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Preface

This book is the result of my dedication to teaching crystallography to geology
students.

This book is intended for those who want to enter the world of crystals and
minerals. An attempt has been made to do so in a clear and concise manner.

The text is structured into three blocks: Geometric Crystallography,
Crystallochemistry, and Crystallophysics. The theoretical content of each block is
divided into topics, and these are presented in chapters or sections.

The Geometric Crystallography block is structured into five subjects. It studies
the external morphology of crystals and their symmetry, very important for the
study of minerals. It also studies the geometry and symmetry of lattices, a concept
that allows studying crystalline matter from a mathematical point of view,
abstracting it from its material content, essential in the understanding of this science
and that of minerals. The knowledge of geometric crystallography is also essential
for the identification of gems. The methods and techniques of obtaining synthetic
gems are increasingly sophisticated and make their distinction more difficult. The
characteristics of symmetry and growth planes are, in the case of diamond and
corundum, for example, the best way to recognize their natural or synthetic origin.
This section is also essential for researchers who are engaged in the structural
resolution of organic and inorganic compounds. The objective of this block is the
acquisition of basic knowledge about geometric crystallography. This knowledge
includes the definition of crystal and mineral; properties of crystals, including
periodicity, order, and translation; knowledge of crystals from a geometric point of
view, including lattice, lattice elements, lattice row symbols and crystalline plane
notations, symmetry, spatial groups, and point groups; and the proper use of the
language of geometric crystallography.

The crystallochemistry block is structured into four themes. It studies the
arrangement of atoms in a crystalline matter, that is, its structure. Subsequently,
the concept of real crystal, with all its imperfections, is introduced. The objective is
the acquisition of basic knowledge about crystallochemistry. This knowledge
includes the definition of crystal structure, bond, types of crystals, package, coor-
dination, position of atoms, basic structural types, the difference between ideal

v



crystal and real crystal, and concepts of order such as disorder, defects, isomor-
phism, solid solution, stability and equilibrium, polymorphism, and politypism.

In the crystallophysics block, with four subjects, the physical properties of
crystals and minerals are studied in more detail, including those relating to the
interaction of electromagnetic waves with crystals and minerals, mainly concerning
visible light and X-rays. The objective is the acquisition of basic knowledge about
crystallophysics, including the definition of physical property, directional and
non-directional properties, properties in crystals and minerals, representation
surfaces, the interaction of electromagnetic radiation with matter, identification of
minerals with a polarizing microscope, and X-ray diffraction.

Oviedo, Spain Celia Marcos
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Part I
Geometric Crystallography

In this part, Chaps. 1 to 5, the crystal is studied as an ideal entity, from a geo-
metrical point of view through the concept of lattice. The geometry and symmetry
of the lattices and the external morphology of the crystals are considered. From a
macroscopic point of view, the crystal is considered a homogeneous and continu-
ous, anisotropic and symmetrical medium. When the internal symmetry is studied,
the crystal is considered a homogeneous and discrete medium, as well as aniso-
tropic and symmetrical.

In this block, it is important to understand the importance of some features. First,
it is important to abstract in crystallography. Considering a reference system (e.g.,
crystallographic coordinate system), the following two situations are equivalent:
(1) move (translate) the reference system and leave the crystal static or (2) move
(translate) the crystal and leave the coordinate system static. The crystal can be
described from a geometrical point of view, through the lattice, not only in an
unlimited way, but also in a limited way, with the concept of cell, which is the
smallest space of the lattice limited by the fundamental translations, which are the
smallest distances at which the crystal motif (ion, atom, molecule or groups of
them) is repeated in the three-dimensional space.

Second, it is important to understand the orderly and periodic arrangement of the
motif that is repeated in the crystal properties: geometric (shown in this block),
chemical (shown in the crystallochemistry block), and physical (shown in the
crystallophysics block). In relation to the geometric properties, it is important to
understand that the external aspect of a crystal, its morphology, is a consequence of
the orderly and periodic arrangement of its atomic constituents in the
three-dimensional space. In this way, a parallel can be made between the external
symmetry, the non-translational symmetry of the punctual groups, and the sym-
metry that relates the atoms; that is, the spatial symmetry that includes the trans-
lations. Thus, it is also possible to understand the parallelism between the position
of a crystalline face and that of an atom of that crystal, in relation to some crys-
tallographic coordinates. The position of a crystal face is given by Miller indices. It
can be in a general position if it is only located on a monary axis of rotation (360º



rotation around the axis), or a particular (special) position if it is located on sym-
metry elements of a higher order than the axis of order 1 (monary). The position of
an atom of that crystal is given by its coordinates in relation to those crystallo-
graphic coordinates and can also occupy a general or particular position.
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Chapter 1
Introduction to Crystallography

Abstract This chapter defines the concepts of crystal and mineral, emphasizing
their difference from non-crystalline materials. The most important periods,
throughout history, in the development of crystallography and mineralogy and their
beginnings as science are presented.

1.1 Introduction

It is known that most of the earth is solid and is formed by minerals that are
crystalline; that is to say, they are constituted by elements (ions, atoms or mole-
cules) that repeat periodically in an orderly way, in the space of three dimensions.

Minerals can be formed in various ways and in various environments. In any
case, this is the result of chemical and physical processes that are verified in all
geological eras and that continue to manifest themselves. There are three funda-
mental processes of formation: magmatic, metamorphic, and sedimentary. They are
produced in a variety of ways: through solidification from a mass of melted
material, consolidated as quartz, feldspar or olivine; through precipitation in a
magma, like gold; hydrothermally, like fluorite, mica or barite; sublimation, from
gas like halite or cinnabar; through chemical alteration from contact chemical
reactions in areas of different composition, such as clays; through physical alter-
ation from solid-state reactions with pressure or temperature increase on existing
minerals, such as diamond; and biogenically from living beings such as calcite and
apatite. In addition, minerals can change under certain circumstances.

Minerals are the components of rocks and ores that are distinguished by their
chemical composition and physical properties.

From a genetic point of view, minerals are natural chemical combinations; that
is, natural products resulting from the different physical–chemical processes that act
on the earth’s crust.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Most of these products are found in the form of minerals in solid state, pos-
sessing certain chemical and physical properties in close mutual relationship with
their crystalline structure, and they are stable in certain pressure and temperature
ranges. Most minerals are in a crystalline state.

1.2 Crystallography and Mineralogy

Crystallography

Crystallography is a science that deals with the study of crystalline matter, the laws
that govern its formation and its geometric, chemical, and physical properties.

This science is classified into the following:

– Geometric crystallography studies the external morphology of crystals and their
symmetry, and the geometry and symmetry of the lattice.
From a macroscopic point of view, crystalline matter can be considered a
homogeneous and continuous medium, anisotropic, and symmetrical. When
studying internal symmetry, crystalline matter must be considered a homoge-
neous and discrete medium, anisotropic, and symmetrical.

– Chemical crystallography or crystallochemistry studies the arrangement of
atoms; that is, their crystalline structure. The concept of the real crystal must be
introduced, and its imperfections must be considered, contrary to geometric
crystallography.

– Physical crystallography or crystallophysics studies the physical properties of
crystals, trying to relate them to the chemical composition and structure.

In this section, it is important to consider properties derived from the interaction
of X radiation with matter, since they allow us to know the arrangement of atoms in
the structure, identify crystalline phases, etc.

Mineralogy

Mineralogy is the science of minerals and studies, in close relationship to each
other, their chemical composition, crystal structure, physical properties, and con-
ditions of their genesis, as well as their practical importance.

Mineralogy can be divided into the following:

– Chemical mineralogy studies the chemical properties of minerals.
– Physical mineralogy studies the physical properties of minerals, as well as the

mechanical properties such as optical, electrical, magnetic, etc.
– Determinative mineralogy describes the various techniques for identifying and

determining minerals.
– Descriptive mineralogy describes the crystallographic, chemical, and physical

properties, as well as the associations and deposits of minerals.

4 1 Introduction to Crystallography



– Mineralogenesis is the study of the genesis of minerals and provides data for
prospection and valuation of mineral deposits.

– Applied mineralogy describes the applications of minerals in industry,
prospecting and exploration, etc.

1.3 Historical Background

Mineralogy began as an applied science, dedicated to the use of mineral deposits
useful to man. Along with the study of its usefulness, the descriptive aspect of the
new minerals that were discovered was developed from the earliest times. This is
how the first works dealing with minerals are presented. These include the texts of
Aristotle,1 Teofrasto,2 Avicenna,3 and Alberto Magno,4

During the Renaissance, works that dealt with minerals did so from the metal-
lurgical point of view and their industrial use, such as the work De Re Metallic by
Agricola5 (1530) and Pirotechnia by Birunguccio6 (1535).

In the first half of the eighteenth century, minerals were studied as simple
chemical compounds of natural origin. In this sense, the works of Cronstedt (1758)7

represent great progress.
The laws of Rome de l’Isle and Haüy on the characteristics of the crystalline

material made it possible to improve methods for mineralogical determination.
Classical determinations are based on the most evident and observable physical

properties, without the need for complicated apparatus; however, the use of the
polarizing microscope allowed a great advance in mineral determination techniques.

Determination of chemical composition is very important in all mineralogical
studies but, by itself, it is insufficient for identifying the different minerals since, in
many of them, certain cations are interchangeable (micas, chlorites, zeolites, gar-
nets, etc.) or different minerals correspond to compounds of identical chemical
composition (diamond and graphite, calcite and aragonite, etc.).

Around 1735, Linné8 divided crystals into classes, depending on their external
forms. Wooden models were built and drawings of crystals were published. Around
1780, a great step forward was taken in crystallographic science when A. Carangeot
built an instrument, a contact goniometer, to measure the angles between the faces
of crystals. Stensen (1669) presented the constancy of the dihedral angles of the

1 Aristotle (315 before JC), Book of the stones.
2 Teofrasto (77 before JC), Naturalis historia.
3 Avicenna, Treatise on the stones (in which a mineral classification is outlined).
4 Alberto Magno (1262), In De Mineralibus et Rebus Metallius.
5 Agricola (1530), De Mineralibus et Rebus Metallius.
6 Birunguccio (1535), Pirotechnia.
7 Cronstedt [1].
8 Linné (1707–1778), Nature system.
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faces of quartz crystals, on the basis of Carangeot’s measurements, and later Rome
de l’Isle9 (1783) generalized the discoveries of Stensen. Haüy (1784)10 showed that
crystals are formed by stacking identical, very small blocks that he called integral
molecules. This concept would be equivalent to the unit cell concept in modern
crystallography. Later, Haüy (1801)11 developed the theory of rational indices for
crystal faces.

Around 1800, there was a gradual change in the attitude toward crystals and
minerals,12 as interest in collecting gave way to scientists investigating them and
exhibiting them in museums. At the same time, the first scientific societies and
journals dedicated to minerals were born.

Chemists like M.H. Klaproth and C.F. Bucholz in Germany, L.N. Vauquelin in
France, and J.J. Berzelius in Sweden had perfected methods for analyzing minerals
and rocks, which led to the discovery of many new elements. The discovery of the
elements and the possibilities of chemical analysis gave rise to one of the great
controversies in the world of crystallography—what affects the polymorphism of
calcium carbonate. Another problem was that of isomorphism. The configuration of
the processes that explain these phenomena has been of great importance in crys-
tallography and mineralogy.

Important advances in the domain of crystallography are due to Russian science,
specifically Federov13 (1890). Another important contribution of Federov14 (1891)
to science relates to the microscopic study of minerals. With the invention of a
polarization device by Nicol15 in 1828, the usefulness of optical microscopy for the
identification of minerals was greatly enhanced.

At the end of the nineteenth century, Fedorov16 and Schoenflies17 worked almost
simultaneously, but independently, on the order and internal symmetry within
crystals.

The discoveries of the physicist Laue,18 in 1912, regarding the diffraction of
X-rays when passing through a crystal, and subsequent investigations in this field
carried out by the Russian physicist Wulff,19 the Braggs20 (father and son), Pauling,
and others made it possible to clearly verify the close relationship between the
crystalline structure of minerals, their chemical composition, and physical

9 de Romé Delisle [2].
10 Haüy [3].
11 Haüy [4].
12 Wilson [5].
13 Federov (1890), Symmetry of the regular systems of figures.
14 Fedorow [6].
15 Nicol [7].
16 Fedorov [8].
17 Schoenflies, A. (1891) Krystallsysteme und Krystallstructur.
18 Eckert [9].
19 Wulff [10].
20 Bragg [11, 12].
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properties. Thanks to these advances, crystallochemistry was born, a science that
studies the laws of the spatial arrangement of atoms or ions in crystals and the
relationship between the crystalline structure of minerals and their chemical and
physical properties.

Theory of the phases and of the equilibria of the physical–chemical systems in
the field of physical chemistry is also very important. In this field, much is due to
Gibbs,21 author of the theory of phases.

1.4 Crystalline State

Crystalline state is the state of thermodynamic equilibrium of a solid that, under
certain thermodynamic conditions (pressure—P and temperature—T) and with a
determined composition, corresponds to a determined crystalline structure.

The principal property of solids in a crystalline state is periodicity, from which
other macroscopic characteristics are derived: homogeneity, anisotropy, and
symmetry.

– Homogeneity

Macroscopically, it means invariance of a property F measured at one point x,
relative to its measure at another point x + x′; that is,

F(x) ¼ F(xþ x0Þ ð1:1Þ

From this condition at macroscopic level, the constancy of the chemical com-
position and phase state through the entire volume of the substance in the crystalline
state is obtained.

The concept of homogeneity makes it possible to consider a crystalline sub-
stance as a continuous medium.

This concept is very important in crystallography since phenomenological
descriptions of many physical properties of crystals can be given without reference
to their discrete atomic structure. From a macroscopic point of view, the distances
in the crystal are considerably larger than the interplanar spacing (distance between
two parallel crystalline planes) of the crystal at the microscopic level and with
volumes that far exceed that of the unit cell (space limited by the smallest distances
at which the motif is repeated in all three dimensions of space).

– Anisotropy

There are certain properties of crystals that are independent of the direction in
which they are measured; they are said to be scalar properties, such as specific
weight, heat capacity, etc.

21 Gibbs [13].
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There are other properties that depend on the direction in which they are mea-
sured; some are said to be vector properties and others are tensorial, such as thermal
conductivity, dielectric constant, refractive index, etc.

If the description of a property is independent of any orientation, the substance is
said to be isotropic for that property.

If a property is orientation-dependent, the substance is said to be anisotropic for
that property.

In any case, a crystalline substance will always be anisotropic for some prop-
erties, such as the different arrangement of atoms in different directions (structural
anisotropy).

– Symmetry

Symmetry is the property that makes an object not distinguishable from its original
position after transforming it.

Taking these characteristics into account at a macroscopic level, a crystalline
substance can be defined as a material that is homogeneous, continuous, aniso-
tropic, and symmetrical.

However, as will be seen later, a crystalline substance is not a static entity: the
atoms vibrate and, when the temperature increases, they vibrate more. This affects
their physical properties.

Crystals show local defects and variations in composition and also deviation of
the structure ideal.

These imperfections are not considered when treating the crystal from a
macroscopic point of view.

There will be substances whose properties are not very sensitive to structural
defects and can be described using an ideal crystal model; it will be necessary to
consider their real structure, since they will present properties that will depend to a
greater or lesser extent on structural defects.

1.5 Crystal, Monocrystal, and Crystalline Aggregate

Crystal was first defined as a solid that, under certain formation conditions, appears
as a polyhedron; that is, limited by crystalline faces (Fig. 1.1).

Crystal is actually defined as a solid material whose constituents (such as atoms,
molecules, or ions) are arranged in a highly ordered microscopic structure and has a
well-defined non-diffuse X-ray diffraction pattern (see some examples in
Appendix I of Chap. 17).

A monocrystal is defined as a unique crystal; that is to say, the periodicity is
maintained in it.

A crystalline aggregate is defined as a group of crystallites (small crystals) of the
same species that grow together. They can appear in various forms:

8 1 Introduction to Crystallography



– Druses are aggregates formed by crystals that grow inside a convex or more or
less flat surface (Fig. 1.2).

– Geodes are aggregates similar to druses but the crystals grow on a concave
surface (in a cavity) (Fig. 1.3).

– Irregular aggregates are aggregates formed by crystals growing irregularly,
giving curious or irregular shapes.

– Regular aggregates are aggregates formed by crystals growing regularly, in
parallel, one inside the other, etc. Many of them constitute twins.

Examples

Almandine Apatite Halite  Calcite  

Quartz  Diamond  Dolomite  Tourmaline  

Fig. 1.1 Draws of crystals limited by crystalline faces

Fig. 1.2 Drusa of calcite
(photo courtesy of Luis
Miguel Rodríguez Terente,
Geology Museum
Conservator of Geology
Department of Oviedo
University, Spain)
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1.6 Crystalline Structure

Crystal structure is defined as the periodic and ordered arrangement in space of
three dimensions of the atomic constituents of a solid in a crystalline state.
Example: The halite crystal is made up of chlorine and sodium ions arranged
periodically and orderly in space (Fig. 1.4).

Fig. 1.4 Crystalline structure
of halite

Fig. 1.3 Geode of amethyst
quartz
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Chapter 2
Periodicity, Crystalline Lattices,
Symbols, and Notations

Abstract This chapter builds on the fact (explained in the previous chapter) that
the material elements (ions, atoms, molecules or groups of them) that constitute
crystalline matter, the motif, are repeated in an orderly manner in the three-
dimensional space. When a motif is systematically repeated, the result is a periodic
pattern. The concepts of fundamental translation and crystalline lattice are intro-
duced, a concept that allows the study of the crystal from a mathematical point of
view, facilitating its study from the point of view of symmetry, and indicating the
types of plane and three-dimensional lattices (Bravais lattices). The geometrical
elements of the lattice (nodes, rows, and planes) and their identification using
vectors, symbols, and Miller indices are explained, from vectors and coordinates in
relation to the crystallographic coordinates a, b, and c (or cell parameters, lattice
parameters, and fundamental translations). The idea that the lattice has an infinite
extension and the cell is the smallest space of the lattice limited by the fundamental
translations is emphasized, which allows us to describe the symmetry or the atomic
content of a crystal. Bearing in mind that a direction can be common to a beam of
planes, the concepts of zone, zone axis, and tautozonality, defined by Weiss at the
beginning of the nineteenth century, are introduced to facilitate the morphological
study of crystals. Given the existence of periodicity, it is the same to consider the
zone axis as an edge common to a series of planes, or as an external line parallel to
them, since all lines equivalent to a given line are parallel to it. The concepts of
interplanar spacing of a family of planes and reticular density are introduced, along
with their relationship with the cell parameters and Miller indices of those planes.
Interplanar spacing is very important in relation to the crystal structure and is
obtained experimentally (for example, from X-ray diffraction). To finish the
chapter, the reciprocal lattice is discussed, which is of special importance in the
interpretation of the diffraction of X-rays, electrons, and neutrons by crystals.
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2.1 Crystal Lattice

A crystal lattice is a three-dimensional representation of nodes. Each lattice node
represents the motif (ion, atom, molecule or groups of them) that is repeated
periodically in the crystal structure. In Fig. 2.1, the nodes (black circles) represent
the Na+ ions of the NaCl structure; in this case, they represent the motif that is
repeated.

– One-dimensional lattice

A one-dimensional lattice is an arrangement of nodes in one direction (Fig. 2.2).

– Two-dimensional lattice

A two-dimensional lattice is an arrangement of nodes in two directions (Fig. 2.3).

Fig. 2.1 Three-dimensional lattice

Fig. 2.2 One-dimensional lattice, with t = translation vector
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2.2 Translation

Translation is the distance at which the motif is repeated parallel and identically
along a given direction of the crystal structure (Fig. 2.4).

Because this monotonous repetition of the motif constitutes the fundamental
characteristic of a crystal, the crystalline medium can be abstracted from its material
content and can only be considered based on the present translations.

The translation is a transformation; that is, an operation of symmetry. It is the
simplest symmetry operation inherent in the crystal structure. Translation is rep-
resented by a vector called translation vector. It is defined by sense, direction and
module.

Fundamental or unit translations are the smallest translations in the three
directions of space. Its modules are represented by a, b, and c, and they are assigned

Fig. 2.3 Two-dimensional lattice, with a and b = translation vectors in a- and b- direction,
respectively

t

b

a

t

Fig. 2.4 Translations in a
plane lattice, with a and
b = translation vectors in a-
and b- direction, respectively
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the value unit. This trio of translations constitutes the coordinate system of the
lattice. They are called lattice constants because their values are fixed for a crystal.
They are expressed by the aforementioned modules—a, b, and c—and by the
angles between them a, b, and c.

Therefore, lattice is the infinite arrangement that results from the translational
symmetry in any direction.

2.3 Plane Lattices

There are five plane lattices, four primitive lattices, and one centered lattice. The
primitive lattices are oblique, square, rectangular, and hexagonal. The centered
lattice is the orthorhombic lattice, which is equivalent to the centered rectangular
lattice. The relationships between the fundamental translations and the angles
between them are shown in Table 2.1.

2.4 Space Lattices

There are 14 space lattices, and they are called Bravais lattices. They are obtained
by stacking plane lattices. These lattices can be primitive and centered.

Primitive lattices are symbolized by P. Multiple lattices can be:

– Base-centered (A, B or C)
– Face-centered (F)
– Interior-centered (I)

Space lattices are named according to the relationships between the fundamental
translations and the angles between them (Table 2.2).

2.5 Lattice Origin

The lattice origin is a point on the lattice, chosen as the starting point in the lattice
description.

It can be chosen at any position in the crystal structure and does not need to
coincide with any atom or ion.
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Table 2.1 Plane lattices and lattice parameters

Lattice Lattice parameters

Oblique a 6¼ b c 6¼ 90°

Square a = b c = 90°

Rectangular or
orthorhombic primitive

a 6¼ b c = 90°

Hexagonal a = b c = 60° or
120°

Centered orthorhombic/
rectangular

a = b c 6¼ 90°, 60°
or 120°
and cos
(c) = b/2a

2.5 Lattice Origin 17



2.6 Elemental Cell

The lattice can be described by the unit cell in two and three dimensions, respec-
tively, as the translational unit; the cell may be primitive or centered.

In two dimensions, the elemental cell is a parallelogram. It is limited by the
fundamental translations in a lattice and constitutes the smallest characteristic part
of the crystal.

In three dimensions, the elemental cell is a parallelepiped. It is limited by the
fundamental translations in a lattice and constitutes the smallest characteristic part
of the crystal.

The primitive elemental cell is the cell containing one lattice node.
The multiple elemental cell is the cell containing more than one node.
Examples of these in two dimensions can be seen in Fig. 2.5.
The 14 elemental cells in three dimensions are named as the corresponding

Bravais lattices (Table 2.3).

Table 2.2 Space lattices and lattice parameters

Lattice Type Lattice parameters

Triclinic P a 6¼ b 6¼ c a 6¼ b 6¼ c 6¼ 90°

Monoclinic P, A (B,C) a 6¼ b 6¼ c a = c = 90° 6¼ b

Orthorhombic P, I, F, A (B,C) a 6¼ b 6¼ c a = b = c = 90°

Tetragonal P, I a = b 6¼ c a = b = c = 90°

Hexagonal P a = b 6¼ c a = b = 90° c = 120°

Trigonal P a = b 6¼ c a = b = 90° c = 120°

Rhombohedral R a = b = c a = b = c 6¼ 90° (or oblique)

Cubic P, I, F a = b = c a = b = c = 90°

Fig. 2.5 Cells A and B are
primitive and cell C is
multiple
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2.7 Unit Cell

The unit cell is a primitive or multiple cell, selected according to certain require-
ments concerning metric and symmetry.

2.8 Cell Parameters

The metric is defined by the cell parameters, the fundamental translations a, b, c,
and the angles between them a, b, and c (Fig. 2.6).

2.9 Cell Volume

The cell volume is given by the expression (2.1):

V ¼ abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a� cos2 b� cos2 cþ 2 cos a cos b cos c

p
ð2:1Þ

2.10 Properties of Crystal Lattice

The lattice is characterized by the same geometrical properties as crystal. These
properties are:

– Homogeneity

In the lattice, all nodes are equivalent, but the distance between a node and its
neighbors is not constant and depends on the direction taken to measure said
distance, as shown in Fig. 2.7.

a

c

bβ
α

γ

Fig. 2.6 Fundamental translations and the angles between them
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– Anisotropy

In the lattice, all nodes are equivalent, but the distance between a node and its
neighbors is not constant and depends on the direction taken to measure said
distance.

Example: In Fig. 2.8, the distance from the origin O to any other node around it
(A, B or C) is not the same.

– Symmetry

Nodes O, 1, 2, etc., are equivalent by the application of translation b (Fig. 2.9).

Fig. 2.7 Homogeneity of lattice. The arrangement of the blue nodes around the central blue node
0 is the same as that of the red nodes around the central red node 0

OA<OB>OC

Fig. 2.8 Anisotropy of lattice

Fig. 2.9 Translation as trivial
symmetry
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2.11 The Crystal as Interpenetrated Parallel Lattices

The crystal structure may be made up of an infinite number of parallel lattices of
constant dimensions, interpenetrating each other.

In NaCl (Fig. 2.10a), two sub-lattices can be considered: One is formed from the
Cl− ions, taking this ion as a repetition motif (Fig. 2.10b). The other is formed from
the Na+ ions, taking this ion as a repetition motif (Fig. 2.10c). Both lattices are
identical in dimensions and are parallel, but one of them is displaced one half of the
translation, in the three dimensions of space, with respect to the other (Fig. 2.10d
and e). However, the crystal structure is defined by a lattice, which may consist of

)b()a(

)d()c(

Fig. 2.10 Interpenetrated parallel lattices in NaCl: a Cl− and Na+ distribution. b Na+ sub-lattice.
c Cl− sub-lattice. d Cl− and Na+ sub-lattices interpenetrated and displaced one half forming the
NaCl structure
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various sub-lattices with atoms/ions or molecules on or between the nodes. In
the example of NaCl, either the chlorine ions or the sodium ions lattice would
describe this.

2.12 Lattice Elements

The elements of the lattice are nodes, rows, and planes.

2.12.1 Node

The node is an equivalent point by the translation. The node of the crystal lattice
replaces the motif that is repeated in the crystal structure.

There are points in the crystal structure, in addition to the nodes. The points are
not equivalent and are located between the nodes.

Considering the lattice definition, atoms or building units in the crystal structure
can occupy the position of a node or a point or in between.

The position of a node can be specified by a translation t

t ¼ maþ nbþ pc ð2:2Þ

where
m, n, and p are the coordinates of a node that is taken as the origin of the

coordinate system defined by a, b, c.
The position of any point can be specified by the vector r which is given by the

expression (2.3).

r ¼ ri þmaþ nbþ pc ð2:3Þ

where
ri is the distance between the considered point and its counterpart.

The vector ri is given by the expression (2.4)

ri ¼ xiaþ yibþ zic ð2:4Þ

where
xi, yi, and zi are the coordinates of the point defined by ri and are three positive
numbers less than unity.

All the points defined by ri occupy a space limited by the fundamental trans-
lations; that is, it constitutes the elementary cell. This space fills the entire crys-
talline space by applying the fundamental translations.
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Example
In Fig. E1, the position vector of the node N is given by r = ON:

r ¼ maþ nbþ pc ¼ 2aþ 3bþ oc

The coordinates m, n, q of node N are 2, 3, 0
The position vector of point A is given by ri = OA:

ri ¼ xiaþ yibþ zic ¼ 0:74aþ 0:72bþ 0c

The coordinates xi, yi, zi of point A are 0.74, 0.72, 0
The position vector of point B, homologous of A, is given by r = OB:

r ¼ ri þmaþ nbþ pc

thus

r ¼ ri þ 2aþ 3bþ 0c

Fig. E1

2.12.2 Lattice Row

The lattice row is an arrangement of nodes along one direction.
A lattice direction is, therefore a direction that contains nodes.
Each pair of lattice nodes defines a lattice row.
The lattice row symbol defines a lattice direction and is formed by three integer

numbers, positive or negative, enclosed in square brackets [uvw].
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When a negative number appears, a line is placed above it, for example 120
� �

,
and read as, “one, bar two, zero”, and the bar two is mathematically handled, like
−2.

If two-digit numbers appear, they are separated by commas, for example
[10,2,2].

Those numbers are the direct coordinates u, v, and w of a node of the lattice,
contiguous to another node taken as the origin.

The rows parallel to the fundamental translations a, b, and c, respectively, are
called fundamental reticular rows, and their symbols are [100], [010], and [001]
(Fig. 2.11). They define the edges of the lattice elemental cell. They are parallel to
the fundamental translations a, b, and c, respectively.

The set of symmetry-equivalent directions is symbolized by <uvw>.

Example

Fig. E1
Remarks:

– In this example, two solution equivalents must be considered, since the
lattice row sense of Fig. E1 has not been indicated, and any node of the
lattice, due to the property of homogeneity, can be chosen as the origin.

– The lattice row passes through at least two points. One of them is taken as
the coordinate origin. The other is specified by the coordinates in relation
to the node taken as the origin.

Fig. 2.11 Fundamental reticular rows
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Solution 1

Fig. E2

Solution 2

Fig. E3

2.12.3 Lattice Plane

A lattice plane is an arrangement of nodes in two directions, forming a net. Each
trio of nodes arranged in three different lattice directions defines a reticular plane.
Lattice Plane Symbol

– Weiss indices

Weiss parameters are the direct intersections of a lattice plane with the fundamental
translations.

– Miller indices

Miller indices are a series of three positive or negative integers in parentheses, (hkl),
which refer to the reciprocal intersections of a plane with the fundamental trans-
lations; h, k, l are integer numbers and coprime.
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These indices indicate the position of a plane in the lattice; that is, the inclination
with respect to the fundamental translations and its orientation and distance with
respect to the origin of coordinates (fundamental translations of the lattice or the
cell).

When a negative number appears, a line is placed above it; for example, 120
� �

and it is read one, minus two, zero.
If two-digit numbers appear, they are separated by commas; for example (10, 2 1).
The plane closest to the origin represents a family of lattice planes and passes

through three nodes, one in each lattice fundamental row, and whose coordinates
are as follows:

A ¼ Ha B ¼ Kb C ¼ Lc

where

H, K, and L represent the intersections of the plane with the fundamental rows; that
is, the Weiss indices
a, b, and c represent the fundamental translation or coordinate axis.

The number of planes existing between the plane with coordinates A, B, and C
and the lattice origin is given by the product H � K � L ¼ N.

The ratios N=H ¼ h, N=K ¼ k, and N=L ¼ l, are integers and are the Miller
indices. They are the inverse of the Weiss parameters.

Example
Figure E1 shows the plane AB, parallel to the crystallographic axis c,

Fig. E1

A and B being their coordinates, so

A ¼ Ha ¼ 2 � 1 ¼ 2

B ¼ Kb ¼ 3 � 1 ¼ 3
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C ¼ Lc ¼ 1 � 1 ¼ 1
N ¼ H � K ¼ 2 � 3 ¼ 6

h ¼ N=H ¼ 6=2 ¼ 3

k ¼ N=K ¼ 6=3 ¼ 2

l ¼ N=L ¼ 6=1 ¼ 0

Thus, its Miller indices are (320).

The crystalline planes that intersect the three coordinate axes of the lattice are
symbolized by (hkl).

The planes that intersect two axes and are parallel to the third are symbolized by
(hk0), (h0l), and (0kl), depending on whether they are parallel to axis c, b or a,
respectively.

Planes intersecting an axis and parallel to the other two are symbolized as (h00),
(0k0), and (00l).

The simplest symbol planes are (100), (010), and (001) and are called funda-
mental planes. These fundamental planes define the faces of the elemental cell of
the lattice.

Other planes with simple symbols are (110), (101), and (011).

Example

Fig. E1

Remarks:

In this example, the crystallographic coordinate c is perpendicular to the
paper plane and the planes p are parallel to this axis; that is, they are its traces.
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The trace of the lattice plane passes through at least two points. Each trace
can be parallel to one of the coordinates a or b, respectively, or it can intersect
both. When said trace is parallel to one of the two coordinates, it means that
its intersection is infinite.

It must be considered whether the intersections of the coordinate axis a, b,
c with the plane trace are positive or negative.

It must be considered, that h, k, l in Miller indices are coprime; therefore,
the greatest common devisor allowed is 1.

N represents the number of planes between a rational intersection and the
origin of coordinates.

In this example, two solution equivalents must be considered, since any
node of the lattice, due to the property of homogeneity, can be chosen as the
origin.

Solution 1

Plane Weiss parameters N Miller indices

H K L |H� �K L| (hkl)
p1 1 ∞ ∞ N = 1 h = N/H = 1/1 = 1 (100)

Fig. E2
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Plane Plane coordinates

A = H ��a B = K� b C = L � c
p1 A = 1�1 =1 B = ∞�1 = ∞ C = ∞�1 = ∞

p2 A = 1�1 = -1 B = 3�1 = 3 C = ∞�1 = ∞

p3 A = 2�1 = 2 B = 2�1 = 2 C = ∞�1 = ∞

p4 A = 3�1= 3 B = 4�1 = 4 C = ∞�1 = ∞

p5 A =1�1=1 B = 4�1 = 4 C = ∞�1 = ∞
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Solution 2

Fig. E3
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In the case of a trigonal or hexagonal lattice, four axes are used, a1, a2, a3, c, and
four indices, (h k i l) called Bravais–Miller indices, where h, k, i, l are again
inversely proportional to the intercepts of a plane with the four axes. The indices h,
k, i are related by

hþ k ¼ i ð2:5Þ

Example

1. The Bravais–Miller indices of a plane that intersects with the hexagonal
axis a = 2, b = 3, c = ∞, are obtained as follows:

(1°) hkl are obtained:

N ¼ H � K � L ¼ 2 � 3 � 1 ¼ 6

h ¼ N=H ¼ 6=2 ¼ 3

k ¼ N=K ¼ 6=3 ¼ 2

l ¼ N=L ¼ 6=1 ¼ 0

(2°) i is obtained applying the expression (2.5)

i ¼ � 3þ 2ð Þ ¼ �5

So, the Bravais–Miller índices are (32 5 0).
Because i is linearly dependent on h and k, it can be written as (32. 5
0) or (320)

Rational Index Law
Haüy (1784, 1801)1 long ago deduced the rational indices law which states that the
intercepts of the natural faces of a crystal with the coordinates axes (or unit-cell
axes)—a, b, c—are inversely proportional to Miller indices (hkl) (prime integers).

A set of crystal faces that are related to each other by symmetry is a crystal form.
A crystal form (which could imply many faces) is designated by the Miller index or
Miller–Bravais index notation, enclosing the indices in braces, i.e., {101} or
{1121}.

1 Haüy [1, 2].
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2.13 Lattice Spacing

Lattice spacing or interplanar spacing is the distance between the planes of a family
of lattice planes (Fig. 2.12).

It is measured perpendicular to the planes of the plane family.
The spacing of a plane family (hkl) is symbolized by dhkl and is characteristic of

each family.
The lattice spacing is related to the lattice constants (fundamental translations or

coordinate systems) and to the Miller indices, using the so-called quadratic form
given by expression (2.6).

1

d2hkl
¼ 1

V2

h2b2c2sin2aþ k2a2c2sin2bþ l2a2b2sin2cþ
2hkabc2 cosa cosb� coscð Þþ
2hlab2c cosa cosc� cosbð Þþ
2kla2bc cosb cosc� cosað Þ

2
664

3
775 ð2:6Þ

With volume V given in Eq. (2.1).

Example

1. For cubic cells, the expression (2.6) reduces to

dhkl ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p

and the lattice spacing of a family of planes (121) of a cubic cell with a = 2 Å
is

Fig. 2.12 Lattice spacing
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dhkl ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 22 þ 22

p
¼ 0:8197 Å

2. For orthorhombic cells, the expression (2.6) is

dhkl ¼ 1= h2=a2
� �þ k2=b2

� �þ l2=c2
� �

and the lattice spacing of a family of planes (121) of an orthorhombic cell
with a = 2 Å, b = 3 Å 3 Å, and c = 1 Å is

dhkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12=22ð Þ þ 22=32ð Þ þ 12=12ð Þ

p
¼ 8 � 10�4 Å

2.14 Tautozonal Planes

Tautozonal planes are a set of non-parallel planes that are characterized by having a
common crystallographic direction, called a zone axis, and whose symbol is [uvw].

Figure 2.13 shows some families of planes parallel to the c axis (perpendicular
to the writing plane), with the same symbol and equal interplanar distance.

The condition for a plane (hkl) to be parallel to an axis [uvw] is given by Weiss
zone law

huþ kvþ lw ¼ 0 ð2:7Þ

Fig. 2.13 Tautozonal planes.
Families of planes parallel to
the c axis (zone axis)
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If two planes (hkl) and (h′k′l′) belong to the same zone, they are parallel to the
same crystallographic direction [uvw] and must be fulfilled

huþ kvþ lw ¼ 0
h0uþ k0vþ l0w ¼ 0

ð2:8Þ

Solving both equations, the symbol of the zone axis is obtained

u ¼ kl0 � k0lð Þ
v ¼ lh0 � l0hð Þ
w ¼ hk0 � k0hð Þ

ð2:9Þ

Example

1. The plane (100) is parallel to the axis [001]

1 � 0þ 0 � 0þ 0 � 1 ¼ 0

2. The plane (100) is not parallel to the axis [210]

1 � 2þ 0 � 1þ 0 � 0 ¼ 2 6¼ 0

3. To know if planes (110) and (320) belong to the same zone [001],
expression (2.7) is applied

1 � 0þ 1 � 0þ 0 � 1 ¼ 0

3 � 0þ 2 � 0þ 0 � 1 ¼ 0

Both planes belong to the zone with zone axis [001]
To know the symbol of the zone axis to which the planes (211) and
(321) belong, expression (2.8) is applied.

u ¼ 1 � 1� 2 � 1 ¼ �1

v ¼ 1 � 3� 1 � 2 ¼ 1 The zone symbol is ½110�
w ¼ 2 � 2� 2 � 2 ¼ 0
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2.15 Reticular Density

– Spatial lattice density or reticular density

Spatial lattice density is the number of nodes per volume unit. It is the inverse of the
cell volume, Vhkl

qhkl ¼ 1=Vhkl ð2:10Þ

– Planar lattice density

Planar lattice density is the number of nodes per unit area. It is the inverse of the
plan cell area, Shkl

qhkl ¼ 1=Shkl ¼ dhkl=Vhkl ð2:11Þ
Shkl ¼ Vhkl=dhkl ð2:12Þ

The planes with the highest node density are those with the simplest Miller
indices and are more distant from the origin, which may constitute crystalline faces.

– Linear lattice density

The linear lattice density is the number of nodes per unit length. It is the inverse of
the module of the translation vector.

The rows with the simplest Miller indices are those with the highest node
density. They are: [100], [010], and [001].

Example
In Fig. E1, the plane family p1, p2, and p3 have different Miller indices—p1
(110), p2 (120), p3 ð130Þ—interplanar spacing and reticular density.

The planes are represented by their traces.
The reticular density can be considered in this case as the number of nodes

per length unit. For this example, the green line has been taken as the unit of
length. Then

q110 ¼ 3 nodes

q120 ¼ 2 nodes

q130 ¼ 1 node
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a

b

p1

p2

p3

Fig. E1

2.16 Crystal Face

A crystal face is a manifestation in the crystal of planes that are characterized by
having the highest plane lattice density, and their Miller indices are simple.

Example: In Fig. 2.14, the different numbered plane surfaces limiting the pyrite
crystal are crystal faces.

2.17 Crystal Edge

A crystalline edge is a manifestation in the crystal of a lattice row characterized by
having the highest linear lattice density and having the simplest symbol.

In the gypsum crystal image (Fig. 2.15), some edges have been highlighted with
a red line.

Fig. 2.14 Crystal faces
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2.18 Reciprocal Lattice

The reciprocal lattice is, as its name indicates, the reciprocal of the crystal lattice or
direct lattice.

This mathematical construction is helpful, e.g., for X-ray structure analysis.
It has an origin.
Lattice parameters are symbolized with an asterisk*

a� ¼ 1=d100
b� ¼ 1=d010
c� ¼ 1=d001

ð2:13Þ

Axis a*, denoted as [100]* is perpendicular to (100) plane of the direct lattice.
Axis b*, denoted as [010]* is perpendicular to (010) plane of the direct lattice.
Axis c*, denoted as [001]* is perpendicular to (001) plane of the direct lattice.

The reciprocal lattice has an elementary cell defined by the reciprocal funda-
mental translations, previously defined.

Its volume is the inverse of the volume of the elementary cell of the direct lattice.

Fig. 2.15 Crystal edges
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If a, b, and c are the fundamental angles of the direct lattice and A, B, and C are
the dihedral angles between the fundamental planes of the direct lattice, the cor-
responding fundamental angles of the reciprocal lattice are given by

cos a� ¼ cos b cos c�cos a
sin b sin c

cos b� ¼ cos bc cos a�cos b
sin a sin c

cos c� ¼ cos a cos b�cos c
sin a sin b

ð2:14Þ

The relationships between the translations of the direct lattice and the reciprocal
lattice are

a� ¼ 1=V b � c ¼ 1=Vð Þbc sin a
b� ¼ 1=Vð Þca sin b
c� ¼ 1=Vð Þab sin c

ð2:15Þ

Example (2D)
Obtaining the Reciprocal Lattice

The reciprocal lattice is obtained as follows (Fig. E1):

– Any point of the direct lattice can be chosen as the origin of the new
lattice.

– Normals to the fundamental planes—(100), (010), and (001)—of the
direct lattice; that is, the interplanar spacings d100, d010, and d001 are
drawn, and their inverses are taken as coordinate axes of the reciprocal
lattice.

– Lines are drawn on the coordinate axes, and reciprocal translations are
marked on them.

– Lines intersecting with the translations b* are drawn parallel to the lines
containing a*.

– Lines intersecting with the translations a* are drawn parallel to the lines
containing b*.

– The nodes of the reciprocal lattice are drawn on the intersections of the
translations a* and b*.

The reciprocal lattice node symbol is obtained as follows:

Node 01: It is at the intersection of row 0 parallel to translation a* and row 1
parallel to translation b*; therefore, it is 01.
Node 22: It is at the intersection of row 2 parallel to translation a* and row 2
parallel to translation b*; therefore, it is 22.
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2.19 Relations Between the Direct and Reciprocal Lattices

– Each direct lattice corresponds to a single reciprocal lattice.
– Every reciprocal lattice has an origin and the same symmetry + inversion

symmetry as the direct lattice from which it comes.
– In orthogonal crystalline systems and in two dimensions, a reciprocal lattice

derives from the primitive direct lattice by a 90° turn around the node taken as
the origin.

– If the direct lattice is face centered, its reciprocal will be interior centered.
– If the direct lattice is centered inside, its reciprocal will be face centered.
– If the direct lattice is bases centered, its reciprocal is also.
– If the direct lattice is primitive, its reciprocal is also primitive.
– The direct lattice is homogeneous, but the reciprocal lattice is not. In the direct

lattice all the nodes are equivalent and the origin can be taken at any node. In the
reciprocal lattice there is an origin, and the nodes are not interchangeable.

– The reciprocal lattice is made up of lattice rows, which are perpendicular to
families of planes of the direct lattice, and families of lattice planes that are
perpendicular to lattice rows of the direct lattice.

– The planes of the same family in the reciprocal lattice are not equivalent to each
other, contrary to what happens in the direct lattice.

– There are 14 types of direct lattices (Bravais networks) and 14 types of recip-
rocal lattices.

Exercises

1. Select a repeat motif and two translations, the smaller ones in two
directions, from Fig. E1a–d.

(a) Draw the corresponding plane lattice.
(b) Indicate the type of plane lattice in each case.
(c) Select a cell and indicate the following:

(1) If it is a primitive or multiple.
(2) The cell content, depending on the motif that is repeated.
(3) The values of a and b parameters (cm), c (°), and the area (cm2).
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(a) (b)

(c) (d)

Fig. E1
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2. Obtain the row symbol from Fig. E2a–f.

(a) (b) (c)

(d) (e) (f)

Fig. E2 

3. Obtain the Miller indices of the planes of Fig. E3a–f.

(a) (b) (c)

(d) (e) (f)

Fig. E3 
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Questions

1. What is the property represented in the lattice of Fig. Q1, in which it can
be seen that the distances between nodes keep the relation
OA < OB < OC?

Response:
2. What is the name of the property that, from the macroscopic point of

view, means invariance of a physical property F measured at a point x, in
relation to its measure at another point x + x′; that is, F (x) = F (x + x′)?
Response:

3. To describe a material in a crystalline state (mineral, for example), it is
only necessary to use one of the infinite lattices that can represent it, all of
them characterized by being interpenetrated with each other, although
they are not parallel.

True
False

4. Symmetry means periodicity.
True
False

5. The cell content of Fig. Q2 is one node

Fig. Q2
True
False

6. A fundamental translation is equivalent to a lattice constant
True
False
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7. How is the fundamental translation that is related to the crystallographic
direction symbolized as [010]?
Response:

8. What should the Miller indices be?

(a) integers
(b) integers or fractional

Response:

9. What are planes that have a common direction and are not parallel?
Response:

10. The Miller indices of the plane that cuts the fundamental translation b are
zeros? Yes/No
Response:

11. What is the form in which a solid appears in a crystalline state under
certain formation conditions?
Response:

12. The coordinates of the atoms in a crystal structure can only be integers.
True
False

13. In the tetragonal lattices, a, b, and c are equal to 90°
True
False

14. Translation is the simplest operation of symmetry and is inherent in the
crystal structure.

True
False

15. Weiss parameters are three positive or negative integers in parentheses.
True
False
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Chapter 3
Symmetry and Lattices

Abstract This chapter explains symmetry, one of the properties of crystal, as a
consequence of the periodicity of its atomic constituents in the three-dimensional
space. The operations and operators of symmetry in two and three dimensions are
defined. The proper and improper rotations and the symmetry with translation
(reflection—translation and rotation—translation) and their symbols are described.

3.1 Concept of Symmetry

Symmetry is a property that makes objects appear indistinguishable after they have
been subjected to transformation in space.

These transformations are symmetry operations, which are performed by sym-
metry operators or elements.

Mathematically, symmetry corresponds to a set of linear transformations that
make some directions equivalent to others.

The definition of equivalence, from a mathematical point of view, includes
the conditions of:

– identity
a = a

– reflexivity
if a = b, then b = a

– transitivity
if a = b and b = c, then a = c.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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3.2 Symmetry Contained in the Lattices

The crystal is symmetrical because it is periodic. Its symmetry can be deduced as a
consequence of the theory of crystalline lattices.

Translation is the trivial symmetry of lattices. It is the shortest distance between
two contiguous nodes in each of the three dimensions of space.

Centering is a symmetry operation of the lattice. It results from adding new nodes
in the center of each parallelogram generator of the plan lattice. It is only considered
possible when the resulting lattice is morphologically different from the original one.

In plane lattices, only rectangular (Fig. 3.1) or orthorhombic (Fig. 3.2) lattices
can be centered.

Relations Between Lattice Elements and Symmetry Operators

– The number and type of operators that appear in a lattice depend on the lattice
metric.

– The principle of reticular homogeneity means that every element of symmetry
that passes through a node is repeated in parallel and indefinitely at each node of
the lattice.

Fig. 3.1 Centered rectangular lattice

Fig. 3.2 Centered orthorhombic lattice
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– Every node in the lattice is a center of symmetry.
– Every axis of symmetry is a reticular row.
– Every plane of symmetry is a reticular plane.
– Perpendicular to every axis of symmetry there is a family of reticular planes.
– Every reticular plane that is a plane of symmetry has a family of reticular rows

perpendicular to it, and each reticular row of this family is an axis of symmetry.
– Every reticular row that is an axis of even order (2, 4 or 6) has a reticular plane

perpendicular to it, which is a plane of symmetry.
– A reticular row that is a symmetry axis of order 4 or 6 has 4 or 6 families of rows

perpendicular to it that are binary axes, and 4 or 6 families of symmetry planes
that contain that row.

– The intersection of an even-ordered axis on a plane of symmetry that is per-
pendicular to that axis is a center of symmetry.

3.3 Symmetry Operation

Symmetry operation is a transformation that, when applied to an object, leads to a
configuration indistinguishable from the original. In Table 3.1, the symmetry
operations in two and three dimensions are presented.

3.4 Element of Symmetry

Symmetry element is an operator that allows the symmetry operation. There are
several types of symmetry elements (Table 3.2).

Table 3.1 Symmetry
operations in two and three
dimensions

Symmetry operations

In two dimensions In three dimensions

Translation Translation

Proper

Rotation Rotation

Improper

Rotation-inversion

With associated translation

Reflexion-translation
(gliding)

Reflexion-translation
(gliding)
Rotation-translation
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3.5 Translation

Translation is the trivial symmetry of lattices. It is the shortest distance between two
contiguous nodes in each of the three dimensions of space (Figs. 3.3 and 3.4).

Example

Table 3.2 Symmetry
elements in two and three
dimensions

Symmetry elements

In two dimensions
– Translation vector
– Rotation point
– Center
– Reflexion line
– Gliding line

In three dimensions
– Translation vector
– Rotation axis
– Center
– Reflexion plane
– Rotation-inversion axis
– Rotating-reflexion axis
– Gliding plane
– Screw axis

Fig. 3.3 Translational symmetry

Fig. 3.4 Decorative element of the Mosque of Cordoba
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3.6 Symmetry Proper Operations

3.6.1 Rotations

– In three dimensions

Rotation is a symmetry operation consisting of a 360°/n rotation around a
symmetry axis or rotation axis (which is its corresponding symmetry element).
The order of that axis is n, which can be 1, 2, 3, 4, and 6.
Various notations are used to symbolize the axes of rotation, although the most
commonly used are Hermann–Mauguin or international notation and Schoenflies
(Table 3.3).
In the plane, the operators of the rotation operation are rotation points and the
order, n, can be 1, 2, 3, 4, and 6.
This operation is called a proper operation and the operators are called proper
axes.
A rotation axis of order n generates a total of n operations.
A rotation axis that involves 360°/n rotations also involves m ⋅ (360°/n) rota-

tions, where m can be 1, 2, 3, 4, 5 and 6 (Table 3.4).

– In two dimensions

Rotation in the plane is a symmetry operation that consists of a 360°/n rotation
around a symmetry point or rotation point (which is its corresponding symmetry
element).
The order of that point is n, which can be 1, 2, 3, 4, and 6.

Table 3.3 Notations used to symbolize the rotation axes

Hermann–Mauguin Schoenflies Rotation axis degrees (°)

1 C1 Monary (identity) 360

2 C2 Binary 180

3 C3 Ternary 120

4 C4 Quaternary 90

6 C6 Senario 60

Table 3.4 Rotations involved by the rotation axes of order 1, 2, 3, 4, and 6

Rotation
axis

Rotations

1 360°/1 1 ⋅ (360°/1)

2 360°/2 1 ⋅ (360°/2) 2 ⋅ (360°/2)

3 360°/3 1 ⋅ (360°/3) 2 ⋅ (360°/3) 3 ⋅ (360°/3)

4 360°/4 1 ⋅ (360°/4) 2 ⋅ (360°/4) 3 ⋅ (360°/4) 4 ⋅ (360°/4)

6 360°/6 1 ⋅ (360°/6) 2 ⋅ (360°/6) 3 ⋅ (360°/6) 4 ⋅ (360°/6) 5 ⋅ (360°/6) 6 ⋅ (360°/6)
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Table 3.5 shows the Hermann–Mauguin notation for the rotation points.

Examples
Monary rotation: Identity: 1 (Fig. 3.5).

Binary rotation: 2 (Fig. 3.6).

Ternary rotation: 3 (Fig. 3.7).

Table 3.5 Notations used to
symbolize the rotation points

Hermann–Mauguin Rotation axis Degrees (°)

1 Monarium (identity) 360

2 Binary 180

3 Ternary 120

4 Quaternary 90

6 Senario 60

Fig. 3.5 360° rotation

Fig. 3.6 180° rotation

Fig. 3.7 120° rotation
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Quaternary rotation: 4 (Fig. 3.8).

Senary rotation: 6 (Fig. 3.9).

3.7 Symmetry Proper Operations

3.7.1 Rotation-Inversion

Rotation-inversion is a symmetry operation that consists of a 360º/n rotation and an
inversion around a symmetry element called the inversion axis of rotation. The
order of that axis is n, and it can be 1, 2, 3, 4, and 6.

The symbol of these axes for the most used notation, Hermann–Mauguin or
international, is the following:

Fig. 3.8 90° rotation

Fig. 3.9 60° rotation
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1 that reads one with streak
2 that reads two with streak
3 that reads three with streak
4 that reads four with streak
6 that reads six with streak

Examples
Monary rotation: 1
360º rotation and simultaneous inversion
Binary rotation: 2 � m (Fig. 3.10).

Ternary rotation: 3 (Fig. 3.11)

Fig. 3.10 180° rotation and simultaneous inversion

Fig. 3.11 120° rotation and simultaneous inversion
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Quaternary rotation: 4 (Fig. 3.12)

Senary rotation: 6 (Fig. 3.13)

Table 3.6 shows the Hermann–Mauguin notation of these axes, as well as the
Schoenflies notation, its denomination, and the number of degrees of rotation of the
axes.

The equivalence with the rotation-reflection operation, which does not exist in
the Hermann–Mauguin notation, is shown in Table 3.7.

Axis 1 is the center of symmetry.

Fig. 3.12 90° rotation and simultaneous inversion

Fig. 3.13 60° rotation and simultaneous inversion

3.7 Symmetry Proper Operations 57



The operation that makes an object with initial x, y, z coordinates be transformed
by the center of symmetry into another with −x, −y, −z coordinates is called
inversion (Fig. 3.14).

Example

Table 3.7 Equivalence
between the rotation-
reflection and rotation-
inversion operations

Rotation-inversion
Hermann–Mauguin

Rotation-reflection
Schoenflies

1 S2

2 r

3 S6

4 S4

6 S3

Fig. 3.14 Inversion 1

Table 3.6 Summary of symmetry improper operations

Hermann–Mauguin Schoenflies Rotation axis Degrees (°)

1 C1 Monarium (identity) 360

2 C2 Binary 180

3 C3 Ternary 120

4 C4 Quaternary 90

6 C6 Senary 60
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The axis is 2 equivalent to the plane of symmetry, m.
Reflection is the operation of symmetry that makes any motif or object that

appears on one side of the element of symmetry, called a reflection plane, appear on
the other side of the same element and at the same distance.

In three dimensions, the element of symmetry is the reflection plane.
The symbol of the reflection plane according to Hermann–Mauguin notation is

m (Fig. 3.15).

Example

In the Schoenflies notation, the symbol is s,
sh horizontal plane perpendicular to the main axis of rotation (which has the

highest order).
sn vertical plane including the rotation axis.
sd diagonal plane including the main rotation axis and divides in two the angle

between two C2 axes, which are normal to the main rotation axis.
In two dimensions, the element of symmetry is the reflection line. The symbol of

the reflection line according to Hermann–Mauguin notation is m (Fig. 3.16).

Example

Fig. 3.16 Vertical and horizontal symmetry lines

Fig. 3.15 Reflection plane
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The axis is 3 equivalent to axis 3 and the symmetry center.
The axis is 6 equivalent to axis 3 and a plane m perpendicular to it (3/m).
In Table 3.8, a summary of symmetry operations is presented.

3.7.2 Reflection-Translation (Glide)

– In three dimensions

Gliding is a symmetrical operation consisting of a reflection and a translation.
The symmetry operator is the glide plane. The translation must be contained in

the gliding plane. The travel distance must be half the unit translation in that
direction (Fig. 3.17).

Example
Gliding plane

In Hermann–Mauguin notation, the following gliding planes are distinguished:
(1) axial, (2) diagonal, and (3) diamond.

Table 3.8 Summary of symmetry operations

Symmetry
operation

Rotations Rotation
axes

Notes

Proper
rotations

360°/n 1, 2, 3, 4
and 6

1 is the identity

Improper
rotations

360°/n and
simultaneous
inversion

1, 2, 3, 4
and 6

1 Equivalent to a symmetry center
2 Equivalent to a symmetry plane
3 Equivalent to ternary axis + center of
symmetry
6 Equivalent to a ternary axis
perpendicular to a symmetry plane

Fig. 3.17 Gliding plane
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(1) Axial gliding plane

Axial gliding plane is a plane whose gliding component is parallel to a crystallo-
graphic axis. Its length is half the period of the translation along this axis. It is
symbolized as a, b or c, depending on whether the glide is along the crystallo-
graphic axes a, b or c, respectively.

Examples
Effect of the axial glide plane, depending on the type and in relation to
different crystalline planes of an orthorhombic cell (Fig. 3.18).

1. Axial a perpendicular plane to crystalline plane (001) (Fig. 3.19a) and
(010) (Fig. 3.19b), respectively, of an orthorhombic cell.

2. Axial plane b perpendicular to the crystalline plane (001) (Fig. 3.20a and
b) and (100) (Fig. 3.20c), respectively, of an orthorhombic cell.

Fig. 3.18 Orthorhombic cell

(a) (b)

Fig. 3.19 Axial a Perpendicular Plane to Crystalline Plane (001) (a) and (010) (b)
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3. Axial plane c perpendicular to the crystalline plane (100) (Fig. 3.21a) and
(010) (Fig. 3.21b), respectively, of an orthorhombic cell.

(a) (b)

(c)

Fig. 3.20 (a) and (b) Axial b Perpendicular Plane to the Crystalline Plane (001); (c) Axial b
Perpendicular Plane to Crystalline Plane (100)

(a) (b)

Fig. 3.21 Axial Plane c Perpendicular to the Crystalline Plane (100) (a) and (010) (b)

(2) Diagonal gliding plane

Diagonal gliding plane is a plane whose gliding component is:

(a+b)/2
(a+c)/2
(b+c)/2

Its symbol is n.
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Examples
Effect of the axial glide plane, depending on the type and in relation to
different crystalline planes of an orthorhombic cell (Fig. 3.22).

1. Diagonal gliding plane n perpendicular to the crystalline plane (001),
gliding (b+c)/2b (Fig. 3.23).

2. Diagonal gliding plane n perpendicular to the crystalline plane (100),
gliding (c + a)/2 (Fig. 3.24).

e

Fig. 3.23 Diagonal gliding plane n perpendicular to the crystalline plane (001)

Fig. 3.22 Orthorhombic cell

Fig. 3.24 Diagonal gliding plane n perpendicular to the crystalline plane (100)

3.7 Symmetry Proper Operations 63



(3) Diamond gliding plane

Diamond gliding planes are planes whose gliding component is:

(a+b)/4
(a+c)/4
(b+c)/4

Its symbol is d.

– In two dimensions

Gliding is a symmetrical operation consisting of a reflection and a translation.
The symmetry operator is the glide line. The translation must be contained in the

glide line. Its length is half the period of the translation along this axis. It is
symbolized as g.

Example
Gliding line (Fig. 3.25).

3.7.3 Rotation-Translation

Rotation-translation is the operation involving rotation of order 2, 3, 4 or 6 and
constant translation along the axis of rotation.

The rotation is taken counterclockwise and the translation is taken upwards.
The operator that allows the operation to be carried out is the screw axis.

Fig. 3.25 Gliding line
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The number of existing screw axes is n − 1, where n is the order of the axis.
Thus, the existing screw axes are those shown in Table 3.9.

Enantiomorphic screw axes (each is the mirror image of the other)

31 and 32
41 and 43
61 and 65
62 and 64

Table 3.10 shows the symbol of the different screw axes in the Hermann–
Mauguin notation, the degrees of rotation, and the translation involved (Fig. 3.26).

Table 3.10 Rotations and translations of the screw axes

Axis order Symbol Rotation (°) Translation (UVW)

Binary 21 +180 1/2

Ternary 31
32

+120 1/3
2/3

Quaternary 41
42
43

+90 1/4
1/2
3/4

Senary 61
62
63
64
65

+60 1/6
1/3
1/2
2/3
5/6

Table 3.9 Screw axes

Order of the axis Screw axes

2 21
3 31 32
4 41 42 43
6 61 62 63 64 65
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Examples

21 31 32

(a) (b) (c)

Fig. 3.26 Screw axes examples: 21 (a), 31 (b), 32 (c)

Exercises
Non-translational Symmetry

1. Draw all the symmetrical reticular rows to row [13], indicating their
symbol, as a consequence of the action of the quaternary rotation point
passing through the node taken as origin, in the net of Fig. E1.

Fig. E1

a
b
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2. Draw all the elements of symmetry contained in the two-dimensional
lattices of Fig. E2a and b.

(a) (b)

Fig. E2

3. Draw all the grid rows symmetrical to F1 row of the lattice in Fig. E3,
indicating their symbol, as a consequence of the non-translational sym-
metry contained in it.

Fig. E3

a
b

F1

4. Draw the elements of symmetry (proper, improper, and with associated
translation) in the two-dimensional periodic models in Fig. E4.

(a) (b) (c)
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(d) (e) (f)

Fig. E4

Questions

1. If a rotation axis of order n has binary axes perpendicular to it:
a. there shall be binary axes in a number independent of the order of

the axis
b. there shall be an even number of binary axes
c. there will be no binary axes
d. there shall be as many binary axes as the order of the axis

2. A binary axis implies,
a. 180° rotation
b. 180° and 360° rotations
c. 120° and 240° rotations
d. 120°, 240° and 360° rotations

3. A screw axis 63 parallel to the crystallographic axis c implies:
a. 60° rotation and 1/2 translation along the direction of the crystal-

lographic axis b
b. 60° rotation and 3/4 translation along the direction of the crystal-

lographic axis b
c. 60° rotation and 1/3 translation along the direction of the crystal-

lographic axis c
d. 60° rotation and 1/2 translation along the crystallographic axis c

4. One element of symmetry that allows the operation of reflection is:
a. a reflexion plane with translation associated with the crystallo-

graphic axis c
b. a reflexion plane with associated translation in the direction of the

crystallographic axis b
c. a reflexion plane without associated translation
d. a plane of reflexion with associated translation in the direction of the

crystallographic axis a
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5. The symbol m means:
a. translation and gliding plane
b. reflexion plane
c. translation and axis of rotation
d. translation and reflexion plane

6. What is the name of the symmetry operation involving 90° rotations and
simultaneous inversion?
Answer:

7. How many degrees of rotation does the rotation axis of order 3 involve?
Answer:

8. What is the name of the symmetry operation whose operator is the center
of symmetry?
Answer:

9. Write the Hermann–Mauguin symbol of an element of symmetry
involving 120° rotation and 2/3 translation
Answer:

10. Write the name of the element of symmetry in the plane that implies
reflection and translation.
Answer:

11. Write the name(s) of the symmetry operation(s) shown in Fig. Q1.

Fig. Q1
Answer:

12. What is the name of the vector by which the position of a node in the
lattice can be defined?
Answer:

13. The line of symmetry is the element that allows the operation of reflection
in the space of three dimensions

True
False

14. Crystallographic symmetry axes are those of order 1, 2, 3, 4, 5, and 6.
True
False
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15. In a gliding plane, the glide can be along:
a. any direction other than a crystallographic axis
b. the direction of a crystallographic axis
c. the direction of the three crystallographic axes simultaneously
d. the direction of two crystallographic axes simultaneously.
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Chapter 4
Point Symmetry

Abstract The concept of point group is defined, and the wo-dimensional point
groups and three-dimensional groups are presented as the groups of
non-translational symmetry, both of the lattices and of the crystals. The symbol is
described using the international notation of Hermann–Mauguin, showing also that
of Schoenflies. The directions of symmetry and their relation to the crystallographic
directions for each type of lattice, both two and three-dimensional, are presented.
The equivalence between the point groups and the crystalline classes is shown,
since in many texts of mineralogy they appear extensively described. The concept
of crystalline form is defined, the types that exist, and how they can be named using
a symbol or a name that alludes to a polyhedral form. The concept of the crystalline
system is defined as a set of point groups compatible with certain types of Bravais
lattices. From the study of the faces of a crystal, its geometrical and symmetrical
relations were deduced by the laws of classical crystallography, and they are pre-
sented. The representation of the symmetry and faces of a crystal through a pro-
jection is described. It starts with the three-dimensional projection on the pole
sphere and then the stereographic projection in two dimensions. To do this, the
concept of a normal bundle to the faces is used.

4.1 Introduction

Crystalline morphology provided experimental data for the development of math-
ematical crystallography until the discovery of X-ray diffraction by crystals in 1912.
There are three fundamental laws of crystallography:

(1) Dihedral angles law.1

The dihedral angles that form the equivalent faces of various crystals of a substance
are equal and characteristic of that substance, whatever the shape of the crystal (see
Fig. 4.1).

1 de Romé Delisle [1].
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(2) Symmetry law.2

All the crystals of the same substance have the same symmetry, whatever their faces
(Fig. 4.2).

(3) Law of the rationality of the indices.3

The intersecting edges of three sides of a crystal allow definition of a coordinate
axis system. The distance a fourth face cuts to each axis is considered the unit of
measurement on this axis. All the other faces of the crystal cut to these axes at
distances whose ratio to the lengths defined as units are rational and generally
simple numbers (Fig. 4.3).

4.2 Point Group Definition

A point group is defined as the set of symmetry operations existing in a crystal
lattice. It has all the characteristics of a mathematical group. There is a point in
space that is equivalent to itself, which is usually taken as the origin of coordinates.

Fig. 4.1 Corundum showing different habits in which the angle between the r and n faces of the
figures in the center and on the right are the same. The angle between the r and n faces of the right
and central crystals is also the same

Fig. 4.2 Crystals of the same crystalline species with cubic symmetry showing different habits
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Order of the group is the number of elements that constitute it. If the group has n
elements, the group is of order n.

A subgroup is defined as the set of elements of a group that by themselves meet
the group conditions.

Box 4.1. Characteristics of a mathematical group
Any combination of two or more elements (or operations) must be equivalent
to an element that also belongs to the group.

The combination is a multiplication; that is, the successive execution of
symmetrical operations.

This operation can be expressed as follows:

AB ¼ C

Where
A, B, and C are elements of the group, which we consider to be finite since

the number of elements of symmetry is finite.
In the point group 2/m, 2 and m are elements that belong to the group and

their combination is equivalent to another element 1, which also belongs to
the group (Fig. 4.4).

In Fig. 4.4a, point 2 is obtained by applying the reflection to point 1 and
then axis 2. The combination of the reflection (applied to point 1) and then the
binary rotation (applied to the reflected point 1) gives rise to point 2.
Therefore, the line of symmetry, the binary rotation, and the point of
rotation-monetary inversion belong to the group.

In Fig. 4.4b, point 2 is obtained by applying the center of symmetry to
point 1. The combination of the plane m and the axis 2 on point 1 is
equivalent to the action of the center of symmetry on point 1.

Fig. 4.3 Crystalline face (111) intersecting the fundamental translations a, b, and c to the unit
distance
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In the group, there must be an element that can be combined with all the
other elements of the group, leaving them all unaltered. This is the monary
axis or the identity. This property can be expressed as follows:

AE ¼ A

Where:
A is any element of the group
E is the identity or the monary axis.
The combination of the identity element with all other elements must be

commutative, i.e., (Fig. 4.5).

AE ¼ EA ¼ A

The combination of elements must be associative. It means that the fol-
lowing relationship must be fulfilled:

AðBCÞ ¼ ðABÞC

Where
A, B, and C are elements of the group.

Fig. 4.4 Point group 2/m

m1=1m=m

Fig. 4.5 The combination of
reflection and mono-rotation
causes reflection and the com-
bination of monary rotation
and reflection also causes
reflection
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Each of the elements of the group has the inverse element, so that the
product of the element by its inverse is equal to the identity element.

AX ¼ E

Where:
A is an element of the group,
X is its inverse element,
E is the identity.
Also, if X is the inverse of A, A must be the inverse of X:

AX ¼ XA ¼ E

4.3 Rules that Condition the Presence of Several
Symmetry Elements in the Same Point Group

1. If there is an even-ordered axis of rotation and a plane of reflection perpen-
dicular to it, there is a center of symmetry at its intersection.

2. If a series of symmetry planes are cut on a symmetry axis, there are as many
planes as the order of the axis.

3. If a rotation axis of order n has binary axes perpendicular to it, there will be as
many binary axes as the order of the axis.

4. If there is a binary axis perpendicular to a reversed axis of rotation, whose order
n is even, there are n/2 planes intersecting the y-axis and n/2 binary axes
perpendicular to it.

4.4 Crystalline System

Crystalline system is defined as the set of point groups compatible with Bravais
lattices.

In the last century, point groups were grouped into classes that most authors call
crystalline systems, although the terms singony and crystalline type have also been
used.

Two or more point groups are said to belong to the same crystalline system if
they support the same Bravais lattices. In this way, seven crystalline systems appear
(Table 4.1).
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The axial cross in each crystalline system (Table 4.2) is chosen, taking into
account the following considerations:

– The axial crossings of each system coincide with the seven primitive Bravais
cells (P).

– They are constructed so that the coordinate axes coincide with the symmetry
elements of the material in the crystalline state.

– When there is a rotation axis of higher order than binary, the direction of the
c-axis is chosen according to the direction of that axis.

– The directions of the a and b axes are chosen according to the binary axes if they
exist.

In the orthorhombic system, the directions of a, b and c are chosen according to
the binary axes when they exist.
In the monoclinic system, the direction of b is chosen according to the single
binary axis if it exists.
In the triclinic system, the choice of a, b, and c is made by selecting the three
smallest and non-coplanar edges.

– The choice of these axes on the crystal would be made in the same way as for
the choice of the lattice constants a, b, and c.

– It is customary to call x, y, and z the coordinates coinciding with the directions
of the lattice constants a, b, and c.

Table 4.1 Crystalline
systems and Bravais lattices

Crystalline systems Bravais lattices

Triclinic P

Monoclinic P, A (B, C)

Orthorhombic P, I, F, A (B, C)

Tetragonal P, I

Hexagonal P

Rhombohedral P

Cubic P, I, F

Table 4.2 Axial cross and
axial cross angles of each
crystalline system

Crystalline
system

Axial
cross

Axial cross angles

Triclinic a 6¼ b 6¼ c a 6¼ b 6¼ c 6¼ 90
�

Monoclinic a 6¼ b 6¼ c a ¼ c ¼ 90
� 6¼ b

Orthorhombic a 6¼ b 6¼ c a ¼ b ¼ c ¼ 90
�

Tetragonal a = b 6¼ c a ¼ b ¼ c ¼ 90
�

Hexagonal a = b 6¼ c a ¼ b ¼ 90
�
c ¼ 60

�
or 120

�

Rhombohedral a = b 6¼ c a ¼ b ¼ 90
�
c ¼ 60

�
or 120

�

Cubic a = b = c a ¼ b ¼ c ¼ 90
�
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4.5 Point Group Symbol

There are two types of symbols.

1. Schoenflies notation is the oldest. It consists of a capital letter, characteristic of
the point group type. It can be accompanied by one or more subscripts: One of
them is numerical. The other one is a small letter. When both exist, they are
written in this order.

2. Hermann–Mauguin notation (or international notation). It consists of a sequence
of numbers and the letter m (reflection plane). They correspond to the symbols
that represent the different elements of symmetry. They can include the fol-
lowing: Slash. Denominator is the letter m. Numerator is a number that refers to
the order of a rotation axis. Some symbols can be simplified if this does not lead
to confusion with other symbols.

Box 4.2. Symmetry directions
To obtain the symbol of a point group, according to the international notation,
the directions of symmetry of the plane lattices (Table 4.3) or three-
dimensional lattices (Table 4.4) must be taken into account, depending on
whether the point group is two-dimensional (Table 4.3) or three-dimensional
(Table 4.4).

There are three directions of symmetry: Primary, secondary, and tertiary.

– In triclinic lattices, there is no direction of symmetry.
– In monoclinic lattices, there is a direction of symmetry.
– In rhombohedral lattices, there are two directions of symmetry, but it must

be taken into account that either hexagonal or rhombohedral axes are
chosen.

– In the orthorhombic, tetragonal, hexagonal, and cubic lattices, there are
three directions.

– In the symbol for the point groups of the triclinic and monoclinic systems,
it is only necessary to specify the existing symmetry element (1 or 1) in
the triclinic and the existing symmetry element in the only symmetry
direction of the monoclinic.

Table 4.3 Plane lattices symmetry directions

Lattice Symmetry directions
Position in Hermann–Mauguin notation

Oblique Rotation point in the plane Secondary Tertiary

Rectangular 10½ � 01½ �
Square 10½ � 01½ � 11

� �
11½ �

Hexagonal 10½ � 01½ � 11
� �

11
� �

12
� �

21
� �
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– In the case of point groups of the rhombohedral system, the existing
symmetry elements in the two symmetry directions must be specified.

– In the case of the point groups of the orthorhombic, tetragonal, hexagonal,
and cubic systems, the symmetry elements existing in the three symmetry
directions must be specified.

– If, in any of the symmetry directions, there is no symmetry element,
nothing is written.

Note: When there is more than one direction of symmetry in the column of
primary, secondary or tertiary directions for a given crystalline system, it
means they are equivalent.

4.6 Symmetry Operations of Point Groups

The point group symmetry operations are as follows:

– Proper rotations: 1, 2, 3, 4, 6
– Improper rotations: 1, 2 (reflection), 3, 4, 6.

The total number of three-dimensional point groups is 32.
They are given various names, some derived from geometric shapes that possess

the symmetry of the point group, while other names describe the characteristics of
the group.

Table 4.4 Three-dimensional lattices symmetry directions

Lattices Symmetry directions

Primary Secondary Tertiary

Triclinic Ninguna

Monoclinic 010½ � or
001½ � or
100½ �

Orthorhombic 100½ � 010½ � [001]

Tetragonal 001½ � 100½ � 010½ � 110
� �

[110]

Hexagonal 001½ � 100½ � 010½ � 110
� �

110
� �

[120] 210
� �

Rhombohedral 001½ � 100½ �[001] 110� �

Rhombohedral 111½ � 110
� �

011
� �

101
� �

Cubic 100½ � 010½ � 001½ � [111] 111
� �

111
� �

111
� �

110
� �

011
� �

101
� �

[110] [011][101]

78 4 Point Symmetry



4.7 Point Groups and Crystal Classes

A crystal class is a set of crystals that possess the same point group. According to
the International Tables of Crystallography4 a “geometrical” crystal class classifies
the symmetry groups of the external shape of macroscopic crystals.

Their names come from the geometric shapes that have the symmetry of the
point group or the characteristics of the group.

Depending on the elements of symmetry, they are distinguished by class:

– Holohedry is the crystalline class that has the highest number of symmetry
operations.

– Hemihedry is the class containing half the symmetry operations. In turn, it may
be:

Paramorphic: It is characterized by the preservation of the center of symmetry.
Enantiomorphic: There are no planes of symmetry in it.
Hemimorphic: The symmetry axes are polars.

– Tetartohedry is the crystalline class that has the fourth part of the symmetry
operations.

Tables 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 present, for each of the seven
crystalline systems, the point groups with Hermann–Mauguin notation and
Schoenflies notation in brackets, the respective crystalline classes named according
to5 symmetry operations and symmetry elements expressed by the formula
described in Box 4.3.

Table 4.5 Point groups, crystalline classes, symmetry operations, and elements of the triclinic
crystalline system

Point
group

Crystalline
class

Number of
operations

Symmetry
elements

Symmetry elements
diagram

1 (Ci) Pinacoidal
(holoedry)

2 C

1 (C1) Pedial
(hemiedry)

1 1
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Table 4.6 Point groups, crystalline classes, symmetry operations, and elements of the monoclinic
crystalline system

Point
group

Crystalline class Number of
operations

Symmetry
elements

Symmetry elements
diagram

2/m
(C2h)

Prismatic
(holoedry)

4 1E2 m C

2 (C2) Sphenoidal
(enantiomorphic
hemiedry)

2 1E2

m (Cs) Domatic
(hemimorphic
hemiedry)

2 m

Table 4.7 Point groups, crystalline classes, symmetry operations, and elements of the
orthorhombic crystalline system

Point
group

Crystalline class Number of
operations

Symmetry
elements

Symmetry elements
diagram

mmm
(D2h)

Dipyramidal
(holoedry)

8 3E2 3m C

222
(D2)

Disphenoidal
(enantiomorphic
hemiedry)

4 3E2

mm2
(D2v)

Pyramidal
(hemimorphic
hemiedry)

4 2m 1E2
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Table 4.8 Point groups, crystalline classes, symmetry operations, and elements of the tetragonal
crystalline system

Point
group

Crystalline class Number of
operations

Symmetry
elements

Symmetry elements
diagram

4/mmm
(D4h)

Ditetragonal-
dipyramidal
(holoedry)

16 1E4 4E2 5m
C

4mm
(C4v)

Ditetragonal-
pyramidal
(enantiomorphic
hemiedry)

8 1E4 4m

4 2m
(D2d)

Scalenohedral
(hemiedry with
inversion)

8 1E4 2E2 2m
C

422 (D4) Trapezohedral
(enantiomorphic
hemiedry)

8 1E4 4E2

4/m
(C4h)

Dipyramidal
(paramorphic
hemiedry)

8 1E4 1m C

4 (S4) Disphenoidal
(tetartoedry with
inversion)

4 1E4 C

4 (C4) Pyramidal
(tetartoedry)

4 1E4

4.7 Point Groups and Crystal Classes 81



Table 4.9 Point groups, crystalline classes, symmetry operations, and elements of the
rhombohedral crystalline system

Point
group

Crystalline class Number of
operations

Symmetry
elements

Symmetry elements
diagram

3m
(D3d)

Ditrigonal
scalenohedral
(holoedry)

12 1E3 3E2 3m C

3m
(C3v)

Ditrigonal
pyramidal
(hemimorphic
hemiedry)

6 1E3 3m

32 (D3) Trapezohedral
(enantiomorphic
hemiedry)

6 1E3 3E2

3(C3i) Rhombohedral
(paramorphic
hemiedry)

6 1E3 C

3 (C3) Pyramidal
tetartohedral
(tetartoedry)

3 1E3
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Table 4.10 Point groups, crystalline classes, symmetry operations, and elements of the hexagonal
crystalline system

Point
group

Crystalline class Number of
operations

Symmetry
elements

Symmetry elements
diagram

6/mmm
(D6h)

Dihexagonal
dipyramidal
(holoedry)

24 1E6 6E2 7m
C

6 2m
(D3h)

Ditrigonal
dipyramidal
(hemiedry with
inversion)

12 1E3 3E2 4m
C

6mm
(C6v)

Dihexagonal
pyramidal
(hemimorphic
hemiedry)

12 1E6 6m

622 (D6) Trapezohedral
(enantiomorphic
hemiedry)

12 1E6 6E2

6/m
(C6h)

Dipyramidal
(paramorphic
hemiedry)

12 1E6 1m C

6 (C3h) Trigonal
dipyramidal
(tetartohedry with
inversion)

6 1E3 1m C

6 (C6) Pyramidal
(tetartohedry)

6 1E6
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Table 4.11 Point groups, crystalline classes, symmetry operations, and elements of the cubic
crystalline system

Point
group

Crystalline class Number of
operations

Symmetry
elements

Symmetry elements
diagram

m 3m
(Oh)

Hexakisoctahedral
(holoedry)

48 3E4 4E3 6E2

9m C

4 3m
(Td)

Hexakistetrahedral
(hemiedry with
inversion)

24 3E4 4E3 6m

432 (O) Pentagon-
icositetrahedral
(enantiomorphic
hemiedry)

24 3E4 4E3 6E2

m 3 (Th) Disdodecahedral
(paramorphic hemiedry)

24 3E2 4E3 3m,
C

23 (T) Tetrahedral-
Pentagondodecahedral
(tetartohedry)

12 3E2 4E3
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Box 4.3. Formula for expressing the elements of symmetry of a given
point group
The formula consists of a series of characters expressing the elements of
symmetry. The symbols used are as follows:

– C indicates the center of symmetry
– E indicates the symmetry axis

The number of axes of symmetry of a given type is expressed by placing
the number before the letter E.

The type of symmetry axis is expressed by placing the symbol of the
corresponding axis, according to the Hermann–Mauguin notation, in the form
of a superscript to the right of the letter E.

Example: The formula to indicate that there are 4 ternary axes of rotation

inversion would be as follows: 4E3.

– m indicates reflexion plane

Example: The formula to indicate that there are 3 binary and 4 ternary axes
would be as follows: 3E2, 4E3.

Appendix I, Tables 1, 2, 3, 4, 5, 6 and 7, present point groups and crystalline
classes, equivalent positions, and the stereographic projection of the symmetry
elements and face poles of the general form corresponding to each crystalline
system.

4.8 Two-Dimensional Point Groups and Point Groups
of the Plane Lattices

There are 10 two-dimensional point groups and they are:
1, m, 2, 2mm, 3, 3m, 4, 4mm, 6, 6mm.
Examples can be seen in Box 4.4.
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Box 4.4. Examples of two-dimensional point groups

1

m

2

2mm

3
3m
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6 6mm

4 4mm

The following groups characterize plane lattices:

Point group Plane lattice

2 Oblique

2mm Rectangular

2mm Orthorhombic

4mm Square

6mm Hexagonal

4.9 Three-Dimensional Point Groups
and Three-Dimensional Lattices Point Groups

There are 32 three-dimensional point groups. Their symbols (Table 4.3 are obtained
by taking into account the symmetry direction of the lattices), according to inter-
national notation. The point groups that characterize three-dimensional lattices are
the following (Table 4.12).
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4.10 Crystalline Forms

A crystalline form is a set of symmetrically equivalent faces.
A general crystalline form is a set of equivalent general faces. The face sym-

metry of a general face is the identity operation that transforms this face into itself.
A special crystalline form is a set of equivalent special faces. The face symmetry

of a special face is the group of symmetry operations that transforms this face onto
itself.

Its symbol is {hkl}.
The morphology of the material in its crystalline state refers to the forms gen-

erated by natural processes.
The number, aspect, and distribution of the faces of a crystal is governed by the

symmetry of the crystal.
Crystalline forms can be:

– Open: crystalline forms do not limit a space (Fig. 4.6).

Table 4.12 Holohedral point
groups

Lattices Holohedral point group

Triclinic 1

Monoclinic 2/m

Orthorhombic mmm

Rhombohedral 3m

Hexagonal 6/mmm

Tetragonal 4/mmm

Cubic m3m

pedion dome sphenoid

pinacoid prism

Fig. 4.6 Open crystalline forms
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– Closed: crystalline forms that limit a space.
– Simple: crystalline forms made up of a single form.
– Composite: crystalline forms made up of several forms.

Multiplicity is the number of faces generated by the symmetry elements.
A face is said to be in a general position when it is not placed on any sym-

metrical element (Fig. 4.7).
A face is said to be in a special or particular position when it is placed on a

symmetrical element (Fig. 4.8).

4.11 Zone and Zone Axis

A zone is defined as the set of crystalline planes with a common crystallographic
direction, called the zone axis.

A zone axis is the crystallographic direction common to a series of crystalline
planes.

Its symbol is [uvw] and it is obtained as explained in paragraph 13 of Theme 2.

Fig. 4.7 Faces of a mono-
clinic crystal (2/m) in a gen-
eral position, with multiplicity
4

Fig. 4.8 Faces of a mono-
clinic crystal (2/m) in a par-
ticular position, with
multiplicity 2
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4.12 Bundle of Normals to Faces

The bundle of perpendiculars is the set of perpendiculars traced from the origin of
coordinates to different crystalline faces (Fig. 4.9). It is characterized by the fact
that it contains the angles between the faces.

4.13 Crystalographic Projections

4.13.1 Spherical Projection

Spherical projection is the three-dimensional projection of the perpendiculars to the
faces and the elements of symmetry in a sphere, called sphere of poles. The pro-
jection of a perpendicular to a face on the poles sphere is a point called pole.
Figure 4.10 shows the poles (dots) of the faces of the crystal inscribed on the poles
sphere.

In the poles sphere, the angles between the faces, the zones (the maximum
circles joining the poles of the faces. In Fig. 4.11, they have a common direction),
and the angles between the edges, are preserved.

– Spherical coordinates of a pole.

The spherical coordinates of a pole are the coordinates, u and q, that determine the
position of a pole on the pole sphere. The angle u is the distance between two
meridians, one of them is taken as the origin of coordinates and passes through the
pole N; the other goes through the N pole, the S pole, and the face pole. The angle
is equal to the arc between the point N and the pole P, drawn on the meridian
passing through N, P, and S (Fig. 4.12).

Fig. 4.9 Bundle of normal to
faces
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Fig. 4.10 Poles sphere

Fig. 4.11 Zones
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4.13.2 Stereographic Projection

The stereographic projection is a two-dimensional projection in which the elements
of symmetry and the bundle of normal are projected onto the faces of a crystal.

The projection plane used is usually the equatorial plane. The point of view is
the southern pole for the poles of the upper hemisphere of the polar sphere; and the
northern pole for the poles of the lower hemisphere of the polar sphere. The angle u
is retained but not the q angle, whose value is (Fig. 4.13).

qprojection ¼ Rtgðq=2Þ ð4:1Þ

Fig. 4.12 Spherical coordinates of a pole, u and q, that determine the position of a pole on the
pole sphere
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Examples of stereographic projections of minerals can be seen in Appendix II.

Box 4.5. Stereographic projection of the crystallographic axes, zones and
poles of the fundamental faces of the different crystalline systems

– Orthogonal systems: Cubic, tetragonal, orthorhombic (Fig. 4.14).
– Rhombohedral and hexagonal systems (Fig. 4.15).
– Monoclinic system (Fig. 4.16).
– Triclinic system (Fig. 4.17).

Fig. 4.13 Stereographic projection of a pole P. q in the projection is the distance OP and is equal
to Rtg (q/2), where R is the radius of the sphere

(a) (b) (c)

Fig. 4.14 Orthogonal systems: a Projection of crystallographic axes; b projection of zones of
crystallographic axes; c projection of fundamental faces
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(a) (b) (c)

Fig. 4.15 Rhombohedral and hexagonal systems: a Projection of crystallographic axes;
b projection of zones of crystallographic axes; c projection of fundamental faces

A^B=90º
A^C=90º
B^C=90º

(001)^(010)=90º
(001)^(100)≠90º=
=90º+(001)^A

(100)^(010)=90º
(a) (b) (c)

Fig. 4.16 Monoclinic system: a Projection of crystallographic axes; b projection of zones of
crystallographic axes; c projection of fundamental faces
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A^B=90º
A^C=90º
B^C=90º

(001)^(010)≠90º
(001)^(100)≠90º
(100)^(010)≠90º

(a) (b) (c)

Fig. 4.17 Triclinic system: a Projection of crystallographic axes; b projection of zones of
crystallographic axes; c projection of fundamental faces



4.14 Crystallographic Calculations

The stereographic projection is useful because it allows us to obtain the point group
and the crystalline system from the representation of the poles of their faces.

For the representation of these poles, it is necessary to know the spherical
coordinates obtained by measuring the angles with a goniometer (Box 4.6).

Box 4.6. Goniometer
It is a device to measure the interfacial angles* of the crystals. Two main
types are used:

1. The contact goniometer, for large crystals. It consists of an angle con-
veyor, with an oscillating arm that is placed in contact with the crystalline
faces. In general, the results are not very accurate.

2. The optical goniometer, suitable for small crystals with reflective and
shiny faces.
There are several versions of this type, depending on the ability of the
crystal to reflect a beam of light directed at it from a collimator. The
reflection is detected by an observing telescope. The crystal is rotated
from one reflection position to the next, and the angle of rotation is
measured. Optical goniometers are very useful, due to their high degree of
precision and accuracy.
Knowing these coordinates, parametric relationship (a/b:b/b: c/b or a/b:1:c/
b) and angles of the axial cross (a, b, c) can be obtained. To do this, it is
necessary to know the faces (100), (010), (001), and (110) or (101) or (011),
which are part of a spherical triangle, called the fundamental triangle.

* Interfacial angle is the angle between the normals on both sides of a
crystal

In an orthogonal crystal (cubic, tetragonal or orthorhombic), the parametric
relationship is obtained by Eqs. 4.2 and the angles a, b and c by expressions (4.3).

a
b
¼ sinð100Þ ^ ð110Þ

sinð110Þ ^ ð010Þ �
sinð010Þ ^ ð001Þ
sinð001Þ ^ ð100Þ

c
b
¼ sinð001Þ ^ ð011Þ

sinð011Þ ^ ð010Þ �
sinð010Þ ^ ð100Þ
sinð100Þ ^ ð001Þ

c
a
¼ sinð001Þ ^ ð101Þ

sinð101Þ ^ ð100Þ �
sinð100Þ ^ ð010Þ
sinð010Þ ^ ð001Þ

ð4:2Þ
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a ¼ 180� ð001Þ ^ ð010Þ
b ¼ 180� ð001Þ ^ ð100Þ
c ¼ 180� ð100Þ ^ ð010Þ

ð4:3Þ

It is necessary to know the angles among the fundamental crystalline faces
(Fig. 4.18) and to use spherical trigonometry (Box 4.7) to obtain the exact values of
the parametric ratio.

Box 4.7. Spherical trigonometry
Spherical trigonometry is of great importance for stereographic projection
theory and geodesy. It is also the basis for astronomical calculations. For
example, the solution of the so-called astronomical triangle is used to find the
latitude and longitude of a point, the time of day, the position of a star, and
other magnitudes.

We start with a radio unity sphere. If we cut this sphere with a plane that
passes through the center of the sphere, we obtain what is called a maximum
circle. If, on the other hand, the cutting plane does not pass through the center
of the sphere, what we'll get is a smaller circle.

Let us now consider a sphere and a full circle. If we draw a line per-
pendicular to the plane that defines the maximum circle and that passes
through the center of the sphere, what we obtain is two points on the sphere
that are called poles. In addition, the maximum circle will divide the sphere
into two hemispheres.

The dihedral angle is the angle between two maximum circles.
At this point, we can define a spherical triangle as a portion of a spherical

surface limited by three maximum circles, with the condition that the measure
of each of the arcs is less than 180º.

To solve a spherical triangle, it is enough to know at least three of the six
data, sides and/or angles, of that triangle.

Fig. 4.18 Stereographic projection of the fundamental faces of an orthogonal crystal
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Relationships that satisfy the sides and angles of a triangle:

– One side of a spherical triangle is less than the sum of the other two sides
and greater than its difference.

– The sum of the three sides of a spherical triangle is less than 360º.
– The sum of the three angles is greater than 180º and less than 540º.
– If a spherical triangle has two equal angles, the opposite sides are also

equal to each other.
– If a spherical triangle has two unequal angles, the greater the angle, the

greater the side.

After seeing these relationships, it is interesting to note that, for the res-
olution of spherical triangles, there are a number of formulas, such as Bessel
formulas, cotangent formulas, and Borda formulas. In the case of a
right-angled spherical triangle (one angle is 90º), or a straight triangle (one
side is 90º), the resolution is simplified with the Neper pentagon rule.

Sines theorem: In a spherical triangle, the sides and their opposite angles
fulfill the relations (first Bessel group).

sena=senAð Þ ¼ senbð Þ= senBð Þ ¼ sencð Þ= senCð Þ

Cosine theorem: In a spherical triangle, each side and its opposite angle
satisfy the equality (second Bessel group).

cosa ¼ cosbcoscþ sinbsinccosA

cosb ¼ cosccosaþ sincsinacosB

cosc ¼ cosacosbþ sinasinbcosC

Miller indices of a single-sided pole, other than one of the fundamentals, can be
calculated by one of the following methods:

– Wulff director cosine method:

ða=hÞ cosu ¼ ðb=kÞ cos v ¼ ðc=lÞ cosx ð4:4Þ

The angles ðu; v;xÞare those that form the normal to the face with the three
coordinate axes (x, y, and z), respectively.

– Method of sines ratio of Miller consists of calculating the indices of the pole of
an unknown face from the indices of the poles of the other three known faces
with which it is in a zone.
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Exercises

1. Assemble the paper solids shown in Table E1, and for each:

1. Observe the elements of symmetry.
2. Obtain the point group.
3. Orient the solid to perform a stereographic projection of the symmetry

elements and the face poles.
4. Project stereographically the elements of symmetry and the poles of the

faces (using the zone concept) on diagrams in Table E1.
5. Give notation to the face poles.
6. Indicate the crystalline forms present (using Appendix I).

Guidelines:

Observe the elements of symmetry.

1. Obtain the crystalline system from said elements, since the axis of sym-
metry of the highest order characterizes said system.

– Axis of order 1 characterizes the triclinic system.
– Axis of order 2 characterizes the monoclinic and orthorhombic systems.

The difference between them is that in the monoclinic there is only one
other element of symmetry at most, which is a plane perpendicular to the
axis.

– The axis of order 3 characterizes the rhombohedral system.
– The axis of order 4 characterizes the tetragonal system.
– The axis of order 6 characterizes the hexagonal system.
– Axes of order 4, 3, and 2 characterize the cubic system, although some

distinction must be made.
– When there are axes of order 4, 3, and 2, the only possible system is the

cubic system.
– The axis of order 4 also characterizes the tetragonal system, but in this,

there is only one and in the cubic system there are three.
– Axis of order 3 also characterizes the rhombohedral system, but there is

only one and in the cubic system there are four.
2. Obtaining the specific group.

To obtain the specific group, the symmetry elements must be associated with
symmetry directions, for which you must do the following:

Orient the solid, essential to project the elements of symmetry and poles of
the faces. For this, it is necessary to know the axial cross and the symmetry
directions of said system. As the crystalline system is known, the symmetry
elements found must be related to the symmetry directions (that coincide with
the directions of the crystallographic axes or intermediate directions) of said
system. Remember that normally the axis of maximum symmetry coincides
with the c crystallographic axis. The axes of symmetry coincide (are parallel)
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with the symmetry directions and the symmetry planes are perpendicular to
the symmetry directions.
3. Stereographic projection of the elements of symmetry and poles of the

faces.

After crystal orientation, the elements of symmetry and the poles of the faces
are projected.

For this, it must be remembered how the crystallographic axes are pro-
jected for each crystalline system and the zones of these axes.
4. Assign generic Miller or Bravais Miller indices (hexagonal and rhom-

bohedral systems) to the poles of the faces.

An easy way to do this is using the zone concept and remembering the
following:

– For faces that are in the zone of one of the crystallographic axes, the
corresponding Miller index is zero.

– Faces that do not fall in the zone of any of the crystallographic axes cut all
three axes, and the Miller indices will take different values according to
the distance at which they cut to those axes. The greater the distance, the
smaller the Miller indices because they are the inverse of the Weiss
coefficients.

The crystalline forms are obtained through the Miller indices since there is
correspondence between them.

Paper-based crystalline models to be assembled from the first column of
Table E1 are shown in Table E2.

Table E2 Paper-based crystalline models

(continued)
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Table E2 (continued)

(continued)
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Table E2 (continued)

(continued)

4.14 Crystallographic Calculations 105



Table E2 (continued)

(continued)
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Table E2 (continued)
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Questions
1. The 4/mmm point group characterizes the crystalline system

a. tetragonal and consists of 3 quaternary axes
b. tetragonal and consists of a single quaternary axis
c. cubic and consists of 3 quaternary axes
d. cubic and consists of a single quaternary axis

2. The hemihedral crystalline class has

a. a fifth of the elements of symmetry in relation to the holohedral class
b. a quarter of the elements of symmetry in relation to the holohedral

class
c. half of the elements of symmetry in relation to the holohedral class
d. one third part of the elements of symmetry in relation to the holo-

hedral class
3. The point group 4mm

a. is a group that can belong to both cubic space lattices and flat squares
b. is a group that can belong to both tetragonal and rectangular flat

space lattices
c. is a group that can belong to both tetragonal space lattices and flat

squares
d. is a group that can belong to both cubic and flat rectangular space

lattices
4. The axial cross with a 6¼ b 6¼ c corresponds to

a. the monoclinic and orthorhombic crystal systems
b. the triclinic and monoclinic crystal systems
c. the triclinic and orthorhombic crystalline systems
d. the triclinic, monoclinic and orthorhombic crystal systems

5. The Holohedral Point Group of the Tetragonal System is 4/m2/m2/m and
Simplified mmm.

True
False

6. A point group is defined as the set of symmetry operations existing in a
crystal lattice. It is a mathematical group because A, B, C, E (identity
element), and X (inverse element) are elements of the group it fulfills

AB = E
AE = E
AE = EA = A
A(BC) = (AB)C
AX = E

True
False
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7. The rhombohedral system is characterized as:

a = b = c and a ¼ b ¼ 90� c ¼ 60� ó 120°
True
False

8. In Hermann Mauguin's notation (or international notation) the point group
symbol consists of a succession of characters that correspond to the
symbols that represent the different elements of symmetry. They can
include the letter corresponding to the type of lattice; and break bar with
the letter m as the denominator, and a number that refers to the order of an
axis of rotation as the numerator. Some symbols can be simplified if it
does not lead to confusion with other symbols

True
False

9. The monoclinic system has only one direction of symmetry.

True
False

10. In the holohedral point group of the hexagonal system, the number of axes
of order 6 is 1, of order 2 is 6, has 6 planes of reflection, and has no center
of symmetry

True
False

11. Match each point group with its corresponding crystalline system

m3m Orthorhombic system

422 Cubic system

222 Tetragonal system

12. Match each space group with its corresponding crystal lattice

P2/d 3 Rombohedral P

P312 Orthorhombic P

Imma Monoclinic P

13. How many space groups are there?
Answer:
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14. Write the maximum number (using numbers) of characters to be specified
in the symbol of the spatial or point group, without considering the
translations

Answer:
15. The number of symmetry elements in a spatial group is finite.

True
False

16. Match each element of symmetry (only that with maximum symmetry)
with the type of crystal lattice (three-dimensional) that it characterizes.

Axis of order 4 Triclinic

Binary axis Tetragonal

Center of symmetry Monoclínic

17. Match each space group with its corresponding point group of which it is
a subgroup

I2/b2/c2/a2 4mm

Bb m

P4mm mmm

18. The spatial groups reflect the internal and external symmetry of the
material in a crystalline state, and the point groups only reflect the internal
symmetry.

True
False

19. If you think that there are axes of order 5 in space groups, answer with the
term yes, and otherwise answer with no.

Answer:
20. If you consider that, in the definition of space groups, crystalline materials

must be considered as discrete media, write discrete. If you think they
must be defined as continuous media, write continuous.

Answer:

110 4 Point Symmetry



References

1. de Romé Delisle JBL (1783) Cristallographie ou Description des Formes Propres à tous le
Corps du Regne Minéral 4 vols. Paris

2. Haüy RJ (1803) Traité Élémentaire de Physique I-II. 426 + 447 p., Paris
3. Haüy RJ (1784) Essai d'une Théorie sur la Structure des Crystaux. Gogué et Née de La

Rochelle
4. Hahn T (2005) International tables for crystallography, vol A: Space group symmetry: space

group symmetry (5th revised Edition. 2002. 2nd printing Edition). Springer
5. Friedel G (1926) Leçons de crisrallographie. Blanchard, Paris (Reprint 1964)

References 111



Chapter 5
Space Groups

Abstract The concept of spatial group is defined, differentiating it from point
group, and its symbol is described. The concept of equivalent position is intro-
duced, and the difference between general and particular equivalent positions is
shown. How the spatial groups are represented in the International Crystallography
Tables is described. The concepts of multiplicity, Wyckoff's symbol, position
symmetry, and asymmetric unit are defined.

5.1 Space Groups Definitions

Spatial groups can be defined as groups of transformations of the homogeneous and
discrete three-dimensional space itself.

The principle of homogeneity of a substance in its crystalline state, considered at
a microscopic level, i.e., considering the atomicity of the crystalline substance,
includes the principles of symmetry (the crystalline substance contains an infinite
number of equal points per symmetry) and of discretion (not all points of a crys-
talline substance are identical).

These principles are realized simultaneously in the crystal lattice. The conditions
of homogeneity and discretion determine that all the spatial groups are periodic
groups and therefore crystallographic groups, with symmetry axes of orders 1, 2, 3,
4 and 6.

Space groups contain the translation group of the three-dimensional lattice as a
subgroup and, therefore, space groups can also be defined as groups in which
proper and improper rotations are accompanied by the translations.
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5.2 Space Group Symmetry Operations

The symmetry operations contained in the space groups are as follows:

– Proper rotations
– Improper rotations
– Translations
– Reflexions with translations
– Rotations with translations.

The number of elements of symmetry that exist in a space group is infinite
because the translations repeat the elemental cell infinitely but, for the same reason,
the space group is perfectly defined from this cell.

The total number of space groups is 230, which were obtained in 1890 almost
simultaneously by Federov1 and Schoenflies.2

5.3 Derivation of Space Groups

The methods for deriving the space groups can be geometric, arithmetic, combi-
natorial or group theory.

In any case, we must bear in mind the following:

1. A Bravais lattice is an arrangement of mathematical points that have position but
not magnitude or shape. For each crystalline system, the possible space lattices
have the symmetry of the holohedral point group.

2. Matter in the crystalline state is made up of ions, atoms or molecules, which are
associated with each of the nodes of the Bravais lattice, i.e., the motif with point
group symmetry that is repeated by the group of translations of the lattice must
be that of the holohedral point group of the lattice or a subgroup thereof.

Figure 5.1 shows an example of spatial symmetry, corresponding to the Imm2
space group (Fig. 5.1a). It is based on an interior-centered orthorhombic lattice I
(Fig. 5.1b), whose point symmetry, mmm, is that of the holohedral point group of
orthorhombic lattices (Fig. 5.1c). The repetition motif in the example is a star with
symmetry 6 mm, which is a point group subgroup of the mmm (holohedral point
group of the orthorhombic lattices). An example is the structure of the hemimor-
phite (Zn4Si2O7(OH)2⋅H2O).

– Types of space groups

There are two types of space groups:—Symmorphic space groups and
non-symmorphic space groups.

1 Fedorov [1].
2 Schoenflies [2].
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– Symmorphic space groups

Symmorphic space groups are space groups obtained in a simple way by combining
each of the 32 point groups with each of the Bravais lattices compatible with them.
In total, there are 66 plus 7 symmorphic space groups. Table 5.1 shows the number
of symmorphic space groups corresponding to each crystalline system.

These groups appear because the geometrical relations between the symmetry
elements of the group and the lattice vary, as a consequence of which Bravais
lattices centered on the bases (A, B or C) have a special direction (Fig. 5.2).

The point symmetry of the group is not the holohedry and the lattice presents
different orientations with respect to the symmetry elements of the group (Fig. 5.3).

In the three-dimensional space, the geometric idea of a symmetric group is
equivalent to placing the symmetry elements of a given point group on the nodes of
the Bravais lattice compatible with that symmetry (Fig. 5.4). Symmetry elements
with associated translation are obtained.

Figure 5.5 show the motif (Fig. 5.5a) and how, by combining a one-dimensional
lattice (Fig. 5.5b) with a point group m (Fig. 5.5c), the symmorphic space group

motif  

orthorhombic cell I 

)b( )c()a(

Fig. 5.1 Spatial symmetry: a Imm2 space group, b motif and cell, c mmm holohedric point group
of the orthorhombic lattices

Table 5.1 Number of symmorphic groups by crystalline system

Crystalline system Specific groups Bravais lattices Symmorphic groups

Cubic 5 3 15

Tetragonal 7 2 14 + 2

Rhombohedral 5 2 10 + 3

Hexagonal 7 1 7 + 1

Orthorhombic 3 4 12 + 1

Monoclinic 3 2 6

Triclinic 3 1 2
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Fig. 5.2 Appearance of space groups due to the centering of lattices

Fig. 5.3 Appearance of space
groups due to the different
orientation of symmetry
elements
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Fig. 5.4 Geometric idea of a
symmorphic group

(a)  

(b)  

(c)  

(d)  

(e)  

Fig. 5.5 Obtaining a
symmorphic space group:
motif (a), translation (b),
point group m (c), translation
b + reflexion
m = symmorphic space group
(d), glide line g (e)
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(Fig. 5.5d) is obtained, in which the glide line g appears (Fig. 5.5e), in addition to
translation, identity and reflexion.

– Non-symmorphic space groups

Non-symmorphic space groups are those derived from the symmorphic space
groups when a multiple translation is considered, since elements of symmetry with
associated translation appear, not present in the symmorphic groups. In total there
are 157.

Tables 5.2, 5.3, 5.4, 5.5, 5.6. 5.7, 5.8 present the symmorphic and non- sym-
morphic space groups for each crystalline system.

Table 5.2 Symmorphic and
non-symmorphic space
groups of triclinic crystalline
system

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

1 P1
2 P 1

Table 5.3 Symmorphic and
non-symmorphic space
groups of monoclinic
crystalline system

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

1st orientation: c = 2 and/or −2

3 P2
5 C2
6 Pm
8 Cm
10 P2/m
12 C2/m

7 Pc
9 Cc
13 P2/c
15 C2/c

4 P21
11 P21/m
14 P21/c

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

2nd orientation: b = 2 and/or −2

3 P2
5 B2
6 Pm
8 Bm
10 P2/m
12 B2/m

7 Pb
9 Bb
13 P2/b
15 B2/b

4 P21
11 P21/m
14 P21/b
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Table 5.4 Symmorphic and
non-symmorphic space
groups of orthorhombic
crystalline system

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

16 P222
21 C222
22 F222
23 I222
25 Pmm2
35 Cmm2
38 Amm2
42 Fmm2
44 Imm2
47 Pmmm
65 Cmmm
69 Fmmm
71 Imm

27 Pcc2
28 Pma2
30 Pnc2
32 Pba2
34 Pnn2
37 Ccc2
39 Abm2
40 Ama2
41 Aba2
43 Fdd2
45 Iba2
46 Ima2
48 Pnnn
49 Pccm
50 Pban
66 Cccm
67 Cmma
68 Ccca
70 Fddd
72 Ibam

17 P2221
18 P21212
19 P212121
20 C2221
24 I212121
26 Pmc21
29 Pca21
31 Pmn21
33 Pna21
36 Cmc21
51 Pmma
52 Pnna
53 Pmna
54 Pcca
55 Pbam
56 Pccn
57 Pbcm
58 Pnnm
59 Pmmn
60 Pbcn
61 Pbca
62 Pnma
63 Cmcm
64 Cmca
73 Ibca
74 Imma

Table 5.5 Symmorphic and
non-symmorphic space
groups of rhombohedral
crystalline system

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

143 P3
146 R3
147 P3
148 R3
149 P312
150 P321
155 R32
156 P3m1
157 P31m
160 R3m
162 P31m
164 P3m1
166 R3m

158 P3c1
159 P31c
161 R3c
163 P31c
165 P3c1
167 R3c

144 P31
145 P32
151 P3112
152 P3121
153 P3212
154 P3221
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Table 5.6 Symmorphic and
non-symmorphic space
groups of hexagonal
crystalline system

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

168 P6
174 P6
175 P6/m
177 P622
183 P6mm
187 P6m2
189 P62m
191 P6/mmm

184 P6cc
188 P6c2
190 P62c
192 P6/mcc

169 P61
170 P65
171 P62
172 P64
173 P63
176 P63/m
178 P6122
179 P6522
180 P6222
181 P6422
182 P6322
185 P63cm
186 P63mc
193 P63/mcm
194 P63/mmc

Table 5.7 Symmorphic and
non-symmorphic space
groups of tetragonal
crystalline system

Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

75 P4
79 I4
81 P4
82 I4
83 P4/m
87 I4/m
89 P422
97 I422
99 P4mm
107 I4mm
111 P42m
115 P4m2
119 I4m2
121 I42m
123 P4/mmm
139 I4/mmm

85 P4/n
100 P4bm
103 P4cc
104 P4nc
108 I4cm
112 P4 2c
116 P4 c2
117 P4 b2
118 P4 n2
120 I4 c2
124 P4/mcc
125 P4/nbm
126 P4/nnc
140 I4/mcm

76 P41
77 P42
78 P43
80 I41
84 P42/m
85 P4/n
86 P42/n
88 I41/a
90 P4212
91 P4122
92 P41212
93 P4222
94 P42212
95 P4322
96 P43212
98 I4122
101 P42cm
102 P42nm
105 P42mc
106 P42bc
109 I41md
110 I41cd
113 P4 21m
114 P4 21c
122 I4 2d
127 P4/mbm
129 P4/nmm
130 P4/ncc

(continued)
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5.4 Space Group Symbol

There are two types of symbols.

1. Schoenflies notation is the oldest of all and consists of a capital letter, charac-
teristic of the point group type. It can be accompanied by one or more sub-
scripts, one numerical and one small letter. When both exist, they are written in
this order.

Table 5.8 Symmorphic and
non-symmorphic space
groups of cubic crystalline
system

Symmorphic group Non-symmorphic groups

Hemisymmorphic Asymmorphic

195 P23
196 F23
197 I23
200 Pm3
202 Fm3
204 Im3
207 P432
209 F432
211 I432
215 P43m
216 F43m
217 I43m
221 Pm3m
225 Fm3m
229 Im3m

201 Pn3
203 Fd3
218 P43n
219 F43c
222 Pn3n
226 Fm3c

198 P213
199 I213
205 Pa3
206 Ia3
208 P4232
209 F432
210 F4132
212 P4332
213 P4132
214 I4132
220 I43d
223 Pm3n
224 Pn3m
225 Fm3m
227 Fd3m
228 Fd3c
230 Ia3d

Table 5.7 (continued) Symmorphic groups Non-symmorphic groups

Hemisymmorphic Asymmorphic

131 P42/mmc
132 P42/mcm
133 P42/nbc
134 P42/nnm
135 P42/mbc
136 P42/mnm
137 P42/nmc
138 P42/ncm
141 I41/amd
142 I41/acd
128 P4/mnc
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2. Hermann Mauguin notation (or international notation) consists of a capital letter
that indicates the type of Bravais lattice, and a set of characters, after the capital
letter, indicating elements of symmetry referring to the symmetry directions of
the lattice (Box 2 Chap. 4). They can include a slash and a denominator, the
letter m. The numerator is a number that refers to the order of a rotation axis.
Some symbols can be simplified if this does not lead to confusion with other
symbols.

Table 5.9 shows the 230 space groups. The number corresponds to the order
number in the International Tables for Crystallography.3

Table 5.9 Space groups

No Symbol No Symbol No Symbol No Symbol No Symbol

1 P1 2 P 1 3 P2 4 P21 5 C2

6 Pm 7 Pc 8 Cm 9 Cc 10 P2/m

11 P21/m 12 C2/m 13 P2/c 14 P21/c 15 C2/c

16 P222 17 P2221 18 P21212 19 P212121 20 C2221
21 C222 22 F222 23 I222 24 I212121 25 Pmm2

26 Pmc21 27 Pcc2 28 Pma2 29 Pca21 30 Pnc2

31 Pmn21 32 Pba2 33 Pna21 34 Pnn2 35 Cmm2

36 Cmc21 37 Ccc2 38 Amm2 39 Abm2 40 Ama2

41 Aba2 42 Fmm2 43 Fdd2 44 Imm2 45 Iba2

46 Ima2 47 Pmmm 48 Pnnn 49 Pccm 50 Pban

51 Pmma 52 Pnna 53 Pmna 54 Pcca 55 Pbam

56 Pccn 57 Pbcm 58 Pnnm 59 Pmmn 60 Pbcn

61 Pbca 62 Pnma 63 Cmcm 64 Cmca 65 Cmmm

66 Cccm 67 Cmma 68 Ccca 69 Fmmm 70 Fddd

71 Immm 72 Ibam 73 Ibca 74 Imma 75 P4

76 P41 77 P42 78 P43 79 I4 80 I41

81 P 4 82 I 4 83 P4/m 84 P42/m 85 P4/n

86 P42/n 87 I4/m 88 I41/a 89 P422 90 P4212

91 P4122 92 P41212 93 P4222 94 P42212 95 P4322

96 P43212 97 I422 98 I4122 99 P4mm 100 P4bm

101 P42cm 102 P42nm 103 P4cc 104 P4nc 105 P42mc

106 P42bc 107 I4mm 108 I4cm 109 I41md 110 I41cd

111 P 42m 112 P 42c 113 P 421m 114 P 421c 115 P 4m2

116 P 4c2 117 P 4b2 118 P 4n2 119 I 4m2 120 I 4c2

121 I 42m 122 I 42d 123 P4/mmm 124 P4/mcc 125 P4/nbm
(continued)

3 Hahn [3].
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In Tables 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16, the space groups ordered
by crystalline systems and the Laue group symmetry are presented. The Laue group
describes the symmetry of the diffraction pattern. The Laue symmetry can be lower
than the metric symmetry of the unit cell but never higher.

Table 5.9 (continued)

No Symbol No Symbol No Symbol No Symbol No Symbol

126 P4/nnc 127 P4/mbm 128 P4/mnc 129 P4/nmm 130 P4/ncc

131 P42/mmc 132 P42/mcm 133 P42/nbc 134 P42/nnm 135 P42/mbc

136 P42/mnm 137 P42/nmc 138 P42/ncm 139 I4/mmm 140 I4/mcm

141 I41/amd 142 I41/acd 143 P3 144 P31 145 P32

146 R3 147 P 3 148 R 3 149 P312 150 P321

151 P3112 152 P3121 153 P3212 154 P3221 155 R32

156 P3m1 157 P31m 158 P3c1 159 P31c 160 R3m

161 R3c 162 P 31m 163 P 31c 164 P 3m1 165 P 3c1

166 R 3m 167 R 3c 168 P6 169 P61 170 P65
171 P62 172 P64 173 P63 174 P 6 175 P6/m

176 P63/m 177 P622 178 P6122 179 P6522 180 P6222

181 P6422 182 P6322 183 P6mm 184 P6cc 185 P63cm

186 P63mc 187 P 6m2 188 P 6c2 189 P 62m 190 P 62c

191 P6/mmm 192 P6/mcc 193 P63/mcm 194 P63/mmc 195 P23

196 F23 197 I23 198 P213 199 I213 200 Pm 3

201 Pn 3 202 Fm 3 203 Fd 3 204 Im 3 205 Pa 3

206 Ia 3 207 P432 208 P4232 209 F432 210 F4132

211 I432 212 P4332 213 P4132 214 I4132 215 P 43m

216 F 43m 217 I 43m 218 P 43n 219 F 43c 220 I 43d

221 Pm 3m 222 Pn 3n 223 Pm 3n 224 Pn 3m 225 Fm 3m

226 Fm 3c 227 Fd 3m 228 Fd 3c 229 Im 3m 230 Ia 3d

Table 5.10 Space groups of
the triclinic system

Point groups 1 1

Space groups 1 P1 2 P 1

Laue group symmetry 1
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Table 5.11 Space groups of
the monoclinic system

Point groups 1ª orientation: c = 2 and/or − 2

2 m 2/m

Space groups 3 P2
4 P21
5 B2

6 Pm
7 Pb
8 Bm
9 Bb

10 P2/m
11 P21/m
12 B2/m
13 P2/b
14 P21/b
15 B2/b

Laue group symmetry 2/m

Point groups 2ª orientation: b = 2 and/or −2

2 m 2/m

Space groups 3 P2
4 P21
5 C2

6 Pm
7 Pc
8 Cm
9 Cc

10 P2/m
11 P21/m
12 C2/m
13 P2/c
14 P21/c
15 C2

Laue group symmetry 2/m

Table 5.12 Space groups of
the orthorhombic system

Point groups 222 mm2 mmm

Space groups 16 P222
17 P2221
18 P21212
19 P212121
20 C2221
21 C222
22 F222
23 I222
24 I212121

25 Pmm2
26 Pmc21
27 Pcc2
28 Pma2
29 Pca21
30 Pnc2
31 Pmn21
32 Pba2
33 Pna21
34 Pnn2
35 Cmm2
36 Cmc21
37 Ccc2
38 Amm2
39 Abm2
40 Ama2
41 Aba2
42 Fmm2
43 Fdd2
44 Imm2
45 Iba2
46 Ima2

47 Pmmm
48 Pnnn
49 Pccm
50 Pban
51 Pmma
52 Pnna
53 Pmna
54 Pcca
55 Pbam
56 Pccn
57 Pbcm
58 Pnnm
59 Pmmn
60 Pbcn
61 Pbca
62 Pnma
63 Cmcm
64 Cmca
65 Cmmm
66 Cccm
67 Cmma
68 Ccca
69 Fmmm
70 Fddd
71 Immm
72 Ibam
73 Ibca
74 Imma

Laue group
symmetry

Mmm
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Table 5.13 Space groups of the rhombohedral system

Point groups 3 3 32 3m 3m

Space groups 143 P3
144 P31
145 P32
146 R3

147 P 3
148 R 3

149 P312
150 P321
151 P3112
152 P3121
153 P3212
154 P3221
155 R32

156 P3m1
157 P31m
158 P3c1
159 P31c
160 R3m
161 R3c

162 P 31m
163 P 31c
164 P 3m1
165 P 3c1
166 R 3m
167 R 3c

Laue group symmetry 3 m

Table 5.14 Space groups of the hexagonal system

Point
groups

6 6 6/m 622 6mm 6m2 6/mmm

Space
groups

168 P6
169 P61
170 P65
171 P62

174 P 6 175 P6/m
176 P63/m

177 P622
178 P6122
179 P6522
180 P6222
181 P6422
182 P6322

183 P6mm
184 P6cc
185 P63cm
186 P63mc

187 P 6m2
188 P 6c2
189 P 62m
190 P 62c

191 P6/mmm
192 P6/mcc
193 P63/mcm
194 P63/mmc

Laue
group
symmetry

6/mmm

Table 5.15 Space groups of the tetragonal system

Point
groups

4 4 4/m 422 4mm 42m 4/mmm

Space
groups

75 P4
76 P41
77 P42
78 P43
79 I4
80 I41

81 P 4
82 I 4

83 P4/m
84 P42/m
85 P4/n
86 P42/n
87 I4/m
88 I41/a

89 P422
90 P4212
91 P4122
92 P41212
93 P4222
94 P42212
95 P4322
96 P43212
97 I422
98 I4122

99 P4mm
100 P4bm
101 P42cm
102 P42nm
103 P4cc
104 P4nc
105 P42mc
106 P42bc
107 I4mm
108 I4cm
109 I41md
110 I41cd

111 P 42m
112 P 42c
113 P 421m
114 P 421c
115 P 4m2
116 P 4c2
117 P 4b2
118 P 4n2
119 I 4m2
120 I 4c2
121 I 42m

123 P4/mmm
124 P4/mcc
125 P4/nbm
126 P4/nnc
127 P4/mbm
128 P4/mnc
129 P4/nmm
130 P4/ncc
131 P42/mmc
132 P42/mcm
133 P42/nbc
134 P42/nnm
135 P42/mbc

(continued)
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5.5 Plane Space Groups and Symbol

There are 17 plane space groups, and they correspond to the spatial symmetry of
plane cells.

The symbol consists of a lowercase letter that indicates the type of plane cell
(p = primitive and c = centered), followed by a series of characters that consist of
the symbol of the symmetry elements associated with the symmetry directions of
the plane cells (Table 4.3).

Representation of the plane space groups are presented in Table 5.17.

Table 5.16 Space groups of the cubic system

Point groups 23 m 3 432 43m m 3m

Space groups 195 P23
196 F23
197 I23
198
P213
199 I213

200 Pm 3
201 Pn 3
202 Fm 3
203 Fd 3
204 Im 3
205 Pa 3
206 Ia 3

207 P432
208
P4232
209 F432
210
F4132
211 I432
212
P4332
213
P4132
214 I4132

215 P 43m
216 F 43m
217 I 43m
218 P 43n
219 F 43c
220I 43d

221 Pm 3m
222 Pn 3n
223 Pm 3n
224 Pn 3m
225 Fm 3m
226 Fm 3c
227 Fd 3m
228 Fd 3c
229 Im 3m
230 Ia 3d

Laue group
symmetry

m 3m

Table 5.15 (continued)

Point
groups

4 4 4/m 422 4mm 42m 4/mmm

122 I 42d 136 P42/mnm
137 P42/nmc
138 P42/ncm
139 I4/mmm
140 I4/mcm
141 I41/amd
142 I41/acd

Laue
group
symmetry

4/mmm
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Examples

p1

p2

Egyptian motif

Pm

Egyptian motif
(continued)
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(continued)

Pavement tile

Pg

Kent Damask (England)

cm or cg

St. Denis (France, century XII)
(continued)
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(continued)

p2mm

Egyptian motif

Pavement tile

c2mm or c2gg

(continued)
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(continued)

p2mg

p2gg

Pavement

p4

Pavement

(continued)
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(continued)

p4mm

Persian motif

Pavement

p4gm or p4gg

Fence

(continued)
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(continued)

Pavement tile

p3

Arabian motif

p3m1

Persian motif
(continued)

5.5 Plane Space Groups and Symbol 135



(continued)

p31m

Chinese motif

p6

Persian motif

p6mm

Chinese motif
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5.6 Equivalent Positions

The existence of symmetry operations in a space group produces a series of
equivalent points per symmetry.

The number of points equivalent per symmetry is called multiplicity.
Knowing all the operations of a given space group, it is possible to obtain, from

any point, all the points symmetrically equal to it.
The set of points thus generated is called the regular point system of the

group. The regular point system is described by the set of coordinates of each of the
starting points and the coordinates of the derived points expressed in terms of the
coordinates of the starting point.

– General position

Point is not located on any symmetrical element.
The set of points derived from it is called a regular point system of general

position.
The points are asymmetrical and are assigned the symbol of identity—1—be-

cause they are equivalent to themselves along the monary axis.

– Special (or particular) position

Point is located on some element of symmetry.
The number of points generated by it is called a special position regular point

system.
The multiplicity is less than in the case of the general position.
The points in special position are assigned the symmetry of the element on

which they are located, called position symmetry.

– Asymmetric unit

The asymmetric unit, also called the fundamental region, is a part of space that does
not contain any element of symmetry and, by application of the elements of the
space group, the elementary cell is obtained.

It is useful for interpreting and describing the crystalline structure.

5.7 Graphic Description of Space Groups

The graphic representation of the spatial groups is generally made by two projec-
tions on the plane (001):

– Elements of symmetry

For representation of the symmetry elements (Fig. 5.6), the following convention is
adopted:

The orientation of the b-axis in the projection plane is taken from left to right,
while that of the a-axis goes from top to bottom in the projection plane.

5.6 Equivalent Positions 137



The angle between the a and b axes is 90º in the orthogonal systems, and 120º in
the hexagonal and rhombohedral systems and any value in the triclinic system. In
the monoclinic system, there are two alternatives for orientation of the axes,
depending on whether b or c is the direction of symmetry of the network. Thus, in
the first case, the projected cell axes will be a and c, and the angle between them
(b) will be different from 90º, while in the second case, the projected axes will be
a and b, and the angle between them (c) will be 90º.

The symbols of the symmetry elements can be seen in Tables 5.18, 5.19, 5.20,
5.21 (adapted from the International Crystallography Tables).

Table 5.18 Planes of symmetry perpendicular to the plane of projection (3 dimensions) and lines
of symmetry in the plane of the figure (2 dimensions)

Plane or line of
symmetry

Graphic
symbol

Glide vector in units of lattice translation
vectors parallel and perpendicular to the
projection plane axis

Printed
symbol

Reflexion plane or
reflexion line

None m

Axial glide plane or
glide line

1/2 of the lattice vector along the line in the
projection plane
1/2 of the lattice vector along the line

a, b or
c
g

Axial glide plane 1/2 perpendicular to the projection plane a, b or
c

“Double” glide
plane (only in
centered cells)

2 glide vectors:
1/2 along the line parallel to the projection
plane
1/2 perpendicular to the projection plane

e

Diagonal glide
plane

1 glide vector with two components:
1/2 along the line parallel to the projection
plane
1/2 perpendicular to the projection plane

n

Diamond glide
plane
(pairs of planes; in
centered cells only)

1/4 along the line parallel to the projection
plane, combined with 1/4 perpendicular to
the projection plane (the arrows indicate the
direction parallel to the projection plane for
which the perpendicular component is
positive)

d

Fig. 5.6 Representation of
symmetry elements
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2. General equivalent positions

Beside the diagram representing the symmetry elements of a given spatial group,
another diagram appears representing the general equivalent positions on the pro-
jection plane (001). In it, + and − refer to the heights along the crystallographic
axis perpendicular to the plane of projection. The symbols 1/2 + or 1/2–, refer to
the height along the axis being 1/2 more than the position indicated only with + or
with –. The enantiomorphic positions are symbolized by a circle with a comma in
the center of it. When two enantiomorphic positions are related by a plane of
symmetry parallel to the plane of projection, it is symbolized by a circle split in half
and with a comma in one of the halves (Fig. 5.7).

Other data that are shown in the International Tables for Crystallography beside
these diagrams are the following:

Table 5.19 Planes of symmetry parallel to the projection plane

Plane symmetry Graphic symbol Glide vector in lattice
translation vector units
parallel to the projection
plane

Printed
symbol

Reflexion plane or
reflexion line

None m

Axial glide plane 2 glide vectors:
1/2 lattice vector in the
direction of the arrow

a, b or
c

“Double” glide
plane (only in
centered cells)

2 glide vectors:
1/2 in either direction of the
two arrows

e

Diagonal glide
plane

1/2 in the direction of the
arrow

n

Diamond glide
plane (pairs of
planes; in centered
cells only)

1/2 in the direction of the
arrow; the glide vector is 1/4
of one of the diagonals of the
cell centered on the faces

d

Table 5.20 Symmetry axes parallel to the projection plane

Axis of
symmetry

Graphic symbol Glide vector in grid vector
units parallel to the axis

Printed
symbol

Binary axis None 2

Binary screw
axis “2 sub 1”

½ 21
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Table 5.21 Symmetry axes perpendicular to the projection plane

Axis of symmetry or point
of symmetry

Graphic symbol Glide vector
parallel to the
helical axis

Printed symbol
(partial elements in
parentheses)

Identity None 1

Binary axis
Binary rotation point

None 2

Ternary axis
Ternary rotation point

None 3

Quaternary axis
Quaternary rotation point

None 4 (2)

Senary axis
Senary rotation point

None 6 (3, 2)

Center of symmetry or
inversion: 1 bar

None 1

Ternary rotation-inversion
axis: 3 bar

None 3�3+1 (3,1)

Quaternary axis of
rotation-inversion: 4 bar

None 2(2)

Senary axis of
rotation-inversion: 6 bar

None 3�3/m

Ternary screw axis: “2 sub
1”

1/2 21

Ternary screw axis: “3 sub
1”

1/3 31

Ternary screw axis: “3 sub
2”

2/3 32

Quaternary screw axis: “4
sub 1”

1/4 41 (21)

Quaternary screw axis: “4
sub 2”

1/2 42 (2)

Quaternary screw axis: “4
sub 3”

3/4 43 (21)

Senary screw axis: “6 sub
1”

1/6 61 (31, 21)

Senary screw axis: “6 sub
2”

1/3 62 (32, 2)

Senary screw axis: “6 sub
3”

1/2 63 (3, 21)

Senary screw axis: “6 sub
4”

2/3 64 (31, 2)

(continued)
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– Symbol of the corresponding space group with the international notation and the
number it occupies within the Tables.

– Symbol of the plane space group with the Schoenflies notation and below with
the international notation.

– Symbol of the corresponding point group, according to the international
notation.

Table 5.21 (continued)

Axis of symmetry or point
of symmetry

Graphic symbol Glide vector
parallel to the
helical axis

Printed symbol
(partial elements in
parentheses)

Senary screw axis: “6 sub
5”

5/6 65 (32, 21)

Binary axis with center of
symmetry

None 2/m (1)

Binary screw axis with
center of symmetry

1/2 21/m (1)

Quaternary axis with
center of symmetry

None 4/m (4, 2,1)

Quaternary screw axis: “4
sub 2” with center of
symmetry

1/2 42/m (4, 2,1)

Senary axis with center of
symmetry

None 6/m (6, 3, 3, 2, 1)

Senary screw axis: “6 sub
3”¾ with center of
symmetry

1/2 63/m (6, 3, 3, 21,1)

Fig. 5.7 Diagram of the general equivalent positions
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– Crystalline system.
– The point symmetry of the origin, with a symbol similar to that used for point

groups.
– The multiplicity of equivalent positions, expressed by a number.
– The Wyckoff symbol, which is expressed by a letter of the alphabet indicating

the position symmetry of the corresponding equivalent position. The first letters
of the alphabet are associated with higher position symmetry, while lower
position symmetry is assigned more advanced letters of the alphabet.

– Position symmetry, which expresses point symmetry and is symbolized in a
similar way to point groups.

– Coordinates of equivalent positions, both general and special or particular.

– Origin of the coordinate system

The origin of the coordinate system in the centroid groups is located in the center of
symmetry.

In the case of non-centrosymmetric groups, there is no special rule for the
group. The position of the origin is located on a point with the highest position
symmetry.

The determination and description of crystalline structures is facilitated by the
choice of a suitable origin and their own identification.

There are several ways to determine the location and position symmetry of the
origin. One is to inspect it directly on the diagrams of the space groups, in the
International Tables for Crystallography. Another is to look for a special equivalent
position with 0, 0, 0 coordinates.

Example

Table 5.22 Data of space group Pmm2

Pmm2 C12v mm2 Orthorhombic

No. 25 pmm2

Origin in
mm2

Multiplicity Wyckoff
symbol

Position
symmetry

Coordinates

4 i . x, y,
z

−x, −y,
z

x, −y,
z

−x, y,
z

2 h m. . 1/2, y, z 1/2, −y, z

2 g m. . 0, y, z 0, −y, z

2 f .m. x, 1/2, z −x, 1/2, z

2 g .m. x, 0, z −x, 0, z

1 d mm2 1/2, 1/2, z

1 c mm2 1/2, 0, z

1 b mm2 0, 1/2, z

1 a mm2 0, 0, nz

142 5 Space Groups



Exercises

1. In the periodic models of Fig. E1:

a. Draw the elements of symmetry (proper, improper and with associated
translation).

b. Select the elementary cell based on the elements of symmetry.
c. Symbolize the symmetry of each model using the plane space group,

taking into account section (b) and the symmetry directions of the
lattice.

Fig. E1

2. Obtain the equivalent positions to that indicated in Fig. E2 by the sym-
metry elements of the space group Pcm21.

Fig. E2
3. In Fig. E3:

(a) Draw the symmetry elements, based on the indicated equivalent
positions.

(b) Write the space group symbol.
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Fig. E3

Questions

1. Write the maximum number of characters to be specified in the symbol of
the space or point group, without considering the translations.
Response:

2. Write discrete if you believe crystalline materials must be considered as
discrete media. Write in the definition of space groups continuous if you
believe it must be defined as continuous media.
Response:

3. Spatial groups reflect the internal and external symmetry of a material in a
crystalline state, and the point groups only reflect internal symmetry.

True
False

4. General position is the position located on the identity.
True
False

5. Match each element of symmetry (only with maximum symmetry) with
the type of crystal lattice (three-dimensional) that it characterizes.

Axis of order 4 Triclinic

Binary axis Orthorhombic

Symmetry center Tetragonal

6. Match each space group with its corresponding crystal lattice.

Imma Cubic

P2/d 3 Orthorhombic

P312 Rhombohedral

7. Do you believe there are axes of order 5 in space groups? (Yes or No).
Response:
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8. How many space groups are there?
Response:

9. The number of symmetry elements in a space group is finite.
True
False

10. What is the symmetry element (s) after the lattice type in a plane space
group?

a. The least symmetrical rotation point
b. The axis of rotation of maximum symmetry
c. The point of rotation of maximum symmetry
d. The axis of rotation with the least symmetry

11. Write the symmetry elements that you see in Fig. E1 corresponding to a
plane cell.

Fig. E1
Response:

12. Write the directions of symmetry associated with the second line of
symmetry m of the plane space group p2mm to which the Fig. E2
corresponds.

Fig. E2
Response:

13. Points in special position are assigned symmetry of the
a. translation group
b. element on which they are, called position symmetry
c. space group
d. point group
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14. An enantiomorphic equivalent position is related by:
a. any symmetry element associated with rotation
b. any symmetry element associated with the inversion
c. any element of symmetry associated with identity
d. any symmetry element with associated translation

15. General and special equivalent positions have different multiplicity and
the same symmetry position

True
False
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Part II
Crystallochemistry

In this part, Chaps. 6 to 9, we study the arrangement of atoms in the crystalline
matter; that is, their structure. Up to this point, the student has learned to see the
crystal as a periodic medium in which order prevails at all times, as a consequence
of the reticular, structural, and energetic postulates. The concept of real crystal is
then introduced, and its imperfections must be considered, contrary to what was
considered in geometric crystallography.



Chapter 6
Crystal Structures, Compact Packing,
Coordination

Abstract Underlying any structural criteria based on chemical bonding, there is
one fact: the main condition for a crystalline structure to be s is that its free energy
is minimal; therefore, the structures most likely to be energetically stable are those
whose atoms or molecules are arranged in space in the most compact way possible.
Despite the chemical diversity observed in the large number of resolved structures,
all these structures can refer to a rather reduced number of fixed structural types
which, in turn, are characterized by the fact that their atoms or molecules are
arranged in space in the most compact way possible. The structure depends on the
type of bond, the number and diversity of atoms and the repetition associated with
the network. However, although the types of bonds are included in the program,
they are not explained, since the student has knowledge of them through chemistry
studied in pre-university courses and even in this first course of Geology. It is
simply to remind them of this dependence on the structure. Covalent, metallic, and
ionic crystals will be briefly explained. Depending on the different nature of the
chemical bonding forces, crystalline structures can be grouped into two large cat-
egories: structures in whose space molecules are energetically individualized, and
structures that can be considered constituted by a single molecule extending to the
entire crystalline space. The mentioned crystals belong to this category. Therefore,
the types of packing will be explained based on the hypothesis that atoms can be
represented by hard and impenetrable spheres. In this explanation, it is necessary to
introduce the concepts of coordination polyhedron and coordination number and,
since this depends on the relative sizes of the coordinated ions, we will talk about
the ratio of radii. Finally, the Pauling rules are presented, which fundamentally
consider the conditions of maximum compactness and markedly ionic character of
the bond presented by many crystalline structures.
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6.1 Introduction

All matter consists of ions, atoms, or molecules. The atom and its interaction forces
determine the chemical and physical properties of matter. This depends on chemical
composition, geometric arrangement of the constituent atoms or ions, and the nature
of the electrical forces that bind them.

Crystallochemistry studies the relationships between the chemical composition
of crystalline materials and their structures, as well as their effects on physical
properties. It includes the study of chemical bonds, morphology, and the formation
of crystalline structures, according to the characteristics of the atoms, ions or
molecules, as well as their type of bond. This discipline is the link between crys-
tallography, solid-state chemistry, and condensed matter physics.

Crystallochemistry was developed from mineralogy and, later, from
crystallography.

The bases of crystallochemistry were established by Goldschmidt and Laves
(1920–1930)1 by means of the following postulates:

– Principle of compact packing: Atoms in a crystalline structure tend to be dis-
posed of in a way that fills the space in the most efficient manner.

– Principle of symmetry: Crystalline structure atoms tend to achieve an environ-
ment with the highest possible symmetry.

– Principle of interaction: Atoms in a crystalline structure tend to surround
themselves with as many neighboring atoms as possible, with which they can
interact, i.e., they tend to achieve the highest coordination.

6.2 Crystalline Structures

A crystalline structure is the periodic and orderly arrangement in a
three-dimensional space of matter constituents (ions, atoms, molecules, or sets
therein). It provides information about the location of all atoms, binding positions
and types, symmetry and chemical content of the elementary cell. Its study began
with experiments in 1910 by Laue, Friedrich, and Knipping,2 looking at the
diffraction of X-rays by crystals. In 1913, Bragg3 determined the first crystalline
structure. Its knowledge is very important for faithfully, interpreting data on the
chemical composition and physicochemical properties of minerals, and analyzing
the conditions of formation and transformation of minerals in different environ-
ments. Then, hundreds of structures were solved and the general rules governing
crystalline structures were formulated. The crystallochemistry of minerals was

1 McSween et al. [1].
2 Eckert [2].
3 Bragg [3].
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created, as part of a more general crystallochemistry, revealing even finer details of
the mineral structure. The ionic model was developed. An ionic radius system and
the additivity rule of such a radius was proposed. The rules governing ionic crystals
were formulated. The concepts of solid solution and polymorphism were clarified.
The concept of compact packing was developed and structural notions, stoi-
chiometry, coordination number, and coordination polyhedrons were introduced;
methods for the polyhedral representation of structures were also developed.
Geometric analysis of the structure of minerals was completed in about 1960.

Stability of Crystalline Structures

For a crystalline structure to be stable, its free energy must be minimal.
This energy corresponds to Gibbs free energy, G, given by the expression (6.1):

G� Uþ PV� TS ð6:1Þ

where

G is the free energy
U is the internal energy
P is the pressure
V is the volume
T is the temperature
S is the entropy

A minimum energy corresponds to a minimum volume, or the structures most
likely to stabilize energetically are those whose constituents are ordered in space in
the most compact way possible.

6.3 Bonds in Crystalline Structures

Chemical bond is defined as the forces of attraction between atoms. It is determined
by the outermost electrons or valence electrons. These electrons interact in ways
that determine the symmetry of the atomic structure. There are three extreme types
of chemical bond:

– Ionic bond

This bond is predominant in inorganic compounds. In this bond, the outermost layer
is completed by transferring electrons from one atom to another (Fig. 6.1).

– Covalent bond

In the covalent bond, the outermost electrons are shared by predominant neigh-
boring atoms (Fig. 6.2).
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– Metallic bond

This bond is presented only by the elements (gold, silver, etc.). It is non-directional.
Valence electrons can move freely (delocalized) (Fig. 6.3).

These bonds are not found pure in any crystal.
Electronegativity is a concept that expresses the relative measure of the force of

attraction for electrons.
The ionic character of a bond is given by the difference between the elec-

tronegativities of the atoms that form it.

Fig. 6.1 Ionic bond

Fig. 6.2 C atom with four
equivalent sp3 orbitals,
directed to the vertices of a
tetrahedron

Fig. 6.3 Metallic bond
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Pauling (1960) assigned a numerical value of electronegativity to each element.
An example follows in descending order of the same (Table 6.1).

6.4 Ionic Crystals

The characteristics of ionic crystals are in general terms: To possess moderate
hardness and specific weight, high melting and boiling points, very low electrical
and thermal conductivity, high symmetry. To form ions in dissolution.

6.5 Covalent Crystals

The characteristics of covalent crystals are in general terms: insolubility, high
stability, they do not form ions in dissolution, very high melting and boiling points,
symmetry is lower than that of ion crystals.

6.6 Metal Crystals

The metal crystals are characterized by their great plasticity, tenacity, ductility,
conductivity; and low hardness, melting and boiling points.

These crystals present high symmetry and very compact structures.

6.7 Compact Packing

Compact packing is defined as being available to atoms in space occupying the
lowest volume and considering atoms to be hard and rigid spheres.

In the two-dimensional space, this is obtained when each atom surrounds itself
with another six. The cell is hexagonal, and the lattice parameter is 2r (r is the radius
of the sphere). Two types of voids can be distinguished: 1 and 2 (Fig. 6.4).

In the three-dimensional space, packing is achieved by stacking flat layers like
the one described in the previous section. The second layer can be positioned so
that the spheres rest over the 1 void or over the 2 voids. Both provisions are related
by a 180º rotation, so they do not differ. If option B is chosen, this second layer is
named B, and the layer sequence is AB.

Table 6.1 Electronegativity values of some elements assigned by Pauling (1960)

F O N Cl C S B Ca Na

4 3.5 3 3 2.5 2.5 2 1 0.9
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When stacking the third layer, there are again two possibilities. When the
spheres rest on the spheres of layer A, it is called layer A. The sequence is
ABABAB…., and this type of packing is called compact hexagonal packing (hcp
or hc). The occupied space is 74%. The atoms in layer B do not have the same
environment as the atoms in layer A, as the orientation of the bonds is different
(Fig. 6.5a). The atoms in layer A occupy the nodes of the hexagonal cell, with
coordinates 0,0,0 and the atoms of layer B are located at 1/3,2/3,1/2 (Fig. 6.5b).

When the spheres are placed on void C, the layer is called layer C. The sequence
is ABC ABC ABC…., and this type of packing is called compact cubic packing
(ccp or cc) (Fig. 6.6a). The occupied space is 74%. The atoms in layers A, B, and C
have the same environment (Fig. 6.6b). Layer A atoms occupy the nodes of the
cubic cell, with coordinates 0,0,0; the atoms in B layer with 1/3,2/3,1/3; and in C
layer the coordinates are 2/3,1/3,2/3. The elemental cell can be described as a cubic
cell (Fig. 6.6c).

Fig. 6.4 Void types 1 and 2 in compact packing

(a) (b) 

Fig. 6.5 Compact hexagonal packing
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In the interior-centered cubic packing (bcc or bc), atoms are located at the
vertices of an interior-centered cubic cell. The central atom has the same envi-
ronment as the vertices. The volume occupied is 68%. Atoms have coordinates
0,0,0 and 1/2,1/2,1/2. The elemental cell can be described as F cubic cell (Fig. 6.7).

 )b( )a(

(c) 

Fig. 6.6 Compact cubic packing

Fig. 6.7 Interior-centered
cubic packing
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6.8 Size of Atoms

– Ionic radius

In the case of crystalline structures in which the ion bond predominates, the size of
an ion is expressed in terms of its ion radius, which is defined as Radius of the
sphere occupied by an ion in a particular structural environment (refers to the
coordination of the ion).

Allows determination of the ratio of radii and is given by the expression (6.2):

RA : RX ð6:2Þ

RA being the radius of cation and RX being the radius of the anion, useful for
systematic derivation of crystalline structures; understanding the replacement of one
ion with another in the same kind of structure, and structural determination.

The interatomic distance is the sum of the radii of atoms.

– Covalent radius
Covalent radius is defined as the arithmetic mean of the interatomic distances of the
crystals of elementary substances. It is used in covalent crystalline structures.

Example

– the C–C distance is 1.54,
– the distance Si–Si is 2.34,
– the distance C-Si, resulting from the union of C and Si to form the CSi, is

1.94; this value closely matches that obtained from X-ray diffraction equal
to 1.930.

6.9 Coordination, Pauling Rules

– Coordination number

The coordination number is defined as the number of ions surrounding a given ion.

– Coordination polyhedron

The coordination polyhedron is defined as an imaginary polyhedron that arises by
joining the lines of the neighboring ions or atoms closest to the central ion or atom
(Table 6.2).
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– Structural unit

In a crystalline structure, the bonding characteristics allow differentiation of certain
structural units; that is, certain atoms or groups of atoms that are ordered in the most
compact way possible. They may consist of the following:

– An atom
– Finite groupings of atoms
– Chains of atoms
– Layers of atoms
– Three-dimensional framework of atoms

Each of these units can be packaged in many ways, resulting in a large number
of structural types formed by the same structural unit. However, it is noted from the
comparison of some structures that some of them may be derived from others. The
latter are known as basic structures and the former as derived structures.

– Pauling rules

These rules basically consider the ionicity of the bond and the maximum com-
pactness of the structure. These are as follows:

1. The maximum number of R radius ions that can coordinate with another with
radius r < R is given by the r/R ratio (see Table 6.2).

2. An ion structure will be more stable with greater neutralization of the charges of
anions and cations.

3. The stability of a crystal structure will be less stable with a greater number of
edges and faces that are shared in the coordination polyhedron.

4. In a crystal containing different cations, those of higher valence and smaller
coordination number tend not to share any element of the coordination poly-
hedron. When they share edges, they contract and the cations tend to move from
the center of their coordination polyhedron.

5. Principle of parsimony: The number of different classes of constituents in a
crystal tends to be small.

6.10 Positions in Compact Packaged Structures

Compact packing is of interest because many mineral structures can be described in
terms of compact packing of anions, with cations occupying the spaces between
them.

In compact packing, two types of spaces are distinguished between two layers
(Fig. 6.8).
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1. Tetrahedral holes: holes between three ions of one layer and one ion of another.
2. Octahedral holes: holes between three ions of one layer and three ions of

another.

– Tetrahedral positions

Tetrahedral positions are positions occupied by cations surrounded by four anions
(Fig. 6.9). Its coordination number is 4. Its coordination polyhedron is a
tetrahedron.

In compact cubic compact packing, the maximum number of tetrahedral posi-
tions is eight, and in the compact hexagonal packing there are four (Fig. 6.10).

– Octahedral positions

Octahedral positions are positions occupied by cations surrounded by six anions
(Fig. 6.11). Its coordination number is 6. Its coordination polyhedron is an
octahedron.

In compact cubic compact packing, the maximum number of octahedral posi-
tions is four and in compact hexagonal compact packing there are two (Fig. 6.12).

Coordination will be stable, depending on radii ratio RA:RX.

Fig. 6.8 Compact packing
holes: Tetrahedral holes, 1,
and octahedral holes, 2

Fig. 6.9 Tetrahedral position
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)b()a(

)d()c(

Fig. 6.10 Tetrahedral positions of the cubic (a) and hexagonal (b) compact packing and their
respective projections (c) and (d)

Fig. 6.11 Octahedral
position
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Exercises

1. (1º) Place a layer of ping pong balls (grey) on a flat surface adherent,
layer A, as shown in Fig. E1. Count the number of balls surrounding a
given. Look at the two types of voids, the so-called 1 point upwards and
the so-called 2 point down. Do you think you could get another
arrangement of the balls so that the voids were smaller? Draw the
elemental cell on Fig. E1 and provide the values of a, b, and c.

Fig. E1 

)b()a(

)d()c(

Fig. 6.12 Octahedral
positions of the cubic (a) and
hexagonal (b) compact
packing and their respective
projections into the basal
plane (c) and (d)
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(2º) Place another layer of ping pong balls (orange) over the voids 1 of the
balls in layer A in Fig. E1, layer B, as shown in Fig. E2. Is the number of
balls surrounding a given the same as in the previous case?
(3º) Place another layer of ping pong balls (grey) over voids 2 of the balls in
layer B (Fig. E2), layer A, as shown in Fig. E3. Notice that the balls in this
layer overlap those of the first layer A. This is the compact hexagonal
packing (hcp or hc) AB AB AB.

Fig. E2 Fig. E3 

(4º) Place another layer of ping pong balls (red) over voids 1 of the balls in
layer B (Fig. E3), layer C, as shown in Fig. E4. Notice that the balls in this
layer C do not overlap those of the first layer A.
(5º) Place another layer of ping pong balls (grey) over voids 2 of the balls in
layer B (Fig. E4), layer A, as shown in Fig. E5. Notice that the balls in this
layer overlap those of the first layer A. This is the compact cubic packing (ccp
or cc) ABC ABC ABC.

Fig. E4 Fig. E5 
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Questions

1. Relate the number of faces to the coordination polyhedron

8 Tetrahedron

6 Cube

4 Octahedron

2. Relate the value of the cation–anion radius ratio to coordination

1 and greater than 1 Tetrahedron

0.15–0.22 Cube

0.41–0.53 Trigonal prism

3. Interatomic distance is defined for ionic crystals as
a. the semi-halflife of the radii of the atoms considered
b. the sum of the radii of the atoms considered
c. the arithmetic mean of the interatomic distances of atoms when

considered separately forming crystals
d. the arithmetic mean of the interatomic distances of the atoms when

each individually considered forms crystals with other atoms

4. What is the name of the compact packing in which the maximum number
of tetrahedral positions is 4?
Response:

5. How many octahedral positions at most does compact cubic packing
support?
Response:

6. Metallic crystals are characterized by their low hardness and high con-
ductivity and plasticity

True
False

7. In compact packing, the maximum occupancy of space is 66%
True
False
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8. In octahedral coordination, each ion is surrounded by six nearest
neighbors

True
False

9. In compact hexagonal packing, there are a maximum of eight tetrahedral
positions and four octahedral positions

True
False

10. In compact cubic packing, there are at most
a. four octahedral and two tetrahedral positions
b. eight tetrahedral and four octahedral positions
c. eight octahedral and four tetrahedral positions
d. four tetrahedral and two octahedral positions.
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Chapter 7
Crystal Structures

Abstract The relative pressure and temperature stability of the minerals and,
therefore, their value in reconstructing geological history depends very much on the
crystal structure. In the case of polymorphism, the same chemical constituents can
be arranged in two or more structures, depending on the formation conditions.
Based on the spatial principle and considering also that there are practically ionic
crystals and practically covalent crystals, the concepts of structural unit and derived
structure will be explained, which have helped to rationalize the structural char-
acteristics of crystals. Cubic and hexagonal compact structures will be explained,
and then those derived from these packages. Other structures (CsCl, spinel, calcite,
etc.) will also be explained. The structures of silicates will also be shown.

7.1 Introduction

The number of structures in minerals is so great that it is necessary to use classi-
fications for each class of minerals in order to manipulate them. The classification
must be chosen according to a specific purpose. There are, therefore, several
classifications.

Due to the close interdependence between chemical composition, atomic
structure, thermodynamic stability, and chemical reactivity, the most appropriate
classification is typically the classification based on crystallochemical principles.
According to these principles, the minerals are grouped into the following classes,
according to Strunz (1941)1: Elements (e.g., gold); sulfides (e.g., pyrite); halides
(e.g., fluorite); oxides and hydroxides (e.g., cassiterite); nitrates, carbonates and
borates (e.g., calcite); sulfates (e.g., gypsum); phosphates (e.g., apatite); silicates
(e.g., quartz); organic substances (e.g., amber).

1 Strunz [1].
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The structure figures of this chapter were obtained with the software BS,2

considering the model of hard and rigid spheres for atoms, from the American
Mineralogist Crystal Structure Database,3 and Atoms4 software for the silicate
structures. In all figures, the parallel orthogonal projection (based on the axono-
metric parallel projection by Haldinger, 18265) has been used, taking as a basis the
considerations of Naumann6, used in most textbooks.

7.2 Compact Cubic Structures

They are typical structures of metals such as gold (Au), silver (Ag), copper (Cu), or
aluminum (Al).

7.2.1 Gold Structure

– Space group P21/c.
– Gold atoms are arranged at the vertices and centers of the faces of a cubic cell

(F).
– The total number of gold atoms is four.
– The coordinates are: 0,0,0; 1/2,1/2.0; 1/2,0,1/2; 0,1/2,1/2 (Fig. 7.1).

7.3 Compact Hexagonal Structures

They are typical structures of many metals, including magnesium (Mg), zinc (Zn),
and titanium (Ti).

7.3.1 Magnesium Structure

– Space group P63/mmc.
– Magnesium atoms are arranged at the vertices and centers of the faces of a cubic

cell (F).
– The total number of magnesium atoms is two.
– The coordinates are 2/3,1/3,3/4; 1/3, 2/3,1/4 (Fig. 7.2).

2 Ozawa [2].
3 Downs [3].
4 Atoms V6.1.2 © 2004 by Shape Software.
5 Haldinger [4].
6 Naumann [5].
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7.4 Body-Centered Cubic Structures

Body-centered cubic, bcc, is another type of structure adopted by many metals such
as iron (Fe), chromium (Cr), or sodium (Na).

7.4.1 Iron Structure

– Space group Im 3m.
– Iron atoms are arranged at the vertices and center of a cubic cell (I).
– The total number of iron atoms is two.
– The coordinates are 0,0,0; (1/2,1/2,1/2) (Fig. 7.3).

Fig. 7.1 Gold structure: a three-dimensional view, b projection on the plane (001)

Fig. 7.2 Magnesium structure: a three-dimensional view, b projection on the plane (001)
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7.5 Structures Derived from Compact Cubic Packing

7.5.1 Halita (NaCl)

– It is an AX structure.
– Space group Fm 3m.
– X anions form the compact packing.
– Cations A occupy all octahedral positions.
– Anions and cations have octahedral coordination.

This structure can be described as consisting of two interpenetrated lattices, one
of anions and one of cations and displaced from each other 1/2,1/2,1/2.

The coordinates of the ion that forms the compact packing are 0,0,0; 1/2,1/2,0;
1/2,0,1/2; 0,1/2,1/2.

The coordinates of the octahedral positions are 0,0,1/2; 0,1/2,0; 1/2,0,0; 1/2,1/2,0
(Fig. 7.4).

Fig. 7.3 Iron structure: a three-dimensional view, b projection on the plane (001)

Fig. 7.4 Halite structure: a three-dimensional view, b projection on the plane (001), c structure
with chlorine octahedra
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7.5.2 Fluorite-Type Structures (CaF2)

– These structures are AX2 structures.
– Fluorite space group Fm 3m.
– Cations form compact cubic packing.
– Ca2+ in the fluorite structure has hexahedral coordination and occupies the

vertices and face centers of the cubic cell.
– There are four Ca2+ per cell.
– The coordinates are 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2.
– Anions (F−) occupy all tetrahedral positions.
– There are eight F− per cell.
– The coordinates are 1/4,1/4,1/4; 1/4,1/4,3/4; 3/4,1/4,1/4; 3/4,1/4,3/4; 1/4,3/4,1/4;

1/4,3/4,3/4; 3/4,3/4.1/4; 3/4,3/4,3/4 (Fig. 7.5).

Antifluorite-type structures

They are structures A2X. Example:

Na2O structure

– Space group Fm 3m.
– Na atoms are coordinated to four oxygen atoms, while oxygen atoms are

coordinated to eight sodium atoms.
– Anions (O2−) occupy the positions of compact cubic packing.
– They are coordinated to eight Na+.
– Their coordinates are 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2.
– Cations Na+ are coordinated to 4 O2−.
– Their coordinates are 1/4,1/4,1/4; 1/4,1/4,3/4; 3/4,1/4,1/4; 3/4,1/4,3/4; 1/4,3/

4,1/4; 1/4,3/4,3/4; 3/4,3/4,1/4; 3/4,3/4,3/4 (Fig. 7.6).

Fig. 7.5 Fluorite structure: a three-dimensional view, b projection on the plane (001), c structure
with fluorine tetrahedra
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7.5.3 Sphalerite—Type Structures (ZnS)

– These structures are AX-type structures.
– Sphalerite space group F 43m.
– Cations (Zn2+) occupy the vertices and centers of the faces of the cubic cell

centered on the faces (F).
– The number of Zn2+ in the cell is four.
– The coordinates are 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2.
– Anions (S2−) occupy half of the tetrahedral positions.
– The number of S2− in the cell is four.
– The coordinates are 1/4,1/4,1/4; 3/4,1/4,3/4; 1/4,3/4,3/4; 3/4,3/4,1/4 (Fig. 7.7).

7.5.4 Diamond

– Space group Fd 3m.
– In diamond, the C4+ occupy two types of positions.
– Some C4+ occupy the vertices and the centers of faces of the cubic cell centered

on the faces.
– The coordinates are 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2.
– Other C4+ occupy half of the tetrahedral positions.

Fig. 7.6 Sodium oxide structure: a three-dimensional view, b projection on the plane (001),
c structure with sodium tetrahedra

Fig. 7.7 Structure of the sphalerite: a three-dimensional view, b projection on the plane (001),
c structure with sulfur tetrahedra
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– The coordinates are 1/4,1/4,1/4; 3/4,1/4,3/4; 1/4,3/4,3/4; 3/4,3/4,1/4.
– The content of C4+ per cell is eight (Fig. 7.8).

7.6 Structures Derived from Compact Hexagonal Packing

7.6.1 Nickelite Structure (NiAs)

– This structure is an AX-type structure.
– Space group P63/mmc.
– Cations (As2−) occupy the positions of the compact hexagonal packing.
– There are two As2−per cell.
– The coordinates are 0,0,0; 0,0,1/2.
– Anions (Ni2+) occupy all octahedral positions.
– There are two Ni2+ per cell.
– The coordinates are 2/3,1/3,1/4; 2/3,1/3,3/4 (Fig. 7.9).

Fig. 7.8 Diamond structure: a three-dimensional view, b projection on the plane (001), c structure
with carbon tetrahedra

Fig. 7.9 Nickelite structure: a three-dimensional view, b projection on the plane (001), c structure
with arsenic octahedra
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7.6.2 Wurtzite Structure (ZnS)

– It is an AX-type structure.
– Space group P63mc.
– The anions (Zn2+) occupy the positions of the compact hexagonal packing.
– There are two Zn2+ per cell.
– The coordinates are 0,0,0; 1/3,2/3,1/2.
– Cations (S2−) occupy half of the tetrahedral positions.
– There are two S2− per cell.
– The coordinates are 0,0,5/8; 1/3,2/3,1/8 (Fig. 7.10).

7.7 Other Structural Types

7.7.1 CsCl Type Structure

– The CsCl structure is an AX-type structure.
– Space group Pm 3m .
– Cations A occupy the positions of a primitive cubic cell (P).
– X anions are located in the center of that cell.
– The Cs+ occupies the vertices of a single cubic cell (sc).
– There is one per cell.
– The coordinates are 0,0,0.
– The Cl+ occupy the center of the cubic cell.
– There is one per cell.
– The coordinates are 1/2,1/2,1/2.
– The coordination of Cs+ and Cl− is hexahedral or cubic (the coordination

number is 8) (Fig. 7.11).

Fig. 7.10 Structure of the wurtzite
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7.7.2 Calcite Structure (CaCO3)

– Space group R3c.
– Calcite structure can be described as an NaCl structure distorted, compressed

along the ternary axis of inversion rotation, until the 90º angle of the cube passes
at an angle of 101º55′, typical of a rhombohedron.

– The Na+ have been replaced by Ca2+, which occupy the vertices and face centers
of that rhombohedron.

– The Cl− has been replaced by flat triangular groups of the carbonate ion CO3
2−,

perpendicular to the ternary axis of rotation-inversion.
– Most carbonates belong to this structural type (Fig. 7.12).

Fig. 7.11 Cesium chloride structure: a three-dimensional view, b projection on the plane (001)

Fig. 7.12 Calcite structure
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7.7.3 Spinel Structure (AB2O4)

The spinel group is a group of oxide minerals that crystallizes in cubic systems,
with a general composition XY2O4, where X can be Mg2þ , Fe2þ , Mn2þ and
Zn2þ ; and Y, Al3þ , Fe3þ , Cr3þ . The most common spinel minerals are magnetite
(Fe3O4) and spinel s.s. (MgAl2O4).

– Space group Fd 3m.
– The spinel structure consists of a compact cubic package of oxygen when

arranged in layers parallel to {111}, in which one-eighth of the tetrahedral
positions and half of the octahedral positions are occupied by cations.

– Tetrahedra and octahedra appear alternating.
– The tetrahedral position is smaller and is occupied byMg2þ , Fe2þ , Mn2þ , Zn2þ .
– The octahedral position is larger and is occupied by Al3þ , Cr3þ or Fe3þ .
– They are classified into normal and inverse spinels.

Normal spinels are those in which octahedral positions are occupied. Example:
Spinel (MgAl2O4) (Fig. 7.13).

Inverse spinels are those in which the tetrahedral positions are occupied.
Example: Magnetite (Fe3O4).

7.8 Silicate Structures

Silicates are minerals in which silicon (Si) and oxygen (O) are basic and funda-
mental elements in their composition and crystalline structure.

Silicate minerals are very abundant and make up most rocks. This is because
silicon is the second most abundant element in the earth's crust and mantle, after

Fig. 7.13 Spinel structure: a three-dimensional view, b structure with magnesium tetrahedra and
aluminum octahedral
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oxygen. The Si–O bond is considerably stronger than that between any other ele-
ment and oxygen. The fundamental unit of the crystalline structure of silicates is
formed by a regular tetrahedron in whose vertices the oxygen are located and in the
center of the silicon tetrahedron (Fig. 7.14). Tetrahedral coordination is the most
stable, because the radius ratio is 0.278.

The wide variety of structures existing in silicates is due to the polymerization
capacity. Polymerization is the bond of silicon tetrahedrons that share apical oxygen
atoms.

Based on the different tetrahedron bonds, silicates are classified by the number of
oxygen atoms shared by the Si4+ (Table 7.1).

Examples of silicate structures

– Nesosilicates
– Forsterite

Forsterite (Mg2SiO4) is the extreme magnesium member of the olivine series that
crystallizes in the orthorhombic system. Space group Pbnm. The structure can be
described as follows:

Fig. 7.14 Silicon tetrahedron

Table 7.1 Classification of silicates

Number of oxygen atoms
shared by the Si

Repetition
unity

Ratio
Si:O

Examples

Nesosilicate 0 (SiO4)
4− 1:4 Olivine

Sorosilicates 1 (Si2O7)
6− 1:3.5 Epidote

Ciclosilicates 2 (SiO3)8
2− 1:3 Tourmaline

Single Chain
Inosilicates

2 (SiO3)
2− 1:3 Pyroxene

Double Chain
Inosilicates

2.5 (Si4O11)
3− 1:2.75 Amphybole

Phyllosilicates 3 (Si2O57)
2− 1:2.5 Mica

Tectosilicates 4 (SiO2)
0 1:2 Quartz
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The silicon tetrahedra are arranged parallel to the c axis, forming rows, some
pointing upwards and others pointing downwards, alternately. Some tetrahedra are
at one level (a = 0) and others at another level (a = 1/2).

Within each level, the tetrahedra are joined by the octahedra, containing the M
cations and also forming rows along the c axis.

There are two kinds of octahedra, the M1 and the M2.

– M1 octahedra form chains along c. These octahedra are attached to another
chain above (along axis a) by means of M2 octahedra.

– M2 octahedra are slightly larger and slightly more distorted than the M1.

These octahedra in the actual structure are somewhat distorted. In general, in any
structure, octahedra and tetrahedra are somewhat distorted. This distortion is given
by a parameter called mean quadratic elongation.7 (Fig. 7.15)

Fig. 7.15 Olivine structure

7 Quadratic elongation and the variance of bond angles are linearly correlated for distorted octa-
hedral and tetrahedral coordination complexes, both of which show variations in bond length and
bond angle. The quadratic elongation is dimensionless, giving a quantitative measure of polyhedral
distortion which is independent of the effective size of the polyhedron Robinson [6].
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– Andalusite

Andalusite (Al2SiO5) is a nesosilicate that crystallizes in the orthorhombic system.
Space group Pnnm. Its crystalline structure consists of aluminum octahedra (AlO6)
chains parallel to c, with shared edges and contains half of the aluminum with
coordination number 6, and the other half with coordination number 5 (Fig. 7.16).

The structure of kyanite, a polymorph of andalusite, consists of aluminum
octahedra (AlO6) chains parallel to c, with shared edges and contains half of alu-
minum with coordination number 6, and the other half with coordination number 6.

The structure of sillimanite, the other polymorph of andalusite, consists of
aluminum octahedra (AlO6) chains parallel to c axis, with shared edges and con-
tains half of aluminum with coordination number 6, and the other half with coor-
dination number 4.

– Garnets

Garnets are nesosilicates that crystallize in the cubic system, space group Ia 3
d. The general formula is

A3B2(SiO4)3,

where
A is Ca2þ , Mg2þ , Fe2þ or Mn2þ

B is At3þ , Fe3þ or Cr3þ

In the structure of the garnet, silicon tetrahedra alternate with BO6 octahedra
with those that share vertices. Cations A are large, with coordination 8, and the
coordination polyhedra they form are distorted cubes.

Fig. 7.16 Andalusite structure
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Silicon tetrahedra are distorted. The distortion depends on the size of the cation
in the distorted AO8 cubes with which silicon tetrahedra share two opposite vertices
(Fig. 7.17).

– Sorosilicates
– Epidote

The epidote is a sorosilicate mineral of calcium, aluminum and iron, its formula is
expressed by Ca2(Al,Fe)3(SiO4)3(OH) and crystallizes in the monoclinic system,
space group P21/m. Iron and aluminum are in octahedral coordination (Fig. 7.18).

– Cyclosilicates
– Beryl

The structure of the beryl, space group P6/mcc, is formed by rings of six silicon
tetrahedrons. These rings are perpendicular to the crystallographic c axis and, in the
different layers along it, they are rotated, one with respect to the other. The holes of
these rings along the c axis are large and can accommodate a variety of ions and
molecules. Among the rings and perpendicular to their planes, there are rows of
octahedral positions of aluminum and rows of tetrahedral positions of beryllium
(Fig. 7.19).

Fig. 7.17 Garnet structure
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Fig. 7.18 Epidote structure

Fig. 7.19 Beryl structure
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– Inosilicates
– Diopside

Diopside belongs to the pyroxenes group and crystallizes in the monoclinic system,
space group C2/c. The chemical composition is represented by the general chemical
formula:

XYZ2OR6

where
X is Naþ, Ca2þ, Mn2þ, Fe2þ, Mg2þ and Liþ, in M2 positions.
Y is Fe2þ, Mn2þ, Mg2þ, Fe3þ, Al3þ, Cr3þ, Ti4þ, in M1 positions.
Z is Si4þ, Al3þ, in tetrahedral positions.
The structure of the diopside can be described as follows: Silicon is tetra-

hedrically coordinated to oxygen. Tetrahedra are joined by forming chains parallel
to the crystallographic axis c. Some tetrahedra have their vertices facing each other
and others have their basis facing each other. The M cationic positions form chains
that share edges and are parallel to silica tetrahedra chains. They are of two types:

– M1 positions lie among the opposing tetrahedra apexes. These positions are
smaller and are almost regular octahedra.

– M2 positions lie between the bases of these tetrahedra. These positions are
larger and more distorted (Fig. 7.20).

Fig. 7.20 Diopside structure
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– Phyllosilicates
– Muscovite

Muscovite (KAl2(AlSi3O10)(OH)2) is a phyllosilicate that crystallizes in the mon-
oclinic system, space group C2/c. Its structure (Fig. 7.21) consists of stacks of the
two basic layers, trioctahedral and dioctahedral.

The repetition structural unit includes one octahedral layer between two tetra-
hedral layers. The three layers are joined by monovalent alkaline ions (Na+, K+) by
weak bonds. The repeating distance of the layers is 10 Å.

– Tectosilicates
– Quartz

In the structure of quartz silicon, tetrahedra share their oxygen vertices with other
neighbors, resulting in a structure with strong bonds. The composition is SiO2, and
there is charge neutrality.

Fig. 7.21 Muscovite structure
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– Quartz b or high T

Quartz high has a structure (Fig. 7.22) based on spiral-shaped tetrahedra chains
around a screw ternary axis, parallel to the crystallographic c axis. Its space group is
P6222. The positions of the tetrahedra of these spirals are located at 0, 1/3, and 2/3
of the crystallographic c axis.

In the unit cell, there are two spirals, each around a screw axis, and both are
joined by vertices of the tetrahedra. These spirals can be right-handed or left-handed
because the ternary screw axis is enantiomorph, so there are enantiomorph quartz
crystals (Fig. 7.22).

– Quartz a or low T

The structure (Fig. 7.23) and properties of low quartz are similar to high quartz. Its
space group is P3221. The silicon tetrahedra in the structure are rotated: the senary
axis of the high T quartz (hexagonal) is reduced to a ternary axis in the low T
(rhombohedral).

Fig. 7.22 High quartz structure
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– Feldspars
– Sanidine

Sanidine ((K,Na)(Si,Al)4O8) crystallizes in the monoclinic system, space group
C2/m. Its structure (Fig. 7.24) can be described as follows: The frame of sanidine,
as in the rest of feldspars, consists of rings of four tetrahedra, two T1 and two T2,
alternating and occupied by Si4+ and Al3+, with a disordered distribution, but the
average occupancy of each tetrahedron is 50% silicon and 25% aluminum. In this

Fig. 7.23 Low quartz structure

Fig. 7.24 Sanidine structure

7.8 Silicate Structures 185



structure, two tetrahedra have vertices pointing upwards and another two have them
pointing down. These rings come together to form a layer. In this layer, the rings of
four tetrahedrons are joined to another ring of four other tetrahedrons, so that both
rings are related by a plane of symmetry.

The tetrahedra are joined along axis a, resulting in a crankshaft-shaped chain.
Among the tetrahedron rings, there are large voids occupied by K+ ions, on the
symmetry planes. They also form a chain. These ions have a coordination number
of 10.

Exercises

(1) Calculate the atomic radius of the following:

(a) A metal whose structure consists of a cubic package centered in the
interior with cell parameter a = 3.294 Å

(b) The sodium that, in the structure of the halite, has a cell parameter of
a = 4.0862 Å, and forms the cubic packing centered in the faces.

For interior-centered cubic structures, the atomic radius is given by the
expression:

r ¼
ffiffiffi

3
p
� �

a

4

For faces-centered cubic structures, the atomic radius is given by the
expression:

r ¼
ffiffiffi

2
p
� �

a

4

(2) Rutile structure (TiO2)
(a) Observe carefully the graphic representation of the symmetry ele-

ments of the spatial group P42/mnm (Fig. E1) to which the rutile
belongs.

Symbols:

– Projection on the x–y plane of a general position

– Projection on the x–y plane of two positions with the same x and

y coordinates but different z coordinates

– Projection of an enantiomorphic position (derived from another
by some element of symmetry that implies the inversion)

– Projection on the x–y plane of two enantiomorphic positions with
the same x and y coordinates but different z coordinates
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(b) Observe the rutile structure (Fig. E2). The titanium cations have
octahedral coordination.

(c) Project in Scheme 1 of Table 1, the atoms Ti and O, whose coor-
dinates are provided in Table 1.

In the same table, the position symmetry and Wyckoff letter of the
different positions of the Ti and O atoms are provided. Both the
position symmetry and the Wyckoff letter represent the symmetry
elements on which the atoms are located. The symbol used to specify
this symmetry is similar to that of the point groups, expressed by the
symbols of the elements of symmetry associated with the directions
of symmetry (primary, secondary, tertiary), depending on the crys-
talline system. The position symmetry group is isomorphic to a
subgroup of the point group to which the space group under

Fig. E1 Graphic representation of the symmetry elements of the spatial group P42/mnm

Fig. E2 Rutile structure. The cell parameters are a = 4.594 Å and c = 2.959 Å
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consideration belongs. Example: The symmetry group m.2m is iso-
morphic to the point group mm2, subgroup of the point group 4/mmm
to which the rutile space group P42/mnm belongs.
Observe that the titanium atoms occupy positions whose Wyckoff
letter is a, position symmetry m.mm, while the oxygen atoms occupy
positions whose Wyckoff letter is f and position symmetry is m.2m.
In both cases, a point appears in the second position of the symbol,
and it refers to the second direction of symmetry. So, for Wyckoff
letter to position symmetry m.mm, it indicates that the atom’s posi-
tion is on three planes of symmetry, the first perpendicular to the c
axis (i.e., plane parallel to the paper), the other two perpendicular to
the tertiary directions [110] (i.e., to the intermediate directions
between the a and b axes) and [1 1 0]. For Wyckoff letter f, the first
m of the position symmetry m.2m is perpendicular to c, the
binary axis parallel to the b axis and the other plane is perpendicular
to the tertiary direction [110] and equivalent [1 1 0].

(d) Relate the position of the atoms projected in the scheme, both tita-
nium and oxygen, with the position of the elements of symmetry, and
observe that all the atoms are on some element of symmetry (special
or particular positions).

(e) Observe in the projection of the equivalent positions of Fig. E1, one
of the aspects that your projection could show if there were general
positions (both titanium and oxygen); that is, those that are not
located on any element of symmetry.

(f) Look at one atom and count the number of them generated by the
symmetry elements of the space group to obtain the multiplicity. As
an example, look at the general position labeled 1 and observe that
the number of positions obtained by applying the symmetry elements
of the spatial group is eight.

(g) Count the number of titanium and/or oxygen atoms that are in a
special position to obtain the multiplicity of both types. To do this,
look at one atom and count the number of them generated by the
symmetry elements of the space group (Table E1).
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Questions
1. Relate each compound to the type of structure that corresponds to it.

Nickelite Structure derived from compact cubic packing

Fluorite Structure derived from compact hexagonal packing

Sodium Interior-centered cubic

2. Write the name of the structure of Fig. Q1.

Response:

3. Gold has which structure?
a. derived from the compact cubic
b. compact cubic
c. derived from the compact hexagonal
d. compact hexagonal

4. Magnesium structure is
a. cubic compact
b. compact hexagonal
c. derived from the compact cubic
d. derived from the compact hexagonal

5. What type of structure corresponds to that of Fig. Q2? (projection on the
plane (001) of the elemental cell)

Response:

Fig. Q1 Type of structure to
be named

Fig. Q2 Type of structure to
be named
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6. Write the name of the wurtzite ion to which the coordinates are (0,0,5/8),
(1/3,2/3,1/8)

Response:

7. Write the coordination of calcium in the calcite

Response:

8. Carbon in calcite has which coordination?
a. triangular
b. tetrahedral
c. octahedral
d. hexahedral

9. The polyhedron coordinating chlorine ions in the halite is a
a. cube, just like sodium
b. cube-octahedron, just like sodium
c. tetrahedron, just like sodium
d. octahedron, just like sodium

10. In the structure of the sphalerite
a. half of the tetrahedral positions are occupied
b. all tetrahedral positions are occupied
c. all octahedral positions are occupied
d. half of the octahedral positions are occupied
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Chapter 8
Defects

Abstract It becomes clear that real crystal is full of defects that affect different
conditions of the glass. First and foremost, the different types of imperfections will
be discussed, and some information about the concepts of order and disorder will be
given. Later, the crystalline defects will be considered, depending on whether they
affect the crystal at an atomic level, atomic row, atomic plane, or at a
three-dimensional level. The importance of the punctual defects in the diffusion in
solid state, color of the minerals, and chemical composition will be explained. The
importance of helical defects in the growth of crystals, the clusters, and the
inclusions will also be discussed.

8.1 Introduction

Crystalline theory defines crystal as a perfect entity, according to the following
postulates [1]:

– Reticular: The crystal is an infinite periodic medium, defined by a lattice cor-
responding to one of 14 types of Bravais.

– Structural: The crystal has an atomic structure whose symmetry corresponds to
one of 230 spatial groups.

– Energy: Atoms in the crystalline structure occupy equilibrium positions for
which energy is minimal.

From the moment a crystal or mineral is formed, it is subject to changes in its
physical and chemical environment.

The response to such changes is the adaptation of its structure and composition
to the new environment. Such changes may be

– Minor changes in bond lengths and angles or major structural transformations.
– Atomic-scale chemical changes or reactions that cause new mineral species.
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C. Marcos, Crystallography, Springer Textbooks in Earth Sciences,
Geography and Environment, https://doi.org/10.1007/978-3-030-96783-3_8

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96783-3_8&amp;domain=pdf
https://doi.org/10.1007/978-3-030-96783-3_8


– Many minerals have formed at relatively high temperatures or pressures.
– The high-temperature state is characterized by chemical variability and a more

generalized structure.
– The high-pressure state is characterized by higher density.

8.2 Order and Disorder

The order in a crystalline material is understood to be the regular and geometric
distribution of the atoms that form it.

The degree of disorder is defined by a statistical factor called entropy. The
entropy of a system, in this case a particular distribution of atoms and their
vibrational energy levels, is defined from the statistical point of view as the
probability of the existence of that state. This entropy is called configurational
entropy. Mathematically this entropy S is expressed as

S ¼ k lnx ð8:1Þ
where

k is Boltzmann constant (1.3�10–23 JK−1).
x is the probability that a certain state will exist.

A distinction can be made between short-range order and long-range order:

– Short-range order refers to the order over distances comparable to interatomic
distances. The short-range order coefficient is the ratio of atoms correctly
positioned around a central atom.

– Long-range order refers to the order over distances infinitely great. Long-range
order coefficient is the difference between the proportion of properly placed
atoms and those placed incorrectly, relative to the perfectly ordered structure.

The concept of order can be seen in Fig. 8.1. A crystal with A and B atoms will
have a completely ordered structure if all the 1 and 2 positions are appropriately
occupied by A and B atoms, respectively.

Figure 8.2 shows that there are domains (zones) in which the order indicated in
Fig. 8.1 exists.

The types of disorder are positional disorder, distortional disorder, substitutional
disorder.

– Positional disorder

All atoms in a structure suffer thermal vibrations that can be described as position
disorder over a base time. An example of positional disorder is that of potassium in
feldspar (Fig. 8.3). At eachmoment, it can occupy a different position (1, 2, 3, 4, 5, 6).
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Fig. 8.1 Schematic
illustration of long-range
order

Fig. 8.2 Structure scheme
with ordered domains
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– Distortional disorder

Distortional disorder occurs as a result of the distortion of the bonds. An example is
the distortion of ±16.37º, with symmetry loss, presented by low quartz, left quartz,
or right quartz after transformation of high quartz (Fig. 8.4b). The probability that
the distortion of the bonds is in the direction of Fig. 8.4a is the same as that of
Fig. 8.4c.

Fig. 8.3 Position disorder scheme

Fig. 8.4 Distortional disorder. Structure representations of low (or a) quartz, with distortion of the
bonds left (a) and right (c), and high (or b) quartz (c). Yellow circles represent Si atoms;
tetrahedrals surrounded by small turquoise blue circles represent O atoms
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Note
Quartz can be low (b) or high (a), depending on whether it is formed at low
or high temperature. Sometimes in literature its name is contradictory. Both
low and high quartz can be right or left. Right quartz, from a structural point
of view, is left from the morphological and optical point of view. Conversely,
left quartz, from a structural point of view, is right from the morphological
and optical point of view. The symmetry presented by these types of quartz is
summarized in Table 8.1, according to the terminology used in the
International Tables of Crystallography [2].

– Substitutional disorder

Substitutional disorder involves an exchange of atoms between two or more
positions that become indistinguishable by increasing the temperature, resulting in a
chemical disorder where the average chemical content of each position is the same
(Fig. 8.5).

Table 8.1 Symmetry
summary of high and low
quartz

Type Space group

High quartz (a) Right P6222

Left P6422

Low quartz (b) Right P3221

Left P3121

Fig. 8.5 Scheme showing substitutional disorder. In a some atoms, colored in light gray, are
substituted in b by others colored in dark gray
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8.3 Crystalline Defects

A crystalline material usually has imperfections that affect the orderly and geo-
metric distribution of atomic constituents. One consequence of this disorder is the
existence of defects.

A defect is the rupture of structural continuity in a crystalline material. Its
importance lies in the effect this has on the properties of minerals.

Types of defects include point (zero-dimensional), linear (one-dimensional),
two-dimensional, and three-dimensional.

8.4 Point Defects

Point defects are the result of an error in the occupation of an atomic position in the
crystalline structure.

Point defects are important in processes such as solid-state diffusion, electrical
conductivity, density, solid solutions, and mineral color.

Types of isolated point defects include vacancies, impurities, and interstitials
(Fig. 8.6).

– Vacancy

Vacancy is an empty atomic position of the structure that should be occupied
(Fig. 8.6a).

The number of vacancies increases with temperature and is given by the
expression:

Fig. 8.6 Structure schemes ordered (a) and with specific defects: vacancy (b), impurity (c),
interstitial atom (d)
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NV ¼ Nexp �QV

kT

� �
ð8:2Þ

where

NV is the number of vacancies,
N is the number of atomic positions,
QV is the energy to form a vacancy,
k is the Boltzman constant (1.34⋅10−23 J/K),
T is the temperature.

The activation energy can be obtained experimentally, knowing the concentra-
tion of vacancies NV/N and its variation with temperature. The dependence of NV/
N versus T is exponential (Fig. 8.7).

The representation of lnNV versus the inverse of T (Fig. 8.8) provides a line
whose slope gives QV/K.

Fig. 8.7 Representation of
NV/N versus T

Fig. 8.8 Representation of
lnNV versus the inverse of T
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– Impurity
Impurity is an atom occupying the position of another characteristic of the crystal
structure.

– Interstitial atom
An interstitial atom occupies a space of the structure that does not correspond to it.

Point defects often appear not isolated but coupled because of charge balancing.

– Schottky defect
Schottky defect is the association of two vacancies of different signs (cationic
vacancy and anionic vacancy) (Fig. 8.9).

Example

1. Given a periclase crystal (MgO), with an NaCl-like structure (Fig. E1),
with a cell parameter a = 3.96 Å, MMg = 24.31 g/mol, MO = 16 g/mol,
RMg

2+ = 0.072 nm, RO
2+ = 0.140 nm, qexp = 3.2 g/cm3 and 1 Schottky

defect for every 10 elementary cells, calculate the following: (a) the
number of anion vacancies per cm3; (b) the density of the MgO crystal;
(c) the number of Schottky defects that will be in one elementary cell.

Fig. 8.9 Scheme showing the
Schottky defect

Fig. E1 Periclase structure
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(a) In a unit cell of MgO, there are 4 Mg2+ and 4 O2−; therefore, in 10 unit
cells there will be 40 Mg2+ and 40 O2−. Due to the existence of a
Schottky defect, the number of ions is reduced to 39Mg2+ and 39 O2−.

(b) The volume of a periclase cell is a = (3.96⋅10–8 cm)3 = 62.1⋅10–24

cm3.
If, in 10 cells (10⋅62.1⋅10-24 cm3), there is one anionic vacancy, the
number of vacancies by cubic centimeter is 1.61⋅1021.

(c) If the crystal has defects, its experimental density, qexp, will be lower
than the theoretical density, qtheo, so there will be fewer magnesium
and oxygen atoms in the cell than there should be.
Magnesium and oxygen atoms in the cell.

The number of Mg atoms in the cell is the same as the number of O atoms,
but their position is different.

Mg atoms: There are 12 in the center of the edges, 1 inside. Total: 12: 4
(each edge is shared by 3 other adjacent cells) + 1 = 4 Mg atoms/cell.

O atoms: There are 6 in the center of faces, 8 in vertices. Total: 6: 2 (each
face is shared by another adjacent cell) + 8: 8 (each vertex is shared by 7 other
adjacent cells) = 4 O atoms/cell.

a = 2 RMg
2+ + RO

2+ = 0.424 nm = 4.24⋅10−8 cm

qexp ¼
n at Mg

cell � 24:31 gMg
mol þ n at O

cell � 16 gO
mol

7:62� 10�23cm3 � 6:023� 1023 at
mol

3:2
g

cm3 ¼ n
40:31
45:89

� g
mol

N ¼ 3:64 ) 0:36 vacancies=cell

% vacancies ¼ 0:36
4

� 100 ¼ 8:9:

2. Calculate the number of vacancies per cubic meter in iron at 850 ºC. The
energy for vacancy formation is 1.08 eV/atom. The atomic weight of iron
is 55.85 g/mol and the density of iron is 7.65 g/cm3.
The expressions to determine the number of vacancies (8.2) and the
density of a crystal (E.1) will be used.

q ¼ Z �M
V � A ðE:1Þ
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where

M is the molecular weight
Z is the number of molecules in the unit cell. Z is normally referred to as

the number of molecules in the unit cell; it is more strictly the number of
formula units in the unit cell

V is the volume
A is the Avogadro number = 6.022⋅1023 mol−1

Z
V
¼ q � A

M

Z
V
¼ N ¼ q � A

M
:

Substituting the value of N and the known data in expression (8.2), the
number of vacancies is obtained

NV ¼
7:65g
cm3

� �
6:023�1023

mol

� �
55:85g
mol

� � exp
�1:08 eV

atom

� �
8:617 � 10�5 eV

K

� �
850þ 273ð ÞK

¼ 1:17 � 1018
cm3

100cm
m3

� �3

¼ 1:17 � 1024m3:

– Frenkel defect

Frenkel defect is the association of a vacancy and an interstitial atom (Fig. 8.10).
Point defects play a very important role in processes such as solid-state diffusion,

electrical conductivity, density, solid solutions, color, etc. These defects affect,
perhaps, one cell in 10,000.

Fig. 8.10 Scheme showing
the Frenkel defect
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8.4.1 Point Defects and Solid-State Diffusion

Point defects allow diffusion in solid state, i.e., the transport of atoms in a crys-
talline material, as a result of their mobility.

When an atom moves to another position, it is because the potential energy is
less.

Movement of Atoms
The movement of atoms can be by

1. Vacancies (Fig. 8.11)

2. Impurities (Fig. 8.12)

(a) (b)

Fig. 8.11 Diffusion through a vacancy. The movement of atom 1 to the v vacancy (a) causes the
vacancy to be subsequently occupied by atom 2 and so on (b)

(a) (b)

Fig. 8.12 Diffusion through impurities: As impurity 1 moves (a), its position would be occupied
by impurity 2 and so on (b)
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3. Exchange between atoms (Fig. 8.13)

4. Circular exchange between atoms (Fig. 8.14).

(a) (b)

Fig. 8.13 Scheme showing diffusion by means of exchange between pairs of atoms. Atom 1
moves to position of atom 2 (a), then its position would be occupied by atom 2 (b)

(a) (b)

Fig. 8.14 Scheme showing diffusion through circular exchange between atoms. In a the positions
of atoms 1–4 and the movement scheme are shown, and in b the position of the atoms after the
circular exchange is shown
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8.4.2 Point Defects and Color in Crystals and Minerals

All the sensations of light intensity and color reaching the human eye represent only
a small part of the electromagnetic spectrum, ranging from wavelengths of 390 nm
(violet) to 770 nm (red). Each wavelength is associated with a characteristic fre-
quency (v), such that

hv ¼ c ð8:3Þ

Being

h the Planck’s constant,
v the frequency, and
c the rate of light propagation in a vacuum.

In turn, the wavelength carries associated energy, determined by

E ¼ hv ¼ hðc=kÞ ð8:4Þ
where

k is the wavelength

There are three main types of color causes in minerals:

1. Selective absorption of certain components of the visible spectrum and trans-
mission of the rest.

2. Physical—optical effects related to scattering, refraction, and reflection of light.
3. Band theory, which explains the color cause, e.g., in the diamond.

1. Selective absorption
Considering selective absorption, when a crystal lets through all wavelengths of
white light, it is colorless, as is the case in pure varieties of quartz or calcite. If all
wavelengths are absorbed, the mineral will appear black.

The mineral will only be colored if the energy of any of the visible wavelengths
matches the energy needed to raise an electron from a fundamental state to an
excited state; that is, to produce an electronic transition.

The electronic transitions that most condition color are those that affect the
elements of the first transition series: Ti, V, Cr, Fe, Co, Ni, and Cu; and also some
rare earths—neodymium and praseodymium in lanthanides, and uranium in acti-
nides. For these elements, the following electronic transitions are observed:
(a) Crystal field transitions between the two groups of 3d orbitals in transition
metals, (b) charge transfer transitions between neighboring ions, and (c) color
centers.

– Crystalline field transitions
Crystal field theory is a chemical bond theory, very appropriate for phonic-type
structures such as silicates and oxides. It considers ions as point loads which, being
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part of a short-range structure (which means coordination polyhedra), create a field
that interacts with the electronic levels of a transitional metal ion.

Transition metals have 3d orbitals which, in some cases, are incomplete and in
the absence of electric and magnetic fields all have the same energy but correspond
to different spatial orientations, the dz

2 and dx
2 and dz

2 orbitals are projected along
the cartesian axes, while the dxy and dyz orbitals are directed between the axes. The
effect of the crystalline field created by the cation ligands in it is to produce splitting
of the energies of 3d orbitals in two groups, with an energy difference called
splitting energy (see the splitting of the Cr3+ ion with tetrahedral and octahedral
coordination in Fig. 8.15).

In this situation, the distribution of electrons in the orbitals d is controlled by two
factors:

1. Electrostatic and exchange interactions between electrons causes electrons to be
distributed in as many orbitals with parallel spin as possible.

2. The splitting effect causes electrons to be placed in lower energy orbitals.
This causes two possible configurations on the metal:

1. High spin, corresponding to a weak crystalline field.
2. Low spin, corresponding to strong crystalline field.

Based on these factors, when white light strikes a mineral with chromophore
elements (elements causing color), if the energy of any of the visible wavelengths
coincides with the splitting energy of the transitional metal cation, an electronic
transition occurs, with absorption of that particular color. These chromophore
elements can enter the chemical formula of the mineral, and these minerals are
called idiochromatic (Table 8.2). If they enter as impurities, the minerals are called
allochromatic (Table 8.3).

Fig. 8.15 Splitting of the d-orbitals of the Cr3+ ion with tetrahedral and octahedral coordination
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The specific values of the crystalline field splitting energies, which determine the
wavelengths to be absorbed, depend on the following:

– The transition metal ion and its oxidation state.
– Coordination of the anion and the type of anion–cation bond.
– Distortions of the ideal coordination polyhedron.

Transitions of this type can only occur in ions with half full 3d orbitals. For
example, the Zn3+ and Cu2+ have complete 3d orbitals, so they do not have vacant
orbitals to accommodate excited electrons. Similarly, the Ti4+ and Sc3+ ions do not
have 3d electrons, so they cannot absorb it by this mechanism.

Only the transitions that keep the number of electrons unpaired should, theo-
retically, be observed.

Transitions that maintain the number of unpaired electrons are those that should,
theoretically, be observed, because those that do not maintain it (called forbidden
spin transitions) change the total spin of the cation, which is, theoretically, not
allowed by magnetic properties.

However, these transitions are observed due to coupling effects between orbitals.
Although they are generally weaker, and at higher energies than allowed spin
transitions, they may be the main cause of color in some minerals.

An example is the typical red garnet color, which is not due to the main tran-
sition of allowed spin of ferrous iron, since it falls out of the visible (7640 cm−1,
about 1400 nm), but to weaker forbidden spin transitions in the shorter regions of
the visible spectrum, which allow the passage of red.

Table 8.2 Examples of
idiochromatic minerals

Element Example of color and mineral idiochromatic

Chromium Green: Uvarovite

Manganese Red: Rodocrosite; Pink: Rhodonite
Orange: Spessartite

Iron Green: Melanita; Red to Green: Hematites
Yellow: Goethite

Copper Green: Malaquite
Blue: Azurite, Turquoise

Table 8.3 Examples of
allochromatic minerals

Element Example of color and mineral allochromatic

Chromium Green: Emerald, Grosularia
Red: Ruby

Manganese Green and Red: Alexandria
Red: Red Beryl; Pink: Morganite

Iron Green to Blue: Aquamarine
Yellow: Chrysoberyl, Citrine Quartz

Cobalt Yellow + Green: Andalusite
Blue: Synthetic spinel
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Examples of the effect of cation coordination are garnet and olivine. In garnet,
Fe2+ cations are in distorted cubic coordination, while in olivine they are in octa-
hedral coordination, with anion–cation distance of 0.212 nm, relatively short
compared to the distance of 0.222 nm in garnet. Consequently, electrons around
Fe2+ in garnet experience a weaker crystalline field, with minimal splitting. This
causes the absorption peak in olivine to be at a higher energy than garnet.

A clear example of the influence of the bond type on color is the color of ruby,
emerald and alexandrite, which involve the same transitional metal, the Cr3+, in the
same octahedral position but have very different colors.

Example
Color in the ruby

Ruby is corundum, A12O3, colorless when pure; however, with a small
amount of Cr3+ replacing the Al3+ in octahedral positions (approximately 1%
of Cr2O3) ruby acquires its characteristic red color.

The Cr3+ ion has three electrons in the 3d orbitals; the crystalline field
induced in the ion by the effect of the six oxygen ligands causes the five
orbitals to split, becoming different energies. As a result, two main absorptions
can occur, one in which 2.2 eV are absorbed, and another in which 3.0 eV are
absorbed, as seen in Fig. E1—Transitions (a) and ruby spectrum (b).

(a)                              (b) 

Fig. E1 Transitions (a) and ruby spectrum (b)
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The first corresponds to the absorption of the green-yellow component of
the spectrum.

The second corresponds to violet.
These absorptions allow a very important transmission of the red com-

ponent, hence its color.
Ruby has another color phenomenon, called dichroism (see Figure):
If ruby is observed in polarized light, turning the glass results in a change

in color.
In sections perpendicular to the optical axis, the color is purple red.
In sections parallel to the optical axis, that is, in the direction of the

extraordinary ray, the color changes to an orange red. This is because one of
the groups of unfolded levels (4T1 and

4T2, according to group theory) is, in
turn, unfolded in two others, because the octahedral coordination polyhedron
in which chromium is placed is slightly distorted.

– Transitions by charge transfer
These transitions involve the transfer of valence electrons between neighboring
cations in the structure of a mineral.

This phenomenon cannot be explained by crystalline field theory.
It is the cause of the blue color of sapphire and the dark colors of many tran-

sitional metal oxides, such as magnetite.

Example
Blue Sapphire color

Blue sapphire is corundum in which small amounts of Fe and Ti enter,
replacing trivalent aluminum (see Fig. 8.16); iron can appear as Fe2+ or Fe3+,
and titanium is usually in its tetravalent state.

Fig. 8.16 Charge transfer between Fe2+ and Ti4+
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In order for there to be an interaction between the two, there must be a
situation in which they are related, as occurs with octahedral sharing faces
along the c axis. Corundum with only iron have a pale yellow color while, if
only titanium appears, they are transparent. This indicates that the Fe2+-Ti4+

interaction is responsible for producing the blue color.
In the arrangement above, the distance between the two cations is 2.65 Å,

which produces sufficient overlap between the orbitals d for electrons to be
transferred from one to another. In this case, the transfer absorbs 2.11 eV,
which corresponds to a k of 588 nm. There are also absorptions at both ends
of the visible spectrum, so all colors except blue and blue-violet are absorbed.
These conditions correspond to the ordinary ray.

There is another arrangement in which iron and titanium are adjacent in
the corundum structure, in a direction perpendicular to the c axis, with
octahedra sharing edges. In this situation the Fe-Ti distance is 2.79 Å, with
less overlap of orbitals. The difference in energy is small, but the intensities
difference is very high, which makes the absorptions different. These are the
conditions that affect the extraordinary ray.

In general, charge transfer can be of two types:

(a) Heteronuclear between two different transition metal ions, for example,
Fe2+− + Ti4+, as in sapphire. Similar transitions also occur in blue
kyanite, benitoite, tanzanite, and brown andalusite.

(b) Homonuclear colors are derived from transfers that affect ions of the
same transition metal, in different valence states, for example, Fe2+-Fe3+

occupying different positions in the structure. They can be:

– Idiochromatic—magnetite and vivianite
– Allochromatic—green and blue tourmaline, brown and black micas,

amphiboles and cordierite.

There is a third type of color cause that does not affect transition elements.

– Color centers
Color centers also involve electronic transitions, although they do not affect tran-
sition metals, but are an electron trapped in a gap in the structure or an anionic
group in which an electron is missing.

These color centers appear naturally, although they can also be caused by
irradiation or by the addition of impurities during the growth of the crystal.

Some are stable, while others are lost during exposure to light, or even in the
dark.

There are two types of color centers: Electron and hole.
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– Electron color centers: F-Centers
They occur when an electron displaced from an ion, usually after an energy input,
reaches a relatively stable situation in a vacancy it finds when returning to its
original ion or to a similar one.

They are common in halides and are usually related to excess metal or a halide
deficiency in the crystal.

They originate from a halogen vacancy, and instead, an electron is trapped. They
can be explained by Frenkel and Schottky defects. These defects, thermodynami-
cally stable, at approximately 0.01%, can be caused by the addition of halide. The
presence of divalent cation impurities produces vacancies that can be transformed
into an F-color center.

A vacancy by itself produces no color. Light, as it passes through the crystal,
transitions to a higher energy level of the electrons located in the vacancies, with
absorption of a relatively wide range of the spectrum.

Depending on the conditions and even caused by exposure to light itself, other
types of electron color centers may occur (Fig. 8.17). An F-center can pass to F’, in
which two electrons are trapped. An M-center, also called F2, consists of two
interacting F-centers, absorbing into the infrared region. Finally, the R-color centers
consist of three adjacent F-centers, arranged on the plane (111).

Crystals with electron color centers do not usually show pleochroism, because
either they have cubic symmetry or are arranged according to all the equivalent
directions of the crystal, thus maintaining isotropy.

– Hole color centers
In general, quartz grows with a small amount of Al3+, which will replace the Si4+

but no color change will appear. However, when radiating the crystal with c-rays or
with X-rays it acquires the smoky color, which disappears if it is heated to 400 ºC,
recovering the color when it radiates again.

Fig. 8.17 Color centers types
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The mechanism of formation of smoked quartz (Fig. 8.18) consists of some
electrons escaping from O2− when radiating the quartz, but they will quickly return
to their original position or to a similar one.

If there is Al3+ replacing Si4+, there will be a free proton H+ as an interstitial
atom for each substitution, to maintain the neutrality of the crystal. These protons
can be combined with the released electrons to give a interstitial hydrogen. The
resulting [AlO4]

4− group absorbs light, as it constitutes a hole (Vk) color center (see
Fig. 8.17). A subsequent heating of the crystal releases the electron from hydrogen,
returning to a nominal position, fading the crystal.

Fig. 8.18 Formation mechanism of smoked quartz: a quartz structure without aluminum b quartz
structure with Al3+ replacing Si4+ and releasing an electron with H+ formation, after irradiation
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If, instead of Al3+, Fe3+is introduced, a light crystalline field on the cation colors
the quartz a pale yellow color, obtaining citrine quartz. If citrine is irradiated, the
center [FeO4]

4− is formed in a similar way to smoked quartz, quartz of purple color.
Thus the amethyst is obtained (Fig. 8.19), which losses coloration with heat.

In general, any type of color center can be produced by irradiating the mineral.

2. Physico-optical effects
In this section, physico-optical effects are considered a series of phenomena that
cause color. They are not related to selective absorption of visible light but to
phenomena of dispersion and reflection, and interference with light affecting
minerals with certain characteristics.

Fig. 8.19 Formation mechanism of amethyst quartz: a quartz structure without iron b quartz
structure with Fe3+ replacing Si4+ and releasing an electron with H+ formation, after irradiation
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– Dispersion and reflexion
Dispersion is the separation of light at its different wavelengths. The variation of
this property with the variation of the wavelength is what can be important when
considering the color of the minerals. One of the most important effects is
opalescence, which is the dispersion of light by a cloud of small particles placed in
its path, similar to dust particles in a room’s atmosphere. This effect is also called
the Tyndall effect, giving rise to the milky appearance of some opals or contributing
to the optical effect of moonstone.

The cat’s eye effect consists of internal reflections originated by cavities or
fibrous and fine inclusions, oriented regularly according to the symmetry of the
crystal. Examples include quartz, sapphire, and diopside (Fig. 8.20).

If the inclusions are parallel to more than one crystalline face, the star effect can
be obtained if the stone is carved in cabochon. This usually occurs in sapphires (star
sapphire) (Fig. 8.21) and rubies.

Fig. 8.20 1–7 Quartz (Sri Lanka). 8–9 Smoky quartz (Brazil). 10: Black sapphire, Bang Kha Cha,
Chanthaburi, Thailand. 11: Golden black sapphire, Bang Kha Cha, Thailand. 12: Golden black
sapphire with 12 rays, Bang Kha Cha, Thailand. 13: Rubi, Burma. 14: Synthetic Ruby, Russia, 15:
Synthetic ruby with diffuse star, Thailand. 16: Corundum with diffuse star (titanium). 17 y 18:
Natural sapphire. 19: Synthetic sapphire, Russia. 20: Sunstone (orthoclase feldspar), Tanzania. 21:
Green diopside, Burma. 22: Almandine garnet with multi-stars. 23: Black diopside. 24: Cat’s eye
sillimanite. Burma, 25: Cat’s eye moonstone (orthoclase feldspar). 26: Pink scapolite cat’s eye,
Burma. 27: Cat’s eye zircon, Sri Lanka. 28: Cat’s eye sillimanite, Burma. 29: Tiger’s eye quartz
(taken from https://kaiajoyasuruguay.blogspot.com/2012/07/ciencia-el-asterismo-o-efecto-estrella.
html, with permission)
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– Adularescence
Adularescence is an interesting effect affecting the adularia, or moonstone.

Adularia is potassium feldspar with intergrowths of albite in its interior, so that
alternate layers of albite and orthoclase are arranged which, when traversed by light,
produce a whitish or bluish glow by internal reflections on surfaces of different
refractive index.

– Interferences
If the light waves from a single source are divided into two rays, and they combine
again after traveling slightly different distances, they may be out of phase, and they
produce interference (Fig. 8.22).

This phenomenon occurs, for example, in thin films of transparent substances,
producing iridescent colors. The difference in trajectory will increase with the
thickness of the film and the obliquity of the beam. If white light is used, different
colors will be strengthened when the film thickness is varied.

This phenomenon has been observed with electron microscopy in the structure
of the opal, in which by diffraction in the rows of spheres of its structure, colors by
interference originate.

3. Band theory
Band theory is based on the fact that electrons, depending on their energy state, can
occupy certain energy bands. This theory classifies solids into three groups:
Insulators, semiconductors, and metals.

Fig. 8.21 Asterism in sap-
phire (taken from https://
kaiajoyasuruguay.blogspot.
com/2012/07/ciencia-el-
asterismo-o-efecto-estrella.
html, with permission)

Fig. 8.22 Wave interference
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Insulators are those solids that are characterized because the range of prohibited
energies, between the valence band and the driving band, is very large. There is no
current conduction, since the electrons would need a very large supply of energy to
be able to excite them and to move from the valence band to the conduction band.

Semiconductors are those solids that are characterized because the range of
prohibited energies is small and, at a given temperature, some electrons can become
thermally excited and pass to the conduction band. They could be electric current
conductors, as conductivity increases with temperature. An example would be the
diamond that under normal conditions is insulating, but with certain doping agents
is conductive (wide band gap semiconductor).

Metals are those solids in which the range of forbidden energies is so small that
there is practically no separation between the valence and driving bands, so they are
very good conductors. Conductivity reduces with temperature.

Examples

– Color in metals

The color in metals is due to the variation of the reflectance with the
wavelength, i.e., the dispersion of the reflectance.

All metals intensely absorb the light that hits them, so that it can only
penetrate them a distance less than a wavelength. Being conductive materials,
the absorbed light induces alternating electric currents on the surface of the
metal, which dissipate rapidly by emitting the absorbed energy in the range of
the visible. This is what gives them strong reflection.

The mineral being “dyed” a color will depend on the most favorable
electronic transitions on its surface, which will cause more of a given k to be
absorbed and, therefore, the reflection for the corresponding color is greater.

– Color in the diamond

The explanation of color in the diamond is based on the theory of bands, since
the diamond, one of the forms of carbon, is an insulator with a very wide
range of forbidden energies (5.4 eV) but, in some cases, it is a semiconductor.

Examples of color in diamond: yellow diamond, blue diamond.

– Yellow diamond

When nitrogen (N5+) enters as impurity into the diamond, replacing in the
carbon structure at a ratio of 1 nitrogen atom per 100,000 carbons, the dia-
mond is yellow.

The explanation for this is that the N5+ has one more electron than the C4+,
and each nitrogen atom provides an electron that has no place in the valence
band and will be placed at a level of the forbidden energy range.

From this level, it is easy to pass to the conduction band when it is excited,
because the energy needed to overcome is 2.2 eV and, as this value falls
within the energy range of the visible spectrum, specifically corresponding to
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blue and violet, it means that these colors are absorbed and the transmitted
color is yellow.

Since transition from the electron to the conduction band is due to the
donation of a dopant (nitrogen) with excess electrons, the level of the range of
forbidden energies in which nitrogen is located is called the donor level.

When the nitrogen concentration is 1 per 1000 carbons, the resulting color
is green.

If the concentration is higher, it can absorb the entire visible spectrum and
the resulting color is black.

– Blue diamond

When, instead of nitrogen it is boron (B3+) that is introduced into the crystal
structure of the diamond, replacing the C4+carbon, there is a lack of an
electron.

It is necessary to understand that when there is a lack of an electron, in the
forbidden energy band there is what is called a hole or electronic hole.

This level that causes the presence of boron is called the acceptor level and
the energy is 0.4 eV, this being the energy absorbed, and the color trans-
mitted is blue.

The energy required to reach the acceptor level from the valence band is
very small and that the electrons can be easily excited by thermal energy and
pass to the accepting level, thus leaving gaps in the valence band and gen-
erating electron movement, so blue diamonds are conductors of electricity.

8.4.3 Point Defects and Chemical Composition

– Solid solution

Solid solution is the solid-state dissolution of one mineral phase in another. It
originates as a result of chemical variability in minerals due to the existence of
specific defects. On an atomic level, this is demonstrated by mixed crystals and can
be caused by the following mechanisms: replacement, omission, interstitial
formation.

– Replacement

It consists of the substitution of one ion with another in the same atomic position of
the crystalline structure. The valence of the ions that are replaced must be the same.
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Ion radii cannot differ by more than 15% in ion compounds. They may be

– Complete: When substitution can be in any proportion.
– Incomplete: When substitution cannot be in any proportion.

– Omission

Omission mechanism consists of the existence of a vacancy as a result of the
absence of an ion in the structure (Fig. 8.7b).

Example
Pyrrhotite is a non-stoichiometric iron monosulfide in the compositional
range between FeS and Fe0.875S. Pyrrhotite occurs abundantly in nature, and
it is a close second, after pyrite, among the most abundant iron sulfides in ore
deposits and crustal rocks. It is a common mineral in igneous and meta-
morphic rocks and, to a minor extent, in extraterrestrial rock bodies and dust
particles [3–5].

Pyrrhotite is the main carrier of rock magnetism in many rock types;
therefore, it is important to understand how the distinct structure types are
distributed in rocks and how this distribution affects the overall magnetic
properties of rocks.

The basic modules in pyrrhotite are layers of iron atoms octahedrally
coordinated by sulfur (Figure). There are two principal types of layers: An A
layer, with completely filled octahedral Fe positions and a B layer, with some
Fe positions being vacant (Fig. 8.23).

Fig. 8.23 Structure of
pyrrhotite showing the
vacancies of iron, one of four
layers bearing iron-site
vacancies. Here, the B
position is shown vacant
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– Interstitial formation

Interstitial formation is the presence of an ion in a structural spacing, such as in
Fig. 8.24.

The solid solution represents a disordered state and depends on the temperature.
At high temperature, atomic substitution is higher because atomic vibrations are
higher and atomic positions dilate. The solid solution is homogeneous and formed
by one phase. At low temperature, vibrations are lower and atoms are more static.
The extent of the solid solution is smaller. The decomposition, unmixing, or
exsolution appears with more than one component or mineral phase by lowering the
temperature. It manifests as small acicular inclusions that are crystallographically
oriented (Fig. 8.25).

The curve, solvus or spinodal, separates the solid solution from the components
A and B, which are immiscible at low temperature (Fig. 8.26).

Isomorphism is the phenomenon that causes isomorphic crystals or minerals to
exist. Isomorphic crystals or minerals have the same crystal structure and stoi-
chiometry but different chemical compositions.

Fig. 8.24 Beryl structure, projection perpendicular to the crystallographic axis c showing the large
structural gaps (parallel to c) occupied by water molecules, forming an isomorphic series
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The Chemical Formula of a Mineral
Most minerals are composed of two or more elements, and their formulas,
recalculated from the results of quantitative chemical analyses, indicate the
atomic proportions = stoichiometry of the present elements.

A quantitative chemical analysis provides basic information regarding the
atomic formula of a mineral but not as to its position in the structure. The sum
of the percentages in the analysis should be 100%.

Chemical analyses of minerals are obtained by various techniques: wet
way, (dissolving the mineral), optical emission, X-ray fluorescence, atomic
absorption spectroscopy, electron microprobe.

The analyses provide basic information regarding the atomic formula of a
mineral, based on the percentage by weight of the elements or oxides of the
elements that form it.

The analyses do not give information about the structural position of these
elements.

The steps to obtain a chemical formula are presented below, with the
example of an olivine.

Fig. 8.25 Transmission pola-
rizing microscope image of a
pyroxene showing oriented
acicular exsolution

Fig. 8.26 Temperature—
composition phase diagram of
two components, A and B,
which are immiscible at low
temperature (RT)
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Example

Given the percentages by weight of the oxides of the constituent elements of
an olivine, column (1) of Table E1, and knowing that the molecular weights
of said oxides are in column (2), the procedure for obtaining the chemical
formula and the percentage of the pure end members of the olivine series,
which is the way it is usually expressed, is described below

1. Molecular proportions

The molecular proportions, column (3), are obtained by dividing the per-
centage by weight of each oxide (analysis of column (1) of Table E1) by its
molecular weight. If the analyses were elementary, the percentage by weight
of each element would be divided by its atomic weight. The results can be
given in %, for which the quotient must be multiplied by 100.

2. Cation proportions

The cation proportions, column (4), are obtained as the product of the
molecular ratio and the subscript of the corresponding cation.

3. Oxygen proportions

The oxygen proportions, column (5), are obtained by multiplying the sub-
script of oxygen in each oxide by the molecular ratio.

4. Cation proportions based on a given number of oxygen (6)

The generic formula of the mineral must be taken into account, in this case, of
the olivine, (Fe,Mg)2 SiO4, which has four oxygen.

The cation proportions, column (6), based on a given number of oxygen,
column (5), are obtained by multiplying the cation ratio (column 4) by the
oxygen factor (quotient between the base number of oxygen and the sum of
the calculated oxygen).

Table E1 Procedure for obtaining the chemical formula, knowing the weight (%) of the oxides
and their molecular weights

Oxides
% (1)

Molecular
weight (g/
mol) (2)

Proportion
molecular
(3)

Proportion
cationic (4)

Proportion
Oxygen (5)

Cations
based on
four
oxygen (6)

SiO2 39.30 60.09 0.654 0.654 1.308 1.004

FeO 19.30 71.85 0.269 0.269 0.269 0.413

MgO 41.40 40.31 1.027 1.027 1.027 1.578
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5. Atomic relations

The atomic relations are obtained by considering column (6) of Table E1 and
the generic formula of the mineral, in this case, olivine:

(Mg0.4Fe1.6) SiO4 or (Mg,Fe)2SiO4

It should be noted that the sum of silicon must be 1 and the sum of the rest
of cations must be 2, which is approximately true.

The formula is also often expressed in terms of the compositions of the end
members, when it comes to solid solutions. Olivine is expressed according to
the percentage of forsterite (fo), the magnesium-rich member, and fayalite
(fa), the iron-rich member. To do this:
1. The molecular proportions of iron and magnesium, 0.269 + 1.027–1.296,

are added (column 3 of Table E1)
2. The molecular proportion of the above-mentioned cations is divided by

1.296
3. The quotient is multiplied by 100.

Finally, the result obtained is: Fa20.76Fo79.24 (20.76% of fayalite and
79.24% forsterite).

Variations in composition, relative to ideal, can be represented by different
diagrams. Among them are bar diagrams, and triangular diagrams, both of which
represent solid solutions.

– Bar diagram

The bar diagram is used to observe the variation of two components. Each end of
the diagram represents 100% of one of the two phases of the solid solution series.
The other end represents 100% of the other phase. The intermediate values cor-
respond to the composition of the intermediate phases.

Example
Representation of the composition of an olivine

The extreme components, forsterite (Mg2SiO4), Fo, and fayalite (Fe2SiO4),
Fa, are located at the ends of the diagram (Fig. E1).

Fig. E1 Representation of the composition of the olivine with 20.76% fayalite and 79.24%
forsterite (Fa20.76Fo79.24) in a bar diagram
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– Triangular diagram

The triangular diagram represents the variation of three components instead of two,
as in bar diagrams. Each side of the triangular diagram would represent a bar
diagram, so that the variation of two of the three components can be observed in the
same way as in a bar diagram.

Example
Representation of the composition of a pyroxene, based on three components,
wollastonite (CaSiO3), enstatite (MgSiO3), and ferrosilite (MgSiO3)).

These components are located at the vertices of the triangular diagram.
Any pyroxene composition that includes only two of the three components

can be represented along one edge of the triangle.
The En-Wo edge represents 0% of Fs, the En-Fs edge represents 0% of

Wo, and the Fs-Wo edge represents 0% of En.
The Wo vertex represents 100%, the vertex En represents 100%, and the

Fs vertex represents 100%. For example, the Wo vertex represents 100%
CaSiO3 and the horizontal lines between this vertex and the base of the
triangle indicate variations from 100% to 0% of CaSiO3 (Fig. E2).

Fig. E2 Triangular diagram of the composition of pyroxene, with 1.66% wollastonite, 68.72%
enstatite, and 29.62% ferrosilite (Wo1.66En68.72Fe29.62)
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8.5 Linear Defects

Linear defects are discontinuities in the crystalline structure that affect a lattice row
and are called dislocations. An example of a linear defect is shown in Fig. 8.27.

They affect the structure in a deeper way than point defects and have higher
energy.

They are not in thermodynamic balance with the crystal, unlike point defects.
The Burgers vector b defines the value and direction of the displacement of the

atoms from their ideal lattice position.
Dislocation glide explains the plastic deformation in the materials in the crys-

talline state.
There are two basic types of dislocations: edge dislocations, screw dislocations.

– Edge dislocations

Edge dislocations are defined as linear discontinuities with the Burgers vector
perpendicular to the line direction. They are produced as a result of the movement
of one crystalline plane over another, and they do not affect all cells equally
(Fig. 8.28).

– Screw dislocations

Screw dislocations are defined as linear discontinuities with the Burgers vector
parallel to the line direction. They are produced as a result of the displacement of
one crystalline plane over another, affecting half the cells in the upper and lower
planes but not the rest (Fig. 8.29).

Often, a mix of edge and screw dislocations is observed.

Fig. 8.27 a Transmission electron microscope image of dislocations in vermiculite b scheme of
dislocations of (a)
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Fig. 8.28 Edge dislocation is shown by the inverted T and b is the Burgers vector

Fig. 8.29 Screw dislocation scheme, b is the Burgers vector
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8.6 Two-Dimensional Defects

Two-dimensional defects are anomalies that affect the crystalline planes. They
include the following: crystal face, grain edge, stacking faults, and polytypism.

– Crystalline face

A crystalline face is a plane surface developed on a crystal during its growth.
Crystal faces are crystal planes with high lattice-point density and mainly simple
Miller indices.

– Grain boundary

The grain boundary is the area of separation between two crystals of the same
species. It arises as a consequence of the mechanism of grain growth, or crystal-
lization, when two crystals that have grown from different nuclei “meet”.

– Stacking faults

Stacking faults are irregularities in the sequence of the crystalline planes in the
structure. They affect the long-range order.

Types of stacking faults in compact packaging include the following: twins,
intrinsic defects, extrinsic defects.

– Twin

Twinning is the association of individuals of the same crystalline species, with
different crystallographic orientations and related by some element of symmetry
called twin law. The symmetry element may be (1) rotation axis of second or fourth
order or inversion-rotation axis of first order; or (2) mirror plane.

Twins are referred to by their twin laws. It is also commonly referred to by a
name that refers to

– The town where it was first discovered. Example: Carlsbad twin of the orthose.
– The shape of the twin. Example: Swallow-tail twin in gypsum.
– The mineral or minerals that most often present it. Example: Spinel twin.

Twins can be recognized because they have incoming angles, stretch marks,
brightness differences, etc., that indicate contact between individuals.

The contact surface between the individuals of the twin can be a plane.
The twin elements are twin plane and twin law.
The twin types are contact twins and interpenetration twins. In the contact twins,

the individuals of twins are joined by flat surface. In the interpenetration twins, the
twin individuals are joined by an irregular surface and are interpenetrated.
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To understand them, you must consider the normal sequence of layers in
compact packaging.

– Normal sequence in compact cubic packaging is ABC ABC…
– Normal sequence in compact hexagonal packaging is AB AB AB AB …

Twins appear when an inversion occurs in the normal succession of layers of the
corresponding packaging, or a twin plane (intrinsic defect) or polysynthetic twins
(extrinsic defect).

– Intrinsic defect

An intrinsic defect is the result of adding a plane in a position that does not belong
to it.

– Extrinsic defect

An extrinsic defect is the result of extracting a particular plane in the stacking
sequence.

– Polytypism

Polytypism is a phenomenon that causes polytypes to exist. Polytypes are crystals
and minerals that differ in the stacking periods/sequences of identical layers. The
polytypism affects only one dimension, unlike in polymorphism.

Example
Mica (Fig. 8.30), ZnS, SiC.

Fig. 8.30 Example of
polytype in mica
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8.7 Three-Dimensional Defects

This type of defect implies that the three-dimensional nature of the crystal is broken
by the presence of the defect.

Inclusions or voids within the crystalline mass (Fig. 8.31), which are a conse-
quence of the growth process, are considered three-dimensional defects. They can
be formed before (protogenetics), during (syngenetic), or after (epigenetic) the host.

Exercises

1. In Fig. E1, draw lines between perfectly ordered zones following the
scheme in Fig. 8.1 and areas that do not follow that scheme, to achieve a
structure in domains due to disorder.

2. Calculate the number of vacancies per cubic meter in NaCl at 1000 K.
The energy for vacancy formation is 2.02 eV/atom. The atomic weight of
Na is 22.99 g/mol and of Cl is 35.453 g/mol, and the density of NaCl is
2.16 g/cm3.

Fig. 8.31 Example of inclu-
sion of zircon in feldspar

Fig. E1 Scheme for drawing
ordered and disordered
domains of a crystalline
structure
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Questions

1. Pair each defect with its type

Crystalline faces Linear

Displacement Point

Impurity Bidimensional

2. When an atom moves to another position, it is because

a. potential energy is higher
b. potential energy is lower
c. kinetic energy is higher
d. kinetic energy is lower

3. The movement of atoms in solid-state diffusion may be by

a. vacancy, impurity, exchange between pairs of atoms and circular
exchange between atoms

b. vacancy, interstitial atom and pairs of atoms
c. vacancy and exchange between pairs of atoms
d. vacancy and interstitial atom

4. From the moment a crystal or mineral is formed, it is subject to changes
in its physical and chemical environment. Such changes may be

a. subtle changes in link length or major structural transformations
and chemical changes on an atomic scale or reactions that cause new
mineral species

b. subtle changes in link length or major structural transformations
and/or chemical changes on an atomic scale or reactions that cause new
mineral species

c. subtle changes in link length or major structural transformations or
chemical changes on an atomic scale or reactions that cause new mineral
species

d. subtle changes in link length or major structural transformations

5. The solid solution represents a messy state and depends on temperature

a. an orderly state and depends on the pressure
b. an orderly state and depends on the temperature
c. a messy state and depends on the pressure
d. a messy state and it depends on the temperature

6. The defects that allow solid-state diffusion are

a. dislocations
b. two-dimensional
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c. inclusions
d. point

7. Enter the name of defects in which there is association of two vacancies
of different signs.
Response:

8. Write the type of disorder caused by the central atom in Fig. Q1 that
acquires each time one of the different positions drawn.

Response:
9. Write the number of components represented in a bar diagram.

Response:
10. Write the name of the defect that causes an empty space of the structure

(structural vacuum) to be occupied by an atom.

Response:
11. Write the name of the line separating the solid solution area from the

exolution area into a composition-temperature diagram.

Response:
12. Point defects are not in thermodynamic balance with crystal, unlike

two-dimensional defects

True
False

13. Twins are called by their twin law, which is some element of symmetry
that relates the individuals that make up the twin.
Select one:

True
False

Fig. Q1 Scheme of type of
disorder to be indicated
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14. Polytypes are crystals and minerals that differ in the stacking of any type
of structural layers.

True
False

15. Write the name of the point defect shown in Fig. Q2.

Response:
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defect to be indicated

8.7 Three-Dimensional Defects 233

http://dx.doi.org/10.1029/2006GL027685
http://dx.doi.org/10.1029/2006GL027685


Chapter 9
Polymorphism and Polymorphic
Transformations Transformation
Order—Disorder

Abstract This chapter shows that the crystal is a dynamic entity since, at
temperatures different from absolute zero, the atoms, ions or molecules that form
the crystals suffer thermal vibrations, causing them to move from their positions of
equilibrium. The phase transitions are an example of this dynamism. The inter-
pretation of the polymorphic changes, from the thermodynamic point of view, is
explained using Gibbs free energy. The structural aspect of these changes is also
presented. Finally, the polymorphic transformations are classified, using illustrative
examples.

9.1 Introduction

At temperatures other than absolute zero, atoms, ions or molecules that make up
crystals undergo thermal vibrations, causing them to move from their equilibrium
positions.

The amplitude of such vibrations depends, among other factors, on the nature of
the bond, and the size of the atom in relation to the atomic position of the crystal
structure.

These vibrations can change the symmetry of the crystal or mineral and explain
the phenomenon of polymorphism.

The crystal, in this case, ceases to be a static entity to become a dynamic entity,
the phase transitions constituting an example of this dynamism. The behavior of
these transitions can be explained mathematically using the principles of
thermodynamics.

Thermodynamics is a logical consequence of two elementary physical axioms—
the law of conservation and the law of energy degradation. Thermodynamics allows
us to deduce and/or predict results in all those processes in which energy exchanges
occur, such as in minerals transformation.

The principles of thermodynamics describe the behavior of three fundamental
physical quantities—temperature, energy and entropy—which characterize ther-
modynamic systems.
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C. Marcos, Crystallography, Springer Textbooks in Earth Sciences,
Geography and Environment, https://doi.org/10.1007/978-3-030-96783-3_9

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96783-3_9&amp;domain=pdf
https://doi.org/10.1007/978-3-030-96783-3_9


The first law of thermodynamics or law on energy conservation is energy cannot
be created or destroyed, only transformed. It is expressed by Eq. 9.1:

DU ¼ Q�W ð9:1Þ

where

U is the internal energy of the system
Q is the amount of heat supplied
W the work done by the system

In this way, when supplying a certain amount of heat (Q) to a physical system,
its total amount of energy may be calculated as the heat supplied minus the work
(W) performed by the system on its surroundings.

The second law of thermodynamics or law of entropy implies that the degree of
disorder of systems increases to a break-even point, which is the state of greatest
disorder of the system. This law introduces the concept of entropy (S), which
represents the degree of disorder. In every physical process in which there is an
energy transformation, a certain amount of energy is heat, and it cannot perform
work. That heat released by the system increases the system's disorder; that is, its
entropy. The change in entropy (ΔS) will be:

DS�DQ=T ð9:2Þ

The third law of thermodynamics states that when a system is carried to absolute
zero (K), the process of that system stops and entropy has a constant minimum value.

The fourth law of thermodynamics is known as the zero law or the law of
thermal balance and states that if two systems are in thermal balance independently
with a third system, they must also be in thermal balance with each other. It can be
expressed logically as follows: if A-C and B-C, then A-B. It means that by con-
tacting two bodies with different temperatures, they exchange heat until their
temperatures are equal. Examples of this law include when we get into hot or cold
water. We will notice the temperature difference only during the first few minutes,
as our body will then enter into thermal balance with the water and we will no
longer notice the difference. The same is true when we enter a hot or cold room. We
will notice the temperature at first, but then we will stop perceiving the difference
because we will enter into thermal balance with it.

9.2 Stability and Equilibrium

At elevated temperatures, a certain atomic configuration may be thermodynamically
favorable; that is, it may have the highest thermodynamic probability, while at
lower temperatures, the most probable thermodynamic configuration may be
different.
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This thermodynamic probability is related to the free energy G (Gibbs) or F
(Helmholtz) which it is minimum, when the probability is maximum. Therefore, in
any mineral transformation, the free energy will tend to a minimum value.

Thus, the most stable state at any given temperature, T, will have the lowest free
energy. However, it must be taken into account that many natural minerals are not
thermodynamically stable, since changes are possible that will decrease free energy,
but the kinetics of such changes (speed of transformation) can be slow and maintain
unstable structures.

There are two types of possible instability: Instability and metastability. The
meaning of these terms can be understood using the example in Fig. 9.1, which
illustrates a hillside and a sphere.

Example

At position 1, the sphere is in an unstable situation and a small change in its
position will reduce its free energy (in this case potential energy).

In position 2, the sphere has acquired a minimum in free energy, but still
has a higher energy than if it were in position 3, which is the stable position.
In situation 2 it is said to be in a metastable state.

To reach position 3, the sphere must first go through an intermediate, less
stable and higher-energy situation, which acts as a barrier to change. This can
be overcome if extra energy is supplied, the so-called activation energy.

The change in free energy of a mineral when it takes part in a transformation can
be represented by Fig. 9.2.

The reaction coordinate can be any variable that defines the progress of the
transformation, for example, the transformation from a high-temperature state to a
low-temperature state, below the transformation temperature. The difference in
energy from a highly metastable state with F1 free energy to another final state with
F2 free energy is negative and is called the driving force for the transformation. To

(a) (b) (c) 

Fig. 9.1 Equilibrium: a Unstable, b metastable, c stable
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go from state F1 to state F2, it is necessary to overcome the energy barrier Fa, for
which an extra energy, called activation free energy, is needed. This is generally
supplied in the form of thermal fluctuations, so that the transformations are strongly
dependent on the temperature.

Considering a transformation, the mineral will tend to equilibrium when the free
energy of said transformation tends to a minimum. In this way, the term metastable
equilibrium can be used for situation 2 and stable equilibrium for situation 3 of
Fig. 9.1.

The Gibbs free energy is given by expression 9.3:

G ¼ UþPV � TS ð9:3Þ

where

U is the internal energy
P is the pressure
V is the volume
T is the temperature
S is the entropy (defined in Chap. 8, item 8.1)

Equation 9.3 can be put in the form:

G ¼ H � TS ð9:4Þ

where

H is the enthalpy:

H ¼ UþPV ð9:5Þ

If we consider a system composed of a single mineral, and we apply energy in
the form of heat to it, the increase in energy ΔU will be proportional to the heat
supplied but not the same because part of it will be used in the thermal expansion of
the mineral.

Fig. 9.2 Change in free
energy of a mineral when it
undergoes a transformation
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Because the absolute values of many thermodynamic quantities cannot be
obtained, the differences between different states are used. Therefore, it is advisable
to define a standard state for which the value of a particular quantity is specified at a
reference temperature and pressure, which are 25 ºC (298.15 K) and 1 atm. When a
mineral changes its structure in a polymorphic transformation, there will be a change
in enthalpy. If it decreases, DH is negative and the process is exothermic, and heat is
released. When DH increases, the process is endothermic because it absorbs heat.

In the stability of a transformation, entropy must be considered, in addition to
enthalpy, as it occurs in the aragonite-calcite transformation. The standard state
enthalpy of aragonite is –1207.74 kJ mol−1 and of calcite is –1207.37 kJ mol−1.
The aragonite-calcite transformation at 25 ºC and 1 atm involves an increase in
enthalpy of 0.37 kJ. However, at that temperature, calcite is the stable polymorph of
CaCO3, which means that entropy plays an important role.

The free energy that is generally used when there is no change in volume of the
phase is the Helmholtz free energy:

F ¼ E � TS ð9:6Þ

The most stable phase at atmospheric pressure (the PV term is negligible) is the
phase with the lowest internal energy.

The variation in Gibb’s free energy G with temperature, for a single phase, is a
curve like that shown in Fig. 9.3.

9.3 Polymorphism and Polymorphic Transformations
of Crystals and Minerals

Polymorphism is the phenomenon that causes polymorphic crystals or minerals to
exist through polymorphic transformations.

A polymorphic transformation is the phase change that a crystal or mineral
undergoes due to the change in the physical conditions (P and T) of the mineral
environment.

Fig. 9.3 Evolution of the
G-T diagram
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Polymorphic crystals and minerals are those that have the same chemical
composition but different crystal structures. Examples are graphite-diamond (C),
aragonite-calcite (CaCO3), silica (SiO2) transformations, kyanite—andalusite—
sillimanite (Al2SiO5).

Examples

Figures E1, E2, E3 and E4

Fig. E1 Phase diagram diamond (cubic)—graphite (hexagonal)

Fig. E2 Phase diagram calcite (rhombohedral)—aragonite (orthorhombic)
CaCO3
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Fig. E3 Phase diagram low quartz (rhombohedral)—high quartz (hexagonal)
SiO2

Fig. E4 Diagram of Al2SiO5 phases: kyanite-andalusite-sillimanite
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9.4 Thermodynamic Aspect of Polymorphic
Transformations

The simplest phase transformation is that which occurs between two polymorphic
forms of a mineral.

In order for transformation from one phase to another to take place, the free
energy curves (G curves) of each phase must intersect at a temperature called the
transformation temperature, Tc.

At temperatures above Tc the phase B is the most stable and, at temperatures
below Tc, the most stable phase is A.

The transformation is accompanied by a sudden change in free energy (Fig. 9.4),
and it is the latent heat of transformation.

At temperatures above Tc, phase B is the most stable. At temperatures below Tc,

the most stable phase is A.
When the temperature increases, for one curve to cross the other it is required

that the high-temperature phase has higher entropy, and the change in entropy is
discontinuous.

At the transformation temperature, as the temperature increases, the change in
free energy is positive (see Fig. 9.5).

Fig. 9.4 T-G diagram
showing a reversible
transformation at temperature
Tc

Fig. 9.5 T-G and T-H
diagrams showing the
evolution of a reversible
transformation
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In the reversible transformation, the transformation temperature is the same in
heating as in cooling (see Fig. 9.4).

In the irreversible transformation, the transformation temperature is different
during heating and cooling (see Fig. 9.6).

The irreversible transformation is the most frequent in minerals since in these,
atomic mobility is too slow for ideal thermodynamics to be fulfilled, so there are
deviations from ideal behavior. Some degree of super-cooling or super-heating is
generally required for the transformation to take place. In this case, the transfor-
mation is said to occur under non-equilibrium conditions.

9.5 Mechanisms of Polymorphism

– Displacement

Transformation by displacement implies the internal adjustment that allows passing
from one substance to another is very small and requires little energy. The structure
remains practically intact, and the bonds are not broken. Only a small displacement
of the atoms and a readjustment of the bond angles are necessary. The transfor-
mation is reversible.

Example
Transformation of quartz at 573 ºC

High Quartz P6222.
Low Quartz P3121.
Above the transformation temperature, the stable form of quartz is called

high quartz or high temperature quartz. Below 573 ºC, the stable form is
called low quartz or low temperature quartz.

The difference between the two lies in the symmetry, revealed by the space
group.

Fig. 9.6 T-G diagram
showing the evolution of an
irreversible transformation
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The loss of symmetry occurs when the temperature drops, due to the
distortion of the bond angles, as a consequence of the distortion that can be
carried out in two opposite directions (right and left, related by a 180º turn).
In the transition, a twin may appear: dolphin twin (only in low quartz).

– Reconstruction

Transformation by reconstruction implies internal readjustment of the atoms leads
to a breakdown of the bonds and a new distribution of the atoms. It requires a lot of
energy. It is very slow and irreversible.

Example
Transformation of tridimite to low quartz

See Fig. E3.

– Order–Disorder

Order–disorder transformation implies a change from a higher symmetric disor-
dered structure of high-temperature to an ordered, low-temperature structure at
lower symmetry.

Example
In potassium feldspar (KAlSi3O8) Al occupies an identical position to Si,
which it replaces in a mineral. The high-temperature form of this feldspar,
sanidine, shows disordered distribution of Al in the SiO2 lattice (Fig. E5).
Microcline, the low-temperature potassium feldspar, has an ordered distri-
bution of Al in the SiO2 lattice (Fig. E6).

Fig. E5 Sanidine structure monoclinic
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Fig. E6 Microcline structure triclinic

To characterize alkali feldspars, in addition to knowing their chemical
composition, it is also necessary to determine the distribution of Al and Si in
the tetrahedral positions as a function of crystallization temperature and
thermal history (Appendix III).

Thus, alkali feldspars can exhibit a disordered Al-Si distribution if they
cool rapidly after crystallization at high temperatures and adopt a structure
corresponding to the temperature of maximum symmetry, high temperature
feldspars. This is the case for volcanic rocks. If they cool slowly from high
temperatures, or if they crystallize at low temperatures, they will show an
ordered Al–Si distribution, as in the case of plutonic rocks. There are also
feldspars whose structural state is intermediate.

The X-ray diffraction technique, crystalline powder method (Chap. 17),
provides the data to calculate the triclinicity index, the Al, Si ordering in the
tetrahedral sites of the mineral structure and the deformation index.

– The interplanar distances d131 and d1�31 provide the symmetry through the
triclinicity index, using the Goldsmith and Laves (1954)1 Eq. (E1):

D ¼ 12:25ðd131�d1�31Þ ðE1Þ

– The interplanar distances d110, d1�10, d060 and d�204 provide the direct and
reciprocal cell parameters to calculate the distribution of Al, Si in tetra-
hedral sites, using the method of Kroll (1971,2 1973,3 19804).

– The deformation index can be calculated from the Kroll and Ribbe
(1987)5 plot.

1 Goldsmith and Laves [1].
2 Kroll [2].
3 Kroll [3].
4 Kroll [4].
5 Kroll [5].
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Application Example

Structural characterization of a potassium feldspar from a pegmatite in the
vicinity of La Cocha, Villa Praga-Las Lagunas group, Tilisarao-Renca sub-
group and Concarán subgroup, San Luis, Argentina (Wul et al. 2016, with
permission).6

The starting data are in Table E1.

The results of dimensions and angular values of unit cells of the potassium
feldspar from pegmatite sample are in Table E2.

The results of the triclinicity index and distribution (Al, Si) of potassium
feldspar in the pegmatite are presented in Table E3.

Table E2 Results of dimensions and angular values of unit cells of the potassium
feldspar from pegmatite sample (* = reciprocal values)

a b c a b c

8.5718 12.9539 7.2174 90.59 115.99 87.68

a* b* c* a* b* c* V
0.1299 0.0860 0.1543 90.4748 64.0122 92.2934 719.7

Table E1 Reflection data of a potassium feldspar from a pegmatite

Reflexions (131) (1�31) (110) (060) (�204)

d (Å) 3.0321 2.9575 6.7218 2.1599 1.8064

Table E3 Results of the triclinicity index and distribution (Al, Si) of potassium feldspar
in the pegmatite

Triclinicity Distribution (Al, Si) in terms of b-c* and a*-c*

D
P

t1 Dt1 t1o t1m 2t2
0.9321 0.9627 0.0044 0.9785 –0.0158 0.0186

Distribution (Al, Si) in terms of 2h(060)–2h �204ð Þ and Dh(130)-2h �201ð Þ
P

t1 Dt1 t1o t1m 2t2
1.0103 0.9723 0.9913 –0.0095 –0.0052

6 Wul et al. [6].
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From this information, the triclinicity index (Δ) was calculated using the
E.1 equation. The result reflects the degree of deviation, as a function of 2h,
of interplanar spacing between (131) and (1�31). The difference in spacing
between (131) and (1�31) as a function of 2h is 0.075. The triclinicity value is
0.9321, and values close to 1 indicate maximum ordering, slow crystallization
and correspond to the triclinic system, while values close to 0 indicate
monoclinic symmetry and fast crystallization.

The structural state, expressed as the Al content in specific tetrahedral
sites, indicates that this feldspar of triclinic symmetry corresponds to low
microcline, with t10 close to unity, indicating an extreme (Al, Si) ordering,
with Al predominantly in the t10 position.

Exercises
1

(a) Indicate the stable phase(s) in the calcite and aragonite stability
diagram (Fig. 9.1) at the following temperatures and pressures:
(1) 400 ºC and 10 Kb, (2) 195 ºC and 5 Kb, (3) 10 Kb.

(b) Mark, with a cross, the place where kyanite, andalusite, and silli-
manite coexist (Fig. 9.2). Indicate the range of pressures in which
andalusite is stable. Indicate the temperature range in which kyanite
is stable. Mark the place where sillimanite and andalusite coexist.

(c) Mark, with a cross, the place(s) where three phases coexist. Indicate
the stable phase(s) at the pressure of 80 kb. Indicate the stable phase
(s) at the temperature of 600 ºC. Indicate the stable phase(s) at the
temperature of 1200 ºC and at the pressure of 20 kb.

Questions
1. Polymorph crystals or minerals are those that

a. have the same chemical composition
b. have the same chemical composition but different crystal structures
c. have different chemical composition and the same crystal structure
d. have different crystal structures

2. The types of mechanisms of polymorphic transformations are
a. displacement, order-disorder, reconstruction
b. displacement, vacancy, reconstruction, impurity
c. displacement, order-disorder, reconstruction, position
d. order-disorder, reconstruction
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3. What is the name of the abrupt change in internal energy that accompanies
a phase transformation?
Response:

4. Do the free energy curves of the phases involved in a polymorphic
transformation intersect? Yes/No
Response:

5. Do andalusite and sillimanite coexist sat high pressures? Yes/No
Response:

6. Write the name of the mechanism type of a reversible polymorphic
transformation with slight displacement of atoms and slight readjustment
of the bond angles.
Response:

7. Which type of transformation requires superheating? Reversible/
Irreversible.
Response:

8. At low temperatures the stable phase(s) in the phase diagram of alumi-
nosilicates (andalusite, sillimanite, and kyanite) is andalusite.

True
False

9. As the processing temperature increases, the change in internal energy is
negative.

True
False
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Part III
Crystallophysics

In this part, Chaps. 10 to 18, the physical properties of crystals are outlined, relating
them to chemical composition and structure. Important properties to consider in this
part are those derived from the interaction of electromagnetic radiation with matter.
Optical properties, resulting from the interaction of visible light with crystals, are
important in the routine identification of minerals. There are also those that allow
the disposition of atoms in the structure, to identify crystalline phases, etc., as a
result of the interaction of X-rays with crystals.



Chapter 10
Relationship Between Symmetry
and Physical Properties

Abstract The physical properties of crystals are defined by the relationships
between measurable quantities. These quantities may or may not depend on the
direction in which they are measured. In certain cases, the value of a certain
property is constant for all directions of the crystal; therefore, isotropic and ani-
sotropic crystals will be differentiated. It will be shown that the properties can be
represented by tensors, scalars being those of range 0. Depending on the symmetry
of the crystal and the tensor range of the properties, they can be represented geo-
metrically, which is especially useful for optical properties. The Curie–Neuman
principle, which shows the relationship between the point symmetry of a crystal
before the external influence and the symmetry of its physical properties, is
explained. Finally, scalar properties, specific heat, and density are explained. In
Chaps. 11 to 15, the optical properties of crystals and minerals are described, as a
result of the interaction of light with them. The phenomena and properties that are
observed with transmission and reflection polarization microscopes, instruments of
routine use in the identification of minerals and rocks, are explained.

10.1 Physical Property

A physical property is any measurable or observable response from a mineral
crystal to some external cause.

In addition to the shape, which may be completely missing from mineral frag-
ments, physical properties are very useful for recognition. Some of these properties
can be seen by simple observation, others require simple measurements and, finally,
there are parameters that require more complex and costly instrumentation.

The physical properties of crystalline solids are divided into two categories:

– Non-directional
– Directional
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The non-directional properties include scalar properties, which do not depend on
the direction in which they are measured. Examples are specific heat and density,
and they are expressed by real numbers.

The directional properties are tensor properties, which depend on the direction in
which they are measured.

10.2 Scalar Properties

10.2.1 Density

The density of a body represents the value of its mass per unit volume (g/cm3). Its
numerical value is equal to the specific weight which, in turn, indicates how many
times the body in question weighs more than an identical volume of distilled water.

Density is directly related to the densification of atoms in the reticular cell and is,
therefore, high in compounds with a high coordination number (metals) and low in
compounds with lower coordination (compounds with residual or covalent bonds).

In general, there is no density but specific weight measures, based on the
well-known Archimedes principle and by a very simple instrument, such as pyc-
nometer, hydrostatic balance, and liquids with specific weight previously determined.

It is also convenient to assign an estimated value compared to a substance as a
standard.

Accurate density determination is not always a safe diagnosis. Very few mineral
samples lack darkness, point defects, impurities, voids, or fracture that so alter
density values that it makes it only qualitative.

Density is given by the expression (10.1):

q ¼ M=V ð10:1Þ

It is also expressed as

q ¼ Z �M
N � V ð10:2Þ

where

Z is the number of formulas contained in the elementary cell
M is molecular weight in (g/mol)
N is the Avogadro number 6.02338⋅1023 mol–1

V is the volume of the elementary cell. It is obtained from the cell parameters
using the expression (10.3):

V ¼ a � b � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a� cos2 b� cos2 cþ 2 cos a cos b cos c

p
ð10:3Þ
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10.2.2 Specific Gravity

The specific gravity is a number that expresses the relationship between its weight
and the weight of an equal volume of water at 4 ºC. The specific weight of a
crystalline substance depends on two factors: Type of atoms and Packaging of
atoms.

In isostructural compounds, the packaging is constant, and the elements with
higher atomic weight usually have greater specific weight, as in orthorhombic
carbonates (Table 10.1).

In polymorphic compounds, the chemical composition remains constant but the
packaging varies. The C polymorphs are an example. Diamond has a specific
weight of 3.5 and a structure with compact packaging, while graphite has a specific
weight of 2.23 and the packaging is less dense than in the diamond.

The variation of the specific weight with the composition is clearly manifested in
the solid solution series. Example: the specific weight in the olivine series varies
between 3.3 in forsterite and 4.4 kg/m3 in fayalite.

Box 10.1. Determination of Specific Gravity Using Hydrostatic Weight

Material:

– Balance
– Wooden bridge (placed on left saucer)
– Beaker of about 100 ml
– Wire to suspend the ore in the water

Procedure:

– Weigh the mineral in air. The mineral is placed in one of the dishes of the
scale and the other dish is weighted to establish balance between the
weights of both. The mineral weight in air is Ma (Fig. 10.1).

Table 10.1 Specific weight and atomic weight of cation in orthorhombic carbonates

Mineral Formula Atomic weight of cation (U)11 Specific gravity

Aragonite CaCO3 40.08 2.95

Stroncianite SrCO3 87.62 3.76

Witherite BaCO3 137.34 4.29

Cerussite PbCO3 207.19 6.55

1 U = Amu = mass equal to one-twelfth the mass of an atom of carbon.
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– Place the wooden bridge over left saucer.
– Fill the beaker with 3/4 parts of deionized water.
– Place the beaker over the wooden bridge.
– Suspend the wire on the left side of the arm and immerse it in the liquid.
– Annotate the weight of the submerged wire, As (Fig. 10.2).

Fig. 10.1 Weighing mineral in air

1 U = Amu = mass equal to one-twelfth the mass of an atom of carbon.
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– Carefully remove the beaker and the wire and place the mineral on the
wire spiral, which is then put back into the water and suspended from the
arm (Fig. 10.3).

– Annotate the weight of the wire with the immersed mineral, AMs

– Weight of the immersed mineral, Ms = AMs - As

– Mineral specific gravity ¼ Ma
Ma�Ms

Fig. 10.2 Water-immersed
wire

Fig. 10.3 Weighing the
immersed mineral in water
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10.2.3 Specific Heat or Specific Heat Capacity

Specific heat is a physical magnitude that indicates the ability of a material to store
internal energy in the form of heat. Formally, it can be said that it is the energy
needed to increase by one unit of temperature a quantity of substance. It is
expressed by Eq. 10.4.

Cp ¼ DQ
m � DT

� �
p

ð10:4Þ

where

DQ is the amount of heat supplied
DT is the temperature increase
m is the mass
p the constant pressure at which the experiment is carried out

10.3 Tensor Properties

A tensor is a quantity characterized by the existence of several numbers (compo-
nents) with physical meaning that have certain values for a given reference system.
This amount cannot vary, even if the tensorial reference system and its components
do. Knowing the law of transformation to the new reference system, the new
components can be calculated.

There are tensors properties of different orders:

– Zeroth-order tensor properties: scalar magnitudes.
– First-order tensors properties: Vector properties. They are represented by

expression (10.5)

Ai ¼ aiB ð10:5Þ

and they are characterized by three components according to the reference axes.

a1
a2
a3

2
4

3
5:
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This type is the same as pyroelectricity and pyromagnetism. They do not appear
in center-symmetric crystals.

– Second-order tensors properties shall be represented by expression (10.6):

Ai ¼ aijBj ð10:6Þ

They are characterized by nine coefficients, each associated with a pair of axes
taken in a certain order.

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5

Thermoelectricity belongs to this tensor type.
There are other physical properties represented by a second-order tensor which
are characterized because the components aij = aji, represent a symmetrical
tensor, in which case the coefficients are reduced to six.

a11 a12 a13
a22 a23

a33

2
4

3
5

Thermal expansion, compressibility, electrical conductivity, heat conductivity,
electrical induction,magnetic induction, and optical properties belong to this group.
When a second-order symmetrical tensor refers to its main axes, the coefficients
are reduced to three.

a11
a22

a33

2
4

3
5:

– Third-order tensors are given by expression (10.7).

Ai ¼ aijpBjp ð10:7Þ

The representative matrix consists of 27 coefficients:

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 a112 a122 a132

a212 a222 a232
a312 a322 a332

2
4

3
5 a113 a123 a133

a213 a223 a233
a313 a323 a333

2
4

3
5

Piezoelectricity and piezomagnetism belong to this group.
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– Fourth-order tensors properties are characterized by 81 coefficients and given by
expression (10.8).

Aij ¼ aijmpBmp ð10:8Þ

Because of its intrinsic symmetry, the number of coefficients of the Fourth-order
tensor is reduced to 21. The crystal symmetry reduces the number of inde-
pendent coefficients again.
This group includes elasticity, damping of sound waves, photoelasticity, and
photomagnetism.
The tensor properties are grouped according to the shape of the geometric
surface it can represent, which is called the representation quadric. The 2nd
degree surface is an ellipsoid (Fig. 10.4). A particular case is a sphere.

Properties that are represented by surfaces of higher order to the ellipsoid not
only require a numerical value (module) for their correct expression but also must
specify the direction in which the measurement was performed, such as cohesion,
toughness, piezoelectricity, and pyroelectricity (Fig. 10.5).

Fig. 10.4 Ellipsoid
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10.4 Curie–Neumann Principle

The Curie–Neumann principle relates the symmetry of an observable effect to the
symmetry of the cause and symmetry of the crystal.

The minimum symmetry of an effect is equal to the combined symmetry that
exists in both the cause and the crystal.

Therefore, the symmetry of a physical property must include the symmetry of
the point group of the crystal.

The symmetry of a physical property corresponds to the symmetry of an ellip-
soid, the geometric place at the ends of the vectors that represents the value of the
property in each direction of the crystal.

The geometric idea of this principle can be seen in Table 10.2. by the example of
crystal optics (refraction of light—birefringence).

Fig. 10.5 Representation surfaces of higher order than the ellipsoid
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Questions

1 Using a number, indicate the order of the tensor of electrical conductivity
Response:

2 According to the Curie–Newmann principle, “The symmetry of the crystal
plus the symmetry of the effect is equal to the symmetry of the cause.”

True
False

3 Scalar properties depend on the direction in which they are measured.
True
False

4 Pair each property with property type and classEnd of form

Elasticity Scalar

Pyroelectricity Second-order symmetrical tensor, electrical

Specific heat Second-order tensor, electric

Thermoelectricity First-order tensor, magnetic

Pyromagnetism Second-order symmetrical tensor, mechanical

Electrical conductivity First-order tensor, electric

5 According to the Neumann–Curie principle:
a. The maximum symmetry of an effect can never be less than the sum

of the symmetry of the cause and that of the crystal
b. The minimum symmetry of an effect can never exceed the sum of the

symmetry of the cause and that of the crystal
c. The maximum symmetry of an effect can never be less than the sum

of the symmetry of the cause and that of the crystal
d. The minimum symmetry of an effect can never be less than the sum

of the symmetry of the cause and that of the crystal
6 Can specific heat be represented on a surface? Yes/No. Explain your

answer.
Response:
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Chapter 11
Interaction of Electromagnetic Waves
with Crystals and Minerals

Abstract The characteristics of the electromagnetic waves and the electromagnetic
spectrum are recalled, emphasizing the visible spectrum, in which the relationship
between the different units used for their description is shown. The characteristics of
visible light propagation as a wave movement are established. From one of the
solutions of this equation, that of a plane sine wave and the temporal evolution of
the electric field in the plane perpendicular to the direction of propagation, the
concept of polarization is introduced. This is called optical polarization to distin-
guish it from electrical polarization. The solution of the wave equation and the
velocity of the waves are presented to introduce the concepts of refractive index and
absorption coefficient, which allow the distinction between isotropic and aniso-
tropic, and transparent and opaque crystals and minerals. Within the section of light
incidence in transparent crystals, the concepts of refraction and reflection are
explained, in addition to the laws of refraction and reflection, critical angle and total
internal reflection, and diffraction. In Chap. 10, the importance of the representation
surfaces is emphasized. They take special relevance in the case of transparent
crystals and minerals, since the ellipsoid of the indexes is the key to understanding
not only variation of the refraction index according to the direction, but also of
propagation of light in the crystals and minerals. In the case of opaque crystals and
minerals, the concept of reflectance or reflectivity is introduced as a property that
allows the understanding of these materials.

11.1 Electromagnetic Waves and Maxwell Equations

A wave is a physical disturbance that spreads in a certain medium.
An electromagnetic wave is a progressing electromagnetic field. Electromagnetic

waves carry energy and quantity of motion.
The wave can be represented by sinusoidal function. The intensity, I, of a wave

is proportional to the square of its amplitude. The amplitude, A, is a measure of the
maximum variation of displacement that varies periodically in time. It is the
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distance halfway between the ridge and the valley in a wave. The wavelength, k, is
the measure of the distance between two points in phase that the wave travels in a
given time, t (Fig. 11.1).

The frequency (f) is the number of vibrations of the wave in the unit of time.

f ¼ 1
t

ð11:1Þ

v ¼ f k: ð11:2Þ

An electromagnetic field is the excited state that is established in space by the
presence of electrical charges. It is represented by two vectors:

– electric field E
!

– magnetic induction B
!

The vectors:

– Electrical current density j
!

– Dielectrical displacement density D
!

(or electrical flux density)

– Magnetic vector H
!

are used to describe the effect of the field on an object and the behavior of the object
under its influence.

Maxwell’s equations—originally four partial differential equations, describe the
propagation of any electromagnetic wave in any medium. They correlate charge and
current density (sources) with electric and magnetic fields (results).

Maxwell equations represent those derived from the above five vectors of time
and space.

The following (2nd rank) tensors are involved:

– electrical conductivity (r)
– dielectric constant (e)
– magnetic permeability (l)

Fig. 11.1 Electromagnetic wave. A = amplitude, t = time, k = wavelength
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The simplified Maxwell’s equations are

rx~E ¼ � 1
c
@~B
@t

rx~H ¼ � 1
c
@~D
@t

~D ¼ ere0~E ¼ 1� vð Þe0~E
~P ¼ ve0~E

: ð11:3Þ

Maxwell equations can be combined, and the solution is a wave equation (Bloch
wave) that must satisfy the electric field and magnetic field vectors.

11.2 Electromagnetic Wave Propagation

Electromagnetic wave propagation is the way in which electromagnetic waves
propagate and it follows the general equation of wave motion. The temporal evo-

lution of E
!

or H
!

in one plane perpendicular to the direction of propagation
originates polarization, which can be called optical polarization. Depending on the
shape, the said polarization is called elliptical, circular, or linear.

Fig. 11.2 Plane polarized wave (electric and magnetic fields perpendicular to each other and to
the direction of propagation) (t = time)

11.1 Electromagnetic Waves and Maxwell Equations 265



One of the solutions of the wave equation corresponds to that of a sinusoidal
plane or linear wave (Fig. 11.2). In this type of wave, the electric field and the
magnetic field are always perpendicular to each other. The electric field and the
magnetic field are perpendicular to the direction of propagation.

Therefore, these waves are transverse.
The wave equation for the electric field of a crystal without magnetic properties,

with permeability in vacuum, l0 = 0, is given by the expression:

E ¼ E0e
i ~ks�xtð Þ ð11:4Þ

where

x is the frequency
s is the distance traveled (thickness of the crystal crossed by the wave)
t is the time
~ks� xt difference is the phase

~k � s product corresponds to the scalar product of the vectors k and s

~k ¼ k
!

s:! ð11:5Þ
k is the wave vector whose modulus is

~k ¼ x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er þ i

rl0
x

r
ð11:6Þ

where
dielectrical constant/permittivity e = e0 er and e0 = electrical field constant/
vacuum permittivity, er = relative dielectrical constant/permittivity.
c (equal to 2.998⋅108 m/s) is the light velocity in the vacuum

c ¼ 1ffiffiffiffiffiffiffiffiffi
l0e0

p ð11:7Þ

in vacuum, with r = 0 and e = e0 and e/e0 = er = 1

~k ¼ x
c
¼ 2p

k
: ð11:8Þ

The velocity in a crystal is modified:

v ¼ c
~n

ð11:9Þ
being

~n complex refractive index
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~n ¼ nþ ik ð11:10Þ

so that

~k ¼ x
c
~n ð11:11Þ

therefore:

~k ¼ xn 1þ ikð Þ
c

: ð11:12Þ

Equation 11.4 can be put in the following form:

E ¼ E0e
�x

cnkseix
ns
c�tð Þ: ð11:13Þ

This plane wave loses energy as it passes through the crystal. The decrease in
energy is represented by the exponential term of the real part, � x

c nks.
The attenuation of the wave is related to the absorption of electromagnetic

energy. The absorption coefficient, l, is defined as

l ¼ x
c
~n: ð11:14Þ

In the absence of absorption, the complex part of the complex refractive index is
zero and k (Eq. 11.12) is a real number

k ¼ x
c
n ð11:15Þ

with n being a real number.

11.3 Propagation of Light in a Transparent Crystal

1. When the light passes from a less dense medium, the air (n1 = 1), to a denser
medium, the crystal (n2 > n1), some of the light is transmitted through the
crystal and some are reflected from the crystal.

The transmission of light through crystal (Fig. 11.3) is governed by Snell’s law

sin i
sin r

¼ n2
n1

¼ n ð11:16Þ
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where

i is the angle of incidence: the angle between the incident beam I and the
normal or perpendicular to the surface of separation of the two media N.

r is the angle of refraction: the angle between the refracted ray R and the
normal to the surface of separation of the two media N. It increases as i angle
increases.

The reflexion of light from the crystal (Fig. 11.4) is governed by the laws of
reflexion:

Fig. 11.3 Light incidence when passing from a less dense medium (air) to a denser medium
(crystal). In (a) the angle of incidence, i, and therefore the angle of refraction, r, are smaller than in (b)

Fig. 11.4 Light reflexion when passing from a less dense medium (air) to a denser medium
(crystal). In (a) the angle of incidence i and, therefore, the angle of reflexion r is smaller than in (b)
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– The incident ray I, the reflected ray R, the perpendicular N to the surface of
separation of the two media, as well as the angles of incidence i and reflexion
r lie in the same plane. It is a plane perpendicular to the surface of separation of
the two media.

– The angle of incidence i and the angle of reflexion r have the same value.

2. When the wave passes from a denser medium, the crystal (n2 > n1), to a less
dense medium, the air (n1 = 1), part of the light (the one incident at an angle
below the critical angle ic) is transmitted through the air, and another part is
reflected internally (the one incident at an angle > ic) (Fig. 11.5).

3. When light passes from one crystal to another medium, the air, perpendicular to
the surface of the separation of the two media, the light slows down but is not
deflected.

When the light passes from the air, with an angle of incidence different from 90º,
to a crystal whose surfaces are parallel, and comes out again into the air, it deflects
into the crystal.

When the light comes out of the crystal, it doesn’t deviate from its initial
trajectory (Fig. 11.6).

Fig. 11.5 Incidence of light
when passing from a denser
medium (crystal) to a less
dense medium (air). Ray A
with i < ic is transmitted to
denser medium (air); ray B,
with i = ic, travels along the
surface of separation of the
two media; and C, with i > ic,
undergoes total internal
reflexion

Fig. 11.6 When the light
passes from one crystal to
another medium, the air,
perpendicular to the surface of
separation of the two media
the light slows down but is
not deflected
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When white light passes through a prism, it is refracted or deflected within the
prism and, when it comes out, it is deflected again following a different path than
the incident light (Fig. 11.7).

There are two reasons for this:

1. The faces of the prism form an angle.
2. The difference in refractive index between air and prism material.

When white light passes through a prism, its component colors are refracted or
deflected differently. This is because the frequency of the light of each color
(monochromatic light) does not vary when it passes from one medium to another,
but it varies with k.

When Snell’s law is applied to each component color of white light when it
passes through a prism, blue color is the most deviated, as its associated refractive
index is higher since the wavelength is shorter, according to normal dispersion
(Fig. 11.8).

11.4 Electrical Polarization, Local Electric Field,
and Velocity of Light in a Crystal

Ions, atoms, or molecules in a crystal or mineral interact and produce an electric
field.

Fig. 11.7 Refraction of light
when it passes through a
prism

Fig. 11.8 Different refraction
of the component colors of
white light when passing
through a prism
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This field is modified by the application of any external electric field (electro-
magnetic waves, visible light).

The electrical charges, positives and negatives, are displaced and each ion is
converted into an electrical dipole (Fig. 11.9).

Electrical polarization is defined as the number of dipoles per unit of volume.
To determine the velocity of light in a particular direction through a crystal or

mineral, the total polarization must be evaluated.
The polarization depends on the following:

– Number of dipoles
– Force that those dipoles exert on the other dipoles
– Local electric field
– Field generated in the crystal due to the interaction of the electrons
– The effect of dipoles on the polarization of a particular ion depends on the

translation symmetry.

The dipoles become sources of new secondary waves that combine with each
other and with the incident field and form the total field. Thus, the wave velocity in
a crystal and in a given direction can be written using the following expression:

v ¼ c
EL

PþEL

� �2

ð11:17Þ

where

v is the velocity in the crystal or mineral
c is the velocity of light in a vacuum
P is the polarization
EL the local electric field

In this expression, it is observed that the velocity of an electromagnetic wave in a
crystal or mineral varies according to the polarization and the local electric field.

Fig. 11.9 Electrical dipole
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It follows that the polarization is higher and the velocity is lower in a direction
with high electronic density. The polarization is lower and the velocity higher in a
direction with low electronic density.

These relationships allow us to predict how the velocity of light will differ from
one crystal to another.

In isotropic transparent crystals, allowing visible light to pass through with the
same velocity in all directions, refractive index will vary with density. Example:
halite n = 1.544 y = 2.17 g/cm3; garnet n = 1.80 y = 4.32 g/cm3.

The refractive index is quite sensitive to variations in chemical composition and
crystal structure.

In general, crystals that have atoms with high atomic numbers will have rela-
tively high refractive indices (transparent crystals have refractive index in the range
of *1.3–2.1).

11.5 Electromagnetic Spectrum

Electromagnetic waves are classified according to their k in the following:

– c-rays
– X-Rays
– Ultraviolet rays (UVA)
– Visible light
– Infrared rays
– Radio waves

All these electromagnetic waves together are called the electromagnetic spec-
trum (Fig. 11.10).

Monochromatic light is light that includes a very small range of wavelengths and
reaches the eye as a single color. Examples include red light and green light.

Polychromatic light is light that includes a wide range of wavelengths. An
example is white light.

Fig. 11.10 Electromagnetic spectrum
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11.6 Isotropic Crystals and Minerals

Isotropic crystals and minerals can be transparent and absorbent (opaque). They
crystallize in the cubic system. Light travels with the same velocity, v, in any
direction.

– Transparent isotropic crystals and minerals

The index of refraction, n, has the same value in any direction. Light travels in all
directions with the same velocity (Fig. 11.11a).

Any section of an isotropic crystal observed with a polarizer appears bright in a
complete rotation of it (Fig. 11.11b). That is because the light vibrates on a single
plane, as the polarizer.

Any section of an isotropic crystal, when viewed between crossed polarizers
(polarization planes or vibration directions forming a 90º angle), appears dark
(extinguished) (Fig. 11.11c) in a complete turn. This is because in any turning
position of the section, the light vibrates in the same direction as the polarizer,
which is perpendicular to that of the analyzer that does not allow the passage of
light.

The reflexion of linearly polarized monochromatic light at perpendicular inci-
dence from the surface of a crystal or isotropic mineral does not change its
polarization state, but its intensity decreases with respect to the incident in a pro-
portion given by the reflectance.

R ¼ IR
II

ð11:18Þ

(a) (b) (c) 

Fig. 11.11 Isotropic section of a transparent isotropic crystal: a Light vibrating in all directions in
any section (all isotropic); b any isotropic section observed with a polarizer appears bright; c any
isotropic section observed with crossed polarizers appears extinguished in a complete turn
because, in any turn of the sample, its vibration direction is perpendicular to that of the polarizer
and it is canceled out
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where

IR is the intensity of the reflected light
II is the intensity of the incident light

R% ¼ n� 1ð Þ2
nþ 1ð Þ2 ð11:19Þ

– Absorbent or opaque isotropic crystals and minerals

Linearly polarized incident light is reflected without changing the polarization state;
however, the reflectance on these absorbing isotropic surfaces depends on both the
refractive index and the absorption coefficient. Its value in air is given by the
expression:

R% ¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2
: ð11:20Þ

11.7 Anisotropic Crystals and Minerals

Anisotropic crystals and minerals can be transparent and absorbent/opaque. They
are divided into

– uniaxial crystals and minerals, both transparent and absorbent, and belong to the
crystal systems—tetragonal, hexagonal, and trigonal/rhombohedral.

– biaxial crystals and minerals, only transparent, and belong to the crystal systems
—orthorhombic, monoclinic, and triclinic. The absorbent crystals and minerals
belonging to these crystal systems cannot be called absorbents for the reasons
explained below.

Anisotropic crystals and minerals are characterized because in them:

– The velocity of light varies with the direction.
– The value of the refractive index varies with the direction.
– Light is generally split into two rays or components. Each ray has its plane of

polarization or direction of vibration perpendicular to the other. The faster ray is
associated with the lower refractive index, the so-called ordinary ray. The
slower ray is associated with the higher refractive index, the so-called
extraordinary ray.

– There are one or two directions in which the light does not split. Each of these
directions is called an optical axis. Crystals and minerals with one optical axis
are called uniaxial. Crystals and minerals with two optical axes are called
biaxial.
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Any section perpendicular to an optical axis behaves like any section of an
isotropic crystal or mineral, i.e., that section is isotropic.

When there are two optical axes, the angle between them is called 2V. The plane
containing the two optical axes is called the optic plane.

An anisotropic crystal and any of its anisotropic sections that are observed with
polarized light will appear clear in one full rotation of the crystal. That is because
light is split into two rays vibrating in mutually perpendicular planes (Fig. 11.12a).
If one of its directions of vibration is perpendicular to that of the polarizer and is
canceled out, the other passes through (Fig. 11.12b).

If neither direction of vibration coincides with that of the polarizer, the light
corresponding to the two rays passes through it (Fig. 11.12c).

An anisotropic crystal and any of its anisotropic sections that are observed
between crossed polarizers, in a complete turn, presents four positions of darkness
(extinction positions, every 90º) and four clarity positions (every 90º). The
extinction positions occur when the directions of vibration of the crystal coincide
with those of the polarizers (Fig. 11.13a). The clarity positions occur when the
directions of vibration of the crystal and the polarizers do not coincide
(Fig. 11.13b).

When one of the directions of vibration of the crystal is parallel to that of a
polarizer and, therefore, perpendicular to that of the other since these are crossed, it
is canceled (extinction). The same happens with the other direction of vibration of
the crystal or mineral or anisotropic section.

To move from a light position to a dark or extinguishing position, turn the crystal
or mineral or the anisotropic section by 45º.

(a) (b) (c) 

Fig. 11.12 Anisotropic section of a transparent anisotropic crystal observed with polarized light:
a Light vibrating in two directions in any section except the isotropic section; b anisotropic section
observed with a polarizer, with one of its vibration directions (corresponding to the rays into which
the polarized light has split) parallel to that of the polarizer appearing bright because the light
leaves the crystal vibrating in the direction of the polarizer; c anisotropic section observed with a
polarizer with any of the two directions of vibration coinciding with the polarizer appearing bright
because the light corresponding to the two rays leaves the crystal
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The reflected light consists of two mutually perpendicular and linearly polarized
vibrations. Each has a value of R, depending on the value of n. Each vibration can
be isolated by rotating the section on the microscope stage until the direction of
vibration matches that of the polarizer. Thus, two values of R, maximum (R2) and
minimum (R1), can be obtained separately for each section.

R1% ¼ n1 � 1ð Þ2
n1 þ 1ð Þ2 ð11:21Þ

R2% ¼ n2 � 1ð Þ2
n2 þ 1ð Þ2 : ð11:22Þ

The bireflectance of the section is given by the difference (R2 − R1) and is a
function of the birefringence.

11.7.1 Uniaxial Crystals and Minerals

– Transparent uniaxial crystals and minerals

In these crystals and minerals, the two extreme refractive indices are ordinary
refractive index, nx, associated with ordinary ray (follows Snell’s law) and

Fig. 11.13 Anisotropic section of a transparent anisotropic crystal between crossed polarizers:
a extinction position due to the directions of vibration of the crystal coinciding with those of the
polarizers; b bright position due to the directions of vibration of the crystal not coinciding with
those of the polarizers
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extraordinary refractive index, ne, associated with the extraordinary ray (does not
follow Snell’s law). These indices can be measured in the section parallel to c axis.

There are other indices, ne’, with an intermediate value between nx and ne.

– Positive uniaxial crystals and minerals: ne > nx.
– Negative uniaxial crystals and minerals: nx > ne.

The birefringence is the difference between the indices, ne and nx.
The section that provides the ordinary and extraordinary reflectance, Rx and Re,

is any section parallel to the optical axis. Both values represent the extreme values
of the section and the crystal, and they are what characterize it. The difference
between both provides the maximum bireflectance and is what characterizes the
crystal.

Rx% ¼ nx � 1ð Þ2
nx þ 1ð Þ2 ð11:23Þ

Re% ¼ ne � 1ð Þ2
ne þ 1ð Þ2 : ð11:24Þ

– Absorbent/Opaque uniaxial crystals and minerals

Linearly polarized incident light is split into two linearly and mutually perpen-
dicular polarized vibrations. Each of the vibrations has its own values of n and
k (absorption coefficient) and, therefore, of the reflectance, whose extreme values
are given by the following expressions:

Rx% ¼ nx � 1ð Þ2 þ k2x
nx þ 1ð Þ2 þ k2x

ð11:25Þ

Re% ¼ ne � 1ð Þ2 þ k2e
ne þ 1ð Þ2 þ k2e

: ð11:26Þ

Rx and Re being the ordinary and extraordinary reflectance, respectively,
and
kx and ke being the ordinary and extraordinary absorption coefficients.

The bireflectance is given by the difference between Rx and Re.
The birefringence is given by the difference between nx and ne.
The biabsorbance is given by the difference between kx and ke.
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11.7.2 Orthorhombic, Monoclinic and Triclinic Crystals
and Minerals

– Orthorhombic, monoclinic and triclinic transparent crystals and minerals

They are characterized by possessing two optical axes and are, therefore, called
biaxial.

In biaxial crystals and minerals, the sections perpendicular to any of the optical
axes behave like the isotropic sections of isotropic crystals and minerals.

They are characterized by three principal refractive indices nc > nb > na.
In orthorhombic crystals and minerals, each principal refractive index is asso-

ciated with a crystallographic axis, with nine possibilities.
In monoclinic crystals, only an extreme refractive index is associated with a

crystallographic axis.
In triclinic crystals and minerals, there is generally no alignment with symmetry.

There are other indices nc′ > nb′ > na′ with intermediate values between the principal
nc, nb, na values.

– Positive biaxial crystals and minerals: nb closer to na than to nc.
– Negative biaxial crystals and minerals: nb closer to nc than to na.

Birefringence is the difference between the principal indices nc and na.
Biaxial crystals are characterized by three values of reflectance: maximum (Rg),

minimum (Rp) and intermediate (Rm), depending on the major, minor and intermediate
refractive indices, which are now symbolized by (ng), (np) and (nm), respectively.

Rg% ¼ ng � 1
� �2
ng þ 1
� �2 ð11:27Þ

Rm% ¼ nm � 1ð Þ2
nm þ 1ð Þ2 ð11:28Þ

Rp% ¼ np � 1
� �2
np þ 1
� �2 : ð11:29Þ

Obtaining these values from two sections of the crystal is necessary The bire-
flectance is given by the difference (Rg) − (Rp).

– Orthorhombic, monoclinic and triclinic absorbent/opaque crystals and
minerals

In this case, they cannot be called biaxial because they do not have optical axes but
circularly polarized axes (Fig. 11.14).
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Fig. 11.14 Orthorhombic crystal showing the axes of circular polarization, O–O and O’–O’
(Figure taken from Cameron,1 after Berek2)

The angle between each pair of these axes, symbolized as 2r, increases as the
absorption of light increases.

When the angle (2r) between two of these circular polarization axes with
opposite direction of rotation is large, the crystal is very absorbent. When the angle
decreases, the absorption is very small. In the extreme case, when this angle is zero,
both axes are fused into one and the absorption is zero, so these axes would now
correspond to the optical axes of a transparent crystal.

There are three values of reflectance that characterize the crystal, as well as three
values of the refractive index and three values of the absorption coefficient. One
aspect to consider is that these values do not have to coincide in the same direction
as the crystal.

Rg% ¼ ng � 1
� �2 þ k2g

ng þ 1
� �2 þ k2g

ð11:30Þ

1 Cameron [1].
2 Berek [2].
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Rm% ¼ nm � 1ð Þ2 þ k2m
nm þ 1ð Þ2 þ k2m

ð11:31Þ

Rp% ¼ np � 1
� �2 þ k2p

np þ 1
� �2 þ k2p

: ð11:32Þ

To obtain these values, two sections of the crystal are necessary.
The bireflectance is given by the difference (Rg) − (Rm).

11.8 Dispersion

Dispersion is the variation of the refractive index n with the wavelength k, with the
temperature T. In general, the variation of n with T in crystals can be considered
negligible.

An adequate treatment of dispersion implies deepening the atomic theory of
matter, although it can be simplified considering that a crystal consists of ions,
atoms or molecules arranged periodically and orderly in space. These ions, atoms or
molecules can behave like dipoles and the sum of all is polarization, addressed in
the previous section.

For a transparent crystal that absorbs very few k into the visible or near, the
visible refractive index decreases nonlinearly as the wavelength increases, and the
resulting curve is called a dispersion curve. These dispersion curves typically have
a steeper slope in materials with a high refractive index compared to those with low
refractive, and solids containing transition elements (Fe, Ti), compared to those that
lack them. Dispersion is normal when the refractive index decreases as k increases
(Fig. 11.15).

The refractive indices of a given crystal for specific k can be symbolized using
the k as a subscript. In Fig. 11.15, it is observed that the refractive index ng for
k = 687 nm is 1.5840, which can be expressed as nc687 ¼ 1:5840.

The dispersion capacity of a crystal can be expressed by its dispersion coeffi-
cient, which is defined as

dispersion coefficient ¼ nF � nC ð11:33Þ
and by its dispersion power, given by

dispersion power ¼ nF � nC
nD � 1

: ð11:34Þ

The latter expression shows the ability of a transparent crystal to separate white
light into its different components (colors). The subscripts correspond to the
Fraunhofer lines, associated with k individuals. In Table 11.1, a list of them is
presented.
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Dispersion is anomalous when the refractive index increases as k decreases
(Fig. 11.16). It is produced in strongly colored transparent crystals as a result of the
absorption of certain k from the visible region of the spectrum (selective absorption
of light).

Fig. 11.15 Dispersion normal of refractive indices

Table 11.1 Fraunhofer lines Fraunhofer lines k(nm)

A 759.4

B 687

C 656.3

D 589.3

E 526.9

F 486.1

G 430.8

11.8 Dispersion 281



Exercises

1. (a) Calculate the velocity of light considering the data provided (second
to fifth columns) in the following isotropic minerals:

Formula Molecular weight q (g/cm3) n v

Fluorite CaF2 78.08 3.18 1.433

Halite NaCl 58.45 2.16 1.544

Almandine Fe3Al2Si3O12 476.82 4.32 1.83

Diamond C 12.011 3.51 2.42

(b) Establish the relationship between molecular weight, density,
refractive index, and velocity of light in these minerals.

2. Indicate the optical characteristics (second to fifth columns) of the min-
erals that crystallize in the following crystal systems:

Isotropic or
anisotropic

Principal
refractive
indices

More
birefringent
section

Number of
optical axes

Cubic

Monoclinic

Hexagonal

Orthorhombic

Rhombohedral

Triclinic

Tetragonal

Fig. 11.16 Anomalous dispersion
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3. Indicate the birefringence, if it is an isotropic or anisotropic section,
optical sign, Miller indices of the most birefringent section and the cor-
responding section of the ellipsoid of the indices of the following min-
erals, whose refractive indices are given:

Indices Birefringence Isotropic
or
anisotropic

Optical
sign

(hkl) of the
most
birefringent
section

Section of
the
indicatrix

Andalucite na = 1.632
nb = 1.638
nc = 1.643

Olivine na = 1.674
nb = 1.692
nc = 1.712

Almandine n = 1.830

Rhodochrosite nx = 1.816
ne = 1.597

Diamond n = 2.42

4. Indicate the Miller indices of the following sections:

(a) isotropic section of a cubic mineral
(b) isotropic section of a hexagonal mineral
(c) isotropic section of a rhombohedral mineral
(d) isotropic section of a tetragonal mineral
(e) anisotropic section of a hexagonal mineral
(f) anisotropic section of a rhombohedral mineral
(g) anisotropic section of a tetragonal mineral

5. From each of the following crystal sections, indicate whether it is isotropic
or anisotropic:

(a) section perpendicular to one of the optical axes of an orthorhombic
mineral

(b) Sect. (210) of a tetragonal mineral
(c) Sect. (101) of a cubic mineral
(d) Sect. (0001) of a rhombohedral mineral
(e) Sect. (010) of a tetragonal mineral
(f) section perpendicular to the acute bisector of a triclinic mineral
(g) Sect. (1010) of a hexagonal mineral

6. Draw the optical axis on the following crystal sections of a uniaxial
mineral: (001), (110), (111), (101), (011), (100).

7. (a) What is the optical sign of a mineral with nx = 1.68 and ne = 1.67.
(b) What crystal system(s) does it belong to?
(c) Is mineral birefringent?
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(d) Write the Miller indices of the most birefringent section of that
mineral. Draw this section indicating the optical axis (axes) and
refractive indices that characterize it.

8. The values of refractive indices, measured in five different sections of a
mineral belonging to the hexagonal system, are the following:

(00.1) (11.1) (11.0) (10.1) (12.1)

nmax 1.566 1.566 1.566 1.566 1.566

nmin 1.566 1.564 1.562 1.565 1.563

Indicate the following:

(a) for each of the sections, whether it is isotropic or anisotropic
(b) the birefringence of each section and that of the mineral
(c) the principal refractive indices of the mineral
(d) the section that provides the principal refractive indices of the

mineral

9. Apatite is a mineral that crystallizes in the hexagonal system. The max-
imum and minimum values of the refractive indices measured in several
crystal sections were nmax = 1.667 and nmin = 1.666. The maximum value
was constant in all sections. The thin section shows blue color. Indicate

(a) whether the apatite is isotropic, uniaxial, or biaxial.
(b) if the apatite is anisotropic, birefringence, and the most birefringent

section.
(c) the mineral indices with which the measured maximum and mini-

mum indices would correspond.
(d) if the mineral is anisotropic, the optical sign.
(e) if the mineral is anisotropic, whether the interference colors of the

more birefringent section are of high or low order.
(f) if the apatite is uniaxial, the Miller indices of the section parallel to

the optical axis.
(g) if the apatite is uniaxial, whether the section perpendicular to the

optical axis is isotropic or anisotropic and the corresponding Miller
indices.

(h) which refractive indices could have been measured in the section
perpendicular to the optical axis.

10. The epidote (Ca2Fe
3+Al2(OH)Si3O12) crystallizes in the monoclinic sys-

tem, with the Y-axis of the ellipsoid of the indices coinciding with the
crystallographic axis b. It is colorless to pale yellowish green, the optical
sign is negative, and the refractive indices are nc = 1.734, nb = 1.725,
na = 1,715. Indicate
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(a) if this mineral prepared in thin sheet (cemented with Canada balsam,
n ≅ 1.54) and observed with the transmission polarizing microscope,
in orthoscopic arrangement and without analyzer, will show relief
change and, if shown, if it will be highly appreciable, unappreciable
or moderately appreciable.

(b) the relationship between acute and obtuse bisectors and optical
normal with crystallographic axes.

(c) the most birefringent section.
(d) the optical axial plane in relation to any crystallographic direction or

crystal plane.

Questions

1. Pair each section with its corresponding optical characteristics

Section (210) of a tetragonal crystal Section with nb and na
Section (101) of a cubic crystal Section with n
Section perpendicular to the acute bisector of a triclinic
crystal

Section with nb and na

2. An anisotropic mineral crystallizes in which of these systems:
a. hexagonal and cubic
b. tetragonal, hexagonal and rhombohedral
c. tetragonal and cubic
d. tetragonal, hexagonal and cubic

3. Crystals in which the light is not split are
a. tetragonal, hexagonal, rhombohedral, orthorhombic, monoclinic,

cubic
b. tetragonal, hexagonal, rhombohedral, orthorhombic, cubic, triclinic
c. tetragonal, hexagonal, rhombohedral, triclinic, monoclinic, cubic
d. cubic

4. What is the name of the optical constant that relates the velocity of light in
the vacuum and in a crystal?
Response:

5. What is the name of the direction of a crystal along which the light does
not split?
Response:
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6. How many extreme refractive indices characterize the minerals crystal-
lizing in the tetragonal system?
Response:

7. Write the name of the direction of the transparent crystal perpendicular to
the plane containing the optical axes.
Response:

8. Write the number of refractive indices of a crystal belonging to the
orthorhombic system.
Response:

9. Write the number of refractive indices of crystals belonging to the cor-
responding crystal system:

Crystal system Number of refractive indices

Cubic

Monoclinic

Hexagonal

Orthorhombic

Rhombohedral

Triclinic

10. Will the crystal section perpendicular to the normal optics of a monoclinic
crystal be isotropic or anisotropic?
Response:
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Chapter 12
Representation Surfaces of Optical
Properties of Crystals

Abstract The importance of the representation surfaces explained in Chap. 10 will
be emphasized. They are especially relevant in the case of transparent crystals and
minerals, since the ellipsoid of the indexes will be key in understanding not only
variation of the refraction index according to the direction but also propagation of
light in the crystals. In the case of opaque crystals and minerals, the indicatrix
surface of reflectance is described; reflectance or reflectivity is the property that best
allows the understanding of these materials.

12.1 Introduction–Representation Surfaces of Optical
Properties of Crystals

It is useful to be able to represent geometrically the variation of a crystal optical
property with the direction in the crystal.

In transparent crystals (minerals), when a linearly polarized light beam interacts
with a transparent crystal, each direction of light vibration corresponds to a single
value of the crystal refractive index. This property can be represented by a radius
vector, whose length is proportional to the value of the property, and the direction is
that of the crystal on which the property has been measured. The set of radius
vectors, all with the same origin, give rise to a surface whose representation is
possible if the magnitude of the property is a real number.

The ellipsoid of the indices is a surface that represents the variation of the
refractive index with the direction of a transparent crystal or mineral and, therefore,
the propagation of light in it. To draw it, an origin is chosen and radius vectors are
drawn.

In absorbent crystals (opaque minerals) some optical properties require a com-
plex number to define completely. In this case, the property cannot be represented
geometrically by a three-dimensional surface. However, the complex number can
be split into two parts and represent separately the variation of each with the
direction. If the vibration in the crystal is elliptical and not linear, a simple radius
vector cannot be used to represent it. Thus, even if the property is a real number, it
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cannot be represented geometrically by a surface. Reflectance is the most com-
monly used optical property to characterize them.

The indicatrix surface of reflectance [1]1 is a surface that represents the variation
of the reflectance with the direction. If the reflectance is a real number, it can be
represented by a radius vector for a given direction of vibration.

As a function of optical symmetry, several sections can be distinguished in the
crystals (Table 12.1).

In a sphere, there are an infinite number of planes of symmetry that pass through
the center of the sphere, and they are called planes of optical symmetry. When a
radius vector is perpendicular to a plane of optical symmetry, it implies that the
corresponding vibration in the crystal is linear. Therefore, the use of the spherical
surface is a way of verifying that in an isotropic crystal each vibration is linear and
corresponds to the same refractive index or reflectance.

Each section of the sphere represents a uniradial section of the crystal, and each
diameter is a line of optical symmetry.

On a surface of revolution, the basal plane (perpendicular to the axis of revo-
lution) and all the main planes (parallel to the axis of revolution) are planes of
symmetry. Each of the main planes is associated with crystal sections that have
Miller indices (hk0), (h00) or (0k0) which are characterized by two lines of optical
symmetry.

The basal sections (uniradial) are associated with crystal sections (00l), and they
are characterized by infinite lines of optical symmetry.

The existence of a single line of optical symmetry implies that the two mutually
perpendicular vibrations are linearly polarized, while the basal section is indistin-
guishable from any section of an isotropic crystal.

Table 12.1 Types of sections as a function of symmetry in crystals

Section Line of
optical
symmetry

Cubic
crystals

Uniaxial
crystals

Orthorhombic
crystals

Monoclinic
crystals

Triclinic
crystals

Uniradial ∞ All
sections

Circular
sections

Symmetrical 1 Vertical
sections

(010)
(010)
(001)

2 General
sections

(h0l)
(0kl)
(hk0)

(h0l)

Asymmetrical General
sections

Other
sections

All
sections

1 Hallimond [1].
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In the ellipsoid of the orthorhombic crystals, there are three mutually perpen-
dicular planes of symmetry. All sections perpendicular to each of these planes have
at least one line of optical symmetry.

– The pinacoidal sections (h00), (0k0), (00l) have two lines of optical symmetry.
– The sections of type (h0l), (0kl) and (hk0) have an optical symmetry line. In

these sections, the two vibrations are linearly polarized and fixed for all
wavelengths of light.

– The general sections (hkl) do not have lines of optical symmetry.

In the ellipsoid of the monoclinic crystals, there is only one line of optical
symmetry.

In the ellipsoid of the triclinic crystals, there are no lines of optical symmetry.

12.2 Ellipsoid of the Indices or Optical Indicatrix
of the Transparent Crystals

The indices ellipsoid is a sphere in the isotropic crystals or minerals, and the
module of the radius vectors is n.

The indices ellipsoid is an ellipsoid in the anisotropic crystals or minerals and the
module of the radius vectors is different as n varies between two or three extreme
values:

– nx and ne, ordinary and extraordinary refractive indexes, respectively, in the
uniaxial ellipsoid coinciding with its two semi-axes.

– nc, nb, and na, with nc > nb > na, in the biaxial ellipsoid coinciding with its three
semi-axes.

12.2.1 Ellipsoid of the Indices and Indicatrix Surface
of Reflectance of the Isotropic Crystals and Minerals

When a linearly polarized vibration is transmitted or reflected from a transparent
isotropic crystal or mineral, it continues to be linearly polarized, regardless of the
orientation of the vibration.

As the refractive index is a real number and a unique value for any direction, the
optical indicatrix is a sphere.

In this surface, any section is circular–isotropic (Fig. 12.1). It corresponds with
any section of the crystal or mineral whose generic Miller indices are (h00), (0k0),
(00l), (hk0), (h0l), (0kl), (hkl).

Reflectance is also a real number, so the indicatrix surface of reflectance is a
sphere.
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12.2.2 Ellipsoid of the Indices and Indicatrix Surface
of Reflectance of the Anisotropic Crystals
and Minerals

In the anisotropic crystals and minerals, linearly polarized light is split into two
linearly polarized rays and vibrates in mutually perpendicular planes. For a normal
wave2 there are only two characteristic waves that the crystal will transmit or
reflect.

In reflection and at perpendicular incidence, the perpendicular to the surface
defines the normal wave. One can speak of two directions of vibration of a given
section if the normal wave is defined. If each of the directions of vibration of the
section is parallel to the direction of vibration of the polarizer, it is reflected as a
linearly polarized wave, i.e., its state of polarization does not change.

– Uniaxial crystals and minerals

In transparent uniaxial crystals, the ellipsoid of the indices is an ellipsoid of rev-
olution (Fig. 12.2).

In this ellipsoid, there are three special sections:

1. Circular section
Is an isotropic section, it is the optical axis section. It corresponds to sections of
the crystal or mineral with Miller indices (00l). Its refractive index nx can be
measured in any direction. It has two elliptical sections.

Fig. 12.1 Sections of the isotropic indicatrix

2 A unit vector which is perpendicular to an equiphase surface of a wave and has its positive
direction on the same side of the surface as the direction of propagation.
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2. Section parallel to optical axis (parallel to c axis), it is an anisotropic section. It
corresponds to the sections of the crystal or mineral with Miller indices (h00),
(0k0), (hk0). The refractive index ne is parallel to optical axis, and the refractive
index nx is perpendicular to optical axis. It is the most birefringent section. It is
the most pleochroic section (if the crystal or mineral is pleochroic). It is the
section showing the higher order interference colors.

3. Section inclined with respect to the optical axis, anisotropic section. It corre-
sponds to sections of the crystal or mineral with Miller indices (hkl), (0kl), (h0l).
It has two refractive indices, ne’ (between nx and ne) and nx. It can be positive or
negative (Fig. 12.3).

Fig. 12.2 Ellipsoid of the indices of uniaxial transparent crystals
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The reflectance indicatrix surface is also a revolution surface but of a higher
range than the ellipsoid of the indices.

– Biaxial crystals and minerals

The optical indicatrix is a three-axis ellipsoid with two circular sections, equally
inclined with respect to the major and minor axes of the ellipsoid. Each of the
circular sections is perpendicular to one of the optical axes. Along the optical axes,
the light does not split and the polarization state is maintained.

In orthorhombic crystals or minerals, the optical indicatrix has six possible
orientations, according to the choice of the crystallographic axes, since each one
must coincide with one of the three binary axes of the ellipsoid. In these sections,
the vibrations are linearly polarized but can be dispersed with the wavelength of
light.

There are two types of sections in the optical indicatrix (Fig. 12.4):

1. Circular sections. There are two circular sections. They are optical axis sections,
isotropic sections. They correspond to sections of the crystal or mineral whose
Miller indices depend on it. The refractive index nb can be measured in any
direction.

2. Elliptical sections. They are sections containing two axes of the ellipsoid and
anisotropic sections:

– Section Z–X (optical axial plane). This section contains the two optical axes.
It coincides with the crystal sections c–a, c–b, a–c, b–c, a–b, b–a. The Z-axis
is associated with nc. The X-axis is associated with na. It is the more bire-
fringent section. It is the more pleochroic section (if the crystal or mineral is
pleochroic). This section shows the higher order interference colors.

– Section Z–Y. It coincides with c–a, c–b, a–c, b –c, a–b, b–a. The Z-axis is
associated with nc. The Y-axis is associated with na. It contains the optic
normal which coincides with Y-axis.

– Section X–Y. It coincides with c–a, c– b, a–c, b–c, a–b, b– a. The X-axis is
associated with na. The Y-axis is associated with nb. It contains the optic
normal which coincides with Y-axis.

– Sections containing one of the three axes of the ellipsoid and sections
containing none of the axes of the ellipsoid.

(a) (b)

Fig. 12.3 Ellipsoid of the
indices, positive a and
negative b, of uniaxial
transparent crystals and
minerals
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12.3 Surface Indicatrix of Reflectance of the Absorbent
(Opaque) Crystals and Minerals

12.3.1 Surface Indicatrix of Reflectance of the Isotropic
Crystals and Minerals

In absorbent (opaque) isotropic crystals and minerals, the indicatrix equation
contains a complex number instead of a real number for the refractive index of
transparent crystals and minerals. For this reason, a three-dimensional surface
cannot be represented. However, the variation of the refractive index and absorption
coefficient with direction can be represented separately. Each of these representa-
tions gives rise to a sphere.

Fig. 12.4 Biaxial indicatrix and section types
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Reflectance is a real number and can also be represented by a sphere. The infinite
number of planes of optical symmetry shown by this surface indicates that, for each
direction, the reflected vibration is linearly polarized.

12.3.2 Surface Indicatrix of Reflectance of the Anisotropic
Crystals and Minerals

– Uniaxial crystals and minerals

In these crystals, the indicatrix surfaces for n and k are revolution surfaces of the 8th
range, and the surface indicatrix of reflectance is of the 24th range (Fig. 12.5).

On a surface of revolution, the basal plane (perpendicular to the axis of revo-
lution) and all the main planes (parallel to the axis of revolution) are planes of
symmetry. Each of the main planes is associated with crystal sections with Miller
indices (hk0), (h00), or (0k0), which are characterized by two lines of optical
symmetry.

The basal sections (uniradial) are associated with crystal sections (00l), and they
are characterized by infinite lines of optical symmetry. The existence of a single line
of optical symmetry implies that the two mutually perpendicular vibrations are
linearly polarized, while the basal section is indistinguishable from any section of
an isotropic crystal.

– Orthorhombic, monoclinic, and triclinic crystals and minerals

The indicatrix surfaces for n and k are, in general, surfaces of the 8th range, and the
surface indicatrix of reflectance is of the 24th range. Each of these surfaces has
three mutually perpendicular planes of symmetry. All sections perpendicular to one
of the planes of symmetry have at least one line of optical symmetry.

Fig. 12.5 Examples of revolution surfaces in uniaxial crystals
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– The pinacoidal sections (h00), (0k0), (00l) have two lines of optical symmetry.
– The sections (h0l), (0kl), and (hk0) have an optical symmetry line. In these

sections, the two vibrations are linearly polarized and fixed for all wavelengths
of light.

– The general sections (hkl) do not have lines of optical symmetry. In these
sections, the vibrations can be elliptically polarized and can be dispersed with
the wavelength of light. In this case, the direction of polarization and the
elliptical relationship are the same in both vibrations.

The ellipticity ratio is zero for sections perpendicular to a plane of symmetry. For
sections that are not perpendicular to a plane of symmetry, the ratio of ellipticity
increases as a function of the inclination of these sections to the plane of symmetry,
until the maximum value of the unit originating the circular polarization is reached.

There are four directions in the crystal in which light is circularly polarized, and
they are called axes of rotation or axes of circular polarization (Fig. 11.16). Due to
elliptical polarization, only the sections perpendicular to one of the three planes of
optical symmetry are geometrically representable (Fig. 12.6).

Questions

1 Indicate the characteristics of the sections of the indices ellipsoid to which
the following crystal sections relate:

(010) of a cubic mineral
(010) of a tetragonal mineral
(010) of a monoclinic mineral
(213) of a cubic mineral
(111) of a hexagonal mineral
(321) of an orthorhombic mineral
(001) of a cubic mineral
(011) of a rhombohedral mineral

(a) (b)

Fig. 12.6 Sections to be represented: a orthorhombic crystal; b monoclinic crystal
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(102) of an orthorhombic mineral

Response:
2 Indicate the generic Miller indices or another crystallographic character-

istic that allows us to perfectly identify the crystal sections corresponding
to the following sections of the indices ellipsoid:

(a) circular section of the uniaxial indices ellipsoid
(b) circular section of the biaxial indices ellipsoid
(c) circular section of the isotropic indices ellipsoid
(d) elliptical section whose semi-axes are nx and ne'
(e) elliptical section whose semi-axes are nc and nb
(f) elliptical section whose semi-axes are na' and nb'

Response:
3 Draw the optical axes on the crystal sections of a positive monoclinic

mineral which coincide, respectively, with the corresponding sections of
the indices ellipsoid Z–X, Z–Y, X–Y.

4 Write the refractive indices of a crystal section of a monoclinic mineral
which coincides with the Z–X section of the indices ellipsoid. Indicate
whether the section is isotropic or anisotropic.
Response:

5 Write the refractive indices of a crystal section of a monoclinic mineral
which coincides with the Z–X' section of the indices ellipsoid. Indicate
whether the section is isotropic or anisotropic.
Response:

6 Write the refractive indices of a crystal section of a monoclinic mineral
which coincides with the section of the indices ellipsoid perpendicular to
the normal optics. Indicate whether the section is isotropic or anisotropic.
Response:

7 Write the refractive indices of a crystal section of a monoclinic mineral
which coincides with the section Y–X of the indices ellipsoid. Indicate
whether the section is isotropic or anisotropic.
Response:

8 Write the name of the direction of the transparent crystal perpendicular to
the plane containing the optical axes.
Response:
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Chapter 13
The Polarizing Microscope

Abstract Transmission and reflection polarization microscopes are described.
Emphasis is placed on the differences in their observation and illumination systems,
such as the absence of a condenser in the reflection microscope, since the objective
acts as such in the illumination system. An illuminator makes the light coming from
the lamp deviate towards the specimen located on the microscope stage and, from it,
be reflected and pass through the objective to the eyepiece and, from it, to the eye.
The orthoscopic and conoscopic arrangement of the polarization microscope is also
described. The preparation of a thin section and a polished sample to observe the
properties of transparent minerals and opaque minerals is described with the
transmission and reflection polarization microscopes, respectively.

13.1 Polarizing Transmission Microscope

The polarizing transmission microscope is composed of (Fig. 13.1):

• Light source.
• Rotating stage (Fig. 13.2). The microscope turn stage is the surface where the

object to be examined is placed. Allows you to make turns and angle
measurements.

• Substage set. The substage set is the set of elements located under the stage.
These elements are:

– Polarizer (Fig. 13.3). The polarizer transmits light vibrating in one direction,
generally east–west. The polarizer is below the stage and above the light
source.

– Condenser lens. Condenser lenses direct a cone of light onto the object being
examined. There are two condenser lenses–Inferior condenser lens and
superior condenser lens.

– Iris diaphragm. The iris diaphragm reduces the illuminated area on the object
to be examined.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 13.1 Polarizing transmission microscope

Fig. 13.2 Rotating stage

Fig. 13.3 Polarizer
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• Analyzer. The analyzer is the polarizer located above the objective. It vibrates in
a direction perpendicular to that of the lower polarizer.

• Objectives (Fig. 13.4). Objective lens provide a real and magnified image of the
object on the stage. The objectives are characterized by:

– Magnification

Low magnification –2.5x, 5x. Increases the image 2.5 or 5 times, respec-
tively. Allows general observation of the object on the plate. Allows you to
focus on an image before using another higher magnification lens.
Medium magnification –10x, 20x.
High magnification –40x, 50x, 100x.

– Angular aperture A.A. Angle between the most divergent rays that can enter
the lens from a focused point on the plate object.

– Numerical aperture NA or NA:

NA ¼ n � sin a ð13:1Þ

where

n = index of refraction

a = maximum half-angle (Fig. 13.5)

– The resolving power (d) is the minimum distance at which two points can be
discriminated. This limit is determined by the wavelength of the illumination

Fig. 13.4 Revolver with objectives
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source, in this case visible light (400–700 nm). Optical microscopes have a
maximum resolution limit of 200 nm.

The resolving power is given by expression (13.2)

d ¼ k
2NA

ð13:2Þ

NA being the numerical aperture.

Working distance. This is the distance between the lowest part of the lens and
the highest part of the object on the plate. The greater the increase of magni-
fication and NA, the shorter the working distance. Caution should be used when
focusing.
Depth of focus. This is the power to focus in depth. It is a reverse function of the
numerical aperture.

– Accessory plates (Fig. 13.6). The accessory plates or the so-called auxiliary
plates are (a) quartz wedge (retard variable with thickness); (b) gypsum (retard
*546 nm); and (c) mica sheet (retard of 1/4 k*140 nm).

– Bertrand lenses. When inserted, they are placed on top of the analyzer (upper
polarizer). They allow observation of the interference figure in conoscopy, with
condenser lens.

– Eyepiece or ocular (Fig. 13.7). The eyepiece or ocular provides a virtual and
magnified image, usually 10x, of the lens image.
The oculars include a reticle (Fig. 13.8) that marks the directions of vibration of
the polarizers.

Fig. 13.5 Maximum
half-angle
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– Focusing screws (Fig. 13.9). The focusing screws allow focus on the object on
the stage by varying the distance between the object and the objective. There are
two screws–a macrometer with coarse adjustment and a micrometer with fine
adjustment.

(a) (b) (c)

Fig. 13.6 Accessory plates a quartz wedge, b gypsum, c mica sheet

3Fig. 13.7 Eyepiece

Fig. 13.8 Reticle wires
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13.2 Reflection Polarizing Microscope

This microscope is used to observe the properties of opaque minerals (they do not
let light through with thicknesses of up to 30 l).

Their components (Fig. 13.10) are basically the same as those of a polarizing
transmitted light microscope. The difference is that this microscope requires the
following:

– Illuminator. The illuminator is above the objectives. Its mission is twofold:

– To deviate the light from the light source through the objective to the pol-
ished sample on the microscope stage.

– To deviate the light reflected by the sample through the lens to the eyepiece.

– Objective. The objective acts as such in the observation system. It acts as a
condenser in the lighting system.

13.3 Illumination Types

The stage object may be illuminated with different arrangements of optics but, in
this chapter, only the so-called Köhler illumination and the bright field technique
are used.

Fig. 13.9 Focusing screws
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The features of Köhler illumination are as follows:

– The luminous surface of the lamp is imaged into the condenser-aperture dia-
phragm plane.

– The luminous field diaphragm is placed in a plane where a back image of the
stage object is formed.

– The stage object outside the illuminated area does not scatter light or suffer
possible harmful effects through heating, as a consequence of the previous
features. Bright-field technique consists of illuminating the object on the
microscope stage from below and to observe from above. The typical appear-
ance of a bright-field microscopy image is a dark object on a bright background,
hence the name.

Two types of illumination can be used with the polarizing microscope:
Orthoscopic and conoscopic.

– Orthoscopic illumination

Orthoscopic illumination is caused by light rays travelling parallel to each other and
perpendicular to the object on the microscope stage. In Fig. 13.11, a scheme of this
illumination type is shown.

Divergent rays from the luminous surface of the lamp intersect, after passing
through the collector, at the place where an image of the luminous surface is

Fig. 13.10 Reflection polarizing microscope
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formed, and where the aperture diaphragm1 of the condenser is located. These rays
are called principal rays. The condenser makes them parallel, and they pass through
the stage object as a cylindrical bundle, delimiting the illuminated area of the object.

The parallel rays coming from the luminous surface of the lamp are brought to
focus by the collector to its focal plane.2 In this plane, the luminous field diaphragm
is placed, and the image of the stage object is formed. These rays are marginal to the
aperture area of the condenser and converge and intersect in front of the collector,
where the luminous field diaphragm is placed. These rays are marginal to the
aperture area of the condenser, which brings them back into focus, but on the stage
object. Half the width of the aperture area corresponds to the aperture angle.

Fig. 13.11 Scheme of
orthoscopic illumination

1 Diaphragm is a thin opaque structure with an opening (aperture hole through which light travels)
at its center. Also, it is called a stop (an aperture stop, if it limits the brightness of light reaching the
focal plane, or a field stop for other uses of diaphragms in lenses). If adjustable, the diaphragm is
known as an iris diaphragm.
2 The front focal point of an optical system, by definition, has the property that any ray that passes
through it will emerge from the system parallel to the optical axis. The back focal point of the
system has the reverse property: rays that enter the system parallel to the optical axis are focused
such that they pass through the back focal point. The front and back focal planes are defined as the
planes, perpendicular to the optic axis, which pass through the front and back focal points. An
object infinitely far from the optical system forms an image at the back focal plane. For objects a
finite distance away, the image is formed at a different location, but rays that leave the object
parallel to one another cross at the back focal plane.
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With reflected light, auxiliary lenses are required because the lens plays a double
function; it acts as a condenser in the illuminating system and as a lens in the
observation system. Due to the lack of an aperture in its focal plane, a system that
includes auxiliary lenses must be adopted. In this way, the illuminating system
includes an additional plane; thus, an additional image of the luminous surface of
the lamp is formed in the plane where the aperture diaphragm of the condenser is
placed. The reflector can be placed at any level in the tube, above the objective and
below the eyepiece, if it is of plane-glass type. The part of the reflected light
microscope that lies between the lamp and the objective acting as a condenser is
called the reflected light illuminator and comprises a condenser aperture diaphragm,
a luminous field diaphragm, a reflector, and an auxiliary lens.

With reflected light and Köhler illumination, the lenses are arranged to form an
extra image both of the stage object and of the filament. This has the effect of
producing the sequence of lamp-aperture diaphragm-field stop, which is the reverse
of transmitted light.

– Conoscopic illumination

Conoscopic illumination is an optical technique to make observations of a trans-
parent object on the microscope stage in a cone of converging rays of light. When a
strongly convergent light cone is generated, parallel light rays with a wide range of
directions will pass through the crystal or mineral section. The parallel light rays are
focused on the back focal plane of the lens where the rays with different inclination
relative to the axis of the microscope produce image points at different positions.
When this image is observed with crossed polarizers, characteristic interference
figures are generated, reflecting the symmetry and optical properties of the aniso-
tropic crystals and minerals. This interference figure can also be observed directly
by removing the eyepiece and placing a small aperture fixed diaphragm where it is
best observed.

In Fig. 13.12, a scheme of this illumination type is shown.

13.4 Sample Preparation

– Thin sections

Thin sections (Fig. 13.13) are preparations for observations with transmitted light.
Preparation of thin sections consists of:

– Cementing thin sheets of rock to a glass slide.
– Gentle grinding up to a standard thickness of 30 lm.
– Cementation of a coverslip on the rock sheet.
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– Polished samples

Polished samples (Fig. 13.14) are preparations for observations with reflected light.
Preparation of polished samples consists of:

– Cutting a sample piece with a diamond saw.
– Cold-curing resin spilled on a 1.5 cm diameter by 1 cm high mould on which

the sample has been placed.
– Sample roughing, once removed, to achieve a very smooth surface and a sample

thickness of 25–30 µm.
– Polishing using diamond paste and a lubricant, to achieve a mirror polished

surface.

Fig. 13.12 Scheme of
conoscopic illumination

Fig. 13.13 Thin section
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Questions

1. Thin section used with the transmission polarizing microscope has a
standard thickness of

a. 1.5 cm
b. 30 micrometers
c. 30 millimeters
d. 15 cm

2. With the polarizing transmission microscope, an isotropic section can be
distinguished from an anisotropic section using the

a. Bertrand lens
b. accessory plate
c. iris diaphragm
d. analyzer

3. What are the names of the lenses under the microscope stage that direct a
cone of light over the object (mineral or rock preparation) to be examined?
Response:
True

4. An illuminator is a device characteristic of the polarizing transmission
microscope.
True
False

5. Write the name of the device that allows light from the light source to be
deviated through the lens to the polished sample on the stage of the
polarizing reflection microscope.
Response:

6. Does the polarizing microscope stage allow angle measurements? (Yes or
No).
Response:

Fig. 13.14 Polished sample
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7. Will when two polarizers with their perpendicular vibration directions are
inserted into the light path of the polarizing microscope either clarity or
darkness are observed?
Response:

8. The macrometer is a screw that allows centering of the object on the stage
by varying the distance between object and objective.

True
False

9. The lens provides a real magnified image of the object on the microscope
stage.

True
False

10. The eyepiece provides a virtual and magnified image of the lens image.
True
False
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Chapter 14
Optical Properties of Transparent
Crystals and Minerals

Abstract This chapter describes the properties of transparent crystals and minerals
using the transmission polarization microscope, both in orthoscopic arrangement
with polarized light and analyzed polarized light (cross-polarizers) and with cono-
scopic illumination. The concept of optical activity is defined, and the dispersion in
crystals that present it is described through the colors and figures of interference.

14.1 Orthoscopic Arrangement of the Microscope

14.1.1 Observations with Plane Polarized Light

(a) Requirements

– Low (2.5x) or medium (10x, 20x) objectives.
– The upper condenser lens must be lowered.
– The iris diaphragm must be open.

(b) Properties

– Color and pleochroism

Color is the response of the eye to the visible range (approximately 350 nm to
700 nm) of the electromagnetic spectrum.

The color of a mineral depends on its composition, structure, presence of certain
chromophore elements (Cr, Ti, Mn, Fe, Co, Ni, Cu) and small mixtures of other
phases.

When visible light interacts with a crystal or mineral it can be transmitted,
reflected, refracted, scattered or absorbed. If no component (wavelength) of light is
absorbed by the crystal or mineral, it is colourless. When certain components of
white light are absorbed by the crystal or mineral, it is coloured, and its colour results
from the combination of wavelengths of white light that have not been absorbed.

Systematic study with the transmission polarizing microscope
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One of the main causes of the colour of minerals is selective absorption. Such
absorption involves an electronic transition of an electron from the fundamental
state to the excited state (of higher energy). When the energy necessary for the
electron to transit, the absorbed energy, is within the range of visible light, it is
eliminated from the incident light and, as a consequence, the light observed by the
human eye is a combination of wavelengths transmitted by the crystal or mineral.

The electronic transitions that most condition color are those that affect the
elements of the first series of transitions, as well as some rare earths, including
neodymium and praseodymium in lanthanides and uranium in actinides. These
elements are called chromophores.

Table 14.1 shows the chromophores that cause color in some minerals.
Absorption can occur by crystal field transitions; charge transfer or the presence

of color centers.
It must be taken into account that the colour of a crystal or mineral observed with

a microscope is usually observed with polarized light and may vary slightly from its
observation with non-polarized light.

Example
Colorless as fluorite or calcite (Fig. 14.1a). Green as chlorite (Fig. 14.1b).
Brownish as augite (Fig. 14.1c).

Table 14.1 Chromophores that cause color in some minerals

Mineral Color Chromophores

Almandine garnet Red Fe2+

Emerald (beryl) Green Cr3+ and/or V3+ in octahedral coordination

Chrysoberyl Yellow Fe3+ in octahedral coordination

Zircon Various U4+

Apatite Green, yellow Rare earths (neodymium, praseodymium)

Corundum (ruby) Red Cr3+ in octahedral coordination

Corundum (sapphire) Blue Fe2+ and Ti4+ in octahedral coordination

Sinhalite Brown Fe2+

Olivine Green Fe2+ in octahedral coordination

Synthetic Spinel Blue Co2+

(a) (b) (c)

Fig. 14.1 Examples of mineral color
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Pleochroism is the change in color of a crystal or mineral with observation
direction.

It is a property that only anisotropic and coloured crystals can present, but not all
of them do.

It is due to an uneven absorption of light (selective absorption) by the coloured
crystals or minerals in different orientations; if it is large, it can be seen with the
naked eye, although it is better seen with a polariser.

Example
Cordierite is a silicate that crystallizes in the orthorhombic system and has
three extreme colors—violet yellow, lighter violet and dark blue violet—that
can be seen with the naked eye or bright field or with a polarizer (Fig. 14.2).

Two of the colors can also be observed simultaneously with a dicroscope
(Box 14.1) or a device composed of two polarizers (Fig. 14.4), each with its
direction of vibration perpendicular to the other.

Box 14.1: Dicroscope

Dicroscope is an instrument that allows simultaneous observation of the
pleochroic colors of a gem mineral.

It consists of a metal tube with a rectangular opening at one end and a lens
at the other end. A scheme of the tube can be seen in Fig. 14.3.

Inside the tube is an elongated calcite cleavage sheet that allows obser-
vation of a double image of the rectangular opening through the microscope.

Fig. 14.2 The three extreme colors that can be observed in cordierite according to orientation
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Procedure

The gem mineral to be observed is placed on a light source.
The dicroscope is brought close to the gem mineral and it is observed,

through its eyepiece, whether or not the gem mineral has pleochroism.
If the gem mineral presents pleochroism, two images will be observed—

one with each of the pleochroic colours for a certain position of the gem
mineral. In another position, other colours or only one of them may be
observed, depending on orientation and symmetry.

Absorption can vary in a similar way to refractive indices (Fig. 14.4).

– Pleochroism in uniaxial crystals

Uniaxial crystals can be selectively absorbed in:

– one direction, that of the extraordinary ray x or that of the ordinary ray e,
– two directions, that of the ordinary and extraordinary rays (see Fig. 14.5).

Both directions may not have the same amount of selective absorption. In this
case, when the crystal or mineral is rotated, it transmits different colours depending
on whether the direction of the ray x or the ray e is parallel to the direction of
vibration of the polarizer.

– Pleochroism in biaxial crystals

Biaxial crystals can have different light absorption in three directions, depending on
whether the light is vibrating parallel to nc (Z indicatrix axis associated), na (X
indicatrix axis associated), or nb (Y indicatrix axis associated).

Fig. 14.3 Dicroscope scheme showing the window in front of which the gem mineral to be
observed is located, the calcite prisms and the eyepiece
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The directions of vibration corresponding to the intermediate refractive indices
na’, nb,’ and nc’ are generally associated with intermediate absorptions or, in other
words, the same intermediate transmitted colours between those corresponding to
na and nb or nb and nc, respectively.

(a) (b) (c)

Fig. 14.5 Variation of pleochroism in a uniaxial crystal: a The color is light because it is the color
associated with the ray e is parallel to the direction of vibration of the polarizer. b The color is light
gray because it is in an intermediate direction between the rays x and e is parallel to the vibration
direction of the polarizer. c The color is dark gray because this is the color associated with the ray
x parallel to the direction of vibration of the polarizer

Fig. 14.4 Crossed polarizers
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Box 14.2: Observation procedure of pleochroism

1. Placing the microscope in an orthoscopic arrangement with polarized light
and the thin film on the slide.

2. Observong the color of the grain or mineral section.
3. Turning the grain or mineral section 45° and 90° and observe if there has

been a change in colour, i.e., if it has pleochroism.

One of the extreme colors of the section will be observed when the
direction of vibration associated with that color is parallel to the direction of
vibration of the polarizer. Turning 90° and placing the other direction of
vibration of the crystal section parallel to the polarizer, the other extreme
color will be seen. In positions intermediate to these, intermediate colors will
be seen at the extremes.

– Habit

Habit is the most common way to present a crystal or mineral. It can be prismatic,
acicular, tabular, and laminar, among others.

Box 14.3: Habit examples
Examples

See Fig. 14.6.

(a) (b) (c)

Fig. 14.6 Habit examples from cleavaged octahedrons: a Calcite rhombohedral, b garnet
octagonal and c fluorite triangular faces
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– Cleavage and angle of cleavage

Cleavage is the breaking of a crystal or mineral by particular crystal planes.
It is usually referred to by the Miller indices of the plane of cleavage, so the

octahedral cleavage is the breakage according to planes {111}, the rhombohedral
cleavage 1011

� �
, etc.

The marks left by these cleavage planes when a mineral section is cut perpen-
dicular to them are called cleavage traces.

The traces shown in section (001) of muscovite (Fig. 14.7a) are parallel and
form one cleavage system, while the cleavage traces in section (001) of plagioclase
(Fig. 14.7b) correspond to two cleavage systems with an angle about 90°.

The cleavage angle is the angle formed by two intersecting cleavage planes.
In the case of sections showing two cleavage systems, the angle between them,

the cleavage angle, can be measured, and it can be useful in distinguishing one
mineral from another.

Box 14.4: Measurement procedure of the cleavage angle

1. Placing the microscope in orthoscopic bright field arrangement and the
thin section on the microscope stage.

2. Placong the trace of a cleavage plane of a focused grain or mineral section
coinciding with one of the reticle wires, E-W, for example, and note the
angle (Fig. 14.8a).

3. Turning the grain or mineral section until the other trace of cleavage
coincides with the reticle wires, E-W, and note the angle (Fig. 14.8b).

4. Subtracting the values noted in sections (2) and (3) to obtain the cleavage
angle.

(a) (b)

Fig. 14.7 Cleavage a One cleavage system in muscovite b Two cleavage systems in plagioclase
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– Relief

The relief is related to greater or lesser appreciation of the contour of the crystal or
mineral grain. It is expressed as low, moderate, high, or very high. It is a function of
the refractive index, since the relief shows the difference between the refractive
index of the crystal or mineral and the medium in which it is embedded. The greater
the difference between the refractive indices, the greater the relief; while the lesser
the difference, the lesser the relief. Table 14.2 shows the relief of some minerals
according to their refractive index.

It cannot be determined whether the crystal or mineral or the surrounding
medium has the highest refractive index. One approach is to use Becke's line test
when the surrounding medium is known: Canada Balsam with n = 1.54 or a crystal
or mineral whose refractive index is known. To embed grains, special liquids with
well-defined n *1.4–1.8 are used.

To observe the test, the following must be in place:

– Microscope in orthoscopic arrangement and bright field.
– Half-closed iris diaphragm.
– Upper condenser lens removed.

(a) (b)

Fig. 14.8 Cleavage angle measurement a Trace of cleavage plane of a focused mineral grain
coinciding with the reticle wire E-W 48° b the other trace of cleavage plane coinciding with the
reticle wire E-W 146°

Table 14.2 Relief of some
minerals according to their
refractive index

Relief Index of refraction Example

Low 1.50 a1.58 gypsum (1.52–1.53)

Moderated 1.58–1.67 calcite (1.658–1.486)

High 1 67–1.76 corundum (1.76–1.77)

Very large > l.76 zircon (1.90–2.00)
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Box 14.5: Observation procedure of the Becke test line

1. Placing the microscope in orthoscopic arrangement with polarized light,
half-closed iris diaphragm, and upper condenser lens removed.

2. Focusing the mineral grain or section on the stage, with a crystallographic
or optical direction coinciding with the direction of vibration of the
polarizer (E-O).

3. Defocusing slightly the grain or mineral section.
4. If the defocusing is carried out by increasing the distance between the

objective and the mineral in the thin section placed on the plate, the Becke
line (bright line) will be introduced into the medium with the highest
refractive index (Fig. 14.9).

Example 1

Fluorite has a refractive index of 1.43, lower than the 1.54 of the Canada
balsam (resin used to glue the mineral or rock and the coverslip onto the
glass), and when unfocusing, the Becke bright line is outside the mineral
(Fig. 14.9).

Example 2

Anhydrite has an average refractive index of 1.58, higher than the 1.54 of the
Canada balsam and, when unfocusing, the Becke bright line is inside the
mineral (Fig. 14.10).

(a) (b)

Fig. 14.9 Fluorite a Focused in thin section b Unfocused and with the Becke bright line outside
the fluorite mineral unfocused
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In anisotropic crystals or minerals with a pronounced birefringence, such as
carbonates, it is easy to observe a change in relief when the crystal is rotated. Such
relief will be more pronounced when the direction of the crystal or mineral with
which the refractive index that shows the greatest difference with the refractive
index of the surrounding medium is associated coincides with the direction of
vibration of the polarizer (Fig. 14.11a). When the direction located at 90° with
respect to the previous direction coincides with the direction of vibration of the
polarizer, the relief will be less pronounced because the difference between the
index of refraction associated with that direction and that of the medium that
surrounds the crystal or mineral is less (Fig. 14.11b). The relief change indicates
anisotropy.

(a) (b)

Fig. 14.11 Relief in calcite: a Relief very pronounced. Short diagonal, which coincides with the
lowest refractive index, is parallel to the direction of vibration of the polarizer. b Relief low. Long
diagonal, which coincides with the highest refractive index, is parallel to the direction of vibration
of the polarizer

(a) (b)

Fig. 14.10 Anhydrite: a Focused in thin section; b unfocused and with the Becke bright line
inside the mineral
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14.1.2 Observations with Polarized and Analyzed Light

(a) Requirements

– Low (2.5x) or medium (10x, 20x) magnification objectives.
– The upper condenser lens must be lowered.
– The iris diaphragm is open.
– Analyzer inserted and rotated 90° from the polarizer, which is known as

“crossed polarizers”

(b) Properties

– Retardation

Retardation is the difference in trajectory between fast and slow rays. The advan-
tage is that the fast ray takes over the slow ray during the time it takes for the slow
ray to pass through the mineral or crystal section (Fig. 14.12). The light from the
polarizer splits into two components when it enters the crystal or mineral section.
Within this section, one of the components travels faster than the other, producing a

Fig. 14.12 Scheme showing
the difference in the path of 1/
2k between the fast and the
slow wave inside the crystal

14.1 Orthoscopic Arrangement of the Microscope 321



difference in trajectory, or retardation. When they leave the crystal, both compo-
nents maintain their directions of vibration but return to the velocity and wave-
length of light from the polarizer, keeping the retardation constant.

The retardation is symbolized by Δ and expressed by:

D ¼ c tN � tnð Þ ð14:1Þ

where

c is the light velocity in a vacuum
tN is the time required for the slow wave to pass through the crystal or mineral
tn is the time it takes for the fast wave to pass through the crystal or mineral

Considering the following relationships:

v ¼ e=t ð14:2Þ

and

n ¼ c=v ð14:3Þ

where

v is the light velocity in the crystal or mineral
c is the light velocity in vacuum
e is the thickness
t is the time
n is the refractive index

Substituting in expression (14.1) of the retardation:

D ¼ eðN � nÞ ð14:4Þ

where

e is the thickness
N is the highest refractive index associated with the slow wave
n is the lowest refractive index associated with the fast wave

Then retardation depends on the thickness and birefringence (N–n).

– Interference colors
Interference colors are the colors that are observed as a consequence of the inter-
ference of the waves when they leave the anisotropic crystal or mineral. The waves
are those that result from light splitting when it interacts with an anisotropic crystal
or mineral. They are perpendicular polarized. The interference implies that the
trajectory difference is
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2nþ 1
2

k ð14:5Þ

The resulting wave vibrates in a plane that is perpendicular to that of the
polarizer and parallel to that of the analyzer and, therefore, passes light through it.

The directions of vibration of the slow and fast wave of the mineral or crystal
section do not coincide with the directions of vibration of the polarizers.

The analyser transmits the various components of white light, i.e., the various
colours, in different ways. They depend on the retardation. A given retardation
produces a certain interference color. These colors vary with the section of aniso-
tropic crystal or mineral, because the retardation depends on the thickness and the
birefringence.

Newton scale

The Newton scale is the grouping of interference colors. It is divided into
orders—first, second, third, fourth, and higher. Each order groups a series of
colors, and each color is associated with a retardation or path difference and,
therefore, with a wavelength.

The higher the order of the interference color, the higher the birefringence.
Each section will show an interference color, which depends on the birefringence.
The section showing the highest order interference color will be the most

birefringent or very close to it. The Miller indices of this section in crystals or
uniaxial minerals are (h00), (0k0), (hk0). In crystals or biaxial minerals this section
corresponds to the Z-X section of the biaxial indicatrix (Table 14.3).

The Michel Lévy chart consists of a large range of colors, corresponding to the
interference colors, produced by the slow and fast rays when they leave the crystal.
These colors depend on the wavelength of light that passes through the analyzer and
the wavelength that is cancelled. Figure 14.13 shows the Michel Lèvy normal
vision colour chart and that of colour-blind people. The retardation is represented in
abscissa, the thickness of the crystal or mineral is represented in ordinates, and the
birefringence in the lines starting from the origin of the system. In this way, it is
possible to know approximately the retardation and, therefore, the interference
colour, thickness or birefringence of the crystal or mineral, if two of the mentioned
characteristics are known.

Table 14.3 Description of
the birefringence and its
relation to the order of the
interference colour

Birefringence Description Color order

0.00–0.018 Low First

0.018–0.036 Moderate Second

0.036–0.055 High Third

>0.055 Very large Fourth and >
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– Grains and Twins
Grains are the association of one or more crystals or minerals with different crys-
tallographic orientation. A twin is defined as two crystal individuals with a sym-
metrical relationship. Polycrystals or twins are easily recognized when it observed
in the microscope in orthoscopic arrangement and crossed polarizers, due to the
different crystallographic orientation of the individuals that form it. This is because,
in a certain position, they may show different interference colors or some may be in
extinction position and others not.

Example
See Fig. 14.14.

Fig. 14.13 Michel Lèvy colour chart1

(a) (b)

Fig. 14.14 Twined plagioclases a polarized light, b crossed polarizers

1 Sørensen [1].
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– Zoning
It is the compositional variation within a mineral. It often affects color and, between
crossed polarizers, it is observed by changes in birefringence or extinction
orientation.

Example
See Fig. 14.15.

– Alteration
It appears as an area of turbidity on feldspars or as a dark edge on olivine grains and
fractures (Fig. 14.16).

It is due to the reaction of some element of the original mineral with CO2 or with
water that is in contact with it, originating a new mineral phase.

Example

Fig. 14.15 Tourmaline zoned

Fig. 14.16 Olivine with dark
edge of alteration
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– Vibration directions
It can be said that the directions of vibration in a section of a crystal or mineral are
the directions in which slow and fast rays of light vibrate. These directions can be
located considering the concepts of addition and subtraction of retardations. For
this purpose, an accessory plate must be used, and the anisotropic section must be
on the microscope stage at 45° from the extinction position.

The addition is the sum of the retardation of the mineral or crystal section and
that of the accessory plate.

– The interference colour of the crystal or mineral section rises in order.
– It occurs when the directions of vibration of the slow and fast waves of the

mineral or crystal section coincide with those of the accessory plate
(Fig. 14.17).

Example
When a 30 lm thin section with a light blue interference color and a
retardation of 713 nm changes to blue with retardation 1263 nm when
inserting the gypsum accessory plate (retardation of 550 nm) in the micro-
scope, it is because there has been addition of retardations,
713 + 550 = 1363 nm.

The substraction is the subtraction of the retardation of the mineral or crystal
section and that of the accessory plate.

– The interference colour of the crystal or mineral section goes down in order.
– It occurs when the directions of vibration of the slow and fast waves of the

mineral or crystal section are perpendicular to those of the accessory plate
(Fig. 14.18).

(a) (b)

Fig. 14.17 Schemes showing the concept of addition. a Without accessory plate. b With
accessory plate
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Example
When a 30 lm thin section with a light blue interference color and a
retardation of 713 nm changes to gray with a retardation of 163 nm
when inserting the gypsum accessory plate (retardation of 550 nm) in the
microscope, it is because there has been a subtraction of the retardations,
713–550 = 163 nm.

– Optical sign of elongation
Elongation is the relationship between the long direction of a grain or elongated
mineral section and the direction of vibration with which the highest refractive
index of that grain is associated.

Box 14.6: Optical sign of elongation determination procedure
Determination of optical sign of elongation

The determination procedure consists of:

1. Determining the vibration directions.
2. Inserting the gypsum (550 nm) or mica (150 nm) accessory plates and

observing the interference colours, which can be compared with those in
the colour chart.

If the colours have increased in order, there has been addition of retar-
dations because, in that case, the maximum and minimum refractive indices
of the grain or mineral section coincide respectively with those of the
accessory plate.

(a) (b)

Fig. 14.18 Schemes showing the concept of subtraction. a Without accessory plate. b With
accessory plate
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If the colours have decreased in order, there has been subtraction of
retardations because, in that case, the maximum and minimum refractive
indices of the grain or mineral section do not coincide respectively with those
of the accessory plate.

– At 90° from the position where the addition of retardations occurs, there is
now a subtraction of retardations.

– At 90° from the position where subtraction of retardations occurs, there is
now addition of retardations.

– Optical sign of longation is positive if the higher refractive index coincides
with the long direction of the grain (slow length).

– Optical sign of longation is negative if the lower refractive index coincides
with the long direction of the grain (fast length).

Example

In tourmaline, subtraction of retardations occurs when the maximum refrac-
tive index (parallel to the long direction of the section) is perpendicular to that
of the accessory plate (Fig. 14.19) and the elongation is positive or the
mineral is slow length.

– Extinction and extinction angle
The extinction is the darkness that is observed as a consequence of the constructive
interference of the waves when they leave the crystal or anisotropic mineral.

The difference in the trajectory of the waves after leaving the crystal is nk. The
waves are in phase. The resulting wave vibrates in a plane that is parallel to that of
the polarizer and perpendicular to that of the analyzer and, therefore, does not pass
light through it. The directions of vibration of the slow and fast wave of the mineral
or crystal section coincide with the directions of vibration of the polarizers.

An isotropic or amorphous section remains extinct in a full rotation of the stage.

(a) (b) (c)

Fig. 14.19 Images of a section of tourmaline parallel to the optical axis a with polarized light;
b with crossed polarizers; c with crossed polarizers and gypsum accessory plate, where it can be
seen that the interference colors have decreased in order because of the subtraction of retardations
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In an anisotropic section, four extinction positions are observed, at 90° from
each other and at 45° from the clarity positions.

The types of extinction are straight or parallel, symmetrical, oblique or inclined.
Straight extinction occurs when, in a crystal or mineral section between crossed

polarizers, a crystallographic direction (cleavage trace or crystal plane trace)
coincides with an optical direction (direction of vibration of the crystal or mineral
section (Fig. 14.20a).

Straight extinction is observed when the crystallographic direction of the mineral
or crystal section in extinction position coincides with one of the wires of the
crosshair, which indicates the direction of vibration of one of the polarizers.

Symmetrical extinction is similar to parallel extinction but, in this case,
extinction is observed when the crystallographic direction is diagonal to the
vibration directions of the crystal or mineral section (Fig. 14.20c).

Straight and symmetrical extinction is presented by uniaxial crystals and the
sections cut parallel to (100), (010), and (001) of orthorhombic crystals and the
section cut parallel to (010) of monoclinic crystals.

Oblique or inclined extinction is observed when a crystallographic direction
(cleavage trace or crystal plane) does not coincide with an optical direction (di-
rection of vibration of the crystal or mineral section) (Fig. 14.20c). Oblique
extinction is presented by biaxial crystals and minerals.

The extinction angle is the angle between a direction of vibration of the mineral
section and a crystallographic direction (crystal or cleavage face trace).

(a) (b) (c)

Fig. 14.20 Extinction types a straight, b symmetrical, and c oblique or inclined
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Box 14.7: Extinction angle determination procedure
Determination of the extinction angle

The determination procedure consists of:

– Placing the mineral section in the extinction position (crossed polarizers)
and noting the degrees of the microscope stage.

– Then placing the mineral section with a crystallographic direction parallel
to the direction of vibration of the polarizer and noting the position on the
stage.

Example

The mineral section of Fig. 14.21a has a crystallographic direction parallel to
the lower polarizer E-W and, in this position (311.25°), the section is not in
extinction (14.21b). The extinction occurs when the section is at 275°
(14.21c). Therefore, the extinction angle is the difference between 311.25°–
275° = 36.25°.

14.2 Conoscopic Microscope Arrangement

(a) Requirements

– High magnification objective (>50x).
– Superior condenser lenses.
– Open iris diaphragm open.
– Analyzer inserted and rotated 90° from the polarizer.
– Bertrand lenses inserted.

(a) (b) (c)

Fig 14.21 a Mineral section with a crystallographic direction parallel to the lower polarizer E-W
(position at 311.25°); b the same mineral section as (a) with crossed polarizers; c mineral section
placed at the extinction position (275°)
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(b) Properties

– Interference figures

An interference figure is formed in transparent anisotropic crystals or minerals by
the interference of light.

The interference figure is very important in determining optical characteristics of
a crystal or mineral—uniaxial or biaxial, optical sign or optical character (positive
or negative), 2 V angle for biaxial—and even for estimating mineral chemistry.

The interferencefigure consists ofmelatope, isogyres, and isochromes (Fig. 14.22).

– Melatope is the point of emergence of the optic axis or optical axes.
– Isogyres are the extinguished zones that correspond to areas of the crystal or

mineral where the directions of vibration coincide with those of the polarizer
and analyzer.

– Isochromes are the zones of equal interference color (or retardation) that cor-
respond to areas of the crystal or mineral where their directions of vibration do
not coincide with those of the polarizer and analyzer.

Each section of an anisotropic crystal or mineral produces an interference figure
with different aspect.

– Interference figures of uniaxial crystals (tetragonal, hexagonal, and
rhombohedral)

– Figures with centered optical axis

This figure is presented by the sections perpendicular to the optical axis (parallel
to the crystallographic axis c) and does not change in a complete turn of the stage
(Fig. 14.23). The Miller indices of these sections are (00l).

(a) (b)

Fig. 14.22 Interference figures showing the melatopes, isogyres, and isochromes a uniaxial
interference figure; b biaxial interference figure (adapted from Olaf Medenbach (https://homepage.
ruhr-uni-bochum.de/olaf.medenbach/) with permission)
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– Flash figure

A flash figure, also known as an optic normal figure, is present in the sections
parallel to the optical axis (Fig. 14.24). The Miller indices for these sections in
uniaxial systems are (h00), (0k0), and (hk0).

– Off-center optical axis interference figure

The off-center optical axis interference figure is present in the sections that form an
angle different from 0° or 90° with the optic axis (Fig. 14.25). The Miller indices of
these sections are (hkl).

Fig. 14.23 Centered optical axis uniaxial interference figure (from Olaf Medenbach with
permission)

Fig. 14.24 Flash interference figure at 0° and 45°. The bottom shows a real flash figure
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– Interference figures of biaxial crystals or minerals (orthorhombic, mono-
clinic and triclinic)

– Centered acute bisectrix interference figure

This figure is observed in sections perpendicular to the acute bisectrix—the Z axis if
the crystal is (+) or the X axis if the crystal is (−). The two branches of isogyres are
clearly different, one branch being broader than the other (Fig. 14.26a). When the
microscope stage is turned, the cross is transformed into two hyperbolic curves that
move away from each other and come together again (Fig. 14.26b).

Fig. 14.25 Off-centre optical axis interference figure in uniaxial systems at different turning
positions of the microscope stage

(a) (b)

Fig. 14.26 Centered acute bisectrix interference figure: a Extinction position. b 45° off extinction
position (from Olaf Medenbach with permission)
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– Centered optical axis interference figure

This figure is observed in sections that are perpendicular to one of the optical axes
of the crystal or mineral (Fig. 14.27).

– Flash figure

The flash figure is observed in sections perpendicular to the normal optic (Y axis
perpendicular to the optical plane). It is not easy to distinguish it from the uniaxial
flash figure.

Box 14.8: Formation of interference figures

The shape of isogyres and isochromes can be understood by relating the
directions of propagation of the convergent rays in the crystal to those in the
indicatrix. In doing so, the following must be considered:

– In the anisotropic indicatrix, each section represents one of the crystals in
which the light propagates perpendicularly to it.

Fig. 14.27 Optical axis biaxial interference figure centred on different rotation positions
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– The components in which the light is split vibrate perpendicularly and are
associated with the semi-axes of the corresponding section of the
indicatrix.

– At each point in the interference figure, a convergent ray, perpendicular to
a given section of the indicatrix, will strike.

– Considering the uniaxial indicatrix as an example, in each section the
semi-axes are associated with the directions of the extreme refractive
indices.

– In each section, two wave normals with different obliquity, WN1 and
WN2, can also be considered (Fig. 14.28).

– A normal wave is perpendicular to a wave front (surface that joins wave
points that are in phase).

– In an isotropic crystal, the normal wave and the direction of propagation
coincide.

– In an anisotropic crystal, the normal wave and the direction of pro-
pogration do not coincide.

– Each normal is perpendicular to a section of the indicatrix and has a
common direction of vibration, corresponding to the ordinary ray
(Fig. 14.29).

Fig. 14.28 Section parallel to the optical axis showing the wave normals, WN1 and WN2, with
different obliquity
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– Its associated refractive index, nx, is perpendicular to the section.
– The other index of refraction, ne’, lies in the said section.
– The birefringence is higher in Fig. 14.29b and, therefore, the retardation is

too, and the interference colour will be of higher order.
– The birefringence of each indicatrix section of Fig. 14.30 is different,

increasing as it moves away from the center of the field of view.

– The isogyres will correspond to the points where the sections have their
semi-axes (associated with the extreme refractive indices of the section)
coinciding with the directions of vibration of the polarizers (Figs. 14.29
and 14.30).

– The isochromes will correspond to the points where the birefringence is
the same and the directions of the refractive indices do not coincide with
the directions of vibration of the polarizers (Fig. 14.31).

(a) (b)

Fig. 14.29 Sections perpendicular to the normal wave WN1 (a) and WN2 (b), showing the
associated refractive indices

Fig. 14.30 Scheme showing
the rays (1, 2, 3, 4) coming
from the light source striking
the sample on the microscope
stage with different obliquity.
Each would be perpendicular
to a section of the optical
indicatrix
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– Optic sign

The optic sign or optical character of a crystal or mineral can be positive (+) or
negative (−).

– Uniaxial crystals or minerals are

(+) when ne > nx
(−) when nx > ne

– Biaxial crystals or minerals are

(+) when nc > na and nb approaches na
(−) when na > nc and nb approaches nc

The optic sign can be determined by different methods. In Box 14.8, the
determination procedure of the refractive index from the interference figure is
exposed.

Box 14.9: Determination procedure of optic sign

The determination procedure consists of:

– Arranging the microscope to observe the interference figure (conoscopy,
crossed polarizers, Betrand lens).

– Inserting the accessory plate (1st order red, gypsum) into the light path.
– Observing the quadrants where there has been addition or subtraction of

retardation.

Fig. 14.31 Scheme of
isogyres and isochromes
formation
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If, in quadrants 2 and 4, there has been subtraction of retardation, a yellow
color will be observed when the thickness of the thin section on the micro-
scope is 30 lm. In this case, the optical sign is positive (+), the imaginary line
that joins the said quadrants is perpendicular to the direction indicated on the
accessory plate for its maximum index, and the maximum refractive index of
the mineral section is perpendicular to that of the accessory plate (Fig. 14.32).

In the two opposite quadrants, SE-NW, there is addition of the retardation,
and a blue color is in the NE-SW quadrants.

If, in the NE-SW quadrants, there has been subtraction of retardation, the
sign is (−) (Fig. 14.33). The imaginary line that joins the said quadrants is
parallel to the direction indicated on the accessory plate for its maximum
index, and the maximum refractive index of the mineral section is perpen-
dicular to that of the accessory plate.

Example

Figure 14.34 shows the interference figure of a uniaxial positive crystal
without accessory plate (a) and with gypsum accessory plate (b). Subtraction
of retardation can be observed in the NE-SW quadrants, and the imaginary
line that joins them is parallel to the direction corresponding to maximum
refractive index of the accessory plate so that the maximum refractive index
of the mineral section is perpendicular to that of the accessory plate.

Fig. 14.32 Determination of the optic sign of a positive crystal with gypsum (1st order red)
accessory plate

Fig. 14.33 Determination of the optic sign of a negative crystal with gypsum accessory plate
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– Optic angle

The optic angle, 2 V, is the angle between the two optic axes in biaxial crystals or
minerals.

It is necessary to distinguish between the angle 2 V and the apparent angle, 2E.
The apparent optic angle, 2E, is the distance separating the two melatopes in an

acute bisectrix interference figure, at 45° from extinction position (Fig. 14.35).
This distance depends on 2 V and the refractive index nb, the refractive index

associated to light rays moving along the optic axes. These rays are refracted when
they come out of the crystal or mineral at an angle, 2E, which is greater than the
2 V angle (Fig. 14.36).

(a) (b)

Fig. 14.34 Interference figure of a uniaxial positive crystal without accessory plate (a) and with
gypsum accessory plate (b)

Fig. 14.35 2E measurement
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14.3 Optical Activity

A section perpendicular to the optical axis of the quartz cut, thicker than the
standard, shows a characteristic that cannot be explained through the theory of
optical indicatrix. It is the ability to rotate the direction of vibration of the incident
beam along certain directions during transmission.

This phenomenon can be seen in the quartz interference figure (Fig. 14.37), in
which a cross appears more or less diffused in the centre of the figure, depending on
the thickness of the section in which it is observed.

Any crystal belonging to one of the 11 enantiomorphic point groups
(Table 14.4), such as quartz, will exhibit optical activity.

Fig. 14.36 Relation between the angles 2E and 2 V, representing the refraction of two rays that
propagate along the optical axes OA1 and OA2 within the crystal or mineral section

Fig. 14.37 Quartz interfer-
ence figure (section thickness
of 1 mm) (adapted from Olaf
Medenbach with permission)

Table 14.4 Specific groups associated with optical activity

1 2 3 4 6 23 222 32 422 622 432
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A right-hand crystal rotates the vibration counterclockwise. A left-hand crystal
rotates the vibration clockwise.

The Airy spirals are the spirals of light visible when polarized light passes
through two plates of left-handed and right-handed quartz between crossed polar-
izers. (Fig. 14.38).

14.4 Dispersion

The variation of refractive index with the k can be observed in the colors and
figures of interference.

– Isotropic crystal dispersion

The types of dispersion that can occur in isotropic crystals are normal and
anomalous dispersion. It is usually studied by direct observations of n variation,
using monochromatic light of different k.

– Uniaxial crystal dispersion

The types of dispersion in uniaxial crystals are normal, anomalous, and birefrin-
gence dispersion.

The variation in the main refractive indices may be different for different k. It
implies possible variation in the shape and size of the indicatrix with the k. The
consequence is that it can change the optic sign in the visible spectrum.

For most crystals, the dispersion of the birefringence is usually small and is
considered negligible. If this is significant, it can be detected by measuring
refractive indices very accurately at different k and also by the effects of interfer-
ence colours observed in white light.

A uniaxial crystal that presents dispersion is characterized by a family of indi-
catrixes, each corresponding to a specific k. The direction of the optical axis of each
of the indicatrixes of this family is maintained for each k, due to the symmetry of
the crystal.

Fig. 14.38 Airy spiral in a
composite section with right
and left handed quartz super-
imposed (adapted from Olaf
Medenbach with permission)
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Although there is no dispersion of the orientation of the indicatrix in uniaxial
crystals, the other two types of dispersion remain.

– Biaxial crystal dispersion

The types of dispersion that can occur are normal, anomalous, birefringence, optical
axis, optical axial plane, and orientation of the optical indicatrix.

The size and shape of this indicatrix can vary with k. The symmetry exerts
control over its orientation.

The biaxial indicatrix is characterized by three binary axes, each perpendicular to
a plane of optical symmetry, and it coincides with one of the main axes. In the
orthorhombic system, there are three binary axes of symmetry, so there are six
possible crystallographic orientations of the optical indicatrix, and each
orthorhombic crystal has one of these orientations. In the monoclinic system, there
is only one axis of binary symmetry and one of the main axes of the indicatrix must
be parallel to it so that the indicatrix has the freedom to rotate around this fixed axis
in any position and, for a given crystal, this position must be defined. In the triclinic
system, there is no binary axis of symmetry, and the indicatrix can have any
orientation.

The dispersion of optical properties with the k is a general phenomenon, as it has
been exposed; however, only in certain transparent crystals or minerals is the effect
strong enough to be visible in the figure of interference, being able to appreciate
bands of color in the isogyres.

The amount of dispersion can be sorted into the following:

– noticeable, if the isogyres show a slight coloring at the edges
– weak, if this coloration is more noticeable
– strong, if the coloration is stronger
– extreme, when the colored fringes cover a large part of the microscope field

– Dispersion in orthorhombic crystals

In the orthorhombic indicatrix, there is an independent variation of the three
semi-axes X, Y, and Z, implying variation of the partial and total birefringences.
Variation of the partial birefringence implies variation of the angle 2 V, dispersion
of the angle 2 V, or dispersion of the optical axes. The dispersion of the optical
axes in biaxial crystals is expressed by the dispersion formula r > v (Fig. 14.39) or
v > r, which states whether the optical angle for red is greater or less than the
optical angle for violet.
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Example
Dispersion r > v (Fig. 14.39).

The visible results of this kind of dispersion can be seen in the acute bisectrix
interference figures. There may or may not be a change in the optical axial plane if
the 2 V angle exceeds 0°. This means that there may be dispersion of the axial
optical plane and change of optical sign.

Example
An example of axial plane dispersion is shown using brookite (Fig. 14.40).

The refractive index associated with the direction of vibration parallel to
the c-axis is na for k less than 550 nm; nb for k less than 550 nm; and
uniaxial for k = 550 nm.

(a) (b)

Fig. 14.39 Interference figure of orthorhombic crystal, cerussite (PbCO3), with strong dispersión
(r > v), a extinction position, b at 45° from the extintion position (adapted from Olaf Medenbach
with permission)
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– Dispersion in monoclinic crystals

In monoclinic crystals, the ellipsoid can rotate around the binary axis, and this
implies that there may be dispersion of the orientation of the indicatrix, which is
called bisectrix dispersion.

Only one of the main axes X, Y, or Z coincides with the only axis of symmetry
for each; the other two axes must lie in the plane of crystallographic symmetry.
There are three possibilities:

1. Acute bisectrix coincides with the crystallographic axis b, and the obtuse
bisectrix and the normal optic lie in the plane of crystallographic symmetry.

2. Obtuse bisectrix coincides with crystallographic axis b, and the acute bisectrix
and the normal optical lie in the plane of crystallographic symmetry.

3. Normal optics coincides with the crystallographic axis b, and the acute and
obtuse bisectrixes lie in the plane of crystallographic symmetry.

With marked dispersion, in the interference figures, the blue fringes mark the
output of the optical axes for red, and the red fringes mark the outputs of the optical
axes for violet. The following types of dispersion can be observed:

Cross-dispersion when the crystallographic axis b coincides with the acute
bisectrix.

(a) (b)

(c) (d) (e)

Fig. 14.40 Dispersion of the axial plane in brookite. a Dispersion of refractive indices; b the
interference figure of brookite in white light; c interference figure for the blue light with the axial
plane north–south direction, d interference figure of centered optic axis and e interference figure
for red light with the axial plane east–west direction (adapted from Olaf Medenbach with
permission)

344 14 Optical Properties of Transparent Crystals and Minerals



Example
An example of axial plane dispersion is shown using heulandite (Fig. 14.41).

Parallel or horizontal dispersion when the crystallographic axis b coincides with
the obtuse bisectrix.

Example
An example of axial plane dispersion is shown by low temperature sanidine
(Fig. 14.42).

Inclined dispersion when the crystallographic axis b coincides with the optical
normal.

(a) (b)

Fig. 14.41 Interference figure of orthorhombic crystal, heulandite (CaAl2Si7O18), with
cross-dispersión (r > v). The area of the isogyres where the optical axes come out for the red is
coloured blue and the area of the isogyres where the optical axes come out for the blue is coloured
red. a Extinction position. b At 45° from the extinction position (adapted from Olaf Medenbach
with permission)

(a) (b)

Fig. 14.42 Interference figure of monoclinic crystal, low temperature sanidine (KAlSi3O8), with
horizontal dispersion. a Extinction position, b at 45° from the extinction position (adapted from
Medenbach Olaf with permission)
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Example
An example of inclined dispersion is shown by high temperature sanidine
(Fig. 14.43).

(a) (b)

Fig. 14.43 Interference figure of a monoclinic crystal, high temperature sanidine (KAlSi3O8) with
inclined dispersion. a Extinction position, b at 45° from the extinction position (adapted from
Medenbach Olaf with permission)

Example
In Fig. 14.44, the interference figure of a monoclinic crystal with extreme
inclined dispersion is shown.

(a) (b)

(c) (d) (e)

Fig. 14.44 Interference figures of a monoclinic crystal with extreme inclined dispersion. a 2 V
angle for blue, green and red light. b Interference figure with white light. c Uniaxial interference
figure with red light. d Biaxial interference figure with green light. e Biaxial interference figure
with blue light (adapted from Olaf Medenbach with permission)
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Dispersion in triclinic crystals

In the interference figure of a triclinic crystal, there is no correlation to symmetry. In
these crystals, the crystallographic axes do not generally coincide with the optical
directions.

The index ellipsoid can have any orientation with the wavelength so that no
symmetry is observed in the interference figure.

These crystals may present dispersion of optical axes and dispersion of the
principal vibration directions.

Example
Figure 14.45 presents the dispersion of axial plane for blue, green, and red
light.

(a) (b)

(c) (d) (e)

Fig. 14.45 Dispersion of a triclinic crystal. a 2 V angle for blue, green, and red light.
b Interference figure in white light. c Interference figure for blue light showing the axial plane
direction. d Interference figure of centered optic axis showing the axial plane direction.
e Interference figure for red light showing the axial plane direction (adapted from Olaf Medenbach
with permission)
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Exercises

1. Staurolite

Figure E1 shows the relationship between the crystallographic and optical
directions of a staurolite crystal. (a) Indicate the most birefringent section and
the section containing the optical axes. (b) Indicate if there is addition or
subtraction and annotate the retardation when the section with yellow inter-
ference color of first order and retardation of 325 nm is observed with crossed
polarizers and the gypsum accessory plate and shows a yellow color of
second order.

2. Anisotropy, addition, and substraction of retardation

Materials

– Polarizing film
– Anisotropic transparent adhesive tape
– Glass slide

Procedure

(1) Paste a piece of tape in the glass slide.
(2) Place the glass slide between two polarizing films rotated 90° from each

other and turn the slide or the upper polarizer to observe the extinction
(Fig. E2).

Fig. E1 Relationship between the crystallographic and optical directions of a staurolite crystal
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(3) Turn the slide or the upper polarizing film to observe the interference
color (Fig. E3).

(4) Annotate the interference color and its retardation, using the Michel Lévy
chart (Fig. 14.12a).

(5) Place another tape layer over the previous one, with the same orientation.
Observe with the crossed polarizers the interference color and the retar-
dation in the Michel Lévy chart (Fig. E4). Check that it is double of the
previous one. There has been addition (sum of retardation). The expla-
nation is that both tape slides have the same thickness, and as they are
parallel, their directions of vibration coincide. The second sheet would
have acted as an accessory plate with respect to the first.

(6) Place another tape layer oriented perpendicularly over the previous one.
Observe with the crossed polarizers the color of interference (Fig. E5).
Observe the retardation in the Michel Lévy chart. Check that it is half of
the previous one. There has been subtraction (subtraction of retardation).
The explanation is that both adhesive tapes have the same thickness and,
as they are perpendicular, their vibration directions do not coincide. The
second tape would also have acted as an accessory plate with respect to
the first.

Fig. E2 Glass slide between
two crossed polarizing films

Fig. E3 Tape layer at 45°
extinction position and
between crossed polarizers

Fig. E4 Tape layer over the
previous one with the same
orientation, at 45° extinction
position and between crossed
polarizers
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(7)
(a) Make schemes indicating the directions of vibration of the polarizers

and the adhesive tape, and give the appropriate explanations of how
they are related in the different events (2°, 3°, 4°, 5°, and 6°).

(b) What is the retardation in tape?

Questions

1. In a uniaxial crystal or mineral, the section with higher-order interference
colors is the one containing refractive indices

a. maximum and intermediate of the crystal.
b. maximum and minimum of the crystal.
c. minimum and other intermediate between major and intermediate.
d. intermediate and minimum of the crystal.

2. The image in Fig. 14.6 shows the observation of a transparent mineral
section under the transmission polarizing microscope, with cross polar-
izers. The observed colors occur because the section is

a. anisotropic of a cubic system crystal or mineral.
b. isotropic of a cubic system crystal or mineral.
c. isotropic of a crystal or mineral of any crystal system other than

cubic.
d. anisotropic of a mineral of any crystal system other than cubic.

Fig. E5 Tape layer oriented
perpendicularly over the pre-
vious one, at 45° extinction
position and between crossed
polarizers

Fig. E6 Transparent mineral
section under the transmission
polarizing microscope, with
cross polar izers.
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3. Ruby, the red variety of corundum, is a mineral that crystallizes in the
rhombohedral system. The refractive indices have been measured in sev-
eral crystal sections, and the maximum and minimum values obtained are
nmax = 1.77 and nmin = 1.76. The maximum value has been constant in all
sections. Select the answer you think is most correct to define that mineral.

a. birefringent with two extreme refractive indices
b. monorefringent
c. birefringent with three extreme refractive indices
d. birefringent with an extreme refractive index

4. Ruby, the red variety of corundum, is a mineral that crystallizes in the
rhombohedral system. The refractive indices have been measured in
several crystal sections, and the maximum and minimum values obtained
are nmax = 1.77 and nmin = 1.76. The maximum value has been constant
in all sections. The refractive index (indices) that could have been mea-
sured in the section perpendicular to the optical axis (axes) could have
been

a. ηmax

b. one intermediate index between nmin and nmax

c. nmin

d. nmin and nma

5. Can a red mineral be isotropic? (Yes or no).

Response:

6. Can a red mineral with a single refractive index value be isotropic? (Yes
or no).

Response:

7. Indicate the optical character (isotropic or anisotropic) of a mineral that
crystallizes in the hexagonal system.

Response:

8. Of what order will the interference colors of a monorefringent crystal with
very low birefringence be?
Respond with one of the following terms: high, low, medium.

Response:
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9. What is the name of the type of extinction observed in a mineral section
when some trace of cleavage or crystal plane of the same does not
coincide with one of its directions of vibration?

Response:

10. The epidote, Ca2Fe
3+Al2(OH)Si3O12, crystallizes in the monoclinic sys-

tem with the Y axis of the indicatrix coinciding with the crystallographic
axis b. It is colourless to pale yellowish green. The optical sign is negative
and the refractive indices are nc = 1.734, nb s 1.725, na = 1.715.
What optical property is related to the fact that the acute bisectrix coin-
cides with the X axis of the optical indicatrix?

Response:

11. What are Miller indices of the uniaxial section that displays the flash
figure, and what section of the uniaxial indicatrix is it related to?

Response:

12. Write the Miller indices of the most birefringent section of a uniaxial
mineral or, in the case of biaxial minerals, by means of the term axial
(since in these minerals the most birefringent section contains the two
optical axes, i.e., that of the optical axial plane), of the following minerals:
Fluorite (cubic), calcite (rhombohedral), beryl (hexagonal), sanidine
(monoclinic), topaz (orthorhombic).

Response:

13. The optical sign of a mineral can vary with the wavelength if refractive
indices change.

True
False

14. Write the Miller indices for the more birefringent section of a tetragonal
crystal.

Response:

15. The centered optic axis interference figure is shown by the sections

a. perpendicular to normal optics
b. perpendicular to optical axis(s)
c. perpendicular to obtuse bisectrix
d. perpendicular to acute bisectrix
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Chapter 15
Optical Properties of Opaque Crystals

Systematic Study with a Polarizing Reflection
Microscope

Abstract In this chapter, the properties of opaque crystals and minerals using the
reflection polarization microscope are described, both in orthoscopic arrangement
with polarized light and analyzed polarized light (cross-polarizers) and with
conoscopic light. The dispersion of the reflectance and its relation with the color in
reflection is described. In the case of anisotropic crystalline sections, the different
dispersion of both reflectances and their relation with the reflection pleochroism is
described.

15.1 Orthoscopic Arrangement of the Microscope

15.1.1 Observations with Polarized Light

(a) Requirements

– Low (2.5x) or medium (10x, 20x) magnification objectives.

(b) Properties

– Color

The color in reflection under the microscope is due to the scattering of the reflec-
tance with the wavelength and can be expressed quantitatively by means of the
scattering curve in the visible range of the electromagnetic spectrum. It varies
between gray and white, with different shades. The color of a given mineral may
appear different, depending on the minerals around it.
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Example
Blue (Fig. 15.1).

Yellow (Fig. 15.2).

Fig. 15.1 Covellite (2.5x,
polarized light)

Fig. 15.2 Chalcopyrite (2.5x,
polarized light)
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Light yellow (Fig. 15.3).

Coppery red (Fig. 15.4).

Orange-yellow (Fig. 15.5).

Fig. 15.3 Pyrite (2.5x, polarized light)

Fig. 15.4 Copper (2.5x,
polarized light)

Fig. 15.5 Nickelite (2.5x,
polarized light)
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– Hardness and relief

These are relative terms. When two minerals have similar hardness, they show very
weak boundaries, indicating there is no difference in relief between them. However,
when a mineral is harder than a neighboring one, polishing lowers the softer one
and highlights the harder one.

At the junction of a hard and a soft mineral grain, there tends to be a kind of step
that makes the bright line of Kalb visible.

Soft minerals, below 2 on the Mohs scale, acquire a smooth and bright polish.
Examples are stibnite and covellite. However, in molybdenite or graphite, it is
difficult to remove the grainy, matte appearance.

Minerals with medium hardness, 3–5 Mohs scale, polish well and quickly.
Hard minerals, above 5, as in magnetite, ilmenite, or nickel, acquire a soft polish

quickly, while in arsenopyrite or wolframite, more polishing time is required to
remove surface irregularities.

In general, soft minerals maintain a finely striped pattern until the end of the
polishing. Medium-hard minerals generally show a homogeneous polished surface,
and hard minerals show the marks of the coarser abrasive used in polishing.

Differences in the behavior of minerals when polishing often make it difficult to
obtain a well-polished specimen.

The Kalb line is a bright line that appears at the junction between two soft
minerals and a harder one. It allows us to determine which is harder and which is
softer.

Box 15.1. Observation Procedure of the Kalb Line
The observation procedure consists of the following:

1. Focusing on the mineral section.
2. Defocusing slightly on the mineral section; increasing the distance

between the objective and the section on the microscope stage.
In this situation, the bright line of Kalb will be observed and will be
introduced into the softer mineral.
It will be introduced in the harder mineral by decreasing the distance
between the objective and the mineral section.
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– Cleavage and Parting

Example
Hematite (Fig. 15.6).

Galena
Galena displays a characteristic triangular parting that appears as a result of
polishing (Fig. 15.7).

Fig. 15.6 Cleavage in
hematites (2.5x, polarized
light)

Fig. 15.7 Cleavage in galena
(20x, polarized light)

– Exsolution

Exsolution is the process through which a solid solution separates into at least two
different minerals. The component in smaller proportion is usually included in the
one that is in greater proportion. Exsolution is best observed with crossed polarizers.
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Example
Ilmenite (Fig. 15.8).

– Form

Form is a morphological character that can sometimes be useful in the study of
opaque minerals. Many metallic minerals seem to have no defined shape
(xenomorphic). Others are presented with well-defined shapes (idiomorphic). They
are usually the hardest minerals. Those with high melting temperatures tend to
develop crystal habits (idiomorphic). Certain minerals have a very marked tendency
toward idiomorphism when isolated, such as pyrite and magnetite, or separate groups
with rounded edges. There are minerals that are elongated or flattened, such as
covellite, molybdenite, or hematites, for example. Others are irregular in shape and
are called allotriomorphic, such as sphalerite, galena, nickelite, bornite, chalcopyrite,
and chalcocite. Some minerals formed at low temperatures tend to show colloidal
textures consisting of aggregates arranged in concentric, often convex or spherulitic
layers, with an opal-like appearance. Example includes goethite and sphalerite.

This property is related to the origin of the mineral but is sometimes so constant
that it is very useful to identify it.

– Inclusions

Inclusions can be solid, liquid, or gaseous phases trapped in the host mineral. They
are formed before (protogenetic), during (syngenetic), or after (epigenetic) the host
mineral.

– Grains and Twins

Twins and grains are best observed with crossed polarizers.

Fig. 15.8 Exsolution of
hematite in ilmenite (20x,
polarized light)
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– Reflection pleochroism

Reflection pleochroism is a color variation or color intensity with direction, and it is
due to the difference in dispersion with the wavelength of the reflectances of the
mineral.

Example
Covellite
Very pronounced reflection pleochroism (Fig. 15.9).

Ilmenite
Moderate reflection pleochroism (Fig. 15.10).

(a) 2.5x, polarized light. (b) 2.5x, polarized light and turned 90º. 

Fig. 15.9 Very pronounced reflection pleochroism in covellite

Fig. 15.10 Moderate
reflection pleochroism in
ilmenite (2.5x, polarized
light)
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Marcasite
Weak reflection pleochroism (Fig. 15.11).

(a) 2.5x, polarized light (b) 2.5x, polarized light and turned 90º

Fig. 15.11 Weak reflection pleochroism in marcasite

– Bireflection

Bireflection is the change in light intensity with direction. It is a manifestation of
anisotropy. It depends on the difference between the two reflectances. The maxi-
mum bireflection of a section does not have to coincide with the maximum of the
mineral. Only the vertical section of a uniaxial mineral and the section parallel to
the maximum and minimum reflectances of an orthorhombic, monoclinic, or tri-
clinic mineral will show the maximum bireflection for the mineral in question.

When bireflection is observed well defined in a mineral, it can be useful to relate
the principal vibration directions with visible morphological characteristics such as
exfoliation.

It is difficult to estimate bireflection, but three degrees can be distinguished:

1. Strong to medium bireflection: Strong, as in molybdenite, covellite, marcasite,
and stibnite; medium, as in ilmenite, pyrrhotite, and nickel

2. Weak bireflection: Lollingite, arsenopyrite, and hematite.
3. Very weak bireflection: Chalcopyrite.

– Reflectance

Reflectance represents the amount of light that is absorbed as it passes through
successive layers of constant thickness in the mineral. Reflectance is the ratio
between reflected light and incident light, expressed as a percentage.
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R% ¼ IR=II: ð15:1Þ

Reflectance depends on the refractive index of the mineral, the refractive index
of the medium in which it is found, the section orientation, and the absorption
coefficient, in the case of opaque minerals.

Eye estimation can quickly establish an order of reflectance in ore minerals in a
test tube, although it can be affected by color differences.

Reflectance in white light is categorized as follows:

Reflectance Examples

Very high Native elements such as platinium (71%), gold (72%), silver (85%), löllingite
(53.5%), safflorite (53%), arsenopyrite and marcasite (52%), pyrite (51%)

Medium to
high

Stibnite (47%), galena (43%), molybdenite (42%)

Medium to
low

Hematite (30%), covellite (23%), digenite (22%)

Low Ilmenite (19%), goethite (18%)

– Zoning
Zoning consists of compositional variation due to the segregation of the chemical
components during crystal growth. Color and other optical properties may vary as a
result. Zoning is best observed with crossed polarizers.

15.2 Observations with Crossed Polarizers (Polarized
and Analyzed Light)

(a) Requirements

– Low (2.5x) or medium (10x) magnification objectives.
– Analyzer inserted and rotated 90° from the polarizer (crossed polarizers, like

in transmission).

(b) Properties

Some properties such as exolution, twinning, or zoning are often better appreciated
with cross-polarizers.

– Internal reflections

Internal reflections are reflections produced by light reflected from, for example,
inclusions and fractures, of the mineral, when it is not totally opaque.
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Example
See Fig. 15.12.

Fig. 15.12 Internal
reflections in cinnabar
(2.5x, cross-polarizers)

– Isotropy-Anisotropy

In optical isotropic minerals, the sections are extinct in a full stage rotation.
Extinction in reflection does not imply total darkness, as occurs with crystals or
transparent minerals in transmission. Some light is transmitted by the analyser, as a
consequence of the weak ellipticity produced in the reflection of such minerals
when the incident light is not totally perpendicular to the surface. However, the
intensity of such light is the same in a complete turn of the microscope stage.

– Weakly anisotropic minerals. These minerals show a slight change with rotation,
and it can be observed best if the polarisers are slightly uncrossed.

– Strongly anisotropic minerals. These minerals show a pronounced change in
brightness and also a possible change in color with rotation.

In opaque anisotropic minerals, it is necessary to distinguish the behavior of
symmetric and asymmetric sections between crossed polarizers.

Symmetrical sections are extinguished in white light. When a symmetrical
section is rotated on the stage with respect to its extinction position, the resulting
vibration reflected is rotated and is called anisotropic rotation. The rotation is
always toward the higher amplitude vibration, and the maximum angle of rotation is
below 45° of stage rotation. It is manifested by the polarization colors, which
change when the section is rotated. The amplitude of the light transmitted by the
analyser is proportional to the anisotropy ratio (A = R2/R1) since this ratio deter-
mines the angle of the anisotropic rotation.
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Asymmetrical sections are not extinguished in the strict sense of the word, even
in monochromatic light, due to the marked ellipticity of the vibrations.

– Polarization colors

Polarization colors are also known as anisotropic tints. Bright tints indicate strong
dispersion of the anisotropy ratio.

Examples
Löllingite (Fig. 15.13).

Marcasite (Fig. 15.14).

– Polarization colors in symmetrical sections

The tint observed for a given angle, by clockwise rotation of the stage, is the same
as that observed for the same angle of counter-clockwise rotation.

A very sensitive test to distinguish symmetrical sections consists of slightly
uncrossing the analyzer (1–5º) and observing the sequence of dyes produced that

(a) (2.5x cross-polarizers). (b) (2.5x slightly uncrossed polarizers).

Fig. 15.13 Polarization colors in löllingite

(a) (2.5x cross-polarizers). (b) (2.5x slightly uncrossed polarizers).

Fig. 15.14 Polarization colors in marcasite
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can be diagnostic criteria for certain minerals. Previously, a very precise adjustment
of the analyzer is required.

– Polarization colors in asymmetrical sections

In asymmetrical sections, the tint observed for a given angle, by clockwise rotation
of the stage, is not the same as that observed for the same angle of
counter-clockwise rotation.

When this test is used, great care must be taken to adjust the analyzer to the cross
position. Uncrossing the analyzer, a sequence of tints is produced and it can also be
used to discriminate between symmetrical and asymmetrical sections.

15.3 Conoscopic Arrangement of the Microscope

15.3.1 Observations with Polarized Light

(a) Requirements

– High magnification objectives (> 40x).
– Analyzer.
– Bertrand lenses.

(b) Properties

– Polarization figures

The polarization figures are also called convergent light figures and allow differ-
entiation between isotropic and anisotropic minerals (Fig. 15.15).

Fig. 15.15 Polarization figure, a isotropic and anisotropic sections in the extinction position;
b anisotropic sections at 45º from the extinction position
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– Polarization figure in isotropic minerals

The figure of isotropic minerals is a black cross. By crossing the polarisers
slightly, the figure splits into two branches.

– Polarization figure in anisotropic minerals

The polarization figure of the anisotropic minerals is a cross that splits into two
branches, when the microscope stage is rotated, which move in two opposite
quadrants, associated with the vibration with the higher reflectance. Between
crossed polarizers, with the plate in 45º position, separation of the isogyres indicates
the amount of anisotropy of the section. Example: Chalcopyrite in a vertical section
shows the isogyres barely open, and this indicates very little anisotropy.

Among other uniaxial minerals in a vertical section, molybdenite shows a great
anisotropy without any kind of dispersion.

15.4 Dispersion

15.4.1 Color and Dispersion Effects

In many anisotropic minerals, the reflectance varies considerably according to the
wavelength of the incident light, so the reflected beam has a color that is very
characteristic. There is almost always a substantial mixture of white light, the result
being a metallic tint like bronze or blue steel. Special caution is required in
observing these effects because the appearance may be deceptively altered by
contrast with a neighboring grain of another color or even by the nature of the
illumination.

Dispersion of the optical constants produces dispersion of the reflectance and, if
its curve has a maximum within the visible range, the substance appears colored
(the type of dispersion curve and its position on the scale of reflectance can define
the color of the reflection).

In opaque minerals, even with a small absorption, the dispersion of the
absorption and, therefore, of the reflectance produces a marked color when the
substance is observed with reflected light.

In anisotropic sections, the reflectance of one vibration can be dispersed inde-
pendently of the reflectance of another. If there is a difference, it can be observed
that the section changes color when the microscope stage is rotated, with a polarizer
only. This phenomenon is the reflection pleochroism. In transmission, the observed
color is the result of the combination of transmitted colors (not absorbed), whereas,
in reflection, the dominant color is that for which absorption is greater, because this
factor has a greater influence on the reflectance than on the refractive index.

Color and pleochroism are more evident in some minerals (e.g., covellite) when
observed with oil immersion, due to the large difference in refractive indices. In the
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covellite and for a certain wavelength, the R in oil is higher than in air and the color
changes sharply from blue to red.

15.4.2 Anisotropic Effects Between Crossed Polarizers

– Anisotropic effects in symmetrical sections

If the anisotropy ratio is dispersed, the amplitude transmitted by the analyzer varies
for different wavelengths and the polarization colors are observed.

– Anisotropic effects in asymmetric sections

The asymmetrical sections are not extinguished in the strict sense of the word, even
in monochromatic light, due to the marked ellipticity of the vibrations. But where
the relation of ellipticity is nil, such sections will be extinguished in monochromatic
light and may not be extinguished in white light. This is due to the dispersion of the
direction of vibration.

15.4.3 Dispersion in the Polarization Figures

– Dispersion in the polarization figures of isotropic sections

The coloring of the isogyres of an isotropic section polarization figure reveals
reflection-rotation dispersion.

The intensity of the color fringes is a measure of the amount of dispersion.
Minerals that have weak dispersion show black isogyres when observed with

white light, while those with strong dispersion show isogyres with bright colors.
The field of view will show color in the quadrants only if the dispersion is strong

and usually only where the angle of rotation is very large, i.e., near the edge of the
field.

The red zones indicate that the rotation is greater for the red light than for the
blue light (r > b) and vice versa for the blue zones. For other colors, it can only be
deduced that the dispersion is strong.

Even by uncrossing the analyzer, the weakest dispersion can be detected.
Generally, a few degrees turn is enough.

If the isogyres are colored blue in the convex part and red in the concave part, it
can be deduced that the reflection-rotation is dispersed with r > b, and vice versa
for the red in the convex part and the blue in the concave part.

The color that appears on the outermost (concave) side of the isogyre is that of
the extinguished light closest to the center and, therefore, the section has greater
rotation for this light. The extent of the coloring indicates the degree of dispersion.
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In this development, it has been assumed that reflection in oblique incidence has
not produced any ellipticity in the reflected vibration. However, in metals such as
gold, silver, and copper, there is a marked ellipticity and the angle of incidence
becomes significant. Thus, the rotation of the analyser can cause separation of the
isogyres, becoming blurred, while the dispersion of the ellipticity (DE) will be
shown as a coloration of the isogyres.

– Dispersion in the polarization figures of anisotropic sections

The effect of reflection-rotation dispersion is mixed with the dispersion of aniso-
tropic rotation.

In general, the reflection-rotation dispersion is detected by a small rotation of the
analyzer in the extinction position, while with crossed polarizers and the section at
45º from the extinction position, the combined effect is observed.

With anisotropic sections in the extinction position, a black cross is formed, and
reflection-rotation is the only one that acts. The analyser can be crossed in the usual
way in order to detect any dispersion of this rotation.

The analyzer is reset to the crossed position and the microscope stage is turned to
the 45º position; this produces the crossing and splitting into two isogyres. Now, the
effects observed are due to the combination of two dispersions, the
reflection-rotation and the anisotropic rotation.

As the main effect is the coloring of the isogyres, small variations in the angle of
rotation for different colored lights must be considered.

Questions

1. The polarization colors are displayed by

a. the orthorhombic, monoclinic and triclinic opaque minerals and are
due to light interference

b. all opaque minerals and are due to light interference
c. all opaque minerals and are due to light reflection
d. opaque orthorhombic, monoclinic and triclinic minerals and are due
to light reflection

2. The coloration of an opaque mineral observed under the reflection
microscope is due to the

a. existence of a maximum value of the refractive index for a given
wavelength

b. existence of a maximum value of the bireflectance for a given
wavelength

c. existence of a maximum value of the reflectance for a given
wavelength

d. existence of a maximum value of the absorption coefficient for a
given wavelength
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3. The polarization figures are used to distinguish between

a. uniaxial and biaxial anisotropic transparent minerals
b. isotropic and anisotropic opaque minerals
c. isotropic and anisotropic transparent minerals
d. uniaxial and biaxial anisotropic opaque minerals

4. Reflection pleochroism is observed under a polarizing microscope of the

a. transmission with polarized light
b. transmission between cross-polarizers
c. reflection with polarized light
d. reflection between cross-polarizers

5. What are the names of colors observed in anisotropic minerals between
crossed polarizers with a polarizing reflection microscope?

Response:

6. The coloring of the isogyres of an isotropic section polarization figure
reveals reflection-rotation dispersion.

True
False

7. Write the name of the device that allows deviation of the light coming
from the light source through the objective toward the polished sample
located on the stage of the polarizing reflection microscope.

Response:

8. Can twins be seen on an opaque mineral under a polarizing reflection
microscope?

Yes/No Response:

9. An opaque orthorhombic mineral can be called biaxic because it has two
optical axes.

True
False

10. Opaque isotropic crystals display polarization figures.

True
False
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Chapter 16
Electrical, Magnetic, Mechanical,
and Elastic Properties

Abstract This chapter is devoted to electrical, magnetic, and mechanical properties
of the crystals. Electrical properties of the crystals are important, since the pyro-
electric and piezoelectric phenomena are widely used in optic-electronic,
radio-electronic, electro-acoustic, energy conversion techniques, etc., mainly in
relation to ferroelectric crystals. Pyroelectric and piezoelectric effects are explained.
Finally, ferroelectric and anti-ferroelectric crystals and the peculiarities of their
electrical properties due to the presence of domains are explained. The basic rela-
tions that characterize the behavior of a crystal in a magnetic field are presented,
defining magnetic susceptibility and permeability and magnetic moment. Later, and
from a crystallographic point of view, using symmetry as a method, magnetic
crystals will be classified on the basis of the absence or presence of order of the
magnetic moments of the atoms in the crystals. Thus, diamagnetism and paramag-
netism and the different types of magnetic structures in crystals, such as ferromag-
netism, antiferromagnetism, and ferrimagnetism, are introduced. Finally, the
mechanical properties of crystals, such as exfoliation and hardness, are described.
Two very important properties in relation to the stability of minerals in the earth’s
crust and mantle—thermal expansion and compressibility—are also described.

16.1 Electrical Properties

16.1.1 Pyroelectricity

Pyroelectricity consists of the displacement of positive and negative charges in a
mineral by a change of temperature, T, that is, the property that possesses a mineral
to produce positive and negative charges at the end of its faces when it undergoes a
change in temperature (when two of its outermost faces are heated). If the tem-
perature change is done in reverse, the charges on the crystalline faces also change
signs.

This property is presented by crystals and minerals whose point group is polar
with only one single polar rotational axis or one mirror plane, which allows polarity
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like point group m. Finally, out of 21 non-centrosymmetric point groups, there are
only the following 10 pyroelectric point groups (Table 16.1):

An example is tourmaline.

16.1.2 Piezoelectricity

Piezoelectricity is the appearance of a dipolar moment in a mineral under stress.
Piezoelectricity is a phenomenon exhibited by certain crystals as low quartz or

mineral salts, such as Rochelle1 or Seignette salt (potassium sodium tartrate
tetrahydrate).

When subjected to stress, charges are produced (Fig. 16.1), or mechanical
deformation/stress results in electrical potential (e.g., low quartz, with point
group 32).

Table 16.1 Point groups of
crystals exhibiting
pyroelectricity

Crystal system Point group

Triclinic 1

Monoclinic 2, m

Orthorhombic mm2

Tetragonal 4, 4mm

Trigonal 3, 3m

Hexagonal 6, 6mm

Fig. 16.1 Electric charges or
a potential difference is
produced when a piezoelectric
crystal is subjected to
mechanical stress

1 “La Rochelle” is the harbour city in France where Pierre Seignette discovered the growth of
potassium sodium tartrate.
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In the second case, the vibration they produce, to a certain and specific fre-
quency, depends on the thickness and orientation of the slice that has been cut from
the piece of crystal. In that case, it is immediately identified because it produces an
alternating electrical current, and the crystal can replace an oscillating circuit. Since
the frequency produced depends on the thickness and orientation of the cut,
high-frequency fixed oscillators will be obtained, which are widely used in many
electronic devices as clock signals that regulate computers and quartz clocks.

The low quartz appears as trigonal crystals, showing its three axes (Fig. 16.2a).
Figure 16.3a shows a simple scheme of the negative and positive ions in quartz.

The polarity of the axes can be seen because the positive charges are shown at one
end of the axes and the negative charges at the other end. When the structure is
compressed in the direction of the polar axis E1, the structure deforms, displacing the
charges in such a way that the positive charges predominate on one side and the
negative charges on the opposite side (Fig. 16.3b). When pressure is applied per-
pendicular to the electric axis (Fig. 16.3c), opposite charges appear again on
opposite sides, but in this case, the charges are interchanged with those in Fig. 16.3b.

Only minerals and crystals in 20 point groups that have polar axes present this
property (Table 16.2).

Some applications that can be listed are as follows:

– Piezoceramics. Inside they have a piezoelectric crystal that is hit abruptly by the
ignition mechanism. This dry blow causes a high electric current capable of
creating a voltaic arc or spark that will ignite the lighter.

– Vibration sensor. Each of the pressure variations produced by vibration causes a
current pulse proportional to the force exerted. An electrical signal ready to
amplify from a mechanical vibration has been obtained, by simply connecting
an electrical cable to each side of the crystal and sending this signal to an
amplifier, for example, piezo pickups.

– Communication technologies.

Fig. 16.2 Orthonormalized
physical system X–Y axis and
two-fold polar rotation axes of
trigonal quartz
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16.2 Magnetic Properties

16.2.1 Introduction

Certain minerals have the property of behaving like a magnet, due to the interaction
of magnetic dipoles on an atomic scale.

Magnetism is the property that certain minerals possess to attract iron and its
derivatives.

Only atoms with incomplete 3d orbitals, such as the elements of the first tran-
sition series, (Cu, Fe, Ti, Ni, Co, Mn, and V, for example) behave as magnetic
dipoles.

Natural magnets are permanent because they maintain their ownership of
attraction without the need to apply magnetizing forces. The entire area where the
magnetic properties of a magnet operate is called a magnetic field, which is char-
acterized by numerous lines of force.

Magnetite is a natural magnet that has been known for a long time. Each electron
has two quantum numbers as follows:

– Orbital moment: It describes orbit behavior around the nucleus.
– Spin moment: It describes the behavior of the electron spin.

Fig. 16.3 Scheme of the piezoelectric effect of quartz, a simple scheme of the negative and
positive ions in quartz; b structure is compressed in the direction of the polar axis E1; c structure is
compressed perpendicularly to the direction of the polar axis E1

Table 16.2 Point groups with polar axes

Cubic Tetragonal Hexagonal Trigonal Orthorhombic Monoclinic Triclinic

23,
4 3m

4, 4
4mm
422,
4m

6, 6
6mm
622, 6m2

3
3m
32

mm2
222

2m 1
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Both can generate magnetic dipoles.
Therefore, spin is primarily responsible for the magnetic properties of atoms and

molecules.
In 1820, Oersted discovered the relationship between the magnetic properties of

a magnet and electricity, when he found that an electric current produced a mag-
netic field around it. This property and the induction property are used for the
construction of various electrical equipment, such as motors, dynamos, measuring
devices (voltmeters and ammeters), and electromagnets, among others. The first
known magnet was the magnetite, very abundant in the region of Magnesia, from
which it gets its name, cited by Platon and Plinio, and in which its natural magnet
properties could be observed from very remote times.

16.2.2 Types of Minerals According to Magnetic Properties

A mineral is magnetized when subjected to a magnetic field.

I ¼ vH; ð16:1Þ
where

I is the magnetic induction,
H is the magnetic field,
v is magnetic susceptibility, and
I and H have the same direction.

In 1948, Taggart established a classification of minerals based on their magnetic
permeability relative to iron, which is considered the most magnetic substance, as
shown in Table 16.3.

– Paramagnetic minerals
Paramagnetic minerals are those that have elements of the first transition series,
which are the elements that produce magnetic moments (Fe3+ and Mn2+, with five
unpaired electrons, between the most magnetic ions). The magnetic dipoles of these
minerals align while subjected to a magnetic field.

Examples include Olivine (Mg, Fe)2SiO4 and augite (Ca, Na)(Mg, Fe, Al)(Al,
Si)2O6.

– Diamagnetic minerals
Diamagnetic minerals have no magnetic behavior, as electrons with opposing spins
are paired.

Examples include Bismuth (Bi), calcite (CaCO3), albite (NaAlSi3O8), quartz
(SiO2), and apatite (Ca5(PO4)3(F,Cl,OH).
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– Ferromagnetic minerals

Ferromagnetic minerals present a spontaneous magnetic moment, produced by
parallel orientation of the spins of the ions of the structure """""""".

Examples include FeO, CoO, NiO, and MnO.
Areas in which dipoles are oriented in a certain way and other areas in which

they are oriented differently may appear in substances such as metal iron. These
zones, called domains, are aligned according to the field when the substance is
subjected to an external magnetic field (Fig. 16.4).

– Ferrimagnetic minerals

Ferrimagnetic minerals are those minerals in which the moments of ion spin are
anti-parallels "#"#"#"#. Examples include magnetite series (Fe3O4)—ulvoespinel
(TiFe2O4), hematite series (Fe2O3)—ilmenite (FeTiO3), and pyrrhotite series
(Fe1−xS).

Table 16.3 Relative
magnetic permeability of
minerals

Magnetism type Mineral Relative permeability

Ferromagnetism Iron 100

Magnetite 40.18

Franklinite 35.38

Ilmenite 24.70

Paramagnetism Pyrrhotite 6.69

Siderite 1.82

Hematite 1.32

Goethite 0.84

Pirolusite 0.71

Diamagnetism Garnets 0.40

Quartz 0.37

Cerussite 0.30

Pyrite 0.23

Dolomite 0.22

Arsenopyrite 0.15

Magnesite 0.15

Clalcopyrite 0.14

Gypsum 0.12

Cinnabar 0.10

Cuprite 0.08

Smithsonite 0.07

Orthoclase 0.05

Galenite 0.04

Calcite 0.03
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16.3 Mechanical Properties

16.3.1 Cleavage

Cleavage is the rupture of a crystal or mineral according to certain crystallographic
planes, which have the weakest bonds.

Examples

Cubic: {100}
Example: Galenite, halite
pyrite (bottom)

(continued)

Fig. 16.4 Scheme showing random magnetic domains (a) and alignment of magnetic domains (b)
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(continued)

Octahedral: {111}
Examples: Fluorite (top), diamond (center), and pyrite
(bottom)

Rhombohedral
Example: Calcite {1011}

Pinacoidal or basal: (001)
Example: Mica
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16.3.2 Tenacity

Tenacity is another property, like cleavage, which depends on reticular cohesion
and defines the way a mineral deforms under a mechanical action.

The degree of tenacity can be expressed in terms of the following:

– Brittleness—it breaks easily. An example is sulfur (S).
– Malleability—plastic deformation without rupture can be molded into leaves.

An example is metals.
– Ductility—it can be plastically deformed (stretched in the form of a yarn). An

example is copper (Cu).
– Sectility—it can be cut into chips with a knife. An example is gypsum

(CaSO4.2H2O).
– Flexibility—it can be folded without recovering the original shape. An example

is talc.
– Elasticity—it regains the original shape by ceasing the force that deforms it. An

example is biotite (K (Mg, Fe)3AlSi3O10(OH)2).

16.3.3 Hardness

Hardness is the property that minerals exhibit to resist abrasion and scratching. It
depends on molecular cohesion but to a different degree than tenacity.

Hardness is measured in a practical way in relation to the scale designed by the
Austrian geologist Friedrich Mohs (1773–1839), with the use of a series of mineral
tips; each mineral strikes the one that precedes it and is scratched by the one that
follows it.

Mohs scale: 1 Talc, 2 Gypsum, 3 Calcite, 4 Fluorite, 5 Apatite, 6 Orthoclase, 7
Quartz, 8 Topaz, 9 Corundum, and 10 Diamond.

There is also another more empirical but more practical scale, according to
which minerals are classified as follows:

– Very soft minerals that can be scratched with the nail (hardness from 1 to 2).
– Soft minerals that scratch with a copper coin (2–3).
– Semi-hard minerals that scratch easily with a pen cutter (5–6.5).
– Very hard minerals that do not scratch with a sheet of steel.

The hardness of a mineral undergoes large changes with direction and will
exhibit different values, depending on which direction the measurement is taken
when scratching a mineral. Most minerals do not see such variation, except in
kyanite and calcite. The kyanite has hardness 5 in its long direction and hardness 7
perpendicular to that direction; the calcite has hardness 3 on all faces except the
(0001) which has hardness 2.
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16.4 Elastic Properties

16.4.1 Homogeneous Deformation

A crystal undergoes a homogeneous deformation when the symmetry properties of
the crystal are preserved at each moment of deformation.

This type of deformation occurs when a crystal is dilated or compressed by the
effect of an increase in temperature and hydrostatic pressure.

The two most important properties in relation to mineral stability in the earth's
crust and mantle are thermal expansion and compressibility.

16.4.2 Thermal Expansion or Expansion

The dimensions of a crystal change when its temperature changes.
Also, with an increase in temperature, the amplitude of the vibrations of the ions

increases, and when the kinetic energy exceeds the attractive force between the
ions, either the crystal or mineral forms a different structure (polymorph) or melts.

The linear coefficient of thermal expansion ap(T) at constant pressure is given by

aP ¼ Dl
lDT

; ð16:1Þ

aPðVÞ ¼ DV
VDT

; ð16:2Þ
where l is the length and V is the volume.

16.4.3 Compressibility

The dimensions of a crystal change when subjected to pressure. When a mineral is
subject to pressure and is uniform on all sides, it responds by decreasing volume.

The linear compressibility coefficient is given, at a constant temperature, by

bT ¼ Dl
lDP

: ð16:3Þ

The volume coefficient of compressibility bT(V) is given by

bTðVÞ ¼
DV
VDP

: ð16:4Þ
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Questions

1. Minerals that have no magnetic response are called

Response:

2. Scalar properties depend on the direction in which they are measured.

True
False

3. Thermal expansion is what type of property?

a. Mechanical
b. Electric
c. Magnetic
d. Elastic

4. What elements of the periodic table have dipolar moments?
a. noble gases
b. transitional metals
c. alkaline metals
d. non-metals

5. Will a diamagnetic mineral contain any elements of the first transition
series? Yes/No.
Response:

6. Cleavage is a rupture according to certain planes of twin.

True
False

7. Pyroelectricity is a property due to a change of pressure and is presented
by crystals with a polar point group.

True

False

8. Relate each mineral to the physical property.

Tourmaline (silicate) Paramagnetism

Hematite (iron oxide) Diamagnetism

Gypsum (hydrated calcium sulfate) Pyroelectricity

Pyrite (iron sulfide) Hardness
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9. If you think the mineral in the following photo shows cleavage, then
write the name of the type of cleavage.

Response:

10. The two most important properties in relation to mineral stability in
terrestrial crust and mantle are thermal expansion and compressibility.

True
False
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Chapter 17
Methods and Applications of X-ray
Diffraction in Crystallography
and Mineralogy

Abstract The fundamentals of X-rays and X-ray diffraction by crystals are dis-
cussed. The Laue and Bragg equations that express the conditions for diffraction to
occur will be discussed. Ewald construction will be shown, using the concept of the
reciprocal lattice, which is very useful for the interpretation of the experimental
methods of X-ray diffraction. The different experimental methods will be presented,
depending on the type of radiation (monochromatic or polychromatic) and sample
(monocrystalline or polycrystalline) and the information they provide. The powder
method will be explained in a more detailed way because of its extraordinary
usefulness due to the variety of information it provides.

17.1 Nature of X-rays

X-rays are part of the electromagnetic spectrum, and they were discovered by
Roentgen in 1895. They occupy the range of frequencies or wavelengths between
ultraviolet rays and c-rays. They can be classified into hard and soft, based on the
greater or lesser capacity of radiation to penetrate matter. The unit used for X-rays is
the Ångström (Å). The range of wavelengths used in X-ray diffraction is between
0.5 and 2.5 Å. It includes the most characteristic radiation of the X-ray spectrum,
Ka of the Cu with k = 1.5418 Å. Early research revealed the similarity between
X-rays and light. Both radiations, X-rays and light, propagate in a straight line.
They have the property to pass through opaque bodies. The photographic plates are
impressed by X-rays. They excite the fluorescence and phosphorescence of certain
substances. They do not experience alteration under the action of electric or
magnetic fields. They have polarization effects.
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17.2 X-ray Production, X-ray Tube

They originate whenever electrons with sufficient kinetic energy collide with
matter.

The X-ray tube is the instrument used to produce X-rays. In X-ray tubes, a high
voltage is applied to accelerate a beam of electrons produced by heating a filament
by a current. An example is tungsten, the cathode, an electrode that undergoes a
reduction reaction, by which a material reduces its oxidation state when receiving
electrons. The accelerated electrons collide against the anode, an electrode in which
an oxidation reaction takes place, whereby a material, by losing electrons, increases
its oxidation state. X-rays are emitted in all directions, but they go outside through
one or more windows.

An X-ray tube scheme can be seen in Fig. 17.1.

Fig. 17.1 X-ray tube scheme
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17.3 Spectra Emitted by X-ray Tube

X-ray emits two spectra, continuous, and characteristic spectra.

– Continuous spectrum

Continuous spectrum appears below a certain voltage value applied to the X-ray
tube. It appears to occur as an effect of electrostatic electron interactions (contin-
uous retardation of the electrons) in the vicinity of the nuclei of the anode atoms.
Increasing the voltage increases the intensity of the continuous spectrum and the
entire spectrum shifts to higher energies and shorter wavelengths, respectively.

– Characteristic spectrum

The characteristic spectrum, superimposed on continuous spectrum, always appears
at fixed and determined energy and wavelength values for a given anode material.
The characteristic spectrum appears forming spectral series that are designated by
the letters K, L, M, N, and so forth, denoting the principle quantum numbers of
orbitals. The wavelengths of the lines of each series decrease in the M, L, K,
direction. It occurs if the accelerated electron, from the anode, shoots out an
electron from an inner orbital (inelastic collision) and the vacancy is filled by an
electronic transition (Fig. 17.2) of the outermost orbital electrons to the innermost.

Fig. 17.2 X-ray emission
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17.4 X-ray Diffraction Theory

Laue and his collaborators demonstrated, in 1912, that X-rays, discovered by
Roentgen, were very short wavelength electromagnetic radiation, i.e., high frequency
and extremely penetrating. They suggested that if the structure of a crystal is periodic,
it could be used to diffract X-rays. This preposition was based on three hypotheses:

1. Crystals are periodic.
2. X-rays are electromagnetic waves.
3. The wavelength of the X-rays is of the same order of magnitude (1 to 3) as the

distance repeated by the motifs (ions, atoms, molecules, or assemblies thereof)
in the crystals.

X-ray diffraction is a particular case of consistent radiation scattering.1

When X-rays interact with matter, some part is absorbed, and a decrease in
intensity occurs as it passes through more material thickness (Fig. 17.3).

Fig. 17.3 Outline showing
the interaction of X-rays with
matter

1 Dispersion is defined as spatial separation of characteristic X-rays according to their wavelengths
and it is of interest for monochromatisation of higher sophisticated X-ray methods.
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This absorption is due to the interaction phenomena that originate and give rise
to two general types of radiation:

1. Fluorescence radiation has variable wavelengths kf, and its emission is always
accompanied by the release of electrons.

2. Scattered radiation

– Coherent scattered radiation. It consists of that fraction of the primary
radiation without shift of waves in time and/or in space, which is needed for
interference and diffraction.

– Incoherent scattered radiation or Compton scattering. It consists of that
fraction of the primary radiation with some shift in time and/or space of
waves relative to each other.

– X-ray diffraction basically consists of a process of constructive interference
of coherent X-ray waves (Fig. 17.4) that occurs in certain directions of
space.

These waves must be in phase to be coherent and of the same wavelength. It
happens when the path difference between them is zero or an integer multiple of
wavelengths, Dx ¼ nk n ¼ 0; 1; 2. . .ð Þ.

Destructive interference (Fig. 17.5) occurs when interfering waves have path
differences x ¼ k=2; 3k=2; 5k=2; . . ..

Fig. 17.4 Wave constructive
interference
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Other types of interference (constructive and destructive) may occur between the
two types of interference.

The intensity of the wave is proportional to the square of its amplitude.
For X-ray diffraction to occur, the following is necessary:

1. The object or crystal on which X-rays are affected is periodic.
2. The distances between crystal atoms are of the same order of magnitude as the

wavelength of X-rays, similar to what happens with a diffraction grating and
visible light (Fig. 17.6).

Fig. 17.5 Wave destructive
interference

Fig. 17.6 Electromagnetic
waves diffraction by a
diffraction grating
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Box: 17.1 Example

Diffraction of visible light

When light passes through a single slit whose width d is on the order of the
wavelength of the light, a single slit diffraction pattern can be observed on a
screen at a distance >> d away from the slit. The intensity is a function of
angle. According to Huygens’ principle, each part of the slit can be consid-
ered a wave emitter. All these waves interfere to produce the diffraction
pattern (Fig. 17.7). Where the crest meets the crest there is constructive
interference, and where the crest meets the trough there is destructive inter-
ference. The center beam is diffracted in a center band (zero order) on the
detector screen, flanked by several higher order diffraction bands (1st, 2nd,
and 3rd) or maximums. Diffraction bands formed by higher order maximums
identify the diffraction angles at which wave fronts with the same phase are
amplified as bright areas due to constructive interference. Very far from a
point source, the wave fronts are essentially plane waves. The diffraction
pattern, with maxima and minima, is called Fraunhofer diffraction.

Fig. 17.7 Diffraction pattern on dark film (top) and diffraction maxima (bottom) produced by red
monochromatic light
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If light is incident on a material with two very small slits separated by a
distance d, the waves from each slit interfere behind the material. The waves
passing through each slit are diffracted and scattered. For angles at which the
diffraction pattern of a single slit produces intensity other than zero, the waves
from the two slits can interfere constructively or destructively. The diffraction
pattern (pattern of bright and dark bands) is observed on a screen behind the
material. The bright bands indicate constructive interference, and the dark
bands indicate destructive interference. The bright fringe, zero-order fringe, in
the middle of the diagram is caused by constructive interference of the light
from the two slits traveling the same distance to the screen. The destructive
interference causes the dark fringes on either side of the zero-order fringe.
The crest coincides with the crest and the valley with the valley. Destructive
interference causes the dark fringes on both sides of the zero-order fringe.
When light from one slit travels a distance that is half a wavelength longer
than the distance travelled by light from the other slit, the crests coincide with
the valleys at these locations. The dark fringes are followed by first-order
fringes, one on each side of the zero-order fringe. When the light from one slit
travels a distance that is one wavelength longer than the distance travelled by
the light from the other slit to reach these positions, the crest again coincides
with the crest (Fig. 17.8).

Fig. 17.8 Diffraction pattern produced by interference of the waves from the two slits
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17.5 Laue Equations

X-ray diffraction occurs only in certain directions, at certain angles, which are based
on the.

– Distance repeated from the periodic structure
– Radiation wavelength

In a crystal, rows of atoms periodically separate according to translations a, b,
and c.

First, diffraction of a row of atoms whose translation period is a vector is
considered (Fig. 17.9).

The direction of the incident X-ray beam is given by the unit vector S0.
The direction of the X-ray beam diffracted by the row of atoms is given by the

unit vector S.
For the atoms in the reticular row to diffract the X-rays, the following condition

must be fulfilled:
The path difference between the incident beam and the diffraction beam must be

equal to an integer of wavelengths.
This condition can be expressed as follows:

aS� aS0 ¼ a S� S0ð Þ ¼ nk

aS ¼ a cosu ¼ AD

aS0 ¼ a cosu0 ¼ BC

ð17:1Þ

where

n (0, 1, 2, 3, ...) is the diffraction order
n = 0 ! order diffraction 0
n = 1 ! order diffraction 1
n = 2 ! order diffraction 2

Fig. 17.9 X-rays diffraction
by a monoatomic row with
interatomic spacing a
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So, it can be written as:

a cosu� a cosu0 ¼ nk

a cosu� cosu0ð Þ ¼ nk

cosu ¼ cosu0 þ nk=a

ð17:2Þ

In this expression, if the angle u0 remains fixed, the diffraction beam can run in any
direction of space that forms a diffraction angle compatible with the different values
of n.

Since the crystal is three-dimensional, diffraction is also three-dimensional and,
therefore, two more equations must be considered—those associated with the
reticular rows of b and c periods.

Laue equations
The Laue equations are given by:

aS� aS0 ¼ a S� S0ð Þ ¼ hk
aS� aS0 ¼ a S� S0ð Þ ¼ kk
cS� cS0 ¼ c S� S0ð Þ ¼ lk

or
a cosu� cosu0ð Þ ¼ hk
b cosu� cosu0ð Þ ¼ kk
c cosu� cosu0ð Þ ¼ lk

ð17:3Þ

The geometric idea is that diffraction beams follow directions whose assembly
sets up a surface that is a cone.

Each diffracted ray cone corresponds to a solution of the Laue equation that
satisfies the values u and n.

In a single-dimensional network, the cones are arranged as shown in Fig. 17.10.
In a two-dimensional network, the intersection of cones defines the two possible

diffraction directions, Oy and Ox (Fig. 17.11).
The diffraction condition in a three-dimensional network requires that the three

Laue equations be satisfied simultaneously. In this case, there is only one diffraction
direction that is common to the three cones, and it is given by the intersection point
of the three cones (Fig. 17.12).

17.6 Bragg’s Law and X-ray Reflection

X-ray diffraction can be treated in good approximation with the model2 of
reflection.

2 We can use it in terms of kinematical theory under certain boundary conditions: (1) poor crystal
quality (mosaicity); (2) low angular resolution of diffraction (completely sufficient for standard
powder diffractometry for phase analysis.

Highly sophisticated X-ray analysis (concentration of phases, defects, strain, etc.) or high
quality crystals and/or using X-ray sources with lower divereny than available for the Braggs, or
synchrotron radiation, which needs the dynamical theory of diffraction.
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This treatment is simpler and straight forward, and it allows Bragg’s law to be
used in powder diffractometry, for example, for phase analysis.

In 1914, the Bragg brothers showed that X-rays diffracted by crystals could be
treated as reflections from atomic planes of the crystal structure, depending on the
diffraction angle for a given wavelength.

Fig. 17.10 Diffraction cones
in a mono-dimensional lattice

Fig. 17.11 Diffraction cones
in a two-dimensional lattice
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Verification of the reflection laws

1. Angle of incidence is equal to reflection angle.
2. Angle of incidence, reflection angle, incident ray, reflected ray and perpendic-

ular to the separation surface of two media are in the same plane.

They impose the condition for scattered waves at all nodes of the same reticular
plane, such as p1 (1st layer at the surface), to be in phase with each other. In
general, waves scattered across successive parallel planes will not be in phase with
each other, except in the case that their path differences are integer multiples of the
wavelength.

To demonstrate, we will consider the p1 and p2 (2nd layer below the surface)
planes, belonging to the same family of lattice plane in Fig. 17.13.

Fig. 17.12 Diffraction cones
in a three-dimensional lattice

Fig. 17.13 X-rays scattering through the nodes of a family of parallel planes
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For the rest of the planes, the same result is reached; that is, the path differences
between the waves diffracted by adjacent planes are identical. In this way, the entire
plane family (hkl) contributes collectively to the production of a common wave
front of diffracted rays. This is equivalent to reflecting the incident rays on each
plane of the series.

Any solution to Bragg’s law constitutes a reflection, whatever the indices of it.
Bragg’s law is generally expressed as

AC � AB ¼ nk

AC ¼ dhkl
sinh

AB ¼ Acos2h ¼ dhkl
sinh

cos2h

AC � AB ¼ dhkl
sinh

ð1� cos2hÞ ¼ dhkl
sinh

2sin2h ¼ nk

2dhklsinh ¼ nk

ð17:4Þ

When n, order of diffraction, does not appear in the Bragg law, it means that we
assume that dummy planes of indexes nh, nk, nl have been interspersed between the
true reticular planes (hkl), which must be denoted as ‘nth order of (hkl)’, so that the
path differences between the waves reflected by each two adjacent planes of the
series of planes (hkl) is always 1k.

17.7 Ewald Sphere or Reflection Sphere

Bragg’s expression can be put in the form:

sin h ¼ 1
dhkl

�
2
k

ð17:5Þ

The geometric solution of this expression is that of any right triangle, such as the
EOP in Fig. 17.14, which is inscribed on a 2/k diameter sphere. This diameter
matches the direction of the wave vector S0 for incident X-rays. The magnitude of
S0 is 1/k.

This sphere is called the reflection sphere or Ewald sphere (Fig. 17.14).
Figure 17.14 is interpreted as follows:

– The rotation of a crystal (composed of hkl planes) enveloped in a monochro-
matic X-ray beam causes the points of its reciprocal lattice to pass through the
surface of the so-called Ewald sphere.
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– When a reciprocal point P, with Miller indices (hkl), collides with the surface of
this sphere, a diffracted beam S emerges from the center of the sphere and passes
through the reciprocal point at that instant.

– The position of the reciprocal point P is given by the vector OP, which is the
reciprocal vector r�hkl with a modulus of 1/dhkl.

– The reciprocal vector is perpendicular to the plane (hkl) passing through C and
is parallel to the leg EP.

– The reciprocal lattice of the crystal will be built from O, at which point the
incident X-ray beam leaves the sphere of reflection.

– The incident beam S0 and the diffracted S form the angle 2h, satisfying Bragg’s
diffraction condition.

– These considerations allow establishing that a maximum diffraction only occurs
when the scattering vector OP (S–S0) is equal in magnitude and direction to the
reciprocal vector. This can also be said as follows: For any plane (hkl) to diffract
X-rays, its orientation must be such that its representative reciprocal point is
located on the surface of the reflection sphere or Ewald sphere. Only in this
circumstance does a diffracted ray occur, passing through the reciprocal point.

Fig. 17.14 Ewald sphere
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The only possible solutions to Eq. 17.6 are those that fulfill

sin h� 1 ð17:6Þ
which means that

1
dhkl

� 2
k

ð17:7Þ

This means that the length or modulus of any reciprocal vector r�hkl ¼ 1
dhkl

cannot
exceed the diameter length of the reflection sphere 2/k.

Thus, the nodes of the reciprocal lattice contained in a 2/k radio sphere with their
center at the origin of the reciprocal lattice are those corresponding to the families
of lattice planes and their higher orders that can give rise to diffraction. This sphere
is called the limit sphere (Fig. 17.15). Only planes whose reciprocal nodes remain
on the surface of the Ewald sphere will diffract the X-rays.

Fig. 17.15 Limit sphere
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17.8 X-ray Intensity, Atomic Scattering Factor,3 Structure
Factor

– Intensity of radiation scatters coherently by a free electron

Thomson’s theory (1903) of elastic scattering and the interaction of polarized
X-radiation with a free electron in the plane are considered.

The electric field exerts a force on the electron and will cause it to oscillate
around its equilibrium position, with a frequency equal to that of the wave it
receives.

The electron behaves like an oscillator and is, therefore, a radiant energy emitter,
because it oscillates in phase with the electrical vector of X-radiation.

It acts as a secondary emitter of a small fraction of the radiation it receives and
scatters it consistently.

The intensity of the scattered radiation, calculated at a distance R from the
electron, is given by the expression:

Ie ¼ I0
e4

m2c2R2 sin
2 a ð17:8Þ

where

I0 is the intensity of the incident radiation
c is the speed of radiation in a vacuum
a is the angle between the direction of the scattered X-rays and the direction of

the electron acceleration.

In almost all experimental laboratory devices, the interaction of X radiation with
a free electron is non-polarized.

The vibration direction of the electrical vector is random on a plane perpen-
dicular to the direction of propagation of the wave.

The intensity of the dispersed radiation is given by the expression

Ie ¼ I0
e4

m2c2R2

1þ cos2 a
2

� �
ð17:9Þ

Intensity varies, depending on the direction of scattering.
The intensity is maximum for 2h = 0º and decreases as it approaches 2h = 90º.

1þ cos2 a
2

� �
is the polarization factor and may vary between 1 and ½.

3 Also known as form factor.
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– Atomic scattering factor or form factor
The atomic scattering factor f is defined by the relationship between the amplitude
of the wave scattered by the atom Aa and the amplitude of the wave scattered by a
single electron Ae. The radiation scattered by an atom is considered.

f ¼ Aa

Ae
ð17:10Þ

As the intensities are proportional to the square of the amplitudes, it will have

f 2 ¼ Aa

Ae
� Ia

Ie
ð17:11Þ

It is a function of sin h/k because the electrons of the atom do not scatter in
phase, except when h = 0º, in which the electrons scatter completely in phase in the
direction of the incident beam. Increasing h also increases the phase difference and
the scattering factor f decreases.

– Structure factor
The structure factor specifies the amplitude of the diffraction in the hkl reflection
due to the contribution of all atoms in the elementary cell. It is symbolized by Fhkl

and is specified by the following:

– The modulus, also called the amplitude of structure, is proportional to the
amplitude of the beam diffraction by a plane. It can be experimentally calculated
from the intensities of diffracted rays.

– The argument is the phase of the diffraction ray. It cannot be experimentally
calculated and poses problems.

The amplitude of the structure factor ǀFhklǀ and therefore the intensity I(hkl)
depend on the class of atoms contained in the cell and the positions of atoms in the
cell. These positions or coordinates depend on the relative phase differences
between the radiations scattered by the atoms. Here it is necessary to introduce the
electronic density q(xyz), which is the number of electrons per unit volume next to
the point of the elementary cell that has coordinates x, y, z. Electronic density for
the crystal is a periodic function.

If the electronic density q(xyz) is known at each point x, y, z, the structure factor
Fhkl can be calculated.
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17.9 Symmetry of Diffraction Effects, Laue Classes

Crystalline materials have an internal order that is usually detected by their X-ray
diffraction pattern.

This has symmetry and respects the classical crystallographic constraint, i.e.,
there are only symmetries of orders 2, 3, 4, and 6.

Box 17.2: Five-fold symmetry and quasi-crystals
However, D. Schechtman4 discovered in 1984 an aluminum manganese metal
alloy whose diffraction pattern has five-fold symmetry. Icosahedrite is the
first known naturally occurring quasicrystal phase (Fig. 17.16). It is a mineral
(Al63Cu24Fe13) approved by the International Mineralogical Association in
2010.5,6

It is a quasi-crystal (contraction of the English terms quasiperiodic and
crystal). Penrose mosaics (Fig. 17.17) have been used as a basis for a
mathematical model of the arrangement of quasi-crystal atoms.

Fig. 17.16 Diffraction
pattern of icosahedrite
(Materialscientist—Own
work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/
index.php?curid=12470027)

4 Shechtman, D., Blech, I., Gratias, D. and Cahn, J. W., 1984. Phys. Rev. Lett. 53, 1951.
5 Bindi, L.; Paul J. Steinhardt; Nan Yao; Peter J. Lu, 2011. Icosahedrite, Al63Cu24Fe13, the first
natural quasicrystal. Am. Mineral., 96 (5–6): 928–931.
6 Commission on New Minerals and Mineral Names, Approved as new mineral.

400 17 Methods and Applications of X-ray Diffraction …

https://commons.wikimedia.org/w/index.php?curid=12470027
https://commons.wikimedia.org/w/index.php?curid=12470027
https://commons.wikimedia.org/w/index.php?curid=12470027


Fig. 17.17 Penrose tiling exhibiting exact five-fold symmetry (Taken from Wikimedia
Commons7)

The diffraction pattern reflects the symmetry of the crystal but, because the X-ray
intensity I is proportional, Fhkl

2 positive and negative Fhkl
2 cannot be distinguished

experimentally. As a result, diffraction patterns always have a center of symmetry
! Friedel’s law.

In non-centrosymmetric crystals and in the absence of anomalous scattering,
reflection structure factors such as F(hkl) and F hkl

� �
appear as mirror images

across the real axis of the so-called Argand diagram, and their corresponding dif-
fracted intensities, I(hkl) and I hkl

� �
are equal. In other words, Friedel’s law is

fulfilled.
The 11 centrosymmetric point groups are known as Laue Classes (Table 17.1):

Table 17.1 Laue classes Crystal system Laue class

Cubic m3m, m3

Tetragonal 4/mm, 4/m

Hexagonal 6/mm, 6/m

Rhombohedral 3m, 3

Orthorhombic mmm

Monoclinic 2/m

Triclinic 1

7 Wikimedia Commons, https://commons.wikimedia.org/w/index.php?curid=5839079.
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With destructive interference matters, the intensity of the waves diffracted by
those planes is null, so the reflections do not appear and the structure factors F(hkl)
for those planes is null. This process is called systematic extinction or systematic
absence and is important because information about the spatial group of the crystal
is obtained from them (Appendixes IV and V).

17.10 Application of X-ray Diffraction in Crystals
and Minerals

The fundamental applications of X-ray diffraction are as follows:

– Qualitative identification of crystalline phases
– Unit cell dimensions
– Determination of the number of atoms or molecules in the unit cell
– Determination of the density referred to the unit cell is given by the expression:

q ¼ M=V ¼ ZM=V ð17:13Þ
where

M is the mass of all atoms that make up a unit of the chemical formula; that is,
molecular weight.

N is the unit formula number contained in the cell.
V is the volume of the unit cell.
Z is the number of formula units contained within unit cell.

– Bravais lattice type
– Crystal system
– Possible space group(s) (often ambiguous)
– Atomic positions from the intensities of the diffracted X-rays and, therefore, the

crystal structure.

X-ray diffraction is the most important, non-destructive method for analyzing
various materials, including powders, metals, corrosion products, perfect crystals,
minerals, alloys, slag and ash, etc.

X-ray diffraction is a very useful technology for material determination, char-
acterization, and quality control.

Whether it is for developing new compounds, materials or processes or opti-
mizing manufacturing processes, non-destructive analysis using X-rays offers
several possibilities.

With X-ray diffraction, it is possible to determine a variety of characteristics of
macroscopic and microscopic materials, as well as the structure and defects of
compounds that make up the materials.
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17.11 X-ray Diffraction Methods

The different X-ray diffraction methods, depending on the type of radiation
(monochromatic or polychromatic) and the sample (powder or monocrystal) are
presented in Table 17.2.

17.11.1 Laue Method

In the Laue method, the crystal has a fixed (not rotated) orientation with respect to a
polychromatic X-ray beam. Laue’s method is used to determine the cell orientation
of a single crystal of known structure.

The Laue diagram (Fig. 17.18) is similar to a stereographic projection of the
crystal planes (Fig. 17.19).

17.11.2 Oscillation Method

The crystal and, therefore, the reciprocal net is oscillating a small angle around an
axis perpendicular to the plane of the figure and passing through the center. This
method allows collecting several reciprocal levels at once over each position of the
crystal. By repeating these diagrams, at different starting positions of the crystal,
enough data are obtained in a reasonable time. The collection geometry is described
in Fig. 17.20. It is used to adjust a single crystal for the Weissenberg method.

Table 17.2 X-ray diffraction methods

Radiation (k) Sample type and characteristics Method

Polychromatic Fixed monocrystal Laue

Monochromatic Monocrystal with 360º rotation Rotating crystal

Monochromatic Monocrystal with partial and oscillating rotation
around zone axis ⊥ X-ray

Oscillating crystal

Monochromatic Monocrystal with oscillation around axis ⊥ or /
from X-rays

Weissenberg

Monochromatic Monocrystal with precession movement Buerguer Precession

Monochromatic Crystalline powder Powder diffractometry

Monochromatic Monocrystal Goniometric methods

Synchrotron
radiation

Monocrystal
Crystalline powder

Synchrotron
radiation-based
methods
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Fig. 17.18 Laue method in transmission mode

Fig. 17.19 Laue diagram of a crystal (www.xtal.iqfr.csic.es/Cristalografia with permission)

(a) (b)

Fig. 17.20 Osscilating method, a static cristal—Only those nodes of the reciprocal lattice that
coincide with the Ewald sphere and that are within the limiting sphere will diffract; b crystal
rotated counter clockwise—All the nodes of the reciprocal lattice in the grey area will have
diffracted because they passed the Ewald sphere
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17.11.3 Weissenberg Method

The Weissenberg method is based on the camera of the same name, developed by
Weissenberg (1924). It consists of a metal cylinder that contains X-ray-sensitive
film.

The crystal is mounted on a coaxial axis with said cylinder and is rotated in such
a way that the reciprocal points that intersect the surface of the Ewald sphere are
responsible for the diffraction beams. To separate reflections, the film is moved in
parallel to the crystal rotation.

These beams generate a blackening (spot) on the photographic film that, when
extracted from the metal cylinder, has the appearance shown in Figs. 17.21 and
17.22.

The type of Weissenberg diagrams obtained from the described mode are called
rotation or oscillation diagrams, depending on whether the crystal rotation is 360º
or partial (approx. 20º), respectively.

Fig. 17.21 Weissenberg method scheme
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Example
Obtention of cell parameters, crystalline system and possible spatial groups
from the data provided with rotating crystal and Weissenberg techniques of
barite (BaSO4).

Since the rotary diagram has been obtained with the axis of rotation
coincident with the crystallographic axis c, this value is obtained from the
expression

c ¼ hk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ y2

p
y

where

h refers to the level, in this case 1, 2 and 3
k is the wavelength used, 1.542 Å
y (mm) is the distance from each level to the center of the plate; the vertical

y equals to 2h
r is the radius of the film, and its value is 28.65 mm; 1 mm equals a rotation

of 2º

The values of y and c obtained from the three levels of the rotating crystal
are in Table E1.

To obtain the parameters a and b and the crystalline system, the
Weissenberg diagrams must be interpreted.

Fig. 17.22 Weissenberg
diagram of copper
methaborate (www.xtal.iqfr.
csic.es/Cristalografia with
permission)
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First, the points of the photographs are copied with transparent paper. Each
point corresponds to a node in the reciprocal lattice and represents the
reflexion of a set of planes in the direct lattice. Any node plane of the
reciprocal lattice is perpendicular to the translation of the direct lattice. For
example, the plane of the reciprocal lattice nodes defined by a* and b* is
perpendicular to c; therefore, a* and b* are perpendicular to the planes (h00)
and (0k0) respectively, which are parallel to c. The location of a node in the
reciprocal lattice is specified by the translation vector

r ¼ ha� þ kb� þ lc�

In the Weissenberg method, the crystal is rotated around a translation of
the direct lattice and the nodes of the reciprocal lattice appear in planes
perpendicular to this axis.

Planes (h00) and (0k0) must be found and the curves that cut to (h00) and
that must be asymptotes to (0k0) and the curves that cut to (0k0) and that must
be asymptotes to (h00) are plotted for the three levels obtained (Fig. E1).

As a result of movement of the X-ray film, the Weissenberg pattern is
geometrically distorted.

1. The angle of the assymptote

The angle of the assymptote depends on the experimental set-up and the
rotation angle, plus translation of crystal and film, respectively.

The angle c* is measured between the planes (h00) and (0k0) which, in
this case, is of 45º; therefore, c = 90º.

Table E1 Values of y and
c obtained from the levels h1,
h2 and h3

y c

y1 = 6.5 mm c1 = 6.969 Å

y2 = 14.0 mm c2 = 7.024 Å

y3 = 25 mm c3 = 7.036 Å

c = 7.001 Å

(a) (b) (c)

Fig. E1 Weissenberg diagram, a Level 1, b Level 2, c Level 3
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2. Construction of the correct non-distorted reciprocal lattice from the
deformed Weissenberg pattern

The notation for the nodes parallel to the (0k0) plane and intersecting the
(h00) plane is 100, 200, 300, etc., while the notation for the nodes parallel to
(h00) plane and intersecting 0k0 is 010, 020, 030, etc. The notation of the
nodes found at the intersection of the asymptotic curves to the (h00) and (0k0)
planes is 110, 120, 130, etc., 210, 220, 230, etc., and 310, 320, 330, etc. In
Table E2, all the reflexions obtained are presented.

3. Calculation of unit cell parameters

Crystalline systems with the calculated angle c = 90º can be

Monoclinic a 6¼b 6¼c; a=c = 90º
Orthorhombic a 6¼b 6¼c;a=b=c=90º

Tetragonal a=b 6¼c; a=b=c = 90º
Cubic a=b=c; a=b=c = 90º
The d values for these crystalline systems are calculated using Bragg’s law

Table E2 Reflexions obtained from the Weissenberg levels

Reflexions level 0

h00 0k0 hk0

200
400
600
800
10,0,0

010
020
040
060

210
410
10,1,0

220
620
10,2,0

230
430
630
930
10,3,0

240
640
840

250
450
650

Reflexions level 1

h0l 0kl hkl

201
301
401
501
601
10,0,1

011
031
051

111
221
131
231
321
421
521
10,21

511
611
711
811
911
10,11

531
631
731
831
931
10,3,1

241
341
441
541
641
841
941

151
351
451
551
651
751

Reflexions level 2

h0l 0kl hkl

102
302
502
702
802
902

022
042
062

112
212
312
512
912
10,1,2

122
422
722
922

132
232
332
532
732
932

142
342
542
742
842

152
352
552
652
752

162
562
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d ¼ k
2 sin h

d100 ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p

a ¼ d100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p
2h for reflection 100 is 11º, so h is 5.5º and d100 = 8.044 Å, so a value is

8.044 Å.
This value is different for c, indicating that the crystalline system cannot be

cubic.
4. Obtention of symmetry, crystalline system, Bravais lattice type probable

or most plausible space group from systematic extinctions

The symmetry shown by the photographs is checked to determine the crys-
talline system and obtain the possible spatial groups from systematic
extinctions (Appendixes IV and V).

The symmetry observed in the plates shows two planes of symmetry, so
the monoclinic system is discarded.

To see if it is a tetragonal or orthorhombic crystal, it is calculated b from
the d010 and, because the value obtained, 5.526 Å, is different from a and c,
the crystalline system turns out to be orthorhombic.

By presenting all the reflexions hkl, the lattice is primitive, P (Appendix IV).
The conditions of non-extinction satisfied (Appendix V) are as follows:
For h00, h = 2n and presence of 21 parallel to [100]
The reflexions 00l are not available so it is not possible to obtain the axis

21 parallel to [001], although it can be inferred.
For 0kl, k + l = 2n and presence of n parallel to (100) plane
For h0l, l = 2n and presence of a parallel to (010) plane
Since an m plane has been observed on the Weissenberg plates, this plane

must be parallel to (001) plane.
With these data, the space group Pmna can be inferred.

17.11.4 Precession Method

The precession method was developed by Martin J. Buerger in the early 1940s.
Like the Weissenberg method, it is a method in which crystal moves but the
movement of the crystal (and, as a consequence, that of the reciprocal planes) is like
that of precession of the planets, hence its name. The film is placed on a flat stand

17.11 X-ray Diffraction Methods 409



and moves with the crystal. As a result, the non-distorted reciprocal space is
imaged.

The crystal must be oriented in such a way that the reciprocal plane to be
recorded is perpendicular to the direct beam of the X-rays, i.e., a direct axis matches
the direction of the incident X-rays (Fig. 17.23).

These diagrams are much simpler to interpret than those of Weissenberg, as they
show the appearance of an undistorted reciprocal plane (Fig. 17.24).

The separation of a given reciprocal plane is achieved by using screens that
select certain diffraction beams from that plane.

Similarly, as in the case of Weissenberg, reciprocal distances and diffraction
intensities can be measured. However, it is much easier here to observe the sym-
metry elements of reciprocal space.

The disadvantage of the precession method is the consequence of the film being
flat rather than cylindrical, and the solid angle explored is smaller.

Fig. 17.23 Precession
method scheme
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17.11.5 Powder Diffractometry Method

X-ray diffraction in crystalline powder samples or polycrystalline samples was first
revealed in Germany by P. Debye and P. Scherrer in (1916) and, at about the same
time, developed through studies in Hull in the United States.

The historical powder method is based on:

– The use of monochromatic radiation.
– Samples consisting of a powder or polycrystalline aggregate.
– Cylindrical X-ray sensitive film.

The sample should be composed of numerous crystalline fragments of very
small (*1–10 µm) size and ideally oriented randomly, relative to each other. As
for orientation, the whole of the powder can be considered isotropic, even if each
small fragment is anisotropic.

Each fragment will present the X-ray beam with a plane, which does not have to
match the plane of another fragment. Thus, we can assume that all the various
lattice planes of the sample in the form of a monocrystal are statistically represented
by the planes that the different fragments expose to X-rays.

The reciprocal vectors associated with these planes undergo multiple
three-dimensional rotations around the point chosen to build the reciprocal lattice.

The geometrical location of these reciprocal vectors is on a sphere of radius
equal to the reciprocal vector modulus 1

dhkl
.

The intersection of the sphere of reciprocal vectors with the Ewald sphere is a
circumference.

Fig. 17.24 Precession
diagram of perosvskite (www.
xtal.iqfr.csic.es/Cristalografia
with permission)
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The diffracted rays in the crystalline powder, located in center C of the sphere,
pass through the intersection, originating a diffraction cone whose semi-angle is 2h.

The different reciprocal vectors, each representing a plane of the crystalline
powder, originate an equivalent series of concentric spheres, with specific radii that
depend on the moduli of the reciprocal vectors.

Thus, the total effect of diffraction consists of the production of a series of
diffracted, coaxial ray cones with the direction of the incident X-ray beam, S0.

Diffractogram registration can be performed using the powder diffractometer.
With the powder diffractometer, when the sample rotates an angle h, the counter

rotates 2h. This movement h–2h causes the diffractometer to be called a two-circle
diffractometer (Fig. 17.25). In a commercial diffractometer, the sample is located in
the axis center of the precision goniometer, whose angular velocity is synchronized
in the previous ratio 2:1 with the detector.

The graphical or diffractogram record consists of peaks distributed according to
the angular values, 2h, and that correspond to those of the reflections they represent
(Appendix III). Only their areas constitute very representative magnitudes of the
intensities of the corresponding reflections, which can be measured with great
accuracy and reproducibility.

The X-ray diffraction diagram consists of a series of peaks corresponding to the
reflections of the crystalline planes of the phases present in the sample. Each peak is
characterized by its position, related to the h, Bragg’s law angle. The width and
height of the peaks in a diffractogram are the result of a combination of instrumental
and microstructure-based factors. The width and shape of the peaks in a diffrac-
togram are the result of a combination of instrumental factors and factors based on
the microstructure of the sample. When the crystal lattice becomes imperfect, the
X-ray diffraction peaks broaden and, therefore, the peak width carries direct
information about lattice imperfections. Consequently:

– The position of the diffracted peaks is related to size and dimension of the unit
cell.

Fig. 17.25 Powder
diffractometry method scheme
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– Intensity ratios of the diffracted peaks are related to type and location of atoms
in the unit cell.

– Full width at half maximum (FWHM) is related to intrinsic properties of the
materials of the diffracted peaks (i.e., microstructural analysis).

The discovery of the diffraction phenomenon in this type of sample quickly
becomes an experimental technique of widespread use, basically due to the wide
field of application we can find for the study of crystalline substances.

Currently, this technique is a common working tool with an extraordinary utility
in many different scientific and technological disciplines, because of its multi-
faceted nature, in terms of the wide variety of information it provides. The areas of
greatest application of this technique are materials research, cement quality control,
mineralogy and geology, pharmaceutical, chemistry and catalysis, polymers,
archaeology, and new nano- and battery materials and semiconductors.

The information obtained from powder X-ray diffraction includes (a) phase
identification, (b) indexing a powder pattern which allows unit cell size and shape
determination, (c) quantitative phase analysis, (d) crystallite size and strain, (e) peak
intensities, (f) study of solid solutions, (g) texture study, and (h) determination of
thermal expansion coefficients. Also included are determination of amorphous
content, and crystal structure with high sophisticated computational routines
(Rietveld).

(a) Phase identification

The identification of a crystalline phase by this method is based on the fact that each
substance in the crystalline state has an X-ray diffractogram that is characteristic to
it (Fig. 17.26).

These diagrams are collected in tabs, books, and databases of the Joint
Committee on Powder Diffraction Standards and grouped into indexes of organic,

Fig. 17.26 X-ray
diffractogram of calcite
(CaCO3) showing the
interplanar distances
corresponding to their
diffraction peaks
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inorganic, and mineral compounds. It is, therefore, a question of finding the best fit
for the problem diagram with one of those collected.

The phase identification using X-ray powder diffraction can be done by:

– Calculating the unit cell and then searching the NIST crystal data database for
known compounds with the same or similar unit cells.

– Comparing the measured pattern against the ICDD/JCPDS powder diffraction
file data base. This contains powder patterns for a very large number of
compounds.

The list of peak positions and intensities are used. Peaks can be located
automatically.

The search match can be done:

– Manually, using the Hanawalt method, based on the three strongest lines.
– By computer, this should narrow the search down to elements of interest.

With the Hanawalt method, each diagram is characterized by the three most
intense diffraction peaks.

It is important to highlight that the angular position 2h of the diffraction peak is
defined in the middle of fullwidth at half-maximum (FWHM). FWHM is sensitive
to variation in microstructure and stress–strain accumulation in the material. The
full width at half maximum (FWHM) of X-ray diffraction profiles is used to
characterize different material properties and surface integrity features.

It contains a system of subgroups resulting from dividing the range of d values
into 47 regions, each containing a roughly equal number of diagrams. Each diagram
with its three most intense lines is assigned to a group. All the diagrams assigned to
each Hanawalt Group are sorted so that, in the first column, the value of d corre-
sponds to the most intense line, in the second column the value of d corresponds to
the next line in intensity and, in the third column, the value of d corresponds to the
third most intense line. In the five remaining columns, the values of d appear in the
same decreasing order, both in value and in intensity. Following the columns
corresponding to the values of d, sorted by decreasing values of intensity, the
chemical formula, the name, and the number of the corresponding substance sheet
appears.

When analyzing unknown diagrams, the steps to follow are listed below:

(1) The values of d are sorted in order of decreasing intensity.
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(2) The appropriate Hanawalt group is located in the search manual, with the value
of d corresponding to the most intense line.

(3) The d of the second strongest line is verified to fit the d value in the second
column of the corresponding Hanawalt group in the search manual.

(4) The d value of the third strongest line in the unknown diagram is taken and
checked to see if it is set to the value of d in the third Hanawalt column in the
search manual.

(5) Adjusting the d values of the unknown diagram to those of the Hanawalt group
in the search manual uses the corresponding tab and checks the setting of all the
d values of the unknown diagram with those on the tab.

(6) If the selected lines do not give good fit together, other combinations of lines
are chosen in the unknown diagram.

(7) In the event that the unknown diagram corresponds to a mixture of substances,
the experimental found diagram is subtracted and the process is repeated again
(steps 1 to 6) until all the significant lines of the experimental diagram conform
to some diagram of the tabs.

When repeating the procedure, it should be kept in mind that the same diffraction
peak can correspond to more than one crystalline phase. One notices, observing the
intensities of the peak of the experimental diagram and the tab, if the experimental
diagram shows an intensity much higher than that of the tab, it must be suspected
that it corresponds to more than one crystalline phase.

Examples

1 The maximum diffraction values of 2h and the relative intensities for one
material composed by one phase, obtained with radiation KaCu
(k = 1.540 Å) are in Table E1.

Question: Identify the phase of the X-ray diffracted material.

Procedure:

The d values in Table E1 (column 3) have been obtained using the Bragg
equation.

The values of 2h and d were sorted (columns 4 and 5) in order of
decreasing intensity (column 6).

– The appropriate Hanawalt group is searched in the search manual with the
value of d corresponding to the most intense line, in this case 3.34050 Å.

– The d of the second strongest line (4.24857 Å) is verified to fit the d value
in the second column of the corresponding Hanawalt group in the search
manual.
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– The d value of the third strongest line (1.81653 Å) in the unknown dia-
gram is taken and checked to see if it is set to the value of d in the third
Hanawalt column in the search manual. The selected trio of values of
d match those of the card JCPDS 46–1045, corresponding to quartz
(SiO2).

In Fig. E1, the corresponding diffraction pattern of quartz can be observed.

Table E1 2h values (column 1), intensity (column 2) and interplanar distances calculated (column
3) of the reflections corresponding to the diffracted powdermaterial. In columns 4, 5 and 6, the values
of columns 1, 2 and 3 in decreasing order of I (%). In column 7 the identified crystalline phase

Data provided Data calculated Values in decreasing intensity
order

1 2 3 4 5 6 7

2h(º) I (%) d (Å) 2h(º) d (Å) I (%) Phase

20.8919 17.76 4.24857 26.6641 3.34050 100.00 Quartz

26.6641 100.00 3.34050 20.8919 4.24857 17.76 Quartz

36.5880 7.69 2.45402 50.1810 1.81653 12.57 Quartz

39.5087 6.93 2.27907 59.9988 1.54063 8.44 Quartz

40.3316 3.49 2.23445 36.5880 2.45402 7.69 Quartz

42.4918 5.17 2.12572 39.5087 2.27907 6.93 Quartz

45.8349 3.39 1.97815 68.3584 1.37117 6.05 Quartz

50.1810 12.57 1.81653 68.1798 1.37432 5.99 Quartz

54.9163 3.66 1.67057 42.4918 2.12572 5.17 Quartz

55.3663 1.53 1.65805 67.7808 1.38144 4.83 Quartz

57.2483 0.17 1.60793 54.9163 1.67057 3.66 Quartz

59.9988 8.44 1.54063 40.3316 2.23445 3.49 Quartz

64.0730 1.54 1.45214 45.8349 1.97815 3.39 Quartz

65.8676 0.20 1.41685 75.6961 1.25544 2.33 Quartz

67.7808 4.83 1.38144 79.9187 1.19939 2.27 Quartz

68.1798 5.99 1.37432 81.5293 1.17972 2.03 Quartz

68.3584 6.05 1.37117 81.2058 1.18360 1.82 Quartz

73.5026 1.72 1.28739 73.5026 1.28739 1.72 Quartz

75.6961 2.33 1.25544 64.0730 1.45214 1.54 Quartz

77.7066 1.24 1.22790 55.3663 1.65805 1.53 Quartz

79.9187 2.27 1.19939 83.8729 1.15261 1.28 Quartz

80.1358 1.13 1.19668 77.7066 1.22790 1.24 Quartz

81.2058 1.82 1.18360 80.1358 1.19668 1.13 Quartz

81.5293 2.03 1.17972 65.8676 1.41685 0.20 Quartz

83.8729 1.28 1.15261 57.2483 1.60793 0.17 Quartz
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2 The maximum diffraction values of 2h and the relative intensities for one
material composed by two phases, obtained with radiation KaCu
(k = 1.540 Å) are in Table E2.

Question: Identify the phases of the X-ray diffracted material.

Procedure

The d values in Table E2 (column 3) have been obtained using the Bragg
equation.

The values of 2h and d were sorted (column 4 and 5) in order of decreasing
intensity (column 6).

– The appropriate Hanawalt group is located in the search manual, with the
values of d corresponding to the three most intense lines, 3.34050,
3.03836, and 2.28647 Å without any coincidence.

– The following Hanawalt groups are located, with the values of d (Å) of the
second line corresponding to 2.28647, 1.82231, 1.37578, 1.87697,
1.54484, 1.37642, 4.26546, and 3.34050, 3.03836 and with the values of
d (Å) of the third line corresponding to 1.82231, 1.37578, 1.87697,
1.54484, 1.37642, 4.26546, finding a match with the trio of values
−3.34050, 4.26546, and 1.82231 Å corresponding to quartz (JCPDS 46–
1045).

– Subsequently, the procedure is repeated with the values of d not assigned
to the identified phase. The said d (Å) values in decreasing intensity order
are 3.03836, 2.28647, 1.37578, 2.09618, 1.87697, 1.91291, 1.38506,
2.49862, 1.67585, 1.98371, 1.25769, 1.52534, 3.85804, 1.28843, and

Fig. E1 Diffraction pattern of quartz
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1.62497. The first trio of values 3.03836, 2.28647, 1.37578 Å does not
match any card but it is observed that the first duo (3.03836, 2.28647 Å)
matches the calcite card (5–586), so the third value is varied until the trio

Table E2 2h values (column 1), intensity (column 2) and interplanar distances (column 3) of the
reflections corresponding to the diffracted powder material and interplanar distances calculated
(column 3). In columns 4, 5 and 6, the values of columns 1, 2 and 3 in decreasing order of I (%). In
column 7 the identified crystalline phase

Data provided Data calculated Values in decreasing intensity
order

1 2 3 4 5 6 7

2h(º) I (%) d (Å) 2h(º) d (Å) I (%) Phases

20.8257 11.68 4.26546 26.5750 3.35428 100 Quartz

23.0536 3.73 3.85804 29.3972 3.03836 51.04 Calcite

26.5750 100 3.35428 39.4094 2.28647 22.22 Calcite

29.3972 51.04 3.03836 50.0108 1.82231 15.73 Quartz

31.4149 1.21 2.84767 68.0976 1.37578 14.95 Calcite

35.9431 7.28 2.49862 48.502 1.87697 13.62 Calcite

36.4664 9.49 2.46396 59.8729 1.54484 13.54 Quartz

39.4094 22.22 2.28647 68.2543 1.37642 13.32 Quartz

40.2376 4.19 2.24131 43.1578 2.09618 12.08 Calcite

42.3897 6.24 2.13236 20.8257 4.26546 11.68 Quartz

43.1578 12.08 2.09618 47.5340 1.91291 11.5 Calcite

45.7390 4.72 1.98371 36.4664 2.46396 9.49 Quartz

47.5340 11.5 1.91291 67.6431 1.38506 8.82 Calcite

48.5020 13.62 1.87697 35.9431 2.49862 7.28 Calcite

50.0108 15.73 1.82231 57.4004 1.60536 6.97 Quartz

54.7777 5.82 1.67585 42.3897 2.13236 6.24 Quartz

56.6445 2.49 1.62497 54.7777 1.67585 5.82 Calcite

57.4004 6.97 1.60536 45.7390 1.98371 4.72 Calcite

59.8729 13.54 1.54484 64.6812 1.44114 4.61 Quartz

60.7186 4.42 1.52534 75.5371 1.25769 4.47 Calcite

63.1206 1.47 1.47295 60.7186 1.52534 4.42 Calcite

63.9552 3.27 1.45573 40.2376 2.24131 4.19 Quartz

64.6812 4.61 1.44114 23.0536 3.85804 3.73 Calcite

65.6811 3.17 1.42160 73.4335 1.28843 3.61 Calcite

67.6431 8.82 1.38506 63.9552 1.45573 3.27 Quartz

68.0976 14.95 1.37578 65.6811 1.42160 3.17 Quartz

68.2543 13.32 1.37642 77.5400 1.23012 2.97 Quartz

70.3731 1.37 1.33677 56.6445 1.62497 2.49 Calcite

73.4335 3.61 1.28843 63.1206 1.47295 1.47 Quartz

75.5371 4.47 1.25769 70.3731 1.33677 1.37 Quartz

77.5400 2.97 1.23012 31.4149 2.84767 1.21 Quartz
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3.03836, 2.28647, 2.09618 Å matches the calcite card. In Fig. E2 the
corresponding diffraction pattern of the mixture of quartz (SiO2) and
calcite (CaCO3) can be observed.

Currently, there are software programs that allow this process to be carried out
automatically, and they also have JCPDS databases, which greatly facilitate the
identification of crystalline phases by the powder method.

Perform background subtraction and peak search. For a PDF card to be con-
sidered a good match to the experimental data there should be no strong peaks on
the PDF card that are missing from your data. Extra peaks in the data may indicate
the presence of additional phases. Carefully check possibilities against the data.

Rietveld refinement is a technique described by Hugo Rietveld8 for use in the
characterization of crystalline materials. Rietveld refinement uses a least-squares
approach to refine the lattice parameters, peak width and shape, and preferred
orientation to derive a calculated diffraction pattern (from a known or postulated
crystal structure) until it matches the measured profile. Once the derived pattern is
nearly identical to the unknown sample data, several properties pertaining to that
sample can be obtained, including precise quantitative information, crystallite size,
and site occupancy factors. This technique uses the complete profile instead of
individual reflections and was an important step forward in diffraction analysis of
powder samples. Rietveld analysis has the advantage over conventional quantitative
methods in that it does not require standards.

Fig. E2 Diffraction pattern of quartz and calcite

8 Hugo M. Rietveld was a Dutch crystallographer who is famous for his publication on the full
profile refinement method in powder diffraction, which later became known as the Rietveld
refinement method.
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(b) Indexing a powder pattern

The indexing of a powder pattern consists of assigning Miller indices or interplanar
spacings, d, to their reflections.

The only experimental values provided by the powder method are the angular
values of 2hhkl.

These values are directly related to the interplanar spacings of dhkl, using the
Bragg equation (Eq. 17.4) put in the form:

dhkl ¼ 2 sin hhkl
k

ð17:14Þ

where k is the wavelength of X-radiation used and it is known.
Interplanar spacings are related, using the expression:

1

d2hkl

¼ 1

,
1� cos2 a� cos2 b� cos2 c� 2 cos a cos b cos cð Þ�

h2

a2

� �
sin2 aþ k2


b2
� �

sin2 bþ l2

c2

� �
sin2 c

þ 2kl=bc
� �

cos b cos c� cos að Þ
þ 2hl=ac
� �

cos c cos a� cos bð Þ
þ 2hk=ab
� �

cos a cos b� cos cð Þ

2
6666664

3
7777775

ð17:15Þ

for each crystal system, with the indices of the corresponding reflections and with
the cell or lattice parameters of the corresponding crystalline system.

Therefore, you can obtain the cell parameters, the space group or, if ambiguous,
possible space groups, the Bravais lattice type, the crystal system.

Indexing can be done by hand or by computer.
The crystalline powder method uses crystalline powder or polycrystalline sam-

ples, which are composed of numerous crystallites. Each crystallite has a reciprocal
lattice associated with it, whose origin is in the sphere of Ewald, at the point where
the incident ray emerges from it. Since there are many crystallites and they are
oriented at random, it is not possible to distinguish the lattice planes of the different
monocrystals. On the contrary, vectors whose origin is that of the reciprocal lattice
are joined in concentric spheres whose radii are the different possible vectors of the
reciprocal lattice. Each sphere of the reciprocal lattice intersects with the reflection
sphere, resulting in concentric diffraction cones around the X-ray beam and, in the
case of the Debeye-Scherrer method, can be intercepted by a cylindrical chamber in
two arcs.

The distance between the arcs can be quantified, so diffraction angles can be
measured. In addition, the lengths of the vectors of the reciprocal lattice can be
determined, since r*hkl = l/dhkl, but not the relative provisions thereof, which
explains the difficulties presented by index allocations to the hkl reflections of a
powder diagram.
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The problem is easier when the system is cubic, tetragonal, or hexagonal. To
assign the hkl indices to the reflections produced by certain crystal planes in one of
the above-mentioned crystal systems, Eqs. 17.4 and 17.5 must be considered.

– Cubic crystal system
If present, 100 reflexion is the first of all, and the problem is easy to solve because,
from this hypothesis, progress is made by dividing all the Qhkl by the 1st
(Q1 = Q100). For the simplest case; that is, the case of the cubic system it is

1
dhkl2

¼ h2 þ k2 þ l2

a2
¼ Qhkl ð17:16Þ

Qhkl=Q100
¼ h2 þ k2 þ l2

a2

�
1
a2
¼ h2 þ k2 þ l2 ¼ N ð17:17Þ

N values for the cubic crystal system are in Appendix IV of this chapter.
Because, in the cubic system, the presence of number 7 is not possible, when

Q1st is not the Q100, probably the Q1st will be the simplest, immediate to 110
reflexion, i.e., Q110, and subsequently:

Qhkl=Q111
¼ h2 þ k2 þ l2

a2

�
2
a2
¼ h2 þ k2 þ l2

2
¼ N

2
ð17:18Þ

where

N ¼ 2
Qhkl

Q110

� �
ð17:19Þ

If the 110 reflexion is not present, it will be logical to think that the next simplest
immediate that may appear is the 111 reflexion:

Qhkl=Q111
¼ h2 þ k2 þ l2

a2

�
3
a2
¼ h2 þ k2 þ l2

3
¼ N

3
ð17:20Þ

where

N ¼ 3
Qhkl

Q111

� �
ð17:21Þ
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– Tetragonal crystal system

The expressions to be considered are (17.22) and (17.23):

1
dhkl2

¼ h2 þ k2 þ l2

a2
þ 1

c2
¼ Qhkl ð17:22Þ

Each Qhkl/Q1st will be composed of an entire part and a decimal part. If we
consider that the Q1st is the Q100, it follows that the entire part of Qhkl/Ql00 is

Qhkl

Q100
¼ h2 þ k2 ¼ N ð17:23Þ

The decimal part n.X (n = 0, 1, 2, …) contributes to the value of l.

for l ¼ 1 n:X � 12
for l ¼ 2 n:X � 22
for l ¼ 3 n:X � 32

Accordingly, the value of l is obtained as follows: It may be useful to have a
table with all values that have decimals. For example, if we suppose three values
with decimals—n.X, n.Y, n.Z—there must be three different values of 1. We start
working with the first decimal and with n = 0, and we check that with 0.X the rest
of the decimal places are satisfied. If not, continue with the next degree of com-
plication 1.X, etc.

– Hexagonal crystal system

The expressions to be considered are (17.24) and (17.25):

1
d2hkl

¼ 4 h2 þ k2 þ l2ð Þ
3a2

þ 1
c2

¼ Qhkl ð17:24Þ

Qhkl

Q100
¼ h2 þ k2 þ hk ¼ N ð17:25Þ

The procedure for assigning indices to different reflections is the same as just
describing the case of the tetragonal system.

– Monoclinic and triclinic crystal systems
The resolution is much more complicated because more parameters appear, which
makes it necessary to process the data using iterative calculation processes. Because
of this complication, it is not appropriate to address such problems in this context.
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Examples

1 Maximum diffraction values of 2h obtained with radiation KaCu
k = 1.540 Å for two crystals, 1 and 2, are in Tables E1 and E2 (column
1), respectively:

1. Deduce the crystal system.
2. Assign indices to reflections.
3. Calculate cell parameters and axial angles.
4. Extract the possible information about the space group.

Solution crystal 1.

1. In the interpretation of the powder diagram, the crystalline system must be
decided in advance. To do this, the crystal planes that correspond to the
reflections found must be known.
From the values of 2h, using Bragg’s law, the values of d (second column
of Tables E1 and E2) are obtained. From the expression l/d2hkl the values

Table E1 Maximum diffraction values of 2h (column 1), interplanar distances (column 2), Q/Q1st

(column 3), and hkl indexes of reflections (column 4) for crystal 1

1 2 3 4

2h(º) d (Å) Q/Q1st hkl

23.03 3.862 1 100

32.81 2.730 2 110

40.38 2.234 3 111

47.07 1.931 4 200

53.00 1.728 5 210

58.54 1.577 6 211

68.78 1.365 8 220

73.61 1.287 9 221 or 300

78.31 1.221 10 310

82.96 1.164 11 311

87.49 1.115 12 222

92.09 1.071 13 320

Table E2 Maximum diffraction values of 2h (column 1), interplanar distances (column 2), Q/Q1st

(column 3), and hkl indexes of reflections (column 4) for crystal 2

1 2 3 4

2h(º) d (Å) Q/Q1st hkl

38.523 2.3342 1 110

55.618 1.6505 2 200

69.694 1.3476 3 211

82.562 1.1671 4 220

95.056 1.0439 5 222

107.813 0.9529 6 310

121.575 0.8822 7 321

137.849 0.8252 8 400

163.451 0.7781 9 411
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Qhkl are obtained but the reflection to which the Ql00 corresponds is not
known, so it is based on an initial hypothesis that is to divide all the Qhkl

by the Q1ª (third column of the Tables E1 and E2). This is assumed to be
the Q100 since, from this relationship; you get a series of integers, as many
as reflections. In the case of crystal 2, Q1st does not correspond to
reflection 100, since the nº 7 that cannot exist in the cubic system appears,
which makes it assume, as the 2nd hypothesis that it corresponds to the
simplest immediate reflexion, i.e., the 110. Therefore, the Qhkl/Q110 must
be multiplied by 2, obtaining the values that appear in Table E2.

2. In the cubic system, the values of h, k and 1 (fourth column of the Tables
E1 and E2) are obtained from the expression h2 + k2 + l2 = N, with N
being an integer.

3. For the cubic system

d ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p

where
a = d100 = 3.862 Å for crystal 1. In the cubic system a = b = c = 3.862 Å
a = d100 = 3.301 Å for crystal 2. In the cubic system a = b = c = 3.301 Å
a = b = c = 90º

4. In crystal 1, the lattice is primitive as there is no non-extinction condition.
In crystal 2, the lattice is cubic body centered since, for all reflections, it is
fulfilled that k + k + 1 = 2n.

(c) Quantitative phase analysis
The quantitative phase analysis is based on the fact that the integral intensities of
the reflections of a crystalline phase contained in a sample depend on the relative
concentration of that phase in the sample. The relationship between intensity and
concentration is not linear, due to absorption effects. The relative amount of the
phases in a mixture can be determined by comparing the intensities of peaks in the
sample with those from reference materials or by using an internal standard. In this
method, the integrated intensity of a peak of the analysed phase is compared with
the intensity of a peak of a phase added in known proportions (Eq. 17.26).

Iij
Iis

¼ k
cj
cs

ð17:26Þ
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where

i is the reflexion
j is the phase
k is the slope of the straight line of Iij/Iis versus the added quantity cj is the weight

fraction of initial j
cs is the weight fraction of the standard

The material used as standard must fulfil a number of requirements. It must be
chemically stable, have no overlapping peaks with the analysed phase, and have no
preferential orientation, among other requirements.

Equation 17.27 is the basis for the Reference Intensity Ratio (RIR) method.

ci ¼
IiIrelj cj

IjIreli RIRi;j
ð17:27Þ

It is necessary to obtain a calibration curve from standards, which is rather
tedious since each component sought needs a calibration curve, each calibration
curve needs at least three standards, and each standard must contain exactly the
same percentage of pure reference material chosen.

In the method developed by Chung,9 no calibration curve is needed. The method
is based on previous knowledge, or measurement, of relative (reference) intensities
of (the strongest) diffraction lines for each pair of phases that are present in the
system, or rather for each phase and a reference phase (corundum, a-Al2O3). All
information related to the quantitative composition of the system can be decoded
directly from its diffraction pattern.

With the Rietveld method, the total diffractogram is considered the sum of the
individual patterns of each phase, and the information is extracted without sepa-
rating into components. It is necessary to know the crystalline structure of the
component phases, and the difference between the experimental and calculated
diffractogram is minimized (Eq. 17.28)

R ¼
X

wi Yi oð Þ � Yi cð Þj j2 ð17:28Þ

where

Yi(o) and Yi(c) are the observed and calculated intensity, respectively, at the i-th
point of the data set.

9 Chung, H. (1973). Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures.
I. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied
Crystallography, 7, 519–529.

Chung, F.H. (1975). Quantitative interpretation of X-ray diffraction patterns of mixtures. III.
Simultaneous determination of a set of reference intensities. Journal of Applied Crystallography, 8,
17–19.
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Quantitative information for each phase is obtained from the values of the
scaling factors.

(d) Crystallite size
X-ray diffraction reflections broaden when the crystal lattice becomes imperfect
and, therefore, the reflection broadening carries direct information about the lattice
imperfections. In general, these lattice imperfections are classified into two types:
nanometer-sized crystals and lattice defects. Thus, the crystal sizes and lattice
microstrains of materials are evaluated using the line-broadening theory of X-ray
powder diffractometry. The crystallite size can be calculated in a range of about 50
to 300 nm from the full width half maximum (FWHM) measurements using the
Scherrer Eq. 17.2910

crystallite size ¼ Kk
FWHM cos h

ð17:29Þ

where K is the shape factor, which is usually close to the default value 0.9, k is the
wavelength of X-ray, and h is the diffraction angle or Bragg’s angle. The values of
FWHM and h are obtained from the diffraction patterns.

The lattice strain arising from crystal imperfection and distortion was calculated
using the empirical Eq. 17.3011

lattice strain ¼ FWHM
tan h

ð17:30Þ

(e) Peak intensities
Phase identification is done primarily by comparing peak positions, although if a
match between a database pattern and an experiment is to be considered good, the
relative intensities of the peaks should be similar.

Peak positions are determined by the lattice.
Peak intensities are determined by the positions of the atoms in the unit cell.
We can use intensities to figure out where the atoms are (structure analysis).

(f) Study of solid solutions
Variation in the chemical composition of a known substance involves the substi-
tution of atoms, usually of slightly different size, in specific positions in the
structure.

As a result of this substitution, the cell dimensions (a, b, and c) change slightly
and, therefore, so do the lattice spacings.

10 Scherrer, P., 1918. Bestimmung der Gröss und der Inneren Struktur von Kolloidteilchen Mittels
Röntgenstrahlen. Nahrichten von der Gesellschaft der Wissenschaften, Göttingen.
Mathematisch-Physikalische Klasse, 2, 98–100.
11 Stokes, A.R. and Wilson, A.J.C., 1944. The diffraction of X rays by distorted crystal aggregates.
Proceedings of the Physical Society, 56 (3), 174–181.
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The positions of the reflections (peaks in a graphical register of the powder
diffractometer or lines in the film with Debye–Scherrer camera), i.e., the values of
2h to which the reflections occur, corresponding to these spacings change as well.

By measuring these small changes in the position of the peaks in a diagram or
lines in a film, i.e., changes in the values of 2h to which reflections occur in a
powder pattern of well-known structure substances, changes in chemical compo-
sition can be detected.

If the lattice parameters of the pure species in a mixed crystal system are known,
the lattice parameters for the solid solution often follows Vegard’s law, which
means a linear relation between lattice parameter and composition. With a precise
measurement of the lattice parameters, the composition of the mixed crystal can be
calculated.

(g) Texture study
A polycrystalline aggregate like a crystalline powder is supposed to have all the
crystallites ideally oriented randomly, relative to each other, and behaves like cone
a substance of isotropic characteristics. However, there are a large number of
polycrystalline substances that contain a certain portion of crystallites oriented in a
specific direction. This has the consequence of highlighting anisotropic character-
istics and tends to behave like a monocrystal. It is then said that the substance has
preferential orientation.

(h) Determination of thermal expansion coefficients
The linear expansion coefficient of a crystal is different in the different crystallo-
graphic directions. When the spacing of the planes undergoes a variation, the effect
will be revealed in an offset of the 2h values of the corresponding reflections of the
diffraction diagram, according to the Bragg equation.

The expansion coefficient is given by Eq. 17.28

a ¼ Dd
d

1
DT

¼ d2 � d1
d1 T2 � T1ð Þ ð17:28Þ

where

d is displacement
T is the temperature

This expression related to Bragg’s equation is put into the form

d ¼ k
2 sin h

ð17:29Þ

So, if two powder diagrams of a substance such as silver are obtained at 18 ºC
and 500 ºC, the expansion causes the peaks in both diagrams to be displaced, so that
dhkl can be obtained for the two temperatures, in general d1 for reflections at 18 ºC
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and d2 for reflections at 500 ºC. Thus, we will have two Bragg equations such as the
one shown above, in which the values of d1 and d2 obtained from the coefficient of
thermal expansion are replaced.

17.11.6 Goniometric Methods: 4-circle Diffractometer

Goniometric methods displaced the earlier X-ray diffraction methods after the
introduction of digital computers in the late 1970s. At that time, automatic
four-circle diffractometers were designed. They have a goniometric system with
very precise mechanics and, by means of three rotations, allow the crystal to be
placed in any orientation in space, thus fulfilling the requirements of Ewald’s
construction for diffraction to occur. With a fourth axis of rotation by the electronic
detector, the diffracted beam is recorded. All these movements can be programmed
to be performed automatically.

Goniometric methods are used to obtain very detailed information about the
X-ray diffraction patterns of single crystals.

With gonometric methods, two detectors are used, (1) point detectors (2) area
detectors.

(1) Point detectors

Point detectors were first used and were later replaced by area detectors. In point
detectors, the detection of each diffracted beam (reflection) is carried out individ-
ually, requiring the four angular values of the goniometer to be changed auto-
matically and programmed for each diffracted beam. Measurement times in this
equipment are usually in the order of one minute per reflection.

(2) Area detectors

Area detectors allow the detection of many diffraction beams simultaneously, thus
saving time in the experiment. This technology is particularly useful in the case of
proteins and, in general, of any material that may deteriorate during exposure to
X-rays, since the detection of each of the images collected (with several hundred or
thousands of reflections) is done in a minimum time, in the order of seconds.

One of the most commonly used area detectors (Fig. 17.27) is based on the
so-called CCDs (Charge Coupled Device) which are normally installed on gonio-
metric equipment with Kappa (j) geometry. Because of their speed; their use is
widespread in the field of protein crystallography, associated with rotating anode
generators or in large synchrotron installations. The most modern technology
involves the use of area detectors based on the so-called CMOS (Complementary
Metal-Oxide Semiconductor) technology, which allows a very short readout time,
leading to a considerable increase in diffraction imaging rate during the data col-
lection process.
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Two geometries can be used with the goniometric methods:

– Eulerian geometry, where the crystal is oriented by means of the three Eulerian
angles, as follows:

U represents the rotation about the axis of the goniometer head,
v allows swinging about the closed circle, and
x allows full rotation of the goniometer.

The fourth circle represents the detector rotation, 2h.

– Kappa geometry, which does not have a closed circle equivalent to the v.
Instead, the function is performed by the so-called j (kappa) and xj axes, so
that by combining them, v is obtained within the range from −90 to + 90º. The
main advantage of this geometry is wide accessibility to the crystal. The angles
U and 2h are identical to those presented in Eulerian geometry.

17.11.7 Synchrotron Radiation-Based Methods

The principles of the synchrotron were described in 1945 almost simultaneously by
McMillan (1907–1991) at the University of California and Veksler (1907–2006) in
the former Soviet Union. The first synchrotron was built in California by McMillan.

The synchrotron is an accelerator of charged particles traveling in a toroidal
shaped tube (magnets are used along the tube so that the Lorentz magnetic

Fig. 17.27 Area detector
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force12 maintains the curved trajectory of the particles). There are different types of
accelerators, including electron synchrotron, proton synchrotron or tevatron, stor-
age rings, and particle colliders.

In particle accelerator synchrotrons, particles are kept in a closed orbit. In them,
two different particle beams are accelerated in opposite directions to study the
products of their collision. In other synchrotrons, known as storage rings, a beam of
particles of a single type is kept circulating indefinitely at a fixed energy. It is used
as synchrotron light sources to study materials at atomic radius resolution in
medicine and in manufacturing processes and materials characterization. A third use
of synchrotrons is as a pre-accelerator of particles prior to their injection into a
storage ring. These synchrotrons are known as boosters.

In the synchrotron, the electric and magnetic fields vary. The maximum speed at
which particles can be accelerated is given by the point at which the synchrotron
radiation emitted by the spinning particles is equal to the energy supplied.

In large synchrotron installations, the generation of X-rays is different.
A synchrotron installation contains a very large ring (on the order of kilometers)
through which electrons are circulated at very high speed inside rectilinear channels
that occasionally break to adapt to the curvature of the ring (Fig. 17.28). These elec-
tronsaremade tochangedirection tomove fromonechannel tootherusinghigh-energy
magneticfields. It is at thatmoment, in the change of direction, that the electrons emit a
very energetic radiation called synchrotron radiation. This radiation is composed of a
continuum of wavelengths ranging from microwaves to so-called hard X-rays.

Fig. 17.28 Scheme of the
trajectories followed by the
electrons inside the
synchrotron

12 The Lorentz force is the force exerted by the electromagnetic field that receives a charged
particle or an electric current.
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The X-rays obtained in synchrotron installations have two great advantages for
crystallography:

(1) The wavelength can be adjusted at will, and
(2) their brightness (magnitude related to intensity) is at least one trillion times

(1021) higher than that of conventional X-ray sources.

Examples of synchrotron applications include the following:

– In chemistry, to follow a chemical reaction with nanosecond intervals. This
technique has been used, for example, to study the behavior of catalytic mate-
rials under real operating conditions.

– In the study of matter under special conditions, for example, diffraction
experiments at very high pressures using a diamond cell, consisting of two
diamond crystal materials of interest, which is confined in a special capsule. The
high hardness of diamond allows pressures millions of times higher than
atmospheric pressure. These pressures are comparable to those attained at the
center of the earth and, therefore, make it possible to study the state of matter at
5500 °C and 3.6 million bars, in order to try to answer the question of what is
the real structure of Fe–Ni alloys in the center of the earth.

– In structural biology, to investigate the position in space of each of the mole-
cules that form small viruses or proteins, this is the first step towards the real-
ization of specific drugs. For example, recently, D. Stuart and his group (Oxford,
UK) at the European synchrotron in Grenoble have managed to measure 50.000
reflections in an X-ray diffraction pattern of a crystal of the bluetongue virus,
which causes many deaths in cattle. The precision in the position of the
molecules is 0.35 nm. This is the largest molecular structure ever solved.

– In medical uses, such as mammography and angiography.
– In industry. Some multinational companies that invest in their own research

install lines where they can study faults in some of the electronic components
they manufacture, to make masks by means of lithographic treatments for both
microelectronic and mechanical applications, or to calibrate instruments.

These devices do not produce any type of residue or environmental radioactivity,
since the electrons cannot leave the vacuum tube without interacting with the air
and recombining with its molecules. Therefore, a failure, for example, of electricity
or in the vacuum system or in acceleration only causes loss of the beam.
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Exercises

1 The maximum diffraction values of 2h for two crystals, 1 and 2, obtained
with radiation KaCu (k = 1.540 Å) are in Tables E1 and E2.

1. Deduce the crystal system.
2. Assign indices to reflections.
3. Calculate cell parameters and axial angles.
4. Extract the possible information about the space group.
2 The maximum diffraction values of 2h for one crystal, obtained with

radiation KaCu (k = 1.540 Å) are in Table E2.

1. Identify the phase of the X-ray diffracted material.

Table E1 Maximum diffraction values of 2h (column 1), interplanar distances (column 2), Q/Q1st

(column 3), and hkl indexes of reflections (column 4) for crystal 1

1 2 3 4

2h(º) d (Å) Q/Q1st hkl

23.03 3.862 1 100

32.81 2.730 2 110

40.38 2.234 3 111

47.07 1.931 4 200

53.00 1.728 5 210

58.54 1.577 6 211

68.78 1.365 8 220

73.61 1.287 9 221 or 300

78.31 1.221 10 310

82.96 1.164 11 311

87.49 1.115 12 222

92.09 1.071 13 320

Table E2 Maximum diffraction values of 2h (column 1), interplanar distances (column 2), Q/Q1st

(column 3), and hkl indexes of reflections (column 4) for crystal 2

1 2 3 4

2h(º) d (Å) Q/Q1st hkl

38.523 2.3342 1 110

55.618 1.6505 2 200

69.694 1.3476 3 211

82.562 1.1671 4 220

95.056 1.0439 5 222

107.813 0.9529 6 310

121.575 0.8822 7 321

137.849 0.8252 8 400

163.451 0.7781 9 411
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2h(º) I (%) 2h(º) I (%)

20.9026 12.83 50.1321 20.2

24.0353 0.37 51.0180 2.13

26.6522 100 54.8530 5.36

29.4308 3.66 55.3376 2.95

30.8973 7.78 57.3400 0.63

33.2707 0.21 59.9500 13.92

35.0835 0.42 6353760 0.66

36.5581 8.22 64.0231 2.50

39.4586 9.76 65.7206 1.06

40.3046 4.27 67.7073 9.49

41.0689 2.40 68.1200 15.23

42.4686 7.32 68.3164 13.25

43.1755 0.92 70.3056 0.43

44.8809 1.33 73.4268 3.43

45.7866 5.08 75.5979 4.32

47.5290 1.00 77.6061 2.39

48.5332 0.89

Questions

1. What does an X-ray diffraction diagram represent?
a. direct lattice
b. crystalline planes
c. crystalline structure
d. reciprocal lattice

2. Laue suggested that the periodic structure of a crystal could be used to
diffract X-rays because

a. Crystals are periodic, X-rays are waves, and the length of X-rays is
the same order of magnitude as the distance that the motifs in the
crystals repeat.

b. Crystals are homogeneous, X-rays are waves, and the length of
X-rays is the same order of magnitude as the distance repeated by the
motifs in the crystals.

c. Crystals are periodic, X-rays are waves, and the length of X-rays is
the same order of magnitude as the distance that the planes repeat in the
crystals.

d. Crystals are symmetrical, X-rays are waves, and the length of
X-rays is the same order of magnitude as the distance that the planes
repeat in the crystals.
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3. The range of wavelengths used in X-ray diffraction is between

a. 0.5 and 2.5 nm
b. 0.5 and 2.5 Ångstroms (Å)
c. 0.5 and 2.5 cm
d. 0.5 and 2.5 m

4. For a plane to diffract the X-rays

a. Its orientation should be such that its reciprocal point is on the
diameter of the Ewald sphere.

b. Its orientation should be such that its reciprocal point is outside the
sphere of Ewald.

c. Your guidance should be such that your reciprocal point is located
anywhere.

d. Its orientation must be such that its reciprocal point is on the
sphere of Ewald.

5. For any plane (hkl) to diffract X-rays, its orientation must be such that its
representative reciprocal point is located on the surface of the ___

Response:

6. In almost all experimental devices, the interaction of X-radiation with a
free electron is

(a) polarized
(b) non-polarized

Choose a or b

Response:

7. What is the name of the factor referring to the scattering of radiation by
the electrons of an atom?
In the answer, do not repeat terms and, if more than one is required,
separate them by a blank

Response:

8. How many point groups correspond to Laue classes?

Response:
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9. What collides with matter for X-rays to occur?

Response:

10. The scattering vector OP (S–S0) must have equal magnitude and
direction as which vector?

Response:

11. Can diffracted X-rays follow in any direction? (Yes or No)

Response:

12. Continuous spectrum occurs as an effect of electrostatic electron inter-
actions in the vicinity of the nuclei of the anode atoms.

True
False

13. The point group obtained from a diffraction diagram has a ternary axis
of its own rotation
Select one:

True
False

14. Destructive interferences in X-ray diffraction occurs when interfering
waves are out of phase and the trajectory difference is half the
wavelength.

True
False

15. Laue groups are spatial groups with a center of symmetry.

True
False

16. The rate of spread of X-rays relative to that of light is different

True
False
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17. Write an x if the point group coincides with a Laue class.

222

mmm

422

m 3m

mm2

1

18. Pair the sample type with the X-ray technique

Laue crystal powder method

oscillating crystal monocrystal

method of powder crystal powder method

19. Describe the sample used in the crystalline powder method in X-ray
diffraction.

(a) many randomly oriented crystallites
(b) monocrystal
(c) many crystallites oriented in a certain direction

Respond with a, b or c.

Response:

20. The sphere of reflection containings nodes of the reciprocal network that
correspond to planes that diffract the X-rays.

True
False
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Appendix I Correspond to Chapter 4

See Tables A.1, A.2, A.3, A.4, A.5, A.6 and A.7.

Table A.1 Triclinic crystalline system

Crystal system + Crystalline class

Crystalline
class

Punctual
group

Special
forms

General
forms

Stereographic projection

Triclinic + Pedial

Pedial
(Hemiedry)

1 No special
form

Pedion
(hkl)

Triclinic + Pinacoidal

Pinacoidal
(Holohedry)

1 No special
form

Pinacoid
ðhklÞðhklÞ

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
C. Marcos, Crystallography, Springer Textbooks in Earth Sciences,
Geography and Environment, https://doi.org/10.1007/978-3-030-96783-3
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Appendix II Correspond to Chapter 4

Stereographic Projections of Minerals

(Drawn with Shape software1)

Mineral Figures and point groups

Andalusite

mmm
(continued)

1Shape software, V7.1.2, 2004.
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(continued)

Mineral Figures and point groups

Apatite

6/m

Biotite

2/m

Calcite

3m
(continued)

454 Appendix II Correspond to Chapter 4



(continued)

Mineral Figures and point groups

Cordierite

mmm

Epidote

2/m

Fluorite

m 3 m
(continued)
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(continued)

Mineral Figures and point groups

Hornblende

2/m

Kyanite

1
(continued)
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(continued)

Mineral Figures and point groups

Pyrope garnet

m 3m

Quartz

32
(continued)
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(continued)

Mineral Figures and point groups

Tourmaline

3m

Tremolite

2/m
(continued)
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(continued)

Mineral Figures and point groups

Sillimanite

mmm

Zircon

4/mmm
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Appendix III Correspond to Chapter 9

Structural distortion and order of Al and Si in the structure of alkali feldspars

In an alkali feldspar (KAlSi3O8), the ideal structure is monoclinic, C2/m. The
framework is constituted by rings of four tetrahedra, 2 T1 and 2 T2, alternating and
occupied by Si4+ and Al3+, with a disordered distribution. Two tetrahedra have their
vertices pointing upwards and two have their vertices pointing downwards (Fig. A.1).

– These rings are joined to form a layer. In this layer, the rings of four tetrahedra
are joined to another ring of four other tetrahedra, so that both rings are related
by a plane of symmetry.

– The tetrahedra are joined along axis a, giving rise to a chain in the form of a
crankshaft.

– Between the rings of tetrahedra, there are large gaps in which the K+ ions are
located, just above the planes of symmetry. They also form a chain. These ions
have coordination number 10.

At low temperature, there is an increase in order and, consequently, a loss of
symmetry of the structure. The ordered distribution of Al3+ in microcline destroys
the symmetry plane and binary axis present in sanidine and orthoclase, leaving only

Fig. A.1 Tetrahedra with
vertices pointing upwards and
downwards alternating and
occupied by Si4+ and Al3+

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
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one center of symmetry. The low-temperature structure is the most ordered and
least symmetrical, C 1.

– High-temperature structures are more expanded than low-T structures.
– As T decreases, the structure tends to contract around the cations that occupy the

large interstitials.
– Large cations such as K+ allow the structure to remain expanded.
– The T at which the structure contracts decreases from Na to K feldspars.
– K-rich feldspars maintain a stable C2/m structure at room T. At high T, Al3+ and

Si4+ are stable.
– At high T, the Al3+ and Si4+ are disordered, while at low T, there is a tendency

toward order.
– Order is a slow process involving the breaking of Si-O and Al-O bonds.
– To distribute the Al3+ and Si4+ in an orderly way, it is not possible with two

different tetrahedral positions. There must be a reduction in symmetry so that there
are four T positions where the Al3+ can be placed in one position and the Si4+ in the
other three T positions. This process of order implies distortion in the tetrahedra,
since the Al3+ tetrahedron is somewhat larger than the Si4+ tetrahedron.

Sanidine appears in rapidly cooled rocks.
Orthoclase occurs in rocks cooled to a moderate T.
Microcline will be found in plutonic igneous rocks (slowly cooled deep in
the earth) and in metamorphic rocks.

The main characteristics observed in the phase diagram (Fig. A.2), in relation to
alkali feldspars, are the following:

Fig. A.2 Phase diagram of feldspars
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– In K-rich feldspars, the ordering of Al and Si results in the transformation from
monoclinic to triclinic feldspars.

– A solvus produces a miscibility gap between Na-rich feldspars and K-rich
feldspars.

– The intermediate compositions between the two feldspars, when cooled slowly,
unmix (exfoliate) and give rise to two intergrowths.

Chemical composition of alkaline feldspars

The chemical formula of alkali feldspars can be expressed as MT4O8 where
M = K+, Na+ (alkaline metals), and T is the tetrahedral position where Si4+ and Al3
+ are located. Thus, Orthoclase (Or) = KAlSi3O8 and Albite (Al) = Na AlSi3O8 can
be differentiated. The ternary diagram (Fig. A.3) shows the alkali feldspars, which
are so named because the alkali metals that form Na+ and K+ are substituted for
each other following the continuous spectrum of compositions in the series.2

In the case of alkali feldspars, it can be observed that there is a small solid
solution between Or-Ab. This is because the charge is identical between the sub-
stituted K+ and Na+ atoms; however, the size is sufficiently different so that the
solid solution is limited at low temperatures, being the size of the cations
K+ = 1.3 Å and Na+ = 1.0 Å (Griffen, 1992).3

Fig. A.3 Ternary diagram of feldspars (according to Deer et al., 2012)21
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The result is a complete solid solution (Fig. A.4) located above the 750C°
isotherm at P H2O = 1 kbar, and below this temperature, the exsolution of the alkali
feldspars occurs where they cool slowly and crystallize. This zone is known as the
miscibility gap (Griffen, 1992).

In this ternary diagram, the regions corresponding to the solid solutions are
restricted by isotherms, so that outside these isotherms, i.e., toward the sides rep-
resenting Or-Ab and Ab-An, the solid solution occurs for the corresponding tem-
peratures while, inside the isotherms themselves, the exsolution processes occur.

Fig. A.4 Solvus lines in the Or-Ab-An ternary diagram (Griffen, 1992)
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Appendix IV

Conditions of systematic non-extinction due to Bravais lattices.

Reflection Condition Interpretation Lattice Crystalline
system

hkl h + k + l = 2n Interior or body-centered lattice I 2, 3, 4, 7

h + k = 2n C-face-centered lattice C 2,3

h + l = 2n B-face-centered lattice B 3

k + l = 2n A-face-centered lattice A 2, 3

h,k,l, all even or
all odd

Face-centered lattice F 3, 7

−h + k + l = 3n Rhombohedral lattice indexed
according to hexagonal axes,
orientation +

R 5

h–k + l = 3n Rhombohedral lattice indexed
according to hexagonal axes,
orientation

R 5

h + k + l = 3n Hexagonal lattice indexed
according to rhombohedral axes

H 6

any value Primitive lattice P All

Crystal systems: 1-triclinic, 2-monoclinic, 3-orthorhombic, 4-tetragonal, 5-rhombohedral,
6-hexagonal, and 7-cubic

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
C. Marcos, Crystallography, Springer Textbooks in Earth Sciences,
Geography and Environment, https://doi.org/10.1007/978-3-030-96783-3
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Appendix V

Conditions of selected systematic non-extinction (= reflection condition) due to
elements of symmetry with translation.

Reflection Condition Interpretation Vector Symbol Crystal
system

0kl k = 2n
l = 2n
k + l = 2n
k + l = 4n
and k,l = 2n

glide plane
parallel to
(100)

b/2
c/2
(b + c)/2
(b + c)/4

b
c
n
d

3, 4, 7
3, 4, 7
3, 4, 7
3, 4, 7

h0l h = 2n
l = 2n
h + l = 2n
h + l = 4n
and h,l = 2n

(010) a/2
c/2
(a + c)/2
(a + c)/4

a
c
n
d

2, 3, 4, 7
2, 3, 4, 7
2, 3, 4, 7
3, 4, 7

hk0 h = 2n
k = 2n
h + k = 2n
h + k = 4n
and h,k = 2n

(001) a/2
b/2
(a + b)/2
(a + b)/4

a
b
n
d

3, 4, 7
3, 4, 7
3, 4, 7
3, 4, 7

hh0l l = 2n {1120} c/2 c 5, 6,

hh2l1 l = 2n {1100} c/2 c 5, 6

hhl, hh1 l = 2n
2 h + l = 4n

(110), (110Þ c/2
(a + b + c)/4

c, n
d

4, 7
4, 7

hkk, hkk h = 2n
2 k + h = 4n

(011), (011) a/2
(a + b + c)/4

a, n
d

7
7

hkh, hkh k = 2n
2 h + k = 4n

(101), (10 1) c/2
(a + b + c)/4

b, n
d

7
7

Screw axis
parallel to

(continued)
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(continued)

Reflection Condition Interpretation Vector Symbol Crystal
system

h00 h = 2n
h = 4n

[100] a/2
a/4

21
42
41, 43

3, 4, 7
7
7

0k0 k = 2n
k = 4n

[010] b/2
b/4

21
42
41, 43

2, 3, 4, 7
7
7

00 l l = 2n
l = 4n

[001] c/2
c/4

21
42
41, 43

3, 7
4, 7
4, 7

000 l l = 2n
l = 3n
l = 6n

[0001] c/2
c/3
c/6

63
31, 32, 62,
64
61, 65

6
5, 6,
6

Crystal systems: 1-triclinic, 2-monoclinic, 3-orthorhombic, 4-tetragonal, 5-trigonal, 6-hexagonal,
and 7-cubic
n = odd integer and 2n = even integer

468 Appendix V



Appendix VI

Each mineral corresponds to a crystal structure and an X-ray powder diffraction
pattern.

The structuresweremadewithAtoms software.4 The table of 2, intensity, d-spacing,
and hkl values for each mineral is XPOW Copyright 1993 Bob Downs, Ranjini
Swaminathan, and Kurt Bartelmehs.5 X-ray diffraction data were obtained from the
database of the RRUFF Project,6 Department of Geosciences, University of Arizona.

Note: In the X-ray powder diffraction patterns, hkl numbers of the reflections
have been indicated.

Andalusite (Al2SiO5), orthorhombic (Pnnm).

Structure
Winter, J.K., Ghose, S. (1979). Thermal expansion and high-temperature crystal chemistry of the
Al2SiO5 polymorphs. American Mineralogist, 64, 573–586.
Cell parameters: 7.798000 Å, 7.903100 Å, 5.556600 Å, 90º, 90º, 90º.

(continued)

4Atoms software V6.1.2 (2004).
5Downs, B. Swaminathan, R. and Bartelmehs, K. (1993) American Mineralogist 78, 1104–1107.
6RRUFF Project (Department of Geosciences, University of Arizona), with permission.
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(continued)

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R050258 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)
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Apatite (Ca5(PO4)3F), hexagonal (P63/m).

(continued)

X-ray diffraction pattern

Structure
Hughes, J.M., Cameron, M., Crowley, K.D. (1989). Structural variations in natural F, OH, and
Cl apatites. American Mineralogist, 74, 870–876.
Cell parameters: 9.3925 Å, 9.3925 Å, 6.8839 Å, 90º, 90º, 120º.

X-ray diffraction
XPOW Copyright 1993 Bob Downs, Ranjini Swaminathan, and Kurt Bartelmehs
For reference, see Downs et al. (1993) American Mineralogist 78, 1104–1107
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040098 (RRUFF database).
X-ray wavelength: 1.541838 Å

(continued)
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(continued)

(continued)
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(continued)

X-ray diffraction pattern
Ca5(P0.98O0.01)3F



Calcite (CaCO3), trigonal (R3c).

Appendix VI 475

Structure
Markgraf, S.A., Reeder, R.J. (1985). High-temperature structure refinements of calcite and
magnesite. American Mineralogist, 70, 590–600.
Cell parameters: 4.9869 Å, 4.9869 Å, 17.0496 Å, 90º, 90º, 120º.

ATOM        X           Y             Z     OCCUPANCY  ISO(B)

Ca     0.00000   0.00000   0.00000       1.000     0.936

C      0.00000   0.00000   0.25000        1.000     0.907

O      0.25670   0.00000   0.25000        1.000 1.512

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040098 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)



Clinochlore (Mg5Al(AlSi3O10)(OH)8), monoclinic (C2/c).
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(continued)

X-ray diffraction pattern
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Structure
McMurchy R C. (1934). The crystal structure of the chlorite minerals. Zeitschrift fur
Kristallographie, 88, 420–432
Locality: Miles City, Montana, USA.
Cell parameters: 5.304843 Å, 9.179822 Å, 14.33853 Å, 90º, 97.57009º, 90º.

(continued)



Appendix VI 477

(continued)

X-ray diffraction
XPOW Copyright 1993 Bob Downs, Ranjini Swaminathan, and Kurt Bartelmehs
For reference, see Downs et al. (1993) American Mineralogist 78, 1104–1107
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R060725 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)
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(continued)

(continued)
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(continued)

X-ray diffraction pattern



Cordierite (Mg2Al4Si5O18), orthorhombic (Cccm).

Appendix VI 481

Structure
Wallace, J.H., Wenk, H.R. (1980). Structure variation in low cordierites. American Mineralogist,
65, 96–111.
Cell parameters: 17.0777 Å, 9.7300 Å, 9.3470 Å, 90º, 90º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040081 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)
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(continued)

(continued)



484 Appendix VI

(continued)

X-ray diffraction pattern



Diopside, pyroxene (CaMgSi2O6), monoclinic (C2/c).
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Structure
Cameron, M., Sueno, S., Prewitt, C.T., Papike, J.J. (1973). High-temperature crystal chemistry of
acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58,
594–618.
Cell parameters: 9.7481 Å, 8.9230 Å, 5.2508 Å, 90º, 105.886º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040009 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)
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(continued)

X-ray diffraction pattern
Ca0.97Na0.01Mg0.97Fe0.02Al0.01Si2O6



Fluorite (CaF2), cubic (Fm 3 m).

488 Appendix VI

Structure
Speziale, S., Duffy, T.S. (2002). Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa.
Physics and Chemistry of Minerals, 29, 465–472
Cell parameters: 5.4639 Å, 5.4639 Å, 5.4639 Å, 90º, 90º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040099 (RRUFF database).
X-ray wavelength: 1.541838 Å.

X-ray diffraction pattern



Forsterite (Mg2SiO4), orthorhombic (Pbnm).

Appendix VI 489

Structure
Birle, J.D., Gibbs, G.V., Moore, P.B., Smith, J.V. (1968). Crystal structures of natural olivines.
American Mineralogist, 53, 807–824
Cell parameters: 4.7617 Å, 10.2255 Å, 5.9927 Å, 90º, 90º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040018 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)
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(continued)

X-ray diffraction pattern
Mg1.81Fe0.18Ni0.01SiO4



Kyanite (Al2SiO5), triclinic (P 1).

492 Appendix VI

Structure
Guggenheim, S., Chang, Y.H., Koster van Groos, A.F. (1987). Muscovite dehydroxylation:
High-temperature studies. American Mineralogist, 72, 537–550
From Diamond mine, Keystone, South Dakota.
Cell parameters: 5.2010 Å, 9.0220 Å, 20.0430 Å, 90º, 95.780º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040104 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)



Appendix VI 493
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(continued)

(continued)
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(continued)

(continued)



(continued)

(continued)

496 Appendix VI



Muscovite (KAl2(Si3Al)O10(OH,F)2), monoclinic (C2/m).

Appendix VI 497

(continued)

X-ray diffraction pattern
(K0.91Na0.09Al1.70 Mg0.08Ti0.02 Fe

3+
0.14Fe

2+
0.06 (Si3.12Al0.88)O10(OH)2)

Structure
Guggenheim, S., Chang, Y.H., Koster van Groos, A.F. (1987). Muscovite dehydroxylation:
High-temperature studies. American Mineralogist, 72, 537–550
From Diamond mine, Keystone, South Dakota.
Cell parameters: 5.2010 Å, 9.0220 Å, 20.0430 Å, 90º, 95.780º, 90º.

(continued)
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(continued)

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040104 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)
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(continued)

(continued)



(continued)

(continued)
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(continued)

X-ray diffraction pattern
(K0.91Na0.09Al1.70 Mg0.08Ti0.02 Fe

3+
0.14Fe

2+
0.06 (Si3.12Al0.88)O10(OH)2)
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ORTOCHLASE (K(AlSi3O8)), monoclinic (C2/m).

Structure
Tseng, H.Y., Heaney, P.J., Onstott, T.C. Physics and Chemistry of Minerals 22 (1995) 399–405.
Characterization of lattice strain induced by neutron irradiation
Cell parameters: 8.6000 Å, 12.9978 Å, 7.2004 Å, 90º, 116.049º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040055 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)
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(continued)

(continued)
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(continued)

(continued)



Quartz low (SiO2), trigonal (P3121, P3221).

Appendix VI 507

(continued)

X-ray diffraction pattern
K0.96 (Al0.96Si0.03Fe0.02)Si3.00O8

Structure
Speziale, S., Duffy, T.S. (2002). Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa.
Physics and Chemistry of Minerals, 29, 465–472
Cell parameters: 4.9134 Å, 4.9134, Å 5.4042 Å, 90º, 90º, 120º.

(continued)
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(continued)

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040031 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)



Sillimanite (Al2SiO5), orthorhombic (Pnma).
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(continued)

X-ray diffraction pattern

Structure
Winter, J.K., Ghose, S. (1979). Thermal expansion and high-temperature crystal chemistry of the
Al2SiO5 polymorphs. American Mineralogist, 64, 573–586.
Cell parameters: 7.486484, 7.674338 Å, 5.772069 Å, 90º, 90º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R050034 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)



(continued)

X-ray diffraction pattern
Al0.99Fe

3+
0.01SiO5
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Staurolite ((Fe++Mg)2Al9(Si,Al)4O20(O,OH)4), monoclinic (C2/m).

512 Appendix VI

Structure
Smith, J.V. (1968). The crystal structure of staurolite. American Mineralogist, 53, 1139–1155
Cell parameters: 7.871300 Å, 16.62040 Å, 5.656000 Å, 90º, 90º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R050079 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)



(continued)

(continued)
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Tremolite (Ca2Mg5Si8O22(OH)2), monoclinic (C2/m).

(continued)

X-ray diffraction pattern
(Fe++0.77Mg0.23)2Al9Ti0.01 (Si0.99,Al0.01)4O20(O0.76,OH0.24)4
The (00 l) peaks of muscovite are also present.

Appendix VI 515

Structure
Sueno, S., Cameron, M., Papike, J.J., Prewitt, C.T. (1973). The high temperature crystal
chemistry of tremolite. American Mineralogist, 58, 649–664
Cell parameters: 9.860000 Å, 18.11800 Å, 5.285000 Å, 90º, 104.57º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R040045 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

(continued)



(continued)

(continued)
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(continued)

(continued)
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Zircon (ZrSiO4), tetragonal (I41/amd).

(continued)

X-ray diffraction pattern
Ca2.01(Fe0.01Mg0.99)5(Si0.99Fe0.01)8O22(OH)2

Appendix VI 519

Structure
Hazen, R.M., Finger, L.W. (1979). Crystal structure and compressibility of zircon at high
pressure. American Mineralogist, 64, 196–201
Cell parameters: 6.6077 Å, 6.6077 Å, 5.9957 Å, 90º, 90º, 90º.

X-ray diffraction
Diffraction data computed using the structure data from the above paper listed, along with the
cell parameters refined from the powder pattern of R050034 (RRUFF database).
X-ray wavelength: 1.541838 Å.

(continued)
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(continued)

X-ray diffraction pattern



Appendix VII

N values for the crystal systems

N hk1 hk0 hk1 hk0

Cubic
N = h2 + k2 + 12

Tetragonal
N = h2 + k2

Hexagonal
N = h2 + hk + k2

Cubic
h2 + k2 + 12

Tetragonal
N = h2 + k2

Hexagonal
N = h2 + hk + k2

1 100 100 100 81 900; 841; 744;
663

900 900

2 110 110 82 910; 833 910

3 111 110 83 911; 753

4 200 200 200 84 842 820

5 210 210 85 920; 760 920; 760

6 211 86 921; 761; 655

7 210 87

8 220 220 88 664

9 300; 221 300 300 89 922; 850; 843;
762

850

10 310 310 90 930; 851; 754 930

11 311 91 931 650; 930

12 222 220 92

13 320 320 310 93 852 740

14 321 94 932; 763

15 95

16 400 400 400 96 844

17 410; 322 410 97 940; 665 940 830

18 411; 330 330 98 941; 853; 770 770

19 331 99 933; 771; 755

20 420 420 100 10,00; 860 10,00; 860 10,00

21 421 210 101 10,10; 942; 861;
764

10,10

22 332 102 10,11; 772

23 103 920

24 422 104 10,20; 862 10,20

(continued)
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(continued)

N hk1 hk0 hk1 hk0

Cubic
N = h2 + k2 + 12

Tetragonal
N = h2 + k2

Hexagonal
N = h2 + hk + k2

Cubic
h2 + k2 + 12

Tetragonal
N = h2 + k2

Hexagonal
N = h2 + hk + k2

25 500; 430 500 500 105 10,21; 854

26 510; 431 510 106 950; 943 9,50

27 511; 333 330 107 951; 773

28 420 108 10,22; 666 660

29 520; 432 520 109 10,30; 863 10,30 750

30 521 110 10,31; 952; 765

31 510 111 10,10

32 440 440 112 840

33 522; 441 113 10,32; 944; 870 870

34 530; 433 530 114 871; 855; 774

35 531 115 953

36 600; 442 600 600 116 10,40 10,40

37 610 610 430 117 10,41; 960;872 960 930

38 611; 532 118 10,33; 961

39 520 119

40 620 620 120 10,42

41 621; 540; 443 540 121 11,00; 962; 766 11,00 11,00

42 541 122 11,10; 954; 873 11,10 10,20

43 533 123 11,11; 775

44 622 610 124

45 630; 542 630 125 11,20; 10,50;
10,43; 865

11,20;
10,50

46 631 126 11,21; 10,51;
963

47 127 760

48 444 440 128 880 880

49 700; 632 700 700; 530 129 11,22; 10,52;
881; 874

850

50 710; 550; 543 710;550 130 11,30; 970 11,30; 970

51 711;551 131 11,31; 971; 955

52 640 640 620 132 10,44; 882

53 720; 641 720 133 964 11,10; 940

54 721; 633; 552 134 11,32; 10,53;
972; 776

55 135

56 642 136 10,60; 866 10,60

57 722; 544 710 137 11,40; 10,61;
883

11,40

58 730 730 138 11,41; 875

59 731; 553 139 11,33; 973 10,30

60 140 10,62

61 650; 643 650 540 141 11,42; 10,54

62 732; 651 142 965

63 630 143

(continued)
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N hk1 hk0 hk1 hk0

Cubic
N = h2 + k2 + 12

Tetragonal
N = h2 + k2

Hexagonal
N = h2 + hk + k2

Cubic
h2 + k2 + 12

Tetragonal
N = h2 + k2

Hexagonal
N = h2 + hk + k2

64 800 800 800 144 12,00; 884 12,00 12,00

65 810; 740; 652 810; 740 145 12,10; 10,63 12,10; 980

66 811; 741; 554 146 12,11; 11,50;
11,43; 981; 974

11,50

67 733 720 147 11,51; 777 11,20; 770

68 820; 644 820 148 12,20 12,20 860

69 821; 742 149 12,21; 10,70;
982; 876

10,70

70 653 150 11,52; 10,71;
10,55

71 151 950

72 822; 660 660 152 1222; 1144;
1072; 966; 885

12,30

73 830; 661 830 810 153 1230; 1144;
1072; 966; 885

12, 30

74 831; 750; 743 750 154 1231; 983

75 751; 55 5 550 155 1153; 975

76 662 64 156 10,40

77 832; 654 157 12,32; 11,60 11,60 12,10

78 752 158 11,61; 10,73 11,60

79 730 159

80 840 840
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