mass, momentum and energy between the fracture fluid and porous 
matrix fluid. Terms similar to those given in Eqs. (1.5) and 
(1.9) appeared in the constitutive relationships; however, additional 
terms also arose. Through numerical experimentation it was shown 
that the additional terms in the fluid mass exchange function, 11f , 
were negligible. However, due to differences between fluid mass 
transport and contaminant and thermal migration (i.e., fluid 
movement is governed by pressure propagation, a relatively rapid 
phenomena, while contaminant and thermal migration are governed by 
the actual fluid velocities), the additional terms which appear in 
the constitutive function defining thermal and (contaminant) mass 
exchange between fractures and the porous matrix may be significant. 
The constitutive functions given in Eqs. (1.5) and (1.9) are usually 
referred to as a quasi-steady approximations. 

2. TRANSPORT EQUATIONS FOR DISCRETE FRACTURE CONCEPTUALIZATIONS 

Usually, in the mathematical description of fluid movement in 
a discrete fracture conceptualization of the rock matrix, the idea 
of a fracture conductance is introduced. In actuality, fluid 
movement in an individual fracture is governed by the boundary 
conditions at the fracture walls and the equations of transport for 
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a single fluid continuum (e.g., the Navier-Stokes equations). In 
these equations, which describe three-dimensional transport within 
the void space of an individual fracture, the concept of a fracture 
conductivity does not appear. The idea of a fracture conductivity 
arises only in treating the three-dimensional void space of the 
fracture as an equivalent two-dimensional surface; introducing the 
conductance of a single fracture corresponds with our ignorance of 
the geometry of the flow regime, in this case, the specific geometry 
of the fracture aperture. Treating a single fracture as an equivalent 
two-dimensional surface is an approximation which is introduced since 
the aperture of the fracture is usually small in comparison to its 
areal extent. Hence, transport processes are assumed to be 
essentially two-dimensional in the hypothesized surface which is 
descriptive of the fracture geometry. This is also a computational 
convenience since it reduces the dimensionality (i.e., from three 
dimensions to two dimensions) of the equations that describe the 
transport processes in the fracture. Transport process in the rock 
adjacent to the fracture, in general, retain their three-dimensional 
character. 

In this chapter, the equations of two-dimensional transport in 
a single fracture are to be developed, paying particular attention 
to the assumptions that are implicit in their use. Throughout this 
discussion, we shall restrict our analysis to transport phenomena 
associated with a single fluid phase which entirely fills the void 
space of the fractures and the void space in the adjacent host rock. 
Furthermore, the rock matrix shall be assumed to be non-deformable. 

If the rock adjacent to the individual fracture possesses 
either an intrinsic void space, or fracture families which are 
amenable to treatment as continua, the equations descriptive of this 
flow regime are the balance equations which have classically been 
used in the description of granular porous material. These equations 
are well known (see, e.g., Bear (5) and shall not be discussed here. 

2.1. Mathematical Description of a Single Fracture 

Since the aperture of an individual fracture is usually small 
in comparison to its overall areal extension, the transport proces­
ses are assumed to be two-dimensional in the surface of the fracture 
axis, i.e., the centerline of the aperture with respect to the walls 
of the fracture (Figure 9). At each point on the surface of the 
fracture axis, we can define a set of orthogonal coordinates such 
that the walls of the fracture are defined as 

Fl(n,~,s) 

F2(n,~,s) 

n fl(~,s) 

n - f2(~,s) 

o (2.1) 

o (2.2) 
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Figure 9. Local coordinate system defined for the axis of a single 
fracture. 

where ~ and s are orthogonal coordinates which lie in the surface 
of the fracture axis, n is the coordinate normal to the fracture 
surface, and Fl and F2 are the functional forms of the two fracture 
walls where fl and f2 describe the geometric shape of the fracture 
walls in the coordinates ~ and S. With this definition, the walls 
of the fracture are surfaces in three-dimensional space that are 
not necessarily parallel. 

From Eqs. (2.1) and (2.2), the unit normal vectors outwardly 
directed from the fracture walls are defined as 

n. = \IF. /1 \IF. 1 
-1 - 1 - 1 

i = 1,2 (2.3) 

and the fracture aperture, b, which can vary as a function of the 
position on the fracture axis, is defined as 

b(~,s) f2(~,s) - fl(~,s) (2.4) 

2.2. Balance of Fluid Mass 

The two-dimensional equation of fluid movement within an 
individual fracture is developed by first considering a mass balance 
written for a single fluid continuum. Assuming the fluid to be 
incompressible and the mass density to be essentially constant, the 
equation of mass conservation for a single fluid continuum is (8) 
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'l.y = 0 (2.5) 

where v is the fluid velocity and V is the gradient operator. The 
above equation is three-dimensional, and is assumed to be written 
in a coordinate system which at every point is orthogonal to the 
centerline of the fracture. Since the mass density is assumed to 
be constant, Eq. (2.5) can actually be considered an equation of 
volume balance. 

We shall assume that the fracture aperture is narrow in relation 
to its areal extent and that flow is essentially two-dimensional. 
A two-dimensional mass balance equation is generated by integrating 
Eq. (2.5) over the direction normal to the fracture axis, i.e., 

n=f2(1;,Z;;) 

f 'l.y dn 

n=fl (1;,1;;) 

f2 

'l.f y'dn 

fl 

o (2.6) 

where y' is the fluid velocity vector in the coordinates which lie 
in the surface of the fracture axis. The final two terms in (2.6) 
denote the mass flux normal to the fracture walls. If the adjacent 
rock is impervious, these quantities are identically equal to zero, 
otherwise they represent the mass entering or leaving the fracture 
from the adjacent rock matrix. These terms cannot be directly 
evaluated since they depend on the responses in the porous matrix. 
Thus, in order to evaluate the responses in a single fracture, the 
simultaneous solution of the responses in the adjacent porous matrix 
is required. With the use of Eq. (2.3), Eq. (2.6) may also be 
written in the form 

(2.7) 

We shall define an average velocity over the fracture thickness 
by 

1 ff2 y' (1;,1;;) = b y' (n,I;,Z;;) dn 
fl 

(2.8) 

Introducing Eq. (2.8) into Eq. (2.6) yields the integrated, two­
dimensional form of the mass balance expression, i.e., 

'l. (by') - y I . 'lF 2 + y I . 'lF 1 
f2 fl 

o (2.9) 

For fractures that are filled with granular material, a two­
dimensional form similar to Eq. (2.9) can also be developed. For such 
cases, the original three-dimensional mass balance equation would 
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rewritten in terms of the specific discharge, the product of fluid 
velocity and porosity of the fill material. 

2.3. Balance of a Fluid Mass Constituent 

The fluid in the fracture may contain several dissolved 
constituents. We shall assume, however, that the constituents are 
non-reacting, and that their presence does not effect the fluid 
density. In the three-dimensional void space of the fracture, the 
equations of conservation for a single fluid constituent is 

de 
~ + V. (vc + J) = 0 ot - - - (2.10) 

where c is the concentration of the fluid constituent, the product 
yc is the advective flux of the constituent and J is the diffusive 
flux, defined as 

J DVc (2.11) 

where D is the coefficient of diffusion (53). Eq. (2.10) is valid 
for each point in the fluid within a given fracture. 

The associated two-dimensional equation of mass conservation 
for a fluid constituent within an individual fracture shall be 
developed in a manner analogous to that given in section 2.2, i.e., 
integrating Eq. (2.10) over the fracture aperture, 

Jf2[d 
d~ + 'i.(yc + J») dn o (2.12) 

fl 
Since the limits of integration are independent of time, the 

first term in the integrand of Eq. (2.12) can be written 

Jf2 
dC 

dn 
fl dt 

f2 

r c(n,~,c;;)dn dt 
fl 

debe) 
dt 

de 
b dt (2.l3) 

where c is an average concentration over the fracture thickness, 

1 Jf2 b c(n,Ct;)dn 

fl 

The second term in the integrand of Eq. (2.12) can be 
expressed as 

(2.14) 
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f2 

f y. (yc + .])dn 

fl 

f2 

y·f y'cdn 

fl 

f2 

+ y.f .]'dn 

fl 

- (yc + .])1 ·YF2 + (yc + .])1 .YFI 
f2 fl 

(2.15) 

where ']' denotes the vector components of .] in the ~ and s directions. 
The final two terms on the right hand side of Eq.(2.l5) represent the 
mass flux normal to the fracture walls due to advection and diffusion 
to or from the rock matrix adjacent to the fracture. Once again, 
as was noted in section 2.2, if the rock matrix is impervious, the 
advective flux to the adjacent rock will vanish. However, the 
diffusive flux may be non-zero if processes such as adsorption to 
the fracture wall are considered. 

The first term on the right hand side of Eq. (2.15) shall be 
examined by considering the following perturbation expansions for 
the velocity and concentration, 

(2.16) 

(2.17) 

where ~ and y' are deviations from the average concentration and 
velocity, respectively, such that when they are added to the average 
values, the three-dimensional variables are retained. In addition, 
the deviations c and y' are subject to 

o (2.18) 

f
f2 
~'dn = 0 (2.19) 

fl 

Introducing Eqs. (2.16) and (2.17) into the first term on the right 
hand side of Eq. (2.14) yields 

f2 

y. f y'cdn (2.20) 

fl 

where we have made use of Eqs. (2.18) and (2.19) and the fact that y' 
and c are independent of the direction normal to the fracture axis, 
and thus can be removed from the integration. The quantity .]d is a 
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dispersive flux of the constituent that arises due to the averaging 
procedure, 

Jd = ff2y'~ dn (2.21) 

fl 

Usually, a Fickian relationship is assumed for the dispersive flux, 
i. e. , 

(2.22) 

where the dispersion coefficient, Pd' is assumed to be a directionally 
dependent quantity due to the spatially varying nature of the frac­
ture aperture. The dispersion coefficient is assumed to be 
functionally dependent on the magnitude of the average specific 
discharge and a tensorial coefficient ~. 

There are questions about the significance of the dispersion 
process within a single fracture. If the fluid velocities are 
extremely small, the diffusion process may dominate over the 
dispersion process. On the other hand, if the fluid velocity within 
the single fracture is large, the deviations from the average 
velocity may be insignificant; hence, the dispersion could be small. 
The contaminant would then be transported only through advection. 

The second term on the right hand side of Eq. (2.15) (the diver­
gence of the average diffusive flux) is treated in the following 

manner, f2 Jf2 

y.J ~'dn DY· yc dn 

fl fl 

- DY. (bye + eYb - cl Yf2 + cl Yfl) 
f2 fl 

(2.23) 

If we assume that the concentration at the walls of the fracture 
are essentially equal to the average concentration, then with the 
use of the definition of b given in Eq. (2.4), Eq. (2.23) reduces 
to 

y.(2J'dn = 

fl 

(2.24) 

Introducing Eqs. (2.13), (2.15), (2.20), (2.22) and (2.24) into 
Eq. (2.12) yields 
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- (yc + J) I ·7F2 + (yc + J) I .7Fl = 0 
f2 fl 

(2.25) 

Expanding the second term in the above expression, and using the 
two-dimensional equation of fluid mass conservation, Eq. (2.9), 
Eq. (2.25) reduces to 

b ~~ + by' .7c - 7. (Pd.7c) - D7.(b7c) 

- (y(c - c) + ni .7F2 + (y(c - c) + J)I .7Fl = 0 
f2 fl 

(2.26) 
This two-dimensional equation of mass conservation in an individual 
fracture must be solved in unison with the equation for mass trans­
port in the adjacent rock matrix due to the terms evaluated at the 
fracture walls which appear in the above equation. 

2.4. Balance of Fluid Momentum 

The balance of linear momentum for the two-dimensional interp­
retation of transport in an individual fracture is developed by 
integrating the three-dimensional linear momentum balance which 
is descriptive of transport in a single fluid continuum over the 
fracture aperture. Assuming the fluid in the fracture to be 
Newtonian, incompressible and with constant density, the appropriate 
three-dimensional linear momentum balance is 

dV 
P d~ + p7.(yY) + 7p - ~V2y - pg = 0 (2.27) 

where p is the fluid pressure, ~ is the fluid viscosity and B is 
the gravitational force, 8 = - gl~, with z being the vertical 
direction which is not necessarily normal to the fracture axis. 
Introducing into Eq. (2.27), the hydraulic head, ¢, 

we obtain 
dV 

p d~ + py. (yy) + pgy¢ - ~V2y = 0 

(2.28) 

(2.29) 

In integrating Eq. (2.29) over the fracture aperture we shall 
make use of several of the mathematical manipulations that were 
introduced in section 2.3. The integration of the first term in Eq. 
(2.29) is expressed by 

ff2 dV dy' 
p d~ dT) = pb at 

fl 

(2.30) 
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The second term in Eq. (2.29) is evaluated as 

jf2 
py. (yy)dll 

fl 

py.(y'y'b) + py.J - pyYI .YF2 + pYYI .YFl 
f2 fl 

(2.31) 
where we have used the definition of v' in Eq. (2.17) and J is a 
dispersive momentum flux, 

r\'y' dll (2.32) 

fl 

The integration of the third term in Eq. (2.29) is 

jf2 
pgy¢ dll = pgY(b~) -

fl 

pg¢1 YF2 + pg¢1 YFl 
f2 fl 

(2.33) 

where ¢ is the average hydraulic head over the fracture thickness, 

1 jf2 
¢(~,~) = b ¢(ll,~,~) dll (2.34) 

fl 

If we assume that the hydraulic head at the fracture walls are 
essentially equal to the average hydraulic head, then by using 

pgb£l~ (2.35) 

The previous assumption is equivalent to imposing a hydrostatic 
condition in the direction normal to the fracture axis. Such an 
assumption is reasonable since the fracture aperture is small; thus, 
the effect of potential energy is negligible between the walls of 
the fracture. In essence, the assumption is equivalent to assuming 
a uniform pressure distribution over the fracture aperture. 

The integration of the final term in Eq. (2.29) is expressed 
as 

]lV 2 (by') - Jl£l· (y' I £lf2 - y' I £lfl) 
f2 fl 

(2.36) 

If we assume that the fluid velocity at the fracture walls in the 
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~ and ~ directions is subject to a no-slip condition, the second 
term on the right hand side of Eq. (2.36) is identically equal to 
zero. f2 

f IJV2y dT) 

fl 
- IJ(Yyl .YF2 - Yyl .YF1 ) 

f2 fl 
(2.37) 

where we have used the following identity to replace the Laplacian 
of b~' (~), 

y.y(b~') = yx(yxb~') - y(y.b~') (2.38) 

The final term on the right hand side of Eq. (2.37) represents the 
drag that the fracture walls impose on the fluid within the fracture. 

The two-dimensional, integrated, linear momentum equation 
within a single fracture is obtained by combining Eqs. (2.30), 
(2.31), (2.35), and (2.37), 

+ ].JY(Y·by') - pyYI ·YF2 + pyYI ·YFl 
f2 fl 

+ ].J(Z,:I ·ZF2 - Z,:I ·ZF1 ) = 0 
f2 fl 

(2.39) 

Expanding the second term in Eq. (2.39) and using Eq. (2.9) yields 

+ IJy(y.bY') - pYYI ·YF2 + pYYI ·YFl 
f2 fl 

(2.40) 

+ IJ C2'y I . yF 2 - yy I . YF 1) + py' (y I . yF 2 - y I . YF 1) = 0 
f2 fl f2 fl 

The above equations indicate that, in general, two-dimensional 
flow in the axis of a fracture is rotational. Therefore, a pseudo­
potential function defining the average velocity can only be int­
roduced if we ultimately assume that the rotation Yx(Yxby') is 
negligible. We cannot neglect this term by assuming the fluid 
viscosity to be negligible since other terms in the same equation 
would have to be neglected for similar reasons; it is the effect 
of the fluid viscosity which creates the frictional drag that 
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ultimately leads to the definition of the fracture conductance. 
It should be noted, however, that if fluid movement is uni­
directional, the rotational term vanishes by definition. 

For further analysis ofEq. (2.40),let us consider steady-state, 
uni-directional flow through parallel fracture walls. If the 
fracture walls are impervious, the velocity distribution within 
the fracture will be parabolic and symmetric around the fracture 
center line (Figure 10), i.e., 

v 

6 ~ neb - n) 

where vsis the average velocity over the fracture aperture. 
the above assumptions, Eq. (2.40) reduces to 

d¢ dvs 
pgb ds + 2~ ~In=o = 0 

where evaluating the second term with Eq. (2.41) we obtain 

d¢ 
Vs = - K ds 

The quantity K is the fracture transmissivity defined as 

~ 
~ 
~ 

(2.41) 

With 

(2.42) 

(2.43) 

(2.44) 

V~ 
J V ~ (11 ) = 6 b2 11 ( b -

Figure 10. 

7 r ./ 
~ 

Parabolic velocity profile in a fracture having parallel 
walls. 
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which is the classic definition of the fracture transmissivity that 
is employed in most analyses using the discrete fracture conceptual­
ization. 

For the purpose of comparison, let us consider Eq. (2.40) where 
we assume that the fracture walls are permeable. For uni-directional 
flow, parallel fracture walls, and assuming that the flux into or 
out of the fracture is equal on each fracture wall and uniform over 
th~ fracture length, Eq. (2.40) reduces to 

dcjl - 2 dv~ 
pgb dt" + 2pv~(Q-Q ) + 2~ -I = 0 

<, dn n=O 
(2.45) 

where Q is the volumetric flux leaving the fracture. If we continue 
to assume that the velocity in the ~ direction is zero at the 
fracture walls and additionally assume the validity of the parabolic 
velocity profile, then Eq. (2.45) reduces to 

pgb 2 d¢ 
2pQ(1-Q) + 12~ d~ (2.46) 

This relationship illustrates that if one wishes to define a fracture 
transmissivity for a permeable host rock, in general, it will be a 
function of the magnitude of the flux into or out of the fracture. 
If the volumetric flux, Q, is negligible in comparison to the 
viscosity, then the fracture transmissivity can be approximated by 
Eq. (2.44). 

2.5. Balance of Energy 

In the discrete fracture conceptualization, the two-dimensional, 
integrated balance of energy for the fluid in a single fracture is 
analogous to the two-dimensional equation of contaminant migration 
provided that it is assumed that temperature changes do not 
appreciably affect the fluid density. The two-dimensional equation 
of thermal transport in a single fracture is then written 

(2.47) 

- (PCwy(T-T)+Jh) 1 .YF2 + (PCwy(T-T)+Jh) 1 .YFI = 0 
f2 f1 

where T is the average temperature 

1 Jf2 

over the fracture aperture, 

T(~,s) = b T(n,~,s) dn (2.48) 

f1 
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Cw is the specific heat of the fluid in the fracture, A is the 
thermal conductivity of the fluid in the fracture, Jh is the thermal 
diffusion of energy defined as 

Jh = - AYT (2.49) 

and ~d is the coefficient of thermal dispersion. If we assume that 
the dispersion process is dependent only upon the fracture geometry, 
then ~d is related to the dispersion coefficient defined in 
Eq. (2.22), i.e., 

As was noted for the two-dimensional equation of solute movement 
in an individual fracture, the two-dimensional equation of energy 
transport must also be solved with a similar equation in the adjacent 
rock matrix. These two regimes are coupled by the terms defined 
at the fracture walls. If the rock adjacent to the fracture is 
impervious, the advective flux of energy from the rock matrix to 
the fracture is identically zero. The diffusive flux of energy, 
denoted by Jh in the last two terms on the left hand side of Eq. 
(2.47), will be non-zero since an impervious boundary to fluid 
movement does not act as a material surface to energy transport. 

3. TRANSPORT EQUATIONS FOR CONTINUUM CONCEPTUALIZATIONS 

In field situations where there are numerous interconnected 
fractures from a variety of fracture families, we are unable to 
effectively describe transport phenomena on the scale where 
individual fractures are discernible and modeled as separate 
geometric entities. Even in those situations where we have a 
reasonably detailed statistical knowledge of the geometric features 
of most fracture families, treating highly fractured formations 
using a discrete fracture conceptualization becomes computationally 
intractable. In such instances, a continuum conceptualization of 
the rock matrix and the fluids occupying the void space alleviates 
the necessity of describing the specific geometry of the fractures. 

In sections 1.3.2 and 1.3.3, two continuum conceptualizations 
of fractured rock were briefly identified along with the assumptions 
and restrictions implicit in their use. In this chapter we shall 
discuss the equations that are descriptive of the transport of mass, 
momentum and energy for the equivalent porous medium and dual 
porosity conceptualizations. 

3.1. Continuum Balance Equations 

Both the equivalent porous medium and dual porosity conceptual­
izations are examples of multi-component continua, that is, a 
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mixture of discontinuous phases that are hypothesized as continua, 
in this case, a solid phase, and one or more fluid phases. We 
shall initiate our discussion by briefly examining the general 
balance equations of mass, momentum and energy that are applicable 
to any multi-component continuum. Here, we shall discuss two 
widely used methods of hypothesizing, or formulating, the general 
continuum balance equations. The application of these balance 
equations to a specific multi-component continuum (e.g., the 
equivalent porous medium or dual porosity conceptualizations) arises 
through restrictions that are imposed on each continuum component 
and through constitutive relationships that make the general balance 
equations descriptive of a particular multi-component medium. In 
subsequent sections we shall discuss the assumptions that are 
applied to the general balance equations in the application to the 
two above mentioned continuum conceptualizations of fractured rock. 

3.1.1. Mixture theory 

One approach to the development of the balance equations for 
a mUlti-component medium is to directly hypothesize their form in 
conjunction with assumptions concerning the nature of the phases 
which comprise the continuum (see, e.g., Bowen(ll), Ingram and 
Eringen (46». This is usually referred to as a mixture theory 
approach. The multi-component continuum may be composed of any 
number of overlapping continuum phases. The continuum phases are 
assumed to coexist (or overlap) at each point in the medium; thus, 
properties of several phases are defined at each mathematical point. 

For fractured rock where a single fluid is assumed to saturate 
the entire void space of the rock, the equivalent porous medium 
conceptualization is described by only two continuum phases, a rock 
phase and the fluid phase in all the void space of the rock, regard­
less of the character of the void space. In contrast, the dual 
porosity conceptualization is hypothesized by three continuum 
phases, i.e., the rock matrix, and two distinct fluid continua, for 
example, the fluid in the fractures and the fluid in the porous 
matrix of the rock. 

Balance equations for mass, momentum and energy shall be 
written for each phase (or component) of the multi-component medium. 
We shall express the balance of the thermodynamic properties, mass, 
momentum and energy, in a general form, where the specific thermo­
dynamic property is referred to as ~a (e.g., mass of the a-phase, 
momentum of the a-phase, etc.) having a density, ~a' defined per 
unit mass of the a-phase. The hypothesized form of the general 
balance equation for the property ~a is 
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a = 1,2, ... N (3.1) 

where Pa is the density of the a-phase defined per unit volume of 
the a-phase, Ea is the volume fraction of the a-phase, Ya is the 

velocity of the a-phase, Ja is a non-advective flux of ~a' fa ~s 
the rate of a source of ~a generated internal to the a-phase, Ma 
denotes the rate of exchange of mass between the a-phase and all 
other phases, ~a is the rate of exchange of ~a between the a-phase 
and all other phases due to mechanical interaction between the 
phases, and N is the number of phases which comprise the multi­
component continuum. The definition of the terms in Eq. (3.1) for 
the thermodynamic quantities; mass, momentum and energy are listed 
in Table 1. 

Eq. (3.1) is a point balance equation that is assumed to 
be valid throughout the entire continuum volume. Therefore, it is 
based on assumptions of smoothness and differentiability in the 
quantities defined above. In addition, Eq. (3.1) is subject 
to the following restrictions 

1 (3.2) 

o (3.3) 

Eq. (3.2) merely implies that volume at a given point is 
conserved, i.e., the volumetric fractions of all phases must sum to 
unity. Similarly, Eq. (3.3) insures local (pointwise) conser­
vation of t~e thermodynamic property ~a at a given point. The 
quantities MaWa and ~a denote exchanges of the property ~a between 
the a-phase and all other phases. Eq. (3.3) states that the 
rate at which a thermodynamic property leaves one phase must be 
equivalent to the rate at which it is gained in the remaining N-l 
coexisting phases at the point in question. 

3.1.2. Volume averaging 

Eq. (3.1) is hypothesized without a specific knowledge or 
reference to a configuration of the individual phases that comprise 
the continuum. Although concepts such as an averaging volume or 
REV are never mentioned in hypothesizing Eq. (3.1), they are implicit 
in the definition of the continuum quantities. From Eq. (3.1), we gain 
little physi~al insiPht into the meaning and significance of terms 
such as Ja , Ma and Ta. 
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Table 1. Definition of the density, flux and internal source of 
mass, momentum and energy for a multi-component continuum. 

Sources 
Internal Mass Mechanical 

Density Flux Supply Exchange Interaction -Mass 1 0 0 Ma 0 

Mass of - -a Phase wa JW 0 Mawa JW 
-a a 

Constituent 

Momentum Ya ~a & tta V a ra 
ea+~V~ h - 2 - -Energy ~.Ya+Ja ha+g·Ya Ma(ea+~Va) fa·Ya+Qa 

Wa is the mass fraction of a constituent of the a-phase defined as 
pw/Pa 

Pw is the mass density of the w-constituent of the a-phase per unit 
volume of the a-phase 

Pa is the mass density of the a-phase per unit volume of the a-phase -Ma is the rate of mass exchange between the a-phase and all other 
phases 

J~ is the non-advective flux of the w-constituent of the a-phase 
-w J a is the rate of exchange of the w-constituent of the a-phase with 

all other phases due to mechanical interaction between phases 

Ya is the velocity of the a-phase 

Ia is the internal stress of the a-phase 

~ is the gravitational force -fa is the rate of mechanical exchange of momentum between the a-
phase and all other phases 

ea is the internal energy density of the a-phase 

J~ is the non-advective flux of thermal energy 

ha is the internal supply of thermal energy 

<ra is the rate of exchange of thermal energy between the a-phase 
and all other phases 
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For this reason, a considerable effort has been directed toward 
a rigorous derivation of the balance equations for the transport of 
mass, momentum and energy in porous media (see, e.g., Drew (21), 
Drewamd Segel (22), Bear and Bachmat (6), Hassanizadeh (39), 
Hassanizadeh and Gray (40,41)). These investigations were directed 
toward the development of continuum balance equations from a 
knowledge of the physical processes at the level where individual 
phases and boundaries between phases are still discernible. This 
approach, referred to as volume averaging, uses as a point of 
departure, the balance equations of mass, momentum and energy that 
are valid at the microscopic level. The continuum balance equations 
for each phase of the continuum are developed by averaging the 
microscopic balance equations over the volume of the phase in 
question within a Representative Elementary Volume. 

First attempts at employing such ideas consisted of using 
specific geometrical models of porous media, e.g., capillary tube 
models (see, e.g., Duguid and Lee (24), Bear and Braester (7)). 
More recent investigations consider an arbitrary geometry of the 
phases within the REV (see, e.g., Hassanizadeh (39), Hassanizadeh 
and Gray (40,41), Bear and Bachmat (6)). In the following paragraphs, 
the thoery of volume averaging as applied to the development of the 
continuum balance equations is outlined for a multi-component 
continuum. 

At the level where we visualize the medium as a conglomerate 
of discontinuous phases that are separated by boundaries, the general 
balance equation for the thermodynamic property, referred to as ~, 
at a given point within any phase is 

a(p~) + V.(p~v + j) - pf = 0 at - - - (3.4) 

where p is mass density, ~ is the density of the thermodynamic 
property ~, j is the nonadvective flux of ~, f is the rate of an 
internal source of ~ and y is velocity. Equations similar to (3.4) 
are used in the discrete fracture conceptualization discussed in 
Section 2. 

The continuum balance equations are developed for a given 
phase by averaging (3.4) over the volume of that phase within the 
REV, i.e., 

f (a(~~) + y. (p~y + J) - Pf) dv = 0 
dVa 

(3.5) 

where dVa denotes the volume of the REV occupied by the a-phase. 
Due to the assumed arbitrary geometry within the REV, specific 
averaging rules are applied to Eq. (3.5) in order that spatial and 
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time derivativ~s can be removed from the integration (see, e.g., 
Gray and Lee (30)). Consequently, Eq. (3.5) can be placed in a form 
identical to Eq. (3.1), where as a result of the averaging 
procedure, we obtain specific definitions of the continuum quantities, 
i. e. , 

1 f dv dV (3.6) 

dVo. 

1 

f pdv 
dVo. 

(3.7) 

dV 
0. 

1 
f p1jJdv 

Po.dVo. 
(3.8) 

dV 
0. 

1 f pydv 
Po.dVo. 

(3.9) 

dVo. 

!o. 
1 f(l P~o.Yo.) dVo. + dv (3.10) 

dVo. 

++ 1 
f M l: P(N - Y).Do.S ds 0. 

S;'o. dV 
dSo. S 

(3.11) 

¥o. S~o. 
1 

f (p~o. (N - y) + j).Do.S ds dV (3.12) 

dSo. S 

In the above definitions dV denotes the volume of the REV, dSo.S 
denotes the interface between the 0. and S-phases within the REV 
having a normal vector Do.S outwardly directed from the a-phase, N 
is the velocity of the interface between the 0. and S-phases, and 
~o. and Yo. are deviations from the volume averaged quantities 1jJ0. 
and Yo.' respectively, such that the microscopic values are defined 
as 

v = V + V - -0. -0. 

(3.13) 

(3.14) 
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The deviations, ~a and Ya , are subject to 

f P~a dv = 0 (3.15) 

dVa 

f PYa dv 0 (3.16) 

dVa 

It can also be shown that Eqs. (3.2) and (3.3) can be rigorously 
derived through the volume averaging procedure (Hassanizadeh (39), 
Hassanizadeh and Gray (40)). 

In Eqs. (3.6) through (3.12), we see the specific construction 
of the continuum quantities, which was unrecognizable from merely 
hypothesizing Eq. (3.1). For example, in Eq. (3.10), the continuum 
non-advective flux is shown to be the cummulative effect of the 
volume average of the microscopic non-advective flux and a 
dispersive flux, denoted by ~aYa. Furthermore, in Eqs. (3.11) 
and (3.12), the specific form of the terms which define the 
exchanges between phases are identified. In these definitions the 
summation indicates that the boundary between the a-phase and all 
other phases is considered. Furthermore, from Eqs. (3.11) and (3.12) 
the assumptions that will force these terms to vanish become more 
evident. For example, if we assume that the microscopic interface 
between the a-phase and all other phases is a material surface, i.e., 
W = y, then Mia is identically zero. 

The volume averaging procedure is also significant since it 
essentially represents the physics of measurement. If a measurement 
is to be representative of the continuum hypothesis, it should be 
amenable to a description as a volume or surface average. The 
validity of continuum measurements are usually questioned (at least 
in fractured rock formationo) due to the fact that a Representative 
Elementary Volume may not be encompassed by the measuring device, 
and thus, may not adhere to the definitions given above. 

In summary, the volume averaging approach has led to a 
considerable amount of insight into the actual definition of the 
continuum fluxes and exchange terms appearing in the continuum 
balance equations. However, these definitions are actually of 
little significance in Eq. (3.1) because the continuum 
quantities defined in Eqs. (3.6) through (3.12) only have 
meaning in their integrated form; the microscopic quantities within 
the integration are unrecognizable. Only if restrictions are imposed 
on the geometric structure of the medium, and the microscopic 
behavior of the fluid and rock matrix, will the definitions in 
Eqs. (3.6) through (3.12) be of use. 
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3.2. Constitutive Relationships 

Eq. (3.1), whether obtained from direct hypothesis or 
through volume averaging, is descriptive of any multi-component 
continuum since the fluxes and sources of mass, momentum and energy 
are defined in generic terms only. The balance equations become 
descriptive of ~ partic~ar multi-component continuum when the 
quantities Ja , Ma, and Ta are defined by phenomenological (or 
constitutive) relationships that are specific to the multi-component 
continuum under investigation. These constitutive relationships 
are usually defined in terms of the measurable quantities of the 
transport problem, e.g., Pa , Ea' Ya , and ~a' The balance equations 
of mass, momentum and energy, in conjunction with the constitutive 
relationships are to provide an equivalent number of equations and 
unknowns; with boundary and initial conditions, the transport 
problem is then amenable to a solution. 

The constitutive relationships that are to be employed in the 
balance equations cannot violate any of the balance laws, or the 
Second Law of Thermodynamics. The Second Law of Thermodynamics acts 
as a further constraint on the transport processes by dictating the 
direction that reactions will take. For example, nothing in the 
balance equations indicates that energy will be transported from 
domains of higher temperature to domains of lower temperature. It 
is the Second Law of Thermodynamics which imposes restrictions of 
this type. 

Coleman and Noll (15) employed the Second Law of Thermodynamics 
as a means of placing restrictions on the functional dependence of 
the constitutive relationships, and also a means of obtaining their 
(thermodynamic) equilibrium form. The Coleman and Noll method in 
conjunction with linear and higher order approximations for the 
thermodynamic nonequilibrium parts of the constitutive functions 
has found wide applicability in developing field equations for 
mixtures of fluids and solids(23,57,58,65,71). Its application to 
the transport phenomena in porous media has been thoroughly examined 
by Hassanizadeh (39). Shapiro (70) considered the application of 
the Coleman and Noll method in the development of transport equations 
for a dual porosity conceptualization of fractured rock. 

For analyses of fractured rock, it is especially important that 
a systematic and unbiased method of determining constitutive 
functions, such as that of Coleman and Noll (15), be employed. The 
reason for this being that there does not exist a wealth of 
experimental information to allow constitutive relationships to be 
developed by more heuristic means. Although we may draw upon our 
physical intuition in the development of constitutive relationships, 
this alone may not be sufficient since there are different mechanisms 
of transport which are of importance in fractured rock that are not 
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relevant in granular porous materials, e.g., the exchange of mass, 
momentum and energy between two fluid continua in the dual porosity 
conceptualization. 

The constitutive relationships are developed by first 
hypothesizing a general functional dependence of the nonmeasurable 
quantities. The method of choosing the functional dependence on 
the measurable quantities is discussed in general by Truesdell and 
Toupin (83) and Eringen (27), and by Hassanizadeh (39) and Shapiro 
(70) for subsurface hydrologic phenomena. The Second Law of Thermo­
dynamics restricts the functional dependence of the constitutive 
functions and determines their thermodynamic equilibrium form. The 
non-equilibrium part of the constitutive relationships are usually 
determined by a Taylor series expansion about the equilibrium state. 
In many instances a linear approximation is suitable to describe 
the functional form of the constitutive relationships. However, in 
some instances, a higher order expansion is necessary to describe 
the physical behavior (see, e.g., Whitaker (88), Shapiro (71». 
Continuum coefficients arise in the Taylor series expansion. These 
are the material coefficients of the medium which ultimately require 
evaluation through physical experimentation. 

In this section we consider the application of the general 
balance equation to the specific case of the equivalent porous 
medium and dual porosity conceptualizations of fractured rock. The 
continuum balance equations for the equivalent porous medium 
conceptualization are those which have been classically used in 
models describing transport phenomena in granular porous media (see, 
e.g., Bear (5), Hassanizadeh and Gray (42), and we shall only dwell 
briefly on the equations of this conceptualization. 

3.2.1. Equivalent porous medium conceptualization 

For the equivalent porous medium conceptualization of fractured 
rock, we shall consider a single fluid occupying the entire void 
space of the rock matrix. The microscopic interface between the 
E.ock++and the fluid phases is assumed to be a material surface; thus 
M f M = O. In addition, we shall assume that constituents of the 
fluid phase do not react with the solid matrix. From these restric­
tions the balance equations for mass, momentum and energy reduce 
to the following 

Mass 

o a = f,r (3.17) 



448 

Mass of a Fluid Constituent 

Dfw f 
+ y.. (Ef'I'i) 0 PfEf Dt 

(3.18) 

Momentum 
DaV -a -PaEa --+ y'.(Ea~a) - PaEa~ = F 

Dt -a a = f,r (3.19) 

Energy 

a = f,r (3.20) 

where 

(3.21) 

and the subscripts f and r denote the fluid and solid phase, 
respectively. Into Eqs. (3.18), (3.19) and (3.20), we have 
introduced the mass balance expression, (3.17). In addition, we 
have subtracted off a balance of mechanical energy to arrive at the 
form of the energy balance given in Eq. (3.20). This is carried out 
through a manipulation of the total energy balance and the equation 
of linear momentum. 

The balance equations are also subject to the following restric-
tions 

E Ea = 1 (3.22) a - -:ff + F = 0 (3.23) -r - - -:ff·(Yf - Yr ) + Qf + Qr = 0 (3.24) 

Usually for analyses in granular porous media, it is assumed 
that the fluid and the solid matrix are in a local thermodynamic 
equilibrium, in which case, only one energy equation is required 
to describe the thermodynamic state of the medium. It is question­
able whether such an assumption can be applied to a fractured rock. 
The time for the equilibration of temperatures between the fluid and 
the rock matrix would be directly related to the intensity of 
fracturing, and thus, the size of the averaging volume. 

The development of constitutive relationships for the set of 
equations given above, and their reduction to the classic form used 
in simulating transport processes in granular porous media is 
presented in Hassanizadeh (39) and Hassanizadeh and Gray (42). The 
development of constitutive relationships for the non-advective 
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(dispersive) contaminant and thermal fluxes is discussed by Shapiro 
(70,71). 

3.2.2. Dual porosity conceptualization 

Imposing restriction of the solid and fluid phases similar to 
those stated at the beginning of section 3.2.1, the balance equations 
of mass, momentum and energy for the dual porosity conceptualization 
take the form 

a = f,p (3.25) 

(3.26) 

Mass of a Fluid Constituent 

a = f,p (3.27) 

Momentum 

a = f,p,r (3.28) 

Energy 

=1t a a = f,p,r (3.29) 

where the subscripts f, p and r denote properties of the fluid in 
the fractures, the fluid in the porous matrix and the rock phase, 
respectively. The equations above are also subject to the following 
restrictions 

L Ea 1 
a 

(3.30) 

- -Mf - M 
P 

(3.31) 

- #. 

Mf(wf - W ) + L JW = 0 
P a a 

(3.32) 

M (Vfr _ Vpr ) -+ & ~a = 0 
f - -

(3.33) 

o (3.34 ) 
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where Var = V - Yr. - -a-

The constitutive relationships developed for the exchanges of 
mass, momentum and energy between the phases are 

+* 
F -p 

91wf + 92wp + 93Y.Yf + 94Y.Yp 

R .Vfr 
~f -

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

where Ta is the temperature of the a-phase, and 8i , 9i , ai' vi and 
~a are material coefficients. 

Eqs. (3.37) and (3.38) when substituted into Eq. (3.28) written 
for the fluid in the fractures and the fluid in the porous matrix 
yields a Darcian relationship for the fluid velocity when inertial 
and internal stress effects are neglected. 

The mass exchange function, (3.35), was analyzed by Shapiro 
(70) where it was demonstrated that 81 = - 82 where 82 > O. The 
significance of 83 and 84 was also shown to be negligible due to 
the rapidity at which fluid pressures equilibrated between the 
porous matrix and the fractures. 

The presence of Y.Yf and y.y in Eqs. (3.35), (3.36), 
(3.39) and (3.40) illustrates tha~ there are additional terms which 
arise in the development of these constitutive relationships other 
than those which lead to a quasi-steady exchange function (see 
Eqs. (1.5) and (1.9)). 

The transfer of mass or energy between the porous matrix and 
fractures is a phenomenon that depends on the previous history of 
the transport process between the two flow regimes. If we observe 
the microscopic interface between a single fracture and a porous 
block, the rate of mass or energy entering the porous matrix from 
the fractures depends on the distribution of mass or energy initially 
within the porous matrix. The distribution of mass or energy wjthin 
the porous matrix, however, depends on the previous history of 
transport and the geometry of the porous matrix. The quasi-steady 
approximation is adequate when temperatures or concentrations of 
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the porous matrix and fractures are nearly the same, i.e., small 
perturbations from equilibrium. For large perturbations from 
equilibrium, the rock would have to be highly fractured with matrix 
blocks of small dimensions for equilibration to occur rapidly enough 
to use the quasi-steady approximation. 

The terms Y.Yf and Y.Yp may not fully account for the time 
history of the transport process. Constitutive relationships could 
also be developed where dWf/dt and dWp/dt would appear in Eq. (3.36), 
and similar terms defined for temperature would appear in Eq. (3.39) 
and-(3.40). The significance of the variable size matrix blocks 
would arise in the material coefficients. 

3.3. Continuum Coefficients 

The continuum coeffficients, which arise in the systematic 
procedure of hypothesizing constitutive relationships, are referred 
to as material coefficients since they ultimately depend on the 
specific medium under investigation. The Taylor series expansions 
define these material coefficients only in a thermodynamic sense. 
Hence, we gain very little physical insight into the relative 
significance of these quantities. Only through physical experimen­
tation are we able to determine their relative magnitude so that 
the significance of the terms appearing in the constitutive relation­
ships can be evaluated. Usually we extract the material coefficients 
through experimentation by subjecting the medium to a continuum 
excitation arid measuring the induced continuum responses. The 
material coefficeints are then evaluated by substituting both the 
responses and the excitation into the field equations that are 
assumed to describe the physics of transport in the continuum. 

In fractured rock, we are faced with many difficulties in 
evaluating continuum coefficients from physical experiments. The 
majority of these problems arise because measurements may not be 
indicative of the continuum hypothesis. For example, the interp­
retation of measurements for their application in evaluating 
continuum coefficients is questionable in rock formations where the 
density of fracturing is sparse in comparison with the length scale 
of a measuring device. Yet in such formations on a scale much 
larger than the measuring device, the continuum hypothesis may be 
applicable. Furthermore, even if a measuring instrument does inter­
sect a significant number of fractures such that it can possibly 
identify a continuum response, the measurement obtained may not be 
a representative sample. For example, if we wish to extract a 
sample of a contaminant from the fluid in the void space through 
a borehole, the sample will most likely be representative of the 
fluid in the fractures since this flow regime is more conductive 
than the porous matrix. If we employ the equivalent porous medium 
conceptualization, then such a measurement is not indicative of the 
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fluid in all void space. For the dual porosity conceptualization, 
this measurement may be indicative of the fracture fluid continuum, 
but we are still left with the problem of identifying the response 
in the porous matrix. 

As a result of these difficulties, investigators have tried to 
estimate continuum parameters by methods which allow the use of 
measurements conducted over volumes that are smaller than the REV. 
If we do have a knowledge of the microstructure of the medium, it 
is only to our benefit to incorporate this knowledge into the 
continuum conceptualization. Yet it must be done in a manner that 
is consistent with the continuum hypothesis and the notion of an 
averaging volume. Other ways of incorporating the microstructure 
are more heuristic in nature, and first require a knowledge of the 
continuum coefficient, e.g., correlating hydraulic conductivity with 
grain size distribution or fracture intensity. 

In the remainder of this section we shall briefly describe the 
means by which the continuum hydraulic conductivity of a fractured 
rock can be determined by volume averaging in conjunction with a 
knowledge of the fracture geometry. Such considerations require 
assumptions concerning the nature of fluid movement in the fractures; 
therefore, the applicability of any results must be viewed in the 
light of these assumptions. Furthermore, it is not the intension 
of these results to yield exact values of the hydraulic conductivity 
tensor, but rather they are intended to provide an order of magni­
tude estimate for this continuum coefficient. 

3.3.1. Evaluating hydraulic conductivity from fracture geometry 

For the purpose of this discussion, we shall assume that only 
fractures (from any number of fracture families) constitute the 
entire void space of the rock. Thus, the host rock is considered 
to be impervious, and to possess no void space which is character­
istic of a granular porous material. In addition, each fracture 
is assumed to have a variable aperture, however, we also assume 
that the fractures may be represented by a series of parallel 
segments (Figure 11). Furthermore, we consider a single fluid to 
occupy the entire void space of the rock, and the rock to be non­
deformable. 

With these assumptions, we may draw upon the results presented 
in Section 2 for the mathematical modeling of fluid movement in a 
discrete fracture conceptualization. For each parallel fracture 
segment, the average fluid velocity in the plane of the fracture is 
given by (see Eqs. (2.43) and (2.44)) 

y - K Y<P K = pgb 2 

l211 
(3.41) 
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Parallel Segment 

Figure 11. Conceptual model of a fracture as composed of a series 
of parallel segments. 

Here, velocity and the hydraulic head are quantities averaged 
over the fracture aperture. 

The velocity may also be defined with respect to a fixed 
coordinate system, i.e., 

y' = - k.\1~ .- .. -
where ~ is a tensor defined as (77) 

i,j = 1,2,3 

(3.42) 

(3.43) 

where 0ij is the Kronecker delta and ni and nj are the direction 
cosines 1n the i and j directions, respectively, for the vector 
normal to the fracture axis. 

Eq. (3.42) is the result of integrating the equation of 
linear momentum over the fracture aperture. The fracture network 
is subsequently described by surfaces in three-dimensional space, 
where the boundaries of the fractures are defined by lines in three­
dimensional space. Since we are considering an impervious host 
rock, a no-flow condition is imposed at these boundaries, i.e., 
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v'. v = 0 (3.44) 

where Lfr is the line in three-dimensional space defining the 
fracture boundary, and ~ is the outwardly directed unit normal 
vector to this boundary (Figure 12). 

Following the method of volume averaging, we shall integrate 
Eq. (3.42) over the void space within the REV, and analyze the 
coefficient that is analogous to the hydraulic conductivity. Since 
an initial average has been conducted over the fracture aperture, 
we need to consider the integration of Eq. (3.42) over the fracture 
surfaces, i.e. 1 

1 f - 1 f -g = ny = dV b y'da = - dV b ~.y~ da (3.45 ) 

dA dA 

where the surfaces of all fractures in the REV are denoted by dA, 
dV is the volume of the REV, q is the average volumetric flow rate 
in the fractures per unit volume of the REV, n is the fracture 
porosity, and Y is the average volumetric flow rate per unit volume 
of the fractures in the REV. 

Since we assume that a sufficient amount of interconnected 
fractures exist within the REV, in the absence of fluid sources 
and sinks, it is reasonable to assume that y~ does not change sign 
within the REV and is monotonously increasing or decreasing. Using 
the mean value theorem, we may rewrite Eq. (3.45) as 

!V f b~.Y~da = [Y:~Q)l . f b~da (3.46 ) 

dA dA 

where Y~(~) is a value of Y~ within the REV that yields an exact 
evaluation of (3.45). We shall approximate Y~(~) by the average 
value, such that Eq. (3.45) can be written 

ny ;; ( 1 f b~da ) . 
dV 

dA 

where Y$ is the average of 
over the entire REV, i. e., 

- 1 f VA. = - V'l:da _'f' dA _'f' 

( 1 f y~da ) = ~ • y~ (3.47) dA 
dA 

the gradients of the fluid potential 

(3.48) 

and ~ is the average of the fracture conductivities of the parallel 
fracture segments. The quantity ~ is purely related to the geomet­
ric features of the fractures. 
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Figure 12. Areal fracture surfaces in three-dimensional space. 

Eq. (3.47) is the form that Snow (77) has used to estimate 
the hydraulic conductivity of a fractured rock, where A is considered 
to be the hydraulic conductivity. Eq. (3.47), however; is 
not consistent with what we usually consider as a definition for 
the macroscopic fluid flux. The driving force for fluid movement 
at the continuum level is y¢ and not y¢, where ¢ is the fluid 
potential averaged over the REV, i.e., 

1 
dA 

The correct form of the macroscopic flux is 

ny K . V¢ 
" -

where ~ is the hydraulic conductivity tensor. 

(3.49) 

(3.50) 

In order to arrive at Eq. (3.50), we must develop a relationship 
between y¢ and y¢. Shapiro and Bear (75) demonstrated that Y¢ is 
related to Y¢ by the following 

(3.51) 

where ~ is a geometric property of the medium defined as 
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I 
~ 

1 f XlV dl 
dA 

Lfr 

(3.52) 

where I is the unit tensor, ~' the position vector measured from 
the ce~troid of the REV and ~ is the outwardly directed unit normal 
vector from the lines Lfr • The quantity ~ is a tensorial coefficient 
which defines the tortuous path of the fluid within the REV. The 
hydraulic conductivity tensor of the fractured rock at the point in 
question is then defined as 

K = A • n 
~ ~ ~ 

(3.53) 

Eq. (3.53) exhibits two effects which contribute to the 
hydraulic conductivity tensor. The first, ~, is the result of the 
orientation of the individual fractures within the REV. The 
quantity, n, in contrast, denotes the effect that arises from the 
gradients ~f the fluid potential in the individual fractures that 
are not necessarily the same as the gradient of the average fluid 
potential, which is the driving force for fluid movement. 

4. SUMMARY AND CONCLUSIONS 

Due to the diverse nature of fracturing in rock formations, 
two distinct means of mathematically conceptualizing transport 
phenomena in fractured rock have arisen. These are a discrete 
fracture conceptualization and a continuum conceptualization of rock 
formations. 

The discrete fracture conceptualization is best suited to 
those situations where there are few significant fractures of a 
given fracture family within a problem area. To accurately describe 
transport phenomena under such conditions, the explicit geometrical 
features of these few fractures must be identified. Because of the 
difficulty in defining the fracture geometry under field situations, 
it is only possible to describe these few fractures in a statistical 
manner. 

The fractures constitute a three-dimensional void space within 
the rock. However, for simplicity in mathematically describing 
transport phenomena within the fractures, we use the fact that the 
characteristic length of a fracture is significantly larger than 
its associated width. The transport of mass, momentum and energy 
is then assumed to be essentially two-dimensional, in the surface 
that depicts the center line of the fracture aperture. 

Under this assumption, the equations of transport of mass, 
momentum and energy are developed by integrating over the fracture 
aperture the three-dimensional transport equations that are valid 
within a single fracture. The resulting two-dimensional equations 
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are written in terms of quantities averaged over the fracture thick­
ness. From this averaging procedure, properties such as fracture 
conductivity arise. For parallel fracture walls, the conductivity 
of the fracture is proportional to the square of the fracture 
aperture, and the volumetric flux is proportional to the cube of 
the fracture aperture. If the fracture walls are permeable, the 
conductivity of the fracture is dependent on the volumetric flux 
entering or leaving the fracture. 

Incorporated into the two-dimensional equations of transport 
within a single fracture are conditions of transport at the fracture 
walls. These conditions of mass, momentum, or energy cannot be 
arbitrarily prescribed at the fracture walls since they depend on 
the responses in the adjacent host rock. Thus, the equations of 
transport within a single fracture must be solved in conjunction 
with similar equations of transport in the host rock. 

In contrast to the discrete fracture conceptualization, a 
continuum conceptualization treats fractured rock in a similar 
manner to our treatment of granular porous media. The explicit 
geometry of the void space is neglected, and distributed parameters 
are employed in the description of the transport processes. These 
parameters, such as the hydraulic conductivity, are actually the 
manifestation of averaging the geometric and material properties of 
the void space over a Representative Elementary Volume of the 
medium. 

A natural extension of the continuum theories applied to 
granular porous material is to treat fractured formations in a 
similar manner, i.e., all void space of the rock are treated as one 
continuum and considered as an equivalent porous medium. Such an 
approach has proved to be acceptable in the description of single 
phase, isothermal fluid movement. For contaminant and thermal 
migration, and multi-phase flow, however, a single continuum 
velocity may not be descriptive of the diverse character of the void 
space within a fractured formation, i.e., fractures of different 
families and even void space that is similar to a granular porous 
material. An alternative continuum conceptualization of fractured 
rock is to consider two overlapping fluid continua, for example, 
the fluid in the fractures and the fluid in the porous matrix of the 
host rock. Although this continuum conceptualization may better 
describe the physics of transport in a fractured formation, it offers 
an added complexity in that additional constitutive relationships 
and continuum coefficients require evaluation. 

The Coleman and Noll (15) procedure provides a systematic and 
unbiased means of thermodynamically formulating constitutive 
relationships. The constitutive relationships developed for the 
(continuum) dual porosity conceptualization illustrate that the 
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exchange of energy and contaminant mass between the fractures and 
porous matrix may be governed by more than a quasi-steady approxima­
tion represented by the difference between the temperatures or 
concentrations of the two fluid continua. 

The constitutive functions developed in Section 3 are only 
hypothesized since they are based on an assumed functional dependence 
that was initially imposed on all constitutive functions. The 
validity of these phenomenological relationships can only be 
estimated through experimentation. Ideally, the development of 
constitutive functions should be an iterative process, i.e., a set 
of constitutive functions are hypothesized, their validity is then 
checked through experimentation, and the original hypotheses are 
reevaluated. 

For porous materials that are granular in nature, experimental 
information has been available long before any rigorous attempts 
were made at developing the field equations for transport phenomena. 
Hence, the experimental information acted as a guide and a means 
of verifying any proposed theories. For continuum conceptualizations 
of fractured rock, however, the quantity of experimental information 
(except possibly for single phase, isothermal fluid movement) is 
minute. In addition, the quality of experimental information for 
the continuum conceptualizations is extremely questionable. Thus, 
for the verification of the continuum field equations for fractured 
rock, we do not have the luxury of experimental information. 
Consequently, unanswered questions still remain concerning the 
functional forms that describe the exchange of contaminant mass and 
energy between fractures and a porous matrix, or between fractures 
of different families. In addition, the assumption of thermal 
equilibrium between continuum phases (which is an assumption 
employed in granular porous media) is questionable in its applica­
tion to fractured rock formations. 

The diverse character of fracturing under natural conditions 
will most likely prohibit us from ever proposing generic answers 
to these and other questions concerning the continuum conceptualiza­
tions of fractured rock. It is more reasonable to assume that we 
must quantify the physical situations where given assumptions may 
be applied in the characterization of transport phenomena in frac­
tured rock formations. 

5. APPENDIX A: RELATIONSHIP BETWEEN y¢ and y~ 

Let us assume that the fracture aperture is essentially uniform 
over a given fracture surface such that the equation governing fluid 
movement in the fracture reduces to 

(A.1) 
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where ~ is the hydraulic head averaged over the fracture aperture. 
Additionally, let us consider the following integration over the 
areal fracture surfaces, dA, within the REV, 

I 
dA f ~' 

dA 

(A.2) 

where x' is the position vector measured from the centroid of the 
REV. 

Applying the first form of Green's theorem to Eq. (A. I) 
yields 

I f ~'1l2~ da 
I f ~'Y~.l! I f -

dA dA dl - dA y~.y~' da (A.3) 

dA Lff+Lfr dA 

where Lfr is the line defining the boundaries of the fracture sur­
faces within the REV, Lff is the line defining the intersection of 
the fracture surfaces and the surface of the REV and l! is the 
outwardly directed unit normal vector from the lines Lfr and Lff. 
The quantity Y~'l! in the line integrals of Eq. A.I) is 
proportional to the fluid flux perpendicular to the boundaries Lff 
and Lfr' Because we have assumed that the host rock is impervious, 
the line integral over Lfr vanishes, and Eq.(A.3) reduces to 

I f a~ I f xj 
a~ da -- ax- vi dl dA aXj dA 1 

dA Lff 

(A.4) 

where we have made use of the identity 

yx' (A.5) 

where 0ij is the Kronecker delta. 

The first term in Eq. (A.4) is the average of the micros-
copic gradients of the fluid potential, Y~, which is defined solely 
in terms of the fluid flux through the fractures at the boundary of 
the REV, 

Y~ = !A f ~' Y~'l! dl (A.6) 

Lff 

Because we had assumed earlier that Y~ is either positive or negative 
at all points on all fracture surfaces within the REV, y~ will not 
change sign on the boundary Lff. Using the mean value theorem, we 
can then approximate the line integral in Eq. (A.6) by 



460 

-- [y~(~)] f 
V'~ = • 
- dA 

~'1' dl (A. 7) 

Lff 

where y~(~) is a value of y~ on the line Lff that yie!ds an exact 
evaluation of equation (A.7). We shall approximate y~(~) by y~, 
where ~ is the average of the hydraulic head in the fluid within 
the REV, 

~ = !A f ~ da 
dA 

Eq. (A.7) can then be written 

where ~ is a geometric property of the medium, 

~ = !A f ~'1' dl 

Lff 

(A.8) 

(A.9) 

(A.lO) 

The quantity ~ can also be related to the boundary Lfr through 
the following identity 

I = ~ f x'v dl .. dA --
Lfr+Lff 

~ + !A f ~'1' dl 

Lfr 

Thus, ~ can be defined as 

n I - ~ f x'v dl .. .. dA --
Lfr 

where I is the unit tensor . .. 
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ABSTRACT 

Transport of dissolved species in fractured rock has become an 
area of special interest in recent years when deep lying crystalline 
rocks have become potential sites for repositories for nuclear waste. 
In Sweden, research was started in 1977 to investigate the flow and 
transport in low permeability crystalline rocks such as granites 
and gneisses. 

About 10 different potential sites have been investigated by 
surface mapping and by deep (700 m) drillings. The rock even at 
large depths is fractured. The conductivity of the fractures range 
from below measurement limit, which is near the permeability of the 
rock matrix, up to 4-5 orders of magnitude higher values in the more 
permeable fractures. The fracture frequency is usually 1 to several 
fractures per meter, but only a few of the visible fractures carry 
measurable amounts of water. The frequency of permeable fractures 
is often one in 5 to 10 or more. The range of conductivities 
of the conductive fractures is very large. The flow in individual 
fractures seems to take place in permeable sections making up only 
a minor part of the fracture. 

The matrix of the rock is porous and dissolved species can 
move in and out of the stagnant water in the pores by diffusion. 
Dissolved species may thus move at a very different rate than the 
mobile water. Those species which interact by sorption with the 
large inner surfaces of the matrix are even more retarded in relation 
to the mobile water. 
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The sparseness of fractures and very large variability in 
conductivity cast doubts on the applicability of the Advection­
Dispersion equation. 

To understand and model the flow and transport in such rock a 
series of field experiments as well as laboratory experiments have 
been performed. 

Field experiments with tracer migration between injection and 
with withdrawal boreholes at distances of 10 and up to 51 m have 
been performed and analysed. Tracer experiments in natural fractures 
over short distances have been made in the laboratory under well 
controlled conditions. Tracer tests in the Stripa mine at 360 m 
depth have been made in 2 natural fractures over distances of 5 and 
10 m with sorbing and non-sorbing tracers. A large scale tracer 
experiment is in progress at the same site where tracers are injected 
above a 75 m long drift. The water flow and tracers can be collected 
in more than 350 different sampling sections. 

Diffusion experiments in the rock matrix have been performed in 
laboratory as well as in undisturbed rock at 360 m depth in Stripa 
granite. Laboratory measurements and in situ measurements of the 
diffusion of sorbing species have also been performed. 

Models describing the transport of dissolved species have been 
designed and tested against the experiments. The models include 
such mechanisms as advection, dispersion, channeling, diffusion 
into stagnant water in the fractures as well as diffusion into the 
rock matrix with arbitrary geometries and sorption on the inner 
surfaces. 

The models have been used to predict radionuclide transport in 
crystalline rock. In that context matrix diffusion was shown to be 
the dominating mechanism for retardation. Channeling was shown 
to have adverse effects because the fast channels may carry the 
nuclides at a rate at which they will have less time to decay. 

1. BACKGROUND AND INTRODUCTION 

In recent years there has been an increasing interest in the 
area of flow and transport in low permeability fractured rock. The 
reason for this is that many countries are seriously considering to 
site final repositories for nuclear waste in such environments, at 
depths ranging from a few tens of meters for low and intermediate 
level waste and 500 m to more than a km for high level waste. 

There is considerably less information and experience on depths 
below a few hundred meters than at shallower depths. To assess if 
a repository is sufficiently isolated, information in several areas 
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is needed. The flow rate and flow distribution at repository depth 
will strongly influence the rate of dissolution of many radionuclides. 
The flow paths and velocities will influence their travel time. This 
will in turn determine the decay of the radionuclides. Axial 
dispersion will dilute the species in time but also allow a fraction 
of the nuclides to travel faster. Channeling has the same effect. 
Transverse dispersion will cause dilution but also exchange species 
between fast and slow flowpaths. 

For those nuclides which sorb on fissure surfaces and or diffuse 
into the rock matrix, the frequency of water conducting channels and 
their exposed area directly influence the contact area between 
flowing water and rock. 

Most of the work presented in this chapter has been sponsored 
by the Swedish nuclear fuel company, SKB, within the project fuel 
safety "KBS" and by the OECD/NEA stripa project. 

2. PRESENT CONCEPTS 

2.1. General 

Solutes which are dissolved in water will be carried by the 
moving water but will also move independently by various mechanisms 
such as diffusion and they will be retarded by interaction with the 
solids. Small molecules or ions diffuse in a concentration gradient 
and can move from one "stream tube" to another. Different water 
volumes move with different velocities and may mix at more or less 
regular intervals. A regular type of mixing may be described as a 
random process of the same type as molecular diffusion and is often 
described as such by what is called Fickian dispersion. 

With only advection and dispersion active, the classical 
advection-dispersion description is obtained. It has been used 
extensively to describe tracer movement in porous media. It is 
easily modified to account for instantaneous chemical reaction with 
linear or nonlinear equilibria and can also easily accomodate 
reaction rates if the reactions cannot be approximated as 
instantaneous. 

Ideally, hydrologic tracers are not supposed to react chemically 
with the solid material, but some naturally occurring tracers, e.g. 
C-14 and H-3 do, and the problem cannot be neglected. Also in cases 
where it is of interest to describe the movement (and retardation) 
of reactive species e.g. chemical waste and many radionuclides, the 
chemical reactions are an integral part of the problem. In many 
instances in laboratory experiments kinetic effects can be designed 
out of the experiment. In the field cases they often cannot. 
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In rocks with a connected matrix porosity the accessible pore 
volume of the matrix can be very much larger than the mobile water 
volume in the fracture. The species which has access to the pore 
water will then have a residence volume and mean residence time 
determined by the sum of the water volume in fractures with flow and 
the water volume accessed in stagnant areas. As the stagnant zones 
are reached by diffusion, the volume of stagnant water accessed is 
dependent on the residence time of the flowing water. Stagnant 
zones of water may also exist in fractures with channeling where 
water volumes between channels do not participate in the flow. This 
is one of the important mechanisms for long contact times and has 
been shown to have a dominating effect on the transport of radio­
nuclides from deep geologic repositories in crystalline rock. 

The dissolved species may also experience kinetic effects due 
to physical processes. One such process which has a very large 
impact for flow in fractured rock is the diffusion in and out of 
zones with so slowly moving water that it can for practical purposes 
be assumed to be stagnant. Stagnant water can be expected in frac­
tures with uneven surfaces and with fracture filling materials 
between zones with channels with flow. 

Rock fractures often have preferential channels where the water 
flows. Channels in the same fracture may not meet and mix their 
water over considerable distances. The mixing required for the 
process to become one of hydrodynamic dispersion, in the sense that 
it may be modeled as a Fickian process, may not be sufficient over 
the distances of interest. The situation may then be better 
described as stratified flow or channeling. It may be expected that 
the mixing will eventually be sufficient to obtain Fickian dispersion. 
In media where even larger features are encountered when the distance 
increases this may not happen. The larger pathways may always 
dominate the flow. 

The properties of the medium can vary considerably in crystal­
line fractured rock. Fracture openings and thus the transport 
capacity of the individual fractures are known to span many orders 
of magnitude. Fractures are only open in places where the blocks 
are not in contact. The open areas may be much smaller than the 
closed areas. The porosity of and diffusivity in the rock matrix 
has similar variability. Fracture coating and filling materials 
also may vary considerably as to type and amount. In fracture 
zones the block sizes vary from very small particles up to blocks 
of considerable size. The size of the blocks will strongly influence 
the amount of stagnant volume accessible at a given contact time. 
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2.2. Fracture Systems 

Recently six potential sites for a spent fuel repository were 
investigated in Sweden (KBS-3 1983). They cover gneissic and 
granitic rocks. Aerial photographs and geophysical measurements 
were used to locate fracture zones over areas on the scale of tens 
of kilometers. On the more local scale tens of bore holes inter­
secting the fracture zones were used for mapping them in depth and 
for obtaining fracture and hydrological data. The widths of the 
fracture zones range from a few meters to several 100 meters. 

It was found that rock blocks between fracture zones of the 
order of several cubic kilometers could be found in which a 
L<:pository could be sited. Rock blocks with a horizontal projected 
area smaller than a square km were not uncommon whereas considerably 
larger blocks seem to be scarce. Figure 1 shows the interpreted 
fracture zones around the Kamlunge site and Figure 2 shows a more 
localized view of the same site. The other sites are similar in 
regard to fracture zones. Up to 15 deep max. (app. 800 m) diamond 
drilled holes were investigated in each site in addition to many 
shallower holes (app. 100 m). Fracture mapping of the cores show 
fracture frequencies varying between less than 1 and 4 fractures 
per meter at depth below a few hundred meters. This includes closed 
fractures. Double packer tests at distances of 5 and 10 m and in 
some holes at 2-3 m show that only a fraction of the visual frac­
tures are conducting water. At the Finnsjon and Sterno sites the 
distance between water conducting fracture below 200 m was between 
5 and 10 m. This includes all fractures where even the lowest 
conductivity (above the measurement limit) was obtained. 

The distances between fractures with higher conductivity are 
considerably larger. Figure 3 shows a plot of hydraulic conduc­
tivity data from Kamlunge (KBS-IV). The hydraulic conductivities 
of the fracture zones were about an order of magnitude higher than 
that of the rock mass. 

Within the OECD/NEA Stripa project a study is underway to 
observe tracer movements in a larger rock mass. For this purpose a 
drift, 75 m long with two side arms 12.5 m each, has been excavated 
at the 360 m level in the granitic rock of the rock laboratory. 
The rock is saturated with water and there is a natural inflow of 
water to the drift. 

The natural flow to the upper half of the drift has been 
monitored in considerable detail by glueing on approximately 350 
plastic collector sheets about 2mxlm in size. The water flow 
seeping into every sheet is monitored. Figure 4 shows where and 
how much water seeps into the drift. It is seen that the water 
flow is unevenly distributed over the 100 m long drift sections. 
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LINEAMENTS IN THE AREA AROUND KAMLUNGE, FROM AIR-PHOTO INTERPRETATION 
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Figure 1. Interpreted lineaments in area around Kamlunge. 



Figure 

WIDTH OF FRACTURE ZONES KAMLUNGE 
____ S-15m 

-_______ ... SIII 

2. Fracture zones at surface within the study site at 
Kamlunge. 

2.3. Flow in Fractures and Fracture Zones 
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Water flow in fractured cystalline rock takes place in the 
fractures or in those parts of the fractures which are open to water 
flow. Several recent investigations indicate that only a small 
portion of the fractures carry water. The majority of the fractures 
carry little or no water. 

In the site investigations performed in connection with the 
Swedish nuclear fuel safety study, KBS-3, the hydraulic conductivities 
were found to lie in the range -10-11 mls (the lower measurement 
limit) and up to 10-7 m/s. Zones with conductivities of up to 
10-8 mls have been found at even the larger depths. Although they 
are not common they seem to occur at intervals on the order of 
hundred meters. Comparisons of the hydraulically conducting zones 
and the fracture maps from the core logs, have shown that far from 
all fractures carry water. Figure 5 shows a comparison of the 
number of visible fractures on the cores. In both sites the frequency 
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5. Total fracture frequency and hydraulic fracture 
frequency in the rock mass within the sites at Finnsjon 
(left-hand figure) and Sterno (right-hand figure). 

of water conducting fractures is on the order of one in every 5 to 
10 meters. The number of visible fractures is 2 to 5 times larger. 
The water conducting fractures include all fractures where measurable 
conductivity was obtained. This means that even the smallest 
conductivities which are 4 to 5 orders of magnitude smaller than the 
largest are counted. The smallest fractures will of course carry a 
very small fraction of the water flow in the rock. 

In the lineaments of fissure zones, the fissuring is very 
frequent and the rock may even be broken down to particles of cm 
size in places. Finer material containing altered rock and clays 
can also be found. 

The flow in the lineaments is very little studied. There are 
indications that the water moves in preferential paths in these 
zones, but it is also conceivable that the water flows more or less 
evenly in the lineament. The hydraulic conductivity of the lineaments 
were found to be higher than that in good rock by about one order 
of magnitude in the Swedish investigations (KBS-3). In these zones 
the water will encounter blocks or rock particles of very different 
sizes and properties. 
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2.4. Channeling 

Investigations in the Stripa mine in mid Sweden have shown that 
the flow in individual fractures takes place in channels (2). 
Figure 6 shows how the natural water flow emerges from two fractures 
as they intersect the face of the drift. The white arrows are 
proportional to the flow and the-figures beside the arrows indicate 
the magnitude of the flow. Subsequent injection of small amounts 
of water with nonsorbing tracers (so as not to disturb the natural 
water flow) showed that the tracers arrived at two of the collection 
points in the fracture used for the tracer experiment. The collection 
was made by drilling I m long holes in the plane of the fracture 
with a spacing varying between .5 and .7 m. This means that every 
hole collected water from about this length of fracture. These 
results indicate that about 5-20% of the fracture plane carries more 
than 90% of water. The actual breadth of the channels is less than 
I m and could be considerably smaller. 

Similar observations have been made in a fracture in a granitic 
body in Wales (9). Over a 2 m long borehole in the plane of the 
fracture only about 20% of the fracture was found to have any 
appreciable hydraulic conductivity. This was limited to sections of 
a few tenths of cm in breadth. 

In the program in Switzerland several deep boreholes have been 
drilled into granitic rock (NGB-5 1985). In one hole in Bottstein 
in north-eastern Switzerland, very detailed core-mapping and pressure 
pulse testing in the hole has been performed. It was found that 
at intervals of less than 100 m there were shear zones which were 
strongly altered (kakeritic). The porosity is 3-5% compared to .5% 
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Figure 6. Average water flow rate from fracture I and fracture 2 
in Stripa. 



485 

for unaltered granite, and some of the quartz has been dissolved. 
The zones are up to a meter wide. In these zones, holes were found 
with openings up to a cm in size. Some were circular, others were 
of slitlike shape. 

2.5. Dispersion 

By dispersion in a broad sense is meant the speading of a species 
transported by a fluid as the fluid moves in a medium. There are 
many causes for such spreading: velocity variations in the fluid in 
a channel, velocity variations between channels in a porous medium, 
physical interactions with the solid material, and molecular diffusion 
in the liquid. Also chemical interaction will cause spreading. 

Molecular diffusion does not contribute much to the spreading 
of the front for long transport distances. Diffusion will in fact 
diminish dispersion by velocity variations within a channel because 
the concentration difference over the channel width will be decreased 
by diffusion. For flow in low-permeability fissured rock, the 
concentrations over the fissure width usually can be considered 
constant. 

Velocity variation between channels is a very important 
dispersion mechanism. Bear (5) gives a comprehensive treatment on 
hydrodynamic dispersion theories. 

The most detailed models treat the spreading process by modeling 
more or less randomly oriented conduits combined with some assump­
tions on how velocities in the channels vary as well as how distri­
bution at channel divisions and mixing at channel intersections 
occur. An early description is found in the paper by de Josselin 
de Jong (13). The common basis for practically all these treatments 
is that the spreading is described by one parameter; the variance 
a~ of a pulse as it spreads with distance. The variance increases 
with traveled distance. Gelhar and Axness (14) show that for certain 
media there is a theoretical basis for this observation. 

For a random process such as molecular diffusion, a dispersion 
coefficient DL analogous to the diffusion coefficient could be 
determined from DL = a2 /2t. For porous media with fairly uniform 
particle size this haszbeen verified experimentally by many different 
investigators, in the laboratory. 

the 
is 

The dispersion coefficient is 
particle size: DL ~ vd. This 
proportional to the di~tance: 

proportional to the velocity and 
also implies that the variance 
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In some investigations (Neretnieks(34)), the dispersion 
coefficient increases considerably with distance. The explanation 
for this is usually summarized in the word 'channeling' or 'uneven 
distribution'. Schwartz (46), by computer simulation, has shown 
that the uneven distribution of resistances in a porous medium may 
not lead to a variance which increases proportionally to the distance 
traveled. Mercado ( 23) and Neretnieks (31) by a different method 
showed that in a medium where stratification occurs - parallel 
unconnected strata with transmissivity differences between channels 
Oz cr z instead of O2 cr z as in the diffusion-dispersion case above. 

Matheron and de Marsily (22) arrived at the same conclusion 
and also concluded that the usual 'convection diffusion equation' 
cannot in general be applied even for large distances. 

Neretnieks (31) discussed several dispersion mechanisms including 
stratification and derived a model which includes these effects as 
well as the effects of physical interaction by diffusion into stagnant 
zones of water in the matrix of the rock. It was shown that matrix 
diffusion effects can have a dominating influence on the pulse 
spreading when the accessed stagnant water volume is large in 
comparison to the mobile water. 

2.6. Diffusion into the Porous Matrix 

Crystalline rocks, such as granites and gneisses, have 
microscopically small fissures between the crystals. These fissures 
comprise an interconnected pore system containing water. The radio­
nuclides are much smaller than the microfissures and can diffuse 
into this pore system. The inner surfaces in the rock matrix are 
many times (thousands and more) larger than the surfaces in the 
fractures in which the water flows. Penetration into and sorption 
on the inner crystal surfaces retard the radionuclides far beyond 
the retardation caused by sorption on the fracture faces. Even 
nonsorbing nuclides will move slower than the flowing water, since 
they diffuse into the stagnant water in the pores. 

Gneisses and granites in Swedish Precambrian rock have been 
found to have a continuous pore system consisting of the micro­
fissures between the crystals in the rock matrix. The porosity in 
this pore system varies between 0.06% and 1% (52) for the rock matrix. 
Similar results have been obtained by other investigators (10,11). 
Fracture minerals and rock in crushed zones have higher porosities. 
Vailiues between 1 and 9% have been measured. Substances dissolved 
in the water can diffuse into this pore system and sorb on the inner 
surfaces. Figure 7 shows penetrat~on and sorption in the rock 
matrix. 



Figure 7. The figure shows the penetration and sorption of the 
nuclides in the microfissures in the rock matrix. 
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The penetration depth increases with time. Non-sorbing species 
penetrate far into the matrix, while sorbing nuclides are retarded 
since they also have to fill up the sorption sites before they 
migrate further. 

The penetration depth can be calculated with the aid of Fick's 
laws for diffusion, if diffusivity is known, and by taking retarda­
tion due to sorption into account. 

2.7. Sorption and Other Interactions 

The minerals of crystalline rocks have a considerable cation 
exchange capacity. They also exhibit a capacity to form surface 
complexes with anions as well as cations. The capacity to bind 
different ions to the surface depends on the pH, the concentration 
of many of the other ions and on the form the species have in the 
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solution. Many cations form complexes with the anions and other 
complexing agents in the water. The complexed metal ions which 
would have a positive charge if not complexed, may be cations, 
neutral species of even negatively charged species, depending on 
the composition of the water. 

The component may be bound (adsorbed, ion exchanged) to the 
surface of the minerals of the rock, or it may form its own minerals 
by precipitation. It may also react irreversibly by mineralization 
into some very stable solids. 

The different complexes will of course have different affinity 
to the mineral surfaces. Because of the complexity of the situation 
it is often convenie.nt to summarize all the effects into a term 
"sorpti2¥ coefficient" of Kd . This expresses how much of a component 
e.g. Ca is bound to the surfaces of the rock and how much is in 
the water at equilibrium. One neglects which form (complexed or 
noncomplexed) the various species containing the component have in 
the solution as well as in the bound state. Kd is the ratio of 
concentrations of the component in the two phases. 

q denotes the concentration on (in) the minerals and C is the 
concentration in the water. 

The component may simultaneously be a part of several species 
(complexes) which are sorbed in different ratios. Kd often varies 
very much with changes in the composition of the groundwater (pH, 
Eh, concentration of complexing agents etc.). It is therefore a 
very inprecise entity but because of its simplicity it has been 
found to be very useful in mathematical modeling and in transferring 
information from chemists to modelers. 

Adsorption and ion exchange are often summarily called sorption 
and then denote fast reversible reactions of the dissolved components 
with the surface of the rocks. These processes are treated by the 
Kd-concept. Processes such as precipitation and irreversible 
mlneralization are usually best treated as such. 

3. MATHEMATICAL MODELING 

The description of the mathematical models will mostly be limited 
to one dimension. The concepts and models may be extended to 2 or 
3 dimensions in a straightforward way. There are, however, very few 
analytical solutions available for more than one dimension and 
usually numerical solutions are used. The analytical solutions have 
been found very valuable when checking complex numeric codes. They 
also often facilitate the understanding of the influence of the 
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different parameters on the results in a better way than numerical 
codes or solutions do. 

The simplest models are based on the concept of advective flow 
with a known velocity. A tracer pulse transported by the flow will 
be dispersed around the mean due to random velocity components. 
The dispersion is assumed to be of the same nature as molecular 
diffusion. 

3.1. Advection - Dispersion Description 

The advection-dispersion equation for a nonreactive tracer for 
linear flow can be written 

ac ac + v at az 
(3.1) 

A very common case of interest is where the medium is of infinite 
length and a tracer is suddenly injected at a point z = O. The 
injection is kept up forever and is made in such a way that the 
concentration always is C at injection point. This is not a very 
realistic assumption but ~he case has been extensively treated in 
the literature. Other more realistic cases are treated in a 
comprehensive way by Maloszewski and Zuber (1984). The initial and 
boundary conditions can be written: 

IC 
BCl 
BC2 

C 
C 
C 

z 0 
z = 0 
z 

t 
t 
t 

o 
o 
o 

(3.2a-c) 

The classical solution to this is given by Lapidus and Amundson (20). 
It is given below Eq. (3.5) but can be written for short as: 

C/C 
o 

f(t,{t ,Pee}) 
w 

(3.3) 

indicating that it is a function of time t and that two parameters 
t (water residence time) and Pec (a measure of dispersivity) suffice 
t~ fully define the solution. The parameters include velocity, 
distance, and dispersion coefficient and could have been combined in 
other ways. However, two such groups suffice to define the solution. 

As the use of radioactive tracers is common and the transport 
of radionuclides from final repositories for nuclear waste is of 
high interest at present, the formulation of the equation is exten­
ded to include radionuclides already at this stage. 

Equation (3.1) is directly extended to apply to a decaying 
species by adding a decay term - CA on the ri~ht hand side. If the 
boundary condition (3.2b) also is C = C . e- t, then the solution 

o 
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(3.3) can be used if it is multiplied bye-At. Extension to the case 
where instantaneous equilibration of the tracer with the solid 
material takes place and where the equilibrium is linear is also 
straightforward. With 

(3.4a) 

for instantaneous volume reaction and 

R =l+Ka 
a a 

(3.4b) 

for instantaneous surface reaction equation (3.3) is changed only 
by exchanging t for t = t R (where R = either R or Rd). The 
solution to Eq.w(3.l -o3.2a~c) can be written: a 

C 

Pec to ~ t 
~e erfc{~(Pec-)(l+-)} 

t to 
(3.5) 

Equation (3.1) may easily be made to include reaction rates 
between liquid and solid and to accomodate other initial and 
boundary conditions. A common boundary condition is that the inlet 
concentration varies with time 

C = C(z = 0, t) 

The convolution integral may be used to handle this 

C(t) = fooC(O,t-t') f'(t' ,twR,Pec)dt' 

o 

f' is the response to an instantaneous pulse. 

(3.6) 

(3.7) 

In the chemical engineering literature and hydrologic literature 
many other inlet and outlet boundary conditions have been discussed. 
Very often the simple solutions (3.5) or (3.7) are not sufficient 
to explain the curve forms of an experiment. Recently Landstrom 
et al. (19) in an experiment with non-reacting tracers over 11.8 m 
in fractured crystalline rock in Studsvik obtained a very long tail 
which could not be fitted with equation (3.5). A similar result 
was obtained in another field experiment over 30 m in Finnsjon by 
Gustafsson and Klockars (16). In both cases it was concluded that 
this could be caused by the presence of at least three different 
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independent channels through which the water flows. The slower 
channels will contribute to the tailing. Other mechanisms may also 
cause such tailing. Several such mechanisms will be treated later. 

3.2. Channeling 

Fractured rock especially at larger depths may have considerable 
distances between water bearing fractures. Data from deep holes in 
the Swedish rock (down to 800 m) indicate that at depths below a 
few 100 m the spacing of conducting fractures is on the order of 
1 fracture per 5 to 10 m (12). Other observations in individual 
fractures (1,2,3,30) indicate that even in well defined fractures 
in crystalline rock there is considerable channeling. Abelin et al. 
(2) found that in 3 well visible fissures in the Stripa deep (360 m) 
rock laboratory, less than 20% of the fracture breadths carried 
more than 70% of the flow. 

A model was recently tested where all "dispersion" is assumed 
to be caused by channeling (31). It was tested on some laboratory 
experiments using a natural fissure (30) and several field experi­
ments (3,4,24,25). 

The model is based on the assumption that all channels conduct 
the flow from inlet to outlet without mixing between channels under­
way. At the outlet, however, the fluid from all channels is 
instantaneously mixed. This would simulate a very common way of 
sampling for tracers. Assume that the channels can be uniquely 
described by their openings as regards the flow rate and concentra­
tion response. 

For the case with a discrete distribution F(oi) of channel 
openings 0i the effluent concentration in each channel is denoted 
by C(t,oi)' The flow in each channel is Q(oi)' Both C(t,oi) are 
assumed to be functions totally defined for every class of channel 
opening 0i' The effluent concentration C(t,Oi) may be obtained 
from the advection-dispersion equation (3.5) when this is applicable 
or if other mechanisms are active the appropriate function must be 
used .. The underlying assumption is that the time and some charac­
teristic of the channel e.g. 0i is sufficient to characterize the 
effluent. Other effects such as dispersion in the channel or 
reactions with the walls of the channel must be known functions of 
0i' The mixed effluent from all channels has the concentration: 

N 

C(t) 
i~l F(oi)Q(oi)C(oi,t) 

N 
(3.8a) 

ih F(oi)Q(oi) 
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For a continuous distribution of channel openings f (8) we have: 

C(t) 
f OO f(8)Q(8)C(8,t)d8 
o 

( f(8)Q(8)d8 

(3.Sb) 

A flow system with channeling will spread a tracer pulse along 
its pathways and the pulse will also be spread at the observation 
(mixing point), even if there is no spreading in the individual 
channels. 

Figure S shows the response of a stratified system to a Dirac 
pulse at the inlet. The channel widths in this case are taken to 
be log normally distributed and the cubic law for flowrate 

Q = const l . 8 3 (3.9) 

is assumed to apply. The velocity in such a system is 

v = const 2 . 8 2 (3.10) 

For a distribution F(8.) or f(8) which is desc~ibed entirely by a 
mean ~l and variance at the mean transit time t can be determined 
from the first moment. For a Dirac pulse at the inlet 

t (3.11) 

o 2 3 4 5 t/to 

Figure 8. Concentration at the outlet of a medium with parallel 
fissures which has been injected with a tracer pulse. 
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From the second moment the variance a~ can be determined 

(3.12) 

From the latter the equivalent of the dispersion coefficient for 
this experiment can be determined 

(3.l3) 

For a log normal distribution, from Eqs. (3.11) and (3.12) the 
following simple expression for the variance is obtained 

a 
(~)2 (3.14) 

t 

where at is the standard deviation in the_log normal distribution. 
From equation (3.14) it is seen that (a t /t)2 is a constant for a 
given at. In fact it has been shown that for an arbitrary distribu­
tion -f(o) - this applies (31). From equation (3.13) it is found 
that 

DL = const . vz (3.15) 

It may be concluded from this, that if there is pure channeling 
in a flow region then an apparent hydrodynamic dispersion coefficient 
will increase with distance between injection and observation 
(mixing) points. Equations (3.13) and (3.14) give a direct and 
simple relation between DL and at. 

The consequences of using the wrong mechanism in predicting the 
tracer behaviour over longer distances are shown in Figure 9. This 
figure shows a reference case breakthrough curve for a step injec­
tion (the "experimental" results obtained from the channeling model 
with at = 0.208). From this a Pec = 10 was obtained by fitting with 
the advection-dispersion model, (Eq. (3.5)). The predicted curves 
are for a 10 times longer distance. It can be seen that the two 
models predict very different breakthrough curves. Figure 10 shows 
some results on dispersion coefficients obtained from experiments 
in fissured crystalline rock (34). The few data available indicate 
an increase of DL with distance. 
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Figure 9. Predicted curves using the hydrodynamic dispersion model 
and the channeling dispersion model. For nonsorbing 
tracer for a longer distance (10 times) and a lower flow 
(Pe = 100, a = 0.20S). 

Hydrodynamic dispersion will take place in every channel in 
addition to the channeling. Equations (3.Sa, 3.Sb) are quite 
general and can be used also for such cases. It can be seen from 
Figure 9 that the influence of hydrodynamic dispersion will have 
a diminishing influence over longer distances if channeling is in 
effect. 

If the frequency of mixing between the various channels 
between inlet and outlet is known, it is possible to modify the 
model to account for this (43). 
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Figure 10. Experimentally determined dispersion lengths in fissured 
crystalline rock. 

3.3. Matrix Diffusion 

The mechanism may be active in addition to those previously 
described. There is considerable experimental evidence on crystalline 
rock porosities and diffusivities from the laboratory (11,30,31,33, 
34,49), and from the field (7), in undisturbed rock. Porosities 
in unaltered rock range from 0.06 to over 1% and effective 
diffusivities De = DpEp for small ions and molecules range from 

1.10-14 - 70.10-14 m2 /s. 

Dissolved species in the water in a fracture will diffuse into 
the porous rock matrix. The process can be described by the diffu­
sion equation (including here the effects of sorption with linear 
equilibrium 

(3.16) 

if there is no flow in the matrix. 
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(3.17) 

-12 With the low hydraulic conductivities of crystalline rock <10 
mls (10) and low natural hydraulic gradients, transport by advection 
is negligible compared to that by diffusion. 

For short contact times the penetration depths are short and 
may not deplete the water in the fissure to any large extent. For 
long contact time the influence can be considerable. Figure 11 
shows the penetration depth from a plane surface (S = 0) versus 
time for nonsorbing species as well as for species with different 
sorption coefficients. No radioactive decay (A = 0) takes place in 
this case. The penetration depth nO.Ol is here defined as the 
distance from the surface at which the concentration in the pore 
water is 1% of that at the surface. It is obtained by solving 
equation (3.16) for S = 0 and using the appropriate boundary and 
initial conditions. These describe that a body initially with cp 
= 0 is at time 0 exposed to a concentration at the surface which is 
then kept constant. The result is nO.Ol ~ 4/(Det)/K . 
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Figure 11. The penetration depth nO.Ol versus time for nonsorbing 
K = Ep and sorbing K > Ep species. 
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To describe the coupled processes of advection-dispersion and 
matrix diffusion an additional term is added to equation (3.1) which 
becomes 

R dC dC 
a dt + v dZ 

(3.18) 

The equations (3.16) and (3.18) are coupled by C = C at the fissure 
surface x = O. There are some analytical solutions ~o equations 
(3.16) and (3.18) available for different boundary conditions. 
References to some recent solutions are given in Table 1. The solu­
tions all apply to cases with regular bodies (infinite slabs, 
cylinders or spheres). 

Two inlet boundary conditions are of special interest. In the 
first C = Co.e- At at Z = 0 for 0 < t < to' This describes a case 
where the concentration at the inlet decays during the injection 
time. This is typical for cases where a radioactive tracer solution 
is prepared at a given time and then used for injecting. In this 
case the solution for the decaying tracer is obtained as before 
from the nondecaying case by multiplication with e- At . The second 
case is when naturally occurring radioactive tracers such as C-14 
or H-3 are used. There C = Co = constant or C = C(t) at Z = 0 and 
the solution is not directly obtained from the nondecaying solutions 
as in the previous case. Solutions with both boundary conditions 
are given in Table 1. 

For the case when there is no hydrodynamic dispersion and when 
C Co.e- At at Z = 0 and t > 0 the solution is (28) 

C/C 
o 

t 
e-At.erfc { OW I(DeK)/(t-Ratw)} (3.19) 

for t > R t , else C/C O. 
a w 0 

A criterion for when the matrix diffusion becomes important 
may be constructed in the following manner. When the time for the 
breakthrough given by equation (3.19) to reach a value of C/C .e At 
~ 0.5 is twice as long as for plug flow i.e. t = 2t .R , matr~x 
diffusion is taken to become important. From equat~ona(3.l9) we 
obtain 0.5 erfc(arg) giving arg = 0.477. Then 

arg 

and with t 

t 
rW I(D K)/(t-R t ) = 0.477 
u e a w 

2R t we obtain that for 
a w 

(3.20) 
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t > 0.23 
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(3.21) 

the matrix diffusion considerably influences the transport of a 
dissolved species. Note the square dependence on fracture opening. 
For a nonsorbing species K = Ep and Rp = 1, and we obtain as an 
example for E = 0.002 and D = 5.10-14 m2 / s , tw > 0.23.1016 02 s. 
For a 100 urn lracture tw musE be larger than 0.7 year to feel the 
influence of matrix diffusion, whereas for 0 = 10 ~m, tw > 2.7 days. 
With a strong matrix sorption K = 104 , even fairly large fractures 
would influence the process already for short transport times of the 
water. 

The criterion could of course be chosen differently. If the 
time is chosen where the 50% concentration point has travelled a 
time 1.lRatw instead of 2Ratw' the criterion is sharpened by a factor 
of 100. This would give tw = 2.7 days in the 100 ~m fissure and 
tw = 40 minutes in the 10 ~m fissure. 

Even the second criterion gives a clearly noticeable influence 
on the shape of a breakthrough curve especially in the tail. The 
values of De and Ep were taken for from data on fresh, unaltered 
crystalline rocks. For fissures where the surfaces are altered 
the few available data (51) indicate that the values can be consider­
ably higher. 

It may thus be expected that the effect of matrix diffusion will 
be noticeable in many field experiments and even may become the 
dominant effect in small fractures and for long water transit time. 
Ma10szewski and Zuber (21) recently discussed the impact of matrix 
diffusion in field experiments and also concluded that it may have 
a considerable impact. In short the solutions to the matrix diffusion 
case equations (3.16) and (3.18) for a stable species can be written 

D K 
e 

C/Co = f(t, {Pec, twRa' ~' S }) (3.22) 

If channeling also must be accounted for, at least an additional 
parameter describing the channeling distribution e.g. o£ must be 
introduced (Moreno et a1., 1983, have chosen to use either o£ or Pec 
in their models). If the penetration depth nO.01 is comparable to 
the block sizes S, the solution is also dependent on this as shown 
in equation 3.22. 
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3.4. Transport in a Varying Flow Field and in Media with Varying 
Block Sizes 

In many real field situations the boundary conditions may be 
more complex than discusses above, the flow may not have constant 
velocity or the rock blocks may have considerably different sizes 
and shapes. Very general boundary and initial conditions may be 
handled by standard numerical methods used for solving equations 
(3.16) and (3.18) and this is in practice seldom a problem. This 
group uses standard finite difference methods and the integrated 
finite difference method as standard tools for numerical calculations. 

Varying velocity fields may also be handled with standard 
numerical techniques. It was shown by Sauty (45) that in a cylindric­
ally radial flow field very small errors are introduced by assuming 
a constant flow velocity, provided dispersion is reasonably small 
Pec > 3. Neretnie~s and Rasmuson (32) showed that even smaller 
Peclet numbers can be handled well in an arbitrary flow field by 
using a weighting technique to determine an "average" Peclet number. 
It is based on a method of continuously adding the variances of 
each section of the flow tube. 

Blocks of various sizes and shapes and diffusional properties 
can be handled rigorously by exchanging the aDe(dCp/dx) Ix=o term in 
equation (3.18) for 

00 

(3.23) ! 1 B~l. feb) De 
o 

which means that all the solute transported over all the surfaces is 
accounted for over all the various blocks of different sizes. The 
block size distribution is feb) and b is the block radius. This 
technique, however, makes it necessary to solve equation (3.16) for 
every block size "i" (and shape and property). 

where again B 
ively. 

i 1.2 ••• N(oo) (3.24) 

0,1 or 2 for slabs, cylinders and spheres recpect-

Some analytical solutions have been obtained by Rasmuson (38) 
for such cases. The application of numerical techniques to the N 
equations of (3.24) and one equation of (3.18) increases the work 
load proportional to N. Neretnieks and Rasmuson (32) and Rasmuson 
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and Neretnieks (42) developed and tested an approximate technique 
whereby the N equations (3.24) are reduced to one equation. This 
is based on what they call the PSEUDOBODY approach. The basic idea 
was originally put forward by Pruess and Narasimhan (35) under the 
name "MINC". The idea is that all shells of the rock blocks at the 
same distance from the block surface behave in the same manner. They 
can thus be lumped together forming PSEUDOBODIES with the same total 
outer surface and the same total volume as the real blocks. The 
blocks have a cross-sectional area A(x) as a function of distance from 
the surface x, which is the same as the average for all the real 
blocks. The concept is shown in figures 12 and 13. Equation (3.24) 
simplify to 

(3.25 ) 

which is equivalent to (3.16) for slabs,cylinders and spheres of 
equal size if the appropriate A(x) function for these bodies is 
used. The PSEUDOBODY approach considerably decreases the computa­
tional effort, and the cases tested, give surprisingly small 
differences compared to the exact analytical solutions. Figure 14 
shows some comparisons between the exact analytical solution and the 
results obtained for the PSEUDOBODY method for two cases. The block 
size distributions are given in Table 2 below: 

Block Volume Other 
diameter fractions surface 

m m2 

0.02 0.0909 22.5 
Case "small" 0.5 0.9091 9 

00 0.5 

0.1 0.0909 4.5 
Case "large" 0.5 0.9091 9 

00 0.5 

Table 2. Block size distributions used in the comparisons 

The "00" block size indicates that only a surface area of 0.5 m2 

of the large block is exposed to the flowing water in the represen­
tative elementary volume. 

Figure 14 also gives curves where the previously mentioned 
averaging technique for Pec has been used in a flow field which has 
a velocity ratio of 8000. 
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solid block 

Fluid has the same 
concentration throughout 
the element 

Figure 12. The principle of gathering all shells of equal distance 
from the surface into one volume. 

d, 

d, 

rA' 
j ml 

fA' 
, 12 

rA' 
j 23 

LV' , , 

~ distance from surface of blocks 
x 

Figure 13. The sum of the areas and volumes of the blocks for 
various distances from the surface for the pseudobody. 
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Figure 14. Computed effluent curves for Np-237 from a crushed zone 
with varying block sizes 
1) exact solution -
2) PSEUDOBODY APPROXIMATION -
1) and 2) constant velocity and Pec = 0.875 
3) PSEUDOBODY approximation and variable velocity 

(factor 8000) "exact" solution using dispersion 
proportional to velocity. 

These two approximate techniques give errors which are small 
compared to the natural variations in data on dispersion, diffusion, 
porosity, b10cksize distribution, velocity and equilibrium data. 

The previous models are based on the concept that the fluid 
moves around bodies of various shapes. There may be cases when it 
is more appropriate to model flow in a channel in a large body of 
rock and diffusion out from the channel and into the rock in a 
diverging manner. Recently in a deep borehole in Switzerland small 
tube like channels were found (NAGRA NGB 5) which are deemed to 
carry an important part of the flow. Rasmuson and Neretnieks (44) 
modeled advection-dispersion and matrix diffusion for various 
channels geometries. 
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4. EXPERIMENTAL EVIDENCE 

The concepts and models described previously need experimental 
data. The most important data are: Fracture widths and frequencies, 
data on dispersion, matrix diffusivity and porosity and sorption 
data. Some of these data may be obtained in the laboratory but some 
must be gathered by field experiments. 

4.1. Fracture Widths and Frequencies 

Fracture widths and the frequency of fractures determine the 
flow porosity of the rock and thus the velocity for a given f10wrate. 
The fracture frequency determines the available wetted surface with 
which the dissolved species may interact. 

The fracture widths have often been estimated from pressure 
drop measurements and by the use of the assumption that the fracture 
behaves like a smooth slit. The further assumption of laminar flow 
gives a direct relation between the f10wrate and the opening. This 
is the so called cubic law (47, 48). 

If fractures are filled with porous material of if there are 
closed and open parts in the plane of the fracture, the cubic law 
relation is not expected to hold. Tsang (56) showed theoretically 
that the cubic law breaks down in the latter case. There are very 
few experiments where both pressure drop and tracer (water) residence 
time has been measured simultaneously. In an experiment in Stripa 
which is discussed in detail later it was found that the "cubic" law 
fracture width was 1-2 orders of magnitude smaller than the fracture 
width which is obtained from the residence time. 

The fracture frequency has been discussed in section 2.2. 

4.2. Dispersion and Channeling 

4.2.1. Injection pumping tests 

Three, two well tests, have been performed in crystalline rocks 
within the KBS program. At the Studsvik Site Landstrom et al. (18) 
used nonsorbing tracers in a two well test in granitic rock at about 
100 m depth. The travelling distances from injection hole to one 
observation hole was 20 m and the distance to the pumping hole which 
maintained the drawdown and the gradient was 51 m. The water flow 
was clearly localized to one section in all three holes in what 
appears to be one or a few fractures at close distance. Later 
another experiment was performed in other holes in the same area 
(19) but only two holes were used and at a closer spacing - 11.8 m. 
The third experiment was performed at the Finnsjon site (Gustavsson 
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and Klockars) over a distance of 30 m between injection and withdrawal 
holes. The breakthrough curves of the nonsorbing tracers allow 
dispersivities to be evaluated using the advection-dispersion 
equation. An attempt has also been made to use the advection­
dispersion-matrix diffusion model where a third parameter is deter­
mined. The experimental results have also been interpreted using an 
advection-channeling model with or without matrix diffusion (25). 
For nonsorbing tracers and the rather short residence times the 
impact of matrix diffusion is difficult to separate from other 
dispersive effects. The obtained dispersion lengths a from the 
above experiments are shown in figure 10 together with other data 
which are described below. 

4.2.2. Single fracture experiments in laboratory 

A series of laboratory experiments have been performed using 
natural fractures. In the first set of experiments (30) the rock 
used was a 30-cm-long granitic drill core 20 cm diameter taken from 
the Stripa mine at a depth of 360 m below ground level. The core has 
a natural fissure which runs parallel to the axis. The cylindrical 
surface of the drill core was sealed with a coat of urethane lacquer 
to prevent any water leaving the rock except through the outlet end 
of the fissure. The granite cylinder was mounted between two end 
plates containing inlet and outlet channels (Figure 15). 

end piece 
inlel 

I I I I granite 
I I I I 
t t ~ ~ 

endpiece 
outlet 

, 
u LJ U II 

fractional 
collecter 

Figure 15. Experimental setup. 

flushing 
water 

tracer 
solution 



506 

Artificial groundwater with a tracer was fed to the upper channe] 
by means of a four-channel peristaltic pump ensuring a steady down­
ward flow through the fissure. At low flow rates, flushing water 
was simultaneously fed through the lower outlet channel to flush 
the emerging tracer and so reduce the time delay due to the channel 
volume of the end piece. The effluent was continuously fed to a 
fractional collector for analysis of the tracer concentrations. The 
tracers were introduced, either as a step up or as a step up followed 
by a step down, after a suitable amount of tracer had been introduced. 

Figure 16 shows the breakthrough curves for tritiated water for 
different flow rates. The figure shows plateaus at CICo = 0.7-0.B 
indicating that there are at least two channels. Similar curves 
were obtained using another nonsorbing tracer - a negatively charged 
lignosulphonate ion. Neglecting the presence of two channels the 
best fit to the advection-dispersion equation gives Peclet numbers 
ranging between Band 27 with an average of 14.2. The dispersion 
length a ~ 25 mm. The average fracture width calculated from the 
residence time was O.lB mm. 

The same data were also analyzed with the advection-channeling 
model (Eq. 3.Bb) assuming that the breakthrough curve is caused by 
different velocities in a multitude of independent channels. With 
a log normal distribution the logarithmic standard deviation was 
found to be 0.094 on the average. 

Strontium and cesium which are sorbing tracers were also run 
in the same core. A typical breakthrough-curve for strontium is 
shown in Figure 17. 

Whereas the tritiated water and the lignosulphonate ion were 
predicted and found to show negligible effects of penetration of 
the matrix, the strontium and cesium were predicted to be strongly 
influenced by sorption within the rock matrix and by sorption on 
the surface of the fracture. The predicted and the experimental 
results agree surprisingly well in all 13 runs with sorbing tracers. 
Figure 17 gives one example. 

10 C/Co 

T. 
05 

Figure 16. Experimental breakthrough curves for THO. 
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CICo a 

Figure 17. Experimental strontium breakthrough curve and curve 
predicted by advection-channeling-matrix diffusion model 

In a later set of experiments (25) two more cores were used 
18.5 and 27 em long. More refined models were used which also account 
for the dispersion effects of the inlet and outlet end pieces. Peclet 
numbers of 20 and 15 and fracture widths of 0.14 and 0.13 mm were 
found. Predicted and experimental results on diffusivities and 
sorption equilibria for strontium differed much more for these cores 
than for the first core. The obtained results are, however, within 
the large range of diffusivities and sorption data found for crystal­
line rocks and coating and alteration materials (52). 

4.2.3. Single fracture experiments in Stripa 

Tracer experiments have been performed in two natural fractures 
in the Stripa granite 360 m below the ground (3,4). The experiments 
have utilized the natural inflow to the drifts which are located in 
water saturated rock. 

The design of the experiment was based on the idea that 
reasonably well defined individual fractures can be located and 
tracers can be introduced into the natural water flow within a single 
fracture without a large disturbance of the flow field. 

The experiment was run in naturally fractured granitic rock at 
similar depth as a future underground repository. Conservative 
(nonsorbing) tracers have been used to characterize the water flow 
within the fracture. The results from the runs with the nonsorbing 
tracers and data on sorption and porosity obtained in the laboratory 
have been used to predict the breakthrough curve for one of the 
sorbing tracers. The predicted breakthrough curve would later be 
compared with the experimentally obtained breakthrough curve. 

Figure 18 shows the layout of the test site with two fractures 
and five injection holes intersecting the fracture planes. Only 
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® Injection holes @ Sampling holes 

Figure 18. Schematic view of the test site. 

fracture number two was utilized when injecting the tracers. To 
locate the connections between injection holes and sampling holes 
pressure pulse test were performed. 

The following conservative (nonsorbing) tracers were used Brom 
Thymol Blue, Elbenyl, Eosin, Iodide, Uranine. The following sorbing 
tracers were used Cs, Sr, Eu, Nd, Th, U. 

The tracers were injected into a single fracture which has a 
"natural" water flow towards the drift, where the water corning out 
of the fracture is collected. The sorbing tracers were continuously 
injected at one of the injection points for several months. At the 
injection points where only nonsorbing tracers were injected, ground 
water was continuously injected between tracer pulses to maintain 
the same flow rates everywhere throughout the experiment. 

As only Sr was predicted to reach the sampling holes within the 
time of the experiment and the other sorbing tracers would be sorbed 
in the vicinity of the injection point, part of the fracture around 
the injection point was excavated. 
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Three different model concepts have been tested against experi­
mental data, namely 

1) The advection-dispersion surface sorption model equation 
(3.18) . 

2) The advection-dispersion matrix diffusion model equations 
(3.18 and 3.16) 

3) The channeling model with no intermixing between channels 
equations (3.8b + 3.18 (with DL = 0) + 3.16). 

Figures 19 and 20 show the fit between the three different 
models and the experimental data. As can be seen in the figures it 
is possible to get a good fit with all the·~od~ls. It is not possible 
to select between the models with the results from this experiment 
only. Some of the mechanisms and their parameters have to' be, ~eter­
mined independently. 

The term fracture width or openings implies that it is a geomet­
ric property and that the fracture has a fairly constant opening. 
Our observations indicate that fractures are closed in some parts 
and are open in other parts. The opening thus may vary considerably 
over the "plane" of the fracture. These "channels" have at present 
unknown extension in the breadth direction as well as in the length 
direction, i.e. before they loose their identity by connecting with 
other channels. Any calculations of the fracture openings will thus 
include some assumptions on other properties. 

-" 
With matrix diffusion_ 

DDU-~~~~"D~~~~IOO;D~==~~'~~~==~2~ 

Without matrix diffusion ~ _ 

Figure 19. Fit between models and experimental data at sampling 
hole 2-6. 
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1.50,-------

diffusion ~ 

Figure 20. Fit between models and experimental data at sampling 
hole 2-8. 

The average width of the fracture could be determined from 
measuring the flowrate over a breadth of the fracture and the resi­
dence time of the water. We call this the mass balance fY>acture 
width: 

Another property of interest is that equivalent fracture width 
which would permit a certain flowrate at a given pressure drop. 
This we call the cubic law fracture width: 

0c = f(Q,llh,L,B) 

A third equivalent fracture width is that which would give a 
certain water velocity for a given pressure drop. This we call 

the frictional loss fracture width: 

The results from the calculations are given in Table 3. 
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Table 3. Equivalent fracture widths (~m) and Peclet numbers 

of 
linear radial 

Sampling 
° °c of °1 °c Pe 

hole 1 

2-6 240 1.1 6.7 130 1.2 5.5 2-2.5 
2-8 28.0 2.0 10 150 2.0 8.5 0.9-37 
4* 2200 1.3 16 1200 1.4 13 
5* 1500 0.9 11 820 0.96 9.1 

* Fracture used in the investigation. preparatory 

Table 3 shows the large difference between the different 
calculated equivalent fracture widths. It should be noted that 0c 
underestimates the mean residence time for the water and 01 
corresponds to a fracture that can not carryall the water actually 
measured, there would have to be several of these fractures within 
the fracture "plane". When calculating of one assumes that all 
water collected over the breadth B passes the injection point and 
that the injected tracer directly enters this flow. If only part 
of the total flow passes the injection point, the fracture volume 
will be overestimated and thereby give a too large value of the 
fracture widths of and 0c. 

The results from the water flow monitoring are presented in 
a summarized form in Figure 6. As can be seen the water flow is 
very unevenly distributed within the fracture planes. This type of 
pattern was also seen in the fracture used in a preparatory 
investigation (1). 

The large span in Peclet number for flowpath 2-8 is due to the 
way the fitting is done. The use of independent information on 
matrix diffusivity gives higher dispersion numbers than if the 
diffusivity is determined in the fitting procedure together with 
the other parameters. This means that in the field experiment there 
is either a higher diffusivity in the matrix than laboratory samples 
indicate or that there are other causes for "dispersion" e.g. 
diffusion into stagnant volumes of water. 

The flow parameters obtained in the runs with the conservative 
tracers and laboratory data on sorption have been used to predict 
the breakthrough curve for Sr. Sr was predicted to reach the 
sampling holes well within the time of the experiment. Sr did not 
arrive in detectable concentrations at the sampling holes. The rest 
of the sorbing tracers were predicted to sorb in the vicinity of 
the injection point. To make it possible to determine how far from 
the injection points they had traveled and how deep into the rock 
they had penetrated, part of the fracture around the injection point 
was excavated. Figure 21a shows the excavated fracture and the 
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A Surface concentration of Cs \210 B Surface concentration of Eu \ 20 

\ 
Scale 

~r~ Scale 
2.1) I ppm 

10 I 
4 

1.0 I 
Background 3 Background 3 4 

Figure 21. Excavated fracture with concentration of Cs (a) and 
Eu (b). 

concentration of Cs. Figure 2lb shows the concentration of Eu. 

It can be seen in Figure 21 that there are elevated concentra­
tions of Cs and Eu around the injection point, but there seems to 
be an area to the right of the injection hole which has the highest 
concentrations. This could indicate that the injected water was 
not evenly distributed around the inj~ction point but has a preferred 
direction of flow. 

Figure 22 shows concentration profiles into the rock obtained 
in one of the samples taken close to the injection hole. It can be 
seen in Figure 22 that elevated concentrations of Cs,Eu and Nd, at 
this sampling point, can be found down to a depth of 1.4 mm. 

There are some inherent difficulties to interpret tests with 
sorbing tracers. Among these one could mention the variation in the 
natural content of the tracer over the fracture surface, variation 
in mineral composition giving different Kd values at different sites 
in the fracture and variations of the thickness of the fracture 
filling and coating materials. 

As can be seen in Figures 19 and 20 it is possible to obtain 
a good fit with all of the models. They model different mechanisms. 
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Figure 22. Concentration profiles into the rock. 

The fitting thus cannot differentiate between the mechanisms. The 
correct mechanisms must be selected by some other independent process. 

The calculated surface concentrations and the concentration 
profiles within the rock matrix could partly be confirmed by 
experimental data. They show sorbing tracers concentration profiles 
which can be explained by matrix diffusion. 

4.2.4. Water flowrates and tracer transport to the 3D drift in 
Stripa 

The natural flowrate to a 75 m long drift in the Stripa mine 
is monitored in detail (8). Small amounts of conservative (non­
sorbing) tracers are injected from 9 separate injection zones 
located between 10 and 55 m above the drift (test site) at the 360 
m level. All water emerging into the upper part of the test site 
is collected. The total area covered is more than 700 m2 • In order 
to study the spacial distribution of water flow pathways, this 700 m2 

large area is divided into more than 350 sampling areas. 

The experimental drift is separated from the other tunnels and 
drifts by a 135 m long access drift. 

The layout of the test site is shown in Figures 23 and 24. 
The sampling arrangement is shown in Figure 25. 
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Figure 23. Layout of the test site with the three vertical injection 

holes 

Figure 24. Map over the test site area 
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Figure 25. Sampling arrangement 

Figure 4 shows the distribution of flowrates over the ceiling 
and walls of the drift. 

When selecting where to inject tracers, information from both 
the test site and the injection holes were available. The most 
important sources of information were: water collection, stereo­
photographs and logging, water inflow measurements (2 m zones) and 
radar measurement. 

The most valuable information was the data from the water inflow 
measurement, since the selected zones must have a fairly high 
hydraulic conductivity (in this case measured as water inflow rate) 
if it should be possible to inject such large amounts of tracers 
that the tracer concentrations down in the test site would be 
detectable, considering that the concentration decreases during the 
migration due to dilution, dispersion, diffusion into the rock matrix 
etc. 

Because of lack of information about hydraulic connection 
between sections of the injection holes and the test site, out of 
the possible zones, those zones closest to the test site were 
selected for the tracer injection. 
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With the radar reflection measurement, three fracture zones 
were found within the measuring limit, about 100 m. Each of the 
zones intersects at least one of the injection holes. Out of these 
three fracture zones, one was interpreted to possibly intersect the 
edge of test site. Most of the injection zones were chosen in such a 
way that they are located below any fracture zone or intersected by 
the fracture zone interpreted to intersect the test site. 

Figure 26 shows the selected injection zones. The injections 
into all nine injection zones are carried out simultaneously. 
Therefore, nine different tracers were selected. 

Out of approximately 100 dyes that were tested in a laboratory 
experiment, only 7 were found to be stable with time and non-sorbing. 
The remaining two tracers are salts. 

The tracers will be injected continuously for one year. The 
injections are carried out with a "constant" overpressure, 
approximately 10-15 % above the natural pressure. The different 
injection flow rates vary between 1 and 20 ml/h. 

Approximately 100 samples/day are taken for analysis. Depending 
on the water flow rates, water is collected using fractional 
collectors or bottles at places with low flow rates. The time 
interval between samples from the 65 most conductive sampling areas 
is about 16 hours. Samples are also taken from another 80 places, 
such as sampling areas with low water flow rates, wet spots at the 
floor, from the pilot hole, the access drift etc. The time intervals 
between samples from these places are 1-5 weeks, depending on the 
water flow rates. 

Hole Level [m] 

31 - 33 
17 - 19 

I I 55 - 57 
33 - 35 

9 - 11 

I I I 36 - 38 
28 - 30 
18 - 20 
12 - 14 

I 

Figure 26. Location of the injection zones 

n ill 
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Results up to April 1985: 

After six months of injection (April 1985), tracers from five 
injection zones are seen in about 35 plastic sheets, among which 
20 are connected to fractional collectors (see Figures 27 and 28). 

Looking at Figures 27 and 28, it is remarkable that Br-, 
injected rather close to the ceiling in hole III, has not been found 
in the sampling areas close to hole III, but in many of the sampling 
areas around hole II. Figure 28 shows those sampling areas that 
have "high" water flow rates (Le. are connected to fractional 
collectors) and in which tracers have been found. 

Present models for describing the water flow in crystalline 
rock assume that the rock can be described as a homogeneous porous 
media, at least for large volumes. 

The results from the water collection (see Figure 4) clearly 
shows that water does not flow uniformly in the rock over the scale 
considered (700 m2 ), but seems to be localized to wet areas with 
large dry areas in between. 

I n m 

• -Injection pOints from which 
tracers have emerged into 
the 3-D test site. 

Figure 27. Tracers emerged into the test site (April 1985) 
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Looking at the first preliminary results from the tracer runs 
which shows where and when tracers have emerged into the test site, 
it is obvious that the water flow can not be described as a 
homogeneous porous media flow in this site at this scale. Channeling 
seems to play an important role. 

4.3. Diffusion Experiments in the Laboratory 

Crystalline rock has been found to be porous with connected 
porosities in the range of 0.06 - 1 % or even higher in some samples. 
Dissolved species can access the matrix porosity by molecular 
diffusion but not by flow when hydraulic gradients are small as 
under most natural conditions. Sorbing species may access and sorb 
on the inner surfaces of the matrix. The capacity for sorption is 
very much larger there than on the surfaces of the sparse water 
conducting fractures. 

Porosities and diffusivities of granites and gneisses from 
different areas in Sweden have been measured by Skagius and Neretnieks 
(50,51,52,53). 

Two different methods were used to determine the porosity of 
the rock pieces studied in the diffusion experiments. The first 
method was a "water saturation" method (method 1) and was made on 
the pieces before the diffusion experiment was started. The pieces 
were dried and weighed. Thereafter the pieces were resaturated with 
water and weighed. The second method was a leaching method (method 
2). The pieces were saturated with a solution of iodide, Uranine or 
Cr-EDTA of known concentration. The amount of component each piece 
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contained in the saturated condition was determined by leaching out 
the component from the piece with distilled water. From this 
information the pore volume and the porosity of the piece were 
determined. The porosity measurements by the second method were 
carried out after the diffusion experiments. The method used in the 
diffusion experiments is straightforward. A hole with the same 
dimension as the piece of the rock, was made in a 10 mm thick PVC­
plate. The piece of the rock was fixed in the hole with silicon 
glue. The plate with the rock sample was then heated in a vacuum 
chamber and saturated with distilled water by the same method used 
in making the porosity measurements, the water saturation method. 
After saturation two chambers made of transparent PVC were fastened 
on to the PVC-plate, one on each side (see Figure 29). In the 
experiments with Uranine and Cr-EDTA one of the chambers was filled 
with distilled water and the other was filled with a solution 
containing Uranine (- 10 gIl) or Cr-EDTA (- 8 gIl). In the first 
experiments with iodide one chamber was filled with distilled water 
and the other with a solution containing 1 molll of sodium iodide. 
Later it was shown that there had been some erosion of the rock 
samples that had been in contact with the 1 molll sodium iodide 
solution. In all the following experiments a solution containing 
0.1 molll sodium iodide was used instead. To avoid any osmotic 
effects the other chamber was filled with 0.1 molll sodium nitrate 
solution instead of distilled water. This gives equal ionic strength 
on either side of the rock piece. 

Samples (10 ml) were taken from the chamber which at the outset 
contained distilled water or sodium nitrate solution. The concent­
ration of the diffusing component was measured. The iodide concent­
ration was measured using an ion selective electrode, the concentra­
tion of Uranine using UV-spectrophotometry and the concentration of 
Cr-EDTA using atomic absorption spectrometry. Each time a sample 
was taken out, 10 ml of distilled water or sodium nitrate was added 
to the chamber to keep the volume in the chamber constant. 

PVC plate 

Transparent PVC chambers 

Figure 29. The diffusion cell 
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The diffusivity and the porosity (or inner capacity) may be 
determined by comparing the experimental data with the solution to 
Fick's law. The rate of change of concentration at a point in a 
one-dimensional system is given by Fick's second law 

ac 
at (4.1) 

D is the diffusion coefficient. In this case with diffusion in a 
porous material the apparent diffusion coefficient must be used to 
account for porosity, tortuosity and sorption effects. The total 
porosity of the material is here looked upon as the sum of the 
"transport" porosity and the "storage" porosity. The storage porosity 
just influences the accumulation in the system. Eq. (4.1) can then 
be written 

Comparing Eq. (4.1) and (4.Z) gives 

D 
D 

e 

+ where De = Dp.E is the effective diffusion coefficient and ~ 
Etot + Kd.p is a rock capacity factor. 

(4. Z) 

(4.3) 

The solution of Eq. (4.Z) for the case of diffusion through a 
porous slab initially at zero concentration, with constant inlet 
concentration Cl at x = 0 and outlet concentration Cz (CZ « Cl ) at 
x = JL is 

1 - K 
JL 

Z 00 1 nnx 
L sin exp (-

n n=l n JL 
(4.4) 

The rate at which the diffusing substance emerges from a unit 
area of the face x = JL of the slab is given by differentiating Eq. 
4.4 and putting it into Fick's first law 

N = - D ~I 
e ax x=JL 

(4.5) 

By integrating Eq. (4.5) with respect to the time t, the total 
amount of diffusing substance M which had passed through the slab 
in time t is obtained 
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(4.6) 

As t + 00 Eq. (4.6) approaches the linear relation 

M = (4.7) 

with the slope Cl.De/t and an intercept on the time axis t = t 2 .a/6.De . 

If the diffusing component is not being sorbed on the material 
then a =£tot' which means that the intercept on the time axis gives 
the total porosity of the material. 

If the transport only takes place in the pore water then the 
relation between the effective diffusivity De and the bulk phase 
diffusivity Dv for a component can formally be written 

(4.8) 

where 0D is the constrictivity and T the tortuosity of the porous 
material. Providing no size factors, pore sizes or/and sizes of 
the diffusing component, influence the diffusion, the formation 
factor or the diffusivity will only depend on the properties 
of the porous material. 

£+0 
The formation factor ~ in equation (4.8) may also be obtained 

by measuring the electric r~sistivity of the rock sample Rs and its 
pores are filled with a solution with known resistivity Ro' provided 
the conduction takes place only in the liquid phase. Then 

(4.9) 

In Figure 30, the logarithmic value of the effective diffusiv­
ities of iodide in the granites, gneisses and fissure coating 
materials are plotted versus the logarithmic value of the experimental 
porosities determined by the leaching method, and in Figure 31 versus 
the logarithmic value of a from Eq. (4.7). Results obtained by 
Bradbury et al. (11) for iodide diffusion in different granites from 
the United Kingdom are also presented in the figures for comparison. 
For the granites and the gneisses a linear regression has been made 
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Figure 30. The logarithmic value of the effective diffusivity of 
iodide in the rock materials versus the logarithmic 
value of the porosity from the leaching method (P2). 

(the lines in the figures) and the mean values, both logarithmic 
and arithmetic, of the effective diffusivities, porosities and a­
values have been calculated. The logarithmic mean values are marked 
in the figures. The effective diffusivity in the granites, logarith­
mic mean value = 22.0.l0-l4m2 /s and arithmetic mean value = 25.2.10-14 

m2 /s, is higher than in the gneisses, logarithmic mean value = 
5.1.10-14 m2 /s and arithmetic mean value = 9.2.10-14 m2 /s. The mean 
values of the porosity determined by the leaching method are also 
higher for the granites, logarithmic = 0.24 % and arithmetic = 0.26 
%, than for the gneisses, logarithmic = 0.13 % and arithmetic = 0.15 
%. The same holds for the a-value where the granites have a 
logarithmic mean = 0.29 % and an arithmetic mean = 0.33 % and the 
gneisses have a logarithmic mean = 0.15 % and an arithmetic mean = 
0.29 %. For both granites and gneisses the mean a-values are higher 
than the mean experimental porosity values. 

Figures 30 and 31 show that the effective diffusivity of iodide 
in the fissure coating materials is of the same order of magnitude 
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Figure 31. The logarithmic value of the effective diffusivity of 
iodide in the rock materials versus the logarithmic 
value of a from Eq. 4.7. 

or higher as in the granites and the gneisses. Those samples that 
have an effective diffusivity that is of the same order of magnitude 
as the granites and the gneisses have, however, higher a-values and 
much higher porosity values. This could be due to a higher "storage" 
porosity in the fissure coating material, or to a lower pore 
diffusivity in the fissure coating material compared with the 
granites and the gneisses. 

At set of samples from Finnsjon, Fi 88 and Fi 89, are taken at 
different distances from fissure surfaces. The porosity and 
diffusivity of iodide were measured to find out if there was any 
variation with distance from the fissure. Figures 32 and 33 show 
the experimental porosity versus distance from the fissure. Fi 88 
shows no obvious variation in porosity with distance from the fissure. 
For Fi 89 the porosity decreases with distance up to about 80 mm 
from the fissure, and then remains rather constant or increases 
slightly. In Figure 34 and 35, the diffusivities of iodide are 
plotted versus distance from the fissure. In the samples from Fi 88 
and from Fi 89 the diffusivities do not show any obvious dependence 
on the distance from the fissure. In the samples from Fi 89 which 
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Figure 34. Effective diffusivity in samples from Finnsjon, Fi 88, 

versus distance from a fissure surface. 
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Figure 35. Effective diffusivity in samples from Finnsjon, Fi 89, 
versus distance from a fissure surface. 
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were taken near the fissure where the porosity was higher, one would 
expect a higher diffusivity. The experimental porosity is, however, 
a total porosity value. The diffusivity is dependent only on the 
"transport" porosity. Thus a higher total porosity does not have 
to give a higher diffusivity. The "transport" porosity could have 
about the same value even if the total porosity increases. 

At expected radioactive waste repository depths in the ground 
the rock is exposed to rather high stresses caused by the large 
overburden of rock. When drillcores are taken up from the ground 
this overburden no longer exists. As a result of this there might 
be an increase in the porosity of the rock samples. The effective 
diffusivity measured in rock samples under atmospheric pressure in 
the laboratory would then be higher than the effective diffusivity 
in the rock "in situ". 

To simulate the stress that may exist in the bedrock at large 
depths, diffusion experiments with iodide and electrical resistivity 
measurements in rock materials under mechanical stress were performed 
(53). 

The apparatus used in the diffusion experiment is shown in 
Figure 36. On each side of a water saturated rock sample (¢ 42 mm, 
- 10 mm thick), a plate of stainless steel with circular channels 
was mounted. The channels in each plate connect to a circular 
system. 

At the high concentration side a 0.1 mol/l sodium iodide solu­
tion, and at the low concentration side a 0.1 mol/l sodium nitrate 
solution was circulated. At different times small samples were 
taken out from the storage bottle at the low concentration side. 

The apparatus used in the electrical resistivity measurements 
was similar to the apparatus used in the diffusion experiments. The 
difference is that insulated electrical wires connect to the end 
plates instead of the tubes of the circulation system. 

In the electric conductivity experiments the rock cores were 
saturated with 1 mol/l NaCl solution. The high concentration of the 
salt-water solution ensures that the conductivity of the water in 
the pore volume dominates over surface conductivity on the mineral 
surfaces. 

Figure 37 shows a plot of the concentration at the low concent­
ration side versus time for iodide diffusion through a piece from 
Svartboberget. The experiment was started with the piece under 
atmospheric pressure. After 35 days the pressure was increased to 
330 bars. 



low concentration 
side 

pump 

high concentration 
side 

pump 

storage bottle 

oil filled 
pressure cell 
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coating 

hand pump 
stainless steel plates 
with channels for fluid 

Figure 36. The apparatus used in the diffusion experiments with 
rock materials under mechanical stress. 
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It is seen that there is a marked decrease in diffusivity when 
the pressure is increased. 

In the resistivity measurements the pressure was raised in steps, 
and the resistance was measured at each level. From the resistance 
the resistivity was calculated, and then the formation factor 
o+.on/T2, was determined. The resistance was also measured as the 
pressure was lowered from the maximum value down to atmospheric 
pressure. 

Figure 38 shows the formation factor versus pressure for a 
granite. sample from Finnsjon, where the procedure with increasing 
and decreasing the pressure have been made two times on the same 
rock sample. The formation factor decreases with increasing pressure, 
and then increases again when the pressure is lowered down to 
atmospheric pressure, however, not to the same values. The second 
time the procedure with increasing and decreasing the pressure was 
performed, about the same values as the first time was obtained for 
pressures higher than 100 bars. The decrease in the formation 
factor with pressure indicates that the crosssectional area of the 
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Figure 37. Concentration of iodide versus time, diffusion through 
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pores in the sample is decreased when the sample is under mechanical 
stress. 

The formation factors calculated from the diffusion experiments 
under stress are in fair agreement with the formation factors from 
the resistivity measurements at higher pressures. 

In Figures 39 and 40 the results from the various methods are 
compared. Figure 39 shows the .diffusivities of iodide determined in 
granites and Figure 40 the diffusivities of iodide determined in 
gneisses. The open bars represents the diffusivities in samples 
under stressed conditions and the filled bars the diffusivity in 
samples under atmospheric pressure. The diffusivity of iodide from 
the electrical resistivity measurements have been calculated by 
Eq. 4.9 using the formation factor for the unstressed samples and 
the formation factor at maximum stress for the stressed samples. 

The formation factor in samples at 300-350 bars stress relative 
to the formation factor in the samples at atmospheric pressure 
obtained in the diffusion experiments are in fair agreement with 
those determined from the electrical resistivity measurements for 
the same rock materials. Electrical resistivity measurements can 
be used to give approximate values of the diffusivity. The advantage 
with electrical resistivity measurements is that the experimental 
time is much shorter than in the diffusion experiments. 

The diffusivity or the formation factor in samples at 300-350 
bars were in no case lower than about 20% of the value in unstressed 
samples. 

4.4. Diffusion in the Field 

Two field migration experiments in the rock matrix have been 
made (7). The experiments have been carried out in "undisturbed" 
rock, that is in rock under its natural stress environment. Since 
the experiments were performed at the 360 m-level (in the Stripa 
mine), the rock was subject to nearly the same conditions as the 
rock surrounding a nuclear waste repository as proposed in the 
Swedish concept (KBS). 

The experiments had to be designed so that the influence of 
the stress field caused by the drift and the drilling itself was 
eliminated. 

Near drillholes and drifts, the rock stresses will be changed 
compared to "undisturbed" rock. A general rule in these cases is 
that the rock stresses are changed about 2 hole diameters out from 
and below the hole. That is, outside these 2 hole diameters 
essentially "undisturbed" rock exists. 



530 

70 

60 

~ 

N' 
50 

e .. .. 40 
~ 

>-+> ., 30 
;; 
::J ... ... 
0 20 

10 

0 

GRANITES 

1 • prllvloull dHfuelon IIxperllK11"lte (5) 

2 - dlffualon IIxprt.ant. 

:3 - alactrlcal rnl.t1vtty lIeOMr...,ta 

m - unetrH.ad 1I00000lII 

n· .tra.ed 8a.plll 

Finnsjo 
(F) 

p - 200-350 be..-

40 

30 

20 

GidQO 
(GM 1) 

eo 

50 

40 

30 

20 

SvcrtbobQrqQt 
(58 7) 

Figure 39. Effective diffusivities in granites. 
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Since the objective with this experiment is to do a migration 
experiment in "undisturbed" rock, the experiment had to take place 
more than 2 drift diameters below the drift. 

In the second of the experiments which is described here a 15 m 
deep 146 mm hole was drilled. At this distance from the drift the 
changes in rock stresses due to the drift can be neglected, i.e. 
essentially "undisturbed" rock is reached. At the depth of 15.5 -
17.5 m a rock stress measurement was performed by the Swedish State 
Power Board, which confirmed that "undisturbed" rock was reached. 

However, even if the changes due to the drift can be neglected, 
the existence of the 146 mm hole will cause a further change in the 
rock stresses approximately 0.3 m (2 hole diameters) outward and 
below the bottom of the hole. Thus, in the bottom of the 146 mm hole 
a 20 mm hole (approximately 3 m long) was drilled. This 20 rnrn hole 
will cause a change in the rock stresses approximately 4 cm outward, 
but outside this disturbed zone and 0.3 m below the larger hole 
essentially "undisturbed" rock is reached. 

With the 146 mm packer positioned just above the little hole 
(see Figure 42), the little hole serves as injection hole in this 
experiment. 

If tracers can migrate from the little hole (injection hole) 
past the disturbed zone and into ;'undisturbed" rock, this experiment 
will indicate the existence of a connected pore system in "undis­
turbed".rock. 

After drilling the holes, one small packer was placed in the 
little hole and one big packer was placed near the bottom of the 
big hole (see Figure 42). The small as well as the big packer 
were mechanically operated. The function with the big packer was 
just to close off the injection compartment from the rest of the 
hole. The small packer was used to get a nylon tube down to the 
bottom of the small hole, in order to get a good circulation when 
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Figure 42. Drilling dimensions and packer positions. 

the tracers were injected. 

After the installation of the packers, the water flow into the 
little hole and the water pressure was monitored. Since there was 
no measurable inflow of water into the injection compartment, no 
reliable value on the water pressure could be found. 

According to other measurements in the Stripa mine at the same 
level and only ~ 100 m from the drift where this experiment has been 
performed the water pressure 18 - 21 m below the drift is expected 
to be between 1.0 and 1.4 MPa. 

A pressure of 1.5 MPa (i.e. 0.1 - 0.5 MPa overpressure) was 
used during the whole injection time. This small overpressure 
ensured that the tracers would migrate by flow and diffusion out 
from the injection hole and into the pore system of the rock matrix. 
The overpressure was obtained by using compressed nitrogen gas. 
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The tracers were iodide, Chrome-EDTA and Uranine. All tracers 
were previously found not to react with the rock. 

After about 6 months the injection was terminated. The packers 
were retrieved and the little hole was overcored. The core from the 
overcoring had a diameter of 132 mm and was ~ 3.5 m long, with 
injection hole (¢ 20 mm) at the side. The core was cut into ~ 5 cm 
long cylinders (see Figure 43) 

From these cylinders, a number of sampling cores (¢ 10 mm) were 
drilled at different distances from the injection hole. These 
sampling cores were leached in distilled water (see Figure 44). 

3.5m =scm{B 

Figure 43. Sampling, step 1. 

010mm 

Figure 44. Sampling, step 2. 
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The tracer concentration in the distilled water was determined 
and recalculated for the concentration in the pore water. The 
recalculated concentration is based on the porosity that was obtained 
for every individual sampling core. Porosity is obtained from the 
weight difference betweeen wet and dry core. After this overcoring, 
which made it possible to study the concentration profile approxi­
mately 11 ern outward, another hole was drilled (see Figure 45). 

The distance between the cores was ~ 19 mm (i.e. ~ 5 mm distance 
between holes) at the depth of interest (18 - 21 m). 

With this "extra core", the concentration profile could be 
studied approximately 25 ern outward from the injection hole. 

The sampling procedure for core 2 was the same as for core 1. 
A total number of ~ 650 sampling cores were drilled ( ~ 400 from 
core 1 and ~ 250 from core 2). 

From core 1 samples were taken at 22 different depths, which 
made it possible to study the variation in migration distance in 
the matrix versus depth. 

Because of core 2, the concentration profile could in some 
cases be followed 25 ern outward from the injection hole at approxi­
mately the same depth. 

0146mm 0146mm 

Figure 45. Overcoring arrangements. 
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The experimentally obtained concentration profiles were compared 
with theoretically calculated profiles. These were obtained by 
solving the advection dispersion equation for radial flow. The 
equations which predict the concentration profile of a non-sorbing 
component when radial diffusion and flow (convection) occur 
simultaneously are 

Diffusion equation: 
dC dC 
dt + Vr dr 

1 d (r~) 
Dp r dr dr 

(4.10) 
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Radial flow equation: v = const. 
r r (4.11) 

The initial and boundary conditions used imply that there is 
no tracer in the rock at the start and constant concentration in the 
injection hole at all times thereafter and that there is steady flow 

The results of the experiments show a considerable variation in 
migration distance with depth. The penetration depth could in some 
cases vary with a factor 3 or more in sampling places that were 
separated by just a few tens of centimeters in depth. 

The pervading trend is that all three tracers have migrated a 
long distance into the rock matrix at the top and the bottom of the 
injection hole, while the migration distance is rather short in the 
middle section of the hole. 

Figure 47 shows the concentration profile obtained at a point 
about 0.4 m below the bottom of the largest hole. Figure 48 shows 
the same for a depth of 2.6 m. 

Cr-EDTA and Uranine usually migrated a somewhat shorter 
distance (see Figure 49). 
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Figure 47. Tracer concentration vs. distance from injection hole 
for sampling places I and 2E. 
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Figure 48. 1- concentration vs. distance from injection hole for 
sampling places 21 and 23E. 
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Figure 49 shows that the concentration profiles for all three 
tracers could be followed at the same depth in core I and core 2 in 
the top of the cores. This was also possible in the bottom of the 
cores for 1-. 

The fact that the migration distance is different at different 
depths can be caused by differences in porosity (Ep) and differences 
in the migration parameters (Kp and Dp). 

The porosity has been measured for every individual sampling 
core by comparing the weight difference between wet and dry core. 
Figure 50 illustrates the mean value of the porosity (+/- the 
standard deviation) for each sampling place for core I and core 2. 
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Figure 50. Core I and Core 2. The porosity (+/- the standard 
deviation) vs. depth. 
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Since the porosity is almost the same for all sampling places, 
the difference in migration distance with depth cannot be explained 
by the porosity. 

Variation in the migration parameters (Kp and Dp) with location 
due to inhomogeneities, seem to be the reason for the considerable 
differences in migration distance for sampling places that were 
separated by just a few tens of centimeters. By comparing theoretical 
and experimental curves Dp and Kp were estimated. 

These approximate values of Dp and Kp are summarized 
to indicate what the difference in migrat10n distance with 
means in terms of diffusivity and hydraulic conductivity. 

in table 4 
depth 

Table 4. Approximate values on Dp and Kp for different depths in 
core 1. 

Sampling place Depth (m) Dp (m2 /s) Kp (m/ s) 

1-2 0.36-0.48 > 1.10-10 > 2-5.l0-l3 

3-9 0.78-1.41 -10 0.1.10-13 0.5.10_10 
10-l3 1. 46-1. 59 " 0.05.10 < 0.1.l0-l3 
l4-20 1. 74-2.24 " 1.10-10 " 1.l0-l3 
21-22 2.62-2.67 > 1.10-10 > 2.5.l0-l3 

The results indicate that it is possible for tracers (and 
therefore radionuclides) to migrate a distance into a rock matrix 
under natural stress conditions and that the in situ diffusivities 
are comparable to these obtained in the laboratory. 

4.5. Experiments with Sorbing Substances 

To study the diffusion into and sorption in granite of strontium 
and cesium a set of batch experiments were performed (50). 

Rock pieces taken from the Stripa Mine and from the Finnsjon 
area were crushed. Each material was graded into the following six 
fractions: 0.100 to 0.120 mm, 0.200 to 0.250 mm, 0.375 to 0.43 mm, 
1.0 to 1.5 mm, 2.0 to 3.0 mm, and 4.0 to 5.0 mm. Before starting 
the adsorption experiments, all the fractions were washed and dried. 
The fractions were then contacted with a "synthetic" groundwater 
to obtain equilibrium between the solids and the water. 

After this preparation, part of each solid fraction was mixed 
in separate glass bottles with synthetic groundwater solutions 
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containing strontium, and in the same way another part of each 
fraction was mixed with solutions containing cesium. The initial 
concentration of strontium was 10 ppm and of cesium 15 ppm. 

All the bottles were kept in a shaking bath and kept at 25 0 C. 
At different times, small fractions (1 ml) of the solutions were 
taken out, and the concentration of cesium and strontium was measured 
by atomic absorption spectrometry. When the concentrations no longer 
decreased, it was assumed that equilibrium between the solids and 
the liquids had been obtained. The solids were then separated from 
the solutions and were contacted with fresh synthetic groundwater 
in order to desorb the sorbed ions from the solid out into the 
groundwater. The concentrations of cesium and strontium in the 
liquid in these desorption experiments were measured in the same 
way as in the adsorption experiments. Equilibrium was usually 
reached within 10,000 hours. 

The sorption coefficient (Kd ) was obtained to be the same for 
adsorption and desorption of strontium, but not for cesium. This 
indicates that the sorption coefficient for cesium is dependent on 
the liquid concentration (i.e. the isotherm is non-linear) or that 
the sorption process for cesium is partly irreversible. 

The experimental data indicate that the amount of sorption is 
dependent not only on the mass of granite particles, but also to 
some extent on the size of the particles. These experimental results 
led us to test the following hypothesis: The granite particles act 
as porous bodies with active inner surfaces where reversible sorption 
can take place. In addition, a certain amount of nuclides are being 
reversibly sorbed on the external surfaces of the particles. The 
amount of sorption on the inner surfaces per unit mass of granite 
particles is described by the common Freundlich isotherm. 

(4.12) 

where ~ and S are the Freundlich parameters and Cp is the concent­
ration in pore fluid. The external surfaces are assumed to exhibit 
a different sorption capacity that is related to the external area 
of the particles by another type of Freundlich equation 

(4.13) 

The Freundlich parameters are kA and S, and we assume that S has 
the same value in both Eqs. (1) and (2). 

The total sorption capacity q of the rock particles is obtained 
by adding the capacities of the inner surfaces and the external 
surfaces. This yields 
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q (4.14) 

and ae 6/p s dp ' where d2 is the particle size and Ps is the density 
of the rock particles. The outer surface area of the particles is 
obtained by assuming the particles to be spherical. Spheres have 
a surface-to-volume ratio of 6/dp . 

Equation (4.14) may with Eqs. (4.12) and (4.13) be transformed 
to 

q kC 6 
P (4.15) 

with k kv + 
6 

kA psdp 
(4.16) 

6, kv and kA may be determined from the experiments, 6 is 
obtained by plotting total amount adsorbed for a given particle size 
versus the equilibrium concentration in the liquid. 6 was obtained 
to be near 1 for strontium and about 0.6 for cesium for both Finnsjon 
and Stripa granites. 

kv and kA are obtained from plots of k versus l/dp (equation 
(4.16». This is shown in Figure 51. 

The fraction of the amount sorbed on the outside of the particles 
decreases from about 15 % to 1 % for both strontium and cesium on 
Finnsjon granite when particle size increases from 0.1 to 1.2 mm and 
from about 40 % to 5 % for Stripa granite. For small particles the 
sorption on the large outer surface created by the crushing thus 
can account for a considerable fraction of the sorption. 

The diffusivity of the species into the particles is obtained 
from the concentration time curves showing how the concentration in 
the water in the batch experiment changes with time. Figure 52 
shows the results for strontium sorption on Finnsjon granite and the 
theoretical curves obtained by solving the diffusion equation with 
initial and boundary equations appropriate for the batch experiment. 

The fit to the smaller particles is not good and other processes 
than diffusion may have played a role. Table 5 compiles the obtained 
diffusivity data. 

The obtained diffusivities are larger than can be explained by 
diffusion in the water of the micropores. There is some process by 
which the species migrate in the sorbed state. This has also been 
found for clays (33). 

Similar experiments have been performed with sawed slabs 5 rom 
thick. These pieces have not been subject to the stresses induced 
by crushing and not unexpectedly the diffusivities were found to be 
smaller (on the order of a factor 3)(51). 
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Figure 51. 

Figure 52. 
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Table 5. Effective pore diffusivities DpEp for cesium and strontium 
in Finnsjon granite and Stripa granite. 

Finnsjon granite Stripa granite 
Particle Size Cesium Strontium Cesium Strontium 
Fraction (mm) DpEp (m2 /s) DpEp (m2 /s) DpEp (m2 /s) DpEp(m2 /s) 

0.10 to 0.12 0.85xlO-12 0.45xlO-g O.29xlO-12 O.01lxlO-12 
0.20 to 0.25 2.8xlO-12 1. 6 xlO-

0.375 to 0.43 3.8xlO-12 3.5xlO-12 

1.0 to 1.5 37 xlO-12 4.4xlO-12 
2.0 to 3.0 12 xlO-12 11 xlO-12 
4.0 to 5.0 16 xlO-12 24 xlO-12 0.98xlO-12 1. OxlO-12 

5. DISCUSSION AND CONCLUSIONS 

In sparsely fractured crystalline rock the water moves in 
fractures which are only partly open. The variation in permeability 
within fractures and between fractures is so large that it seems 
reasonable to assume that a few channels in a few fractures carry 
most of the water. Fracture zones in the rock are not infrequent 
and have been found in all the areas investigated. Smaller zones 
are found with frequencies of one or a few per kilometer, whereas 
larger zones are found at frequencies of one or a few per ten kilo­
meters. The fracture zones have higher hydraulic conductivities 
than the rock mass itself. The water flowing in the fractures in 
the rock mayor may not mix with such frequency that the concentration 
of a dissolved species is dispersed in the manner of regular hydro­
dynamic dispersion - Fickian dispersion - before the waters enter 
features of the next scale - the fracture zones. The very sparse 
information on dispersion in fractured rock is not sufficient to 
clear this question at present. The longest travel distances where 
dispersion has been observed in deep lying crystalline rock is on 
the order of 50 m with a possible exception of a 500 m distance. 
The interpretation of tracer tests is not a straight forward matter 
because normally there is not sufficient information on the flowpath 
and many other mechanisms which also cause a spreading. Available 
information indicates that distances of 50 to 100 m are not sufficient 
to arrive at a constant dispersion coefficient. On the contrary it 
seems that the dispersivity increases with the observation distance. 
This would indicate that there is a very pronounced channeling on 
this scale. 

Most models are based on the advection-dispersion equation and 
may thus not give good results when used for extrapolation to larger 
distances than those for which the data were obtained. 
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The question if the "dispersion" is caused by Fickian dispersion 
or if it mainly due to channeling becomes especially important for 
radionuclide migration in low permeability fractured rock. The 
assumption of Fickian dispersion would lead to an underestimation of 
the amount of a species which arrives "early" if the extrapolation 
is large. For decaying radionuclides this may in some cases mean 
the difference between an extremely large decay and an insufficient 
decay. 

There have only been a few attempts to model channeling. 
Possibly the fracture network models which are being developed will 
be of help to model tracer movement over larger distances with better 
confidence. 

One of the difficulties in making measurements over large 
distances is that experiments will take a very long time. Another 
difficulty is that for long contact times the tracers will have time 
to diffuse into the stagnant water of the rock matrix. This effect 
is so pronounced that it will totally swamp all other mechanisms 
including the advective transport. This difficulty could be 
circumvented if enough were known of the flowpaths. Information 
on how many channels and with what exposed surface are encountered 
along the path as well the detailed distribution of flow between 
the channels is needed to account for the uptake of tracers into the 
matrix. In addition matrix porosity and diffusivity would be needed. 
At present this information is not available in sufficient detail. 
It is also by no means sure that the information needed ever can 
be obtained for this purpose. 

The use of natural tracers such as Tritium and Carbon-14 to 
assess travel times and dispersion has not been successful for low 
permeability fractured rock by the same reasons (29). 

The effects of matrix diffusion, although they cause severe 
difficulties in evaluating tracer experiments, are very beneficial 
when there is a need to have long travel times for contaminants. 
Then the presence of stagnant water volumes into which the species 
may travel by molecular diffusion causes the species to have a much 
longer travel time than that of the actually moving water mass. 
The stagnant water volume is often several orders of magnitude larger 
than the mobile water. 

Species which interact with the inner surfaces of the rock 
matrix are further retarded. These effects are so large that most 
of the important radionuclides are expected to have travel times 
considerably longer than their half lives in typical repository 
environments in crystalline rock. 
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A Surface area (m2 ) 

Specific surface (m-l ) 
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Concentration at inlet boundary (mol/m3 ) 

Particle diameter (m) 
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Diffusivity in bulk liquid (m2 /s) 
Volume distribution coefficient (m3 /m3 ) 

Distribution coefficient for surface sorption (m) 
Distribution coefficient for volume sorption (m3 /kg) 
Constant 
Constant for surface sorption 
Constant for volume sorption 
Slab thickness (m) 
Amount of diffusing component (mol) 
Ef/(l-Ef) 
Flowrate of diffusing component (mol/s) 
Pressure (N/m2 ) 

Peclet number vz/DL 
Flowrate of water (m3 /s) 
Concentration in solid phase (mol/kg) 
Retardation factor in general 
Retardation factor due to surface sorption 
Retardation due to volume sorption 
Resistivity of salt solution (Qm) 
Resistivity of salt water saturated rock (Qm) 
Radial direction (m) 
Fracture spacing (m) 
Time (s) 
Residence time for tracer (s) 
Residence time for water (s) 
Radial water velocity (m/s) 
Volume of rock (m3 ) 

Water velocity (m/s) 
Distance into rock (m) 
Distance in flow direction (m) 

Capacity factor 
Geometric factor 
Fracture width (m) 
Fracture width determined by "cubic law" (m) 

Constrictivity (m) 

Fracture width from residence time (m) 

Fracture width from laminar velocity (m) 

Porosity of mobile fluid 

Porosity of rock matrix 

Total porosity of matrix 

"transport porosity" of matrix 

Formation factor 

Decay constant (s-l) 
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Density of particle (kg/m3 ) 

Density of minerals (kg/m3 ) 

Logarithmic standard deviation of fracture widths 

Standard deviation of water travel distance (m) 

Standard deviation of water residence time (s) 

KBS - technical reports can be obtained from: INIS CLEARING HOUSE, 
International Atomic Energy Agency, P.O. Box 100, A-1400 VIENNA, 
Austria. 
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ABSTRACT 

Naturally fractured reservoirs represent a complex class of 
reservoirs. Multiphase flow in such reservoirs adds to the 
complexity and has been studied extensively over the last few years. 

This chapter presents a review of the current state of tech­
nology regarding certain aspects of such reservoirs. Physical 
properties of fractures and fractured systems are defined and 
discussed. Various flow processes and models describing these 
processes are reviewed. Particular emphasis has been placed on the 
imbibition flow process. 

Experimental results on imbibition in carbonate chalk are 
presented. A large number of samples have been tested in the 
laboratory, and the results are discussed in regard to effects of 
wetting properties, sample shapes, and boundary conditions. Simula­
tion of one of the experiments shows that the prediction of imbibi­
tion flow rate by simulation models is critically dependent on a 
well defined capillary pressure curve. 

An improved dual porosity model for simulation of multiphase 
flow in fractured reservoirs is discussed. 
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1. INTRODUCTION 

Fractured reservoirs exist throughout the world. Table 1 lists 
fractured carbonate reservoirs in various countries. These reser­
voirs represent large reserves, and the oil recovery from such 
reservoirs is clearly an important area of study. At present, 
interest centers primarily on two aspects of the problem. The first 
is a thorough understanding of the whole physical process for the 
development of more realistic mathematical models. The second 
important aspect is the measurement of multiphase fractured reser­
voir flow parameters in the laboratory, and the use of these data 
in mathematical models. In this chapter, some aspects of both 
experimental studies and mathematical modeling are considered. 

To introduce the rock medium and its characteristics, a section 
on physical properties of fractured rocks is presented. Porosity, 
permeability, compressibility, and in particular parameters 
describing fluid-fluid-rock interactions, such as capillary pressure 
and relative permeability, are discussed. Section 3 includes an 
extensive introductory section devoted to the fundamental literature 
on both theoretical and experimental aspects of fluid flow in 
fractured reservoirs. The rest of the section presents experimental 
results on studies of capillary imbibition, namely: 

1) Imbibition in chalk plugs from the Ekofisk Field in the 
North Sea; 

2) Imbibition in rock samples of various sizes and shapes; 
3) Imbibition in core plugs with various boundary conditions; 

and 
4) Imbibition in matrix blocks containing microfractures. 

A subsection on numerical simulation of laboratory experiments is 
also presented in section 3. 

Section 4 gives a review of the state of the art of simulation 
of multiphase flow in naturally fractured reservoirs. Flow equations 
are presented and the matrix/fracture fluid exchange term has been 
emphasized. Improvements in model formulations are discussed. 

2. PHYSICAL PROPERTIES OF FRACTURED ROCKS 

2.1. Introduction 

The physical properties of rocks and fluids used as basic data 
for reservoir engineering studies of conventional reservoirs have 
been extensively studied in the last three to four decades. Since 
the objective of this chapter is to examine rock characteristics 
of fractured reservoirs, the rock properties will be discussed as 
properties of either fractures or of the fracture-matrix system. 
Specific matrix properties will not be discussed since these 
represent classic properties of a conventional reservoir. 
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In addition to porosity and permeability, a review of the 
geological aspects of fracturing and the compressibility of the 
fracture-matrix system is presented. 
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Particular attention has been given to parameters describing 
fluid-fluid-rock interaction, such as capillary pressure and relative 
permeability. A system consisting of a matrix block saturated with 
fluid A surrounded by fractures saturated by a different fluid B is 
the basis of fluid displacement mechanisms in fractured reservoirs, 
and will be discussed in detail. 

2.2. Fractures 

Various definitions of a fracture may be given. From a geo­
mechanical standpoint, a fracture is a surface in which a loss of 
cohesion has taken place, i.e., a fracture is the result of a rupture. 
In general, a fracture in which relative displacement has occurred 
can be defined as a fault, while a fracture in which no noticeable 
displacement has occurred can be defined as a joint point. Basically, 
whether a fracture is considered a joint or a fault depends on the 
scale of investigation, and in this text, the term fracture will 
correspond to a joint. Discontinuities breaking up the rock beds 
into blocks is a fairly general definition of fractures relevant 
to this work. 

Fractured reservoirs most likely occur in brittle reservoir 
rocks where tectonic events have developed. Depending on the rock 
properties and the causes of fracturing, the extent and openings 
will vary widely. Table 1 indicates fracture distribution and 
openings in some fractured carbonate reservoirs. The main causes 
of fracturing are (45): 

1) Diastrophism in the case of folding and faulting; 
2) Deep erosion of the overburden that permits the upper parts 

to expand, uplift, and fracture through planes of weakness; 
and 

3) Volume shrinkage as a result of loss of water in shales 
and cooling of igneous rocks. 

The best quantitative information about fracture parameters 
such as opening, extension, distribution, nature, and orientation 
is obtained by direct measurements on outcrops and on cores. 
Indirect sources of information such as log analysis, well testing, 
and production history may also give valuable fracture data (1). 

Studies of fracture characteristics usually follow a special 
pattern, beginning with the examination of single fractures, 
continuing with groups of fractures, and finally, relationships 
among the various groups are established. Single fracture parameters 
refer to such characteristics as opening (width), size, nature, and 
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orientation. The multi-fracture parameters refer to the fracture 
arrangement (geometry) which further generates the bulk unit, called 
the matrix block. The number of fractures and their orientation 
are directly related to fracture distribution and density. 

Fracture opening is represented by the distance between the 
fracture walls, and may depend on nature of stresses, reservoir 
environment, and type of rock. The fracture openings vary consider­
ably as shown in Table 1. Fracture size refers to the relationship 
between fracture length and layer thickness. The terms minor, 
average and major fractures are often used, where a minor fracture 
has a length less than a single layer pay, average fractures traverse 
more than one layer, and major fractures have a large extension 
(hundreds of meters). The nature of fractures refers to filling 
material and wall characteristics. Fracture orientation can be 
defined by two angles, azimuth and dip angles. Parallel fractures 
belong to a fracture system, and intercommunicating fracture systems 
form a fracture network. 

Multi-fracture parameters of importance in this context are 
the parameters necessary to evaluate matrix block size and geometry. 
The matrix blocks are defined by shape, volume, and height, in 
relation to the fracture system's dip, strike, and distribution. 
The shape of the matrix block is irregular, but for practical work, 
the block units are frequently reduced to simplified geometrical 
volumes, such as cubes or as elongated or flat parallelepipeds. 
The term fracture density is used to describe both real and idealized 
fracture systems. Fracture density expresses the degree of fractur­
ing through various relative ratios. The reference may be bulk 
volume (volumetric fracture density), area or length (areal or 
linear fracture density); the analytical expressions are as follows: 

- Volumetric fracture de~sity, fv' is the ratio between fracture­
bulk surface, sf' and mat.rix bulk volume, VB: 

(2.1) 

- Areal fracture density, fs' is the ratio between the cumula­
tive length of the fractures, lt' and matrix bulk area s 
in cross flow section: 

lt 

s 
(2.2) 

Linear fracture density is the ratio between the number (n) 
of fractures intersecting a straight line (normal on flowing 
direction) and the length of the straight line (L): 

n 
L 

(2.3) 
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If various matrix block units are grouped into certain geomet­
rical distributions, a number of idealized fractured networks can 
be obtained. If the models are as shown in Figure 1, the fracture 
density is modified according to the flow direction and to the 
impermeability of the block faces (39). 

A representative description of the shape and dimensions of the 
average matrix block unit is very important when considering dynamic 
aspects of a fractured reservoir. In most studies, the following 
assumptions are usually made: 1) The fractures are continuous planes; 
2) The fractured reservoir is represented by a certain number of 
networks; and 3) The distance between the fractures of the same 
plane is reported by a frequency law. Idealized blocks will result 
from the intersection of fracturing planes. 

2.3. Porosity 

Fractured reservoirs are made up of two porosity systems; one 
intergranular formed by void spaces between the grains of the rock 
(primary porosity), and a second formed by void spaces of fractures 
and vugs (secondary porosity). The two porosities are expressed by 
the conventional definitions: 

¢l matrix void volume/total bulk volume 

¢2 fracture void volume/total bulk volume 

'f\ 

~ ~ ~ 
MODEL 1 MODEL 2 MODEL 3 

fs = l/a fs = l/a fs = 2/a 

~ , II 
MODEL 4 MODEL 5 MODEL 6 

fB = 2/a fs = l/a fs = 2/a 

Figure 1. Idealized models and fracture density expressed as a 
function of flowing direction [after Reiss (39)]. 
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In dealing with fracture reservoirs, we usually refer the matrix 
porosity to matrix bulk volume i.e., 

¢m = (volume voids of the matrix)/(matrix bulk volume) 

while the definition of fracture porosity is unchanged, i.e., 

¢f = ¢Z (Z.4) 

The primary porosity may be expressed in terms of the matrix 
porosity, and the fracture porosity as: 

(Z.5) 

Double porosity is more important for the dynamic evaluation 
of the reservoir than for the ~eservoir storage capacity. 

Z.4. Permeability 

In the presence of both matrix and fractures, permeability is 
redefined as matrix permeability, fracture permeability, and system 
permeability. In most fractured reservoirs, the distance between 
fractures is much longer than the core sample length, and in this 
case, the measured permeability represents the matrix permeability. 
The fracture permeability may create some confusion because it can 
be referred to as single fracture permeability, fracture network 
permeability, or fracture permeability of fracture-bulk volume. 

Single fracture permeability can be derived from Navier-Stokes 
equation for laminar flow between two parallel plates: 

u = - (Z.6) 

where, u is the flow velocity, ~ is dynamic viscosity, ~ is the 
pressure gradient in the flow direction and w is the fracture 
opening. 

By analogy to Darcy's law, we obtain the following expression 
for fracture permeability: 

(Z.7) 

If the fracture forms an angle (a) to the flow direction, the 
permeability will be: 

(Z.8) 
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For a fracture network formed by fracture systems a, 6, each 
with its own orientation, Parsons (37) calculates the permeability 
to be: 

(2.9) 

In conventional fractured reservoirs, the fracture and the 
associated rock bulk form a hydrodynamic unit. The cross sectional 
area exposed to flow is therefore expressed by not only the fracture 
cross sectional area, but by the rock cross sectional area. For 
a system with parallel fractures in the flow direction (Figure 2), 
the permeability will be 

(2.10) 

where a is the distance between fractures and a » w. 

The permeability of a fracture-matrix system may be represented 
by the simple addition of the permeabilities of matrix km and 
fracture kf' 

(2.11) 

This equation is, of course, flow direction dependent. 

A summary of permeability and porosity relationships for the 
various block geometries (fracture reservoir models) shown in 
Figure 1 is given in Table 2. 

2.5. Compressibility 

The rock compressibility used when dealing with conventional 
reservoirs reflects only the deformation of the pores, since the 
matrix volume reduction is negligible in comparison. In fractured 
reservoirs, the matrix compressibility is normally less than for 

FLOWING 

a~====~;/' TL-___ ~ 
• DIRECTION 

Figure 2. Parallel fractures in the flow direction. 



562 

Table 2. Parameters for simplified models (refer to Figure 1) 
[after Reiss (39) J. 

Model Formulas for computing 
fracture properties 

No. type fs CPf kf (CPf' a) kf (CPf'w) 

1 slides l/a w/a 1/12 a 2 cp3 
f 1/12 w2 cpf 

2 l/a 2w/a 1/96 a 2 cp3 1/24 w2 cpf 
matches f 

3 2/a 2w/a 1/48 a 2 cp3 
f 

1/12 w2 cpf 

4 l/a 2w/a 1/96 a 2 cp3 
f 1/12 w2 cpf 

5 cubes 2/a 2w/a 1/48 a 2 cp3 
f 1/12 w2 cpf 

6 2/a 3w/a 1/162 a 2 cp3 
f 1/18 w2 cpf 

conventional reservoirs. This is supported by the fact that the 
fracturing reflects the rigidity of the rock, and the rock has 
broken rather than deformed elastically. However, the presence of 
fractures introduces an additional compressibility, which can be 
defined in two ways: 

1 aVf 
cef Vt (ap)T (2.12) 

or 

1 aVf 
cpf Vf (ap)T (2.l3) 

where Vt is bulk volume and Vf is fracture volume. The relationship 
between these two definitions is: 

The effective oil compressibility of the total fractured system 
with oil and water can be calculated as the sum of the individual 
contributions, given the saturations in fractures and matrix (45): 



Sof - 1 

Swf 0 

Som 1 - Swm 
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(2.15) 

where; Swm is the matrix water saturation; Co is the oil compressib­
ility; Cw is the water compressibility; c m is the matrix pore 
compressibility; and cpf is the fracturePpore compressibility. 

For most fractured reservoirs, ¢f « ¢m and c pm has the same 
magnitude as cpf giving: 

Swm 1 
Ceo = Co + Cw 1 _ S + c pm 1 S 

wm -wm 
(2.16) 

Since the fracture compressibility term is ignored, Eq. (2.16) is 
identical to the effective compressibility for oil in a conventional 
reservoir. 

2.6. Relative Permeability 

In a fractured reservoir, the evaluation of relative permeability 
curves is complicated because of the nature of the double porosity 
system. In the literature, the relative permeability of a given 
fractured reservoir is seldom examined, while the influence of 
heterogeneity within a porous medium on relative permeability has 
been studied in detail. 

The heterogeneity problem in rock was for a long time limited 
to reservoirs having a directional variation of permeability and 
its consequences on field behavior. Later, the reservoir hetero­
geneity was examined in relation to relative permeability. Among 
the various heterogeneities of a reservoir, the most significant 
are layering and fracturing. Figure 3 shows anomalous shaped 
relative permeability curves due to fracturing. The following 
discussion will be concerned with the relative permeability concept 
in fractured rock. 

Fractured reservoirs are often simulated with ordinary single­
porosity models. In this case, the relative permeability is 
adjusted to account for the effect of the fracturation. These 
relative permeability curves are called pseudo relative permeabil­
ities and are derived in different ways, such as from pilot test 
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b 

o IOO~o o 

Figure 3. Relative permeabilities for a) cores with fractures not 
parallel to flow b) cores with fractures parallel to flow. 

behavior, fractured cross section models, core permeabilities and 
fracturation data, or from laboratory experiments of a fractured 
model. Pseudo relative permeabilities will not be discussed further 
in this text. 

Fractured reservoir models need both matrix and fracture 
relative permeability relationships. Usually the matrix relative 
permeability is assumed to be a function of the saturation in the 
matrix only, and the fracture relative permeability is a function 
of the fracture saturation. The matrix relative permeability is 
obtained from laboratory experiments on core plugs. The capillary 
pressure in the fractures is in most cases assumed to be zero, and 
the relative permeability in the fractures is approximated to a 
linear function of saturation in the fractures. 

An interesting theoretical study of relative permeability in 
a fractured reservoir with non-negligible matrix permeability is 
presented by Braester (11). The basic principles of this model 
are: 

- In a fractured reservoir with dynamic pressure gradients not 
negligible compared to those occurring during imbibition, 
a certain fracture-matrix fluid exchange will take place 
besides the imbibition. 

- The wetting and non-wetting phases are circulating from the 
fractures into the matrix and back into the fractures in the 
zones saturated with water and oil phases, respectively 
(Figure 4). 

- Through such a model, the relative permeability becomes a 
function of saturation in the fractures as well as in the 
matrix. 

The flow is considered continuous flow in both matrix blocks 
and fractures. 
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Wetting 

Nonwetting 

Figure 4. Schematic flow model [after Braester (11)]. 
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-

Based on this model, the shape of the relative permeability 
curves will be as indicated in Figure 5. These curves are calculated 
from relative permeability relationships motivated by similar equa~ 
tions suggested by Brooks and Corey (12): 

k 
~ + (1 
k 

(2.17) 

where; k2 is the permeability of fracture network, k is the total 
permeability of the porous fractured system, Sw1 is the water 
saturation in the matrix, and Sw2 is the water saturation in the 
fractures. 

The interpretation of the curves in Figure 5 is as follows: 

- In point A, the matrix block water saturation and the fracture 
water saturation are equal to 1 and krw = 1. 

- In point B, the water saturation in the blocks is zero and 
the water saturation in the fractures is 1, giving a low krw . 

This low relative permeability at point B, krwB' can be derived 
for an idealized fractured matrix system of cubic blocks as shown 
in Figure 6. 

k2 
krw = k for Sw1 0, Sw2 1 (2.18a) 
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Figure 5. Relative permeability of a matrix-fracture reservoir 
unit (after Braester (11)]. 
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Figure 6. Idealized matrix/fracture system. 

Table 3. Displacement processes in a fractured reservoir (after 
van Golf-Racht (45)]. 

Fluid saturation 
Wetting phase Oil Displacement 

Matrix Fracture in matrix Process 
Case Block network 

1 oil water water imbibition 
2 oil water oil drainage 
3 oil gas oil drainage 
4 gas water water imbibition 
5 water oil water drainage 
6 water gas water drainage 
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where 

(2.18b) 

k (2.l8c) 

giving 

(2.19) 

Figure 7 shows the variation of krwB for different block and 
fracture parameters. For given values of matrix permeability and 
block dimensions, any reduction in fracture width considerably 
reduces the values of krwB ' 

The application of the model of Braester (11) will require a 
method for deriving relative permeability relationships (as suggested 
in Eq. (2.17)) for a given fractured reservoir. 

k I rw 
B 

Figure 7. Variation of krw/B vs. width w(~m) for various block and 
fracture parameters (a in cm and km in mD). 
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2.7. Capillary Pressure 

The definition of capillary pressure is 

(2.20) 

where subscripts nw and w represent non-wetting phase and wetting 
phase respectively. 

In a fractured reservoir, the capillary pressure curve plays 
a very important role since capillary forces contribute to the 
imbibition displacement process and oppose the drainage displacement 
process. The relationship between the fluid saturating the matrix 
block and the fluid saturating the fracture will determine the type 
of process (drainage or imbibition) taking place during production 
(Table 3). 

An idealized element of a fractured rock is shown in Figure 8 
with the matrix saturated with oil and partially or completely 
submerged in water or gas. In this case, two sets of forces will 
playa role in the displacement process: 

Gravity forces due to the difference in densities between 
oil and water (or gas), and 

- Capillary forces due to the interaction of surface forces 
within the pores. 

The difference in pressure which leads to this displacement is 
(39): 

(2.21) 

where; X and x are distances defined in Figure 8. Pw' and Po are 
the water and oil specific gravities. 

where 

The flow rate per unit cross section is given by Darcy's law: 

u = 
~w x 

bpw' bpo 

kw' ko' ~w' ~o 

a 

(2.22) 

Pressure drops in water and oil bearing zones 

Permeabilities and viscosities of the two 
phases 
Typical vertical dimension of the matrix 
element 
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Figure 8. Illustration of fluid distribution in schematic fractured 
system [after Braester (11)]. 

It follows that: 

(2.23) 

The velocity of the oil/water contact in the matrix is related 
to the flow rate by 

(2.24) 

where; Siw is the irreducible water in the matrix and Sor is the 
residual oil in the matrix. 

Combining these results leads to a differential equation for 
x (assuming X a). 

(pw - po)a . g + Pc 

(1 - Siw - Sor)¢m 
(2.25) 

For an element of matrix suddenly completely immersed in water 
with the same mobility as oil (kw/~w = ko/~o)' we get the following 
expression for oil production per unit cross section: 
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u = o ~o a 
(2.26) 

The condition for oil expulsion in the case expressed by Eq. 
(2.25) is: 

(2.27) 

As observed, this inequality is dependent on block size, capillary 
pressure, and matrix wettability. 

For the case of oil and water in a water wet matrix, both the 
gravity and imbibition terms are positive. In an intensely fractured 
water wet rock (as for some of the chalk reservoirs in the North 
Sea), the gravity term becomes negligible, and the process becomes, 
for practical purposes, capillary imbibition. For an oil-wet matrix, 
the displacement is only possible if the gravity force overcomes 
the threshold capillary pressure Pd: 

(2.28) 

Note that oil cannot be displaced from the matrix by water in an 
intensely fractured oil-wet reservoir with discontinuous matrix 
blocks. The equation for oil production from a matrix block saturated 
with oil and suddenly surrounded by gas will be: 

~o a 
(2.29) 

where Pg is the gas density. The requirement for oil production 
will be analogous to the oil-wet oil-water case: 

(2.30) 

As observed from these conditions for oil production, the choice 
of which fluid to inject depends on the matrix dimension a. A good 
geologic description is therefore important when planning fractured 
reservoir development. 

Oil production from matrix blocks is frequently described by 
transfer functions or imbibition curves. The term imbibition curves 
is of course strictly correct only in the case of negligible gravity 
effects. These curves represent the produced oil as a function of 
time, and can be derived either mathematically or experimentally. 
The next chapter will discuss these recovery curves more in detail. 
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3. THE IMBIBITION PROCESS 

This section is devoted to two items: 

1) A brief summary of proposed theoretical models for descrip­
tion of fractured reservoir behavior, and 

2) Experimental studies on capillary imbibition. 

The purpose of the presentation of fractured reservoir models 
is to describe the importance of experimental imbibition data of 
the type presented in this work. 

3.1. Introduction 

In the last two decades, advancements in the understanding of 
fractured reservoirs have been reported in various areas such as 
geology, reservoir description, flow toward the well, reservoir 
mechanisms etc. The text book of van Golf-Racht (45) on the subject 
presents a comprehensive discussion on most aspects of fractured 
reservoir behavior. This literature survey is limited to presenting 
the main concepts of the models and will specifically discuss the 
imbibition part of the models. 

Barenblatt, Zheltov and Kochina (4) laid a general foundation 
for studies of flow behavior in fractured systems with the following 
principles: 

1) The interconnected system of fractures and blocks are over­
lapping continua. 

2) Two sets of parameters are established at each mathematical 
point. 

3) Flow takes place through each medium. The exchange of 
fluids between fractures and blocks is accounted for by a 
source/sink function in the conservation of mass equation. 

The horizontal flow and conservation of mass equations of an 
incompressible fluid are: 

+ k. 
u. = - ~ 'ilp. (3.1) 

J ]l J 

a~j + 'il.~J. + (-l)(l+j).u* = 0 
at 

+ 

(3.2) 

where u is flux, k is permeability, ]l is dynamic viscosity, ~ is 
porosity, p is pressure, and u* represents the transfer of fluid 
between blocks and fractures. Subscript j = 2 denotes the medium 
of fractures and j = 1 denotes the matrix blocks. The source 
function u* derived by Barenblatt, Zheltov and Kochina (4) from 
dimensional analysis considerations is: 
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u* (3.3) 

where a is a dimensionless characteristic parameter of the fractured 
rock. The source function is defined positive for transfer of liquid 
from blocks to fractures. 

A number of models developed to describe flow towards a well 
in a fractured rock are based on Barenblatt's concept on single 
phase flow. These models, like Warren and Root's (47) are widely 
used to interpret transient pressure data in fractured reservoirs. 
The transient models also became the starting point in the investiga­
tion of multiphase flow in fractured reservoirs. 

This section is limited to the water-oil displacement process 
by capillary imbibition. The imbibition process will be emphasized, 
but in order to demonstrate how complex a general mathematical model 
for two-phase flow is, two such models will be discussed. These 
models involve several parameters that cannot be determined 
experimentally. However, it is worthwhile studying this theory in 
order to grasp the important flow properties. 

Bokserman, Zheltov and Kocheshkov (10) generalized the continuum 
approach for one-phase, incompressible flow to flow of oil and water. 
The conservation of mass and the Darcy equations are: 

~2 
aSw2 

+ + + u* 0 at v. uw2 w (3.4) 

- ~2 
aS02 

+ 
+ 

+ u~ 0 
at v.uo2 (3.5) 

+ k2krw2 (Sw2) 
uw2 V ¢ 

~w 
(3.6) 

+ k2kr02 (S02) 
u02 V ¢ 

~o 
(3.7) 

In these equations, the subscripts 0 and w represent oil and 
water, respectively. S is saturation, kr is relative permeability, 
t is time, and ¢ is fluid flow potential (datum pressure). 

This model is based on a medium in which the permeability of 
the blocks can be neglected in comparison to that of the fracture 
network. Since the volume of the fracture network normally is very 
small compared to the matrix volume, it is assumed that the total 
amount of water entering the fractures is consumed in the imbibition 
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of the blocks. In incompressible flow, the volume of water entering 
the blocks equals the volume of oil produced in the fractures, and 
therefore u~ = - u: = lu*l. From the results of imbibition laboratory 
experiments performed by Mattax and Kyte (34), Bokserman, Zheltov 
and Kocheshkov (10) obtained the following source function: 

u* = (3.8) 

where, Sv is volume based specific surface area, a is interfacial 
tension, and e is the contact angle. The expression inside the 
parenthesis is dimensionless time. Bokserman used this model to 
describe the flow behavior in the case of a moving imbibition zone, 
as shown in Figure 9. 

Other theoretical works on multiphase fracture flow include 
works on Barenblatt (5) and Braester (11). Barenblatt formulates 
the immiscible gas-oil flow for each continuum, and flow between 
the matrix blocks and the fractures is accounted for by a source 
function based on Darcy's law. In contrast with Barenblatt's model, 
Braester considered the flow to be governed by a single macroscopic 
pressure gradient. Braester's source function is defined in terms 
of the potential gradient in the fractures, the capillary-pressure 
difference between the liquid in the fractures and the matrix blocks, 
and the density difference between liquid phases: 

u* (3.9) 

where, L is the characteristic length of the block, ~p is the density 
difference between oil and water and F2 (Sw2) and Fl(Swl) are functions 
of saturation in fractures and blocks, respectively. 

W ATE R c:::zC> 

Imbibition Is 

completed 

Imbibition 

In progress 

Figure 9. Water imbibition in fractured rock. 

OIL 

=>+ 
WATER 
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This source function was developed by Bear and Braester (7) by 
using a conceptual model of matrix made up of a bundle of randomly 
oriented capillary tubes. 

3.1.1. Theoretical studies 

This subsection is concerned primarily with imbibition aspects 
of the flow mechanism in the matrix rather than with the total flow 
problem in the fracture-matrix system. The literature discussed is 
therefore concentrated on simplified dynamic models describing the 
flow in a matrix block surrounded by water. The main attention has 
been given to the forces involved in the process and the oil recovery 
obtained by spontaneous imbibition. 

Bear (8) defines the imbibition process as the spontaneous 
displacement of the non-wetting fluid by the wetting fluid due to 
surface tension. As increasingly better lithological descriptions 
have been made of the reservoirs, it has become obvious that imbibi­
tion phenomena which were once considered laboratory curiosities 
are of practical importance. Serious studies of the imbibition 
process in reservoir engineering were initiated by the rapid decline 
of oil productivity of wells in the Spraberry Field in West Texas 
(13,18). Field data alone proved to be inadequate for the investiga­
tion of imbibition, so a number of theoretical studies have been 
undertaken to provide the understanding of the parameters involved. 

Only a few studies have been aedicated to three dimensional 
exchange of oil and water in a single matrix block. Most of the 
theoretical approaches and mathematical models describe simplified 
flow patterns in partially sealed matrix blocks. In addition, 
numerous studies have been performed on fundamental capillary 
behavior both in petroleum engineering and other disciplines, but 
these publications will not be discussed here. 

Blair (9) solved the system of equations used by Douglas, 
Peaceman and Rachford (17) for a cylindrical block which was sealed 
at the top and bottom. He investigated the influence of the 
viscosity, the initial saturation of water, and the length in the 
one-dimensional case. A study of recovery behavior by using this 
model requires data from capillary pressure and relative permeability 
tests, which are more time consuming to perform than the imbibition 
test itself. Blair showed that the time required to imbibe a fixed 
volume of water is proportional to the square root of the oil 
vlscosity whenever ~o > ~w· 

Aronofsky, Masse and Natanson (3) suggested an abstract model 
based on the variation of recovery with time during the imbibition 
process. They assumed that the oil production from a small volume 
is a continuous monotonic function of time, and that it converges to 
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a finite limit. The second basic assumption is that none of the 
properties which determine the rate of convergence change 
sufficiently during the process to affect this rate or the limit. 
Aronofsky, Masse and Natanson (3) suggest a function of the form 

(3.10) 

where R is recovery of oil in % of original oil in place, 8 is a 
constant giving the rate of convergence, and Roo is the limit towards 
which R converges. 

As mentioned previously, Bokserman, Zheltov and Kocheshkov (10) 
introduced a matrix block imbibition recovery function, 

(3.11) 

where tn is dimensionless time and c is a constant (refer to Eq. 
(3.8)). This expression is similar to experimental results obtained 
at very low mobility ratios. Bokserman, Zheltov and Kocheshkov (10) 
assumed that the oil released by the matrix blocks was transferred 
instantly to the water-oil interphase. In this way, they suggested 
a total flow model where the oil production is an additive function 
of individual block contributions. This may be a sound description 
in large vertical fractures were oil segregates easily, but probably 
not as good in a system of microfractures where varying saturations 
in the fractures may affect the imbibition rate. 

Braester (11) introduced a method that accounted for the effect 
of varying saturation in the fractures on imbibition. This was 
done by using relative permeability relationships which were 
functions of both matrix and fracture saturations. His relative 
permeability relationships are discussed in section 2.6. The 
source function used in Braester's model is Eq. (3.9). The model 
may be useful for predictions after finding parameters to match 
observed oil and water productions. 

Kleppe and Morse (29) studied the flow behavior in a matrix­
fracture system both experimentally and numerically. Their numerical 
solution was based on flow and continuity equations for the oil 
and water, and capillary pressure and relative permeabilities were 
computed at every grid block. They found that for Kf higher than 
km, the recovery was rate sensitive. This was coherent with what 
has been found previously, but for fracture capacity approximately 
one tenth the matrix flow capacity, the effect of the rate was 
negligible. Some results on water-oil ratio vs. recovery for 
different kf/km, as well as the effect of length in the vertical 
direction, were also discussed in this chapter. 
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de Swaan (16) used the experimental and numerical results of 
Kleppe and Morse to test an analytical model with a new feature. 
Based on the rate of imbibition function given in Eq. (3.10), 
de Swaan obtained a model that accounted for varying saturation 
around the blocks. The blocks downstream in a reservoir subjected 
to waterflood are necessarily exposed to a varying water saturation 
resulting from the water imbibition of the upstream blocks. De 
Swaan transformed Eq. (3.10) to the following form: 

* Roo -t/T 
ub = T e (3.12) 

where ub* is the transfer of fluid between block and fractures, and 
T is the time necessary to produce (I-lIe) = 0.63 of the maximum 
recoverable oil (Roo). When this matrix block function is known for 
100% water environment, the matrix block behavior for varying water 
saturation at the block surface is given by a convolution. The rate 
of imbibition per unitary fracture length is: 

(3.13) 

o 

de Swaan concluded that the decaying exponential function is an 
adequate description of the water imbibition in matrix blocks, based 
on the good agreement with both experimental and numerical results 
found in the literature. 

3.1.2. Experimental studies 

A number of experimental studies have been performed on the 
imbibition process in a single matrix block. Since the various 
authors use very different experimental models and procedures, a few 
characteristics of the various investigations are presented in Table 
4. 

One of the earliest experimental work on imbibition was the 
study of Brownscombe and Dyes (13) related to the Spraberry field. 
They noticed that the oil recovery was dependent on the boundary 
conditions. The rate of imbibition is suggested to be proportional 
to the square root of permeability, since permeability is propor­
tional with the square of the pore size. Their experimental results 
do not confirm this statement. 

Graham and Richardson (24) performed a laboratory investigation 
of imbibition using a triangular block of fused quartz. They studied 
the scaling laws and the relation between the rate, the surface 
tension, and the fracture permeability. The experiments demonstrated 
that the lower the injection rate into the fractures, the greater is 
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the oil recovery for a given amount of water injected. By solving 
the basic flow equations, they recognized that the rate of imbibition 
is proportional to a, (k)~, f(8) (a function of wettability) and 
depends on the fluid viscosities and the characteristics of the 
rocks. 

Mattax and Kyte (34) discussed the experimental simulation of 
the imbibition phenomenon, and verified the scaling laws of Rapoport 
(38) in this case. They used the dimensionless parameter 

af(8) (k/~)~ 
V L2 w 

. t (3.14) 

Their experimental results showed that a single correlation is 
obtained in each case, regardless of the viscosity level of the 
fluids and the dimensions and permeability of the porous medium. 

The scaling laws were also verified by Parsons and Chaney (36), 
who simulated in the laboratory a rising water table. They found 
that the imbibition behavior of an oil saturated rock sample sub­
jected to a slowly rising water table can be synthesized from total 
immersion imbibition tests on small samples. In most cases, imbibi­
tion behavior is adequately described by the values of the maximum 
recoverable oil for the given rock type. 

Iffly, Rousselet and Vermeulen (26) investigated the effect of 
composition of the rock and fluids on the water imbibition. They 
concluded that experiments carried out with fluids and/or cores 
different from those of the investigated field are meaningless, 
except in very particular cases. The imbibition experiments on 
siltstone also indicated that oil recovery decreases as the carbonate 
and organic matter content increases. In the experiments, a 
naphtenic oil was used and this oil has a great affinity to carbonate 
material and kerogenic clays. They also checked the experimental 
results with the recovery relationships given in Eqs. (3.10) and 
(3.11); Eq. (3.10) gave the best correlation. 

The role of capillary-gravity ratio, CGR, was discussed by 
Iffly, Rousselet and Vermeulen (26) based on experimental results 
from imbibition tests on cores with different size and properties. 
The CGR was expressed as 

CGR 
a.f(8) (~/k)~ 

~p.g.h 
(3.15) 

where h is height of core. The basic conclusion is that recovery 
time decreases with decreasing CGR.Lefebvre du Prey (32) confirmed 
this conclusion in experiments similar to those performed by Iffly, 
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Rousselet and Vermeulen. du Prey also compared centrifugal and 
conventional imbibition results for various CGR values. His results 
indicate that centrifuge tests on small samples are not reliable for 
reproducing the recovery curve of a big matrix block. This is 
explained by du Prey by the fact that above a certain gravity level, 
the local properties of two-phase flow change. Kyte (31), who 
introduced the centrifuge test for predicting matrix block recovery, 
did not notice this divergence between theory and experiment at high 
centrifugation speed. The problem of scaling laboratory imbibition 
data to field conditions is very complex, and several research 
programs are now devoted to this subject. 

As discussed earlier in this literature review, the flow 
conditions in the fractures surrounding the blocks may affect the 
imbibition behavior. Graham and Richardson (24) performed the first 
study on this problem, and Kleppe and Morse (29) performed both 
experimental and numerical investigation of the effect of the 
boundary conditions around the blocks. The parameter conductivity 
ratio defined as, 

kf 
CR = -- (3.16) 

km 

was used in the analysis, and the following conclusions were obtained: 

1) Ultimate oil recovery is greatly affected by production rate 
at CR > 1, and 

2) For CR < 0.1 the effect of production rate on oil recovery 
is negligible. 

Kazemi and Merill (28) performed experimental work on artificially 
fractured sandstone cores. They injected water into the fracture 
only, and observed oil production and breakthrough time in relation 
to injection velocity and capillary pressure. The data indicated 
that at low water velocities, imbibition caused the water to advance 
through the matrix faster than it did through the fracture. At high 
water velocities or at low capillary pressures, water breakthrough 
in the fractured rock occurred much sooner than in unfractured rock. 
Kazemi also observed that the final oil recovery by pure imbibition 
and forced displacement is nearly the same in Berea sandstone. 

Mannon and Chilingar (33) studied the effect of water injection 
rate on imbibition rate using a laboratory model consisting of a 
horizontal slab of Berea sandstone sealed on all sides but one. 
A fracture was created by placing an aluminum plate across the 
open sand face, and as water moved in the fracture, linear counter­
current imbibition occurred. They found that the higher the rate 
of water injection, the greater the imbibition rate and ultimate 
oil recovery. The laboratory model used by Mannon and Chilingar is 



580 

very similar to Graham and Richardson's (24) model, but the results 
are not quite in agreement. Graham and Richardson found that the 
higher the injection rate, a greater amount of water was required 
to be injected to produce a given amount of oil. Mannon and 
Chilingar also indicate that viscous forces may be operative in 
Graham and Richardson's model under certain conditions, and therefore 
less suited for pure imbibition studies. 

3.1.3. Scaling of experimental data to field conditions 

Laboratory imbibition experiments must be performed according 
to certain scaling requirements to obtain results directly applicable 
in the reservoir. As discussed previously in the literature review, 
various dimensionless parameters have been tested with respect to 
scaling of imbibition experiments. The following is a general 
discussion of the flow equations and the various forces involved. 
Since the relative importance of the various forces affects the 
displacement process considerably, the experimental conditions must 
be designed to obtain the correct ratios between forces. 

The continuity equations and the flow equations for water and 
oil can be written as follows: 

(3.17) 

(3.18) 

+ ko 
Uo - - (grad Po - pog) 

110 
(3.19) 

+ k w 
(grad Pw - Pwg) Uw 

I1w 
(3.20) 

In the case of water displacing oil from a matrix block of 
height a (as shown in Figure 10), Eqs. (3.19) and (3.20) will become 

k ClPo 0 
(~ - Pog) 

110 
(3.21) 

k Clp 
w w 

- P g) (az 
I1w w (3.22) 
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Figure 10. Water advancement in matrix block. 
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In the following, the Leverett J function is assumed to be the 
correlating function for capillary pressure. In addition, by 
introducing an intermediate pressure between oil and water (p) and 
an arbitrary constant, b, the following relationships for oil and 
water pressure are obtained: 

p + bocose(~/k)~J(Sw) 

p + (b-l)ocose(~/k)~J(Sw) 

The velocities, uoz and uwz ' and the front height, z, can be 
transformed to dimensionless terms as follows: 

t 
0 

uozD uoz • a uoD 

t 
0 

uwzD uwz a uwD 

zD ~ 
a 

where the time for frontal advancement from z 
denoted to. 

o to z 

The combination of Eqs. (3.21) - (3.24) gives: 

a is 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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ko [op + bacose(<P/k)~ oJ dSo 
- pog] uoz 

)10 Oz oSo dz 
(3.28) 

k 
[~+ (b-l)acose(<P/k)~ oJ 

dSo w 
- pwg ] u =-

oSo dz wz )1w oz 
(3.29) 

By introducing the dimensionless terms uozD ' uwzD and zD in Eqs. 
(3.28) and (3.29), the following dimensionless expressions are 
obtained: 

uozD 
)1w 

b 
)10 

(3.30) 

k pt 
o (w 0) _ (b-l) ( 

oZD )1wa2 

(3.31) 

From these equations, the following important dimensionless groups 
for scaling the displacement processes are observed: 

1) 

2) 

3) 

associated with injection pressure 

k t acose(<P/k)~ 
w 0 

associated with capillary forces 

k t lIpg w 0 
associated with gravity forces. 

To express the dimensionless parameters as velocity ratios, the 
following velocities are defined: 
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1) Front velocity: 
a 

u F t 
(3.32) 

0 

k lip. . 
2) Injection velocity: u. 

w :In] 
:lnj ].J a 

w 
(3.33) 

k ocos8(¢/k)~ 
3) Capillary velocity: 

w 
u 

c ].J a 
w 

(3.34) 

k lIpg 
4) Gravity velocity: 

w 
uG 

].Jw 
(3.35) 

Table 5 presents dimensionless parameters for each of the forces 
acting in a displacement process of the type discussed here. The 
relative importance of the forces is a key factor in scaling problems. 
From the equations derived in this subsection, Table 6 was obtained. 
This table shows two and two forces combined as dimensionless ratios. 

3.1.4. Conclusions 

The important ideas found in the different studies can be 
summarized as follows: 

1. All authors agree that imbibition is the most important mechanism 
in the displacement of oil by water in fractured reservoirs. 

2. The gravity forces and viscous forces can be very important 
depending on the characteristics of the matrix blocks and the 
fluids. 

3. The boundary conditions existing at the surface of the matrix 
blocks are important. 

4. Recovery versus dimensionless time has shown interesting 
similarity between theoretical analysis and experimental results. 
But due to rock heterogeneity and unknown effects of lithology 

5. 

6. 

and fluid characteristics, laboratory experiments on the reservoir 
system are the only valid method for predicting imbibition 
recovery. 

The present theory on imbibition states that the imbibition rate 
is in addition to being time dependent proportional to k~, ¢-~, 
exposed matrix area, fluid characteristics, and rock-fluid 
interaction relationships. 

The major shortcoming of the numerical models for simulation 
of the imbibition production mechanism is the relative 
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Table 5. Single forces expressed as dimensionless groups. 

SINGLE FORCES EXPRESSED AS DIMENSIONLESS GROUPS 

Forces Expressed as Expressed as func- Expressed as 
in equations tion of pressure velocity ratio 

Pressure ~L1pto ~to u O 

L1P ~ 
~ a 2 ;az uF w w 

Capillary ~toacose(¢/k)~ ~to Uc 
a 2 ~ Pc uF ~w ~w 

Gravity ~L1pgto uG 

~ a w 
uF 

Table 6. Combined forces as dimensionless groups. 

Capillary/ 
gravity 
ratio 

Gravity/ 
pressure 
ratio 

Pressure/ 
capillary 
ratio 

COMBINED FORCES AS DIMENSIONLESS GROUPS 

Expressed as in equations 

(k t acose(¢/k)~)/~ a 2 
wow 

(k L1pgt )/)1 a 
wow 

(k L1po ot )/~ a 2 
w 1nJ 0 w 

(k L1po ot )/~ a 2 
w 1nJ 0 W 

Expressed as function 
of pressure 

L1pg 

L1P 0 0 ,+, 1 
_-=1:..:.:n:,LJ (f) 2 

acose I\. 
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permeability concept. 

7. The development of a general relationship between fluid-rock-, 
rock-fluid interacting parameters and imbibition is considered 
nearly impossible. This task will require a correct micro­
description of the rock and the nature of the physico-chemical 
relations between rock and fluids. 

8. Both experimental and numerical techniques should be further 
developed through comprehensive studies on various reservoir 
systems combined with basic research on capillary behaviour, 
wettability, pore structures, and multiphase flow. 

3.2. Experimental Studies 

Four different experimental studies will be discussed in this 
section: 

1) Imbibition in chalk plugs from the Ekofisk Field in the 
North Sea; 

2) Imbibition in rock samples of various sizes and shapes; 
3) Imbibition in core plugs with various boundary conditions; 

and 
4) Imbibition in matrix blocks containing microfractures. 

Each study will be presented in the following format with respect 
to procedures, data, experimental program, and results. A subsection 
on numerical simulation of laboratory experiments is also presented. 
An overall discussion of the experimental studies will conclude this 
section. 

3.2.1. Ekofisk imbibition study 

The objective of this work was to investigate the capillary 
imbibition in cleaned Ekofisk Field chalk samples. Wettability 
tests, imbibition tests, and rock property measurements were 
performed. The plugs were extracted by alternating toluene and 
methanol until no more contamination (colour) was observed in the 
solvents. The plugs were then dried, evacuated, and saturated with 
simulated formation water. Irreducible water saturation was 
obtained by centrifuging the plugs in oil. This water saturation 
will be denoted initial water saturation in the following, since 
this was the water present at the start of the imbibition experiments. 
The majority of the plugs was also investigated with respect to the 
Amott (2) type wettability test. Details about the procedures are 
given by Torsaeter (43,44). 

The reservoir rock in the Ekofisk Field is confined to the 
Ekofisk and Tor Formations, both chalk formations with similar 
characteristics. However, the wettability and imbibition studies 
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revealed major differences between the formations. Water imbibition 
results for the Tor formation is shown in Figure 11, 12, and 13. 
All the core plugs included in these plots are completely water wet. 
Figure 11 shows the initial water saturation, Swi' as a function of 
porosity, where Swi was determined after centrifuging in oil. The 
water saturation change due to imbibition, ~Sw' versus porosity is 
shown in Figure 12. The final water saturation after imbibition, 
Swf' is the sum of ~Sw and Swi' and the plot is shown in Figure 13. 
This diagram shows that the resiQua1 oil saturation (1 - Swf) after 
water imbibition is essentially constant independent of porosity, 
averaging 37.3% of pore volume for the 40 plugs. 

The wettabi1ity of the plugs from the Ekofisk Formation varied 
from neutral to water wet, based on the Amott test. The imbibition 
of core plugs from Ekofisk Formation is therefore not only governed 
by the pore structure of the rock, but also by the wetting properties. 
A partial confirmation of this statement is seen in Figure 14, 15, 
and 16. Swi' ~Sw and Swf do not correlate with porosity the way 
the cores from the Tor Formation do. Extraction experiments indicate 
the difference in imbibition behavior of Tor and Ekofisk Formation 
is due to surface chemistry differences (43). 

3.2.2. Sample shape and boundary conditions 

The boundary conditions will affect the imbibition in core plugs. 
The experiments developed by various authors consider various 
geometrical and physical elements according to the objective of 
their study. The sample shapes are generally regular, i.e., 
cylinders, parallelepipeds, or cubes, and the samples may be sealed 
in order to examine the effects of flow in each direction (Figure 
17). 

The present experimental work can be divided into: 

1) Capillary imbibition in rock samples of various sizes and 
shapes, and 

2) Capillary imbibition in core plugs with various boundary 
conditions. 

The following procedure was common to all the experiments: 

1) The samples were cleaned in a Soxhlet extractor using 
methanol and toluene and dried. 

2) Each sample was weighed dry, then saturated with oil in an 
evacuated container, and weighed in air and oil. Pore 
volume and bulk volume then easily could be calculated. 
All experiments were performed without initial water 
saturation. 

3) The imbibition experiments were performed using imbibition 
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10, co - current 10, cCUlter - current 

oil 

water 

20 r, Z 30 x,y,z 

Figure 17. Dimensionality of imbibition experiments. 

cells as shown in Figure 18. At a fixed time, the sample 
was plunged into the water and at certain time intervals, 
the amount of oil produced was read. 

Imbibition in sampZes of various shapes: Three sets of samples 
were used: two sets of Berea sandstone, and one set of chalk from 
a Danish outcrop. Both regular and irregular geometrical shapes 
were used. Regular shapes facilitated simple measurements of surface 
area of the samples. The surface area of irregular samples were 
qualitatively estimated. 

All Berea samples as well as all chalk samples were assumed to 
have the same rock properties (porosity, permeability, capillary 
pressure curve, wetting characteristics, etc.), respectively. This 
was believed to be a valid assumption, because for both rock types, 
all the samples were taken from a small chunk of rock. Any variations 
in such small pieces of rock are normally negligible, and would not 
appreciably affect results in this study. The liquid permeability 
and porosity of the Berea were 0.3 ~m2 and 21.1% respectively. The 
chalk had a liquid permeability of 0.005 ~m2 and a porosity of 46.9%. 

In the experiments, the four regular geometric shapes of 
cylinder, triangular prism, cube, and parallelepiped were used. In 
addition, two irregularly shaped Berea samples were used. Figure 
19 and Table 7 show the shapes, bulk volumes, surface areas, and 
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displact>d oil 

core 1 

Figure 18. Imbibition cell with oil-saturated core plug. 

lj ~ rTIJ 
BEREA 
SET NO. 1 

~ @ 8 
------- --------

~ Gf? ~ 
CHALK 

~ 6d? 
---------------

~ ~ ~ BEREA 
SET NO. 2 

~ 
16 

'~ B 

Figure 19. Cores used for studying the influence of shape on 
imbibition 
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surface-to-volume ratios. A detailed description of the experiments 
is given by Fossberg (20). 

Figure 20 shows the imbibition recovery curves for the first 
set of Berea samples. The reproducibility of the results were tested, 
and this is shown in Figure 21. The results of the experiments on 
the second set of Berea samples are shown in Figures 22, 23, and 24, 
clearly comparing the imbibition versus shape. The chalk imbibition 
curves are shown in Figure 25. 

Imbibition with various boundary conditions: This part of the 
experimental work was performed to determine the effects of boundary 
conditions on capillary imbibition. Cylindrical core plugs of Berea 
sandstone were used. Three different boundary conditions for one­
dimensional imbibition, as shown in Figure 26, were investigated. 
Eleven plugs were analyzed; all plugs were taken from a small block 
of Berea sandstone. The absolute permeability of these samples was 
0.13 ~m2 and the porosity was 21.5%. 

To obtain one-dimensional flow, the sidefaces were coated with 
epoxy before saturating with paraffin. Imbibition experiments of 
type Al (Figure 26) were performed. The same plugs were then cleaned, 
the epoxy layers were removed, and new volume measurements were 
obtained. In this second set of experiments, both the sideface and 
one endface were coated with epoxy to obtain countercurrent imbibi­
tion of type A2 . 

it 
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Figure 20. Effect of shape on recovery. 
Recovery vs. time for the first set of Berea cores. 
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Figure 21. Effect of shape on recovery. 
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Figure 22. Effect of shape on recovery. 
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Recovery vs. time for the second set of Berea cores. 
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The third set of experiments are designed to obtain one­
dimensional co-current imbibition (type A3 ). In this case, water 
imbibes in one endface and oil is displaced through the opposite 
endface. This type of imbibition was obtained by using a 100% water 
wet chalk disc at the imbibing endface preventing oil to be produced 
at this endface. The oil saturated core plug with the water saturated 
chalk plate was submerged in water and oil as shown in Figure 27. 
The weight was recorded during imbibition, and imbibition recovery 
was calculated. 

A detailed description of the boundary condition tests is given 
by Johnsen (27). 

Imbibition recovery curves for eleven plugs are shown in 
Figures 28 to 31. Type Al and A2 boundary conditions have been 
applied on all samples, while type A3 only has been used on plugs 
no. 2 and 9. 

3.2.3. Imbibition in matrix blocks containing microfractures 

It is known that fractured reservoirs are formed by a series 
of matrix blocks as a result of intersection of "macrofractures 
network". But it may be expected that additional "micro fractures" 
are contained in the single matrix blocks, and their presence could 
modify the behavior of imbibition process. In fractured reservoirs 
in general, there are two types of fractures which could be defined 
as "macrofractures" and "microfractures". 

- Macrofractures are considered to be those fractures of large 
extension, significant width, and sufficient continuity to 
assure a complex network, which through their intersection 
is forming the matrix blocks. 

- Microfractures are, on the other hand, considered to be those 
small, discontinuous fractures whose extension terminates 
inside the single matrix block. Often those microfractures 
may form inside the matrix blocks an internal network of 
limited extension [Figure 32]. 

The imbibition experiments presented in the following were 
carried out for samples without microfractures and with microfractures 
in order to evaluate the contribution of these in the case of under­
critical rate of water table advancement (34). 

Figure 33 defines some simple models of matrix block containing 
microfractures. The effect of gravity was eliminated by keeping 
the water-rock contact at lower open face level. Some comments 
on each of these simple models are given below. 
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Figure 31. Effect of boundary conditions on recovery. 
Recovery vs. time for three different types of boundary 
conditions for core no. 9. 

Model A - Without microfractures. Since the block height is 
around 20 cm, the recovery-time relationship is expected to be 
strongly influenced by the fact that the capillary height is 
substantially higher than the block height. 

Model B - The horizontal micro fracture could contribute to 
additional spontaneous imbibition starting as soon as the water 
reaches that level. However, its effect is limited by the supply 
of water. 

Model C - Horizontal and vertical microfractures are here 
combined as a network. The effect of capillary imbibition developed 
by horizontal fractures could be accelerated by water supplied 
through vertical fractures of larger permeability than matrix. A 
requirement is that sufficient capillary pressure exists in the 
vertical fracture. 

Model D - More vertical fractures are present in the core and 
again provided that the capillary pressure in the vertical fractures 
is sufficient, an improved supply of water to the horizontal fracture 
is obtained, reducing the recovery time. However, an increased 
counterflow would take place which could reduce the effect. 
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Figure 33. Various configurations of simple micro-fractures in 
matrix blocks. 

The experimental procedure for the imbibition tests was as 
follows (6): The core samples were cleaned with solvents, dried, and 
saturated with brine. Absolute permeability to brine was determined. 
To obtain Swi' viscous oil was injected which was swept by the oil 
used in the experimental program. 

The fracturing of the sample was performed by keeping pore 
pressure at 0 bar gauge and the lateral pressure at 50 bar. Axial 
pressure was increased from lateral pressure value to a value 
resulting in about 0.3% axial compaction. 
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The imbibition apparatus is shown in Figure 34. Note that the 
bottom face is swept by a continuous horizontal flow of water. 

The core data and imbibition results are summarized in Table 8. 
The imbibition curves for core number 11, 13, 15 and 18 are shown 
in Figures 35, 36, 37 and 38. 

3.2.4. Simulation of laboratory experiments 

Simulation of imbibition in single matrix block systems may be 
conducted by means of conventional simulation models as reported by 
Kleppe and Morse (29) and Kazemi and Merril (28). Kvalheim (30) 
employed the model developed by Kleppe and Morse (29), and simulated 
imbibition experiments. The experimental procedure is described 
in section 3.2.1, and the experimental results of the core studied 
are reported by Torsaeter (43). 

The model grid system is shown in Figure 39, and the basic 
relative permeability and capillary pressure relationships may be 
found in Figures 40 and 41. 

Figure 42 reports oil recovery vs. time for the particular core 
sample under investigation. As can be seen, there is a wide 
discrepancy between the model recovery and the experimental results. 
One explanation of this discrepancy is that the basic relative 
permeability and/or the capillary pressure curves are in error. 
Therefore, attempts were made to simulate the system using modified 
curves. 

Modification of the relative permeability 
the measured values by a factor of 2, resulted 
the recovery curve, as is shown in Figure 42. 
factors were subsequently employed (not shown) 
improvements in the model recovery curve. 

curves by multiplying 
in modest changes in 
Larger multiplication 
without significant 

Next, the capillary pressure curve was modified in a similar 
fashion. The results of simulations using multiplication factor of 
4 and 8, respectively, are shown in Figure 43. As can be seen, the 
higher capillary pressures have significant effects on the recovery 
curve. No attempt were made to further match the experimental data. 
However, it is obvious that by modification of the shape and magnitude 
of the capillary pressure curve, a match may be obtained. 

The purpose of this section is not to discuss simulation of 
experimental systems in any detail, but to briefly discuss the 
effects of saturation dependent parameters on the model results. 
Based on the simulation results presented above, one may include 
that inaccuracies in relative permeability curves will not have 
significant effects on the simulation results of imbibition in rock 
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Figure 34. Schematic imbibition apparatus [after Barroux, van 
Golf-Racht and Mikkelsen (6)]. 

samples. However, capillary pressures are of outmost importance. 
Before application of simulated matrix/fracture imbibition flow 
data in dual porosity models, as discussed in the next chapter, one 
should therefore carefully examine the measured capillary pressure 
curves. 

3.2.5. Discussion and conclusions 

Ekofisk imbibition study: The experiments have brought light 
upon several aspects of the imbibition behavior of chalk from the 
North Sea. The porosity correlations in the Tor Formation and the 
wettability results of the Ekofisk Formation are especially 
interesting. Two questions arise from the porosity correlations: 
Why is porosity the correlating parameter, and what causes the 
residual oil saturation to be constant in the Tor Formation? 

1) Permeability or permeability-porosity relationships did not 
give satisfactory correlations with residual oil saturation. This 
could be caused by errors in measuring the extremely low permeabil­
ities in chalk and/or the effects of microheterogeneities in the 
core plugs. Porosity alone was by far the best correlating parameter 
in the Tor Formation. However, a linear relationship between 
porosity and average pore throat size has been observed, so combined 
with results of Figure 11, the initial water saturation increases 
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Figure 39. Model grid for simulation of imbibition in cylindrical 
core. 
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Figure 41. Capillary pressure curves. 
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with decreasing pore throat size. 

2) Pore parameters are the key to the answer of the second 
question, since fluid parameters, wettability, and boundary conditions 
were unchanged in the experiments. The main pore parameters affecting 
trapping of oil are: pore to throat size ratio, the degree of 
heterogeneity in the arrangement of pores, throat to pore coordination 
number, and the properties of the pore surfaces which include compo­
sition and degree of roughness. Heterogeneities in pore structure 
are not pronounced in chalk of the Ekofisk type, but microfractures 
are observed. These microfractures have a significant effect on 
permeability, but their influence on the residual saturation after 
imbibition is not known. The coordination number, i.e., the number 
of channels connecting each pores, is affecting the trapping of oil. 
Wardlaw (46) suggests that a low coordination number results in high 
residual non-wetting phase saturation. But due to the difficulties 
in quantifying coordination number, the relative importance of the 
coordination number as one of several variables affecting recovery 
is not presently known. The surface roughness of pores in reservoir 
rock varies greatly from the smooth crystal surfaces of some 
dolomites, to the pitted or clay-coated surfaces of many sandstones. 
However, in the Ekofisk Field chalks, the variation in surface 
properties is minor. This is also confirmed by the relatively 
constant specific surface area measured in this rock (1-2 m2 /g). 
This discussion has eliminated most pore parameters, except the pore 
size to pore throat size ratio, as an important factor in trapping 
mechanism in chalk. 

Pore throat size distributions were determined on several core 
plugs using mercury porosimetry. The average throat size (DSO) is 
defined as the throat size at which SO% of the actual pore volume 
is saturated with mercury. From scanning electron microscopy (SEM), 
pore size (Dp) distribution curves were determined, and the pore 
size to pore throat ratio was calculated and found to be nearly 
constant for all plugs analyzed. 

The fact that the residual saturation after imbibition was 
close to constant indicates that the chalk samples have a common 
property, independent of porosity. A combination of several factors 
may be the reason, but there seem to be strong indications of the 
Dp/DSO ratio being an essential parameter. 

The experiments on the Ekofisk Formation core plugs revealed 
that the imbibition behavior in this formation is governed by wet­
tability variations more than by pore characteristics. The wetting 
properties of this rock seems to be very complex, and the imbibition 
recovery is unpredictable. A discussion of analytical investigations 
for characterization of chalk surfaces and wettability is outside 
the scope of this chapter. 



611 

The conclusions of the Ekofisk imbibition study are: 

1) In a water wet chalk, like the Tor Formation, the imbibition 
oil recovery can be correlated with porosity, and 

2) In a chalk formation of complex wetting properties, like 
Ekofisk Formation, imbibition oil recovery can not be 
correlated with rock properties. 

Sample shape and boundary conditions: The preceding description 
of the laboratory work shows that the experimental procedures are 
relatively simple. The errors in volume and weight measurements 
should not affect the main conclusions of the experiments. However, 
a more quantitative analysis of these phenomena will require larger 
samples, and the samples must have exactly the same properties. In 
the present work, small inhomogeneities in the rock material can be 
the reason for some of the unexpected effects. 

The study of the effect of geometric shape on imbibition 
indicates that larger surface areas (given a constant volume) yield 
faster recoveries. The second run on the Berea samples was much 
like the first one, indicating good reproducibility. Sample No. 2 
behaves unexpectedly , but this may very well be due to rock 
inhomogeneities or wetting alterations in this particular piece of 
rock. 

A quick glance at the results of the final three Berea sample 
pairs (Figures 22, 23, and 24) will confirm the trend obtained on 
the first Berea samples. An interesting point, though, is that the 
largest sample pair imbibed the quickest and the smallest pair the 
slowest. This is opposite of what one should expect. One explana­
tion may be countercurrent imbibition. It could also be due to 
minute air bubbles on the surface blocking imbibition. This would 
have a larger effect on the small samples, relatively speaking. 

The chalk samples imbibed very fast. The difference in time 
to reach a given recovery between the samples is small. Therefore, 
no conclusions regarding these results are offered. 

Systematic studies of imbibition behavior for various sample 
geometries may be a contribution to solve the problem of scaling 
laboratory experiments to field scale. However, in practice, due 
to lack of information, matrix blocks in fractured reservoirs will 
most likely be approximated by a simple shape. Laboratory experi­
ments will therefore be performed on simple shapes, and the scaling 
of laboratory tests is considerably reduced. Most fractured reser­
voirs are modeled with parallelepipedic blocks. An interesting 
study would therefore be to do laboratory experiments on imbibition 
in parallelepipedic shapes to determine the application of the 
Warren and Root (47) type geometric factor to the scaling of 
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laboratory experiments to reservoir conditions. 

The study of boundary conditions and imbibition recovery rate 
show distinct trends, even though a considerable spreading in 
imbibition rate is observed for samples with the same boundary 
condition. This spreading is probably due to variations of per­
meability and porosity of the core and to slight variations in 
wettability. Trivial laboratory procedures, such as how the samples 
are shaken before the produced volumes are recorded, may also affect 
early time imbibition data. 

The results also show that the total oil recovery after imbibi­
tion is nearly constant, averaging 50% for all three boundary condi­
tions. Comparing type Al , AZ and A3 boundary conditions the 
following is observed: 

The rate of imbibition is higher for samples with two open 
endfaces (Al ) than for samples with only one open endface 
(AZ); and 

- Type A3 boundary conditions will give co-current imbibition, 
since no oil is produced at the water imbibing endface. Type 
Ai' AZ and A3 are compared in Figures 30 and 31. As seen, 
the imbibition rate of the sample with co-current flow is 
slower than the imbibition of type Al . This is probably 
mostly due to larger imbibition area in type Al samples than 
in A3 samples. 

The conclusions from this study can be stated as follows: 

1) The imbibition recovery versus time relationship is a complex 
function of shape and volume. The imbibition recovery rate 
increases with increasing surface area given a constant 
volume; and 

Z) Imbibition recovery rate of core plugs is dependent on the 
type of boundary condition. Core plugs with two endfaces 
open for imbibition have a higher recovery rate than core 
plugs with one endface open for imbibition. The rate of 
imbibition for co-current flow is similar to the rate of 
imbibition for cores with two endfaces open for imbibition. 

Imbibition in matrix bloaks aontaining miarofraatures: The 
imbibition recovery versus time relationships for non-fractured and 
fractured samples presented in Figures 34-37 are commented on in the 
following. 

Sample 11 on Figure 35 shows an extraordinary improvement of 
imbibition after fracturing. Imbibition time necessary to reach 
50% of total recovery (to 5R) was reduced from 340 hours to 51 hours. 
The result seems to correspond to model C case. Sample 13 (Figure 36 



613 

was broken in two samples, and a different recovery-time relationship 
is observed. The longer imbibition process time after fracturing 
could be explained by difficult "direct flow" due to the horizontal 
break. 

Sample 15 had abundant vertical fractures and required more time 
to reach final recovery in the presence of microfractures (760 hours) 
compared with non-fractured core (650 hours) (Figure 37). This 
behavior might be explained by a blockage of imbibition as a result 
of increasing counterflow production. The counterflow production 
may reduce imbibition in two ways: 

- Counterflow production is not swept away from lower open face, 
and a reduced water-sample contact is obtained; and 

- The counterflow production reduces the available cross-section 
for direct flow. 

Sample 18 (Figure 38) had horizontal and vertical fractures 
similar to model C, and as observed, the microfractures are improving 
the time of recovery. 

Conclusions: 

1) If the micro fracturing develops a network similar to model C 
(Figure 33), a reduction in time of capillary imbibition 
process may be obtained; 

2) The lack of vertical fractures, or the development of large 
horizontal fractures which create distinct subsamples, will 
result in increased imbibition time after fracturing; and 

3) When counterflow rate increases, as a result of abundant 
vertical microfractures, the imbibition time may increase. 
This is due to reduced water-sample contact and/or reduced 
direct flow rate. 

4. SIMULATION OF MULTIPHASE FLOW IN NATURALLY FRACTURED RESERVOIRS 

4.1. Introduction 

Simulation of naturally fractured reservoirs is difficult 
because of the discontinuous nature of the matrix-fracture system. 
Ideally, one would simulate the system using a conventional reservoir 
simulation model fully accounting for the actual geometry and flow 
processes of the matrix and the fractures. Such studies of small 
multiphase systems, have been reported by Yamamoto et al. (48), 
Kleppe and Morse (29), Gilman and Kazemi (22), and Thomas, Dixon 
and Pierson (42). 



614 

Intensely fractured reservoirs, such as in some North Sea 
carbonate fields, contain a very large number of randomly distributed 
fractures. The distance between the fractures is normally much 
smaller than the grid block size employed in reservoir simulation 
studies. A detailed treatment of the matrix/fracture system of 
such reservoirs is therefore not practical. As a matter of fact, a 
given model grid block may, on a small scale, contain a complete 
fractured system consisting of matrix blocks and fractures. This is 
illustrated in Figure 44. The fractures may form a continuous net­
work of high permeability channels through which most fluid transport 
takes place. However, in most cases, a large portion of the 
fractures may not be interconnected. Such isolated, or partly 
interconnected fractures, will still have an important influence on 
the flow behavior of the system. 

The representation of the flow mechanisms inside a model grid 
block of this type is the key problem in the construction of a 
fractured reservoir simulation model. Fluid transfer will take 
place between matrix and fractures by viscous displacement, and 
through the mechanisms of capillary imbibition and drainage by 
gravity drainage and by fluid expansion. Since it would not be 
practically possible to use sufficiently small grid blocks to 
accurately simulate the fluid exchange in field model, some form of 
simplification must be employed in the models. 

Normally, simulation of naturally fractured reservoirs involves 
a dual porosity model. Here the fractures provide the main path 
for fluid transport, while the matrix blocks act as sources, feeding 
fluid to the fractures. Most models consider the matrix/fracture 
system inside a model grid block to consist of a regular network 
of fractures and matrix blocks, as shown in Figure 45. The fluid 
transfer between matrix and fractures in the model is described by 
means of a mathematical expression or by some type of transfer 
function. 

The usage of mathematical expressions has been reported recently 
by Hill and Thomas (25), Gilman (23), Gilman and Kazemi (22), Thomas, 
Dixon and Pierson ((42), and Evans (19). Mass balances are used to 
predict flow between the matrix blocks and the fractures. To account 
for various block shapes and sizes, a geometric factor is introduced. 
This factor was originally proposed for single phase systems (see 
for instance Warren and Root (47)), but has been employed successfully 
for multiphase flow. However, as reported by Thomas et al. (41), the 
results are quite sensitive to the value of the geometric factor. 
In a reservoir of highly variable matrix block sizes and geometries, 
which is the case for most naturally fractured reservoirs, the 
geometric factor represents a major uncertainty. In addition, the 
interaction fractors should be complex functions of time depending 
on the type of flow taking place. Gilman (23), by introducing the 



Figure 44. Actual fracture/matrix 
system inside model grid 
block. 
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Figure 45. Idealized fracture/ 
matrix system in­
side model grid 
block. 

use of smaller matrix subdomains, was able to include gravity effects 
inside model grid blocks. 

Transfer functions are normally determined outside the field 
simulation model. Various methods may be used in deriving the 
functions. Rossen (40) used a conventional simulation model to 
generate recovery curves for single matrix block systems which were 
included by a semi-implicit formulation in his field model. As 
reported by de Swaan (16), laboratory experiments may be conducted 
to define the recovery curves. A third alternative is the deriva­
tion of recovery functions by analytical means. de Swaan (15) and 
Najurieta (35) developed such interaction functions for sing1e­
phase systems. A major difficulty in the application of transfer 
functions is that it is not possible to foresee all the processes 
to which a given matrix block will be subjected during the production 
of a fractured reservoir. One particular transfer function may be 
correct to use for one period of time, while another should be used 
for the next. de Swaan (14), however, presents an approach of 
integrating several interaction functions, depending on flow 
conditions, by using the convolution theorem. 

Most papers on dual porosity models consider the fracture 
network to be the only medium of transport of fluids. The contribu­
tion of the matrix blocks to the overall permeability of the reser­
voir might be significant. Braester (11) in 1972 suggested a 
formulation that would include the transport capacity of the matrix 
blocks in the flow equations. Part of his development was the 
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generation of relative permeability curves that were functions of 
matrix saturation as well as fracture saturation (see Figure 5). 

Evans (19) improved the description of the fracture system 
inside a model grid block by applying a statistical fracture dist­
ribution function. An averaging of the fracture system was per­
formed before applying the flow equations. However, statistical 
methods were not applied to the matrix/fracture flow terms. 

4.2. Flow equations 

Most dual porosity models reported in the literature consider 
the fracture network as the continuum while the matrix blocks act 
as sources or sinks to the fractures. Three dimensional three-phase 
equations describing flow in such a system are presented in finite 
difference form in the following. 

4.2.1. Fracture flow equations 

Oil: 

Gas: ~[Tg(~Pg - Yg~D) + RsTo(~po 

Vb 
- qg - Rsqo ~ ~t(~Sg/Bg 

where, for fluid a and flow in x-direction: 

T 
a 

(4.2) 

(4.4) 

and qamf represents the matrix/fracture exchange of fluid a as a 
source or sink to the fracture system. 

4.2.2. Matrix flow equations 

In order to relate matrix block saturations to the fluid 
transfer, mass balances are written for each phase as follows: 

V 

Oil: - qomf 
b 

t;t ~t(~So/Bo)m 

Gas: - q - R q gmf s omf 

(4.5) 

(4.6) 
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Water: (4.7) 

The matrix/fracture exchange terms, qamf' may be either 
mathematical expressions or transfer functions, and are described 
below. 

4.2.3. Matrix/fracture transfer 

Mathematical expressions for the fluid transfer terms may be 
written as, for fluid a: 

where 

ok ra 

(4.8) 

(4.9) 

The parameter 0 is a geometric factor accounting for the size 
and shape of the matrix block. It is calculated by Gilman and 
Kazemi (22) as 

o = 4 (_1_ + 1 
L2 L2 

X Y 

+ _1_) 
L2 

z 

(4.10) 

Since the L'S are characteristic dimensions of the matrix blocks, 
the 0 becomes a property of the system being simulated and may vary 
across the reservoir. Inside a given model grid block, however, the 
matrix blocks are normally assumed to be uniform. In actual reser­
voirs, it is not possible to determine accurately the size and shape 
of the matrix blocks, and the determination of 0 is therefore highly 
uncertain. 

In order to include effects of flow in the system due to 
pressure gradients across a matrix block, and effects of diffusion, 
Thomas, Dixon, and Pierson (42) modified Eq. (4.8) as follows 

L 
c 

qamf = Aa(Pam - Paf) + Aa ~ ~Paf 
B 

(4.11) 

where Lc is a characteristic length, LB is the distance across which 
~Paf acts, and ~Paf is the pressure drop across the matrix block. 

Transfer functions were generated by Rossen (40) using a 
conventional simulator on a single matrix block surrounded by gas 
and water, respectively. The resulting curves of saturation vs. 
time are shown in Figures 46 and 47. By employing the matrix flow 
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equations, Eqs. (4.5) - (4.7), flow terms are determined that can 
be put into the fracture flow equations, Eqs. (4.1) - (4.3). 

de Swaan (16) fitted the following function to experimental 
data: 

(4.12) 

o 

where Nimb is the total oil recoverable by imbibition and Tl is the 
time required to reach 63% of Nimb . 

4.3. An improved model formulation 

As discussed in the previous two sections, there are certain 
limitations to most existing models that might severely influence 
the results. While the concept of the dual porosity model is an 
attractive one, the evaluation of the matrix/fracture transfer is 
very difficult. Although a simple mathematical expression describing 
the transfer has been used successfully applied (41), its limitations 
are obvious. The determination of the geometric factor, 0, is 
difficult and the model results are very sensitive to this factor. 
Additionally, the interaction parameters involved would, depending 
on the flow processes taking place, be complex functions of time. 
Simple expressions, like Eqs. (4.8) - (4.10), would not, in most 
cases, be representative of these processes. The approach of 
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de Swaan (14) where interaction functions based on analytical 
derivations, laboratory experiments, or numerical simulations of 
simple matrix/fracture systems are constructed by convolution is 
therefore favoured. As the interaction functions would depend on 
the boundary conditions of the matrix, some technique of keeping 
track of flood fronts should be included in the formulation. 

The fracture network is transporting all fluids between model 
grid blocks in most formulations. However, the contribution of the 
matrix permeability might be important. Braester (11) defines flow 
permeabilities as well as relative permeabilities as functions of 
both matrix as well as fracture properties. Further improvements 
would include the solution of the complete matrix flow equation in 
addition to the fracture flow equation in order to obtain pressures 
and saturations in fractures as well as matrix. Furthermore, the 
model should degrade to a conventional reservoir simulation in 
areas of no fractures. 

Normally all matrix blocks inside a model grid block are 
assumed to be identical (25). Evans (19), however, presented a 
formulation whereby a statistical fracture distribution function 
is included and an averaging of the distribution of the fractures 
inside a model grid block is performed before applying the fracture 
flow equations. Further improvements would include statistical 
treatment of the matrix/fracture interaction terms. 

In summary, we would pose the following requirements to an 
improved model: 

1) The model should be based on the dual porosity - dual 
permeability concept; 

2) In non-fractured areas, the model should revert to a 
conventional (non-fractured) model; 

3) In highly fractured areas, the model should revert to a 
simple dual porosity model; 

4) Matrix/fracture flow terms should be interaction functions, 
based on all available data such as analytical derivations, 
laboratory experiments, or numerical simulations; 

5) Statistical data on fracture orientation, intensity, and 
length should be used to generate random fracture flow net­
works as well as random matrix block geometries. A repre­
sentative range of generated matrix blocks should then be 
analyzed in order to generate the required interaction 
functions for each; and 
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6) A front tracking technique should be included in the model 
in order to determine matrix block boundary conditions, and 
also within individual model grid blocks. 

4.3.1. Flow equations 

For a fluid, a, the flow equations may be written in finite 
difference form as 

where 

L:S = 1 a a 

(4.13) 

(4.14) 

(4.15) 

These equations may then be solved to yield matrix and fracture 
pressures and saturations. 

4.3.2. Transmissibilities 

The transmissibility term in the x-direction are defined as 

(T ) 
a m 

(4.16) 

(4.17) 

4.3.3. Interaction terms 

Explicit knowledge of the term qamf' or the matrix saturation 
vs. time, as shown in Figures 46 and 47, would enable us to directly 
apply these in the flow equations. However, the fluid transfer 
would depend on the type of flow process taking place in the grid 
block, and cannot be predicted a priori. 

However, the approach of de Swaan (14) includes block responses 
which are functions of several matrix/fracture system properties. 
He defines 

(4.18) 



where qmfH is the matrix/fracture rate response to a unit step 
disturbance and xj , j=l, n are the n properties of the system 
defining the flow process. Then, by convolution 
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If dYf(T) 
dT qmfH (t-T, Xl' x2' .... , xn)dT (4.19) 

o 

where Yf is the variable on the matrix surface subjected to a unit 
change. The best available data on the matrix/fracture flow may be 
included in the above formulation. No flow process is a priori 
assumed, and any combination of flow processes may be intersubsti­
tuted in the model triggered by corresponding criteria in the matrix 
and at the matrix surface. 

Typically, the matrix/fracture flow term would be a function 
of matrix block saturation and pressure differential between fracture 
and matrix. 

(4.20) 

By including semi-implicit treatment of this term, we would have 

(4.21) 

which would be similar to the mathematical expression case of Eq. 
(4.8) and Eq. (4.21), however, would more accurately describe the 
flow process taking place. 

In the case of fluid injection or advancement of gas-oil contact/ 
water-oil contact, some method locating flood fronts should be 
included in the formulation in order to be able to trigger the 
correct matrix/fracture flow processes at the arrival of the gas 
front or the water front respectively. 

A simplified case would be the advancement of water-oil contact 
and gas-oil contact under segregated conditions, as outlined by 
de Swaan (14). In general, a front tracking method should be 
incorporated to track fronts of any positions in the system. 

4.3.4. Statistical description of matrix blocks fractures 

Fractures are generally randomly distributed in naturally 
fractured reservoirs. The geometry of size of a matrix block would 
therefore be highly variable. Most models assume that all matrix 
blocks within a model grid block are uniform. We propose the use 
of a technique of applying well data on fracture frequency and 
orientation to generate probable geometries and shapes. Ghez and 
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Janot (21) presented a method which may serve as an example for this 
purpose. Figure 48 shows a set of frequency curves of fracture 
angles and fracture distances that are applied to generate matrix 
blocks (illustrated at the bottom of the figure). Based on the 
matrix blocks generated, a limited number of representative matrix 
block geometries should be associated with an appropriate frequency 
distribution curve, as shown in Figure 49. A reservoir may be 
divided into a number of areas of different distribution curves. 
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Figure 48. Generation of random matrix blocks [after Ghez and Janot 
(21)]. 
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Figure 49. Frequency distribution of representative matrix blocks. 

The geometrical figures generated should then be subjected to 
investigation in the laboratory, by numerical simulation or any 
other method available in order to determine the interaction func­
tions describing the flow processes that are anticipated. Where 
required, the systems investigated should be scaled to field 
conditions by means of the scaling laws discussed previously in this 
chapter. 
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Angle 
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Contact angle 
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ABSTRACT 

In geostatistics, variables are often classified as 
"stationary" or "non stationary". The latter refers to variables 
which show a definite trend in space, such as the direction of the 
hydraulic gradient, for hydraulic heads in an aquifer. In (10), 
the method of simple kriging for stationary hydrologic variables is 
presented. In this chapter, universal kriging and the use of 
generalized covariances of order k are summarized, for the estimation 
of non stationary hydrologic variables, with one example of 
application. 

1. INTRODUCTION 

In a previous NATO Advanced Study Institute, we have tried to 
summarize the application of simple geostatistics (simple kriging) 
to hydrological problems (10). Only stationary or intrinsic 
phenomena were considered, i.e., those where the variable of interest 
does not show a systematic "trend" or "drift" in space. This is 
most often acceptable for transmissivities, or thickness of a 
formation, however it only rarely can be applied to hydraulic head, 
or else rainfall data, which most often have a definite trend in 
space, that of the general hydraulic gradient, for heads, or of the 
orographic effects, for rainfall. 

Non stationary geostatistics must therefore be used and will 
be summarized below, illustrated with an example. All of this comes 
from the work of G. Matheron and co-workers in Fontainebleau, e.g. 
Matheron (15), Delfiner (12), Delholmne (3,4,5,6), Chiles (1), and 
also from Kitanidis (8). A more elaborate presentation is also given 
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in Marsily (11). 

Let us start by a recollection of the probabilistic approach 
to the definition of spatial parameters in a domain. 

2. PROBABILISTIC DEFINITION OF A PARAMETER IN SPACE 

Many of the magnitudes of interest in hydrology (e.g., 
transmissivity, storage coefficient, hydraulic head in an aquifer, 
thickness of a layer, rainfall, etc .•. ) are a function of space, 
but often highly variable. This spatial variability is however not 
purely random: if measurements are made at two different locations, 
the closer the measurements,the closer the measured values. In 
other words, there is some kind of correlation in the spatial 
distribution of these magnitudes. Matheron (12,13,14) has given 
the name of "regionalized variables" to these types of quantities: 
they are variables typical of a phenomenon developing in space (and/ 
or time) and possessing a certain structure. Here, the term 
"structure" refers to this spatial correlation which, of course, is 
very different from one magnitude to the other or from one aquifer 
to the next. 

Regionalized variables can be divided into two main categories: 
stationary and non-stationary. In the latter,the variable has a 
definite trend in space: for instance, the variable decreases 
systematically in one direction. This is generally the case of the 
hydraulic head. On the contrary, there is no systematic trend in 
space for the stationary variables. This is in general the case 
of transmissivity. 

Here we will address the problem of how to estimate a regional­
ized variable, which is the most common problem facing the hydro­
geologist in the field. Having measured a variable at a set of 
points (e.g., heads at several piezometers, transmissivities at 
several wells, rainfall at several rain gauges), how do we estimate 
the value of the variable at all other locations in order to produce 
a contour map of the variables, or a discretized map serving as 
input for a model? Kriging is an optimal estimation method and 
its use will be described for the non stationary case. 

To make this estimation we use the concept of random functions 
(R.F) which can be presented as follows. Let Z be the magnitude of 
interest which we want to study in a given aquifer. We will assume 
that the magnitude Z is a realization of a random process, i.e., 
that we can conceptually define a R.F. Z(x,~), where x is the 
coordinates (in 1, 2 or 3 dimensions) in space, and ~ is the "state 
variable" of the process. For a given value ~l of the "state 
variable", Z(x'~l) is just an ordinary function of space, which is 
called a "realization" of the R.F. Z. But the state variable ~ is 
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assumed to be able to take an infinite number of values meaning that 
we can have conceptually an infinite number of realizations of the 
function Z. At a given location xo ' Z(xo'~) is a random variable, 
and thus Z(xo'~l) is just a number, i.e. the value of Z at location 
Xo in the realization ~l. Now we can characterize the random 
variable Z(xo'~) by its entire probability distribution function 
(pdf), or only by its first two moments, the expected value and 
variance, which we will denote E[Z(xo'~)] = mo and Var [Z(xo'~)] 
E[(Z(xo'~) - mo)2] = 02 • 

Zo 
We will also use the covariance between two points xl and x2' 

which is defined by: C(xI,x2) = E[(Z(xI'~) - ml)(Z(x2'~) - m2)). 
This covariance will tell us about the correlation between the 
values of Z taken at two locations, xl and x2. 

Note that the expected value sign E is taken here over 
the state variable ~, i.e., over all possible realizations of Z, and 
not over the space variable x: one often talks about "ensemble 
averages" instead of "space averages". 

If we want to give an example, let us consider a sand dune in 
a large desert, and let its crescent shape be our domain of interest 
(7). If Z is some property of the dune sand, e.g. its permeability, 
Z(x) within the dune will be spatially varying and will be our 
regionalized variable. But now, there are many such dunes in the 
same desert, and since their formation is the result of the same 
aeolian process, starting from the same sandy material, we can 
consider that they are "similar", i.e., that each of them is a 
"realization" of the same sedimentation process. If the desert is 
very large, we are very close to having an almost infinite number 
of realizations of our dune. Of course each dune will be different, 
having here and there local variations, heterogeneities, etc ••• So 
if we measure the permeability of the sand in a given location, e.g., 
the center of the dune, or one of its tips, we will find a different 
value for each of them. Now the ensemble average of that permeability 
will just be the average of all these permeabilities of the tips of 
all dunes, and not the spatial average of the permeability over 
one single dune. The state variable ~ will then just be the number 
given to each dune on a map of the desert, if we care to number them. 

In practice, of course, we have only one aquifer, and thus our 
R.F. Z(x,~) is only conceptual and all the information on Z is 
contained in the unique realization Z(x'~l) that we can observe. 
But this concept will prove to be very useful to perform the estima­
tion of Z(x'~l) in space at locations where it has not been measured, 
and also to understand and quantify the error of this estimation. 

For this concept to be of use, we will need to make two working 
hypotheses on the process characterized by the R.F. Z: 
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i) It verifies some kind of stationarity: the most stringent one is 
true stationarity, which requires that the pdF and all moments of 
Z (at one point or jointly at several points) is invariant by 
translation, i.e., does not depend on x. Second order stationarity 
only requires that the first two moments of Z do not depend on x: 

E(Z(x,~» = m not a function of x, 
not a function of x, Var (Z(x,~» = 0 2 

C(xI'X2) = E[(Z(xI'~) - m)(Z(x2'~) - m)] = C(~) 
not a function of xl' x2' but only of 
the vector ~ = x2 - xl 

An even weaker hypothesis, which is more useful in practice than 
2nd order stationarity, is called the "intrinsic hypothesis", and 
requires that the first increments of Z be 2nd order stationary: 

E[Z(x + h) - Z(x)] = f(h) 
Var [Z(x + h) - Z(x)] =-2y(~) 

not a function of x, only of h 
not a function of x, only of h 

In practice, f(h) is taken to be zero, i.e., E(Z(x,~» is a 
constant, m, as in the previous case, but the variance of the 
increments defines a new function y, the variogram, which can also 
be written as: 

y(~) = i E[(Z(x + h) - Z(x»2] (2.1) 

This intrinsic hypothesis is necessary because many geologic 
variables do not have a finite variance, and a covariance cannot be 
defined. This shows up when estimating the experimental variance 
0 2 from the sampling points, as a function of the size of the domain 
or number of samples: one often finds that 0 2 increases when this 
size or number increases. When both the covariance and variogram 
exist, i.e., with 2nd order stationarity, it is easy to show that: 

y(h) = C(o) - C(h) 

In this chapter, we will focus on even weaker hypotheses of 
stationarity which will allow the expected value m to be function 
of x. 

ii) The process characterizing the R.F. Z must be ergodic, which 
means that Z displays in space the same behavior as in the domain 
of the realizations: in other words, it is possible to infer from 
one single realization the pdF (or its first moments) of the R.F. Z. 
A simple example of a non ergodic process could be given by a R.F. 
(in one dimension): Z(x,~) = a cos(wx) + b, where a and bare 
constants, but where w is a random variable: for each ~,w will be 
different. The pdF of Z at a given location very much depends on 
the pdF of~. But although Z is stationary, looking at one realiza­
tion in space will never be enough to infer the pdF of either Z 
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or w. 

Note that already in the previous paragraph (i), we used the 
notion of ergodicity, when it was said that the experimental variance 
a~ from the sampling points could sometimes be a function of the 
size of the domain: we assumed that the variance obtained by 
sampling in space could be taken as the variance of the R.F. Z: this 
is precisely the ergodic hypothesis! 

The stationarity hypothesis can be verified in paractice, 
whereas the ergodic hypothesis is almost impossible to check: since 
there is only one realization, it is by definition impossible to 
verify it! But this is not to be considered important: the 
probabilistic language is only used to build a tool ( or model) to 
perform an estimation; as long as the assumptions made are not in 
contradiction with the data, they are acceptable working hypotheses 
if they help to develop the tool. In other words, nature does not 
have to be ergodic: only the conceptual R.F. Z, which we have 
invented and which does not exist in nature, has to be ergodic. 

In the remainder of this chapter, for the sake of simplicity, 
the state variable ~ will be omitted and the R.F. Z will simply be 
noted Z(x). But one must remember that E (expected value) is always 
taken over the ensemble of the realizations, i.e., for all possible 
values of ~. 

3. SUMMARY OF THE KRIGING EQUATIONS IN THE INTRINSIC CASE 

In the previous publication (10), we presented the kriging 
equations in the intrinsic case and we will summarize it here. But 
let us first define what our problem is: 

Let Z(x i ), i = 1, .... , n be n measurements of Z in a given 
domain. Our problem is to estimate the value of Z at a location 
Xo which has not been measured. Kriging is an algorithm which does 
precisely that. It works in two steps: 

3.1. Step 1 - Statistical Inference 

One must first determine the variogram of Z. Its definition is 
given in (2.1) but using the ergodic hypothesis, we will estimate 
it from the data. From the n measurements Zi = Z(xi)' one creates 
n(n+l)/2 pairs (Zi' Z.). These pairs are grouped into classes of 
distance, i.e., separltions between the points xi and x j . The 
experimental variogram is then given by: 

y (h) 

n h 

L: (Z. 
1 l 
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where h is the average distance in a given class, nh is the number of 
pairs in that class, i and j are two indices of location where x.-x. 
belongs to the class of distance h. 1 J 

Note that we assume here the variogram to depend only on the 
distance h, not on the direction of the separation vector h between 
xl and x2. The variogram is then said to be isotropic. If this 
does not hold, then the variogram becomes also a function of the 
direction of the separation vector. 

Once an experimental variogram is obtained, one must adjust a 
variogram model on it. Only a limited number of functions are used 
as variograms: linear, exponential, gaussian, cubic, spherical, as 
a variogram must satisfy two conditions: 

(i) lim 
h+oo 

y(~) = 0 
h 

(ii) - y(h) must be conditionally positive definite. 

This can be done graphically by trial and error, or automatically 
(see for example, Kitanidis (9». 

3.2. Step 2 - Estimation 

The kriging estimator is a linear combination of all the 
measurements: 

* * Z = Z (x ) 
o 0 

n 
l:: Ai Z 

i=l 0 i 
(3.1) 

Here the star(*) denotes the estimate of the (unknown) exact value 
Z. The A's are the kriging weights, i.e., the unknowns of the 
p~oblem; there are as many A's as measurement points, but these A's 
are different for each point x to be estimated. 

o 

The values of the A's are given by imposing two conditions on 
the estimator: 

(i) not to be biased: this writes: 

* E(Z ) = E(Z ) = m 
o 0 

(ii) to be optimal, i.e., that the error of estimation be minimal in 
quadratic form: 

* A = E [ (Z 
o 

* Z )2] = Var[(Z - Z )] 
o 0 0 

minimum 

The first condition leads to: 



n 
L 

i=l 
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1 (3.2) 

The second condition is met by setting to zero all the 
derivatives of A with respect to the unknowns A and to a Lagrange 
multiplier ~ introduced in the minimization of A to impose the 
condition (Eq. (3.2». After some simple algebra, one finds that 
the A's and ~ are the solution of a linear system, which writes: 

n 
Aj L y(x. - x.) + ~ y(xi - x ) , i 1, .... ,n 

j=l 0 1 J 0 

(3.3) 

n 
Ai L 1 

i=l 0 

At last the variance of the error of estimation is given by: 

* Var [(Z - Z )] 
o 0 

n . 
L Al y(x. - X ) + ~ 

i=l 0 1 0 
(3.4) 

Kriging is said to be done with a unique neighborhood if all the 
n measurements are used systematically for the estimation of any Z*. 
In that case, the kriging matrix of Eq. (3.3) needs only y be inve~ted 
once, as only the right han ide of Eq. (3.3) depends on x. If 
only a subset of the total number of measurements is used (~.g., the 
n closest measurement points x. to the point x to be estimated), 
then kriging is made with a "m~ving neighborh08d". Then the kriging 
matrix changes each time a different subset of n points is selected. 

* Note that our estimate Z has been obtained by imposing condi-
tions on the expected value o~ Z~ or (Z~ - ZO)2; i.e., over an 
ensemble average. This does not mean at all that Z~ is an estimator 
of some kind of an average of the R.F. Z: such an estimator would 
just be the expected value E(Zo) = m, i.e., a constant over the 
domain. Instead, Z~ is the best estimate of Zo for the particular 
realization of interest. But we define "best" by saying that if 
we were to perform the estimation for a large number of realizations, 
we want the error of estimation to be zero in the average, and of 
minimum variance. 

Using the ergodic argument, this is equivalent to saying that 
if we do the estimation for a large number of points in space (which 
is precisely our goal), we want the error of estimation to be zero 
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in the average, and of minimum variance. 

With this summary, we are now ready to go to non stationary 
geostatistics. 

4. NON STATIONARY PROBLEMS 

4.1. Definition 

In non stationary problems, the mathematical expectation of Z 
is no longer a constant: E[Z(x)] = m(x) and the variogram cannot be 
calculated directly from the data since m(x) is unknown: 

1 
y(h) = 2 Var [Z(x+h) - Z(x)] ~ E[(Z(x+h) - Z(X))2] 

- ~ [m(x+h) - m(x)]2 

If we then try to calculate the variogram as shown in the 
preceding section, i.e., directly from the data, by: 

1 
y' (h) = L (Z. - Z.)2 

2nh ~ J 

where nh is the number of pairs (Z. - Z.) separated by distance h, 
we find that the variogram y' (h) i§ ani~otropic because the 
mathematical expectation m is anisotropic and Z has a main direction 
of drift, e.g., the direction of flow, for hydraulic heads. 

In this direction, if m is a linear spatial function, a 
parabolic function is added to the true variogram y. Thus the 
calculation of the variogram in several directions makes it possible 
to detect the importance of the nonstationarity. 

There are several procedures for solving non stationary problems. 
We start with three solutions of special cases before turning to 
the general one in Section 4.3. 

4.2. Special Cases 

In certain cases, it is possible to: 

a) Assume that Z is "locally stationary", that is to say that 
the variogram stays isotropic for a certain neighborhood, and we 
can krige with the intrinsic hypothesis in that area, with a moving 
neighborhood. 

b) Assume that the mathematical expectation m(x) is known. It 
may, for instance, be deduced from other types of measurements. 
Its mathematical expression might also be known for physical reasons 
(e.g., the general shape of the drawdown in the vicinity of a borehole 
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for the hydraulic heads) and then the constants of this expresgion 
may be fitted on the model. We then verify that the residues 
ZCx) - mCx) are stationary and can be kriged under the assumptions 
of the intrinsic hypothesis. It is, however, incorrect to fit a 
polynomial expression Cby least squares) arbitrarily on the data, 
assimilate it to mCx) and work on the residues. Indeed, the fitting 
by simple least squares assumes that the residues are independent 
and therefore that no spatial structure exists. It is usual in 
statistics to test the independence of these residues with the Durbin­
Watson test. It is thus contrary to the hypothesis to try to find 
a variogram for them. It is nevertheless possible to use generalized 
least squares if we take this spatial correlation into account 
iteratively, (See Neuman (16». 

c) Assume that the variogram y is stationary and known. This 
is an extension of simple kriging which is called "universal kriging" 
but which is usually difficult to apply because the variogram must 
be known. However, assume that we know it and that it is stationary: 

1 
y(h) = 2 Var [Z(x+h) - Z(x)] not a function of x (4.1) 

We have seen that we cannot compute this variogram directly 
from the data because the average m(x) is not known. As usual the 
kriging estimation is: 

* Z 
o 

L: 
i 

(4.2) 

but the condition for having an unbiased estimator is different: 

* E(Z ) 
o 

E(Z ) 
o 

E[ L: Ai Z.] = E(Z ) 
i 0 1 0 

but E(Z) m(x) 

whence: 

L: Ai m(x.) = m(x ) 
i 0 1 0 

(4.3) 

The average m(x) is not known, but we make the assumption that 
it is regular and that it may be represented locally by a known set 
of basis functions. Polynomial expressions are commonly used for 
this purpose. For example, in two dimensions, we write: 

m(x) = 

where X and Yare the coordinates of point x in two dimensions. 
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t 
Or: m(x) = kgl akpk(x) 

k where p (x) are polynomials in X and Y. 

In order to ascertain that the estimator is unbiased, we impose 
that Eq. (4.3) is satisfied by any value of ak : 

).i 0: k k 
L akP (xi» L akP (x ) 
i 0 k k 0 

i k k 
or: L ak(~ "0 p (xi» =L akP (xo) 

k ~ k 

which is satisfied if: 
i k k 

L " P (x.) p (x ) 
i 0 ~ 0 

k 1, .... , t (4.4) 

These conditions are the equivalent of the single condition 
L ,,~ = 1 which was imposed in the stationary case. We then minimize 
i 
the estimation variance Var(Z~ - Zo)' subject to the t conditions 
[Eq.(4.4)], in the same way. The estimation variance is again a 
function only of the variogram y because of Eq. (4.4) and the 
equations in the kriging system write: 

L "j Y (x. -x.) + L 
k y(x.-x ) 1, ... ,n )lkP (xi) i 

j o ~ J k 
~ 0 

(4.5) 

L 
i k k 

" p (x.) p (x ) k 1, ... ,t 
i 

o ~ 0 

where the )lk are Lagrange multipliers. The solution of Eq. (4.5) 
gives the "~for calculating Z~ with Eq. (4.2) and the )lk for 
calculating the estimation variance with: 

* i k Var [Z - Z ] = L " y(x.-x ) + L )lkP (x ) 
o 0 i 0 ~ 0 k 0 

(4.6) 

Note that the drift m is fitted only locally (with a moving 
neighborhood) and that it does not appear directly in the estimation 
of Z but only in the calculation of the variance. Therefore it is 
not the same thing to fit one polynomial expression on the system 
as a whole and to krige the residues. Each new point x with a 
different neighborhood has a new fit for the drift m(xo~' the 
coefficients of which (the ak) are never calculated. For this 
reason, we generally use only low-degree polynomial expressions 
(linear in X and Y, or quadratic). 
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However, the serious problem with universal kriging is that the 
"true" variogram y(h) must be known and cannot be estimated directly 
from the data. Although efforts have been made to calculate y 
iteratively (assume that y is known, krige, verify yonce m is known), 
this is not practical. This is why universal kriging is used only 
if: 

a) there is a drift in part of the system, e.g., towards the 
boundaries. The variogram is fitted in the center, where the 
phenomenon is stationary, and is then used to krige the entire 
domain. 

b) If there is no drift at all in a given direction in the field 
as a whole. Then the variogram is determined from the data in this 
direction only and we use it in all the other directions while 
assuming that the "true" variogram is stationary and isotropic. 
However, it is very difficult to verify the validity of such an 
assumption. 

4.3. General Solution: Intrinsic Random Functions of Order k (IRF-k) 

4.3.1. Redefinition of the intrinsic hypothesis 

Kriging with the intrinsic hypothesis, which we have summarized 
above, may be described as follows 

Ai * 
n 

Ai a) define the weights such as Z L Z. (4.7) 
0 0 i=l 0 l 

n 
Ai b) write the condition L 1 (4.8) 

i=l 0 

c) then the (minimal) estimation error given by the kriging 
system is, taking Eq. (4.8) into account: 

* Z 
o 

Z 
o 

n 
L 

i=l 
Ai Z -Z 

o i 0 

n 
L 

i=l 
Ai (z. - Z ) 

o l 0 
(4.9) 

d) we then assume that the difference (Z.-Z ) or (Z(x+h)-Z(x», 
l 0 

called first increment of Z, is stationary. It can then 
be shown that the variance of the estimation error with 
kriging depends only on the variogram: 

* Var (Z -Z ) 
o 0 

* 2 E(Z -Z) =-
o 0 

n 
L 

i=l 

n 
L 

j=l 

+ 2 
n 
L 

i=l 
y(x.-x ) 

l 0 
(4.10) 
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We can formulate all these equations again by arranging them 
slightly differently. We define Ag = -1 (i.e., the value of A~ for 
i = 0) and associate the point xo with the value i = o. Then the 
Eqs. (4.8) to (4.10) can be written: 

n 
Ai [ 0 

i=o 0 
(4.8 bis) 

* n 
Ai Zo - Zo [ Zi 

i=o 0 
(4.9 bis) 

* n n i j 
E[(Z - Z )2] = - [ [ Ao Ao y(x. - x.) 

o 0 i=o j=o 1 J 
(4.10 bis) 

Eq. (4.9 bis) subject to the condition (4.8 bis) is called an 
increment of order zero of the random function Z. The intrinsic 
hypothesis assumes that this increment is stationary. The variance 
of the estimation error is then a linear function of the variogram. 
Finally, it is possible to determine the variogram directly from 
the data, as shown in Section 3. 

This method can be called the procedure for the intrinsic random 
functions of order zero, which will be generalized below. 

4.3.2. Intrinsic Random Functions of Order l(IRF-l) and 

of Order 2 (IRF-2) 

We treat orders 1 and 2 simultaneously and the estimation runs 
as follows: 

1st 

i 
a) we define the weights Ao such as 

(in fact, we are looking for the 
We define likewise AO = -1. 

* n i 
Zo .[ Ao Zi 

1=1 
optimal weights 

(4.11) 

b) we impose three cond~tion~ (1st order) or six conditions 
(2nd order): 

n 
Ai L: 0 

i=o 0 

n 
Ai 

order 
[ X. 0 (4.12) i=o 0 1 

n 
Ai [ Yi 0 

i=o 0 
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Then, 
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n i n i 
L Ao 0 L Ao X2 0 

i=o i=o 1 

n 
Ai n 

Ai order L Xi 0 L Y~ 0 (4.13) 
i=o 0 i=o 0 1 

n i n 
Ai L Ao Yi 0 L Xi Yi 0 

i=o i=o 0 

where x. = (X.,Y.) are the two coordinates (in two dimensions) 
f h 1. 1 1 o t e p01nt Xi. 

c) Then the error of estimation is given by: 

* z - z 
o 0 

¥ Ai z. 
i=o 0 1 

(4.14) 

n i 
The quantity L A Z1.' subject to the condition (4.12) or 

i=o 0 
(4.13), is called a "generalized increment of order 1 (or 
order 2)" because it filters a polynomial expression of 
order 1 (or order 2). Assume that we define: 

z' z. + a + a l X. + blYi , i = 0, ... ,n 
1 1 0 1 

n n n 
Ai Ai n i i n i 

L Z, L Z. + a (.L Ao) + a l (. L Ao Xi) + bl (i~o A Y.) 0 1 0 1 o 1=0 o 1 i=o i=o 1=0 

n 
Ai L Z. 

i=o 0 1 

if the conditions (4.12) are satisfied. The generalized 
increment of Z ± any polynomial expression of the 1st order 
is unchanged. The same would be true for the 2nd order. 

In one dimension, at the first order, if the measurement points 
are equally spaced, one can take a set of 3A's as for instance: 
A1=1, A2=-2, A3 =1. They satisfy the constraints 

3 Ai 3 Ai L 0 and L x. = 0 if xl=a, x2=2a, x3=3a. 
1 1 1 

3 
AiZ Then, L Z - 2Z2 + Z3· This is by definition a 2nd order 

1 1 1 
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difference. Generalized increments of order k are therefore just a 
generalization, in two or more dimensions, of this simple concept. 

1st 

d) We make the assumption that the generalized increments of 
the 1st or the 2nd order of Z are stationary (intrinsic 
hypothesis of order 1 or 2). It is then possible to show, 
exactly as in the hypothesis of order zero, that the variance 
of the estimation error may be expressed in the following 
form: 

* Var[Z -Z ] 
o 0 

Var 
n n i j 
L L Ao Ao K(x;-xJ.) 

i=o j=o ~ 

where K is a new function, called the "generalized covariance" 
of the 1st or 2nd order of the IRF Z. K is stationary, i.e., 
K is only a function of h = x.-x .• 

1. J 

e) If we assume that K(h) is known, the equations in the kriging 
system write (when we replace y by -K in the preceding 
expressions): 

n j 
L Ao K(xi-xj ) - ].11 - ].I2Xi - ].I3Yi = K(x.-x ), 

j=l 1. 0 

order i = 1, .•. ,n (4.15) 

n i n i n i 
L Ao 1 L Ao X. X L Ao Yi = Yo 

i=l i=l 1. 0 i=l 

n j 5 k 
L Ao K(Xi-xj ) - L ].IkP (xi) K(x.-x ), 

j=l k=o 1. 0 

2nd order i 1, ... ,n (4.16) 
n i k k 
L Ao p (xi) p (x ) k 0, ... ,5 

i=l 0 

o 5 P (x), •.• ,P (x) designate the 6 polynomials in X., Y. from 
Eq. (4.13) and the estimation variance is given EY: 1. 

* 1st order: Var(Z -Z ) 
o 0 

* 2nd order: Var(Z -Z ) 
o 0 

n i 
L Ao K(x.-x ) 

i=l 1. 0 
(4.17) 

n i 
L A K(x.-x) (4.18) 

i=l 0 1. 0 
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When these new equations are compared with those of universal 
kriging equations [(4.4) to (4.6)], they prove to be identical. 
This is not surprising if we bear in mind the filtering 
properties of the generalized covariance. The I.R.F. assumes 
that the drift is locally linear (or quadratic) and we can 
krige as soon as we know the generalized covariance K(h). 
Observe that here K(o) is usually zero unless we use integ­
rated values, in which case we can show that this term is 
given by: 

K(o) = f f K(x-y) 

S S 
o 0 

dxdy where S is the area of 
o 

integration 

Therefore, IRF-k of a higher order can also be defined but 
practical experience shows that it is enough to use IRF-l 
and IRF-2 in most cases. 

4.3.3. Statistical inference of the generalized covariance 

In order to identify the variogram in the case of an I.R.F.O, 
it was only necessary to calculate y(h) = ~ E[(Z(x+h) - Z(X»2], 
since the first increment (of order zero) was stationary. To do it, 
we only used the measurement points 2 by 2. Then an analytical 
expression was fitted on the experimental variogram (see Section 3). 
For K(h) we actually proceed in the same way but the fitting becomes 
automatic. The statistical inference runs as follows: 

a) Choice of a point x where, naturally, Z = Z(x ) is known. 
We then choose n po~nts close to x withoZ. = Z~x.) known, 
i = l, ••. ,n. A moving neighborhoo~ is gen~rally ijsed just 
as in kriging. 

b) A generalized increment of order k is built, i.e., we compute: 

G(x ) 
o 

n 
~ 

i=o 
(4.19) 

where the weights Ai satisfy the conditions for being 
generalized incremegts of kth order, i.e., for example 
(4.13) at the order 2. To calculate a set of weights A 
which fulfill the conditions (4.13) several methods can be 
used. We can, for instance, calculate the A which minimize: 

( E Ai Z1.)2 
i=o 0 

subject to the conditions (4.13). 
weights are obtained by cancelling 
Eq. (4.20) with respect to A while 

(4.20) 

Just as in kriging, these 
the partial derivatives 
taking Eq. (4.13) into 
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account through the Lagrange multipliers. We can also 
calculate the A as solutions to a problem of universal 
kriging (see Section 4.2.3) by using any variogram y and 
taking AO = -1. Another solution is to take a small number 
of point~ and solve Eq. (4.13) directly. 

c) We assume that the increments G(x ) are stationary, of zero 
average (for all x and for all s~ts x. of neighboring 
points). Then theOvariance of these in~rements G(x ) may 
be expressed as a function of the (still unknown) g~neralized 
covariance K(h) by: 

Var[G(x )] = [G(x )]2 
o 0 

£ £ 
i=o j=o 

(4.21) 

d) We assume that K(h) can be expressed as a prescribed function 
of h, which only depends linearly on unknown coefficients 
A.; a usual form is: 

1 

(4.22) 

where 0 is the Kronecker symbol, and A is the nugget effect. 
The second, third and fourth terms areocalled the linear, 
spline and cubic terms, respectively. In order for K(h) to 
be a generalized covariance, the A. must satisfy: 

1 

A ~ 0 ; Al $; 0 A3 > 0 ; A ~ - 1-24Al A3/rr z 
0 - s 

in 1 dimension 

3 or: A ~ 0 Al ::: 0 A3 ~ 0 A ~ - - FlClC. 
2 1 3 0 s 

in two dimensions 

In practice, experience has shown that this limited class 
of generalized covariance functions K(h) is quite sufficient 
for the study of most problems. Sometimes it is not even 
necessary to use all the terms: Ao' Al or Ao' AI' As' or 
simply A may suffice. We can then write Eq. (4.21) as 
follows: s 

[G(x ) F 
o 

i j [ ~ Ao Ao A [l-o(x.-x.)] + Allx.-x. 1 
i,j 0 1 J 1 J 

. in 1 x . -x. 1 + A3 1 x . -x. 13 ) 
1 J 1 J 

+ A Ix.-x.12 
S 1 J 

(4.23) 

e) The calculation of G(x ) by Eq. (4.19) is repeated a great 
number of times (sever~l hundreds or thousands) while varying: 
- the point x 

o 
- as well as the neighboring points xi' i=l, ... ,n of each 
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Figure 1.* Neighborhood to calculate the generalized covariance. 

f) 

point x. Often the x. are chosen in increasingly large 
circlesosurrounding th~ point x (Figure 1). The linear 
combinations A must be as littl~ correlated as possible 
(not have many points in common between two of them). 

The coefficients A. are determined by simple regression: 
1 

Min L {G(x )2 -
X 0 

A. 0 
1 

n 
Ai L 

i,j=o 0 

+ A h 2 tnhJ 
s 

Aj 
0 

[A (1-6(h)) 
0 

+ Alh + 

where h = Ix.-x. I 
1 J 

A h 3 
3 

The A. are calculated by cancelling the first derivative of 
the pfeceding expression with respect to the A. (linear 
system of 4 equations with 4 unknowns). We cak also, if 
we so desire, weight this sum in order not to give too much 
weight to the large G(x ) values, which would present too 

o 
great a variance. 

g) Once K(h) is known, the whole kriging procedure is verified 
by recalculating, one by one, all the measurement points, 
as follows (this procedure is called "Thomas", by the name 
of the apostle who would only believe what he could see): 

i) one value of Z, say Z. at location x., is taken out of the 
d · k·· 1 1 set use ln rlglng; 

ii) we compute the estimated value Z. at this point, by kriging 
1 

*Originally published (1986) in "Quantitative Hydrogeology: Groundwatel 
Hydrology for Engineers"; Reprinted with kind permission from 
Academic Press, New York, N.Y. 
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with the other data; 
iii) we can then determine exact1y*the kriging error at this 

point, since we know Z. and Z .• We will compare it with 
the standard deviation1oz. of1the estimation error, given 

by the kriging system at lthis same point. 
iv) by doing so systematically for all data points one by one, 

it is possible to check that there is no systematic bias: 

1 n * 
~ (Z. - Zl.) ~ ° 

n i=l 1 

and that the kriging errors are coherent with their 
predicted standard deviation: 

* 
1 

Z.-Z. 2 

~ (--}--2) - 1 
n n Z. 

1 

If these two conditions are met satisfactorily, one can 
say that both the assumptions behind the model and the 
estimated covariance K(h), are coherent with the data and 
one can then with some confidence use the model for a real 
estimation. Consequently, to krige with the IRF k, we must: 

- choose the order k (0, 1 or 2); 
- choose the degree of K(h) (0, 1, 3, spline); 

calculate K(h) and verify its validity as for the variogram. 

It is possible to make several test runs in order to choose 
the best order k or degree of K(h), but experience also 
allows us to select the most suitable values simply by 
studying the data. A computer program [BLUEPACK 3-D (17)] 
has recently been developed to apply non stationary geo­
statistics to 2 or 3 dimensional problems, according to 
these principles. See also De1finer (2), and Kitanidis (9). 

4.4. Example 

The example concerns an unconfined aquifer in chalk, at Origny­
Sainte-Benoite(Aisne, France). The aquifer is drained by three 
rivers to the north, east and south. A piezometric survey was made 
on December 31, 1976, in 88 piezometers. An additional 64 measurement 
points were introduced into the kriging by taking water levels in 
the rivers surrounding the aquifer at regular intervals, since these 
rivers acted as prescribed head boundary conditions for the aquifer. 

Since the heads are typically non stationary, generalized 
covariances were used at order 1 (locally linear drift). The 
generalized covariance was found to be in h3 : K(h) = alhl 3 • It was 
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o 2 4~ 

(b) 

Figure 2: Kriging of heads. 

(a) Coefficient of the 
generalized covariance 

(b) Kriged head in meters 

(c) Standard deviation of 
kriged heads in meters 

*Originally published (1986) in "Quantitative Hydrogeology: Groundwater 
Hydrology for Engineers"; Reprinted with kind permission from 
Academic Press, New York, N.Y. 
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however necessary to use a different coefficient "a" for different 
zones of the aquifer, as the spatial variability was greater under 
the plateau than under the plains. The values of "a" were adjusted 
by fitting the estimation error of kriging on the true estimation 
error when the validity of the model was verified as shown in the 
"Thomas" procedure. 

The map of "a", the kriged map of the heads and the standard 
deviation of the estimation error are given in Figure 2. 
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STOCHASTIC ANALYSIS OF SOLUTE TRANSPORT IN SATURATED AND 
UNSATURATED POROUS MEDIA 

Lynn W. Gelhar 

Massachusetts Institute of Technology 
Department of Civil Engineering 
Cambridge, MA 02139, U.S.A. 

ABSTRACT 

The application of stochastic methods to the analysis and 
prediction of the large-scale behavior of heterogeneous natural 
porous earth materials is reviewed emphasizing recent results for 
solute transport in saturated and unsaturated media. A stochastic 
methodology based on the representation of natural heterogeneity 
as a three dimensional statistically anisotropic homogeneous random 
field is developed. This approach makes use of spectral representa­
tion and a pertubation approximation to solve the stochastic partial 
differential equations governing flow and solute transport under the 
assumption of local statistical homogeneity. This approach leads to 
solutions for the large-scale mean behavior in terms of effective 
parameters such as hydraulic conductivities and macrodispersivities, 
and for the variance of the dependent variables, head and concentra­
tion. Results for the case of saturated solute transport demonstrate 
especially the near source developing dispersion characteristics that 
are reflected by the mean behavior, as well as the concentration 
variance as a measure of the reliability of predictions from the 
classical transport equation. It is found that the concentration 
variance is very large near sources of contamination, indicating the 
large uncertainty that is to be anticipated in classical transport 
models under those conditions. Field observations of large-scale 
solute transport in aquifers are also discussed. In the case of 
unsaturated flow the occurrence of large-scale tension-dependent 
hydraulic anisotropy and large-scale hysteresis is illustrated, and 
predictions of macrodispersivity under unsaturated conditions are 
also presented. Discussions focus on research needs and future 
directions, emphasizing the need for carefully designed numerical 
experimentation and large-scale controlled field experiments. 



660 

1. INTRODUCTION 

The flow properties of natural porous earth materials are 
observed to be highly variable in space. This feature is 
illustrated qualitatively by the photograph in Figure 1 which shows 
an exposure of the sand and gravel deposits located in Switzerland. 
From such qualitative observations it is evident that factors such 
as grain size vary enormously even in individual formations. This 
kind of intraformational heterogeneity can be characterized more 
quantitatively in terms of parameters such as the saturated 
hydraulic conductivity. Data. such as that shown in Figure 2 based 
on small laboratory cores taken from a single borehole, shows that 
the standard deviation of the natural logarithm of hydraulic 
conductivity can vary from 0.2 to as much as 5 in various types 
of natural deposits. An equally important characteristic of this 
natural intraformational heterogeneity is its spatial structure. 
Because of the natural variability of the depositional processes 
which affect permeability, the resulting heterogeneity often has 
layered or lenticular structure and reflects directional dependence 
or anisotropy. 

Fig. 1. Photograph showing the natural heterogeneity of a sand 
and gravel deposit in Switzerland (photo by E. Trneb). 
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Fig. 2. Permeability (millidarcy) and porosity data from laboratory 
cores from a borehole in the Mt. Simon aquifer in Illinois. 

Many important practical problems of subsurface flow or solute 
transport require predictions over relatively large time and space 
scales, up to thousands of years and over kilometers or more. In 
most cases direct measurements over these time and space scales 
are simply not feasible so that we require methods of extrapolating 
relatively small scale laboratory or field observations to these 
large time or space scales. The key question is how we can real­
istically incorporate the effects of natural heterogeneity into 
models which extrapolate to predict behavior at this large time 
and space scale. 

There are several possible approaches to prediction of this 
large-scale behavior. A first category of approaches involves the 
use of deterministic numerical models. Within that framework, the 
classical approach is to treat formations, layers or zones within 
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the aquifer as being homogeneous and to construct a model based on 
discretization which reflects this zonation or layering. An impor­
tant weakness to this classical approach is that it ignores the 
always present intraformational spatial variability. Consequently, 
classical numerical models do not provide a quantitative measure of 
the error introduced by this assumption. A second deterministic 
approach might be to represent the actual detailed heterogeneity of 
the aquifer in a complex three-dimensional numerical model. The 
key drawback to this kind of approach is that it would require 
extremely detailed measurements of the three-dimensional spatial 
distribution of hydraulic properties. This is clearly an 
impractical task and, furthermore, sampling an aquifer in such 
detail may actually alter the hydraulic properties of the medium. 
A further limitation of this detailed modeling approach is its 
computational feasibility. One can easily recognize that possibly 
on the order of 109 nodes could be required to describe even a 
modest sized three-dimensional realistically heterogeneous natural 
material; numerical solutions of systems of equations of this 
dimension are extremely challenging even with the largest 
supercomputers. 

Another possible approach to this large-scale prediction 
problem is to treat the natural heterogeneity in a stochastic 
sense. The intraformational heterogeneity of flow properties can 
be represented in that framework by spatial random fields which 
are characterized by a relatively small number of statistical 
parameters. Within this framework we seek solutions of flow or 
transport problems expressed in terms of probability distributions 
or, more simply, in terms of certain moments of those distribu­
tions. For example, the mean solution can be used to determine 
effective large-scale parameters and the form of the partial 
differential equation that will describe the large-scale flow or 
transport process. Similarly, the second moment or variance can 
be used to characterize the model error or reliability of the mean 
model. It turns out that the mean equation described in this sense 
will, in many cases, be equivalent to the classical deterministic 
equation, and treatment of the variance will give us a quantitative 
measure of the error to be anticipated in applying the classical 
model. As will be seen in later discussions, the stochastic 
approach provides new understanding of large-scale controlling 
processes. 

The primary purpose of this paper is to illustrate, through a 
summary of several recent results on solute transport in saturated 
and unsaturated media, the kind of new physical insight which has 
developed from the stochastic approach. The paper first gives a 
brief outline of stochastic methodology and then develops some 
important results on the stochastic behavior of flow in saturated 
porous media. These flow results are then incorporated into a 
solute transport analysis which emphasizes especially the near 
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source characteristics of developing macrodispersion as reflected 
in the mean solute concentration equation, and illustrates the 
use of the concentration variance to interpret this near source 
behavior. Several field observations are reviewed in relation to 
the stochastic results and, finally, some recent results on flow 
and transport in unsaturated porous media are summarized. The 
discussion emphasizes new insights which have evolved through 
this stochastic approach and important problems which remain 
to be resolved. 

2. STOCHASTIC METHODOLOGY 

The purpose here is to summarize the general ideas behind the 
stochastic approach. Detailed development of the techniques is 
available in Gelhar and Axness (13) and Gelhar (12). The spatial 
variability of porous medium flow properties such as hydraulic 
conductivity is represented by three-dimensional spatial random 
fields which are characterized by their second moment properties, 
that is, the covariance function or spectral density function. 
The natural logarithm of hydraulic conductivity is represented 
as a mean plus a perturbation around that mean as follows: 

InK F + f; E(lnK) F, E(f) o (2.1) 

and the covariance function of InK is given by 

(2.2) 

where Xl and ~ indicate two different spatial locations. When 
the covariance function depends only on the difference xI- x2, the 
process is said to be stationary or statistically homogeneous. 
Figure 3 illustrates graphically a one-dimensional stationary 
covariance function. The separation distance at which the corre­
lation decreases to the e- 1 level is conveniently designated as 
the correlation scale A. In the general case Xl and ~ are vectors 
and, if the process is stationary or statistically homogeneous, 
the covariance function can always be expressed in terms of the 
spectral density function or spectrum as follows: 

fff e ik•t Sff(k)dk (2.3) 
_00 
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Fig. 3. Schematic graph of a stationary one-dimensional covariance 
function of inK showing the correlation scale A. 

where the spectral density function is expressed as 

(2.4) 

which depends on the three-dimensional wave number vector k. 
If a process is statistically homogeneous, it will always have a 
spectrum, and then it is always possible to represent the function 
via the spectral representation theorem 

If I eik.~ dZf(k) (2.5) 
-00 

A simple example of a three-dimensional covariance function is 

(2.6) 

where 01 = E(f2 ), the variance of inK. The exponential form in 
Eq. (2.6) involves three distinct correlation scales AI' A2' A3; 
this is a statistically anisotropic model which can be used to 
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represent physical anisotropy of the heterogeneity as reflected in 
layering and lenticular structures. The spectral density function 
corresponding to Eq. (2.6) is 

(2.7) 

Figure 4 is a sketch of the three-dimensional correlation surface 
associated with the covariance function of Eq. (2.6). For this 
model, the parameters which characterize the sratial variability 
of a hydraulic conductivity are the variance a f and the three 
correlation scales. 

The hydraulic conductivity as characterized above is now 
introduced in the flow equation, and the result is an equation 
in which the parameters or coefficients are random, that is, a 
stochastic partial differential equation. The resulting stochastic 
equation is solved using a perturbation approximation and a spec­
tral representation technique which assumes local statistical 
homogeneity. The notion of local statistical homogeneity is 
illustrated in Figure S. The basic idea is that the mean F(x) 
and the variance a~(x) must vary slowly relative to the correla­
tion scale of the process in order for the assumption of local 
statistical homogeneity to be plausible and useful. For example, 
a length scale associated with the mean trend F(x) is 

( 1 
F 

dF -1 
dx ) 

e-I correlation surface 

Fig. 4. Three-dimensional statisticalll anisotropic covariance 
function illustrated by the e- correlation surface with 
correlation scales AI' A2' and A3· 
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In K 

~ ________________________________________________ x 

Fig. 5. Hypothetical lnK versus distance graph illustrating a 
trend in the mean and the notion of local stationarity. 

For local statistical homogeneity we require a disparity in scale 
with A «LF' One could also think of a similar length scale 
associated with the spatial dependence of the variance, and the 
correlation scale would also have to be much smaller than the 
scale. In addition, for the notion of statistical homogeneity 
to be meaningful, the overall scale of the problem must be much 
greater than the correlation scale. 

Solutions for the random head and flow fields are then used to 
develop generic analytical results for useful moment properties of 
the solution. These include first the effective large-scale prop­
erties, that is, the mean behavior as reflected in an effective 
hydraulic conductivity for the flow problem and a macrodispersion 
coefficient for the solute transport problem. Results are also 
obtained for the variances of the dependent variables, for example 
the head variance and the concentration variance. These variance 
results clearly demonstrate, in a generic form, the factors which 
determine the reliability of the mean model prediction. 

3. SATURATED FLOW ANALYSIS 

3.1 Head Equations 

Steady flow of a constant density fluid in a locally isotropic 
porous medium is described by 

o + z H + h (3.1) 
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which is expressed in terms of a piezometric head defined in terms 
of the fluid pressure p, the fluid density p, the gravitational 
constant g and the vertical position z. The piezometric head is 
decomposed into a mean H and a zero mean perturbation h as shown. 
This head decomposition and the hydraulic conductivity representa­
tion from Eq. (2.1) are introduced into Eq. (3.1) and, after sub­
tracting the mean of the resulting equation from Eq. (3.1), the 
result is the following equation describing the head perturbation 

(3.2) 

where Ji = - aH/ aXi is the mean hydraulic gradient. The 
zero mean term on the right-hand side of Eq. (3.2) is composed 
of second order terms which involves products of perturbations, 
whereas the terms on the left-hand side are first order terms in 
which perturbations appear to the first power. Consequently, if 
the perturbations are small enough, the right-hand side will be 
much smaller than the left-hand side; in the perturbation approx­
imation used here, the right-hand side of Eq. (3.2) is neglected. 
Equation (3.2) is then solved using spectral representation for 
the f and h process, under the assumption of local stationarity as 
discussed above. The result is a spectral relationship between 
the input hydraulic conductivity variations and the resulting head 
variations. The head variance is found by integrating the spectrum 
of head over wave number space. For a three-dimensional statis­
tically anisotropic hydraulic conductivity field the head variance 
is found to be in the form 

(3.3) 

for the case Al » A3' with Al 

Equation (3.3) is a local head variance relationship illustrat­
ing that the head variability is determined by the input inK vari­
ance, the mean hydraulic gradient and the correlation scales of the 
input inK process. Results of this type can be used directly to 
evaluate the model error in a deterministic model. Given estimates 
of the variance and correlation scale of the inK field and values 
of the mean hydraulic gradient from the deterministic simulation, 
the likely variation about the mean simulation can be calculated 
from Eq. (3.3). Similarly, calculations of head variance from 
Eq. (3.3) can be used in this sense as the calibration target to 
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judge the significance of-the difference between a numerical model 
simulation and observations of head in the field. A generic local 
head variance relationship such as Eq. (3.3) might also be used in 
an inverse sense; that is, if the head variance is estimated from 
variation of the head around a smooth mean solution, this expression 
could be used to estimate the parameters of the input InK process. 

3.2 Mean Flow 

The mean flow characteristics of a heterogeneous porous medium 
can be evaluated by taking the expected value of the Darcy equation 
that follows \, 

K 

2 

K f E(lnK) g.e 

'" Kg.J i (l + ;f ) -Kg.E (f:~i) 

(3.4) 

(~+ ah )] 
ax. ax. 

1 1 

where third order terms have been neglected in the final expres­
sion. The second order cross correlation term which reflects the 
effect of hydraulic conductivity variations as they alter the 
hydraulic gradient is evaluated using the spectral solution for 
the head perturbation. The result is a simple linear relationship 
between the mean specific discharge and the mean hydraulic gradient 
in the following form 

E(q.) 
1 

K .. J. 
1J J 

(3.5 ) 

where Kij is the effective hydraulic conductivity tensor which 
will be a function of the InK variance and the ratios AI/A2 
and AI /A 3. A specific example of this dependence, is shown in 
Figure 6 for the special case where Al and A2 are equal. Gelhar 
and Axness (13) give complete evaluations of the effective conduc­
tivity tensor in the general case. 
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as a function of the variance of InK and the aspect ratio 
Al 1A3 ; for Al = A2' 

There are several possible applications of effective conduc­
tivity results such as those in Figure 6. If the parameters of 
the hydraulic conductivity variation are known, they can obviously 
be used for direct calculation of hydraulic anisotropy. However, 
it is more likely that hydraulic anisotropy is determined directly 
from aquifer tests, in which case it may be possible to evaluate 
the ratios of correlation scales if the variance of InK is known 
from other observations. A very important special case of 
Eq. (3.5) is that of two-dimensional statistically isotropic 
flow. This case can be obtained from a three-dimensional case 
by considering A3 to be indefinitely large with Al = A2' 
In this case it is found that 

-
K .. = K l'i .. 

lJ R. lJ 

K = exp [E(lnK) 1 
R. 

(3.6) 
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that is, the effect of hydraulic conductivity or transmissivity for 
the two-dimensional aquifer situation is essentially the geometric 
mean. This result forms the basis for the simple rule of thumb that 
the large-scale transmissivity can be found simply by averaging the 
logarithms of local transmissivity measurements. 

3.3 Flow Perturbation 

The variations of the specific discharge about the mean can be 
found simply by subtracting the mean expression of Eq. (3.4) from 
the original Darcy equation. The result, retaining only first order 
terms in the perturbations, is 

~ K. (J.f-~) 
~ ~ ax. 

~ 

Using this expression and the spectral solution for the head 
perturbations, the spectrum of the specific discharge is 

2 k.k k.k 
K J J ( ~ m ) ( ~ ) S (k) 

t m n ~im- ~ ~jn- k2 ff 

(3.7) 

(3.8) 

which shows how the spectrum of specific discharge fluctuations is 
related to the spectrum of hydraulic conductivity variations. The 
expression in Eq. (3.8) can be used to evaluate the specific dis­
charge variation in the different directions. For the statistically 
isotropic case with Ai = A in Eq. (2.7) and with J1 = J, J2 = 
J3 = 0, integration of Eq. (3.8) over the wave number domain 
yields 

2 2 
2 

~ 

8 cr f q 
cr IIf S (k)dk IT --2-

q1 -.0 q1 q1 Y 
(3.9) 

2 2 
2 2 

~ crt q 
III s (k)dk 1 

cr = cr ~ 2 q2 q3 -.0 q2 q2 Y 
(3.10) 

where y = q/KtJ with q the mean specific discharge (in the x1-
direction). The ratio of the transverse to longitudinal specific 
discharge variances is then 



671 

1/8 (3.11) 

The variation in longitudinal flow is much stronger than that of 
the transverse flow. Using a composite media approach, Dagan (4) 
found a value for this same variance ratio which is 1/4 (see his 
equation 71). 

The characteristics of the specific discharge variation about 
the mean ar€ especially important in the analysis of solute trans­
port as discussed in the following chapter. 

4. SOLUTE TRANSPORT ANALYSIS 

4.1 Mean Solute Transport 

The purpose of this chapter is to summarize some of the results 
of Gelhar and Axness (13), and amplify on those results by consid­
ering some additional features of the unsteady mean concentration 
field and developing dispersion. The mean concentration field of 
an ideal (passive non-reactive) solute in a saturated porous medium 
is described by [see Gelhar and Axness 13)] 

(4.1) 

where 

n porosity (assumed constant) 

/;1 xl -qt/n 

/;2 x2 

/;3 ~ 

c' concentration perturbation 

a local dispersivity 

q mean specific discharge (in xl -direction) 

Note that Eq. (4.1) is written in terms of a moving coordinate 
system translating with the mean velocity q/n. The expected value 
expression in the middle term in Eq. (4.1) is the key term which 
must be evaluated. It reflects the additional mass transport due 
to the correlation between the concentration and specific discharge 
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fluctuations. This term is evaluated by considering the equation 
describing perturbations in the concentration field, 

ac n-
at I + 

I;i 

2 ' a c 
aq --2-

al;i 

(4.2) 

Note that Eq. (4.2) is a first order approximation; terms involving 
products of perturbations have been neglected in this equation. 
Detailed development of this equation is presented in Gelhar and 
Axness, (13); the result is their Equation 75. Equation (4.2) is 
solved using spectral representation. The resulting differential 
equation for the Fourier amplitudes is 

G .dZq.ln 
J J 

-
G = - ~ (assumed locally constant in space) 

j al;j 

B (ik1 + ak2) q/n 

(4.3) 

Note that Eq. (4.3) is a differential equation in time only. The 
spatial coordinates appear only parametrically through the mean 
concentration gradient Gj. The cross correlation term in Eq. 
(4.1) is then found by multiplying both sides of Eq. (4.3) by the 
complex conjugate of dZqi and solving the resulting first order 
linear constant coefficient differential equation for the cross­
spectrum of c and qi. Integration of the cross-spectrum over the 
wave number domain yields 

, , 
E(c q.) 

1 
(4.4 ) 

where a homogeneous initial condition has been assumed for c'. 
Eq. (4.4) shows that the macrodispersive flux is not in general 
proportional to the local mean concentration gradient; rather it 
is influenced by exponentially weighted contributions from earlier 
concentration gradients. The main contribution to the time 



integral in Eq. (4.4) will be near the upper limit T t. 
Therefore Gj is expanded as follows 

aGo 
G. 

J 
G. (T) I 

J t 
+ a:- I (T-t) + ••• 

t 
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(4.5) 

Retaining only the first term in this expansion, Eq. (4.5) can be 
written 

, , 
E(c q.) " 

1 

"" Jt e- 6(t - T)dTdk 
T=O 

(4.6) 

Note that the omitted higher order terms in Eq. (4.5) do not con­
tribute to the macrodispersion coefficient in the mean equation; 
i.e., the coefficient of the second derivative of mean concentra­
tion. These higher order terms will introduce higher derivative 
terms in the mean equation and, as discussed in detail in Gelhar 
et ale (14), will introduce asymmetry and nonGaussian effects in a 
mean concentration distribution. However, here the main concern is 
the behavior of the macrodispersion coefficient as a measure of the 
behavior of the spatial second moment of the mean concentration 
distribution. Finally, evaluating the time integral in Eq. (4.6) 
yields 

"" 1-e -6 t 
E(c'q~ ) " Gjq JJJ s (k) dk (4.7) 

1 q q q n 6 
-"" j i 

G. q A .. 
J 1J 

where the macrodispersivity tensor Aij is given by the wave number 
integral in Eq. (4.7). 

From Eq (4.7) it is seen that as t + "", the macrodispersivity 
Aij approaches a constant, and we recover the usual Fickian 
transport relationship given by 
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E(c'q~) 
1 

-
~ - q A1· J· ax. 

J 

where the macrodispersivity is given by the integral 

00 

fff 
{ik1 + 

(4.8) 

(4.9) 

Note that Eq. (4.9) has been written for the slightly more general 
case of an isotropic local dispersion with local longitudinal 
dispersivity aL and transverse dispersivity aT. The large time 
result of Eq. (4.9) is identical to the result found by Gelhar and 
Axness (13) under the assumption of a strictly steady concentration 
field (see their Eq. 22'). It is easily shown that Eq. (4.9) also 
applies to steady unsaturated flow fields provided that the local 
dispersion coefficient is constant. Note also that Eq. 4.9 is 
equivalent to the result of Winter et ale (32), developed using 
an abstract mathematical approach based on semigroup theory. 

The result of Eq. (4.9) is not directly usable because the 
specific discharge spectrum is not generally known or easily 
measured. However the results of the previous chapter for the 
flow perturbation provide a relationship between the log hydraulic 
conductivity spectrum and the specific discharge spectrum [Eq. 
(3.8)]. Although natural media will not usually be statistically 
isotropic, it is initially informative to consider the case of a 
statistically isotropic medium in which Al = A2 = A3 in Eq. (2.7). 
In this case the wave number integral of Eq. (4.9) can be evaluated 
analytically as discussed in Gelhar and Axness (13). When the 
local dispersivity is much smaller than the correlation scale, 
the longitudinal macrodispersivity is found to be of the form 

(4.10) 

where y = q/K~ J and q is the mean specific discharge in the xl 
direction and J is the mean hydraulic gradient in that same 
direction. The constant y is simply the ratio of the effective 
conductivity to the geometric mean conductivity. Under these 
same conditions the transverse macrodispersivity becomes 
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2 2 
a f a/ 3 y (4.11) 

Gelhar and Axness have also evaluated the macrodispersivity tensor 
for the case when a/A is not small. Their Figure 1 shows that the 
inclusion of local dispersion slightly reduces both the longitudi­
nal and transverse dispersion coefficients. This kind of result is 
physically plausible because one can expect that a local dispersion 
process will smooth the concentration field and consequently result 
in a smaller correlation between the concentration and flow fluctua­
tion. Equation (4.11) indicates that the transverse dispersivity 
is extremely small compared to the longitudinal dispersivity of Eq. 
(4.10), but field observations show that this ratio is likely to be 
on the order of 10-1• This unrealistic result is not surprising 
since the model which assumes statistical isotropy of the hydraulic 
conductivity heterogeneity is obviously not a realistic one for 
natural materials. 

The analysis leading to Eq. (4.9) was restricted to relatively 
small hydraulic conductivity variations so that second order terms 
could be neglected in the flow and solute transport perturbation 
equations. It is very difficult to assess the affects of that 
linearization analytically, but comparisons with Monte Carlo simu­
lations give some indication of the range of applicability of these 
results. Figure 7 shows a comparison of the theoretical result for 
the longitudinal dispersivity with numerical results from three 
different Monte Carlo simulations. The results of Heller (17) for 
a two-dimensional flow system show excellent agreement with the 
theory [Eq. (4.10) with y ; 1 for two-dimensional flowl. His 
results show that the longitudinal dispersivity increases very 
precisely as the first power of the variance of log hydraulic 
conductivity. Results of Smith and Schwartz (25) for a two­
dimensional flow system are more limited but agree in terms of the 
general order of magnitude of the simulated dispersion coefficient. 
The three-dimensional results of Warren and Skiba (31) are also 
consistent with the theory; the correlation scale in that case 
would be one-half of the block size, i.e., 1/24. 

For the more realistic case of statistically anisotropic log 
hydraulic conductivity fields, Gelhar and Axness (13) have evalu­
ated Eq. (4.9) for several cases. A specific result for the case 
with horizontal and vertical anisotropy is shown in Figure 8. In 
this case the medium is viewed as being imperfectly stratified with 
a vertical correlation scale A3 which is relatively small compared 
to the horizontal scales Al and A2' Horizontal anisotropy is 
introduced by using a A1, which is somewhat larger than A2' The 
figure illustrates, in a horizontal plane, the shape of the assumed 
statistical anisotropy, i.e., a constant correlation line as the 
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Fig. 7. Comparisons of the longitudinal macrodispersivity from 
the stochastic theory, Eq. (4.10), and Monte Carlo 
simulations [from Gelhar and Axness (13)]. 

dashed line in the figure. The solid line corresponds to an iso­
concentration line of the mean concentration field produced as a 
result of an instantaneous point injection of mass in this uniform 
mean flow field. The parameters which were used in this calculation 
are based on estimates for the Mt. Simon aquifer shown in Figure 2. 
The resulting macrodispersivity tensor shows several important 
features of this kind of anisotropic medium. The ratio of hori­
zontal transverse to longitudinal dispersivity is about 0.04 in 
this case, a reasonable value in terms of field observations. The 
vertical transverse dispersivity is found to be at least an order 
of magnitude smaller than the horizontal transverse dispersivity. 
In addition, the off diagonal term A12 is numerically significant 
and is negative. This negative component leads to the rotation of 
the plume in the horizontal plane in a direction opposite to that 
of the principal axes of the heterogeneity. This strong anisotropy 
of transverse dispersion is consistent with field observations. 
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Fig. 8. Configuration of a dispersing mean plume (solid ellipse) 
and the aquifer heterogeneity (dashed ellipse) for the 
case with horizontal and vertical statistical anisotropy. 
Given: ai = 2.5, Al = 10m, AI/).2 = 5, AI/).3 = 20 
Find: All = 1.0m, ~2/All = .041, A33/All = .0014, 

AI2 /AII = -.20 

Some features of developing dispersion can be recognized by 
examining Eqs. (4.6) and (4.7) with finite t. Consider first the 
behavior for very small time; in this case using 

t 
+ qn 

Eq. (4.7) becomes 

as t + 0 

t 
qn 

d~ x 

where x = qt/n, the mean displacement. For a statistically 
isotropic medium, with the specific discharge variance from 
Eqs. (3.9) and (3.10), Eq. (4.12) produces 

(4.12) 
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and consequently the ratio of transverse to longitudinal 
dispersivity is 

1/8 

(4.13) 

(4.14) 

(4.15) 

Both longitudinal and transverse dispersion coefficients increase 
linearly with mean displacement. The results of Eqs. (4.13) and 
(4.14) are precisely equivalent to the small time limits for the 
spatial moments found by Dagan (6) using a Lagrangian analysis 
(see his equation 4.11). 

For intermediate times, the behavior of the macrodispersivity 
can be evaluated very simply for the case with a, the local 
dispersivity, very small compared to X. In this case we can 
formally set a = 0 in Eq. (4.6) and, after interchanging the order 
of time and wave number space integration, the result is 

t 
(qn)-l f 

,=0 
(4.16) 

From Eq. (Z.3) the wave number integral can now be written in terms 
of the covariance function as 

t 
(qn)-l f 

,=0 
(4.17) 
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(4.18) 

For large mean displacement (x + ~), 

f 
~=o 

~ 

A .. (~) = 'If If q-2 S (0,k2 ,k3 ) dk2 dk3 
1.J -co qiqj 

(4.19) 

Equation (4.19) is an alternative expression for the asymptotic 
macrodispersivity in the case when the local dispersivity a = O. 
This form is equivalent to that of Eq. (64) in Gelhar and Axness 
(13) • 

Dagan (6) has evaluated moment expressions which are equivalent 
to the integral expressed by Eq. (4.18) for the case of a statisti­
cally isotropic hydraulic conductivity field. Expressing these 
results [his Eqs. (4.9) and (4.10)] in terms of dispersivities, 
i.e., derivatives of the second moment, 

All (y)/ All (~) 
4 24 

8( 1 +1. + 1. ) e-y 1- - + --2 4 2 3 4 (4.20) 
y y y y y 

A22 (y)/ All (~) 
1 12 (.!l. +.!l. + ~ 1 -y 

= -2 -4"+ + - ) e 
4 3 2 y y y y y y 

(4.21) 

where y = x/A. Note that for large x/A, A22 + O. This result is 
consistent with Eq. (4.11) if a = O. The results of Eqs. (4.20) and 
(4.21) are presented graphically in Figure 9, which shows that All' 
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the longitudinal dispersivity, increases monotonically to an 
asymptotic value, whereas A22 increases to a maximum and then 
decreases to zero. Consequently, the ratio of transverse to 
longitudinal dispersivity decreases with displacement as shown. 
After a mean displacement of roughly 10 correlation scales, the 
longitudinal dispersivity has practically attained its asymptotic 
value. The developing dispersion results have also been evaluated 
from approximate evaluations of the spectral integral in Eq. (4.7) 
with a/A « 1; those results are practically equivalent to Eqs. 
(4.20) and (4.21). 

Also shown in Figure 9 is the asymptotic value of the ratio of 
transverse to longitudinal dispersivities based on Eqs. (4.10) and 

.1 

.0 I 

.001 
.1 10 

x/).. 

Fig. 9. Developing longitudinal (All) and transverse (A22 ) macro­
dispersivities for a statistically isotropic medium with 
A/a = 100; x is the mean displacement. 
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(4.11) with X/a = 100. Thus, it is evident that Eq. (4.21), which 
assumes a = 0, is not valid for indefinitely large x/X. Local 
dispersion will ultimately affect the transverse dispersivity. 

It is of interest to compare the above results, which are 
based on the Eulerian form of the transport equation and a solution 
by a spectral representation, with other theoretical treatments of 
dispersion in random porous medium. Several studies, beginning with 
the classical work of Taylor (29) have considered the dispersion 
effect of a random velocity field with no local dispersion or 
diffusion. Eq. (4.17) is equivalent to Taylor's original result 
if the Lagrangian covariance function of the velocity field is 
approximated by the Eulerian covariance function evaluated at the 
mean displacement. In the context of flow in porous media, Dieulin 
et ale (10) obtained the result equivalent to Taylor's and Simmons 
(24), and also presented results in a one-dimensional case which are 
similar to Taylor's. As noted above, the results of Dagan (6), and 
Gelhar and Axness (13), with the extensions discussed above, are 
precisely equivalent, and have the advantage that they explicitly 
incorporate the effect of the random hydraulic conductivity field 
in determining the resulting specific discharge field. As noted 
by Dagan (5), the analysis by Tang et ale (28) is very difficult 
to follow in terms of mathematical development and does not seem to 
be consistent with the classical result or other recent theoretical 
developments. When the effects of local dispersion or diffusion are 
included, the result of Gelhar and Axness (13) for the asymptotic 
dispersivity, i.e., Eq. (4.9), is equivalent to the corresponding 
semigroup theory development by Winter et ale (32). Dieulin (9) has 
developed detailed comparisons of the results and approaches in the 
recent theoretical work on dispersion in heterogeneous porous media. 

The Eulerian based spectral approach which has been outlined in 
this chapter, has the advantage that it is mathematically straight­
forward and provides direct physical insight about assumptions. 
The spectral approach leads directly to the form of the transport 
partial differential equation which governs the mean concentration, 
whereas other methods such as Dagan (6) require distributional 
assumptions in order to arrive at a governing mean equation. In 
fact the nonGaussian effects that are expected near the source 
could easily be included by considering higher order terms to the 
expansion of Eq. (4.5). However, it must be recognized that such 
refinement of the near source analysis may not be justified because 
the resulting mean concentration represents ensemble behavior. It 
is questionable whether the ensemble mean behavior is useful to 
quantify near source transport characteristics. This question can 
be addressed more quantitatively by considering the concentration 
variance. 
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4.2 Concentration Variance 

The variation of the concentration around the ensemble means 
can be characterized by the concentration variance which is easily 
evaluated within the spectral framework as follows 

cr 
c 

2 
ex> 

Iff * E(dZ dZ ) (4.22) 
c c 

The spectral integral is evaluated using dZ c from the steady state 
version of Eq. (4.3). In this case, a special form of the spectrum 
for the hydraulic conductivity variation was used as follows 

4 
'3 (4.23) 

where t is a correlation scale. This spectral density function will 
produce a finite variance for the steady state case. The corre­
sponding covariance function for InK is 

2 -s 
Rff = cr f (1-s/3) e s (4.24) 

Ongoing research at MIT is dealing with the concentration variance 
under a variety of conditions [see Vomvoris and Gelhar (30)]. An 
analytical solution has been found by E. Vomvoris, a doctoral 
student at MIT, for the steady state case. That result is of the 
form 

(4.25) 

Equation (4.25) was developed for the case with the local disper­
sivity a much less than the correlation scale A. An important 
feature of this result is the dependence of the concentration 
variance on the local dispersivity as reflected in the first term 
involving the longitudinal mean concentration gradient. This 
result indicates that the concentration variance would become very 
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large as the local dispersivity becomes arbitrarily small. This 
behavior is in contrast to that of the macrodispersivity where we 
find that the longitudinal macrodispersivity becomes independent 
of the local dispersivity for very small local dispersivity. Eq. 
(4.25) can be viewed as a general local gradient relationship which 
determines the concentration variance in terms of the mean solution 
as reflected in the components of the mean concentration gradient. 
Consequently, the concentration variance will be large in areas 
where the mean concentration gradient is large, such as near sources 
of contamination. This feature can be illustrated more explicitly' 
by considering a continuous constant strength point source which 
produces a steady state mean plume described by Gaussian transverse 
distribution of mean concentration multiplied by xII where xl is 
the longitudinal distance from the point source. The coefficient of 
variation for concentration can be found from Eq. (4.25) by dividing 
both sides of the equation by c2 , in which case it is seen that the 
coefficient of variation is determined by the spatial derivatives 
of the logarithm of mean concentration. Thus along the center line 
of the plume, the coefficient of variation can be written as 

and for the case crf 1, t = 1m, a 
relationship y exp (crf2/6,) 

-= c 
7 

, xl in m 
xl 

(4.26 ) 

1 cm with the isotropic 

(4.27) 

Thus for distances less than 10 meters or 10 correlation scales 
from the source, the coefficient of variation will be near 1 and 
large variability of concentration is implied near the source. 
However, at distances of 100 meters or more, the coefficient of 
variation will be a few percent. It is easily seen from Eq. 
(4.25) that the coefficient of variation will increase away from 
the center line of the plume so that the results in Eqs. (4.26) 
and (4.27) can be viewed as the minimum concentration variability 
at a given longitudinal distance from the source. Of course, the 
implied near source behavior with very large coefficient of varia­
tion must be viewed as only a qualitative feature since the pertur­
bation approach used in developing Eq. (4.25) was based on the 
assumption that the concentration variations were relatively small. 
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These concentration variance results show that there can be 
large uncertainty in solute transport predictions based on the 
classical convective dispersion equation which is equivalent to the 
mean transport equation developed here. The complications with the 
classical transport equation occur not only because the dispersion 
coefficients are displacement dependent, as illustrated in Figure 9, 
but also because of the large variability of the concentration that 
is implied in the stochastic approach. Essentially, the ergodic 
hypothesis is not applicable in this near source region. The 
concentration variance, as discussed here, is best thought of as 
the variation among different realizations of statistically 
identical aquifers. Physically then the situation is that the 
detailed distribution of permeability of the actual aquifer, i.e., 
a given single realization, has a very strong effect on the local 
direction of migration of contamination from a localized source. 
If one is attempting to make predictions within a few correlation 
scales of the localized source of contamination, it is obviously 
necessary to measure the local variations in hydraulic conductivity 
and include these in a deterministic model of the situation. The 
most direct way to obtain such observation is to carry out a 
small-scale tracer test in the region of interest, thus directly 
observing the migration of a solute. However, the most challenging 
types of contamination problems involve predictions over much 
larger scales where such direct measurements are not possible. 
It is under these conditions that a stochastic approach has the 
greatest utility. From the theoretical results for the concen­
tration variance, it can be expected that a classical transport 
equation corresponding to the mean stochastic solution will be 
useful, but there will be variations in concentration around the 
mean as described by a relationship such as Eq. (4.25). 

The possiblity of such concentration variations needs to be 
recognized when applying the classical transport equation to field 
situations. First of all, a result such as Eq. (4.25) could serve 
as a calibration target which could be used to judge the signifi­
cance of differences between the results of a numerical simulation 
and field observations of the plume. Also for regulatory purposes, 
it may be more reasonable to consider, say, the mean concentration 
plus two standard deviations rather than to draw conclusions from 
a classical transport model which considers only the mean concen­
tration. Also, we can expect the kind of variability that is 
identified here to play an important role in the design of systems 
to monitor contamination plumes. In that case, the spatial 
correlation structure or the covariance function of the 
concentration will be the key characteristic. 
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Dagan (6) has also considered concentration variance, but his 
analysis is restricted to the near source region where the effects 
of local dispersivity can be neglected. He also focuses on the 
behavior of two-dimensional depth averaged plumes which, as will be 
seen in the next section, are frequently not physically realistic. 
Dagan contends that the ergodic hypothesis will be applicable and 
that the ensemble mean behavior will be meaningful near the source 
if the initial lateral dimensions of the contamination source are 
much larger than the correlation scale of the aquifer. However, 
this observation appears to correspond to the trivial case in 
which the concentration does not change from that of the initial 
injection concentration. 

4.3 Field Observations 

Several field studies of solute movement in aquifers have 
produced results which relate to some of the theoretical features 
discussed above. The natural gradient tracer test at the Borden 
site in Canada [Sudicky et ale (27)] clearly shows that near the 
source the longitudinal dispersion coefficient increases with 
displacement distance and, in general, it is found that vertical 
mixing is very limited in these layered outwash sands. The second 
experiment at this same site [Freyberg et ale (11), Sudicky, (26)] 
also shows very limited vertical mixing but, in this case, the 
experiment has been carried out to a distance where it now appears 
that the dispersivities have attained their asymptotic values. 

Several contamination plumes also show features which are 
consistent with the stochastic theory although, in such cases, 
the interpretation is not as clear-cut because contamination 
history is usually not well-defined. The classical chromium plume 
in outwash sand and gravel on Long Island in New York [Perlmutter 
and Lieber, (23)] involved detailed three-dimensional monitoring 
and clearly showed that mixing was not extending over the vertical 
thickness of the aquifer even though the plume had migrated up to 
a kilometer horizontally. More recent detailed monitoring of the 
40 year old sewage plume in a sand and gravel aquifer on Cape Cod 
in Massachusetts [LeBlanc (20)] also shows strong vertical 
stratification of the plume even though contamination has migrated 
over a mile from the source. Many other recent unpublished 
investigations have shown similar limited vertical mixing in 
contamination plumes from hazardous waste sites. 

The field observations discussed above emphasize the importance 
of the three-dimensional structure of contamination plumes in real 
aquifers. The very limited vertical mixing is consistent in a 
qualitative sense with calculations such as those summarized in 
Figure 8 based on the stochastic theory. It is important to consi­
der this three-dimensionality of plumes when designing monitoring 
systems to locate groundwater contamination. Frequently three-
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dimensional numerical modeling will be necessary in order to 
realistically model such field situations. It is also important 
to recognize this three-dimensionality when designing schemes to 
control existing contamination in aquifers or restore the quality 
of contaminated aquifers. My experience is that the three­
dimensionality of plumes will be important, except when contaminants 
are artificially introduced over the entire thickness of an aquifer, 
for example, through an injection well. Although two-dimensional 
flow descriptions seem to be useful for many practical groundwater 
flow problems, it is unlikely that a two-dimensional approach will 
be adequate for most contamination problems. 

A recent detailed compilation of field observations of disper­
sion in aquifers has been developed by Gelhar et al. (15). Results 
of that study are summarized in Figure 10 which presents the longi­
tudinal dispersivity determined from each test as a function of the 
scale of the experiment, that is, the mean displacement distance 
involved in the experiment. The scale of observation ranges from 
one meter to 100 kilometers, and dispersivities from one centimeter 
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Fig. 10 Longitudinal dispersivity data plotted versus overall 
displacement scale for different types of observations 
and media [after Gelhar et al. (15)]. 
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up to 10 kilometers are reported. The data were also segregated 
according to whether the observations were a tracer test with a 
known controlled input of solute, contamination events where the 
nature of the source may be ill-defined, or environmental tracers 
where natural processes control the nature of the input. Most of 
the tracer tests have been carried out on a relatively small scale, 
say, less than a kilometer, whereas the largest scale observations 
are those based on environmental tracers. The various sites were 
also classified according to whether the aquifer was a more 
classical granular material that would be viewed as a porous medium 
or a fractured medium. Data in Figure 10 do not seem to indicate 
that there is a distinctive difference between the dispersion 
characteristics of porous and fractured media. 

Part of the review also involved a detailed quality assessment 
of all of the dispersivity data. Considered in this assessment 
were the configuration or type of test (e.g., natural gradient test, 
radial flow test, etc.), type of observations (three-dimensional 
point sampling, fully penetrating wells, etc.) and the method of 
interpretation of the data (e.g., spatial moments, breakthrough 
curve analysis or numerical model calibration). Figure 11 
summarizes the results of this quality evaluation of the 
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longitudinal dispersivity data. The largest symbols in the figure 
identify those observations of relatively high reliability whereas 
the smallest points represent observations in which minimal 
confidence can be placed. It can be seen that most of the reliable 
information falls within scale less than about 100 m. Most of the 
data at scales over a kilometer are of low reliability, so that it 
is not possible to conclude that the longitudinal dispersivity 
increases indefinitely with increasing scale as might be inferred 
from Figure 10. Clearly, there is a need for carefully designed 
large-scale experiments to resolve questions regarding the behavior 
of dispersion at these larger scales. 

5. UNSATURATED FLOW 

5.1 Spatial Variability of Parameters 

It can be expected that unsaturated flow processes will be 
influenced in more complicated ways by spatial variability because 
of the additional flow parameters and the fundamental nonlinearity 
of the flow processes. The purpose here is to simply outline the 
general approach that has been used to analyze some characteristics 
of unsaturated flow and illustrate through a few summary results 
some of the new insights to large scale behavior of the unsaturated 
zone which are developing through the use of stochastic methods. 
The details of the development are available in Yeh et ale (33, 34, 
35) and Mantoglou and Gelhar (22). 

A commonly used model of hydraulic conductivity in unsaturated 
flow is 

K (5.1) 

where Ks is the saturated hydraulic conductivity, a is a soil 
parameter and ~ is the soil water suction (tension). Eq. (5.1) 
indicates a linear relationship between lnK and ~, the tension, 

lnK lnK - a~ s (5.2) 

This form is convenient because the logarithmic term occurs natural­
ly in the flux portion of the flow equation. Figures 12 and 13 
illustrate lnK versus ~ relationship for two different field soils; 
each individual curve represents a different location in the field. 
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The Maddock sandy loam shows a much larger variation of the 
parameter a than does the Panoche silty clay loam. 

When unsteady unsaturated flows are analyzed, it is also 
necessary to consider the variation of the moisture retention 
properties of the soil. Figure 14 shows several moisture 
retention curves from a given field indicating that there is 
significant variation of the slopes of these curves, i.e., the 
specific moisture capacity of the soil. 

In order to analyze the effects of the variability of these 
hydraulic properties, each of the parameters is represented as a 
three-dimensional random field with presumed covariance structure. 
The general approach is very similar to that in saturated flow 
except that the governing equation is different, and there are a 
greater number of random parameters that must be considered. The 
spectral representation approach is used to solve the resulting 
approximate perturbation equation describing the tension field, 
and from that result a tension variance is determined. Effective 
properties are found by taking the expected value of the original 
flow equation and using the perturbation solution to evaluate the 
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necessary cross-correlation terms which occur. Some of the results 
are summarized briefly in the following section. 

5.2 Results 

The variance of capillary pressure head (tension) has been 
evaluated for steady flow in statistically anisotropic media in a 
series of papers by Yeh et ale (33, 34). For steady vertical mean 
infiltration with the horizontal correlation scales A2 = A3 = A, 
much greater than AI, the vertical correlation scale, they found 
the following form for the head variance 

(5.3) 

where Of2 = var (lnK ), 0 2 = var (a), H = E(W), A = E(a), and the 
function g has the d~pend~nce shown in Figure 1 of Yeh et ale (34). 
Eq. (5.3) shows that the head variance depends on the square of 
the correlation scale as in the saturated case. No dependence on 
the mean hydraulic gradient is evident because, in this case, the 
mean hydraulic gradient is taken to be 1. Note also that it has 
been assumed that saturated conductivity and a are statistically 
independent to arrive at this form. 

An important new feature of Eq. (5.3) is the strong dependence 
of the head variance on the mean pressure or tension. Essentially, 
drier soils with higher mean tension are expected to produce much 
higher pressure variability. Qualitative indications of this 
behavior have been reported by Yeh et ale (36), but quantitative 
confirmation of this behavior is not presently available. 

The tensorial behavior of effective hydraulic conductivity for 
steady unsaturated flow has also been analyzed by Yeh et ale (35). 
Figure 15 shows the ratio of horizontal to vertical effective 
hydraulic conductivities for the two soils illustrated in Figures 
12 and 13 as a function of the mean tension. This result shows that 
the Maddock sandy loam, with its much larger variance of a, produces 
a strong dependence of the anisotropy ratio on the mean tension. On 
the other hand, the Panoche silty clay loam shows only a very mild 
dependence of the anisotropy ratio on tension. The behavior of the 
Maddock soil indicates the possibility of substantial preferential 
horizontal movement of moisture from localized sources, especially 
in stratified soils under relatively dry conditions. Yeh et ale 
(35) discuss the importance of this horizontal spreading phenomena 
in the context of waste disposal applications. 

In the case of unsteady unsaturated flow, the behavior of the 
effective hydraulic conductivities is much more complicated as has 
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been demonstrated by the analysis of Mantoglou and Gelhar (22). 
Again for the case of vertical mean infiltration through a 
stratified soil as discussed above, it has been found that the 
effective conductivities exhibit both anisotropy and hysteresis. 
This behavior is illustrated for the case of the Maddock soil in 
Figure 16. Hysteresis is reflected in the fact that the effective 
hydraulic conductivities are dependent on the time rate of change 
of the mean tension. Figure 16 shows that, under wetting condi­
tions, the horizontal hydraulic conductivity is much lower than 
the vertical conductivity illustrating the kind of anisotropy that 
is indicated by Figure 15 for the steady state case. However, for 
drying conditions, the two effective hydraulic conductivities are 
more nearly equal and isotropic behavior is indicated. Mantoglou 
and Gelhar have also shown that the effective moisture retention 
curve is hysteretic under these conditions. 

Dispersive solute transport in heterogeneous unsaturated soils 
can be analyzed using the approach of Chapter 4. In the case of 
steady unsaturated flow, Eq. (4.9) for the macrodispersivity tensor 
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Fig. 16. Effective hydraulic conductivities of Maddock sa~dy loam 
for unsteady flow showing predi£ted hysteresis; Kll is 
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is applicable, but the specific discharge spectrum must be 
determined from the solution of the unsaturated flow equation. 
Some initial analysis of this steady flow problem has been done 
by Mantoglou and Gelhar (22). They find a longitudinal macro­
dispersivity for steady vertical mean infiltration in a 
stratified unsaturated soil in the form 

(5.4) 
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where y = KIll Km with KII the vertical effective unsaturated 
conductivity and K = Ktexp (-AH) , lnKt E(lnK). Of course, the 
mean vertical hydr~ulic gradient is again unity~ Note that this 
result reduces to the saturated case, Eq. (4.10), when the expected 
value of a, A = 0, and the variance of 0 2 = o. 

a 

Eq. (5.4) shows that for unsaturated conditions, the longitudi­
nal dispersivity can be strongly dependent on the mean tension and 
consequently the moisture content. The factor y in that equation 
also will depend on the mean tension, usually in such a way as to 
cause the dispersivity to increase with increasing mean tension. 

Field data on dispersion under large-scale unsaturated condi­
tions are very limited, and it is not possible to make quantitative 
comparisons with the theoretical results described above. Gelhar 
et al. (15) have developed a compilation of dispersivity data for 
the unsaturated zone. A summary of their results is shown in Figure 
17, a graph showing the dependence of longitudinal dispersivity on 
the scale of the experiment. Although these data are much more 
limited than in the saturated case (Figure 10), there seems to be 
a trend of increasing dispersivity with increasing scale of the 
experiment. There is a need for carefully controlled large-scale 
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solute transport experiments in the unsaturated zone in order 
to clarify the nature of the dispersive transport process. 
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The theoretical understanding of large scale dispersion in 
unsaturated systems is far from complete. There is a need to 
consider unsteady flow conditions as well as the developing disper­
sion characteristics relatively near the source of contamination. 
Other stochastic analyses of solute transport under unsaturated 
conditions have assumed purely one-dimensional vertical flow 
[Dagan and Bresler (8), Bresler and Dagan (2»), or a zero­
dimensional black box kind of approach [Jury and Stolzy (19»). 
Such models can be fit to field observations at relatively small 
scale, but it is difficult to see how these models can be 
extrapolated to larger scales, including the effects of real 
three-dimensional heterogeneity and multidimensional mean flow 
conditions. 

6. COMMENTS AND DIRECTIONS 

From the developments in this paper, a number of general 
features of the stochastic approach are evident. This approach 
~rovides not only an analytical methodology but also a basic 
framework for understanding and quantifying large-scale transport 
processes. The treatment of macrodispersion in statistically 
anisotropic media predicts the complete macrodispersivity tensor 
and provides a theoretical basis for the very limited vertical 
mixing which has been observed in stratified sediments. Also, the 
discovery of the anisotropy and hysteresis of effective hydraulic 
conductivity under unsteady, unsaturated flow conditions is 
stimulating critical reassessments of the approach to modeling 
waste disposal activities in the unsaturated zone. 

Another important feature of the stochastic approach presented 
here is its essentially predictive character. The approach, of 
course, introduces plausible assumptions about the statistical 
structure of the heterogeneity but does not require direct fitting 
to observations of the dependent variable (e.g., head or concen­
tration). In this sense the stochastic approach provides a rational 
framework for extrapolating to time or space scales at which direct 
observations of such dependent variables are not feasible. 
Stochastic theory also provides simple, local variance relation­
ships for these dependent variables, and thereby provides a basis 
for judging reliability of large-scale mean models. 

In view of this predictive character, it is possible to design 
field experiments which can be used to evaluate this theoretical 
approach. Essentially one needs to measure the spatial variability 
of hydraulic conductivity and other pertinent hydraulic parameters 
in enough detail to estimate the input covariance properties 
required for the stochastic theory. Then it is possible to make 
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independent predictions of the field scale behavior which can be 
compared with subsequent observations of the dependent variables. 
Such experiments are under way for the case of saturated zone 
solute transport [Freyberg et ale (11), LeBlanc (21), Betson et ale 
(1)], and experiments are currently being designed for the 
unsaturated zone. 

An important current limitation of the overall stochastic 
framework outlined here is the difficulty of determining the 
required statistical parameters from a reasonable amount of field 
data. There is a need to develop more effective statistical 
methods of estimating these parameters from the limited field data 
that is available. A recent study of aquifer transmissivity data 
by Hoeksema and Kitanidis (18) is an example of efforts in this 
direction. In addition, methods of using indirect information, 
such as geologic or geomorphic data or observations, or geophysical 
data, need to be developed systematically to apply to the problem 
of determining the statistical parameter. 

All of the analyses described here, as well as most other 
stochastic methods, rely on at least an implicit assumption of 
relatively small perturbations due to the heterogeneity. There is 
a need for a theoretical analysis and a numerical experimentation 
in order to evaluate the effects of the small amplitude assumption 
and develop techniques to accurately treat large amplitude effects. 
There have been some recent efforts in this direction for the 
saturated flow situation [Gutjhar (16), Dagan (7)], and these 
results seem to indicate that the linearized approach is surpris­
ingly robust. In spite of these encouraging results, it can not 
be assumed that a small perturbation linearization will always be 
adequate. Especially in the case of extremely heterogeneous media, 
it may be necessary to develop entirely new approaches which rely 
on the random characterization of the geometry of heterogeneities. 
In any case, carefully designed Monte Carlo experiments are 
required to definitively evaluate, the large amplitude effects. 

From the discussion of developing dispersion characteristics 
near a source of contamination, it is evident that the ensemble 
theory is of limited value in treating that situation. Techniques 
need to be developed to characterize dilution and mixing in such 
near source regions where an expanding plume is affected by heter­
ogeneities of larger and larger size as it migrates away from the 
source. It seems that an approach which incorporates the effects 
of conditioning due to head or hydraulic conductivity measurements 
would be useful. Dagan (6) has considered such effects briefly, 
but for the situations that he considered there seemed to be a 
very small effect due to conditioning. 

The general stochastic framework outlined in this paper has 
potential applications in many other kinds of problems. Problems 
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such as flow through heterogeneously reactive media, the flow of 
variable density or viscosity flow, and multiphase flows in porous 
media can be addressed with this kind of approach. This may also 
be a useful framework for considering some problems of flow in 
fractured media; Brown (3) has done some initial work in this area 
considering flow and transport in a variable aperture single 
fracture. Of course, the approach could also be used to describe 
the large-scale behavior of other heterogeneous continua. 
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ABSTRACT 

There is a growing awareness of the need to quantify uncertainty 
in groundwater flow and transport model results. Regulatory organiza­
tions are beginning to request the statistical distributions of 
predicted contaminant arrival to the biosphere, so that realistic 
confidence intervals can be obtained for the modeling results. To 
meet these needs, methods are being developed to quantify uncertainty 
in the subsurface flow and transport analysis sequence. A method for 
evaluating this uncertainty, described in this paper, considers 
uncertainty in material properties and was applied to an example 
field problem. 

Our analysis begins by using field measurements of transmissivity 
and hydraulic head in a regional, parameter estimation method to 
obtain a calibrated fluid flow model and a covariance matrix of the 
parameter estimation errors. The calibrated model and the covariance 
matrix are next used in a conditional simulation mode to generate 
a large number of 'head realizations'. The specific pore water 
velocity distribution for each realization is calculated from the 
effective porosity, the aquifer parameter realization, and the 
associated head values. Each velocity distribution is used to obtain 
a transport solution for a contaminant originating from the same 
source. The results are contaminant outflow arrival times for all 
realizations from which statistical distributions of the arrival 
times can be calculated. The confidence intervals for the arrival 
times of contaminant reaching the biosphere are obtained from these 
statistical distributions. 
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1. INTRODUCTION 

The uncertainty in groundwater flow and transport modeling 
should be evaluated for subsurface contamination problems. The 
specific need for an uncertainty analysis depends on the characteris­
tics of the particular system being analyzed. These system charac­
teristics include the system complexity, the uniformity of the 
results, the magnitude of expected deviations from present conditions, 
and the importance or seriousness of possible errors in prediction. 
For example, when the systems are moderately simple, results change 
little from one situation to the next, deviations from expected 
conditions are small, and the consequences are of minor seriousness 
or of low perceived risk, then estimates of uncertainty may not be 
needed. However, when the systems involve complicated interacting 
factors, results are variable and so are the interactions, deviations 
are large, and the consequences are serious or may involve high 
perceived risk, then estimates of uncertainty are needed and may 
play an important part in the decision-making process. 

Regulatory organizations are emphasizing the need to quantify 
uncertainty. They are beginning to request the statistical dis­
tributions of contaminant arrival at the biosphere, so that confi­
dence intervals can be provided. For example, a draft of proposed 
U.S.Federal regulations [Draft 40 CFR 191.16 paragraph A, (5)] 
requests that the confidence intervals be provided for the scenario 
arrival results to the biosphere. In other words, the arrival 
results at the biosphere from the assessment modeling should provide 
both the expected results as well as the statistical distribution 
from which confidence intervals can be estimated. 

The purpose of this work is to provide a groundwater analysis 
sequence that considers and quantifies, in as much detail as 
possible, the uncertainties involved in evaluating subsurface con­
tamination scenarios. A significant part of the work involves 
combining appropriate stochastic and statistical tools with more 
traditional, physically based, deterministic models. Combining 
these methods yields an efficient analysis sequence that provides 
both the primary results and the corresponding uncertainty estimates. 
The analysis sequence is described in this paper together with the 
first field site application considering the uncertainty in aquifer 
parameters. This first application does not consider boundary and 
source uncertainties. 

The analysis sequence begins by characterizing the system 
through appropriate measurements of flow and transport parameters 
and application of geostatistical techniques. The flow analysis 
uses the field measurements to obtain a statistically calibrated 
fluid flow model from a parameter estimation (inverse) technique 
which yields both estimates of the model parameters and the 
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associated estimation errors. The calibrated flow model and the 
covariance matrix of parameter estimation errors are used to generate 
a large number of transmissivity and corresponding head realizations 
through conditional simulation. The specific pore velocity distribu­
tion for each realization is next calculated from the effective 
porosity, the transmissivity realization, and the corresponding head 
values. Each velocity distribution is used to obtain a transport 
solution for the contaminant originating from the same waste source 
for all realizations. The results are contaminant arrival times for 
all realizations from which statistical distributions for the arrival 
times are calculated. These statistical distributions are then used 
with the summary methods (i.e., contaminant arrival curves) to provide 
confidence intervals for the arrival times of contamination reaching 
the biosphere. 

The analysis sequence is presented in greater detail in the 
following sections and the method is applied to data from the Avra 
Valley aquifer in Arizona. The data for this site are used because 
much of the system characterization and fluid flow analysis has been 
completed and is already published in the literature (3,4). Accord­
ingly, the subsequent analysis steps can proceed using results of 
these completed steps and the available data. The authors emphasize 
that this example transport analysis is presented to illustrate the 
approach and demonstrate a method for uncertainty assessment and 
does not imply that an important specific pollution problem has been 
adequately treated. 

2. FLOW MODEL CALIBRATION THROUGH STATISTICAL PARAMETER ESTIMATION 

Given known boundary conditions, sources and sinks, and a 
conceptual model, the traditional approach for calibration of a 
groundwater flow model has been to modify the estimates of aquifer 
parameters by a trial and error procedure until the simulated 
hydraulic heads are reasonably close to the measured hydraulic head 
data. Although such a trial and error procedure may provide a 
reasonable representation of the-measured head data, the estimates 
of the aquifer parameters are not unique, and their associated 
uncertainty cannot be determined. To overcome these problems, a 
unified approach that includes the geostatistical technique of 
kriging and a statistical inverse or parameter estimations method are 
used (6, 14, 15, 20). 

Kriging is an interpolation technique that yields estimates at 
points or estimates averaged over areas where no data are available, 
the associated estimation errors, and covariance information. The 
kriging technique is applied to the measured aquifer parameter data 
to provide estimates of the parameters and the covariance of the 
estimation errors. The kriged estimates are used as prior informa­
tion in the statistical parameter estimation method, while either 
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the kriged or the measured hydraulic heads are used as the 'observed' 
head information. Thus, the kriging technique provides the estimates 
and covariance information needed for part of the statistical para­
meter estimation method. 

The statistical inverse method developed by Neuman (15) is based 
on prior information about the aquifer parameters as well as observed 
hydraulic heads. A new transmissivity distribution is obtained by 
minimizing a generalized least squares criterion composed of two terms 
The first or model fit term involves minimizing the differences bet­
ween the measured and calculated hydraulic heads. The second or 
parameter plausibility term involves minimizing the difference bet­
ween the calculated values and prior estimates of log transmissivity. 
Neuman developed the statistical parameter estimation method in terms 
of log transmissivity instead of transmissivity for specific reasons. 
One reason is that using log transmissivity guarantees that the 
transmissivities will always be positive. An additional reason is 
based on the practical experience that transmissivities appear to 
be log normal distributed. The generalized least squares criterion 
is minimized by first obtaining its derivative by the adjoint method 
(2) and then using a Fletcher-Reeves conjugate gradient algorithm 
(7) coupled with Newton's method for determining step changes in 
the parameters. The new transmissivity distribution calculated by 
this inverse procedure produces hydraulic heads that are reasonably 
close to the observed hydraulic heads, while keeping the inverse 
estimates of the parameters reasonably close to the prior estimates. 
Neuman's inverse method makes use of all available statistical infor­
mation about the prior estimates of the parameters and the hydraulic 
heads when determining new estimates of aquifer parameters and the 
covariance matrix of their estimation errors. 

Our application of the analysis sequence uses the field data 
and previous studies of the Avra Valley aquifer in Southern Arizona 
as reported by Clifton (3), Clifton and Neuman (4), Neuman and 
Jacobson (16) and Jacobson (6). Avra Valley is a deep elongated 
basin containing an extensive alluvial aquifer (Figure 1). Kriged 
estimates of the aquifer parameters (i.e., log transmissivities) have 
been obtained by Clifton (3) and used in the two-dimensional, steady­
state, statistical inverse model of Neuman (15). Clifton used hand­
contoured hydraulic heads for the model calibration using the parame­
ter estimation procedure. One of the authors of this paper (6) used 
kriged hydraulic heads as the basis for model calibration. This 
approach has the advantage that estimates of the variance in hyd­
raulic heads are available for use in the statistical parameter 
estimation procedure. However, in the transport analysis described 
here, results of Clifton and Neuman (4) were used because only the 
effect of transmissivity uncertainty was considered. Later work 
will consider boundary uncertainties in addition to transmissivity 
uncertainties. In this stepwise approach the significance of 
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Figure 1. Location and setting of Avra Valley, Arizona, and study 
area boundary (4) 

individual sources of uncertainty on the final assessment results 
can be observed and studied. 

Figure 2, reproduced from Clifton and Neuman (4), is the 
transmissivity contour map obtained from the statistical parameter 
estimation model,and the corresponding map of log-transmissivity 
standard errors is shown in Figure 3. The reader who wishes more 
detail on the model calibration may consult the paper (4). Figure 4 
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shows the head contours calculated from the inverse estimates of 
transmissivity shown in Figure 3. As seen in Figure 4, the heads 
calculated from the inverse transmissivities are in good agreement 
with the original contoured heads of Clifton and Neuman (4). 

The new distribution of transmissivities obtained from the 
inverse method together with the known boundary conditions, sources 
and sinks, and resulting hydraulic head distribution constitute a 

Figure 2. Contour map of the transmissivity field from parameter 
estimation model (4) 



Figure 3. Contour map of the log-transmissivity estimation 
errors (4). 
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statistically calibrated groundwater flow model of the Avra Valley 
aquifer. In addition, an estimate of the parameter uncertainty 
is obtained from the covariance of the inverse estimation errors. 
In this way the groundwater flow model is statistically calibrated 
and the uncertainty associated with the spatially varying aquifer 
parameters is available. This information is required to continue 
with the transport uncertainty analysis. 



710 

R9E RIOE RilE RI2E 

1940 HYDRAULIC HEADS 
--- HEADS COMPUTED BY THE 

INVERSE MODEL- CASE I, 
17h2 KNOWN 

HYDRAULIC HEADS 
IN FEET A.M.S.L. 

TIIS 

___ 1800----

TI2S 

o 4 6 10 MILES . 

Figure 4. Comparison of the 1940 steady hydraulic heads and the 
head computed from inverse transmissivities (4) 

3. CONDITIONAL FLOW SIMULATIONS USING THE CALIBRATED MODEL 

The next step in the analysis uses the calibrated flow model 
and the covariance information provided by the statistical inverse 
technique in a conditional simulation mode. Conditional simulations 
involve generating a large number of 'realizations' of the trans-
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missivities and calculating the associated heads. Each realization 
is generated in such a manner that the statistical information (mean 
and covariance) about the log tranmissivities is maintained (4). 
A realization of the log transmissivity vector Y, is obtained by 
setting ~ = i + ~~, where i is the vector of the log-transmissivity 
estimates obtained by the inverse method, M is a lower triangular 
matrix defined as M MT = V where V is the ~ovariance matrix of the 
estimation errors obtained by the-inverse method and ~ is a random 
vector obtained from a multivariate normal distribution. The trans­
missivity values for each realization are then calculated from 
Tr = lOY, where Tr is the transmissivity. This method of generating 
the transmissivity realizations (4) appears to be more efficient 
computationally than using the turning band approach. 

The 600 conditional simulations were regenerated for this study 
based on Clifton's and Neuman's (4) statistically calibrated flow 
model. The statistics of our 600 realizations and conditional 
simulations were essentially the same as those shown in Figures 18 
and 19 of Clifton and Neuman (4). All 600 realizations, were used 
in this evaluation because they were inexpensively obtained. Only 
7 min of CPU time on the VAX® 11/780 were required to generate the 
600 conditional simulation realizations. (VAX® is a registered 
trademark of the Digital Equipment Corporation, Maynard, Massach­
usetts.) The subsequent transport solution for the 600 velocity 
field realizations required 52 CPU min on the same machine. 

4. THE ENSEMBLE OF CONTAMINANT PATHLINE REALIZATIONS 

The realizations of transmissivities and associated heads from 
the statistically calibrated fluid flow model are needed to generate 
velocity fields and the associated pathlines. In generating these 
velocity fields, we wanted to minimize the problem of discontinuous 
velocities at the boundaries of adjoining finite elements. There­
fore, a new velocity field grid was formed on the original flow 
model grid and is shown in Figure 5. The nodes of the velocity 
field grid are at the center of the interior elements and between 
the exterior nodes on the boundary of the flow model grid. The 
flow model solution and finite element basis functions were used to 
calculate the velocity at each of the new nodes of the velocity 
field grid. 

Each conditional simulation realization from the calibrated 
flow model provides a set of equally likely values of transmissivity 
over each element and the corresponding head at each node of the 
flow model. This information, along with the known saturated depth 
of the aquifer and the known effective porosity, is sufficient to 
calculate the velocity at each node in the velocity field grid. 
Unfortunately limited data are available on the saturated depth 
and the effective porosity for Avra Valley. Accordingly, the 
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Figure 5. The Avra Valley velocity field grid imposed on the 
original flow model grid. 

saturated depth and effective porosity were assumed constant and 
assigned values of 500 ft and 0.35, respectively. 

The gradient of the head at each node in the velocity field 
grid was calculated using the flow model head solution and basis 
functions. Then, for the i th realization and the jth node in the 
velocity field, we have the transmissivity from the associated flow 
model element, (Tr)ij and the calculated gradient of the head (Vh)i .. 
The pore water veloclty, vij is calculated at each node using: J 

(Tr) .. 
Pb 1.J (Vh) ij i 1,2, ... ,600; j 1,2, ..• ,J (4.1) 
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where P is the effective porosity, b the aquifer thickness (Pb = 
175 ft for this case), and J is the total number of nodes in the 
pore velocity finite element grid. As indicated by the i th limit 
in Eq. (4.1), 600 velocity field realizations are available for the 
path1ine analysis. 

Because the velocity realizations from Eq. (4.1) are from an 
asssumed steady-flow condition for Avra Valley, the path1ines and 
streamlines are identical. Though one could correctly refer to 
path1ines and streamlines interchangeably in this case, we maintain 
for clarity the convention of the more general transient systems. 
The term path1ine is used when referrring to transport, fluid par­
ticle trajectories, and travel times that involve the time parameter­
ization; whereas, streamline or stream function, whichever is 
appropriate, is used when fluid flux or the related spatial param­
eterization is involved. 

The assumed distributed source of contamination for this example 
transport evaluation is a line source approximately 4 miles long 
that is shown as a dotted line in the lower part of Figure 5. The 
contaminants are assumed to be deposited dry and mixed instant­
aneously with the groundwater. In other words, the contaminants 
enter the system without adding additional fluid to the system. The 
length of the line source was varied slightly so that the same 
groundwater flux crossed the line source for all 600 of the condi­
tional simulations. In this way, the same contaminated stream 
function flux originated at the line source for all realizations 
and was conveyed to the outflow boundary between the outermost 
contaminated streamlines. 

For each of the 600 velocity field realizations, starting 
coordinate locations along the line source were generated so that 
an equal amount of the flux (2%) passed between adjacent streamlines. 
This spacing of locations gave a total of 51 contaminant starting 
points along the line source for each realization. Accordingly, at 
the kth streamline starting location, we define the stream function 
value by 

k -25,-24,-23, ... ,0,1,2, ... ,25. (4.2) 

where~. is the stream function value for the kth streamline at 
the poi5f along the line source with the coordinates designated 
inside the parenthesis for the ith realization. xoik is the x­
coordinate location of the kth streamline starting location along 
the line source. Yoik is the y-coordinate location of the kth 
streamline starting location along the line source. The streamline 
location coordinates along the line source were located such that 
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~Ok (x ok' y ok) - ~ok lex ok l' y ok 1) 1 01 01 1 - 01 - 01-
0.02; (403) 

for k = -24,-23,-22, ... ,0,1,2, ... ,25 

or in other words the points along the source line, A-B, in Figure 6 
are located so that 2% of the total contaminated unit flux flows 
between any two adjacent streamlines. The total relative contaminated 
flux is then 

~ 0 25 (x 0 25' Y 0 25) - ~ 0 25 (x 0 25' Y 0 25) = 1 1, 0,1, 0,1, 1,- 0,1,- 0,1,-

(4.4) 

Pathlines were next numerically generated from each of the 
starting points along the line source A-B of known stream function 
fluxes. Specifically, the kth pathline was generated numerically 
by solving simultaneously the pair of characteristic differential 
equations, 

(dx) = (v ) 
dt k x ik 

and (dy) = (v ) 
dt k Y ik 

(4.5) 

for i = 1,2,3, ... ,600 k -25,-24,-23, ... ,0,1,2,3, ... ,25. 

where (v ) 0 and (v ) 0 are the x and y pore water velocity components 
x 1 y 1 

for the i th velocity realization. The pathlines described by Eq. 
(4.5) are generated numerically by stepping in time away from the 
starting point at zero time using the ith velocity field basis func­
tions to calculate the velocity components Vx and Vy in space before 
each time step. In Figure 6, pathlines are shown for two realizations: 
i = 3 and i = 406 with five pathlines shown for each realization. 
Each of the pathlines reach the outflow boundary denoted as O-N in 
Figure 6 at the arrival time, To k , and at outflow location coor-
dinates denoted by 1 

(4.6) 

where, Tik is the arrival time to reach the outflow boundary, O-N, 

along the kth pathline for the i th velocity field realization.The xLik 
is the x-coordinate of the kth pathline at the outflow boundary, 
O-N, for the ith velocity field realization. The YLik is the y-coor­
dinate of the kth pathline at the outflow boundary, O-N, for the i th 
velocity field realization. The pathline, however, is also a stream­
line because the flow is steady. Accordingly, the stream function 
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Figure 6. Groundwater pathline from contamination line sources to 
outflow boundary for realizations 3 and 406. 

is constant along the streamline and so 

(4.7) 

with the right-hand side known from Eq. (4.2) when k is known. 
Therefore, the arrival time Tik can be plotted as a function of the 
stream function, Wik' for each velocity field realization as shown 
in Figure 7. A minimum arrival time and two peaks in arrival times 
are seen in the figure. 

The time/stream function flux relationship is more convenient 
to use if converted to a monotonic increasing function of contaminant 
arrival time. This is readily accomplished using the steady stream 
function properties. We begin by noting that the first contaminant 
arrival at the outflow boundary is at W406,-9 = - 0.18 denoting the 
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Figure 7. The dependence of contaminant arrival time at the outflow 
boundary upon the stream function values for velocity 
realization 406 

first streamline reaching the outflow boundary at a travel time 
(arrival time), T406 -9 = 1,309,304 days. Associated with that first 
arrival time, we define the cumulative outflow of contaminated fluid 
(q/Q)406 = 0 (i.e., the cumulative outflow is zero upon first arrival 
at the outer boundary O-N). At all later arrival times in Figure 7, 
two or more streamlines as denoted by the stream function values 
reach the outflow boundary at any given arrival time. Accordingly, 
at any later arrival time, the cumulative flux that has crossed the 
outflow boundary, (q/Q). is the difference between the stream func­
tion values for the boukding streamlines that enter at that time. 
For example, at some later time, say T = 1,360,000 days, as repre­
sented by the lower dashed line in Figure 7, there are two stream­
lines: ~l = -0.4138 and ~2 = 0.1043. Therefore, the cumulative 
relative flux, q/Q, that has entered between the two streamlines is 
the difference in ~ values: 

(~)406IT 1,360,000 days 
0.5181 (4.8) 
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At a still later time (for example at T = 1,420,000 days) the same 
difference of values approach applies and yields the cumulative 
relative flux though it may seem slightly more involved. At T = 
1,420,000 days, four streamlines are of interest in Figure 7 (i.e., 
~l = - 0.5, ~2 = 0.3279, ~1 = 0.4288 and ~4 = 0.5). Two of the 
streamlines, ~2 and ~ in the figure, represent the two pathlines 
that arrive at the se!ected time, T = 1,420,000 days, while the other 
two stream function values of ~l and ~4 represent the outermost 
bounding streamlines for the contamination plume reaching the out­
flow boundary. All four of the streamlines are used to provide the 
cu~ula~ive relative flux, (q/Q)406' that has outflowed by this time, 
wh1ch 1S 

0.8991 
1,420,000 days 

(4.9) 

As additional arrival times are selected and the associated cumul­
ative fluxes, (q/Q)s are determined from the stream function values, 
a complete data set for that particular realization is provided. 
In Figure 8, the subsurface system response function, or the q/Q 
versus arrival time curve, for realization 406 is given. Also 
shown in Figure 8 are the contaminant arrival curves for realizations 
3, 5, 464, and 531. Though only five realizations of contaminant 
arrival curves are illustrated in the figure, the cumulative arrival 
fluxes and associated arrival times at the outflow boundaries were 
calculated for the full complement of 600 realizations and are 
available for use in the remaining part of the uncertainty evaluation. 

5. THE STATISTICAL CONTAMINANT ARRIVAL DISTRIBUTIONS 

The contaminant arrival distribution concepts were developed 
during the last decade as useful analysis methods in groundwater 
quality management studies (1,8,9,10,11,12,19). Though the arrival 
distribution methods have been used previously only with determinis­
tic model results, the concepts now appear just as useful with 
statistical uncertainty into contaminant arrival concepts, the 
background deterministic methods are discussed briefly. 

The arrival distribution approach can be described either by 
starting from the theoretical origin in groundwater analysis and 
logically progressing through the analytical steps to their ultimate 
use in decision making, or conversely by beginning with the needs 
of the decision-making process and showing how the contaminant 
arrival concepts satisfy those needs and can be obtained from system 
analyses. We focus on the latter or the ultimate use of the arrival 
concepts by considering those pertinent factors involved in evaluat­
ing a subsurface contamination problem. 
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The major analytical need is to estimate the extent of conta­
mination that will reach the biosphere from the subsurface contamina­
tion problem. Specifically, three factors are of major significan­
ce to the decision-making process: a) quantity of contaminants reach­
ing the biosphere b) time of contaminant arrival at the biosphere 
interface c) location of contaminant emergence. 

These three factors can be interrelated in two ways. The first 
and most general approach is to use the outflow location as the pre­
dominant variable. This approach provides the arrival distribution 
summaries, which are described in detail elsewhere (9,10,11,12). 
The second approach, which is appropriate only for steady systems 
uses the cumulative quantity of containment outflow as the predomi­
nant variable and has become known as the contaminant response 
functions (13). Response functions, though somewhat less general 
than the arrival distributions, because they are restricted to 
analyzing steady-flow systems, are simpler to apply. The response 
functions using the cumulative contaminated outflow, q/Q, as the 
coupling variable is used in the continuing uncertainty evaluation 
because our system involves steady flow and transport. Accordingly, 
the five individual arrival curves in Figure 8 are recognized as 
the outflow response functions for velocity field realizations 3, 5, 
406, 464, and 531. A separate and unique response function exists 
for each of the other 595 velocity field realizations. The func­
tional dependence of the response function is expressed as 

£.(T), i 
1 

1,2,3, ... ,600 (5.1) 

where (q/Q). is the reltfiive cumulative flux for the ith realization 
and f. repr~sents the i functional dependence upon the contami­
nant ~rrival time, T at the outflow boundary. The functional depen­
dence for each and every individual response function of Eq. (5.1) 
is purely deterministic with no stochastic variations between q/Q 
and T for the same realization, i. The stochastic uncertainties of 
the response functions enter through considering the arrival times 
for the 600 realizations at a particular value of q/Q. For example, 
if one selects q/Q = 0 and then considers all 600 of the first arri­
val times associated with that zero cumulative outflow, the statis­
tical distribution of first arrival times is obtained and may be 
shown as a histogram in Figure 9. Although the histogram suggests 
the arrival times at q/Q = 0 are normally distributed, more careful 
analysis to confirm this point follows. The later arrival time 
distributions were examined similarly by analyzing the 600 realiza­
tions of arrival time associated with q/Q equal to 0.05 followed by 
considering 0.10 then 0.15 and so forth increasing each new q/Q 
value until the last set of arrival times for q/Q = 1 were analyzed. 
This provided a total of 21 sets of 600 realizations of arrival 
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Figure 8. Arrival curves or response functions for velocity field 
realizations 3, 5, 464, 406, and 531 

times with each set of 600 being for a specific value of the cumu­
lative outflow rate q/Q. 

A normal probability plot was generated for each set of arrival 
times corresponding to the different values of q/Q by an approxima­
tion method (18). All of the probability plots exhibited straight 
lines. The 'straightness' of the lines can be measured by the 
correlation coefficient of the points in the plot. A very powerful 
test for normality based on this correlation (18) was applied to 
each set of arrival times, and the results indicate that all the 
sets of arrival times are normally distributed. Probability plots 
for q/Q = 0.0, 0.25, 0.50, 0.75, and 1.0 are shown in Figure 10. 
In the figure, the arrival times are plotted versus multiples of 
the standard deviation for each of the five cumulative fluxes. 
Though only five of the data sets are shown in Figure 10, all 21 
of the fitted normal distributions are used in constructing sub­
sequent results. 

The sample mean and sample standard deviation of the arrival 
times were calculated for each of the 21 data sets. So for each 
of the 21 values of q/Q covering the range of the cumulative outflow 
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Figure 9. Histogram of the first contaminant arrival times for the 
relative cumulative outflow flux, q/Q = 0.0 

flux, the mean arrival time for each q/Q value is available and 
can be plotted as the mean response function shown as the solid 
central curve in Figure 11. Similarly, from the standard deviations 
for the 21 incremented cumulative flux values, the 95% confidence 
interval response curves are obtained and are also plotted in Figure 
11 as the two dotted curves. For comparison, the dashed curve in 
Figure 11 is the response curve that was calculated using the 
spatially varying mean transmissivities determined from the inverse 
model calibration. This curve probably represents the best, strictly 
deterministic, flow and transport modeling result for comparison 
with the mean uncertainty response function and the confidence inter­
val. The agreement between the deterministic and the mean response 
function is good, although the deterministic response function is 
steeper and represents, in general, a more uniform velocity field 
than the stochastic expectation. The results of a trial and error 
calibration would probably lie somewhere between the best determinis­
tic transmissivity response function (dashed curve) in Figure 11 and 
some of the more variable stochastic response function realizations 
(for example, like those shown in Figure 8). 
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The confidence interval shown in Figure 11 is the more commonly 
used two-sided confidence interval that includes both the upper and 
lower limits that bound the mean. Yet as pointed out by both the 
U.S. Nuclear Regulatory Commission and the Environmental Protection 
Agency (17), one-sided confidence limits are often more appropriate 
for water quality controls. Accordingly, convenient one-sided 
integral confidence intervals were calculated and are shown in 
Figure 12. The response curve arrival times are lower limits so 
that the probability is stated as the percentage likelihood of the 
travel times being equal to or less than shown for the response 
function arrival times. Specifically, the response functions corres­
pond to arrival times equal to or less than those shown by the 
curves at probabilities of i%, 5%, 15%, 25%, and the mean at a proba­
bili ty of 50%. 

6. SUMMARY 

An analysis sequence is presented and applied to a subsurface 
flow system. The analysis sequence is used to estimate the uncer­
tainty in the final transport results that arise from our inability 
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to completely characterize subsurface material heterogeneity. The 
sequence involves combining statistical methods and the classical 
subsurface deterministic modeling methods to provide the uncertain­
ties in the final analysis results. 

Specifically the analysis sequence a) applies geostatistical 
techniques (kriging) to measured field transmissivity data. b) sta­
tistically calibrates a flow model by using the geostatistical 
results together with the field measured heads in a parameter esti­
mation technique. c) provides the covariance matrix of parameter 
estimation errors as part of the model calibration. d) uses the 
covariance matrix and the calibrated flow model to generate a large 
number of transmissivity and the associated head realizations. 
e) generates a pore water velocity field and fluid flow paths with 
the associated travel times from the contaminated source to the 
outflow boundary for each realization. f) determines the arrival 
time versus cumulative outflow rate or response function for each 
realization. g) statistically analyzes the response functions to 
determine the mean response function and its confidence limits. 
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Figure 12. Cumulative arrival curves or response functions where 
the arrival times are less than or equal to values 
shown at 1%, 5%, 15%, 25%, and 50% or mean probabilities 

In total, we have described a technique or analysis sequence 
that begins with field data and results in the confidence limits of 
the response functions at the contaminant outflow boundary. This 
technique will need to be further developed and expanded in consi­
derable detail in order to satisfy the growing need for quantifica­
tion of uncertainty in subsurface flow and transport analysis. 
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9. LIST OF SYMBOLS 

b 
J 

M 

P 

(q/Q)i 

Tr 

(Tr) ij 

Aquifer thickness 
Total number of nodes in the pore velocity finite 
element grid 
Lower triangular matrix 

Effective porosity 

Cumulative flux for the i th 
realization 

The arrival time to reach the outflow boundary 
O-N, along the kth pathline for the i th velocity 
field realization 
Transmissivity 

Transmissivity from the associated flow model 
element 

Pore water velocity for the ith realization at the 
jth element 
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v Covariance matrix of the estimation errors obtained 
by the inverse method 

(v ) .. and (v) .. x and y pore water velocity components for the ith 
x 1J y 1J velocity realization and at element j. 

x 

y 

(lJh) .. 
1J 

1/!ik( , ) 

A random vector obtained from a multivariate 
normal distribution 
x-coordinate of the kth pathline at the outflow 
boundary, O-N, for the i th velocity field realiza­
tion 
x-coordinate location of the kth streamline starting 
location along the line source 
Log transmissivity vector 

Vector of the log-transmissivity estimate obtained 
by the inverse method 
y-coordinate of the kth pathline at the outflow 
boundary, O-N, for the ith velocity field realiza­
tion 
y-coordinate location of the kth pathline starting 
location along the line source 
Calculated gradient of the head for the ith realiza­
tion at the jth element 
Stream function value for the kth streamline at the 
point along the line source with the coordinates 
designated inside the parenthesis for the ith 
realization 
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ABSTRACT 

Leslie Smith 

Department of Geological Sciences 
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This chapter reviews the development and application of stoc­
hastic modeling techniques for studying mass transport in fractured 
media. Because of difficulties in developing a conceptual framework 
with respect to issues concerned, for example, with representative 
elemental volumes or the connectivity of a network, emphasis in 
modeling has generally involved discrete rather than continuum 
approaches. Our work has shown that it is possible to model trans­
port in two and three-dimensional networks of discrete fractures 
using a particle tracking approach. Characteristics of the internal 
mass distribution and breakthrough curves can be directly related 
to features of the network geometry using a Monte Carlo approach. 
With this technique, realizations of a fracture network are 
generated probabilistically. Results from these kind of simulations 
show for example that mass distributions within a fractured medium 
can be irregular and skewed, and that the mass distribution is 
sensitive to the mean hydraulic gradient with respect to fracture 
sets. These characteristics of the internal mass distributions 
directly determine the shape of the breakthrough curves. More 
recent studies have suggested that these effects also develop in 
three-dimensional systems. Computational limitations have restricted 
the application of the discrete approaches to near-field problems. 
Work is progressing in developing a new continuum approach for 
modeling far-field problems, which successfully preserves the 
unique patterns of transport imparted by the network. Preliminary 
testing has verified this approach and provided considerable optimism 
in the ability to deal with large scale networks of fractures. 
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1. INTRODUCTION 

Emphasis in a variety of field and theoretical studies over the 
past few years has been placed on understanding groundwater flow 
and mass transport in fractured media. Driving much of this work 
is the practical interest in developing repositories for high level 
radioactive waste in rocks that may contain fractures. The purpose 
of this paper is to review recent developments in stochastic modeling 
of dispersion in fractured media. Specific objectives are to: 
i) provide various perspectives on the nature of fractured rocks 
ii) review some of the approaches that we have developed for modeling 
flow and mass transport, iii) summarize the results of this work, 
and iv) describe a new continuum approach for modeling mass transport 
in fractured systems. 

2. CLASSIFICATION OF FRACTURE NETWORKS 

A necessary requirement for studying fractured rocks is a 
conceptual model that incorporates the essential features of the 
system. The model that has evolved (see Figure 1), although similar 
in many respects to that often proposed for porous media, is in 
some ways more complex. Central to this model is the concept of a 
representative elemental volume (REV), which defines how a parameter 
of the system such as network permeability varies as a function of 
volume. An REV is said to exist when there is a negligible change 
in the value of the parameter accompanying a slight change in the 
volume over which the parameter is calculated. Shown on Figure 1 
are two scales or volumes at which REV's are assumed to exist. 
Scale 1 is the smallest scale of facturing in the system, while 
Scale 2 is a larger scale that appears gradually once the volume of 
interest reaches some minimum size. An REV cannot be defined at 
the small end of the volume range and within a zone between scales 
1 and 2 (Figure 1). 

The fundamental relationship depicted in Figure 1 can only be 
defined when fracture densities are above a so-called critical 
density. In percolation theory, the critical density is defined as 
that density above which infinite clusters of fractures appear or, 
in other words, when connectivity is achieved for the network (see 
Figure 2 for an example). Robinson (12) considers a cluster of 
fractures to be percolating within some domain when all sides of a 
domain are connected. The important point is that if a network is 
below the critical density its effective hydraulic conductivity will 
remain zero even if volume is increased. 

Assuming that a network is percolating, it still may not be 
possible to define REV's at some volumes (Figure 1). When the 
volume of a rock is smaller than that which defines the REV at 
either scales 1 or 2, the number of fractures in the system is 
limiting to the extent that changing the volume slightly can change 
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Figure 1. Variability in permeability as a function of volume 
illustrating REV's at two scales 

- non-percolating 

• - critical density 
• 
• 

- percolating 

Figure 2. Examples of percolating and non-percolating networks in 
two dimensions. Critical density is the point where 
infinite clusters of fractures appear. 
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fluid flow within the fracture network significantly. As a conse­
quence, there can be considerable variability in a parameter such 
as effective hydraulic conductivity for the network. 

It is in this manner that fractured media may differ considerably 
from porous media. In porous media, this sub-REV behavior will 
occur over a small volume range. For example, once volume averaging 
moves from the volumes of just several pores to hundreds of pores 
(a relatively small change in volume), we quickly approach the REV 
(4). In fractured media characterized by relatively low fracture 
densities, the rock volumes over which this sub-REV behavior may 
continue could be considerable. 

The important question that arises in this respect concerns how 
flow and mass transport are modeled in fractured rocks. As a 
generalization, systems for which an REV exists are modeled using 
continuum concepts, while sub-REV systems are modeled as discrete 
fracture networks. Although discrete fracture models can in theory 
be applied to most fracture networks, there are practical limits to 
the number of fractures that can be considered due to computational 
constraints. Occasionally, two scales of fracturing can be modeled 
using equivalent parameters to represent the smaller scale of frac­
turing and discrete fractures to describe the larger - scale network. 
The problem in modeling becomes one of deciding whether a particular 
volume of rock is or is not an REV for various parameters. It is 
usually assumed in practice that the REV simply exists without provi­
ding suitable justification. Many sub-REV systems are probably 
modeled inappropriately as a result of using continuum approaches. 

A case can be made that REV's may not exist at all for fractured 
rocks. This argument is based on the probable existence of different 
scales of fracturing within a rock mass. Before any test volume 
approaches an REV for one scale of fracturing, the next larger scale 
begins to exert an influence. Thus, hydraulic or transport parameter~ 
may vary continuously as a function of volume. This problem could 
be more pronounced in fractured rather than porous media because 
the volumes over which sub-REV behavior occurs are in general larger. 

What we have tried to show is first that a discrete formulation 
of the transport problem may be more appropriate than existing 
continuum methods for problems related to fracture rocks. Second, 
mass transport in fractured media may be considerably different than 
in porous media. 
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3. METHODS FOR MODELING FLOW AND TRANSPORT IN DISCRETE NETWORKS 

3.1 Two-Dimensional Systems 

The discrete approach to modeling fluid flow and mass transport 
involves specifying the geometry and hydraulic characteristics of 
one or more fractures. Although considerable emphasis has been 
placed on studies of transport in single fractures to evaluate 
matrix diffusion, fractured networks are less well studied. Besides 
some early work by Castillo et al. (2,3) and Krizek et al. (7) on 
simple deterministic networks of infinite fractures, the only other 
studies are those of Schwartz et al. (16), Endo et al. (5), Robinson 
(13), and Smith and Schwartz (19). Our work has involved the 
application of stochastic techniques where individual realizations 
of a fracture network are generated from a statistical description 
of the geometric and hydraulic properties of a fracture network. 
Simulation of transport for a large number of these realizations 
provides probability distributions on selected output parameters, 
which is the Monte Carlo procedure for stochastic simulation. All 
of the studies on fracture networks have considered two-dimensional 
systems, with emphasis placed on concept validation rather than 
simulation of field problems. 

The basic steps in the stochastic simulation of mass transport 
include i) the definition of the flow domain and boundary conditions, 
ii) the probabilistic generation of one realization of the fracture 
network, iv) the solution of the flow and mass transport problems, 
and v) the repetition of steps ii to iv and the collection of 
various output parameters to complete the Monte Carlo simulation. 
Following is a more complete discussion of this procedure. 

The flow domain is chosen to be either square or rectangular 
with the possibility of specifying known hydraulic heads along all 
four sides, or along the two ends and no-flow boundaries along the 
top and bottom. The first set of boundary conditions are more 
flexible because flow can be defined with a specified orientation 
to the fracture sets (Figure 3). For these boundary conditions, 
hydraulic heads are specified at each corner of the domain, and 
hydraulic head is assumed to vary linearly along the sides. Provision 
is made to restrict mass transport to the central portion of the 
network to avoid distortions in flow near the edges caused by the 
boundary conditions. The second set of boundary conditions are 
useful because they replicate conditions for what is in effect a 
large column experiment. 

The next step in the procedure is to generate a discrete 
fracture network. Our initial approach was similar to but yielded a 
network that is less general than other approaches such as Long 
et al. (9), Robinson (13), and Rouleau(14). Fractures in two 
dimensions are represented as sets of linear features. They are 
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Figure 3. Examples of a discrete fracture network within a square 
flow domain. Boundary conditions as shown make it possible 
to orient flow at various angles to the network. 

defined in terms of the position of their midpoint, fracture length, 
attitude and aperture. Some or all of these parameters are 
considered to be random variables. 

In the work we have cited, the midpoints of fractures are 
located randomly within the domain. This distribution characterizes 
a homogenous medium where fracturing is not controlled by structural 
or lithological variability (12). Other distributions, which result 
in uniform, clustered or mixed distributions are possible but in 
general have not been considered in work to date. Fractures are 
assumed to occur in one or more distinct sets. Our work (16, 19) 
has considered two sets oriented at 900 with respect to one another. 
Long et al. (9), Robinson (13) and Rouleau (14) are able to consider 
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an arbitrary number of fracture sets with variability in fracture 
attitudes. 

Fracture lengths are treated as random variables with lengths 
sampled from either a lognormal or negative exponential distribution. 
Lognormal distributions for fracture apertures are justified on the 
basis of a limited number of studies such as those of Snow (21). 

Fracture density is determined by the number of fractures added 
to a given domain in relation to its overall size. Most workers 
out of convenience utilize a constant number of fractures in each 
set. It is not difficult in a stochastic sense to build variability 
and spatial correlation into the density of fractures. 

The third step in the modeling procedure is to reduce this 
network to what we term the essential network. The network is 
simplified by removing dead-end fracture segments and isolated 
clusters of fractures. Our work and that of Robinson (13) suggests 
that this procedure, in addition to reducing the computational 
effort, can improve the stability of the solution of the flow 
equation. This step has no influence on mass transport because in 
the absence of diffusion within the system, the dead-end segments 
in a two-dimensional system are inaccessible to mass. 

Step iv in the procedure involves simulating fluid flow and mass 
transport throughout the network. The description here is a summary 
of a more detailed one presented by Schwartz et al. (16). Except 
for details in the way in which the flow equation is solved, 
Robinson's (13) approach is very similar. We use a finite difference 
procedure to calculate hydraulic heads at nodes, which are defined 
as the points where fractures intersect. Implicit in this approach 
are assumptions of parallel-walled fractures whose apertures can 
be related to the quantity of flow by a cubic law expression, laminar 
flow conditions, a rigid fracture network, and no coupling between 
fluid density and flow. With a sparse matrix solver, we can consider 
a maximum of 4000 nodes in any realization. 

Mass transport is simulated using a particle tracking technique. 
Moving particles are added to one or more fractures at the start of 
the simulation, which represents an instantaneous pulse loading. 
These particles are advected through the network with a velocity 
that for individual fractures is determined from estimates of 
hydraulic head, aperture and fixed constants such as fluid density 
and viscosity. Dispersion of the swarm of particles is generated 
by the geometry of the network. As individual particles arrive at 
fracture intersections, transport directions are determined 
probabilistically with a distribution weighted according to the 
quantity of flow moving in each direction. This kind of partitioning 
at a node assumes perfect mixing at an intersection. While there 
are some experimental data to support this model (7), there are 
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alternative models such as Endo et al. (5) that assumes partial 
mixing at intersections. The transport model is also constructed 
with the assumption that mass does not interact chemically with the 
fractures nor is there diffusion into the intact rock blocks. 

Output from the transport simulation for a single realization 
describes various parameters of the breakthrough curve such as the 
time required for initial, 25%, 50%, 75% and 90% breakthrough, 
distributions of mass within the domain, or statistical tests to 
determine the form of mass distributions within the domain. Over a 
complete Monte Carlo simulation, it is possible to obtain probability 
distributions on output parameters of interest. Commonly, results 
are based on 300 to 500 realizations. At this stage, the Monte 
Carlo simulation is complete. We will examine in a coming section 
how such results can be used to learn more about dispersion in 
fractured media. 

3.2 Three-Dimensional Systems 

Efforts to study flow and transport in three-dimensional systems 
have been very limited. Other than work by Long et al. (10) and 
Long (8), which investigated fluid flow in three-dimensional networks 
the only study involving mass transport is that of Smith et al. (20). 
All of the work in modeling flow and transport is based on deter­
ministic approaches. The added computational effort in moving from 
two to three dimensions at present only permits trials with a few 
realizations of a Monte Carlo simulation. 

The approach for dealing with three-dimensional networks is in 
principle the same as that for the two-dimensional problem, progres­
sing from grid generation through the solution of the flow and 
then the transport problems. Each of these steps however is more 
difficult in three dimensions than two. Consider first the step of 
generating the three-dimensional network. There is a problem in 
defining what the shape of a fracture actually is. As is shown in 
Figure 4, Smith et al. (20) simulate fractures as rectangular planes, 
while Long et al. (10) model fractures as disks. The shape of 
fractures in these studies is defined more for the convenience of 
the numerical approaches rather than any particular notion about 
what fracture shapes really exist. 

Simulation of fluid flow and mass transport in a three-dimen­
sional network is more difficult than in two dimensions because of 
the necessity of dealing with the intersection of planes and parts 
of planes in space. The rough-walled character of individual 
fracture planes can be modeled by incorporating spatial variability 
in fracture apertures. For certain correlation structures, it is 
then possible to simulate channelling of fluid and mass within the 
network (11). In other respects, the statistical distributions used 
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• Smith et al. (1984) 

• Long (1985) 

Figure 4. Two different conceptualizations of three-dimensional 
networks. 

2 sets 
discontinuous x-z plane 
continuous y-z 
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Figure 5. Examples of three different kinds of networks being 
generated. Moving from a) to c) the geometries become 
increasingly complex. 
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to describe the geometry of the network are the same as we discussed 
earlier. 

Examples of the three-dimensional networks we have considered 
are shown in Figure S. Moving from Figure Sa to Sc, the networks 
become more complex. The discussions in this paper will focus on 
networks of the type shown in Figure Sa. Work is underway to model 
transport in networks of the type illustrated in Figure Sc. 

Because of the network geometry and the spatially-variable 
aperture, both fluid flow and mass transport is two dimensional 
within each fracture plane. For this reason, it is necessary to 
define a row and column grid on each plane and link the planes by 
common sets of nodes on each. Details of the algorithm used to 
construct the three-dimensional network of nodes are given in 
Smith et al. (20). Dead-end fracture segments are retained as an 
essential part of the network because of the possibility for fluid 
to circulate within those segments. However, isolated fractures and 
finite clusters are removed from the system. 

A finite element technique is used to solve the steady-state 
flow problem. Because of common nodes at the fracture intersections, 
the global matrix equation has a large bandwidth which can approach 
the size of the entire matrix. Thus direct methods for solving the 
resulting systems of equations are not appropriate. However, an 
iterative solution using conjugate gradient acceleration (6) makes 
it feasible, on a mainframe computer, to solve systems with SO,OOO 
nodes before computing costs become excessive. 

As in the two-dimensional case, particle tracking is used to 
simulate mass transport. Although the implementation of this 
procedure is more difficult in three dimensions, the basic features 
of the approach described previously are the same. 

4. DISPERSION IN DISCRETE NETWORKS 

Discrete network models are particularly useful in studying 
dispersion in fractured rocks because they provide a realistic 
analog of the natural process. Macroscopic dispersion occurs 
because mass is successively partitioned at fracture intersections 
and spreads to occupy an increasingly larger proportion of the flow 
domain. The discrete approach provides a very convenient way of 
linking the character of dispersion to features of the fracture 
network. Extending this procedure through Monte Carlo simulations 
makes it possible to evaluate how variability in fracture geometry 
that may exist from realization to realization generates variability 
in system behavior. 

What we plan to do now is to summarize some of the pertinent 
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results concerning dispersion in two-dimensional networks and touch 
on results for three-dimensional systems. The two-dimensional 
simulations all consider relatively sparse networks of orthogonal 
fractures of the type shown in Figure 6. For this reason, variability 
in the fracture geometry from realization to realization can result 
in significant variability in the breakthrough curve or other 
characteristic parameters of dispersion. We should emphasize that 
it should be possible to increase fracture densities to the point 

where the effects on transport of variability in fracture geometries 
among realizations will be minimized. 

For relatively sparse networks, we have observed three notable 
features in the pattern of dispersion. These are represented 
schematically in Figure 6. First there is a complex mass distribu­
tion within the domain in both the longitudinal (shown in Figure 6) 
and transverse directions (not shown). These distributions are 
caused by the relatively limited number of discrete pathways 
available far mass to pass through the network. A fractured medium 
can thus differ considerably from a homogeneous porous medium for 
which a much larger number of pathways can exist. Second there is 
a consistent negative skew in the mass distributions in a longitu­
dinal direction (Figure 6). This skew is also reflected in the 
breakthrough curve on Figure 6 as the long tail. The negative skew 
develops as a consequence of the differing velocities in fracture 
sets 1 and 2 (horizontal and vertical, respectively). With the mean 
flow gradient aligned parallel to set 1, vertical gradients for flow 
can be extremely variable and often very low. The velocity 

Breakthrough Curve 

Time 

Internal Mass Distribution 

Displacement 

Figure 6. Schematic representation of various distributions in a 
single realization of a discrete network. 
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distribution that results as a consequence of these gradients has 
a mean that is lower and variance that is higher than the velocity 
distribution in set 1. The negative skew thus reflects the fact 
that over relatively short distances most of the mass is traveling 
in the higher velocity pathways dominated by set 1, while small 
quantities of mass are retarded in the lower velocity segments of 
set 2. This dissimilarity in the velocity distributions for the 
various fracture sets is what produces the skew. 

The fracture geometry depicted in Figure 6 produces the 
maximum skew in mass distributions. As the orientation of the 
fracture sets is changed so that each set is oriented at 45 0 

relative to the mean gradient, the distributions of velocities in 
each set are identical and no skew develops in the particle 
distribution. 

The third feature of the generalized result depicted in 
Figure 6 is the very marked longitudinal dispersion that can develop 
even over a very short distance. Mass is spread from the upstream 
portion of the system to close to the outflow boundary. As we saw 
above, this result is produced by the variation in the velocity 
distribution between sets. However a point yet to be emphasized is 
that, as the orientation of the sets change relative to the mean 
hydraulic gradient, the decrease in skew represents a reduction in 
dispersion. Our simulation results show that for some fractured 
media dispersion is anisotropic, strongly related to the direction 
of transport. 

The results from these kinds of simulations also have important 
implications as far as the applicability of classical concepts of 
dispersion are concerned. Repeated trials, concentrating on the 
form of internal mass distributions, have shown that the diffusional 
model of dispersion may not adequately describe the process of 
dispersion. The Gaussian distributions of mass predicted by the 
classical diffusional model may exist only for a narrow range of 
conditions. It appears that a more general model is required for 
fractured media. Another problem of relating classical theories 
to transport concerns whether it is possible to describe dispersion 
by means of a dispersivity value or simple dispersivity function. 
Our analyses, which have looked at the variance-time derivative of 
the mass distribution in the longitudinal direction, suggest that 
the pattern of spreading can be extremely variable. In some cases, 
the derivative becomes negative indicating that the plume can 
occasionally contract in size as it moves along. These results are 
similar to those for porous media (18) that show dispersion to be 
complex when there is a number of limited pathways available for 
transport. Mass moving in this manner does not encounter the 
variety of flow conditions within the network that are necessary to 
create a constant dispersivity except perhaps over longer transport 
distances. 
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This stochastic approach has been extended to examine in detail 
how fracture geometry influences mass transport (19). Again, the 
network consists of two orthogonal sets aligned approximately 
parallel and perpendicular to the mean hydraulic gradient, so that 
set 1 forms the dominant pathway. The second set of fractures 
provides connecting pathways for transport between the discontinuous 
fractures in set 1. 

Sensitivity analyses show that mass transport is controlled 
mainly by the connectivity of the network between the inflow/outflow 
boundaries. When the connection is more direct, there is an increased 
probability that mass moves predominantly through set 1. When the 
connection is less direct, more weight is placed on connecting 
fractures of set 2 to establish pathways between the discontinuous 
fractures of set 1. The effects of a less-direct connection through 
the network include: i) a lower fluid velocity in set 1, ii) a greater 
variability in velocity within set 1, iii) longer travel times 
through the network, and iv) a greater variability in arrival times. 
Features of the fracture geometry that lead to this kind of behavior 
include: i) a reduction in the number of fractures comprising set 1 
and ii) a reduction in the minimum length of fractures forming set 1. 
The effects of a more direct pathway are just the opposite to those 
cited above. 

The magnitude of dispersive effects is also influenced by the 
connectivity of the network. An increase in macroscopic dispersion 
in the longitudinal direction occurs i) if the mean velocity within 
fracture set 2 decreases relative to set 1, ii) if the variability 
in fluid velocity, particularly within set 1 increases, and iii) if 
the average path length through the connecting fractures of set 2 
increases. 

This concept of connectivity can be used to predict the behavior 
of mass in a fracture network. In examples where parameters of the 
geometry were varied to exaggerate indirect connectivity (19), the 
expected behavior of transport relative to a more-directly connected 
network was correctly predicted. We are not able to present detailed 
results here, but experience from this study suggested that close 
links can be developed between features of the geometry and the 
pattern of transport. In a later section, we will describe an 
approach to simulating transport in a continuum that looks at 
developing this link as a primary objective. 

The results from simulations of three-dimensional systems are 
as yet limited. However, an example for a single realization is 
presented to illustrate the kind of results we have been able to 
obtain (20). The fracture network of interest is shown in Figure 7, 
which depicts the trace of fractures on the xz face of the flow 
domain. This region of interest is a cube with each face 10 m wide. 
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Figure 7. Trace of the network on the xy face of the flow domain. 
The circle is the projection of an injection well located 
in the centre of one fracture plane. 

Fractures are continuous across the domain in the y-direction with 
the two sets intersecting at 600 • There are 15 fractures in each 
of two sets, forming a network with 56 intersections. A total of 
5222 nodes are used to define the finite element mesh for this 
network. 

Fluid flow is established between the left and right faces of 
the domain by assigning constant head values. An injection well 
adds fluid to a single fracture. The position of the well is 
depicted on Figure 7. The four other boundaries of the domain are 
assumed to be no-flow. 

Moving particles are added to the system at the injection well. 
For the sample simulation, 2000 particles are released. Figure 8a-c 
illustrates the residence time distribution curves (fraction of the 
total particles released which cross the downstream constant head 
boundary per day) for this network. A filter has been applied to 
these breakthrough data to eliminate high frequencies in the 
residence-time curve introduced by using discrete time steps in the 
moving particle model. The three curves compare the transport 
behavior for cases of a constant aperture of 100 microns (Figure 8a) 
and spatially correlated apertures (Figures 8b and 8c). These latter 
two examples, which are for two different realizations from the same 
set of statistical parameters, have a standard deviation in aperture 
of 0.10 (base 10 logarithms) and integral scales in both coordinate 
directions of 2.0 m. 
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Figure 8. Residence time distribution curves for a) uniform aperture 
and b) and c) examples of spatially correlated apertures. 
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The residence-time distribution curves reflect the travel time 
for particles moving along streamlines established by the interaction 
of the radial flow field with the regional gradient, together with 
the effects of mixing that occurs at fracture intersections. The 
two peaks indicate that there are two preferred pathways for 
transport from the injection well to the downstream boundary. The 
long tail occurs because various fractions of the particles either 
follow circuitous routes to the outflow boundary, enter fractures of 
set two which have relatively low fluid velocities, or encounter 
lower fluid velocities near the bounding edges of fractures in set 1. 
Figures Bb and Bc, for rough-walled fractures, show that although 
the main features of the parallel plate model are retained, consider­
able smaller-scale variation can be imposed on the residence time 
curve by the variable apertures. 

At the present time, work is continuing on the development of 
codes that allow more general fracture geometries and a larger number 
of fractures. Preliminary results suggest that three-dimensional 
effects are of considerable importance in determining the character 
of transport in fractured rocks. 

5. NEW CONTINUUM APPROACH 

One of the major limitations of the discrete modeling approaches 
that we have finished discussing is the relatively small number of 
fractures that can be included in a simulation. What this means is 
that transport in large networks has to be simulated using some kind 
of continuum approach. However, such an approach is oversimplified 
because the diffusional model of dispersion that forms the basis for 
all existing models may not adequately describe dispersion. We have 
been working to develop a new continuum approach for dispersion to 
account more realistically for the influences of fractures and 
fracture geometry on dispersion. 

Although details of the modeling approach have been presented 
elsewhere (17) a summary will be presented here to help readers 
understand the method. The essence of the technique is to formulate 
the transport of mass in a continuum as a random-walk problem (1, 15). 
In the conventional application of the particle tracking method, 
advection is accounted for the deterministic particle motion, and 
dispersion by some probabilistic motion. This latter component of 
particle motion is modeled using statistics that produce Gaussian 
mass distributions parallel and perpendicular to the direction of 
groundwater flow. Where our continuum approach differs from the 
conventional approach is in the treatment of particle motion. We 
do not a priori assume a classical model for particle motion. The 
way in which the reference particles are moved is determined as part 
of the simulation problem. 
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To characterize transport, we create a discrete fracture model 
of the type discussed earlier for one or more sub-domains of the 
continuum. The sub-domain has a fracture geometry similar to that 
of the continuum, but the number of fractures involved is typically 
much smaller. By statistically characterizing how reference 
particles move through the network, we can generate a unique 
description of particle motion that can be extrapolated to the 
continuum. Thus without explicitly including fractures at the 
continuum scale, mass spreading is simulated in a way that more 
realistically accounts for the effects of fracturing. 

Within the discrete sub-model, a swarm of reference particles, 
usually 500, is used to compile probability distributions on the 
negative logarithm of the seepage velocity in the directions of 
possible transport. For two orthogonal fracture sets, there are 
four such directions. The velocity distributions are constructed 
from a relatively large number of observations because each particle 
experiences approximately 50 to 100 velocity changes in a network 
consisting of approximately 4000 nodes. In addition, the paths taken 
by the particles can be interpreted to provide a histogram of 
fracture length for both sets, and estimates of the probability of 
a particle moving in different directions at a fracture intersection. 

Figure 9 illustrates how these distributions on particle 
direction, fracture length, and directional velocity are sampled to 
simulate particle motion through the continuum. Note also that the 
particle motion within the continuum accounts for the boundary 
conditions. Particles reflect from no-flow boundaries and pass 
through flux boundaries. In practice, the swarm of reference 
particles can either be moved through the domain one after another 
or moved together through a time step. In the simulation trials to 
date, the cumulative travel times are used to construct breakthrough 
curves. 

5.1 Verification 

The procedure that is used to verify the accuracy of the 
modeling approach involves a comparison of breakthrough curves for 
a discrete sub-model with dimensions of 62.25x2l.0 m and a continuum 
of the same size. If the continuum approach successfully models 
transport in the discrete network, the breakthrough curves for these 
two examples should be nearly identical. The results of this test 
are shown in Figure 10 for two different examples. The correspondence 
between the two approaches is excellent considering that the continuum 
approach really is only based on rudimentary information about the 
fracture network. 

The success of these preliminary trials provides evidence that 
the approach is applicable to modeling transport in more complex 
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Figure 9. Schematic representation of distributions to be sampled 
and how an individual particle moves through the continuum. 

systems. Work is ongoing to test the method further and to develop 
realistic applications based on fully two-dimensional systems. 
More extensive applications are being hindered by conceptual problems 
that remain to be overcome, the most serious of which is the question of 
what fracture density is necessary to assure that an ergodic 
hypothesis holds for the network. When the density of fracturing is 
relatively low the transport behavior of an individual particle 
through the network is not the same as that for the particle swarm 
through time. What gives rise to this non-ergodic behavior is that 
individual particles moving through the network may not sample 
the broad range of velocities that can exist, especially in the near­
vertical fractures. 
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Figure 10. Comparison of breakthrough curves obtained using discrete 
and continuum approaches. 

6. CONCLUDING COMMENTS 

Stochastic approaches to modeling mass transport in fractured 
rock systems have contributed significantly in developing an 
understanding of this complex subject. However, results are still 
very modest considering the critical problems of a conceptual­
theoretical nature that remain to be studied. The question of 
how closely parameters of fracture networks conform to the concept 
of an REV at given scales bears heavily on how well concepts of REV 
survive spatial scaling. This problem has not been studied in 
detail and yet it is fundamental to modeling of fractured rocks. 
There are still major uncertainties in how the hydraulic properties 
of fractured rocks are idealized in models. A continuing problem 
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concerns how well the parallel plate model describes flow within 
fractures. Recent experimental evidence suggests that rough-wall 
models, accounting for both aperture variability and contact area, 
may be necessary to accurately represent flow. 

Contrasting these kinds of problems are those of a practical 
nature that provide a major impediment to progress. For example, 
efforts in extending discrete fracture modeling to three dimensions 
are constrained by computer limitations. Tremendous resources are 
required in terms of storage and execution times to simulate 
transport in even sparse networks when, for example, spatial 
structure is built into apertures. However, given the progress in 
fractured rock hydrology over the past few years, we remain 
optimistic that these problems will be overcome. 
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ABSTRACT 

One of the most difficult tasks in ground-water modeling is the 
estimation of aquifer parameters from field measurements of hydrau­
lic head. This paper examines model sensitivity through the use of 
sensitivity analysis. For each model parameter one can define a 
sensitivity coefficient. These sensitivity coefficients depend on 
the choice of model, the spatial coordinates, the time variable, the 
number and type of model parameters, and the boundary conditions. 
For good sensitivity to the parameters, all sensitivity coefficients 
should be independent and as large as possible at the locations and 
times of interest. Methods for determining sensitivity coefficients 
are discussed and some typical examples showing certain important 
characteristics are presented. The sensitivity coefficients can be 
used to estimate variances and confidence intervals for the aquifer 
parameters. The model sensitivity can be increased for parameter 
estimation by applying some general principles from sensitivity 
analysis. Several examples of improved sensitivity are presented. 

1. INTRODUCTION 

One of the most difficult tasks in ground-water modeling in­
volves estimation of the aquifer parameters to be used in a predic­
tive ground-water model. Usually some historical hydraulic head data 
are available along with some field or laboratory estimates of the 
aquifer parameters. These data are usually sparse and of varying 
quality. Estimation of the aquifer parameters from hydraulic head 
data is generally recognized to be difficult and may be unstable or 
nonunique [Yakowitz and Duckstein (19)]. One goal of this paper is 
to develop a better understanding of model sensitivity to the 
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aquifer parameters. 

Sensitivity analysis is the primary tool used to investigate 
parameter estimation in this paper. A general first-order sensi­
tivity analysis formalism is presented to calculate the perturbed 
head caused by a change in an aquifer parameter. A central figure 
in the formalism is the sensitivity coefficient. When the sensi­
tivity coefficients are known, the parameter variances can be calcu­
lated. A large parameter variance means the model is not very sen­
sitive to that parameter. Therefore, some time is devoted to 
methods for determining sensitivity coefficients. The sensitivity 
coefficients are affected by the choice of model, the number and 
type of parameters, and the boundary conditions. In addition, the 
sensitivity coefficients are functions of space and time. Several 
examples of sensitivity coefficients for a variety of models and 
boundary conditions are presented. 

The final goal of this paper is to develop some general princi­
ples or guidelines for designing models that have the desired sensi­
tivity to model parameters. This is done by looking in detail at 
how the sensitivity coefficients enter the least squares estimation 
procedure and how the sensitivity coefficients are affected by the 
model specification. The model specification includes such things 
as the model equations, the boundary conditions, and the number of 
parameters or parameter zones. In general, one might suppose it is 
desirable to make the sensitivity coefficients as large as pos­
sible. Also, it might be that the chosen parameters should be 
independent. In section 8 these questions are dealt with in more 
detail and some general conclusions are stated. Several examples of 
improved sensitivity, obtained by applying the guidelines, are also 
presented in section 8. 

2. GENERAL DEFINITION OF SENSITIVITY COEFFICIENTS 

When a model is used to describe the hydraulic head distri­
bution (h) in a ground-water system, the head is assumed to depend 
uniquely upon the physical parameters input to the model. 

h (2.1) 

T, S, and Q are respectively transmissivity, storativity, and flux 
of water in or out of the system. x is a vector containing the 
appropriate number of coordinates for the model dimensionality 
(usually one or two). It has been assumed that the transmissivity 
and storativity do not depend upon time (t). This assumption means 
that unconfined aquifers and delayed yield will not be explicitly 
considered. In this work Q(x,t) will be assumed to be known. Only 
the variation of the model response to changes in T(~ and S(~) will 
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be considered. 

In studying the sensitivity of a ground-water-flow system to 
parameter variations, a mathematical model must be specified: 

(2.2) 

The model specification represented symbolically by F in Eq. (2.2) 
includes such things as initial conditions, boundary conditions, and 
the appropriate differential equations. Eq. (2.2) may be solved 
analytically or numerically. 

2.1 Models with Constant Parameters 

For models with constant parameters, the solution to (2.2) can 
be written as 

h h(~,t;T,S,Q). (2.3) 

Consider the variation of one of the parameters, T, for example. 
Eq. (2.2) now becomes 

F(~,t,h*;T+~T,S,Q) o (2.4) 

where h* is the perturbed head. Solution of (2.4) gives 

h* h*(~,t;T+~T,S,Q). (2.5) 

The sensitivity coefficient for variations in T is defined as 

(lh lim ~h 

aT = ~T+O ~T' (2.6) 

where ~h h*-h. 

A similar development for the storage coefficient allows the 
two sensitivity coefficients to be written as 
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ah(x,t;T,S,Q) 
aT 

U ( ) ah(x,t;T,S,Q) 
S x,t = as 

(2.7) 

(2.8) 

The functional dependence on T, S, and Q has been dropped on the 
left-hand side of Eqs. (2.7) and (2.8) for convenience in writing UT 
and US. However, the sensitivity coefficients do depend on T, S, Q, 
the initial conditions, the boundary conditions, and the underlying 
model Equations. 

The solution of the flow equation (2.4) is assumed to depend 
analytically upon the parameters T and S, and T, S, and Q are 
independent of each other. Now consider a perturbation of the 
transmissivity, aT. Since it has been assumed that the solutions 
depend analytically on the parameters, the function h*(x,t;T+ 
aT,S,Q) may be expanded into a Taylor series. If aT is-small, the 
second- and higher-order terms may be neglected. 

h*(~,t;T+aT,S,Q) ~ h(~,t;T,S,Q) + UTaT (2.9) 

Thus the new head produced by a perturbation in transmissivity 
(aT) may be calculated from (2.9) if the sensitivity coefficient and 
the unperturbed head are known. Similarly, if a perturbation in 
storage coefficient (as) occurs, the perturbed head is given by 

h*(x,y,t;T,s+aS,Q) ~ h(x,y,t;T,S,Q) + uSas (2.10) 

to first order in as • 

Eqs. (2.7) and (2.8) show that it would be desirable to calcu­
late UT and Us for a given model, if possible. Then the response of 
the model to various perturbations could be calculated simply from 
(2.7) or (2.8) without actually evaluating the model equations 
again. The work of McElwee and Yukler (11) indicates that Eqs. 
(2.9) and (2.10) should be valid for parameter variations of about 
20% or less. 

2.2 Models With Spatially Varying Parameters 

In the more general case where transmissivity and storativity 
vary with space, a slightly different procedure is used to define 
the sensitivity coefficients. h will be the hydraulic head resul­
ting from a transmissivity distribution T(~). Let h* represent the 
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hydraulic head that results when the transmissivity distribution is 
changed at one point (x ) by a small amount ~T(x ) • 

~ ~ 

~h(x,t;x ) - ~ 

~T(x ) 
~ 

[h*(x,t;T(x)+o(x-x )~T(x ),S(x),Q(x,t» - - -~ ~ - -

-h(x,t;T(x),S(x),Q(x,t»]/~T(x ) - - - - ~ 
(2.11) 

The symbol o(x-x ) represents the Dirac delta function [Lighthill 
. -~ 

(10)1. x is assumed to be a unitless variable so that o(x-x ) is 
also unitless. The sensitivity with respect to variationsI8 
transmissivity is defined as 

lim 
~T(x )+0 
~ 

~h(x, t;x ) - ~ 

~T(x ) 
~ 

(2.12) 

This sensitivity coefficient tells how much the head will be changed 
at point x due to a change in transmissivity ~T(x ) at point x • 

- -0-0 Since ~T(x ) is assumed to be small, a first-order expansion may be 
-0 employed to obtain 

h* ~ h + UT(x,t;x )~T(x ). - ~ ~ 
(2.13) 

If the transmissivity is changed at more than one point, then the 
change in head ~h must be found by integrating over the area (or 
volume), A (or V), where T(~) is changed 

h* - h ~h(~,t) = J UT(x,t;x )~T(x )dx • 
A - ~ ~ ~ 

(2.14) 

Outside the region A (or V), ~T(x ) is zero. In the special case 
o when the transmissivity is to be changed by a constant amount 

~T everywhere, Eq. (2.14) becomes 

h* - h (2.15) 

where 

(2.16) 

In the preceding development, x and x are assumed to be appropriate 
dimensionless variables. -0 
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A similar development for the sensitivity with respect to stor­
ativity (US) yields 

h* - h fA Us(x,t;x )~S(x )dx 
- -0 -0-0 

(2.17) 

and 

h* - h ~h(x,t) ~s f Us(x,t;x )dx = ~s • US(~,t) (2.18) 
A - -0 -0 

when ~S is constant over the region of integration. As before, 

where 

Us(x,t;x ) 
- -0 

~h(x,t;x ) 
- -0 

lim 
~S(x )+0 

-0 

~h(x,t;x ) 
- -0 

~S(x ) 
-0 

h*(x,t;T(x),S(x)+o(x-x )~S(x ),Q(x,t» -
- - - --0 -0 -

(2.19) 

(2.20) 

The sensitivity coefficients UT and Us are seen to be the 
quantities needed to calculate the response of a model to 
perturbations in the spatial distribution of transmissivity and 
storage. Consequently, a discussion of some of the general 
properties of sensitivity coefficients is in order. In later 
sections, procedures for determining sensitivity coefficients will 
be illustrated. 

2.3 General Comments About Sensitivity Coefficients 

The sensitivity coefficients will depend on the independent 
variables (space and time), the model parameters (T, S, etc.), and 
the boundary conditions. Each of these factors may have a dramatic 
effect on the model sensitivity and thus on any attempt to perform 
inverse calculations. Much of this paper will be concerned with 
studying these effects. The general confined flow equation can 
be written for some region (R, Figure 1) as 

a T(~) ah 
ax [-T- ax] 

max -

s S(x) 
[Tmaxl r~l ~~ 

max max 

Q' (~, t) 

T max 
(2.21) 

where Tmax and Smax are the maximum values of the transmissivity and 
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storativity, respectively. Q' is the specified water flux per, unit 
area of the model (Q/A) and would be caused by pumpage, injection, 
leakage, etc. In addition to the flow equation, we need boundary 
and initial conditions for a complete solution to the hydraulic head 
and the sensitivity coefficients. Typical boundary conditions are 
head specified 

h H on r1 (2.22) 

and flux specified 

Q"(r2 ,t) = - T[~:J on r 2• 
r 2 

(2.23) 

r is the boundary (r = r + r ) of region R (Figure 1). Q" is the 
specified flux per unit length (Q/~) of boundary r2 • The initial 
condition can be specified as 

h(,!.,O) = f (,!.) in R • (2.24) 

Eqs. (2.21) through (2.24) illustrate how the head and, conse­
quently, the sensitivity coefficients depend upon the transmissivity 
and storativity. The head can be written symbolically as 

h 
Tmax t. T(!) SS(.!.)' QT(.!.)] 

h [,!., S ' -T--' (2.25) 
max max max max 

provided Q and the boundary conditions do not depend upon time. If 
Q and the boundary conditions do depend upon time, then additional 

time dependence besides [(Tmax 
/Smax)t] may be introduced in the 
head solution. T(x)/T and - max 
S(x)/S represent normalized 

~ distri~ft~ions for the transmis­
sivity and storativity which vary 
between the limits of zero and 
one. They specify the shape of 
the T and S variation, but not 
the absolute magnitudes. 

Fig. 1. Region of solution and 
boundaries for a model. 

Next, a few simple obser­
vations are made regarding 
sensitivity coefficients. At 
steady state (ah/at = 0), h does 
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not depend on S(~. Therefore, Us is zero at steady state 
small as one nears steady state. In the homogeneous case 
T(x) = T and S(x) = Sand Eq. (2.25) reduces to - max - max 

h h(!., j t) 

and is 

(2.26) 

when the specified fluxes, Q(x), are zero. If all specified fluxes 
are zero, only barrier or specified head boundaries are used. From 
Eqs. (2.26), (2.7), and (2.8), the sensitivity coefficients UT and 
Us can be shown to be dependent: 

S 
- -U . T S 

(2.27) 

This means that the inverse problem is nonunique since any value of 
Sand T with the correct ratio will give a good solution. 

Even if one allows spatial variation in T and S in Eq. (2.25), 
the inverse problem is still nonunique since any S ax and Tma 
having the same ratio will give an equally good sofution provIded 
there are no specified fluxes in the model. Theoretically, a speci­
fied T on each streamline will uniquely determine the transmissivity 
distribution and, consequently, the storativity distribution. Some 
inverse procedures [Knowles et al. (9)] solve for the fluxes, Q, in 
addition to the transmissivity and storativity. The foregoing dis­
cussion and Eq. (2.25) show that, when both Q and T are adjusted, an 
additional level of nonuniqueness is introduced since only the 
ratios of Q and T need to be held constant. In others words, Q and 
T are not independent parameters. 

Some initial condition must be specified for the hydraulic head 
at the beginning of a model simulation; consequently, this condition 
determines the initial condition on the sensitivity coefficients. 
The sensitivity coefficients mayor may not start out zero. One 
commonly used initial condition is a flat head distribution. In 
this case, the sensitivity coefficients (UI and US) have an initial 
value of zero. Another commonly used init al condition is a steady­
state head distribution. (Additional fluxes, Q(x) , are imposed and 
future changes are predicted.) For a steady-state initial condi­
tion, Us ls zero, but UT will not in general be zero. The initial 
values of UT may be found by solution of equations to be discussed 
later. 

When the sensitivity coefficients are zero or not independent, 
the inverse process will not work. This result is inherent in the 
model and does not depend on the details of the inverse process. In 
actual practice, the inverse process may experience difficulty when 
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the sensitivity coefficients are very small but not zero. In this 
case, the model is simply not very sensitive to changes in aquifer 
parameters. By calculating and examining the sensitivity coef­
ficients, one may obtain an indication of the stability of the 
inverse process. As a rule-of-thumb, the sensitivity coefficients 
should be as large as possible and be independent for a stable 
inverse problem. 

3. METHODS FOR DETERMINING SENSITIVITY COEFFICIENTS 

In this section various methods for determining sensitivity 
coefficients are considered. Three methods will be considered: 
analytical expressions, finite difference approximations, and 
solution of a partial differential equation. 

3.1 Analytical Expressions For The Sensitivity Coefficients 

Sometimes analytical formulas for the head or drawdown can be 
found for simple models. In many of these cases, finding convenient 
analytical expressions for the sensitivity coefficients is also 
possible. As an example, consider the Theis equation. The Theis 
equation [Theis (18)] describes radial confined ground-water flow in 
a uniformly thick, horizontal, homogeneous, isotropic aquifer of 
infinite areal extent. 

00 -u 
s = L J _e_ du 

41fT u 
(r2S/4Tt) 

(3.1) 

In the above equation s is2drawdown (L), Q is the discharge (L3/T), 
T is the transmissivity (L IT) , t is the time (T), S is the dimen­
sionless storage coefficient, and r is the radial observation dis­
tance from the pumped well (L). 

The sensitivity coefficients may be obtained from Eq. (3.1) by 
applying the definitions given in equations (2.7) and (2.8). After 
applying Leibnitz's rule for differentiating an integral [Hildebrand 
(8)] to Eq. (3.1), one obtains [McElwee and Yukler (11)] 

(3.2) 

and 

dS s S 
UT = dT = - T - T Us (3.3) 

These equations for the sensitivity coefficients may be evaluated 
quite easily if one can evaluate the drawdown (s). Notice that, if 



762 

not for the first term on the right of Eq. (3.3), UT and Us would be 
dependent. Eqs. (3.2) and (3.3) will be discussed and plotted in a 
later section of this paper. 

As a further example, consider the leaky confined aquifer. The 
aquifer system, defined by Hantush and Jacob (7), is composed of a 
level, isotropic, homogeneous, porous medium of infinite areal ex­
tent. The lower aquifer boundary is assumed to be impervious, while 
the upper boundary is assumed to be a leaky confining bed. Water is 
derived from the aquifer by elastic expansion of the water and 
compression of the aquifer matrix as pumping occurs. Leakage 
through the semiconfining bed is assumed to be proportional to the 
drawdown in the semiconfined aquifer. It is assumed that no water is 
removed from storage in the semiconfining unit and that no drawdown 
occurs in the source bed. The analytical solution for the drawdown 
is 

Q 00 1 L 2r2 
s = 4~T f y exp(-y- ~) dy, 

u 
(3.4) 

K' /Tm' 

where K' is the permeability of the semiconfining bed, m' is the 
thickness of the semiconfining bed, and the other quantities are the 
same as for the Theis equation. By applying Leibnitz's rule for 
differentiating an integral [Hildebrand (8)], obtaining the 
sensitivity coefficients with respect to Sand T is easy [Cobb, 
McElwee, and Butt (2)]: 

(3.5) 

as 
U = - = T aT (3.6) 

As before, these expressions are easy to evaluate if the drawdown 
has been calculated previously. 

These two examples of analytical expressions for the sensi­
tivity coefficients are typical. Many more examples could be pre­
sented for simple models. 

3.2 Finite Difference Expression For Sensitivity Coefficients 

Sometimes it is not convenient or possible to come up with an 
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analytical formula to be evaluated for the sensitivity coefficients. 
In these cases, one can always evaluate the sensitivity coefficients 
numerically by a finite difference approximation if the head or 
drawdown can be calculated. To illustrate this process, we continue 
with the leaky confined aquifer of the previous section. If we try 
to evaluate UL, the sensitivity with respect to leakage, by 
differentiating Eq. (3.4), we obtain [Cobb, McElwee, and Butt (2)] 

00 

2 2 2 2 
UL = J {-Lr /2y } exp(-y - L r /4y) dy. (3.7) 

u 

Note that both Us and UT in Eqs. (3.5) and (3.6) can be ex­
pressed in such a manner that, after the drawdown (s) is computed, 
no further numerical integration is required. The sensitivity with 
respect to leakage, UL in Eq. (3.7), can be computed only by addi­
tional numerical integration that would involve the formulation of a 
more complex subroutine. Therefore, the decision might be made to 
generate UL by a finite difference approximation. The approximation 

UL = as/aL ~ {s(L+~L) - s(L-~L)} /2~L (3.8) 

becomes increasingly accurate as ~L approaches zero. Satisfactory 
evaluation of UL occurred for ~L set equal to .01 L. Plots of UL 
will be presented later. This or a similar finite difference scheme 
could be used to calculate the sensitivity coefficients in many 
situations. 

3.3 A Partial Differential Equation For Sensitivity Coefficients 

For the general time-dependent case when transmissivity and 
storativity can vary spatially, no closed-form expression exists for 
the head and the sensitivity coefficients. The head is given by the 
solution of the following partial differential equation [or equiva­
lently Eq. (2.21)]. 

(3.9) 

A partial differential equation for the sensitivity with respect to 
transmissivity can be developed by applying some of the definitions 
given earlier. If h* is the new head that results when the trans­
missivity is changed by ~T(x ) at x , then 

-0 -0 
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a [T(x) ah*] + ~ [6(x-x ) aT(x ) ~h*] 
ax - ax ax - ~ ~ "x 

ah* 
S(~,> at - Q' (~, t). (3.10) 

Applying the definition of UT(x,tjx), Eq. (2.12) results in the - ~ following expression. 

~ aUT(x,tjx) ~ ~h 
"[ - ~]+-" [ "] - T(_x) 6(x-x ) - .. ax ax ax - ~ ax 

auT(x, tjX ) 
- -0 

S(.!) at (3.11) 

In deriving Eq. (3.11), Eq. (3.9) has been subtracted from Eq. 
(3.10), the result divided by aT(x ), and the limit taken 

-0 as aT(x )+0 • 
-0 

Eq. (3.11) is a partial differential equation for 
UT(x,tjX ) which looks very much like the original flow equation 

- -=0 except for two differences. First, the fluxes [Q(x)] do not appear 
in Eq. (3.11). Second, there is an additional tenn involving the 
differentiation of a delta function. 

Except in very simple cases, numerical methods must be used to 
solve Eq. (3.9). The question arises as to how equation (3.11) may 
be used with numerical methods to obtain UT (x,tjx). Only the term - ~ involving the differentiation of the delta function will be con-
sidered. The other terms in Eq. (3.11) are similar to terms in the 
flow Eq. (3.9) and may be handled with standard techniques. The 
elementary central difference formula for the partial derivative in 
the x direction of an arbitrary function f(x,y) evaluated at point 
(xpYj) is 

[Clf(x,y) ] 
ax X""Xi 

f i +I / 2 ,j - f i - I / 2,j 
'" ax (3.12) 

y=y. 
J 

where a uniformly spaced node system is assumed such that xi = i~x 
and y. = jay. At this point let the grid system for specifying T 
to beJarbitrary and simply denote the value of T at some point 
~(xkYt) by Tk,t. The x component of the delta function term in 

Eq. (3.11) is 
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(3.13) 

where 0i . is the Kronecker delta with the following properties 
,] 

1 if i=j 
o if itj (3.14) 

Notice that specifying the transmissivity half way between the nodes 
where h is known is convenient. Eq. (3.13) gives the finite differ­
ence numerical approximation of the delta function term in Eq. 
(3.11). An alternate procedure could be performed for a finite 
element approximation. 

Usually Eq. (3.11) would not be solved for point changes in the 
transmissivity. Rather, the transmissivity is usually assumed to be 
constant over a zone which includes several points or nodes. 
According to Eq. (2.16) we must integrate Eq. (3.11) over that zone 
to obtain the sensitivity with respect to transmissivity in that 
zone. This would be equivalent to summing Eq. (3.13) over all k 
and £ values in that zone. 

a 
f ax 

zone 
m 

The partial differential equation for the sensitivity with 
respect to storativity is somewhat easier to obtain. If h* is the 
new head that results when the storativity is changed by 
~S(x ) at x then 

-0 -0 

~ [T(x) ah*] ax - ax . 
oh* 

[S(x)+o(x-x )~S(x )] -,,- - Q'(x,t). 
- - -0 -0 ut -

(3.16) 

Subtracting Eq. (3.9) from Eq. (3.16), dividing by ~S(x ), and 
-0 taking the limit as ~S(x )~O results in the following equation. 

-0 
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.., aus(x, t;x ) 
~x [T(~'> ;x -<> ] 

aUs(x,t;x ) rh 
s( ) - -<> + o(X-X ) u 
~ at - -0 li (3.17) 

Recall that the definition of Us is given by Eq. (2.19). 

Once again, Eq. (3.17) looks identical in form to the flow 
equation except there are no fluxes [Q(x)] and the delta function 
term has been added. The finite difference numerical solution of Eq. 
(3.17) is carried out in a manner similar to that used for the flow 
equation except for the delta function term. If Eq. (3.17) is to be 
evaluated at x = (xi'Yj) and ~ = (xk,Y t ) then 

oh n+1/2 
[o(x-~ )o(y-y ) --] ~ 

it t ot x=xi 
(3.18) 

y=y 
j 

n 
where ~t is the time step and hi . is the hydraulic head at node 
point (i,j) after n time steps. ,JAs before, to obtain the sensi­
tivity to the storativity in a zone containing several nodes, we 
must integrate Eq. (3.17) over that zone or sum the right side of 
Eq. (3.18) over the nodes in that zone. 

J [o(x-x )o( - )oh]n+l/2dA ~ 
k y Yt ot x=x 

zone i m y=y. 
J 

L 
k t 
z~ne 

m (3.19) 

If numerical methods have been used to obtain the solution to 
Eq. (3.9), the flow equation, then the h's appearing in Eq. (3.15) 
or (3.19) are known and present no obstacle to a numerical solution 
of the equations for the sensitivity coefficients. The same numer­
ical techniques used to solve the flow equation may be used to solve 
the sensitivity equations. In fact, the same computer code used for 
the flow equation can be used for the sensitivity equations by 
simply replacing the fluxes in Eq. (3.9) by the terms in Eq. (3.15) 
or (3.19). The system must be solved for each discrete value of Xo 
or zone. More discussion of the application of numerical methods to 
the solution of the sensitivity equations is given by McElwee 
(12). Ultimately, a numerical solution for the following 
sensitivity coefficients must be obtained. 
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(3.20) 

(3.21) 

The superscript n is used to denote the nth time step while the 
subscripts i, j, k, and t are the usual node indices. If zones are 
used, Eqs. (3.20) and (3.21) must be summed over all k and t in that 
zone to obtain the total sensitivity to the parameter in that zone. 
Sometimes it is convenient to use only one subscript for the spatial 
variation and one for the transmissivity variation. In that case, 
the more compact forms for the sensitivity coefficients are 

n n UTiok and USiok • , , 
Along with the flow equation (3.9), initial conditions and 

boundary conditions must be given for h. An initial condition can 
be given in the form 

h(x,y,O) - z o (3.22) 

for a two-dimensional model. If Z is a constant, we have a flat 
initial surface. The boundary may be a rather arbitrary function 
of x denoted by 

B(~ O. (3.23) 

The boundary conditions must be specified on this curve. A speci­
fied head boundary is given by 

If a specified flow of water is required on the boundary, then 

ah(x, t) 

[T(!) a: lB<'~) (3.25) 

where alan denotes the partial derivative in a direction normal to 
the boundary. If the constant is zero in (3.25), the result is a 
barrier boundary. In general, the boundary could contain both 
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types of boundary conditions given by Eqs.(3.24) and (3.25). 

If the initial condition on h is a steady-state solution 
Us(~,o;x ), the initial condition on the sensitivity with respect to 
storage-Ys zero. If z is a constant in (3.22), the initial condi­
tion on the sensitivity with respect to transmissivity, 
UT(x,O;x ), is also zero. If the initial surface is a steady-state 

- -0 solution, the initial condition U (x,O;x ) is a solution to the 
steady-state form of Eq. (3.11) wIth thecappropriate boundary condi­
tions. The boundary conditions for UT and Us can be found by dif­
ferentiating (3.24) and (3.25). For a specified head boundary 

(3.26) 

(3.27) 

A specified flow boundary condition results in 

2 auT(x,t;x) 
[T(_x) - -0] lS(x-x )Q"(x,t) 

an B(~) - -0 -
(3.28) 

(3.29) 

The sensitivity equations for the case of constant T and Scan 
be obtained from Eqs. (3.11) and (3.17) by integrating over the 
whole model region. 

(3.30) 

Performing this integration gives [McElwee and Yuk1er (11)1 

(3.31) 

(3.32) 

The boundary conditions for constant T and S are obtained by inte­
grating Eqs. (3.26) to (3.29). For example, Eq. (3.28) becomes 
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aUT(x,t) 
[- - ] 

an B(~) 
(3.33) 

4. EXAMPLES OF SENSITIVITY COEFFICIENTS 

In the following sections, several examples of sensitivity 
coefficients will be shown. All the methods of determining sensi­
tivity coefficients discussed in the previous sections will be 
illustrated. 

4.1 The Theis Equation 

The sensitivity coefficients for the Theis equation are given 
by Eqs. (3.2) and (3.3). The sensitivity coefficient for transmis­
si3ity , UT' is shown in Figures 2 and 3 f~r a well pumping 32,000 
ft /day with a transmissivity of 3,200 ft /day and a storage 
coefficient of .00095 at a time of .017 days. The radial dependence 
of UT is shown in Figure 2. The system is obviously most sensitive 
to changes in the transmissivity near the well where drawdown is the 
largest. From Figure 2 the sensitivity coefficient UT seems to 
diverg~ at the well. In fact, it may be shown from Eq. (3.3) that 
for r S/4Tt » 1, 

(4.1) 

Expression (4.1) shows that UT should diverge logarithmically at the 
well. The sensitivity function UT changes sign in the region 300-
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Fig. 2. Radial dependence of UT 
for the Theis equation [McElwee 
and Yukler (11)]. 
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Fig. 3. Time dependence of UT 
for the Theis equation [McElwee 
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320 feet from the well, as it must in order for the cones of depres­
sion to have the same volume for differing transmissivities. The 
magnitude of the sensitivity coefficient UT is relatively small in 
the region where UT is negative. 

Figure 3 shows a portion of the time dependence of UT for two 
values of radius and two perturbed values of transmissivity. Notice 
that for large values of t, the dependence of UT on t is fairly 
weak, though UT is not constant. The curves labeled ±20% T show how 
UT at a radius of 1 foot changes when the transmissivity is 
perturbed by ±20%. In this region a larger transmissivity results 
in decreased sensitivity, and a smaller transmissivity results in 
increased sensitivity. The curves labeled r = 1 foot and r = 1000 
feet, for T = 3200 ft 2/day show the effect of changing r in the 
evaluation of UT• These two curves have an identical shape but are 
displaced from one another along the t axis. The relation of these 
curves can be seen from Eq. (3.3). The critical ratio is r2/tj as 
long as this ratio is the same, UT will not change. Thus the curve 
for r = 1 foot at t = 10-6 days has the same value as the curve for 
r = 1000 feet at t = 1 day. 

The sensitivity with respect to the storage coefficient, US' 
may be evaluated by using Eq. (3.2). The radial dependence of Us is 
shown in Figure 4. Us does not diverge at the well as does UT• Eq. 
(3.2) and Figure 4 show that the radial dependence of Us is 
Gaussian. Us does not change sign because an increase or decrease 
in S results in a general raising or lowering, respectively, of the 
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cone of depression. The dashed lines in Figure 4 show Us when S is 
changed by ±20%. These curves indicate that the system is less 
sensitive for a larger S and more sensitive for a smaller S. This 
behavior can also be seen from Eq. (3.2). 

The time dependence of Us is illustrated in Figure 5 for three 
different r values. As time increases, Us approaches a constant 
value. Even for r = 1000 feet, Us is nearly constant after about 1 
day. Us is practically zero when the drawdown is very small and 
nearly constant after the drawdown attains 1-2 feet. The three 
curves shown in Figure 5 are identical except for displacement in 
t~me. From Eq. (3.2) it may be seen that Us has the same value when 
r /t remains constant, provided Q, T, and S are unchanged. Thus the 
t = ~4day point on the curve for r = 1000 feet is identical to the t 
= 10 day point on the curve for r = 10 feet. 

4.2 The Hantush Radial Leaky Aquifer 

The sensitivity coefficients for the leaky aquifer are given by 
Eqs. (3.5), (3.6), and (3.8). UT and Us are evaluated by analytical 
expressions. UL is obtained by a finite difference approximation. 
Many features of these sensitivity coefficients are similar to those 
found for the Theis equation. Therefore, description will be brief 
and new features will be pointed out. The sensitivi§y coefficients 
are shown in Figures 6 through 11 for Q = 196,000 ft /day, T = 
24,300 ft 2/day, S = .002, and L = .0004 ft-1• 

The radial dependence of UT is shown in Figure 6. The function 
diverges logarithmically near the well. UT changes sign at some 
finite value of radius. This demonstrates the fact that when T is 
changed, the cone of depression deepens in some areas and shallows 
in others. 

Figure 7 depicts a portion of the time dependence of UT for 
variations in rand T. Note that UT is inversely prop~rtional to 
T. The curves represent a transmissivity of 24,300 ft /da2 and ±20% 
of that value at a radius of 100 feet and a T of 24,300 ft /day at a 
radius of 1,000 feet. Note that all curves flatten after three to 
four days. This describes the steady condition caused by deriving 
the discharge Q totally from leakage. This is a new effect that was 
not seen in the Theis case. In this case, UT is constant after some 
time. 

The radial dependence of Us is shown in Figure 8. This coeffi­
cient does not diverge at the well, nor does it change sign. It is 
inversely proportional to S. The constancy of algebraic sign indi­
cates that as S changes, a general raising or lowering of the cone 
of depression occurs. 
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Fig. 6. Radial dependence of UT for the leaky aquifer [Cobb, 
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The time dependence of Us is presented in Figure 9. Radial 
variation is indicated by the presence of three curves. Each curve 
reaches its maximum value for Us at a time that increases with its 
radial value. At some finite value of time, each curve approaches 
zero in value, indicating that a steady state is achieved. Until 
steady state is attained, a dual source is supplying the pumpage, 
namely water released from storage and leakage. The curves roll 
over as leakage starts to dominate the source mechanism. Us is zero 
outside the cone of depression and at any time after steady state is 
attained. Again, this is a new effect. Us for the Theis model did 
not go to zero but approached a constant value for large times. 

Figure 10 shows the radial dependence of UL• The sensitivity 
coefficient UL does not diverge at the well and approaches zero for 
large values of r. These are similar to the curves for US. 

The time dependence of UL is shown in Figure 11 for two values 
of r. All curves grow with time until a steady state is achieved 
where leakage is supplying the entire discharge Q. At that point, 
UL is constant in time. 
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Fig. 9. Time dependence of Us for the leaky aquifer [Cobb, McElwee, 
and Butt (2)]. 

In summary of the Theis and leaky aquifer sensitivity coeffi­
cients, a few observations can be made. The radial dependence of 
all the sensitivity coefficients (UT, US' and UL) shows that the 
greatest sensitivity is near the well and that the sensitivity ap­
proaches zero as the radial distance increases. The time dependence 
of all the sensitivity coefficients shows that initially the sensi­
tivity grows with time. In the leaky case, Us goes to zero as the 
steady state is approached while UT and UL approach constant 
values. In the Theis case, Us approaches a constant value. 

700 

600 

N 
:::: 500 
c 

:& 400 
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Fig. 10. Radial dependence of UL for the leaky aquifer [Cobb, 
McElwee, and Butt (2)]. 
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4.3 One-Dimensional Model With Spatially Varying Transmissivity 

Consider a steady state one-dimensional model with no interior 
fluxes. Eq. (3.9) becomes 

L [T(x) dh] 
dX dX 

o. 

The first integration of Eq. (4.2) gives 

T(x) dh 
dX 

C constant. 

For boundary conditions, assume 

and 

h 

dh 
dX 

H at x 

Q/t 
- T(O) 

R 

at x o. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Q/t is the boundary flux per unit length of boundary. Integration 
of Eq. (4.3) yields the final solution for the hydraulic head 
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QR 1 dx' 
hex) = -. J =T""'(R:-"x-=''':"") + H. 

.. x/R 
(4.6) 

The normalized variable x' = x/R has been introduced. Eq. (4.6) 
allows for an arbitrary distribution of the transmissivity. 

Consider the case of constant transmissivity in Eq. (4.6). The 
solution is 

hex) = ~ (R-x) + H. 
R.T 

Using the definition of UT from the Eq. (2.7) yields 

UT(x) = ah(x) = ~ (x-R) 
aT R,T2 

s 
- T' 

where s is the drawdown with reference to the constant head 
boundary. 

s = hex) - H = ~ (R-x) 
R.T 

(4.7) 

(4.8) 

(4.9) 

This form [Eq. (4.8)] of the sensitivity coefficient is rather 
common [see Eqs. (3.3) and (3.6)] and merely says that the model is 
more sensitive to transmissivity in areas having larger drawdown. 
Notice that, as the constant head boundary is approached, the sensi­
tivity coefficient (UT) goes to zero. The sensitivity with respect 
to storativity, US' is zero since only the steady state is being 
considered. 

The sensitivity coefficients for an arbitrary transmissivity 
distribution can be found by considering the head solution, Eq. 
(4.6), and the definition of the sensitivity coefficient, Eq. 
(2.12). The new head caused by changing the transmissivity at one 
point (xo) is 

h*(x) 
1 

QR J 
R.. x/R 

dx' (4.10) T(Rx') + o(Rx'-x )6T(x ). 
o 0 

The sensitivity coefficient developed from (2.12) is as follows 
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-~ 1 if x ( ( R x 
1, T2(x ) 0 

UT(X;Xo) 
0 (4.11) = 

0 ifx < x 
0 

This sensitivity coefficient is inversely proportional to the square 
of the transmissivity. Thus, areas of low transmissivity have a 
larger effect on model results than areas of high transmissivity. 
Also, notice that the transmissivity of Xo values less than the 
observation point, x, do not affect model results at the observation 
point. The sensitivity coefficient resulting from changing the 
transmissivity, a constant amount ~T over the whole model area [Eq. 
(2.16)] is obtained by integrating Eq. (4.11). 

dx' 
o (4.12) 

The normalized integration variable x' = x IR has been introduced. 
If the transmissivity is constant, Eq? (4.~2) becomes identical with 
Eq. (4.8). 

Typically, numerical methods are used to solve the model equa­
tions when the transmissivity is allowed to vary in an arbitrary 
manner. Assume a constant node spacing (~x) grid system has been 
set up such that N~x = R, where N+1 is the total number of nodes (x 
= 0 is the first node). The head at point xi (xi = i~x) is obtained 
from Eq. (4.6) by the following replacement. 

N 
+ ~x L 

k=i 
(4.13) 

Assuming that a constant transmissivity exists between points k and 
k+1 (Tk+Vt, Eq. (4.6) becomes 

nAy N 1 
h = ~ L + H. 

i 1, k=i Tk+ 1/2 
(4.14) 

The sensitivity coefficient is obtained by differentiating Eq. 
(4.14). 

Q~x --:-_1 __ 
R, 2 

T k+l/2 

o 

if k ) i 

(4.15) 
otherwise 
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this result could have been obtained from Eq. (4.11) simply by inte­
grating the effect of a constant transmissivity over one node spac­
ing. The sensitivity coefficient UTi"k represents the change in 
hydraulic head at node point i due to'a change in the transmissivity 
at k+ 1/2. 

Consi1er a specific example of Eqs. (4.14) and3 (4.15). Assume 
Q~x/~ = 10 , N = 9, H = 1, and Tk+ 1/2 = (k+l) x 10. Figure 12 is 
a plot of the head and Figure 13 is a plot of the absolute value of 
various sensitivity coefficients. All sensitivity coefficients are 
zero at node 10 where the head is specified. Since the magnitude of 
the sensitivity coefficients is inversely proportional to the 
transmissivity squared, the coefficients decrease dramatically as 
the transmissivity increases from node 0 to node 9. 

4.4 A Simple Two-Dimensional Model With Spatially Varying 
Transmissivity 

For a first look at two-dimensional sensitivity coefficients we 
use a simple two-dimensional flow model shown in Figure 14. This 
model has two zones for transmissivity and recharge. There are 25 
node points with a node spacing of 500 in the y direction and 1000 
in the x direction. Transmissivities of 1000 for zone one and 2000 
for zone two are chosen. The recharge is .00625 and .003125 for 
zones one and two, respectively. No units have been given since any 
consistent set may be used. 

The boundary conditions remain to be specified. Assume that 
the flux is specified on the x = 0 boundary and that the head is 
specified on the other three boundaries. Let the flux per unit 
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Fig. 12. Head and transmissivity for a simple one-dimensional 
model. 
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length (Q/~) of the boundary at x = 0 be -50 units (out of the model 
area). For simplicity, assume the flow is parallel to the x axis 
and that the head at nodes land 21 is 100. This allows the appro­
priate head to be specified for all the other boundary nodes. The 
values are shown in Table 1. 

o 2 3 4 
8-
N 

0- 21~~~~~~~~~~~~~~25 

o 1000 2000 3000 4000 

Fig. 14. A simple two-dimensional model. 
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Table 1. Head values for boundary nodes. 

Head Node Number 

100 1, 21 
146.9 2, 22 
187.5 3, 23 
205.5 4, 24 
221.9 5, 10, 15, 20, 15 

The sensitivity coefficients for the transmissivities in the 
two zones are shown in Figures 15 and 16. Notice that the coeffi­
cients are zero on the head-specified boundaries. Of course, this 
is required by Eq. (3.26). Also notice that the sensitivity coeffi­
cients have their largest magnitudes either in the middle of the 
flow-specified boundary or in the middle of the model. 

5. EFFECT OF BOUNDARY CONDITIONS ON SENSITIVITY COEFFICIENTS 

Boundary conditions have an effect on the shape and magnitude 
of the sensitivity coefficients. This is shown explicitly by Eqs. 
(3.26) - (3.29). The examples in sections 4.3 and 4.4 were affected 
by the boundary conditions chosen; however, in those sections, 
alternate boundary conditions were not shown. The purpose of this 
section is to compare sensitivity coefficients for various choices 
of boundary conditions. The examples chosen will be closely related 
to the examples of previous sections. 

Fig. 15. Sensitivity coefficient for transmissivity in zone one. 
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Fig. 16. Sensitivity coefficient for transmissivity in zone two. 

5.1 Finite Radial Confined Aquifer 

The values of the parameters Q, T, and S for the finite radial 
numerical model were chosen to be the same as those used in the 
Theis equation of section 4.1. However, two additional parameters 
are needed: the radius of the well and the radius of the outer 
boundary. The radius of the well was taken as 1 foot; and an outer 
boundary of 10,000 feet was used. The numerical results for UT, 
obtained by choosing a constant head boundary or a barrier boundary 
at 10,000 feet, are shown in Figure 17 along with UT calculated from 
the Theis equation. For times less than about 10 days, no differ­
ence exists in the three curves for r = 1 foot and for r = 1000 
feet. 

The constant head boundary at 10,000 feet produces a UT as 
shown by the dot-dash curves in Figure 17. The Theis infinite model 
results are shown as a solid curve. For times greater than about 20 
days, the water level is static owing to the constant head boundary, 
and UT obtains a constant value in time. The radial dependence of 
UT at steady state is a straight line when it is plotted versus log 
r and goes to zero at the outer boundary where the drawdown is zero. 

Note that UT at steady state is positive for all r. This is to 
be contrasted with the UT shown in Figure 2 for the Theis equa­
tion. The fact that UT is positive is a direct consequence of the 
fact that all the water being pumped is supplied by the constant 
head boundary; no water is being supplied from storage. Increasing 
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or decreasing T results in a general ra1s1ng or lowering, respec­
tively, of the hydraulic head at steady state. 

The numerical solution for UT with a barrier boundary condition 
at 10,000 feet is shown by the dashed curves in Figure 17. After 
about 10 days, the cone of depression has reached the barrier boun­
dary and UT becomes constant in time. 

In Figure 18 the radial dependence of UT (for a barrier boun­
dary) is shown for time considerably greater than 10 days, i.e., for 
time such that UT is constant in time. Notice that UT is negative 
for r greater than about 5500 feet. This is to be contrasted with a 
positive UT for a constant head boundary. Because no water can flow 
into the system with a barrier boundary, all water pumped must come 
from storage. Thus, for two systems with differing T and the same 
Q, the cones of depression must contain the same volume at any given 
instant. The low T system will have a larger drawdown near the well 
and a smaller drawdown far from the well, because the lower T 
impedes the flow to the well. This explains why UT has both 
negative and positive areas. A change in T will produce greater 
drawdown in one area and less drawdown in another area. 

Figure 19 compares Us calculated from the Theis equation (solid 
curve) with Us calculated numerically for a constant head boundary 

Constant 
Infinite Model_..... Head Boundary 

.L._._._. 

t (lime), in days 

Fig. 17. Effect of the boundary 
at 10,000 ft on UT [McElwee and 
Yukler (11)]. 
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Fig. 18. Radial dependence of 
UT at large time for a barrier 
boundary at 10,000 ft [McElwee 
and Yukler (11)]. 



(dot-dash curve) or a barrier 
boundary (dashed curve) at 
10,000 feet. From the earlier 
discussion, remember that the 
water level does not change much 
after 20 days for the constant 
head boundary condition (approxi­
mately steady state). From Fig­
ure 19 we see that Us for the 
constant head boundary is approx­
imately zero after about 100 days. 
This behavior of Us is to be ex­
pected, since the solution at 
steady state is independent of S 
because no water is coming from 
storage then. 

All values of Us plotted in 
Figure 19 are positive, indicat­
ing that an increase or decrease 
of S results in a general rais­
ing or lowering, respectively, 
of the hydraulic head. Us for 
the barrier boundary condition 
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Fig. 19. Effect of the boundary 
at 10,000 ft on the time depen­
dence of Us [McElwee and Yukler 
(11)]. 

increases dramatically after a few days time, as is shown in Figure 
19. Us increases linearly with time after about 10 days. Numerical 
results indicate that Us is the same for all values of r after about 
10 days. The linear increase of Us with time is due to the fact 
that the hydraulic head decreases uniformly with time after about 10 
days. In short, the system becomes increasingly sensitive to S as 
the barrier boundary exerts a greater influence on the drawdown. 

To summarize, a number of effects have been observed due to 
boundary conditions. UT becomes constant after some time and Us 
either goes to zero or increases linearly with time as the influence 
of the boundary is felt. A great deal of similarity exists between 
the leaky aquifer case of section 4.2 and the constant head boundary 
results presented here. UT becomes constant and Us goes to zero in 
both cases. On the other hand, Us increases linearly with time for 
the barrier boundary at long times. This points out that each 
system has a characteristic behavior, and sensitivity analysis can 
help understand that behavior. 

5.2 Alternate Boundary Conditions For The One-Dimensional Aquifer 

In section 4.3, an analytical expression was derived for the 
sensitivity with respect to transmissivity for a steady-state one­
dimensional model with spatially varying transmissivity and certain 
boundary conditions. Those sensitivity coefficients were shown in 
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Figure 13. In this section, the same system will be used except for 
differing boundary conditions. 

Consider a steady-state one-dimensional model with the head 
specified at both boundaries. 

h = H1 at x 0 (5.1) 

h = H2 at x = R (5.2) 

Eqs. (4.2) and (4.3) are still valid for this model. Integrating 
Eq. (4.3) yields 

h(x) 
1 

C f 
x/R 

dx' 
T(Rx') + H2 ' (5.3) 

where C is a constant to be determined from the boundary condition 
at x = O. Putting x = 0 in Eq. (5.3) results in the following 
expression for C. 

f o 

1 dx' 
T(Rx' ) 

If T is constant, Eqs. (5.3) and (5.4) yield 

h(x) 

Since Eq. (5.5) does not depend on the transmissivity, 

u (x) = ah(x) = 0 
T aT • 

(5.4) 

(5.5) 

(5.6) 

When the transmissivity is not constant, the sensitivity 
coefficients can be obtained by applying the definition, Eq. (2.12), 



9(x -x) is the Heaviside unit step function. 
o 

9(x -x) 
o --101 

if x ) x 
o 

if x < x o 
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(5.8) 

h(x) is given by Eqs. (5.3) and (5.4). Eq. (5.7) shows that 
UT(x;xo) has both negative and positive areas. If we assume that 
HI) h(x» H2 , then UT(x;xQ) negative for xo) x and positive for xo< 
x. If T is constant UT(X) is zero, as was, already known from Eq. 
(5.6). Thus, the model becomes less sensitive to the value of T as 
a constant value of T is approached. 

The numerical solution for the above model with constant node 
spacing (Ax) may be obtained as before by replacing the integrals in 
Eqs. (5.3) and (5.4) with the appropriate summations. 

(HI - H2) 

N 1 

L Tk+l/2 
k=O 

N 
L 1 + H 

k=i Tk+l/2 2 
(5.9) 

The sensitivity coefficient UTi ' k can be obtained from Eq. (5.9) by 
differentiation. ' 

(5.10) 

This equation is the discrete equivalent of Eq. (5.7). 
sents the change in hydraulic head at node point i due 
in transmissivity at k+1/2. Eq. (5.10) can be written 
different form. 

UTi ' k repre­
to a'change 
in slightly 

This form shows that the 
from just two functions, 
sensitivity coefficients 

2 i, Tk+1/ 2 UTi;k switches 

N 
L 1] 

£=0 TH1/2 

J (hi - H2) if k < i 
t (hi - HI) if k ) i 

(5.11 ) 

sensitivity coefficients can be determined 
2 2 

T1/2 UTi;O and TN+1/2 UTi;N' All other 
can be generated from these two. When k = 
from one curve to the other. 
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As an example of Eq. (5.11), consider the simple model of sec­
tion 4.3, i.e., N = 9, and Tk+1/ 2 = (k+1) x 103 • This time the head 
will be specified at both ends. From Figure 12 we can see that H1 
3i 93 and H2 = 1.0. Figure 20 shows a plot of Tt/2 UTioO and 
T9+1/2 UTi o9; in addition, Tt+1/2 UTio4 is shown to illustrate the 
crossover between the two curves. No~ice that the sensitivity 
coefficients are zero at both boundaries since head is specified 
there. UTioO is everywhere positive while UTio9 is everywhere nega­
tive. All ~he other sensitivity coefficients have some negative and 
some positive areas. These sensitivity coefficients are very 
different from those shown in Figure 13; yet the only difference in 
the models is that the head is specified at the left boundary in 
this case. 

5.3 Alternate Boundary Conditions For The Simple Two-Dimensional 
Model 

For the model defined in section 4.4 and Figure 14, it is 
possible to specify different boundary conditions and observe the 
effect on the sensitivity coefficients. First, let the boundaries 
at y = 0 and y = 2000 be barrier boundaries instead of head­
specified boundaries. The resulting sensitivity coefficients are 
shown in Figures 21 and 22. Notice that the sensitivity coef­
ficients no longer show a variation in the y direction. If, in 
addition to the barrier boundaries at y = 0 and y = 2000, the flow­
specified boundary at x 0 is changed to a head-specified boundary, 
the resulting sensitivity coefficients are shown in Figures 23 and 
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Fig. 20. Sensitivity coefficients for the one-dimensional model 
with head specified on both ends. 
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Fig. 21. Sensitivity coefficient for transmissivity in zone one, 
barrier boundaries at y = 0 and y = 2000. 

24. It is very clear from these examples that the boundary con­
ditions exert a large influence on the sensitivity coefficients. 

Fig. 22. Sensitivity coefficient for transmissivity in zone two, 
barrier boundaries at y = 0 and y = 2000. 
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Fig. 23. Sensitivity coefficient for transmissivity in zone one for 
barrier boundaries at y = 0 and y = 2000 and head specified at x = 0 
and x = 4000. 

Fig. 24. Sensitivity coefficient for transmissivity in zone two for 
barrier boundaries at y = 0 and y = 2000 and head specified at x = 0 
and x = 4000. 
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6. THE ROLE OF SENSITIVITY COEFFICIENTS IN PARAMETER ESTIMATION 

The so-called "indirect" inverse procedures attempt to calcu­
late the "best" transmissivity and storativity by minimizing some 
error functional [Cooley (3), Cooley (4), Neuman and Yakowitz (15), 
and Neuman (16)]. In this case, the aquifer parameters which are 
obtained by minimization do not exactly satisfy the direct equa­
tions. Rather, the best average solution is obtained over the his­
torical period of record. Suppose that initial estimates for T and 
S can be made, and that h~ is the head calculated from the model at 
node point i and time step n. If all the aquifer parameters are 
changed*by some amount (~Tk or ~Sk' k is the zone index), the new 
head hi n is given by 

(6.1) 

where M1 is the number of T zones and Mz is the number of S zones. 
U¥iok represents the change in head at node i for time step n due to 
a change in the transmissivity in zone k. A similar definition 
applies for U~iok. These are the sensitivity coefficients that have 
been discussed at length in earlier sections. 

6.1 Ordinary Least Squares 

If he~ is the experimentally measured head at node point i for 
time step n, it would be desirable to choose ~Tk and ~Sk in such a 
way as to minimize the difference between h* and he. The error 
functional chosen to be minimized is the sum of the squared errors 
over all node points and time steps. 

(6.2) 

This error functional assumes that measurement accuracy and any 
other source of error is the same for all points and times. (If 
this is not true, a weighting function could be used. If a 
weighting function other than one is used, we have generalized least 
squares, which will be discussed briefly in the next section.) 

A necessary condition for minimization of E(~Tk' ~Sk) is that 
the partial derivatives with respect to ~Tk or ~Sk be zero. We can 
drop the subscript T and S on U¥i~k and U~i;k without ambiguity by 
letting k go from one to M1 + M2 p. In general, the number and 
locations of the zones for T and S will be different. 
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(6.3) 

ff Ui'k can now be considered as one element of the matrix~. Note 
that! in general, U is not a square matrix. Similarly define a 
parameter vector, P. Note, + indicates the transpose of a vector or 
matrix. ) 

(6.4) 

The minimization condition can now be written as [Beck and Arnold 
(1) ] 

(6.5 ) 

or 

(6.6) 

where ~P is a vector of parameter changes required to ~n1m1ze the 
functional. One element of the vector! (Rk ) is given by 

~ = L L U~;k (he~- h~). 
n i 

(6.7) 

Any standard matrix routine may now be used to solve Eq. (6.5) for 
the parameter changes which will minimize the error functional. 
Since it is a nonlinear problem (U depends on P), iteration until 
convergence occurs is necessary; i.e., until ~I approaches zero. 

In order to perform a more detailed statistical analysis on the 
parameter reliability, it is necessary to find the parameter covar­
iance matrix. For ordinary least squares and certain statistical 
assumptions (additive, zero mean, uncorrelated and constant variance 
errors), the parameter covariance is given by [Beck and Arnold (1)} 

+ -1 2 P = cov (P) = (U U) 0 - -"'" - (6.8) 

where 0 2 is the head error variance. The estimated standard error 
of the parameters is given by the square root of the diagonal 
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elements of the matrix ~ in Eq. (6.8). 

Estimated Standard Error of Pk = Pkk1/ 2 (6.9) 

2 If 0, the head error variance, is unknown, it can be approximated by 

(6.10) 

where m is the total number of observations in space and time and p 
is the number of parameters to be estimated. 

The approximate parameter correlation matrix, which shows the 
degree of dependence among parameters, can be found from Eq. (6.8). 
An element of the matrix has the form [Beck and Arnold (1)] 

-1/2 r ik = Pik (P ii Pkk) • (6.11) 

The diagonal elements are all unity. The off-diagonal elements are 
between -1 and 1. As the magnitude of an off-diagonal element ap­
proaches one, it indicates a high correlation between parameters. 
When this occurs, the two parameters are nearly dependent and it may 
not be possible to estimate both. 

6.2 Other Methods 

One might possibly want to weight some measurements more than 
others. Also some prior information may exist on the aquifer 
parameters. In these cases, the function to be minimized would not 
be given by Eq. (6.2) but by a more general function such as [Beck 
and Arnold (1)] 

* + * + [he-h ] W[he-h ] + [p-p J v[p-p ] 
-- ~-- ---Q ~---Q 

(6.12) 

where 

(6.13) 

W is the weight matrix for head measurements, P is the vector of 
prior estimates for the aquifer parameters, an~ Y is the weight 
matrix for the prior estimates. ~ is a symmetric square matrix 
whose dimensions are equal to the total number of head measurements. 
y is a symmetric square matrix with dimensions equal to the number 
of prior estimates. By the proper choice of ~ and y one can perform 
weighted least squares (WLS) estimation, maximum likelihood (ML) 
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estimation, or maximum a posteriori (MAP) estimation. 

In this more general case, the extension of Eq. (6.6) becomes 

(6.14) 

The parameter covariance matrix Eq. (6.8) must also be extended. 

[ + ]-1 cov(!.) .. !l ~ !!. + Y. (6.15) 

The work presented here will deal only with the ordinary least 
squares estimation procedure because the main purpose is to show how 
sensitivity coefficients can be used to perform a model sensitivity 
analysis. From this section we can see that sensitivity coeffi­
cients clearly play a central role in any common estimation tech­
nique. Therefore, the procedures discussed in this work for the 
least squares case can be generalized for more sophisticated esti­
mation techniques. 

7. USING SENSITIVITY COEFFICIENTS TO ESTIMATE CONFIDENCE INTERVALS 

In the following sections we shall briefly indicate how confi­
dence intervals can be estimated for both the estimated parameters 
and the calculated heads. 

7.1 Confidence Intervals And Regions For Estimated Parameters 

With the statistical assumptions i1~oked in section 6.1, it can 
be shown that the quantity (Pk - Pk)/P~k is described by a t(m-p) 
distribution. Pk is the parameter value estimated by least squares, 
Pk is the correct value, Pkk (the square of the estimated standard 
error of Pk) is the diagonal element from Eq. (6.8~, and mrp is the 
number of degrees of freedom used in calculating s in Eq. (6.10). 
The 100(1-a)% confidence interval is approximated by [Beck and 
Arnold (1)] 

(7.1) 

When 0 2 is estimated by s2, as in Eq. (6.10), the approximate 
boundary of the 100(1-a)% confidence region is an hyperellipsoid 
given by [Beck and Arnold (1)] 

+ + 2 
(!. - ~) Q Q(!. - ~) = r (7.2a) 
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~p+u+u~p = 2F ( ) u_ ~ ~u_ ps I-a p,m-p • (7.2b) 

r2 has an F-distribution with the two 
if a is unknown. r2 = a2£I_a(p) if a 
page 294]. 

degrees of freedom p and m-p, 
is known [Beck and Arnold (1), 

7.2 Confidence Intervals for Calculated Head 

For the least squares case, with the assumptions of section 
6.1, the covariance matrix for the calculated heads (h ) is [Beck 
and Arnold (1)] -c 

cov(h ) 
-c (7.3 ) 

where the Q are the usual sensitivity matrices and f is the para­
meter covariance matrix from Eq. (6.8). The diagonal elements of 
Eq. (7.3) give the variance of the calculated head. The square 
root of these diagonal elements gives the estimated standard error 
in calculated head. 

8. MODEL DESIGN FOR MAXIMUM SENSITIVITY 

In this section, a few general observations will be made 
regarding model sensitivity. Some examples will be given to illu­
strate these principles. 

8.1 Minimize The Estimated Errors Or Confidence Intervals 

If the confidence intervals or the estimated standard errors 
of the parameters can be made small, then the model has good 
sensitivity. From Eqs. (6.8) and (6.9), it is seen that the + -1 diagonal elements of (Q Q) are critical in this regard. There-
fore, striving to maximize the model sens~rivity is equivalent to 
minimizing the diagonal elements of (U+U) • The inverse of the 
matrix is given by its adjoint divided by its determinant. 

(8.1) 

One approach to achieve maximum sensitivity is to try to increase 
the determinant IQ+QI [Beck and Arnold (1)]. However, the deter­
minant can be increased by a simple scaling of U+U which does noth­
ing for the accuracy. So one must be careful to increase IQ+QI in 
such a way that the accuracy actually increases. 
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From Eq. (8.1), U+U clearly should not be singular 
(!£+£!*O). This mean; that the sensitivity coefficients and the 
parameters must be independent. For example, consider the case of 
two parameters, T and S. The least squares matrix is 

(8.2) 

i and n denote spatial and temporal measurement locations. If UT 
and Us happen to be dependent as in Eq. (2.27), showing that 
!£+£I = 0 is not difficult. Clearly, none of the sensitivity 
coefficients may be dependent. However, problems may arise when 
two or more of the sensitivity coefficients are nearly dependent. 
Sometimes this condition can be seen by plotting and comparing 
sensitivity coefficients. Another way to examine dependence be­
tween sensitivity coefficients is to calculate the sensitivity 
correlation matrix, an element of which has the form 

(8.3) 

If any off-diagonal elements are in the range of .9 or greater, 
significant correlation exists between those sensitivity coeffi­
cients, which may result in a smaller value for !g+£! and problems 
in finding an accurate inverse. 

After an inverse, (£+£)-1, has been found, it is possible to 
examine the dependence between the aquifer parameters by looking at 
the elements of the parameter correlation matrix given by Eq. 
(6.11). If any of the off-diagonal elements approach a value of 1, 
a significant correlation exits between those two parameters. This 
indicates that the two parameters are nearly dependent and should 
not both be estimated. 

Another indicator of the stability of the inverse [Eq. (6.5)] 
is the condition number of £+£ [Strang (17)]. The condition number 
indicates how errors in R or uTu are amplified in the final solu­
tion for ~P. Ideally, iiE the-c~ndition number is one, no 
amplification occurs. If the condition number is large, small 
changes in R or U+U might produce large changes in the solution 
~P. One might s~spect that as !£+£! approaches zero, the condi­
tion number would grow. Thus, the condition number should be an 
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indicator of the dependence or near dependence of sensitivity coef­
ficients or parameters. In the work that follows, the reciprocal 
condition number will usually be examined rather than the condition 
number. If the reciprocal condition number is near one, the matrix 
is well conditioned and errors are not amplified. On the other 
hand, if the reciprocal condition number is very small, the matrix 
is ill-conditioned. If the reciprocal condition number is 10-k 
and k approaches the number of significant digits used by the 
computer, the matrix is said to be nearly singular at that working 
precision [Dongarra et al. (5)]. 

In many cases where the aquifer parameters vary considerably 
in magnitude over the model, it is helpful for accuracy and con­
vergence to use normalized sensitivity coefficients (PUp) and solve 
for relative changes in the parameters (~p/P). Eqs. (6.3) to (6.7) 
can be written for these changes with minor modifications. First, 
define the normalized sensitivity coefficients as 

U,n = p Un 
i;k k i;k 

and the relative parameter changes as 

(8.4) 

(8.5) 

As in section 6.1, let t U'~.k be one element of the matrix U'. 
The normalized least squares'equations can now be written as 

(8.6) 

where one element of R' is 

(8.7) 

As will be seen later, it is much easier visually to compare normal­
ized sensitivity coefficients and relative parameter changes. 

Earlier sections have dealt with methods for determining sensi­
tivity coefficients. Several examples of sensitivity coefficients 
have been given for various models. Clearly from that work, the 
sensitivity functions may vary in magnitude considerably over space 
and time. Obviously better sensitivity will result if the measure­
ment points in space and time, which go into the matrix ~, are 



796 

chosen to primarily sample the regions where the sensitivity 
coefficients have their largest values. On the other hand, if the 
measurement pOints cannot be adjusted, clearly the estimated para­
meters will have greater uncertainty when using data from areas of 
low sensitivity. As a simple example of this principle, consider 
the sensitivity with respect to storativity for the leaky aquifer 
shown in Figure 9. If we have a choice, larger sensitivities 
clearly result when the observation well is closer to the pumped 
well. For an observation well at 1000 feet, head measurements taken 
before .01 day or after 1.0 day will contribute little to defining 
the storativity parameter. 

In dealing with the ground-water inverse problem, we work with 
a set of head measurements. In many cases, more than one model 
specification is consistent with this head data. Other geohydro­
logic information may further restrict the suite of possible models. 
However, usually considerable latitude exists in specifying the 
model. In this case one should choose the model that has the 
greatest sensitivity to the aquifer parameters. In particular, con­
sider the effect of boundary conditions. From earlier discussion, 
Eqs. (3.26) and (3.27), it was concluded that the sensitivity coef­
ficients go to zero at a specified head boundary. However, this is 
not the case for a specified flow boundary. As an example of this, 
consider the sensitivity coefficients shown in Figures 15 and 21. 
Exactly the same head data is appropriate for both of these cases; 
only the boundary conditions at y = 0 and y = 2,000 are different. 
In Figure 15, y = 0 and y = 2,000 represent specified head boun­
daries, while in Figure 21 they are barrier boundaries. Clearly the 
model in Figure 21 has the potential for greater sensitivity. In 
general, specified head boundaries, with their resultant zero­
sensitivity coefficients, result in smaller model sensitivity and 
larger parameter uncertainty. 

There is, of course, a limit on the number of parameters that 
can be determined, which is the number of measurements made. As 
discussed earlier, the uncertainty of each parameter is related to 
the sensitivity of the model and the measurement errors. It makes 
no sense to try to determine a given parameter if the model sensi­
tivity is very low. In practice, what is done many times is to 
assume that a number of nodes have a common parameter value. This 
collection of nodes is called a zone. It seems reasonable that the 
total sensitivity for the zone would be the sum of the individual 
nodal sensitivities. Actually, the preceeding statement is just the 
discrete analog of Eq. (2.16), where the area of integration is just 
the zone. From this discussion it seems reasonable that, through a 
proper summation of nodes into zones, it might be possible to obtain 
an acceptable level of sensitivity in each resulting zone. 

If summing into zones occurs, the least squares Eq. (6.5) will 
be modified. To see how, consider the case of three zones. The 
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least squares matrix is 

L 
2 I Ui 02 L ui o1 ui o1 ui o1 ui 03 

i 
, 

i 
, , 

i 
, , 

OtlD L Ui 02 Ui o1 L 
2 

L Ui 02 Ui ;2 Ui 03 (S.S) 
i 

, , 
i 

, 
i , 

L Ui ;3 Ui o1 L Ui ;3 ui ;2 I 2 
Ui ;3 

i 
, 

i i 

Suppose zones land 2 are to be combined into a single zone. The 
total sensitivity for the combined zone at node i is (Uio1 + 
Ui02 )' If we sum the first and second row and the first' and 
se~ond column in (g+g) we obtain 

(S.9) 

I u~03 
i ' 

Similarly, if all three zones are to be combined into a single 
zone, the total sensitivity for the combined zone at node i is (Uio1 
+ Ui02 + Ui03 )' By summing all the rows and columns in either ' 
Eq. ts.S) of (S.9), we obtain 

(S.10) 

From the above discussion, it is clear that the least squares 
equation (6.5) may be collapsed to any convenient number of zones 

+ by summing the appropriate rows and columns of g g and summing the 
appropriate elements of ~p and R. It seems that it might be pos­
sible to collapse the number of-parameter zones and to adjust the 
zone shapes with the above technique such that a minimum parameter 
sensitivity or maximum parameter error is achieved. Of course, 
this procedure would have to be tempered by knowledge of the geohy­
drology. The zone formation would have to satisfy the joint goals 
of increasing parameter sensitivity and being consistent with the 
known hydrogeology. 

S.2 Examples Of Methods For Maximizing Model Sensitivity 

In the following sections various examples will be given which 
illustrate techniques for increasing model sensitivity. The goal is 
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to increase model sensitivity until an acceptable level of error in 
the estimated parameters is achieved. 

8.2.1 The Theis aquifer 

For the Theis equation, the sensitivity coefficients attain 
their maximum magnitudes at infinite time and zero radius (Figures 2 
and 3). Therefore, logically, observation wells should be located 
very close to the pumping well and observed for very long times [Yeh 
and Sun (20)]. Practically, there are some problems with this 
approach. The transmissivity value obtained from the pumping test 
is an average of the transmissivity in the region of the cone of 
depression. Locating too close to the pumping well restricts the 
region sampled. Also, perturbing influences may cause the drawdown 
near the well to deviate from the assumed model (for example, 
partial penetration and well construction). It is not possible to 
continue a pumping test indefinitely; usually a maximum duration is 
dictated by external influences (cost, manpower, equipment, etc.). 
Therefore, having a way to terminate the pumping test when the 
aquifer parameters had been determined accurately enough would be 
desirable. 

As discussed in the pre­
vious section, maximizing IU+ul 
is one way to try and minimize 
parameter uncertaintr. Figure 
25 is a plot of IU+UI versus 
time for the Theis equation with 
the same parameters as used ear­
lier to generate Figures 2-5. 
The observation well distance 
(r) is 1,000 feet. Notice that, 
as expected, lu+ul continues to 
increase with time. This was ex­
pected since UT continues to in­
crease with time (Figure 3) even 
though Us is approximately con­
stant after about one day 
(Figure 5~. The non-smooth char­
acter of IU+ul at log cycle boun­
daries in Figure 25 is due to a 
different time sample rate in 
each log cycle of time (10 sam­
ples per log cycle). The dotted 
line extension at 1 day is the 
curve that would result if the 
same time sample interval (.1 
day) had been used on two suc­
cessive log cycles from .1 day 
to 10 days. 

1.0 

Q = 32, 000 ft3 /day 

T = 3200 ft2/day 
S = .00095 
r = 1000 It 

10-5 '-'--__ L-___ L-__ ----I 

.01 1.0 10.0 100.0 
Time (days) 

Fig. 25. lu+ul versus time for 
the Theis equation. 
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The 95% confidence intervals for transmissivity (6T) and stor­
age (6S), as defined by Eq. (7.1), are plotted versus time in Fig­
ure 26. The head data (he) has been rounded to the nearest .1 foot 
and Eq. (6.10) has been used to estimate the head variance. The 
accuracy of T continues to increase with time. However, the curve 
for 6S is fairly flat after about 1 day. (The confidence interval 
curves in Figure 26 are not monotonically decreasing because of 
errors in estimating 0, T, and S from the rounded data). These re­
sults might have been anticipated from the sensitivity coefficients 
(Figures 3 and 5). At.3 day the 95% confidence interval expressed 
as a percent of the parameter is 6.5% for Sand 21.5% for T. At 2 
days it is 3.9% for Sand 3.7% for T. At 20 days it is 3.1% for S 
and 1.3% for T. From these results the model is seen to be more 
sensitive to S than to T at early times. However, as time 
increases, the model becomes more sensitive to T than to S. 

These results suggest that sensitivity analysis could deter­
mine the duration of a pumping test needed for a given accuracy of 
the aquifer parameters (assuming that the Theis equation is a 
reasonable model). This could be done two ways. In the office 
before the pumping test, if one can estimate the accuracy of the 
head data (0) and a range for T and S, then sensitivity analysis 
could predict the maximum duration needed for the desired accuracy. 
On the other hand, if a microcomputer can be taken to the field to 
record and analyse the data in real time, then sensitivity analysis 
would allow the computer to inform the supervisor of the current 
estimation accuracy and to stop the test when the desired accuracy 
had been reached. In this case, 0, T, and S would be estimated 
from the data as they are collected. 

The results presented in this section have been for an observa­
tion well at 1,000 feet from the pumped well. However, the results 
c~uld be used for any r value by simply scaling the time such that 
r It remains constant. For example, at r = 100 feet, the accuracy 
of 3.1% for Sand 1.3% for T occurs at .2 days. 

8.2.2 The leaky aquifer 

The leaky sensitivity coefficients are somewhat different from 
the Theis case (Figures 6-11). However, they still have their 
maximum value for small r. The time dependence shows some new fea­
tures. There are three sensitivity coefficients with respect to the 
three parameters: transmissivity, storage, and leakage. Remember 
from Figure 9 that Us has a maximum value at some time and then 
decreases to zero as the time increases. The other two (UT and UL 
from Figures 7 and 11) reach their maximum values and are constant 
after some time. For data of a certain accuracy, one might expect 
the accuracy of S to be constant after some time. 
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The 95% confidence intervals for the three parameters, as de­
fined by Eq. (7.1), are plotted versus time in Figure 27. However, 
instead of plotting 8P as for the Theis equation, 8P/P as a percent 
has been plotted; this procedure gives a much better comparison of 
relative sensitivities. The head data (he) has been rounded to the 
nearest .1 foot and Eq. (6.10) has been used to estimate the head 
variance. After about one day, the 95% confidence interval for S is 
about 5.5%. The confidence intervals of T and L continue to de­
crease, but at a fairly slow rate after one day. This is to be 
expected since 1u+ul continues to increase slowly because UT 
and UL are near y constant. At the end of 10 days, the confidence 
intervals for S, T, and L are 5.5%, 12.5%, and 16.7%, respectively. 
From Figure 27 we can see that the model is most sensitive to Sand 
least sensitive to L, with the sensitivity to T falling between 
these two. 

In the above discussion plotting 8P/P rather than just 8P was 
more convenient. In the same way, it is easier to compare sen­
sitivity coefficients if PUp is plotted rather than Up' The 
position of the maximum and the areas of zero values or constant 
values can be determined from either. For example, in Figure 9 the 
drawdown data for times from .01 to 1.0 days clearly is the most 
critical for determining the storage coefficient. However, to see 
relative sensitivity at a glance, it is much better to look at PUp' 

Comparing Figures 7 and 11, one might guess that a high cor­
relation exists between T and L since the sensitivity coefficients 
look so similar. The correlation matrix, calculated from Eq. (6.11) 
for the data set of this section, bears this out. The correlation 
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matrix element for T and L is -.995. This implies that it will be 
difficult to obtain good estimates for both T and L with poorer 
quality data. Figures 6 and 10 indicate that UT and UL differ 
considerably in their radial dependences. This suggests that if 
more observation well data at various radii is available, the 
correlation between T and L would be reduced and better estimates 
could be made. This has been verified by numerical experiment. 
Adding observation wells at 100 feet and 500 feet reduces the 
correlation between T and L to -.80. At the same time, the 95% 
confidence intervals for S, T, and L reduce to 2.1%, .7%, and 2.3%, 
respectively, at the end of one day of pumping. 

As for the Theis case, one could make a decision before the 
pumping test or in real time as to the duration needed for a given 
parameter accuracy. Of course, one must be able to give a range of 
aquifer parameters and data accuracy or estimate them in real time 
to perform this kind of sensitivity analysis. This example has 
pointed out that sampling in the spatial domain also affects the 
sensitivity. Therefore, one can choose the configuration of obser­
vation wells and duration of the pumping test based on sensitivity 
analysis to give the desired accuracy of the aquifer parameters. 
All of this assumes the leaky model is an adequate representation 
of the real world aquifer. In many cases, this may not be true. 

8.2.3 One-dimensional steady-state model with spatially varying 
transmissivity 

In sections 4.3 and 5.2, analytical expressions for the sensi­
tivity coefficients were derived for two different sets of boundary 
conditions for the simple model described by Eq. (4.2) and Figure 
12. The sensitivity coefficients, for Q specified at one boundary 
and head at the other, are shown in Figure 13. Some of the coeffi­
cients, for head specified at both boundaries, are shown in Figure 
20. As remarked earlier, they are very different in character. At 
this point, we would like to know if one formulation of the problem 
is better than another for estimating the transmissivity distribu­
tion. 

To make this judgement, we will look at three things: the 
condition number of U+U, the estimated standard error, and the 
parameter correlation matrix. When Q is specified, the reciprocal 
condition number is .362 x 10-4 and the estimated standard error 
in transmissivity (see Figure 29) increases smoothly from about 35 
for T1/2 to 2,500 for T9+1/2 (about 3.5% to 25%). The results 
for the standard error were obtained from Eq. (6.9), assuming 
a = .025, which roughly corresponds to the head data being accurate 
to the nearest .1. As expected and predicted by Eq. (4.15), the 
model is less sensitive in areas having a larger transmissivity. 
However, the estimated errors seem reasonable and the inverse is 
well defined. On the other hand, when the head is specified at both 
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ends, the reciprocal condition number is .320 x 10-B. This indi­
cates that the matrix U+U is nearly singular in single precision 
arithmetic og most computers. Thg estimated standard errors range 
from .2 x 10 for Tl / 2 to .2 x 10 for T9+l / 2 • In other words, no 
meaningful estimates can be made. From Eqs. (5.5) and 5.6), we know 
the model is insensitive to T when T is constant. Eq. (5.10) and 
Figure 20 indicate that the sensitivity coefficients are not zero if 
T varies in space. The values of T vary by an order of magnitude 
across this model; however, the results indicate very low sensi­
tivity. This is a direct result of the boundary conditions chosen. 

The parameter correlation matrix calculated from Eq. (6.11) for 
these two models is revealing. When Q is specified, the transmis­
sivities are only related to their nearest neighbors. The parameter 
correlation matrix has the structure 

1 -.5 
-.5 1 -.5 0 

~ (B.11) 

0 
-.5 1 -.707 

-.707 1 

On the other hand, when the head is specified at both ends, all the 
transmissivities are highly correlated. All the entries in the 
parameter correlation matrix are nearly one (for example .9999). If 
instead of solving the 10 x 10 matrix of U+U for all ~T's, the first 
nine rows and columns of U+U are used, the system is much better 
behaved. In this case, the estimated standard errors and the condi­
tion number are larger, but comparable to those found when Q is 
specified. This amounts to requiring ~T9+1/2 to be zero, indicating 
the initial guess is known to be very good. The better results 
should not be too surprising since a known T value would allow Q to 
be specified. However, the parameter correlation matrix for the 9 x 
9 case still shows significant correlation between several of the 
T's (at the .8-.9 level). All of this points out the importance of 
being able to specify Q in the model. 

As discussed in section 8.1 resulting in Eq. (8.6), it may be 
helpful to use normalized sensitivity coefficients (PUp) and solve 
for relative changes in the parameters, ~P/P. For the model with ~ 
specified at one end and head specified ~t the other, t~e reciprocal 
condition number improved from .362 x 10 4 to .161 x 10 2 simply by 
using the normalized version of the least squares equations. The 
estimated standard errors and the parameter correlation matrix were 
not significantly affected since the input head values were given 
accurately enough already. However, the improved condition number 
means that the effect of errors in head would not be amplified as 
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much during the inverse process to find the ~T's. This should be a 
great advantage in a real-world situation. 

At this point we would like to consider the structure of the 
parameter variance for this model. From Eq. (4.15) and Figure 13, 
we see that if Tk+1/ 2 is a constant for all k, then all the UTi ' k 
have the same nonzero region as in Figure 13, but they all have' the 
same amplitude. This leads to the following structure for U+U. 

1 1 1 1 1 
1 2 2 2 2 
1 2 3 3 3 
1 2 3 4 4 
1 234 5 

(8.12) 

To conserve space, the matrix is shown for only five transmissiv­
ities; the extension for any number is obvious. The inverse of 
this matrix is 

2 2 -1 0 0 0 

<1tJ:!) -1 £T2 -1 2 -1 0 0 

[Q~x] 0 -1 2 -1 0 (8.13) 
0 0 -1 2 -1 
0 0 0 -1 1 

Again, the extension to larger matrices is obvious. We see that 
the estimated standard error (E.S.E.) is f:2 a£T2/Q~x for all except 
the last transmissivity and it simply has the 2 replaced by 1. This 
is the basic structure of the variance due to the model. 

The extension of Eq. (8.12) to the case where transmissivity 
varies spatially is 

-4 
T1/2 

-2 
T1/2 

-2 
T3/2 

-2 
Tl/2 

-2 
T5/2 

!l+Y, = [Q~X] 
2 -2 -2 -4 -2 -2 . 

T3/2 T1/2 2T3/2 2T3/2 T5/2 (8.14) 

-2 
T5/2 

-2 
T1/2 

-2 
2T5/2 

-2 
T3/2 

-4 
3T5/ 2 

For simplicity a 3 x 3 matrix has been shown; the extension to any 
size is apparent. Likewise, the inverse is the extension of Eq. 
(8.13). 
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4 
2T1/2 

2 
-T1/ 2 

2 
T3/2 0 

<!t!!) -1 
R. 2 

[Ql1X] • 
2 
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We can see from the extension of Eq. (8.1S) to an N x N matrix that 

E.S.E. of Tk+1/ 2 = 

2 
R.T k+1/2 {/2 0 

Ql1x a 1 
.. k < N 
k = N (8.16) 

The factor out front is the contribution to the standard error due 
to the transmissivity distribution; while the remaining factor is 
due to the model structure. This shows very clearly that the error 
will be greater in areas of large T since the model is less 
sensitive there. 

The parameter variance structure and standard error estimates 
given in the last paragraph are actually much more important than 
might be supposed. The sensitivity coefficients along a streamline 
in a two-dimensional model are given by [McElwee (14)] 

Qk+l/2 l1~+l/2 
R. 2 
k+l/2 T k+l/2 

k ) i 

(8.17) 
o otherwise 

where Qk+1/2 is the flux of water in the streamtube between nodes k 
and k + 1, R.k+1/ 2 is the streamline width at that point, and 
l1xk+1/2 is the node spacing between k and k + 1 along the 
streamtube. We see that this is just a straightforward extension of 
Eq. (4.1S). Therefore, the estimated standard error of transmissiv­
ity determined along a streamline for a two-dimensional model is 
just the extension of Eq. (8.16) with the subscript k+1/2 attached 
to Q, 6x, and R.. 

As an example of how Eq. (7.2) is used to calculate a confi­
dence region, consider the 2 x 2 versions of Eqs. (8.12) and (8.13) 

(8.18) 



2 
where C 

C-2 [2 -lJ 
-1 1 
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(8.19) 

(8.20) 

The estimated standard error is 12 o/C for T1 and ale for T2• 
The matrix in Eq. (8.18) may be diagonalized by finding its eigen­
values and eigenvectors. The eigenvectors can be used to form a 
transformation matrix that 'will diagonalize Eq. (8.18) and transform 
to a new set of transmissivities, Ti and Ti. The transformed least 
squares matrix is 

and the new transmissivities are 

flT' 1 

(8.21), 

(8.22a) 

(8.22b) 

The above equations are those for a simple axis rotation of angle 
0. The inverse of Eq. (8.21) is easily found to be 

o J (8.23) 
2.6180 • 

The estimated standard error is .6180a1C for T'l and 1.6180a1C 
for T'2. 
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The connection between the estimated standard errors in the 
original and transformed systems is given by Eq. (7.2) with 
~ = 1. This corresponds to the 39% confidence limit [Beck and 
Arnold (1), page 294). Eq. (7.2) defines an ellipse, the interior 
of which is the confidence region. Figure 28 shows this confidence 
region and its relationship to the original and transformed trans­
missivities. In the figure, a/C has been set to one for conven­
i~nce. The equation of the ellipse (for a/C = 1) is 

(OT,)2 (oT,)2 
1 2 

• 3820 + 2.6180 1 • (8.24) 

As mentioned in section 8.1, it is possible to sum nodes into 
zones to achieve an improved or acceptable level of sensitivity for 
the resulting number of parameters. For example, consider the 
4 x 4 version of Eq. (8.12). 

Summing the third and fourth rows and columns results in 

C
2 D ! ,~ ] 

C2 is defined in Eq. (8.19). The inverse of this matrix is 

-1 
9/5 

-2/5 
-2~5J 
1/5 

(8.25) 

(8.26) 

(8.27) 

It can be seen from Eq. (8.27) that the sensitivity to the T in the 
combined node zone has increased. From Eq. (8.27) the estimated 
standard error for the combined node zone is 0/(15 C); this is to be 
compared to the original estimated standard errors of 1:2 a/C for T3 
and a/C for T4• Assuming, of course, that it is acceptable to sum 
these two T's, the estimated standard errors are improved by factors 
of .45 and .32. This assumes a does not change much. 

As an example of the effect of summing nodes into zones, the 
simple model described by Eq. (4.2) and Figure 12 will be con­
sidered. The estimated standard error for ten zones has been dis­
cussed earlier and is shown in Figure 29 by the top curve. If pairs 
of nodes are summed into zones, the resultant estimated standard 
error for five zones is shown by the middle curve in Figure 29. In 
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Fig. 28. 39% confidence region 
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Fig. 29. Estimated standard 
error in transmissivity for 
various numbers of zones. 
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the extreme that five adjacent nodes are summed giving two zones, 
the lower curve in Figure 29 indicates the estimated standard 
error. Summing also improves the reciprocal condition number of the 
resulting least squares matrix which is solved for the parameter 
changes. In the ten-zone case the reciprocal condition number is 
.0016, while it is .0054 for five zones and .12 for two zones. 
Clearly, summing nodes into larger zones can be beneficial 
mathematically; however, this reduces the resolution of the trans­
missivity distribution. The maximum acceptable size of the zones 
would have to be determined from geohydrology considerations. 

It should be noted that neither summing nor using the normal­
ized least squares Eq. (8.6) can significantly alter an earlier 
conclusion: specifying the head as a boundary condition at both 
ends of the model leads to severe instability in the inverse 
process. Being able to specify Q or alternately one transmissivity 
value along the model has a tremendous stabilizing influence on the 
inverse process. 
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8.2.4 One-dimensional transient model with spatially varying 
parameters 

Figure 30 shows an idealized one-dimensional transient model 
chosen to illustrate the use of sensitivity analysis. The model has 
a constant head boundary on the right (at node 11) and a barrier 
boundary on the left (between nodes 0 and 1). The model has a node 
spacing of 1,000 feet. Therefore, it is 10,500 feet between boun­
daries. There are 10 equations (nodes 1 to 10) to be solved for the 
10 unknown head values as a function of time. The transmissivity is 
specified midway between node points (for example, T3/2 occurs be­
tween nodes 1 and 2), while storativity is specified at the node 
points. Therefore, 10 values of transmissivity and 10 values of 
storativity are needed to describe this model. T3/2 is 52,000 
gpd/ft (6,952 ft 2/day) and the transmissivity increases by 2,000 
gpd/ft (267 ft 2/day) as the node number increases by one. Thus, 
T10+1{2 is 70,000 gpd/ft (9,358 ft 2/day). The storativity at 
node (51) is .0050 and increases by .0005 as the node number 
increases by one. Thus, 510 is .0095. 

The initial head distribution is assumed to be flat. The 
aq~ifer is being pumped at a rate Q equal to 1,500 gal/day (200 
ft /day) per unit transverse length. The pumping represents a 
line sink located at node 7, 4,000 feet away from the constant head 
boundary. The model has a steady-state solution where all water 
being pumped comes from the constant head boundary, and the head 
distribution to the left of the well is flat and somewhat lower than 
the original level. 

The correct values for the transmissivity at the 10 inter­
mediate node points and for the storativity at the 10 node points 
are shown in the second column of Table 2. These values, along 
with the other model parameters discussed previously, were used to 
generate hypothetical "field" data for the hydraulic head as a 
function of time. These values of hydraulic head (accurate to five 
decimal places) were then used in an ordinary least squares inverse 
in~tial estimate for transmissivity was 61,000 gpd/ft (8,155 
ft /day) and for storativity was 
.00725. 

The transmissivity and stora­
tivity values calculated for early 
time by the inverse procedure are 
shown in the third column of Table 
2. The early time calculations 
were made using hydraulic heads 
for 10 time steps with the total 
time slightly less than 2 days. 
For these early times the draw­
down is less than 19 feet at the 

Q = 200 ft3 ,day 

'~;;;;;:-i~;i:;;;;;! 
f---10.500 ft-l .......... 

o 1 2 3 4 5 6 7 8 9 10 11 
Node Number (i) 

Fig. 30. A simple one-dimen­
sional transient model [McElwee 
(13)]. 
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line sink and is less than one foot farther than 3 node points away 
from it. The values of calculated transmissivity and storativity 
are within 20% of the actual values, but there is no clear evidence 
that the inverse procedure has been successful in finding the 
spatial trend of increasing T and S. At early time periods the 
drawdown is small and the model is fairly insensitive to the 
transmissivity and storativity. This insensitivity can be seen very 
easily by examining the sensitivity coefficients or by calculating 
the estimated standard error. Without a sensitivity analysis one 
might have expected better answers, since the head is given so 
accurately. 

At middle times (column 4 of Table 2), when the drawdown is 
substantial and hydraulic heads are changing fairly rapidly with 
time, the greatest sensitivity and best inverse solution results. 
The middle time inverse calculations were made using hydraulic heads 
for 10 time steps between 2 days and 112 days. The system rapidly 
approaches steady-state for times greater than 112 days. The larg­
est error in transmissivity is less than 7% and most values are very 
close to the correct values. The storativity calculations have less 
than 10% error and most are very close to the correct values. The 
largest errors occur near node 1. The reason for this will be dis­
cussed later. These results were obtained using head data accu­
rate to 5 decimal places and a Gauss-Seidel Iterative (GSI) solution 
to Eq. (6.5). Using this solution routine, it was not possible to 
lower the error in aquifer parameters below 7-10% near node 1. 
However, additional work using a high-efficiency matrix package 
(HEMP) direct solution technique showed that the error in T and S 
could be made very small by using head data accurate to 5 decimal 
places. However, the largest of the small errors (.001%) still 
occurred near node 1. The reciprocal condition numb=E of the least 
squares matrix for this middle time data is .33 x 10 • This is 
much smaller than one would like and indicates that doing the matrix 
inversion in single precision arithmetic may lead to problems if not 
done efficiently. Apparently this is why the HEMP solution could 
achieve better accuracy. A plot of the estimated standard 
error (op/P) calculated by a sensitivity analysis is shown in Figure 
31. Notice that the HEMP solution near node 1 is consistent with 
Figure 31. However, the middle time errors in Table 2 near node 1 
are much bigger than predicted by Figure 31, presumably caused by 
the inefficiency of the GSI solution. 

The last column in Table 2 shows the transmissivity calcula­
tions as the model approaches steady-state. The storativity 
calculations have become unstable and cannot be made because of low 
sensitivity. The late time inverse calculations have been made 
using hydraulic heads from 5 time steps between 112 days and 850 
days. The transmissivity calculations for the last 4 node points 
are very good. However, the calculated transmissivities for the 
first 6 node points are fairly bad. This can be explained by look-
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ing at the sensitivity coefficients of the estimated standard 
errors. The sensitivity at the last 4 nodes is about 3 or 4 orders 
of magnitude greater than for the first 6 nodes. This lack of 
sensitivity is because oh/ox is practically zero for the first 6 
node points for times greater than 112 days. 

Table 2. Inverse Calculations Over Various Time Periods 
(Head Data Accurate to 5 Decimal Places) [McElwee (13)] 

Grid Correct Early Middle 
Number Value Time Time Late Time 

TRANSMISSIVITY (gpd/ft) 
1 + 1/2 52,000 59,575 48,415 72,213 
2 + 1/2 54,000 62,107 55,064 69,827 
3 + 1/2 56,000 64,365 55,980 71,049 
4 + 1/2 58,000 66,684 57,955 70,520 
5 + 1/2 60,000 69,070 60,000 71,130 
6 + 1/2 62,000 71 ,283 62,002 243,374 
7 + 1/2 64,000 55,152 64,001 64,006 
8 + 1/2 66,000 56,931 66,000 65,998 
9 + 1/2 68,000 58,603 68,000 67,998 

10 + 1/2 70,000 60,330 70,000 69,998 

STORATIVITY 
1 .0050 .0057 .004656 Unstable 
2 .0055 .0063 .006037 Unstable 
3 .0060 .0069 .005801 Unstable 
4 .0065 .0075 .006491 Unstable 
5 .0070 .0081 .007015 Unstable 
6 .0075 .0086 .007501 Unstable 
7 .0080 .0080 .007998 Unstable 
8 .0085 .0073 .008501 Unstable 
9 .0090 .0078 .009000 Unstable 

10 .0095 .0080 .009500 Unstable 

Notice that for the middle time calculations shown in Table 2, 
the largest error in transmissivity occurs at node 1 and decreases 
considerably at higher numbered nodes. This should mean that the 
model is least sensitivity to T at node 1. A look at the sensitiv­
ity coefficients or the estimated standard should verify this. The 
solid curves in Figure 31 represent the estimated standard errors 
(oP/P) for the transmissivity and storativity at each node for 0 = 
.25 x 10-5 (values for other o's may be determined by the 
appropriate factor). The largest errors in both T and S occur at 
the lower numbered nodes. This is a little surprising because the 
sensitivity coefficients for S do not have their lowest value at 
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node 1 but at node 10 [McElwee (13)] near the constant head 
boundary. Also, notice that both solid curves in Figure 31 have 
practically the same op/p for node 1. One 'might suspect that Tl and 
51 are not both independent parameters in this model. The element 
in the parameter correlation matrix (6.11) corresponding to Tl and 
51 is .9917, which verifies the suspicion. Thus, the larger error 
in 5 at the lower node numbers is due to a dependence between T and 
5 and not specifically due to low sensitivity values there. 

The dashed curves in Figure 31 result when ~Tl is dropped from 
the matrix equations (6.5). This means that Tl is assumed known and 
solve for 51. Notice that the estimated standard error in 51 
drops by almost an order of magnitude. The condition number of the 
least squares matrix is also improved by a factor of about 6 
when ~Tl is dropped from consideration. Eq. (2.27) suggests that 
maybe toe model is only sensitive to the ratio of Sl/T1. 
Taking values of Tl and Sl from Table 2, we can see that 
.005/52000 ~ .004656/48415. Thus, a basic nonuniqueness exists near 
node 1. The sensitivity to transmissivity is low near node 1, which 
causes substantial error in the calculation of T1 • Since SI is 
dependent upon T1 , there is substantial error in Sl also even though 
the sensitivity coefficients for Sl are not particularly low near 
node 1. 

8.2.5 Two-dimensional steady-state models 

The simple two-dimensional model of section 4.4 is considered 
here with various boundary conditions. There are three different 
cases. Case 1 is defined in section 4.4 and the sensitivity coeffi­
cients are shown in Figures 15 and 16. The head is specified on 
three sides and the sensitivity coefficients go to zero on these 
boundaries. The flux is specified at x = o. Cases 2 and 3 are 
defined in section 5.3. 

Case 2 changes the boundary condition at y = 0 and y = 2,000 to 
a barrier boundary. These sensitivity coefficients are shown in 
Figures 21 and 22. Notice that the coefficients do not go to zero 
at y = 0 and y = 2,000. Since they are nonzero over a larger area 
than case 1, one might expect the estimated standard error to be 
smaller for case 2 than case 1. It cannot be seen from Figures 15, 
16, 21, and 22 because the plotting routine normalizes the maximum 
values; however, the sensitivity coefficients for case 2 are 3 to 4 
times larger than those for case 1. This is another reason to 
expect the estimated standard error for case 2 to be lower. 

Case 3 is defined with the same boundary conditions as case 2 
except the head is specified at x = 0 instead of the flux. These 
sensitivity coefficients are shown in Figures 23 and 24. They have 
about the same maximum value as case 1. The sensitivity for zone 1 
is negative, while the sensitivity for zone 2 is positive. However, 
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Fig. 31. Estimated standard 
error for one-dimensional tran­
sient model. 

case 3 

case 1 

case 2 

10-6 L-____ -:--+---::;-:-:-.;:----
Zone 1 Zone 2 

Fig. 32. Estimated standard 
error for the simple two­
dimensional case. 

except for the sign, these two sensitivity coefficients look very 
much alike. This is born out by the parameter correlation matrix 
whose off-diagonal element is .997. Therefore, the parameters Tl 
and T2 are highly correlated, and we would expect to have trouble 
estimating both simultaneously. 

Figure 32 shows the estimated standard error for the transmis­
sivity in the two zones for a = .00025 (about three decimal place 
accuracy) for all three cases discussed above. As we expected, case 
2 has the lowest error and case 3 has the highest. Case 3 has lower 
values of the sensitivity coefficients than case 2, and they appear 
to be nearly dependent. Therefore, logically case 3 should have the 
largest estimated standard error. Case 1 is' somewhat intermediate, 
the sensitivity coefficients are considerably lower than case 2, but 
the parameters have a low correlation. With only two large zones, 
the zero values of the sensitivity coefficients on three boundaries 
for case 1 do not playa large role. However, if we had several 
more zones, clearly any small zone near one of the head specified 
boundaries would have a fairly large estimated standard error due to 
the low sensitivity induced by the boundary condition. 
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The above examples illustrate several important points, but 
they are not very realistic; therefore, we looked at the data and 
model presented by Yakowitz and Duckstein (19) for a part of the 
Tucson basin. The head and transmissivity maps are shown in Figures 
33 and 34. The model area is shown by the smaller square in each 
figure. Yakowitz and Duckstein have concluded that the model is not 
very sensitive to the transmissivity and that the error for least 
squares estimation of parameters should be quite high, even for only 
nine zones. They do not give a detailed discussion of the boundary 
conditions used in their model. However, it seems clear from one 
sentence in their paper and the above results that they were using a 
head-specified boundary condition all the way around the model. 
From the earlier examples in this section and previous discussion in 
this paper, we would expect this to be the most unstable case. 

We have performed a sensitivity analysis for the data and model 
presented by Yakowitz and Duckstein for various boundary conditions 
and number of zones. For a large number of zones (81), we also find 
the estimated standard error to be quite large for most boundary 
conditions. However, noticab1e improvement occurs when some 
boundary fluxes are specified. When the head is specified as a 
boundary condition all the way around the model, the estimated 
standard error is so large that no meaningful estimate can be made 
at all. If the model is zoned into nine zones and some fluxes 
specified on the boundaries, we find the estimated standard error 
for the zones ranges from 9.3% to 100%. Once again, if head is 
specified on all boundaries, no meaningful estimate can be made and 
high correlation is observed between parameters. If 4 transmis-

Water level contours, feet above sea level 

Fig. 33. Head map for the 
Yakowitz and Duckstein (19) 
model. 

Transmissivity contours ttl/day x 104 

Fig. 34. Transmissivity map for 
the Yakowitz and Duckstein (19) 
model. 
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sivity zones are used and some boundary fluxes are given, we find 
the estimated standard error ranges from 4.3% to 16.9%. As before, 
if the head is specified all the way around, the estimated error is 
too large to make any meaningful estimate and the parameters show a 
high correlation. In all this work, the value of a was estimated 
from the data and was in the range of .8 to .9 feet. 

This example from a real-world situation shows clearly the 
advantages of using some of the techniques discussed in this paper 
to make the parameter-estimation procedure better conditioned. In 
paricular, boundary conditions are very important. The sensitivity 
should be made as large as possible over a large extent of the 
model. One must insure that the sensitivity coefficients and the 
parameters are not dependent. Zonation by summing nodes can be used 
to increase sensitivity. 

9. SUMMARY AND CONCLUSIONS 

This paper has given the definition of a sensitivity coeffi­
cient and shown how they may be used to perform a sensitivity analy­
sis. A first-order sensitivity formalism has been presented to 
calculate the perturbed head due to a change in an aquifer para­
meter. We have discussed various methods of determining sensitivity 
coefficients and examined the effect of boundary conditions. 
Several examples of sensitivity coefficients have been given in some 
detail for a variety of models and boundary conditions. We have 
shown how the sensitivity coefficients enter the least squares para­
meter-estimation formalism and how confidence intervals and esti­
mated standard errors can be found. We have seen that sensitivity 
coefficients are an essential part of parameter-estimation and that 
an intelligent sensitivity analysis can lead to a more stable and 
better conditioned inverse process. 

Some general guidelines can be given for increasing the model 
sensitivity, leading to more accurate parameter estimation. For 
maximum sensitivity, the measurements of head should occur at loca­
tions and times where the sensitivity coefficients are near their 
maximum values. Sensitivity coefficients are greatly influenced by 
boundary conditions; therefore, the boundary conditions giving the 
largest sensitivity, consistent with the data and known hydro­
geology, should be chosen. We have seen the importance of being 
able to specify some fluxes for the model. Emsellem and de Marsily 
(6) have commented on the importance of knowing some fluxes or 
transmissivities in the groundwater inverse problem. This requires 
fairly accurate knowledge of the slope of the hydraulic head and the 
transmissivity at some locations. Judging from the improved sta­
bility and accuracy that can be obtained, our field methods should 
be geared toward this goal. The sensitivity coefficients and the 
parameters should be independent. This can be examined by looking 
at plots of the sensitivity coefficients and by calculating the 
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sensitivity and parameter correlation matrices. Zoning by summing 
nodal sensitivities can lead to improved model sensitivity; however, 
that must be balanced with a loss of transmissivity resolution. 
Using these guidelines, the goal is to select a model with maximum 
(or at least a certain minimum) sensitivity to the aquifer para­
meters, based on a knowledge of sensitivity coefficients and their 
properties. 
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11. LIST OF SYMBOLS 

A Area of integration 
B Model boundary 
C Constant 
E Squared error function 
F Arbitrary function or statistical F distribution 
H Specified hydraulic head 
K' Permeability of semiconfining bed 
L Leakage factor for leaky aquifer 
N Total number of grid spaces for l-D model 
P Parameter vector 
~ Parameter covariance matrix 
Q Water flux for a model 
Q' Water flux per unit model area 
Q" Water flux per unit length of boundary 
R Maximum x value for l-D model, region of interest for a 

model, or right hand side of the least squares equation 
S Storage coefficient 
T Transmissivity 
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Sensitivity coefficient for transmissivity 
Sensitivity coefficient for storage coefficient 
Sensitivity matrix 
Normalized sensitivity matrix 
Weight matrix for prior estimates of parameters 
Weight matrix for head observations 
Arbitrary function 
Hydraulic head 
Perturbed hydraulic head 
Experimentally measured head 
Perpendicular direction in cross-sectional models 
Statistical R. distribution 
Thickness of semiconfining bed 
Number of parameters 
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Radial distance from pumped well, or an F distribution in 
Eq. (7.2a). 

Parameter correlation matrix 
Drawdown 
Time 
Statistical t distribution 
Dummy variables of integration 
Cartesian coordinate value or vector 
Related to confidence interval of statistical 

distributions 
Model boundary 
Change in some quantity 
Change in head 
Change in leakage factor 
Vector of parameter changes 
Change in storage coefficient 
Change in transmissivity 
Grid spacing 
Kronecker delta 
Confidence interval for parameter Pk 
Delta function 
Heaviside function 
Correct value of Pk or parameter vector 
Variance of error in head 

Normal derivative 

Node indices, used as subscripts 
Zone index, used as a subscript 
Time index, used as a superscript 
Used to denote normalized or transformed quantities 
Underline indicates a vector quantity 
Underline indicates a matrix 
Superscript indicating transpose of a vector or matrix 
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ABSTRACT 

The derivation of the flow equations which describe the behavior 
of a black oil reservoir is outlined. The functional relations 
among the variables which result in the nonlinearity of the equations 
are explained in the context of reservoir engineering fundamentals. 
The state of the art of simulating black oil reservoirs and enhanced 
oil recovery processes is discussed. The effect of discretization 
required by the commonly used numerical methods on the physics of 
the processes is examined, and the shortcomings are identified. 
Finally, some of the outstanding problems that have not been 
adequately solved but need to be solved for belivable answers are 
addressed. 

1. INTRODUCTION 

The objective of reservoir engineering is to economically 
optimize the recovery of hydrocarbon. To do this the reservoir 
engineer should be able to predict the performance of the reservoir 
under various exploitation schemes. This requires an adequate 
physical description of the reservoir, and a method to calculate 
the hydrocarbon and pressure distributions as a function of time. 
The physical description is obtained from seismic and geologic data, 
from core and log analysis, and from single and multiple well testing. 
Hydrocarbon and pressure distributions are calculated by mathematical 
models or simulators which are the modern tools of the reservoir 
engineer. 
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All reservoirs are three dimensional. Therefore, from a 
theoretical point of view the engineer should always use a three­
dimensional simulator to study their behavior. In some cases, the 
variation of properties in one dimension such as the vertical may 
not be significant, or one is interested in a detailed behavior of 
the reservoir in the vertical plane. In such cases a two-dimensional 
model is used. If the reservoir is shaped like a sandbar, a one­
dimensional model may be adequate. Some fundamental reservoir 
engineering calculations are sometimes made using average properties 
or a zero-dimensional (tank) model. One- or two- or three-dimensional 
models may be viewed as composed of many interacting tank units (21). 
All these models are used in reservoir engineering. Generally 
speaking, as the dimensionality increases, so does the cost of the 
study. A graphical representation of the various models is shown 
in Figure 1. 

The availability of larger and faster computers has given 
impetus to the extensive use of simulators especially in a three­
dimensional mode for managing hydrocarbon reservoirs. Literally, 
hundreds of millions of dollars of expenditures based on the 
simulators' results, are being made. Because of this, one needs to 
fully understand the strength and weakness of these models. 

By and large, finite difference has been the principle method 
to numerically solve the equations of interest. This numerical 
method 'has been adequate for simulators of the black oil type. It 
has not been as successful with enhanced oil recovery (EOR) models 
where moving fronts exist, though it is still widely used in these 
models. In this paper, the disadvantage of the finite difference 
method is explained in the context of EOR simulators. 

Most of the effort in the simulation technology has been 
concerned with the efficient discretization of the appropriate 
equations, and the solution of the resulting matrices. Hardly any 
attention is being paid to the effect of discretization on the 
physics. Hydrocarbon reservoirs are continuous in space and time. 
Their mathematical models break up this continuity into discrete 
parts. This paper discusses how this procedure could result in 
erroneous reservoir behavior. 

Finally, the paper identifies some fo the outstanding problems 
that need to be addressed and solved, to give the EOR simulators 
an acceptable degree of accurate representation of the physical 
system. 
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Figure 2. Reservoir cross-section. 
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2. THE RESERVOIR, ITS FLUIDS, AND PROPERTIES 

Figure 2 is a cross section of a typical oil reservoir at 
discovery. Gravity and geological time cause the water to segregate 
to the bottom, the gas to the top, and the oil to be in between. 
When the wells are put on production, the oil-gas and the water-oil 
interfaces will move in an irregular manner depending on the location 
of the wells. Each well may undergo a different production history. 
In Figure 3 a typical history of a well is illustrated. The well 
is drilled and perforated in the oil leg which always contains water 
that mayor may not be mobile. The oil contains gas in solution. 
Due to the pressure decrease caused by oil production, a free gas 
phase may evolve out of solution. Part of the gas could segregate 
to the top of formation while part of it remains in the oil leg. 
Thus, the oil leg could have simultaneously mobile oil, gas and water. 
Due to the pressure gradient a water cone is formed as the well is 
produced, causing water production. When the water production 
becomes excesive, the bottom perforations are plugged. As production 
continues a gas cusp or a cone may be formed which could cause 
excessive gas production. In many cases a high gas production causes 
an unnecessary loss of the natural energy of the reservoir. When 
this happens the well is recompleted or shut-in. The behavior of 
the well is just an example of what a mathematical model should be 
capable of simulating. 

The system of partial differential equations which describes 
flow of immiscible fluids (gas, oil, and water), through porous media 
contains parameters which are functions of the properties of the 
fluids and the porous system. In Figure 4 the pressure-volume 
behavior of oil and gas in a black oil reservoir is given. A black 
oil reservoir is that reservoir where the properties of the oil is 
a function of pressure only, and where the composition of the oil 
is assumed constant throughout the life of the reservoir. Most oil 
reservoirs fall in this category. 

In the figure the discovery pressure is shown to be 4000 psi. 
At this pressure no free gas is present. All the gas is in solution. 
The oil is undersaturated. As the pressure decreases the oil expands 
until the bubblepoint or saturation pressure is reached. This is 
the pressure below which gas comes out of solution and forms a free 
gas phase. Below this pressure, the oil shrinks as the pressure 
decreases. However, the total volume of oil and gas increases. 
Finally, at atmospheric conditions, the maximum shrinkage of oil and 
the maximum volume of oil and gas occur. The ratio of one volume 
of oil at reservoir condition to its resulting volume under 
atmospheric condition is known as the formation volume factor, B. 
This parameter is a function of pressure; it increases until the 
bubblepoint pressure is reached, and then decreases. Thus, it has 
a slope discontinuity at the bubblepoint pressure which could cause 



WATER 

1963 1969 

Figure 3. History of a well. 

14.7 
PSI 

1 

GAS 

OIL 

2000 
PS.I 

GAS 

OIL 

3000 
PSI 

GAS 

OIL 

GAS 

WATER 

1975 

BPT 
3127 
PSI 

OIL 

Figure 4. Pressure-volume behavior of oil and gas. 

numerical difficulties. 

827 

GAS 

4000 
PSI 

OIL 

0, W 
&G 

WATER 

1979 

The capacity of the porous medium to store fluids is indicated 
by the porosity, ¢, defined in Figure 5. Porosity is the ratio of 
the volume of the void space to the bulk volume. It is a function 
of pressure and decreases as the pressure of the reservoir decreases. 
The ability of the porous medium to transmit fluids is given by the 
permeability, k. When the porous system contains one fluid only, 
its permeability termed specific permeability is generally not 
considered a function of the fluid. There is however some evidence 
that the permeability, like the porosity, is affected by the pressure. 
Most simulators do not account for this effect. 
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Figure 5. Definitions of porosity, permeability and saturation 

When more than one fluid occupies the porous system we indicate 
the relative volume of each fluid by the saturation, S. This is the 
ratio of the volume of the fluid to the pore volume. The sum of 
saturations is equal to one. If oil and water occupy the void space 
as in Figure 6, for example, the ,permeability to either fluid is not 
constant. It is a function of the saturation. It is indicated by 
k , the relative permeability, which is the ratio of the permeability 
at any saturation to the permeability at 100% saturation. Figure 6 
shows typical oil-water relative permeability curves. When gas is 
present the three-phase relative permeability relations are more 
complex. The oil relative permeability, k ,is a function of the 
gas and water saturations. This complicat~~ the partial differential 
equations that will be discussed later. 

Three forces are responsible for the 
the reservoirs. These forces are shown in 
forces generally termed the Darcy forces. 
are due to the difference in density. The 

distribution of fluids in 
Figure 7. The viscous 
The gravitational forces 
capillary forces are due 
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to the affinity of the porous system to one fluid more than to the 
other. Thus we speak of a water wet or an oil wet reservoir. A 
water wet rock, for example, imbibes water, resulting in a curved 
interface between the water and oil. Across this interface a 
pressure drip exists which is indicated by the capillary pressure. 
It is a function of saturation as shown in the figure. Furthermore, 
its value varies depending on whether the water saturation is 
increasing or decreasing. This is another example of the many 
relations that a simulator should contain. 

3. COMPONENTS OF A RESERVOIR SIMULATOR 

Figure 8 gives the template of a reservoir simulator. The 
physics and chemistry of the process are described by mathematical 
equations. The solution of these equations is the heart of a 
simulator. The solution should accurately reproduce the physics and 
chemistry of the process which the equations describe. The simulator 
should be able to account for the operational features or constraints 
practised during the exploitation of the reservoir. This ability 
is what makes a simulator a useful tool for managing the reservoir. 

COMPUTER 
TECHNOLOGY 

PHYSICS AND CHEMISTRY 

MATHEMATICS 

Figure 8. Reservoir simulator template. 
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The third component is the computer technology. The state of 
the computer technology strongly impacts how rigorous a solution 
we can afford, and how much operational constraints we can include. 
The computer technology will not be discussed in this paper. 

These three components when interfaced in a computer program 
result in what we call a reservoir simulator. 

4. CLASSES OF SIMULATORS 

There are two classes of simulators: a) Those that model a 
process where no distinct front exists, or if it exists, lack of 
accurate determination of the concentration profile at the leading 
edge of the front does not significantly affect recovery, and b) 
Those that model processes where a moving front exists. Accurate 
determination of the concentration profile is essential to correctly 
model the physical process. 

An example of the first class is the black oil simulator. In 
case of water injection into an oil reservoir a water front exists. 
Failure to accurately describe the water saturation at the oil-water 
interface may result in water breaking through into a well sooner or 
later than what actually happens. However this does not significantly 
affect the hydrocarbon recovery calculated by the model. 

An example of the second class is the Enhanced Oil Recovery 
(EOR) simulators such as the thermal simulators to model the 
movement of combustion fronts in the reservoir. Failure to correctly 
solve for the temperature profile resulting from the combustion 
front significantly affect the answers. This is so because the 
kinetics of combustion are an exponential function of temperature. 

5. RESERVOIR FLOW EQUATIONS FOR A BLACK OIL SYSTEM 

In reservoir engineering we deal with two basic equations : 
a) the material balance or continuity equation, and b) the equation 
of motion (Darcy's law). 

The continuity equations in differential form for the oil, gas, 
and water are: 

oil 

water 

d 
dt 
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dt B 

w 
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gas (5.3) 

av a a 
-q - ~ - -- (R v) - (R v) 

g ax ax so 0 ax sw w 

where t is the time, ~ is the porosity, S is the saturation, B is 
the formation volume factor, R is the gas in solution in the oil 
and water, v is the velocity, q is the production rate, and the 
subscripts 0, g, and w refer to oil, gas, and water. The equations 
of motion are: 
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where p is the pressure, D is the vertical distance, gpaD/ax is the 
gravity gradient, p is the capillary pressure between gas and 
oil, p is the ca~¥~lary pressure between oil and water, and p 
is theC~~nsity. 

Combining the continuity equations with the equation of motion 
results in the partial differential equations for the oil, gas, and 
water which describe the flow through the porous medium. These are: 

a ~S 
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6. WELL CONSTRAINTS EQUATIONS 

In addition to these equations we need equations which describe 
the constraints imposed on the wells due to the plan of exploiting 
the reservoir. Examples of such constraints are the specification 
of the maximum water or gas production rate from the well or the 
field, the maximum and minimum production oil rate, and maximum 
produced water-oil ratio. These constraints are a function of the 
following bottom hole pressure of the well, p. Different 
constraints are expressed by different equati~ns, with p being an 
unknown. w 

We now have three partial differential equations for the 
reservoir and a constraint equation for each well for the five 
unknowns p, S , S ,S and p. This set is completed by the 

o g w w 
identity: 

S + S + S 
o g w 

1, (6.1) 

together with the appropriate initial and boundary conditions. For 
the boundary conditions it is customary to represent the flow across 
wells' boundaries by sources and sinks, and by no flow boundary 
condition on the entire reservoir. The initial condition is 
represented by a static equilibrium in which velocities of all phases 
are zero. This reflects the balance of capillary and gravity forces. 

Let us examine the first three equations. We note that the 
coefficients such as A are functions of the unknowns p and S, while 
Band ¢ are functions of p. Thus, the equations are nonlinear. In 
addition, the gas equation contains the oil and water saturations, 
and the k in A is a function of Sand S as was indicated 
previousl§~ The~efore we are dealing with § set of nonlinear 
coupled partial differential equations. The heart of the reservoir 
simulator is the efficient and accurate solution of these equations 
together with the well constraints. These equations are for black 
oil resrvoirs (i.e., the oil is nonvolatile). Equations for other 
systems will be discussed later. 
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7. DEVELOPMENT OF A BLACK OIL RESERVOIR SIMULATOR 

Figure 9 summarizes the development of a reservoir simulator. 
We will discuss briefly the steps shown in the figure: 

7.1 Discretization 

Finite difference is the most commonly used. The functions 
discretized generally have the form 3(A 3p/3x)/3x. The practice is 
to use A upstream, upwind, or donor cell. This generally results 
in first order correct formulation. 

7.2. Solution Procedure 

Two nonlinear solution procedures are practiced. These are: 
a) simultaneous or strongly coupled (2,33) and b) sequential or 
weakly coupled (13,29). 

In the simultaneous or strongly coupled procedure all flow and 
well equations are solved simultaneously for the unknowns for the 
entire grid system. The Newton-Raphson method is used to linearize. 
The advantage of this procedure is that it gives stability. The 
disadvantage is that it results in a large matrix with each element 
being a 3x3 submatrix. 

In the sequential solution, the three continuity equations are 
manipulated to give the following pressure equation: 

(7.1) 

where qT is the total production rate, CT is the total compressibility 
of the system. 

Two methods are practiced in the sequential procedure: the 
implicit pressure, explicit saturation, IMPES (13), and the total 
velocity (29). In both methods the pressure equation is solved 
first starting with values for the coefficients referred to the 
beginning of the time step. One mayor may not update the pressure 
dependent coefficients. In the IMPES method, once the pressures are 
obtained, the saturations are solved for explicitly from the 
discretized forms of the previously indicated oil, gas, and water 
partial differential equations. 

In the total velocity method it is assumed that flux of oil, 
gas, and water among the cells remain constant during a time step. 
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Figure 9. What is a reservoir simulator. 

The saturation equation has the following form: 

A 

f(A) 

o 
f(S , S ) , 

w g 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

where p is the capillary pressure, and UT is the total flux. The 
saturatton equations are coupled and solved simultaneously. 

7.3. Solution of Linear Equations 

We must solve 5-diagonal (two-dimensional), or 7-diagonal 
(three-dimensional) matrices. Direct elimination (27, 33), and 
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iterative methods (9, 28, 34, 38) are used. Both methods have 
advantages and disadvantages. Reliability is the main advantage of 
the direct methods. Their main disadvantage is the large storage 
requirement. While direct methods may be practical for two-dimen­
sional problems, they cannot be used efficiently in most three­
dimensional problems, they cannot be used efficiently in most three­
dimensional cases because the band widths are too large, resulting 
in excessive computer storage and time. The methods are very 
competitive for systems with small band widths, and normally are not 
used for problems with band widths over a hundred. 

The main advantage of the iterative methods is that they require 
relatively little storage and thus can be applied to very large 
systems. Their main disadvantage is their sensitivity to the 
iteration parameters. If the proper parameters are not selected, 
slow convergence may result. Examples of the iterative methods used 
by the industry are: 

7.3.1. Strongly Implicit Procedure 

Strongly Implicit Procedure, SIP (30, 37) is a partial 
factorization method that requires iterative parameters to be selected 
by the user. 

7.3.2. Successive Over Relaxation Methods 

Successive Over Relaxation Method, SOR (34, 38) is user selected 
one iterative parameter method. It requires diagonal dominance in 
addition to the proper iterative parameter for a fast rate of 
convergence. 

7.3.3. SOR + Additive Corrections 

SOR + Additive Corrections (35) method is based on the idea that 
by adding a correction to the computed values at an iteration level, 
the convergence is accelerated. It is an attempt to eliminate the 
dominant eigen value of the matrix. 

7.3.4. Conjugate Gradient Method 

Conjugate Gradient method (20, 36) is a self-parameterizing 
iterative method which works best with symmetric matrices, and non­
symmetric ones with the appropriate pre-conditioner. 

7.4. Iterative and Non-Iterative Methods (2) 

Once pressure and saturation values are obtained they may be 
accepted and the calculations proceed to the next time step. This 
is called a non-iterative method. On the other hand, the pressure 
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and saturation dependent coefficient may be updated, and the cycle 
repeated until a convergence criterion is achieved. This is known 
as an iterative method. These two methods are practiced in both the 
simultaneous and sequential procedures. 

Compared to the iterative method, the non-iterative method 
requires less computer time. It is adequate when the gradients are 
small, otherwise unreasonably small time steps have to be used for 
a satisfactory solution. 

The state of the mathematical formulation, and the nonlinear 
and linear solution procedures for black oil simulators is good. 
The availability of vector computers has swung the tide toward the 
strongly coupled nonlinear solution procedure which has proven to 
be more stable and more effective in simulating difficult reservoir 
conditions. 

B. MORE COMPLICATED SIMULATORS, EOR MODELS 

So far we have concentrated on simulators that model non­
volatile oil reservoirs. These are the least complicated models in 
teh suite of reservoir simulators. Examples of more complicated 
ones are: 

B.l. Compositional Simulators 

These models (15, 17) simulate volatile oil reservoirs, miscible 
displacements, and any process that requires the hydrocarbon to 
be divided into N number of components - in place of just oil and 
gas. 

For these models a species continuity equation for each of the 
N hydrocarbon components can be written as 

The water balance is 

[ 
P kk 

V. (0 ro x. + 
llo 1 

i 1 ••••••• N (B .1) 

(B.2) 
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where p is the density, x. is the liquid mole fraction of component 
i, and y. is the gas mole 1 fraction of component i. In addition, a 
thermody~amic constraint, usually in terms of fugacities must be 
satisfied. The constraint is: 

f. 
10 

f. 
19 

(8.3) 

An equation of state such as the Peng-Robinson (23) can be used 
to express fugacity in less complex functions (15). 

8.2. Thermal Simulator (5, 7, 16) 

Heat injection can take the form of steam, or in-situ combustion. 
In both processes, the temperature is not constant and an energy 
balance equation is required. 

The energy balance equation has the following form: 

a 
a LP.S.U. 

ill 1 
(8.4) 

where U is the internal energy, H is the entalphy, qL is the heat 
loss to the formation, qH is the heat sink or source through a well, 
T is the temperature, TC is the heat conduction transmiscibility. 

In addition, chemical reactions such as vaporization, conden­
sation, and cracking need to be accounted for. 

8.3. Simulator for Chemical Injections (25) 

An additional equation which describes the concentration 
distribution of the chemical, Ci ' such as a surfactant, is needed. 
It takes the following form: 

(8.5) 

where D. is the diffusion coefficient, and v. is the velocity in 
phase i~ The subscript r indicates the rock~ 
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In addition to the above equations, the effect of surfactant 
concentration, for example on the fluid flow behavior and the 
interaction between the chemicals and the rock and among the chemicals 
themselves, must be accounted for. 

8.4. Naturally Fractured Reservoir Simulators 

These simulators may belong to the black oil or to the EOR 
categories. Their distinguishing characteristic is the presence of 
two types of porous media, the fractures and the matrix. The 
fractures are normally a fraction of a centimeter in width and are 
highly conductive. The distribution of the fractures is very 
difficult to obtain. Even if it is known it has been intractable 
to adequately simulate such a physical system. 

9. THE PHYSICAL MODEL VERSUS THE MATHEMATICAL MODEL 

9.1. The Black-Oil Type Simulators 

The principle difference between the two models is continuity 
versus discretization. The reservoir behavior is based on continuity 
in space and time while the mathematical model behavior is based 
on discretization in both space and time. The effect of discretiza­
tion on the physics will be considered in two parts: a) The effect 
on the flow behavior away from the wells, and b) The effect on the 
flow behavior in the immediate vicinity of the wells. 

Finite difference method of solution basically deals with 
averages. In reservoir studies the grid blocks are relatively large, 
a couple of hundred feet in the x and y directions and several feet 
in the z direction. To every grid block average physical properties 
such as permeability, porosity, etc., are assigned. These are 
obtained from contour maps. We thus end up with somewhat disconti­
nuous properties' distribution in place of smoothly varying ones. 
Needless to say, this impacts the character of flow. The extent of 
the impact has not been investigated. In some cases we know that 
the effect strongly alters the physics because the local gradients 
are lost and replaced by average gradients. For example, in many 
naturally fractured reservoirs water is injected, and the oil is 
produced from the matrix blocks by imbibition. The water is imbibed 
into the matrix by capillary forces and the oil flows counter current 
through the fractures into the wells. This mechanism is mainly 
controlled by the capillary and saturation gradients at the fracture­
matrix interfaces. As a result, imbibition for all practical 
purpose, is lost. The physics of flow is thus not truly simulated. 

We know that when gas contacts oil under pressure part of the 
gas dissolves in the oil. In the reservoir, when gas is injected 
it partially dissolves in the oil that it contacts, pressure 
permitting. In simulating this process the gas is dissolved in all 
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the oil in a grid block regardless whether all the oil has been 
contacted or not. This is done, because every grid block has to be 
homogeneous in properties. The other extreme is not to let any gas 
go into solution. The reservoir behavior falls in between. 

The effect of discretization in time is best understood by 
considering Figure 6. One may view Figure 6 as giving the oil and 
water fractions in an oil-water flowing stream. The flow in the 
reservoir continuously tracks the curves. In the model this does 
not occur. Relative permeabilities at the (n+l)-time level are 
calculated from the n-time level by: 

(9.1) 

Since relative permeability is not a straight line function 
of+1, if ~S is large, during a time step one may end up with a 
kn used in the model considerably different from the actual value. 
Tliis results in significant change in the character of flow. It is 
unfortunate that customarily one attempts to take as large a time 
step as possible to reduce computer cost. 

The effect of discretization on the well behavior is starting 
to get some attention (22). The actual well behavior is based on 
a continuous physical system which considers the total thickness of 
the productive sand and some average permeability in the drainage 
area of the well normally calculated from well established flow 
tests (19), In reservoir engineering calculation, the flow 
behavior of a well has reached a high degree of sophistication. The 
calculations can account for drainage area geometry, effect of well's 
completion, and restricted entry to flow caused by completing in 
part of the sand. These effects are accounted for by parameters 
obtained from analyzing flow tests data. The analysis is based on 
a physical system which includes the well and its drainage area. 
In the simulator most of the assumptions upon which the calculations 
of the well's flow behavior are based are violated. The grid block 
thickness in place of the total sand thickness, the grid block 
permeability and pressure in place of the average permeability and 
pressure in the drainage area are used in calculating the well 
behavior. However, the parameters to account for the effect of 
well completion, restricted entry, etc., normally obtained from 
analysis of a flow test are used in the simulator. Until recently, 
these were used without any scaling (22). More work is needed on 
this problem. 

Another well problem occurs when the perforations do not extend 
along the entire thickness of the grid block. For example, if the 
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perforations are located at the top, and water is present, it is 
produced when the saturation exceeds its critical value. In 
actuality due to difference in density between oil and water, 
water tends to segregate to the bottom and will not be produced 
until it reaches a saturation value which, in some cases, is 
considerably higher than that of the simulator. This difference in 
behavior is due to the zero dimensionality of the grid block, i.e., 
the stirred tank model. It is normally corrected by using pseudo 
transfer functions. 

9.2. More Complicated Simulators 

Finite difference has been the principle numerical method used 
by the oil industry in the development of the more complicated 
models. It results in all the difficulties described above plus: 
a) less rigor in the mathematical formulation, b) erroneous 
concentration profile, c) grid orientation effects, and d) masking 
of the microscopic behavior at the front. 

9.2.1. Less rigor in the mathematical formulation 

This results from the numerical methods of solution. It is 
not a product of only finite difference. The number of unknowns in 
the EOR models, for example, are at least twice or three times that 
of the black oil model. Therefore, the strongly coupled formulation 
practised in the black oil model becomes impractical, since present 
day simulation runs require several thousand mesh points. Therefore, 
we resort to decoupling of some of the knowns. This results in 
less rigor, and in stability problems. 

9.2.2. Erroneous concentration profile 

Finite difference results represent averages. In the case of 
a moving chemical slug or a heat front, the results represent the 
average concentration or temperature in the grid block where the 
slug or front resides. Generally speaking the width of the front is 
considerably less than the length of the grid block. Thus the 
correct profile is lost. Since the behavior of the procees depends 
on the correct concentration profile, averages give erroneous 
results. Figure 10, for example, the effect of averaging on the 
kinetics of combustion is shown. In the case of surfactant 
flooding, the wrong concentration leads to erroneous phase behavior 
and thus erroneous recovery. 

9.2.3. Grid orientation effect (1, 39) 

The classical five-star finite difference representation leads 
to what is known as the grid orientation effect. Shown in Figure 11 
are two grid systems. The one on the right is the parallel grid 
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Figure 11. Grid orientation effect - Steam injection - Classical 
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while the one on the left is the diagonal grid. Under certain 
conditions these two grid systems produce two different answers. 
The difference can be appreciable especially when the mobilities 
of the fluids differ significantly. Both solutions are incorrect. 
The correct answer falls in between. Recent use of the nine-point 
star discretization procedure has resulted in some reduction of the 
grid orientation effect. 

9.2.4. Masking of microscopic behavior (4, 24) 

Frontal instability or viscous fingering is an important 
physical phenomenon which occurs in fluid displacement when the 
displacing fluid is more mobile than the displaced one. Figure 12 
is a schematic representation of viscous fingering. No satisfactory 
method has been developed to simulate viscous fingering. Two 
schemes (18, 31) available for miscible displacement leave a lot to 
be desired. 

In case of immiscible displacement, i.e., water displacing 
oil (Class I simulators) ,simulator results show that the water 
breakthrough into a well is delayed because they neglect viscous 
fingering. However, ultimate recovery is not strongly affected. 
On the other hand, for miscible displacement (Class II simulators), 
i.e., solvent displacing oil, results that do not account for 
viscous fingering show recovery significantly less than actual. 
Viscous fingering opens up surfaces where chemical exchange occurs. 
This could result in miscibility and thus higher recovery. Simula­
tion of miscible displacement processes, to be viable, must account 
for frontal instability. 

10. THE FUTURE 

We have concentrated our effort on overcoming problems 
associated with large matrices and very large code (about 1/2 million 
FORTRAN statements). By and large the effort has been successful. 

OIL 

c~ 

OIL 

Figure 12. Microscopic behavior - Viscous fingering - Unfavorable 
mobility ratio. 
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Now we need to pay more attention to the effect of discretization 
on the physics, and thus tbe validity of the results. It is possible 
that the finite difference method that served us well in the develop­
ment of black oil models is not adequate for the new generation of 
models. Some of the new methods that are being looked upon or should 
be looked upon by the industry are: 

10.1. Adaptive Grid Refinement (8) 

Here the grid is refined where it is needed according to a set 
of preassigned criteria. The small mesh system may be adequate to 
simulate a moving front. However, small grid blocks lead to small 
time steps. This may render the simulation uneconomical when dealing 
with field-scale cases. Many difficult problems need to be solved 
before the viability of this scheme is established. 

10.2. High Order Numerical Techniques (3, 32) 

Presently used finite difference methods tend to smear the 
fronts due to numerical dispersion or diffusion. Higher order 
methods are being investigated. Oscillation seems to be an outcome 
of these methods. 

10.3. Non-Finite Difference Methods 

Examples of such methods are: methods of characteristics (12, 
14), finite element, Galerkin, and Petrov-Galerkin (10, 11, 6 , 26, 
40). The methods of characteristics - moving points have shown 
great promise in some preliminary studies but still have several 
technical problems when applied to three-dimensional, field-scale 
simulation. Finite element methods and their variations have been 
under investigation for the last ten years. The methods have shown 
success in control of numerical dispersion and grid orientation 
effects. These methods are in general, computationally more 
expensive than finite difference.methods. Only recently a relatively 
small two-dimensional simulator using Petrov-Galerkin was reported 
(6) . 

10.4. Combining Analytical with Numerical Methods 

The idea here is to solve for the concentration of the slug or 
front analytically using approximate boundary and initial conditions 
obtained from the numerical solution. For example, in case of a 
combustion process one can analytically solve for the temperature 
profile in the cell where the combustion is occuring. The analytical 
results are used to arrive at a better value for the effective 
temperature for the cell than the average temperature calculated by 
the finite difference method. 
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ABSTRACT 

The simultaneous flow of immiscible fluids in porous media 
occurs in a wide variety of applications. The equations governing 
these flows are inherently nonlinear, and the geometries and material 
properties characterizing many problems in petroleum and groundwater 
engineering can be quite irregular. As a result, numerical simula­
tion offers the only viable approach to the mathematical modeling 
of multiphase flows. This chapter provides an overview of the types 
of models that are used in this field and highlights some of the 
numerical techniques that have appeared recently. The exposition 
includes discusssions of multiphase, multispecies flows in which 
chemical transport and interphase mass transfers play important roles. 
This chapter also examines some of the outstanding physical and 
mathematical problems in multiphase flow simulation. The scope of 
the chapter is limited to isothermal flows in natural porous media; 
however, many of the special techniques and difficulties discussed 
also arise in artificial porous media and multiphase flows with 
thermal effects. 

1. INTRODUCTION 

1.1. Importance of Multiphase Flow in Porous Media 

Multiphase flows in porous media occur in a variety of settings 
in applied science. The earliest applications involving the simul­
taneous flow of two fluids through a porous solid appear in the soil 
science literature, where the flow of water in soils partly occupied 
by air has fundamental importance (128). This unsaturated flow in 
some ways represents the simplest of multiphase flows. Yet, as we 
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shall see, it exemplifies a fact underlying the continued growth in 
research in this area: multiphase flows in porous media are inherently 
nonlinear. Consequently, numerical simulation often furnishes the 
only effective strategy for understanding their behavior quantita­
tively. 

Although the earliest studies of multiphase flows in porous 
media concern unsaturated flows, the most concentrated research in 
this field over the past four decades has focused on flows in 
underground petroleum reservoirs. Natural oil deposits almost always 
contain connate water and occasionally contain free natural gas as 
well. The simultaneous flow of oil, gas, and water in porous media 
therefore affects practically every aspect of the reservoir engineer's 
job of optimizing the recovery of hydrocarbons. Here, again, the 
physics of multiphase fluid flows give rise to nonlinear governing 
equations. The difficulty imposed by the nonlinearities along with 
the irregular geometries and transient behavior associated with 
typical oil reservoirs make numerical simulation an essential tool 
in petroleum engineering. The advent of various enhanced oil recovery 
technologies has added to this field further levels of complexity 
and hence an even greater degree of reliance on numerical methods. 

Most recently, multiphase flows have generated serious interest 
among hydrologists concerned with groundwater quality. There is 
growing awareness that many contaminants threatening our groundwater 
resources enter water-bearing rock formations as separate, nonaqueous 
phases. These oily liquids may come from underground or near-surface 
storage facilities, landfills at which chemical wastes are dumped, 
industrial sites such as oil refineries or wood-treatment plants, or 
illegal waste disposal. Regardless of the source of the contaminants, 
our ability to understand and predict their flows underground is 
crucial to the design of sound remedial measures. This is a fairly 
new frontier in multiphase porous-media flows, and again the inherent 
complexity of the physics leads to governing equations for which the 
only practical way to produce solutions may be numerical simulation. 

1.2. Scope of the Article 

The purpose of this article is to review some of the more 
salient applications of numerical simulation in multiphase porous­
media flows. In light of the history and breadth of these applica­
tions, a review of this kind must choose between the impossibly 
ambitious goal of thoroughness and the risks of narrowness that 
accompany selective coverage. This article steers toward selective 
coverage. The aim here is to survey several multiphase flows that 
have attracted substantial scientific interest and to discuss a few 
aspects of their numerical simulation that have appeared in the recen 
technical literature. I confess at the outset that some important 
multiphase flows receive no attention here at all, and, even for the 
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flows discussed, many potentially far-reaching contributions to 
numerical simulation get no mention. Perhaps the references given 
throughout the article can compensate in part for these shortcomings. 

In particular, we shall restrict our attention here to under­
ground flows in natural porous media. This restriction excludes 
many applications in chemical engineering, one notable example 
being flows in packed beds of catalysts. Also, the article considers 
only isothermal flows. Therefore we do not discuss steam-water flows 
in geothermal reservoirs or such thermal methods of enhanced oil 
recovery as steam injection or fireflooding. Several numerical 
methods also receive scant or no mention. Among these are integrated 
finite differences, subdomain finite elements, spectral methods, 
and boundary-element techniques. Some of these approaches undoubt­
edly hold promise for future applications in multiphase flows in 
porous media. For the present, however, we concentrate on develop­
ments based on the trinity of more standard discrete approximations: 
finite differences, Galerkin finite elements, and collocation. 

2. BACKGROUND 

2.1. Definitions 

From a quantitative point of view, one of the most fruitful 
ways of examining multiphase flows in porous media is through the 
framework of continuum mixture theory. In contrast to a single 
continuum, a mixture is a set of overlapping continua called 
constituents. Any point in a mixture can in principle be the locus 
of material from each constituent, and each constituent possesses 
its own kinematic and kinetic variables such as density, velocity, 
stress and so forth. How one decomposes a physical mixture into 
constituents depends largely on one's theoretical aims, but in 
analyzing porous media we commonly identify the solid matrix as one 
constituent and each of the fluids occupying its interstices as 
another. 

In discussions of porous-media physics it is important to 
distinguish between multiphase mixtures and multispecies mixtures. 
A mixture consists of several phases if, on a microscopic length 
scale comparable, say, to typical pore apertures, one observes sharp 
interfaces in material properties. In this sense all porous-media 
flows involve multiphase mixtures, owing to the distinct boundary 
between the solid matrix and the interstitial fluids. At this 
boundary, density, for example, changes abruptly from its value in 
the solid to that in the fluid. More complicated multiphase mixtures 
occur, common examples being the simultaneous flows of air and water, 
oil and water, or oil and gas through porous rock. Here, in addition 
to rock-fluid interfaces, we observe interfaces between the various 
immiscible fluids at the microscopic scale. While the detailed 



854 

structures of these interfaces and the volumes they bound are 
inaccessible to macroscopic observation, their geometry influences 
the mechanics of the mixture. This, at least intuitively, is why 
volume fractions play an important role in multiphase mixture 
theory. The volume fraction ¢ of phase u is a dimensionless scalar 
function of position and time guch that Os¢usl, and, for any spatial 
regionR in the mixture, fR¢udx gives the fraction of the volume 
of R occupied by phase u. The sum of the fluid volume fractions in 
a saturated solid matrix is the porosity u. 

On the other hand, there are mixtures in which no microscopic 
interfaces appear. Saltwater is an example. Here the constituents 
are ionic or chemical species, and spatial segregation of these 
constituents is not observable except, perhaps, at intermolecular 
length scales. Air is another multispecies mixture, consisting of 
N2, 02' C02' and some trace gases. Multispecies mixtures differ 
from multiphase mixtures in that volume fractions do not appear in 
the kinematics of the former. 

It is possible to have multiphase, multispecies mixtures. 
These compositional flows occur in porous-media physics when there 
are several fluid phases, each of which comprises several chemical 
species. Such mixtures arise in many flows of practical interest, 
two important examples being multiple-contact miscible displacement 
in oil reservoirs and the contamination of groundwater by nonaqueous 
liquids. In these cases the transfer of chemical species between 
phases is a salient feature of the mixture mechanics. More detailed 
treatment of compositional flows appears later in this article. 

2.2. Review of the Basic Physics 

While the theory of mixtures dates at least to Eringen and 
Ingram (61), its foundations are still the focus of active inquiry, 
as reviewed by Atkin and Craine (17). Among the applications of 
mixture theory to multiphase mixtures and porous media are investiga­
tions by Pr~vost (124), Bowen (29,30), Passm~n, UUll~JAtO. and Walsh 
(112), and Raats (126). The aims of the present article in this 
respect are much more limited in scope than those just cited. What 
follows is a brief review of the basic physics of multiphase flows 
in porous media, using the language of mixture theory as a vehicle 
for the development of governing equations (7). 

For concreteness, assume that the mixture under investigation 
has three phases: rock (R) and two fluids (N,W). (The extension 
of this exposition to mixtures with more fluid phases is straight­
forward.) Each phase u has its own instrinsic mass density Pu' 
measured in kg/m3 ; velocity ~u' measured in m/s; and volume fraction 
¢u. From their definitions, the volume fractions clearly must obey 
the constraint E ¢u = 1. In terms of these mechanical variables, 

u 
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the mass balance for any particular phase a is 

(2.1) 

where ra stands for the rate of mass transfer into phase a from 

other phases. To guarantee mass conservation in the overall mixture, 
the reaction rates must obey the constraint Z r = 0. 

a a 

We can rewrite Eq. (2.1) in a more common form by noting that 
the porosity is ¢ = 1 - ¢R and defining the fluid saturations 
SN = ¢N/¢' Sw = ¢W/¢· Thus 

a 
[(1 - ¢)PRl +11.[(1 - ¢) PRyRl at 

r R 

for the rock phase, and 

a 
(¢SaPa) + 11. (¢SaPaYa) at 

r a , a = N,W, (2.2) 

for the fluids. 

Each phase also obeys a momentum balance. In its primitive 
form this equation relates the phase's inertia to its stress la' 
body forces ga' and rate ~a of momentum exchange from other phases. 
Thus, 

(2.3) 

If we assume that the rock phase is chemically inert, so r R = 0, 
auu fix a coordinate system in which YR = 0, then the momentum 
balance for rock reduces to 

Let us assume that each fluid is Newtonian and that momentum 
transfer via shear stresses within the fluid is negligible compared 
with momentum exchange to the rock matrix. In this case Ea = -Pat' 
where Pa is the mechanical ppessupe in fluid a and t is the unit 
isotropic tensor. If gravity is the only body force acting on fluid 
phase a,then ¢a~a = gllZ, where g stands for the magnitude of 
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gravitational acceleration and Z represents depth below some datum. 
For the momentum exchange terms, the assumption common to most 
theories of porous media is that momentum losses to the solid matrix 
take the form of possibly anisotropic Stokes drags, 

where ~a is a tensor called the mobility of phase a. If we assume 
further that the inertial effects in the fluid are negligible com­
pared with rock-fluid interactions and that there is no interphase 
mass transfer, then Eq. (2.3) yields 

(2.4) 

which is familiar as Darcy's law. 

Clearly, the mobility ~a appearing in Eq. (2.4) accounts for 
much of the predictive power of Darcy's law in any particular rock­
fluid system. Constitutive laws for mobility are largely phenomeno­
logical, the most common versions having the form ~a = ~kra/~a' 
where ~a is the dynamic viscosity of fluid phase a, ~ is the 
permeability, and the relative permeability kra is a coefficient 
describing the effects of other fluids in obstructing the flow of 
fluid a. 

For a two-fluid system with no interphase mass transfer, the 
relative permeabilities typically vary with saturation, and the 
curves krN(SW)' krW(SW) look roughly like those drawn in Figure 1 
(102). The vanishing-point saturations SNr and SWr are called 
residual or irreducible saturations, and they account for the fact 
that, for a particular fluid to flow, it must be present at a 
sufficient degree of saturation to permit the formation of connected 
flow channels consisting of that phase. Actually, this picture of 
relative permeabilities is quite simplistic. In nature relative 
permeabilities often exhibit significant hysteresis, and the verifi­
cation of the relative-permeability model in the presence of three 
or more fluid phases (92,144,101) or compositional effects (22,14) 
is still not clear. 

Eq. (2.4) allows each fluid phase to have its own pressure at 
any point in the reservoir. These pressure differences indeed occur 
in nature. At the microscopic scale the effects of interfacial 
tension and pore geometry on the curvatures of fluid-fluid inter­
faces lead to capillary effects. Leverett (91) uses the classical 
thermodynamics of Gibbs (75) to describe these effects, while more 
recent works such as those of Morrow (103) and Davis and Scriven 
(51) draw connections with microscopic effects and molecular theories 
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of interfacial tension. These theories imply that, at a macroscopic 
scale, there will be a pressure difference, or capillary pressure~ 
between any two fluid phases in a porous medium. In two-phase sys­
tems, for example, there is a single capillary pressure PCNW = 
PN - PW· In simple models PCNW is a function of saturation; however, 
in actual flows the capillary pressure exhibits rather pronounced 
hysteresis (103,82,134) and dependence on fluid composition (42). 

Given velocity field equations such as Eq. (2.4), we can expand 
the mass balances for the fluid phases to get flow equations for 
each fluid. Using the customary decomposition of the mobility ~a 
and directly substituting Eq. (2.4) into Eq. (2.2) yields, for a 
two-phase system, 

o 

o (2.5) 
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Figure 1. Typical relative permeability curves (102) 
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Flow equations for systems having more fluid phases will be similar, 
except that if P phases coexist, then P - 1 independent capillary 
pressure functions will appear in the system. 

2.3. Early Investigations 

The picture of multi phase flows in porous media outlined above 
evolved over several decades beginning in the 1930's. The use of 
an extended version of the. single-phase form of Darcy's law in 
mUltiphase flows appears to have begun with Richards (128) in his 
work on unsaturated flows in the soil physics literature. The exp­
licit use of a separate velocity field equation for each fluid began 
in the petroleum industry. Here the pioneering work of Muskat et 
al. (104), Wykoff and Botset (161), Buckley and Leverett (34), Fatt 
and Dykstra (68), and Welge (159), among others, promoted the wide­
spread acceptance of Darcy's equation altered by the incorporation 
of relative permeabilities. Today this model is the one most widely 
used in the prediction of multiphase flows in porous media. 

Despite its broad appeal in applications, the multiphase version 
of Darcy's law has some limitations. Relative permeabilities are not 
strictly functions of saturation, the most glaring violation being 
the phenomenon of hysteresis or dependence on saturation history. 
Such microscopic phenomena as gas slippage at the solid walls, tur­
bulence, and adsorption can also invalidate the Darcy model in cer­
tain flows (33). These limitations are worthy of consideration in 
the application of the multiphase Darcy law to any new rock-fluid 
system. 

3. TWO-PHASE FLOWS 

The simplest multiphase flows in porous media are those in which 
two fluids flow simultaneously but do not exchange mass or react with 
the solid matrix. While many flows of practical interest exhibit 
more complex physics, two-phase flows have drawn attention in many 
applications. Among these are unsaturated groundwater flows, salt­
water intrusion in coastal aquifers, and the Buckley-Leverett prob­
lem in petroleum engineering. 

3.1. Unsaturated Groundwater Flow 

In typical soil profiles some distance separates the earth's 
surface from the water table, which is the upper limit of completely 
water-saturated soil. In this intervening zone the water saturation 
varies between 0 and 1, the rest of the pore space normally being 
occupied by air. Water flow in this unsaturated zone is complicated 
by the fact that the soil's permeability to water depends on its 
water saturation. Let us derive the common form of the governing 
equation and examine some of the computational difficulties that 
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arise in its solution. 

Most formulations of unsaturated flow rest on the assumption 
that the motion of air has negligible effect on the motion of water. 
Therefore one usually neglects the flow equation for air, assuming 
that the air pressure equals the constant atmospheric pressure at 
the surface, that is, PA = Patm. Then we can define the pressure 
head in the water by ~ = (PW - PA)/(Pwg), having the dimensions of 
length and being negative in the unsaturated zone where Sw < 1. 
Also, instead of saturation, soil physicists typically refer to the 
soil's moisture content, defined by 8 = ¢Sw. In terms of these new 
variables the capillary pressure relationship for the air-water 
system becomes ~ = ~(8) or, provided ~ is an invertible function, 
8 = 8(~). From Eq. (2.5b), the flow equation for water thus trans­
forms to 

where ~ = pWg~krW/~W is the hydraulic conductivity of the soil. 
Notice that K is a function of ~, since relative permeability depends 
on saturatio~, which varies with ~ according to the capillarity 
relationship. 

In many unsaturated flows the compressibility effects in water 
are small, so that time derivatives and spatial gradients of PW 
may be neglected. If this approximation holds, then the flow equa­
tion reduces to 

3e = V.[K.(V~ + VZ)] 
3t '" 

(3.1) 

To get an equation in which ~ is the principal unknown, we simply 
use the chain rule to expand the time derivative on the left, giving 

C(~) ~ = V.[~(~)(V~ + VZ)] 

where C(~) = de/d~ is the specific moisture capacity. If the flow 
is essentially one-dimensional in the vertical direction, then this 
equation collapses to 

C(~) ~ = ~[K(~) [~ + 1)] 3t 3z 3z 
(3.2) 

which is Richard's equation (128). 
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Several investigators in hydrology have examined the unsaturated 
flow equation from analytic viewpoints. Philip (119) gives one of 
the earliest theoretical treatments of Richard's equation, proposing 
asymptotic solutions for a nonlinear problem. The equation has also 
attracted interest in the applied mathematics community, including 
investigations by Aronson (16), Peletier (116), and Nakano (105). 
Aronson (16), for example, observes that, while the classical linear 
heat equation admits solutions in which disturbances propagate with 
infinite speeds, the nonlinear Eq. (3.2) may propagate disturbances 
with only finite speed. This implies that a moving interface, or 
wetting front, can form between the downward-moving zone of high 
moisture content 8 and the zone yet uncontacted by the wave of in­
filtrating water. Under certain initial conditions this moving 
boundary can exhibit steep spatial gradients in 8 and consequently 
in~. The resulting sharp fronts pose considerable difficulty in 
the construction of numerical schemes, since the discrete approxima­
tions used typically have lowest-order error terms that increase 
with the norm of the solution's gradient. We shall discuss this 
difficulty in more detail in Section 6. 

Numerical work by a variety of investigators have corroborated 
the existence of wetting fronts. Much of this work appeared during 
the 1970's, and it includes articles by Bresler (33), Neuman (107), 
Reeves and Duguid (127), Narasimhan and Witherspoon (106), and Segol 
(136). Van Genuchten (151,152) presents solution schemes for the 
one- and two-dimensional versions of Richard's equation using both 
finite differences and finite-element Galerkin methods employing 
Hermite cubic basis functions. His work furnishes a good comparison 
of the finite-difference and finite-element approaches to the ap­
proximation of wetting fronts. 

Van Genuchten's investigation also demonstrates another dif­
ficulty in solving Richard's equation numerically. This problem 
owes its existence to the nonlinear coefficient C(~) appearing in 
the accumulation term of Eq. (3.2). Because the equation itself 
is nonlinear, implicit time-stepping algorithms must incorporate an 
iterative procedure for advancing the approximate solution from one 
time step to the next. There then arises a question regarding the 
proper time level at which to evaluate C(~). Van Genuchten demonst­
rates that evaluating this coefficient in a fully implicit fashion 
can lead to material balance errors in certain schemes, among them 
the Galerkin scheme using two-point Gauss quadrature to evaluate the 
mass and stiffness matrix elements. Figure 2 shows how this scheme 
produces a wetting front that lags the true solution. Milly (99) 
advances an iterative method for evaluating C(~) at the correct time 
level to guarantee good global material balances. 

Allen and Murphy (11) propose another approach to the time-step­
ping problem in unsaturated flows. While the method is used in 
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Figure 2. Solutions to the unsaturated flow equation using various 
finite-element Galerkin schemes (151) 

connection with finite-element collocation-a technique closely 
related to the two-point Gauss quadrature scheme mentioned above-
the basic idea should be applicable with most spatial discretizations. 
If we return to the original form of the accumulation term, Eq. (3.2) 
becomes 

oe = ~ [K(~)(O~ + 1)] ot OZ oz 

One can circumvent the difficulties encountered in solving an equa­
tion in both e and ~ by properly formulating an iterative procedure. 
Let us approximate the time derivative using implicit finite dif­
ferences: 
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8(~ ) - 8(~ ) = ~ K(~n+l) ~ + 1 n+l n [ [n+l) 
lit dZ dZ 

+ O(lIt) 

We can linearize the flux terms in this approximation by establishing 
an iterative scheme in which ~n+l,m represents the value of ~ at 
the most recent known iteration level and ~n+l,m+l = ~n+l,m + 
6~n+l,m+l represents the value at the sought iterative level: 

This expression allows the nonlinear coefficient K(~n+l) to lag by 
an iteration. 

In the accumulation term we also lag 8(~n+l), but in addition we 
linearly project forward to the next iterative level using the New­
ton-like extrapolation 

Here, recall that C(~) = d8/d~. The value ~n of pressure head at 
the old time level represents the value furnished by the iterative 
scheme after convergence, which a computer code can test using 
either of two criteria. First, one can check whether the iterative 
increment 6~n+l,m+lis small enough in magnitude or norm to warrant 
stopping the iteration. Second, one can observe that collecting 
the terms involving the unknown 6~n+l,m+l on the left and ignoring 
truncation error leaves the known quantity 

8(~n+l,m) _ 8(~n) 
lit 

acting as a right-hand side in the linearization. This quantity is 
precisely the residual to the flow equation at the m-th iteration. 
Whenever iiRn+l,m! is small in some appropriate norm, the resulting 
increment 6~n+l,m 1 will be small and, more to the point, we shall 
have solved the time-differenced equation to within a very small 

error. 

It is easy to see why such a scheme conserves mass, at least to 
within limits imposed by the iterative convergence criteria. If we 
integrate the residual Rn+l,m(z) over the spatial domain ~ of the 
problem, we find 
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_ In" DC'I,n+l,m~t- nC,I.n) 1 [~n+l,m J 
" Q ~ U Q ~ dz + KCljJn+ ,m) oW dZ + 1 d\2 

= - f\2 Rn+l,mdz 

If the integral on the right were zero, this equation would be 
precisely the global mass balance for vertical unsaturated flow. 
Thus by iterating until ~Rn+l,m~ is small, we implicitly enforce 
the global mass balance to a desired level of accuracy. 

3.2. Saltwater Intrusion 

In coastal aquifers both fresh water and salt water are usually 
present. Being denser, the salt water underlies the fresh water, 
the latter forming a lens whose shape and thickness may vary with 
changes in pumping and recharge. Figure 3 depicts a typical coastal 
aquifer in cross-section. When the upper portion of the aquifer 
acts as a source of fresh water, it becomes important to design 
pumping and recharge strategies that prevent the flow of salt water 
into production wells. 

Strictly speaking, salt water and fresh water are not separate 
phases. In fact they are completely miscible as fluids, and in a 
coastal aquifer there exists a zone lying between the two fluids in 
which salt concentration varies continuously. To be rigorously faith­
ful to the physics of the problem, then one would solve a single­
phase flow equation coupled with a transport equation for salt. 
Indeed, one of the earliest numerical treatments of saltwater intru­
sion used just this approach (120). Nevertheless, the transition 
zone between salt and fresh water is often quite narrow in compari­
son with the overall thickness of the aquifer, and for computational 
purposes we may consider it to be a sharp interface. Such a sharp­
interface approximation serves as justification for treating salt­
water intrusion into coastal aquifers as a multiphase flow. 

Let us consider the problem of modeling the areal movement of 
salt and fresh water. To get vertically averaged flow equations, 
we first write the equations in terms of hydraulic heads, defined 
in the fresh water (F) and salt water CS) as follows: 

h + z, ex. = F or S, 
ex. 

where p f is some reference value of pressure, and a (p) gives the 
re ex. 

functional dependence of density on pressure. Then, after an 
application of the chain rule to the accumulation terms, each of 
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equations (2.5) assumes the form 

Ilh 
V. (KaVha) = Ss,a Il~ , a = F or S 

where Ka = pugkk /~ is the hydraulic conductivity of fluid a and 
Ss a = Pug[d¢/dp~+(¢~Pa)dPa/dPal is the specific storage of fluid a. 
For simplicity, let us assume that the rock matrix is isotropic, 
so that Ku effectively acts as a scalar coefficient. Next we average 
the flow equations (3.3) vertically by integrating with respect to 
z between the lower and upper limits of each zone, using Leibnitz's 
rule (84). For the freshwater zone, this gives (see Figure 3) 

ij.(TFVhF) - (vF-s ve)1 .e y z=c z 

+ (vF-SyVe)lz=c'Vc - (vF·Vb-vF·ez)lz=b 

Here V (1l/llx,Il/lly) in Cartesian coordinates; ez signifies the 
unit vector in the z-direction; TF=KFiF ; CF=Ss,FiF+Sy; and 
- -1 c 
h=i F bl hFdz is the vertically averaged freshwater head. The 

vector v~ represents the velocity of the freshwater-saltwater 
interface; ve is the velocity of the free surface z=c, and s is 
the specific yield, defined as the rate of change in storageYwith 
respect to changes in the free surface level. 

In the absence of mass transfer between salt water and fresh 
water, a material point initially on the interface ~ will stay 
there. Since ~ is the locus of points where z-b=O, this free surface 
condition takes the form 

o 

Multiplying this equation by ¢ and subtracting from the vertically 
averaged equation above yields 

(3.4) 

where 

is the effective rate of withdrawal from the freshwater zone, and 



Figure 3. Schematic cross-section 
of a coastal aquifer (84). 
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Table 1. Galerkin integrals 
appearing in the salt­
water intrusion 
equations. 

is the effective rate of exchange of freshwater across the interface 
~, which we have assumed to be zero. 

A similar development for salt water leads to the vertically 
averaged flow equation 

v. (TSVhS) + qs 1 

z=b 

Here TS 

- q 1 
s z=a 

(3.5) 

ss,S~S. The sink terms in this equation are 

which represents the effective rate of withdrawal from the saltwater 
zone, and 

- ::sl . 
z=a 

(e - Va), 
-z 
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which gives the effective rate of saltwater leakage into the lower 
confining layer, whose depth is fixed. 

To solve this system we need an equation relating hF and h S ' 
In this case, since the two fluids are miscible at the microscopic 
scale, there will be no head difference between the fluids where 
they are in contact. Thus the head is continuous across the inter­
face L: hF = hS at z b. As Huyakorn and Pinder (84) show, this 
condition allows us to solve for ab/at in terms of heads: 

ab 
at 

* Ps (3.6) 

where P~ Pa/(P s - PF). Combining Eq. (3.6) with Eqs. (3.4) and 
(3.5) yields the coupled system of flow equations 

a 
at 

0.7) 

Let us examine the approximate numerical solution to Eq. (3.7) using 
finite-element Galerkin method~. In these methods we replace the 
unknown functions hF(~,t) and hS(~,t) by trial functions 

I 
hF(~,t) hF,(l (~,t) + L hF,i(t)Ni(~) 

i=l 

~ 
I 

hS(~,t) hs,a(~,t) + L hS,i(t)Ni(~) 
i=l 

The functions hF,a and hs,a satisfy the essential boundary conditions 
for the problem at hand, and each of the sums on the right satisfies 
homogeneous boundary conditions. For continuous interpolating trial 
functions, hF i(t) and hS i(t) usually stand for the values of head 
at the i-th spatial node, 'while the basis functions N.(x) dictate 

l -
the variation between nodes. 
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To form the Galerkin equations corresponding to Eq. (3.7), we 
substitute hF and hS for hF and hS in Eq. (3.7), multiply each 
equation by each of the basis functions Nl(~), ... ,NI(~)' and force 
the integral of the result over the spatial domain ~ to vanish. 
Doing this leads to time evolution equations for the unknown nodal 
values hF,i(t) and hS,i(t). For the freshwater equation, there 
results 

F F + MF.,.l ,1. + MF.,.2 ~ I [ dhF . dh S , ;] 
l: K .. hF . - Q .. hF . 

i=l 1.J ,1. 1.J, 1. 1.J dt 1.J dt 

+ f q I N.dx = B~ D F z=c J - J 
j 1, ... ,I 

where KF QF M~~l, M~~2, and B~ have the meanings assigned in ij , ij '1.J 1.J J 
Table 1. 

A similar collection of evolution equations arises from the salt­
water flow equation: 

~ [K~.hs' - Q~.hs . + M~~l dhF,i + M~~2 dhS,i 
i=l 1.J ,1. 1.J ,1. 1.J dt 1.J dt 

qs I )N. dx z=a J -
b~ 

J 
j=l, ... ,I 

h th d f · 't' f KS QS MS. ,.1, MS.,.2, and BS. aga;n appear were e e 1.n1. 1.ons 0 i" i" 1.J 1.~ ~ ~ 
I T bl 1 R .. h' J J f 2I l' .. . n a e . ewr1.t1.ng t 1.S set 0 evo u 1.on equa 1.ons 1.n matr1.X 
form gives a system having the structure 

[K]{h} + [M] ~ {h} = {r} 
dt 

(3.8) 

where {h} signifies a vector containing the 2I unknown nodal values 
of head, [K] and [M] are the stiffness and mass matrices arising 
from flux and accumulation terms, respectively, and {r} is a vector 
containing known boundary data and withdrawal rates. 

The system (3.8) is nonlinear, owing to the dependence of the 
zonal thicknesses ~F and ~S on the unknown heads. Thus any temporal 
discretization of these ordinary differential equations will have 
to be iterative in nature to guarantee consistency between the nu­
merical solution and the flow coefficients at each time level. 
Pinder and Page (121) advance one such iterative scheme. 
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The saltwater interface problem exhibits a peculiar computa­
tional difficulty associated with the saltwater-freshwater inter­
face Z. This problem manifests itself as the saltwater wedge 
retreats or advances. Under these circumstances the intersection 
of Z with the lower confining layer, called the saltwater toe~ moves 
horizontally. This moving boundary allows for the possibility that 
the interface may not exist at some areal locations, and at these 
locations the free surface condition becomes degenerate (97). To 
accommodate this degeneracy, it becomes necessary to track the 
moving boundary as the flow calculations proceed. 

Shamir and Dagan (139) present a finite-difference algorithm 
for tracking the saltwater toe in a vertically integrated, immiscible 
setting. By examining a one-dimensional flow, they develop a scheme 
for regenerating the spatial grid to guarantee that the toe lies on 
a comp~tationa1 node. Thus on the ocean side of the separating node 
they solve the simultaneous flow equations for saltwater and fresh­
water heads, while on the inland side they solve the equation for 
freshwater head only. This approach obviously involves a great deal 
of computational complexity in two or three dimensions, since it 
requires the construction of multidimensional moving finite-differen­
ce grids. However, an analogous idea for finite-element grids in 
two dimensions has proved promising (55). 

In another approach, Sa da Costa and Wilson (131) use a fixed, 
two-dimensional, quadrilateral finite-element grid to model the 
immiscible flow equations. They devise a toe-tracking algorithm 
based on the Gauss points used to compute the integrals contribut­
ing to the matrix entries in Eq. (3.8). At Gauss points inland of 
the toe the model assigns a very small nonzero saltwater transmis­
sibility TS. Thus, while the saltwater wedge never actually disap­
pears in the numerical scheme, inland of the toe the flow of salt 
water is negligible. 

3.3. The Buckley-Leverett Problem 

The Buckley-Leverett problem serves as a fairly simple model of 
two-phase flow in a porous medium. The problem, introduced by 
Buckley and Leverett (34), has particular relevance in the petroleum 
industry, where gas and water injection are two common techniques 
for displacing oil toward production wells in underground reservoirs. 
The simplicity of the Buckley-Leverett problem arises from three 
basic assumptions. First, the total flow rate of oil and displacing 
fluid (say water) remains constant. Second, the rock matrix and 
fluids are incompressible. Third, the effects of capillary pressure 
gradients on the flow field are negligible compared with the pressure 
gradients applied through pumping. These assumptions are too rest­
rictive to permit widespread application of the Buckley-Leverett 
model, but, as we shall argue below, the simplified model acts as 
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a paradigm for the numerical difficulties that occur in more comp­
licated models of oil reservoirs. 

To derive the Buckley-Leverett model, we begin with Eqs. (2.5), 
identifying N as oil and W as water and assuming an isotropic porous 
medium: 

where Au = kkru/~u is the mobility of fluid u. Coupled to these 
flow equations are the constraint SN + Sw = 1 and a capillarity 
relationship PCNW = PCNW(SW)· If we restrict our attention to one­
dimensional flow in a homogeneous reservoir of uniform cross-section 
and assume that gravity effects are absent, then the flow equations 
collapse to 

o 

Now we invoke the assumption that capillarity has negligible 
effect on the flow field- wide, so that dPCNW/dX ~ O. Further, the 
incompressibility assumption implies that ~, PN' and Pw are constant 
in time and that the fluid densities are uniform in space, so that 

o (3.9a) 

o (3.9b) 

Now observe that - AUdPW/dX is the Darcy flux qu of phase u. Also 
by assumption, the total flow rate q = qw + qN is a constant. Thus 
we need only solve one of Eqs. (3.9), using the constant value of 
q to solve the other equation by subtraction. 

Let us solve the water equation (3.9b). Since -AWdPW/dX = qw 
Awq/(AW + AN)' we arrive at th~ Buckley-Leverett saturation equa­
tion 
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asw a qfw 
at + ax (--¢--) = 0 (3,10) 

where fW = AW/(AN + AW) is the fractional flow of water. Eq. (3.10) 
is clearly nonlinear, since fW depends on the unknown water satura­
tion Sw through the fluid mobilities. While the functional form of 
fW(SW) depends on the particular rock-fluid system being modeled, 
fractional flow functions typically have an "S-shaped" profile over 
their supports (SWr =1 - SNr)' as shown in Figure 4. 

Difficulties in solving Cauchy problems involving Eq. (3.10) 
arise from two sources. First, th~ equation itself is a nonlinear, 
hyperbolic conservation law. Its hyperbolicity owes to our neglect 
of capillary pressure gradients, inclusion of which would have led 
to an additional second-order term of the form 

Thus Eq. (3.10) is, in effect, an approximation to a singularly 
perturbed parabolic problem in which we have neglected the dissipa­
tive effects of capillarity. 

Second, the flux function qfW/¢ appearing in Eq. (3.10) is non­
convex, its S-shaped form implying the existence of an inflection 
point somewhere in its support. The literature on hyperbolic conser­
vation laws with nonconvex flux functions is quite extensive, inc­
luding important contributions by Lax (90) and Oleinik (Ill) and a 
general discussion by Chorin and Marsden (39). Of special importan­
ce in the present context are the following facts. Cauchy problems 
based on Eq. (3.10) may have no solutions that are classical in the 
sense of being continuously differentiable over their (x,t)-domains 
nxJ. Instead, such problems may admit only weak solutions SW(x,t). 
These solutions need only satisfy the integral relation 

(3.11) 

for all infinitely differentiable functions ~(x,t) that vanish on 
the boundary d(~XJ) (126). In contrast to Eq. (3.10), Eq. (3.11) 
admits functions SW(x,t) that have discontinuities, or saturation 
shocks. Unfortunately, weak solutions may not be unique: there may 
be several different functions SW(x,t) that satisfy the integral 
equation (3.11). 
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Figure 4. Typical nonconvex fractional flow function f and related 
convex functions (13). 

Nature admits only one solution to the Buckley-Leverett problem. 
Much of the research into hyperbolic conservation laws has aimed at 
identifying physically correct weak solutions from among the class 
of functions obeying Eq. (3.11). To specify the physical solution 
requires an additional constraint known as the entropy condition. 
There are several equivalent forms of this constraint, including 
the following (13): i) The solution must depend continuously and 
stably on the initial data, implying that characteristics on both 
sides of a discontinuity must intersect the·initia1 curve. ii) The 
solution must be the same as that obtained using the method of 
characteristics with fW(SW) replaced by its convex hull. iii) The 
solution must be the limit of solutions, for the same initial data, 
to a parabolic problem differing from the hyperbolic one by a 
dissipative second-order term (in this case, capillarity) of vanish­
ing influence. 
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The tangent construction advanced by Welge (159) explicitly imp­
lements condition (ii) while, as Welge shows in his paper, the 
"equal-area" rule of Buckley and Leverett (34) imposes this same 
constraint in a slightly different fashion. 

Any numerical scheme for solving the Buckley-Leverett problem, 
or even more complicated models of multiphase flows that are hyper­
bolic in character, must respect the entropy condition or else risk 
producing nonphysical results. Douglas et al. (57), for example, 
propose adding an artificial capillarity to the Buckley-Leverett 
equation to force convergence to the correct physical solution. 
An equivalent effect can be achieved by using certain numerical 
approximations whose lowest-order error terms mimic the desired 
dissipative phenomena (8). This tactic is perhaps easiest to see 
in finite-difference approximations. Here, an upstream biased dif­
ference analog of the flux term df/dx gives 

~I _!::,.x d [f' (S) ~xSll. + O(!::"x 2 ) 
dX. 2 dX 0 

l l 

Since f'(S) > 0 over the support of f, the lowest-order error term 
acts like the capillarity term neglected in Eq. (3.10) while vanish­
ing linearly as !::,.x ~ O. Thus upstream weighting imposes a numerical 
version of condition (iii) while maintaining consistency in the nu­
merical approximation. 

Several investigators have examined upstream-weighted finite­
element methods for the Buckley-Leverett problem. Mercer and Faust 
(96) and Huyakorn and Pinder (83), for example, discuss upstream­
weighted Galerkin techniques. Shapiro and Pinder (140) advance a 
finite-element collocation scheme for the Buckley-Leverett problem 
using asymmetric basis functions. 

Allen and Pinder (12,13) introduce a collocation scheme for the 
same problem in which upstream biasing of the collocation points 
leads to the appropriate numerical version of condition (ii). To 
implement this method, we begin with a continuously differentiable 
trial function for saturation: 

I 

S(x,t) ~ [Si(t)HO,i(x) + S~(t)Hl,i(x)l, 
i=O 

where 
cubic 

of Sw 

the basis functions HO .(x), Hl .(x) are piecewise Hermite 
~ l ,l 

polynomials (5). Si(t), Si(t) are the unknown nodal values 
and dSW/dX, respectively. One can similarly represent the 



nonlinear flux function fW: 

I dfW 
f = L [fW (S . ) HO . + - (S.) S ! HI . 1 

1 ,1 dS 1 1 ,1 
i=l W 

In the standard collocation we derive ordinary differential 
equations for the unknown values Si' Si, by setting 
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at enough points xk in the spatial domain to give one equation for 
each unknown. Douglas and Dupont (58) show that, on a uniform par­
tition Xo < ••• < xI = Xo + IllX, one can achieve O(IlX4) accur~cy in 
parabolic problems by choosing the Gauss points Xi +llX/2±IlX/!3, 
i = 1, ... ,1-1, as the collocation points. As Allen and Pinder (13) 
demonstrate, however, this highly accurate scheme violates the ent­
ropy condition in Eq. (3.10). One can force convergence to the 
correct solution by evaluating the flux term at collocation points 
upstream of the Gauss points, as in the equation 

o 

Here, for flow in the positive x direction, x~ < xk' Allen (7) 
presents an error analysis showing how this scheme introduces arti­
ficial capillarity. Figures 5 and 6 compare the results of standard 
collocation and upstream collocation respectively. 

Several investigators have examined the use of upstream weighting 
in more sophisticated models of multiphase flow. Among the many 
such studies are those by Peaceman (113), Settari and Aziz (137), 
and Young (164), each of which offers a good overview of numerical 
approximations used to model two-phase flows. We shall consider 
upstream weighting further in Section 4. 

One unfortunate aspect of upstream-biased approximations is that 
their artificially dissipative effects, while guaranteeing conver­
gence, produce unrealistically smeared sharp fronts when the spatial 
grid mesh is large. What is "large" in this sense depends on the 
physics of the problem and not the computational resources of the 
modeler. Therefore, in some problems, unacceptable smearing on 
uniform grids can occur even when the grid mesh approaches limits 
in affordable fineness. One approach to resolving this dilemma is 
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Figure 5. Solution to the Buckley-Leverett problem generated by 
orthogonal collocation with 6x = 0.1 (12). 
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to refine the spatial grid only in the vicinity of the steep front. 
Since the front itself moves as the flow progresses, such a strategy 
calls for self-adaptive local grid refinement, a topic discussed in 
Section 6. 

4. FLOWS WITH INTERPHASE MASS TRANSFER 

In many multiphase flows of interest in engineering the exchange 
of chemical species among the fluid phases is crucial to the behavior 
of the flows. Historically, concern with the compositional aspects 
of multiphase flows in porous media originated in the petroleum 
industry, where the effects of gas dissolution, retrograde condensa­
tion, and vaporization and condensation of injected gases have subs­
tantial implications in oil recovery operations. As the complexities 
of groundwater contamination by organic wastes become more urgent, 
however, interest in multiphase flows with mass transfer has spread 
to the hydrology community. In this section we shall focus on the 
more established modeling efforts in the petroleum industry, leaving 
discussion of the newer applications in hydrology to Section 5. 

4.1. Compositional Oil Reservoir Flows 

In compositional flows there are several fluid phases in which 
some number of chemical species reside. It is therefore necessary 
to extend the mixture-theoretic formalism to accommodate two dif­
ferent categories of constituents: phases and species. A more de­
tailed exposition of the development given below appears in Allen 
(7). For simplicity, let us assume that there are three fluid 
phases, namely water (W), oil (0), and gas (G) with chemical species 
indexed by i = 1, ... ,N + 1. As before, let us label the rock phase 
by the index R. Conceivably, at least, each species can exist in 
any phase and can transfer between phases via dissolution, evapora­
tion, condensation, and so forth, subject to thermodynamic const­
raints. We shall assume here that the rock is chemically inert and 
that there are no intraphase or stoichiometric chemical reactions, 
although in such applications as enhanced oil recovery by alkaline 
fluid injection reactions of this kind may be important. 

In our new formalism, each pair (i,a), with i chosen from the 
species indices and a chosen from the phases, is a constituent. 
Thus, for example, CH4 in the gas phase is one constituent, CH4 in 
oil another, and n-C4HlQ in oil yet another. Each constituent 
(i,a) has its own instr&nsic mass density p~, measured as mass of i 
per unit volume of a, and its own velocity Y~. To accommodate the 
familiar kinematics of phases, we shall still associate with each 
phase a its volume fraction ¢a' and if ¢ = 1 - ¢R as before, then 
we define the saturation of fluid phase a as Sa = ¢a / ¢. Using 
these basic quantities, we define the following variables: 
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p 

a u. 
-1 

N 
L p~ intrinsic mass density of phase a, 

i=l 1 

p~/pa mass fraction of species i in phase a, 
1 

a 
v· -1 

bulk density of fluids, 

total mass fraction of species i in the 
fluids, 

barycentric velocity of phase a, 

diffusion velocity of species i in phase a. 

If the index N+l represents the species making up the inert rock 
phase, then the following constraints hold: 

N a 
L wi 

i=l 
1 

where the index a in the second sum can represent any fluid phase, 
and 

N 
L 

i=l 

a u. 
-1 

o 

Each constituent (i,a) has its own mass balance, given by analogy 
with Eq. (2.1) as 

N a 
where the exchange terms r i must obey the restriction i~l a¥R r i 
If we impose the further constraint that there are no 1ntraphase 
chemical reactions, then we have in addition L r~ = 0 for each 

afR 
species i = 1, ... ,N. Since phase velocities are typically more 
accessible to measurement than species velocities, it is convenient 
to rewrite the constituent mass balance as 

o. 
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(4.1) 

where j~ =~Sapaw~~~ stands for the diffusive flux of constituent 
(i,a). Summing this equation over all fluid phases a and using the 
restrictions gives a total mass balance for each species i: 

~t (pwi ) + V,[~(SwpWw~yW+ SoPOw~yO+ SGPGw~yG)l 

+ V'(1~ + j~ + 1r) = 0, i=l, ... ,N 

To establish flow equations for each species, we need velocity 
field equations for each fluid phase and some constitutive equations 
for the diffusive fluxes ji. For the fluid velocities we may pos­
tulate Darcy's law, Eq. (2.4), assuming in addition that the porous 
medium is isotropic. For the diffusive fluxes the appropriate as­
sumption is not so clear. In single-phase flows through porous 
media, the diffusive flux of a species with respect to the fluid's 
barycentric velocity is called hydrodynamic dispersion. As reviewed 
in Section 5, theories of hydrodynamic dispersion in multiphase flows 
remain poorly developed. The most common approach in oil reservoir 
simulation is to assume that hydrodynamic dispersion is a small 
enough effect that the diffusive fluxes in the mass balance for each 
species are negligible. Thus we arrive at the flow equation for 
species i in the fluids: 

i 1, .•. ,N 

To close this set of equations, we need some supplementary 
constraints giving relationships among the variables. One class of 
supplementary constraints consists of the thermodynamic relationships 
giving phase densities and compositions as functions of pressure and 
overall fluid mixture composition. Conceptually, these relationships 
take the forms 

a = W,O,G 
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w~ 
~ 

a = W,O,G; 

a = W,O,G 

i 1, ... ,N-l 

However, it is important from a computational viewpoint to observe 
that the actual mathematical statements of these relationships may 
constitute simultaneous sets of nonlinear algebraic equations giving 
phase densities, compositions, and saturations implicitly. This 
occurs, for example, when one uses equal-fugacity constraints in 
conjunction with an equation of state to solve for local thermody­
namic equilibria, as discussed further below. 

The other class of supplementary constraints includes constitu­
tive relationships for the particular rock-fluid system being modeled. 
These relationships may take the following forms: 

a = W,O,G 

Here, as mentioned in Section 2, we have greatly simplified the 
physics of many compositional flows by omitting possible dependencies 
on fluid composition through variations in interfacial tension. 

4.2. Black-Oil Simulation 

Black oil models are special cases of the general compositional 
equations that allow limited interphase mass transfer, the composi­
tion of each phase depending on pressures only. This class of models 
has become a standard engineering tool in the petroleum industry. 
As a consequence the literature on the numerics of black-oil simula­
tion, which apparently began in 1948 with a consulting report by 
John von Neumann (156), has become quite extensive. Indeed, there 
are now several books in print devoted to black-oil simulation (114, 
18). Since any attempt to cover this field in an article of the 
present scope would be futile, we shall merely review the formula­
tion of the black-oil equations and discuss selected aspects of their 
numerical solution. 

The fundamental premise of the black-oil model is that a highly 
simplified, three-species system can often serve as an adequate model 
of the complex mixtures of brine and hydrocarbons found in natural 
petroleum reservoirs. For practical purposes, petroleum engineers 
define these three pseudo-species according to what appears at the 
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surface, at stock-tank conditions (STC), after production of the 
reservoir fluids. Thus, we have the species 0, which is stock-tank 
oil; g, which is stock-tank gas, and w, which is stock-tank water. 
Underground, at reservoir conditions (RC) , these species may parti­
tion themselves among the three fluid phases O,G, and W in a dist­
ribution depending on the pressures in the formation. 

Now we impose a set of thermodynamic constraints on this parti­
tioning of species. First, we assume that there is no exchange of 
water w into the nonaqueous phases 0 and G, so that w~ = 1, and 
w~ = w~ = O. Second, we allow no exchange of oil 0 into the vapor 
phase G or the aqueous liquid W, so that w~ = 1, and w~ = w~ = O. 
Third, we prohibit the dissolution of gas g into the aqueous liquid 
W, so that wW = O. However, we allow the gas g to dissolve in the 
hydrocarbon Iiquid 0 according to a pressure-dependent relationship 
called the solution gas-oil ratio~ defined by 

volume of g in solution at RC 
volume of 0 

where the volumes refer to volumes at STC. 

To facilitate further reference to volumes of species at STC, 
we relate the phase densities pU at RC to the species densities 
prTC at STC by defining the formation volume factors. For Wand G 
these definitions are fairly simple: 

For the hydrocarbon liquid 0, however, we must also account for the 
mass of dissolved gas at RC: 

BO(pO) = (p~TC + RSp~TC)/pO 

If we substitute these definitions into the flow equations 64.1) 
for the species 0, g, wand divide through by the constants prT ,we 
obtain the three black-oil equations 

a cpSw 
- ~.[AW(~pW - yw~Z)] 0 at 

(-) 
BW 

(4:2a) 

a cpSo 
- ~'[AO(~PO - Yo~Z)] 0 at 

(-) 
BO 

(4.2b) 
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o (4.2c) 

These equations constitute a system of coupled, nonlinear, time­
dependent partial differential equations. Each of the equations is 
formally parabolic in appearance. However, as suggested by the 
greatly simplified development in Section 3.3, the sytem can exhibit 
behavior more typical of hyperbolic equations if capillary influences 
are small. To see this, consider the two-phase version of Eq. (4.2) 
in which gas is absent, porosity is constant, and fluid compressi­
bilities and gravity forces have no effect. The flow equations in 
this case reduce to 

Adding these equations gives a total flow equation V.g = 0, where 
g = - AOVpO - AWVpW' Calling A = AO + AW and p = (PO + PW)/2, we 

we can rewrite the total flow equation as 

AW - AO 
V· (AVP) - ( 2 )VPCOW = 0 

If we examine the case when VPCOW ~ 0, the total flow equation 
reduces to an elliptic pressure equation 

V.(AVp) = 0 

Then, recalling the fractional flow function fW 
can rewrite the water flow equation as 

(4.3a) 

(4.3b) 

This saturation equation is the hyperbolic analog of the one-dimen­
sional Buckley-Leverett problem. 
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Several approaches to solving the general system (4.2) nume­
rically have appeared in the petroleum engineering literature. We 
shall review two of the most popular methods: the simultaneous solu­
tion (SS) method and the implicit pressure-explicit saturation 
(IMPES) method. 

The SS method, introduced by Douglas, Peaceman, and Rachford 
(59), and further developed by Coats et al. (45), treats the flow 
equations (4.2) as simultaneous equations for the fluid pressures 
PO' PG' and PW' Inverting the capillarity relationships and im­
posing the restriction on fluid saturations then yields the satura­
tions SO' SG' and SW' For ease of presentation, let us examine 
the two-phase case, assuming that the vapor phase G does not appear 
and that the porosity ¢ is constant. 

The first step in the formulation is to rewrite the flow equa­
tions so that the pressures PO and Pw appear as explicit unknowns. 
To do this, we apply the chain rule to the accumulation terms, giving 

where ba = d(l/Ba)/dPa and Sw signifies the derivative of the inver­
ted capillarity relationship SW(PCOW), This device allows us to 
write the system (4.2) as follows: 

(Swbw - Sw IBW) 

(Sw IBO) 

- 'V. 

(Sw IBo) 

(Saba - Sw IBo) 

a Pw 

at Po 

(/"w/Bw) 'V 

CAo/:o)" ] 
pw] 

0 Po 

pWgn] 

[:] + 
pOg'VZ 

(4.3) 
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Now we can employ some finite-difference or finite element 
method to approximate the spatial derivative in Eq. (4.3), getting 
a system of evolution equations having the form 

d 
[M] dt{P} + [K]{p} = {f} 

Here [M] is the mass matrix, [K] is the stiffness matrix, {p} rep­
resents the vector of unknown nodal values of oil and water pressure, 
and {f} is a vector containing information from the discretized 
boundary conditions. Since the entries of [M] and [K] vary with the 
unknown pressures, this system is nonlinear. Therefore the time­
stepping approximation must be iterative. As an example, we might 
use a Newton-like procedure analogous to that presented in Section 
3.1, yielding 

(~ [M]n+l,m + [K]n+l,m){op}n+l,m+l 

""t 
=_[",,~ [M]n+l,m({p}n+l,m _ {p}n) _ [K]n+l,m{p}n+l,m + {f}n+l,m) 

{R}n+l,m 

In this scheme the notation {R}n+l,m suggests that we regard the 
right side as a residual, iterating at each step until II {R}n+l,mll 
is small enough in some norm. 

The formulation presented above is not unique. In fact, several 
variants of the SS method have appeared, including formulations 
treating different sets of variables as principal unknowns. Aziz 
and Setari (18) provide a survey of these alternative approaches. 

In the IMPES formulation, the basic idea is to combine the flow 
equations (4.2) to get an equation for one of the fluid pressures 
(32). Solving this equation implicitly provides the information 
necessary to update the saturations explicitly at each time step, 
using an independent set of flow equations and the restriction that 
saturations sum to unity. Sheldon, Zondek, and Cardwell (141) and 
Stone and Garder (145) introduced this method. 

The development follows a line of reasoning paralleling that 
leading to Eqs. (4.3). We begin, as in the SS method, by expanding 
the accumulation terms, this time leaving saturations and pressures 
as principal unknowns. For the three-phase system, this leads to 
the following finite-difference approximations 

a (BSw) 1 ( ) () ¢it = ""t Cl~tSW + C2~tPW + 0 ~t 
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The coefficients Cl, .•. ,Cg appearing here stand for __ thuen!~pr_Oup~iate 
derivatives extracted using the chain rule, and ~tU 
defines the time-difference operator. 

The next step involves the crucial assumption that the capillary 
pressures PCOW' PCGO change negligibly over a time step. This as­
sumption implies that ~tPO = ~tPW = ~tPG and, furthermore, that we 
can treat the capillary contributions to the flux terms explicitly. 
Thus, our implicit, temporally discrete approximations to Eq. (4.2) 
become 

(4.4a) 

(4.4b) 

(4.4c) 

To get a single pressure equation from this set, we multiply Eq. 
(4.4c) by the coefficient B = C3/(C 7 - C5), multiply Eq. (4.4a) by 
A = BC5/Cl , add Eqs. (4.4a-c), and observe that the saturation dif­
ferences in the accumulation terms now sum to an expression propor­
tional to ~t(SW + 50 + 5G) = O. Therefore our weighted sum of the 
time-differenced flow equations yields 

Cn+l~ p 
t 0 
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The new parameter r is shorthand for the weighted sum of the gravity 
terms, and C = AC 2 + C4 + B(C6 + C8). Eq. (4.5) is the pressure 
equation. 

Now, provided we have an appropriate technique for producing 
discrete approximations to the spatial derivatives appearing in 
these equations, we can implement the following time-stepping pro­
cedure. (i) Solve Eq. (4.5) implicitly, using some iterative scheme. 
(ii) Solve Eq. (4;4a) explicitly for ~tSW and update the water satu­
ration; solve f4.4b) for ~tSO and update the oil saturation, setting 
sg+l = 1 - S~+ - sg+l. (iii) Compute Pc~~ and pC+~ using the new 
saturations; then use these to update PW and PG. riV) Begin the next 
time step. Notice that, in contrast to the SS formulation, the 
IMPES approach requires the implicit solution of only one flow equa­
tion at each time step. As with the SS methods, variants on this 
development have appeared; see Aziz and Settari (18) for a survey. 

The IMPES approach offers the obvious advantage that, with only 
one implicit equation to solve per time step, the algoritm requires 
smaller matrix inversions at each iteration. The resulting compu­
tational savings can be significant in problems involving large 
numbers of grid points. On the other hand, because it treats capil­
lary pressures explicitly, the IMPES method suffers instability when 
the time step ~t exceeds a critical value. This limitation can be 
inconvenient if the critical value of ~t is unknown or small compared 
with the life of a field project. The SS method, while requiring 
more computation per time step, boasts greater stability. This can 
prove to be a decided advantage when the problem to be solved exhi­
bits strongly nonlinear phenomena, such as coning near wellbores or 
liquid hydrocarbons passing through bubble points. 

The performance of black-oil models is quite sensitive to the 
treatment of nonlinear coefficients in the discrete flow equations. 
Consider, for example, the spatial treatment of the flux coefficients 
Au. It is standard practice to use upstream-weighted approximations 
to these coefficients. To see why, examine the results of Figure 7, 
showing predictions of a one-dimensional black-oil model using seve­
ral midpoint and upstream approximations to Au. These plots show 
that upstream-biased analogs of the flux coefficients force the 
numerical solution to converge to the correct physical solution when 
capillarity is small. This result corroborates our discussion of 
the Buckley-Leverett problem in Section 3.3, since, as we have ar­
gued, the black-oil system exhibits similar hyperbolic features. 

The temporal weighting of the flux coefficients also affects 
the solution to the black-oil equations. It is a fairly common 
practice to treat these coefficients explicitly. As Settari and 
Aziz show, however, this tactic leads to limits on time steps al­
lowable for stable solutions. The limitation is especially severe 
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Figure 7. Black-oil model solutions using (a) midpoint-weighted 
flux coefficients and (b) upstream-weighted flux coef­
ficients (18). 
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in problems with gas percolation, which occurs when the fluid mix­
ture pressure drops below the bubble point. Blair and Weinaug (28) 
introduce the implicit treatment of the flux coefficients that al­
leviates this stability problem. As Coats (43) reviews, this highly 
stable method has proved attractive in simulating other, more complex 
oil-reservoir flows. 

One of the most important problems in black-oil simulation, and 
in fact in reservoir simulation more generally, is the computational 
inefficiency associated with the solution of large systems of linear 
algebraic equations. In either the SS or the IMPES approach, the 
iterative time-stepping scheme calls for the solution of matrix 
equations at each iteration of each time step. For simulations at 
practical scales these calculations alone can tax the storage and 
CPU-time resources of the largest machines currently available. A 
great deal of recent research has focused on the development of fast 
iterative techniques for the solution of the large matrix systems 
arising in applications. 

Among the oldest of these iterative techniques are the block­
iterative methods. These methods use the blocked, sparse structure 
of the linear systems to solve the equations iteratively, b1ock-by­
block (27). Block iterative methods, such as block-successive over­
relaxation, tend to be quite sensitive to "tunable" iteration para­
meters such as overre1axation coefficients. 

Another fairly old class of iterative techniques consists of 
alternating direction methods. These methods, introduced in the 
context of finite differences by Peaceman and Rachford (115), Doug­
las and Rachford (60), and Douglas (56), reduce the computational 
effort in multidimensional problems by implicitly solving over one 
space dimension at a time. While interest in alternating direction 
techniques for finite differences has waned in recent years, interest 
in alternating-direction Ga1erkin and collocation methods has been 
growing; see, for example, Ewing (62) and Celia and Pinder (36). 

In a different approach, Stone (143) proposes the strongly 
implicit procedure (SIP) for solving matrix equations implicitly. 
The idea here is to replace a matrix equation having the form 
[A]{p} = -{R} by an iterative scheme having the form 

([A] + [N]){p}m+1 = ([A] + [N]){p}m - ([A]{p}m + {R}) 

By properly choosing the matrix [N], one can efficiently factor 
([A] + [N]) into a product of sparse upper- and lower-triangular 
matrices. This idea gives rise to an algorithm that gives relatively 
rapid convergence to the solution {p} of the original equation. 
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Finally, much recent interest has focused on conjugate gradient 
methods for solving large matrix equations. These methods have 
their theoretical roots in the equivalence between linear systems 
and minimization problems for positive self-adjoint matrices (95). 
However, the methods admit extensions to the nonself-adjoint opera­
tors that arise in fluid flow problems, especially in conjunction 
with such preconditioning methods as incomplete LU factorization 
and nested factorization (15,110,150,122). The motivation for pre­
conditioning is that, for parabolic flow equations, fine spatial 
grids can yield iteration equations [A]{p} = - {R} in which the 
condition number of [A] is large. By "preconditioning" [A] with 
another matrix [A*]-l, one can arrive at an equivalent system 

that is better conditioned. Clever choices of [A*]-l ensure that 
[A*]-l{R} will be easy to compute at each iteration, thus promoting 
computational efficiency. It is reasonable to expect that precon­
ditioned conjugate-gradient methods will playa larger role in oil 
reservoir simulation as the technology continues to advance. 

4.3. Compositonal Simulation 

The most ambitous applications of the equations for composi­
tional flows arise in the simulation of enhanced oil recovery pro­
cesses. Many of these processes depend for their success on the 
effects of interphase mass transfer on fluid flow properties. One 
noteworthy example of such a process is miscible gas flooding. This 
technology consists of injecting an originally immiscible gas, such 
as CO 2 , into an oil reservoir with the aim of developing a miscible 
displacement front in situ. In successful projects, miscibility 
develops through continuous interphase mass transfers, leading the 
fluid mixture toward its critical composition and hence reducing the 
interfacial tension between the resident oil and the displacing 
fluid. Compositional modeling serves as an important tool in other 
oil recovery problems, too, including production from gas condensate 
reservoirs and recovery of volatile oils. 

There are several ways to classify compositional simulators. 
One way is to characterize the models according to their treatment 
of fluid-phase thermodynamics. There are at least two forms in 
which the thermodynamic constraints mentioned in Section 4.1 can 
appear. The oldest form consists of tabular data for the equilib­
rium ratios wr/w~ of species mass (or mole) fractions in the vapor 
and liquid hydrocarbon phases. Thus, given overall hydrocarbon 
pressures and compositons at a point in the reservoir, one can 
compute fluid saturations, densities, and compositions by perfor­
ming "flash" calculations familiar to chemical engineers (109). 
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The other form of the thermodynamic constraints is the requirement 
that vapor and liquid fugacities be equal for each component: 
fr = f~, i = 1, ... ,N. This approach is especially attractive when 
used in conjunction with an equation of state such as that proposed 
by Peng and Robinson (117). Equation-of-state methods have the 
advantage of thermodynamic consistency near fluid critical points, 
leading to calculations with better convergence properties in models 
of miscible gas floods. In either the equilibrium-ratio approach or 
the equation-of-state approach, though, the thermodynamic constraints 
amount to a system of nonlinear algebraic equations giving fluid 
saturations, densities, and compositions implicitly. 

Another way to classify compositional models is according to 
the manner in which they solve the flow equations (4.1). Two gene­
ral schemes have appeared. One of these treats the flow equations 
sequentially, solving an overall pressure equation and then updating 
the remaining N-l composition equations and the thermodynamic const­
raints at each time step or iteration. This approach parallels the 
IMPES method in black-oil simulation, and, as one might expect, it 
offers computational speed at the expense of some stability. The 
other scheme solves the entire system of flow equations and thermo­
dynamic constraints simultaneously at each time step. This approach, 
analogous to the SS method of Section 4.2, leads to enormous matrix 
equations at each iteration. However, it enjoys greater stability 
than the sequential schemes. Given adequate computers, this fully 
implicit approach is quite attractive, since the compositional equa­
tions can exhibit behavior that is too complex to permit a priori 
estimates of stability constraints. 

Among the simulators using sequential methods are those advanced 
by Roebuck et al. (130); Nolen (109); Van Quy, Corteville, and 
Simandoux (153); Kazemi, Vestal, and Shank (88); Nghiem, Fong, and 
Aziz (108); Watts (158), and Allen (6,7). Let us examine the time­
stepping structure of one such model (7), restricting attention to 
an oil-gas system in which gravity has no effect. Summing the flow 
equations over all N species gives an overall fluid mass balance 

where Ta = kkrapa/~a for each fluid a and TT 
N - 1 independent species balances 

i 

(4.6) 

TG + TO' This leaves 

1, ... ,N-l (4.7) 

where Ti We can regard Eq. (4.6) as an equation 
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for the pressure PG' using Eq. (4.7) to solve for the overall species 
mass fractions wi' The thermodynamic constraints then give the 
saturation, densities, and compositions of the liquid and vapor 
phases. 

To solve these equations sequentially, we first discretize the 
pressure equation (4.6) in time, using the following Newton-like 
iterative scheme: 

(4.8) 

This scheme is similar to that used in the unsaturated flow equation 
1 , f ~ n+l m+l of Section 3.1. After so v1ng or uPG' ,we update the pressure 

iterate by setting p~+l,m+l = p~+l,m + op~+l,m+l. Then we can update 
each mass fraction wl, ... ,wN_l using the finite difference approx­
imation 

1 
-...,..--...,..., {L\ t 17. [ Tn1, +1, m17pnG+ 1, m+ 1 
p n+l,m+l 

(4.9) 

to Eq. (4.7), setting wn+l,m+l = wn + ~ wn+l,m+l This update calls i i t i . 
for values of pn+l,m+l, which are available from the latest itera­
tion of Eq. (4.8) as 

This iterative sequence requires the solution of a matrix equa­
tion only in the spatially discrete analog of Eq. (4.8), since 
Eq. (4.9) has an "explicit" form at each iteration. Notice that, 
while the scheme is not fully implicit, it calls for implicit treat­
ment of the flux coefficients, which lends to the stability of the 
formulation. Figure 8 shows a flow chart for the time-stepping 
algorithm, and Figure 9 shows a profile of vapor-liquid interfacial 
tensions in a simulated vaporizing gas drive (7). The wave of dec­
reasing tensions indicates the development of a zone in which the 
fluid displacement is very nearly miscible. 

With the advent of large, fast digital computers, interest has 
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Figure 8. Flow chart of time-stepping procedure for a sequential 
compositional simulator (7). 
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Figure 9. Interfacial tension profile at various times for a 
compositional simulation of a vaporizing gas drive (7). 



892 

grown in the fully implicit approach to compositional simulation. 
Among the models based on this approach are those reported by Fussell 
and Fussell (72), Coats (42), Heinemann (80), and Chien, Lee and 
Chen (38). This class of formulations treats the discretized flow 
equations and thermodynamic constraints as a set of simultaneous 
nonlinear algebraic equations, generally using some Newton-like 
iterative scheme to advance between time steps. The implicit na­
ture of the formulations leads to great stability at the expense of 
solving large matrix equations of the form [A]{y} = -{R} at each 
iteration. Moreover, the iteration matrix [A] typically has less 
sparseness than the matrices arising from sequential schemes, since 
simultaneous schemes account for more of the nonlinear coupling 
between variables. Young and Stephenson (165) present one approach 
to mitigating this complication by evaluating the flux coefficients 
explicitly. As should be expected, this scheme reduces the compu­
tational effort of the fully implicit approach while sacrificing 
some of its stability. 

There are several areas of difficulty common to practically all 
compositional simulators. One class of problems concerns the mathe­
matical representation of fluid phase behavior. Most research in 
compositional simulation now focuses on methods using cubic equa­
tions of state coupled with equal-fugacity constraints to represent 
the fluid thermodynamics. While this approach guarantees thermo­
dynamic consistency and therefore ensures smooth behavior of fluid 
densities, it requires the solution of highly nonlinear algebraic 
equations in addition to the discretized flow equations. Further­
more, the numerical solution of these thermodynamic constraints 
often suffers poor convergence when fluid pressures and compositions 
approach critical points (129). While the numerical problems asso­
ciated with fluid phase behavior calculations pose serious challen­
ges to the petroleum industry, an extensive discussion of research 
in this area would carry us far afield. 

Another problem affecting compositional simulation is the nu­
merical smearing introduced by upstream weighting. While this source 
of error affects other numerical models using upstream weighting, 
it is particularly problematic in compositional simulation. Because 
compositional models require so much storage and CPU time per spa­
tial node, field-scale simulations often must use relatively few 
nodes and correspondingly coarser grids. The artificial diffusion 
that results can introduce large errors in species mass fractions 
and thus lead to unreal thermodynamics. 

Several investigators have proposed methods for alleviating 
numerical diffusion in compositional simulators. Chase (37), for 
example, proposes local grid refinement methods for use with Galer­
kin finite elements. Section 6.4 discusses local grid refinement 
in more detail. Wilson, Tan, and Casinader (160) advance a method 
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for selecting upstream-weighted difference approximations that yield 
reduced artificial smearing. Ewing and Heinemann (64,65) discuss 
the use of mixed finite-element methods to reduce smearing in compo­
sitional models. These authors propose that inaccurate fluid velo­
cities, obtained by numerically differentiating pressure fields, 
aggravate numerical smearing. By incorporating mixed methods into 
their numerical scheme, they compute more accurate velocities and 
thereby help preserve sharp composition fronts in the numerical 
solution. Section 6 discusses mixed finite-element methods more 
thoroughly. 

Finally, the growing appeal of the fully implicit approach 
implies that the computational effort associated with the inversion 
of large linear systems will become an increasingly important con­
cern. The stakes involved in the linear algebra of compositional 
modeling are much higher than in black-oil simulation, since a 
typical fully implicit compositional model must solve the discreti­
zed flow equations and equal-fugacity constraints for between seven 
and ten species. This avenue of research should be active for quite 
some time to come. 

5. OUTSTANDING PROBLEMS:PHYSICS 

The next two sections review some of the outstanding problems 
in simulating multiphase flows in porous media. Roughly speaking, 
these problems fall into two categories:difficulties arising because 
our knowledge of the physics of multiphase flows is incomplete and 
difficulties in devising mathematical methods to capture known phy­
sics. The two categories are not as distinct as this description 
suggests. For some phenomena our lack of physical understanding 
hinders attempts to model them mathematically. Viscous fingering 
is an example, as discussed below. For other phenomena, the mathe­
matical difficulties are evidence of physical complications that 
lead to peculiar behavior in the governing equations. The occurren­
ce of sharp fronts in immiscible· flows is an example of this coupling. 
Nevertheless, the distinction between physical and numerical diffi­
culties makes some sense if we interpret it as suggesting strategies 
for future research. In this section we consider several physical 
problems. 

5.1. Viscous Fingering 

Often, in two-phase flows, the bulk of one fluid lies upstream 
of the other. In this case we say that the "upstream" phase dis­
places the "downstream" phase, even though there may be large re­
gions where both phases flow simultaneously. The global behavior 
of such flows depends strongly on whether the mobility of the dis­
placing fluid is greater or less than that of the displaced fluid. 
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In the latter case, when the mobility ratio Adisplacing/Adisplaced 

= M < 1, the flow proceeds stably. This implies that velocity 
fields and saturations depend continuously on the boundary and ini­
tial conditions and well rates. When M > 1, however, channels of 
high displacing-fluid saturation can bypass zones of displaced fluid 
in a geometrically irregular pattern. These irregularities in the 
fluid displacement reflect the instability of immiscible displace­
ments at high mobility ratios. The channeling phenomenon is called 
viscous fingering. While this phenomenon occurs in both single­
phase and multiphase flows, we shall restrict our attention to the 
mUltiphase case. 

Viscous fingering is economically important in oil reservoir 
engineering, where displacement of oil by some injected fluid is 
common to almost all recovery processes past primary production. 
In many cases the injected fluid is water, a gas such as CO2 or N2 , 
or a surfactant solution. These fluids tend to be more mobile than 
common crude oils; therefore viscous fingering can occur. As a 
result, such a displacement scheme may sweep only a small fraction 
of the oil-bearing rock between an injection well and a production 
well. This inefficiency motivates reservoir engineers to add mobi­
lity control agents, such as hydrolyzed polymers, to injected fluids 
to lower their mobility. 

Investigations into the physics of viscous fingering in immis­
cible displacements began in the late 1950's. Saffman and Taylor 
(132) investigated an analogy between porous-medium flows and Hele­
Shaw flows, confirming that M > 1 leads to frontal instability. 
Chuoke, van Meurs, and van der Pol (41) applie~ perturbation tech­
niques to show the existence of a critical wavelength for unstable 
fingers. From these early papers through the 1970's the literature 
on viscous fingering mushroomed. Ewing and George (63) provide a 
fairly extensive review of this body of work. 

Research into viscous fingering has continued in recent years 
(76,118,163,94,87). While controversy still exists, there seems to 
be broad agreement that unstable fingers are triggered by heteroge­
neities in the porous medium observable at the microscopic scale. 
However, the macroscopic governing equations based on Darcy's law 
do not explicitly account for microscopic heterogeneities. Mathe­
matical models based on the macroscopic equations and assuming a 
macroscopically homogeneous porous medium therefore have no mecha­
nism for initiating fingers. Consequently, the homogeneous model 
will not exhibit instability, even though it is present in nature. 
One might, as an analogy, consider the mathematical model of an 
ideal pendulum hung vertically upward with zero velocity. The 
idealized model predicts that the pendulum is at equilibrium, whereas 
a natural pendulum in such a configuration is unlikely to stay there. 
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This failure to capture microscopic physics has unfortunate 
implications in numerical simulation. The response of a mathemati­
cal model to unstable immiscible displacements depends on the degree 
of heterogeneity in the data of the problem. Discrete models can 
represent spatial heterogeneity only within the limits imposed by 
the fineness of the spatial grid. Hence, models of immiscible dis­
placement in media exhibiting heterogeneity at many scales can pro­
duce qualitatively different results depending on the spatial disc-

retization used. 

Several articles have appeared reporting efforts to produce bet­
ter numerical representations of viscous fingering, given the in­
herent limitations of discrete methods. Among these are papers by 
Glimm, Marchesin, and McBryan (78), who propose the random choice 
method for solving the flow equations, and Ewing, Russell, and 
Wheeler (66), who examine a mixed method in conjunction with a mo­
dified method of characteristics to give accurate approximations of 
fluid interfaces. Another set of approaches has been to incorporate 
the "average" effects of fingering on the mixing of fluids in nume­
rical simulators. This line of research began with Koval (89) and 
became a common simulation tool with the introduction of a mixing 
model by Todd and Longstaff (148). This "averaging" approach, while 
currently lacking in rigor, may offer fertile ground for the in­
teraction of sound physical reasoning with the development of nume­
rical techniques. 

Finally, there is a great need for more empirical work on viscous 
fingering. Among the many sources of uncertainty regarding the 
nature of fingering is the paucity of field-scale data characterizing 
its effects. As Settari, Price, and Dupont (138) assert, 

The study of unstable displacements, particularly viscous fin­
gering, is distinguished by the fact that in no other area of 
reservoir engineering is there less agreement. There is not 
even complete agreement on the existence of viscous fingering 
as a real phenomenon for reservoir conditions, let alone agree­
ment as to the magnitude and interaction of the various mecha­
nisms involved. 

5.2. Multiphase Hydrodynamic Dispersion 

As the derivation of the compositional equations in Section 4.1 
demonstrates, individual species within a fluid phase need not move 
with the barycentric velocity of the phase. In porous-media flows, 
the deviation of species motions with respect to the mean flow of 
the fluid is called hydrodynamic dispersion. This diffusion-like 
phenomenon is familiar in the context of single-phase flows such 
as miscible displacement in petroleum engineering or soluble conta­
minant transport in groundwater hydrology. However, the literature 
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on hydrodynamic dispersion in multiphase flows is frustratingly 
sparse. 

One likely reason for this sparseness is the difficulty of 
understanding the physics of hydrodynamic dispersion even in single­
fluid flows. Dispersion in porous media actually comprises a set 
of phenomena, including the following (71): (i) molecular diffusion, 
which to macroscopic observers appears retarded owing to the tor­
tuosity of the solid matrix; (ii) Taylor diffusion (146), an effect 
whereby no-slip boundary conditions at the solid walls cause solutes 
in small-diameter pore channels to spread with respect to their 
mean motion; (iii) stream splitting, in which parcels of solute­
bearing fluid divide at pore-channel intersections, and (iv) transit­
time deviations, in which the dissimilar tortuosities of adjacent 
flow paths cause nearby fluid parcels to have different net veloci­
ties in the mean flow direction. Notice that the descriptions of 
these phenomena belong to the microscopic level of observation, and 
hence the use of hydrodynamic dispersion to account for their mac­
roscopic effects imposes an inherent loss of information. To mo­
delers, this smearing of small-scale heterogeneities has undesirable 
implications. Indeed, in models of solute transport in porous media, 
hydrodynamic dispersion is often the most poorly quantified of all 
physical parameters fed into the simulator. 

Relatively few investigators have ventured to propose quantita­
tive forms for hydrodynamic dispersion in the multiphase setting. 
Among the earliest laboratory studies of multiphase hydrodynamic 
dispersion is that of Thomas, Countryman, and Fatt (147). These 
authors find that, when two phases flow in a porous medium, each 
fluid alters the effective pore-size distribution available to the 
other fluid. Thus the degree of saturation of a given phase has 
pronounced effects on the observed level of dispersion. More 
recently, Delshad et al. (53) confirm the dependence of multiphase 
dispersion on saturations. 

As Section 4.1 mentions, most mathematical models of species 
transport in multiphase systems ignore hydrodynamic dispersion. 
There are, however, at least three noteworthy exceptions. The 
first is the compositonal model developed by Young (164), who as­
sumes the second-order tensor form 

for each fluid phase u. Here Du mol stands for the molecular dif­
fusion coefficient in phase a, and aa ~ and aa t signify the longi­
tudinal and transverse dispersivities: respectIvely, in phase a. 
This formulation amounts to a natural extension of the standard 
hydrodynamic dispersion model to multiphase flows, A model described 
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by Abriola (1) and Abriola and Pinder (2) assumes a related form for 
dispersion within a phase, namely 

where ~a mol is a second-order tensor accounting for the effects of 
molecular diffusion in phase a, modified by the matrix tortuosity, 
and ~l is a fourth-order tensor. This form extends the tensor equa­
tion proposed by Bear (23) on theoretical grounds. Finally, Baehr 
and Corapcioglu (20) and Corapcioglu and Baehr (49) derive a set of 
flow equations for immiscible contaminant transport incorporating 
a dispersion tensor for each phase; however, they do not postulate 
a precise tensorial form for dispersion. 

Multiphase hydrodynamic dispersion appears to be one area of 
uncertainty where numerical simulation cannot shed much light. The 
fundamental questions that plague modelers are the same ones that 
arise in single-phase flows. What is the mathematical form of dis­
persion? How can we measure it? Do scale dependencies and asym­
metric effects influence dispersion? It seems apparent that these 
questions address themselves primarily to experimentalists, guided 
ideally by theoretical studies of continuum mixtures such as that 
advanced by Bowen (31). 

5.3. Multiphase Contaminant Flows 

In recent years interest has arisen in multiphase flows invol­
ving immiscible groundwater contaminants. It has long been common 
practice to store or dispose of hazardous chemicals in near-surface 
or underground sites, and fluids escaping from these sites pose 
serious threats to groundwater supplies. Many hazardous chemicals 
and wastes take the form of nonaqueous-phase liquids, or NAPL. 
Common examples include gasoline, polychlorinated biphenyls (PCB), 
chlorinated hydrocarbons, coal tars, and creosotes (154). However, 
many dumpsites harbor a menagerie of chemical wastes, making it dif­
ficult to characterize the NAPL chemically. The multiphase flows 
that lead to contamination of groundwater are physically quite 
complex, and despite the pressing need for predictive tools, nume­
rical simulation of NAPL flows remains in its infancy. 

One type of flow that is important in this context is the simul­
taneous flow of NAPL and water in the unsaturated zone. This soil 
layer usually lies between near-surface NAPL sources and the water 
table and therefore acts as the main pathway for groundwater conta­
mination. As we illustrated in Section 3.1, the flow of a single 
liquid in the unsaturated zone already poses a difficult nonlinear 
problem, so one might expect that multiliquid flows will be even 
harder to simulate numerically. 
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Current efforts in multiphase unsaturated flows focus mainly on 
developing physical understanding. Schwille (135), for example, 
discusses the migration of immiscible organics in the unsaturated 
zone, reviewing such fundamental processes as capillary action, vo­
latilization of the organic species, and microbial degradation. 
Allen (9) applies continuum mixture theory to develop a set of flow 
equations for two liquids in the unsaturated zone. By analyzing a 
medium containing air (A), NAPL (N), and water (W), he derives a 
pair of partial differential equations, each resembling Richards' 
equation in form: 

(5.1) 

for a = N or W. Several variables appearing in this equation are 
analogous to those appearing in the single-liquid case: Ca is the 
specific moisture capacity of phase a; Ga is the moisture content 
of a; ~a is the pressure head in phase a ; ~ is the soil's hydraulic 
conductivity, and Z is depth below some datum. Also appearing are 
the variables Ss a which is the specific storage associated with 
phase a, and kra ', signifying the relative permeability of the soil 
matrix to phase a. The pair of flow equations given by Eq. (5.1) 
constitutes a nonlinear system. Coupling between the equations oc­
curs through the dependence of Ga , Ss a' and kra on the pressure 
heads ~a; the capillarity relationships ~a = ~a(GN' GW)' and the 
restriction GN + GW = ~(l - SA). 

In what appears to be the first effort at numerically simulating 
multiphase unsaturated flows, Faust (69) develops a two-dimensional 
finite-difference model for the flow of water and NAPL. This model 
uses a two-equation formulation similar to that given by Eq. (5.1). 
To solve the discretized flow equations, Faust devises a fully 
implicit scheme akin to the SS method used in black-oil simulation. 
As with other models of multiphase flows, Faust's simulator uses 
upstream-weighted relative permeabilities to accommodate possible 
hyperbolic behavior, as explained in Section 4.2. 

As a practical matter, the simultaneous flow of NAPL and water 
is only part of the multiphase contamination problem. Groundwater 
contamination itself occurs because of mass transfer between NAPL 
and water. Even though NAPL may be immiscible with water, some of 
its constituent species may dissolve in water at very small concent­
rations. While highly dilute, the resulting solution of organics 
in water is often toxic or carcinogenic. Therefore, a complete 
mathematical description of multiphase contaminant flows ought to 
incorporate phase-exchange effects more familiar in the setting of 
compositional reservoir simulators. 
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Very little work has been done in this area. Baehr and Corap­
cioglu (20) propose a model consisting of individual flow equations 
for each species. Since their model aims principally at predicting 
pollution from gasoline spills, they include in their formulation 
such effects as microbial degradation, equilibrium partitioning among 
fluid phase, and adsorption onto the solid phase. Abriola (1) and 
Abriola and Pinder (2,3) present a finite-difference model of spe­
cies transport in an air-water-NAPL system. This simulator accommo­
dates interphase mass transfer through the use of equilibrium ratios 
analogous to those discussed in Section 4.3. The model solves the 
nonlinear algebraic equations resulting from the finite-difference 
approximation using a scheme patterned after the SS method reviewed 
in Section 4.2. Considering the range of problems solved and the 
analyses given of the code's performance, this is perhaps the best­
documented model of multiphase, multispecies contaminant transport 
appearing in the literature at this writing. 

6. OUTSTANDING PROBLEMS:NUMERICS 

Quite a few of the difficulties ar1s1ng in numerical simulation 
of multiphase flows concern the limitations of the numerical methods 
themselves. Here the problem is that the numerical techniques in 
common use produce approximations that are in some way unrealistic 
based on our understanding of the flows that they model. In this 
case the challenge to researchers is to devise new methods or to 
modify existing approaches to permit more accurate simulations. 
We shall examine three types of numerical difficulties of topical 
interest: grid orientation effects, front tracking, and local grid 
refinement. 

6.1. Grid-Orientation Effects 

Since the early 1970's, petroleum engineers have recognized that 
many discrete methods for solving fluid flow equations give quali­
tatively different results when one changes the orientation of the 
spatial grid with respect to the geometry of the physical flow. 
Todd, O'Dell, and Hirasaki (149) first reported this phenomenon in 
a simulator of immiscible flow. They noted that the effects of 
grid orientation are especially pronounced at large mobility ratios. 
A severe example occurs in steamflood simulation (44), where solu­
tions generated using different grid orientations apparently converge 
to different answers. Since these investigations, a substantial 
body of research has developed in the effort to overcome or mitigate 
grid-orientation effects in reservoir simulators. 

One of the first effective techniques for reducing grid-orien­
tation effects appeared in 1979, when Yanosik and McCracken (162) 
presented a nine-point finite-difference scheme that reduces grid­
orientation effects for square grids. The nine-point scheme 



900 

approximates derivatives at a point (xi'Yi) in two-dimensional 
domains by using values at all adjacent nodes instead of the corner 
nodes only. Thus the nine-point analog of the Laplacian on a uni­
form grid is 

[4(u'+1 . +u. 1 . +u. '+1 +u .. 1) l ,] l- ,] l,] l,]-

+ (Ui+l,j-l + Ui-l,j-l + Ui-l,j+l + Ui+l,j-l) - 20Ui,jJ 

Coats and Ramesh (46) observe that the nine-point formulation exhi­
bits poor behavior when used on nonuniform spatial grids. Bertiger 
and Padmanabhan (25) explain this poor performance by demonstrating 
that the usual nine-point formulation on nonuniform grids yields 
an inconsistent approximation to V2 • These authors then propose a 
modified nine-point scheme that restores consistency while reducing 
the grid-orientation effect. In another approach, Potempa (123) 
advances a finite-element technique that is closely related to the 
Yanosik-McCracken nine-point difference scheme but again preserves 
consistency. Several other investigators have devised modified 
finite-difference schemes yielding solutions that are largely in­
dependent of grid-orientation effects; among them are Vinsome and 
Au (155); Frauenthal, Di Franco, and Towler (70); Shubin and Bell 
(142), and Preuss and Bodvarsson (125). 

Finite-element techniques also admit variants that reduce grid­
orientation effects. Among the more promising groups of finite­
element schemes in this regard are mixed methods (50,67,10). The 
motivation behind these techniques is to compute accurate Darcy 
velocities explicitly rather than incurring the loss of accuracy 
associated with standard schemes requiring the differentiation of 
fluid pressures. Thus, for example, we factor the second-order 
pressure equation 

V. (kVp) = 0 

into two first-order equations 

y = -kVp 

- v.v = 0 

By properly choosing the trial functions for y and p, we can compute 
pressures and velocities having the same order of accuracy. In 
problems involving the effects of species transport the mixed method 
is especially effective when used in conjunction with time-stepping 
procedures based on modified methods of characteristics (67). A 
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variety of numerical experiments reported in the references cited 
above demonstrate the method's ability to give good numerical results 
even in problems with highly variable material properties. 

6.2. Front-Tracking Methods 

As we have seen in previous sections, several multiphase flows 
in porous media exhibit sharp fronts that can be modeled as dis­

continuous fluid interfaces. The saltwater toe and the Buckley­
Leverett saturation shock are two examples of such discontinuities. 
Discrete approximations using fixed finite elements or finite-dif­
ference cells have difficulty in capturing the behavior of these 
sharp fronts, since the computational procedures tend to smear infor­
mation over the spatial subregions of the discretizations. Front­
tracking methods aim at circumventing this difficulty by assigning 
computational degrees of freedom to the unknown location of the 
front. Solving for the frontal locations along with the variables 
characterizing the smooth parts of the flow allows the modeler to 
track the front explicitly without introducing numerical diffusion. 
Since one can concentrate many degrees of freedom at the interface, 
front tracking methods also hold great promise in the simulation of 
viscous fingering. 

Front-tracking methods have their roots in numerical applications 
of the method of characteristics in convection-dominated flows. The 
first applications of this approach in porous-media simulation add­
ressed the miscible transport of solutes in single-phase flows (73, 
120). In the method of characteristics, one replaces a partial 
differential equation by a system of ordinary differential equations 
valid along curves where the original equation agrees with the chain 
rule. For example, by comparing the Buckley-Leverett saturation 
equation 

o (6.1) 

with the chain rule 

one can see that dSW/d~ = 0 along curves ~(x,t) in the (x,t)-plane 
where dx/dt qfW(SW)/¢' Loci of constant Sw therefore travel with 
speed qfW(SW)/¢' This fact allows us to compute the position of the 
constant-saturation shock as it moves across a one-dimensional do­
main. 

Perhaps the most extensively applied front-tracking scheme in 
the current literature is that of Glimm and his coworkers (77,79,93). 
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This approach uses an IMPES formulation for two-dimensional immis­
cible displacements in the absence of capillarity. The scheme solves 
the pressure equation on a finite-element grid whose element boun­
daries move to align themselves with the saturation shock. To update 
saturations, the scheme uses standard interior methods in regions 
where the saturation is smooth and couples to the smooth solution 
a Riemann problem propagating the interface. This frontal propaga­
tion relies on a method of characteristics akin to the one-dimen­
sional version outlined above, taking advantage of a local coordi­
nate system aligned with the shock to advance the discontinuity in 
its normal direction. Thus the actual computations required to 
track the front reduce to locally one-dimensional ordinary differen­
tial equations. 

Jensen and Finlayson (85,86) introduce an alternative scheme 
for front-tracking that gives good results in convection-dominated 
species-transport problems. This method defines a set of moving 
coordinates based on the method of characteristics for the hyperbo­
lic, or purely convective, part of the partial differential equa­
tions. Within this moving coordinate system, the convection-domina­
ted transport problem reduces to a problem of the diffusion type. 
Jensen and Finlayson construct a finite-element grid attached to 
the moving coordinates, ensuring that the grid in the vicinity of 
the sharp front is sufficiently fine to avoid the occurrence of 
nonphysical oscillations in the numerical solution. 

In a third approach to front tracking, the Mathematics Group at 
the Lawrence Berkeley Laboratory applies the theory of Riemann prob­
lems for first order hyperbolic systems to solve the immiscible flow 
equations using the random choice method (47,48~4). The random 
choice method, developed as a numerical technique by Chorin (40), 
is an effective procedure for approximating nonlinear hyperbolic 
conservation laws such as Eq. (6.1). The method replaces the un­
known function SW(x,t) by a piecewise constant approximation SW(x,t) 
and then solves a sequence of Riemann problems, each advancing the 
numerical solution by sampling the piecewise constant function S 
to determine initial data. When the solution possesses shocks, the 
random choice method preserves their sharp fronts, since the samp­
ling at each time step avoids the introduction of spurious inter­
mediate values in the numerical solution. However, the method 
allows small errors in the shock location since the sampling iden­
tifies the frontal position only to within the resolution limits 
imposed by the spatial grid. Although developed for one-dimensional 
flows, the random choice method admits extensions to two-dimensional 
problems. Colella, Concus, and Sethian (47) describe the use of 
operator splitting techniques to decompose a two-dimensional equa­
tion into a sequence of one-dimensional equations. 



903 

6.3. Adaptive Local Grid Refinement 

Many problems involving multiphase flows in porous media exhibit 
behavior whose structure is localized in small subregions of the 
spatial domain. We have already encountered such phenomena in the 
form of wetting fronts and saturation shocks. Similar localized 
behavior occurs near wellbores or in the moving concentration fronts 
found in convection-dominated species transport processes. To cap­
ture the essential physics of these features often requires a spa­
tial grid capable of providing high resolution in their vicinity. 
Grid refinement is especially important in view of the common use 
of low-order upstream-weighted approximations in near-hyperbolic 
flows. As frequently applied, these approximations introduce a nu­
merical diffusion error whose magniture is O(6x) for grids of mesh 
6x. By refining the spatial grid in the vicinity of the front, one 
reduces numerical diffusion by shrinking 6X, all the while preserving 
the desirable effects of upstream weighting. 

Generating this extra resolution usually poses few difficulties 
if the locus of highly structured behavior remains constant in time. 
However, in the case of moving fronts, for example, the zones where 
increased resolution is needed move through the spatial domain as 
time progresses. Under these circumstances the refined portion of 
the grid must be capable of moving in time to follow the localized 
structure of the solution. Such schemes fall under the rubric of 
adaptive local grid refinement (ALGR). While ALGR schemes are 
generally difficult to implement, the technical literature in this 
area is vast. Therefore the review that follows merely highlights 
results that appear relevant in multiphase flow simulation. 

There are three basic approaches to ALGR. One of these is to 
increase the polynomial degree of the approximation to the solution 
in regions needing refinement. Such techniques are called p-methods. 
Another approach is to add computational degrees of freedom in the 
regions of refinement, keeping the polynomial degree of the approxi­
mation constant. These techniques are perhaps most appropriate 
when used in conjunction with upstream weighting, since they reduce 
numerical diffusion by shrinking 6x. Such methods are called h­
methods. Finally, there are several techniques that allow the loca­
tion of the spatial nodes in the grid to act as variables in the 
numerical approximation. By solving for the nodal locations and 
nodal solution values simultaneously, one effectively forces the 
grid to move in time to accommodate the structure of the solution. 
These methods are called moving finite element (MFE) techniques. 

Reports of underground flow simulators using p-methods are not 
very numerous. Chase (37) describes a chemical flood simulator 
based on a finite-element Galerkin method that employs hybrid trial 
functions. These trial functions use cO piecewise bilinear Lagrange 
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functions in smooth regions of the flow but insert C1 piecewise bi­
cubic Hermite functions in the vicinity of steep gradients. Mohsen 
(100) describes another p-method applied in finite-element colloca­
tion solutions of the Buckley-Leverett equation. This approach 
refines a coarse grid consisting of C1 piecewise cubic Hermite func­
tions by substituting C1 piecewise quintic functions near the satu­
ration shock. 

The use of h-methods has been more popular. One reason for this 
fact may be a general aversion to the oscillatory tendencies asso­
ciated with polynomial approximations of high degree. Another rea­
son is undoubtedly that h-methods fit more naturally into the frame­
work of finite-difference approximations, which do not explicitly 
use trial functions. Quite a few ALGR schemes for finite differen­
ces have appeared; among them are the methods of von Rosenberg (157), 
Heinemann and van Hande1mann (81), and Douglas et a1. (57), who pre­
sent both finite-difference and finite-element schemes. A consider­
able amount of theoretical work and numerical experimentation has 
focused on finite-element schemes with ALGR (19,52,24,54). One of 
the problems that arises in the construction of adaptive refinement 
codes is the management of the data defining the grid as its struc­
ture changes. There are great computational advantages associated 
with the invention of data structures that can accommodate the 
dynamic refinement and unrefinement of a grid without destroying 
the efficiency of matrix solution algorithms (21). 

MFE methods adopt a somewhat different approach (35,98,74,55). 
For an equation of the form au/at-Au = 0, where A is a spatial dif­
ferential operator, we begin with a piecewise polynomial trial 
function u having unknown time-dependent coefficients u1(t), ... ,uN(t). 
In addition, we allow the coordinates of the spatial nodes xl' ... ' 
xN to be variable. By choosing {aUi/at'Xi}~=l to minimize IIou/at-
Aul12 in a Ga1erkin sense, one can dev1eop a finite-element approxi­
mation in which the nodes tend to concentrate around regions where 
the solution exhibits localized structure. To prevent all of the 
nodes from accumulating near shocks, however, one must impose cer­
tain penalties on the clustering of nodes. A variety of internodal 
spring functions and viscosity-like devices exist to help preserve 
good global approximations by maintaining adequate separation bet­
ween nodes. 

ALGR techniques have a wide range of potential applications in 
general computational mechanics. Fluid flows in particular exhibit 
highly localized behaviors for which local refinement is an attrac­
tive alternative to globally fine grids. Gasdynamic shocks, hyd­
raulic jumps, moving interfaces, and such singularities as sources, 
sinks, and corners are just a few examples of these features. 
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7. CONCLUSIONS 

Throughout this review we have seen several facets of multiphase 
flows in porous media reappear in various applications. These physi­
cal and computational peculiarities emerge as major themes in the 
numerical simulation of flows. Let us close by recapitulating these 
themes. 

Every flow we have examined obeys a nonlinear, time-dependent 
partial differential equation. Nonlinearity is a characteristic 
feature of multiphase porous-media flows, owing to the fact that 
the permeability of the rock matrix to one fluid varies with the 
saturation of any other fluid. Further nonlinearities can arise 
when storage or compressibility effects imply pronounced dependence 
on pressure in the accumulation terms or when there is strong coup­
ling within a system of flow equations. The nonlinear governing 
differential equations generally give rise to nonlinear algebraic 
equations in the approximating discretizations. These algebraic 
systems, in turn, demand iterative solution, and therefore one com­
monly finds Newton-Raphson schemes or related procedures imbedded 
in implicit time-stepping methods for these problems. 

Another common feature in multiphase porous-media flows is the 
occurrence of sharp fronts or moving boundaries in the fluid system. 
The Buckley-Leverett saturation shock stands as a classic example. 
Similar interfaces arise in other contexts: unsaturated flows can 
give rise to wetting fronts, and the saltwater intrusion problem 
exhibits a moving boundary in the toe of the salt-water wedge. Sharp 
fronts pose difficulties to the numerical analyst, since they require 
high spatial resolution to model and are sometimes associated with 
uniqueness issues. In certain classes of flows they can also exhibit 
instability, as when viscous fingering occurs in displacements at 
adverse mobility ratios. The most natural solutions to these sharp­
front difficulties are front-tracking methods and adaptive local grid 
refinement. 

Finally, various numerical aspects of modeling multiphase flows 
combine to require truly large-scale computations. A typical simu­
lator solves large, sparse matrix equations at every iteration of 
every time step. When compositional effects are present, the code 
must solve nonlinear thermodynamic constraints as well. The desira­
bility of local grid enrichment, front-tracking algorithms, or moving 
grid schemes adds to this scale of calculation both in complexity and 
in computational effort. Scientists who model multiphase underground 
flows have every reason to applaud the emerging generation of super­
computers and parallel architectures, since these machines may spell 
the difference between compromise in the approximation of complex 
flows and the practical achievement of realistic simulations. 
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Ralph Cady 

Conservation & Survey Division 
University of Nebraska-Lincoln 
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ABSTRACT 

Shlomo P. Neuman 
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University of Arizona 
Tucson, Arizona, 85721, USA 

Advection-dispersion is generally solved numerically with 
methods that treat the problem from one of three perspectives. 
These are described as the Eulerian reference, the Lagrangian 
reference or a combination of the two that will be referred to as 
Eulerian-Lagrangian. Methods that use the Eulerian-Lagrangian 
approach incorporate the computational power of the Lagrangian 
treatment of advection with the simplicity of the fixed Eulerian 
grid. A modified version of a relatively new adaptive Eulerian­
Lagrangian finite element method is presented for the simulation of 
advection-dispersion. In the vicinity of steep concentration fronts, 
moving particles are used to define the concentration field. A 
modified method of characteristics called single-step reverse 
particle tracking is used away from steep concentration fronts. An 
adaptive technique is used to insert and delete moving particles as 
needed during the simulation. Dispersion is simulated by a finite 
element formulation that involves only symmetric and diagonal 
matrices. Based on preliminary tests on problems with analytical 
solutions, the method seems capable of simulating the entire range 
of Peclet numbers with Courant numbers well in excess of 1. 

1. INTRODUCTION 

The advection-dispersion equation can often be characterized 
by the dimensionless Peclet number 

Pe Ivl L 
~~ II 

(1.1) 
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where y is the velocity vector, L is a characteristic length, and 
p is the dispersion tensor. For the one dimensional spreading of 
an inert chemical due to molecular diffusion, the governing equation 
may be written 

dC 
dt 

(1.2) 

where c is concentration, t is time, x is the spatial coordinate 
defined relative to L, and Pe is the Peclet number defined by Eq. 
(1.1) with the dispersion tensor consisting only of molecular 
diffusion. As Pe approaches zero, the equation becomes parabolic 
and diffusion dominates. As Pe approaches infinity, the equation 
becomes hyperbolic and advection dominates. Clearly, the character 
of the equation may vary from parabolic to hyperbolic over space 
and time if the velocity or the dispersion tensor vary. 

In addition to the Peclet number, the success of many methods 
for the solution of the advection-dispersion equation may be affected 
by the Courant number 

v~t 

~x 
(1.3) 

where a c is the dimensionless Courant number, v is the velocity, ~t 

is the size of the time step and ~x is the distance between grid 
points or nodes. 

Numerical methods to solve the advection-dispersion equation 
may be categorized by the emphasis placed on the parabolic or 
hyperbolic nature of the problem. In Eulerian methods, discretiza­
tion of the equation is performed relative to a grid that is fixed 
in space. Lagrangian methods are based on a discretization over a 
deforming grid or a fixed grid in deforming coordinates. Eulerian­
Lagrangian methods combine aspects of both techniques in order to 
merge the computational power of the Lagrangian reference with the 
simplicity of a fixed Eulerian grid. Neuman (17) provides a 
literature survey and offers some general observations relative to 
the strengths and weaknesses of these methods while Smith and Hutton 
(25) offer a comparison of a number of methods for the solution of 
steady two-dimensional advection-dispersion. 

2. EULERIAN METHODS 

Finite difference or finite element techniques are often used 
to solve the advection-dispersion equation by discretizing the 
equation over a fixed or Eulerian grid. Numerical experiments have 
demonstrated that these techniques perform quite well when dispersion 
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dominates the problem and the distribution of concentration is 
relatively smooth. Eulerian methods are generally conservative; 
i.e., they often accurately maintain a mass balance. Neuman (17) 
concludes that Eulerian methods offer convenient means to address 
complex problems with spatially nonuniform material properties but 
often suffer from restrictions on the duration of time steps and 
the size of spatial grid increments. For example, Daus and Frind 
(3) propose an alternating-direction finite element method that is 
constrained to Courant numbers less than 1 and Peclet numbers less 
than 2. Patel, Markatos and Cross (21) contrast the accuracy of 
some Eulerian schemes for the simulation of steady advection-disper­
sion. Gupta, Manohar and Stephenson (7) propose a scheme that 
appears to relax some of the constraints for Eulerian methods. 

3. LAGRANGIAN METHODS 

The power of Lagrangian methods stems from the reduction or 
elimination of the advective terms from the equations discretized 
over a moving grid. This formulation is often better suited to the 
solution of simple problems that are dominated by advection. For 
example, McBride and Rutherford (16) describe a simple Lagrangian 
method for simulating advection-dispersion in one-dimension for 
non-uniform flow in rivers. Jensen and Finlayson (13) use a 
Lagrangian coordinate system with its origin at the center of the 
moving front to remove much of the hyperbolic nature of the 
advective-dispersion equation. This later technique is not subject 
to oscillation and is subject to slight numerical dispersion only 
at high Peclet numbers. However, techniques that involve a moving 
reference may be difficult to implement under certain circumstances. 
Prickett, Naymik and Lonnquist (22) have popularized a Lagrangian 
advection-dispersion method that advects particles along pathlines 
and simulates dispersion by applying a random-walk adjustment to 
the particle locations. Lagrangian methods are often not strictly 
conservative; i.e., it is frequently difficult to maintain mass 
balance. Neuman (17) discusses some of the difficulties encountered 
when applying Lagrangian methods to complex subsurface environments. 

4. EULERIAN-LAGRANGIAN METHODS 

The combination of the Lagrangian treatment of advection with 
an Eulerian fixed grid offers some distinct advantages in the 
solution of complex problems. The review by Neuman (17) refers to 
a few different methods to treat advection. One is the particle 
tracking method suggested by Garder, Peaceman and Pozzi (6) which 
is often referred to as the method of characteristics. This method 
consists of advecting a set of particles along characteristics and 
has been applied by Konikow and Bredehoeft (14) and others. Another 
method, which was suggested by Hinstrup, Kej and Kroszynski (10), 
is called single-step reverse particle tracking by Neuman (18) or 
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a modified method of characteristics by others including Ewing, 
Russell and Wheeler (5). This method determines, for the beginning 
of a time step, the location and concentration of a fictitious 
particle that will coincide with the node at the end of the time 
step. This location is determined by tracking backward in time 
along the characteristic through the node. This technique has been 
used by a number of investigators including Baptista, Adams and 
Stolzenbach (1), Cheng, Casulli and Milford (2), Holly and Usseglio­
Polatera (11), and Rice and Schnipke (23). The method described by 
Neuman (17) relies on two grids; one fixed and another that 
temporarily deforms due to advection. This deforming grid is 
redefined after each timestep. Similar schemes are proposed by 
Hasbani, Livne and Bercovier (9) and Le Roux and Quesseveur (15). 
Doughty, et al. (4) describe another method that requires a fixed 
grid with a spacing between nodes such that the advected field moves 
exactly one grid unit per time step. Guven et al. (8) apply this 
technique to a single-well tracer test in a horizontally stratified 
aquifer. As in Lagrangian methods, maintaining strict mass balance 
is often difficult for many Eulerian-Lagrangian methods. 

Eulerian techniques to simulate dispersion generally estimate 
the dispersive change from the concentration field defined by nodes 
on a fixed grid. For example, Konikow and Bredehoeft (14) apply 
explicit finite differences on a fixed grid. Cheng, Casulli, and 
Milford (2) use a novel explicit formulation for dispersion in which 
the dispersive flux is estimated at the location that will be 
advected to the node at the end of the time step. 

5. ADAPTIVE EULERIAN-LAGRANGIAN METHOD 

Neuman (17) presents an Eulerian-Lagrangian method that formally 
decouples the advection-dispersion problem into two parts, one 
consisting of pure advection and the other dominated by dispersion. 
The advection problem is solved using the method of characteristics 
on a fixed space-time grid coupled with a solution to the dispersion 
problem on another grid using finite elements. The solution to the 
dispersion problem uses a Lagrangian finite element formulation 
consisting of only symmetric and diagonal matrices. This particular 
method is subject to some artificial dispersion that has been 
attributed by Neuman and Sorek (20) to interpolation between the 
grids. 

An alternative method that adaptively incorporates moving 
particles surrounding steep concentration fronts and a modified 
method of characteristics away from steep fronts was presented by 
Neuman (18). This method seemed capable of simulating the entire 
range of Peclet numbers with Courant numbers well in excess of 1. 
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The method presented in this paper is a modification of Neuman 
(18). 

6. THEORY 

Consider the advection-dispersion equation 

dC 
R at = V. (~Vc - yc) - RAc + q/E (6.1) 

where c is concentration, R is the retardation factor, t is time, 
V is the gradient operator, ~ is the dispersion tensor, y is the 
seepage velocity vector, A is the radioactive decay coefficient, q 
is a source term, and E is porosity. Initial conditions are given 
by 

(6.2) 

where ~ is the position vector and CO is a prescribed function. 
Conditions on inflow and noflow boundaries are given by 

(- ~VC + yc).~ + a(c - C) = Q (6.3) 

where n is the unit outward normal vector along the boundary r, C 
and Q ~re prescribed functions and a determines the nature of the 
boundary condition acting on r. The condition along the boundary 
can vary from prescribed flux (a is zero) to prescribed concentration 
(a is infinite). With intermediate values of a, the condition is 
mixed. 

Outflow boundaries are often represented by the following 
condition 

DVc.n = 0 
" -

(6.4) 

While this is a convenient formulation, it is often not a very 
realistic representation for certain outflow boundaries. Eq. (6.4) 
implies that there is no flux across an outflow boundary due to 
dispersion. We will discuss another condition that may be applied 
to outflow boundaries later in this chapter. 

Using the hydrodynamic derivative modified for retardation 

D 
Dt 

d 
dt + 

v.V 
---

R 

we can express Eq. (6.1) in Lagrangian form as 

(6.5) 
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Dc 
R Dt = V. (~Vc) - cV.y - RAc + q/E (6.6) 

In this formulation, c represents the concentration of a particle 
of fluid moving with a velocity equal to y/R. 

Neuman (17) introduces an expression of c as the sum of two 
functions 

c(x,t) c(x,t) + ~(x,t) (6.7) 

In the present case, we require c to satisfy the nonhomogeneous 
differential equation 

R Dc 
Dt 

- cV.v - RAc 

subject to the initial condition 

(6.8) 

(6.9) 

where tk is time at the beginning of a time step, and the Cauchy 
condition 

vc.n + a(c - C) = Q (6.10) 

on inflow and noflow boundaries. Since c is the result of pure 
advection, the outflow boundaries have no influence on c. Adding 
Eq. (6.8) to Eq. (6.6) gives 

R Dc 
Dt V. (~Vc) - (c - c)V.y - RA(c - c) + q/E + R ~~ 

7. NUMERICAL APPROACH 

(6.11) 

Suppose that c is known at time t k , and we wish the solution 
at time t k+l = tk + ~t. We define c(~,tk) according to Eq. (6.9). 
The advection problem is solved by single-step reverse particle 
tracking combined with an analytic soluti.on to Eq. (6.8) over the 
time step. Forward particle tracking (method of characteristics) 
is used in the vicinity of steep concentration fronts to define the 

concentration field. The residual dispersion problem is solved to 
obtain the nodal concentrations at the end of the time step by using 
finite elements on a fixed grid. Adjustments to the particle 
concentrations are determined by applying a separate finite element 
analysis to particles within individual elements. A finite element 
function over the fixed grid, cN(~,t), is used to approximate c(~,t) 
and is defined as 
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(7.1) 

where N is the total number of nodes in the finite element grid, 
cn is the concentration at node n and ~n is the finite element basis 
function for node n. Basis functions are chosen so that E ~n(x)=l.O. 

n -
A finite element approximation for ~(~,t) is given by cN(~,t) as 

(7.2) 

7.1. Single-step Reverse Particle Tracking 

Consider a fictitious moving particle that reaches node n at 
time t k+l . The location of this point at time tk is 

k+l 
~n 

tk+l 

J (~/R) Dt (7.3) 

If the duration of the time step does not change and the velocity 
is constant, kx remains constant for each n and must be computed 
only once. _n 

Define kc as the concentration at time tk of a fictitious 
n 

moving particle that reaches node n at time t k+l . In the absence 
of particles, kcn is determined by evaluating Eq. (7.1) at location 

kx The value of c~+l is calculated from kc by evaluating the 
_n n 

analytic solution to Eq. (6.8) over the timestep from tk to t k+l as 

tk+l 

-k+l = k cn cn exp[ J (V.y + RA)Dt] 
tk 

(7.4) 

7.2. Continuous Forward Particle Tracking 

In the vicinity of steep concentration fronts, particles are 
introduced and their positions continually tracked along pathlines. 
The initial concentration for each particle is estimated by applying 
Eq. (7.1) to the initial location of the particle. Along inflow 
boundaries, any new particle, r, introduced at (er,t k ) is assigned 
concentration given by 

aC + Q I 
v.n + a 
- - ~r' tk 

according to Eq. (6.10). 

(7.5) 
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After advection, each particle, p, is located at a new position 

k+l 
~p 

k 
~p + 

t k+l 

f (~/R) 
tk 

Dt 

To estimate c~+~ we use the analytic solution to Eq. (6.8) 

k c p exp[ 

t k+l 
f (V.~ + RA)Dt] 

tk 

7.3. Projection of Particle Concentration upon Nodes 

(7.6) 

(7.7) 

Various methods can be used to estimate the concentration 
c~+l from the concentration field defined by the particles. Three 
have been investigated in this chapter. 

The first two are based upon the method used by Neuman (18); 
weighting the concentration of particles in elements surrounding 
the node by the reciprocal of the distance between the particle and 
the node. One of these methods uses all of the particles in the 
elements adjacent to the node and the other uses only one particle 
in each of the adjacent elements; the one nearest the node. Nodes 
that are not surrounded by particles simply assume the concentration 
due to single-step reverse particle tracking given by Eq. (7.4). 

The third method estimates the concentration field defined by 
the particles by using a locally optimal triangulation of particles 
within individual elements. 

If kx is in an element containing particles, k Cn is estimated 
-n 

by performing a triangulation of the particles and the nodes defining 
the element by an algorithm presented by Sloan and Houlsby (24). 
kx is located in the proper particle (or particle-node) triangle 
-n 

and the value of kc is estimated from the particle concentrations, 
c~, the nodal concegtrations, c~, and linear particle (or particle­
node) basis functions in a fashion similar to Eq. (7.1). 

c~+l, the concentration advected to the node, is calculated 
from the estimate for kc by applying Eq. (7.4). 

n 

7.4. Dispersion by Finite Elements 

Applying the Galerkin orthogonalization procedure to Eq. (6.11) 
yields 
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(Dc _ Dc) _ V.(DVc) + (V.~ + RA)(C - c) - q/£l~ndRe = 0 
Dt Dt ., 

n=1,2, ... ,N (7.8) 

where Re is the region bounded by r and ~n is the basis function for 
node n. For the time being, we will exclude the finite element 
approximation for c given by Eq. (7.1) from the time derivatives of 
Eq. (7.8). 

Each node of the finite element grid is treated as a particle 
that has reached ~n at t k+l . Following the suggestions of Neuman 
and Narasimhan (19), the parabolic formulation allows us to apply 
the lumped-mass approach to the time derivatives in Eq. (7.8) 

f R Dc 
DCn 

f R~ndRe Dt ~ndRe - Dt (7.9) 

Re Re 

f R Dc 
DCn 

f R~ndRe ~ndRe - Dt Re Dt Re 
(7.10) 

Time derivatives are then approximated by finite differences using 
a backward difference formulation 

(7.11) 

-k+l kc cn - n 

oM 
(7.12) 

Applying Green's first identity to the dispersion term gives 

f -V.(~VcN)~ndRe = f ~VcN.V~ndRe - f ~VcN·~~ndr (7.13) 
Re Re r 

The boundary integral given in Eq. (7.13) may be calculated from the 
boundary condition defined by Eq. (6.3) on inflow and noflow 
boundaries giving 

fr~vcN.~~ndr = fr[~cN.~ + a(cN - C) - Ql~ndr (7.14) 

We define a 'dispersion matrix' that is symmetric, positive semi­
definite, and of order N by 
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(7.15) 

B is a symmetric 'boundary matrix' of order N defined as 

f -(y. ~ + Ct)E;n~mdri 
r i 

Ct < 00 (7.16) 

if nand m are on an inflow or noflow boundary and zero otherwise. 
If Ct is infinity, the concentration at that node is known and an 
equation for the node is not needed. ~ is a symmetric matrix whose 
terms incorporate radioactive decay and the divergence of velocity 
as 

Fnm = J (V.y + RA)~n~mdRe 
Re 

(7.17) 

W, the 'capacity matrix', is diagonal and of order N, with diagonal .. 
terms 

V is a 'source vector' of order N generally defined as 

Vn = J t ~ndRe 
Re 

(7.18) 

(7.19) 

If n is on an inflow or noflow boundary and Ct is not infinite (the 
concentration at n is not prescribed), an additional term is incor­
porated into Vn to account for the boundary condition. In this case 

(7.20) 

Along outflow boundaries, the condition specified by Eq. (6.4) 
is easily applied since the value integrated along the boundary 
segment is always zero. If the dispersive flux across an outflow 
boundary can not be assumed to be zero, the boundary integral in 
Eq. (7.13) is non-zero. When expressed as a matrix product with a 
vector of concentrations, the matrix representing the integral is 
not symmetric. In order to maintain symmetric coefficient matrices 
for the unknown concentrations after dispersion, we approximate the 
integral by substituting the finite element approximation cN(x,t) 
for cN(~,t). -

J ~VcN·~~ndra~ J ~VcN·~~ndra= ~ cm fr~V~m.~~ndra 
ra ra a 

(7.21) 
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The suitability of this approximation relies on the gradient of c 
to adequately represent the gradient of c. This approximation is 
reasonable if the concentration field has dispersed sufficiently 
prior to advection to the outflow boundary. This approximation is 
incorporated into the equation for node n by adding the estimate 
in Eq. (7.21) to V . 

n 

7.4.1. Implicit dispersion 

Incorporating Eq. (7.9)-(7.20) into Eq. (7.8) with the dispersive 
flux estimated implicitly gives 

(A + B + F + W/~t)ck+l = V + (F + W/~t)ck+l 
~ :l: ~:::= -:II::::::: 

(7.22) 

In this form, the dispersive flux and boundary flux terms are 
estimated implicitly with the concentrations ck+l and a correction 
is included on both sides by the F matrix to account for the diver­
gence of velocity and radioactive decay. These equations may be 
solved by many symmetric matrix techniques; we are currently using 
Cholesky factorization. 

7.4.2. Explicit dispersion 

An explicit approach estimates the dispersive flux from known 
concentrations. We may use ck+l and omit the corrective F matrix 
terms from both c and c giving a set of simultaneous equations of 
the form 

(W/~t)ck+l = V + (A + B + W/~t)ck+l 
:::::: -:::::::::::::::: 

(7.23) 

Neuman and Narasimhan (19) discuss stability limitations imposed on 
the length of the time step of this formulation given by 

~t ~ min [W I(A + B )] nn nn nn 
(7.24) 

n 

Eq. (7.23) is easily solved because it involves only one unknown 
per equation. 

7.4.3. Mixed implicit-explicit dispersion 

Following the same rational used by Neuman and Narasimhan (19), 
we evaluate the stability of nodal concentration by evaluating the 
length of a stable time step for each node. Those nodes with stable 
time steps less than ~t are solved implicitly. Eq. (7.22) is applied 
to all unstable nodes and all stable nodes that are adjacent to 
unstable nodes. This is slightly less efficient than solving 
implicitly for only the unstable nodes, but eliminates the need to 
correct the dispersive flux between nodes when one the flux is 
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solved explicitly for one node and implicitly for the other. 

7.5. Adjustment of Particle Concentration for Dispersion 

After the dispersion problem has been solved for the nodes, 
the concentrations of the particles must be adjusted for dispersion. 

Neuman (18) adjusts the particle concentrations by an amount 
determined by the change in the concentration field defined by the 
finite-element approximations given by Eq. (7.1) and (7.2) 

c 
p 

k+l 
(7.25) 

This adjustment may be sufficient if the gradient of concentration 
between particles is not sufficiently different from the gradient 
of concentration defined by the nodal concentrations. 

In the event that the particle concentration gradients are 
significantly different from the nodal concentration gradients, an 
additional dispersion of the particle concentrations might improve 
the accuracy of the simulation. Particle concentrations are 
dispersed by applying a local finite element analysis to the 
concentration of particles within an element using the results for 
the dispersion at the nodes as boundary conditions. 

- k+l 
Let cp be the vector of particle concentrations at the end 

of the time step but prior to dispersion and cpk+l be the vector of 
particle concentrations at the end of the time step and after 
dispersion. Also, let cpN,k+l be the vector of cN(x ,t k ) for all 
particles, that is, the finite element approximatio;Pof t~e concent­
ration at the particle location after the dispersion problem has 
been solved for the nodes. 

To maintain conservation of ,mass during the dispersion step, 
we wish to adjust the particle concentrations such that the change 
in mass within an element is the same for the particle approximation 
as for the finite element approximation. To assure consistency, we 
perform a localized finite element analysis applied to the particle 
concentration field bounded by an individual finite element. 
Particles within an element are triangulated according to the 
algorithm of Sloan and Houlsby (24) and the net change of mass 
within the element is partitioned to the particles within the 
element to form the vector ~ according to 

(7.26) 
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where M is the net change in mass associated with particle p 
determiRed by the triangulation of particles within elements. ~p 
is defined for the particle over the triangulation within the 
element such that L ~ = 1.0. This change in mass represents a 

cumulative source ~er~ in the equation for each particle. A 
'dispersion matrix', ~', is assembled for the particles within an 
element. 

A' 
pr f DV~ .V~ dRe 

Re ~ p r 
(7.27) 

The p and r refer to particles within the element. A 'capacity 
matrix', W' much like that in Eq. (7.18) is formed for particles 
within the element. 

w' = J ~ dRe 
pp ReP 

(7.28) 

Because retardation, decay, sources and large-scale dispersion are 
incorporated in Eq. (7.26), the final equation for each particle 
requires only the local dispersion, capacity and the net change of 
mass 

(7.29) 

This system of equations is solved and the process repeated for 
every element containing particles that violate the gradient 
criterion. 

7.6. Adaptive Mechanism 

Forward tracked particles are added during simulation along 
inflow boundaries, at prescribed-concentration nodes and in the 
vicinity of steep concentration fronts. Particles are deleted once 
they cross outflow boundaries and as fronts disperse to such a degree 
that forward tracked particles are no longer necessary to prevent 
numerical dispersion. 

Particle insertion and deletion associated with steep fronts 
is based upon an evaluation of the variation of the concentration 
gradient across an element. If the gradient is essentially constant 
in the vicinity of an element, forward tracked particles are not 
necessary for the advection of the concentration field without 
numerical dispersion. On the other hand, if the variation of the 
concentration gradient is significant, particles are needed to 
prevent numerical dispersion. 
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A single criterion based upon a user-supplied value controls 
the automatic insertion and deletion of particles due to variation 
of local concentration gradients. 

7.7. Mass Balance 

Mass-balance errors may be intreduced during the advection 
phase of this technique. Other than the inaccuracies associated 
with moving along path1ines, errors in mass balance may result as a 
front disperses beyond the particles that define the front or when 
the particle concentrations are projected to the nodes and poten­
tially, the method used to reduce the particle concentrations for 
dispersion. The introduction of new particles to define the front 
is based upon an evaluation of the change of the concentration 
gradient across an element that does not contain any particles. If 
the change of gradient exceeds a user-specified amount, particles 
are introduced within that element. Adjusting the user-specified 
value will alter the mass-balance error due to this source; 

8. EXAMPLES 

The two-dimensional dispersion of a rectangular wave in a steady, 
uniform velocity field over an infinite two-dimensional region is 
governed by 

subject to 

c(x,y,O) 1.0 when x 
c 

Yc 

ac 
at 

- a ~ 

- b ~ 

x ~ x + a c 

y ~ Yc + b 

c(x,y,O) = 0.0 otherwise 

c(_oo,y,t) = c(oo,y,t) c(x,oo,t) = c(x,_oo,t) 0.0 

The analytical solution is 

c(x,y,t) 
a-(x-x )+v t 

c x 

I4Dt 
x 

] + erf[ 
a+(x-x )-v t 

c x 

b+(y-y )-v t 
+ erf[ c y]} 

I4Dt 
y 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

]} 

(8.5) 
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For this example, D = 1, D = 0.1, v = 1000, v = 33.33, a = 0.05, 
x = 0.15, b = O.Olxand y ~ 0.02. T6e finite erement grid consists 
of 2000 rectangular eleme~ts with an x-distance between nodes of 0.01 
and a y-distance between nodes of 0.004. Boundary conditions were 
simulated as 

c(O.O,y,t) 0.0 

c(x,-0.04,t) = 0.0 

a . 
ax[c(l.O,y,t)] 0.0 

a 
ay[c(x,0.088,t)] 0.0 

The directional Peclet numbers are 

Pe 
x 

Pe 
y 

v !::"x/D 10.0 
x x 

v!::"y/D = 1.33 
Y Y 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

The analytical solution is for a perfectly square wave, that is, a 
wave with infinite concentration gradients where the concentration 
drops from 1.0 to zero. This infinite gradient poses a number of 
serious problems for this method. In order to minimize these problems 
while maintaining the overall form of the problem,we will approximate 
the initial concentration field over the fixed Eulerian grid such 
that the concentration field forms a trapazoidal wave rather than a 
perfectly square wave. To approximate the square wave both in initial 
mass and shape, the wave was initialized by setting the initial nodal 
concentration to 

c (0) = 1.0 
n 

c (0) 0.5 
n 

c (0) = 0.0 
n 

when .11 

.012 

when x = 
n 

.012 

otherwise 

~ x ~ .19 
n 

(8.12) 

::: Yn ::: .028 

.10 or x .20 
n 

~ Y ~ .0.28 
n 

(8.l3) 

(8.14) 

If particles are introduced during the simulation, their initial 
concentration was determined by applying either Eq. (7.1) or (7.5). 

Figures 1-4 depict results along lines through the peak of the 
analytical solution at time = 0.0006 using either 32 time steps 
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or 11 time steps. The analytical solution is plotted as a solid 
line while the simulated nodal values are plotted as crosses. For 
32 time steps, the Courant numbers are 1.87 in the x direction and 
0.16 in the y direction. For 11 time steps, the Courant numbers 
are 5.45 in the x direction and 0.45 in the y direction. Because 
the time step for the simulation with 32 time steps satisfies Eq. 
(7.24), this problem is stable under the explicit formulation. The 
simulations with 32 time steps depicted in Figures 1-4 were solved 
explicitly while the simulations with 11 time steps were solved 
implicitly. 

The left half (parts a and c) of the Figures 1-4 depict results 
along the line y = 0.04 while the right half (parts b and d) depict 
results along the line x = 0.75. 

Figure 1 represents the results of simulations without particles. 
Numerical dispersion from the analytical solution is quite apparent 
in both simulations in Figure 1 with greater dispersion as the number 
of time steps increase. 

Figures 2-4 represent simulations with particles automatically 
inserted to define the wave as advection and dispersion proceed. 
About 1500 particles were required to define the wave at the end of 
simulation with 32 time steps and about 900 particles for the 11 
time step simulation. The particle simulations differed in the way 
that the advected nodal concentration was estimated from the particle 
concentration. The methods are described in slightly greater detail 
in section 7.3 of this paper. Results from simulations with advec­
ted nodal concentrations estimated by reciprocal distance weighting 
of all particles in adjacent elements are represented in Figure 2. 
Figure 3 represents simulations with advection nodal concentrations 
determined by weighting only the nearest particle in each element 
adjacent to the node. Results from simulations implementing the 
triangulation of particles are represented in Figure 4. Table 1 
summarizes the departure of the numerical simulations from the 
analytical solution to the problem by listing the percentage 
difference between the numerical and analytic concentrations at the 
peak of the wave (0.543 for the analytical solution) and the 
difference between the mass of the numerical wave and the mass of 
the analytical solution wave (0.002 for the analytical solution). 

To assess the significance of the explicit solution versus the 
implicit solution, the problem was simulated with and without 
particles for 32 time steps using an implicit solution for the 
residual dispersion problem. The results of these simulations are 
depicted in Figure 5. There is no significant difference between 
the explicit simulations depicted in Figures 1 and 4 and the implicit­
simulation results in Figure 5. 



0.6 

0.4 

c 

0.2 

0.0 
0.00 

(a) 

0.6 1 

0.4 ~ 
C 

0.2 

0.0 

0.25 0.50 0.75 1.00 
X 

32 time steps: no 

939 

0.6 

0.4 

c 

0.2 

0.0 
0.00 0.02 0.04 0.06 0.08 

Y 

particles (b) 

0.6 

0.4 
+~ 

\ c 

0.2 

0.0 
0.00 0.25 0.50 0.75 1.00 0.00 0.02 0.04 0.06 0.08 

X Y 

(c) 11 time steps; no particles 

Figure 1. Simulation of problem 1. without forward-particle 
tracking. 
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Figure 2. Simulation of problem 1. with all adjacent particles 
included in weighting of nodal concentrations. 
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Figure 3. Simulation of problem 1. with only nearest adjacent 
particles included in weighting of nodal concentrations. 
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Figure 4. Simulation of problem 1. with triangulation of particles 
performed to determine advected nodal concentrations. 
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Figure 5. Simulation of problem 1. with implicit solution of the 
residual dispersion step. 
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Table 1. Departure of Numerical Solutions from Analytical Solution 

32 time steps 11 time steps 

deviation deviation deviation deviation 
of peak of mass of peak of mass 

Algorithm (%) (%) (%) (%) 

No particles -21 -1 -13 1 
Weight all particles 1 3 3 3 
Weight nearest -.1 3 4 3 
particles 
Triangulated -1 1 4 2 

The second example problem is similar to the first with the 
exception that dispersion is reduced by an order of magnitude 
(D = 0.1 and D = 0.01). Therefore, the Peclet numbers are 
in~reased by anYorder of magnitude; Pe is now 100 and Pe is now 
13.33. Results from simulations with ~nd without particres at time 
= 0.0006 are depicted in Figure 6. Once again, the simulation 
without particles suffers from numerical dispersion (the numerical 
peak of the concentration wave is about 18 percent below the 
concentration of the peak of the analytical solution). The mass of 
the simulated wave is virtually identical to the mass of the 
analytical solution after 11 time steps. Incorporating particles 
into the simulation of the problem results in a numerical concentra­
tion at the peak that is about 2 percent below the analytical solu­
tion while the mass of the numerical wave is about 1 percent above 
the analytical value. 

The third example is similar to the first and second except 
that there is no dispersion of the wave; D = D O. For the case 
of pure advection, the Peclet number is in!init~. Courant numbers 
for these simulations are the same as those for example 1. Figure 
7 represents simulations with and without particles for 11 time steps. 
Numerical dispersion is evident in the results from the simulation 
without forward moving particles. When particles are incorporated 
into the simulation (458 for 11 steps), advection of the wave is 
virtually free of dispersion or distortion. 

Often the results of a numerical-simulation method are sensitive 
to the orientation of the grid. Radial advection-dispersion from a 
circular source is presented as an example to examine the sensitivity 
of the results to the orientation of the grid. For this example, 
the analytical solution is radially symmetric about the circular 
source. The initial concentration is zero everywhere. The velocity 
from the source is steady and radial with a magnitude of SO/radius. 
The source is located at x 75, y = 75 with a radius of 2.5 and 
begins emitting water with a concentration of 1.0 at time 0.0. The 
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(a) 11 time steps; triangulated (d) 

Figure 6. Simulation of problem 2. 
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(c) 11 time steps; 0=0.0 with particles (d) 

Figure 7. Simulation of problem 3. 



947 

longitudinal dispersivity is 5 and the transverse dispersivity is 
0. Figure 8 depicts the. results of simulations with and without 
particles at time = 5 over a rectangular grid with a distance 
between nodes of 5. The maximum Courant number is 2 and the maximum 
Peclet number is 20. The explicit-stability criterion given by 
Eq. (7.24) allows the residual dispersion problem to be solved 
explicitly at most nodes while requiring an implicit solution at 
only a few nodes. Figure 8 depicts the results of a numerical 
evaluation to the analytical solution given by Javandel, Doughty and 
Tsang (12) by crosses. The solid lines in Figure 8 connect nodal 
values of the numerical results along lines passing through the 
source; along y = 75, x = 75, y + x = 150, y = x, 2x - y = 75 and 
2y - x = 75. Both simulations are relatively free of significant 
grid orientation effects. 

9. CONCLUSIONS 

Formal decomposition of the advection-dispersion equation 
results in two problems that can be addressed efficiently and 
accurately. The advection problem can be solved independent of the 
residual dispersion problem over each time step by an adaptive 
method that combines forward particle tracking with single-step 
reverse particle tracking. The results from the advection problem 
are used as input to a residual dispersion problem that primarily 
involves dispersion. The residual dispersion problem is solved by 
Galerkin finite elements on a fixed grid. 

The adaptive scheme inserts forward-moving particles where they 
are needed to minimize numerical dispersion and prevent clipping of 
concentration peaks. Particles are automatically deleted when they 
are no longer needed. In the absence of forward-moving particles, 
the method relies on single-step reverse particle tracking to advect 
the concentration field. 

The purely parabolic form of the residual dispersion problem 
may be approximated by a finite element formulation that consists 
of only diagonal or symmetric matrices. Mass-lumping of the capacity 
matrices allows the application of an economical mixed explicit­
implicit scheme to solve the resulting finite element equations. 

Application to three two-dimensional test problems with a 
uniform velocity field suggest tha.t this Eulerian-Lagrangian 
formulation of the advection-dispersion equation can simulate over 
the entire range of Peclet numbers with Courant numbers well in 
excess of 1. 

Results from a radial advection-dispersion problem suggest that 
the method is relatively free of the influence of grid orientation 
on the solution. 
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Radial dispersion on a rectangular grid 

Figure 8. Simulation of problem 4. 

Additional testing will be required to establish the sensitivity 
solutions to: the number of particles, the method for projecting 
particle concentrations to the nodes, the criterion for insertion 
or deletion of particles, and the influence of Peclet numbers on 
the duration of time steps. 
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11. LIST OF SYMBOLS 

A' 
~ 

a 
B 
~ 

b 
C 
CO 
c 

c 

c 

D 
~ 

F 
~ 

L 
~ 

g 
Pe 
Q 
q 
R 
Re 
y 

W 
~ 

w' 
~ 

t 
to 

Subscripts 

c 

Finite-element 'dispersion matrix' 

Particle finite -element 'dispersion matrix' 

Half-length of rectangular wave in example 1 
Finite-element 'boundary matrix' 

Half-width of rectangular wave in example 1 
Prescribed concentration outside of boundary 
Initial concentration 
Concentration 

Component of concentration due to advection (see 
equations 6.7 and 6.8) 
Component of concentration due to dispersion 
(see equations 6.7 and 6.8) 
Dispersion tensor 

Finite-element radioactive decay and velocity 
divergence matrix 
Characteristic length 
Particle finite-element 'mass-change vector' 

Unit vector that is outward-normal to boundary r 
Peclet number 
Boundary-condition source term 
Source or sink strength 
Retardation factor 
Flow region surrounded by r 
Finite-element 'source vector' 

Finite-element 'capacity matrix' 

Particle finite-element 'capacity matrix' 
Time 
Initial time 
Velocity vector 
Location vector 

Courant number 

Scalar used in boundary condition specification 
Porosity 
Boundary of region 
Radioactive decay 
Finite element basis function 

Associated with the initial center of the concent­
ration peak 
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i 

k 
m 
n 
o 
p 
r 

x 
y 

Superscripts: 

k 
N 

Associated with inflow or noflow portion of 
boundary r 
Associated with time level k 
Associated with node m 
Associated with node n 
Associated with outflow portion of boundary r 
Associated with particle p 
Associated with particle remitted from a boundary 
condition 
Associated with the x-direction 
Associated with the y-direction 

Associated with time level k 
Associated with the finite-element approximation 
of a continuous function 
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Christopher L. Farmer 

Oil Recovery Projects Division 
United Kingdom Atomic Energy Authority 
Atomic Energy Establishment 
Winfrith, Dorchester, Dorset, DT2 8DH, United Kingdom 

ABSTRACT 

Moving point techniques provide accurate solutions to 
convection dominated convection-diffusion equations. These methods 
use a set of moving points for the simulation of convection and a 
fixed mesh for the simulation of diffusion and dispersion. The 
method introduces very low levels of numerical diffusion, overshoot 
or phase error. 

Three classes of moving point techniques are described; 
(i) the modified method of characteristics (MMOC) (Hartree, 
Russell, Douglas, Wheeler, Huffenus, Khaletzky, Donea, Morton) 
(ii) the pure moving point method (MPM) (Garder, Peaceman, Pozzi) 
and (iii) the hybrid moving point method (HMPM) (Farmer, Norman). 
The HMPM uses the MMOC in smoothly varying situations and the MPM 
when fronts are spread over two or fewer mesh lengths. Numerical 
results are described which show that the finite element MMOC is a 
good method for smooth problems (fronts spread over three or more 
mesh lengths) and the HMPM a good method for problems with sharp 
fronts. Algorithms for the application of the MPM and the HMPM to 
the simulation of miscible and segregated displacement of fluid in 
a porous medium are given. The moving point method is shown to 
track fronts accurately even in time dependent fingering problems. 

1. INTRODUCTION 

The transport of a miscible contaminant through a water 
aquifer and the miscible displacement of oil by a solvent in an oil 
reservoir are among the problems which may be described by the 
miscible displacement equations. These equations consist of, 
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(i) an elliptic boundary value problem for the fluid pressure from 
which the fluid velocity may be obtained via Darcy's law and (ii) a 
parabolic initial-boundary value problem for the contaminant or 
solvent concentration. 

The miscible displacement equations also describe the process 
of immiscible segregated displacement in which water in the 
presence of residual oil displaces oil in the presence of connate 
water. In this case the parabolic equation reduces to a hyperbolic 
equation. 

The transport of contaminant or solvent is by the three 
processes of convection, molecular diffusion and hydrodynamic 
dispersion. The hydrodynamic dispersion is of a diffusive 
character but is dependent upon the velocity of the fluid. 

A primary feature of the miscible displacement equations is 
that on the distance and time scales of interest in practical 
problems the convection transport mechanism dominates the diffusion 
and dispersion mechanisms. It is well known that numerical methods 
which work well for the diffusion equation produce unacceptable 
oscillatory errors when applied to convection dominated equations. 
The simplest 'cure' for this problem is to introduce a mesh 
dependent diffusion term which removes the spurious oscillations at 
the expense of introducing a diffusion or dispersion process which 
may, on practical meshes, dominate the physical diffusion and 
dispersion by orders of magnitude. More sophisticated cures can 
introduce significant phase errors. 

The main purpose of the following review is to describe 
numerical methods which do not suffer from unacceptable levels of 
spurious oscillations, diffusion or phase error with a particular 
emphasis upon moving point techniques deriving from the method of 
Carder, Peaceman and Pozzi (13) which we refer to as the GFF 
algorithm. 

The CPP algorithm uses a set of moving points which move with 
the fluid velocity and whose associated solution values are changed 
through time to allow for the effects of diffusion and dispersion. 
In addition to the set of moving points a fixed mesh is introduced 
upon which concentrations are assigned by interpolation from the 
moving points. The fixed mesh values are viewed as the desired 
approximation and are used to evaluate the changes in moving point 
concentrations due to diffusion and dispersion. 

Carder, Peaceman and Pozzi showed their algorithm to be of 
high accuracy even on relatively coarse meshes. The algorithm has 
not, however, been widely used because numerical experiments 
indicate failure to converge under mesh refinement (Price, 
Cavendish and Varga (31)) and no analysis of the method was 
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available (Neuman (26)) until recently (Farmer (10), Raviart (34)). 
The GPP algorithm is similar in character to the Particle-in-Cell 
method (Harlow (15)) and to particle methods in general (Hockney and 
Eastwood (18)) for which there was also no analysis available 
(Birkhoff (3)) until recently (Raviart (33)). 

In Chapter 2 we state the miscible displacement equations and 
in Chapter 3 the segregated flow equations. Chapter 4 reviews the 
modified method of characteristics which is closely related to the 
moving point method and which is used as part of the hybrid moving 
point method. Chapter 5 describes the GPP and related algorithms 
which make minimal use of the fixed mesh and Chapter 6 the hybrid 
method which makes maximal use of the fixed mesh. Chapter 7 
discusses the implementation of moving point algorithms and Chapter 
8 describes numerical experiments. In Chapter 9 we review methods 
for the solution of the pressure and velocity equations. 

2. THE MISCIBLE DISPLACEMENT EQUATIONS 

2.1 The Convection-Diffusion Equation 

Throughout the following we shall consider various functions of 
a spatial point ~ in 2-dimensional Euclidean space, E2' The 
components of ~ will be denoted by xi (i = 1,2) or (x,y). The xi 
notation for components is used in partial derivative symbols. All 
of the algorithms we shall describe generalise to 3-dimensional 
space. The symbol t denotes time. 

Let Q be a finite, simply connected, rectangular subset of E2 
with boundary oQ = OQ1UoQ2UoQ3' We define Q by 

Q 

The assumption of a rectangular region is not essential but 
simplifies the exposition. 

(2.1) 

Let ~ = ~(~,t) be a continuous time-dependent solenoidal vector 
field in E2 which will be interpreted as the Darcy velocity 
(volumetric flux) of fluid moving within a saturated porous medium. 
The components of ~ are denoted by ui (i = 1,2) or (u,v). 

We wish to find a scalar field c = c(~,t) satisfying the 
conditions 

~£Q, t > 0 (2.2) 
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c(~,o) 

c(~, t) 

oc 
On 

(2.3) 

1 (2.4) 

o (2.5) 

where D is a positive second rank tensor called the dispersion 
tensor but which includes the diffusion terms. We interpret c as 
the concentration of contaminant or solvent. ~ is a scalar function 
of ~ called the porosity. The symbol ~ denotes the outward point­
ing spatial normal derivative at a point on the boundary. The 
function co' which specifies the initial condition, is assumed to 
satisfy the boundary conditions. The dispersion tensor is, in 
general, a function of the Darcy velocity field. A particular 
example of a velocity dependent dispersion tensor may be found in 
Peaceman (29). 

2.2 The Pressure Equation 

We seek a scalar field p = p(~,t) and a solenoidal vector field 
M M(~,t) satisfying the conditions 

VOlt = 0 ~EQ, t ~ 0 (2.6) 

~= - .ko(Vp 
iJ. + pglJR) ~EQ, t .. 0 (2.7) 

p PI (t) - p(l)~y ~EoQ1 ' t .. 0 (2.1:S ) 

p = -l p~~ dy xEoQ2 ' t .. 0 (2.9) 
0 

MOlt = 0 ~EoQ3' t .. 0 (2.10) 

where k is an ~-dependent positive second rank tensor called the 
permeability, p is an ~ and t dependent scalar function called the 
pressure, p is a strictly positive function of c called the density, 
g is a real constant called the gravitational acceleration, H is an 
~-dependent scalar called the height above a datum, and iJ. is a 
strictly positive function of c called the viscosity. ~ is a vector 
function of ~ and is the outward pointing unit normal to oQ. 

In some applications the function PI(t), called the inlet 
pressure, is controlled so that the total flow rate 



959 

Q(t) (2.11) 

is some prescribed function of t and where s parameterises oQl. 

2.3 Remarks on the Derivation of the Miscible Displacement 
Equations 

Eq. (2.6) is derived via a mass balance on the total fluid. 
Eq. (2.2) is derived via a mass balance on the contaminant or 
solvent. Strictly speaking these equations are only a rigorous 
consequence of mass conservation ia p is independent of c or if D = 
O. However, we assume that D and ~ are small enough to justify the 
equations as an approximation. 

The boundary and initial conditions are representative of 
those encountered in practice. Our use of these particular 
boundary conditions is not essential for the methods described in 
the following. The absence of source terms is not essential but in 
our applications of moving point techniques we have, so far, 
injected and produced fluids via the boundary. 

2.4 The Convection-Diffusion Equation in a Moving Co-ordinate 
System 

Let ~ = ~(~,t) be a time dependent mapping of E2 onto itself, 
which is differentiable and uniquely invertible with inverse 
~ = ~(~,t) satisfying the conditions 

(2.12) 

(2.13) 

where ~ is a prescribed mapping of E2 onto itself and ~* is a 
continuous extension of ~ from Q to E2 • 

Under this mapping the convection-diffusion Eq. (2.2) becomes 

V·(DV)c(~,t) ~£Q, t > 0 (2.14) 

a(~,t) c(~,t) ~£Q, t ~ 0 (2.15) 
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;!b = :l&(~, t) ;!bEQ, t ) 0 (2.16) 

with initial-boundary conditions on c as before. 

We may interpret a = a(~,t) as the Lagrangian and c = c(:l&,t) 
as the Eulerian values of a field of concentration carried by a 
fluid particle ~ located at ;!b at time t. 

Moving point methods are obtained by discretising Eqs. (2.2) -
(2.16). 

3. THE SEGREGATED DISPLACEMENT EQUATIONS 

3.1 Formulation as a Moving Boundary Problem 

We consider the situation illustrated in Figure 1 where there 
are three regions of flow. In region I we have mobile oil and 
connate water, in region II mobile water and residual oil and in 
region III water which is present in a basal aquifer. A similar 
situation arises in the study of the time-dependent displacement of 
the water table in an aquifer where instead of oil we have air. 
Both of these situations are idealised in that we ignore the 
existence of a capillary fringe or, in other words, that the flow 
is segregated. 

PRODUCTION \ 

INJECTION 

\ 

Figure 1. The segregated displacement of oil. 
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The assumption of segregated flow may in some circumstances be 
a good approximation and enables us to obtain a non-trivial exact 
solution for time-dependent two-dimensional problems. Such exact 
solutions are useful for checking the accuracy of numerical 
methods. 

The interface between regions II and III is stationary but 
water can flow between these regions. The interface between 
regions I and II is time-dependent. 

We parameterise the interface between zones I and II by a real 
parameter cr and introduce a vector function ~ such that ~ = ~(cr,t) 
is the position at time t of the point cr in the front. 

The equations of motion of the system illustrated in Figure 1 
are as follows; 

'V.J.!.J 0 (3.1) 

J.!.J -AJ 'V'I'J (3.2) 

AJ 
kJk 

(3.3) 
iJ.J 

'I'J PJ + PJgH (3.4) 

where J = I, II, or III. AJ is called the mobility, 'I'J the 
potentiaL, and k J the end-point reLative permeabiLity of phase J. 

We note that kIll = 1. 

At the interface we have the equations, 

PIlI (~, t) ~EollnoIII, t ~ 0 (3.5 ) 

PI (~,t) PII (~, t) ~ = ~(cr,t), t ~ 0 (3.6) 

d <Pr crt [(cr,t) t ~ 0 (3.7) 

(3.8 ) 
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where Sor and Swc are the residual oil and connate water satur­
ations respectively. kJ , Sor and Swc are, in general, functions 
of ~. 

Eqs. (3.1) are the mass balances for the incompressible 
fluids. Eqs. (3.2) are Darcy's law generalised by the introduction 
of the relative permeability to the case when another phase is 
present. The relative permeabilities are the end point values of 
the relative permeabilities which appear in the formulation of the 
more realistic Buckley-Leverett equations with capillary pressure 
which we will refer to as the fuLL two-phase fLow equations (see, 
for example, Peaceman (10) for a derivation of these two-phase flow 
equations). Eqs. (3.5) and (3.6) are the statement of continuity 
of fluid pressure at the interfaces. 

Eq. (3.7) is derived by considering the jump conditions for 
the motion of a discontinuity in a solution of the full two-phase 
flow equations. Alternatively mass balance considerations lead to 
Eq. (3.7) if one takes into account that on one side of the 
interface, water at saturation Swc is immobile and on the other 
side, oil at saturation Sor is immobile. An equation alternative 
to Eq. (3.7) is obtained by replacing ~II by ~III in Eq. (3.7). 

The segregated displacement equations generalise the model of 
Muskat (23) to the case where immobile fluids may be present. 

3.2 Exact Solutions of the Segregated Flow Equations 

3.2.1 The Dietz steady state solution 

In the special case that the front does not break we may 
introduce a scalar function f = f(x,t) such that 

[= (x,f(x,t)) (3.9) 

Equation (3.7) then implies that 

~ of + u of = v 
'f'r Of Ox (3.10) 

where u and v are evaluated at the front. 

We now look for solutions satisfying 

~J o (3.11 ) 
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and find that the equation of the front is 

f(x,t) tan ~[~ t - x] + fo 
r 

(3.12) 

where tan ~ (3.13) 

(3.14 ) 

and e is such that 

x sin e + y cos e (3.15) 

The parameter fo defines the initial condition and Uoo is the 
x-component of the Darcy flux at infinity. 

This solution was derived by Dietz (4). 

3.2.2 The Jacquard-Seguier time dependent solution 

Jacquard and Seguier (20) have obtained analytical solutions 
for a class of segregated displacement problems in a channel of 
finite width. These solutions were obtained using conformal 
mapping and Green's function techniques. Jacquard and Seguier 
assume uniform permeability and porosity with constant mobility 
behind the front and a different constant mobility ahead of the 
front. 

Jacquard and Seguier prove that if the equation of the front 
at time t = 0 is given by 

[2 n(x - xo)] 
sinh 

Ly 

then at later times 

[ 2n 101] exp [ 2 n;\UO t] sinh(yo) sin ~ L 
Y Y 

(3.16) 

(3.17) 
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Ly ~y u." 
Where the parameter cr satisfies - ~ , cr ,~, Uo = T;' Yo and Xo 

r 
are parameters controlling the initial size and position of a 
single viscous finger and A = (AI - AII)/(AI + All)· 

3.3 Segregated Displacement as a Special Case of Miscible 
Displacement 

Introduce a scalar function c = c(~,t) which takes the value 1 
in the water and the value 0 in the oil. Introduce also the 
functions ~ = ~(c), p p(c) and kr = kr(c,~) which are strictly 
positive functions of c and satisfy 

~, ~(O) ~(1) 

p(1) Pw' p(O) 

kr(c,~) = 1 

kr(1,~) = kw' kr(O,~) 

(3.18) 

where the suffices wand 0 refer to water and oil respectively. We 
then consider the equations 

'V0Q. = 0 (3.19) 

~ = -o:o( 'Vp + pgVH) (3.20) 

(3.21 ) 

o (3.22 ) 

One may show, by an application of the transport theorem for a 
system with discontinuous fronts (Kotchine's Theorem; Truesdell and 
Toupin (37)), that when the function c possesses a discontinuity 
lying along a continuous curve, with c unity on one side and zero 
on the other, that Eqs. (3.18) - (3.22) imply equations (3.1) -
(3.4) • 

We thus see that segregated displacement is a limiting case of 
miscible displacement when region III (water) is absent. In the 
general case when the basal aquifer, region III, is present one may 
think of segregated displacement as miscible displacement with zero 
diffusion and zero dispersion, with a sharp front and a non-
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separable mobility tensor a(c,~). The mobility tensor is separable 
in the true miscible displacement because it is a product of a 
function of c with the ~-dependent permeability tensor. 

4. THE MODIFIED METHOD OF CHARACTERISTICS 

4.1 Definitions 

Introduce a set of points, EhZ' called the fixed mesh, defined 
by 

(i,j)h - (f,f)h, m (j-l)Nx + i, 

(4.1) 

where h is a positive quantity called the mesh spacing and i, j, m, 
Nx and Ny are integers. The integer m lies in the range 1 ( m ( H 
where M = Nx Ny,. Points with i = 1 or Nx and points with j = 1 or 
Ny are called jictitious points and are used in imposing boundary 
conditions and implementing the moving point method. 

The region, ~, of E2 defined by 

is called the m-th or (i,j)-th mesh ceLL. Cells outside Q are 
called fictitious ceLLs. 

The use of a constant mesh spacing is not essential but 
simplifies the description and implementation of algorithms. 

(4.2) 

Introduce the discrete time tn = n~, ~ ) 0 (n = 0,1,2, ••• ) 
where ~ is the time step. 

4.2 Fixed Hesh Interpolation 

Let F~ (m = I, 2, ••• M) be the values of a scalar valued 
function defined on the fixed mesh at time tn. We define a fixed 
mesh inteppoLatoPI~ which constructs a function Gn according to 

(4.3) 

where the index 1 ranges over the indices of the fixed mesh points 
and s is the order of approximation, in some sense, of the 
interpolator. 
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The fixed mesh interpolator is assumed, in the following, to 
have the property that for each m, 

(4.4) 

Examples of such interpolators are piecewise constant 
interpolation (s=1) and piecewise bilinear interpolation (s=2). 

To perform bilinear interpolation we first introduce the 
functions ai = ai(x) defined by 

1 - (x - xi)/h xi .. x .. x i +1 

ai(x) 1 + (x - xi)/h x i - 1 .. x .. xi 

0 xt[xi _1 , xi+1 ] 

From the functions ai we construct the functions ~~ by 

(j-1 )Nx + i 

The bilinear interpolator I~ is then defined by 

where the summation ranges over the indices 1 .. ~ .. M. 

4.3 Time Stepping Algorithm in the Modified Method of 
Characteristics 

(4.5) 

(4.6) 

(4.7) 

We suppose that at time tn we have an approximation cn(~) £0 
the concentration and we wish to construct an approximation ch+ (~) 
at time level n + 1. Focus attention at time tn+1 on a point ~£Q 
and, by solving the equation (2.12) backward in time, find the 
position ~* of this point at time tn' Thus if a marker point is 
placed at ~* at t it will arrive at ~ at t +1' We call the 

n • . • n 
displacement ~ - ~* the character~st~c d~spLacementat time tn+1 
and denote it by the symbol Xn+1 = Xn+1(~). 
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The time stepping algorithm of the MMOC is then 

(4.8) 

and 0 ~ w ~ 1. The value of w determines the extent to which the 
algorithm is explicit (w = 1) or implicit (w = 0). The dispersion 
tensor, Dn , depends on the time level via its dependence upon Mn. 

4.4 Finite Difference Version of the Modified Method of 
Characteristics 

Introduce a mesh function with values c~ which is interpreted 
as an approximation to the concentration at the point ~m at time tn. 

At time t = 0 we assign 
the finite difference method 
suppose the ~ to be known. 

c~ using the initial conditions. In 
we set+f~ = co(~). At time tn 
The ~ are constructed as follows. 

Step 1. Solve the velocity-pressure equations to construct an 
approximate velocity field Mn = Mn(~). A method for doing this is 
described in chapter 9. 

Step 2. Construct the set of characteristic nodaL dispLace­
ments, ~+1, by solving the final value problem, 

- Mn (~ - lin) (4.9) 

(4.10) 

to obtain ~+1 = Xm(t n). For example, if we use one step of an 
explicit Euler method we have 

(4.11) 

which is a suitable approximation if the velocity field is nearly 
constant. In general, if we wish to use an explicit Euler method, 
we must split the overall time step, ~, into sub-intervals. If 
this is inefficient we must use a higher-order method such as 4th 
order explicit Runge-Kutta and even then we may have to split the 
time step if the characteristics are very curved. 
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Step 3. Update the fixed mesh concentrations by, 

(4.12) 

where ~o(Dn~) is the central differen~e approximation to Vo(DnV) 
(see Peaceman (29)) and $m = $(~). We use bilinear interpolation 
for the fixed mesh interpolator. Since we are using an explicit 
version of the algorithm we must satisfy a stability condition on 
•• This condition is the same as for the explicit finite 
difference algorithm for the diffusion equation (Peaceman £29)). 
An implicit version may be obtained by replacing c~ by c~+ in the 
dispersion term of Eq. (4.12). 

For fictitious points in fictitious cells adjacent to oQ1 we 
use the Dirichlet boundary conditions. For fictitious points in 
fictitious cells adjacent to oQ2UoQ3 we use block-centred 
reflection boundary conditions following Peaceman and Rachford 
(28). We must impose these boundary conditions at all times, 
including t = O. 

Algorithm (4.12) is a version of the modified method of 
characteristics (Douglas and Russell (6); Huffenus and Khaletzky 
(19); Hartree (16)). In one dimension the method reduces to first­
order upstreaming and in two- or three-dimensions is equivalent to 
the tensor-viscosity method of Dukowicz and Ramshaw (7). 

In one dimension with constant ~, u and D where D is for the 
rest of this subsection a constant diffusion-dispersion parameter 
and using Eq. (4.11) for the characteristic nodal displacement we 
find that, 

and 
may 

The coefficient ~ is 
in practical problems, 
be orders of magnitude 

uh/D 

(4.13) 

the coefficient of numericaL diffusion 
because of computer memory limitations, 
larger than D. The ratio, 

(4.14) 

is called the mesh PecLet number. 
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Numerical diffusion causes excessive numerical smearing of 
solutions in regions of large spatial gradient. This is a serious 
difficulty in oil recovery simulation because the numerical 
smearing causes spurious stability leading to overestimates of 
recovery efficiency. In problems involving the pollution of water 
aquifers numerical diffusion may lead to overestimates of the 
spatial extent of contamination or to the suppression of 
fluctuation phenomena which can be of importance in risk assessment 
applications of numerical transport algorithms. 

The use of a higher order, quadratic, fixed mesh interpolator 
does not greatly improve pointwise accuracy. This two-point 
upstreamingreduces numerical dispersion to a low level but 

introduces a phase error. 

When ~ and u are constant and D 
scheme is 

o the two-point upstreaming 

This algorithm is obtained by replacing the s 
Eq. (4.12) by an s = 3 interpolator. 

(4.15) 

2 interpolator in 

Assuming that the time truncation error can be reduced to 
negligi~le levels by choosing small enough ~, Eq. (4.15) is to 
order h equivalent to 

" "uh2 ,,3c ~+u~xc= v 
TOt VA --:r- ox) (4.16) 

Seeking solutions of the form 

c(x,t) sin K(X - yt) (4.17 ) 

we find that 

y (4.18) 
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Thus w~v~s travel with a velocity increased by a factor 

(1 + ~). The wave number K is large in sharp fronts so that 
such fronts propagate with a phase error. This analysis is 
verified by numerical experiments (Farmer (10». 

4.5 Finite Element Version of the Modified Method of 
Characteristics 

As in the finite difference version we assign the c~ using the 
initial condition but in the sense of an L2 projection. In other 
words we solve the equations 

(4.19) 

where the index R ranges over the indices of all the mesh points in 
Q. The values of ct on fictitious points are assigned using the 
same discrete boundary conditions used in the finite difference 
version. The square bracket notation is defined by 

[a,bJ £ ab d~ (4.20) 

for arbitrary, integrable, scalar functions a and b. 

We now suppose that at time tn we know the c~ for each fixed 
mesh point. The c~+1 are constructed as follows. 

Step 1 As for the finite difference version. 

Step 2 As for the finite difference version. 

Step J Using the Galerkin finite element method solve the elliptic 
boundary value problem 

to find cn+l(~) subject to the boundary conditions (2.4) and (2.5) 
where Xn+1(~) is an interpolation of the characteristic nodal 
displacements. Since the finite element method will couple 
together grid points via the cn+1 term on the left hand side there 
is less advantage, compared to the finite difference version, in 
using an explicit approximation to the diffusion-dispersion term. 
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Essentially the same algorithm has been discussed by Douglas 
and Russell (6), Russell and Wheeler (35) and Bercovier et al (2) 
in relation to the convection-diffusion e~uation. Algorithms 
differ in their method of constructing Xn 1. Morton and Parrott 
(24) and Morton (25) discuss a similar algorithm for pure 
convection and the generalisation to non-linear hyperbolic 
equations. 

Implementation of the above algorithm requires evaluation of 
inner products of the form 

(4.22) 

This was accomplished using Lobatto quadrature by Russell and 
Wheeler (35). 

The resulting algorithm is very much more accurate than the 
finite difference version, provided that no 'mass lumping' is 
performed. (Mass lumping is the process of constructing a diagonal 
ap~roximation to the matrix arising from the discretisation of 
cn lin Eq. (4.21) by (i) summing the terms along rows off the main 
diagonal (ii) adding these sums to the main diagonal (iii) setting 
terms off the main diagonal to zero). 

The full finite element modified method of characteristics 
(FEMMOC) shows excellent phase behaviour, very low levels of 
numerical diffusion and low levels of overshoot provided that any 
fronts are spread over three or more mesh cells (Russell and 
Wheeler (35)). 

4.6 Approximate Versions of the Modified Method of 
Characteristics 

4.6.1 2nd order FEMMOC 

Expansion of algorithm (4.8) in a Taylor series in Xn+1 to 2nd 
order gives 

(4.23) 

where we use the summation convention regarding repeated indices; 
Xn+1 and cn are evaluated at ~. 
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LHhner et al (22) describe an algorithm which differs from 
Eq. (4.23) only in the method for constructing Xn+l. These authors 
have shown, for the special case D = 0, that spatial discretisation 
of Eq. (4.23) using the Galerkin finite element method with 
piecewise linear functions leads to an algorithm which has low 
levels of numerical diffusion, overshoot and phase error. 

4.6.2 3rd order FEMMOC 

Expansion of algorithm (4.8) with D~ = 0 to 3rd order in Xn+1 

gives 

(4.24) 

The third order term in Eq. (4.24) may be approximated by 
substituting 

(4.25) 

which results in the scheme 

(4.26) 

Donea (5) describes an algorithm wrich differs from Eq. (4.26) 
only in the method for constructing Xn+. Donea shows that spatial 
discretisation of Eq. (4.26) using the Galerkin finite element 
method with piecewise linear functions leads to an algorithm which 
again has very low levels of numerical diffusion, overshoot and 
phase error. 

In Chapter 8 we will describe some numerical results comparing 
the Donea (5) method with first-order finite difference upstreaming 
and two moving point methods. 
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4.6.3 Remarks on semi-discrete finite element methods 

As shown by Gresho et al (14) a standard semi-discrete 
Galerkin finite element method applied to the pure convection 
equation leads to excellent results provided (i) no mass lumping is 
performed (ii) fronts are smeared over three or more mesh cells 
(iii) the resulting initial value problem on the set of ordinary 
differential equations for the nodal concentrations is integrated 
with high accuracy. However, the high accuracy needed in the time 
integration leads to considerable computational expense. 

The advantage of the various FEMMOC's over the semi-discrete 
Galerkin FEM is that very much longer time steps may be taken, 
without loss of accuracy, when updating the concentration field. 
Accurate construction of the characteristic nodal displacements may 
require short subsidiary time steps but this is only in solving a 
pair (triple in 3-D) of ordinary differential equations. Each mesh 
point has an associated pair of equations but these pairs of 
equations are not coupled together. 

5. THE MOVING POINT METHOD 

5.1 Definitions 

Introduce a set of moving points {Pk:k = 12, ••• ,N}. N is the 
total number of moving points. Let kk = (Xk, Y~) be the values of 
a two-component vector valued mesh function defined on the moving 
points Pk • ~k is the positio~ vector of moving point Pk at time 
tn' Let Ak be the concentrat'l-on on moving point Pk which is 
interpreted as an approximation to c(~k' t n ). 

Let v~ be the values of a scalar mesh function which is the 
total number of moving points with position vectors in the m-th 
mesh cell at time tn' Cells in which v~ = 0 are referred to as 
empty ceUs. 

If the k-th moving point, Pk , lies in the m-th mesh cell we 
shall write k£ffi and if point Pk is nearer to ~ than any other 
moving point we write kem. 

5.2 Point Moving Algorithm 

To construct ~k+1 from ~k we solve the equation 

d 
CP(~k) (IT ~k ~(~k,tn) (5.1) 

kk (tn ) kk (5.2) 
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to obtain (5.3) 

The solution to the above initial value problem can be found 
using T steps of either (i) the first-order forward Euler algorithm 
or (ii) in cases where ~ has strongly curved streamlines the 
classical 4-th order Runge-Kutta method with time step ./T. T is 
an integer which may vary during the course of a calculation. 

We denote the operation of moving the points by the symbol E 
and we write 

(5.4) 

5.3 Moving Point Interpolation 

Let I~ denote the moving point interpolator which from moving 
point function values G~ and fixed mesh values Fl constructs a 
function Qn according to 

(5.5) 

where the indices k and i range over the indices of the moving and 
fixed mesh points respectively and s is the order of the 
interpolator. We will relate G~ and Fl to moving point and fixed 
mesh concentrations in later sections. 

Some examples of moving point interpolation are; 

5.3.1 NGP interpolation 

Nearest grid point interpola'tion is a piecewise constant 
interpolation in which the concentration value on the moving point 
nearest to a mesh cell centre is assigned to the whole mesh cell. 
If the cell is empty we assign to the cell the fixed mesh value Fn. 

m 
Thus, 

(5.6) 
o 



5.3.2 Averaging interpolation 

Averaging interpolation assigns to mesh cells the average 
concentration of the moving points in that cell. If the cell is 
empty we assign the fixed mesh value F~. Thus 
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L: GI!­
jEm J (5.7) 

Averaging interpolation was introduced by Garder et al (13) 
although no prescription for the vm = 0 case was stated. 

NGP and averaging interpolation give rise to a piecewise 
constant fixed mesh function. When v~ > 0 these methods are 
locally first order in h. When V~ = 0 one cannot make a general 
statement about the order of accuracy. 

Higher-order interpolation from moving points to the fixed 
mesh can, in principle, be performed by fitting an interpolation 
formula to moving point values. However, this is difficult from 
both numerical and implementation view points (see Franke (12) for 
a review of scattered data set interpolation). An s = 2 
interpolator, which is easy to implement, has been described in 
Farmer (10). 

In the context of the hybrid moving point method higher-order 
interpolation is much simpler and this is described in the next 
chapter. 

5.4 The Pure Moving Point Method 

At time t = 0 assign the moving point positions with, say, 
four points per fixed mesh cell. Moving point positions are most 
conveniently assigned using a uniform random number generator so 
that the initial number of points per cell is easy to adjust. 
Place moving points in all cells except fictitious cells adjacent 
to oQ2UoQ3. The concentrations Ak are assigned using Ak = co(!k) 
and the fixed mesh concentrations using c~ = co(~). Moving points 
in the fictitious cells adjacent to oQ1 are given the appropriate 
Dirichlet boundary condition. 

At time tn we suppose c~ known 
and A~ known for each moving point. 
constructed as follows; 

for each fixed mesh cell, Xk 
Th n+1 yn+l and An+1 -e cm ' R.k k are 

St 1 C t h I · h f . n d n 
h ep n ompu: t e ve OC1.ty mes unctl.ons ui +1/ 2,j an vi j+1/2 

were ui +1/ 2 ,j 1.S an approximation to the x-component veloCity 
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at xi +h/2 and vr '+1/2 an approximation to the y-component of 
velocity at y,+hi1. Methods for constructing the velocity mesh 
function are Jdescribed in Chapter 9. 

The moving point method requires the prov~s~on of a velocity 
field everKwhere in Q and we construct a piecewise interpolation 
~n(~) = (u (~),vn(~» by, 

un(~) n (1 - 1;;) + n I;; ui-1/2,j uH1/2,j 
(5.8) 

vn(~) 
_ n 
- Vi,j-1/2 (1 - 1) + vL j+l /2 1) 

where I;; (x - xi)/h + 1/2 

1) (y - Yj)/h + 1/2 (5.9) 

and ~ E~. 

The interpolation (5.8) has the properties; 

(i) it is solenoidal in cell m by virtue of the discrete zero 
divergence condition Eq. (9.1). 

(ii) the velocity normal to the cell surface is continuous. 

It is possible to construct a full bi-linear interpolation 
which has the above properties which is useful in test problems 
with non-constant velocity fields. However, practical problems 
involving oil reservoirs or water aquifers very often have 
permeability streaks in which the velocity does possess tangential 
discontinuities. Thus in practical problems we favour the 
interpolation (5.8). 

Step 2 Update the moving point positions to obtain ~k+1 by 

n+1 [n n / ] ~k = E ~k' ~ (~), • T (5.10) 

Choose T so that over any time interval, ./T, no moving point 
travels a distance of, say, more than h/3 in any direction. 

Step J Calculate the changes, 6c~, in concentration due to 
hydrodynamic dispersion by, 
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(5.11) 

where A-(DnA) is the central difference approximation to V-(DnV). 
We must ensure that ~ is small enough to satisfy the usual 
stability condition for an explicit central difference method for a 
diffusion equation. 

Step 4 Update the moving point concentrations by setting, for 
each k, 

(5.12) 

Step 5 Construct the fixed mesh concentrations c~+l by the moving 
point interpolation 

(5.13) 

Thus for empty cells we use the fixed mesh concentration at the 
previous time step. 

Step 6 Delete all moving points from the fictitious cells. 
say, four moving points carrying the appropriate Dirichlet 
condition in each fictitious cell adjacent to oQ1. 

Place, 
boundary 

5.5 Accuracy and Convergence of the Pure Moving Point Method 

Averaging interpolation (s=l) was used in the original Garder 
et al (13) algorithm. We call such algorithms pupe to distinguish 
them from the hybrid algorithms to be described later. Garder et 
al (13) showed that on problems with a high mesh Peclet number the 
pure moving point method was very accurate even when fronts were 
sharp. However Price, Cavendish and Varga (31) showed in numerical 
experiments that under mesh refinement the algorithm did not 
converge. Furthermore, as emphasised by Neuman (26), no analysis 
of the algorithm was available. 

We have observed in numerical experiments that if an s=2 
(Farmer (10)) moving point interpolator is used then the pure 
moving point method does converge. Unfortunately we can provide no 
numerical analysis to explain this. 

However, in Farmer (10) we have shown that convergent pure 
moving point algorithms can be formulated by modifying the 
calculation of the change in moving point concentrations due to 
dispersion. This is accomplished by placing the centre of the 
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difference stencil upon each moving point and using a mesh spacing 
h* > h for the central difference approximation. The mesh values 
on the stencil, other than the centre value on the moving point, 
are obtained by interpolation. Convergence is obtained by making 
h ~ 0 faster than h* ~ O. In this way we can construct a 
convergent algorithm even when using first order moving point 
interpolators such as NGP or averaging interpolation. 

Our convergence proof relied on the assumptions of (i) 
periodic boundary conditions (ii) constant and diagonal dispersion 
tensor (iii) at least one moving point in each fixed mesh cell 
before performing the moving point interpolation. Although it may 
be possible to relax these assumptions we have developed the hybrid 
algorithm, described in the next chapter, as a way of improving the 
accuracy and efficiency of the moving point method. 

5.6 Related Methods 

The moving point method has some similarity with the random 
walk method of Prickett et al (32) in which diffusion/dispersion is 
approximated by imposing a suitable random walk upon the 
trajectories of the moving points. The fixed mesh concentrations 
are obtained from the expectation values of the v~. 

Raviart (33), (34) has described a moving point method which 
does not use an intermediate fixed mesh. We are not, however, 
aware of any numerical tests or implementations of this algorithm. 
In our applications to oil reservoir simulation we require 
concentrations on a fixed mesh for the purpose of finding 
viscosities for the fixed mesh calculation of velocities. For this 
reason we require a moving point to fixed mesh interpolator. 

5.7 Remarks on the Differences between the MMOC and the MPM 

Let us suppose that we construct the moving point positions in 
the MPM and the characteristic nodal displacements in the MMOC 
without significant error. Further suppose the diffusion/ 
dispersion tensor to be zero so that the problem is one of pure 
convection. In this case the concentrations carried by the moving 
points in the MPM are exact at the moving points. The error 
incurred in the MPM is then only that introduced by the moving 
point interpolator. Thus the error in the MPM does not grow in 
time. In the MMOC there is a gradual increase in error as a result 
of the repeated projection of the transported solution to the fixed 
mesh. 

The essential difference between the MPM and the MMOC is that 
in the MPM, moving points retain their identity throughout a 
calculation whereas in the MMOC the moving points are defined anew 
at every time step. 
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6. THE HYBRID MOVING POINT METHOD 

6.1 Introduction 

The simpler fixed mesh methods, such as finite difference MMOC 
work well if the mesh Peclet number is small or if the solution is 
very smooth. The pure MPM works well if the mesh Peclet number is 
large and the solution is not very smooth. The hybrid moving point 
method is a combination of these two schemes in which at 
sufficiently low mesh Peclet number only the fixed mesh method is 
used. Since the fixed mesh method is convergent the hybrid scheme 
is, trivially, convergent. 

6.2 Fixed Mesh Algorithm 

Any convergent fixed mesh scheme is appropriate and a 
convenient choice is the first order finite difference MMOC. The 
moving point interpolator in the HMPM requires an estimate of the 
fixfd mesh concentrations and this is obtained using the MMOC. Let 
~+ denote this first estimate and we write 

cn+1 
m (6.1) 

where the index i ranges over the indices of the fixed mesh cells. 

6.3 Moving Point Interpolation 

Following the notation of section (5.3) we introduce an 
interpolation based upon a Taylor expansion about the nearest 
moving point to a cell centre using spatial derivatives evaluated 
on the fixed mesh, 

where s ) 3. 

G~ - (!~ - ~).VI~[F1,~] 

I~[F1,~] 
p~,~,~>o 

~E~, v~ a 
(6.2) 

In cases where F~ possesses large gradients the Taylor 
interpolator described above can overshoot whereas NGP or averaging 
interpolation will not overshoot. In our codes we combine a second 
order Taylor interpolator (s = 3 in Eq. (6.2)) with a lower order 
method according to the magnitude of the local concentration 
gradient. If the concentration gradient exceeds a user defined 
value we use averaging interpolation and otherwise the Taylor 
method. 
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In Farmer and Norman (11) we used NGP interpolation when the 
concentration gradient was large. However we have found in 
practical applications that averaging interpolation is preferable 
since ,it provides some local smoothing and provides information 
about the position of a discontinuity within a mesh cell. 

6.4 Local Insertion-Deletion of Moving Points 

In many problems of interest the concentration field may be 
such that it is rapidly changing at sharp fronts which only occur 
in a small fraction of 6. In such cases the solution will be 
constant with values 0 or lover large subregions of Q. When this 
happens it is only necessary for there to be moving points at or 
near to the fronts. We therefore implement an insertion-deletion 
strategy which controls the distribution of moving points. 

Let, 

Sn 
m 

n n)2 n (ci +1 'j - Ci - 1 'j + (ci ,j+1 

where m = (j-1)Nx + i 

and specify; 

(i) the minimum, mb, 
when S~ < S* 

and maximum, Mb, 

(11) the minimum, ms ' 
when S~ ;> S* 

and maximum, Ms' 

n )2 - c .. 1 1,J-

allowable' values of 

allowable values of 

(6.3) 

vn 
m 

vn 
m 

where S* is a slope parameter used to define the presence of sharp 
fronts. 

The insertion-deletion procedure is then; 

1. In each fixed mesh cell, if necessary, delete sufficient 
moving points to satisfy the condition 

(v~ ( Mb and S~ < S*) or (v~ ( Ms and S~ ;> S*). 

It is convenient to delete moving points with the largest k-indices 
amongst the points in the m-th mesh cell. 

2. If (v~ < mb and S~ < S*) or (v~ < ms and S~ ;> S*) then insert 
a single moving point with its position vector equal to ~ and 
assign the concentration c~ to the moving point. 



The operation of insertion-deletion will be denoted by the 
symbol 
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J [~~, c~] (6.4) 

6.5 The Hybrid Moving Point Method 

The overall structure of the hybrid algorithm is of the 
implicit-pressure, explicit-saturation kind as used, for example by 
Peaceman and Rachford (28). 

At time t = 0 we perform the steps; 

(i) assign fixed mesh concentrations, c~, for each m by setting 

(6.5) 

(ii) introduce moving points uniformly at random within each cell 
thus assigning the~. The number of moving points in the 
m-th mesh cell will be 

or 

mb if S~ < S* 

if SO .. S* ms m (6.6) 

(iii) assign moving point concentrations, Ak, for each k by 
setting 

At time tn we suppose c~ known 
and A~ known for each moving point. 
constructed as follows; 

Step 1 As Step 1 of the pure MPM in 

Step 2 As Step 1 of the pure MPM. 

(6.7) 

for each fixed mesh cell, xkn 
n+1 n+1 n+1 ~ 

The cm ' ~k and Ak are 

Section 5.4. 

Step ;5 Update the fixed mesh concentrations using the fixed mesh 
algorithm to obtain the first approximation 



982 

cn+l 
m 

Step 4 Calculate the changes, 6c~, in concentration due to 
diffusion-dispersion by 

(6.8) 

(6.9) 

where ~.(Dn~) is the central difference approximation to V.(DnV). 
We must test that ~ is small enough to satisfy the usual stability 
condition for an explicit central difference method for a diffusion 
equation. 

6c~ can be obtained as part of Step 3. 

Step 5 Update the moving point concentrations by setting, for each 
k, 

Step 6 Construct the fixed mesh concentration c~+1 by the 
interpolation 

where 

) 
cn+l .i ) m 

*n+1 .i 
c.i 

cn+1 
.i .i<m 

(6.10) 

(6.11) 

(6.12) 

and) and < in Eq. (6.12) denotes an ordering relation on the mesh 
cell indices. A is a weighting factor, dependent upon the lowest 
upper bound, Peh' of the mesh Peclet number. The function A is 
chosen via numerical experiments in such a way that the hybrid 
moving point method is trivially convergent. A suitable A is 

1 
A = 

o 

10- 3 Peh ) 

Peh < 10-3 
(6.13) 
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Step? Perform the insertion-deletion procedure 

(6.14) 

7. THE IMPLEMENTATION OF MOVING POINT METHODS 

7.1 Data Structures 

For the fixed mesh algorithm we require arrays C, U and V for 
the fixed mesh concentrations and velocities. As workspace we 
require arrays C~ and DC to store the concentrations at the 
previous time step and the change in fixed mesh cell concentrations 
due to diffusion-dispersion. 

For the moving point algorithm we require arrays A, X and Y 
for the concentrations and x-, y-coordinates of the moving points. 
As workspace we require arrays NN and NGP of dimension equal to the 
number of fixed mesh cells. NN and NGP are used to store the 
number of moving points in each cell and the index of the moving 
point nearest to a cell centre. We initialise NN and NGP to zero 
at each time step so that a zero in these arrays corresponds to an 
empty cell. 

As explained in Section 4.1 we use fictitious cells 
surrounding the physical cells. We assign a zero velocity to the 
outward facing boundaries of these cells. Provided that the time 
step is not too long the moving points will remain within the 
physical and fictitious cells. 

7.2 Scaling of Positions and Velocities 

It is convenient to scale X, Y, U and V so that (i) the 
integer parts of X and Y give the i and j indices of the mesh cell 
occupied by the moving points and (ii) the non-integer part the 
coordinates in the local (C, ~) system in the cell as defined by 
Eqs. (5.9). We scale U and V by the equivalent of dividing the 
velocities by the mesh lengths so that the inner loop executing the 
point moving algorithm contains no divisions. 

The device of assigning zero velocity to the outward facing 
sides of the fictitious cells cannot be guaranteed to prevent 
points from leaving the defined region. Thus to prevent errors of 
addressing non-existent array elements it is wise to test the i and 
j indices of moving points and force moving points which enter 
fictitious cells to remain there during the execution of the point 
moving algorithm. 
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7.3 Point Insertion and Deletion 

A convenient method of moving point deletion is to loop 
through the moving points as described in the following pseudo-code 
notation. 

NP = 0 

FOR K = 1 TO N 

X(K-NP) X(K) 
Y(K-NP) = Y(K) 

A(K-NP) = A(K) 

L = (INT(Y(K)-l»*N + INT(X(K» 
x 

NN(L) = NN(L) + 1 
If point K is in a fictitious cell or NN(L) exceeds the 

maximum allowable number of points then NP = NP+1 

NEXT K 

To insert moving points we first place the required number, 
mb' in each fictitious cell from which fluid flows into Q; that is, 
in the fictitious cells adjacent to oQ1. If the number of points 
to be inserted is greater than one it is convenient to place these 
points using a uniform random number generator. 

We then place a single moving point in each mesh cell in Q 
where the number of moving points is less than the allowable 
minimum. The allowable minimum and maximum in general depends upon 
the local concentration gradient and so we are performing a type of 
adaptive mesh refinement which is very easy to implement. 

8. NUMERICAL EXPERIMENTS 

8.1 One Dimensional Convection 

In this section we describe numerical investigations into the 
accuracy of algorithms for pure convection or, equivalently, 
infinite mesh Peclet number convection-diffusion/dispersion. In 
particular we examine accuracy on a fixed mesh as a function of the 
width of a front. This is essentially equivalent to exam1n1ng 
accuracy under mesh refinement with a front of fixed width. 

To investigate the effect of the smoothness of solutions upon 
the accuracy of numerical methods in simulating convection we will 
study the following test problem: 
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Find a function c c(x,t) satisfying the conditions, 

oc + 
Of ~= 0 o <: x <; Lx' t > 0 (8.1) 

u > 0 
au _ 0 (8.2) "Ox-

c(O,t) = 1 t ~ 0 (8.3) 

c(x,O) e _(x/s)2 o <: x <; Lx (8.4) 

where s is a parameter controlling the width of the front. 

This problem has the exact solution 

x <; ut 
c(x,t) (8.5 ) 

x > ut 

We will examine the accuracy of the finite difference, first­
order upstreaming method, the Donea (5) Taylor-Galerkin MMOC, the 
HMPM with NGP interpolation, Eq. (5.6), and the HMPM with Taylor 
interpolation, Eq. (6.2). 

Numerical experiments were performed using 40 mesh cells and a 
Courant number, u~/h, of 0.269. The moving point methods used 4 
mo~ing points per cell placed at t = 0 using a uniform random 
number generator. The results after 50 time steps are shown for 
various values of s in Figures 2-4. 

We see that the first order upstreaming solution is very 
inaccurate, giving answers which are insensitive to the problem. 
The Taylor-Galerkin method is very good if the solution possesses 
some smoothness. However the HMPM with the Taylor interpolator 
(denoted by GNT, for Gregory-Newton-Taylor, on the figures) is the 
most accurate method on the smooth problems. As the solution 
becomes discontinuous the NGP moving point method is the most 
accurate of the algorithms tested. Nevertheless, the accuracy of 
the IDIPM with the Taylor interpolator is good even when the 
solution is discontinuous. We note that in Figure 4 (s = 0) the 
exact solution is a step function; the figure shows a linear 
interpolation of the exact solution and so appears as a ramp 
function. 
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Figure 2. 

Figure 3. 

Figure 4. 
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8.2 One-Dimensional Convection-Diffusion 

In this sub-section we assume constant ~, u and D where D is a 
constant diffusion-dispersion parameter. 

A solution of the constant coefficient convection-dispersion 
equation in an infinite interval is 

[
X-_ut/t] 

~ - ~ erf 
2 IDt/~ 

If we choose constants u, D, Xo and to appropriately then the 
function 

(8.6) 

(8.7) 

is, for small enough t, a good approximation to the solution of 
the initial boundary value problem stated in Section 2.1. The 
solution (8.6) has the form of a smoothed step function with values 
between 0 and 1. 

8.2.1 Effect of mesh refinement 

We first investigate the effect of mesh refinement, holding 
all other parameters fixed. At the initial time we have placed 4 
moving points in each mesh cell using a uniform random number 
generator and have performed no local refinement. We have set 
Mb = 10 and mb = 1 to control the subsequent number of points per 
cell, although in the present example the number of points per cell 
cannot exceed 8. We have used Taylor interpolation (see 
Section 6.3) and in the y-direction there is one mesh cell. 

The values of the fixed parameters are given in Table 1. 

In Table 2 we show the maximum absolute errors 

(8.8) 

after a time equal to 16 of the time steps used in the 40 mesh 
cell case. For the case of 40 cells we give the errors of two 
different realisations of the random number generator used to 
place the moving points at t = o. 
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Table 1. Parameters used in numerical experiments on 
mesh refinement. 

Parameter Value Dimensions 

Lx 103 m 
Ly 102 m 
Front velocity 1 ft/day 
Porosity 0.2 

10-6 2 -1 D 1.0 m s 
to 9.0 107 s 
Xo 0.0 m 

Table 2. Maximum absolute error as a function of mesh size. 

No of h .. Peh maximum 
Cells absolute error 

20 50 4.106 35.28 1. 274 10-1 

40 25 2.106 17.64 1.516 10-2 

1.306 10-2 

80 12.5 106 8.82 3.156 10-3 

160 6.25 0.5 106 4.41 8.456 10-4 

Price Cavendish and Varga (31) observed that the original 
algorithm of Garder et al (13) failed to converge under mesh 
refinement. The results reported in Table 2 indicate convergence 
of the hybrid moving point method even when A(h) = 1, for all h. 
We have been unable to prove convergence in this special case but 
it is clear that the increase in the order of the moving point 
interpolator, from one to two, leads to an improved performance. 

8.2.2 Error at low mesh Peclet numbers 

To check the accuracy of the hybrid moving point algorithm at 
low mesh Peclet numbers we examined the maximum absolute errors 
using the fixed parameters in Table 3. We then varied the velocity 
and have displayed the error in Table 4. 
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Table 3. Parameters used for low mesh Peclet number experiments 

Parameter Value Dimensions 

No of cells 40 
h 25 m 
~ 3.106 s 
to 9.107 s 
Xo 5~!02 

2m -1 D 10 m s 

Table 4. Errors for moving point (A=l) and upstreaming (A=O) 
algorithms at low mesh Peclet numbers 

Front 
Velocity h Peh £16 
(ft/day) 

.01 25 .0176 1 3.897 10-4 
0 7.197 10-4 

.001 .0018 1 1.930 10-4 
0 2.281 10-4 

The results in Table 4 show the hybrid moving point method 
with Taylor interpolation to be more accurate than first order 
upstreaming even at low mesh Peclet numbers. On the basis of these 
results we have selected the A(h) weighting function given by 
Eq. (6.9). 

Since the hybrid algorithm seems to converge, the weighting 
function A(h), Eq. (6.9), only serves the purpose of enabling us to 
assert that our algorithm is convergent; in practical problems the 
mesh Peclet number will often be such that the upstreaming 
algorithm is only used in empty cells. 

8.2.3 Effect of varying the number of moving points per cell 

Garder, Peaceman and Pozzi (13) found that the accuracy of a 
moving point method using averaging interpolation is not sensitive 
to the number of moving points per cell. The use of the higher 
order Taylor interpolator, Eq. (6.2), might be expected to increase 
this sensitivity so that as the number of moving points per cell is 
increased then accuracy improves. Unfortunately this proves not to 
be the case. 
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The results shown in Table 6 were obtained using the parameter 
values in Table 5. The use of S*=O defines the whole flow region 
as a 'front' in the sense that at t=O moving points are placed, 
uniformly at random, in all the mesh cells. The upper limits on 
the number of points per cell were chosen so that points were not 
deleted from the interior of the flow region. 

In Table 6 we observe the interesting, and perhaps surpr1s1ng, 
effect of a deterioration in accuracy as the number of moving 
points is increased above approximately 8 per cell. However, the 
method is inconsistent under this mode of refinement with a 
truncation error of order hO ; the observed convergence under 
overall mesh refinement, as observed in Section 8.2.1, is the 
surprising effect. 

Table 5. Parameters used in testing accuracy when varying the 
number of moving points per cell. 

Parameter Value Dimensions 

No of cells 20 
h 50 m 
,; 4.106 s 
to 9.107 s 
xo 0 m 
D 10-6 m2 s -1 

front velocity 1 ft/day 
Peh 35.28 

Table 6. Effect on the maximum absolute error of varying the 
number of moving points per cell. 

mb ms S* £54 

4 4 0 5.220 10-2 

8 8 0 2.625 10-2 

16 16 0 3.962 10-2 
24 24 0 4.111 10-2 
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8.2.4 Effect of local moving point refinement 

Using the parameter values in Table 5 we investigated the 
effect of adjusting the parameters in the local moving point 
insertion-deletion algorithm. Results are shown in Table 7. The 
moving points are placed uniformly at random within each cell with 
a 'background' density of Nb/cell and a density of Ns/cell under 
the front at t=O. Fronts are defined by the slope parameter S* 
which was introduced in Section 6.4. Mb and mb are upper and lower 
bounds on the densities of background points; MS and ms are upper 
and lower bounds on the numbers of points falling under a front. 

The result in Table 7 for S* = 1.0 corresponds to a pure 
first-order upstreaming algorithm. The result with S* = 0.2 shows 
how considerable improvements in accuracy can be obtained with 
moving points placed only in the few cells occupied by a front. 
The result with S* = 0.0 shows that little accuracy is gained by 
using moving points throughout the flow region. 

Table 7. Effect of local moving point refinement on maximum 
absolute errors 

No of cells Total no 
Mb Nb mb MS NS ms S* with moving of moving £54 

points at points 
t=O used 

10 0 0 10 4 1 0 20 80 5.665 10-2 
0.2 3 12 6.084 10-2 

0.6 1 4 0.1544 
1.0 0 0 0.2268 

10 0 1 10 4 1 0.6 20 23 9.691 10-1 

8.3 Two-Dimensional Solutions 

In Section 3.2.2 we stated the exact solution of Jacquard and 
S~guier (20) for the growth of a viscous finger in a segregated 
displacement. These authors also give exact solutions for the 
fluid pressure in the oil and water phases. Numerical,evaluation 
of these expressions showed that the pressure quickly becomes 
constant across the channel (i.e. ~ ~ 0) as one moves away from 
the front. It is therefore a good approximation to consider a long 
but finite channel in which to compare numerical and analytical 
solutions. 
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By comparing the exact position of the front with the 
numerically predicted position we are able to obtain a quantitative 
measure of the errors in our numerical procedures in a physically 
relevant case. In our numerical experiments we examine the areal 
case obtained by setting g=O. 

Of particular interest are cases with an adverse mobility 
ratio, ~o/~ > 1. However, as shown by Saffman and Taylor (36) 
such adverse mobility ratio problems have linear stability 
behaviour in which the growth parameters of modes are inversely 
proportional to their wavelength. Such behaviour is symptomatic of 
an ill-posed problem (Ockendon (27)). At the very best one expects 
numerical methods to be ill-conditioned on such problems. 

Indeed if one attempts to construct numerical solutions 
corresponding to an adverse mobility ratio problem of the 
Jacquard-Seguier type one observes one of two things; 

(i) On meshes with rectangular symmetry, with or without 
moving points, the solutions produce viscous 'ears' 
on the 'nose' of the viscous finger. (If moving 
point methods are used this result is only obtained 
using initial point positions with the same symmetry 
as the mesh). We have observed viscous ears in 
i-point and 2-point upstreaming finite difference 
methods applied to this problem. 

(ii) On regular meshes with rectangular symmetry but 
using moving points placed at random at t=O the 
solutions produce multiply fingered fronts as 
observed in physical experiments. 

We have investigated several procedures for regularising this 
problem. These have included the use of artifically high 
dispersion coefficients and the use of filters, neither of which 
works satisfactorily. However we have found that integration 
backwards in time will produce good results - even for finite 
dispersion cases in which the problem is ill-posed. The backward 
miscible displacement equations with non-zero D are ill-posed in 
the same sense that the backward heat problem is ill-posed. 
However in the case of the backward miscible displacement problem 
the numerics are well-conditioned if the mobility ratio is 
sufficiently adverse and the mesh is not too fine. The backward 
miscible displacement problem, with non-zero D, can, if necessary, 
be regularised -by devices such as the quasi-reversibility method of 
Lattes and Lions (21). A detailed discussion of backward 
integration of miscible displacement problems can be found in 
Farmer (8). 

In the case of zero diffusion-dispersion the solvent 
concentration satisfies a pure convection equation. For a given 
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velocity field the Garder et al (13) algorithm is convergent. The 
results described in this section were obtained using the pure 
moving point method with averaging interpolation. 

We have experimented on the Jacquard-Seguier problem with 
Yo = 30 and ~o/~ = 2. Four moving points per fixed mesh cell were 
placed on a 38 x 38 physical mesh at t = 0. Figures 5a - 5d show 
the development of a front backwards in time. The ruled region 
represents a viscous oil; the clear region lower viscosity water. 
A mesh cell, Q~, is defined as containing oil if c~ < 0.5 and water 
if c~ ).0.5. The bold line marks a linear interpolation of the 
exact Jacquard-Seguier solution. These pictures show that the 
front position is located by the numerical method to an accuracy of 
approximately ±h if the system is physically stable. 

The moving point method will generally give this accuracy 
provided that the system to be simulated is physically stable on 
the mesh scale. For example the Dietz problem with gravity effects 
present, Eq. (3.12), may be solved by moving point methods also 
with an error of approximately ±h in the predicted front position. 

Further numerical results, relating to the 2-D rotating cone 
test problem, may be found in Farmer and Norman (11). 

9. NUMERICAL SOLUTION OF THE VELOCITY-PRESSURE EQUATIONS 

9.1 Introduction 

In this chapter we briefly review methods for solving the 
velocity-pressure equations, Eqs. (2.6)-(2.10). The quantity of 
greatest importance in miscible and segregated displacement is the 
velocity, rather than the pressure. For this reason methods which 
solve for the pressure and which then construct the velocity by 
numerical differentiation are, generally, not appropriate because 
the resulting interpolated velocity field is not solenoidal. 

Thus we are interested in mixed methods which treat both the 
velocities and the pressures as unknowns. It is our intention in 
this chapter to merely indicate the structure of such methods since 
many reviews are already available; Aziz and Settari (1), Peaceman 
(30), Russell and Wheeler (35). The review of Russell and Wheeler 
(35) is of particular relevance since they discuss the solution of 
the velocity-pressure equations in the context of the modified 
method of characteristics for the concentration equation. 

9.2 The Mixed Finite Difference Method 

Integration of Eq. (2.6) over ~ and approximation of the 
velocity field by assuming that the normal component of velocity is 
constant along any face of ~ leads to the equations, 



994 

I 
I ~----:::r--"- '::I==-r 

I 
i ' -
I 

t=l 
i - o~ 

i 

I 
~ 
~ 

i 

t=2 

I 

>--+----
it:=.~ , 

---+=--

t=3 

-

t=4 

Figure 5. Jacquard-Seguier test problem. Ruled area, numerical 
prediction of oil-filled area; ---- exact position of front 



995 

n _ n + n _ n -0 
ui +1/2,j ui-1/2,j Vi ,j+1/2 Vi ,j-1/2- (9.1) 

where our notation is explained in Section 5.4. 

To discretise the u component of ~ in Darcy's law, Eq. (2.7), 
in zero gravity conditions, we consider two adjacent mesh cells in 
the x-direction. Let the mobility, a defined by Eq. (3.21) have 
x-components ~i+1 j and ~i j at the centres of the two cells. Let 
the pressures at lfie centr~s of the two cells be pr+1 j and pr j' 
We then seek a mobility ~i+1/2 j and pressure Pl+1/2 j on the' 
interface between the two cel1~ satisfying the equations 

n 
ui+1/2,j 

_ Rn ( n 
t-'i+l/2,j Pi+1,j 

- ~~+1 ·(P~+l .-1. ,J 1. ,J 

- ~~ . (P~+1/2 .-1.,J 1. ,J 

- p~ .)/h 1.,J 

pi+l/2,j)/(h/2) 

Pi,j)/(h/2) 

Solution of Eqs. (9.2) leads to the difference formula 

n 
ui+1/2,j 

where ~i+l/2,j 
2~n·+l .~~ . 1. .J 1..J 
(~~+l . + ~~ .) 1.,J 1.,J 

The coefficients ~i+l/2 j are called harmonic 
transmissibiLities. ' 

(9.2) 

(9.3) 

(9.4) 

The v-component of Darcy's law is discretised in an analogous 
way. 

In the presence of gravity we again use harmonic 
transmissibilities with harmonic interpolation for (ap)ni +1 / 2,j and 
(ap)i,j+l/2 in the difference formula, 

n 
ui+l/2,j - ~~+1/2 ·(P~+l . - p~ .)/h 1. ,J 1.,J 1.,J 

- (~P)~+1/2 .g(H·+1 . - H .. )/h 1. ,J 1.,J 1.,J 

(9.5) 

Following Peaceman and Rachford (28) it is convenient to use 
reflection boundary conditions on H for the heights of fictitious 
points in mesh cells adjacent to oQ3' 
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To obtain the velocity and pressure fields we substitute the 
discrete Darcy law into the discrete incompressibility condition to 
obtain a linear system for the p~ j. The Dirichlet boundary 
condition, Eq. (2.9), is imposed ~eakly by assigning the surface 
pressure to the fictitious cells adjacent to 001 and 002. The 
Neumann boundary conditions, Eq. (2.10), are imposed using 
reflection boundary conditions by equating the pressures in the 
fictitious and physical cells either side of 003. 

The resulting linear equations are then solved by one of the 
many available methods described in, for example, Aziz and Settari 
(1), Peaceman (30), Hackbusch and Trottenberg (17). 

The velocity field in the interiors of the mesh cells is given 
by Eqs. (5.8). 

The proof of the convergence of the above method is discussed 
in Russell and Wheeler (35) where the interpretation of the method 
as a mixed finite element method is given. This interpretation 
leads to higher-order finite element based versions of the method 
which promise greater accuracy for an equivalent amount of 
numerical work. 

10. CONCLUDING DISCUSSION 

Fixed mesh finite difference methods, including the 
upstreaming methods,do not provide satisfactory ways of solving 
high Peclet number (convection dominated) convection-diffusion/ 
dispersion equations. Such methods suffer from one or all of the 
problems (i) oscillations (ii) phase errors (iii) numerical 
diffusion. Without modification of the algorithms these 
difficulties cannot be alleviated other than by excessive mesh 
refinement or an excessive increase in the order of the method. 

In view of these difficulties moving point techniques and the 
finite element version of the modified method of characteristics 
have been developed. These new methods are very much more 
accurate and efficient, on a given mesh, than the corresponding 
finite difference algorithms. The new characteristics based 
methods have been shown to work well on multi-dimensional miscible 
displacement and segregated flow problems. 

The numerical experiments described in the preceding chapters 
indicate that on a given fixed mesh the HMPM is more accurate than 
the Taylor-Galerkin FEMMOC. However, further work is required to 
clarify the relative merits of moving point techniques and the 
modified method of characteristics. The important feature of a 
method is, of course, the amount of computational work to achieve a 
given accuracy rather than the size of the mesh actually used. We 
look forward to research which will determine the relative 
efficiency of the competing methods. 
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Of considerable interest is the generalisation of the 
characteristics based methods to non-linear problems such as the 
full two-phase flow equations and to multi-component systems. We 
anticipate difficulties in this area in connection with the 
dependence of the vector field of characteristic displacements upon 
the spatial gradient of the permeability. However, we hope that 
our review will stimulate work to overcome these difficulties and 
lead to algorithms of improved accuracy and efficiency for the 
simulation of flow through porous media. 
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orientation, 558 
rectangular planes, 736 
size, 558 
systems, 479 
transmissivity, 437 
velocity, 437 
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width, cubic law, 510 
widths, 504,511 

Fractured 
media, 729 
porous media, 407 
reservoir models, 564 
reservoirs, 553,839 
rock, 146,409,414,446,475 
rocks, physical properties, 554 

Fracturing, thermoelastic, 148 
Freundlich isotherm, 282,540 
Front 

tracking, 621,899,901,905 
velocity, 583 

Functional dependence, 756 

G 

Galerkin finite elements, 303,853,865,903,947 
Gardner, Peaceman and Pozzi (GPP), method of, 956 
Generalized covariance, 648,650,652 
Generalized design procedure, 346 
Generalized increment, 647 
Geostatistics, 635 
Geothermal 

reservoir modeling, 171 
reservoirs, 145 
systems, submarine, 145 

Gneisses, 486,530 
diffusivity, 530 

Governing equations, 172 
Granites, 486,530,543 

diffusivity, 530 
Granular porous material, 411 
Gravitational 

deposition, 279 
forces, 62,568 
segregation, 153 
velocity, 279,583 

Grid orientation, 841,842,899 
Grid refinement, adaptive, 903 
Groundwater contamination, 685 
Growth of microbial particles, 298 
Growth rate, 299 



H 

Haines jumps, 64 
Hamaker's constant, 284 
Harmonic transmissibility, 995 
Head 

Heat 

realizations, 703 
variance, 667 

extraction, 145 
flux, conductive, 148 
flux, diffusive, 36 
flux, macroscopic, 37 
output, 148 
transfer, 80 
trnnsfer coefficient, 98 

Heterogeneity, 563,659 
High temperature systems, 149 
Histogram, 720 
History match, 205 
Holographic interferometry, Live fringe, 62 
Horizontal spreading, 691 
Hot groundwater systems, 146 
Hybrid moving point method, 955,979,981 
Hydraulic 

conductivity, 452,482,660 
head, 636,703 
radius, 31 
radius of void space, 9 

Hydrodynamic 
action, 281 
chromatography, 280 
dispersion, 494,877,896,897,956 
instability, 63,64 

Hydrostatic pressure, 222,225 
Hydrothermal alteration, 150 
Hydrothermal circulation, 148 
Hysteresi"s, 659,692 

Imbibition, 64,553,554,571,576,585,596,612 
cell, 590 
experiments, dimensionality, 589 

Immiscible 
displacement, 71 
fluids, 33 

IMPES, 834,882,902 
Implicit dispersion, 933 
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Inertial impaction, 280 
Infinite strip, 226 
Initial conditions, 536 
Injection 

pumping tests, 504 
velocity, 583 

Inspectional analysis, 83 
Instability mechanism, phase change, 145 
Interaction terms, 620 
Interception, 280 
Interface, 190 
Interfacial 

drag, 356,368 
instability, 59,66 
permeability, 385 
tension, 67,69,573,891 

Internal viscous resistance, 27 
Intrinsic hypothesis, 638 
Intrinsic random functions, 645 
Inverse 

method, 711 
problem, 704,760,796,810 
procedure, indirect, 789 
transmisivities, 708 

Irreducible saturation, 569, 856 
Isochoric flow, macroscopic, 29 
Isothermal compressibility, 166 
Isotherm 

Freundlich, 282 
Langmuir, 282 

Isotopes, oxygen and hydrogen, 147 
Isotropic tensor relations, 361 
Iterative methods, 836 
Iwasaki's equation, 284,289 

J 

Jacquard-Seguier solution, 963,992,994 
Joints, 408 
Jump balance, 357 
Juvenile water, 147 

K 

Kozeny-Carman, 293 
Kriging, 635,639,648,652,705,722 

universal, 643,649 



L 

Laboratory experiments, 601 
Lagrangian methods, 925 
Langmuir isotherm, 282 
Large-scale transport process, 695 
Lattices, 391,392 
Layers 

horizontal, 87,104 
non-constant properties, 125 
sloped, 102,104,114 

Layered soils, 86,116,124,241 
Leakage, 249 

factor, 246,252 
Leaky aquifer, sensitivity coefficients, 798 
Leaky confined aquifer, 762,771 
Least squares 

estimation, 754 
ordinary, 789 
weighted, 791 

Length scales, 49, 53 
Leverett J function, 581 
Linear theory, 87 
Liquid saturated, 145,151 
Local grid 

encrochment, 905 
refinement, 892 

Local thermal equilibrium, 172 
Log-transmissivity standard errors, 707 
London forces, 281 
Low interfacial tension, 59 
Low temperature systems, 148,153 
Low-velocity body, 150 
Lumped-parameter models, 171 

M 

Macrodispersivities, 659,673 
Macroscopic 

dispersion, 738 
heat flux, 37 
isochoric flow, 29 
level, 5,23,347 
momentum balance, 31 
uniform flow, 29 

Magma bodies, 146 
Magmatic water, 145,147 
Makus technique, 103 
Mass balance equations, 81,616,831,859,936 
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Mass balance, fracture width, 510 
Mass flux 

advective, 24 
diffusive, 33,62 

Mass transfer, 49,59,62,63,67 
coefficients, 302 

Mathematical modeling, 145,171,488 
Matrix block units, 559 
Matrix blocks fractures, description, 621 
Matrix diffusion, 497 

modeling, 495 
Matrix flow equation, 616 
Matrix-fracture transfer, 617 
Maximum likelihood estimation, 791 
Mean 

flow, 668 
heat transfer, 112 
transmissivities, 720 
value theorem, 349 

Mechanism of particle capture, 278 
Mechanistic processes, 50 
Mercury porosimetry, 610 
Mesh 

interpolator, 965 
Peclet number, 968 
refinement, 987 

Metamorphic water, 147 
Meteoric water, 147 
Method of characteristics,925,926 

modified, 923,955,965,978 
Micro fractured matrix block, 596,600 
Microbial 

enhance oil recovery, 295 
growth parameters, 301 
particles, 271,272,294 

Micromodel studies, 49,53,54,59,62,71 
Microscopic 

behavior, 51,843 
level, 5,23,59,347,348,350 
momentum balance, 24 
observations, 59,72 

Migration parameters, 539 
Mint's equation, 287,290 
Miscible displacement, 59,837 

equation, 955,956,959,964 



Mixed 
explicit-implicit scheme, 947 
finite difference method, 993 
finite element method, 893,996 
implicit-explicit dispersion, 933 
method, 895,900 

Mixing, 735 
Mixture 

heterogeneous, 350 
homogeneous, 350 
multiphase, 854 
multispecies, 854 
theory, 440,853,897 

MMOC, finite difference version, 967 
MMOC, finite element version, 970 
Mobility, 856,857,869,894,961 

ratio, adverse, 992 
Model 

aquifer, 242 
Biot, 242 
black-oil, 831,839,878,884,886 
channelling, 495 
conceptual, 52,146 
mathematical, 145,171 
matrix diffusion, 495 
parameters, 301,302,304,323 
physical, 49 
pore level, 50 
pseudo-exact, 244 
random walk, 744 
second order, 244 
sensitivity, 753 
three dimensional, 574 
verification, 745 

Modified method of characteristics, 923,955,965,978 
Moisture capacity, specific, 859 
Molecular diffusion, 34,35,485,956 
Momentum balance 

macroscopic, 31 
microscopic, 24 

Momentum conservation equation, 81 
Monod equation, 299 
Monte Carlo simulations, 675 
Motion equations, 358 
Moving combustion front, 842 
Moving co-ordinate system, 959 
Moving fronts, 824,831 
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Moving point 
interpolation, 974 
method, hybrid, 955,979,981 
method,pure, 955,975,978 
methods, implementation, 983 
refinement, 991 

Multi-fracture parameter, 558 
Multilayered system, 120 
Multiphase 

balance equation, 355 
constitutive property, 379 
continuity, 358 
continuum theory, 346 
drag, 362 
flow, 553 
flow, naturally fractured reservoirs, 613 
fracture flow, 573 
mixtures, 853,854 
rate of deformation tensor, 366 
stress tensor, 361,362,366 
theory, 315 

Multispecies mixtures, 854 
Multivariate normal distribution, 711 

N 

NAPL, 897 
Natural convection, 77,109 
Neighborhood, 641,651 
Network, 49,53,58,60 
Newtonian fluid, 366,368,370 
Newton's law of viscosity, 349 
NGP interpolation, 974 
Non-iterative methods, 836 
Non-newtonian fluid, 365,369 
Non-stationary, 636,642 
Normal probability plot, 719 
Numerical 

diffusion, 955 
dispersion, 947 
model, multiphase, 851 
simulators, 171 
solution, 95,256,303,923 

Nusselt-Rayleigh correlation, 107 
Nusselt number, 92 



o 
Objectivity, 359 
Oblate spheroid, 374,376 
Oil recovery, 51 
Optimization design, 215 
Overshoot, 955 

p 

Packing constant, 285 
Parabolic relation, 310 
Parallel fracture permeability, 561 
Parameter 

covariance matrix, 792 
estimation, 704,753,789,814 
identification, 421 
realization, 703 
sensitivity, 205 
variances, 754 
zones, 754 

Partial 
mixing, 736 
pressure, 155 

Particle 
capture mechanism, 274,278 
shape, 391 
tracking, 735 
tracking, continuous forward, 929 
tracking, single step, 929 
transport, 271 

Pathline realizations, 711 
Pathlines, 713 
Peclet number, 511,923,968,988 
Penetration depth, 496 
Percolation, 730 
Permeability, 32,293,312,370,373,376,379,560 

anisotropy, 207 
fracture matrix system, 561 
parallel fracture, 561 
reduced, 159 
relative, 856,857,878,898 
single fracture, 560 

Perturbation 
equations, 87 
flow, 670 

Petroleum reservoirs, 51,852 
Phase change, 356 

instability mechanism, 145,168 
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Phase distribution function, 351 
Phase error, 955,970 
Physical modeling, 49,50 
Piezometric head, 652 
Piping, 289 
Platelets, 391 
Plug flow, 276 
Plugging, 287,289 
Point balance equation, 441 
Polyhedral cells, 91 
Population balance equation, 289 
Pore geometry, 53,71 
Pore level modeling, 51,53 
Pore morphology, 49,71 
Pore network geometry, 60 
Pore penetration, 390,392 
Pore structure, 51,60 
Pore throat size, 610 
Porosity, 9,14,18,315,350,352,420,521,524,559 

average, 318,321,372,377,384,393 
distribution, 380 
dual, 422,553 
local, 377 
mean, 383 

Porous 
cavity, III 
matrix, diffusion, 486,497 
media, fractured, 407 
media, granular, 411 
media,matrix, 839 
medium, definition of, 6 

Position vector, 973 
Prandt1 number, 84 
Precipitation of quartz, 162 
Precoat filtration, 316 
Preconditioning, 887 
Pressure 

drop, 293,315,325 
equation, 880,884,958 
filtrations, 394 
probes, 380 
variation, 327 

Pseudobody approach, 501,503 
Pseudo-exact model, 244 
Pumping tests, 504 
Pure moving point method, 955,975,978 



R 

Radial flow, 261 
Random 

fields, 663 
functions, 636 
walk model, 289,744 

Randomly distributed, fractures, 621 
Rapid granular - medium filters, 276 
Rapid sand filters, 284 
Rate of deformation tensor, 362 
Rayleigh instability, 168 
Rayleigh number, 84,90,124 
Reciprocal rate, 374,379,382,383,386,387,394 
Recovery factor, 215 
Recovery time, 578 
Regionalized variable, 636 
Relative permeability, 167,563,564,566,608,856,857,878,898 

modification, 601 
Reliability, 659 
Representation theorem, 664 
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Representative elementary volume (REV), 5,7,8,10,11,13,18,412,443, 
730 

Reservoir 
continuous, 824,826,852 
fractured, 553 
geothermal,145 
petroleum, 145 
simulator, 830,834,835 

Residual oil, 569 
Residual saturation, 856 
Response functions, 718,722 
Retention age, 277 
Retrograde solubility, 162 
Reynolds number, 366 
Richard's equation, 859 
Ripening state, 285 
Rock matrix, 172 

models, 475 

s 
Salt water intrusion, 858,863 
Sample 

mean, 719 
shape, 586, 611 
standard deviation, 719 
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Saturation, 828,855,857,872 
irreducible, 856 
residual, 856 
shocks, 870,901 

Scale factors, 375 
Scaling 

displacement processes, 582 
experimental data, 580 
laws, 578 
positions and velocities, 983 
problem, 50,72 

Schapery's approximation, 249,252 
Scour coefficient, 287 
Second order model, 244 
Sedimentation, 279 
Segregated 

displacement equations, 960,964 
flow equations, 962 

Semi discrete finite element methods, 973 
Semi-implicit treatment, 621 
Semi-infinite strip, 222 
Sensitivity 

analysis, 173,753 
coefficients, 753,755,758,761,762,763,769,779,789,792,814 
maximum, 793,797 

Septum, 310,373,379 
permeability, 374,380,385,386,389,390,394 

Sequential procedure, 834 
Simulation, fractured reservoirs, 613 
Single fracture, 427,428 

experiments, 505,507 
permeability, 560 

Single phase 
convection, 164 
systems, 346 

Single-step reverse particle tracking, 925,929 
Slow sand filters, 276,284 
Slurry concentration, 320,323,384,388,394 
Snap-off, 66 
Solute transport, 475,659,671 
SOR + Additive corrections, 836 
Sorption, 283,475,487,539 

coefficient, 488,540 
Source function, 573 
Space average, 637 
Spatial 

correlation, 636 
derivative, average, 353 
variability, 688,736 



Specific cake resistance, 315 
Specific discharge variances, 670 
Specific growth rate, 299 
Specific heat, 166 
Specific moisture capacity, 859 
Specific surface area, 573 
Spectral density function, 663 
Spectrum, 664 
Spline, 650 
Stability, 102,794 
Standard error, 791,805,806 
State equation, 81 
Static moment, 42 
Stationarity, 638 
Stationary, 636,645,648 
Statistical 

homogeneity, 665 
inference, 639,649 
inverse, 706 
parameter estimation, 705,707 

Statistically anisotropic model, 664 
Steam injection, 842 
Stochastic 

modeling, 659,729 
uncertainties, 718 

Stoichiometric ratio, 300 
Stokes-Einstein, 280,284 
Storativity, 758,765 
Straining, 278,296,308 
Stream function, 713 
Streamlines, 713 
Stress 

solid phase, 316 
tensor, multiphase, 361,362,366 

Strongly implicit procedure, 836,886 
Strontium, 506,507,542 
Submarine geothermal systems, 145 
Subsidence, 241 
Substrate transport, 299 
Successive Over Relaxation Methods, 836 
Supercritical, 145,151 
Superheated steam, 171 
Surface 

forces, 279,281 
tension, 574 

Suspended particles, 272,274 
S-wave shadows, 150 
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T 
Tay1or-Ga1erkin MMOC,985 
Teleseismic P-wave delays, 150 
Temperature, 80,152,370,838 
Tensions, interfacial, 891 
Tensor relations, isotropic, 361 
Texture, 99 
Theis 

aquifer,sensitivity coefficients, 798 
equation, 769 

Theory of mixtures, 350,854 
Thermal 

conductivity, 38,166 
front, 190,193,195,198,219,221 
properties of water, 167 
simulator, 838 
transport in fractures, 427 

Thermodynamic 
critical point, 169 
equilibrium, 167 

Thermoelastic fracturing, 148 
Thermohydrau1ic equations, 191 
Three-dimensional flow, 117 
Tilting flow, 198 
Tilting rate, 199,200 
Time derivative, average, 353 
Time stepping algorithm, 966 
Tortuosity, 37,44 
Total porosity, 521 
Total velocity, 834 
Tracer migration, 475 
Trajectories, 713 
Transfer functions, 615,617 
Transformation matrix, 805 
Transient 

leakage factor, 252 
model, spatially varying parameters, 808 

Transmisivity distribution, 757,765 
Transmissibility, 620 

harmonic, 995 
Transmissivity, 703 

spatially varying, 775,778,801 
Transport, dissolved species, 475 
Transport mechanisms, 274 
Trend, 636,642,649 
Tritium, 544 
True density of solids, 315 
Tumbling of bacteria, 298 



Two phase 

u 

boiling, 145 
convection, 164,168 
flow equations, 962 

Uncertainty, 659,703,704 
Uncondensible gas, 155 
Undisturbed rock, 531 
Unicellular flow, 114 
Uniform flow, macroscopically, 29 
Universal kriging, 643 
Unsaturated 

flow, 851,858,860,889 
hydraulic conductivity, 689 
zone, 858 

Upstream weighting, 872,892 
Uranine, 536 

v 
Vacuum filtration, 394 
Van der Waals forces, 281,287 
Vapor dominated systems, 146 
Vaporsaturated, 145,151 
Variable 

block size, 500 
flow field, 500 

Variance, 493,790 
Variogram, 638,639 
Velocity 

discontinuous, 711 
-Pressure equations, 993 
realizations, 713 

Vertical thermal front, 222,223 
Viral particles, 294 
Viruses, 279,301 
Viscosity, reduced, 370 
Viscous resistance, internal, 27 
Void ratio, 312 
Void space, hydraulic radius of, 9 
Volatile oil reservoirs, 837 
Volume averaging, 413, 441 

local, 350 
Volume fractions, 854 
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Volume saturation, 167 
of phases, 146 

w 
Waste disposal, 691 
Water 

advancement, 581 
-C02 fluid, 169 
magmatic, 145 
-oil displacement, 572 
penetration, 145 
saturation, 518 

Wave number, 102,124 
Wavelength, 107 
Well constraints, 833 
We11bore model, 212 
Wettability, 53 
Wetting front, 860 
Wetting properties, 553 

y 

Yield coefficient, 300 
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