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PREFACE

This volume contains the lectures presented at the NATO
ADVANCED STUDY INSTITUTE that took place at Newark, Delaware, U.S.A.,
July 14-23, 1985. The objective of this meeting was to present and
discuss selected topics associated with transport phenomena in
porous media. By their very nature, porous media and phenomena of
transport of extensive quantities that take place in them, are very
complex. The solid matrix may be rigid, or deformable (elastically,
or following some other constitutive relation), the void space may
be occupied by one or more fluid phases. Each fluid phase may be
composed of more than one component, with the various componerts
capable of interacting among themselves and/or with the solid matrix.
The transport process may be isothermal or non-isothermal, with or
without phase changes.

Porous medium domains in which extensive quantities, such as
mass of a fluid phase, component of a fluid phase, or heat of the
porous medium as a whole, are being transported occur in the practice
in a variety of disciplines. For example, we encounter transport
in porous media in Civil Engineering, in connection with the flow
and pollution of groundwater, or the movement of moisture and heat
through building materials, in Soil Mechanics, in dealing with soil
compaction and land subsidence, in Reservoir Engineering, where we
encounter multiphase flow, often under non-isothermal conditions,
or in connection with enhanced o0il recovery techniques, in Geothermal
Reservoir Engineering, and in Chemical Engineering, where processes
take place in packed beds. In all these cases, decisions related
to the operation of the system have to be made. Rate and location
of water injection in an o0il reservoir, rate of pumping, or
artificial recharge of an aquifer and rate of production from a
geothermal reservoir, may serve as examples of such management
decision. To make these decisions, the planner needs a tool that
will represent the excitation-response behavior of the system. This
tool is the model. The model is a simplified version of the complex
real system, that simulates the behavior of those parts of the real
system that are relevant to the management problem. It enables the
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planner to predict the outcome of implementing proposed management
schemes. The type of model and its required accuracy are, therefore,
also dictated by the model's use.

The first step in constructing a model for a given problem of
transport, in a given porous medium domain, is to state the
simplifying assumptions that transform the real (complex) world
into the model. We often refer to this set of assumptions as the
conceptual model. The model is then cast into a mathematical (or
numerical) format. For most cases of practical interest, due to
the complexity of the model, only a numerical solution is possible.

No model can be used, unless the numerical values of the various
coefficients appearing in it are known. These can be estimated by
solving the "inverse problem". In such problems, the input is data
on field observations and the output includes the values of the
model's coefficients, or parameters. Although some methods for
solving the inverse problem are available, many problems still
remain unresolved. Among them we may mention the question of
uniqueness and criteria for obtaining the best set of coefficients.

Because of the heterogeneity inherent in the real porous medium
domain, and in view of the relatively small number of samples, or
observations, that we have in large heterogeneous domain, there is
always uncertainty associated with the values of the domain's
parameters and their spatial distribution. This means that
uncertainty is also inherent in the model's predictions (that serve
as input to the management problems). This feature of uncertainty
should, therefore, be represented in the transport model. In recent
years, much progress has been made toward this goal.

With this background in mind, a small number of subjects was
selected for presentation and discussion in the 1985 NATO/ASI.
These lectures are assembled in this volume.

Chapter 1 is devoted to the modeling of heat and mass transport
in porous media. Both single and multiple fluid phases are
considered. The treatment of porous medium deformability is also
included. Chapter 2 introduces the topic of particle transport in
porous media as encountered in reservoir engineering and in
filtration. Chapter 3 deals with transport phenomena in fractured
rock and fractured porous rock domains. The first section presents
the theory and the practice of water flow and the transport of
pollutants in fractured domains.

Chapter 4 introduces the important subject of uncertainty in
models, arising from the complexity of the modeled system, and
especially the spatial variability of the porous matrix properties.
The question of the sensitivity of the model's predicted results
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(here water levels) to changes in model parameters is introduced in
a number of sections. The problem of parameter estimation is also
presented and discussed.

In recent years, there is a growing interest in two numerical
methods, the Eulerian-Lagrangian models and point (or particle)
tracking techniques. Although numerical methods was not a central
topic in the 1985 NATO/ASI, it was felt that some advances in these
two techniques should be included.

Chapter 5 includes lectures on these two techniques, in addition
to lectures on numerical models of multiphase flow, a subject
discussed in detail in Chapter 1.

In a way, this volume is a sequel to the book that contains the
lectures of the 1982 NATO Advanced Study Institute (published in
1984 by Martinus Nijhoff Publishers). For convenience, the table of
contents of the 1984 book is included at the end of this volume.

A number of lectures in the present volume include references to the
previous one.

A number of persons have contributed their invaluable time and
effort to the organization of the ASI and/or the preparation of this
book, and without their help such a task could not be undertaken.

We take great pleasure in acknowledging the contributions of M. Ozden
Corapcioglu, Nancy Diffenderfer, Akhter Hossain, Sorab Panday,

and Carol Wong at various stages of organization and manuscript
preparation.

We greatly appreciate the financial support of NATO without
which this Institute would not be possible. We are also grateful
to the authors for accepting the invitation to lecture and to prepare
written papers, and to all the participants for their contributions
during the discussions.

We hope that this volume, like the 1984 one, will serve as a
further step in the formulation of a unified approach to the modeling
of transport in porous media.

July, 1985
J. Bear M. Y. Corapcioglu
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ON THE CONCEPT AND SIZE OF A REPRESENTATIVE ELEMENTARY
VOLUME (REV)

Yehuda Bachmat Jacob Bear

Director Albert and Anne Mansfield
Hydrological Service Professor of Water Resources
Jerusalem, Israel Department of Civil Engineering

Technion, Haifa 32000, Israel

ABSTRACT

This chapter discusses the concept of the Representative
Elementary Volume (REV) that serves as a cornerstone in the continuum
modeling of transport phenomena in porous media (4). Following the
presentation of the concept, quantitative criteria are presented for
the selection of the size of the REV,

1. INTRODUCTION

The concept of a Representative Elementary Volume (REV) under-
lies the continuwm approach to the modelling of transport of exten-
sive quantities in porous media. At the microscopic level of
description, the transport of an extensive quantity of a phase is
modelled in terms of state variables at points Znside the domain
occupied by that phase. Interphase surfaces serve as boundaries.

In the continuum approach, a passage is made from the microscopic
level of description to a macroscopic one, in which to every point
within an investigated porous medium domain, we assign values to
state variables of all phases present in the domain. The macroscopic
model is then expressed in terms of these macroscopic state variables.
The value of a macroscopic state variable at a point is obtained by
averaging the microscopic values of this variable over a certain
volume of porous medium, centered at that point. This characteristic
volume is called the Representative Elementary Volume.

It is worth noting that although the continuum model of a porous
medium eliminates the need for specifying the microscopic configu-
ration of interphase boundaries, its effects appear at the macros-
copic level in the form of matrix coefficients. Similary, the



effects of the microscopic variations of state variables within
each phase also appear at the macroscopic level. To express these
effects in terms of averaged quantities, statistical models of the
microscopic variations will, in general, be required.

The continuum approach to modelling transport in porous media,
using the REV concept, is well known and need not be repeated here
(see, for example, 1, 2, 4, 5, 7, 8, 9). Also the concept of the
REV has been around for some time. (In addition to the above referen-
ces, see also: 3, 10, 11, 12). The objective of this paper, which
may be considered as supplementing the authors' paper presented at
the 1982 NATO Advanced Study Institute (4), is to re—examine this
concept and its usefulness and to propose criteria for determining
the size of an REV.

2. THE POROUS MEDIUM

For the purpose of this work we define a porous medium as a
multiphase material body characterized by the following distinct
features: a) A Representative Elementary Volume (REV) can be deter-
mined, such that no matter where we place it within the porous medium
domain, it will always contain two persistent subdomains: a solid
phase and a void space. b) The void space of any REV contains a
multiply-connected subdomain referred to as the intercomnected void
space. c) The size of the REV is such that parameters that represent
the distribution of void and solid within it are statistically
meaningful. The quantification of this requirement is discussed
in detail below.

In principle, any Arbitrary Elementary Volume (AEV) may be
selected as an averaging volume for passing from the microscopic
level of description to the macroscopic one. Obviously, different
AEV's will yield different averaged values for each quantity of
interest and there is no sense in asking which of them is more
"correct". The selection of an averaging volume in any particular
case depends only on the model's objectives. Also, the size of the

"window" of the instrument that measures an averaged value should
correspond to that of the selected AEV, so that, within the range

of error introduced by the conceptual model of the process, the
predicted and measured averaged values always be the same. The main
drawback of this approach is that since every averaged value may
strongly depend on the size of the selected AEV, it must be labelled
by the size of the AEV (like a yardstick) over which it was taken.
To circumvent this difficulty, rather than selecting the volume of
averaging arbitrarily, we need a universal criterion which is based
on measurable characteristics of any porous medium and that deter-
mines, for any given porous medium, a range of averaging volumes
within which these characteristics remain, more or less, constant.
As long as instrument's "window" is in that range, observed and
computed values will be close, within a prescribed level of error.



An averaging volume which belongs to that range will be referred to
as a Representative Elementary Volume (REV).

3. SELECTION OF REV SIZE

Let the spatial distribution of the void space in a porous
medium domain, (D), be represented by the characteristic function

1 if x is in the void space
v(x,t) = (3.1)
0 if x is in the solid matrix

!

where x denotes thé position vector of a point and t is time. Also,
let (U) be a domain centered at a point x within (D). Consider
the averages

=11
-

V(x>0 = v(x) LU)dUV = n(x_,U) (3.2)

= J Y(x) dU =
x»U (U)

where n is the porosity of the medium within (U), and dU,, represents
a volume element of the void space,

V() Y + )| =
%yoUsh

il

J [y(x) - vy )My(x + b) (3.3)
)

=31

- Y(x_ + h)ldU= J Y (x)Y(x + h)dU - n(x_,U)n(x, + h,U)
T w e

where $(g) = y(x) - Y(x), x 6(U).Eq. (3.3) is a measure of the
distribution of the void space within (U).

A particular case of Eq. (3.3) is

= %J {y2(x) - 72(x ,U)}dU = n(1 - n) (3.4)
~ ~0
(U) )fO:U




The construction of a mathematical continuum model of a porous
medium imposes certain restrictions on the size of the REV. Foremost
is the requirement that the value of any averaged geometrical
characteristic of the microstructure of the porous material at any
point in the porous medium domain be a single valued function of
the location of that point and of time only, but independent of the
size of the REV.

Accordingly, we now define a volume U= U as a Representative
Elementary Volume (REV), if

on(x_,U) _ Y (x,,U) . (3.5)
ou U=U 3u U=U
le) (o]
and
390 VG + 1|
Y(x) Y(x + h) x_,U
= -0 (3.6)
U=U
o

In principle, one can visualize an experiment consisting of a
succession of gradually increasing volumes U;<U,<Uj -.., all
centered at x Z s and a concurrent determination of Y and Y(x)y(x + h),
hoping that a U= U , which satisfies both Eqs.(3.5) and (3.6), will
be found. After repeatlng this experiment at all points x_ € (D),
one can replace the actual porous medium within (D) by a model of
a fictitious continuum, provided U= U is uniform throughout (D).
However, this is obviously an 1mp0351b1e task since it is impractical
to observe all points within (D).

The question then arises as to the possibility of making inferen-
ces about the size of U from its relationships with macroscopic
measurable parameters of the microscopic configuration of the void
space.

An answer to this question can be obtained by regarding vy(x)
as a random function of position, x. Thus, if Y(x) is a stationary
random function of x, i.e., if the domain under consideration, (U ),
is statistically homogeneous with respect to the geometrical charac-
teristics of the void space, as expressed by the moments of Y(x),
and if Y(x) possesses the ergodic property, then, for a sufficiently
large (Uo) (13)

E(vy | )

~0

n

I
[t ]

Y(x) J(U )Y(If)dU = n(x )

o o



n

C|H

Cov_(h) (3.7)
U ,h o i

J $G)V(x + h)du
)

Var[Y(?jo)]TY(l}) = n(l - n)TY(b)

where Var ¥ = n(1-n),t_(h) is the correlation coefficient between
values of y at points spaced an oriented distance h apart and

n (=U_ /U ) is the porosity, where UOV denotes the volume of voids
within UO. By definition

T, (0) = 1; 7 (b) >0 as [h| » = (3.8)

In fact, the volume U_ of an REV should be sufficiently large,
so that the volumetric ave%ages can be considered as satisfactory
estimates of all relevant population parameters of the void space
configuration at x , i.e., estimates which are free of errors caused
by the size of the sample and its random choice.

As was shown by Debye et al. (6), for an isotropic porous
medium

1

oh h=0 4A(1 - n)

(3.9)

where A=U /S is the hydraulic radius of the void space (volume

oV Vs . . .
UOV and drea of contact with the solid, SV ). An approximate
expression for t (b), for an isotropic medium, with a random
distribution of Void and solid spaces, is given by Debye et al. (6),

T, ¥ exp{ - h/4a(1 - n)} ; h = |h| (3.10)

It follows that a necessary condition for obtaining nonrandom
estimates of the geometric characteristics of the void space at
any point X which serves as a centroid of a sphere of volume UO and
diameter &, is

h =8 >> A (3.11)
max
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The magnitude of & ., is determined by the chosen accuracy and
reliability levels of tﬁ%nparameter estimates. Thus, as a conceptual
experiment for estimating the porosity, n, of a porous medium at a
point go, let the volume U_of a cubical REV centered at that point
be split into N disjoint eiementary subdomains, SU = U_/N, such
that in each of them one may encounter (more or less) either solid
or void. The average of y over the N samples is taken as an estimate,
n, of the porosity, n, at go, i.e.

1

I NSU i

n =

YiéU) (3.12)
1

[ e I8~4

By definition and Eq. (3.7), we have

N N - N N
o2 = 1 Lk Cov(v v = % zl zer(hpq)
n N2 P= q= = =
N N p=t 4 (3.13)
where 05 is variance of the estimate of 5, and h_=|x - x I is
the distance between points gp and gq. pPd P 1
Employing Eq.(3.10), we obtain
i(l - n) N N
02 =22 "IN+ 5 % oexp{ - h/4(l-n)A} (3.14)
n N2 p=1 g=1 pd
p#q

From Eq. (3.14) it follows that, since h is expressed in
units of A, N = N(n,og). Pq

Figure 1 shows the relationship cg(n,N). For example, for

n = 0.3, N = 8000, cg = 0.00347,

3
Thus, for a cubical REV, U . (széri‘r)l ) = N6U, with each
elementary volume U = (Cpld)3, wé have
Q(n)
(n) 2 1/3 _ min
= 2 Crbs Cph =
8oin = (N(m,02)} Cy A Th el (3.15)
In the above example, this means Q(?) = 20C,A, where we have

added superscript (n) to emphasize that we have been considering
the porosity, n, as the macroscopic geometrical characteristic.
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According to Chebyshev's inequality, the probability that the
magnitude of the estimation error exceeds a prescribed level, say ¢,
is bounded from above by

P(|f - n| 2 ¢) < oé/sz (3.16)

Let B denote a probability such that cg/e2 =8. Then, N would
represent the smallest number of subdomains of (U ) which is
sufficient to ensure, with a reliability 1 - B,thgt the estimation
error ]ﬁ - n| will not exceed €. In the above example, this means
for example, that for € = 0.1, B = 0.35. Obviously, any reduction
of € and B(in this example) will require a larger value of N.
It is of interest to note that in order to determine Q(?) by

Eq. (3.15), one has to make use of a preliminary estimate oF'R and
CAA.

The requirement of ergodicity also sets an upper bound on the
size of the REV, namely & < & , where 2 is the distance between
s . . X, maﬁ. .
points in the porous medium domain beyond which the domain of
averaging ceases to be statistically homogeneous with respect to
the moments of y(x).

~2104
0.2 TTHH
» \.\~~~- 7:\\
10 0./ ——
1 "'\‘ o
0.05 1 —
2 '_'.""\ \\ ‘\
Oﬁ e N N
T~ NN
‘\ q
-2 \\\\ ~\4\
10 N ‘\\
~SSrhe HH
\\ o L[]
2\
N NN/
NN
\\\\
10 . . ; \
10 10 102 103 10

Figure 1. Variance of the estimate, n, of porosity as a function of
number, N, of elementary subdomains.



12

In reality, the requirement of homogeneity is seldom satisfied
as the macroscopic parameters of the void geometry usually vary
from point to point. However, even for a domain that is heterogeneous
with respect to these parameters, one can define around every point
a sufficiently small subdomain, within which these parameters may
still be considered uniform, up to a prescribed error level. The
size of such a subdomain at a point serves as the upper bound for the
size of the REV at that point.

In order to determine this upper bound, let us define a domain (U)
centered at a point go as homogeneous, if for all X €(U)

Ey(x) = n(g) = Constant = n
and
Cov[y(x + h),y(x)] = £(h)
Then
Var Y(§) = f(0) = Constant = no(l - no)

For a heterogeneous domain (U), n = n(x). However, for a suf-
ficiently small (U), any continuous and differentiable function
n(x) can be estimated by its linear part (Figure 2). Therefore, we
may select an estimator n(x) that has the linear form

ﬁ(g) =n + b.h ; n =n

o A o X H bE)f_)fO (3-17)
~0
where b = grad n . By definition
%o
n(x) = n(x) + e(x) (3.18)
Assuming that Ee(x) = 0 for all x, ﬁ(g) is an unbiased estima-

tor of n(x).

We shall refer to the domain (U) as approximately homogeneous
if for any point §(=§O + h) within it, we have

léﬁl < = |Anlmax s An = ﬁ(g) - n (3.19)
n - n
o o

and 0 < § < 1 is an arbitrarily selected small number, representing
an acceptable average relative error introduced by replacing n(x)
by n_.

o
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n(x)

max

l
l
I
x

° X + %l(n)
o max

(n)

nax by Eq. (3.19).

Figure 2. Conceptual determination of £

From Eq. (3.17) and the def{g}tion of &, it follows that the

sought upper bound, denoted by Qmax’ is given by

L@ _ o (3.20)
max Igrad n
%o
Thus
g @ () (3.21)
min max
(n)

The distance & ax (with respect to porosity) is thus the upper limit
for the size of the REV at a point x _, at the selected error level.
We have to scan all points x wit?ig the given domain in order to

n

. ~0
determine the smallest value of &
max

If K(n) < 2(?) at x , an REV c?n?ot be defined there. On the
other hangéxif a gé%—zeréorange of ¢ n can be found, which is
common to all points within a given spatial domain of a porous
medium, one can adopt the continuum model for the porous medium
within that domain.

Finally, we have to*relate Q(H) to the dimensions of the
considered domain. If L is a characteristic length of the domain,

we require that

o (M o* (3.22)
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in order to en uge that the boundary region of the domain, which
has a width £'\"/, and in which the continuum approach is not
applicable, be small compared to the size of the domain itself.

So far, the concept and size of the REV have been related to
porosity as a geometrical porous medium property. We have indicated
this fact by using the superscript (n). Whenever, additional charac-
teristics of the porous medium appear in the macroscopic model
describing a transport problem, e.g., permeability, a range for REV
has to be determined for each of them. If a common REV range can
be found, a continuum model of the porous medium can be employed.

One of the requirements for the range of the REV is that
on/3U = 0 within it, as defined by Eq. (3.5). This does not
necessarily imply that n(x) is uniform within U . To illustrate
this point, consider the ratio U_(x )/U(§ ) whére U(x ) is the
volume of a sphere centered at an arbitrary point x within (D) and
Uv(go) is the volume of the void space within U(go).

Solid particles

Domain of |

microscopic
inhomogeneit Domain of porous medium
1.0
| Domain of possible
r——————macroscopic

| I_ —_— inhomogeneity
> N I +::==E§;E
~
. | l ‘ Homogeneous medium
S Range for U, . Inhomogeneous media
° F‘“——‘——_*“{ l
3 | | !
[+ 4 l !

0 | : — VOolume U
0 Umin Umax
(n)

Figure 3. Definition of len, Representative Elementary Volume and

porosity at .



15

Figure 3 shows the variations of the ratio U /U as U increases.
For very small values of U(x ), the above ratio is one or zero,
depending on whether x happens to fall in the void space or in
the solid. As U(x ) igcreases, we note large fluctuations in U /U.
However, as U continues to grow, these fluctuations are gradualiy
attenuated, until, above some value U=U_, , they decay, leaving only
small amplitude fluctuations around somé Constant value.

In order to examine the behavior of the function n(go) in the
domain in which 3n/3U x = 0, consider a domain of averaging in the

~0, :
form of a rectangular prism contered at x , with edges parallel to

the coordinate axes. By definition, its volume is UIX =Axle2Ax3
and

n(x ) = v(x) =

A
xpgtiax) XooThbx, x40t 0%3
1 -
Ax. BAx.Ax J J J Y (x)>x%y,x4)dx, dx,dx,
1772773 Ax Xan~ 30X
X10730%] X,0"10%2 307 2°%3
X otioxg
1 1
EI J Y (X 5%y Xq0)dx (3.23)
X107 i0xg
where
Xyotiix, X3ptibxs
Nl(x X ) = *l__
¥ %0730 T Boax, v {xp5%,, %) dxydxy
Xp07 4%, X307 #0x4

is the areal average of y over a surface normal to the X - axis.
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Now
X, -+ 3Ax
dn = - 1 10 L (x.)dx. + L [~l( - ﬁfl
3 (ax)) (B )2 DS o VG T 2 )
X10” iAXl
AX
.1 1
+ v (xlO + )]
AX
1 1.1 A%y
" x) bonG) + 5 [V (&xpg + 57 x50 %3¢)

.1 hxy
+ vy (x,, - -

> Xy x30)]}

Hence, for En/B(Axl)
we obtain

Ax, < (Ax

0, in the range (Axl)min< 1

l)max’

.1 A%y
[Y" (g + 575 %500 %30) F

N

n(§o) = ?(go) =

. Ax
+ Y (x - X

10 2’

20

Assuming that ?l(xl, XZO’ x30) is differentiable with respect
to x, in the domain lxl -

1 xlO’ < Axl/2, and expanding the terms on

the R.H.S. into power series about xX,., we obtain

10

Ax
~l l "‘l ) +
2

Y (Rpg T K00 Xgp) T Y (Xpgs X0 X5y
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1
- Ax 21 Ax
p) 1 1 3%y 1.2
+ 5%1 -t 3 () + ...
X10°%20°%30 b9
Axl 1

Y(x1g = 70 Xp00 X30) =Y (X0 Xpp0 X30) -

L1 X
57" Ay 1 9% (5—1)2 + o
TN 2 2 5xf |, 2
*10°%20°*30 ~0

Substituting these expressions into Eq. (3.24), yields

N
9231 AX 3 ¥l Ax. 4
- ! Y 12 2 1
nx) = y(x) = Y &) +—5 (G4 o lx 32
1'~o X, '~0
6-1 Ax
2 0y 1.6
tET % (=) + ... (3.25)
ax1 %

In order that ;(g ) retains its value for any Ax. in the range
where an/a(Axl) =70, all terms containing Ax1 in" the last equation

. . ~1 . .
must vanish, i.e., Yy must be a linear function of x
i.e.,

1 in that range,

1
Y (Rps %o X30) = ag F byxy + £(x)4, x3)

However, since

L1 ~ ~
V) = ) = V)
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it follows that

n(x) = a +b.x 3 b = Constant (3.26)

It may thus be concluded that if the function n(Ulgo) has a

plateaux within a given range of U, then n(xiu) is a linear function
of x in that range, and vice versa.

If U(go) is further increased, say beyond some value U = U s

max
we may observe a trend in the considered ratio, due to a systematic
variation in the latter. The Representative Elementary Volume is
that volume U (x ), within the range of U , < U < U that will

o ~o min max

make the ratio UV/U independent of U, and hence a single valued
function of go only. For U = Uo’ the ratio UV/U represents the

porous medium's porosity, n, at X - By definition, for the REV, the
volumetric fraction of the solid, 1-n, is also a single valued
function of X

(n)

Following the discussion leading to the definition of lmax

by Eq. (3.20), the upper limit for 2(n), for a given §, is

. n

defined by lmax’ which, in turn, depends on U that indicates the
point of deviation from the plateaux, produced by the linearity of
n(§o) in the vicinity of Xy-

We note that the determination of the size of the REV and the
porosity (and other geometrical parameters') distribution for a

given REV is an iterative process, due to their dependence on each
other.

Once an REV has been selected, we use it to define the averaged
values of all state variables within the context of a continuum
approach.
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ADVECTIVE AND DIFFUSIVE FLUXES IN POROUS MEDIA

Jacob Bear Yehuda Bachmat
Albert and Anne Mansfield Director

Professor of Water Resources Hydrological Service
Department of Civil Engineering Jerusalem, Israel

Technion, Haifa 32000, Israel
ABSTRACT

Advective, dispersive and diffusive fluxes appear in the mac-
roscopic balance equation of an extensive quantity (e.g., mass,
mass of a component, heat) transported in a porous medium domain
(2). The objective of this chapter is to develop expressions for
the macroscopic advective and diffusive fluxes of mass and heat in
terms of macroscopic state variables.

1. INTRODUCTION

In the 1982 NATO Advanced Study Institute, the authors presented
the continuum approach to modelling the transport of such extensive
quantities as mass of a phase, mass of a component of a phase,
momentum and energy, in porous medium domains (2). The passage
from the microscopic level of description to the macroscopic one
was achieved by averaging the former over a Representative Elementary
Volume (REV) of the porous medium. The reader is referred to the
above mentioned reference. Three kinds of macroscopic fluxes appear
in the balance equation of any extensive quantity: an advective flux,
a dispersive one and a diffusive one. Our objective in this chapter
is to modify and expand the chapter on macroscopic fluxes appearing
in that reference, focusing our attention on the advective and
diffusive fluxes of fluid mass and of heat in a porous medium
domain.
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2. ADVECTIVE MASS FLUX OF A PHASE

The macroscopic advective mass flux of an a-phase, Gy is
expressed by -

—0 7O
q, = 8, Pg Yo (2.1)

where 6, is the volumetric fraction of the o-phase,p, is its density

and V, is its volume averaged velocity. The symbol ( )" denotes the
intrinsic phase average of () taken over the volume U_, occupied
by the a-phase within the REV of volume U, (2). Our objective in

what follows is to express ?Z for a fluid a-phase in terms of
macroscopic (averaged) state variables (e.g., fluid pressure). We
shall limit the discussion to Ga = n = porosity, i.e., to the case
of a single fluid that occupies the entire void space, with some
comments on multiphase flow.

As a point of departure, we start from the microscopic momentum
balance of an o-phase

pa _— = V,ga - VPO, - pasz (2.2)

m
o . . . .
where; V is the mass weighted velocity of the a-phase, T, 18 the

viscous stress tensor, pu is the pressure, z is the vertical

m
. L o .

coordinate (positive upward) and D ( )/Dt denotes the material

derivative of ( ) with respect to an observer moving at the velocity

m,
v . By averaging Eq. (2.2) over the REV, we obtain
my w”
o PV % T, % e z* 2
%y Pa Dt =% Ve Lo 7 Y Vg T Yy P8V (2.3)

where we have introduced the approximation

My My
pre v a

.. S— R — p
o Dt Pa Dt o Dt



25

m .
assuming also that V.V & = 0, i.e., isochoric mass motion prevails
within an.

Let us assume that pressure varies monotonously, i.e., with no
minimum or maximum, within (an). Such pressure distribution is
characterized by

V2p = 0 in ) (2.4)

In Eq. (2.3) we have averages of spatial derivaties of state
variables, e.g., in the form of Vpy. In order to express such
averages in terms of derivatives of the averages of state variables,
we have developed a modified form of the averaging rule for a spatial
derivative (e.g.,(2)). In view of Eq. (2.4), we may now apply
Eq. (5.8) of Appendix A to Py’ obtaining

3p, 3P " 1 3p,
0 @ _— 9 9 o +—J G
o 39X, o4 39X, alj U (S ) aX.
N i as i

0
.V .
. X5 aids (2.5)

Our next objective is to study the boundary condition Bpa/Bxi

on (S .
(s,,)

Assuming that in the vicinity of the fluid-solid interface, the
inertial force of the fluid is small relative to the viscous resis-
tance, and that the components of the resistance force normal to
this interface, (V.Ia).ya. are much smaller than the tangential ones,
we obtain -

(V.ga).ya = (Vpa + pasz).ya =0 on (Sas) (2.6)
or
3pa 3z
. Yai = Po &8 3x. Yai T Pa g63ivai on (Sas) (2.7)
i i

where z = x3. By inserting this expression into Eq. (2.5), we obtain

ap 3P
o o1 1 0
8, =— =0 — T*,. - — J Py B&as X. v . dS (2.8)
o 3xj a 3xi aij U, (s ) o 31 73 Yai

as
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0 _
Assuming that py << pg , the last term on the R.H.S of Eq. (2.8) may
be approximated by

1 0 . —a 1 0
U J Po8%31%V4195 2 0, &8 J X V4348
o-’(S ) o’ (5 )

as as

) (2.9)

In writing Eq. (2.9), we have made use of Eq. (5.9) and of the
relationship

0 0
J x.,v .dS + J x.v .dS =U §¢,. (2.10)
(s j ai (s ) j oai oa 1ij
as Qo

The last term of the R.H.S of Eq. (2.3) can be expressed by

dz —Q - —Q dz
o axj = 84P g63j = 8.0 8 axj

(2.11)

By inserting Eq. (2.8), Eq. (2.9) and Eq. (2.11) into Eq. (2.3), we
obtain

Dmavmda 9T * Sga
o 3 M3 e n* 4 0% g, - TR - 5% g6..
s Tt S ax - ox aij o 84935 a3j Py 8933
o
—a
_ aToclj P, 50 0z *

N s R R A .
%, (Sx, T Pa 8 3% ) Talj (2.12)
i i i
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Making use of (5.1), the first term on the R.H.S of Eq. (2.12) can
be rewritten in the form

— —a
o loij a'oij I o
o Bxi Sxi o (s ) oij ai

ds (2.13)

Our next objective is to express the internal viscous resistance
force, V.Gafg » appearing in Eq. (2.13) in terms of the averaged
fluid velocity. We shall first limit the discussion to an inccmp-
ressible Newtonian fluid, for which the constitutive relationship
is given by

m m
a o
A A

wij "t G T Ay

T ) (2.14)

i

Other types of fluids may be considered by the same methodology.
By using Eq. (5.1) to average Eq. (2.14), we obtain

m m
36 Vj 98 V.o u
—0 _ a1 a'j Fa Ny M,
80 Tai ] N e ) T J (Vi%vgg + V3%v,4)d8
] i o 7 (S,g)
(2.15)

where Hy is assumed constant within the REV.

As a special case of interest, let us assume that (a) the fluid
(that occupies the entire void space) adheres to the solid (= no slip
condition, i.e., VMa = Vol ), and (b) V.* = Vg » i.e., the

as as
solid is approximately rigid, and, therefore, its averaged velocity
on (8,,) is equal to its average over (Uyg) - Then Eq. (2.15) can
be approximated by

—a —0
m, m,
—a anvi“ anvjOL ——s dn oS on
nT..=npn. {( + ) - (Voo — + V.. =)}
ol o si s
J ij Bxi ij J Sxi
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My, s My, —s —S —S
on (V. . .- . . .
) . n( i V51) . Bn(VJ Vsj) . n(BVSI . BVSJ)} .
Hy, .
ij Bxi ij Bxi

Q
CIH

~0

o (Sue) o

derived by applying Eq. (5.1) to G, =6,. Since we have assumed
the solid is approximately (macroscopically) rigid, and hence

=S =S
oV . ov_ .
Slsi, ]

ij Bxi

Eq. (2.16) reduces to

—_—() m,
m —S (0% —S
an(V,% - V_.) an(V., - V_.)
o _ { 1 Ss1 "
n Tuij = Hy

axj Bxi

Henceforth, we shall use Eq. (2.19) as an approximation of
Eq. (2.16) also for a non-rigid solid phase.

From Eq. (2.19), we now obtain

_a — 0
o) 2 m =S 2 My =S
onT . - 3°n(V,% - V_.) 3%n (V™ - Vi)
8“13 = Ug{ al si + J 517y 2.
Xy X5 axj axi axi
o I o I
_ 9 dri d qu
- uoL(BX.BX 90X, 0X )

m — @ —S
where gru/n = (Ymd - Vg) is the mass weighted fluid velocity

v dS = l— J v _dS (2.
Yo J¢

=0 (2.

} (2.

16)

17)

that

18)

19)

20)
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relative to that of the solid, and q?a is the relative (mass
weighted) specific discharge. -

For a stationary solid (or approximately so, i.e., V. = 0),
and neglecting the diffusive mass flux of the fluid due to molecular
. . . : m . .
diffusion (i.e., assuming V %z V_ = volume weighted velocity),
Eq. (2.20) reduces to

' 52 i 32 .
onT,, . - qql qoc
oi = u,( + ] ) (2.21)
3 “ ox. 9 9%, 9x
X Xi °%y i 9%4

m
=nv % & nV, ) is the fluid's specific discharge

where g (= oy v >

relative to a fixed coordinate system.

For the special case of macroscopically isochoric flow, where
v.qa = 0, Eq. (2.21) reduces to

o 2
onT . . 979 _ 1 —Q
ol _ oJ V.nt, = V2q, (2.22)
Bxi Bxi Bxi 2 ~
For a macroscopically uniform flow, where q, = const., V.n?g = 0.

We now turn to the evaluation of the surface integral over
(Sas) in Eq. (2.13), that expresses the transfer of momentum from
the solid to the fluid. Actually, this term expresses the force
resisting the flow of the fluid per unit volume of porous medium.
Let us assume that

m, m m m m
avj“ avj“ 3v3* av3° BV
= o+ Lo+ N ) .
o, 5s, ‘ol T 3s., tai T 3s., tei  3s vod (2.23)
where v, g&, g& are the normal unit vector (=principal normal) and

the two tangential ones on (S, ) in the "local cogrdinates"mat a
point on (S,.).By employing the approximation BVja/Bxis(BVja/st)vai,

we have neglected the components of the velocity gradient in the
local tangent plane to (S, .).
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With this approximation, and for the incompressible Newtonian
fluid considered here, the surface integral in Eq. (2.13) becomes

m m
= T,V .dS = W, — ( + )V, ;48
U aij’a o 9X . . ai
o '(Sas) Jai U, (Sqs) Xy OX4
Moy Mo
oV ov.
= U 1 ( + =L V. )VyidS
@y Js aj 3s ai’/ o1
le) (Sas) v v
My,
1 3Vi
= Uy J ( + §8..)dS
U 0 Gj ai ij
0 /(84g) °°V
oy, &
~~~~~~ as 1 i
= u,(Vgivei  F 6ij) T 5 ds (2.24)
J
0 7 (Syg)

~~~~~ as
where s is the length measured along v and v .v_.
1 v o ai 0j
= — J v .v_ .dS is a coefficient that is related to the
S ai’aj
as ~ (Syg)

microscopic configuration of the Sus ~ surface.

We now introduce the approximation

~pas -y ——a

My o _ a =S Mo,
Y L
U 9s A U, A U

o (Sas) v o
(2.25)
~5~08

where Via is the average velocity of the o-phase on the 5 . -

surface. Since we have assumed that the fluid adheres to the solid

“mg s ~ e~ OS ~~~05 g

wall, we have Via = Vg; - We now add the approximation Vg; z Vgys
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with the approximation sign changing into an equality one when the
solid (not the solid matrix!) is rigid.

The distance & appearing in Eq. (2.25) is a characteristic

distance from the solid walls to the interior of the phase.
granular material, it is some measure of the size of pores.

In a
For

example, it can be taken as proportional to the hydraulic radius,

/S

oa’

ice., B =CuU /Syq

tion of A, Eq.

m
v,

1 i
ua_j
UO (Sas) st

ds

(114

, where Ca

(2.25) becomes

Mg, =5 2
- uaCan(Vi Vsi)/A

1s a shape factor. With this defini-

—a
(2.26)

Thus, in terms of the fluid's mass weighted specific discharge

m ™ —s
gr“= n(y ¢ - YS), the averaged momentum balance equation for a
single incompressible Newtonian fluid that completely fills the void
space, 1is
o T m m
m Mgy, 2 Mo 2 a
_a 8V3® ‘ﬁaaavj - (8 dri 9 4rj )
oy Ge t Vi 3y o ox ox;  Bx; 0%
3p
o —o 9z * Co My vmmnnn os my
+1'1(a + Dag Ei)TalJ + _Q'—A — ( ai qj + (Sij)qri =0

Finally, for the sake of
molecular diffusion flux, due

neglected, so that Y™ = Vo -

(2.27)

simplicity, let us assume that the
to Vpg £ 0 within (an), can be
Then Eq. (2.27) reduces to

3 . . i 2 2
o CT 4o 9(qy4/m) Vo (é Ypgi , 3 9raj
o ot n Bxi o Bxi ij 0X5 Bxi
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C M
92 * LTSN as =
+ n(g;T— 0, 8 g;;)Taij + —Kg*(vujvai + 6ij)qri =0 (2.28)
1

Eq. (2.28) is commonly used as a good approximation also for a
compressible fluid.

To recapitulate, the first term on the L.H.S. of Eq. (2.28)
represents the inertial force, the second term represents the resis-
tance force due to shear inside the fluid, the third term represents
the force acting on the fluid as a result of pressure gradient and
gravity and the last term expresses the force exerted by the solid
phase on the flowing fluid.

Let us mention two special cases of Eq. (2.28):

a)When the inertial effects are negligible, and so are the effects
of internal friction, Eq. (2.28) reduces to the well known Darcy law.

a =Qa

k . 9P
m(X m —S _ ojm o — 3Z
= (V.Y - V..) = = —dB (—— + %5 =) (2.29)
Arj ( J 8] Ny %y o= ox,
where
nAz ~~~~~~ os -1 * _ Anz ~~~~~~ os -1 *_
Kajm = 0y Caj¥ei 7 8130 Taim za's("ou"ai * 615) " Toin
C n3 1
R« S S VPVRP PPN - * v _ Cos .
- (5! )2 (VaiVaJ + Gij) Toim 3 Las U (2.30)
as o

is a coefficient related only to macroscopic parameters that describe
the microscopic configuration of the fluid-solid interface. The
coefficient kajm - a second rank symmetric tensor - is called the
permeability of the porous medium. We recall that ?2 is defined
by Eq. (5.9) and (5.15). *

Eq. (2.29) is the basic form of the motion equation for saturated
flow in an anisotropic porous medium at low Reynolds numbers(defined
by Ng, = quA/uu).

b) When the inertial effects are negligible, but we do wish to include
the effects of internal friction, then Eq. (2.28) reduces to
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x -1 2 My 2 Mgy —o
kdjp(Tapm) ( dari + darj ) + kocmj(ap + 3¢ g oz )
n 9% ij 9x; 3%y Hy, o ® ox
+ qug = 0 (2.31)

For an isotropic porous medium, Tg = % Tzii’ and macroscopically
isochoric flow, i.e., V.qra = 0, Eq. (2.31) reduces to

Ko m —a -0 Uy my
n—Ti V.Vga% - (Vpa + Dasz) - E; gar =0 (2.32)

This equation, with q, “ replaced by 4 ,without the coefficient l/nT
and without the grav1ty term, was proposed by Brinkman (3) and is
known as Brinkman's equation.

The entire discussion presented above can also be extended to
multiphase flow, i.e., when two or more immiscible fluids occupy the
void space. Without going into a detailed discussion, let us accept
the conceptual model in which each fluid occupies a certain portion
of the void space. In principle each fluid then has an interface
with the solid as well as with each of the other fluids. Momentum
can then be transferred across any of these internal surfaces.
Accordingly, if we consider two fluids: a wetting (w) one and a
nonwetting (nw) one, we should replace the integral over S, . in
Eq. (2.26) by a sum of integrals over the surfaces S_ ., S .. If
then we assume S >> S .o Saws > Sunw’ and that, therefore, the
fluid-fluid momentum transfer is much smaller then the fluid-solid
one, we rewrite Eq. (2.28) twice: Once for the wetting fluid, with
o replaced by w and 6, by 6 _,and once for the nonwetting fluid, with
a replaced by nw and n replaced by enw' In the modified equations,
we shall then identify the effective permeabilities, k ;:(6 , Aw(ew))
and knw1 (6 nw(enw)) for the wetting and non-wetting fluids,
respectlvely, w1th the possibility that the relations A (e ) and

nw(enw) are non-unique.

3. DIFFUSIVE MASS FLUX

The diffusive mass flux, JEY , of the mass of a y - component

of an oa-phase continuum (i.e., at the microscopic level) is defined
by
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m = m -
= 0y (Vo = V) 3.1)

. r} m
where puY is the density of the y-component of the a-phase,V *Yig its
mass weighted velocity and Ya is the volume weighted velocity of

the oa-phase. %e also refer to this flux as molecular diffusion.
Note that I J,y # 0, except when qu =y,
() ~
At the microscopic level, disregarding coupling between transport
phenomena, this flux, denoted by J, , is expressed by Fick's law.
For a binary system this law takes the form

(single component).

J =-D Ve (3.2)

d
where D,y is the coefficient of molecular diffusion of the y-component
in the a-phase and c is the concentration of the y-component in
the a-phase. We assume that Duy is independent of oy

The macroscopic flux of molecular diffusion is obtained by
applying the averaging rule of spatial derivatives (e.g., 2) to
Eq. (3.2). We obtain

d d 0 1 o
Joy = = Doy BoVeqy = = 84Dq (Voo + 5~ J(s ) Cay¥edS)  (3.3)
(¢]

as

fn which gqv denotes the deviation of Coy from its average over the
REV, i.e., 8ay(¥’ t5 %) = coy(%s £3 %) - E%Y (2,5 t). The
difficulty in employing Eq. (3.3 ) as an expression for the macros-
copic diffusive flux is that the integral appearing in it involves
information on the microscopic configuration of the S . - surface
and on the distribution of ¢ on it. We need a way to overcome
albeit as an approximation, the lack of this information.

Let us assume that (a) the y-component does not interact with
the solid, e.g., in the form of adsorption (this interaction is con-
sidered in (1)), and (b) that no sources of y are present within Uj.
Under such conditions, at a given instant of time, the concentration,
Coy e varies monotonously within (Uou) and hence, satisfies the
condition

VchLY =0 in (Ug,) (3.4)
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In view of assumption (a) above, the a-phase - solid interface
(Syg)s acts as a material surface for the y-component, i.e.

d
{Cay(Ya -u) t Juy}'Ya =0 on (S;¢) (3.5)

where u is the velocity of (Sas)‘ Note that Eq. (3.5),written at the
microscopic level, states that no Y-component crosses S,.., whether
by advection or by diffusion.

At the same time, the solid acts also as a material surface with
respect to the total fluid a-phase mass, and, therefore, (Yu—g).yu=0.

Hence, in view of Eq. (3.5 ), we have
=0, or (Ve us) (3.6)

With ¢ y satisfying Eqs.(3.4 ) and (3.6 ), the case under considera-

o
tion corresponds to Case A defined by Eqs. (5.3) and (5.10), with
Gy=Ccqyy- Hence, making use of Eq. (5.11), the macroscopic flux in
this case takes the form
d d _ d o d 4, —a
ng = Day VC@Y = - nDaY chy = - nDaylu-VCaY
or, in indicial notation
d d 4 dc, d* dc
- _ Y - _ ay
Jai = nDaY Tocij axj H(DGY )ij 9% . (3.7)
J
. . d* d % .
where n is porosity and Dy, = DayTa , a second rank symmetric tensor,

is the coefficient of molecular diffusion in a porous medium. The
coefficient Ty, 1is defined and discussed in Appendix B. We have
thus achieved our objective of replacing the missing microscopic
information by a macroscopic coefficient that represents it.

In a multiphase system, the fluid a-phase occupies only part
of the void space. Then the interface between the o-phase and all
other phases within the REV is a material surface with respect to
both the total mass of the a-phase and the mass of the y-component.
Therefore, the discussion presented above remains valid. Replacing
the porosity n by the volumetric fraction,eu, of the a-phase, we
obtain
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J . ==68,D,. -V¢ ( 3.8)

d* d*
except that in this case, BaY'= Bay (8,) -

4. DIFFUSIVE HEAT FLUX

We now consider the diffusive heat flux (=heat conduction)
within a fluid o-phase that completely fills the void space of a
porous medium. We shall first assume that both the fluid a-phase
(denoted here by f) and the solid phase (denoted here by s) may
conduct heat, with thermal conductivities Ag and As’ respectively,
assumed constant within an REV.

h
The diffusive heat flux, .J¢, within the fluid phase occupying

Uygs is expressed by Fourier's Law

J? = - VT (4.1)
where Tg 1is the temperature of the fluid phase. To obtain the
corresponding macroscopic flux, we employ am averaging rule in

the form of Eq. (3.3 ) in which ¢, is replaced by T, . As in the
case of molecular diffusion, here also we have to overcome the

lack of information on the (microscopic) configuration of (st) and
the distribution of Ta on it.

To achieve this goal, similar to the case of molecular diffusion,
let us assume that no sources or sinks of heat are present within
(Uof) and (UOS),and that within each phase, the temperature(Tf in the

fluid phase and Tg in the solid one) varies monotonously, such that

vaf =0 in (Ugg) ; V2T_ =0 in (U_._) (4.2)

However, in this case, the total heat flux leaving one phase,
say the fluid, is absorbed, without any loss, by the other phase.
This observation is expressed by the conditions

3T 9T
£ s
, = s 7x; Vsi (4.3)
. f-side s Bxi st s-side
of (st) of (st)

£ o%; Ve

and
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Tf = Ts ) (4.4)
f side st ge )
of (st) o fs

(i.e., the interphase surface is no more material with respect to
heat). Because the solid is impervious to fluid, the (st) - surface
is material with respect to fluid mass, and hence no heat advection
takes place through it.

By comparing Eq. (4.3) and Eq. (4.4 ) with Egqs. (5.12) and (5.13
we conclude that the case on hand is identical to Case B of
Appendix, with T¢ = Gu and T, = GB'

Hence, making use of Eq. (5.17), the expression for the
macroscopic heat flux of a fluid phase that fills the entire void
space (ef = n) takes the form

— —f
Je = = AVTp = - mAgVTg

nkf

A _f _s
— —S S
- X;?X‘"[(Afvrg ST TE - A Vn(Te - IO (4.5)
S

An analogous expression, in terms of 8, = 1l - n and esyg =

§ - 9f3§ (see Eq. (5.15)) can be written for the macroscopic heat
flux, in the solid phase.

We have thus achieved our goal of expressing the macroscopic
heat fluxes in terms of the macroscopic state variables.

It is interesting to note the basic difference between Eq. (3.8)
and Eq. (4.5). Because the fluid-solid interface is "impervious
to the diffusive mass flux", the relationship between the micros-
copic flux and the macroscopic one, expressed by Eq. (3.8), depends
only on what happens in the fluid phase. The coefficient I? may
be called a tortuosity (of the void space, or of the (st)—configu—
ration). On the other hand, in the case of heat transport, the
(st)—surface is "pervious to heat", with conditions (Eqs. (4.3)
and (4.4)) on it. Hence, we note the coupling between the heat
transport in the two domains,(Uof) and (UOS). Heat is exchanggd
continuously between the two phases. Under such conditions, T¢ has
still the meaning of a tortuosity of the fluid phase.

Let us consider the special cases Tg = T:' Then Eq. (4.5)
reduces to
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h w =f _ o —f
Jf = - nkf'lff.VTf = - ni\f.VTf (4.6)

which is similar to Eq. (3.7), with é? = Afl?' This result is
obvious since we have no heat exchange (on the average) between the
two phases. Hence, Eq. (4.6) is also valid for Ag = 0

—_f —
When Te = Ty, the total heat flux in both phases is given by
h h % % v_f _ v_f
Jg +Jg = - (mp + (Imm)Ag) . VTg = - L.VTg (4.7)

*
where § = nkf + (l—n)gg is the thermal conductivity of the saturated
porous medium as a whole.

5. APPENDIX A

The objective of this Appendix is to develop, following Bachmat
and Bear (1) a modified form of the commonly used averaging rule for
a spatial derivative

o o

3G 3(6,G, )
jkR...  _ o ikg. .. 1
6(1 % = ™y + —U ij,Q,...VOLidS (51)
1 1 o (S(XB)

where ijk is a tensorial property of a phase, U, is the volume

of the REV, 6, is the volumetric fraction of the o-phase, S is the

aB
surface area of contact of the a-phase with all other phases within
the REV, () denotes the intrinsic phase average and v_ is the

normal outward unit vector on (SaB) (e.g. Bear and Bachmat 2)).

The integral on the R.H.S. of Eq. (5.1) requires information on
both the geometry of the S - boundary and on the values of G
a
on it (first type boundary condition). Let us develop a modified
form of Eq. (5.1) for a scalar G, in which the required information
is on the normal component of VGu on (saB) (i.e., second type
boundary condition for which information is sometimes available).

To this end, consider the quantity QjBGu/Bxi.

By Gauss Theorem applied to the domain (Uou) of volume Uou of

an a-phase within the domain (UO) of volume Uo’ we obtain
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J - ~——)dU = J XJ T \)OLidS (5.2)
(U,,) N (8,0)

where (S__) is the total surface of the closed area surrounding
(u. .
oa.

We shall limit the following discussion to Gy's that satisfy
the following two conditions:
(a) G, attains no maximum or minimum value within (U0 ), i.e., Gy
varies monotonously within (an). Under this condition we have (4)

32G
e O within (U, ) (5.3)
X . X.
i i
(b)
3 357 e
G
o 9 - o 0 - o 0
% N 0leS Sl J vaaids axl J vaaids
(S 1 1 (Sqa) (Sqq)
where (5.4)
5g T 3G
L S = l_.__ J _OL ds (5 5)
9X 4 ) aXi :
i o (Saa)

i.e., we assume that the average of the gradient of Gy on the a-a
portion of the outer surface of the REV is equal to the gradient
of the average of Gy over the volume U,, of the a-phase within the
REV.

By definition, and by Eq. (5.3) we have

o
o aca) 9%, 3Gq .9 32Gy, s 3Gy  9Gq 5.6)
o (X m7) = a9 t Xy 5 <= 0L owAe— = m— .
X ; Jo9xy Ox; 9Xy J ox;9xy i3 9xy axj
Hence, Eq. (5.2) reduces to
oG oG 3G

a - o a 9 a

J . du, J X5 3%, v,idS + J X5 3% veids (5.7)
(an) J (Saa) 1 (SU«B) 1
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or, with Eq. (5.4)

3G 3G > 3G

o o % 1 o a

= TH. .+ ——J R, =—— vy dS (5.8)
i ., ai
3xi 3xi J UOa (SaB) J 3x1
where

* 1 J 0
T .. = =— X.v. . dS (5.9)
ai oi

| Usa (s ) J

Thus, Eq. (5.8) is another form of the averaging rule for VGa,

this time requiring information on VG,.v, on (SaB)'

Two cases, the physical interpretation of which is presented in
this paper, may be considered.

Case A.

3G
—G .y . =0 on  (S,g) (5.10)

oi
le

In this case, Eq. (5.8) reduces to

3Gq. 3G,

*
T . (5.11)
BXj Xy alj

Case B.

In this case, we have 3G, /dv, # 0 on (SaB)' Let the following two
boundary conditions hold on %Sas):

oG G
- Ay ) = AB _°B (5.12)
Bva o-side SvB B-side
of (SaB) of (SGB)

and
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Ga = GB (5.13)
o-side B-side
of (SaB) of (SaB)

where Ay and Ag are two coefficients that depend on the physical
nature of G and the a and B phases, respectively, and GB denotes the
value of G in (UoB).

By applying Eq. (5.8) first to the oa-phase and multiplying the
result by A,, then to the B-phase and multiplying the result by A
and adding the two resulting equations, employing Eq. (5.12), we
obtain

—a — —a —B
Aea—G—O‘+Ae—aG— AeaGO‘ T +Ae§—BT
a%a BYB aYay 0ij 898 ox B1ij (5.14)
Now, by Eq. (5.9)
0 _ 0 0 .
J Xj“ai ds = f vaai ds + J vadi ds
(S5) (Sga) (Sgg)
* *
= UsaTaij * Uop Tgij = Uo %ij
whence
* *
8 Taiy * O Taij = 01 (5.15)

Also, by writing Eq. (5.1) twice, once for the a-phase and once for
the B-phase and adding the two equations, employing the condition
Eq. (5.13), we obtain

—a —B —a —RB
BGa 3G6 3(eaGa ) 3(GBGB )
& 9K . + 98 9X - = X + 9%

] h| h| ]

(5.16)

Finally, multiplying Eq. (5.16) by AB and subtracting the result
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from Eq. (5.14), yields

3G 1 3G 3Go A (el
Ca (g Sa_y, 8 e 78 PaCaT0))
9% Ao Mg & ox, B oax, “rodi 8, 8%

(5.17)

where Eq. (5.13) and the relationship ea+68 = 1 were employed.

In the particular case A,=0, Eq. (5.17) reduces to Eq. (5 )

corresponding to Case A. The same holds when AQ#AB, but Eg =
throughout the entire porous medium domain.

11
=B
Gg

6. APPENDIX B: THE COEFFICIENT EZ

The coefficient I: , defined in Eq. (5.9) represents the static
moment of oriented areal elements of Sy » With respect to planes
passing through z,, per unit volume of the a phase within (U,).

To obtain an estimate of the magnitude of the components T;i.,
consider a spherical REV of radius R. Then, Eq. (5.9) can be writ%en
in the form

* 1 J
T .. = Rv_.v_ . dS
oij eaUO (Seq) ol aj

6°s R 1 36°

0"o O o~ Qo

= —{— J v .v . dS} = — v v . (6.1)
aiva aiva
quo oo /(S ] ea ]

The term v is a symmetric second rank tensor. Hence,

aivuj

which is a linear combination of v is also symmetric.

aivuj’
Therefore, there exists at least one set of three mutually orthogonal
planes of symmetry for O&EQ&QQ , and three principal axes normal
to these planes. In the coordinate system of the principal axes,

can be expressed in the form
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~~~~~ 00 /
VagVay = a1013815 F agfp 8y + a8 (6.2)
where a;, a, and aj are the principal values of 0&;5&?“ , i.e.,
N RL I L LIS SL vel -
V2, , vz, and v, -, respectively. Hence
0 < a; < 1 for i=1, 2, 3 (6.3)
For an isotropic porous medium, with respect to 5&;5&?a
a; = a, = ag = a, and Eq. (6.2) reduces to
~~~~~ oo
Vaglast = adyy (6.4)
Now, Iy, 5&;5&ia = al(;yy 6;; = 3a. On the other hand, by
definitiom, VoiVai E(§)5&£5&%a = 1. Hence
1 aaean o0 1
-1 -1, 6.5
a=73 3 )aivaj 3 613 (6.5)

By inserting this result into Eq. (6.1),we obtain for an isot-
ropic porous medium

x Oy (6.6)
T = — §.. *

For porous media for which 92 < ea (5), Eq. (6.6) yields

0 < T* <1 for any i (6.7)
(no summation on i)

However, in the general case

es ~ X~ 00 ~x~0Q ~~~ 00
=3 (W s s+ 5.6 .+ v §,.6..)
olj 9 al 1i 173 02 21 27 03 31 3]

a J i2]j i°3j (6.8)
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* 2 Tpee
Hence T .. < 1 , when Max (v? ) <1
011 ea oi

. S . . .
The ratio ea/ea is a measure of the tortuosity of the void space,

aivaj represents the effect of anisotropy on the

tortuosity (1).
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9. LIST OF SYMBOLS

~~~~~ oo

a; Principal values of vaivaj , 1=1, 2, 3

Cqy, Shape factor of (an)

oy Concentration of y-component in g-phase

Diy Coefficient of molecular diffusion of a y-component

in a binary system o-phase

*
ng Coefficient of molecular*diffusion in
- a porous medium (= Dgy IQ)

f Subscript indicating fluid phase
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Tensorial property of a a-phase
Gravity of acceleration

Diffusive flux of m
ay

m
~ oy
Conductive heat flux of a-phase

Permeability of a-phase

Mass of o -phase

Mass of Y-component of d-phase
Reynolds number

Porosity
Subscript for nonwetting phase

Pressure
Specific discharge of a-phase

Specific discharge of a-phase relative to solid

Mass weighted specific discharge of a-phase relative
to solid
Radius of spherical REV

Surface area of interface between o -phase and all
other phases in REV (e.g., S__)

Surface area of sphere surrounding (Uo)

as

Surface area of a-phase on (SO)
Total surface area of (an)
Subscript indicating solid phase
Length measured along v,
Unit vectors in plane tangent to o-s surface

1

ds
U J p:9%
oa (Saa)

a

Temperature of a-phase (also Ty and T)
Velocity of (SGB)

Volume of REV

Volume of a-phase in (UO) (also Upg» Uof)
Volume weighted velocity of a-phase (also YS)

Mass weighted velocity of a-phase



46

may

<

Mg

M

> o <X ™ L N

Q

2>
2 ¥ Q

(==

Mass weighted velocity of y—-component of a-phase

Subscript for wetting phase
Position vector of a point

Position vector of centroid of REV

Vertical coordinate (positive upward)

A phase; also as subscript indicating a phase
Subscript for all other phases (except a ) in REV
A component of o-phase

Kronecker's delta (components Gij)

Characteristic distance from solid wall to interior
of the phase

Volumetric fraction of a-phase

Fraction of o area on S, (= Saa/so)

)

Thermal conductivity of a-phase (also Ag, Ag

Thermal conductivity of a—-phase in a porous medium
Thermal conductivity of a porous medium

Dynamic viscosity of fluid a-phase

Unit normal vector on (SQB) or <Saa) pointing outward
Mass density of a-phase

S../U

as = Specific area of a-phase

(0]

Viscous stress in oa-phase

Deviation of ( ) from intrinsic phase average of
( ) over REV

Phase average of ( )

Intrinsic phase average of ( )

)

Average of ( ) over (Sa

8

Material derivative (= 3( )/3t + V' ®.7( ))
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ABSTRACT

The flow of fluids through natural reservoir bodies is compli-
cated, particularly for multiphase processes and especially if there
is mass transfer. Physical modeling using visual techniques can give
some of the necessary descriptions leading to the proper formulation
of mathematical models for predicting reservoir performance. This
chapter describes the micromodel techniques developed at Imperial
College, highlighting particularly those involving pore scale events
which depend on network and pore morphology.

1. INTRODUCTION

Fluid flow in porous media, with or without mass transfer, needs
to be understood for many applications, including petroleum reservoir
engineering, especially enhanced oil recovery, groundwater hydrology,
soil science and waste water disposal. An accurate description of
reservoir characteristics is therefore required on many length scales,
ranging from 1-100 um for pore-scale features, through 1-100 cm for
core samples to 1-100 km for reservoir bodies; a range of 1011
Such a description can only be achieved through a thorough under-
standing of the geological setting combined with geological,
geophysical, and petrophysical data from well tests, logs and cores.

Single phase bulk fluid transfer in porous media at a continuum
level is described by Darcy's law, and is fully discussed elsewhere
(e.g., 3, 10, 12). Displacement processes, when there are differen-
ces in physical properties, such as viscosity, density or interfacial
tension, (e.g., water displacing oil, salt water intruding into
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potable water) cannot be described so easily, and when the matrix
itself has non-uniform properties the processes become very complex.
However, physical descriptions must be sought before mathematical
models can be devised and the equations solved to predict the
behavior of some specific field operation be it a potential aquifer
or hydrocarbon reservoir depletion plan, nuclear waste site or other
application.

1.1. The Scaling Problem

Physical experiments must be performed in order to gain the
understanding of the mechanisms of flow, displacement and entrapment
at both the qualitative and quantitative level. Initially the
objectives are to identify mechanistic processes using simple models,
using an ever increasing range of fluids with diverse physical
properties, and ultimately to develop scaled models representing as
realistically as possible the various scaling groups relating model
to prototype obtained through dimensional or inspectional analysis

(3).

Clearly, caution must always be exercised to ensure that
experimental conditions, such as flow rates, pressure gradients,
interfacial tensions, wettability and flow regimes are similar and
do not invalidate any scaled conclusions, especially as normally
some scaling criteria have to be relaxed. The physical processes
occurring need to be understood at the scale one lower than that
required to be predicted, as well as at the actual level and possibly
even one level higher, although here the properties can usually be
modeled directly through the choice of equation coefficients, (an
example can be found in Haldorsen and Lake (14) and Begg, Chang and
Haldorsen (4)). Care must always be taken,as emphasized throughout
this chapter, that the physical processes are being properly
described and averaged in the scale-up.

Although it has been recognized for some time that transport
through porous media depends on the microstructure of the pore space,
the macroscopic effects cannot, as yet, be interpretted in terms of
simple cause and effect relationships due to the microscopic events.
Correlating a change in one variable with a change in another is a
long way from demonstrating that one is the cause of the other.
Because of such difficulties, studies on simple model systems are
particularly valuable in clarifying our understanding. However, any
one model can often highlight only a few components although a good
model will emphasize the most important features and ignore
inessential detail. Therefore a series of models are needed, each
focussing on a number of key features, and at a range of length
scales. Clearly the scale of detail explicit in the pore scale
cannot be approached in the larger scale, and a whole hierarchy of
models are needed to handle the description of phenomena on different
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length scales.

The motivation for our work can be summarized by the vital
questions:

1) Where is the oil in the pore structure?

2) How does the o0il move to the well-bore (mobilization)?

3) Why does the oil stop moving (entrapment)?

4) Can the oil be remobilized (enhanced oil recovery)?

In this chapter, some of our microscopic, pore level modeling
studies (1-1000 um) carried out at Imperial College will be outlined,
(fuller details are referenced later.) Our objectives have been to
gain a better understanding of the basic parameters affecting the
mechanisms of displacment of immiscible and miscible systems with
and without mass transfer. This is of particular relevance in our
case to petroleum reservoir engineering especially for improving
0il recovery. Consequently the rest of this chapter refers to oil
recovery, although most of our observations are applicable to other
processes. We shall describe the micromodeling techniques used
(Sections 2 and 3) and give a few examples of qualitative work with
emulsions (Section 4.1), a quantitative study of diffusional mass
transfer processes using micromodel (Section 4.2) and live-fringe
holographic methods (Section 4.3) and an indication of the effects
of pore structure in displacements, such as snap-off and entrapment
due to pore space morphology, and hydrodynamic instabilities due to
mass transfer and capillary pressure changes (Section 5).

2. MICROSCOPIC BEHAVIOR

The pore structure, when examined under the Scanning Electron
Microscope, is seen to be extremely complicated (31) as can be seen
in Figure 1. The pores are microscopic and are considered to be on
average no more than a few micrometers in size (perhaps 2-100 um).
If the reservoir drawdown area has a radius of some 1 km, the fluids
from the outer boundaries will have passed through some tens of
millions of pores. Since there are some 109 pores in a 1 cm3 sample
and within the pore space, 0il, water and sometimes gas distribute
themselves, it therefore seems pertinent to understand fully the
behavior of multiphase fluids within the network system.

In multiphase systems capillary forces will dominate the fluid
distributions and control fluid flow behavior with the capillary
number (Vu/y) - the ratio of viscous to interfacial forces - being
an important parameter. (Various other definitions of capillary
number are used in the literature (5, 19, 20, 35).) Unfortunately
even today, a piece of reservoir rock is essentially a black box
when it comes to observing the detail of multiphase flow. One can
measure input and output flow rates and compositions and pressure
profiles along the core, but the exact distribution of fluids cannot
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Figure 1. Micrograph of a North Sea Sandstone showing the pores as
areas impregnated with dark resin. WNote the irregularitie
in the shape.

be determined except in a few cases, (e.g., filling cores with
plastics and solids and then destructive examination of them by
sectioning (6) or tomography experiments using "brain scanners’,
(e.g., 9, 15, 16, 34), although here the resolution is still
insufficient, or perhaps certain radioactive tracer methods, (2).)
A fuller discussion of pore structure has been given recently by
Quiblier (32). More specifically the need is to understand the
mechanism of fluid flow and tracer transport in order to have a
physical basis for interpolation and extrapolation (e.g. to perhaps
3 phases, oil, water, gas or a second liquid phase) of the limited
experimental data.  Often the measurements have to be made on small
samples and the results scaled upwards towards reservoir dimensions.

Tt is therefore essential toc model the porous system using
simplified networks and fluids which imitate the reservoir fluids,
so that saturation patterns can be followed, and displacement
sequences understood (28, 30).. The pore space is treated as an
assemblage of pore segments and transport is governed by rules
incorporating pore level mechanics which determine where the fluids
go during a transport process and which, when suitably averaged, giv
rise to the calculation of the macroscopic properties. The geometry
of the network and its degree of interconnection are important in
determining the transport within the matrix. Individual segments
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of the network vary in size; those which are larger are termed
"pore bodies", and these are connected by numerous smaller passage-
ways termed "pore throats". The sequence of bodies and throats give
a transport path which has a converging-diverging character. The
distribution of the multiple phase within the porous matrix is
usually important in determining the nature and magnitude of the
transport. Here, wettability strongly affects the distribution but
this itself depends on the actual fluids present in the porous
medium and how they arrived there. Transport relevant to multiphase
flow with mass transfer, including condensate recovery (excluding
thermal effects) requires an understanding of:

1) the flow of each phase,

2) the transport of each chemical species within each phase,

3) mass transfer at the interface,

The complexity of the pore geometry makes it difficult to scale
effects observed in one pore to those occurring at reservoir
dimensions, but the randomness of the pore structure can sometimes
allow one to statistically average over a continuous volume that is
large with respect to the size of an individual pore yet small with
respect to the size of the sample, and large compared to the length
scale of the phenomenon being studied. This enables one to scale
from the microscopic behavior to a macroscopic average (1, 3, 12).

Clearly there are also a number of size scales even at the
micro-level. One can examine in detail the morphology of the clay
infillings within a pore (e.g., 29); or observe diffusion, (24), or
surfactant transfer mobilizing residual oil within a pore as is
described later, (8), or events over a few pores, such as ganglion
backflow (26), or over a few thousand pores to obtain average
saturations, (27).

3. PORE LEVEL PHYSICAL MODELS - THE MICROMODEL

Micromodels are 2-D flow cells which represent idealized porous
media. They have a network of flow channels and are constructed in
transparent material to enable the fluids to be directly observed
and recorded as displacement and mass transfer occur.

Etched network models have been used in our work because of
the advantageous control over network design and pore geometry
(size and shape), since these determine the interfacial curvatures
and hence the interfacial forces, i.e., capillary pressure. There
are several ways micromodels and their results may be used: (1) as
a purely visual aid to gain insight into the physics of displacement
within porous media, (2) to measure the volume average properties
such as fluid saturation, permeability and dispersion coefficients,
and relate these to network parameters, (3) to study pore level
events, such as the mechanics of o0il ganglia and fluid snap-off, in
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terms of local pore topology and imposed boundary conditions (velocity
and pressure fields).

The first of these ways has proved to be valuable to us and is
also the forerunner of any more quantitative studies. The essence
of micromodeling is not only to seek the answers to questions of
fluid flow, but also to pose the questions which need to be answered

3.1. Micromodel Construction

The networks are produced by etching into silica glass or
photoetching into nylon from which replicas in epoxy resin are cast.
The glass models have a surface chemistry similar to that of clean
sandstone and are water-wet when clean. The resin models demonstrate
a mixed wettability: decane completely wets them, whereas water show
a finite contact angle. For decane-water—alcohol systems the
aqueous phase tends to wet the resin completely, but not spontaneously
when the surfaces are initially contacted by decane.

Figure 2 shows the complete method of producing glass micro-
models. It has been developed from that described by McKellar and
Wardlaw (27) and involves six stages: (1) photographing a hand-drawn
or computer-drawn pore network, (2) coating a glass base-plate with
a photoresist, (3) projecting the photographed network design onto
the casting with UV light, (4) washing away the unpolymerised
(unexposed to UV) sections of the coating, (5) etching the design
into the base-plate with HF, (6) sealing on a cover plate by heating
in a furnace.

The epoxy resin model production procedures have been described
fully previously (22,26). In our very early work we performed flow
experiments directly with the etched nylon film but these were found
to suffer from significant absorption of dyes and solvents which
ruined the models. Consequently we now use the etchings as patterns
for silicone rubber moulds, from which rigid non-absorbent epoxy
resin replicas are cast. The casts accurately reproduce the micro-
structure of the nylon model. A flat epoxy resin film is sealed on
top of the casting to produce the 2-D micromodel. Inlet and outlet
ports are drilled into the model and fine tubing sealed in place
with epoxy cement. The arrangement of valves helps to eliminate
fluid mixing in the entry tube thereby ensuring injection of
uncontaminated fluid. The model is mounted on the stage of a
microscope and fluids pumped through it using microsyringe pumps at
typical reservoir rates (typically less than 1 m/day). The flow move
ments can be observed through a microscope and recorded in colour
on videotape or still photographs.
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(a)

Hand-drawn parallel layer model with serial heterogeneities.

This was designed to yield realistic and predictable relative
permeability and capillary pressure functions.

(b)

Computer drawn regular network of
pore throat sizes, to investigate
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fines movement and entrapment.

Computer drawn doublet network with a variation of pore para-
meters and having abrupt pore necks.

This was designed to

demonstrate the effects of two pore sizes in parallel and in

series.

Figure 3.

A selection of micromodel networks.
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(e)
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Part of a computer-drawn model having dead-end pores (sometimes
known as ink bottle pores) in high conductivity channels. This
was designed to study the effects of diffusion into stagnant

regions by holography. 1t is also a possible model of some
carbonate rocks.
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Figure 3. A selection of micromodel networks (Cont.)
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Sensitive pressure transducers can be attached to the micro-
models to allow the fluid movements and pressure events to be related.
Often one of the fluids is dyed so that it can be distinguished.

Dyes can also be used to follow dispersion patterns within a single
phase although they are surface active and their effects on
wettability must be taken into account when analysing results.

3.2. Network Design

The photomasks used to control the etching procedures can be
produced either by hand-drafting or by computer graphics and micro-
film facilities, allowing both design flexibility and control over
the network parameters. Figure 3 gives a number of examples. This
degree of control over network parameters, such as pore body and
throat size distributions and network connectivity, offers the
opportunity to test theoretical models on a microscopic scale to an
extent not yet possible in a real porous system and to obtain
wherever necessary quantitative data to confim the principles
observed. By these methods pore networks have been fabricated with
well controlled geometries down to pore throat dimensions of about
15 um.

The pore dimensions can be made realistically small to ensure
that capillary forces are of the correct order of magnitude as occur
in reservoir rocks (they decrease as pore size increases) and the
neck to pore cavity ratios can be representative of real porous
media (i.e., 1:2 to 1:10). It is important to ensure that the
capillary number and other dimensionless groups are of the correct
order of magnitude as found in the field. We also vary pore size
and shape, pore wall irregularity and roughness to represent the
various aspects of porous media which affect oil movement and
entrapment. The effects of heterogeneities, where areas of o0il may
be bypassed, and methods of contacting and remobilising this oil can
also be studied. Models incorporating random distributions of pore
bodies and pore throats or defined non-random heterogeneities are
now being developed with pore roughness and network heterogeneity
based on a fractal approach (18, 33, 36).

The two dimensional nature of the models will affect some
global aspects of the behavior, in particular the simultaneous
continuity of two phases is not topologically possible in two-
dimensions but is in three dimensions. However this is not a major
problem if one is more interested in the local pore-level physics.
The global aspects of the behavior can be understood in terms of
invasion percolation theory, (e.g., 19, 35), which should help to
determine which features are artefacts of two dimensions and which
are not. For instance at breakthrough in two dimensions the displaced
phase will no longer be continuous. Care must also be exercised
when considering local grain contact effects, for instance there are
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difficulties in modeling "pendular" rings of wetting phase in micro-
models. The shape may be totally different. Also there is the
problem of any 'unseen' curvature between the top and bottom of the
model, and which could in some circumstances dominate the curvature
seen in the plane. It is therefore erroneous to measure micromodel
permeability, dispersion coefficients and fluid saturations, and to
treat these as absolute quantities which can be compared directly
with values derived from real, three-dimensional media. Measurements
of, for instance, residual oil saturations can be valuable in a
relative rather than absolute sense.

The actual shape of the pore may have some effect. For instance
our glass micromodels are sealed by sintering which tends to round-
the corners, whereas our resin models tend to have sharp corners.
This allows the resin models to have a ''groove effect" for the
wetting phase to bypass residual phase or transport chemical to the
interface. Such phenomena have been discussed by Lenormand and
Zarcone (21) although they suggest some of the effects are due to
a surface roughness factor.

Nevertheless, in spite of these limitations we feel that many
microscopic aspects of fluid flow in reservoir rocks can be
realistically modeled.

4. MICROMODEL STUDIES

In this and the following section a few examples will be given
of our microscopic visualisation studies which demonstrate the scope
of the method.

4.1. Qualitative Studies

Our initial objectives were to understand the microscopic
mechanics of miscible displacements, then the immiscible displacement
of water flooding, the usual method of secondary oil recovery.
Following then to study the unproven but promising techniques
of enhanced oil recovery, particularly those utilising low interfacial
tension and miscible processes (23). Recently discovered surfactant
mixtures can lower the oil/water interfacial tension some four orders
of magnitude to values below 1073 mNm~1. 1In miscible processes the
solvent either dissolves the oil/water interfaces on first contact
or after a period of mass transfer involving diffusion and interfacial
instability (Marangoni effects) and other solubilizing events. Model
fluid systems are used to simulate reservoir behaviour as hydrocarbon
reservoirs are at high temperatures and pressures (often near 100°C
and 500 bar) experiments at real conditions are difficult and
expensive. Alcohols are suitable fluids since the wide variety
allows a spectrum of single to multiple-contact-miscible to immis-
cible systems to be studied with variations in such properties as
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viscosity, density, interfacial tension, solubility and diffusion
coefficient.

In these studies (23,25), not only were the phase effects
studied, but also the pore network geometry and its effect on
capillary pressure, displacement and entrapment by varying size
distribution, pore shape and throat sizes, and the connectivity of
the pores. Further discussion of this work is given in Section 5.
Another interesting phenomenon was observed with a study of displace-
ment from dead end pores. We found that oil can be displaced by
water moving into the pore along the wetting film. This model was
preferentially water-wet.

4.2. Quantitative Studies

There are many facets of reservoir behaviour which must be
studied and quantified, apart from the purely visual description,
which is how micromodels have been used previously, such as

1) the effects of network and pore structure (topology,

connectedness, the shape of the diverging-converging
connection, roughness and irregularities of the pores,

2) the effects of shapes and sizes of the pore elements

(pore bodies and throats),

3) the effects of flow rate,

4) the effects of viscosity,

5) the effects of density differences,

6) the investigation of wetting preferences of immiscible

phases,

7) the study of one, two or perhaps even three mobile phases,

8) the effects of low interfacial tensions.

The phenomena become even more challenging when the system is
close to a critical point, such as is found in retrograde condensate
systems (11, 37) or when the phases are in the form of an emulsion
(7, 8). This is an important area of study for when the oil is
mobilized, emulsions are frequently formed, especially if surfactants
or thermal methods are being used. Figure 4 shows a still photograpt
taken from a video-taped sequence of an oil-in-water emulsion
(interfacial tension about 1072 mNm~1) flowing through a curved pore
channel network. This study demonstrated beyond doubt that the
interconnectivity of the pores affects the flowing properties of the
emulsion. It showed that the previous work on emulsion movement
through single straight capillary tubes may not be readily extended
to porous media. We have shown that the emulsion droplets do not
all move at the same velocity; some slip or stick against the pore
walls whereas those in the centre of the pore move far more readily.
This affects the rheology as well as the creaming and coalescence
properties of the emulsions (7).

Figure 5 shows photographs taken from the video monitor showing
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‘Figure 4. Oil-in-water emulsion flowing (left to right) within a
curved pore channel.

b

Figure 5a., Detail of square-grid Figure 5b. Close-up of a moving
model after a surfactant solu~ o0il ‘droplet at the instant of

tion (white) has begun to dis- snap-off from a trapped oil blob.
place oil (black) by breaking The elongated forms of the oil-

it into smaller droplets (flow aqueous surfactant interfaces

is left to right). are due to the very low interfacial

tension (about 1073 mNm~l) between
the o0il and surfactant.
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the interfacial shapes that can be obtained as a surfactant solution
contacts entrapped oil. The interfacial tension increases the ratio
of viscous to capillary forces by some 4 orders of magnitude because
there is now only a very small resisting capillary pressure. The
trapped oil droplet's interfaces can now distort and manoeuvre
through the pores; this can lead to improved oil recovery. Inter-
facial forces can still however be very influential in such low
tension systems.

4.3. Mass Transfer Quantification Using Holographic Interferometry

A novel approach to study and quantify diffusional mass transfer
at the pore scale is by holographic interferometry using a micromodel
as the porous medium, (24). By this technique we are able to follow
quantitatively fluid concentrations as a function of both position
and time. The speed at which mass transfer occurs is very influential
in the recovery of 0il by chemical agents. Absorption of light by
dyes can be exploited to show dispersion and diffusion through the
pore system but the quantitative effects of the tracers may be
different to those of the fluids. By using live fringe holographic
interferometry, which exploits the refractive index differences of
the liquids it is possible to map lines of constant composition over
the whole pore showing the direction and rate of diffusion and any
convective component of mass transfer. Figure 6 (a and b) illustrates
an example of diffusion effects within a single dead-end pore in the
network shown in Figure 3d. The model creates stagnant fluid in the
pores. Here we can see the development of the fringe pattern as the
concentration field changes. The flow channel is inclined at 45°
to the vertical and the fringe pattern shows gravity segregation
plus diffusion.

For partially miscible systems, where the interface is held by
capillary forces, the convective mass transport due to unstable
density gradients is limited because mass must diffuse across the
interface. The diffusive flux across the interface is controlled by
the composition gradient at the interface in both phases. Convective
transport within each phase due to buoyancy forces increases the
gradients at the interface and therefore increases the diffusive flux
across it. Thus the mass transfer coefficient is larger for the
gravity unstable case.

The contribution of convective transport will become even more
apparent when mass transfer occurs into systems of interconnected
pores rather than single dead-end pores. As a result calculations
of mass transfer using only diffusion coefficients measured in bulk
fluids, and pore size parameters will be erroneous when density
effects are present.

These experiments demonstrate the possible importance of the
influence of gravity on the microscopic mass transfer between
fluids od different density, previously always assumed to be
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Figure 6. Live fringe holo- b. After introducing solvent of
graphic interferogram in a greater density and refractive
single dead-end pore; the index than the oil; the dis-
model was held vertical with placement is complete in the
the channels inclined at 45°. channel while the curved
Flow within the wide channel fringes indicate a diffusion
is from bottom left to top zone within the dead-end pore.

right.
a. Model filled with oil.

negligible. Full details have been given in Mahers (22) and
Mahers and Dawe (24).

5. CAPILLARY PRESSURE, MASS TRANSFER AND HYDRODYNAMIC INSTABILITY
IN DISPLACEMENT

In this section we show an example of the quantitative scope
of the micromodel demonstrating the effects of pore geometry (23,
25, 26).

Hydrodynamic instability during displacement processes can
occur due to dynamic capillary pressure phenomena where there is mass
transfer across interfaces. It 1is most pronounced when the
residual o0il distribution is not uniform and relatively large volumes
of "continuous 0il" are present: this can occur for instance in a
heterogenous zone of the pore network. The chemical solute may
only contact part of the oil/water interface, thereby setting up
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-concentration gradients across the interface.

5.1. Hydrodynamic Instability - Haines Jumps - Drainage Displacement

Figure 7 illustrates the displacement of water by oil in a water
wet pore. The oil-water interface in the right hand pore is a head
meniscus, and any pore constrictions are termed pore throats or
necks. In order for the head meniscus to pass through the throat,
the capillary pressure must be greater than the threshold value of
the throat:

- - X
P,=P -P = % (5.1)

where P , PO and Pw are the capillary, oil and water pressures
respectively. y is the interfacial tension and R,, is the throat
radius, defined as the harmonic mean curvature ol the largest ellipse
that will pass through the pore neck. The pore body radius, R,, is

. . . B
defined as the harmonic mean radius of curvature of the largest
ellipsoid that will fit into the pore.

As the meniscus passes through the throat and enters the pore,
its interfacial curvature decreases (R, increasing), reducing the
capillary pressure and thereby lowering the pressure in the oil in
the right hand pore. The water pressure at the meniscus is
increased and the resulting pressure gradients accelerate the
meniscus, termed a Haines Jump. When the radius of curvature R2
equals R, and more oil then enters the pore, R, must begin to
decrease and the capillary pressure correspondingly rises. The
meniscus becomes stationary when the capillary pressure equals the
local difference in pressure between the two phases, and further
displacement produces an increase in capillary pressure.

5.2. Imbibition Displacement

Imbibition is illustrated by Figure 8. As the interface is
displaced from point A to point B the interfacial curvature increases,
increasing the capillary pressure and thus increasing the pressure
gradients in both phases near the meniscus, so accelerating the
meniscus; we now have a Haines jump in imbibition mode. As the
meniscus passes point B, the capillary pressure will decrease, and
meniscus will become stationary when the pressure difference equals
the capillary pressure.



Figure 8. Haines jump in imbibition mode.
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Figure 9. Toroidal pore throat.
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5.3. Interfacial Instability - Snap-off

Let us now consider the stability of an oil-water interface
during displacement, and further examine the configuration shown in
Figure 7. 1If we let the pressure in the non-wetting oil phase be
approximately constant then

P = P = P (5.2)

Eq. (5.1) gives Pw =P - Pc’ and therefore,

(o)
2Y
= R 5.3
Pp= P37 X (5.3)
2
Y Y 2Y )
P.=P, - —+ = =P - = (5.4)
5 2 R1 R1 2 ART
where
l_RT(l LI
o 2 = - =
A 2 Rl Rl

Subtracting eqn. (5.3) from eqn. (5.4) gives

1_ 1 (5.5)

R2 ART

since P

2 P.,. The oil filament within the pore throat will become
unstable if B -

P4 < 0, because the water will flow into the
throat. Thus, if
1 1 (5.6)
—_— - = <0, ; R, > AR,
R2 ART 2 T

snap-off may occur. The limiting value of R, is R

2 B’ the pore body
radius. Therefore for snap-off,

RB / RT > A. (5.7)
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R /RT is the pore aspect ratio, and therefore A can be defined as
tge critical pore aspect ratio. For a long, straight throat,

R.2 R, and R! = » , so A = 2. For the toroidal throat shape shown
in Figure 9,

1 1
I e T (5.8)
T Ry oRp

and
A= 2a /(a- 1)

where o is the throat length to width ratio. If o = 2 then A = 4;
also A > 2 as a = and A > «® as o > 1.

The snap-off analysis is valid for both drainage and imbibition
displacements, however for drainage, snap-off occurs during the rapid
Haines jump and therefore does not always take place. For imbibition,
snap-off occurs during the slow displacement step, although at very
high flow rates there may again be insufficient time for snap-off.

Further details of displacement mechanisms and residual oil
formation within networks in drainage and imbibition modes and the
ganglion stability towards remobilization are given in Mahers (22)
and Mahers and Dawe (23, 25).

5.4. Instabilities due to Mass Transfer and Interfacial Tension
Non-uniformities

If we consider a large discrete volume of oil occupying several
pores, which is anistropically contacted by a solute which changes
the interfacial tension, then the interfacial curvature must change
to maintain constant capillary pressure, as shown in Figure 10. In
Figure 10a, the fluid boundary layer surrounding the oil is water
and the interfacial tension (IFT) will be constant and equal to vy.
The capillary pressure is constant and therefore the interfacial
curvature is also constant. The end lobe of the oil is hemispherical,
and if assumed to be as shown, the capillary pressure is:

PC = 2y/RB (5.9)

If the IFT is changed only in the end pore by &y, then, to
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maintain constant capillary pressure, the curvature must increase.
The limiting curvature is when the oil invades the pore throat
(Figure 10b) and:

PC = 2(y + 5¥)/RT (5.10)

If P is maintained constant, i.e., stable structure, then Eqs. (5.9)
and %5.10) may be equated and

\(/RB = (y + Gy)/RT (5.11)

Thus the fractional change required in the interfacial tension for
invasion of the next pore is:

- 8y/y > 1 - RT/RB (5.12)

To conserve mass when invasion of the pore occurs, oil must
retract elsewhere. This may be from adjacent pores, where the
interfacial tension may also be changing. Retraction will increase
interfacial curvature, thereby maintaining capillary pressure.
Although this mechanism depends on the structure of the immobile
phase and the local velocity field. It is a feasible method for
mobilization of some of the bypassed oil.

Figure 11 illustrates hydrodynamic instability of relatively
small residual o0il ganglia powered by interfacial tension
gradients. This work was described by Mahers, Wright and Dawe
(26) with illustrations of more simple oil-water displacements.

The IFT gradients are due to the concentration gradients of the
solvent, propan-l-ol, in the continuous aqueous phase. The ganglia
moved in a direction opposite to the direction of flow, i.e., in
the direction of the concentration gradient.

From Figure 11,

o
|
)
I

VP.I + 2Y2/R2 - 2Y1/Rl (5.13)
if,

P, - P, =0, (5.14)
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the ganglion will be immobile, but if,

P, - P, <0, (5.15)
the ganglion will move forward, and if,

P, - P, >0, (5.16)

the ganglion will move backward. If the ganglion is initially
immobile and YIS Y=Y then from equation (5.13),

2y(1/R; - 1/R)) = VP.I (5.17)

I is the vector length of the ganglion. If the interface is
subsequently contacted by solute, then, substituting for VP.I
from Eq. (5.17), Eq. (5.13) becomes:

Py ~ B, = 2y(1/R| - 1/R)) + 2v,/R, - 2y, /R, (5.18)

if Y, < Y the ganglion moves backwards until the interfacial
curvature changes sufficiently to balance the IFT effect. 1If
interface 1 is then at a pore throat, assuming the contact angle
between the fluid interface and the pore surface is zero, and
interface 2 has a radius of curvature equal to Rl’ then:

P, - B, = 2y(L/R| - 1/R) + 2v,/R, - 27,/R, (5.19)

For further backflow, the radius of curvature of interface 1 must
be equal to RT and from Egqs. (5.13) and (5.19),

Y(l/R1 - l/R2) > Yl/RT - Yz/R1 (5.20)
If we let Y, =¥ 8y, then Eq. (5.20) gives:

8y/y > (Rl/RZ - 1) + (Rl/RT ~ Ly /v (5.21)
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If initially R2 = RT’

then,
Sy/y > (1 + YI/Y)-(Rl/RT -1 (5.22)

The maximum value for 6y/y is 1, with Y, < 0 and Yo =Y, then Eq. (5.22)
reduces to:

< 2 5.23
R /R, (5.23)

If initially Rl = R_, then the maximum aspect ratio for backflow
would be R_/R, = 2. However, obviously R, can be less than R_ and

R, greater than R

) thus allowing backflow at larger aspect ratios.

T,
This programme of work shows that oil droplets will move

along the local pressure gradient, which may not be in the

general flow direction and is created by non-uniform interfacial

tensions. We have demonstrated that pore sizes and shapes, especially

the pore/body aspect ratio and network geometries are important and

snap-off and residual oil formation are partially controlled by

these factors.

6. CONCLUDING REMARKS

It is clear that micromodel studies are a very useful and
necessary tool in identifying and describing the microscopic
mechanisms controlling the various transport phenomena within the
pore structure and in assessing the influence of pore space
morphology. This paper has given just a few of our studies of
imbibition and drainage displacements, residual oil formation,
emulsion flow and mass transfer effects on the pore scale. (There
are many more projects underway). The observations point out
clearly that many of the descriptions and mechanistic assumptions
previously accepted are too simple. The control over network
parameters and design flexibility now available in our micromodel
manufacture enable critical studies of the effects of pore space
morphology and matrix-fluid interactions such as wettability on these
processes. For instance, as shown in Section 5, the capillary
pressure and the pore geometry, especially the pore/throat aspect
ratio play a major role in the physics of immiscible displacement.
For low aspect ratios snap-off processes do not occur whereas in
high aspect ratio networks they do, and residual oil is found in most
pores as small ganglia stretching over only one or two pore bodies.

The quantitative experiments with emulsions and condensate
fluids mentioned in Section 4.2 are demonstrating clearly the
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importance of the influence of the pore space structure on the
rheological, creaming and coalescence properties of the fluid mixture.
Previous studies of emulsion movements through straight capillary
tubes are totally inadequate for modeling the behaviour in real
porous media. The holographic interferometry techniques used in the
studies to quantify mass transfer on the pore scale, the first time
such techniques have been used on such a microscopic scale, show
that buoyancy forces play a greater role in the transport at the
pore scale than previously thought. Also we find that dynamic and
local non-equilibrium interfacial forces are very important in
remobilising residual phases.

However, although giving much information and occasionally
beautiful demonstrations,it must always be remembered that micromodels
must not be considered in isolation. The problems associated with
the two-dimensional nature of the models must be confronted and
methods of scaling-up the microscopic observations, including the
changes of the balance of the forces at the different scale lengths,
must be developed to provide the macroscopic descriptions sought by
industry. This will be achieved by pursuing micromodel studies in
conjuction with larger scale models, laboratory experiments and
computer studies which model other key features. There are of course
a multitude of different and essential factors to be examined.

Hopefully this intimate description of the rock-fluid behaviour
provided by our and other micromodel studies will be integrated with
the other approaches to yield a more satisfying picture of transport
processes in porous media.
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ABSTRACT

When the temperature of the saturating fluid phase in a porous
medium is not uniform, some flows induced by buoyancy effects may
occur. Commonly called free or natural convective movements, these
flows depend on density differences due to temperature gradients and
boundary conditions. Generally speaking, convective movements which
tend to homogenize the whole fluid volume where they take place have
two main effects: produce a non-uniform insitu temperature distribu-
tion characterized by hot and cold zones, and increase the overall
heat transfer.

Due to its numerous applications in geophysics and energy-
related engineering problems, natural convection in porous media has
been receiving increased interest over the last few decades (1,2).

In this review, we deal mainly with the presentation of funda-
mental results obtained through the study of this phenomena in
dispersed saturated porous media. Beginning with the formulation of
basic equations and boundary conditions, we then successively review:

- first, the results concerning natural convection in homoge-
neous isotropic porous layers of wide lateral extent in
horizontal or inclined positions,

- second, the studies on natural convection in confined porous
media, i.e., when the lateral extent of the layer is of the
same order of magnitude so that the thickness and the lateral
thermal boundary effects are taken into account,

- and finally, the problems related to natural convection in
more complex configurations, such as anisotropic porous layers
or porous layers saturated by a fluid of non-constant
properties.
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1. INTRODUCTION: THE DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

The analysis of flow and heat transfer is usually based on the
transport equations resulting from the differential balance laws.
Prediction of global effects such as flow resistance or heat flux
from a given object requires detailed information of the surrounding
velocity and temperature fields. For a continuous medium, this
information is extracted from the solution of the associated
microscopic transport equations subject to pertinent boundary condi-
tions.

When a flow through a complex structure such as a porous medium
is involved, these local or microscopic equations are generally
still valid within the pores. However, the geometric complexity of
the internal solid surfaces that bound the flow domain inside the
porous medium prevents general solution of the detailed velocity and
temperature field.

To overcome these difficulties, physical phenomena in porous
media are generally described by "macroscopic" equations valid at
the level of a block of porous medium: the Representative Elementary
Volume (REV) containing many pores. "Macroscopic" equations are
either established using "a priori'", an equivalence between the
heterogeneous porous medium and a fictitious continuum, or rigorously
derived from microscopic equations by means of a volume averaging
technique (3,4,5,6,7). These equations are assumed to be represen-
tative on the REV of average values of microscopic quantities.

Such is the case, for instance, of the two most frequently used
quantities, the porosity € and the filtration velocity V. These
quantities are the mean values in the REV of parameters that are
different from zero only in the pore space, and respectively equal
to 1 and to the local microscopic velocity.

As far as the thermal behavior of a porous medium is concerned,
having a given thermal and hydrodynamic state with a moving or
motionless fluid phase, for any geometrical point and its associate
representative elementary volume, we can define two average
temperatures, Tg for the solid phase and T, for the fluid one. T
and T¢ characterize the thermal state of each phase in the same
elementary volume. In the mathematical modeling for the heat
transfer, two alternate methods are used, depending on the difference
between TS and T (8).

S

In the first method, the difference T - T. is assumed to be
negligible, and the thermal behavior is described by a single
equation for the average temperature T = T, = Tf.

This approach, which is the most commonly used, is valid when
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the flow velocity is not too high, and if both phases, solid and
fluid, are well dispersed.

The second method applies when it is not possible to assume
that T, - T¢ is negligible. Then it is necessary to distinguish
the two phases and to explicitly define the interphase heat transfer.
The medium is considered as equivalent to two continua, and two
equations are used.

The "dividing line'" between the two models has been recently
explored (9). This has led to a series of constraints that must

be satisfied if the homogeneous model is to be used with confidence.

1.1. Basic Equations

Due to the general complexity of heat transfer phenomena in
porous media, most studies are based on simplified mathematical
model in which it is assumed that:
- the solid matrix is homogeneous, non-deformable, and chemical-
ly inert with respect to the fluid,
- the fluid is single phase and Newtonian; its density does
not depend on pressure variations, but only on variations of
temperature,
- no heat sources or sinks exist in the fluid; thermal
radiation and viscous dissipation are negligible.

>
Under these conditions, filtration velocity V and temperature
T distributions are described by the following set of equations:

Mass conservation equation:

3
€ ﬁ +9.(V) = 0 (1.1)

Momentum conservation equation:

>
b WV 0P V)V = VP +pg - LV 1.2
— 3 T oz (V.VV = VP + g z (1.2)
State equation:
p = Oo(l - a(T - TO)) (1.3)

and energy equations for the solid and the fluid phases when a
distinction is made between the average temperatures of the solid
phase, T_, and the moving fluid phase T; are

s
oT =

2= V.05 L VI + h(Tp - 1) (a) (1.4)

(1 - €)(pC)qg T
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3T
£ =%
(0 57 = V-G - VTg) = (0C) V . VT + h(Tg = Tg)  (b)

When TS = Tf, the energy equation for the fictitious continuum
medium equivalent to the real dispersed medium is
* 9T =%

(b0)" 55 = V.(X" . WD) - (o0, V. T (1.5)

In these equations, a, p, p are respectively the volumetric
thermal expansion coefficient, the density, and the dynamic viscosity
of the fluid; g is the gravitational acceleration; P is the pressure;
K and € are the permeability tensor and the porosity of the porous
media; and T, is a reference temperature level for which p is equal

to p,.

For the energy equations, (pC) _ and (pC)_. are the heat
capacities of the solid and the f1luid phases %or constant pressure;
A? and X are the equivalent thermal conductivity tensors of the
disperseﬁ structures of the solid and the fluid phases; h %s the
heat transfer coefficient between the two phases, and (pC) and
X* are the heat capacity and the equivalent thermal conductivity
tensor for the saturated porous media. Due to the addition of
equations (l.4.a) and (1.4.b), the following relations may be
derived from the hypothesis Ty = Tg:

(00" = (1 - ) (pC)_ + e(pC),

* * + *
s f

>
>l
>l

As we can see, a mathematical model of heat transfer based on
equations (1l.4) is rather difficult to ggply_because we need an
estimate for three unknown quantities, AT, X* and h. Despite the

existence of formal descriptions for X*, X* and h, computation of
these coefficients, which depend on thgrmaf conductivity ) _and
A, of the phases, on porosity, on structural properties ofsporous
£, . . . . . .
media, and on hydrodynamic dispersion is generally impossible and
their experimental determination very difficult (10). Fortunately,
in most actual situations, the approximation T = Tf is valid, and
it is possible to use the simple model describ8d by~ Eq. (1.5) in
which only the value of X* is needed. As indicated in Egqs. (1) and
(11), two methods may be used to determine the components of this
coefficient: theoretical estimation through a model or physical
measurement. Like X~ and if’ this coefficient 1is also a complicated
function of x_, A_., of the porosity, of the structural properties,

and of the hyarodynamic dispersion.
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For the momentum equation (1.2), a generalized form of the
experimental Darcy's law is used, pending a complete and rigorous
development from theoretical studies in progress.

Boussinesq's approximation and some other standard assumption:

Due to the complexity of the previous set of equations, other
approximations or assumptions are commonly added to facilitate the
theoretical approach of convection. Satisfied in numerous practical
cases, these assumptions and approximations are:

- the thermophysical properties of the saturating fluid, p, u,
a, are assumed to be constant, except in the buoyancy term
pg where variation in fluid density clarifies the real cause
of thermal convection (Boussinesq assumption), and

- Ege thermal physical characteristics of the porous_x;gediuml
A"and (pC)”, are also assumed to be constant with ) and K
isotropic.

With these assumptions, equation sets (1.1), (1.2), (1.3) and
(1.5) yield:

vV.V=0 (1.6)
SRR S P T @.n
Eat+€_z(v.V)V P Pg K

* dT * _2 >
(pC) T AT VST - (pC)f vV . VT (1.8)
p=p (1 - a(T - T,)) (1.9)

1.2. Inspectional Analysis

Equations (1.6) to (1.9) may be rendered dimensionless by use_of

* 2
the following reference parameters: H for the length scale, (pC) ﬂw
for the time scale, AT for the temperature scale, A" /(pC)gH for thé

velocity scale, and X*u/K(pC)f for the pressure scale. The dimension-
less equations for an incompressible fluid are therefore employing
the same symbolic representation as before:

W o= 0 (1.10)

pr*1 wrd 3% +€% G .0V =V -V +RaFET (1.11)
€
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9 >
T _wep - L vt (1.12)
ot
>
> -
where k & is the unit accelerator vector and P = P + PL8Z.

e

The following dimensionless terms appear in the equations:

a(pC) (PC) ¢V
* f K * f K
Ra =g ——;——— ;; AT H; Pr = ——*R;— ; F = 2
(1.13)
(Qc)f
= *
(pC)

* *
where Ra is the filtration Rayleigh number, .,Pr the equivalent
Prandtl number for the porous media, F = =3 —% with d the mean
diameter of the pore or grain size of the material making up the
porous medium, and d/H is a scale factor which characterizes the
fineness of the medium. As this ratio is generally very small,

-

x— > >
r 1 MF (é %% + %7 (V . V)V) may be neglected in the momentum
equation. Natural convection in porous media appears as only
dependent on the filtration Rayleigh number, Ra , and on the boundary
conditions.

P

The equations we have used for this inspectional analysis are
consistent only in a specific area of validity, i.e., a unique heat
transfer equation, Boussinesq's approximation, and fluid and solid
matrix properties are assumed to be constant.

More extensive analyses are possible from more thorough
descriptions of the phenomena which yield additional dimensionless
numbers. This is the case, for instance, when the dimensionless
description of heat transfer is derived from Eq. (1l.4):

(1 - eM)(1 + 1) ;;i = VZTS - Ax(TS - Tf) (1.14)
1+ A an 1+ A 2
M=) 57— = VT, - () V. VT - x (T, - T)) (1.15)
in which three complementary dimensionless numbers appear:
N ¥ H?
e; A= XE S X = 3w (1.16)

f f
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1.3. Boundary Conditions and Physical Configurations

The context of free thermal convection study is defined by
hydrodynamic boundary conditions, thermal boundary conditions, and
the shape of the volume containing the porous medium.

For hydrodynamic boundary conditions, two situations can be

found:

- impervious surface on which the normal+comgonent gf the
filtration velocity is equal to zero, V . n = 0 (n unit
vector normal to the surface), or

- free surface on which the pressure is constant, P = cte.

Two extreme cases of thermal boundary conditions are also
possible:
- isothermal boundary, i.e., uniform temperature on the surface,
or,
- and adiabatic or gerfectly insulating boundary, i.e., heat
flux density -2* R . VT = 0 on the surface.

Between these two extreme cases, thermal boundary condition
is formulated by stating the continuity of heat flux density through
the limiting surfaces of the porous medium and the external parts.

The number of natural or laboratory configurations studied
theoretically as well as experimentally has continually increased
during the last few decades. After the simple case of an homogeneous
layer with constant thickness and large lateral extent, researchers
are now interested in more sophisticated configurations, such as
confined and heterogeneous porous medium, or porous medium saturated
by a fluid of non-constant properties.

From a dimensionless standpoint, the geometrical configurations
are characterized by aspects ratios, for instance Ly/H, Ly/H, L,/H,
with Ly, Ly, L, dimensions of the porous medium along three orthogonal
axes.

1.4. Brief Look at the Existence of an Equilibrium

If we look for the conditions required for the existence of
an equilibrium state of the saturating fluid (V = 0), the equation
of motion (1.2) gives:

- VP + pg =0 (1.17)

and by taking the curl of each term of Eq. (1.17)

Vo AB = 0 (1.18)

Moreover, the equation of state of the fluid yields:
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d
Vp = g% - VT (1.19)

Then combining Eq. (1.18) and (1.19):
VT, g2=0 (1.20)

Hence, the condition required for equilibrium is defined by
the fact that in the entire volume concerned, the temperature
gradient and the body force are colinear.

As the condition expressed by Eq. (1.20) is only a necessary
condition for equilibrium, a distinction has to be made between:

- the configurations for which there is no motionless state
satisfying Eq. (1.20) and for which convective movements always
exist, for instance, in sloped layers or around heated surfaces
embedded in an infinite porous medium, and

- the configurations for which a motionless state satisfying
Eq. (1.20) exist. In this last case, it is not possible to conclude
with the previous simple analysis, and the stability conditions must
be derived from an extensive theoretical study based on the Egs.
(1,10), (1.11), (1.12) or (1.14), (1.15) associated with the boundary
conditions imposed on the medium. Such is particularly the case
of the horizontal porous layer.

Specific theoretical approaches have been used to study the
criterion for the onset of natural convection in horizecntal porous
layers as well as the stability of any convective movements, or the
transition criterion. Based on the well-known Hydrodynamic
Stability Theories, they have been respectively:

- the linear stability analysis founded on the study of the
reactions of the saturating fluid phase to perturbation of small
amplitude, allowing the linearization of the equations (12), and

- the non-linear stability analysis founded on the study of
finite amplitude perturbation, using variational technique or pertur-
bation expansion for weakly non-linear convection, or numerical
simulation for fully non-linear convection (13), (14).

In the following paragraphs, we shall see the possibilities of
using these methods to determine criteria for the onset of the
convection, the form of convective movements, and the mean heat
transfer.

2. NATURAL CONVECTION IN HOMOGENEOUS AND ISOTROPIC POROUS LAYER
OF WIDE LATERAL EXTENT

Numerous studies have been completed during recent years
describing natural or free convection in porous media. Most have
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been devoted to the case of homogeneous and isotropic porous layer
of uniform thickness H and of large lateral extent L >> H and

W >> H, bounded by impervious surfaces maintained at different
temperatures Tq for the upper cold boundary and T, = T; + AT with
AT > 0 for the other boundary (Fig. 1).

2.1. Horizontal Porous Layer

2.1.1. Linear theory: onset of natural convection

This situation satisfying the condition given by (1.20), a
motionless state of the saturating fluid, may exist. For the
dimensionless boundary conditions:

at z = 0 at z = 1 (2.1)

2
it is defined by V, = 0 3 T, =1 -2z ; P_=Ra (z-2) + cte (2.2)
and corresponds to an equilibrium for which the heat transfer is

essentially due to the conduction.

The first uses of the linear theory applied to the study of
the stability of fluid saturating a porous layer are attributable
to Horton and Rogers (17), Lapwood (16) to Katto and Masuoka (15).

Extensively described by Chandrasekhar (12), the mathematical
treatment of a problem of instability generally proceeds along
the following lines:

a) the solutions corresponding to the initial flow, representing
a stationary state, are disturbed by perturbations of infinitesimal
amplitude;

b) the new solutions, i.e., disturbed initial solutions, are
put into the governing equations of.the phenomena, and by using the
initial solutions, give the perturbation equations;

c) the perturbation equations are linearized by neglecting all
products and powers (higher than the first) of the perturbations;
and

d) the perturbation equations are finally resolved by expressing
an arbitrary disturbance as a superposition of certain possible
basic modes and examining the stability of the system with respect
to each of these modes.

The use of this procedure to study the stability of the
saturating fluid of an horizontal porous layer heated from below
yields the following perturbation equations:
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Figure 1.

Figure 2.
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W =0 (2.3)
- Vr + Ra” Ke -V = 0 (2.4)
98 oy

il V<4g (2.5)

>
where V, 6 and m are respectively the velocity, the pressure, and
the temperature perturbations of the initial state such as:

> > > > > >
v=0+V ; T=T +86 H P=P +7 ;3 V=idu+ jv+kw

By eliminating the pressure in Eq. (1.20), and by looking for
6 and w, a two-dimensional perturbation such as

6

8(z) exp (i(lx + my) + ot) (2.6)

\ w(z) exp (i(1lx + my) + ot) (2.7)

we obtain for Egqs. (2.4) and (2.5) with D = d/dz :

- Ra" a%0 + (D2 - a%)w = 0 (2.8)
(D? - a* - 0)6 +w=0 (2.9)
associated to the boundary conditions:

0 =w=0 at z=0and z = i (2.10)

Equations (2.8) and (2.9) define an eigenvalue problem the
solution of which is simplified by the so-called principle of
exchange of stabilities. This principle states that when Re{c} = 0,
then also Im(o) = 0. Thus, the neutral curve defining the transition
between the convective regimes is given by o = 0, and the eigenvalue
problem requires only real-valued arithmetic.

The solutions obtained for o = 0 corresponding to the existence
of a stationary convective flow (V # 0) of the saturating phase are:

6(z) = Asin(smz) 3 w(z) = Bsin(smz) (2.11)
2 2.2\2
when Ra* _ (a + s“1°) (2.12)
a2
1
s is an integer, a = (12 + m?)?, and A and B are respectively the

wave number, and the amplitudes of the perturbations left undeter-
mined by the linear analysis.
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Equation (2.12) determines the critical filtration Rayleigh
number as a function of the convective mode s, and the wave number
a. The variations of Ra® corresponding to the first mode s = 1 are
displayed in Figure 2. All the points located below this curve are
related to a stable situation (o < 0, no convection), and the
minimum value Rac(a.) obtained for (dRa*/da)s=1 = 0, correspons to
the neutral stability. In other words, the transition between the
conductive state and the convective state is equal to 4m? for a, = 7.
This value, which is the lowest value of Ra*, is commonly called
critical value for the onset of the convection for an horizontal
layer of wide lateral extent, i.e., the occurrence of convection is
defined by Ra™ 2 Ral = 472,

In principle, the curve of Figure 2 means that for supercritical
Ra* number, the entire range of wavenumbers are possible. 1In fact,
when non-linear analysis gives a curve which is inside the neutral
stability curve, then the range of allowed, a, is restricted (in
infinite geometry). The presence of lateral boundaries in the layer
restricts again the allowed range of, a, (case of finite geometry).

Another method in which not only small but also arbitrary
disturbances may be considered has been used for the computation of
the stability criterion (14), (19). Based on the study of the
temporal evolution of a linear combination of kinetic and thermal
energies of perturbations when t > « :

<0%> = Ra* <A - ahwd - < |v8)2 + |V|2> (2.13)

(where <.,> = %}dw/ézdw,k is a coupling parameter such as 6 = 6/%5,
and @ the volume of the porous medium.

The stability is defined by the condition 4 <9%> < 0 when
t > 0. For the problem in which we are interested, this variational

technique called global stability analysis gives the same result as
the linear theory.

The Physical Reasons of a Critical Threshold Raz

Consider a spherical portion (radius r = K%) of the fluid
submitted to the constant gradient of temperature AT/H. If we move
this sphere of fluid from a warm to a cold region, for example, the
relaxation time of its temperature will be:

2
T = i; (pC)f = %; (pC)f. This means that if this sphere moves with

a constant velocity w at a given instant, the temperature of this
portion of fluid is that of its surroundings at an earlier instant
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of time t-1. Thus, at time t, the temperature difference §T between
the sphere and the surrounding porous media is:

AT AT K
8T = T v or : 8T = TR (pC)f (2.14)

This produces a buoyancy force:

Fa = p  a T r3g = o

AT K
o 8 a1’ wag (pC)g (2.15)

H

On the other hand, the viscous drag is:
Fd = - 61 urw (2.16)

If the buoyancy force Fa overcomes the drag force Fd, the motion
tends to amplify and the system becomes unstable. The ratio Fa/Fd
clearly increases with r, and roughly, we can say that the instability
of the layer will begin with fluid portions of the maximum size,

i.e., H the distance of horizontal boundaries of the layer.

So, the instability criterion Fa > Fd is:

a(eC ¢ ¢ * *
— = AT H > cte (or: Ra > cte = Rac) (2.17)

This simple analysis confirms that the dimensionless number
which controls the stability of the layer is the Rayleigh number, and
that the balance between destabilizing effects and stabilizing ones
produces the existence of a critical threshold for the appearance of
fluid motion. If Ra* < Raz in spite of the thermal gradient applied
to the porous layer, the fluid remains at rest.

Shape of convective movements:

When the filtration Rayleigh number is marginally higher than
Ra., the perturbations are of finite amplitude and a steady state
convective flow exists. From the result giving the horizontal wave

number, a, two kinds of frequently encountered configurations may
be deduced:

- the first one corresponds to two-dimensional contrarotative
rolls, i.e., to the value of 1 or m = 0 given the reduced size of
each roll 1/H = 1,

— the second consists of a juxtaposition of polyhedral cells,
the solution of which is given by Christopherson (12) and corresponds
to hexagonal cells of side 1' such as 1'/H = 1.33 (Fig. 3). As in
Busse and Riahi (20), the preference for hexagonal pattern would be
the result of non-symmetrical boundary condition with respect to
the midplane.
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As shown in theoretical studies devoted to the problem of non-
linear thermal convection at small amplitude in a horizontal porous
layer with finite conducting boundaries (18), (20), (21), critical
Rayleigh number, horizontal wave number, and shape of convective
movements largely depend on thermal boundary conditions. An
example of neutral curves for different conductivity ratios Ab/A
(Ap = thermal conductivity of the lower and upper surfaces) is
presented in Figure 4.

2.1.2. Non-linear Theory -~ Mean Heat Transfer

When amplitude A increases for supercritical Rayleigh numbers,
the non-linear self interactions of the first order mode becomes
important and cannot be neglected in the perturbation equations if
we want to keep a satisfying description of the phenomena. Such
is the case, for instance, when we want to compute the influence of
the convective flow on the mean heat transfer.

Generally described by means of a dimensionless number Nu*
(Nusselt number) equal to the ratio of the mean heat flux density
when convective movements exist on the mean heat flux density due
to the thermal conduction alone, this number is equal to 1 for
Ra* < 4% (conductive regime), then increases for Ra* > Raz (con-
vective regime).

_ The analytical expression of the mean temperature gradient
dT/dz computed from the complete heat transfer perturbation equation
yields (1):

= 1
ﬂ=—1+'§6—fe_wdz (2.18)
dz
o
and for the Nusselt number : Nu* = - J 3T do = - dt
dz dz
5 z=0 z=0
* _
Nu =1+ J wb dz ‘ (2.19)
0

where T and WO are average values on horizontal planes of surface Z.

Equation (2.18) exhibits how a linear temperature gradient in
the absence of motion is modified by the presence of motion and,
as a consequence, the relative influence of conductive and convectiv
mechanisms on the heat transfer in the different parts of the layer.

The typical vertical temperature profiles through the porous
layer respectively for conductive and convective state deduced from
Eq. (2.18) are presented on Figure 5.
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Figure 4. Neutral curves for different conductivity of the lower
boundary (after Riahi (21))
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As there is no phase shifting (see Eq. (2.4)) between 6 and W,
<0.W> is at a maximum and dT/dz is at a minimum in the horizontal
midplane z = 1/2. On the_contrary, when <6W> is low, i.e., along the
isothermal boundaries, IdT/dzl is at a maximum.

This explains the cause for the development of high temperature
gradignts along the impervious isothermal surfaces, and the non linear
term V . VO is the reason this zone becomes unstable when Ra®
increases.

Weakly non-linear analysis

Since any product of disturbance components is omitted by the
basic assumption, the linear theory is unable to describe the
evolution of the temperature profile through the porous layer. Nor
is it able to describe the increase in the mean heat transfer or the
component 1 and m of the horizontal wave number.

The only systematic method for analyzing the numerous three-
dimensional non-linear steady solutions of (1.10), (1.11), (1.12)
is the perturbation approach based on the amplitude A of convection
as small parameter. This approach is particularly appropriate in
the case of convection because the instability occurs in the form
of infinitesimal disturbance. Obviously, the perturbation expansion
is of limited usefulness when the filtration Rayleigh number is
increased much beyond its critical value. In this case, direct
numerical methods must be used to solve the problem of fully non-
linear convection.

Among the existing different weakly non-linear approaches
(22,23,24), the Malkus-Veronis which is the one we used (1) for the
study of natural convection in porous media is based on the properties
of integral relations governing the steady convection. Obtained by
multiplying the equations of motion and the heat transfer equation
by the disturbance components, these integrals are respectively:

Jl (u® + v2 + w?) dz = Ra* Jlm dz (2.20)
(o] (o]

1 1 1 1
Jﬁdz+Jﬁzedz=Je_w2dz-(J”e_Wdz)z (2.21)
o] (o] o [0}

Due to its nonhomogeneity versus the disturbance components,
the equation (2.21) derived from the energy equation can be used
to compute the amplitude, provided that analytical form of 6 and W
is known. Assuming that W and 6 are the solutions of the linearized
equations, the amplitude of the perturbations is:
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* * 3
A = (Ra - Racs) (2.22)
*
(where Ra_ g is the critical Rayleigh number corresponding to
the successive convective modes, s), and the Nusselt number computed

by Eq. (2.19) is:

*
* Ra
© cs .
Nu =1 +s£l ks(l - * ) Fig. 6 (2.23)
Ra
* *
2 for Ra > RaCS
; _ *
with ks - and Ra = 4s?7?
* * cs
0 for Ra < RaCS

Numerical computation

Different numerical techniques such as the finite difference
method, the finite elements method, or the spectral method have
been used to resolve the governing equation of natural convection
in porous media (28 - 35).

The spectral method (36) based on the well-known Galerkin
method consists of developing the temperature and velocity solutions
using a set of linearly independent trial functions:

L M N
T=(1-2)+ I b b a (t) cos lmxcosmTysinnmz (2.24)
1l=0 m=o0 n=o 1mn
L M N . .
u=-A2 7 I vy b Inm¢ sinlwxsinmmycosnnz (2.25)
1=0 m=o0 n=o lmn
2 ¥ % g b 2cosl inmTycosnm (2.26)
= - mnT“coslmxsinm osnmz .
v B léo m=o n=o lmn y
L M N
w = I p) b) blmn(l2 + m?)72 cos lwxcosmmysinnmz (2.27)

1=0 m=o0 n=o

satisfying boundary conditions:

T=1 w=0 for z = 0; %% =0, u=0 for x =0 and x = A
9T
T=20 w=0 forz=1; = =0, v=0fory=0andy =8B
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Figure 7. Three-dimensional flow
Ra* = 100 T = 0.5 (1,1,1) mode
(after Caltagirone and Meyer (31))
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where A and B are the aspect ratios respectively in the x and y
directions : A = L/H ; B = W/H.

The method consists of finding the remainder by means of a
trial function on integrating over the whole volume. After
eliminating the pressure term by applying the divergence theorem
and by taking into account the continuity equation, the motion
equation allows the determination of the explicit relationship
between the b,., and a,,, coefficients.

ijk ijk

If solutions given by Eqs. (2.24) and (2.27) are introduced into

the energy equation, the following differential system is obtained:

da,, .2 .2
_1J_k=_ (l_+J_+k2)-n-2a .

o+ (12 + i) b
dt 12 Bz le ( J )

13k - N(a,b)
(2.28)
where+N(a,b) is a non-linear operator corresponding to the convective
term V.VT. The initial conditions are represented by the temperature
coefficients a. ., (0).
ijk

Numerical results obtained from the computation of the non-linear
differential system (2.28) show different types of evolution
according to the value of the filtration Rayleigh number (31):

*
- for Ra < 4w2, the perturbation induced by initial conditions
decreases and the system tends to the pure conduction solution,

- for 4m? < Ra* < 300, the initial perturbation develops to
give a stable convergent solution (which does not depend on the
intensity or nature of this perturbation), and different stable
tridimensional convective flows are observed : contrarotative rolls
(2D), superposition of contrarotative rolls (3D), and polyhedral
cells (3D) (Fig.7 ). To these flows, among which polyhedral cells
appear as the less stable, correspond the Nusselt-Rayleigh correla-
tion given on Figure 16. This correlation has been computed for a
two-dimensional roll of reduced size H/1, starting from the Malkus's
hypothesis that a flow evolves to a steady,configuration that
maximizes the heat transport (1), i.e., Nu given for the maximum
of the curve Nu*(H/L)Ra*.

Unfortunately, there has been no rigorous demonstration of the
validity of this proposal, and some numerical simulations do not
support it (38).

- for Ra* 2 240-300, a stable regime cannot be reached.
Described as a fluctuating convective state, this situation is
characterized by a continuous fluctuating in situ temperature and
velocity distribution inside the porous layer, and by a relative
increase of heat transfer compared to the state we previously
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described.

Caused by the instability of the thermal boundary layer at
horizontal boundaries, the existence of such a state has been
deduced from a stability analysis of the finite amplitude two-
dimensional solutions (38) (Figure 8). It has been interpreted
(28,33) as continuous creations and disappearances of convective
cells, even in the thermal steady state, in the area of highest
temperature gradients (Figure 9) (30).

Sophisticated model with the heat transfer coefficient

In order to more accurately explain the experimental results,
as well as to examine the influence of the parameter A and ¥ on the
convection, the sophisticated heat transfer model (1.14) and (1.15)
has been also used (1). With this model, all aspects of convection
appears as affected by the three numbers Ra*, A and ¥, and
particularly the Nusselt number that in this case is defined by:

Nu® = £(Ra*, A, ¥) (2.29)

with A = A\§/A% and x = (h . B2)/A} (2.30)

Influence of the parameters on heat transfer. As in the case of the
simple model (1.15) for given Ra”™, A and x values, the variation of
Nu +versus H/L shows the existence of a maximum. The H/L value, for
which this maximum is reached, is not very different from (1.15) and,
to specify the influence of A and x on the heat transfer, we look

in particular at the case Ra* = 200 with H/L = 1 (Figure 10).

For a given value of A , Nu* is an increasing function of ¥
which tends, when h > «, toward the value computed with the simple
numerical model. Indeed, since A is constant, when the conditions
for the heat transfer between the solid and fluid phases are
improved, the porous medium tends to behave like a single continuum.

The influence of A, when X is maintained constant, may be
explained by considering the relative contributions of the solid and
fluid phases to the overall heat transfer. If A increases, i.e.,
if the contribution of heat conduction by the solid phase becomes
negligible, then Nu* tends toward the value given by the simple
model. On the contrary, when heat conduction throughout the solid
phase is very large, the Nusselt number decreases (Nu* > 1 if
A > 0.

Preferential zones for heat transfer between solid and fluid phases.
The computed temperature distributions reveal the existence of two
specific zones where the difference between the temperatures of the
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The region of stable two-dimensional solutions.
within the closed region are finite amplitude two-

Only

dimensional solutions stable (after Straus and Schubert

(38)).

solid and fluid phases is at a maximum; these zones are the upper
part of the upward current and the lower part of the downward

current (Figure 11).

This result, which can be intuitively forecast, explains the
main role of the solid phase as a heat exchanger in those areas in

which the assumption of the equivalence of the real porous medium
with a single continuum may thus be questionable.

Influence

of texture of the porous or cracked medium. Through the

influence
porous or
the solid

it has on both parameters A and X, the texture of the

cracked medium, as well as the thermal characteristics of
and fluid phases, strongly influences the

phenomenon.

However, the influence of texture is mainly appreciable by studying

the variation of ¥.

Let d be a characteristic length of the porous

structure, for instance, the average bead diameter for an uncon-
solidated aquifer, or the average length of a matrix block for a

cracked medium.

Parameter X can be written :
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Figure 9. Fluctuating convective state. Evolution of two-
dimensional rolls (after Caltagirone and Cloupeau

37)).
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Figure 10. 1Influence of X and A on mean heat transfer.
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(+0.00)

X/L

Figure 11, Dimensionless temperature difference between solid and
fluid phases for a stable two-dimensional solution
Ra* = 200 A = 0.5 x = 1000
(after Combarnous and Bories (1)).

h.H h.K H®2 h . d? H.?
X = x = xS TR @ (2.31)

The two factors in the right term of this equation take into
account, respectively:

- the influence of heat transfer on the local scale, pore scale,
or block scale,

- the influence of a scale factor H?/K or (H/d)? which describes
the extent of division of the structure compared with the vertical
extent of the layer. When the scale factor is high, the porous
medium can be considered as a very thorough blend of solid and fluid
phases. When it is low, then the porous medium is more heterogenous.

The main result obtained by using the sophisticated model, with
two heat transfer equations, explains the influence of this scale
factor on the mean heat transfer. Let us assume that h does not
depend on the filtration velocity and is affected solely by the
thermal characteristics of the constituting phases as well as the
texture of the medium. We will find, from the numerical results,
that the mean heat transfer which, in addition to A, depends solely
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on X = (h . H2)/A§ , is affected by the height H of the layer. The
higher the scale factor is, the better the description is of the
porous medium as a single continuum by the simple numerical model
with a sole heat transfer equation. The influence of these different
parameters on the fluctuating regime has been also studied (39).

2.2. Sloped Porous Layer

It is well known that in a sloped, saturated, porous layer
bound by isothermal planes, the fluid phase is always moving, and
the basic flow which develops is of a unicellular two-dimensional
type. The structure of this flow and its stability are defined not
only by the filtration Rayleigh number and the slope ¢, but also by
the parameter L and W (39,40,51,52).

2.2.1. Stability of the flow in an infinite extension layer

If the porous layer is of infinite extension in the x and y
directions, the solution corresponding to the basic unicellular flow
can be readily found, and leads to the following expressions for the
temperature and the velocity fields:

* i l . — .
T, = 1 -2z U0 = Ra 31n¢(2 -z) V0 =0, Wo =0 (2.32)

Equations of perturbation relative to this flow deduced from
the (1.10), (1.11), (1.12) system become:

* 1 B 30
2 - 1 —_ - —_— = —
V<o Ra s1n¢(2 z) P + W Y (2.33)
* 320 3% | 3%0
2 : - 9V 4 % Yyy -
V4w + Ra (sin¢ Py, cos¢(ax2 + ay2)) 0 (2.34)

Developing the perturbations into complex exponential functions
of the spatial coordinates x, y and of time t and eliminating w,
Egqs. (2.33) and (2.34) are reduced to one equation in :

*
(D? - a?%)6 - o(D? - a%)6 - Ra cos¢a?h
- ilRa* sinq)((% —2z) (D% - a2)8 +DB) = 0 (2.35)
in which 1 regresents the component of the wave number a = (12 + m
a = (12 + m2)2 of the perturbation in the direction of the slope
and D = d/dz.
The problem of eigenvalues (Eq. (2.35)) corresponding to the

stationary solution, i.e., 0 = 0, can be solved by means of the
Galerkin method developed in the following form:
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N

6 = I ap sin kmz
k=1

By subtitution, Eq. (2.35) can be written in the form:

N % (2.2 2 2 * .
v { Ra cos¢ - (1—1——i—é—) §., -1 Ra sin¢ 12(—T§l§——;—2)
s=1 a2 js aZ (j% - s?%)
222 | g2 4 g2y }a =0 (2.36)
m jt+s,2p-1 s
Let us say L(a) = 0 gives a homogeneous linear system accepting only

a non-zero solution for a particular value of Ra such that det(L)=0.
The analysis of three-dimensional linear stability enables three
flow domains to be distinguished in the (Ra*,¢) plane:

- for Ra* and ¢ such that Ra*cos¢<4ﬂ2, only the basic two
dimensional unicellular flow T , U remains;

- when the Ra* - [0 coupleois Such that Ra*cos¢>4ﬂ2, the a # 0
three-dimensional flow becomes steady, and the Ra*cos¢ = 471?% condi-
tions (39,40,41) correspond to the appearance of a flow in a lon-
gitudinal coil of wavelength 2m/1 = 2H;

- when Ra* and ¢ gives representative points located over the
transition defined by Eq. (2.36), the flow can be steady with trans-
verse rolls: a = 1 # 0 and generally with polyhedral cells
a= (12 +m2)% with 1 # 0 and m # 0 corresponding to the superim-
position of several groups of rolls.,

When the angle ¢ increases, at a fixed Ra*, the slope for
which the transition between polyhedral cells or transverse and
longitudinal rolls appear is theoretically found equal to ¢ = 31948'
(Fig. 12). When ¢ < ¢, it has been observed that initial conditions
have a great influence on the setting up of the stationary flow (47).

2.2.2. Mean heat transfer
Concerning the mean heat transfer, as for the horizontal layer,
the Malkus technique may be used and produces a relationship similar

to Eq. (2.23) in which Ra* is replaced by Ra*cos¢.

2.3. Experimental Observations

In the case of porous layers of wide lateral extent bounded by
isothermal planes, numerous experimental results are now available
that describe the criterion between the different configurations of
flow, the convective movements, and the mean heat transfer.
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Horizontal layers

x " the criterion for the onset of natural convection, i.e.,
Ra 2 472, is well confirmed by experimental results presented in
(41) through (47), starting with the evolution of the correlation
Nu* (Ra*) (Figure 13).

-~ the convective flows deduced through in situ temperature
measurements in the medium plane of the layer or by visualization
tests were proven to be consistent with the linear theory predictions,
i.e., convective steady state is characterized by adjacent poly-
hedral cells or two-dimensional rolls, the reduced size of which are
respectively 1'/H = 1.33 and 1/H = 1 (Figure 14).

Also, the horizontal extent of convective cells was observed
to be a slightly decreasing function of Ra* (Figure 15).

When Ra* is higher than a critical value which lies in the
range 240-300 (depending on the porous medium), the fluctuating
convective state, characterized by a continuously fluctuating in
situ temperature distribution inside the porous layer and by a
relative increase of the mean heat transfer (Figure 13), has been
proven to exist (30).

Concerning the mean heat transfer due to convection, where the
standard mathematical study leads, as for the case of a fluid layer,
to a unique relationship between the Rayleigh and Nusselt numbers,
experimental data have shown that the mean heat transfer does not
depend solely on the Rayleigh number, but also on the thermal
characteristics of the constituting phases, the solid matrix, and
the saturating fluid (Figure 16).

As we can see on Figure 16 where a comparison between experimen-
tal, numerical, and theoretical Nu*(Ra*) correlation is presented,
numerical results are in good agreement with the average experimen-
tal results. However, the results are unable, contrary to the more
sophisticated model, to explain the influence of the porous medium
characteristics on the heat transfer. The theoretical prediction
. . s * *
is restricted to a small range of variation of Ra” near Ra.j.

Sloped layers

In the case of sloped porous layers whose extension is greater
than their thickness, published experimental studies are not very
numerous (39,40,41,49,50,51,52).

The experimental heat transfer results put in the form of a
relation between Nu* and Ra*cos¢ (Figure 17) show that the correla-
tion Nu*(Ra*cos¢) is quite good, and that despite the finite extent
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A picture of the upper free surface of a horizontal porous layer
with polyhedral cell ; the lower boundary is impervious and
isothermal.

(a)

A picture of the streamlines in convective stable cells appearing
in a vertical two-dimensional Hele-Shaw model bounded by isothermal

impervious boundaries.

(b)

Figure 14 (a), (b).
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of the experimental model, the criterion for transition between the
two-dimensional unicellular flow and the three-dimensional flows is
well defined by relationship Ra*cos¢ = 42,

The experimental observation, deduced through visualization and
in situ temperature measurements, for the convective movements is
presented in a synoptic manner in Figure 18. These observations
confirm the theoretical and numerical computations , except for the
value of the transition angle between the structures of type II and
I11, where ¢qp. = 15° < ¢, -

3. NATURAL CONVECTION IN CONFINED POROUS MEDIA

When the porous layer is not of large lateral extent, i.e., when
all dimensions are of the same order of magnitude, convective
movements are influenced by geometrical dimensions and lateral
thermal boundary conditions. This influence is appreciable for the
convection criterion, the organization of convective movements, and
for the overall heat transfer. It has also has been investigated
for two basic configurations, i.e., horizontal or inclined porous
boxes.

3.1. Natural Convection in Horizontal Porous Boxes

When the horizontal porous layer is laterally bounded by a
solid material, complementary conditions corresponding to the imper-
meability of the lateral surface, n . V = 0, and to the thermal
conditions at the interface porous material vertical boundaries,
have to be taken into account. Three cases of lateral thermal
boundary conditions have been investigated:

- perfectly insulating wall, A * ;.VT =0 (35,52,53,54,55),

— perfectly conducting wall, T = T(z) (55,56);

- and finally, imperfectly conducting wall for which the heat
conduction in the region bounding the porous zone must be taken into
account (55,57).

In this last case, the equation govern the heat conduction

inside the wall is:
3T
p 2

pC)  —=t = A V27 (3.1)

( )P ot P P
where p characterizes a parameter defined in the wall,
associated to the boundary conditions:

A R.VT = A n . VT (3.2)

at the interface between the porous material and the side wall,
> > >

: .V = . .
and Ap n Tp n ¢ (3.3)
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at the interface between the wall and the outside (; . $) charac-
terizes the heat transfer between the wall and the surrounding),
has to be simultaneously solved with the governing equations of
the phenomena inside the porous medium.

Such a problem was studied in (58) for the case of a porous
material confined in a vertical circular cylinder horizontally
bounded by two impervious isothermal surfaces and laterally by an
impervious wall of given thermal conductivity and thickness (Figure
19). For this physical system, linearized steady state perturbation
equations and supplemented boundary conditions become:

V%0 + w =0 in the porous medium (3.4)
. ]
Viw - Ra"V26 = 0 with V; =V - (3.5)
dz2
VZep =0 in the wall (3.6)
with 6 = ep =0at z=0and z =1 (3.7)
96 *
- 96 _ “’p -1 ! - A
6 = ep, A 5T =35 At T =5p 3 Ry=g A X (3.8)
0 P
296
_P_2 B
5r M ¢ At Re =g (3.9)
> >
V.n =0 on the impervious surface (3.10)

The eigenvalue problem associated to this set of equations was
solved to determine the influence of the aspect ratios R , R, and
of the conductivity ratio A = A*/A upon the mean features of natural

convection in confined porous media (55), (56), (58).
3.1.1. Criterion for the onset of the convection

Results obtained through the linear stability theory (55), (58)
for two extreme values of A, i.e., A = 0 (perfectly conductive wall)
and A » « (perfectly insulating wall) and for an infinite thickness
of the wall Re + =, are presented in Figure 20.

These results, like those previously obtained (52), show that
it is only for relative tall and slender cavities R_ >> 1 that the
lateral walls have much effect, such as tending delay the appearance
of natural convection. This lack of influence of the walls on Ra®

c
for R, £ 1 is to be expected since, unlike the corresponding case of



111

Figure 19. The porous cavity (after Bories and Deltour (55))
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Figure 20.

Critical Rayleigh number and preferred convective modes
(1,m) (after Deltour (58)).
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a continuous fluid, there is no viscous dissipation at the lateral
walls. This result justifies the choice of aspect ratios marginally
higher or lower than 1 generally used for the numerical simulation
of convective movements in a large extent porous layer.

In confined porous media, the only influence of the wall is thus
to select the cellular modes, i.e., the shape of the convective
structures.

For high values of R,, an estimate of the order of magnitude of
each term appearing in the energy equation shows that 32T/3z* <<
32T/3r?%; hence, the representative length scale of the convection is
not H but D. As a consequence of the simglifications derived from
this inequality, the critical value of Ra” built on the diameter of
the cavity appears as independent of H when R, > 6 (Figure 21).

As for the influence of the thermal conductivity A_,a similar
effect for the confinement has been observed, i.e., a tendency to
stabilize the fluid by damping the perturbations of temperature on
the side wall, when Ap is increasing.

At low filtration Rayleigh number, this result, as well as the
following concerning the mean heat transfer and the shape of
convective movements has been found in good agreement with
experimental observations (58).

3.1.2. Mean heat transfer

The weakly non-linear analysis based on the Malkus technique
has also been used to derive the relationship between the Nusselt
number and the filtration Rayleigh number in confined horizontal
porous layer (54), (57), (58). Since the influence of the aspect
ratio and of the lateral thermal boundary condition is only to select
the cellular modes, it has been proven (54), (55), (58) that the
analytical expression Nu®(Ra*) is the same as for the large extent
porous layer, i.e.,

*
* - RaCS
Nu =1+ I ks(l - * (3.11)
s=1 Ra
*
2 for Ra > Ra
cs
with k = (3.12)
s * *
0 for Ra < Ra
cs

*
and Ra s which is the critical value of appearance of the selected
modes 8epending on Ro’ Re and A.
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Figure 21. Criterion for the onset of convection (after Bories
and Deltour (55)).
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Figure 22. Isotherms and streamlines for various ¢ values

Ra* = 100 A = 8 (after Caltagirone and Bories (51)).
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3.1.3. The convective structure

In the case of a porous media confined in a circular cylinder,
the preferred convective modes for the two lateral boundary condi-
tions, i.e., A = 0 and A > », are indicated (l,m) on Figure 20.

These results show that in the case of slender cavities, the
convective modes are nonaxisymmetric, and that for low R values,
they tend to become polycellular. As thoroughly described in (59),
(52), between these extreme cases, different two- or three-dimensional
solutions exist, depending on the geometry of the lateral walls and
on initial conditions (57). This question is very delicate and not
yet well understood.

3.2. Sloped Porous Layer of Finite Lateral Extent Bounded by
Perfectly Insulating Wall (51)

3.2.1. Stability of the unicellular flow

According to the modifications introduced to the basic flow by
the variations of the lateral dimension L, the stability criterion
Ra*cos¢ = 412 is no longer satisfied when the extension of the layer
in the direction of the inclination takes finite values. In order
to determine the influence of this parameter upon the stability of
unicellular flow, it is then necessary to know the new field T , V
to be introduced into the perturbation equations. Noting»that*in
this case V  has two components which are not zero, say: V =U_i + wok,
this has been determined from (1.10), (1.12) using the Galerkin
method previously described.

(o]

Restricting the approximation rank to N = 2, the solution of the
basic flow can be stated as follows:

T, = (1-2) + a ,sin 21z + ajjcosmx sinmz (3.13)
- _ * 2 42 R
U, Ra'm° A bll sin X cos Tz (3.14)
*
= 2 i
wo Ra 7 bll cos TxX sin mz (3.15)

*
where the coefficients a;; are dependent on the (Ra ,¢) couple.
Substituting the basic soiution (3.13) to (3.15) into the linearized
equation of the perturbation gives the following set of equation:

d d 3
La—u+l—a—v+3—w=0 (3.16)
A2 X B y Z

* > >
- Vr+Ra k6 -V=20 (3.17)
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2 2 2 T
a6 1 0948 + 1 946 + 30 1 06 o

A? 3x? BZ 3y* 9z2 A2

___(_

Jat

oT oT
1 96 o o a0
—_ —_— [— -4 —_— _— =
+ 2 (UO 3y + u 5y )y +w 3 + WO - 0 (3.18)
and associated boundary conditions:

v=0 aty=0andy-=1
w=0 at z =0and z =1
0 =0 at z =0 and z =1
80 _ 30 _ =y = -y =
3% - 3y 0 at x y 0 and x =y 1 (3.19)

corresponding to the restating of Egqs. (1.10), (1.12), using an
orthogonal reference system with differently distorted coordinates.

Since the transition we are searching for corresponds to the
change from a unicellular regime to longitudinal coils, the
perturbation is taken as two-dimensional, and then the x component
of the velocity perturbation is equal to zero (U = 0).

The solution of the eigenvalue problem carried out by adopting
the following forms:

N
0 = cos mmz I AS sin smz
s=1
* 2 2 . N
v =-Ra" 7° B° m sin mmy I s B, cos smz (3.20)
s=1
* 2 o2 N
w = Ra 7° m“ cos mny 2 B, sin smz
s=1

where A and B coefficients are indeterminate using linear theory,
gives the results shown in Figure 18 for different values of L.

It can be observed that with a given angle, the critical Rayleigh
number is always greater than Ra*cos¢ = 41? corresponding to an

(L » =) infinite aspect ratio.

This result, the analytical relation of which has been
previously given (60):
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Ra” cos¢ = 4m?2 + 3M? (3.21)

where M is a decreasing function of L, (M » 0 when L » «), emphasizes
the stabilizing role of longitudinal confinement upon the unicel-
lular flow.

As for the case of the inclined fluid layer, experimental and
theoretical studies are still necessary in order to provide a good
understanding of the influence of small aspect ratios and high
Rayleigh numbers on both convective flows and mean heat transfer.

3.2.2. Two- and three-dimensional flows

Numerical computation based either on the Galerkin method or on
the finite difference method (51) has been used to predict the
structures of the convective flows and their evolution as functions
of the inclination and aspect ratio L.

Two examples respectively for two- and three-dimensional flows
are shown on Figure 22 and 23. Figure 22 illustrates the different
transitions explaining the number rolls decreasing when the angle ¢
increases for a two-dimensional flow. Figure 23 shows the existence
of solutions corresponding to longitudinal coils for L and W >> H,
but finite in the domain III on Figure 18.

A few other numerical results (53,62,63) are also available in
the literature describing natural convection in inclined porous

boxes, such as L = H.

3.3. Vertical Porous Layers

Due to its fundamental importance in thermal insulation
engineering, two-dimensional steady natural convection in rectangular
porous cavities bounded by vertical walls at different temperatures
and adiabatic horizontal walls has been extensively studied during
the last two decades.

Theoretical work reported on this problem includes boundary
layer solutions (66,67,68), integral analysis (67,69,70), and
numerical results (71,72,73,74,75,76,77,78). Based on these studies,
different flow regimes, temperature profiles, and Nusselt number
correlations have been presented as functions of the Rayleigh number
and aspect ratios.

For the observed convective flows, a distinction has to be
made between the tall cavities A >> 1 in which the convective flow
is always unicellular and the shallow cavities A << 1 in which the
convective flow may be multicellular when the Rayleigh number
greatly increases (78). In spite of these structural differences at
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Figure 23. Three-dimensional flow: longitudinal rolls
isotherm T = 0.5 Ra* =100 A=6 B=14 ¢ = 30°
(after Caltagirone and Bories (51)).

Figure 24. 1Isotherms and streamlines for a porous cavity for
Ra* = 1000 and A = 5 (after Prasad and Kulacki (78)).
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high Rayleigh numbers, the same flow patterns are evident for both
configurations, i.e.,

~ the conduction regime in which the isotherms are almost
parallel to the vertical walls for Ra* + 0 and A is finite or Ra*
is finite and A > © or A > 0,

~ and the asymptotic and boundary layer states characterized
by a stratified core in which the temperature gradient is quite
modest, surrounded by thin thermal layers on the cavity walls when
A is finite Ra® increases (Figure 24).

Numerous correlations for the mean transfer function, a
synthesis of which can be found in (70), have been proposed to
describe the evolution of the average Nusselt number when Ra* and A
vary. For boundary layer regimes, the most generally used correla-
tions are, respectively, Weber's correlation for tall enclosures,

Nu* = (3)£(Ra*)£

2
enclosures, Nu* - L (Ra*) (A)A. Between these two extreme cases,
numerical results show that Nu® goes through maxima. Depending on
Ra*, these maxima are obtained for A varying from 1 to 30 when the
Rayleigh number is varying from 20 to 300 (71,72,78) (Figure 25).

(A)i and the Walker-Homsy correlations for shallow

This influence of the reduced extension on the Nusselt number
is due to the fact that heat transfer caused by the displacement of
the saturating fluid is mainly concentrated on the vertical or
horizontal ends respectively in tall or shallow cavities.

A thorough description of the convective flows, temperature
fields, and overall heat transfer for a large range of aspect ratios
and filtration Rayleigh numbers can be found in papers recently
published (77,78). Among the main features of these numerical
studies, we shall mention:

~ the definition of criteria for flow regimes in tall and shal-
low cavities;

~ the testing, applicability, and accuracy of the analytic
correlation given to estimate the heat transfer;

-~ the finding of solutions corresponding to multicellular flow
in shallow cavities; and

- the study of the effect of a constant heat flux on one
vertical wall compared to the case of a cavity with two vertical
walls at constant temperatures.

Free convective heat transfer in cylindrical annuli filled with
a saturated porous medium has been also studied. For an annuli
whose inner wall is heated at constant temperature and outer wall
is isothermally cooled, the top and bottom being insulated (82,83,
84,85), heat transfer results have been obtained for a wide range
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Figure 25. Summary of heat-transfer theories (after Bejan (72)).

Figure 26. Streamlines and isotherms in a vertical porous annuli:
Ra* = 100, A = 1, C = 6 (after Prasad (82)).
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of Rayleigh numbers, aspect (height to gap width) ratios, A, and
radius ratios, C. Results obtained through a numerical study show
that the curvature effects are significant, and completely disturb
the centrosymmetrical nature found in the vertical cavity case
(Figure 26). Though the effect of the Rayleigh number and the aspect
ratio are qualitatively similar to what has been observed for the
vertical cavity, the correlations for the average Nusselt number
requires modification in order to include the influence of the
curvature C.

4. NATURAL CONVECTION IN MORE COMPLEX CONFIGURATIONS

In the previous sections, we have presented the main aspects
of thermal convection occurring in porous media which was considered
to be homogeneous and isotropic. Likewise, the saturating fluid was
considered as obeying the Boussinesq assumption. If the study of
these simple cases is an essential step toward a better understanding
of the phenomena, it is not sufficient to analyze the effect of
convection in more complex cases like those generally encountered in
natural or industrial situations.

For the simple geometrical configuration of an horizontal porous
layer of large lateral extent, for instance, it is often necessary
to consider that the porous material is not homogeneous or isotropic
and that the physical properties of the saturating fluid are dependent
upon the temperature. Such is the case in the modeling of geotherma
fields and in the study of the insulating material submitted to large
temperature gradients.

4.1. The Multilayered Porous Medium

The multilayered system studied by several authors is assumed
to comprise n separately homogeneous layers of total thickness H
saturated by a fluid obeying the Boussinesq's assumption. Beneath
layer 1, the system is bound by an impermeable isothermal surface
at temperature To9p = Ty + AT, where Tj is the temperature of the
isothermal top surface which is considered to be either impermeable
or at constant pressure. The porous material contained in layer i
of thickness H;, has a permeability tensor Ki and an equivalent
thermal conductivity tensor A,. Within each layer, the usual
equations of conservation of ﬁass, momentum, and energy hold, and
appropriate continuity considerations for the temperature, the
vertical component of the velocity, of the heat flux, and of the
pressure determine boundary conditions at the interface between the
layers (Figure 27).

For this physical system, the formalism required to determine
the criterion for the onset of convection has been developed using
a straightforward stability analysis (86,87). The post-onset
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behavior provides an estimate of the heat transported by convection,
for slightly supercritical Rayleigh numbers, by means of the
perturbation approach based on the amplitude A of convection as
small parameter (88) (weakly non-linear analysis).

The method proceeds by introducing the series expansion:

* * * . *
Ra; = Ra, + A Ra (1) + a2 Ra* (%) (4.1)
i ic i i
6 =a 0D 44202 4 (4.2)
i i i
(where i = 1 ... n characterizes every layer), and analogous expres-

sions for V, and P, into the equations of the perturbations, and by
solving successiveiy the linear equations corresponding to each

power of A associated with the boundary conditions at each interface.
Since only steady solutions are considered, the 3/9t terms vanish

and in the order A, the problem becomes identical to the linear
problem. In the higher-order, inhomogeneous linear system equations
determine the amplitude of the perturbation, hence the Nusselt number.
A second order approximation for the Nusselt number yields:

*
Ra
*
Nu = 1+ K(1 - —) (4.3)

Ra

where K depends on the amplitude of the perturbation and Ra* is a
Rayleigh number defined in terms of the thickness and temperature
drop of the whole system and the conductivity and permeability of
layer 1. As shown in (87,88,89,90), A and Ra* are dependent upon
the number of layers, layer depths, layer permeability and conduct-
ivity ratios and cell width.

An extensive study of this problem has been developed (see
(87 =92)), for multilayered porous media, the layers of which have
different thickness, permeability, and conductivity ratios. For
two-dimensional convection patterns, a wide variety of possible
configurations and values of parameters has been studied.

Some results(87) studying the evolution of Ra* function of
K,/K, and H /H with A* = A* for a two-layer system of isotropic
porous media are shown in %igure 28, and the streamlines corresponding
to a four-layer system of isotropic porous media are in Figure 29

(89).

These results show clearly that the presence of layers of
different permeability can have great influence on the convective
flow in porous media heated from below, and that the modeling of
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Figure 29. Streamlines ( ) and isotherms (----- ) at onset of
convection (after McKiabin and O'Sullivan (86)).
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Figure 30. Criteria for onset of convection Ra:3(———) Razl(———).
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such systems by a homogeneous layer may give quite erroneous predic-
tions as far as convection and heat flux are concerned.

4.2. The Homogeneous Anisotropic Porous Layer (93,94)

= =%
If K and A are respectively the dimensionless tensors of
permeability and thermal conductivity such as:

= > > > > > >
K=k =1.1+k,j.J+kk (4.4)
A U U U U T S A #
=M i.i 2 j-]
with: . . A* X*
1 _ 2, S S -2
k=% 35 k=g 5 M=% 5 A - (4.5)
3 3 Ay Ay

* * * =
where Kl’ KZ’ K3, Kl s AZ, X3 are the principal components of K and

*
A , the Rayleigh number for the onset of convection is found to be:

% 1 m? + kz 12 + 72
Ra = (xl m? + A, 1% + 72) (4.6)

2
2 2
kl m< + k2 1

with a? = 1% + m? horizontal wave number and:

% g a AT H K3(pC)f

Ra =

*

v A3

defined in terms of the vertical components of K and X

Minimizing Eq. (4.6) with respect to 1 and m, yields the
critical Rayleigh number:
* .
Rat = vf@min (D!, D1+ D (4.7)

£ k)

Three cases can be considered:

Xl/kl < )\Z/k2 which gives rolls aligned in the y direction:

1= ﬂ(llkl)%, m=0 (4.8)
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)\l/kl > Az/k2 which gives rolls aligned in the x direction:

1=0, m= n(xz kz)_% (4.9)

A /k

17k = 2y/k

2 which gives the critical wave number vector:

> _
a =11 + mj such as:

1
2 q2 % 2 - 2
(Al kl) 1< + (Az k2) m ™ (4.10)
In the case of horizontal isotropy with : kl = k2 =k ;
Al = AZ = A, we obtain:
* 2 3 “ -1
RaC = 74((AM/k)* + 1) and a = 7(x k) (4.11)

For this configuration, two relations can be used for the
filtration Rayleigh number: Ra® defined in terms of K3 and A* or

* _ * A . _ * _ % . .
Ral = Raz defined in terms of 1 K2 and Al AZ. Criterion for
onset of corresponding convection, i.e., Ra* and Ra:l, are presented

in Figure 30 for different values of the rafios K3/Kl and Ag/ki.

For supercritical conditions, the steady non-linear problem has
been investigated both numerically and analytically. Regions of
stable wave numbers and Rayleigh numbers have been found for two-
dimensional motion. The results obtained show that the Nusselt
number and the stability regions depend on the anisotropic parameters
only through the ratios kl/)\l and kz/AZ.

Some experiments performed in anisotropic porous layer (95,96),
seem to confirm the validity of the relations giving the critical
Rayleigh number and the mean heat transfer. However, this problem
needs further experimental studies.

4.3. Natural Convection in a Porous Layer Saturated by a Fluid of
Non-Constant Properties

All the studies reviewed until now assumed that fluid properties
such as thermal expansion a, viscosity u, and specific heat remain
constant. In addition, each also involved the Boussinesq approxima-
tion that the fluid density p is constant, except in so far as it
affects the buoyancy forces. Valid when the differences of
temperature in the porous layer are small, these assumptions are
not relevant at high temperature differences.

The influence of variable viscosity due to large temperature
differences at the onset of natural convection and horizontal
platform of the cellular motion has been studied in (114), and both
the variations of viscosity and density have been taken into account
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in (115,116,117). For these two cases, solutions derived from the
linear stability analysis show that the critical Rayleigh number is
lower than 4m“, and depends on the coefficient of variation of the
viscosity with the temperature and on the state equation of the
fluid.

For a porous medium saturated with an ideal gas at constant
pressure such as:

u = um(l + y(T - Tm)) and p T = Py T (4.12)

where y is a constant and u_ and p_, the dynamic viscosity and the
volumetric mass at mean temperature Tm = (T, + T,)/2, it was shown
that the critical filtration Rayleigh number and the wave number of
the perturbation are dependent upon y, AT, T, : Ra*(y, AT, T.) ;

. 1 c 1
ac(y, AT, Tl) with:

g a(T ) p2(T )C_ AT K H
Ra" = " - (4.13)
u(Tm) A

based on the physical properties of the saturating gas at mean
temperature. An example of the correlation Ra*(AT/T,) is given on
Figure 31 in the case of a dry air-saturated porous layer. 1In the
range of temperature varying from 80 to 3009K, Ra* tends toward the
maximum 472 when AT tends toward zero, i.e., when the Boussinesq
assumption becomes relevant.

A few other results have also been published on natural
convection near 2779°K in water-saturated porous media. For the
preceding cases, due to the non-linear relationship between water
volumetric mass and temperature near 4°C the linear Boussinesq
approximation is not applicable (118).

4.4. Free Convection Around Surfaces and Concentrated Heat Sources
in Infinite Porous Media (External Convective Flows)

Steady free convection around heated surfaces or concentrated
heat sources embedded inside an infinite porous media i.e., external
convective flows, also plays an important role in numerous geophysi-
cal and engineering applications (108).

Among the most frequently studied configurations, we shall
mention horizontal or inclined surfaces (97 - 108) and concentrated
heat sources (109 to 113).

Based on the boundary layer approximations derived from the
scale analysis of the problem, similarity solutions, i.e., solutions
giving a similar temperature profile from one location, x, on the
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surface to another, have been obtained for two-dimensional free
convection on a heated vertical cylinder (98), and on a horizontal
and inclined heated surface (see (99 - 108)).

In the case of a horizontal heated surface, a linear stability
analysis has been also made to determine the conditions of appearance
of secondary flow in the boundary layer when the prescribed wall
temperature is a power function of distance (101). Starting from a
basic external flow corresponding to the steady two-dimensional
buoyancy-induced boundary layer flow, disturbance equations have
been solved numerically in order to obtain the critical Rayleigh
number governing the stability of the boundary layer and the shape
of perturbations. From these computations, it has been proved that
the transverse rolls correspond to the most stable solution and
that the wall temperature plays an important role on the stability
of the layer; the existence of a temperature gradient along the
surface has a stabilizing effect.

Natural convection in an infinite porous medium with concentrated
heat sources has been studied recently (112,113). For a unique heat
source point which is continuous in time and is suddenly embedded in
a infinite fluid-saturated porous medium, the transient time-depen-
dent temperature and flow pattern around the source and the steady
regime obtained as time approaches infinity was investigated (112)
using a standard perturbation analysis.

Solutions presented as a function of the Rayleigh number:
* ale®e  x

Ra =g — 7 Q based on the source strength Q (rate of energy

release) and the permeability of the medium, show that the transient
flow pattern consists of an expanding vortex ring situated in the
horizontal plane containing the source, and that the steady state

of an upward flow pattern becomes very intense near the source.

Due to the approximations chosen in the expansion series (first
order for the transient state and third order for the steady state),
solutions are only valid for small Rayleigh numbers.

For the study of a variety of isolated heat sources (113),
thermal and flow fields have been approximately determined through
an analytical approach based on the superpositions of solutions.
Limited to the linear system derived from the first term of the
expansion series, the solutions are only valid for Ra* » 0.

4.5. The Boundary Effects on Natural Convection in Porous Media

Due to increasing use of high porosity media in thermal
insulating techniques, a thorough understanding of boundary layer
effects, either in the vicinity of an impermeable surface or in the
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transition zone between a porous material and a fluid, has become
more and more important.

As the Darcy's law is unable to describe the hydrodynamics
phenomena occurring on these interfaces, another momentum equation
has been proposed to study these problems. Known as the Brinkman
model (119), this momentum equation may be considered as an extension
of the Darcy's law. Generally written:

> > >
%V=—VP+pg+uV2V (4.14)
it includes the viscous forces term, and consequently, is able to
satisfy the no-slip conditions on an impermeable surface or the
continuity in stress on the interface betyeen a porous media and a

fluid. 1In a few cases, inertial terms %% + (3 . V) 3 were taken
into account (120,121).

When the Brinkman model is used instead of the Darcy's law, it
appears that natural convection does not only depend on the Rayleigh
number, but also on the ratio K/H? = D, known as the Darcy-Brinkman
number.

This dimensionless number emphasizes both the influence of the
porosity and grain size, or pore diameter, on the phenomena. As
shown in a study concerning the onset of free convection in an
horizontal porous layer of large lateral extent bounded by isothermal
impermeable surfaces, this influence is negligible as far as
Dy < 1074, (Figure 32).

Among the results recently published on the use of the Brinkman
model to study convective heat transfer, we mention:

- natural convection in vertical porous enclosures (122) where
a thorough analysis of the influence of D; and A, both on the
boundary layer and mean heat transfer, is developed. For a given
value of A, these results confirm the influence of D, previously
derived in (121), i.e., a satisfactory agproximation of the phenomena
by means of the Darcy's law for D, S 1074,

- natural convection on a semi-infinite vertical flat plate in
a porous medium (123), where it is found that the no-slip boundary
conditions have a lesser effect on the heat transfer than on the
vertical velocity profile; and

- natural convection in a vertical fluid cavity divided by a
permeable porous layer (124), where a numerical simulation of both
the hydrodynamics and the heat transfer is developed by means of a
sole conservation equation of the Brinkman type with inertial terms
added. In this case, the transition from the fluid to the porous
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medium is realized via the permeability which is the chosen function
of the spatial coordinate. Thus, the need to state a boundary
condition at the interface of the two media is avoided. As for the
preceding cases, the limit of the validity of Darcy's law is also
confirmed for Dj, < 1074,

5. CONCLUDING REMARKS

This review surveys a set of papers that have been published
during the last decade on natural convection in saturated porous
media.

Despite the great number and the variety of studied configura-
tions, further experiments and theoretical analysis are still
necessary to improve the most fundamental aspects of the problem.

Focusing our attention on the sole thermal phenomena, many
questions have to be solved in order to give an undeniable predictive
character for the use of mathematical formulation.

Of general interest for studies of heat transfer in saturated
porous media, these questions especially concern: first, the
definition of conditions that must be satisfied in order to use with
confidence the homogeneous model based on a unique heat transfer
equation, and second, how to accurately estimate the coefficients of

. ‘o Tk =%
equivalent thermal conductivity tensors A , Ag,

transfer coefficient, h.

7? and the heat

Nevertheless, when the porous medium is a very thorough blend
of solid and fluid phases, and the equivalent thermal conductivity
is known, results obtained on natural convection confirm the validity
of the approach based on the homogeneous model.
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ABSTRACT

Geothermal reservoirs are generally more complex than reservoirs
of groundwater or petroleum. Physical states of the hydrothermal
fluid fall into four categories: vapor—saturated, two-phase boiling,
liquid-saturated and supercritical. Liquid-saturated reservoirs and
liquid-dominated or vapor-dominated reservoirs of the two-phase
boiling type are the most common types exploited so far. There is
growing interest in submarine geothermal systems and heat extraction
from hot rock or magma bodies, where the hydrothermal fluid circu-
lates at supercritical temperatures and pressures. Meteoric water
dominates in continental systems and ocean water in submarine systems.
The contribution of magmatic water is small at upper levels in the
crust, but may increase as magma bodies are approached. The larger
fumarolic fields have magma as a heat source. The rate of heat
transfer required to sustain the intense heat output of such fields
remains problematic, unless an intimate contact between circulating
fluids and hot boundary rock of the magma is maintained over the
lifetime of the activity. Convective downward migration of fluid
along existing fractures and water penetration by thermal cracking
of hot rock are important processes in this respect. Two-phase
convection is of major importance in geothermal reservoirs. The
phase change instability mechanism induces convection prior to the
onset of ordinary buoyancy-driven thermal convection. Mathematical
modelling of geothermal systems has greatly advanced the understanding
of the dynamic nature of geothermal reservoirs and their response
to exploitation.
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1. INTRODUCTION

Geothermal reservoirs have many features in common with ground-
water and petroleum reservoirs, and geothermal technology has
naturally drawn on the experience gathered within these disciplines.
This applies to drilling technology, as well as theoretical attempts
to define reservoir properties and estimate production capacity.
Geothermal reservoirs are, however, more complex than their counter-
parts in the other disciplines. Efficient utilization of geothermal
resources requires understanding the physics of fluid flow and heat
transport in fractured rocks. The aim is to extract heat, but the
fluid serves as carrier for the heat energy to be mined. The first
systems to be exploited were vapor-dominated systems yielding steam
for the generation of electricity and hot groundwater systems deli-
vering water for space heating. The most common type of reservoirs
exploited in recent years is the liquid-dominated type, which under
utilization develops into a boiling reservoir. Interest is growing
in experiments to extract heat from hot impermeable rocks by cont-
rolled hydraulic fracturing and injection of fluid to carry the heat
to the surface. Similar ideas are developing towards heat extraction
from magma bodies. Geopressured geothermal reservoirs have been
found in association with petroleum reservoirs. Submarine geothermal
systems have been discovered, rich in metals and minerals. Although
these systems will hardly be exploited for heat energy, their inves-—
tigation may cast light on the processes that govern the formation
of metalloferous deposits in the roots of continental geothermal
systems. This great variety in geothermal phenomena illustrates
that the physical processes of interest are not limited to subcritical
temperatures and pressures, but may range to magmatic temperatures
and lithostatic pressures at a depth of about 10 km.

This chapter discusses evidence on the source of fluid and heat
in geothermal systems. Geothermal reservoirs are classified according
to the physical state of the reservoir fluid using pressure, density,
and volume saturation of phases as parameters. Conceptual models
of the dynamic natural state of geothermal reservoirs are described
by examples. The importance of considering the effects of tempera-
ture on the physical properties of the fluid is emphasized, as well
as the physics of convection in geothermal systems where boiling
occurs. The chapter concludes with an outline of recent developments
in mathematical modelling of geothermal systems and the application
of these models to obtain quantitative descriptions of the natural
state of geothermal reservoirs and to study the response of reser-
voirs to exploitation.

This chapter draws heavily on a related review by Stefansson
and Bjornsson (95). Useful discussions were also found in the reviews
of Mercer and Faust (69), Garg and Kassoy (49), Donaldson and Grant
(35) and the recent textbook by Grant, Donaldson and Bixley (52).
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2. SOURCE OF FLUID

In geothermal reservoirs, heat is mainly transported by the
hydrothermal fluid. The fluid consists of liquid water with dissolved
solids, water vapor, and gases dissolved in the liquid and free in
the vapor. Generic types of water as a hydrothermal fluid [White
(102,103,108), Ellis and Mahon (42)] are defined as:

Meteoric water. Water recently involved in atmospheric circulation.

Ocean water. Water penetrating into the crust of ocean floor spread-
ing centers.

Juvenile water. "New" water from mantle-derived magma and which has
not previously been part of the hydrosphere.

Magmatic water. Water derived from magma, but not necessarily
juvenile water, since magma may incorporate meteoric or ocean water
of deep circulation, or water from sedimentary material.

Connate water. '"Fossil' water incorporated in sediments of the time
of deposition.

Metamorphic water. Modified connate water, derived from hydrous
minerals during their recrystallization to less hydrous minerals
during metamorphic processes.

Systematic studies of stable oxygen and hydrogen isotopes in geo-
thermal water (2,28,29,30) have established meteoric water to be
the dominant source of fluid in most active continental geothermal
systems. Evidence for this origin of thermal waters was further
strengthened by Ellis and Mahon (40,41), and Mahon (62), who showed
experimentally that the chemical composition of most waters could
be attained by the solvent action of hot water on the local volcanic
rocks.

The role of ocean water, and the possibility of submarine geo-
thermal systems on oceanic ridges, was first pointed out by Elder
(39). Geothermal systems on land where ocean water is the main
source of fluid have been described by Bjornsson et al. (8,9),
Arnorsson (3), and Kjaran et al. (57). Submarine geothermal systems
have recently been discovered at a number of sites near ocean spread-
ing centers [reviews by Rona and Lowell (83) and White and Guffianti
(109), Spiess et al. (92)]. It is now well established that hydro-
thermal circulation plays a major role in the thermal balance of
ocean ridges where ocean water is the dominant fluid source.

Although the contribution of magmatic or juvenile water appears
to be minor, there is growing evidence for magmatic influence on
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thermal fluids (31,58,64,94).

Distinction between ocean water and meteoric water might seem
to be of little importance, but the chemical composition of ocean
water has a large effect on the solvent action of the geothermal
fluid. When seawater is heated within the rock matrix, the removal
of Mg from the seawater generates acidity which maintains heavy
metals in solution at moderate temperatures (about 300°C) (88). This
acidity, and the higher hydrostatic pressure, influences the chemical
output of submarine geothermal systems towards much higher metal
concentration as compared to geothermal systems fed by meteoric
water (7,87).

In geothermal systems in the Imperial Valley, U.S.A., fluids
of both high salinity and high temperature (350°C) are found.
Metallic concentration is unusually high in these fluids (71). In
the Krafla geothermal reservoir in Iceland, the fluid is of very
low salinity, but high metallic (mainly Fe) concentrations have
been encountered in some wells. These high concentrations result
from a very low pH value of the thermal fluid due to intermittent
flow of volcanic gases (SO,, Cl,) into the hydrothermal system (1,4).
Ore deposits in fossil hydrothermal brine systems are suggestive of
a brine fluid at the time of deposition (105,106,110). One of the
early signs of submarine hydrothermal systems was the observation
of the metallic content of sediments near the East Pacific Rise
(23,24). The significance of these observations was not generally
recognized until the physical evidence for submarine hydrothermal
systems became commonly known.

3. MAGMA AS HEAT SOURCE

A recent and extensive review of the literature on the heat
source of geothermal systems is given by Stefansson and Bjornsson
(95). The following discussion is based on that review.

0f the numerous speculations about the nature of thermal
activity, the work of Einarsson (38) is the first quantitative treat-
ment. He contended that the hot springs of Iceland were not physic-
ally different from ordinary cold springs, except for the greater
depth of penetration of the water. The heat comes simply from the
conductive heat flux from the interior of the earth. Bodvarsson
(11,13,14) elaborated this concept further. He agreed with Einarsson
on the nonvolcanic origin of low-temparature fields, but concluded
on the basis of energy balance considerations, that the conduction
process involved in the heating must be of a transient nature.
Bodvarsson (15) suggested that the deglaciation of Iceland has ge-
nerated the hydrological and elastomechanical impulses that activated
the hydrothermal circulation. Noting that there is a strong positive
correlation between temperature and the mass flow of the systems,
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Bodvarsson (16) concluded further that convective downward migration
of fracture spaces along the walls of mafic dykes appeared to be a
dominant thermomechanical process in the development of the low
temperature systems. The mechanism of this process involves concepts
suggested earlier (12) for the case of the high temperature systems
in Iceland, and by White (107). Convective fluid motion in open
vertical fracture spaces is associated with the withdrawal of heat
from the formation at the lower boundary, resulting in thermoelastic

contraction of the adjacent rock and opening of additional fracture
spaces at the bottom. A single fracture or system of fractures har-
boring such convective fluid motions can therefore migrate downward
by the process. Since the walls of dykes are not welded to the
country rock, the downward migration process does not involve thermo-
elastic fracturing of solid rock.

The intense heat output of the high temperature fumarolic fields,
which is of the order of 100-1000 MW thermal over periods of 10
years, cannot be explained by the normal conductive heat flux of
the earth. The concentrated source of heat must be magma or hot,
recently solidified rock. Limited surface area and slow thermal
conduction through solid rock require intimate contact between the
rock and the percolating fluid.

Lister (59,60,61) has presented a conceptual model of the
downward penetration of water into hot rocks by a process of cooling
and thermal cracking. Evidence in support of water penetration into
hot rock boundaries of solidifying magma is reported by Bjormsson
et al. (10). Watering of a molten lava flow demonstrated a heat
extraction efficiency of 40 KW/m?. The authors conclude that this
process of heat extraction is required to explain the sustained
heat output of 5000 MW of the subglacial Grimsvdtn geothermal area
in Iceland. Hydrothermal vents jetting out water at 380°C have been
discovered on the axis of the East Pacific Rise at a water depth of
2500 to 2900 m (92). These submarine systems may also be regarded
as evidence for convective downward migration of water into the
oceanic crust.

White (102,107) found that a magma supply of at least 102-103
km® was required to support the Steamboat Springs system through
its life of 10 - 10" years. He considered that a batholith intru-
ded into the shallow crust, and then remaining static as it cools
and crystallizes, is not a satisfactory model, unless the fissure
system controlling the circulating water can gradually extend deeper
into the batholith as stored heat is removed at higher levels by
circulating water. As an alternative for the heat-flow problem, he
suggested convection within the magma chamber to maintain magmatic
temperatures near the base of the hydrothermal circulation (107).



150

Irvine (55) has studied the relation between temperature in a
magma body and a crystallization mechanism where crystal fractionation
is a major process. He described a convective process in the magma
body where crystals are accumulated in the lower part of the intru-
sion, but the temperature near the top remains close to or above the
liquidus temperature of the magma. This process allows higher rate
of heat loss and solidification than would occur if the crystals
were frozen to the roof of the magma chamber. Convective processes
of this nature appear to be capable of providing sufficient heat
transfer to the hydrothermal fluid to explain the heat output of
most geothermal systems.

Although magma bodies are considered to be a common heat source
of geothermal systems, direct evidence on the existence of these
bodies and their relationship to the geothermal systems is rather
scarce. S-wave shadows have indicated a small magma body at 3 to 7
km depth beneath the Krafla geothermal system in the axial rift zone
of NE-Iceland (37). Similar conditions are apparently found in the
geothermal system of the Puna district on Hawaii (48) and its rela-
tion to the summit magma chamber of Kilauea. Gravimetric, magnetic,
and seismic data have shown anomalous zone under the Avachinsky vol-
cano on the Kamchatka Peninsula. This is suspected to be a periph-
eral magma chamber (45).

Teleseismic P-wave delays have been used extensively to infer
velocity structure at several geothermal systems. At the Geysers,
a molten chamber about 14 km in diameter is inferred with its top
about 7 km beneath the volcanic field (56). At the Coso Geothermal
area, an intense low-velocity body, which coincides with the surface
expressions of late Pleistocene rhyolitic volcanism, high heat flow,
and hydrothermal activity, is resolved between 5 and 20 km depth (82).

Eroded central volcanoes are widely distributed within the
Tertiary basalt formations in Iceland (99,100). The volcanic centres
are places of unusually vigorous volcanic activity. This is shown
by the great concentration of dykes and intrusive sheets. Walker
(100) estimates that the intrusions amount to at least 50% of the
rock in some of the complexes. Each centre has a down-sagged core
region. The hydrothermal alteration , typically found in the col-
lapsed core, bears witness of ancient geothermal activity, which is
attributable to the basic sheet swarm in the core. The zones of
intense hydrothermal alteration appear to have hosted large hydro-
thermal reservoirs, each with a volume of the order of 100 km3.

To summarize this discussion, one may conclude that the heat
source of the major geothermal systems is magma. The intense loss
of heat observed in some geothermal fields is, however, difficult
to explain unless the heat transfer from the magma to the hydrother-
mal fluid is caused either by downward penetration of water and
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cracking of the hot intrusion, or that convection is taking place
within the magma body in such a way that the boundary between the
magma and the hydrothermal fluid remains relatively thin for a con-
siderable time.

4. PHYSICAL STATES OF GEOTHERMAL SYSTEMS

There have been many attempts to define basic types of geother-
mal systems. The classification chosen in this review is by the
physical state of the reservoir fluid as discussed by Stefansson and
Bjormsson (95). Geothermal systems are generally of a complex nature
and contain zones representing different physical states. Figure 1
uses pressure and density of the reservoir fluid to recognize four
regions of physical states. These are the vapor-saturated region,
the two-phase boiling region, the liquid-saturated region, and the
supercritical region. These regions are separated by the Clapeyron
curves for saturated vapor and liquid, the isothermal Tcr't for
P > PCri , and the isobar Pcritfor T > TC it In three 5t the re-
gions, the thermal fluid oc&ir§ as a singie—phase. The liquid-~
saturated region contains the class of geothermal systems where the
temperature never reaches boiling. Most important of these are
hydrothermal systems in the ocean crust. Hydrothermal circulation
at hydrostatic pressures exceeding the critical pressure for the
fluid will not reach boiling, unless it is induced by the release
of volatiles from geothermal fluid. These pressures are found
beneath oceans of 2.2 km depth. Hydrothermal circulation in the
ocean crust is thus generally a single-phase convection of seawater.
Geothermal systems belonging to the vapor-saturated region are found
on active volcanoes and low pressure superheated steam is common at
shallow depth in geothermal fields. Exploitation also leads to dry-
out of water in vapor-dominated rocks near production wells. Super-
eritical conditions are expected in geothermal systems that penetrate
deep into the crust to supercritical pressures, where young igneous
intrusions have generated supercritical temperatures. On land, these
conditions could be found below 3.5 km depth in the crust, assuming
boiling conditions in the hydrostatic fluid above. On the sea floor,
the hydrostatic head of the ocean may exceed the critical pressure,
and supercritical temperatures can therefore exist at shallow depth
beneath the floor. The presence of dissolved salts in geothermal
fluids has an important effect on phase transitions. The temperature
and pressure of the critical point increase with increased salinity
(91) (see also Fig. 21), displacing the conditions for supercritical
fluid to greater depth. Secondly, the saline fluid has lower vapor
pressure (53). This effect delays the initiation of boiling in an
ascending saline fluid.

The most important region for the discussion of geothermal
systems is the two-phase boiling region enveloped by the Clapeyron
curves at subcritical temperatures and pressures. To uniquely define
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Figure 1. Physical states in hydrothermal systems [After (95)]

1.

Vapor-saturated region, where the density is less than the
density of saturated steam (pVS) and the pressure is equal
to or less than the critical pressure (P . ).

crit
Boiling region, where two phases are present. The region is
enveloped by the Clapeyron curves for saturated vapor (pV )
and saturated liquid (pls) at subcritical temperatures and
pressures.

Liquid-saturated region, where the temperature is less than
the critical temperature (TC i ) and the density is greater
than the density of saturatéd Eiquid (pls) for all P < P

and greater than p(TC , P) for all P > PC crit

rit rit’
Supercritical region, where both temperatures and pressures

exceed the critical point values (T P ).

crit’ “crit



153

physical conditions within this region, an additional parameter such
as the water saturation, i.e., the volume fraction of water in the
fluid, is needed. In the three single-phase regions, the vertical
pressure gradient is proportional to the density of the respective
fluid. 1In the two-phase region, the situation is different.
Physical states with an intermediate mixture of liquid and vapor are
not stable, although they may exist as transient phenomena. Gravity
segregation of the phases leads to separation of the reservoir into
a lower zone with high water saturation and a pressure gradient
dominated by liquid density, and an upper zone with low water satu-
ration where vapor density controls the vertical pressure gradient.

Geothermal reservoirs are often referred to as either liquid-
dominated or vapor-dominated, depending on the phase which controls
the vertical pressure gradient (Fig. 2). The liquid-dominated reser-
voirs are either liquid-saturated or boiling with a small vapor
saturation. The vapor-dominated reservoirs are either vapor-satu-
rated or boiling with a high vapor saturation. The majority of known
geothermal reservoirs is of the liquid-dominated type, although
vapor-dominated fields have been favored for the generation of
electricity.

5. CONCEPTUAL MODELS OF GEOTHERMAL SYSTEMS

The aim of exploratory surveys and exploratory drilling is to
gather information on the physical state and nature of a prospective
reservoir. The evidence brought forward by different disciplines
is combined in a descriptive and qualitative model of the geothermal
system. This conceptual model incorporates the essential features
of the system and guides further exploratory and appraisal studies.
It also provides the basis for numerical modelling of the natural
state of the reservoir before withdrawal of fluid affects the physic-
al state. A frequently cited model of large-scale circulation of
fluid in the natural state of a geothermal system was presented by
White (104) as shown in Figure 3. Cold groundwater percolates down
faults, dykes, and fissures to considerable depth, where it picks
up heat in permeable hot rocks. The density difference between the
cold and the hot water results in buoyancy imbalance, which drives
the hot water back to the surface along permeable channels. The
heat source may be a magma chamber at greater depth, or just the
general heat flow from the interior of the earth. The latter case
represents, e.g., the so called low temperature systems where the
temperature at the base of circulation is generally below 150°C.

A few samples of temperature profiles in such systems in Iceland

are shown in Figure 4. The profiles for Laugaland and Reykjavik

are typical for upflow zomes. If the conventional model of Figure 5
is applied, the base of circulation appears to lie below 2000 m,

but the inflow temperature is only about half of that predicted by
the regional geothermal gradient. The dyke convector model (Fig. 6),
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Figure 2. Fluid distribution in pores and fractures [After (46)]

a) Liquid dominates in the open channels although bubbles of
steam and gas are present.

b) Vapor dominates in the open channels, but liquid fills most of
the intergranular pore space.

proposed by Bodvarsson (16), resolves this discrepancy by assuming
that the recharge enters the dyke along some relatively shallow path,
but sinks through cracks or fractures along the walls of the dyke
where it takes up heat from the hot adjacent rock. Convection within
the dyke transports heat from lower lying rocks and delivers excess
heat to the upper layers. In this way, the convection equalizes

the temperature within the convector. As water in a liquid-satura-
ted reservoir ascends to lower pressure, it eventually reaches satu-
ration pressure and begins to boil (Fig. 3). Below the boiling
level, the temperature is practically constant and equal to the base
temperature. Above the boiling level, the temperature and pressure
are related by the Clapeyron curve for saturated liquid. Ignoring
the dynamic pressure drop caused by the upflow, usually less than

107 of the static gradient (35), the temperature and pressure in

the rising column may be found approximately by summing up the static
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Figure 3. Model by White (104) of the large-scale circulation of
fluid in the natural state of geothermal system.

weight of a column of water whose temperature is everywhere at satu-
ration for the local pressure. Examples of such boiling point curves
are given in Figs. 7 and 8. 1If noncondensible gas is present, its
partial pressure adds to the vapor pressure and initiates boiling

at greater local pressure than for pure water (Curve E in Fig. 7).

A boiling column of reservoir fluid implies vertical upflow of steam
and, in most cases, also that of water. Structural control and
regional groundwater flow usually impose some component of lateral
flow.

Exploration of geothermal systems is usually limited to the
exploitable part of the reservoir which is the region of upflow.
Most conceptual models therefore describe only that part of the
system. Examples of conceptual models of upflow regions in several
reservoirs are given in Figs. 9 to 13. These models illustrate that
the natural state and the initial fluid distribution in the reservoir
are controlled by a dynamic balance of mass and heat flow.

The examples presented above are all of the liquid-dominated
category of reservoirs. A general conceptual model of vapor-domina-
ted reservoirs in their natural state was presented by White et al.
(110) as shown in Fig. 14. The main part of the reservoir is domina-
ted by vapor ascending from a layer of boiling convecting brine.

At the top of the reservoir, impermeable cap rock prevents escape
of the steam. Heat is lost to surface and boundaries by conduction.
This heat loss is balanced by condensation of steam. The condensate
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Figure 4. A few samples of temperature profiles in boreholes in
Iceland [After Bodvarsson (16), based on data by Palmason
(74)]. Regional conductive gradient in Reykjavik is near
100°C/km but about 60°C/km near Laugaland.

trickles against the rising steam down to the brine. In this counter-
flow of steam and condensate, the steam occupies the wider channels
but the water favors small pores and channels because of its high
surface tension. D'Amore and Truesdell (32) suggested a modified
model as shown in Fig. 15. The natural upflow of steam from the
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Figure 7.

Figure 8.
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Depth-temperature relations for boiling solutions [After
Fournier (47)]. Depth-pressure relations for curve A fixed
by the weight per unit area of a free-standing column of
cold water extending to the surface. Depth-pressure rela-
tions for curves B to E fixed by the weight per unit

area of free-standing columns of the given solutions every-
where at their boiling temperatures, and extending to the
surface. Curves A and B for pure water, curve C for 10
weight percent aqueous NaCl, curve D for 20 weight percent
aqueous NaCl, and curve E for water plus a partial pressure
of COy of 10 bars.
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Depth-pressure relations for boiling and cold columns of
pure water and boiling aqueous NaCl solutions. [After
Fournier (47)].
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Section through Tongonan reservoir, The Philippines [After
Grant, Donaldson and Bixley (52), based on Grant and

Studt (51)]. Temperature contours are based on downhole
data. An outer region containing liquid water encompasses
most of the field. Temperatures in the two-phase region
are close to saturation. A zone of reduced permeability
above the reservoir is identified by conductive tempera-
ture profiles and by the presence of heavily silicified
rock. 0ld wellfield
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Conceptual model of the Krafla reservoir, Iceland [After
Bodvarsson et al. (18)]. A gas rich steam-water mixture
of at least 340°C temperature flows from the west in the
lower reservoir and rises through a fracture zone where
it mixes with 300°C fluid from an eastern upflow zone.
The boiled and degassed fluid flows west in an upper re-
servoir at a temperature about 200°C.
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Figure 11. Cross section through the geothermal system at Wairakei,
New Zealand [After Fournier (47) based on Elder (39)].
Solid lines are isotherms derived from borehole data,
dashed lines are estimated isotherms. The approximate
flow lines of meteoric water are shown by arrows.
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Schematic cross section of the Cerro Prieto field, Mexico
[After Ellis and Mahon (42), based on Mercado (66)].

The system is capped by some 700 m of plastic clay, for-
cing the hot fluids to flow horizontally away from the
fractured upflow zones mainly toward west. Interaction
of the hot fluids with cold water in the east causes
precipitation of calcite and silica.
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Figure 13. Conceptual model of the natural flow in Cerro Prieto
[After Grant, Donaldson and Bixley (52), based on Mercado

(67)]. Numbers are Na/K - ratios in the reservoir fluid.
Low ratio indicates high temperature.
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Figure 14. Conceptual model of the fluid flow in the natural state
of a vapor-dominated reservoir. [After Grant, Donaldson
and Bixley (52), after White et al. (110)].
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Figure 15. Conceptual model of the natural state of a vapor—-dominated
reservoir [After Grant, Donaldson and Bixley (52). and
D'Amore and Truesdell (32)].

boiling brine occurs in a limited area, from which the steam spreads
laterally through the reservoir. This model fits well with observed
variations in steam chemistry in the Lardarello and the Geysers
reservoirs. Figure 16 presents a model for the geothermal system
beneath the Lassen volcano [Muffler et al. (70)]. A relatively
shallow vapor-dominated reservoir is underlain by 240°C liquid-
dominated reservoir rich in chloride. A local 240°C steam zone of

a similar water reservoir in Kenya is illustrated by Figure 17.
Lateral flow of the boiling fluid to lower pressures leads to an
increased thickness of the steam zone.

White et al. (110) suggested that phorphyry copper mineraliza-
tion may occur in the zone of boiling brine below the vapor-dominated
systems. Porphyry copper deposits occur in tertiary and older
orogenic-volcanic belts around the world. Isotope and fluid inc-
lusion studies have shown that in a number of deposits, the develop-
ment of the characteristic ore alteration pattern involved the in-
teraction of meteoric groundwaters with saline fluids evolved from
magma.

Henley and McNabb (54) considered the nature of the interaction
between a buoyant thermal plume of a low density and salinity mag-
matic vapor carrying copper and other ore components and cooler
groundwater in an essentially hydrostatic environment. They presen-
ted the model shown schematically in Figure 18 to explain porphyry
copper emplacement. Condensation of the vapor creates a high sali-~
nity brine with dissolved acids. A neutral, chloride rich solution,
of moderate salinity and dominated by meteoric water evolves above
and at the sides of the acid-altered rock and hot gas region. In-
teraction between the two fluid systems leads to copper ores and
alteration patterns. The acid alteration and precipitation of
quartz from the hydrothermal fluid above, due to retrograde solubility
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Figure 16. Schematic cross section of the Lassen geothermal system
[After Fournier (47), based on Muffler et al. (70)].
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Thermal plume model for a developing porphyry copper
deposit [After Henley and McNabb (54)]. Low salinity
magmatic vapor carries metals into a hydrostatic envi-
ronment of cooler groundwater. A small portion of the
vapor condenses into a high-salinity liquid. The high
salinity phase is diverted toward the margins of the
two—phase region where refluxing occurs. Groundwater

is progressively entrained into the magmatic vapor plume
(% M.W: Percentage of magmatic water).

at temperatures above 350-400°C (Fig. 19), may lead to a self-sealed
envelope [Fournier (47)] in the country rock close to the magmatic
intrusion (Fig. 20). Fluid within the envelope is then at lithosta-

tic pressure, whereas the hydrothermal system above circulates at
hydrostatic pressures.
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6. CONVECTION AND BOILING

Thermal convection is a fundamental process of heat transport
in hydrothermal systems. Although single-phase convection of water
has received most attention in the literature, two-phase convection
of water, steam and, gases is probably the dominant mode of convec-
tion in most geothermal reservoirs. The following section reviews
some important studies on single-phase and two-phase convection in
geothermal systems [See also Stefansson and Bjornsson (95)].

6.1. Single Phase Convection of Water

A  thorough review of the basic characteristics of free convec-
tion of a single-phase fluid in porous media is included in Whit-
herspoon et al. (111). A linear stability analysis shows that
thermal convection in a liquid-saturated porous layer is initiated
when a critical value of the Rayleigh number, Ra, is exceeded. 1In
a horizontal layer of thickness H and a temperature difference AT
across, the Rayleigh number can be expressed,

o.g.AT.H.p%.c_.K

R, = P

HeA

where:

= coefficient of thermal expansion of the fluid

= acceleration of gravity

= fluid density

= gpecific heat of the fluid at constant pressure

= permeability of the rock
= dynamic viscosity of the fluid
= thermal conductivity of saturated rock

> R'TY TR

The most common approximation in the extensive literature on
the subject of thermal convection is to consider the viscosity, the
permeability, the thermal conductivity, the thermal expansivity,
and the specific heat as constant values in the convection process
[Boussinesq (25)]. Variations in density are included in the buoy-
ancy term of the vertical balances of forces, but otherwise density
is assumed to be constant. Straus and Schubert (96) studied the
conditions for the onset of thermal convection in a water-saturated
porous layer. They used an accurate representation of the equation
of state for liquid water and an empirical formula for the viscosity
of water as a function of temperature and pressure. The properties
of water considered were:density p, thermal expansion coefficient
d, isothermal compressibility B, specific heat at constant pressure
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¢, adiabatic temperature gradient ogT/c_, and dynamic viscosity u.
By allowing for variations in the thermag properties of water, Straus
and Schubert determined the critical Rayleigh number for the onset

of convection for various thicknesses of the porous layer, as well

as for various thermal gradients in the layer. They found that the
permeability necessary for convection is seriously overestimated when
the thermal properties of water are assumed to be constant values.
Due to the effects, of variable water properties, convection can

occur for smaller vertical temperature differences in rock of a
given permeability or for smaller permeability at given temperature
difference. The primary reasons for increased tendency to initiate
convection are the substantial increase of thermal expansivity and
the decrease of viscosity with increased temperature. Variations

in the specific heat, the adiabatic temperature gradient, and the
compressibility were found of minor importance in the cases consi-
dered by Straus and Schubert (96).

6.2. Two—-Phase Convection

In many geothermal systems, the flowing water reaches the sa-
turation pressure due to release.of pressure, and boiling is ini-
tiated. The fluid becomes a two-phase mixture of steam and water
with thermodynamic and transport properties different from those
of liquid water. Where steam and water are in thermodynamic equilib-
rium, the fluid temperature and pressure are uniquely related by
the Clapeyron equilibrium equation which determines the boiling
(Clapeyron) curve separating the steam and water phases on a p-T
diagram. The thermodynamic properties of each phase are unique
functions of temperature (or pressure) only. The two-phase flow
is generally assumed to be laminar. This assumption, however, might
not be valid where rapid boiling occurs. Darcy's law is generally
applied separately to the steam and water phases, introducing
relative permeability factors to account for the restricted flow of
each phase in the presence of the other. The relative permeability
factors are expressed as functions of the volume fraction of each
phase, S denoting the volume saturation of water and 1-S that of the
steam. These functions are still poorly defined, however, and im-
portant values such as the water saturation at which the water
becomes immobile are inadequately known. In view of the difficulties
met in defining the relative permeability, the use of complex rela-
tions is hardly warranted. Many authors simply assume that the
relative permeability factor for each phase is equal to the satura-
tion value of the respective phase.

The Darcy flow of either phase is driven by the pressure gradient
in excess of the static gravity gradient of each phase. Donaldson
(34) considered boiling processes within a one-dimensional steady
upflow of hot water. He found that a two-phase zone of steam and
water formed for vertical massflow rates above a threshold value.
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The steam ascended more rapidly than the water, and was condensed at
the upper boundary of the two-phase zone. Sheu et al. (89) extended
the model of Donaldson (34) to include a more complete energy equa-
tion and more realistic thermodynamic properties. For flow rates
below a critical value, only liquid water existed at all depths.
Above the critical value, three zones exist, consisting of a near-
surface water layer, an underlying two-phase zone of water undergoing
pressure release boiling , and a deeper zone of liquid water.

Schubert and Straus (84) studied the conditions for the onset
of convection, and the nature of that convection, in a three-dimen-
sional porous medium containing a steam-water mixture or water at
saturation temperature at all depths. The steam-water mixtures
were described by a homogeneous model, in which a single Darcy-
velocity specifies the mass flow of the mixture, and the thermo-
dynamic and transport properties of the mixture depend only on the
properties of the individual phases and their relative amounts. The
tendency of these fluids to convection is quite different from that
governing the instability of an ordinary single-phase fluid. The
ordinary Rayleigh instability is driven by buoyancy forces which
cause relatively hotter, lighter fluid elements to rise and rela-
tively colder, heavier fluid parcels to sink. The two-phase convec-
tion proceeds by way of a phase change instability mechanism asso-
ciated with the requirement that the fluid temperature and pressure
always lie on the equilibrium Clapeyron curve. Temperature varia-
tions are directly responsible for the pressure gradients which
drive convection. A perturbed hotter region of the fluid is also
at somewhat higher pressure than its surroundings, and fluid will
flow horizontally away from the hot spot. Conservation of mass
then requires that the horizontal divergence of fluid out of the
hotter region be balanced by a vertical influx of fluid. Condensa-
tion and boiling occur to achieve a balance of forces in the ver-
tical. The most striking aspects of this type of convection are
the small lateral dimensions of the cells and the concentration of
the flow, phase changes, and temperature variations toward the
bottom of the porous layer. The saturated liquid convection cells
are only about half as wide as those of ordinary buoyancy-driven
convection in water, two-phase cells are still narrower, and the
flow more concentrated toward the bottom. This phase change insta-
bility mechanism induces convection prior to the onset of ordinary
buoyancy-driven thermal convection [Schubert and Straus (84)].
Although buoyancy-driven convection has been assumed to dominate
in many hydrothermal systems, the real geometry of convection cells
has never been observed in nature. One reason for this might be
that phase change driven convection dominates the convective pattern
with narrower cells and concentration of the convective flow near
the bottom of the system.
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Many properties of the fluid change rapidly as the thermodynamic
critical point is approached. For pure water, the critical point
is found at 3749C and at 221 bar pressure. Increasing salinity of
the fluid raises the critical point both in temperature and pressure
(Fig. 21). Theoretically, as the critical point is approached, the
specific heat at constant pressure, coefficient of volume expansion,
compressibility, and thermal conductivity become infinite (93).
Straus and Schubert (96) analyzed the onset of natural convection
in porous media near the critical state, which they found signific-
antly influenced by large property variation as the critical point
is approached. Norton and Knight (72) calculated heat flux and
fluid movement in hydrothermal systems surrounding cooling plutons.
The fluid circulation was found to be effectively controlled by
expansion coefficient , specific heat, and viscosity variation near
the critical point. Dunn and Hardee (36) presented data from labora-
tory experiments with natural convection in a permeable medium which
showed the expected significant increase in heat transfer rates near
the critical point.

The presence of gases in geothermal fluids may greatly enhance
convective instability. In geothermal systems where chemical equilib-
rium is attained for all major components incorporated in alteration
minerals, the concentration of gases (COZ’ HZS’ Hy and CH,) is
directly related to the temperature of the geothermal fluid. The
concentration of CO, in geothermal systems near 300°C is sufficiently
large to profoundly influence the physical state of the system (5,
6,50,63,94). Boiling in water—002 fluid occurs where the sum of
the partial pressures of CO, and steam exceeds the ambient pressure
in the fluid. Boiling refers thus to the phenomenon in which €O,y
and vapor create a gaseous phase in equilibrium with the liquid
phase at the ambient pressure. The boiling temperature of the water-
CO, fluid is well below the saturation temperature for pure water
at the same ambient pressure (Fig. 7). The ascending fluid ini-
tiates boiling at greater depths than pure water. The boiling point
curve within a water-CO, geothermal system is displaced to progres-—
sively greater depths as the partial pressure of the CO, increases
with temperature and depth. Straus and Schubert (97) showed that
the buoyancy of the geothermal fluid depends critically on the pre-
sence of CO,, because of the large volume changes that occur when
CO, enters or leaves the solution and forces water to simultaneously
change phase. While the presence of CO, can, in principle, enhance
or inhibit convection in geothermal fluids, the general effect is
to strongly enhance convection for most temperatures and pressures
of interest.

6.3. Steam Water Counterflow In Vapor-Dominated Systems

In the discussion of single-phase and two-phase convection
above, it has implicitly been assumed that water is the continuous
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Figure 21. Density-temperature relations in the system NaCl-H,0
at the vapor pressures of the solutions. The dashed
lines are isobars. The dotted-dashed line is the
critical curve [After Fournier (47)].

phase throughout the system and thus provides control. Pressure in
such systems is near hydrostatic values. This appears to be the
most common state of geothermal reservoirs. There are however
important exceptions, such as the vapor-dominated reservoirs, where
the steam is the continuous, pressure-controlling phase, although
liquid water is also present.

An essential feature of a two-phase vapor-dominated system is
the counterflow of rising steam and descending water, which has
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been termed one-dimensional convection as opposed to single-phase
convection which can only occur in two or three dimensions. The
large difference in density between steam and water provides the
driving force that tends to segregate the two phases. Martin et al.
(65) demonstrated that one-dimensional, vertical two-phase, steady
state, convective, and conductive heat flow is theoretically possible
in geothermal reservoirs (See also Schubert and Straus (85)). Martin
et al. assumed steam to be generated at depth by heat conducted from
below. The steam flows upward and an equal mass of hot water flows
downward within the geothermal reservoir. At the top of the geother-
mal reservoirs, the steam condenses into hot water which then flows
downwards. Above the reservoir the heat flow is again only conduc-
tive. Martin et al. (65) found that in many cases two water/steam
volume ratios satisfy the same heat flow rate. One is a high ratio
in which liquid water is the principal mobile phase. The pressure
gradient is approximately that of hydrostatic water. The other ratio
corresponds to a high vapor saturation in which steam is the prin-
cipal mobile phase and the pressure gradient is approximately that

of static steam.

One characteristic of both liquid- or vapor-dominated two phase
geothermal systems is that some wells produce superheated steam
(86,94,98). As first pointed out by Bodvarsson (12) in a considera-
tion of the thermodynamic behavior of the Lardarello system, the
superheat can be explained by assuming that steam flowing to producing
wells receives heat from the reservoir rock. 1In this early study,
Bodvarsson also concludes that the steam produced at Lardarello must
originate from liquid water in the reservoir, and that the heat
capacity of the reservoir rock contributes significantly to the
energy withdrawn from the system. These features of the Lardarello
system are found in many later models (See e.g. 33,79,98).

7. MATHEMATICAL MODELLING OF GEOTHERMAL SYSTEMS

Mathematical modelling related to geothermal systems has
advanced rapidly in the last decade. Empirical methods fitting
analytical functions to data, and analytical methods including
lumped-parameter models are being replaced by distributed-parameter

models (numerical simulators). A useful review of the development
of numerical simulators and the status of numerical modelling of
geothermal systems is given by Bodvarsson (17). Other valuable

references on geothermal reservoir modelling are, e.g., Witherspoon
et al. (111), Faust and Mercer (43,44), Mercer and Faust (68,69),
Castanier and Sanyal (26), Cheng (27), Pinder (75), Wang, Sterbentz
and Tsang (101), Pruess et al. (81), Pruess and Truesdell (80),
Pruess and Narasimhan (78), Garg and Kassoy (49), Donaldson and Grant
(35), and Grant, Donaldson and Bixley (52). The present status in
numerical modelling of geothermal systems is presented in a recent
review by Bodvarsson, Pruess and Lippmann (22). The discussion here
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will therefore be brief.

To account for spatial and temporal variations in the physical
properties of the fluid and the reservoir rocks as well as the
effects of gravity segregation of steam and water, a general model
must be a distributed-parameter model with the capability of three-
dimensional simulation. The model must not only accommodate the
transient flow of single-phase fluid, but also allow for phase
changes and temperature changes. The general governing equations
consist of mass, momentum, and thermal energy balances for each
phase (Table 1) and sets of constitutive relationships between
variables. For general two-phase reservoir applications, the
constitutive relationships concern thermodynamics, capillary pressure,
relative permeability, viscosity, reservoir consolidation, thermal
exchange between phases, and thermal dispersion-conduction. Spacing
of joints and fractures is an important variable in the mathematical
treatment of flow through fractured rock. 1In geothermal systems,
fracture geometry is usually poorly known. The spacing of discon-
tinuities is, however, small in comparison to the size of the
reservoir being considered and, consequently, the fractured rock
can in many cases be treated as continuous medium with anisotropic
permeability. The fissured rock mass is then represented by an
equivalent porous media of anisotropic and spatially varying
permeability. There are, however, situations in which the fractured
nature of the rock cannot be ignored, such as thermal changes during
cold water advance and heat transfer in fractured reservoirs with
boiling. A double-medium theory is in development, which models
the fractures and the rock matrix as two interpenetrating media with
fluid and heat transfer between them (76,78). Another simplifica-
tion in most studies is to treat the pore fluid as a pure water
substance. Effects of noncondensible gases and dissolved solids are
thereby neglected, although they may be significant (73). Coupled
equations for consolidation, fluid flow, and heat transport in
geothermal reservoirs may be derived and solved, but consolidation
is not the process of concern in many studies. The movement of
steam and water is in most cases sufficiently slow to assume that
phases of the fluid and the rock matrix are in local thermal
equilibrium.

In order to solve the governing equations, hydrodynamic and
thermal boundary and initial conditions must be specified. The
hydrodynamic boundary conditions are generally: (1) constant
pressure, (2) impermeable surfaces, and (3) specified mass flux.

The corresponding thermal boundary conditions are: (1) constant
temperature, (2) insulated surfaces, and (3) specified heat flux.
When sources or sinks are present, their pressures or massflow rates
must be specified. 1Initial conditions specify the physical state

of the reservoir before the simulation. Numerical models for the
simulation of geothermal systems are mainly of two categories:
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(1) studies of the natural conditions prevailing in the reservoir
prior to exploitation. (This study aims at estimates of heat flow,
recharge rates, and the initial distribution of fluid in the system),
and (2) studies of the response of the reservoir to exploitation.
Well test data are used to infer the distribution of permeability
and porosity in the reservoir. The limited data generally available
require sensitivity studies of these parameters and also the
reservoir dimensions, initial distribution of the reserves, and
possible recharge. The simulation considers different exploitation
alternatives and provides preliminary estimates of the generating
capacity of a field, appropriate well spacing, and production depths.
As data on the production performance accumulate, a simulation,
matched for the production data of individual wells, yields predic-
tions of future field performance and the longevity of the field
according to a given exploitation scheme. Simulation models are
also found wuseful to study different alternatives for fluid
injection into producing reservoirs.

Numerical modelling of geothermal systems has provided insight
into the processes of mass and heat transfer that govern the physical
state of geothermal reservoirs. Quantitative models have replaced
qualitative conceptual models. Numerical simulation has also become
a valuable strategic tool for the optimum exploitation of geothermal

systems. Examples of the results obtained in various fields are
given by Garg and Kassoy (49), Donaldson and Grant (35), and Grant,
Donaldson and Bixley (52). More recent studies include Sigurdsson

et al. (90) that presents a summary of reservoir engineering studies
of low-temperature reservoirs in Iceland and Bodvarsson et al. (18,
19,20), Pruess et al. (77), and Bodvarsson et al. (21) that

describe extensive modelling studies of the boiling reservoirs of
the Krafla Field in Iceland and the Olkaria Field in Kenya.

In line with Mercer and Faust (69), we may conclude that the
mathematical tools that have been developed for numerical modelling
are capable of solving the most difficult problems encountered in
geothermal reservoirs, but the conceptual basis of these mathematical
models is still weak and awaits further study.
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Table 1. Governing Equations for the Physical Processes in
Geothermal Systems [After Mercer and Faust (69)]

Mass Balance
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9. LIST OF SYMBOLS

Critical Point
Specific heat at constant pressure

a
a~]

Rate of vaporization

<

Gravitational acceleration
Gravitational acceleration vector
Thickness of layer

Enthalphy per unit mass

Permeability of the rock
Local intrinsic permeability tensor

Relative permeability

a}

Pressure

crit Critical pressure

Pressure

Interphase heat transfer term

Source term

Rayleigh number

=5, = Volume saturation, where Sy T 5g = 1

[N

Temperature

Critical temperature

Internal energy per unit mass

Phase average velocity

Depth

Coefficient of thermal expansion of the fluid
Isothermal compressibility

Difference

Thermal conductivity of saturated rock
Combined conduction-dispersion vector
Dynamic viscosity

Average density
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Subscripts and Superscripts:

1s Saturated liquid
vs Saturated vapor
r,s,w Rock, Steam,Water
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ABSTRACT

The thermohydraulics of an aquifer thermal energy storage system
is reviewed. The storage of hot or chilled water in an aquifer
involves three major physical processes: (1) buoyancy flow, (2) forced
convection, (3) thermal conduction and thermal dispersion. This
chapter is divided into two parts. The first part presents an
analysis of buoyancy flow causing the tilting of the interface
(thermal front) between hot and cold water. The second part
describes a numerical approach that studies the thermohydraulics
of an aquifer thermal energy system where all three processes are
taken into account.

1. INTRODUCTION

The need for energy storage arises from the disparity between
energy demand and production. The development of viable storage
methods will play a significant role in our ability to implement
alternative energy technologies and use what is now waste heat. The
ability to provide heat at night and during inclement weather is
a key factor in the development of solar energy. Conversely, winter
cold, in the form of melted snow or water cooled to winter air
temperatures, can be used as a coolant or for air-conditioning.

Practical storage systems would also allow us to capture the
heat that occurs as a by-product of industrial processes and power
production. Industrial plants and electric utilities generate
tremendous amounts of waste heat which are usually dissipated through
an expensive system of cooling towers or ponds to avoid thermal
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pollution. Because periods of heat demand do not generally coincide
with electricity generation or industrial production, a viable
storage method is essential if this heat is to be used. Such a
method would not only utilize what is now waste heat, but would
significantly decrease the necessary investment in cooling and backup
heating systems.

In recent years, aquifers have been actively studied as a very
promising means of long-term, large-scale thermal energy storage(18,
22). Aquifers are physically well-suited to thermal energy storage
because of their low heat conductivities, large volumetric capacities,
and in the case of confined aquifers, their ability to contain water
under high pressure.

A basic aquifer thermal energy storage system is illustrated
in Figure 1. The aquifer is penetrated by two wells some distance
apart. These two wells are connected by a closed hydraulic arrange-
ment so that water pumped from one well is injected into the other
with the net withdrawal of groundwater being kept at zero. Waste
heat from a power plant i1s transferred to the groundwater by means
of a heat exchanger. When heat is to be stored, the flow follows
the open arrow in the figure. The hot water is stored around the

Hot Water {} f Recovered ﬁ
From Waste Stored Heat
Heat Source To Be Used

A

Heat Exchanger
— ——\

it

Vet et el

Confining Layer

Injected® ~Thermal Confining Layer
Water Front
Front

Figure 1. Basic concept of an aquifer thermal energy storage system.
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hot water well. The broken line in the figure indicates the location
of the front of injected fluid, but the thermal front is retarded

due to heat transfer to the porous rock medium. After a period
ranging from several days to a few months, the hot water is withdrawn
(indicated by the solid arrow) when its use for space heating or
process heat is required.

In this application, it is critical to know not only the thermal
behavior of the groundwater system, but also the amount of energy
that can be recovered during withdrawal, and the temperature varia-
tions of the produced water.

Figure 2 is a schematic diagram of the physical processes
operating in the groundwater system during injection or withdrawal
of hot water. The well is represented by the double line at the
left of the figure, with radial symmetry about this line. The
injected hot water is shown with a tilted front at an angle o with
the vertical. The tilting of the front is due to the lower density
of the hot water with the resulting buoyancy flow.

T
D Caprock
AE

I3 !

1 §

H AE, Aquifer
t a
)

AE, Bedrock

€=(1-AE¢)(I-AEq)

Figure 2. Physical processes involved in an aquifer thermal energy
storage system.
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The physical processes involved are: (1) buoyancy flow, (2)
thermal conduction and thermal dispersion, and (3) forced convection.
Forced convection occurs whenever hot water is injected or withdrawn
from the aquifer. Thermal conduction from the hot water to the
native cold water and to the confining layers is a primary cause of
heat loss from the stored heat. Dispersion is present due to the
tortuosity of the fluid flow paths in the porous medium. This result:
in an additional mixing of the stored hot water with the surrounding
cold water. Buoyancy flow causes the hot water to move above the
cold, so that during withdrawal, both hot water from upper layers of
the aquifer and cold water from the lower layers are produced.

Many hydrogeological factors have to be studied when considering
aquifer storage:formation geometry, aquifer permeability and
storativity, inhomogeneity, confining layer leakage, regional ground-
water flow, and geochemistry of injected and native waters in the
aquifer.

The paper is divided into two parts. In the first part an
analysis of the motion of the interface between hot and cold water
in an anisotropic porous medium is presented. This is commonly
referred to as the thermal front tilting problem. In the second
part a numerical study of an aquifer thermal energy storage system
involving the three physical processes listed above is described.
Detailed application to a series of field experimental studies is
presented. The materials in this paper are based primarily on work
performed in collaboration with Buscheck, Claesson, Doughty, and
Hellstrom over the last few years (3,7,11,12,20,21).

2. THERMAL FRONT TILTING PROBLEM

In this section, we present the methodology to calculate the
motion of the interface that occurs when fluid of one density and
viscosity is injected into an aquifer stratum containing fluid of
another density and viscosity. The interface region constitutes a
transition zone between aquifer regions with different fluids.
Initially, the interface is primarily vertical. This situation is
intrinsically unstable due to the difference in density between the
two fluids. Buoyancy will cause the fluid of lower density to flow
towards the upper part of the aquifer. The two-fluid interface will
gradually tilt. Forced convection will act on the differences in
viscosity, and hence the differences in flow resistance, along
different flow paths, and thereby influence the tilting. Depending
on the situation, the forced convection may either reinforce or
counteract the pure buoyancy tilting. It is often of great interest
to be able to predict the rate at which the two-fluid interface
tilts.
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2.1. Thermohydraulic Equations

The coupled groundwater and heat flow process in the aquifer
stratum is governed by two partial differential equations. The
volumetric ground water flow q is related to the pressure gradient
and the gravity force through the empirical law of Darcy:

- k R
== (VP + pg2) (2.1)

The intrinsic permeability is k. The water density p and the
viscosity u are temperature dependent.

Equation (2.1) assumes isotropic permeability in the aquifer.
In this paper we will also consider cases where the aquifer has
different permeabilities in the horizontal (x,y) and vertical (z)
directions. Horizontal and vertical permeabilities are denoted k
and k', respectively. We then have:

- _ k2P - _ k2P - _ k' 0P
Qg = - , Ay =~ 4 3y g, = -y Gy e (2.2)

Compressibility effects are neglected, and the divergence of

the groundwater flow q is then zero at each point:
- k .
V.qg = V. |- m (VP + pg2)| =0 (2.3)

The aquifer temperature satisfies the equation for convective-
diffusive heat transfer:

C— = V.(AVT - Tcwa) (2.4)
where C and C_ are the volumetric heat capacities for the aquifer
(matrix plus water) and water, respectively. The thermal conduc-

tivity is denoted by A.

The convective heat flow is given by TCwa. The thermal velocity
is

@)

- w -

v - (2.5)

which represents the convective displacement of the temperature
field.
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The aquifer stratum is confined by impermeable layers at which
the perpendicular groundwater flow component vanishes.

2.2. Buoyancy Flow

A non-uniform temperature field in the aquifer gives a variable
fluid density and an ensuing buoyancy flow in the aquifer. We will
in particular consider the situation where the aquifer is divided into
a warm region (T = Tl) and a cold region (T = TO)' These regions
are separated by a thermal front zone, through which the temperature
falls from Ty to T,. The idealization of an infinitely thin or sharp
thermal front will also be considered. This is often quite a useful
approximation.

Let I be any closed curve in an isotropic aquifer (k' = k).
The line integral along I' of the pressure gradient is automatically
zero. Darcy's equation (1) then gives:

I

The right-hand term represents a net driving force due to density
variations along I'. The left-hand side gives an integral of the
tangential component of the flow q along T. The flow is weighted
with the flow resistance coefficient u/k. The right-hand side is
known when the temperature, and hence the density field, is given.
Equation (2.6) provides some information on the magnitude of the
flow velocities.

1.d% = - ga. J odE (2.6)
T

==

Figure 3 shows.a case when the curve I' crosses a sharp thermal
front. The density and the viscosity on the warm and cold sides
are denoted P> Hp and Pos Hy respectively. The vertical distance
between the two points where I crosses the thermal front is H. It
follows from equation (2.6) that

Moo Wy _ _
J T q.dr + J . q.dr = (po - pl)gH 2.7)
T T

o

Let Ly denote the arc length of T', and qp a suitable mean
tangential component of q along I'. Equation (2.7) may then be
written:

k(pO - Ol)g 2H

q. = <8 (2.8)
r UO + Ul LI*

The first factor will appear often in the following. We will
call it the characteristic buoyancy flow q,:
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@ Qo Ho

Figure 3. Closed curve I in an aquifer with a sharp thermal front
(dashed 1line).

k(p_ - P )g
qo =__0—__];__ (2.9)
U0+U1

2.3. Analytical Solutions

Based on equations (2.1 - 2.3), it is possible to derive
explicit expressions for the pressure distribution and the buoyancy
flow pattern in some idealized situations. Figures 4a-h show the
eight cases, A-H, explained in detail below. The permeability may
be different in the horizontal (k) and the vertical (k') directions
in all cases except in case H. We will use the notation

k = /k'/k (2.10)

Case A is a sharp, vertical thermal front in an infinite aquifer
bounded by two impermeable horizontal planes. The thickness of the
aquifer stratum is H. A vertical cross-section through the aquifer
becomes an infinite strip. The expressions for the pressure distri-
bution and the flow field are derived in Appendix A. The flow field
is shown in Figure 5. A solution of a limited version of this prob-
lem for two fluids with different density, but equal viscosity
(u,=My) and isotropic permeability (k'=k) has previously been given
by de Josselin de Jong (6 ). Verruijt (23) solved the problem with
different viscosities for the two fluids in an isotropic porous
medium.
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The cross—-section of the aquifer stratum is a semi-infinite
strip in cases B and C. There is a sharp, vertical thermal front.
The warmer region to the left has a horizontal thickness L. The
left boundary is impermeable in case B. In case C the hydrostatic
pressure P = - pjgz prevails along the left, vertical boundary.

Cases D and E consider an infinite aquifer with cylindrical
symmetry bounded by two horizontal planes. The warmer region
occupies a cylindrical volume with radius L. There is no
horizontal flow at the inner boundary in case D. In case E there
is hydrostatic pressure P = - pigz at the inner boundary at radius

r = Rw‘

In case F we have, as in case A, an infinite aquifer bounded
by two horizontal planes. The thermal front has a thickness D.
The viscosity in this case is assumed to be constant, i.e.,
W=H=Hg . The density is Py in the warm region and Po in the cold
region. The density is assumed to increase linearly through the
thermal front region.

Case G is similar to case D with cylindrical symmetry and no
horizontal flow at the inner boundary, but with a diffuse thermal
front of thickness D. The viscosity is constant, i.e., USU=H
and the density varies logarithmically through the thermal front
region.

In case H the aquifer is an infinite circular cylinder. A
vertical cut perpendicular to the cylinder axis becomes a circular
disk (Figure 4h). The permeability must be isotropic (k=1) in this
case.

The analytical solutions for these cases are derived in
Appendices A-H. The given expressions are only valid at the moment
when the thermal front is vertical.

The motion of the thermal front is determined by the magnitude
of groundwater flow across the front. The vertical coordinate is
denoted by z, and z=0 is the mid-point of the aquifer. The horizon-
tal groundwater flow across the front is denoted qf(z). The follow-
ing expressions are obtained for the considered cases:

A. Infinite strip:

1 1+sin(%§)
ag(2) = kq ey In|—— (2.11)

1-sin( H)
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B. Semi-infinite strip; impermeable left boundary:

n sin[(2n+l)ﬂz]
- A oe (D) H 2.12
ag(z) = kqpeo 20 o9 W, My . (2n+l)TTKLJ (212
cot
uo+ul Mot H

C. Semi-infinite strip; hydrostatic pressure conditions at the
left boundary:

, (2n+1)an
n
4 = (-1 H (2.13)
e (2) = Kq * 7 L ; +i T "
0 n=0 2n 0 1 (2n+1) kL
T + " tanh m
uO u1 u0 111
D. Cylindrical case; no horizontal flow at inner boundary:
, (2n+l)nz]
n H
4 = (-1) (2.14)
= kq *= L : .
qf(z) 9°7 nZo 2n+1 uy .Io(en) My 'Ko(en)
wotH, Ip(ep)  Ho+Hy K (8y)
where
K
en _ (2n+;) L (2.15)

Here we have used the modified Bessel functions Kn and In'

E. Cylindrical case; hydrostatic pressure conditions at inner

boundary:
- 4 = (-l)n . {1 (2n+l) 7z
qf(z) = Kqy. 7 néo oot L in m (2.16)
Ky (o2 Io(ed)
1+ Io " R
. 1,65 K (65
wo-u kel 16 T {0 uo K_(8)
0 1_‘) n’ ol 1,007 0 .-0‘’n
) L R L L
wotuy I,(60) Ko6p)  w ity I,(8) uotuy K, (61)
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where
(2n+l) 1k
ok = GrrDTeRy (2.17)
H
oL = (2n+1)mkL (2.18)
n H
F. Infinite strip with diffuse thermal front:
(2n+l)ﬂK%
n T H
(z) = « 4 5 (-1)", 1 -e - (2nt+l)mz
Aglz) = K4, = 4 n=¢ 2n+l D sin H
(2n+l)ﬂKE
H
(2.19)

The flow qf(z) refers to the middle of the thermal front region.
For large values of D/H, equation (2.19) becomes:

qe(z) = 2q, * % (2.20)

G. Cylindrical case with diffuse thermal front:

. 2 cho§ DT
qf(z) = K4, 1 (L4+D/2) m DEO 2n+1 (2.20)
@0/
0 0
o) Loy T8
NS "1 eh)
Kl(eg) B Kl(eg) .l (2n+) iz
+ (D(en) —T - <I>(6n) — +S1n H
Ky (8) Ko (8)

where the function ¢ is defined by:
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1 1

(8 ) = =« (2.22)

n ql Il(en) . Kl(Gn)

Io(e ) Ko(en)

and

e; _ (2n+l)ﬂKéL+D/2) (2.23)
0l = Szgi%lﬂﬁk (2.24)
6; - (2H+1)TTK(L—D/2) (2-25)

H

The flow qf(z) refers to the middle of the thermal front region
(r = L).

H. Circular disk:

1 - 2.2 (2.26)
m

R.2
q¢(z) = a - +) J-ln

The flows qf(z) are all odd functions of z. Further results of
these analyses are given by Hellstrom et al. (12).

2.4. Tilting of a Thermal Front

The buoyancy flow will cause a thermal front to tilt. A
quantitative measure of the rate of tilting is of great interest.
For the case when there is no forced convection, the tilting rate
may be defined as follows.

Consider a straight, vertical thermal front at a time t. The
total water flow across the upper half of the thermal front is
called the tilting flow. The same amount passes in the other direc-
tion through the lower half of the front. The tilting flow Q; 1is
defined by:

H/2 0

Q, = J qg(z)dz = - J qe(2)dz (2.27)
0 -H/2
Figure 6 illustrates the tilting of a vertical front. Each

point on the front is displaced a length ;Tdt during a small time
increment. The displacement in the normal direction of the front
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Figure 6. Definition of angular tilting rate W d (a) thermal front
at time t; (b) thermal front at time ttdt; (c¢) linear
approximation of situation; (d) with the same total flow.

is v n.dt, where v is the thermal velocity component perpendicular
to tge thermal front. The curved thermal front (Figure 6b) is
approximated by an appropriate straight line (Figure 6¢). The front
is tilted an angle w,dt during the time increment dt. A heat balance
for the thermal front gives:

C
H
5 tan(ugdt) = ° Q.dt (2.28)

The time increment is small, so tan(wtdt) =
then becomes:

tdt. The tilting rate

Qe (2.29)

The tilting flow Q, is obtained by integrating q¢(z) over the
interval 0 £ z € H/2. The integration of each term in the different
series of equations (2.11-2.14, 2.16, 2.19, 2.21, 2.26) is straight-
forward.

The tilting flow for case A is found to be:

Q = 3% kq H (G = 0.915... Catalan's constant) (2.30)
m

The corresponding rate of angular tilting is:

C..4
_326, ., w1 32G _
Wo =gz TNt H —z = 3.0 (2.31)
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The corresponding tilting time t is then:

1 HC TT2(L10+},11)
t = — =
0 @y kCuk 32G(p -0 )g (2.32)

The second factor on the right hand side is a function only of the
temperatures T0 and Tl'

In case H, the circular disk, it is possible to obtain an
analytical solution for the case when the straight thermal front is
tilted at an angle o from the vertical direction (see Appendix H).
The tilting flow and the tilting rate in case H become:

Q = % qyR * cos(a) (2.33)
g G 1 1 8

W =—.__Q. - —_— _'52_5

t Ll C 2R cos (o) T

The tilting rate is thus reduced in the proportion 2.5/3.0, when an
infinite strip (case A with k=1) is compared to a corresponding
circular disk with a vertical thermal front.

3. NUMERICAL THERMOHYDRAULIC STUDIES

An analytic approach is useful for providing physical insight
and functional dependence for a given process. However, in general,
a study of the coupled effects of buoyancy flow, forced convection
and thermal conduction in an aquifer thermal energy storage system
requires a numerical approach. In this section we introduce the
numerical code PT (2), which has been extensively used at Lawrence
Berkeley Laboratory for such studies. The code is briefly described
and some generic results are presented. Then, several field applica-
tions are given to demonstrate the approach and methodology used in
applying a numerical code to study the thermohydraulics of such a
system.

3.1. Numerical Code

The three-dimensional computer code PT, developed at LBL (2),
is capable of calculating coupled liquid and heat flows in a water-
saturated porous or fractured-porous medium. The governing equa-
tions for PT consist of the conservation equations for mass and
energy, and Darcy's law for fluid flow. Pressure and temperature
are dependent variables. One~dimensional consolidation of the rock
matrix can be considered as well, using the theory of Terzaghi. The
mass and energy conservation equations are coupled through the fluid
flow in the convection term of the energy equation and the pressure
and temperature dependent fluid and rock properties. The rock matrix
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and fluid are considered to be in local thermal equilibrium at all
times. Energy changes due to fluid compressibility, acceleration,
and viscous dissipation are neglected.

The following physical effects are included in PT calculations:
(1) heat convection and conduction; (2) regional groundwater flow;
(3) multiple heat and/or mass sources and sinks; (4) constant pres-—
sure or temperature boundaries; (5) hydrologic or thermal barriers;
(6) gravitational effects (buoyancy); (7) complex geometries due to
heterogeneous materials; and (8) anisotropic permeability and thermal
conductivity.

PT carries out the spatial discretization of the flow regime
using the Integral-Finite-Difference method ( 8,17). This method
treats one-, two-, or three-dimensional problems equivalently. An
efficient sparse solver is used to solve the linearized mass and
energy matrix equations. The equations are solved implicitly to
allow for large time steps. PT adjusts the time step automatically,
so that the temperature or pressure change in any node during one
time step is within user-specified limits. Mass and energy balances
are calculated for each node at every time step.

PT has been verified against the following analytical solutions:

(1) Theis problem (19);

(2) Cold water injection into a hot reservoir ( 1);

(3) The temperature variation at a production well due to cold
water injection (10);

(4) Radial conduction outside a constant temperature cylinder
(4);

(5) Two-node problem, transident conduction heat transfer
between two adjacent blocks ( 4);

(6) The rate of thermal front tilting when hot water is
injected into a cold reservoir (11);

(7) Pressure response in a well intercepting a finite
conductivity vertical fracture ( 5);

(8) Pressure response in a well intercepting a (uniform flux)
horizontal fracture ( 9).

3.2. Some Generic Results

To give some physical insight into the thermohydraulic behavior
of an aquifer thermal energy storage system, results of calculations
using PT on a few hypothetical cases are given here. This particular
set of calculations is for the case of high-temperature hot water
storage in a deep, low-permeability aquifer. The temperature of
the injected water is assumed to be 220°C (in liquid phase under
pressure) and the_instrinsic permeability of the deep aquifer is

assumed to be 107 1°m?.
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With injection and production ranges equal to lO6 kg/day for a
90-day injection, 90-day storage and 90-day production cycle, the
energy balance is calculated as shown in Table 1. Figures 7,8 and
9 show the thermal front advancement and diffusion at the end of the
injection period for an inhomogeneous aquifer (Figure 7), an aquifer
with a clay lens (Figure 8), and an aquifer with both an injection-
production well and a supply well (Figure 9). These figures show
the buoyancy flow effects and in the last case, the influence of a

neighboring well.

Effect of reservoir inhomogeneity - cycle 1
Tinj=220°C  H=50m(5 layers) Ar=2m

_ 0 . After injection

g 200%) Y Jsgoc 20°C period (t=90 days)
2 k
kS %
_ After production

S 5°¢ 20°¢  period (t=180 days)
£ 100°C :
= > 2k
E 4

L | | | |
0 10 20 30 4 90 60

Radial distance (m)

Figure 7. Temperature contours at the end of 90-day injection period
and at the end of 90-day production period for an
inhomogeneous two-layer aquifer.
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Effect of clay lens - cycle 1

Tinj =220°C  H=50m(5 layers)
Ar=2m
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Figure 8. Temperature contours at the end of 90-day injection
period and at the end of 90-day production period for an
aquifer with a clay lens.

3.3. Field Study Using a Numerical Code

Application of the numerical code PT to a set of field experi-
ments has the goal of studying the thermohydraulics of a practical
field situation and of verifying the validity of the numerical code
against field data. The field experiments by Auburn University
described below were chosen for this purpose. First, PT was used
to do a history match of the first two cycles of the field experi-
ment. All data from the experiment were available to the modelers.
Second, PT was used to make a double-blind prediction of the next
two cycles of the field experiment. Only the design parameters of
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Cycle 1 (after 90 days' injection)
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Figure 9. Temperature contours for a two-well system after 90-days
of injection.

the experiment were available to the modelers, not the results.
Third, PT was used to do optimization design studies for a planned
cycle of the field experiment; subsequently, results of the actual
cycle were compared with the PT calculations. Progressing from
each stage to the next provided a more stringent test of the
numerical model of the thermohydraulics of the system, as the code
was used more and more as a predictive tool. At each stage of the
calculation, a number of parameter sensitivity studies were made to
determine which parameters affected the results of the experiment
most significantly. Study of the discrepancies between the
calculated and observed field results gave insight into possible
physical processes not included in the numerical model, and provided
direction for future work.

3.3.1. History match

The Water Resources Research Institute of Auburn University
initiated a two-cycle injection-storage-production field experiment
in a shallow aquifer in northeastern Mobile County, Alabama in 1978
(13,14,15,16 ). A single injection/production well was screened in
the upper half of a confined 2l1-m-thick aquifer. The aquifer matrix
consists primarily of medium to fine sand, with approximately 15
percent interstitial silt and clay. The aquifer is located from
about 40 to 61 m below the land surface and is capped by a 9-m-thick
clay sequence; it is bounded below by another clay sequence of
undetermined thickness. Above the upper clay unit lies another
aquifer, which provided the injection water. A number of observation
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wells were located around the injection/production well; each was
completed with thermistors that measured temperature at six depths

in the aquifer. Each injection-storage-production cycle lasted six
months and involved the injection and recovery of about 55,000 m®

of water heated to an average temperature of 55°C. The ambient water
temperature of the supply and storage aquifers was 20°C. A convenient
quantitative measure of each cycle is the recovery factor, defined

as the ratio of the energy produced to the energy injected, with
energies measured relative to the ambient groundwater temperature.

The first-cycle recovery factor was 0.66 and the second-cycle recovery
factor was 0.76.

Well tests were done to determine the hydraulic properties of
the aquifer, and laboratory tests were made on samples to determine
thermal properties of the aquifer and clay layers. Several of the
material properties needed for the numerical calculation were not
provided; in these instances reasonable values from the literature
were used. Whenever possible, sensitivity studies were done to
examine the effect of the variation of such parameters. Table 2
summarizes the material properties used for the different layers.
Field measurements indicated very small regional groundwater flow,
so an axisymmetric model was devised for the calculation. The
spatial discretization for a model considering combined heat and
fluid flow from a central well must be done with care. For the

Table 2. Parameters Used in the History Match Calculation

Formation thickness Aquifer 21 m
Aquitard 9 m
Thermal conductivity Aquifer 2.29 J/m s °C
Aquitard 2.56 J/m s °C
Heat capacity of rock 1.81x106 J/m® °c
Density of rock 2600 kg/m3
Aquifer horizontal 0.53x1010 p2
permeability (53 darcies)
Vertical to horizontal 0.10
permeability ratio
Aquitard to aquifer 107
permeability ratio
Porosity Aquifer 0.25
Aquitard 0.15
Storativity Aquifer 6x10~%

Aquitard 9x10~2
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pressure calculation, the size of the nodes should logarithmically
increase with increasing radial distance from the injection well;
for the temperature calculation, the size of the nodes should
decrease. A compromise of equally spaced nodes within the region
of thermal influence, about 60 m, was used. Beyond this region,

the size of the nodes steadily increased out to a distance of 20 km,
where there was a constant pressure boundary. The vertical spacing
of the nodes was made fine wherever sharp gradients in temperature
were expected, such as at the bottom of the well screen, and in the
clay layers adjacent to the aquifer. To assure that the spatial
discretization (the calculational mesh) was adequate for the problem,
alternative meshes were devised and used for parts of the first
cycle calculation, and results compared to results from the primary
mesh. Figure 10 shows a vertical section of the central portion of
the primary mesh.

After the calculation for each cycle was carried out, the
calculated temperature distributions in the aquifer at various times
were compared to measured temperatures (20). The overall match was
very good; however, the calculated temperature profiles, shown in
Figure 11, appeared to be sharper than the observed ones, indicating
that the mathematical model underpredicted thermal diffusion. This
is because the model did not include the heterogeneities of the real
aquifer that caused fingering, leading to a diffuse front. By
comparing the calculated temperatures with temperatures from obser-
vation wells located in different directions from the injection/
production well, some deviation from axisymmetry was noted.

However, the calculated temperature of the produced water agreed
very closely with the observed data, as shown in Figures 12 and 13,
since the production temperature is the average temperature of water
produced from all directions around the injection/production well.
The time-average of the production temperature is proportional to
the recovery factor. PT calculated recovery factors of 0.68 and
0.78 for the first and second cycles, respectively, as compared to
experimental values of 0.66 and 0.76. This excellent agreement
indicated that the small heterogeneties of the system tended to
balance out, and that on the whole an axisymmetric model of the
system was appropriate.

One of the properties of the aquifer not determined by the
well tests was the permeability anisotropy, the ratio of vertical
to horizontal permeability in the aquifer. A value of 0.10 was
chosen for the model, based on previous modeling studies done at
this site. A sensitivity study was carried out for the first cycle
using values of 1.0 and 0.02 for permeability anisotropy. For the
smaller value of anisotropy (i.e., smaller vertical permeability)
there was less buoyancy flow of the injected water than in the
original first cycle calculation, resulting in a more compact hot
plume with a lower surface-to-volume ratio. This led to smaller
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Figure 11. Temperature contours in an aquifer after first cycle
injection. Temperature values at observation wells
are also indicated.

conductive heat losses, hence a higher recovery factor -- 0.71.

For the larger value of anisotropy, buoyancy flow was increased,
creating a more elongated plume with larger heat losses, leading to
a recovery factor of 0.57. The large variation in recovery factor
indicated that the permeability anisotropy is an important parameter.

In summary, the history match indicated that the numerical code
PT and an axisymmetric model could match the results of the injec-
tion-storage-production cycles very well. Detailed comparisons with
individual wells showed some discrepancies, but they tended to cancel
out when integrated results such as production temperature and
recovery factor were considered. A parameter study indicated that
the permeability anisotropy is a very important parameter affecting
the results of the experiment. The mesh variation demonstrated the
range of mesh spacing appropriate for this particular problem, and
showed that numerical dispersion may mimic physical dispersion
caused by aquifer heterogeneities.
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Figure 12. First cycle production temperature.

3.3.2. Double-Blind prediction

In contrast to the history match, in which all the experimental
results were available to us throughout the course of the modeling
study, in the double-blind prediction, we were provided with only
the basic geological, well test, injection flow rate and injection
temperature data, and the planned production flow rate. Numerical
simulations were conducted to predict the outcome of each cycle
before its conclusion. During the course of the study, we were not
informed of the experimental observations and the experimenters were
not informed of our calculated results. Thus we call this a "double-
blind" prediction. It was only after both parties concluded their
work that detailed comparisons between the calculated and experimental
recovery factors, production temperatures and in situ temperature
distributions were made. Our double-blind prediction studies were
carried out in the following fashion.
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Figure 13. Second cycle production temperature.

The third, fourth and fifth cycles of the Auburn experiments
were conducted in 1981 and 1982 in a new area of the aquifer, located
about 120 m from the site of the first and second cycles. A fully
penetrating injection well was used. Rather than using water from
the overlying aquifer, a supply well penetrated the storage aquifer
itself, creating an injection-supply doublet. During the third cycle,
25,000 m® of water at an average temperature of 59°C was injected
over a period of one month. The water was then stored for one month
and subsequently produced. During the fourth cycle, a total of 58,000
m® of water at an average temperature of 829C was injected over a
period of 4.5 months, then stored for one month. Production began
using a well screen open to the full aquifer thickness. After two
weeks production stopped and the well screen was modified to withdraw
water from only the upper half of the aquifer. Production then
resumed and continued until the total water volume produced equaled
the volume injected.

Parameter studies done during the first- and second-cycle history
match indicated that the temperature field was not very sensitive
to the pressure field in the aquifer. Therefore, in the development
of a numerical grid for the later cycles, emphasis was placed upon
accurate calculation of the temperature distribution. An estimate
of the radial extent of the hot region in the aquifer around the
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injection well, i.e., the thermal radius, can be made based on
conservation of energy. The thermal radius was calculated to be
about 25 m for the third cycle and 38 m for the fourth cycle. These
values are small compared to the doublet spacing (240 m), and large
compared to displacement caused by regional flow. Therefore, an
axisymmetric model of the aquifer system centered at the injection/
production well was used for the calculation.

The wellbore was modeled by a column of nodes 0.1 m wide with
a porosity of 1 and a very high vertical permeability. Injection
and production were accounted for by a source or sink element
connected to the top wellbore node. Well tests conducted prior to
the third cycle included a test to determine the vertical permeabil-
ity of the aquifer. A value of 0.15 was determined for the
permeability anisotropy, and used in the mathematical model. Other
material properties remained similar to those shown in Table 2.

The third-cycle calculation predicted a recovery factor of 0.61
as well as the production temperature curve and calculated
temperature distributions in the aquifer as a function of time.
Subsequently, the experimental recovery factor was found to be 0.56.
Although this is somewhat below the calculated value, it is an
acceptable prediction. However, the experimental temperature
distributions in the aquifer at the end of the injection period
appeared rather different from the calculated results, as shown in
upper part of Figure 14, where two experimental plots show perpen-
dicular cross sections through the aquifer. Apparently, there is
a high-permeability layer in the middle of the aquifer into which
the injected fluid preferentially flows. After some parameter
studies, we decided to use a three-layer-aquifer model in which the
middle layer has a permeability 2.5 times that of the upper and
lower layers. This three-layer-aquifer model reproduced the
experimental temperature distributions and production temperature
quite well, as shown in Figures 14 and 15, and predicted a recovery
factor of 0.58, much closer to the experimental value than the
previous one-layer-aquifer model. This is significant because
layering is difficult to detect through conventional well test
analysis, which typically gives a single average permeability value
for a heterogeneous medium.

The fourth-cycle predictive calculation was made with the three-
layer—-aquifer model also. This cycle involved injection of much
hotter water (82°C) than had been used before. Calculated results
(3) indicated that for this large temperature, buoyancy effects
were very large, and over-shadowed the preferential flow into the
high permeability layer. Based on the original production plan,
which called for a fully penetrating production well, the recovery
factor was calculated to be 0.40. However, due to low production
temperatures, the experimenters modified the production well during
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the production period to eliminate production from the lower half

of the aquifer. By following this procedure, the calculated recovery
factor was 0.42, as compared to the experimental value of 0.45.

This agreement was acceptable, but a comparison of the experimental
and calculated production temperature curves, shown in Figure 16,
indicated a moderate discrepancy. The calculated production
temperature started about 10°C higher than the experimental value,
but decreased much more rapidly, so that by the time of the well
modification it underpredicted the experimental temperature. When
production resumed after the two days of well modification, the
calculated result again overpredicted the experimental value,
although by just 2°C. Again the calculated temperature decreased
more rapidly than the experimental curve, and ended up underpredict-
ing it. This discrepancy of production temperatures was most
noticeable for the fourth cycle, but the pattern of early over-
prediction followed by late underprediction was evident in the third-
cycle production temperature curves as well. It was much smaller

for the first and second cycles, suggesting that it might be related
to the wellbore model,which was first incorporated in the model for
the third-cycle calculation.

In summary, the double-blind prediction made using the code PT
yielded reasonable results. The third-cycle comparison of one-layer
and three-layer aquifers indicated the importance of aquifer
layering. The higher injection temperature of the fourth cycle
caused buoyancy flow to be a dominant effect in the aquifer. PT can
adequately model the fourth cycle, although there is a larger
discrepancy between the calculation and the experiment than for the
earlier cycles.

3.3.3. Optimization design studies

Because of the decrease in recovery factor from the third to
fourth cycles (0.56 to 0.45) corresponding to the increase in injec-
tion temperature, an optimization design study was done before the
fifth cycle of the field experiment in an attempt to design an
experiment that would yield an optimal recovery factor for an 80°C,
three-month cycle. A series of injection-production schemes using
different well-screen open intervals were simulated. Each assumed
a constant injection flow rate of 112 gpm (7 kg/sec) at 82°C. The
three-layer-aquifer model developed for the third-cycle calculation
was used. Two variations in cycle design were considered: the first
assumed injection, storage, and production periods of one month
each; the second assumed a two-month injection period (resulting in
double the volume of hot water injected), no storage period, and a
one-month production period (at double the injection flow rate).
Making use of the results of the fourth cycle calculation, which
indicated that buoyancy flow had a dominant effect on the system,
three general approaches were taken in the design studies (Fig. 17):
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(a) simply inject into and produce from the upper portion of the
aquifer where most of the hot water would naturally flow because of
buoyancy effects; (b) inject hot water at the top of the aquifer
while simultaneously producing water from the bottom in order to
have a vertical flow field with minimal buoyancy effect; and

(¢) inject into the upper portion of the aquifer, then while
producing from the upper portion, produce (and discard) colder water
from the lower portion of the aquifer through a "rejection well"
located next to the injection/production well, thus eliminating any
upward flow of cool water that would lower production temperature.
Table 3 summarizes the results of the calculations. Cases A,B and

C correspond to the three approaches listed above. The reference
case considered an injection/production well screened over the entire
aquifer thickness. For a cycle consisting of one month each of
injection, storage, and production, the maximum recovery factor was
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Figure 18. Fifth cycle production temperature.

about 0.52, representing an improvement of about 0.12 over the refer-
ence case. For the larger injected volume a recovery factor of 0.66
was possible. Hence, for this system, the volume of fluid injected
is as important as the manner in which it is injected and produced.
In general, the third method appears to be most successful in
yielding a high recovery factor.

After the optimization design studies were completed, the fifth
cycle was carried out, using 80°C water and an injection-production
scheme patterned after case C. The injection/production well was
screened over the upper 9 m of the aquifer and the rejection well,
located less than 2 m away, was screened over 9 m in the lower half
of the aquifer. Instead of a three-month cycle storing 18,000 or
36,000 m®, as in the design studies, the fifth cycle lasted seven
months, and 56,700 m3 of water was injected, making a direct check
of the design study calculations impossible. The recovery factor
for the fifth cycle was 0.42. A history match calculation yielded
a recovery factor of 0.44. As in the case of the fourth cycle, the
calculated production temperature, shown in Figure 18, initially
overpredicted the experimental value, then decreased more rapidly,
and finally underpredicted it. The calculated temperature from
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the rejection well consistently underpredicted the experimental
value, indicating that the model may have somewhat overpredicted
buoyancy flow. This finding was consistent with the larger produc-
tion —-temperature discrepancy noted for higher temperature (greater
buoyancy flow) cycles.

In summary, the optimization design studies investigated a
variety of possible injection-production schemes, and indicated the
range of recovery factors for them. Although the actual fifth cycle
was quite different than the design studies, the relative results of
the design studies proved to be useful in the choice of the fifth-
cycle injection-production scheme.

4. SUMMARY

The thermohydraulics of an aquifer thermal energy storage
system are reviewed and discussed. Effects of thermal conduction,
buoyancy flow and forced convection are studied and calculated.
Both an analytic approach and a numerical method are presented to
familiarize the readers with these techniques.

5. APPENDIX A: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL
FRONT IN AN INFINITE STRIP

An analytical expression for the pressure distribution in case
A, which is shown in Figure 4a, will be derived in this appendix.
The aquifer stratum occupies the region - ® < x < ®, - H/2 < z < H/2.
The thermal front is located at x = 0, - H/2 < z < H/2.

Let P(x,z) denote the pressure distribution in the aquifer.
In region 1, x < 0, - H/2 < z < H/2, the pressure satisfies:

5 k 3P, 3 |k' P

= (;I 5;) + 5 ™ (52 +p18)| =0 (AL)
In region 0, x > 0, - H/2 < z < H/2, we have:

3 k 9P 9 |k' P

% (UO 9% dz i; dz + pog) =0 (a2)

The upper and lower boundaries are impermeable:

oP H
¥+plg=0 z=t§, - <x <0 (A3)
P H
S5t P8 = 0 z=%7, O0<x<= (a4)
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Hydrostatic conditions prevail far away from the thermal front:
p > - Pigz X > - o (A5)
P - pogz X > + @ (A6)

The pressure and the groundwater flow are continuous at the thermal
front:

P(-0,2) = P(+0,2) -deg <l (A7)
) S S x=0, -Zczl (A8)
uy 0xX u 9x 2 2
0

We start with the following expressions:

x < 0: P(x,z) = - Pigz + nEO anun(x,z) (A9)

x > 0: P(x,z) = - pogz + nEO bnun(x,z) (A10)
where

_ (2n+l)mk x|
U, (x,2z) = sin[igﬁglllé] . e i (A11)

It is not difficult to verify that these expressions satisfy (Al-A6)
for any choice of the coefficients a, and b,. The coefficients are
determined by the two remaining conditions (A7) and (A8):

a = - qJ_H_ul. . L . _(_—l)n (AlZ)
n k T2 (2n+1)2
b - - Mo a (A13)
n n n
1

oy = - K LB 4
qu-— —qu T

. 1 (2n+l) Tz
v = 51n{———1r——] (Al4L)

The series may be expressed in the simpler form of equation (11).
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6. APPENDIX B: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL
FRONT IN A SEMI-INFINITE STRIP: IMPERMEABLE LEFT
BOUNDARY

An analytical expression for the pressure distribution in case
B, which is shown in Figure 4b, will be derived in this appendix.
The aquifer stratum occupies the region 0 < x < », -H/2 < z < H/2.
The thermal front is located at x = L, -H/2 < z < H/2.

Let P(x,z) denote the pressure distribution in the aquifer.
In region 1, 0 < x < L, -H/2 < z < H/2, the pressure satisfies
equation (Al). In region 0, x > L, -H/2 < z < H/2, we have equation
(A2).

The upper and lower boundaries are impermeable:

9P

H
3 t 18 = 0 z = iE , 0 <x <L (B1)
9P H
s + P8 = 0 z = iz s L <x < o (B2)

Hydrostatic conditions far away from the thermal front give (A6).
The left boundary is impermeable:

oP H H

=0 x=0, -3<z<3 (B3)
The pressure and the groundwater flow are continuous at the thermal
front:

P(-L,z) = P(+L,z) - % <z < % (B4)
_k 3P _ k2P eon, _H_,_E (55)
vy oxX u 0xX 2 2
0
We start with the following expressions:
. - ® , 1 (2n+l)mz
0 < x < L: P(x,z) = - p1gz + n§0 ans1n[ a (B6)
cosh (2n+l)nKx]
H
: = - ¥ (| {2ntl)Tz
x > L: P(x,z) = 0,82 + nEO bn51n m (B7)
_ (2n+l)me(x-L)
H

e
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These expressions satisfy (Al1-A2), (B1-B3), and (A6) for any choice

of the coefficients ay, and b,: The coefficients are determined by

the two remaining conditions (B4) and (B5).

_ 9 1 L4 (=D
8 T K m m 72 (2n+1)2
sinh(en) + cosh(en)
U0+Ul UO+U1
(B8)
= EQ inh (6 B9
b, = - W . sinh( n) - ay (B9)
where
+ L
o, = LZL%K_ (B10)

Finally we obtain the flow across the thermal front (Eq. (2.12)) by
differentiation of Eqs.(B6) or (B7).

7. APPENDIX C: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL
FRONT IN A SEMI-INFINITE STRIP; HYDROSTATIC PRESSURE
CONDITIONS AT THE LEFT BOUNDARY

An analytical expression for the pressure distribution in case
C, which is shown in Figure 4c, will be derived in this appendix.
The aquifer stratum occupies the region 0 < x < «, -H/2 < z < H/2.
The thermal front is located at x = L, -H/2 < z < H/2.

Let P(x,z) denote the pressure distribution in the aquifer.
In region 1, where 0 < x < L, -H/2 < z < H/2, the pressure satisfies
equation (Al). In region 0, where x > L, -H/2 < z < H/2, we have
equation (A2).

The upper and lower boundaries are impermeable, which implies
the boundary conditions (B1-R2). Hydrostatic conditions far away
from the thermal front give (A6). Hydrostatic conditions prevail
at the left boundary:

< z <

H H
2 2 (€1)

P(0,z) = - 182 -
The pressure and the groundwater flow are continuous at the thermal

front as expressed by (B4) and (B5). We start with (B7) for x > L
and the following expression for 0 < x < L:

(2n+l)ﬂzJ . Sinh[(2n+l)ﬂKX

= - J (€2)

P(x,z) = - 182 +n£0 ansin{
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Expressions (C2) and (B7) satisfy (A1-A2), (B1-B2), (Cl), and (A6)
for any choice of the coefficients a, and b_: the coefficients are
determined by the two remaining conditions ?B4) and (B5).

Lo o 1 L4 (D7
n - k u U 2 (2n+1)?2
+0 cosh(6 ) + ——i—— sinh(8,) 1% (2n+l)
Mot Mot
Mo
bn = - . . cosh(en) . a, (C4)
1

where en is defined by (B10).

The flow across the thermal front (Eq. (2.13)) is obtained by
differentiation of Egs. (C2) or (B7) with a, and bn given by Egs.
(C3) and (C4) respectively.

8. APPENDIX D: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL
FRONT IN THE CYLINDRICAL CASE; NO FLOW AT THE INNER
BOUNDARY

An analytical expression for the pressure distribution in case
D, which is shown in Figure 4d, will be derived in this appendix.
Cylindrical coordinates, r and z, are used. The aquifer stratum
occupies the region 0 < r < », -H/2 < z < H/2. The thermal front
is located at r = L, -H/2 < z < H/2.

Let Pl(r,z) denote the pressure distribution in region 1,
0 <r <L, -H/2 < z < H/2. The pressure satisfies:

1 P v JP
3 k 1 0 |k 1
r or uy T 3r + E[“_l (az_ + ng)J =0 (1)

In region O, r > L, -H/2 < z < H/2. We have for the pressure
Po(r,z):

3 oP

oP
3k oy, 3 fw O _
or (UO ¥ ar )+ QZ(UO (az * pog)] =0 (B2)

il

The upper and lower boundaries are impermeable:

3P, -

3z T f8=0 z=+%5, 0<r<L (D3)
EEE + =0 . L < < 4
3z pog Z_~2’ r (D)

(C3

)
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At the inner boundary, r=0, symmetry requires that:
oP
_1 H H
3 -0 -3 <z<3 (D5)

Hydrostatic conditions prevail far away from the thermal front:
PO > - pOgZ r > o (D6)

The pressure and the groundwater flow are continuous at the thermal
front:

Py(L,z) = P (L,2) _H__ & 7)
2 2
oP 9P
K 1 k 0 _ H H
U, 9r T ag or r==L,- 2 cz= 2 (D8)

We start with the following expressions:

_ © .l (2n+l) 7z (2n+l)mkr

Pl(r,z) = p18z + nEO a sin ___ﬁ____J IO{_—~_ﬁ———— (D9)
_ © .| (2ntl)mzy | (2n+1) mkr

Po(r,z) = - 0,82 + nEO bnSIH[___jf__' KO x5 (D10)

Here we make use of the modified Bessel functions I_ and Kn‘ These
expressions satisfy (D1-D6) for any choice of the coefficients a,
and b,. The coefficients are determined by the two remaining
conditions (D7) and (D8).

RIS 1 L1
n k S INCH) T K, (o) I;(8)
Hotu, I3 (8 wptu Kp(8)
(D11)
A4 (=Dt
2 (2nt+1)?
s L5 L D12

where 6 is given by (B10).
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Finally we obtain the flow across the thermal front (Eq. (2.14))
by differentiation of Egs. (D9) or (D10).

9. APPENDIX E: ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL
FRONT IN THE CYLINDRICAL CASE; HYDROSTATIC PRESSURE
CONDITIONS AT THE INNER BOUNDARY

An analytical expression for the pressure distribution in case
E, which is shown in Figure 4e, will be derived in this appendix.
Cylindrical coordinates, r and z, are used. The aquifer stratum
occupies the region < r <w, - H/2 < z < H/2. The thermal front
is located at r = L, - H/2 < z < H/2.

Let P;(r,z) denote the pressure distribution in region 1, where
<r <L, - H2 <z < H/2. The pressure P; satisfies equation
(D1). For the pressure Po(r,z) in region 0, r > L, - H/2 < z < H/2,

we have equation (D2).

The upper and lower boundaries are impermeable, which implies
the boundary conditions (D3-D4). Hydrostatic conditions far away
from the thermal front give (D6). We also have hydrostatic pressure
conditions at the inner boundary, r = R,:

H H

P;(R,»2) = - o182 -3 %z<3 (EL)
Pressure and groundwater flow are continuous at the thermal front
as expressed by (D7) and (D8).

We start with the following expressions:

Pl(r,z) = - pi8z + nzo anun(r,z) + nzo bnvn(r,z) (E2)
Po(r,z) = - p,82 + néo cnvn(r,z) (E3)
where
. (2n+l)ﬂz) . (2n+l) kT
u (r,z) = n[——H I, I 1 (E4)
. | @n+l)Tz . (2n+l)mkr
vn(r,z) = 51n(——-7f——J KO[——__E____ (E5)

These expressions satisfy (D1-D4) and (D6) for any choice of the
coefficients a,, b, and c.. The coefficients are determined by
the three remaining conditions (El), (D7), and (D8).

IR UL S | 4, (D"

n L 2 2
k Il(en) T (2n+1)

(E6)
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Ho~Hy Ko(eg) IO(GE) By 10(911,"1) Ho Ko(eg)
. . + . + .
L R L L
wotuy T, (80)  Ko(8p)  wptu, T (85 wptu, K (6)

R

I.(6)
b = - _Q__%_ < ay (E7)

Ky (8)

L L R
c. = - Yo . Elﬁg&z 1+ Kl(en) . Io(en) . a (E8)
Tow k(b O KCp) "
where
(2n+l)m<Rw

R
T (£9)
oL = (2n+1)mkL (E10)

n H

Finally we obtain the flow across the thermal front (Eq.(2.16))
by differentiation of Eqs. (E4) or (E5).

10. APPENDIX F: ANALYTICAL SOLUTION FOR AN INFINITE STRIP WITH
DIFFUSE THERMAL FRONT

An analytical expression for the pressure distribution in case
F, which is shown in Figure 4f, will be derived in this appendix.
The aquifer stratum occupies the region - = < x < », - H/2 < z < H/2.
The thermal front region, which has a thickness D, is located at
- D/2 < x <D/2, - H/2 < z < H/2. The viscosity is constant in this
case (u=p0=pl). The density is p; in region 1, where x < - D/2,
- H/2 < z < H/2, and py in region 0, where x > D/2, - H/2 < z < H/2.
The density in the thermal front region varies linearly with x
between p; and Po

b(x) = % (Pg+01) + 2 (pg=p)) (F1)

The pressure distribution Pl(x,z) in region 1 satisfies (Al)
with p,=p. For the pressure Po(x,z) in region 0, we have equation
(A2) with Mg=u. The pressure PD(x,z) in the thermal front region
is the solution of:

5k %Pp 5 [ 8P

x Gax) Yzl Gp tete| =0 (F2)
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The upper and lower boundaries are impermeable, so that

oP H

—_ = = +—

ot o 0 z = i3 (F3)
for the different regions. Hydrostatic conditions far away from

the thermal front give (A5-A6).

The pressure and the groundwater flow are continuous at the
interfaces between the thermal front region and the surrounding
regions:

H H

P;(-D/2,2z) = Pp(~D/2,2) -5 <z <5 (F4)
P, (D/2,2) = Pn(D/2,2) B, B (F5)

0 bl D bl 2 2

oP oP

k 1 _ k D _ _H H

T ox U dx x = D/2, 2 %<2 (F6)
aP oP

k 0 k D H H

"3 0w T % x=D/2, -35<z<7 (&N
We start with the following expressions:
Pl(x,z) = -py8z + nEO anun(x,z) (F8)
Po(x,z) = - ppgz + nEO bnvn(x,z) (F9)
PD(x,z) = - p(x)gz + néO cnun(x,z) + n£0 dnvn(x,z) (F10)
where
(2n+1) kx
u,(x,2) = sin[ﬁg&i%lEEJ' e H (F11)
_ (2n+1)mex
H

vn(x,z) = sin[iggi%lEEJ- e (F12)

These expressions satisfy (Al1-A2), (F2-F3), (A5-A6) for any choice
of the coefficients a,s bn’ Cho and d_. The coefficients are
determined by the four remaining conditions (F4-F7):
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H

a =0 4, (D", H (F13)

n 2k 2 2 D

(2n+1) (2n+l)WK§

(2n+l)ﬂK% (2n+l)an
- = -
. |e - e
b, = - a, (F14)
(2n+l)ﬂK%
qHu 1\ - H

e

m (2n+1) (2n+l)ﬂKE
d =-c¢ (F16)

n n

In particular we have for the flow across a vertical cut in the
middle of the thermal region:

oP
k D
q¢(2z) = 5w x =0 (F17)

The result may be expressed as the series of Eq. (2.19).

11. APPENDIX G: ANALYTICAL SOLUTION FOR THE CYLINDRICAL CASE
WITH DIFFUSE THERMAL FRONT

An analytical expression for the pressure distribution in case
G, which is shown in Figure 4g, will be derived in this appendix.
The aquifer stratum occupies the region 0 < r < », - H/2 < z < H/2.
The thermal front region, which has a thickness D, is located at
L-D/2 < r < L+D/2, -H/2 < z < H/2. The thermal front region must
not extend into the well, i.e. D < 2L. The viscosity is constant
in this case (u=u0=u1). The density is p; in region 1,
0 <r <L-D/2, -H/2 < z < H/2, and pyin region 0, r > L+D/2,
-H/2 < z < H/2. The density in the thermal front region varies
with r between Py and Po according to:

((L+D/2

plln[( : ﬂ + poln[zi:%757}

p(r) = (G1)
(L+D/2)

ln[(L—D/Z)]
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The pressure distribution Pl(r,z) in region 1 satisfies (D1)
with u; = u. For the pressure Py(r,z) in region 0, we have equation
(D2) with Mg = M. The pressure PD(r,z) in the thermal front region
is the solution of:

13 ko .8 (k' Pp
r H

r 5;—) + —|— (5;— + o(r)g)| =0 (G2)

3
3;( EEART

The upper and lower boundaries are impermeable, so that

oP H

- = = +=

52 + pg 0 z _2 (G3)
for the different regions. There is no horizontal flow at the inner
boundary, r = 0, and hydrostatic conditions far away from the ther-
mal front give (D5-D6).

The pressure and the groundwater flow are continuous at the
interfaces between the thermal front region and the surrounding
regions:

H H
P, (L-D/2,z) = Pp(L-D/2,2) -5 <z<3 (G4)
P, (L+D/2,2z) = Pp(L+D/2,2) i, B (65)
0 »z) = Pp yZ > z >
3P oP
k 1__k D = - _B i
R TR W P LD/2, mgczcg (66)
oP oP
_k L2 k, D r = L+D/2, - L <z < 1 (G7)
u ar u ar 2 2
We start with the following expressions:
Pl(r,z) = - pgz + nEO anun(r,z) (G8)
PO(r,z) = - pgygz + ngO bnvn(r,z) (G9)
PD(r,z) = - p(r)gz + nEO cnun(r,z) + néo dnvn(r,z) (G10)

where the functions un(r,z) and Vn(r,z) are given by (E4) and (E5)
respectively.

These expressions satisfy (D1-D2), (G2-G3), (D5-D6) for any

choice of the coefficients a., bn, Ch» and dn. The coefficients
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are determined by the four remaining conditions (G4-G7):
2401 1 L4 D] (611)

n k 1 (L+D/2) TT2 (2H+1)2
M (T-D/2)

080y e(or)
Io(e;) I,(8,)

2q,Hu 1 (-1™

4
b = . R e (G12)
n k . (L+D/2) T (2n+1) 2
“{(L—D/Z)}
[@(e:) 9(67) }
Ky (80)  Ky(67)
AN 1 4 (D" .¢(e$) ©13)
’ ‘ 1n[(L+D/2)] (2o Io(e:)
(L-D/2)
2q,Hu 1 4 (-1)0 o(8,)
d. = - . = . - (G14)
’ o (am) T DT ke
M (L-D/2)
where the function ¢ is defined by:
1 1
_ — - Gls
®(0,) o, " T,(ey) K (6.) (G15)
+
I,(6,) K (o)
and
ot _ (2n+1)mk (L4+D/2) (c16)

n H



231

- _ (2n+1) 1k (L-D/2)
n H

G (G17)

In particular we have for the flow across a vertical cut in the
middle of the thermal region:

k Pp
U

i r =1 (G18)

Qf(z) = -

The result may be expressed as the series of Eq. (2.21).

12. APPENDIX H: ANALYTICAL SOLUTION FOR A SHARP THERMAL FRONT IN
A CIRCULAR REGION

An analytical expression for the pressure distribution in case
H, which is shown in Figure 4h, will be derived in this appendix.
The aquifer has the shape of an infinite circular cylinder with an
horizontal symmetry axis. A vertical cut through the cylinder
becomes a circular disk with radius R. We first consider the case
with a vertical thermal front. Both polar coordinates (r,¢) and
cartesian coordinates (x,z) are used. Here ¢ denotes the angle
with respect to the upward vertical direction, which is denoted z.

Let Pl(r,¢) denote the pressure distribution in the left part
of the circular region, 0 < r < R, =7 < ¢ < 0. In the right part,
0<r <R, 0<¢ < m, the pressure is Po(r,¢). The pressure Py
and P, both satisfy:

19 9P, . 1 32p _

The periphery of the disk is impermeable. Let t and z denote unit
vectors in the radial and vertical direction respectively. Then
we have:

BPl .

3 + pygz.r = 0 r =R, -m<¢ <0 (H2)
oP

R A.A= = R, < < H
5r T PosZ.t =0 r=R, 0<¢<m (H3)

The pressure and the groundwater flow are continuous at the thermal
front:

Pi(r,¢) = Py(r,¢) 0O<r <R, ¢=0 and *7 (H4)
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- ET *x EE °9x

0<r <R, ¢ =0 and *r (H5)
where x is a horizontal coordinate.

We start with the following expressions:

o 2n

Pi(r,¢) = - arcos(¢) + 2, an(i) -+ sin(2n¢) (H6)
. r.2n .

Po(r,¢) = - arcos(¢9) + ngl bn(ﬁ) « sin(2n¢) (H7)

These expressions satisfy (H1) for any choice of the coefficients
o, a, and b,. The coefficients are determined by the four remaining
conditions (H2-H5):

(qul + Ulpo)g

o (H8)
Mg + Uy
doRup 4 1
n T 7 Tk 7" (2n+D) (2n-1) (H9)
Ho
bn = rl . an (HlO)
The pressure in the aquifer is now:
P (r.0) = - (ypPy+ W 8z ) qgRu; o 0 (H11)
1 Moty k R

where 1 = 0 for 0 < ¢ <7 and i = 1 for —m < ¢ < 0. We have
introduced a dimensionless pressure:

1

1420 .
1 (oD (o) - (81 - sin(2ng) (H12)

P(r',s) = -

z
n:
This series may be expressed in closed form with the use of the
complex number

w =r'cos(¢) + ir'sin(¢9) = (z+ix)/R (H13)

The dimensionless pressure (H12) may then be written:

14w, | 1

~SUN G DR IS £ N TR ¢
P=- - Imt(w w) ln(l—w)J_ - Im[f(w)] (H14)

The symbol Im denotes the imaginary part. An evaluation of the
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complex function f(w) gives:

- "o
P=- % (r' - %,) cos(¢) ¢ arctan {25:%%$§%2] (H15)
R N 1+(r")%+2r" cos(9)
+ 2 (r' + r')51n(¢) - 1n 1+(r')%-2r'cos ()
In particular we have for the flow across the thermal front:
- p_% df
Qf(z) = qqR - % Tt Re[a;] (H16)

Here Re denotes the real part. The result is given in Eq. (2.26).

In this particular case it is possible to solve the problem
with a straight thermal front which is tilted an angle o from a
vertical position. By making the substitution:

(bv = q) - (Hl7)

we find that equations (H1-H7) remain unchanged except that the
gravitational constant g is replaced by g.cos(a). This means that
all pressures and flows are reduced by the factor cos(a) when the
thermal front is tilted an angle a.
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LIST OF SYMBOLS
C Aquifer volumetric heat capacity (matrix plus

water), J/m*K
Volumetric heat capacity of water, J/m’K

W

D Thickness of diffuse thermal front in cases F and
G, m

d Dispersivity, m

foe Buoyancy tilting function

fft Forced-convection tilting function

ft Basic tilting function

f1 = 0.235

G Catalan's constant (= 0.915...)

g Standard gravity, 9.81 m/s*

H Thickness of aquifer stratum, m
k Permeability (horizontal), m*

k Vertical permeability, m*
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Horizontal thickness of region left of the thermal
front in case B, C, D, E, and G, m

Effective porosity of porous medium

Pressure, Pa

Pressure for buoyancy flow part of Eq. (35), Pa.

Pressure for forced convection part of Eq. (35),
Pa.
Tilting flow, m3 Hy0/s.

Buoyancy tilting flow, m3 Hp0/s.
Forced-convection tilting flow, m3 Hy0/s.

Forced-convection flow rate through aquifer,

m3 Hy0/s.

Volumetric groundwater flux, m3 HZO/mZS.
Volumetric groundwater flux for buoyancy flow
part of Eq. (35), m3 H20/mzs.

Volumetric groundwater flux for forced convection
part of Eq. (35), m3 HZO/mzs.

x-component of T, m”’ Hy0/m*s.

y-component of q, m3 HZO/mZS.
z-component of q, m3 HZO/mZS.

Horizontal buoyancy flow across thermal front,
m3 H20/m28.

Characteristic buoyancy flow defined by Eq. (9),
m3 HZO/mZS.

Radius of circular region in case H, m.
Retardation factor for solute transport

Radius at inner boundary in case E, m

Radial coordinate, m
Tilting function defined by Eq. (82)
Tilting parameter equal to ktano.
Temperature, oc.
Temperature of region 0, °C; ambient temperature,
o
C.
Temperature of region 1, OC; injection temperature,
o
C.
Time, s.
Characteristic tilting time defined by Eq. (33), s.

Thermal velocity equal to Cwa/C, m/s.

Horizontal coordinate, m.
Horizontal coordinate, m.
Vertical coordinate, m.



Tilting angle. Angle between straight thermal
front and vertical axis.

Tilting angle for isotropic case ( k = 1)
Viscosity factor equal to uo/ul
Forced-convection tilting parameter defined by
Eq. (77).

Energy recovery factor

Anisotropy factor, equal to vk'/k

Thermal conductivity, W/mK

Dynamic viscosity, kg/ms

Dynamic viscosity in region 0, kg/ms

Dynamic viscosity in region 1, kg/ms

Density, kg/m3
Density in region 0, kg/m3

Density in region 1, kg/m3

Angular tilting rate defined by Eq. (30), rad/s
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Angular tilting rate for case A, given by Eq. (32),

rad/s
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MECHANICS OF FLUIDS IN LAYERED SOILS

Arnold Verruijt Frans B.J. Barends

Dept. of Civil Engineering Delft Soil Mechanics Laboratory
University of Delft P.0. Box 69

2628 CN Delft, The Netherlands 2600 AB Delft, The Netherlands
ABSTRACT

In this chapter the mechanical behaviour of layered porous,
saturated soils, typically consisting of strata of clay and sand
is discussed, from the viewpoint of phenomena such as subsidence
due to the extraction of fluids from the aquifer. Special attention
is paid to the influence of permeability contrasts such as occurring
in a soil system consisting of layers of clay and sand, and the
relative importance of the compressibilities of the various layers.
In many existing models the deformations of the clay layers are
disregarded, so that all surface settlements are due to deformations
of the sandy aquifers. This may be acceptable for relatively thin
layers of stiff clay. 1In many circumstances, however, such as may
occur in delta's of large river systems, it may be necessary to
take into account the deformation of the clay layers. For such
situations two possible approximate models are presented. The
models are compared to a full numerical solution, which can be
considered to represent the true solution of the coupled problem.

1. INTRODUCTION

Natural soils often consist of layers of different properties,
with layers of high permeability (sand layers) interspersed with
layers of low permeability (e.g. clay). For the prediction of the
subsidence of such a system due to the withdrawal of groundwater,
or due to an external loading of the soil, the compression of all
strata must be taken into account.

The problem is of a transient nature, with the propagation of
pore water pressure differences being retarded by the combined
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effect of flow of groundwater and the compression of the soil. The
process can be considered to be a generalization of the steady state
type problems of groundwater flow in layered soils. For problems

of this type two types of approach are available, which can be
denoted as thé aquifer model and the more general three

dimensional Biot model. In the aquifer model, first used by

De Glee (7), vertical flow is assumed in the clay layers (the
aquitards) and horizontal flow in the sand layers (the aquifers).
This leads to relatively simple equations. In the general three
dimensional model, which is due to Biot (3) no assumptions with
regard to the flow field or the deformation field are necessary, but
as a result the system of equations is of a more complicated form.
The two types of models can be related by a process of averaging,
see e.g. Corapcioglu and Bear (5).

The actual transient behaviour of a soil system is determined
on one hand by hydraulic properties, such as permeability, and on
the other hand by mechanical properties, such as compressibility and
shear resistance. One of the main characteristics of the process
is the difference in accuracy of these parameters. Darcy's law,
which is the basis of the hydraulic part of the process, is generally
considered to be a rather accurate description of the fluid flow in
a porous medium. The description of the mechanical behaviour of a
soil, by compressibility coefficients and shearing resistance, is
of a much more controversial nature, involving uncertainties such
as geological history (pre-consolidation, pre-shearing), shear
failure, dilatancy, and creep. A review of possible models has
been given by Corapcioglu (6).

It is postulated here that a well-balanced description of the
physical processes should be of the following general nature. First
of all a realistic description of the geometry should be used, taking
into account the layered structure of the soil, with different
permeabilities and compressibilities. The coupling of the fluid
flow and the deformation can be taken into account by an analysis
in two stages. In the first stage the pore pressures are calculated,
disregarding the feedback from the deformation process, but instead
using a simplified unique relation between effective stresses and
pore pressures. This is certainly not justified in many problems
from soil mechanics practice, in which the fluid flow is generated
by external loading of the soil. In groundwater hydraulics, however,
the underlying assumption that the total stresses are constant in
time, is acceptable, at least as a first approximation. The defor-
mations of the soil due to the pore pressure variations can be
calculated in a second stage, using the pore pressures determined
from the hydraulic model as input in the deformation model. It may
be noted that the same approach is generally used in reservoir
engineering (8).
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In this chapter the aquifer approach will be used, without
going into the possible justification of this model, perhaps
involving such refinements as horizontal deformability of the soil
layers. A first order model, due to Jacob (10) and Hantush (9), is
to take into account the compression of the aquifers only, disregard-
ing the compression of the aquitards. A large number of solutions
for this type of model, to be denoted as the first order model, have
been obtained, especially by Hantush (9). Physically speaking this
may not be a realistic set of assumptions, because clay layers are
often more compressible than sand layers, and therefore disregarding
their compression is not justified, except in case of clay layers
of very small thickness.

In order to account for the deficiencies of the first order
model more refined models have been developed, in which the compres-
sibility of the aquitards is taken into account, by Neuman and
Witherspoon (11). It follows from this theory that the influence
of the compressibility of the aquitards may be considerable. Unfor-
tunately the exact solutions of the problem are mathematically rather
inconvenient, and for that reason a simplified approach has been
proposed by Barends (l1). This approach, to be denoted as the pseudo-
exact model, will be presented in this chapter, together with an
approximate model, to be denoted as the second order model, in
which the pressure variation in the aquitard is represented in a
simplified way. It will be shown that these models can be useful
tools for the prediction of the progress of subsidence.

A deficiency of most existing transient theories of subsidence
is that the deformation properties of the soil are usually highly
schematized, in order to keep the system of equations amenable to
mathematical analysis. This may mean that the accuracy of the
prediction of the ultimate subsidence is less than what might be
attained for, taking into account the achievements of non-linear
soil mechanics. Thus the long term problem of subsidence at constant
pore pressures should be considered separately, taking into account
phenomena such as creep.

2. DEFINITION OF THE MODELS

In this section the two approximate theories will be presented.
For reasons of simplicity the considerations will be restricted to
the simple system of a single aquifer and a single aquitard. The
theories can easily be generalized to systems of more layers,
however.

The first approximate approach is to consider the flow in the
aquifer to be horizontal, and in the aquitard to be vertical, to
take into account the compressibility of the aquifer and the
aquitard, and then to use the Laplace transform technique with
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Schapery's inversion formula to solve the system of equations (1).
In this way it is assured that the solution is correct for t=0 and
for t » ». For smooth processes the Schapery approximation is often
very good, and it will be shown that in the present case the approx-
imation is at least reasonably good. This approximation will be
denoted as the pseudo-exact model.

As an alternative a physical approximation will be presented,
to be denoted as the second order model, in which the flow in the
aquitard is represented by a parabolic variation of the head. This
can be considered to be analogous to a finite element approximation,
using a single second order element to represent the flow and comp-
ression in the aquitard. This model will appear to be less accurate
for small values of time, but somewhat better for large values of
time.

2.1. The Second Order Model

Consider the non-steady flow of groundwater in a layered soil
consisting of an aquifer and an aquitard, which separates the aquifer
from another layer in which the groundwater head is constant in time
and space, (see Fig. 1). This constant will be taken as the
reference level for all other heads. The heads are influenced by
a certain action in the main aquifer, for instance a well that starts
operating at time t=0.

The basic flow mechanism to be considered is the same as in the
first order theory: mainly horizontal flow in the aquifer, and ver-
tical flow in the aquitard.

The groundwater head in the aquifer will be denoted by ¢. Under
conditions of steady flow the head in the aquitard would vary
linearly from 0 at the top (z=0) to ¢ at the bottom (z=d). In the
beginning of the transient state the head in the aquitard will lag
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Figure 1. Leaky aquifer.
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behind the value in the aquifer, however, and the final state will
be reached only after completion of the consolidation process of
the clay. 1In order to describe the head in the aquitard in an
approximate way such that the physical process of consolidation as
well as the ultimate steady state can be described, it is assumed
that at all times this head can be written as

h = 4(z/d)(1 - z/d)v + (z/d)(2z/d - 1)¢ (2.1)

where y is the head in the center of the aquitard (for z = }d). It

can be seen from Eq. (2.1) that for z = 0: h = 0, for z = ¥d: h = vy,
and that for z = d: h = ¢. The expression (2.1) actually represents
a quadratic function defined by the three values 0, ¢ and ¢, at the

top, in the center, and at the bottom, respectively. If ¢ = 3¢

(in the final steady state) the formula reduces to a straight line.

The parabolic variation of the head in the aquitard can be
considered to be a first refinement of the classical theory, in
which the flow rate in the aquitard is constant at all times, which
corresponds to an assumed linear variation of the head. Considering
the classical theory due to Jacob (10) as the first order theory
the present approach can be denoted as a second order model. Further
refinements can be made by assuming a higher order variation of the
head.

It follows from Eq. (2.1) that

32h/9z2 = 4(¢ - 2y)/d> (2.2)

This means that the second derivative is constant over the
thickness of the aquitard. Another consequence of Eq. (2.1) is the

following expression for the leakage from the aquitard to the
aquifer

L = - k(3h/32z),_4 = - (3¢ - 4¥)/c (2.3)
where ¢ is the resistance of the aquitard (¢ = d/k). In the final
steady state, when ¢y = }¢, one obtains L = - ¢/c, as in the classical
theory.

The equation describing the process of consolidation of the
clay layer is (13)

dh/ot = CV82h/822 (2.4)
where ¢, is the consolidation coefficient, defined by

cy = K/ (myv,) (2.5)
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Here m, is the compressibility of the clay, and Y, is the volumet-
ric weight of water. For the sake of future convenience a storativ-
ity S, is now defined as

SC = mvywd (2.6)

Physically speaking this quantity represents the settlement of the

clay layer if the effective stresses in it are uniformly increased

by a pressure of 1 meter water, in agreement with the usual defini-
tion of storativity.

The consolidation equation (2.4) cannot be satisfied uniformly,
but only on the average. This leads to the following condition

49p/3t + 3¢/9t = 12(¢ - 2¥) /¢, (2.7)

where
- 2 -
t, = 3d /cV = %CSC (2.8)

This quantity is a measure for the duration of the consolida-
tion process. In the case of uniform consolidation of a layer
drained on both sides the consolidation process is usually said to
be practically completed (for 997) if cvt/d2 = 0.5, or t = te-

Equation (2.7) is one of the basic equations of the present
theory. It describes a relation between the head ¢ in the aquifer,
and the head ¥ in the (center of the) aquitard.

2.1.1. Flow in the aquifer

The flow in the aquifer can be described by the following
equation, which is based on Darcy's law, assuming horizontal flow,
and the continuity condition,

T(3%¢/3x? + 3%¢/3y?) + L = S_3¢/3t (2.9)
where T is the transmissivity of the aquifer, assumed to be constant,
and S, is the storativity. The leakage from the aquitard is given
in Eq. (2.3). Substitution of that expression into Eq. (2.9) gives

92¢/0x2 + 9%¢/9y* - (3¢ - 4¥)/A? = (c5,/2%)3¢/3t (2.10)
where A is the leakage factor,

A= V(Tc) (2.11)

Equation (2.10) is the second basic equation of the theory
presented here. The governing differential equations of the problem
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considered are Egs. (2.7) and (2.10), which should be solved together
with the appropriate initial and boundary conditions. Some examples
will be considered later. First it will be verified whether the

present equations are compatible with some well-known limiting cases.

2.2. Rigid Aquitard

If the aquitard is completely rigid S. = 0, and it then follows
from Eq. (2.8) that t. = 0, and from Eq. (2.7) that ¢ = 3¢. This
means that Eq. (2.10) reduces to

9%¢/0x> + 3%¢/3y* - ¢/A% = (cS,/A?)3¢/dt (2.12)

This is indeed the familiar differential equation for non-steady
flow in a leaky aquifer, disregarding the compression of the aquitard.
The coefficient in the right hand side is usually written as (S/T).

It can be concluded that the present model is indeed a generalization
of the classical theory of Jacob (10). It should be noted that the
case of a single aquifer, with no leakage at all, is of course also
included in the model. For A - « the third term in Eq. (2.12)
vanishes. Thus the solutions of Theis (14) and Hantush (9) are
special cases of the second order model.

2.3. Response of Aquitard to Step Function

Another interesting limiting case is the response of the
aquitard to a sudden change of the head in the aquifer. This is a
standard problem from the theory of consolidation. For the case
that the head ¢ jumps at time t = O from its original zero value to
A¢p the solution of the consolidation equation (2.4) can be determined
by using the Laplace transform technique. The solution is

h = 241

sin(knz/d) exp[—kzﬂzcvt/dz]} (2.13)

AN

The head in the center (for z = 3d) is found to be

_ AN}
h = ng{l - =

S U] exp[-(2j+1)2n?ct/d?]} (2.14)
J:

It can be shown that the value for t = 0 is indeed zero, because the
sum of the series then is 7/4.

A quantity of special interest is the deformation of the entire
layer. 1In general one may write
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& _ _ 3h
Y U I T dz (2.15)
0

where & is the displacement of the top of the layer, with respect to
its bottom. After performing the necessary differentiations and
integrations one obtains, with Eq. (2.6),

[oo]

£ = - $bos {1 - %7 jgo (—2}%1—)5 exp[-(2j+1)2n2c t/d?*]1}  (2.16)

The negative value obtained for t » « indicates that the soil
expands if the head increases. For t = 0 the deformation is zero,
because the sum of the series is then precisely m2/8.

The analytical results will now be compared with the results
obtained from the second order theory presented above. The equation
to be solved in this case is Eq. (2.7), where ¢ is the step function
defined before. The solution of this problem, which can be obtained
most conveniently by using the Laplace transform technique, is

Vo= the{2 - 3exp(—6t/tc)} (2.17)

For t » « this indeed approaches the steady state value }A¢,
but for t=0 the solution gives a step value of -}A¢, which is
perhaps unexpected. This behaviour of the approximate solution is
caused by the (implicit) condition in the theory that at the moment
of loading no net loss of water can be generated, so that the average
head must be zero. If the head at the lower boundary is increased
this must be balanced by a reduction of the head in the center.

The deformation can be calculated from Eq. (2.15) and Eq. (2.4)
and (2.2). The result is

£ = - %A¢SC{1 - exp(—6t/tc)} (2.18)

The initial and ultimate values of this expression are both in
agreement with the exact solution [Eq. (2.16)]. Apparently the
initial step in the head in the center is necessary so that the
settlement at t = 0 is zero, or that the average head remains zero.

The exact and approximate solutions for the total deformation
are shown in Figure 2. The approximate formula [Eq. (2.18)] is
indicated as "2nd order'". The agreement appears to be reasonably
good, except for small values of time.
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Figure 2. Exact and approximate solutions for the deformation.

As an alternative approximation the results of a pseudo-exact
model are also shown in Figure 2. These results have been obtained
by following an approach proposed by Barends (1), which is based
upon an exact description of the consolidation process in the aqui-
tard. By using the Laplace transformation to transform the two
basic differential equations, for the vertical compression of the
aquitard, and the horizontal flow in the aquifer, a solution in the
domain of the Laplace transform parameter can be obtained. As an
approximation to the inversion of this solution Schapery's approx-
imate formula is then used. The result is

£ = —%Aq;scv(4t/tc)tanh(|/(tc/4t)) (2.19)

It can be seen from Figure 2 that this approximation is better for
small values of time, but somewhat less accurate for large values
of time. Both approximations seem to be sufficiently accurate for
engineering purposes.

Another interesting quantity is the leakage from the aquitard

into the aquifer. The exact solution for this quantity, for a step-
wise variation of the head in the aquifer, is

L =-(¢/c){1l + Zkzlexp[—kzﬂzcvt/dz]} (2.20)



The approximate solution for the second order model is, from
Eq. (2.3) and (2.17),

L=- (Ad/c){1 + 3exp(—6t/tc)} (2.21)

The pseudo-exact solution, using Schapery's inversion formula,
is

L= - (A¢/C)V(tc/t)coth(x/(tc/t)) (2.22)

A comparison of these exact and approximate solutions for the
leakage from the aquitard into the aquifer is shown in Figure 3.
Again the approximation by using Schapery's inversion formula is
(much) better for small values of time, whereas the approximation
based upon a parabolic variation of the head in the aquitard is
better for large values of time. The failure of the second order
model for small values of time must be due to the fact that at all
times the head in the aquitard is approximated by a parabola, see
Eq. (2.1), and this is inaccurate immediately after a stepwise
variation at one of the boundaries. The leakage into the aquifer,
which is infinitely large in the exact and pseudo-exact models, is
actually underestimated. The deformation and the average head are
approximated much better. Actually the curves shown in Figure 2
can also be considered to represent a comparison of the average
head, for which the approximation is reasonably good. It can also
be expected that for more gradual changes of the head at the boundary
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Figure 3. Exact and approximate solutions for the leakage.



251

a parabolic approximation may be sufficiently accurate. In later
sections it will be found, from other comparisons, that the second
order model may be a useful tool, despite its inability to correctly
describe variations of high frequency.

The two special cases investigated above can be considered as
the two extreme situations. In the case of a rigid aquitard the
storage in the aquifer is dominant, and in the second case the

principal phenomenon considered is the storage in the aquitard. 1In
general it can be concluded that the second order model, based upon
a parabolic variation of the head in the aquitard, gives a good
approximation of the subsidence, especially after some time. The
response immediately after a stepwise variation of the head is
approximated somewhat better by the pseudo-exact model, using
Schapery's inversion formula.

As a next step in the presentation of the theory the solution
of some particular problems will be considered.

3. ONE-DIMENSIONAL FLOW

Perhaps the simplest example is that of one-dimensional flow
in a semi-infinite aquifer, bounded by a long canal in which the
groundwater head is increased from its initial value 0 to a value
¢o at time t=0.

Two special cases of this problem can be used for the purpose
of reference, namely the steady state solution, and the solution for
a single aquifer in the absence of leakage. The steady state
solution is the standard formula for a leaky aquifer,

¢ = ¢, exp(-x/2) (3.1)

The solution of the problem in the absence of leakage can be
obtained from Eq. (2.9), by taking L = 0. This solution is found
to be

¢ = ¢, erfc(x/(S8/4Tt)) (3.2)

For t = 0 the value of ¢ is 0, and for t > « the solution
approaches by everywhere, as it should.

The solution of the general problem for the approximate model
can be investigated by using the Laplace transform technique (4).
If the Laplace transforms of ¢ and ¢ are denoted as ¢ and VY,
respectively, the first basic equation, the transform of Eq. (2.7),
is as follows

4sY + s® = 12(® - Z‘P)/tC (3.3)
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where s is the Laplace transform parameter. It follows from this
equation that ¥ can be expressed in terms of ¢,

¥/ = (12 - stc)/(24 + 4st) (3.4)

The Laplace transform of the second basic equation, Eq. (2.10),

d20/dx? - (30 - 4¥)/\? = (csa/xz)s@ (3.5)

The head ¥ in the aquitard can be eliminated with the aid of
Eq. (3.4). This gives

d?%/dx? = [2st, + (6 + 4st)/(6 + stc)]¢/x2 (3.6)

where t,y is a parameter characteristic for the time scale in the

aquifer itself, defined by

t, = %CSa (3.7)

It is to be noted that this expression is of the same form as
Eq. (2.8). The process appears to contain two different time scales,

one for the aquifer response and one for the response of the aquitard.

The solution of Eq. (3.6) subject to the boundary conditions
at infinity and at x = 0 (x = 0: ¢ = ¢O) is

® = (¢O/s)exp{—(x/k)/[25ta + (6 + 4Stc)/(6 + stc)]} (3.8)

The mathematical problem now remaining is to determine the
inverse Laplace transform of Eq. (3.8). Unfortunately this is not
a standard inversion, and therefore only an approximation will be
presented.

3.1. Schapery Approximation

A simple approximate inversion formula, applicable to non-
oscillating phenomena, is the so-called Schapery approximation,
already introduced and used in the previous chapter. This approxima-
tion is exact for t = 0 and for t = @ (12). In the case of Eq.

(3.8) the result is

0/, = expl-(x/M)VIt /v + (12t + 4 )/ (12t + t )]} (3.9)
For t = 0 the head is zero everywhere, as it should be, and for
t = » the solution reduces to the familiar result of a simple

exponential function, defined by the leakage factor A.

It is interesting to note that the solution can also be written
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in the general form
0/d, = expl-x/Ax} (3.10)

where A* is a time-dependent leakage factor, defined by

AKX = )\//[ta/t + (12 + 4t /e) /(12 + t./t)] (3.11)
where, as defined in Egs. (2.8) and (2.16),

t. = 3cS t, = %csa (3.12)

C,

The concept of a transient leakage factor was introduced by
Barends (1), using the pseudo-exact approach, as follows. The
consolidation of the aquitard is described by the differential
equation (2.4). The Laplace transform solution of this equation,
satisfying the boundary conditions that h = 0 for z = 0, and h = ¢
for z = d, is

H/® =sinh[z (S/Cv)]/sinh[dV(s/cV)] (3.13)
This means that the leakage into the aquifer is, with Eq. (2.8),
L/® = - (l/C)V(2stc)coth(V(2stC)) (3.14)

Substitution into the Laplace transform of the differential equation
(2.9) for the head in the aquifer gives

d20/dx2 = o/ (A2 (3.15)

where A# is a modified leakage factor, depending upon the Laplace
transform parameter s. After solution of the differential equation
and inverse transformation by Schapery's approximation the result
is again of the simple form of Eq. (3.10), with now the time depen-
dent leakage factor defined as

A= e /e + Ve coth (VT /00 ] (3.16)

Formula (3.16) is an alternative to Eq. (3.11). Both expres-
sions tend toward A if t > «, and they vanish if t = 0. Some more
insight in the behaviour of the solutions can be obtained by plot-
ting the expressions (3.11) and (3.16), (see Figure 4 and Figure 5).
In these figures the transient leakage factor is plotted for 5
values of tc/t namely 0.1, 1, 10, 100 and 1000 (from left to right
in the figures?. Values of tc/ta smaller than 0.1 (down to 0) give
the same result as for tC/ta = 0.1. This means that the classical
solution is correct if the storativity of the aquitard is less than
107 of the storativity of the aquifer, or, as indicated by the
figure, even if the two storativities are of the same order of
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magnitude. If the storativity of the aquitard is large compared to
the storativity of the aquifer the classical solution, disregarding
the storage in the aquitard, is no longer applicable.

For t = 0 the value of the transient leakage factor is indeed
zero, which indicates that for small values of time the drawdown
is restricted to the immediate vicinity of the disturbance at x = 0.
For larger values of time the transient leakage factor increases,
indicating a growing region of influence. For large values of time
the transient leakage factor approaches the steady state value .

For very large values of the parameter t /ta (that is for
relatively stiff aquifers) the solution (3.11) seems to have a
plateau at the level L = 3. Actually this is confirmed by the
behaviour of the original transformed solution. If the aquifer is
completely rigid one obtains t_ = 0, and then the transformed

solution (3.8) reduces to the following form

o = (¢,/8)exp{-(x/N)V[(6 + dst )/(6 + st )]} (3.17)

As is well known (see e.g. 4) the behaviour of a function for
small values of time can be obtained by taking the transform para-
meter s very large. It follows from Eq. (3.17) that for large
values of s

o = (¢O/s)exp{—2x/k} (3.18)

Inverse transformation now shows that for small values of time
the solution is approximately,

¢ = ¢ exp{-2x/x} (3.19)

This is the steady state solution, with A replaced by 3A.

It should be noted that the particular behaviour of the second
order model, with the plateau at half the maximum level, is a
mathematical property, which is caused by the particular type of
approximation of the head in the aquitard, namely the parabolic
variation, and has no physical significance. The parabolic approx-
imation underestimates the leakage at the beginning of the process.
It has been found that a higher order approximation, involving a
third order approximation, leads to a better approximation for
small values of time. As compared to the direct Schapery approxima-
tion for an aquitard of finite thickness, which is more accurate for
small values of time, the second order model has the advantage that
it consists of a complete set of differential equations, and thus
can easily be extended to nonhomogeneous soil layers. This model
also admits a numerical solution, which will be presented below.
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4. NUMERICAL SOLUTION

As the analytical approach followed above did not lead to a
closed form solution, even for the simple one dimensional case, but
only lead to an approximate solution, the accuracy of which remains
unknown, it may be illuminating to attempt a numerical solution of
the problem. On the basis of the results obtained above it seems
reasonable to distinguish between two types of problems: one for
rigid or almost rigid aquifers, in which case there is an immediate
response followed by a gradual adjustment, and one for systems in
which the storativity of the aquifer is of the same order of magni-
tude, or even larger, than the storativity of the aquitard. 1In
the latter case it can be expected that the response of the aquitard
is semistatic.

The system of equations to be solved is, for the one-dimensional
case, see Egs. (2.7) and (2.10),

439/3t + 3¢/3t = 12(¢ - 2¥)/t, (3.20)
3¢/t = (A2/2ta)a2¢/ax2 - (39 - 4)/2t, (3.21)

The simplest way to approximate this system of equations is
by an explicit finite difference scheme. An explicit expression for
9Y/3t can be obtained by elimination of 3¢/9t from the two equations,
and then both the increment of y and of ¢ can easily be calculated,
using a central finite difference for the second order spatial
derivative. The main disadvantage of such an approximation is that
the time steps must be taken rather small in order to maintain
stability. Therefore a somewhat better approximation is to use a
central finite difference in time or a backward difference, in
which case an implicit system of equations is obtained.

An elementary computer program performing the numerical solu-
tion by a fully implicit scheme, using a constant spatial finite
difference, is reproduced below. The program has been written in
BASIC, with input entered interactively, with the program asking for
values of A, the space step Ax, the two time parameters t. and tas
the time step At, and some output parameters. Output consists of
a list on the screen or the printer, of the head in the aquifer and
the head in the aquitard, both expressed as a ratio of the final
steady state value of the head in the aquifer, exp(-x/A), in a single

point of the system. The data calculated are also stored in a data-
file, for later processing, for instance the construction of a graph.
The program itself gives a suggestion for the magnitude of the first
time step, which is based upon the stability criterion for the
explicit process, and which has been derived in the usual way, by
requiring that all possible distributions of errors are damped by
the numerical process. After each time step the magnitude of the
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Table 1. Computer Program for One Dimensional Flow

100 CLS:PRINT"Aquifer—Aquitard":PRINT:DEFDBL A-H,0-Z:DEFINT I-N
110 DIM F(1000),G(1000),DF(1000),DG(1000): NN=1000
120 DIM TJ(1000),FJ(1000),GJ(1000):NT=1000

130 INPUT"Leakage factor ............... " Z

140 INPUT"Space Step ......ccvvvvvneenns ";DX:IF DX>Z/2 THEN DX=Z/2
150 INPUT"Characteristic time clay ..... " TC

160 INPUT"Characteristic time sand ..... " TA

170 N=INT(5*Z/DX+.5):IF N>NN THEN N=NN
180 A$="####. ####" :B=1+DX*DX*(T+72%TA/TC)/(4%Z*XZ)
190 T1=2%TAXDXXDX/(B*Z%Z):B=1+7*DX*DX/(4%Z%Z): T2=TAXDX*DX/ (B*Z*Z)

200 PRINT"Suggestion 1 for time step ... ";:PRINT USING A$;Tl
210 PRINT"Suggestion 2 for time step ... ";:PRINT USING A$; T2
220 INPUT"Time sStep .......cvvvevuennnn. ";DT

230 PRINT"Output on printer (Y/N) ...... ? ";:GOSUB 480

240 INPUT"Output for node number ....... "J

250 INPUT"Name of datafile ............. ":D$

260 CLS:T=0:FF=EXP(-J*DX/Z):FOR I=0 TO N:F(I)=0:G(I)=0:NEXT I:F(0)=1
270 IF P$="N" THEN 300

280 LPRINT"Leaky aquifer, tc/ta = ";:LPRINT USING A$;TC/TA

290 LPRINT"x/L = ";:LPRINT USING A$;J*DX:LPRINT

300 FOR I=0 TO N:DF(I)=0:DG(I)=0:NEXT I

310 AC=DT/TC:AA=DT/TA:A=Z*Z/(DX*DX): A2=AA/2: C=(1+(1.5+A)%AA) : D=4+24%AC
320 K=K+1:FOR IT=1 TO N:FOR I=1 TO N-1

330 B=A2X(AX(F(I+1)-2%F(I)+F(I-1)+DF(I+1)+DF(I-1))-3*%F(I)+4%(G(I)+DG(I)))
340 DF(I)=B/C:B=12%ACX(F(I)+DF(1)-2%G(I))-DF(I):DG(I)=B/D

350 NEXT I:NEXT IT:FOR I=1 TO N:F(I)=F(I)+DF(I):G(I)=G(I)+DG(I):NEXT I
360 T=T+DT:B=G(J)/F(J):TJ(K)=T/TA: FJ(K)=F(J)/FF:GJ(K)=G(J)/FF

370 PRINT" t/ta = ";:PRINT USING A$;T/TA;

380 PRINT" f/ff = ";:PRINT USING A$;F(J)/FF;

390 PRINT" g/ff = ";:PRINT USING A$;G(J)/FF;

400 PRINT" g/f = ";:PRINT USING A$;B:IF P$="N" THEN 450

410 LPRINT" t/ta = ";:LPRINT USING A$;T/TA;

420 LPRINT" f/ff = ";:LPRINT USING A$;F(J)/FF;

430 LPRINT" g/ff = ";:LPRINT USING A$;G(J)/FF;

440 LPRINT" g/f = ";:LPRINT USING A$;B

450 DT=1.2%DT:E=1-F(J)/FF:IF E>.0001 AND K<NT THEN 310

460 OPEN "O",#1,D$:PRINT#1,K:FOR I=1 TO K:PRINT#1,USING A$;TJ(I)

470 PRINT#1,USING A$;FJ(I):PRINT#1,USING A$;GJ(I):NEXT I:CLOSE #1:END
480 P$=INPUT$(1):IF P$="Y" OR P$="y" THEN P$="Y":PRINT"Yes":RETURN
490 IF P$="N" OR P$="n" THEN P$="N":PRINT"No":RETURN

500 GOTO 480
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time step is multiplied by a given factor 1.2, in order to accelerate
the process. Experience with the program, on an IBM-PC, has shown
that it is working reasonably well, although it may be slow,
especially when using small space steps. Of course the calculation
speed can be improved by using a compiler, or an arithmetic
coprocessor.

For four values of tc/ta namely 0.1, 1, 10 and 100, the results
of the numerical solution are shown in Figure 6. Figure 7 shows the
approximate solutions obtained for the second order model by using
Schapery's inversion formula, and Figure 8 shows the results
obtained from the pseudo-exact model, again using Schapery's inver-
sion formula, but now on the basis of the exact expression for the
Laplace transform of the solution. All results apply to the point
X = A,

The numerical solutions shown in Figure 6 agree reasonably well
with the approximate solutions shown in Figure 7, which indicates
that the simple approximation by Schapery's formula is sufficiently
accurate. Again for large values of the ratio of the response times
of aquitard and aquifer a solution consisting of two waves (at least
on the semi-logarithmic scale used) is observed. This is probably
unrealistic, as can be seen from Figure 8, which shows the Schapery
approximation of the exact solution. Actually a better approxima-
tion to the true solution might be obtained by using a more refined
numerical inversion scheme, involving a series of terms rather than
the single term used here. The advantages of a simple analytical
result is somewhat lost then, however.

5. COMPLETE NUMERICAL SOLUTION

In order to compare the approximate results presented above,
in the Figures 7 and 8, with the exact solution a fully numerical
model for the complete system of aquifer and aquitard has been
developed. This model is again based upon the usual assumptions
that the flow in the aquifer is horizontal, and that the flow in
the aquitard is strictly vertical. The head in the aquifer is
approximated by a finite element scheme, and then in each node of
the network a vertical inflow (leakage) is entered from a vertical
column. The soil in this column (representing the aquitard) is
consolidating under the influence of the boundary condition on its
lower boundary. The column is subdivided into a number of one
dimensional elements (say 10). This means that the number of
unknown values of the head equals the number of nodes in the finite
element mesh, multiplied by the number of points in the columns.
This may be a rather large number, but because of the simple geomet-
rical structure of the system (see Figure 9), with horizontal connec-
tions only in the lower plane only, the system matrix can be set up
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in such a way that solution of the system of linear equations takes
advantage of that structure.

A numerical model for this problem has been written, again in
BASIC for the IBM-PC, using a finite element approximation in the
x,y-plane and a fully implicit finite difference approximation in
the vertical columns. The one dimensional problem considered in
the previous section can be analyzed by using a simple network of
a line of elements (as shown schematically in Figure 9). The results
are shown in Figure 10, again for the point x = A. The numerical
solution shown in Figure 10, which can be considered to be a close
approximation of the "true" solution, compares reasonably well with
the approximate solutions shown in Figures 7 and 8. It again
appears that the classical first order model is justified if the
storativity of the aquitard is less than the storativity of the
aquifer.

6. FLOW TOWARDS A WELL

An important problem is the case of radial flow towards a well.
In this case the simplest transient solution known is the solution
of Theis (14) for a well in a completely confined aquifer. This
solution can be considered to be a limiting case of the more general
system considered here, applicable for situations in which there is
no leakage, or when the permeability of the aquitard is so small
that it can hardly contribute to the flow in the aquifer. The
Theis solution is

1 f ,'r"'M il /’-

/; /"’
/ﬁ“' A
18
0 L&
0.01 0.1 1 10 100 1000 10000
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Figure 10. Aquifer-aquitard, numerical solution.
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¢ = (Q/41T)E; (S,r?/4Tt) (6.1)

where El(x) is the exponential integral, and Q is the discharge of
the well.

For the case of a leaky aquifer the first order solution, in
which the storage in the aquitard is disregarded, is due to Hantush

(9,
¢ = (Q/4TTIW(S, r?/4Tt,r/A) (6.2)

The function W(u,x) has been tabulated by Hantush, or can be
calculated by an appropriate numerical subroutine, which can easily

be programmed.

The approximate solution obtained from the second order or
pseudo—exact theory is of the form

¢ = (Q/27T)K (r/A) (6.3)
where Ko(x) is a (modified) Bessel function of order zero, and A is

the transient leakage factor, defined either by Eq. (3.11) for the
second order model, or Eq. (3.16) for the pseudo-exact model.

For four values of tc/ta’ namely 0.1, 1, 10 and 100, the

approximate solutions are shown in the Figures 11 and 12. These
results apply to the point r = A.
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Figure 11. Drawdown in radial flow, second order model.
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A good approximation of the complete solution can again be
obtained by the numerical model outlined in the previous section,
using a wedge shaped mesh of finite elements. The results of these
calculations are shown in Figure 13.

In Figure 13, the limiting solution for small values of the
storativity of the aquitard (Hantush's solution) is also shown,
indicated by the value "0". This indeed seems to be a limiting
curve of the numerical results.

The general shape of the approximate solutions is similar to
the shape of the numerical solution. This means that the approximate
solutions might well be used as a good indication of the behaviour
of the system.

It should be noted that the simple character of the approximate
solutions presented in this paper enables the application of super-
position of solutions, for instance for systems involving a large
number of wells, each perhaps with its own discharge function.
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7. CONCLUSION

Two approximate approaches for the analysis of non-steady
groundwater flow in a layered soil, consisting of a permeable aquifer
and an aquitard of low permeability, have been presented. Although
these approximations suffer from the unavoidable deficiency that
they are unable to describe the behaviour of the systems in all its
details, the solutions are an improvement on the classical first
order theory, in which the deformation of the aquitard is completely
ignored. Compared to the exact solutions available for simple
systems (11) or to a full numerical solution using a three-dimen-
sional finite element method, the present solutions are much simpler
to use. The concept of a transient leakage factor may be particul-
arly useful.
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ABSTRACT

The migration and capture of particles, such as colloidal
materials and microorganisms, through porous media occur in fields
as diverse as water and wastewater treatment , well drilling,
and in various liquid-solid separation processes. In liquid waste
disposal projects, suspended solids can cause the injection well
to become clogged, and groundwater quality can be endangered by
suspended clay and silt particles migrating to the formation
adjacent to the wellbore. In addition to reducing the permeability
of the soil, mobile particles can carry groundwater contaminants
adsorbed onto their surfaces. Furthermore, as in the case of
contamination from septic tanks, the particles themselves may be
pathogens, i.e., bacteria and viruses.

In this chapter, the equations governing the transport and
capture of suspended solid particles have been studied in two
categories. The first category includes transport and deposition
of particles in an established porous medium. In this category,
following the review of governing equations and various capture
mechanisms in deep bed filters, the transport equation for microbial
particles has been studied. For microbial particles, the governing
equation for bacterial transport is coupled with a transport equation
for the bacterial nutrient present in the suspension. The deposition
and declogging mechanisms are incorporated into the model as a rate
process for bacteria and as an equilibrium partitioning for viruses.

Formation of a cake by deposition of solid particles on a
filter cloth or on a previous cake constitutes the second category.
Following a literature survey, a governing equation for cake
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thickness is obtained by averaging the conservation of mass equation
for solid particles along cake thickness. Then, the resulting
equation is solved with known average porosity functions. 1In
addition to the balance equation for solid particles, the fluid

flow equation has been averaged and solved simultaneously to obtain
an expression for cake thickness. Furthermore, temporal

and spatial variation of pore liquid pressure across filter cake is
obtained with a variable total stress expression.

1. INTRODUCTION

The transport of suspended particles in a liquid through porous
media has great importance from the view point of engineering
practice and industrial applications. The migration and capture of
particles, such as powders and microorganisms through porous media,
occur in fields as diverse as water purification (101), waste-
water treatment, activated sludge processes (4), oil and water well
drilling (35,55), sugar and paper pulp drying, and in many other
industrial liquid-solid separation processes (102). 1In addition
to the filtration processes which separate solids in a liquid slurry,
the retention of suspended particles in drilling fluids in water
and oil well drilling operations is another important phenomenon
(55). The accumulation of these suspended particles on perforated
well screens causes a pressure drop, and sometimes causes the shut-
down of the well (60,118). By a similar mechanism, unwanted
perforations in a well case can be closed by squeeze cementing
operations (10). As noted by Avogadro and others (6,86), colloids
are released to geologic environments from radioactive waste
materials. In petroleum reservoirs, the use of diverting agents,
which are fine ground polymer or resin particles, requires the
employment of a wellbore model to simulate the behaviour of these
agents (42).

In addition to suspended solid particles, microbial particles,
such as bacteria and viruses, can be introduced to soils and ground-
water from septic tanks and cesspools or by land application of
municipal wastewater. Although some authors found the microbial
mass transport negligible for granular filters and soil-microbial
mass systems (e.g., Wollum and Cassel, 128; Sykes et al., 100), many
others considered the transport of microorganisms the most signifi-
cant, and used bacteria and viruses to trace groundwater movement
in much the same manner as chemical tracers are used. A review
presented by Keswick et al (58) finds that bacterial viruses appear
to be the microorganisms most suited as a microbial tracer because
of their size, ease of assay, and lack of pathogenicity.

The transport and capture of suspended solid particles in a
porous medium can be studied in two categories. The first category
is deep bed filters made of granular materials. Suspended
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particles in a slurry are accumulated onto the grains of an
established porous medium. The deposited particles decrease the
available pore volume, and change the geometry and the structure

of the medium and the nature of the grain surfaces. In constant
velocity filtration operations, pressure drop across the filterbed
increases due to the loss of permeability, and eventually, filtration
efficiency is reduced. Usually, this type of filtration technique

is used for liquid suspension with a particle concentration in the
range of 100 ppm. In constant headloss operations, the liquid flux
decreases during filtration. Formation of a cake by deposition of
solid particles on a filter cloth or on a previous medium constitutes
the second category. This type of filter media is known as filter
cakes. These cakes are compressible, and during filtration, the

cake is compacted while fresh solid particles are laid down on the
cake surface, thereby gradually increasing the thickness. This type
of mechanism which is used for concentrated slurries, causes a time-
dependent cake build-up. When the cake is deposited at the surface,
it has a high porosity and large liquid content. As a new filter
cake is built up, the previous cake surface passes into the cake
interior, and the liquid is squeezed out as the cake is compressed
during filtration. In this case, the cake is relatively less
permeable to permit the build-up of a head of slurry, and the liquid
flow through the filter cake does not approach steady-state condi-
tions due to changes in compaction and cake thickness. A schematic
representation of these two types of filtration is given in Figure 1.

The main objective of this primarily theoretical study is to
review and present mathematical statements of particle transport
and capture in porous media. We will consider both types of porous
media noted above. We should note that one possibility in modeling
particle transport in porous media is to treat the filter bed as
an assemblage of individual collectors instead of description by
phenomenological equations. The former leads to expressions for
isolated collectors which can be integrated to obtain expressions
for the entire assemblage. For a detailed discussion of this
approach, the reader is referred to Yao et al. (130) or Spielman
(96). On the other hand, phenomenological methods to be
reviewed in this chapter would yield partial differential equations
either at the microscopic or macroscopic level depending on the
size of the differential element of filter volume. Microscopic
level equations can be transformed to macroscopic ones by volume
averaging over the representative elementary volume. All
governing equations developed in this study are at the macroscopic
level. For a microscopic level treatment of filtration equation,
the reader is referred either to the paper by Willis (126)
or to Bear and Bachmat (8) in the previous volume.
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2. PARTICLE TRANSPORT THROUGH A FIXED BED (DEEP BED FILTRATION)

Deep bed filtration has been studied by various researchers.
Ives (48,50), Tien and Payatakes (103), Tien (102), Rajagopalan and
Tien (78), 0'Melia (75), Adamczy et al. (1), McDowell-Boyer et al.
(69), Sakthivadivel and Irmay (85), Spielman (96), Irmay (45) and
Herzig et al. (41) provide detailed reviews of various aspects of
deep bed filtration studies that include theoretical considerations.

As noted earlier, when a liquid (filtrate) carrying suspended
particles flows through an established porous medium, the particles
are transported to the surface of the filter grains (collectors).
Particles are captured on collectors by mechanisms caused by the
action of fluid-mechanical forces along with other forces
acting between the particles and collectors (96). Therefore, we
will first review these mechanisms.

2.1. Governing Mechanisms

To describe the dynamic behavior of deep bed filtration at the
macroscopic level, we make use of the conservation of mass equation
for suspended solid particles in a liquid flowing through a porous
medium, the conservation of mass equation for captured particles
on solid grains composing the filter bed, and particle capture
relationships for the deposition of suspended particles onto the
grain surfaces.

2.1.1. Transport mechanisms

The conservation of mass equation for suspended solid particles
in a single phase fluid flowing through a saturated fixed bed can
be expressed as

%‘;C) +R = - V.[Cq - nDVC - nD VC] + S (2.1)
where n is the porosity, C is the mass of suspended particles per
unit volume of liquid (filtrate), R_ is the rate of depositign of
particles on grains by various particle capture mechanisms, q is

the specific discharge vector, D is the coefficient of convective
dispersion, and D* is the coefficient of molecular diffusion. Both
D and D* are second rank tensors. Eq. (2.1) is known in the
literature as the equation of hydrodynamic dispersion. The term

Cq in Eq. (2.1) represents the convective transport. The dispersive
flux represented by nDVC exists only at the macroscopic level,and is
obtained by volume averaging of microscopic level equations. We
assume that the dispersive flux is expressed as a Fickian type law
as given in Eq. (2.1). The term S denotes the growth or decay of
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suspended particles. One possibility is the decay of radioactive
colloids or the death or growth of microbial particles.

The most common types of fixed bed filters wused in
engineering practice are rapid granular-medium filters, deep bed
filters, and slow sand filters. The first two types of filters are
essentially the same except for the depth of the filter bed and the
size of the filtering media. The latter one has a depth of 1-3
meters. Slow sand filters have a shorter depth with a removable sand
bed which is replaced when clogged. The filtration rate is in the
range of 2-5 liters/m®.min with a head loss from 0.05 m initially
to 1.25 m when clogged (101). The range of filtration rate in all
three types of filters justifies the assumption of plug flow.
Furthermore, Herzig, et al. (41) has noted that particle diffusion
is negligible when the particle size is larger than 1 micrometer
(see Fig. 2). With these assumptions, Eq. (2.1) would reduce to

3 (nC) >
+ R =-V.Cq + 8 2.2
ot a q (2.2)
107 T T T
® = Numerical solution Sedimentation /
Vo = 2gpm/sqft. atone (1) \

= 05mm
¢, =105 gm/cm3
=25°C

1079

Interception
alone (n,)

1073

Single collector etficiecy (n)

Diftusion ——

alone (np)

1074 L t
1072 1071 1 10 102
Size of the suspended particles ( micrometers )

Figure 2. Comparison of various capture mechanisms [after Yao et
al. (130)].
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At this point, we can introduce the conservation of mass
equation for captured solid particles. Assuming that the bed and
deposited particles are completely rigid, and there is no diffusion
in the solid phase, we can write

I(p o)
s - R_=S_ (2.3)
where p 1is the density of the particles and ¢ is the volume of
particles per unit volume of filter bed. It is also referred as
the "absolute specific deposit". SC denotes the growth or decay
rate of deposited particles. As a Special case, if we assume
constant particle density and neglect the growth or decay term, and
combine Eqs. (2.2) and (2.3), we obtain

QU
Q

9 (nC)
at

>
+ oq = - V.Cq (2.4)

(o)
(g

This equation is the widely accepted filtration equation in the
literature (e.g., Tien(102,103), Rajagopalan and Tien (78)). The
first term at the left hand side of Eq. (2.4),which describes the
rate of change of mass of suspended particles in a filtrate,can be
neglected due to the fact that "in a flowing process [through a
filter bed] the quantity of liquid contained within the bed is
usually small compared with the volume of liquid passing through
the bed" (101). 1In other words, moving particles are neglected in
comparison to captured particles. Gruesbeck and Collins (37) and
Deb (25) have included this term in their formulation to study
migration of fine particles in petroleum reservoirs. The assumption
stated earlier would be invalid in such an environment. As
an alternative to total omission of this term, Tien (102,103) has
introduced the concept of corrected time variable, 6' in an axial
flow filter as

where z is the vertical coordinate and q /n is the superficial
velocity of filter bed in the z-directiofi. Herzig et al. (41)
names 6' as "retention age". Then, (nz/q,) is the time required for
suspension to reach the bed depth z to replace the clear liquid
initially filling the porous bed. Then in terms of variables z and
', Eq. (2.4) becomes

oC + p 90 0 (2.5)

1, 3z s 90'
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Tien (103) has noted that '"the difference between t and 6' is
usually small [due to the length of filtration operations which
takes several hours]. However, it may become important in the
interpretation of data from small experimental filters'. For the sake
of obtaining a solution, as seen in Eq. (2.5), either C should

be expressed in terms of o or vice versa. Such a relation would
actually quantify the particle capture mechanism. The conservation
of mass equation given by either Eq. (2.1) or Eq. (2.5) with various
assumptions stated earlier is totally independent of particle
capture mechanisms. However, the relationship between C and o is

a function of physics of particle capture mechanisms and surface
properties of collectors,including the chemistry of surfaces and

the type of filtrate.

2.1.2. Capture mechanisms

As noted by Spielman (96), the capture mechanism of suspended
particles on grain surfaces of a porous medium is governed by
the combined effect of various forces of "fluid-mechanical origin'",
in addition to forces acting between the suspended particle and
grain which acts as a collector. Various researchers adopted the
collector approach and studied elementary mechanisms of particle
capture by utilizing idealized geometrical models of collectors
(i.e., spherical, cylindrical and constricted tube). Among them,
Payatakes et al. (76), Spielman and Fitzpatrick (97), Yao et al.
(130), Herzig et al. (4l1),and Ives (46) can be given as represent-
ative studies. For a review of particle capture mechanisms, the
reader is referred to Ives (49,50), Spielman (96), McDowell-Boyer
et al. (69), and 0'Melia (75).

The mechanisms of particle capture can be listed as straining,
sedimentation, interception, Brownian diffusion, inertial impaction
and hydrodynamic action. Once a suspended particle is brought to
the vicinity of a solid surface by one or a combination of these
forces, London-van der Waals forces and electrical forces at
interfaces which both act between the particle and collector
contribute to the attachment of particles colliding with collectors.
Furthermore, when the flow velocity is increased either locally by
microscopic changes or throughout the medium by filter operation,
the deposited particles can be detached from grain surfaces and
returned to suspension in the flow. This process is known as
detachment or reentrainment or decolmatage or scouring. At this
point, we should note that the particle capture process is also
known in the literature as colmatage or clogging. Following
Corapcioglu and Haridas (21), we will review these elementary
capture mechanisms briefly.

Straining in the contact zones of adjacent pores: Straining
takes place when a particle in suspension flowing through a pore
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is larger than the pore opening, resulting in the accumulation of sus-
pended particles on grains. Theoretically, a particle of any

diameter may wedge in a void between two grains; this is no longer
valid if the ratio of suspended particle diameter to grain diameter
is small, since it can be assumed that the particle lies on a surface
site due to some other mechanisms (e.g., surface forces) (41).
Although this process is not important in many filtration problems,
it has been reported to be one of several limitations for bacteria
traveling through soils (Krone et al. (61), Krone (62) and Gerba

et al. (33)). To estimate the significance of this effect, Herzig

et al. (41) gave the following expression for the volume of deposited
particles with uniform shape per unit volume of total porous medium
based on purely geometric considerations:

3
(l—no)TrZ(d/dg)z[(l+d/dg)2—l] (2.6)
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where n_ is the initial porosity; d and d_ are suspended particle
and grain mean diameters, respectively; atld Z is the coordination
number which indicates the interconnectedness in the network of a
porous medium. Herzig et al. (41) have shown that for n = 0.40

and Z = 7.0, the retention by this mechanism is important if

d/d_ > 0.05. For bacteria with d = 1 pm and silt with a mean grain
diaﬁeter, 0.01 mm, Eq. (2.6) would give ¢ = 3.02%7 which is not a
negligible amount. For very small particles such as viruses, the
limit could hardly be reached. For a polio virus with a mean dia-
meter of 0.01 um in the same soil, it would give o = 3.10'5Z,which
is practically negligible. Therefore, for large particles,the
effect of straining should be taken into consideration, but for
colloidal particles, the effect of straining can be neglected.

Sedimentation in the pores: Gravitational deposition on grains
can occur if the particles have a density different from that of the
liquid. Due to their extremely small size, viruses and some bacteria
are neutrally buoyant and therefore do not tend to settle. Then,
any term in the conservation of mass equation characterizing the
effects of gravitational settling can be neglected. But, Gerba
et al. (33) reported that the sedimentation could be a mechanism of
removal for some large bacteria. Yao et al. (130) noted that
gravitational settling plays a significant part only in the capture
of relatively large particles ( > 5 micrometers) (Fig. 2); for these
particles the removal efficiency is proportional to d?. The
gravitational velocity as expressed by Yao et al. (130) can be
used as a criterion to measure the significance of sedimentation:

vy = (l—pw/ps)(mdg/Bﬂuwd) (2.7)

where Pgs d and m, are the density, diameter and mass of the

d
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particles, respectively; and Py and u, are the density and viscosity
of the water, respectively.

Interception: Even with exactly the same density as the fluid,
some suspended particles, owing to their large size, would not be
able to follow the smallest tortuosities of the fluid streamlines,
and they will thus collide with the walls of the convergent
areas of the pores.

Brownian Diffusion: Colloids, like bacteria and viruses, also
partially rely on Brownian motion for their movement. Brownian
motion is a random motion, caused by the thermal motion of molecules
following their collision with other molecules or with colloids.

The mass discharge of colloids, JB, by Brownian motion is expressed
by

>
J, = - DB nVC (2.8)

where C is the concentration of the particles and D_, is the diffusion
coefficient of the suspended particles, which could be estimated
by the Stokes-Einstein equation:

Dy = ka/Bwuwd (2.9)

where k,_ is the Boltzman constant (energy per degree); T is the
absolute temperature; uyis the fluid viscosity; and d is the
diameter of the particles. Smaller particles are collected more
efficiently due to their greater Brownian motion. Yao et al. (130)
have shown that for suspended particles smaller than 1 um, removal
efficiency increases with decreasing particle size which is
accomplished by Brownian diffusion. Many bacteria (7-0.2 um) and
viruses (0.5-0.01 ym) in soils are within this range. In deep bed
filtration, the diffusion process is neglected when the particle
size is larger than 1 u. McDowell-Boyer et al. (69) calculates

= 4.3%x10~9 cm?/sec for 1 ym diameter particles in water at 20 C.
TEey conclude that although it is a small number,it can be
significant within soil pores. Avogadro and deMarsily (6) have
noted that due to Brownian diffusion colloidai particles may move
with an average velocity that is faster than that of water in ground-
water. This is known as hydrodynamic chromatography.

Inertial Impaction: I1f the particles are massive enough, the
inertia will force them to collide with the grain instead of
following the flow streamline. This type of mechanism is determined
by the Stokes number

St = mdU/6wapuwa (2.10)
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where U is the superficial velocity, a is the collector radius,
and a_ is the particle radius. For liquid-borne particles, S _ is
very Small because My is large (Spielman, (96)).Therefore, inertial
impaction is important for gas-borne particles only.

Hydrodynamic Action:This type of capture mechanism is caused by
a non-uniform drag force on particles due to varying shear field.
Ives (49) has noted that this phenomenon has been observed for
different Reynolds numbers in a flow field. As noted by 0'Melia
(75), in many studies hydrodynamic retardation was neglected based
on the assumption of balance between the hydrodynamic drag increase
and Van der Waals forces. But when interception and gravitational
deposition are important, hydrodynamic retardation reduces the filter
bed removal efficiency by 107 for suspended particles with a radius
of 1 um (75).

Surface forces which include London-van der Waals and electri-
cal forces,contribute to the attachment of particles to the collec-
tor surfaces. The van der Waals forces, also called secondary
bonds or intermolecular forces, are the result of the mutual interac-
tion of electrons and nuclei of molecules or atoms. Although Van
der Waals forces are always attractive, the electrical forces can
be either repulsive or attractive depending on the surface charges.
Sharma et al. (88) has shown that there is an excellent correlation
between surface charge alterations and bacteria transportability in
sandpack columns.

When suspended particles accumulate on the grain surface, the
straining effect increases with particle accumulation and eventually
captured particles behave like a filter and remove finer particles.
When the accumulations grow and become unstable, clusters break off
which are transported by the flow and may be removed by straining
and sedimentation. When the clusters break off, particles saturate
the straining sites below, and the saturated front progresses
(61). The rate of removal depends on the flow rate, size and
density of the particle clusters. The deposition of the suspended
particles by various mechanisms and sloughing off clusters
(declogging) are usually simultaneous and caused by changes in the
flow field.

In practice, the particle capture mechanism takes place with
more than one particular mechanism dominating the filtration process.
The superimposed equations of motion of the mechanisms listed
above will yield equations predicting the particle trajectory at
the microscopic level. However, such an approach is theoretically
more rigorous; its usefulness 1is limited in solving a macroscopic
equation such as Eq.(2.5). Instead, empirical equations can be used
to express ¢ in terms of C or vice versa, and the parameters of
such a relation can be determined by functional relations obtained
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by theoretical considerations. Such an approach is similar to
using mathematical relationships to describe the sorption of
reactive solutes by soil grains. A survey of mathematical sorption
relationships can be found in Travis and Etnier (115); their review
of equilibrium models of adsorption processes include the
linear, Freundlich, Langmuir and others. First order kinetic
sorption models include reversible linear, reversible nonlinear,
kinetic product,and several others.

Equilibrium sorption isotherm developed by Langmuir to
quantify the adsorption of gases by solids has very limited use in
particle capture mechanism in porous media. Various studies such
as Drewry and Eliassen (29), Filmer, et al. (31), and Burge and
Enkiri (13) have shown that data on capture of viruses by soils
were found to fit a Freundlich isotherm,and were not describable
by a Langmuir isotherm. Despite this general consensus, Cookson
(16) has utilized the Langmuir isotherm in his study for virus
removal through packed beds. Saltelli et al. (86) utilized the
following form of Langmuir isotherm to study the filtration of
microcolloids such as anionic Am(CO ~ or cationic Am(HCO3)2+ in

glauconitic sand columns. 372
_ ulC
C = T+0.C (Z.ll)
2

where C is the dimensionless concentration of captured microcolloids,
a, is a measure of the bond strength holding the microcolloids on
t%e grain surface, and the ratio (a /az) is the maximum amount of
microcolloids that can be captured %y the grains. The Langmuir
isotherm given by Eq. (2.11) has been employed to explain the
observed early adsorption of Americium colloids,in addition to a
second order kinetic model to explain capture mechanism. In other
words, Eq. (2.4) would yield to

3 (nC)

C >
00 4o [ B - (2.12)

It was assumed that the parameters of Eq. (2.11) are independent
of the parameters of 9g/9dt.

The use of equilibrium models like Langmuir isotherm requires
that the two-phase system (liquid-solid) is at equilibrium after a
sufficient time period so that the concentrations C and ¢ are
constant. However, equilibrium is not easily obtained in filtration
columns,or when non-colloidal suspended particles migrate in
natural soils. In this case, it is much more appropriate to use
a kinetic model to describe the particle capture mechanisms.
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Sorption-desorption relationships for reactive solutes in soil are
usually represented by first order reversible linear models which,
in general, can be expressed as

2% -k, S‘ C - kyo (2.13)
s
where k. and k, are sorption (clogging) and desorption (declogging)
coefficients,f8” is the volumetric water content (6=n when the soil
is saturated with water), and pgis the particle density. In terms
of particle capture mechanism, Eq. (2.13) states that the rate of
particle capture is proportional "to the difference between what
can be [captured] at some concentration and what has already been"
[captured] (115). 1In sorption studies, usually k., and k., are
constants. But, in filtration studies, not only the state of the
collector surface, but also the concentration of suspended particles
participate in the deposition reaction. Therefore, the rate of
deposition is faster than the one expressed by a first order linear
model. Then, in a most general way, we can write a higher order
model as

00 _
Tt w(fl,fz,fB,.....,fn) (2.14)
where £ .... fn are the variables governing the capture mechanism,
for example;

f,=c (2.15)
f,=0 (2.16)
f3 =q, (2.17)
£, =n (2.18)
fo = o (2.19)
f6 =8 (2.20)

By any means, this list is not comprehensive. Any other variable
which governs the capture mechanism can be included,provided that
a functional form of y can be obtained either experimentally or
theoretically. Obviously, the dependence of ¢y on C and o is
fundamental due to the change in particle concentration during
filtration and change in grain and pore characteristics by deposi-
tion.
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By rewriting Eq. (2.5), we obtain

p
90 aC
36" " 32 (2.21)
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In 1937, Iwasaki (52) for slow sand filters and later, Ives
(46) for rapid sand filters have assumed that the amount of captured
particles within the filter at a depth of z is proportional to
particle concentration. This may be written as

¢ _ _ e (2.22)

The proportionality parameter X is known as the filter coefficient
in the literature. It is usually assumed that A is a function of o
and independent of C due to change in pore geometry. Tien (103)
notes that the change of C with z is initially linear,and as time
increases, a non-linear behavior is observed. 1Iwasaki (52) assumes
that

A= Ao + Ao (2.23)

where A is a constant and A is the initial clean filter coefficient.
A is a function of local vglocity, grain size, and density of
particles. An empirical clean filter expression assuming additive
particle capture mechanisms by Brownian motion, interception, and
gravitational sedimentation is available in the literature (69).

ud d .15/8

*
4’3 (—55)’2/3+ 0.56A(—é——)1/8(d )
g B nud2U g
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(2.24)
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*
where A is the Hamaker's constant, VS is the Stokes settling
velocity, and

1-(1-m)°/3

1/3

A=
5/3_ (1-n)?2

1- 2(1-m '+ 2(1-n)

A general nonlinear relation could be written as (103)
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A= AO¢(0,Qi) (2.25)
A general form of ¢ has been suggested by Ives (40) as

B B
_ * g 1. *9 2, o
= (LB ) (1-8° =) “(1- -

[¢] (e} max

B

) 3

(2.26)

where 8., B,, B, are constants, n_ is the initial filter porosity,
g* 1is t%e b%lking factor, and B i$ the packing constant. Ives (50)
stated that "The first term is based on the changes in geometry

of a spherical grain due to accumulating deposit, and accounts for
the initial rise in filter efficiency [ripening state] which is
observed in practice [due to larger surface area, see also the
initial increase of X with ¢ in Fig. 3]. The second term is based
on the intermal coating of a cylindrical capillary, reducing the
surface area. The third term is derived when the interstitial
velocity reaching [increasing] a critical value at ¢ when no
further deposition takes place." [rate of detachmentmgéuals that
of adherence]. Existence of critical velocity above which no
particle deposition occurs has been experimentally verified by
Maroudas and Eisenklam (64,65). The bulking factor 8* is defined
as

8" = 1/(1-n,) (2.27)

where n, is the porosity of deposited particles. Then, the porosity
of the filter bed would be

n=n -8g0 (2.28)

as the pores become clogged with deposited particles. Herzig et
al. (41) suggest that since particle concentratiions in deep filtra-
tion are quite low, n in tEq. (2.4) can be replaced by n_.

When o reaches o , the filter coefficient reduces to zero,
then complete shutoff"6% the filter is reached. Usually o
varies from 0.2n to 0.4n (72). Various functional forms 3
reported in the literature are listed in Table 1. A graphical
comparison of these expressions are given in Figure 3. Wright(129)
notes that as seen in Fig. 3, even though the filter coefficient
increases initially, it will decrease after some time due to
particle deposition.

Sakthivadivel (84) has proposed an expression for A,considering
also the dependence on C

A= (L a*(o+nc/ps)] (2.29)
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Ives (46)
ackrle et al. (63)

Ives (50)
Diaper and Ives (26)

A Shekhtman (91)
Heertjes-Lark (40)

Figure 3. Variation of the filter coefficient,A according to
various researchers [after Ives (48)].

Table 1. Functional Forms of X as Compiled from Ives (48)

Researcher Expression for A
* *2 2 *
Ives (46) AO + aB o - bB "o (nO—B o)
* %y * %y
Mackrle et al. (63) Xo[l + a'B o/no] [1 -8 O/no]
* 2

Diaper and Ives (26) Ao - a"B o
Maroudas and Eisenklam (64) A [1 - o0/0o ]

o max

Shekhtam (91)

*
Heertjes & Lerk (40) ko[l -8 O/no]
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*
where a is a constant. Eq. (2.29) is erroneous since only captured
particles can affect the filter coefficient due to the change in
pore geometry (41). Suspended particles would not have any subs-
tantial effect on this phenomenon.

As noted earlier, if the declogging (colmatage) and clogging
mechanisms are simultaneous, the rate equation proposed by Mints
(70) can be utilized

90 _ *
At qz)\o C/ps oo

(2.30)

where a* (=k, in Eq. (2.13)) is the scour coefficient. The first
term is the particle capture rate, whereas the second one represents
the declogging rate. When the limit condition is reached, i.e.,

g =g , 306/9t = 0 and C = C is the inlet concentration at the
filtetbed surface. Then

* qzxoco
0 = —

9]
pS max

*
This implies that a 1is constant. However, Ives (40) notes that
the experimental evidence is against such an implication.

Although head loss has an effect on the rate of deposition,
with the exception of Adin and Rebhun (3), it has been generally
neglected in filter coefficient expressions. They proposed

* 3H
- o)C/pS -ao0 o (2.31)

dg _ !
at kl qz(om

|
where k. is a deposition coefficient, 3H/8z is the hydraulic
gradien% along the filter bed and approximately a linear function
of 0(50). Adin and Rebhun note that hydrodynamic shear forces
acting on captured particles are represented by the hydraulic
gradient.

ax

Wnek et al. (127) present a model which contains no empirical
factors to be determined from filter runs. The effect of forces
between the collector and the particle due to electrical double
layer and Van der Waals interactions was introduced to the formula-
tion by treating the collector surface with first order reaction
kinetics. The rate constant is taken as a function of the stability
ratio of colloid chemistry.

Gruesbeck and Collins (37) introduced a conceptual partitioning
of the pore space into two classes which they call plugging and
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non-plugging pathways. For the volume of deposited particles in
the non-pluggable pathways, Onp

npo__JF u + g 2.32
5e - - % ¢ np ) %np B, C (2.32)

where Un and U_are the volumetric flux density of fluid flowing
through Eon—pluégable gathways and the critical volumetric flux
respectively. al and B] are dimensional constants. The first term
on the right hand side is zero for U < U . In the pluggable path-
ways they assumed that the volume oanlug 8eposits, 0_increase as
the rate of deposit increases. P

9

_E= * *
sro = (vy + 8 0)UC (2.33)

where U_ is the volumetric flux density of fluid flowing through

the pluggable pathways. yi and 6; are dimensional constants. We
should note that
*
no = no[f Op + (l—f)onp] (2.34)

*
where f 1is the dimensionless fraction of pore space containing
pluggable pathways.

Maroudas (67) has shown that based on data obtained earlier
(66), two different modes of deposition lead to entirely different
forms of A. The blocking mode of deposition,which is assumed to
be applicable to granular beds and to suspensions of particles
under comparable conditions of shape and size range,results in the
blocking of flow paths; the ratio between the porosity, n, and the
surface area available for deposition per unit volume of bed, s
remains constant. Then,

3C _ sy L
32 (Kl n) C (2.35)

where K, is the volume fraction of particles depositing in unit time
per unit area. The quantity within the paranthesis is constant.
However, if the deposition results in the gradual constriction of
flowpaths rather than in blocking, the product of the porosity and
velocity remains constant during the run,while the surface area
available for deposition may vary, Then,

— = - (n—-)sC (2.36)
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The connection between the macroscopic equations considered in
this chapter and the microscopic properties of individual filter bed
elements is introduced by Rajagopalan and Tien (78). They assumed
that, since the physical dimension of each unit bed element, &, is
always small, A is constant over this distance. Hence, they
obtained

A= - [3(l-n)/2dC] tn(l-n) (2.37)

where dC is the collector diameter and n is the filter efficiency,
which is the ratio of amount of particles captured to the amount
in the feed. n is usually in the order of 10-3.

Various researchers have used statistical techniques to model
particle transport in porous media. Donaldson et al. (28) developed
a random walk model using Poiseuille's capillary flow equation and
the actual pore size distribution to calculate the pressure drop
across the core. Particles are selected using a random number
generator and the actual particle size distribution. Travis and
Nuttall (114) and Nuttall (73) have solved the population balance
equation with log-normal population density distribution for the
mass concentration of colloids.

Khilar et al. (59) developed a capillary model to predict
piping and plugging of clay particles. Their model included mass
balance equations for eroding particles in water and in solid phase.
Khilar et al. considered convective transport, rate of erosion, rate
of capture,and rate of change of mass of suspended clay particles.
The rate of erosion term was assumed to be proportional to the
difference of flow rate and shear stress at a pore wall. The
capture term is proportional to suspended particle concentration
through a coefficient, which is in turn proportional to the flow rate.

2.1.3. Solutioms of filtration equations

There are various attempts to simultaneously solve the conserva-
tion of mass equation for suspended particles with the rate
equation. In some cases, a close form analytical solution is
possible for simple rate equations. For others, numerical techniques
can be applied.

The simplest solution can be obtained by integrating Iwasaki's
(52) equation

= = - AC V (2.22)

The solution for a constant A = AO and C(z=0)=CO would be

C = CO exp(—XOz) (2.38)
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Shekhtman's (91) and Heertjes and Lerk's (40) model

= }\O(l—B*c/nO)C (2.39)

can be simultaneously solved (48,50) with
2’—(5+qs-a—9= 0 (2.40)

Eq. (2.40) is identical to Eq. (2.5) except the fact that 8' is
replaced by t

*
exp(A B q C t/(np ))
C o z 0 0's
- - (2.41)
o exp(koz)+exp(XOB Coqzt/nops)‘l

*
exp(A B q C t/(np))
(o) Z 0 O s
- - = ) (2.42)
) exp(koz)+exp( B qzCOt/(nODS)—

’J,Q

Diaper and Ives (26) obtained various analytical solutions which
are reviewed in Ives (50) for different conditions. Furthermore,
as shown by Ives (48), the Mint's Equation [Eq. (2.30)] yields to

32¢C 3C %3
otoz + Xo 3t toa

a

I

=0 (2.43)

[oR)
N

by differentiating Eq. (2.30) and substituting Eq. (2.40). The
exact solution of Eq. (2.43) is given by Ives (48) as

*

gt X Ii[()\oza*t)%] (2.44)

o o

*
= exp —(Aoz+a t)
o i

0,0
I ™8
~~~

where Ii is the modified Bessel function of the first kind of order
i. Ives (48) has shown that Mint's (70) solution is an approximation
to Eq. 2.44. Hall (38) assumes that some particles deposited on
grains creep slowly over the grain surfaces at a rate q' under the
combined effect of pressure gradient and shear stresses. This causes
the progress of saturated front deeper into the filter bed. Hall's
approach is an alternative representation of declogging mechanism in
the filtration equation instead of rate equation (Eq. 2.30). Then,
Hall proposed the following equation
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90 aC ds

o oL v 95
st T4, 5, TP 3¢ =0 (2.45)

P
where the last term denotes the creep flow.

Sakthivadivel and Irmay (85) provide a detailed review of
Shekhtman's (91) development of a governing equation for o

329 % 32g B* 30 d0 A* 30
TR A i i el T (249
zZ o] B (qz/no)

*

where A 1is a dimensional constant. Eq. (2.46) is a non-linear
hyperbolic one, and solved by Shekhtman by the method of characteris-—
tics.

Irmay (45) notes that Sakthivadivel (84) also obtains a
hyperbolic nonlinear equation for o

3%0 2 90 _ 30 3o
R R (2.47)

where a is a dimensional constant. Sakthivadivel (84) obtained a
numerical solution agreeing fairly well with experimental data.

Herzig et al. (41) obtained a rate equation based on
probabilistic analysis of the filtration mechanism

90 _ ¢* 4 ¢/ K (2.48
FY Pg = B0 -48)

* *
where K. and K, are dimensional probabilities of clogging and
declogging respectively.

o1 30 . -
Kl_nc/ps( ) s K

Q|+

30
( TS ) (2.49)

Herzig et al. shows the existence of a clogging front moving at a
velocity of qZC/(pSO)

Since the governing equations of filtration processes are
hyperbolic, the method of characteristics has been employed to
solve them by various researchers. Ring (81) has employed a simple
numerical technique to solve resulting first order equations. Among
others, Hsieh et al. (43) and Adin (2) can be noted. A general
trend of resulting solutions can be represented graphically as shown
by Ives (50) in Figure 4.
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The solution of filtration equation critically depends on the
type of rate equation to be used. Wright (129) shows that in
general rate equations can be represented by

00 _

3 mlC + mzoC + m3(7+ m, f(o)C (2.50)
Wright notes four possible cases in use (i) m, > 0, m, = 0, my <0,
m, =0, (ii) m > 0, m, < 0, my < 0, (4ii) m, > 0, m, < 0, m, = 0,and
(iv) m; > 0, m, > 0, m; = 0, m, < 0. The first three correspond to

reversible rate equations (Egs. (2.30), (2.31), (2.48)), and the
last one represents an irreversible reaction (e.g., Eq. (2.35) or
(64),(91), and (40)).

2.1.4. Pressure drop due to deposition and permeability reduction

Due to clogging, the permeability of the filter bed reduces,
and pressure drop Ap builds up, reducing the efficiency of the
filter. Various empirical formulas are reported in the literature
to calculate the pressure drop as a function of deposited particles.
They all alter the porosity terms in the permeability expression of
the Kozeny-Carman equation. Ives and Pienvichitr (51) present a
theoretical development and proposes the expression

n
bp _ oo 2
o (1-n,t) (2.51)

(0]

where Apo is the initial pressure drop along the filter bed, and
ny and n, are constants; n, can take either sign. A review of
various expressions are givVen by Ives and Pienvichitr (51).

The permeability reduction due to clogging by captured
particles is the subject matter of numerous studies. 1In
petroleum engineering, bacteria and/or colloidal particles commonly
found in water injected into oil-bearing formations to increase
recovery might cause plugging of the adjacent formation (7,79).
Sharma et al. (88) wused a statistical approach and general popula-
tion balance equations to model the entrapment of fines at pore
throats. The equations are solved for open pore densities and
size distributions and based on these solutions,the permeability
has been calculated. Swartzendruber and Uebler (99) have obtained
an equation for hydraulic conductivity as an exponential function
of the volume of suspension inflow,with a clogging coefficient based
on the data obtained by Uebler and Swartzendruber (116). Since
Uebler and Swartzendruber's data are obtained with constant
difference in hydraulic head, the expression derived is valid under
this condition. Their expression is given by

K = Ks exp[-CV/A(H+D ] (2.52)
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where K is the hydraulic conductivity, A is the cross sectional
area, V is the cumulative volume of flowing suspension, H is the
depth of water on the top of the sand column, L is the length of
column, and C is the clogging coefficient. When V=0, K=KS.

Gruesbeck and Collins (37) assumed different approximate forms
for permeability in the pluggable (kD) and non-pluggable (kn )
pathways, which are expressed by Eqs. (2.32) and (2.33)

* 4
kp = kpi exp(—al op) (2.53)

*
knp = knpi/(l+bl Onp) (2.54)

* *
where k ., k ., a, and b are phenomenological constants to be
A npi 1 1
specified.

Wright (129) has suggested a cubic expression to estimate the
hydraulic conductivity in terms of specific deposit o and
theoretical filter capacity,F, denoting the amount of retained
material per unit volume of filter bed that could clog the pores
completely

K=Ko(l - Yo/F )3 (2.55)

where KO is the initial value of hydraulic conductivity.

2.2. Transport of Bacterial and Viral Particles

Microbial particles such as bacteria and viruses enter soil
and groundwater through various ways, such as by land application
of wastewater or through the septic system. Rain infiltrating
through sanitary landfills and artificial recharge of groundwater
aquifers by treated sewage water are additional sources. While
natural processes can, in some cases, help to reduce the pollution,
some biological contaminants can travel considerably through the
earth.

A literature survey presented by Corapcioglu and Haridas (21)
shows evidence that microbial contamination of groundwater does
occur when human wastes enter into the soil,and that microbes
under proper conditions can travel long distances in groundwater.
Romero (82) reviewed various case studies of microbial groundwater
pollution until 1970. Butler et al. (l4), Hagedorn (39), Vaughn
et al. (117), and Smith et al. (95) studied the underground movement
of bacteria and viruses in soil columns and in pilot scale field
studies. Gerba (34) and Keswick and Gerba (57) investigated the
factors affecting the migration and survival of viruses in ground-
water. They conclude that bacteria may travel little more than
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5 feet in moist or dry fine soil, but will travel much further
through such means as root channels and rodent holes. Zyman (131)
studied the migration of organisms in sludge-soil mixture columns,
and reported that heavy rainfall rates appear to promote significant
vertical migration of viable indicator organisms to the bottom of
the 20.3 cm columns. Zyman also noted an increase in die-off rates
due to an increase in desiccation.

The transport of bacteria through porous geological materials
has received attention from various researchers due to its
significance in microbial enhanced oil recovery (53,54,90). This
tertiary recovery process is achieved through injection with
nutrient,followed by a period of static incubation during which
cells multiply and migrate. Jang et al. (54) has found that
bacteria can migrate 1 ft/day through the sandpack columns saturated
with nutrient broth. Jang et al. (53) have shown that the presence
of 0il in the sandstone core can facilitate bacterial penetration.
Furthermore, they have shown that certain types of bacteria (e.g.,
B.subtilus) due to the phenomenon called chemotaxis, can migrate in
nutrient saturated Berea sandstone cores without applying any pres-
sure gradient.Laboratory experiments have shown that the adsorption
of bacteria becomes an important factor in bacterial transport,
provided that the rock has a high permeability and the inflow
bacterial concentration is low. Otherwise, a filter cake develops
at the inlet surface with a decrease in effluent bacterial concent-
ration. Sharma et al. (88) found out that the use of polyanionic
species alters the surface charges on sand grains as well as
bacteria. This charge alteration causes facilitated transport of
organisms through a porous medium.

Although the problem has great practical importance, the
mathematical statement of the phenomenon has been attempted only
in a few recently published studies. The first conceptual model
for bacterial movement in soils was presented by Matthess and
Pekdeger (68). Later, Sykes et al. (100) presented a model to
predict the concentrations of leachate organics, measured as
chemical oxygen demand in groundwaters below sanitary landfills.
Simultaneous substrate utilization and microbial mass production
equations, with convection and dispersion included for the former,
are used for modeling biodegradation. The only processes considered
for the latter are microbial growth and decay. None of these
modeling studies presents a complete picture of the phenomenon,that
is, complete coupling of microbial and substrate mass conservation
equations, transient conditions, convective transport of microbial
population, etc. The migration of viruses in soils and groundwater
has been studied by Vilker(119) and Grosser(36), by using the
conventional solute transport equation with a retardation factor
due to viral adsorption. Although Filmer et al. (31) have used an
equation similar to Eq. (2.5) to simulate viral transport in soils,
Filmer and Corey (30) have utilized a diffusion equation. Corapcioglu
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and Haridas (22) recently presented a coupled mathematical model
for the transport and fate of bacteria and viruses in soils and
groundwater in the presence of a substrate. The model is designed
to predict how long a given population of microorganisms can live
in soils and how far they can spread while they are alive.

2.2.1. Biomass transport

The details of the following mathematical model can be found
in Corapcioglu and Haridas (22). Here we will repeat the basic
steps of the derivation.

We start with the macroscopic mass conservation equation for
suspended microbial particles in porous media,

R +20C9 -y Fir, 4R (2.56)
a Jt d g
f f
where C is the concentration of suspended particles (bacteria or
viruses), R_1is the rate of deposition of particles on grains, Rd

and Rg are®the decay and growth terms of the suspended particlesg

respecgively, and 6 denotes the volume occupied by the flowing
suspension per unit total volume. Some of the removal mechanisms
of bacteria and the transport processes are summed up in the term
denoted by J, which is the specific mass discharge of suspended
particles.

2.2.2. Microbial capture

The capture of suspended microbial particles from water passing
through soil are dominated by mechanisms discussed in section
(2.1.2). The important ones for the capture of bacterial particles
are straining and sedimentation. Due to the very small size of
viruses and microcolloids such as Americium particles, adsorption
is the major removal mechanism.

The accumulation of bacteria on grain surfaces forms clusters
called dendrides. The straining effects increase with dendridic
growth, resulting in further growth, until the clusters become
unstably large and break off. The rate of removal depends on the
flow rate and the size and density of the bacterial clusters (61).
If the deposition (clogging) of the bacteria by various mechanisms
(straining and sedimentation) and sloughing off of clusters
(declogging) are simultaneous, the conservation equation for the
deposited material may be written as

—=Ra+Rd +Rg (2.57)
S S
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where R and Ry are the growth and decay terms respectively in

S, s . . . .
the deposited state, P is the density of bacteria,and o is the
volume of deposited bacteria per unit volume of bulk soil. The
term Ra can be expressed by a kinetic equation

h
Ra = kc(n—o)C - kypo (2.58)
where k and k are the clogging and declogging rate constants
respect%vely, dnd h is a constant. Eqs. (2.57) and (2.58) are
similar to Eq. (2.30) proposed by Mints (70).

In the case of viruses,since adsorption is the major removal
mechanism, Eq. (2.57) should be replaced by

al

apC _

5c - fa TRy (2.59)

s
where C is the mass of adsorbed phase per unit mass of the solid
part of the porous medium and is related to C by an equilibrium
isotherm. Note that Rg = 0 for viruses, since viruses reproduce
s

only inside an appropriate host cell.

Adsorption of viruses relies heavily on various factors (33):
(a) the physical and chemical nature of viruses and (b) the pH of
the solution, (c) the characteristics of the flow, and (d) the degree
of saturation. Soil type, ionic strength of soil solution, amount
of organic matter and humic substances are all considered in the
first category. High salt content in groundwater would increase the
adsorption due to double layer compression. Also, it is usually
agreed that fine-textured soils like clay retain more viruses (11,
12,29,33) and bacteria (39) than do sandy soils. Increasing
adsorption occurs with the reduction of pH below 8.0 and with the
addition of cations, especially the divalent species (11). It was
also concluded that retention mechanisms by soil were due to an
adsorption mechanism which increases with decreasing soil moisture.
Bitton et al. (12) critically examined the various methods frequently
used to assess soils' potential to retain viruses.

As noted earlier, various studies (29,31,13) have shown that
adsorption data of viruses to soils were found to fit a Freundlich
isotherm, and were not describable by a Langmuir isotherm.

In summary, due to surface and electrokinetic forces, R 1is a
. . .9 . a
rate-controlled reaction for bacteria, and an equilibrium controlled
reaction for viruses.
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2.2.3. Chemotaxis and tumbling of bacteria

The land application by primary treatment effluent or the
seepage of raw sewage water from septic tanks can provide enough
substrate concentration to support the microbial activity in soil
and groundwater. In solutions like wastewater existing substrate
concentration gradients stimulate response from microbes. Some
microbes move systematically toward a richer food supply, and this
motion, induced by the presence of a solute gradient, is termed
chemotaxis.

The chaotic, random movement of motile bacteria which was
referred to as "tumbling" (56), gives rise to an effective diffusivity
or motility coefficient D,,. The random movement may be assumed to
be superimposed upon any systematic migration induced by substrate,
so the two effects (random and systematic) may be considered to be
additive. ©Note that although this random motion is a sign of
vitality, the Brownian motion is exhibited by any particle. Keller
and Segel note the additive property of Brownian and chemotactic
particle migration by saying that "the chemotactic response of
unicellular microscopic organisms is viewed as analogous to
Brownian motion. Local assessments of chemical concentrations
made by individual cells give rise to fluctuations in path. When
averaged over many cells, on a long time interval, a macroscopic
flux is derived Wthh is proportional to the chemical gradient.'

The total flux J due to chemotactic movement and tumbling, can
be expressed by tge following equation (24)

Jop = 8(C k¥ g Cy- Dy . VC) (2.60)
where k is the migration rate constant, is the substrate
concentratlon, and D, is the motility coef¥1c1ent Chemotaxis is
reported in nutrient saturated sandstone columns by Jang et al.
(53,54). Since the anatomy of viruses is very different than that
of bacteria, chemotaxis is irrelevant for viruses.

2.2.4. Decay and growth of microbial particles

Gerba et al. (33) conclude that in most cases, 2 to 3 months
is sufficient for reduction of pathogenic bacteria to negligible num-
bers once they have been applied to the soil. The decay mechanism
of viruses is similar to that of bacteria, but certain types which
are more resistant to envirommental changes might survive longer
(1 to 6 months) than their bacterial counterpart. Gerba et al. (33)
also conclude that the survival of the enteroviruses in soil is
dependent on the nature of the soil, temperature, pH,and moisture.

The death of microorganisms is expressed as an irreversible
first order reaction, for bacteria
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Rd = - kd 6C H Rd = - kd po (2.61)
£ s
and similarly for viruses
Rd = - kd(GC + pC) (2.62)

where k, is the specific decay rate, Ry, is the decay term in free
state in water, and R is the decay rate in adsorbed state. We
assume that kd is the S same in free and adsorbed states.

Bacterial growth occurs with the utilization of the substrate.
The growth of bacteria is assumed to follow the Monod equation (71).
This equation describes a relationship between the concentration
of a limiting nutrient and the growth rate of microorganisms. As
stated earlier, nutrients needed for proper biological growth can
be present in a sewage water. Bacterial growth in a subsurface
environment is slow,and the Monod equation may be safely used.
Similar to the decay process, we assume that bacteria can grow at
the same rate in the deposited state as well as in the suspension.
A generalized Monod equation can then be written as

R = u6C R = upo (2.63)
gs 8,

where p is the specific growth rate and R and R denote the

f .88
growth terms in free and adsorbed states respectively. The
functional relationship between u and an essential nutrient's
concentration CF was proposed by Monod (71) as

umCF
+
Ks CF

U= (2.64)

Here [ is the maximum growth rate achievable when C_ >> KS and the

F
concentration of all other essential nutrients is unchanged. KS is

that value of the concentration of the substrate where the specific
growth rate has half its maximum value; roughly speaking, it is
the division between the lower concentration range where p is
linearly dependent on CF’ and the higher range, where pu becomes
independent of CF'

2.2.5. Substrate transport

The substrate, C_, which is consumed by the microbes at a
rate R_,, is assumed to be transported by various mechanisms.
Thus, the mass conservation equation for the concentration of
dissolved substrate, CF may be written as
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S = - —
+ —o— = = V.(-D8VC, + v 6C.) + R (2.65)

F f F
where C_ is defined as mass of substrate per unit volume of water
and S, as mass of adsorbed substrate per unit mass of soil grains.
Hence p; is bulk density of dry soil.

Assuming the existence of a stoichiometric ratio, Y, between
mass of substrate utilized and microbes formed, the net rate of
substrate consumption becomes

- _ K
Rf v (po + 6C) (2.66)
where Y is called the yield coefficient. Experiments show Y to be
constant. An equilibrium isotherm

S, =k_Cn (2.67)
relates CF and SF' ka and m are experimentally determined constants.
2.2.6., Complete set of governing equations

After substitution of Eq. (2.61) and Eq. (2.63) into the
macroscopic mass balance Eq. (2.56), we obtain

96C >
S22 2 2 v.I + (u- - 2.68
3t J (u kd)ec Ra ( )
>
Based on the earlier discussion, the flux of bacteria, J,
comprises Brownian diffusion, dispersion, convection, chemotaxis

and gravitational settling. Therefore
J = - DOVC + usC (2.69)

where D is the coefficient of hydrodynamic dispersion, and u is
the total velocity. The term Ra in Eq. (2.68) representing the
net mass transfer rate is given by Eq. (2.58).

The mass conservation equation for adsorbed bacteria is
obtained from Egs. (2.57), (2.61),and (2.63) as

9p0

Tyl (p—kd)po + Ra (2.70)
where ¢ is defined as the volume of adsorbed bacteria in unit volume
of bulk soil and p is the density of bacteria. In a saturated
porous medium with deposition of suspended particles on soil grains,

® = n-o (2.71)
where n is the porosity of the medium.
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Eq. (2.68) is modified for viruses with equilibrium
adsorption and no growth, as discussed previously. Assuming
negligible pore volume change due to adsorbed viruses, i.e., 6=n,

9L L omb _ _¢.F - kd(nC + 0C) (2.72)

where J, the flux of viruses, includes hydrodynamic dispersion and
convection. Therefore

onC _ -
. + EY i V. (-DnVC + anC) - Kd(nC + pC) (2.73)

Q
O

QO

A special case of Eq. (2.68) may be written for deep bed
filtration without leaching substrate, resulting in no growth, i.e.,
u=0 and u=v,

(e8]
(@]

€ v -xpec-Rr 2.74
t d T Ta (2.74)

QO

where R is given by Eq. (2.58) and J = -DOVC + vaC. The equation
for adsorbed microbes remains as given by Eq. (2.70). Note that
Eq. (2.74) is identical to Eq. (2.1),which is given for suspended

solid particles.

The model of Matthess and Pekdeger (68) contains some of the
terms of Eq. (2.68). The missing features are kinetically
controlled deposition and resuspension, sedimentation, growth,and
chemotaxis. No solution of the equation is given.

The model of Sykes et al. (100) predicts leachate organic
concentration under sanitary landfills. An immobile microbial mass
biodegrades the organics. These assumptions would reduce Eq. (2.68)
and Eq. (2.65) to

3C
3t = MC - k,C (2.75)
39Cy

Fraalie v. [—DFVCF + vch] + Ry (2.76)

2.2.7. Model parameters

Microbial growth parameters, u_, S’ are available for
heterogeneous populations in commerc1al use (39) Sykes et al.
(100) present the following values of parameters for populations of
organic leachates under sanitary landfills: W = 0.144 - 0.072 day'}

KS = 2000 - 4000 mg/l of COD, Y = 0.04,and kd = 0.015 day_l. The
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leachate and microbial concentrations were estimated to be 1000 mg/l
each in the landfill. This was used as a first kind boundary
condition for their model.

Adsorption of substrate onto soil particles depends on para-
meters ka and m as given in Eq. (2.67). Estimates from two
sources are given as: k= 0 for landfill leachate by Sykes et al.
(100); k= 0.2 mg/1, ma= 1 for 204 herbicide on sand, k, = 2.0
mg/1, m?= 1 for 2-4 herbicide on clay by Selim et al. (87).

Filtration studies are a source for mass transfer coefficients,
k and k as in Eq. (2.58). Experimenting with anaerobic filters
composedyof crushed stones of diameter 20 mm and 50% porosity,
Polprasert and Hoang (77) determined k = l.O6xlO_5 S_l, ky =90
for fecal coliforms; kc = 6.25){10“65“lC ky 2 0 for bacteriophages.

3

Based on experiments with latex suspensions (0,04 um) filtered
through glass beads (diameter 0.397 mm, porosity 0.35), Ring (81)
used a similar rate expression to model adhesion and suspension.
He obtained k. = 6.5x10_3s—l, k. = 4.35x10%s™1 for negatively

c
charged latex particles on glass beads.

The other parameters required are density of bacteria p, and
bulk density of soil p . Bacteria were assumed neutrally buoyant
for the purposes of this model, i.e., p = 1 g/ml. pé was taken

as 1.75 g/ml.
2.2.8. An analytical solution

An examination of the governing equations shows the complex
nature of the model equations, with a high degree of non-linearity
and coupling. It is very difficult, if not impossible, to obtain
closed form solutions for C, o, and C_,even for a one-dimensional
space. Therefore, a numerical solution will be sought for a
coupled solution of the governing equations. However, a simplified
analytical solution is needed to test the validity of the numerical
results. Therefore, we will solve the coupled set of Egqs. (2.68),
(2.58) and (2.70) as

ac! _ 3% ac’ '
8t+Ra_D§xT_u5;+kC (2.77)
d i *
g
FY Ra = ko (2.78)
*
R =k C'-%kgo (2.79)
a c y
*
where C' = 6C, ¢ = po and k' = y - k,. The effective porosity,

0 =n - o0, flow velocity, u, and k are all assumed to be constants.
We also assume h = 1 in Eq. (2.58). Egs. (2.77) - (2.79) are
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solved for a semi-infinite column (o £ x € + ) with boundary and
initial conditions.

*
c' = CO at x = 0 (2.80)
c' =0 at x = > ® (2.81)
c'=0 at t =0 (2.82)
*
o =0 at t =0 (2.83)

The solution technique is similar to that of Ogata (74).
Applying the Laplace transform on t, Corapcioglu and Haridas
obtained (22)

c' 2 ux ux .2 XZkC
— = = exp[ == + k't] exp{ -¢2 - (=) - —=
CS /r 2 “DEType
X
2VDt
2 x?
x2k k_(t - —5)
x?2 ¢y 4DE
-k (£ - F= ) L {1 ( _ )
4DE D&
2
+ (k_-k") exp[-(k -k")(t - =% )]
y y 4DE
2
(t - 25
4Dg Xk k T
exp [~(k ~k')t] I, (/——>%) dr dt
y DE
0 (2.84)

The solution given by Eq. (2.84) is computed and plotted in Figure
5.

2.2.9. Numerical solution

The Galerkin Finite Element method was used to solve Eq. (2.65)
and Eq. (2.68) simultaneously for a one-dimensional soil column.
The method involves the approximation of the solution with a known
set of basic functions. The rest of the model equations, Egs. (2.57),
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(2.64), (2.70), (2.71), (2.66) and (2.67),were incorporated into

the numerical technique as explained in Corapcioglu and Haridas (22).
For the model parameters given in Table 2, the largest time step

was 60 seconds and the smallest time step was taken as 1 second.
There are ten space elements ranging from 0.5 to 2 cm. The scheme
was executed using a Fortran computer code. Plots of C, C_ and

{n-0) for spatial and temporal variations are given in Figs. 6-8.

The soil column is assumed to be initially free of bacteria and
substrate. As seen in these figures, the soil surface (i.e., x=0)
is 37 clogged after 1.4x10® seconds. At this time, the bacteria
are almost totally removed in the upper 7 centimeters of soil,
although the substrate in the seeping wastewater travels up to 9 cm.
The clogging of the soil is negligible after a depth of 6 cm.
Another interesting feature is that the substrate concentration has
a peak value at an early time,and then decreases gradually due to
bacterial consumption. As shown again in Figure 9, for a smaller
declogging rate constant, substrate concentration values will have
larger values. Also, when the velocity and dispersion coefficients
were taken as a tenth of the values in Table 1, all other parameters
being the same, as seen in Fig. 10,a larger time is required to
reach the steady state values. Similar results have been obtained
for a two-dimensional field by Corapcioglu and Haridas (22).

Table 2. Numerical Model Parameters

Dispersion coefficients D=Df=4x10—2 cmz/s
Density of bacteria and dry soil p= 1 g/ml; Os=l.74 g/ml
Clogging rate constant kc=6.5x10_35'l
Declogging rate constant ky=4.35x10_4 s_l
Specific decay constant kd=lx10_6 s—l
Monod half constant KS=2x10_3 g/ml
Maximum growth rate um=4.2x10_5 s_l
Maximum cell yield Y=0.04

Flow velocity u=3xlO_2 cm/s
Porosity n=0.6

Surface bacteria concentration CO=lO_3 g/ml
Surface substrate concentration Cp =10_3 g/ml

0



305

1.8 T T — T 1
" 8.8 | N
8.6 -
- -
§ 50 sec
2.4+ N
B 100 sec i
8.2+ _
- 1000 sec -
2.8 1 ] 1
? 2 4 6 8 12 12
CENTIMETERS
1.8 1 T T T T
2.8 i
1 cm
2.6 _
- 2cm
O o
hl
0. 4 B
Lcm -
B.2 i
c.8 | 1 | 1 |
o 200 408 608 800 1000 1200
TIME (SEC)

Figure 5. Analytical solution with parameters: D = 0,04 cmz,
u = 0.003 em/s, k = -1x10 %™, k_ = 6x1077s”!, and

K, = 6x10"°s L.



306

1.8 T T T T T T

2.8 | ~

8.6 |- §
8 - 41,50 sec .
Q

2.4} .

- 438 sec i
2 b 6 i
e _1.4x10" sec
2 1 1 . 1 i
%0, 2 4 6 8 12 12 14
CENTIMETERS
1.1 T T T
7/0'—5/_::m i
2.8 |- B,
1cm

2.6 4
s —
[&]
~N
[&)

2.4 .

2.2+ 3cm 4

5¢cm
2.8 I I |
e 10008 20000 39002 4po0a 50000
TIME (SEC)

Figure 6. Spatial and temporal variation of bacterial concentration
for parameters given in Table 2.



e.s

2.6

€ /Ceq

e. 4

8.2

e.o

1.8

8.8

8.8

50 sec
6
1.4% 10" sec .
P 381 sec 7
F o- i Py | 1
4 6 8 18 12 14
CENTIMETERS
i T I
N
1 cm -
i
4
4
3cm _J
1 . 5cm 1
8 18800 2080020 _30882 40088 58008
TIME (S&0)

Figure 7.

for parameters given in Table 2.

307

Spatial and temporal variation of substrate concentration
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3. FORMATION OF A BED (CAKE FILTRATION)

Cake filtration process is used in water treatment process and
industrial processes to remove suspended solids. Compressible
filter cakes are formed when a liquid with suspended particles
are forced through a thin membrane (septum) which allows the liquid
transport but retains solid particles by straining and sedimentation
mechanisms. During filtration, the filter cake is compacted while
new solid particles are laid down on the cake surface (Fig. 1b).

In general, cake filtration is primarily employed for more
concentrated slurries. The filtrate from a cake filtration may
contain small particles passed through the medium,which must be
removed in a polishing step. In addition to industrial filtration
processes, the formation of filter cake is important in groundwater
and oil wells where drilling fluid contains suspended particles.
The accumulation of these suspended particles on perforated well
screens causes a pressure drop in the well. This particular
problem has been discussed by Binkley et al. (10), Muecke(72),
and Kovacs and Ujfaludi (60).

This work is directed at finding mathematical solutions based
on a theoretically and physically consistent mathematical model
presented by Corapcioglu (18,19). Also, the purpose of this
research is to obtain direct results which can be used to predict the
cake thickness (L) and the time (t) at different conditions of
porosity, particle concentration , and pressure drop.

3.1. Previous Studies on Cake Filtration

Studies governing laws of cake filtration may be found
scattered through the literature in different disciplines (e.g.,
17,27,92,93,105,106,107,110,121,123). Based on the analysis of
various investigators, both cake and filter septum can be considered
as porous masses exerting resistance against the moving laminar
liquid flow.

Binkley et al. (10) (also in Collins, 17) present the most
pertinent features of a mathematical analysis of the factors
affecting the rate of deposition of solids by filtration in
unfractured perforations during cement slurry injection operations
in 0il wells. Binkley et al. assume steady state conditions
throughout the cake. Their analysis is based on simple volumetric
balance of solid and fluid phases (see Eq. (3.7)). In von
Engelhardt (120), experiments show that for filtration times up
to one hour, the cake thickness varies linearly with time. However,
investigations over longer periods (several hours) show that this
assumption would not hold as more filtrate is continually collected
that can be predicted by a parabolic function. Experimental
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observations by Ruth (83) and Carman (15) imply that the average
porosity is constant regardless of cake compressibility.

According to Ruth the total filtrate rate can be approximated
through an expression which is proportional to the square root of
time. The proportionality constant includes the resistivity of

the filter cloth (septum resistance) which is a source of non-
parabolic behaviour. Willis et al. (124) present evidence which
shows that average porosity is constant throughout a filtration,

and the septum clogging determines the extent of deviations from the
parabolic relation. Rietema (80) has defined non-compressible
filter cakes as the ones whose mean specific resistance

does not change with the filtration pressure. All others are called
compressible. Rietema has observed a form of '"retarded packing
compressibility" in which early layers of the cake do not compress
gradually until a critical cake thickness is reached. Tosun and
Willis (112) conclude that, based on multiphase theory, the classifica-
tion of filter cakes as compressible and incompressible is unneces-
sary. Furthermore, they also stated that although parabolic
behavior can be achieved by proper septum selection, it is not an
optimum condition,due to the need for more energy in comparison to
non-parabolic behavior.

Tiller and Cooper (105) pointed out the variation of internal
flow rate throughout the cake,and derived a relationship between
rate of porosity change and internal flow rate variation. Shirato
et al. (92) performed an experiment to determine the liquid pressure
drop as a function of the distance through the cake. With the
hydraulic pressure p known, the cake compressive pressure p_can
be calculated as P, =P, — P> where P, is the applied filtration
pressure. Knowing p , one can estimate the porosity distribution
from ccmpression permeability cell measurements. Shirato et al.
(93) present an analytical method for apparent velocity variations
of both liquid and solids through filter cakes, and it has turned
out that the effects of the velocity distributions of liquids and
solids could not be theoretically neglected, especially for highly
concentrated slurries. Tiller and Shirato (106) demonstrated that
due to nonuniform flow rate the conventional parabolic relation
between filtrate volume and time needs to be modified to include
a correction factor, as

dv B P (3.1)

dt uw(JaRw+Rm)

where v is the filtrate volume, g 1is the conversion factor, u_is
the viscosity, w is the total mass of dry solids per unit area,

Rm is the medium resistance, o, is the conventional filtration
resistance, and J is the correction factor due to nonuniform flow
rate. We should note that these studies assume the validity of

the compression-permeability cell tests to determine filter cake
resistivity. A study by Atsumi and Akiyama (5), which also utilizes
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the same test results,describe the transient nature of the problem
with a non-linear partial differential equation. A moving boundary
condition describing the growing cake surface has been incorporated
in Atsumi and Akiyama's model. They solved the following cake
filtration equation numerically

Jde 3 * Jde

3t ow {Cp ow } (3.2)
where w is the mass of*solid per unit filtering area from the medium,
e is the void ratio. C_ 1is a variable coefficient associated with

permeability and compressibility. The boundary condition at the
moving boundary is

de &8 9y

w | T x & 3.3)
C (e.)
P 1

where e, is the void ratio at the cake surface.

Also, Wakeman (121) developed a theoretical analysis for a
similar problem recognizing cake filtration as a moving boundary
problem and utilizing a variable compressibility coefficient in
the form of an exponential function of a normalized porosity. His
basic partial differential equation describing liquid movement and
cake volume change is

an _ 3 _n) K_3p dn k 3p 9n an
ot 9x [(l n) L 9n ax] + { H 9n 9x } X (3.4)
w w <=0

where n and k are the porosity and the liquid conductivity
(permeability) of the cake and p is the hydraulic pressure. After
filtration has started, a cake is deposited on the septum with a
porosity varying from n, at the septum surface to n, at the cake/
slurry interface. The }ocation of the moving cake/élurry interface
is unknown, hence a further condition is required

n -n,
on o i

dx
dt

on

on = v on
90X l—no ki P
X. X. X,

i i i

(3.5)

which is the boundary condition to be satisfied at the cake surface.
Wakeman (122) concludes that in all cases the pressure loss across
the filter cloth decreases with time. However, at higher filtra-
tion pressures, the loss over the cloth decreases more rapidly due
to the more rapid formation of a thicker cake with a greater
specific resistance. The pressure loss across the cake-forming
layer remains reasonably constant after the initial period of
filtration.
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Von Engelhardt (120) has obtained an expression in his study
of filter cake formation in the bore hole during well drilling
operations. Drilling mud used to cool and lubricate the drilling
bit is a suspension of clay particles in water. Under pressure,
a cake of clay particles forms on the wall of the borehold.

L= 2yt (3.6)

My

where My, denotes the viscosity of the filtrate, k is the permeability
of the cake, and b is the dimensionless specific volume of filter
cake (volume of filter cake per cubic centimeter of filtrate).

Note that the derivation of Eq. (3.6) assumes constant permeability
and porosity of the cake.

As noted earlier, Collins (17) suggested a mathematical
description of deposition processes with various assumptions. We
should note that Collin's study has been previously published by
Binkley et al. (10). Based on steady state conditions and hydro-
static pressure distribution along the cake, Collins (17) obtains
an expression for the cake thickness.

* * * *
kCL kCL 2 ZkC 1/2
L = — X + K J + -u—w pa Wet (3.7)

*
where L is the thickness of the porous plate septum and K is its
permeability. p_is the app%ied pressure, t is the time, Mo is the
viscosity of the filtrate, kC is the permeability of the filter

cake, and v, is a factor related to the volume fraction of solids.

Willis and Tosun (123) found experimentally that the discharge
is usually a parabolic function of time for a constant
pressure filtration. Also, they stated the relation between
the cake thickness, L, and time as follows

136312 = ¢ Llcm.] and t[sec.] (3.8)

Tosun and Willis (113) mentioned the derivation of the parabolic
filtrate discharge equation,which is restricted to one dimensional
filtration. They presented the following equation

i -, dL dn
9, ~ 45 = (nL n) at L ac (3.9)
where q, is the superficial fluid velocity at the filter septum,

9y is the superficial fluid velocity at the cake surface, L is the
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cake thickness, n is the average porosity,and n. is the porosity

at the cake surface. The two terms on the left represent the
difference between the inlet and outlet flow rates, while the first
term on the right side is proportional to the change in the cake
thickness, The second term on the right hand side is a compaction
effect caused by changes in the average porosity.

Tiller et al. (108) have obtained the following expression for
the pressure variation along the cake.

x (1/(1-d'-f")

L)

.4 - 1
5 1 (1 (3.10)

2

where p, is the applied filtration pressure, d' and f' are dimension-
less empirical constants. A plot of Eq. (3.10) is given in Fig. 11
for different values of (d'+f'). Furthermore, Tiller et al. (109)
have proposed the following expression for the porosity variation
with cake compressive pressure, P

P '
-n = (1-n) (1 + =% yE (3.11)

1.0

0.8

0.6

P/P

0.4

0.2

0 ] | | !
0 0.2 0.4 0.6 08 1.0
x/L

Figure 11. Variation of hydraulic pressure with distance for
different compressibility coefficients, [After Tiller
et al. (108)].
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where r' is an arbitrary parameter. Eq. (3.10) is an alternative
to another empirical expression suggested by Tiller in 1953. A
review of this work is given by Tiller and Crump (109) as

* \]

l-n=r pz for P 2 Py (3.12)
3 ]

l-n=r p‘ii for p_ 2 p, (3.13)

where r* is a dimensionless empirical constant, and p., is the pressure
below which n is assumed to be constant. The cake permeability, k,

ig expressed as a function of porosity and specific cake resistance,

a , by Tiller (104) as

k = —.___l (3.14)

1
G (1-n)

where Py is the true density of solids. The specific cake resistance
*

o 1s expressed as

a =oa (1 +—=) (3.15)

*
where ap is the specific cake resistance at the cake surface where

P, = 0. 1In his "revised theory", Tiller multiplied the average
cake resistance by an exponential function of mass of particles to
take "cake blinding"” into account.

From the review presented in this section, one may conclude
that porosity decreases with filtration time, but on the contrary,
pressure loss across the deposited cake increases with filtra-
tion time. Also, the filtrate discharge is a parabolic function
of time for a constant pressure, and it is known that
hydraulic pressure variation is linear with distance (94).

Tosun (111) has provided a critical review of Tiller's work.
Tosun's review includes other works of Tiller which are not referred
to in this study; therefore, the reader is referred to Tosun (111)
for a more in-depth discussion of Tiller's work.

As an alternative, Willis and his co-workers (123,126) present
a multiphase theory which includes conservation of mass and conser-
vation of momentum equations for liquid and solid phases. Willis
et al. (124) has shown through a dimensional analysis that deviations
from parabolic behavior cannot be attributed to non-Darcian
behavior, but rather to septum permeability. They have
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demonstrated that dominant forces in the conservation of mass
equation for the liquid phase are gravitational, pressure and drag
forces. Similarly, in the solid phase conservation of momentum
equation, the deformation and gravitational forces can be retained.
Then, for a Newtonian liquid and non-deformable solid particles,
conservation of momentum equations lead to relative Darcy's law
and

oT

s

3z 0

where T dis the intrinsic solid phase stress. Wi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>