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Preface
Nowadays, many surficial mineral deposits are being mined out, leaving only deep-seated
mineral deposits for feeding raw materials into the industry. Therefore techniques applied to
mineral exploration need to be revisited for discovering new mineral resources, which may
be located in harsh and remote regions. Over the past decades, remote sensing technology
and geographic information system (GIS) techniques have been incorporated into several
mineral exploration projects worldwide. This aim is to bridge the knowledge gap for the
geospatial-based discovery of buried, covered, and blind mineral deposits. This book details
the main aspects of the state-of-the-art remote sensing imagery, geochemical data, geophys-
ical data, geological data, and geospatial toolbox required to explore ore deposits. It covers
advances in remote sensing data processing algorithms, geochemical data analysis, geophys-
ical data analysis, and machine learning algorithms in mineral exploration. It also presents
approaches on recent remote sensing and GIS-based mineral prospectivity modeling, which
offer a piece of excellent information to professional earth scientists, researchers, mineral
exploration communities, and mining companies.

The anticipated goal of this book is to solve high complexity issues in remote sensing
data processing, geochemical data analysis, geophysical data analysis, and appropriate appli-
cations of GIS techniques for data fusion designed for mineral exploration purposes. This
book contains updated and informative knowledge of remote sensing imagery, geochemistry,
geophysics, and geospatial techniques that can assist in delineating the signatures and pat-
terns linked to deep-seated, covered, blind, or buried mineral deposits. It includes several
color figures for remotely sensed recognition of mineralization-related footprints. Also, this
book comprehends several interactive flowcharts for describing the procedures explained
therein. Numerous websites are addressed, and their links are provided for data acquisition,
extra information, and data resources. The literature is linked to recent scientific publica-
tions, conferences, and symposiums in remote sensing and GIS topics in specific subjects
and disciplines.

This book is a hands-on guide for getting to know the geospatial toolbox used in mineral
exploration. Everyone involved in mineral exploration should have the know-how knowledge
of using the geospatial toolbox available. However, there is a knowledge gap in this area, and
it is hard for many geologists to grasp these concepts. This book is an effort to bridge this
knowledge gap. With the advent of machine learning and deep learning techniques, it is not
surprising that these methods are being increasingly applied in many fields. However, apply-
ing these concepts in geology, particularly in mineral exploration, has some limitations and
challenges. This book outlines these challenges and presents solutions for tackling them.
Therefore this book will be needed for those working in image processing and machine
learning techniques, aiming to apply their ideas to mineral exploration. Those with jobs in

xiii



data processing such as department of remote sensing and GIS, department of statistics and
data science, and department of geoinformatics, who mostly work for the geo-information
technology industry, for example, geospatial companies are also the audience of this book.

I am grateful for technical and management contributions by editors and authors, as well
as professional staff at Academic Press. Finally, I must thank my family, Danica and Avina,
for they sacrificed more than I did during the long hours devoted to this book. Buoyantly,
the result is to some degree worthy of their support.

Amin Beiranvand Pour
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Introduction to mineral exploration

Amin Beiranvand Pour1, Mohammad Parsa2, Ahmed M. Eldosouky3

1INSTITUTE OF OCEANOGRAPHY AND ENVIRONMENT (INOS), UNIVERSITY MALAYSIA

TERENGGANU (UMT), KUALA NERUS, TERENGGANU, MALAYSIA 2MINERAL EXPLORATION

RESEARCH CENTRE, HARQUAIL SCHOOL OF EARTH SCIENCES, LAURENTIAN UNIVERSITY,

SUDBURY, ON, CANADA 3GEOLOGY DEPARTMENT, FACULTY OF SCIENCE, SUEZ UNIVERSITY,

SUEZ, EGYPT

1.1 Mineral exploration
There are currently over 7 billion people living on the planet Earth, the survival of which is inextrica-
bly intertwined with mineral resources. Without iron ore mining and limestone mining, for example,
one cannot produce steel and concrete, leaving the world bereft of infrastructures and transportation
systems. That being said, mineral resources are an integral part of people’s lives. A prerequisite to
exploiting these mineral resources is the exploration phase—finding a mineral deposit. This stage
requires time, effort, and money, yet exploration does not always lead to success.

Mineral exploration, a multidisciplinary field of science combining computer science,
geology, and economics, can be deemed as a series of activities for understanding ore-forming
processes and vectoring toward undiscovered mineral deposits. In mineral exploration the
knowledge gathered from diverse fields is combined and applied to a scientifically supported
search for mineral deposits and their qualitative and quantitative assessments. Mineral explora-
tion is a multifaceted, multistage process, constituting (1) exploration strategy, (2) prospecting,
(3) early-stage exploration, and (4) detailed surveys, discussed in the upcoming subsections.
The classification, however, is different from the common classifications described elsewhere
(e.g., Haldar, 2018) and aims to explain modern-day exploration campaigns.

Aside from the differences in classification schemes, each stage of mineral exploration
entails narrowing down the search space for further stages using geospatial modeling and anal-
ysis of geoscientific data. Once progressing to a new stage, where the extent of the area being
studied decreases, the costs involved in the surveys dramatically rise (Singer and Kouda, 1999).

1.2 Stages
1.2.1 Exploration strategy

In essence, what is defined here as the exploration strategy is to address the question as to
whether one should start an exploration campaign from scratch—working from the unknown—or

1Geospatial Analysis Applied to Mineral Exploration. DOI: https://doi.org/10.1016/B978-0-323-95608-6.00001-9
© 2023 Elsevier Inc. All rights reserved.
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build on the previous work—working from the known—conducted by previous campaigns. The
former is called greenfield exploration and is defined as exploration in tectonically favorable zones
where few or even no already-discovered mineral deposits are presented. The latter, however, is
referred to as brownfield exploration and is linked to the premise that some deposit types,
such as volcanic-hosted massive sulfide deposits (Galley et al., 2007) and Mississippi Valley-type
deposits (Leach et al., 2005), often form in clusters.

1.2.2 Prospecting

Either strategy constitutes reanalyzing the legacy data gathered throughout many years for
the area being studied. These data are usually publicly available regional-scale datasets,
including geological and tectonic maps and geophysical and geochemical data. The legacy
data are integrated into maps representing the favorability of deposits of the type being
explored. Based on these maps, exploration firms may acquire exploration rights called
claims, granting an exclusive right to search for mineral substances on a given territory.

1.2.3 Early-stage exploration

Once the claims are granted, geological mapping, geochemical sampling, and geophysical
surveys in scales varying between 1:25,000 and 1:5000 are often carried out. The results of
these surveys are synthesized to define some strategic target zones for detailed exploration
surveys.

1.2.4 Detailed surveys

Trenching and drilling are conducted to capture mineralized zones based on the target areas
defined in the previous stage. Trenches are dug to sample along continuous zones. These
samples are the subject of geochemical and petrological studies. Diamond core drilling
allows for various studies, including core logging, in situ geophysical analysis of samples,
such as measuring the magnetic susceptibility of samples, geochemical analysis, and
petrological studies. However, rotary core drilling merely provides a chance for geochemical
analysis of samples.

Once one hits the mineralization, systematic drilling should continue to delineate the
boundaries of mineralized zones. This includes infill drilling, drilling in the gaps between
previously drilled holes, and drilling some holes to define mineralized zones’ shape and
spatial pattern. Once the shape and outline of mineralized zones are defined, one can
proceed to resource modeling to estimate the average grade and tonnage.

1.3 4D-geographic information system for mineral
exploration

Mineral exploration has been defined as the game of probabilities in which success is never
guaranteed. Risk and uncertainty are, therefore, intrinsic aspects of mineral exploration
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projects (Singer and Kouda, 1999). It is now widely held that as the exploration proceeds to
the detailed stages, the risk also increases, leading decision-makers to seek strategies for
managing and reducing this risk (Haldar, 2018). The absence of grassroots exploration
surveys, outlining the fact that a majority of exploration projects are now focused on locating
deep-seated, blind, and covered deposits, also jeopardize the success of today’s exploration
campaigns.

One obvious approach to reducing the risk involved in mineral exploration and
quantifying the probability of discovering mineral deposits is conducting different surveys
and combining their output using mineral prospectivity modeling (MPM) techniques
(Carranza, 2008). Modern-day exploration programs entail an array of geophysical, geochem-
ical, and geological surveys. Therefore these programs are faced with an information over-
load problem, requiring big data analysis techniques to help distill the information available
into predictive models of mineral prospectivity. However, the information provided by
individual surveys is often incomplete and targets merely one or a few characteristics of the
desired style of mineral deposits. Although a geographic information system (GIS) provides a
suite of tools and techniques for visualizing the results of individual surveys and integrating
their results into predictive models showing the probability of discovering mineral deposits,
it does not mean that all the data compiled and gathered from different exploration surveys
should be combined in a GIS. In essence, only signatures that are spatially, temporally, and
perhaps genetically linked to the mineralization of the type being explored should be consid-
ered for mineral exploration. Therefore diverse data types from different surveys should be
categorized, given their geological age and spatial information from mineralization-related
signatures.

A 4D-GIS for mineral exploration, a system enabling the analysis, visualization, and inte-
gration of 2D- and 3D-based big data concerning their spatial�temporal association with
mineralization, is, thus, required for achieving the objectives of modern-day exploration
campaigns. Given the previous definition, the main components of this 4D-GIS system are
(1) input datasets, (2) user-guided interpretation of the datasets, and (3) predictive modeling.

1.3.1 Input

As outlined previously, diverse surveys are being conducted over individual claims to find
the patterns linked to mineral deposits. Irrespective of the scale, the major input feeding the
4D-GIS are remote sensing-based data, exploration geochemistry, exploration geophysics,
and geological indicators. These are evaluated in the upcoming subsections.

1.3.1.1 Remote sensing
Remote sensing technology affords a great boost for mineral exploration by collecting data
from immense and inaccessible regions using sophisticated sensors mounted on satellite or
aircraft. Remote sensing has been used for mineral exploration over the past decades and
provides low-cost data and synoptic observation of the ground. The application of remote
sensing technology for geological mapping and mineral exploration has been developing
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since the 1970s. Hydrothermal alteration minerals with diagnostic spectral absorption prop-
erties in the visible and near-infrared (VNIR) and the shortwave infrared (SWIR) parts of the
electromagnetic spectrum have been identified by multispectral and hyperspectral remote
sensing sensors (Rowan et al., 1977; Hunt and Ashley, 1979; Van der Meer et al., 2012a,b).
Landsat Thematic Mapper/Enhanced Thematic Mapper1 (TM/ETM1 ) and Landsat-8 data
have been used for mapping hydrothermal alteration minerals associated with porphyry cop-
per and gold mineralization. Shortwave infrared bands (bands 5 and 7) of TM/ETM1 and
(bands 6 and 7) of Landsat-8 are utilized to identify hydroxyl-bearing minerals. Band ratios
of 5/7 and 6/7 are sensitive to hydroxyl (OH) minerals, which are found in the
alteration zones (Abdelsalam et al., 2000; Pour and Hashim, 2018; Safari et al., 2018).
Nonetheless, the broad extent of these bands does not allow discriminating specific
alteration zones and minerals by TM/ETM1 and Landsat-8 data, which are important for
exploring high-economic potential zone for ore mineralization. The spatial resolution of the
SPOT imagery is suitable for geological structural mapping. The SPOT data are successfully
used for geological structural mapping and lineament extraction (Ahmadirouhani et al.,
2017; Hosseini et al., 2019).

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a
high spatial, spectral, and radiometric resolution multispectral remote sensing sensor. It con-
sists of three separate instrument subsystems, including the VNIR, the SWIR, and the ther-
mal infrared. ASTER SWIR spectral properties are unprecedented multispectral data for the
discrimination of hydrothermal alteration mineral zones such as phyllic, argillic, and propyli-
tic associated with porphyry copper mineralization (Mars and Rowan, 2006). The ASTER
SWIR bands with sufficient spectral resolution have been widely and successfully used in
numerous mineral explorations and lithological mapping projects (Abrams and Yamaguchi,
2019). The Advanced Land Imager (ALI) sensor has six unique wavelength channels
spanning the VNIR (0.4�1.0 µm). Because of their respective band center positions, ALI
is especially useful for discriminating among ferric-iron-bearing minerals for mineral
exploration applications (Hubbard et al., 2003).

The Sentinel-2 sensor has 13 bands covering the VNIR (8 bands) and SWIR (2 bands)
regions with a spatial resolution of 10, 20, and 60 m. Iron oxide/hydroxides and hydroxyl-
bearing alteration minerals can be mapped using band ratios of 4/2 and 11/12 (Van Der
Meer et al., 2014; Van Der Werff and Van Der Meer, 2016). WorldView-3 (WV-3) sensor con-
tains the highest spatial, spectral, and radiation resolutions among the multispectral satellite
sensors, presently. Iron oxides/hydroxide minerals can be comprehensively mapped and
discriminated by VNIR bands of WV-3 (Mars 2018; Pour et al., 2019). Additionally, SWIR
bands of WV-3 contain high capability for detailed mapping of Al�OH, Mg�Fe�OH, CO3,
and Si�OH key hydrothermal alteration minerals (Kruse and Perry, 2013; Kruse et al., 2015;
Mars 2018).

Hyperion is the first advanced satellite hyperspectral sensor in commission across the
spectral coverage from 0.4 to 2.5 and 10-nm spectral resolution. It has 242 spectral channels
over a 7.6-km swath width, and 30-m spatial resolution (Liao et al., 2000). The first subset of
VNIR bands between 0.4 and 1.3 µm can also be used to highlight iron oxide/hydroxide
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minerals (Bishop et al., 2011). Hyperion SWIR bands (2.0�2.5 µm) can uniquely identify and
map hydroxyl-bearing minerals, sulfates, and carbonates in the hydrothermal alteration
assemblages (Kruse et al., 2003; Gersman et al., 2008; Bishop et al., 2011). The new
hyperspectral Precursore IperSpettrale della Missione Applicativa (PRISMA) sensor is able to
capture images in a continuum of 240 spectral bands ranging between 400 and 2500 nm.
Iron oxide/hydroxide minerals can be mapped using VNIR bands, and gypsum and clay
minerals are detectable by SWIR bands of PRISMA (Pearlshtien et al., 2021). Generally,
PRISMA offers the mineral exploration community and users many applications in the field
of environmental monitoring and resources management, such as raw material exploration
and mining (Pearlshtien et al., 2021).

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a hyperspectral airborne
instrument flown in a NASA high-altitude aircraft. It was the first optical sensor (1987) to
measure the solar reflected spectrum from the VNIR and SWIR (400�2500 nm) using 224
contiguous bands at 10-nm intervals (Green et al., 1998). A variety of alteration minerals
such as iron oxide/hydroxide minerals, clay minerals, carbonates, and ammonium minerals
were mapped using AVIRIS data (Baugh et al., 1998; Rowan et al., 2000; Kruse et al., 2003).
“HyMap” (Hyperspectral Mapper) is an airborne hyperspectral imaging sensor (manufac-
tured by Integrated Spectronics Pty Ltd, Sydney, Australia) operated by HyVista Corporation.
HyMap data have 126 spectral bands (at approximately 15-nm intervals) spanning the
wavelength interval 0.45�2.5 µm (VNIR—64 bands) and (SWIR—62 bands) and 5-m spatial
resolution (Cocks et al., 1998). HyMap data were used for detailed mapping hydrothermal
alteration minerals associated with Cu�Au�Mo porphyry deposits, carbonatite complex,
and metamorphic�hydrothermal U�REE deposit (Bedini, 2009, 2011, 2012; Huo et al., 2014;
Salles et al., 2017).

Recently, unmanned aerial vehicles (UAVs) or drones have been utilized in the mining
industry for various applications from mineral exploration to mine reclamation. One of the
most significant benefits of using UAVs is the low operational cost and ease of use (Park and
Choi, 2020). UAVs can be equipped with optical devices, cameras covering different ranges
of the electromagnetic spectrum [multispectral, hyperspectral, short/mid-wave range
cameras (e.g., thermal)], and geophysical instrumentation (magnetometer) for mineral
exploration purposes such as aerial mapping, resource modeling, and geophysical surveys
(Kirsch et al., 2018; Walter et al., 2020; Heincke et al., 2019; Jackisch et al., 2019). Drone-
based hyperspectral imaging has been utilized to map rare-earth-element-rich minerals in
Namibia. Furthermore, drone-based magnetic surveys were deployed to identify subsurface
ore potential at a fraction of the cost of traditional surveys in Greenland (Jackisch et al.,
2019). Integration of drone-based hyperspectral and magnetic data was used for mapping
Otanmäki Fe�Ti�V deposits in central Finland (Jackisch et al., 2019).

Synthetic aperture radar (SAR) sensors transmit electromagnetic radiation at specified
wavelengths and measure the reflected energy. Radar transmits and detects radiation
between 2 and 100 cm, typically at 2.5�3.8 cm (X-band), 4.0�7.5 cm (C-band), and
15.0�30.0 cm (L-band) (Woodhouse, 2006). SAR imagery such as RADARSAT, JERS-1 SAR,
ERS SAR, PALSAR, and Sentinel-1 data have been extensively used for geological mapping,
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especially structural analysis related to ore mineralization (Singhroy, 2001; Paganelli et al.,
2003; Pour et al., 2013, 2014, 2016, 2018; Zoheir et al., 2019). More explanations about the
multispectral, hyperspectral, UAVs’ and SAR remote sensing sensors, data acquisition,
preprocessing techniques, image processing algorithms for alteration mineral detection,
lithological and structural mapping, and case studies will be comprehensively discussed
in Chapter 2.

1.3.1.2 Exploration geochemistry
Exploration geochemistry entails conducting a sampling survey over an area, chemically
analyzing the samples, and interpreting the results. Each of the stages mentioned earlier
exerts control over the success of an exploration campaign. The choice of sampling media,
be they soil, till, rock chip, water, stream sediment, and the like, depends on the geomorpho-
logical and geological setting of an area of interest and substantially controls the methods of
interpretation. In addition, one must consider some factors while designing the sampling
scheme of a geochemical exploration project; these are the topographical condition, the
budget, and accessibility. There are many methods available for chemically analyzing the
geochemical samples. Generally, samples can be analyzed for unielement or multielements.
All these methods will be discussed in Chapter 4.

With the dwindling number of exposed mineral deposits, especially in developed coun-
tries, the exploration industry is faced with the challenge of discovering deep-seated, blind,
or covered deposits, which are, granted, marked by weak geochemical signatures, most of
the time (Beus and Grigorian, 1977). Exploration geochemistry can play a pivotal role in
delineating weak geochemical anomalies that might represent undiscovered mineral depos-
its. Chapter 4 discusses three breakthroughs of exploration geochemistry, considering the
compositional nature of geochemical data (Aitchison, 1982), fractal/multifractal-based
delineation of geochemical anomalies (Zuo and Wang, 2016), and artificial-intelligence-
based pattern recognition applied to exploration geochemistry (Zuo et al., 2019), and
describes how these major steps should be adopted to interpret the results of a geochemical
survey for mineral exploration.

1.3.1.3 Exploration geophysics
The application of geophysical methods to the exploration of mineral deposits is a common
practice since the early 20th century (Best, 2015). These methods are based on contrasts in
the physical properties between mineral deposits and the surrounding rock. These physical
properties are velocity, resistivity, density, magnetic susceptibility, chargeability, gamma radi-
ation, and dielectric constant. In 1920 Schlumberger applied the electrical method in the
iron-bearing basin of May-Saint-Andié (Binley and Slater, 2020). Many resistivity methods
have been established throughout the first half of the 20th century (Binley and Slater, 2020).
The examples of early successes of these methods for exploring minerals in North America
and Europe were documented by Nostrand (1966). Since the early 1920s, electromagnetic
methods have been developed and applied in exploring mineral deposits. Many ore deposits
(e.g., Ernest Henry copper�gold, copper deposit in Tibet; iron ore deposit in Qiumu mine,
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Heath Steele zinc�lead�copper�silver deposit, and Damingshan gold deposit) have been
discovered by applying these methods (Sheard et al., 2005; Guo et al., 2020).

The earliest study on the use of seismic data in mineral exploration is reported by
Schmidt (1959) for detecting the iron ores of the Siegerland district (Germany). The seismic
methods have also been used to locate other deposits such as massive sulfide, uranium,
gold, Ni�sulfide, Ni�Cu�PGE, and nickel deposits (Salisbury and Snyder, 2007; Malehmir
et al., 2012). The electromagnetic method was independently developed by Rikitake (1950),
Tikhonov (1950), and Cagniard (1953), and its effectiveness was demonstrated on a variety of
mineral systems in the world (Zhdanov, 2010). Aside from the earlier methods, the potential
field methods are also widely used techniques for mineral exploration. The earliest published
reports on using these methods in mineral exploration are included in the report on gravity
interpretation of Arthur (1940) for exploring hematite at Steep Rock Lake and the report on
the use of magnetic data for mapping an iron�copper�sulfide ore body in the Sudbury dis-
trict (Canada) in 1930 by Eve and Keys (see Hinze et al., 2013). The effectiveness of these
methods in mineral exploration is well documented by Hinze (1960), Nabighian et al.
(2005a,b), and Zhang et al. (2020). The role of integration between geophysical and remote
sensing datasets for mapping hydrothermal deposits is well described by Eldosouky et al.
(2017, 2020, 2021), Elkhateeb and Eldosouky (2016), and Elkhateeb et al. (2021). The use of
geophysical data in mineral exploration will be explained in more detail in Chapter 5.

1.3.1.4 Geological indicators
Mineral deposit types are groups of minerals having similar geologic characteristics, geologic
environments of occurrence, and geologic processes of formation (Guilbert and Park, 1986;
Cox and Singer, 1986; Bliss, 1992). The distribution of mineral deposits is determined by the
geological processes that formed them. Mineral deposits are, therefore, generally clustered in
geological provinces (mineral provinces or mineral districts) with some provinces being
strongly endowed with particular mineral commodities (Jaireth and Huston, 2010). Three
main groups of metallic mineral deposit types can be recognized based on their mode of
formation, including magmatic ore deposits, hydrothermal ore deposits, and sedimentary
ore deposits (Plumlee, 1999).

Descriptions of an ore mineral deposit often refer to host rocks and geologic structures or
features that are important to the deposit. Furthermore, hydrothermal activity and ore-
bearing fluids are linked to most economic mineral deposits. Therefore identification of
host-rock mineralization, hydrothermal alteration zones, and geological structures is one of
the most important indicators for mineral exploration during fieldwork. The use of Global
Positioning System (GPS) technology during field surveys helps to accurately position the
sampling points for high-resolution mineral exploration mapping. Mineralogy and petrogra-
phy analysis include macroscopic-to-microscopic investigations of the rock samples. Once
macroscopic details about the rock samples have been determined by visually inspecting, a
petrographic thin section is typically made to characterize the microscopic features. Thin
sections are great for identifying the minerals present, porosity, alteration, microstructures,
and provenance.
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To acquire quantitative bulk rock compositions X-ray diffraction (XRD) is a common
technique. There are various XRD machines and techniques, but typically a rock sample is
crushed into a fine powder, which is packed and mounted onto a stage that is analyzed by
X-rays. The X-ray detector captures this information which gets plotted onto a diffractogram,
where characteristic peaks can be identified as specific minerals. The XRD is used to identify
the exact mineral assemblages of a rock. Analytical Spectral Devices’ (ASD’) spectrometers
and spectroradiometers are used to provide spectral characteristics of minerals for identify-
ing mineral zonation and information for vectoring at the regional and deposit scale. Further
explanations for mineral deposits and occurrence, geological mapping, laboratory analysis,
and accuracy assessment techniques will be explained in Chapter 6.

1.3.2 User-guided interpretation of datasets

Despite the diversity of data available for exploration, only information directly or indirectly
linked to mineralization should be extracted from these data for the purpose of mineral
exploration. Therefore knowledge-guided interpretation is required for the recognition of
ore-related patterns embedded in these datasets. As to how the patterns associated with
mineralization are extracted is a challenge. Traditionally, mineralization-related patterns are
recognized using the features described in descriptive deposit models (Cox and Singer,
1986). However, adopting this approach may hinder mineral exploration given the fact that
descriptive deposit models only describe local-scale features. Given the complexity of local-
scale geological processes, hardly a deposit model can be generalized, and many of the fea-
tures described in descriptive deposit models might be absent in different geological settings.
That being said, a growing body of research (e.g., Kreuzer et al., 2008; Hagemann et al.,
2016; Ford et al., 2019; Parsa and Pour, 2021; Parsa and Maghsoudi, 2021; Parsa and
Carranza, 2021) have adopted a scale-independent, process-oriented, probabilistic frame-
work, referred to as the mineral systems framework (Knox-Robinson and Wyborn, 1997), to
distill the data compiled from different surveys into a suite of 2D or 3D exploration targeting
criteria. These exploration targeting criteria either directly or indirectly (i.e., by proxy) repre-
sent the main components of a mineral system: source, fluid pathways, trapping, deposition,
and preservation (Mccuaig et al., 2010). Considering the probabilistic nature of mineral
exploration, the ability to be used in various scales, and that this system relies on
ore-forming processes rather than local geological features (Mccuaig et al., 2010), makes the
mineral systems framework the ipso facto method of choice for today’s mineral exploration
campaigns.

This method starts by breaking the main ore-forming process into a set of constituent
processes unique to individual styles of mineralization. The user should exploit the potential
of data available to translate the constituent processes into a suite of 2D maps or 3D models
that represent the constituent processes directly or by proxy (Mccuaig et al., 2010). An
example of using the mineral system approach is illustrated in Table 1.1. In this table,
fundamental processes leading to the deposition of Mississippi Valley-type Zn�Pb systems
(Leach et al., 2010), namely, the transportation of ore-bearing fluids and the trapping
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mechanism, have been described by their constituent processes, followed by the suite of
exploration targeting criteria that may be employed in the predictive modeling stage.

1.3.3 Predictive modeling

The exploration targeting criteria defined are integrated into predictive models showing the
favorability of discovering new mineral deposits in different locations of an area of interest.
Predictive modeling constitutes several consecutive stages: (1) opting for a proper mathemat-
ical framework for generating predictive models, (2) interpreting predictive models, and
finally (3) evaluating the predictive model’s performance, thoroughly discussed in Chapter 7.

There are two general types of mathematical frameworks employed in MPM—knowledge-
and data-driven (Carranza, 2008). The former entails a subjective weighting and synthesis of
exploration targeting criteria; this strategy is appropriate for greenfield exploration with a few
already-discovered mineral deposits. On the contrary, the latter suits data-rich terrains with
information available on a decent number of already-discovered mineral deposits. A diverse
array of mathematical frameworks, including multicriteria decision-making techniques (e.g.,
Feizi et al., 2017), fuzzy logic (e.g., Porwal et al., 2003; Sadr et al., 2014a; Parsa and Pour,
2021), and a whole array of other techniques (e.g., Bonham-Carter, 1994; Sadr et al., 2014b),
have been exploited as knowledge-driven techniques for MPM. Likewise, different
approaches have been adopted for data-driven MPM, ranging from the traditional use of
weights of evidence (Bonham-Carter, 1994) approach to modern-day use of machine- and

Table 1.1 Mineral systems�based translation of ore-forming processes of Mississippi
Valley-Type Zn�Pb (MVT) systems into a suite of 2D exploration targeting criteria.

Fundamental
processes Constituent processes Exploration targeting criteria

Transport Faults provide pathways for the ascent and
circulation of ore-bearing hydrothermal fluids

Maps of fault density can be used as an indicator
of the transportation

The trapping
mechanism

Carbonate platforms, be they limestones or
dolostones, are porous media allowing the
migration of ore-bearing fluids. Lithological
transitions between the carbonate platforms
and nonporous media, such as shales, deter the
fluids from moving to neighboring lithologies,
providing conditions necessary for ore
deposition.

Maps showing the intersections of carbonate
platforms and shales can be deemed as proxies
describing the trapping mechanism

Owing to the inherent porosity of the carbonate
platforms decreases the pressure of ore-bearing
fluids, which is another mechanism for trapping
and deposition of fluids

Maps showing the extent of carbonate platforms
are indicators directly showing the trapping
mechanism

Source: After Parsa, M., 2021. A data augmentation approach to XGboost-based mineral potential mapping: an example of carbonate-
hosted Zn Pb mineral systems of Western Iran. J. Geochem. Explor. 228, 106811. https://doi.org/10.1016/j.gexplo.2021.106811.
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deep-learning-based algorithms (e.g., Zuo and Carranza, 2011; Parsa et al., 2018; Zuo et al.,
2019; Parsa, 2021).

A predictive model is usually a stretched or continuous 2D/3D model, constituting cells
or blocks with diverse predictive values. These maps are generally devoid of interpretation,
requiring additional techniques for demarcating exploration targets. Together with the
methods used for verifying the results of predictive models, these techniques will be
discussed in Chapter 7 (Ericsson, 2012; Wright, 1989; Stevens, 2010).
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2.1 Introduction
Ore minerals particularly contribute to the economic evolution of a country and provide raw
materials for the appropriate functioning of modern societies. Remote sensing technology is
a greatly applicable tool for regional geological mapping and ore mineral exploration at a
low cost. The application of remote sensing techniques in the initial stages of ore mineral
exploration has a significant impact on reducing exploration and exploitation prices. In
recent decades, hydrothermal alteration mineral detection, lithological and structural map-
ping are the most conspicuous applications of multispectral, hyperspectral, synthetic aper-
ture radar (SAR), and unmanned aerial vehicle (UAV) remote sensing data for mineral
exploration. In the metallogenic provinces and frontier areas around the world, several ore
mineralizations such as orogenic gold, porphyry copper, massive sulfide, epithermal gold,
podiform chromite, uranium, magnetite, and iron oxide copper�gold (IOCG) deposits have
been auspiciously explored using remote sensing data. The Landsat data series, the Satellite
Pour I’Observation de la Terre-1 (SPOT) series, the Advanced Spaceborne Thermal Emission

17Geospatial Analysis Applied to Mineral Exploration. DOI: https://doi.org/10.1016/B978-0-323-95608-6.00002-0
© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-95608-6.00002-0


and Reflection Radiometer (ASTER), the Advanced Land Imager (ALI), Sentinel series,
Worldview series, Hyperion, HyMap, the Airborne Visible/IR Image Spectrometer (AVIRIS), a
variety of UAVs, and SAR remote sensing data support cost-effective techniques for mineral
exploration. Advanced image-processing algorithms based on state-of-the-art data extraction
techniques have been executed and developed for identifying key alteration minerals associ-
ated with a variety of ore deposits and geological structural features. Additionally, fieldwork,
analytical spectral device spectroscopy, and X-ray diffraction (XRD) analysis in conjunction
with remote sensing data can provide extensive information about hydrothermal alteration
zones and structural features related to ore mineralization.

2.2 Spectral features of hydrothermal alteration minerals
and lithologies

The capability of discriminating between hydrothermally altered and unaltered rocks is one
of the significant factors for mineral exploration programs. In the region of solar-reflected
light (0.325�2.5 µm), many minerals show diagnostic absorption features due to vibrational
overtones, electronic transition, charge transfer, and conduction processes (Hunt, 1977;
Hunt and Ashley, 1979; Clark et al., 1990; Cloutis, 1996). Hydrothermally altered rocks are
frequently indicated by iron oxide/hydroxides, clay, carbonate, and sulfate mineral
assemblages, which produce diagnostic absorption signatures throughout the visible and
near-infrared (VNIR) and shortwave-infrared (SWIR) regions. Quartz is one of the important
rock-forming minerals that does not have diagnostic spectral absorption features in the VNIR
and SWIR regions but displays strong fundamental molecular absorption features in the ther-
mal infrared (TIR) region (8�12 µm) (Ninomiya et al., 2005; Hunt and Salisbury, 1976).

2.2.1 Iron oxide minerals

Iron oxides are one of the significant mineral groups that are associated with hydrothermally
altered rocks of many ore deposits (Sabins, 1999). Iron oxide/hydroxide minerals are formed
during supergene alteration and represent a yellowish or reddish tint to the altered rocks,
which are generally called gossan (Abdelsalam et al., 2000). In the VNIR part of the electro-
magnetic spectrum, the ion transition energy distribution depends on the cation and the
mineral structure, which influence spectral characteristics (Hunt and Ashley, 1979).
Electronic processes produce absorption features in the VNIR radiation (0.4�1.1 µm) due to
the presence of transition elements, such as Fe21and Fe31, and often substituted by Mn, Cr,
and Ni in the crystal structure of the minerals (Hunt, 1977; Hunt and Ashley, 1979; Clark
et al., 1993a,b). The concentration of transition metal cations, such as Fe31 and Fe21, can
affect the intensities of absorption features (Sherman and Waite, 1985). Fe31 produces
absorption features near 0.45�0.90 µm, while broad absorption features near 0.90�1.2 µm
are related to Fe21 (Morris et al., 1985). Specifically, the absorption features related to Fe31

are typically at 0.49, 0.70, and 0.87 µm, while Fe21 shows absorption properties at 0.51, 0.55,
and 1.20 µm (Hunt, 1977; Clark, 1999).
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Charge-transfer absorption features between 0.48 and 0.72 µm and crystal-field absorption
properties between 0.63 and 0.72 µm are documented for iron oxide/hydroxide minerals such as
hematite, limonite, goethite, and jarosite (Sherman and Waite, 1985; Morris et al., 1985).
Accordingly, iron oxide/hydroxide minerals such as goethite, limonite, jarosite, and hematite tend
to have spectral absorption features in the visible to middle infrared from 0.4 to 1.1 µm (absorption
features of Fe31 about 0.45�0.90 µm and Fe21 about 0.90�1.2 µm) of the electromagnetic spec-
trum (Hunt, 1977; Hunt and Ashley, 1979; Hunt and Salisbury, 1974). Goethite, hematite, and limo-
nite have strong Fe31 absorption features at 0.97�0.83 and 0.48 µm. Jarosite has Fe�O�H
absorption features at 0.94 and 2.27 µm (Hunt et al., 1971a,b; Bishop and Murad, 2005) (Fig. 2.1).

FIGURE 2.1 Laboratory spectra of limonite, jarosite, hematite, and goethite.
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2.2.2 Hydroxyl-bearing minerals and carbonates

SWIR radiation is the best spectral part of the electromagnetic spectrum for identifying vari-
ous assemblages of alteration minerals and zones associated with hydrothermal ore minera-
lizations. Generally, the spatial distribution of hydrothermal alteration minerals having OH
and CO3 groups can be identified and mapped in the SWIR region (Huntington, 1996). It is
due to the fact that hydroxyl-bearing minerals, including clay and sulfate groups, as well as
carbonate minerals represent diagnostic spectral absorption features due to vibrational pro-
cesses of fundamental absorptions of Al�O�H, Mg�O�H, Si�O�H, and CO3 groups in the
SWIR region (Hunt and Ashley, 1979; Gaffey, 1986; Crowley, 1991; Clark et al., 1993a,b;
Cloutis, 1996). Phyllosilicates, including Al�Si�(OH) and Mg�Si�(OH) bearing minerals
(i.e., kaolinite, montmorillonite, muscovite, illite, talc, and chlorite), and sorosilicate group,
including Ca�Al�Si�(OH) bearing minerals such as epidote group, and OH-bearing sul-
fates, including alunite and gypsum, and also carbonates can be identified because of their
spectral characteristics in the SWIR region (Hunt, 1977; Hunt and Ashley, 1979; James et al.,
1988; Clark et al., 1990; Cloutis et al., 2006; Bishop et al., 2008). Accordingly, the remote
sensing SWIR data can identify hydrothermal alteration mineral assemblages, including (1)
mineralogy generated by the passage of low PH fluids (alunite and pyrophyllite); (2) Al�Si�
(OH) and Mg�Si�(OH)-bearing minerals, including kaolinite and mica and chlorite groups;
and (3) Ca�Al�Si�(OH)-bearing minerals such as epidote group, as well as carbonate group
(e.g., calcite and dolomite).

Sericitically altered rocks typically contain sericite (a fine-grained form of muscovite) that
has a distinct Al�OH absorption feature at 2.2 µm and a less intense absorption feature at
2.35 µm (Fig. 2.2) (Abrams and Brown, 1984; Spatz and Wilson, 1995). Kaolinite and alunite
are typical constituents of advanced argillic alteration that exhibit Al�OH 2.165- and 2.2-µm
absorption features (Fig. 2.2) (Hunt, 1977; Hunt and Ashley, 1979; Rowan et al., 2003).
Although less common than alunite or kaolinite, advanced argillic-altered rocks can also
contain pyrophyllite that has an intense 2.165-µm Al�O�H absorption feature. Propylitically
altered rocks typically contain variable amounts of chlorite, epidote, and calcite, which
exhibit Fe, Mg�O�H, and CO3 about 2.31�2.33-µm absorption features (Fig. 2.2) (Rowan
and Mars, 2003). VNIR�SWIR spectra of epidote and chlorite also exhibit broad, prominent
Fe21 absorption spanning the 0.62�1.65-µm region (Fig. 2.2). The absorption features near
1.40 and 1.90 µm can be attributed to OH stretches occurring at about 1.4 µm and the com-
bination of the H�O�H bend with OH stretches near 1.90 µm (Fig. 2.2). Hence, two overall
absorption features at about 1.40 and 1.90 µm present in the alteration minerals due to the
OH and H2O vibrational bands, respectively (Bishop et al., 2008).

2.2.3 Silicate minerals and lithologies

Mafic-to-ultramafic and felsic (granitic) lithologies are potential geological units to host or
accompany magmatic ore mineralization. The TIR data can be used for detecting silica
(quartz) to explore magmatic ore deposits (i.e., Ni�PGE sulfide deposits in mafic-to-ultramafic
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units and nonferrous-metals, rare-metals, and radioactive-element ore deposits in felsic
units), which are not associated with extensive alteration minerals and zones (Lyon, 1972;
Hunt and Salisbury, 1976; Salisbury and D’Aria, 1992; Ninomiya, 1995; Ninomiya et al.,
2005; Aboelkhair et al., 2010; Yajima and Yamaguchi, 2013; Ding et al., 2015). In the TIR
region (8�14 µm), spectral emissivity features due to Si�O�Si-stretching vibrations are
useful for the spectral discrimination of silicate lithological units (Ninomiya et al., 2005;
Rockwell and Hofstra, 2008).

Alkali feldspar-bearing granites are characterized by high silica content, although in
granodiorite and tonalite, the abundance of plagioclase is known to increase with decreasing

FIGURE 2.2 Laboratory spectra of epidote, calcite, muscovite, kaolinite, chlorite, and alunite.
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quartz content. Spectra of granitoid rocks and silicates characteristically show a broad emis-
sion minimum (reststrahlen band) in the 8.5�14-µm interval (Si�O-stretching region), and a
well-defined maximum (Christiansen frequency peak) in the 7�9-µm interval (Logan et al.,
1973; Sabine et al., 1994; Hook et al., 1999). The subtle differences in the bonding of silicates
are responsible for the shifting of the emissivity minima in the TIR spectra of silicate-bearing
rocks (Fig. 2.3). The broad spectral emissivity minimum shifts to a longer wavelength for sili-
cate rocks as the SiO2 content decreases (the rock-type changes from felsic to mafic)
(Fig. 2.3) (Salisbury and Walter, 1989; Salisbury and D’Aria, 1992; Ninomiya, 1995, 2003b).

Quartz can also be found in jasperoid, quartz�alunite, and quartz�sericite�pyrite alter-
ation, hot spring silica sinter terraces, and several diatomite and perlite mines and prospects.
Hydrothermal silica minerals typically consist of quartz, opal, and chalcedony. TIR emissivity
spectra illustrate that quartz and opal contain a prominent reststrahlen feature in the 9.1-µm
region (Fig. 2.3) (Rockwell and Hofstra, 2008). Numerous bodies of hydrothermal quartz
were found in or near Carlin-type gold deposits, distal disseminated Au�Ag deposits, high-
and low-sulfidation epithermal Au�Ag deposits, and geothermal areas. In recent years,

FIGURE 2.3 Laboratory emissivity spectra of quartz, granite, diorite, gabbro, and dunite in the TIR region. TIR,
Thermal infrared.
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several investigations documented the high capability of TIR remote sensing data for litho-
logical discrimination and mapping around the world (Ninomiya et al., 2005; Scheidt et al.,
2008; Aboelkhair et al., 2010; Pour and Hashim, 2012a,b; Yajima and Yamaguchi, 2013;
Ramakrishnan et al., 2013; Ding et al., 2014, 2015; Guha and K., 2016; Guha and Kumar,
2016; Pour et al., 2018a; Ninomiya and Fu, 2019; Pour et al., 2021a,b).

2.3 Multispectral sensors
Multispectral remote sensing involves the acquisition of VNIR, SWIR, and TIR images in sev-
eral broad wavelength bands. Various materials reflect, absorb, and emit inversely at different
wavelengths. Essentially, it is feasible to distinguish between materials by their spectral reflec-
tance and emissivity signatures as detected in multispectral remotely sensed images.
Multispectral imagery generally refers to 3�10 (or more) bands that are represented in pixels.
Each band is acquired using a remote sensing radiometer. Multispectral imaging concentrates
on several preselected wavebands based on the application at hand. In this section, the techni-
cal characteristics of Landsat data, the Satellite Pour I’Observation de la Terra-1 (SPOT) series,
the ASTER, the ALI, Sentinel Sentinel-2 MSI data, and Worldview data are briefly described.

2.3.1 Landsat data

The Landsat satellites era that began in 1972 will become a nearly 50-year global land record
with the successful launch and operation of the Landsat Data Continuity Mission (LDCM)
(Roy et al., 2014). The first generation (Landsats 1�3) operated from 1972 to 1985 and is
essentially replaced by the second generation (Landsats 4, 5, and 7), which began in 1982
and continues to the present (Sabins, 1999; Roy et al., 2014). Landsat 7 (Enhanced Thematic
Mapper Plus (ETM1 )) was launched on April 15, 1999. It detects spectrally filtered radiation
in the VNIR, SWIR, TIR, and panchromatic bands with a spatial resolution of 30, 60, and
15 m, respectively (Wulder et al., 2008; Irons et al., 2012). Landsat 8 was launched on
February 4, 2013 and joins Landsat 7 in orbit, providing an increased coverage of the Earth’s
surface. It has two sensors, namely, the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS). These two instruments collect image data for nine VNIR and SWIR
bands and two TIR bands (Roy et al., 2014). Landsat 9 was launched on September 27, 2021.
It carries approximately identical sensors as Landsat 8, in particular the OLI-2, and the TIRS-
2. The OLI-2 data contain 14-bit quantization. However, the quality of split-window thermal
data usability for the TIRS-2 has been increased and improved. Fig. 2.4 shows spectral band-
passes for all Landsat sensors.

Landsat Thematic Mapper/Enhanced Thematic Mapper1 (TM/ETM1 ) and Landsat 8 data
have been used for mapping lithological units and hydrothermal alteration minerals associated
with a variety of ore mineralizations (Pour et al., 2018a,b, 2019a,b,c; Sekandari et al., 2020;
Traore et al., 2020; Takodjou Wambo et al., 2020; Moradpour et al., 2022). Bands 1, 3, 5, and 7 of
TM/ETM1 and bands 2, 4, 6, and 7 of Landsat 8 are specifically used to map iron oxide/hydro-
xides and hydroxyl-bearing minerals, correspondingly. For instance, in mapping hydrothermal
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alteration zones, the band ratios of 3/1 and 5/7 (from TM/ETM1 ) and the band ratios of 4/2
and 6/7 (from Landsat 8) can exclusively be implemented to identify gossan (iron oxide/hydro-
xides) and hydroxyl (OH) minerals, respectively (Abdelsalam et al., 2000; Pour and Hashim,
2015a,b,c; Safari et al., 2018; Takodjou Wambo et al., 2020; Bolouki et al., 2020; Moradpour et al.,
2022). Nonetheless, the broad extent of these bands does not allow the discrimination of specific
alteration zones (e.g., argillic and phyllic alteration zones) and mineral assemblages using the
TM/ETM1 and Landsat 8 bands. Distinguishing argillic, advanced argillic, phyllic and propylitic
alteration zones is crucial for prospecting high-potential zone of porphyry copper mineralization
and massive sulfides and many other hydrothermal ore mineralizations (Ranjbar et al., 2004;
Honarmand et al., 2012; Pour and Hashim, 2011a,b, 2012a,b; Shahriari et al., 2013; Rajendran
and Nasir, 2017; Yousefi et al., 2021, 2022). The performance characteristics of the ETM1 and
Landsat 8 and 9 sensors are shown in Table 2.1.

2.3.2 SPOT data

The Satellite Pour I’Observation de la Terra-1 (SPOT-l) was successfully launched into orbit
by the French Space Agency, Centre National d’études Spatiales (CNES) in 1986, which deliv-
ered high-quality imageries from space. SPOT-2 was launched in 1990, followed by SPOT-3
in 1993, SPOT-4 in 1998, SPOT-5 in 2002, SPOT-6 in 2013, and SPOT-7 in 2014. It is antici-
pated that SPOT-6 and SPOT-7 can deliver data continuity by 2024 (Dagras et al., 1995).
SPOT-5 presents enhanced facilities and cost-effective imaging solutions for geological appli-
cations, for example, oil and gas exploration, natural disaster management, urban and rural
planning, and medium-scale (e.g., 1:25,000 and 1:10,000) geological�structural mapping
(Huurneman et al., 2009; Hosseini et al., 2019). The spatial resolution of the SPOT-5 imagery
is 3 m in the panchromatic band and 10 m in the multispectral mode, which is suitable for
geological�structural mapping. Table 2.2 shows the technical characteristics of SPOT-5 data.

FIGURE 2.4 The bandpass wavelengths for the Landsat 1�9 sensors are shown.
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Table 2.1 The performance characteristics of the ETM1 and Landsat-8 and 9 sensors.

Sensors Subsystem Band number Spectral range (µm) Ground resolution (m) Swath width (km)

ETM 1 VNIR Pan 0.520�0.900 14.25 185
1 0.450�0.515 28.50
2 0.525�0.605
3 0.633�0.690
4 0.780�0.900

SWIR 5 1.550�1.750
7 2.090�2.350

TIR 6 10.45�12.50
Landsat-8/9 VNIR 1 0.433�0.453 30 185

2 0.450�0.515
3 0.525�0.600
4 0.630�0.680
5 0.845�0.885

SWIR 6 1.560�1.660
7 2.100�2.300
Pan 0.500�0.680 15
9 1.360�1.390

TIR 10 10.30�11.30 100
11 11.50�12.50

SWIR, Ahortwave infrared; TIR, thermal infrared; VNIR, visible and near-infrared.

Table 2.2 The technical characteristics of SPOT-5 satellite data.

Subsystem Band number Spectral range (nm) Spatial resolution (m) Location accuracy

Spectral bands Band 1 (green) 500�590 10 ,30 m (1�)
Band 2 (red) 610�680 10
Band 3 (near IR) 780�890 10
Band 4 (SWIR) 1.580�1.750 20
Panchromatic band 480�710 2.5 or 5

Sensors HRG
HRS

Swath width 60 km 3 60 km to 80 km at nadir
Orbital altitude 822 km
Orbital inclination 98.7 degree, sun-synchronous
Speed 7.4 km/s (26,640 km/h)
Equator-crossing time 10:30 a.m. (descending node)
Orbit time 101.4 min
Revisit time 2�3 days, depending on latitude
Digitization 8 bits
Launch date May 3, 2002
Launch vehicle Ariane 4
Launch location Guiana Space Centre, Kourou, French Guyana
Footprint 60 km 3 60 km

HRG, High-resolution geometric; HRS, high-resolution stereoscopic; SWIR, shortwave infrared.
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SPOT-6 and SPOT-7 image product resolutions include panchromatic (1.5 m), color merge
(1.5 m), and multispectral (6 m). Spectral bands of SPOT-6 and SPOT-7 are panchromatic
(450�745 nm), the blue band (450�525 nm), the green band (530�590 nm), red band
(625�695 nm), and near-infrared band (760�890 nm) with 60 km 3 60 km swath width.

SPOT-5 contains the unique acquisition ability of the onboard high-resolution stereoscopic
(HRS) viewing instrument, which encompasses vast areas in a single pass. Stereoscopic satel-
lite imagery is essential for 3D terrain modeling. A 2.5-m color image can be acquired by fus-
ing two separate images, specifically the image with a panchromatic mode at 2.5 m resolution
and the images with a three-band multispectral mode at 10 m resolution. Because the 2.5 m
images are produced by fusing two 5-m images, one of the High-Resolution Geometric (HRG)
instruments must acquire three images concurrently to generate a 2.5-m color image.
Consequently, the images acquired are like a three-band color image with a resolution of
2.5 m and panchromatic viewing geometry (Huurneman et al., 2009). The SPOT-5 data were
successfully processed for geological�structural mapping and lineament extraction for Cu�Au
prospecting in the Lut Block, east of Iran (Ahmadirouhani et al., 2017, 2018).

2.3.3 Advanced Spaceborne Thermal Emission and Reflection
Radiometer data

The ASTER is a high spatial, spectral, and radiometric resolution multispectral remote sensing
sensor. It was launched on NASA’s Earth Observing System AM-1 (EOS AM-1) polar-orbiting
spacecraft in December 1999. EOS AM-1 spacecraft operates in a near-polar, sun-synchronous
circular orbit at 705 km altitude. The recurrent cycle is 16 days, with an additional 4-day repeat
coverage due to its off-nadir pointing capabilities. ASTER is a cooperative effort between the
Japanese Ministry of Economic Trade and Industry (METI) and the National Aeronautics and
Space Administration (NASA). It consists of three separate instrument subsystems, which pro-
vide observation in three different spectral parts of the electromagnetic spectrum, including
the VNIR, SWIR, and TIR (Fig. 2.5) (Abrams et al., 2004).

The VNIR subsystem has three recording channels between 0.52 and 0.86 µm and an
additional backward-looking band for the stereo construction of Digital Elevation Models
(DEMs) with a spatial resolution of up to 15 m. The SWIR subsystem has six recording chan-
nels from 1.6 to 2.43 µm, at a spatial resolution of 30 m, while the TIR subsystem has five
recording channels, covering the 8.125�11.65-µm wavelength region with a spatial resolution
of 90 m. ASTER swath width is 60 km (each individual scene is cut to a 60 3 60-km2 area),
which makes it useful for regional mapping, though its off-nadir pointing capability extends
its total possible field of view to up to 232 km. ASTER can acquire approximately 600 scenes
daily but is generally targeted and tasked without continuous operation unlike other multi-
spectral sensors such as Landsat (Abrams, 2000; Abrams et al., 2004; Abrams and Hook,
1995; Yamaguchi et al., 2001; Abrams and Yamaguchi, 2019).

The performance characteristics of ASTER data are shown in Table 2.3. ASTER provides
data useful for studying the interaction among the geosphere, hydrosphere, cryosphere, lith-
osphere, and atmosphere of the Earth from an Earth system science perspective (Fig. 2.6).
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To be more specific, a wide range of science investigations and applications include (1) geol-
ogy and soil studies; (2) land surface climatology studies; (3) vegetation and ecosystem
dynamic studies; (4) volcano monitoring; (5) other hazard monitoring; (6) carbon cycle and
marine ecosystem studies; (7) hydrology and water resource applications; (8) aerosol and
cloud studies; (9) seasonal evapotranspiration measurement; and (10) land surface and land
cover change analyses (Fujisada, 1995; Gillespie et al., 2005).

ASTER standard data products are available “on-demand” from the Earth Remote
Sensing Data Analysis Center (ERSDAC; Japan) and the EROS Data Center (EDC; USA).
Basically, all the ASTER captured data are processed to generate Level-1A data product,
which consists of unprocessed raw image data and coefficients for radiometric correction.
The Level-1B (radiance-at-sensor) data product is a resampled image data generated from
the Level-1A data by applying the radiometric correction coefficients (Abrams et al., 2004).
Level-2 data products of measured physical parameters include surface radiance data with
nominal atmospheric corrections (Level-2B01), surface reflectance data containing atmo-
spherically corrected VNIR-SWIR data (Level-2B07 or AST-07), surface emissivity data with
MODTRAN atmospheric correction, and a temperature-emissivity separation (TES) algorithm
(Level-2B04), which are all generated based on user request (Gillespie et al., 1998; Thome
et al., 1998; Yamaguchi et al., 1999).

Level-4B data product is also generated under the user request from the along-track
stereo observation in the near-infrared channel (band 3N and 3B) to construct DEMs.
Level-3A is a geometrically well-corrected orthorectified ASTER standard data product with
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FIGURE 2.5 Stereoscopic capability and characteristics of three separate subsystems of an ASTER sensor. ASTER,
Advanced Spaceborne Thermal Emission and Reflection Radiometer.
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ASTER-driven DEM, which is radiometrically equivalent to Level-1B radiance-at-sensor data
(Abrams, 2000; Yamaguchi et al., 2001; Ninomiya, 2003a,b; Ninomiya et al., 2005). During
scene acquisition of ASTER data, there is an optical “crosstalk” effect caused by a stray of
light from the band 4 detector into adjacent band 5 and 9 detectors on the SWIR subsystem.
Such deviations from correct reflectance result in false absorption features and a distortion
of diagnostic signatures that results in spectroscopic misidentification of minerals (Mars
and Rowan, 2010). Fortunately, ASTER Cross-Talk correction software is available from
http://www.gds.aster.ersdac.or.jp (Kanlinowski and Oliver, 2004; Iwasaki and Tonooka, 2005;
Hewson et al., 2005; Mars and Rowan, 2006, 2010).

Recently, two new crosstalk-corrected ASTER SWIR reflectance products had been
released, which include (1) AST-07XT SWIR reflectance data product available “on-demand”
from ERSDAC and EDC (Iwasaki and Tonooka, 2005), and (2) RefL1b SWIR reflectance data
product generated and described by Mars and Rowan (2010). The AST-07XT SWIR surface

Table 2.3 The technical characteristics of Advanced Spaceborne Thermal Emission
and Reflection Radiometer data (Yamaguchi et al., 1999; Fujisada, 1995).

Subsystem Band number
Spectral range
(µm)

Radiometric
resolution

Absolute
accuracy (�)

Spatial
resolution

VNIR 1 0.52�0.60 NE �� # 0.5% # 4% 15 m

2 0.63�0.69

3N 0.78�0.86

3B 0.78�0.86

SWIR 4 1.600�1.700 NE �� # 0.5%

5 2.145�2.185 NE �� # 1.3%

6 2.185�2.225 NE �� # 1.3% # 4% 30 m

7 2.235�2.285 NE �� # 1.3%

8 2.295�2.365 NE �� # 1.0%

9 2.360�2.430 NE �� # 1.3%

TIR 10 8.125�8.475 # 3K (200�240K)

11 8.475�8.825 # 2K (240�270K) 90 m

12 8.925�9.275 NE �T # 0.3K # 1K (270�340K)

13 10.25�10.95 # 2K (340�370K)

14 10.95�11.65

Signal quantization levels

Stereo base-to-height ratio 0.6 (along-track)

Swath width 60 km

Total coverage in cross-track direction

by pointing

232 km

Coverage interval 16 days

Altitude 705 km

MTF at Nyquist frequency 0.25 (cross-track)

0.20 (along-track)

Band-to-band registration Intratelescope: 0.2 pixels

Intratelescope: 0.3 pixels

Peak power 726 W

Mass 406 kg

Peak data rate 89.2 Mbps

Band number 3N refers to the nadir-pointing view, whereas 3B designates the backward-pointing view. SWIR, Shortwave infrared; TIR, thermal infrared; VNIR, visible and

near-infrared.
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reflectance data product is like AST-07 surface reflectance data in that it consists of the same
VNIR and SWIR bands. However, the crosstalk correction algorithm and atmospheric correc-
tion (nonconcurrently acquired MODIS water vapor data) have been preapplied to the data
(Iwasaki and Tonooka, 2005; Biggar et al., 2005; Mars and Rowan, 2010). RefL1b and AST-
07XT reflectance datasets both attempt to correct the SWIR anomaly. However, the differ-
ences between these datasets are caused by the addition of the radiometric correction factors
and the use of concurrently acquired water vapor data for atmospheric correction in the case
of the RefL1b data (Mars and Rowan, 2010). Spectral analyst results for AST-07XT and
RefL1b indicated that these new ASTER products can be used for regional mineral mapping
without the use of additional spectral data from the site for calibration. Especially, ASTER
mineral mapping projects will be more feasible using RefL1b data (Mars and Rowan, 2010).
The use of ASTER data in mineral exploration and lithological mapping has increased in
recent years due to (1) spectral characteristics of the unique integral bands of ASTER, which
are highly sensitive to hydrothermal alteration minerals, especially in SWIR radiation region;
(2) the possibility of applying several image processing techniques; (3) “on-demand” data
product availability with low cost (B$60 US or Yen equivalent) and free data products; and
(4) broad 60 km 3 60 km scene coverage useful for regional scale mapping (Abrams and
Yamaguchi, 2019).

Fig. 2.7 shows the location of ASTER spectral bands in the wavelength of the electromag-
netic spectrum and the comparison of spectral bands between Landsat 7 TM/ETM1 and
ASTER. ASTER VNIR bands are capable of mapping iron oxide/hydroxide (gossan) associated

FIGURE 2.6 Applications of ASTER data in a wide range of scientific research studies. ASTER, Advanced Spaceborne
Thermal Emission and Reflection Radiometer.
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with ore mineralizations (Pour et al., 2019a,b,c). The ASTER SWIR bands with sufficient spec-
tral resolution have been widely and successfully used in numerous mineral exploration and
lithological mapping projects (Abrams and Yamaguchi, 2019). SWIR spectral bands are
unprecedented multispectral data for the discrimination of hydrothermal alteration mineral
zones such as phyllic, argillic, and propylitic associated with porphyry copper, hydrothermal
gold, and massive sulfide deposits (Mars and Rowan, 2006; Pour and Hashim, 2012a,b).
ASTER TIR bands are capable of discriminating silicate lithological groups and carbonates
(Ninomiya et al., 2005; Rockwell and Hofstra, 2008; Aboelkhair et al., 2010; Yajima and
Yamaguchi, 2013; Guha and K., 2016; Guha and Kumar, 2016; Pour et al., 2018a; Ninomiya
and Fu, 2019; Pour et al., 2021a,b). Consequently, ASTER data have widely and successfully
been used to identify and map hydrothermal alteration mineral zones and lithological units
associated with a variety of ore mineralizations in many metallogenic provinces (Pour and
Hashim, 2012a,b; Abrams and Yamaguchi, 2019; Yousefi et al., 2021, 2022).
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FIGURE 2.7 (A) ASTER spectral bands in the wavelength of the electromagnetic spectrum. (B) The comparison of
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2.3.4 Advanced Land Imager data

The Earth Observing One (EO-1) Satellite was launched onboard on November 21, 2000. The
EO-1 is the first earth-observing satellite of NASA’s New Millennium Program (NMP) that
developed new technologies for optimizing the feature and reducing the cost of remote sens-
ing data for NASA’s future planetary and earth missions (Folkman et al., 2001; Perko et al.,
2001; Beck, 2003; Ungar, 2002; Ungar et al., 2003). The EO1 platform carries three sensors
onboard, namely, (1) the ALI; (2) Hyperion; (3) Linear Etalon Imaging Spectral Array
(LEISA). The ALI is a prototype for a new generation of Landsat 7 TM. The ALI provides mul-
tispectral data like that of the Enhanced Thematic Mapper Plus (ETM1 ) sensor on Landsat 7.
The sensor maintains analogous attributes to Landsat 7 with a spatial resolution of 30 m; how-
ever, the swath width is 37 km as opposed to 185 km (Hearn et al., 2001; Wulder et al., 2008).
ALI is a push-broom sensor and has some additional bands in comparison with the whisk-
broom design of the ETM1 sensor (Thome et al., 2003). The performance attributes of the ALI
sensor are shown in Table 2.4. Additional bands in the ALI improved the signal-to-noise ratio
(SNR) that is one of the most significant performance aspects of the ALI to increase the quality
of data (Lencioni et al., 1999; Thome et al., 2003; Lobell and Asner, 2003). Fig. 2.8 illustrates
the comparison of the ALI SNR bands with those of ETM1 (Mendenhall et al., 2000; Hearn
et al., 2001).

The ALI sensor has 10 channels spanning 0.4�2.35 µm (the VNIR to SWIR), 6 VNIR bands
(0.4330.890 µm), and 3 SWIR bands (1.200�2.350 µm), and 1 panchromatic band
(0.480�0.690 µm) (see Table 2.4). The VNIR bands can especially be useful for detecting iron
oxide/hydroxide minerals from the perspective of geologic mapping and mineral exploration
applications. Because of SWIR band center positions, ALI is only capable of discriminating
altered zones (OH-bearing minerals and carbonates) from unaltered zones for mineral explo-
ration purposes (Hubbard et al., 2003; Hubbard and Crowley, 2005; Pour and Hashim,
2011b, 2014b, 2015b). Fig. 2.9 shows the comparison of ALI, ETM1, and ASTER spectral
bandpasses for hydrothermal alteration mineral mapping.

Table 2.4 The performance characteristics of the Advanced Land Imager (ALI) sensor.

Sensors Subsystem Band number Spectral range (µm) Ground resolution (m) Swath width (km)

ALI VNIR Pan 0.480�0.690 10 37
1 0.433�0.453 30
2 0.450�0.515
3 0.525�0.605
4 0.633�0.690
5 0.775�0.805
6 0.845�0.890

SWIR 7 1.200�1.300
8 1.550�1.750
9 2.080�2.350

SWIR, Shortwave infrared; VNIR, visible and near-infrared.
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FIGURE 2.8 Comparison of signal-to-noise ratios of the ALI bands and ETM1 (Hearn et al., 2001). ALI, Advanced
Land Imager.

FIGURE 2.9 The comparison of ALI, ETM1, and ASTER spectral bandpasses for hydrothermal alteration mineral
mapping (Hubbard and Crowley, 2005). ALI, Advanced Land Imager; ASTER, Advanced Spaceborne Thermal
Emission and Reflection Radiometer.
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2.3.5 Sentinel-2 MSI data

The Sentinel-2 sensor is a multispectral sensor that was launched in 2015. Sentinel-2 has 13
bands covering the VNIR region with 8 bands and the SWIR region with 2 bands having a
spatial resolution of 10, 20, and 60 m. The swath width is 290 km. It consists of two multi-
spectral satellites, Sentinel-2A and Sentinel-2B. The satellites orbit at an altitude of 786 km
and 180 degrees from each other. In general, the time of complete survey of the earth is
repeated every 5 days. The Sentinel-2 images are provided at the L1C level, which is radio-
metrically and geometrically corrected. Table 2.5 summarizes the spectral and spatial attri-
butes and applications of Sentinel-2 bands.

Sentinel-2 is mainly used for agricultural applications for instance crop monitoring and
management, vegetation and forest monitoring, land cover change monitoring for environ-
mental monitoring, observation of coastal areas (marine environmental monitoring, mapping
sampling from coastal areas), monitoring inland waters, monitoring glaciers, and others.
Nevertheless, valuable information concerning lithological units and alteration minerals can
be obtained from bands 2, 4, 5, 6, 7, 11, and 12 of Sentinel-2 (Van der Meer et al., 2014).
Considering the relatively appropriate spatial resolution of these bands (10�20 m), color
combinations, and advanced image processing techniques can easily be implemented to
identify lithological units, iron oxide/hydroxides, OH-minerals alterations, and geological fea-
tures and structures. Iron oxide/hydroxides and hydroxyl-bearing alteration minerals can be
successfully mapped using band ratios of 4/2 and 11/12, respectively (Van der Meer et al.,
2014; Van der Werff and Van der Meer, 2016; Zoheir et al., 2019a; Sekandari et al., 2020).

Table 2.5 The spectral and spatial characteristics and applications of Sentinel-2
bands.

Band
Band range (nm)/band
center (nm)

Spatial
resolution (m) Purpose in L2 processing context

B1 433�453/443 60 Atmospheric correction
B2 458�523/490 10 Sensitive to vegetation aerosol scattering, iron oxides/

hydroxides detection
B3 543�578/560 10 Green peak, sensitive to total chlorophyll in vegetation
B4 650�680/665 10 Max chlorophyll absorption, iron oxides/hydroxides

detection
B5 698�713/705 20 Not used in L2A context
B6 734�748/740 20 Not used in L2A context
B7 765�785/783 20 Not used in L2A context
B8 785�900/842 10 LAI
B8a 855�875/865 20 Used for water vapor absorption reference
B9 930�950/945 60 Water vapor absorption atmospheric correction
B10 1365�1385/1375 60 Detection of thin cirrus for atmospheric correction
B11 1565�1655/1610 20 Soils detection, OH-mineral alteration mapping
B12 2100�2280/2190 20 AOT determination, OH-mineral alteration mapping

LAI, Leaf area index.
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Selected bands of Sentinel-2 were used for the exploration of orogenic gold in transpression
and transtension zones of the Barramiya�Mueilha area, Egypt, and carbonate-hosted Pb�Zn
deposits in the Central Iranian Terrane (CIT), Iran as well as mapping rare metal-bearing
granites in the Umm Naggat Area, Central Eastern Desert, Egypt (Zoheir et al., 2019a;
Sekandari et al., 2020; Abdelkader et al., 2022).

2.3.6 WorldView data

WorldView is a commercial earth observation satellite retained by DigitalGlobe. The
WorldView-1 satellite sensor was launched on September 18, 2007, followed later by the
WorldView-2 on October 8, 2009. WorldView-1 provides a high-capacity, panchromatic
imaging system that incorporates 0.5 m resolution imagery. The WorldView-2 sensor pro-
vides a high-resolution panchromatic band and eight multispectral bands. These bands
include four standard colors such as red, green, blue, and near-infrared-1, and other bands,
namely, coastal, yellow, red edge, and near-infrared 2. WorldView-2 data can be used for
mineral mapping in particular iron oxide/hydroxide groups, spectral analysis, land-use plan-
ning, climate change, defense, wildlife monitoring, and disaster relief (Kuester et al., 2015).
The WorldView-3 satellite was successfully launched on August 13, 2014. This sensor con-
tains the highest spatial, spectral, and radiation among the multispectral satellite sensors,
presently. It has eight bands in the VNIR region with a spatial resolution of 1.24 m and eight
bands in the SWIR region with a spatial resolution of 3.70 m. WorldView-3 also has a pan-
chromatic band with 0.31-m spatial resolution (Kuester, 2016). Technical performance and
attributes of the WV-3 sensor are shown in Table 2.6. Iron oxides/hydroxide minerals can be
comprehensively mapped and discriminated by VNIR bands of WV-3 (Mars, 2018; Pour
et al., 2019a; Sekandari et al., 2022). Additionally, SWIR bands of WV-3 contain high

Table 2.6 Technical performance and attributes of WV-3 sensor.
Sensor Subsystem Band number Spectral range (µm) Ground resolution (m) Swath width (km) Year of launch

WV3 VNIR Coastal blue (1) 0.400�0.450 1.24 13.1 2014
Blue (2) 0.450�0.510
Green (3) 0.510�0.580
Yellow (4) 0.585�0.625
Red (5) 0.630�0.690
Red edge (6) 0.705�0.745
NIR1 (7) 0.770�0.895
NIR2 (8) 0.860�1.040

SWIR SWIR-1 (9) 1.195�1.225 3.70
SWIR-1 (10) 1.550�1.590
SWIR-1 (11) 1.640�1.680
SWIR-1 (12) 1.710�1.750
SWIR-1 (13) 2.145�2.185
SWIR-1 (14) 2.185�2.225
SWIR-1 (15) 2.235�2.285
SWIR-1 (16) 2.295�2.365

SWIR, Shortwave infrared; VNIR, visible and near-infrared.
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capability for a detailed mapping of Al�OH, Mg�Fe�OH, and Si�OH key hydrothermal
alteration minerals (Kruse and Perry, 2013; Kruse et al., 2015; Sun et al., 2017; Mars, 2018).
Comparison between the spectral bands of WV-3 with Landsat 8, Sentinel-2, and ASTER
emphasizes their priority and a high potential for detailed mapping of alteration minerals in
the VNIR and SWIR regions (Fig. 2.10).

WorldView-4 satellite was successfully launched on November 11, 2016. It can discern
objects on the Earth’s surface as small as 31 cm in the panchromatic and collects four multi-
spectral bands (red, green, blue, and near-infrared) at 1.24-m spatial resolution. WorldView-
4 contains a similar resolution as the WorldView-3 satellite sensor. This advanced resolution
offers users exceptional and accurate views for 2D or 3D mapping, change detection, and
image analysis. WorldView-4 satellite presents exceptional geolocation accuracy, which
means that users will be capable of mapping natural and man-made features to better than
,4-m CE90 of their actual location on the Earth’s surface without ground control points.

2.4 Hyperspectral sensors
Hyperspectral sensors measure energy in narrower and more numerous bands than multi-
spectral sensors. Hyperspectral images can contain as many as 200 (or more) contiguous
spectral bands. In hyperspectral imaging, the recorded spectra have fine wavelength resolu-
tion and cover a wide range of wavelengths. Hyperspectral imaging measures continuous
spectral bands, as opposed to multiband imaging that measures spaced spectral bands
(Hagen and Kudenov, 2013). Hyperspectral sensors sense objects using a substantial fraction

FIGURE 2.10 An overview of the VNIR and SWIR bands of Landsat-8, Sentinel-2, ASTER, and WV-3. ASTER,
Advanced Spaceborne Thermal Emission and Reflection Radiometer; SWIR, shortwave infrared; VNIR, visible and
near-infrared.
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of the electromagnetic spectrum. Objects have distinctive “fingerprints” in the electromag-
netic spectrum, which are well known as spectral signatures. The “fingerprints” allow the
detection of the materials that come up with a visualized object. Hyperspectral remote sens-
ing is useful for a wide range of applications such as geosciences, molecular biology, astron-
omy, agriculture, biomedical imaging, physics, and surveillance. However, it was originally
established for mining and geology. The capability of hyperspectral imaging to detect differ-
ent minerals makes it ideal for mineral exploration.

2.4.1 Spaceborne sensors

2.4.1.1 Hyperion data
Hyperion is the first advanced satellite hyperspectral sensor (onboard the EO-1 platform) oper-
ating across the spectral coverage from 0.4 to 2.5 µm and 10 nm spectral resolution. It has 242
spectral bands over a 7.6-km swath width, and 30 m spatial resolution (Liao et al., 2000).
Fig. 2.11 illustrates Hyperion ground tracks in relation to ALI and Landsat 7 ETM1 (Barry and
Pearlman, 2001). The 242 total bands comprise the first 70 bands in the VNIR region and the
second 172 bands in the SWIR region, and 21 bands are in a region of bands’ overlap between
0.9 and 1.0 µm (Folkman et al., 2001; Pearlman et al., 2003; Ungar et al., 2003).

The system has two spectrometers and a single telescope. Spectrometers operate at the
VNIR wavelength (approximately 0.4�1.0 µm) and at the SWIR wavelength (approximately
0.9�2.5 µm), respectively (Ungar et al., 2003; Beck, 2003; Green et al., 2003; Goodenough
et al., 2003). Hyperion data have an SNR of about 161/1 in the VNIR region and 40/1 in the
SWIR region that somewhat limited the scientific applications of Hyperion data (Folkman
et al., 2001; Thome et al., 2003). Table 2.7 shows the performance characteristics of the
Hyperion sensor (Folkman et al., 2001). Hyperion data can be used for geology, agriculture

FIGURE 2.11 Hyperion ground track in relation to ALI and Landsat 7 ETM1. ALI, Advanced Land Imager.
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monitoring, volcanic temperature measurement, the study of reef and coral bay health, and
glaciological applications (Barry et al., 2002). Fig. 2.12 illustrates the Hyperion spectral bands
compared to ASTER and Landsat 7 ETM1 (Waldhoff et al., 2008). Hyperion VNIR bands
between 0.4 and 1.3 µm can be used to highlight iron oxide/hydroxide minerals (Bishop
et al., 2011; Pour and Hashim, 2011b, 2015b). Hyperion SWIR bands (2.0�2.5 µm) can
uniquely identify and map hydroxyl-bearing minerals, sulfates, and carbonates in the hydro-
thermal alteration assemblages (Kruse et al., 2003; Gersman et al., 2008; Bishop et al., 2011;
Pour and Hashim, 2011b, 2015b).

2.4.1.2 Prcursore IperSpettrale della Missione Applicativa data
The new hyperspectral Precursore IperSpettrale della Missione Applicativa (PRISMA) sensor,
developed by the Italian Space Agency, was launched in 2019 on a sun-synchronous Low
Earth Orbit (620 km altitude) (Loizzo et al., 2018). PRISMA is an Earth observation satellite

Table 2.7 The performance characteristics of the Hyperion sensor.

Sensor Subsystem
Band
number

Spectral range
(µm)

Ground
resolution (m)

Swath width
(km)

Radiometric
precision (S/N)

Hyperion VNIR Continuous 0.400�1.000 30 7.6 161/1
SWIR Continuous 0.900�2.500 30 7.6 40/1

SWIR, Shortwave infrared; VNIR, visible and near-infrared.
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with advanced electro-optical instrumentation that combines a medium-resolution panchro-
matic camera with hyperspectral sensors. The benefits of this combination are that plus the
classical capability of observation based on the identification of the geometrical features of
the scene, there is the one presented by hyperspectral sensors that can reveal the chemi-
cal�physical composition of objects that appear on the scene. This presents the scientific
community with various applications in the field of environmental monitoring, resource
management, crop classification, pollution control, forest types discrimination, mineral
detection, and soil fertility mapping (Bedini and Chen, 2020, 2022; Vangi et al., 2021; Heller
Pearlshtien et al., 2021; Gasmi et al., 2022). PRISMA captures images in a continuum of 240
spectral bands ranging between 400 and 2500 nm, including (1) hyperspectral sensors in the
VNIR: 400�1010 nm (66 bands) and SWIR: 920�2500 nm (173 bands) with a spectral resolu-
tion around 10 nm, and (2) a panchromatic camera in the spectral range of 400�700 nm.
PRISMA acquires data on areas of 30-km swath width and 30-m spatial resolution for hyper-
spectral bands and 5 m for panchromatic band (Pepe et al., 2020; Giardino et al., 2020; Vangi
et al., 2021). Hyperspectral sensors use a push-broom scanning technique. The main features
and attributes of the PRISMA sensor are summarized in Table 2.8.

The PRISMA mission operates in two modes, including (1) the primary mode of operation
(the collection of hyperspectral and panchromatic data from specific targets requested by
users), and (2) the secondary mode of operation (a conventional ongoing “background” task
to obtain imagery such that the satellite and downlink resources are fully used). PRISMA
data products include (1) Level 0 (L0): raw data stream, including instrument and satellite
ancillary data; (2) Level 1 (L1): TOA (top of atmosphere) radiometrically and geometrically
calibrated hyperspectral and panchromatic radiance images; and (3) Level 2 (L2): geolocated
and geocoded atmospherically corrected hyperspectral and panchromatic images, atmo-
spheric constituents maps (aerosols, water vapor, thin cloud optical thickness). Typically,
PRISMA delivers hyperspectral imagery to the mineral exploration community for the identi-
fication of hydrothermal alteration minerals to prospect ore mineralizations. Iron oxide/
hydroxide minerals can be mapped using VNIR bands and gypsum and clay mineral groups
are detectable by SWIR bands of PRISMA (Bedini and Chen, 2020, 2022; Heller Pearlshtien
et al., 2021; Benhalouche et al., 2022).

Table 2.8 The main features and attributes of the Precursore IperSpettrale della
Missione Applicativa (PRISMA) sensor.

PRISMA main features and attributes Spatial resolution

Hyperspectral range 30 m VNIR 400�1.10 nm 66 bands
SWIR 920�2.500 nm 173 bands

Panchromatic spectral range 5 m 400�700 nm
Average spectral resolution 10 nm
Swath width 30 km
Data quantization 12 bit
Frame rate 230 Hz

SWIR, Shortwave infrared; VNIR, visible and near-infrared.
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2.4.2 Airborne sensors

2.4.2.1 Airborne Visible/IR Image Spectrometer data
The AVIRIS is a hyperspectral airborne instrument flown in a NASA high-altitude aircraft. It was
the first optical sensor (OPS) (1987) to measure the solar reflected spectrum from the VNIR and
SWIR (400�2500 nm) using 224 contiguous bands at 10 nm intervals (Clark et al., 1991; Green
et al., 1998). It has nadir-viewing whisk broom detectors with a 12-Hz scanning rate. AVIRIS cap-
tured data on four aircraft platforms: NASA’s ER-2 jet, Twin Otter International’s turboprop,
Scaled Composites’ Proteus, and NASA’s WB-57. The image has 11 km width and up to 800 km
length with 20 m spatial resolution. The NASA Earth Research-2 Q-bay aircraft at 20 km altitude
covers a width of 11 km and a length of 800 km above of Earth with a spatial resolution of 20 m.
Images with 1�4 m resolution were acquired in low attitude.

AVIRIS-NG (Next Generation) has been established to deliver continued access to high-SNR
imaging spectroscopy measurements in the VNIR and SWIR ranges. AVIRIS-NG has replaced the
AVIRIS-Classic instrument that has been flying since 1986. AVIRIS-NG measures the wavelength
range from 380 to 2510 nm with 5 nm sampling in 425 narrow continuous spectral bands. Spectra
are measured as images with 600 cross-track elements and spatial sampling from 0.3 to 4.0 m.
AVIRIS-NG has better than 95% cross-track spectral uniformity and $ 95% spectral IFOV uniformity.

AVIRIS radiance data are used to monitor Earth’s surface and can be used in a wide
range of such as geology, hydrology, ecology, and others. All AVIRIS data from 1989 were
archived in JPL. Each AVIRIS scene consists of 677 pixels 3 512 lines 3 224 bands. The
data archived from 1993 to 2012 are at the L1B preprocessing level, and the data from 2012
to now are preprocessed at the L2 level. L1B data are radiometrically and ortho-corrected. L2
data are atmospherically corrected by the Atmosphere Removal Algorithm (ATREM) pro-
gram. A variety of alteration minerals such as iron oxide/hydroxide minerals, clay minerals,
carbonates, and ammonium minerals were mapped using AVIRIS data (Baugh et al., 1998;
Clark et al., 1991; Rowan et al., 2000; Kruse et al., 2003). AVIRIS-NG data were used for map-
ping alteration mineral signatures associated with the base metal mineralization in the Pur-
Banera area in the Bhilwara district, Rajasthan, India (Guha et al., 2021).

2.4.2.2 HyMap data
“HyMap” (hyperspectral mapper) is an airborne hyperspectral imaging sensor
(Manufactured by Integrated Spectronics Pty Ltd, Sydney, Australia) operated by HyVista
Corporation. It consists of sensors located on a fixed-wing aircraft typically flown at an alti-
tude of 2.5 km. HyMap data has 126 spectral bands (at approximately 15 nm intervals) span-
ning the wavelength interval 0.45�2.5 µm (VNIR: 64 bands) and (SWIR: 62 bands), and 5-m
spatial resolution (Cocks et al., 1998). This sensor is highly adjusted for mineral exploration
tasks and has a high level of performance in spectral and radiometric calibration accuracy,
SNR (500�1000 or better), geometric characteristics, and operational stability. HyMap data
were used for detailed mapping of hydrothermal alteration minerals associated with
Cu�Au�Mo porphyry deposits, carbonatite complex, and metamorphic�hydrothermal U-
REE deposit (Bedini, 2009, 2011, 2012; Huo et al., 2014; Salles et al., 2017).
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2.5 Unmanned aerial vehicle
An UAV, or drone, is an aircraft deprived of any human pilot on board. UAVs are a compo-
nent of an unmanned aircraft system (UAS), which also embrace a ground-based controller
and a system of communications with the UAV (Hu and Lanzon, 2018). Satellite and airborne
platforms typically run on stationary orbits or continuous predetermined paths. However,
there is a need for fine-scale remote sensing applications (e.g., geological surveying and min-
eral exploration) for gathering data along asymmetrical design pathways, closer proximity for
specific feature observations, or momentarily altering pathways due to unfavorable environ-
mental conditions. The use of traditional remote sensing platforms is challenging due to a
lack of flexibility and high cost and logistic requirements. The data acquisition strategy for
remote, high risks, inaccessible sites with traditional platforms is tedious and challenging,
such as monitoring polar regions (Leary, 2017), nuclear radiation, volcanoes, and toxic spills
(Gomez and Purdie, 2016). Subsequently, remote sensing scientists have gradually recom-
mended and embraced low-altitude unmanned platforms (e.g., kites, balloons, and UAVs) to
counteract traditional platforms’ inefficiencies (Graham, 1988; Verhoeven et al., 2009;
Colomina and Molina, 2014).

UAVs are well known as conventional unmanned vehicles due to their high maneuver-
ability, flexibility, cost-efficiency, data availability, and data quality. To date, the rapid evolu-
tion of UAV technology and advancement of UAV sensors (lightweight, inexpensive,
miniature in size, and high-detection precision) integrating UAV platforms facilitate the use
of UAV remote sensing techniques. The racing to enhance the satellite constellations for
more satisfactory spatial and temporal data resolution by satellite data providers will eventu-
ally reduce satellite sensors’ data acquisition costs. Thus UAVs will be expected to substitute
manned airborne platforms and transform into the mainstream for remote sensing applica-
tions, together with satellite platforms (Liao et al., 2016). The classification of UAVs based on
their range, endurance and weather, wind dependency, and maneuverability is well docu-
mented (Eisenbeiß, 2009). With the increasing popularity of UAV remote sensing, several
comprehensive review articles are available (Table 2.9) to provide the current state of the
technology’s art and science of UAV-led applications and discuss future research prospects.

Based on the list of review papers (Table 2.9), it is evident that most of the reviews are
based on UAV’s hardware development (Colomina and Molina, 2014; Pajares, 2015; Adão
et al., 2017; Pádua et al., 2017). UAVs’ applications in various fields from agriculture to glaci-
ology (Shahbazi et al., 2014; Bhardwaj et al., 2016; Adão et al., 2017; Pádua et al., 2017;
Torresan et al., 2017) are well recorded. For remote sensing applications, Colomina and
Molina (2014) and Pajares (2015) only provided comprehensive reviews and related rules
and regulations. The regulations in UAVs deployment and operational requirements have
been well assessed by the previous literature (Watts et al., 2012; Anderson and Gaston, 2013;
Colomina and Molina, 2014; Pádua et al., 2017; Stöcker et al., 2017). While UAV remote sens-
ing technology has proliferated recently, less attention has been given to the innovation of
UAV image-processing techniques for geological and mineral exploration studies. Although
few articles highlighted specific UAV remote sensing image-processing techniques, image
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alignment (Gruen, 2012; Hartmann et al., 2016), and dense cloud alignment (Remondino
et al., 2014), however, those techniques are not explicitly for UAV image processing.
Furthermore, several UAV image-processing technologies (e.g., 3D generation and geometric
calibration) are well addressed in Colomina and Molina (2014) and Pádua et al. (2017), but a
comprehensive review of UAV image processing technology development is still limited. The
potential for deep learning in UAV image processing for mining is also a less studied area.

It is essential to provide a comprehensive literature review on UAV remote sensing, includ-
ing image-processing techniques, applications, and potential future research. A thorough sum-
mary of existing work is essential for further improvement in UAV remote sensing, especially
for geological surveyors and mineral exploration scientists that need to use the technology.
UAV applications have become an advancing area in remote sensing in recent years. UAV
technology bridges the gap among spaceborne, airborne, and ground-based remote sensing
data. UAVs are generally characterized based on some allied main attributes such as weight,
flying altitude, payload, endurance, and range (Yao et al., 2019). They have better spatial, tem-
poral, and radiometric resolution than any airborne or satellite platform (Colomina and
Molina, 2014; Pajares, 2015; Gonzalez-Aguilera and Rodriguez-Gonzalvez, 2017). With multi-
spectral and hyperspectral sensors mounted on UAV platforms, high-resolution, georeferenced
data can be acquired for studying spatial and temporal changes in geological applications.

The use of UAVs is becoming progressively significant for geological applications
(Colomina and Molina, 2014). Recently, UAVs have been used in the mining industry for

Table 2.9 Recent review articles related to unmanned aerial vehicle (UAV) remote
sensing.
Year Article title References

2011 Small-scale UAVs in environmental remote sensing: challenges and opportunities Hardin and Jensen (2011)

2012 Unmanned aircraft systems in remote sensing and scientific research: classification and considerations

of use

Watts et al. (2012)

2012 Development and status of image matching in photogrammetry Gruen (2012)

2012 Multi- and hyperspectral geologic remote sensing: a review van der Meer et al. (2012)

2014 State of the art in high-density image matching Remondino et al. (2014)

2014 Recent applications of unmanned aerial imagery in natural resource management Shahbazi et al. (2014)

2014 Unmanned aerial systems for photogrammetry and remote sensing: a review Colomina and Molina (2014)

2015 Overview and current status of remote sensing applications based on UAVs Pajares (2015)

2016 UAVs as remote sensing platform in glaciology: present applications and future prospects Bhardwaj et al. (2016)

2016 Recent developments in large-scale tie-point matching Hartmann et al. (2016)

2016 A review of hyperspectral imaging in close-range applications Kurz and Buckley (2016)

2017 Hyperspectral imaging: a review on UAV-based sensors, data processing, and applications for

agriculture and forestry

Adão et al. (2017)

2017 UAS, sensors, and data processing in agroforestry: a review towards practical applications Pádua et al. (2017)

2017 Forestry applications of UAVs in Europe: a review Torresan et al. (2017)

2017 Review of the current state of UAV regulations Stöcker et al. (2017)

2017 UAVs: regulations and law enforcement Cracknell (2017)

2017 UAVs and spatial thinking: boarding education with geotechnology and drones Fombuena (2017)

2019 Mini-UAV-based remote sensing: techniques, applications, and prospects Xiang et al. (2019)

2019 UAV for remote sensing applications: a review Yao et al. (2019)

2020 Applications of UAVs in mining from exploration to reclamation: a review Park and Choi (2020)

2022 A review of machine learning in processing remote sensing data for mineral exploration Shirmard et al. (2022)
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various applications from mineral exploration to mine reclamation. One of the most signifi-
cant benefits of using UAVs is the low operational cost and ease of use (Park and Choi,
2020). UAVs offer incredible efficiency and cost advantages in every part of the mining life
cycle such as exploration, planning/permitting, mining operations, and reclamation. Hence,
UAVs are becoming important tools for mineral exploration by contributing to the safe, effi-
cient, and sustainable provision of the high-tech metals that are required by modern society
(Jackisch, 2020). UAVs can be equipped with optical devices, cameras covering different
ranges of the electromagnetic spectrum [multispectral, hyperspectral, short/mid-wave range
cameras (e.g., thermal)], and geophysical instrumentation (magnetometer) for mineral explo-
ration purposes such as aerial mapping, resource modeling, and geophysical surveys (Kirsch
et al., 2018; Jackisch et al., 2019; Heincke et al., 2019; Walter et al., 2020). Drone-based
hyperspectral imaging has been used to map rare-earth-element-rich minerals in Namibia.
Furthermore, drone-based magnetic surveys were deployed to identify subsurface ore poten-
tial at a fraction of the cost of traditional surveys in Greenland (Jackisch, 2020). Integration
of drone-based hyperspectral and magnetic data was used for mapping the Otanmäki
Fe�Ti�V deposit in central Finland (Jackisch et al., 2019).

2.6 Synthetic aperture radar
An SAR is an active microwave remote sensing system that can acquire data with high reso-
lution regardless of day or nighttime, cloud, haze, or smoke over a region. SAR sensors pro-
vide information different from that of OPSs operating in the VNIR through the SWIR and
the TIR regions of the electromagnetic spectrum. For generating an SAR image, successive
pulses of radio waves are transmitted to illuminate a target scene, and the echo of each pulse
is received and recorded (Fig. 2.13). SAR sensors transmit electromagnetic radiation at speci-
fied wavelengths and measure the reflected energy. Radar transmits and detects radiation
between 2 and 100 cm, typically at 2.5�3.8 cm (X-band), 4.0�7.5 cm (C-band), and
15.0�30.0 cm (L-band) (Woodhouse, 2006). Longer wavelengths optimize the depth of

FIGURE 2.13 Data acquisition image of an SAR sensor: (A) A radar pulse is transmitted from the antenna to the
ground; (B) the radar pulse is scattered by ground targets back to the antenna. SAR, Synthetic aperture radar.
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investigation of the radar signal. The long wavelengths allow the radar to have complete
atmospheric transmission. Generally, the approximate depth of penetration is equal to the
radar’s nominal wavelength (Woodhouse, 2006). Single polarization SAR sensors can obtain
only the horizontal (HH) or vertical (VV) components of the microwave. Polarimetric SAR
sensors can obtain a quad type of data (HH, HV, VH, and VV).

SAR imagery such as RADARSAT, JERS-1 SAR, ERS SAR, PALSAR, and Sentinel-1 data
have been extensively used for geological mapping, especially structural analysis related to
ore mineralizations (Singhroy, 2001; Paganelli et al., 2003; Pour and Hashim, 2014a,b, 2015a,
b,c; Pour et al., 2013, 2014, 2016, 2018a,b; Zoheir et al., 2019a,b,c). RADARSAT data, JERS-1
SAR data, ERS SAR data, and Sentinel-1 SAR data are C-band SAR sensors, on the other
hand, PALSAR is an L-band sensor. These sensors have diverse multimode observation func-
tions, multipolarization configuration, variable off-nadir angle, switching spatial resolution,
and swath width observation.

The main distortions suffered by an SAR image due to the side-looking architecture are
foreshortening, layover, and shadowing (Gelautz et al., 1998; Franceschetti and Lanari, 1999).
Foreshortening is inherent to a high-resolution imaging radar, which arises from surface
height differences making sections of a rough surface fall into different range bins than they
would if the surface were flat. The effect depends on the wave amplitude, wavelength, radar
look angle, and resolution (Ouchi, 1988). Foreshortening is a dominant effect in SAR images
of mountainous areas. Especially in the case of steep-looking spaceborne sensors, the
across-track slant-range differences between two points located on foreslopes of mountains
are smaller than they would be in flat areas. Foreshortening is obvious in mountainous areas
(top left corner), where the mountains seem to “lean” toward the sensor. This effect results
in an across-track compression of the radiometric information backscattered from foreslope
areas that may be compensated during the geocoding process if a terrain model is available
(Franceschetti and Lanari, 1999).

Layover occurs in those cases where the top of the mountain is closer to the sensor than
the bottom, that is, the terrain is sufficiently steep. Layover areas appear in the image as
bright regions with the original geometric order being disturbed. Like optical images, those
areas that are not illuminated by the radar beam are called shadows. Shadow areas appear
in the image as dark regions corrupted by thermal noise (Gelautz et al., 1998). Shadowing
areas (i.e., slopes facing away from the sensor) are darker since the energy is spread over a
larger area or they are not visible at all. Another cause of distortion in an SAR image is asso-
ciated with the dissimilar resolutions in range and azimuth. In image formation, the range
resolution depends on the bandwidth, while the azimuth one depends on the length of the
antenna. As a result, the pixel will not generally be square but rather rectangular on the
ground. A rectangular pixel stretches the image in the direction where the resolution is high-
er (for satellite applications, often this is the azimuth). Due to the severe distortions affecting
an SAR image, the latter cannot be overlapped straightforwardly with a map. As a first step,
the image must be geocoded to correct the geometric distortions. Subsequently, it must be
projected on a coordinate system with a geo-location (Campbel, 2007; Wise, 2002).
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2.6.1 RADARSAT data

The RADARSAT program consists of a pair of remote sensing satellites from the Canadian Space
Agency (CSA): RADARSAT-1 was an Earth-imaging radar satellite that CSA launched on
November 4, 1995 and was decommissioned on March 29, 2013. RADARSAT-2 is an Earth-
imaging radar satellite that CSA and MDA (MacDonald Dettwiler Associates Ltd. of Richmond,
BC, USA) launched on December 14, 2007 and remains operational. RADARSAT-1 and 2 can
image Earth at a single microwave frequency of 5.3 GHz, in the C band (wavelength of 5.6 cm).
RADARSAT SAR instrument specifications include the polarization of HH, HV, VH, VV,
HH1HV, VV1VH, HH1VV1HV1VH, the spatial resolution of data 1�100 m, and
18�500 km swath widths. RADARSAT-1 and RADARSAT-2 data for research and development
consist of ScanSAR Wide and Narrow (single- or dual-pol), Wide (single- or dual-pol), Fine (sin-
gle- or dual-pol), Standard (single- or dual-pol), and extended high and low (single pol) modes.

Ice and environmental monitoring, marine surveillance, disaster management, resource
management, and mapping are among the most important applications of RADARSAT-1 and
2 data. In the geology sector, Canadian radar data are used for both onshore and offshore
exploration and mapping and to monitor and detect oil seeps, which reduce the risk and
cost of drilling (Singhroy, 2001). It is also used to derive geophysical terrain information such
as surface roughness, which is useful for understanding processes such as bedrock weather-
ing and the sorting of unconsolidated solid materials (Paganelli et al., 2003). The
RADARSAT-2 advantage over other radar and optical systems for geological applications is
its ultrafine resolution and fully polarimetric capabilities. These provide more detailed map-
ping of terrain features or fine geological structures, better identification of structural fea-
tures, and an improved discrimination of geologic units (Paganelli et al., 2003).

2.6.2 JERS-1 synthetic aperture radar data

JERS-1 was an environmental Japanese satellite, also known as “Fuyo-1,” which launched on
February 11, 1992 and ceased operations in October 1998. JERS-1 was a radar/optical mission
and was developed by NASDA, the National Space Development Agency of Japan. JERS-1 was
launched into a solar-synchronous orbit at an altitude of 568 km and a repeat cycle of 44 days.
It stayed in operation for 6.5 years, until contact was lost in October 1998. The JERS-1 carried
an L-band (Center Frequency of 1.275 MHz/23.5 cm) SAR, which operated with HH polariza-
tion and a fixed 35-degree off-nadir angle, with an image swath width of 175 km (Rosenqvist
et al., 2004, 2010). The OPS was a nadir-pointing multispectral imager. Four bands (bands 1�4)
in the VNIR (0.52�0.86 µm), as well as four bands in the SWIR (1.60�2.40 µm), were operated
in the OPS. An OPS very near-infrared radiometer, JERS-1 SAR Level-1 single-look complex
(SLC) image, and JERS-1 SAR Level-1 precision image are the data products of JERS-1. The
JERS-1 in commission to observation around the world aimed at resource exploitation, geologi-
cal structural mapping, national land survey, agriculture, forestry, fishery, environmental protec-
tion, disaster protection, coastal monitoring, and others (Rosenqvist, 1996; Metternicht and
Zinck, 1998; Rosenqvist et al., 2010; Pour et al., 2014).
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2.6.3 European Remote Sensing Satellite synthetic aperture radar data

The ERS (European Remote Sensing Satellite) SAR included ERS-1 and ERS-2. The two
spacecraft were designed as identical twins with one important difference—ERS-2 included
an extra instrument (GOME) designed to monitor ozone levels in the atmosphere. The ERS-1
satellite launched on July 17, 1991 and ERS-2 followed on April 21, 1995 into the same orbit,
providing continuity for ERS-1. The ERS SAR operated in parallel with another instrument—
the Wind Scatterometer (WS). Together the SAR/WS configuration was called the Active
Microwave Instrument (AMI). AMI had three modes of operation, which allowed the instru-
ments to image land during the day or night or through clouds. The ERS-1 mission ended
on March 10, 2000, far exceeding its expected lifespan. The last ERS-2 SAR data was acquired
on July 4, 2011 and the ERS-2 mission itself ended on September 5, 2011.

The ERS SAR was operating in C-band with linear vertical polarization (VV Mode), cover-
ing a swath width up to 100-km wide. The satellite travels around 4 km. The transmitted
pulse with a length of 37.12 µs was intrapulse-modulated using linear frequency modulation
(LFM) and a bandwidth of 15.55 MHz. The “ERS tandem mission” doubled the number of
measurement points for the radar altimeter and more importantly laid the basis for an accu-
rate, three-dimensional digital map of Earth’s land surfaces, which for some of Earth’s
regions would have been impossible. The ERS-1 and 2 satellites are intended for global mea-
surements of sea wind and waves, ocean and ice monitoring, coastal studies, and land sens-
ing. All ERS SAR products, in accordance with ESA Earth Observation Data Policy, are freely
available to users. ERS SAR products include ERS-1/2—SAR Level-1 medium-resolution
image product, ERS-1/2—SAR Level-1 Precision Image Product, ERS-1/2—SAR Level-1
Single-Look Complex Image Product, and ERS-1/2—SAR Raw Image Product. All products
are provided in Envisat product format generated by the ESA ERS PF-SAR processor. ERS-2
SAR data have been used for the demarcation of different lithological units in the
Singhbhum Shear Zone (SSZ) and its surroundings in Jharkhand, India (Pal et al., 2007).

2.6.4 Advanced Land Observing Satellite phased array�type L-band
synthetic aperture radar data

Phased array�type L-band SAR (PALSAR) is an active microwave sensor onboard the
Advanced Land Observing Satellite (ALOS), which is not affected by weather conditions and
operable both daytime and nighttime (Igarashi, 2001; Rosenqvist et al., 2004; ERSDAC,
2006). The PALSAR was developed by the Japanese Ministry of Economy, Trade, and
Industry (METI) and Japan Aerospace Exploration Agency (JAXA) for the acquisition of data
beneficial to resource exploration and environmental protection. It was launched on January
24, 2006, onboard ALOS (ERSDAC, 2006). PALSAR data can be used in specific fields, includ-
ing (1) land area basin mapping (geological structural analysis of target areas; collect a data-
base of potential natural resource deposit areas); (2) coastal area basin mapping (extraction
of oil exudating areas; monitoring of contamination accompanied by development activities);
(3) monitoring of environments and natural disasters (monitoring of disaster such as
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landslide, volcanic activities, floods and other; environmental monitoring such as forests;
international cooperation), and (4) research and development for the processing and appli-
cation of multipolarimetric SAR data (geological structural analysis on the first stage of
resource exploration) (ERSDAC, 2006).

PALSAR sensor is an L-band SAR, with a multimode observation function (Fine mode,
direct downlink, ScanSar mode, and Polarimetric mode) of multipolarization configuration
(HH, HV, VH, and VV), variable off-nadir angle (9.9�50.8 degrees), and switching spatial res-
olution (10, 30, 100 m for Fine, Polarimetric, and ScanSar modes, respectively) and swath
width observation (30, 70, and 250�350 km for Polarimetric, Fine, and ScanSar modes,
respectively) (Igarashi, 2001; ERSDAC, 2006). Full polarimetry (multipolarization), off-nadir
pointing function, and other functions of PALSAR improved the accuracy of analyzing geo-
logical structure, and distribution of rocks, and are expected to be used for the first stage of
ore deposits and hydrocarbon exploration, and environmental protection (ERSDAC, 2006).
Consequently, PALSAR data contain outstanding contributions to geological structural analy-
sis, especially in tropical and remote regions (Pour and Hashim, 2014a, 2015c; Pour et al.,
2016, 2018b), where OPSs often failed due to bad weather conditions.

Level-1.5 products are such data that are performed the following processing to Level-1.0
(raw) data of high-resolution mode. The processing is (1) range compression using fast
Fourier transform (FFT); (2) secondary range compression using range migration compensa-
tion; (3) range migration curvature corrections; (4) azimuth compression; (5) multilook pro-
cessing; and (6) conversion from slant range to ground range (ERSDAC, 2006). The data
executed with the previous processing are geo-reference products. The difference between
the Level-1.1 product and Level-1.5 product is whether the multilook processing and conver-
sion from slant range to ground range are performed or not. Besides geo-reference products,
there exist geo-coded data that are such data that are processed so that the north direction
of the observed image corresponds to the upper direction of the image (ERSDAC, 2006). The
Level-1.5 product used in this study has a high-resolution mode with 6.25 m pixel spacing
and single polarization (HH or VV), which is geo-reference and geo-coded. The nominal
incident angle is 7.9�60.0 degrees.

ALOS-2 is the successor of ALOS. ALOS-2 contributes to cartography, regional observa-
tion, disaster monitoring, and resource surveys. The ALOS-2 was launched on May 24, 2014,
as the successor of ALOS-1 (launched on January 24, 2006, and decommissioned in May
2011) (http://global.jaxa.jp/projects/sat/alos2/). PALSAR-2 of the ALOS-2 has been signifi-
cantly improved from the ALOS-1’s PALSAR in all aspects, including resolution, observation
band, and time lag for data provision (http://global.jaxa.jp/projects/sat/alos2/pdf/daichi2_e.
pdf). The resolution of the PALSAR was a maximum of 10 m, but that of the PALSAR-2 has
been improved to 1�3 m. This improvement became possible by adding a “Spotlight mode”
that enables the satellite to change its radio wave radiation direction to its moving direction
(vertical direction) while flying to keep observing one specific target location for a long time.
A “Dual receiving antenna system” is adopted to secure enough observation bands with high
resolution. As a result, the observation band is 50 km with a 3-m resolution in the “Strip
Map mode,” and 25 km with 1�3 m. In particular, an HV (horizontally transmitted and
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vertically received) cross-polarization channel is also used in the ScanSAR observation
mode, thus increasing the amount of information for geological structural mapping at a
regional scale (Pour et al., 2016; Pour and Hashim, 2017). The observable area greatly broad-
ens from 879 to 2320 km. The ALOS was fixed to face the lower right direction toward the
moving direction of the satellite; thus it observed only one orientation. To broaden the
observable area, the satellite, thus, by changing the satellite’s attitude right or left during
observations, both sides of the satellite can be observed. The revisit time is reduced from 46
to 14 days (so that the satellite can go back to the target location sooner).

2.6.5 Sentinel-1 synthetic aperture radar data

Sentinel-1 is a C-band SAR sensor, which is the first of the Copernicus Programme satellite
constellation conducted by the European Space Agency. Its constellation provides high reli-
ability, improved revisit time, geographical coverage, and rapid data dissemination to sup-
port operational applications in the priority areas of marine monitoring, land monitoring,
and emergency services. Sentinel-1 potentially images all global landmasses, coastal zones,
and shipping routes in European waters in high resolution and covers the global oceans at
regular intervals. Having a primary operational mode over land and another over open ocean
allows for a preprogrammed conflict-free operation. The main operational mode features a
wide swath (250 km) with high geometric (typically 20 m Level 1 product resolution) and
radiometric resolutions, suitable for most applications (Attema et al., 2007).

The Sentinel-1 acquires data in four exclusive modes: (1) Stripmap (SM)—A standard SAR strip
map imaging mode where the ground swath is illuminated with a continuous sequence of pulses,
while the antenna beam is pointing to a fixed azimuth and elevation angle. It features a 5-by-5-m2

(16 ft by 16 ft) spatial resolution and an 80-km (50 mi) swath. For SM offer, data products are in
single (HH or VV) or double (HH 1 HV or VV 1 VH) polarization. (2) Interferometric wide swath
(IW)—Data are acquired in three swaths using Terrain Observation with Progressive Scanning SAR
(TOPSAR) imaging technique. It features a 5-by-20-m2 (16 ft by 66 ft) spatial resolution and a 250-
km (160 mi) swath. In the IW mode, bursts are synchronized from pass to pass to ensure the align-
ment of interferometric pairs. IW is Sentinel-1 primary operational mode over land. IW offers data
products that include single (HH or VV) or double (HH 1 HV or VV 1 VH) polarization. (3) Extra
wide swath (EW)—Data are acquired in five swaths using the TOPSAR imaging technique. EW
mode provides extensive swath coverage at the expense of spatial resolution. It features 20-by-40-
m2 (66 ft by 131 ft) spatial resolution and a 400-km (250 mi) swath. EW offers data products that
include single (HH or VV) or doubles (HH1 HV or VV1 VH) polarization. (4) Wave (WV)—Data
are acquired in small strip map scenes called “vignettes,” situated at regular intervals of 100 km
along the track. It features a 5-by-20-m2 (16 ft by 66 ft) resolution and a low data rate. It produces
20 km by 20 km (12 mi by 12 mi) sample images along the orbit at intervals of 100 km (62 mi).
The vignettes are acquired by alternating, acquiring one vignette at a near-range incidence angle,
while the next vignette is acquired at a far-range incidence angle. WV is Sentinel-1 operational
mode over the open ocean. WV offers data products only in single (HH or VV) polarization
(Attema et al., 2007).
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The ESA and European Commission’s policies make Sentinel-1 data easily accessible.
Various users can acquire the data and use it for public, scientific, or commercial purposes for
free. Sentinel-1data products distributed by ESA include (1) raw Level-0 data (for specific usage);
(2) processed Level-1 SLC data comprising complex imagery with amplitude and phase (system-
atic distribution limited to specific relevant areas); (3) ground range detected (GRD) Level-1 data
with a multilooked intensity only (systematically distributed); (iv) Level-2 Ocean (OCN) data for
retrieved geophysical parameters of the ocean (systematically distributed). Sentinel-1Wave Mode
data were used for structural mapping to explore orogenic gold in transpression and transtension
zones in the Barramiya�Mueilha Sector, Egypt (Zoheir et al., 2019a).

2.7 Data acquisition
Data acquisition for different types of satellite images is available on several websites (free of
charge or purchasable). Some of the recognized websites are presented in this section as follows:

• USGS EarthExplorer (https://earthexplorer.usgs.gov/): The USGS EarthExplorer (EE) tool
provides users the ability to query, search, and order satellite images, aerial photographs,
and cartographic products from several sources. On this site, a complete set of satellite
images, such as Landsat, ASTER satellite images, SRTM digital height images, radar
images, and Hyperion hyperspectral images, can easily be downloaded.

• Earthdata Search—NASA (https://search.earthdata.nasa.gov/search): Earthdata Search provides
the only means for data discovery, filtering, visualization, and access across all of NASA’s Earth
science data holdings. It is a Gateway to NASA Earth Observation Data. The Earth Science Data
Systems (ESDS) Program provides full and open access to NASA’s collection of Earth science
data for understanding and protecting our home planet. This website contains an extensive
collection of different satellite images. For instance, to download the ASTER datasets, due to
the possibility of a better display of image information, it is better to specify the desired images
on the USGS Earth Explorer website and download the images by searching their ID in NASA
Earthdata Search. Moreover, this site achieved a high-resolution (12.5 m) DEM.

• Copernicus Open Access Hub (https://scihub.copernicus.eu/): The Copernicus Open
Access Hub (previously known as Sentinels Scientific Data Hub) provides complete, free,
and open access to Sentinel-1, Sentinel-2, Sentinel-3, and Sentinel-5P user products,
starting from the In-Orbit Commissioning Review (IOCR). Copernicus is the European
Union’s Earth Observation Program, looking at our planet and its environment for the
benefit of Europe’s citizens.

• DigitalGlobe Open Data Program (https://www.maxar.com/): DigitalGlobe is a leading
provider of commercial high-resolution Earth imagery products and services. DigitalGlobe
delivers 30 cm resolution imagery, delivering clearer, richer images that empower informed
decision-making in global coverage. It provides access to a variety of resources, including
satellite (i.e., IKONOS, QuickBird, GeoEye-1, and WorldView) and aerial imagery data,
metadata, documentation, software, and map data. This website is especially suitable for
downloading sample images for the local size of case studies with high resolution.
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• NASA Worldview (https://worldview.earthdata.nasa.gov/): The Worldview tool from
NASA’s Earth Observing System Data and Information System (EOSDIS) provides the
capability to interactively browse over 1000 global, full-resolution satellite imagery
layers and then download the underlying data. It is a free online visualization tool that
is a great launchpad for learners who are new (or veteran) users of satellite data—
interactive interface for browsing full-resolution, global, and daily satellite images. Users
interact with NASA’s daily, global satellite imagery of the Earth within hours of it being
acquired. On this website, images with supports time-critical applications such as
meteorology and wildfire management are available with a temporal resolution of less
than a few minutes.

• NOAA CLASS (https://www.avl.class.noaa.gov/saa/products/catSearch): NOAA has a
“classy” way of handling environmental data called the Comprehensive Large Array-data
Stewardship System (CLASS). CLASS is an online data management system that gives
users faster, easier access to America’s environmental data. CLASS is a key component of
NOAA’s integrated global observation and data management system. CLASS is NOAA’s
premier online facility for the distribution of data from the following satellite and
observing systems: (1) NOAA Polar-orbiting Operational Environmental Satellite (POES);
(2) NOAA’s Geostationary Operational Environmental Satellite (GOES); (3) NASA’s Earth
Observing System (EOS); and (4) US Department of Defense Meteorological Satellite
Program (DMSP). This website has the option of choosing a resolution for available
datasets.

• ALOS—JAXA/EORC (https://www.eorc.jaxa.jp/ALOS/en/index_e.htm): ALOS—JAXA/
EORC includes tools for using satellite products, and documents related to product
format and other information are available. These tools provide access to Global PALSAR-
2/PALSAR/JERS-1 Mosaics and Forest/Non-Forest Maps, Precise Global Digital 3D Map
“ALOS World 3D,” High-Resolution Land Use and Land Cover Map Products, Global
Mangrove Watch, JICA-JAXA Forest Early Warning System in the Tropics, ALOS Ortho
Rectified Image Product, Glacial Lake Inventory of Bhutan, PALSAR-2 L2.2 Product, and
others.

• NOAA Digital Coast (https://coast.noaa.gov/digitalcoast/): NOAA’s Digital Coast provides
the data, tools, and training that communities use to manage their coastal resources. Data
sets alone are not enough. For data to be truly useful, people often need assistance by
way of relevant training and associated tools and information.

• EOS LandViewer (https://eos.com/products/landviewer/): LandViewer is a satellite
observation imagery tool that allows for on-the-fly searching, processing, and getting
valuable insights from satellite data to tackle real business issues such as On-the-fly
processing. It is a central GIS database for a free download of satellite images and access
to the most used and up-to-date satellite images. Also, this website allows previewing,
ordering, and buying high-resolution satellite images. In addition to downloading images,
it also provides users with many tools for data analysis. Some of the satellite images that
can be downloaded include Landsats 4�7, MODIS MCD43A4, Sentinels 1�2, Pléiades 1,
SPOT 6 and 7, KOMPSAT 2, KOMPSAT 3/3A, SuperView 1, Terrain Tiles images.
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• Sentinel Hub (https://www.sentinel-hub.com/): Sentinel Hub services provide long-term
analysis in two efficient ways, including EO Browser and Sentinel Playground. EO
Browser allows users to visualize satellite data from numerous satellites and data
collections instantly. It has several datasets of medium and low-resolution satellite
imagery, including a complete archive of all Sentinels, Landsats 5�7, 8, MODIS, Envisat
Meris, and Proba-V. Sentinel Playground uses Sentinel Hub technology to enable easy-to-
use discovery and exploration of full-resolution Sentinel-1, Sentinel-2, Landsat 8, DEM,
and MODIS imagery, along with access to the EO data products. It is a graphical interface
to a complete and daily updated Sentinel-2 archive, a massive resource for anyone
interested in Earth’s changing surface, natural or manmade.

• Google Earth Engine (https://earthengine.google.com/): Google Earth Engine is a
planetary-scale platform for Earth science data and analysis. This platform combines a
multipetabyte catalog of satellite imagery and geospatial datasets with planetary-scale
analysis capabilities. Scientists, researchers, and developers use the Google Earth Engine
to detect changes, map trends, and quantify differences on the Earth’s surface. Google
Earth Engine is a cloud-based geospatial analysis platform that enables users to visualize
and analyze satellite images of the Earth. Scientists and nonprofits can also use the
Google Earth Engine for remote sensing research, predicting disease outbreaks, natural
resource management, mineral exploration, and more. It is now available for commercial
use and remains free for academic and research use.

2.8 Preprocessing techniques
Raw satellite images often need correction and restoration in terms of geometry and radiom-
etry. Deterioration of images depends on various reasons such as sensor failure, weather
conditions, position and height of the ground surface, the relative motion of the Earth and
satellite, changes in the angle of the sun relative to the Earth, and others. As a result, before
image enhancement, some of these corrections should be done on the images (Lillesand
et al., 2015; Girard et al., 2018). In this section, the atmospheric corrections required in the
reflective optical part (0.3�3 µm), including VNIR and SWIR wavelengths in the electromag-
netic spectrum, are discussed. When electromagnetic waves pass through the atmosphere,
their intensities change due to the reaction with the atmosphere (selective scattering and
absorption). Visible wavelengths are more affected by atmospheric scattering. Near-infrared
waves and short wavelengths are practically protected from the effects of atmospheric scat-
tering, but in some wavelengths, they have selective absorption characteristics. For longer
wavelengths such as TIR, the Earth’s atmosphere is only transparent at selected wavelengths.
The digital number on satellite images shows the relative brightness value of the target pixel,
which must be converted into reflection in the preprocessing stage.

In addition, to identify objects, it is also important to accurately determine their location.
Therefore one of the tasks of remote sensing specialists is to prepare maps that show the
spatial distribution of objects correctly. Distorted images provide incorrect spatial information.
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In some remote sensing applications, a lot of geometric accuracies are required, so that if the
geometric error of the satellite data exceeds a certain value, it will not be possible to reach the
desired final goal. Therefore the geometric accuracy of remote sensing data is important for
creating maps with geographic coordinates and scale for practical purposes.

2.8.1 Noise reduction/correction

Most of the satellite images contain noise. These noises may be of a random type, which in
many cases happens due to malfunctioning of mechanical�optical components in the sensor.
Such noises cannot easily be fixed without reducing the quality of the image, but by improving
the sensitivity of the sensor, the SNR can be kept as high as possible in the image processing
chain. Sometimes satellite images will have systematic noises that will be mostly removed dur-
ing the preprocessing steps. The simplest form of systematic noise is called line or pixel drop-
out (Fig. 2.14). In this phenomenon, the values of an image line or a part of it are missing, and
all the numerical values in this line are zero. The occurrence of this phenomenon is due to
momentary disturbances in the sensor or the receiving station, which leads to the loss of the
signal. Most image-processing systems replace the mentioned pixels by taking the average of
the digital number (DN) values of the upper and lower lines of the lost data (Legg, 1994).

In some sensors such as ASTER, the detectors that do not work correctly can cause an
error that can be corrected in Section 2.8 by knowing the mechanism of this noise genera-
tion. For example, in the ASTER sensor, the light leakage from the fourth-band detector
affects the light recording by other short-wave infrared band detectors. This problem can be

FIGURE 2.14 Removing the lines with zero digital number (DN) values: (A) before correction, (B) after correction.

Chapter 2 • Remote sensing for mineral exploration 51



solved by using Crosstalk correction software (Tonooka and Iwasaki, 2004). Another method
for reducing noise from the images is by using the MNF method. MNF is explained in
Section 2.9 and is a measure of noise estimation in the spectral bands. The higher MNF
band usually shows noisy images. It is possible to invert the MNF images back to the original
spaces but leave the noisy MNF images.

2.8.2 Atmospheric corrections

The main goal of atmospheric corrections is to recover the actual values of reflection or emission
from the surface of objects in satellite images, which is done by recognizing and eliminating the
effects of the atmosphere on the radiation of electromagnetic waves. Before being recorded and
used in remote sensing, electromagnetic radiation travels a distance in the atmosphere and
reaches the Earth’s surface. Therefore along the path of these radiations, they are affected by
particles and gases in the atmosphere. When the particles or molecules in the atmosphere cause
scattering of the electromagnetic radiation reaching the sensor, they can increase the brightness
in the atmosphere. In addition, this phenomenon will increase the ability to scatter in short
ultraviolet and blue wavelengths and increases the brightness over terrestrial objects more than
expected. This disturbs the process of measuring and identifying phenomena. This disorder and
scattering effects can be removed from the images by using image-processing software. If the
atmospheric corrections are not applied to the images, we will witness the differences between
the image information and the library or field information, which will reduce or completely elim-
inate the possibility of recognizing the minerals and rocks. Therefore it is necessary to make
atmospheric corrections on satellite data before processing them. In general, atmospheric correc-
tions are performed by experimental�statistical methods by using complex radiative transfer
models or by integrated methods.

The electromagnetic waves are scattered due to the Mie and Rayleigh scattering phenomena
while passing through the Earth’s atmosphere. In addition to atmospheric scattering, dark and
bright objects that are about each other also affect the amount of reflection of each other
(Jensen, 2009). The light produced by these atmospheric scattering affects the spectral character-
istics of terrestrial bodies. What reaches the sensor is a combination of scattered waves and spec-
tral characteristics of objects. In the atmospheric correction the main goal is to remove the
atmospheric scattering part. ATCOR is a module of Geomatica software, which is used for atmo-
spheric and topographic corrections of satellite images, in the Vis�SWIR (0.4�2.5 µm) and ther-
mal ranges (8�14 µm). ATCOR-3 is an extension of the ERDAS IMAGINE 2014 software, which
aims to correct the atmosphere, remove shadows, and modify the atmospheric effects of spectral
reflection from surfaces, remove thin clouds, and the effect of fog. The FLAASH model (Fast line
of sight Atmospheric Analysis of Spectral Hypercube) is an atmospheric correction module
added to ENVI software (Anderson et al., 2002). This module can be used to correct the atmo-
spheric effects of multispectral and hyperspectral satellite images. It is worth mentioning that
nowadays, according to the progress of the preprocessing level of raw satellite images, the pre-
processing technique is becoming easier for users day by day. The level of preprocessing of each
image is clearly defined, and it is easy to determine the same level of preprocessing from the
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name of the satellite images. Another important point is that performing atmospheric corrections
that have a more complex algorithm does not mean a better correction method. In this section a
few commonly used atmospheric correction methods are discussed.

2.8.2.1 Atmospheric correction methods
Different methods of atmospheric corrections can be done on satellite images. Indubitably, it
is not necessary to do all these corrections at once. Common atmospheric corrections
include the dark subtract, the dark dense vegetation, the flat field (FF), the internal average
relative reflection (IARR), the empirical line, and the log residual methods.

2.8.2.1.1 Dark subtract
In this method, one should first find an area that has zero reflection in the studied area.
Clear and deep waters have this feature in infrared wavelengths. If there is a reflection on
the clear water in the infrared wavelength, it is attributed to the path radiance (Lp), which
should be subtracted from the pixel values of all the bands. In this method, the shadow can
also be used for determining Lp (Chavez, 1988).

2.8.2.1.2 Dark dense vegetation method
When there is a dense vegetation cover in the area, it is expected that the amount of reflection
of the red band on the area of vegetation is not more than 2% of the range of pixel values in the
red band. If you see more values than this (2% range of pixel values in the red band), it is neces-
sary to subtract the obtained value from the pixel values of all bands (Gillingham et al., 2012).

2.8.2.1.3 Flat field method
In the FF method (Seibert et al., 1998), it is necessary that an area with the following charac-
teristics exists, for using this method:

1. The dimensions of the area should be at least 3 pixel 3 3 pixel.
2. The area should have a flat topography.
3. It should have a Lambertian reflection. The sandy desert and beach areas are suitable.
4. Have a stable spectrum over time. Natural vegetation cannot have this feature.

The rocks without vegetation cover, asphalt, artificial grass, desert, and seashore are
suitable places to apply this method. Finally, the raw pixel values of the image are divided by
the average pixel values in the selected area, which is usually a polygon.

2.8.2.1.4 Internal average relative reflectance
IARR also allows the extraction of spectral information from raw data without the need for
ground data (Ben-Dor and Kruse, 1994). In this method, the average reflectance of image
pixels is calculated, and the value of each pixel is divided by the average value of image pix-
els. The number obtained for each pixel will be the relative and normalized reflectance spec-
trum of that pixel (Ben-Dor and Kruse, 1994). This method especially works well in arid and
semiarid terrain. Fig. 2.15 shows the effects of IARR on the raw spectrum that is shown as a
line without any prominent reflection/absorption bands (Fig. 2.15A). This is changed to a
spectrum that is showing clear absorption/reflection bands (Fig. 2.15B).
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2.8.2.1.5 Log residual method
In this method, without the need to use secondary data and only by using the statistical
information of the image itself, all the DN values in the image are divided by the geometric
mean of the image to achieve the desired result. The geometric mean of a set of N numbers
is different from its arithmetic mean. In the geometric mean, instead of addition, multiplica-
tion is used, and instead of dividing by N, the Nth root is calculated (Hook et al., 1992). This
method is designed to remove solar radiation, topographic, and albedo effects from radiation
data. This transformation creates a quasireflection image that is useful for analyzing the
absorption properties of rocks and minerals.

2.8.2.1.6 Empirical line method
This method performs atmospheric correction by using ground measurements and relating
them to image spectra through a linear relationship. Therefore this method requires measur-
ing the spectra of field samples, awareness, and basic knowledge of the region. In this
method, two or more terrestrial phenomena are identified, and the spectrum of their field
sample is measured. It is suggested to use dark and white phenomena that have different
color tones. To better understand the concept of this method, consider Fig. 2.16. For exam-
ple, in this figure, two dark and light phenomena are identified in the image and on the
ground. The amount of radiation measured for the dark phenomenon by the sensor is A and

FIGURE 2.15 IARR correction: (A) before correction, (B) after correction. IARR, Internal average relative reflection.
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the amount of reflection obtained from the field spectroscopy of this phenomenon is A0; in
the same way, the amount of radiation measured for the light phenomenon by the sensor is
B and the amount of reflection obtained from field spectroscopy of this phenomenon is B0.
Finally, the slope of the line that connects the two points and passes through other points
can be calculated by the regression method. The conversion equation of this method is pre-
sented in Fig. 2.16 (Karpouzli and Malthus, 2003).

2.8.3 Geometric distortions of satellite images

Based on repeatability or randomness, various geometric distortions are divided into two
groups, which are systematic and random. Regular distortions result from the regular relative
motions or programmed mechanisms during the data acquisition process. Their effects are
predictable and can be corrected. Many systematic distortions are removed in the raw data
preprocessing stage. Random distortions are caused by uncontrollable changes and devia-
tions. They are unpredictable and require a more complex process to remove and are gener-
ally ignored in the initial preprocessing stage.

2.8.3.1 Geometric correction
The last stage of remote sensing image preprocessing is image geometric correction.
Usually, atmospheric preprocessing precedes geometric corrections. Two methods for geo-
metric correction are applied to satellite images, which include systematic and random
geometric corrections. The goal of geometric correction is to compensate for the distortions
caused by several factors, and the resulting image should have the geometric integrity of a
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map. The implementation of the first method depends on knowing the orbit of the satellite
and its position at the time of image collection. If the exact location, height, and direction
of the satellite’s movement are known, three-dimensional trigonometry can be used to cal-
culate the geographic longitude and latitude of each pixel. Modern satellites are like
stable platforms that send their position and height along with images to the ground so
that with the help of this information, accurate geometric correction of the images can be
done using professional software. The second method, which was invented in the early
years of the birth of remote sensing, is based on the definition of points with specific geo-
graphical coordinates, known as control points in the images. The intersection of water-
ways, the intersection of faults and streams, and road intersections are suitable places for
selecting control points in the satellite images (Lillesand et al., 2015). By considering suffi-
cient control points, a more precise correction is made. Both mentioned methods are effec-
tive in correcting the images of flat areas, but they do not give perfect results in areas with
rough topography (Legg, 1994). In such cases, precise geometrical correction requires the
use of DEMs.

Satellite data are often distorted. These data cannot be used as executive maps. The
source of these distortions is variable, and the following features can be mentioned:

• change in the height of the imaging platform;
• change in the speed of the imaging platform;
• changing in the direction of the imaging platform;
• the curvature and the rotation of the Earth; and
• feature displacement.

2.8.3.2 Systematic image rectification
Currently, according to the preprocessing level of satellite data, this correction is done on
most of the images. Satellites that orbit in polar orbits are usually in the path of elliptical
orbits. Since the Earth is also rotating during the rotation of the satellite, the received images
are not located in the north�south direction. The rotational movement of the globe from
west to east causes that every time a line is scanned by the sensor, which covers an area
approximately west of the first scanned line. Here, each of the scanned lines should be
moved to the west (Fig. 2.17). With this operation, a square or rectangular image turns into a
parallelogram image. Converting a basically square image to a parallelogram image that
more accurately shows the reflection of the satellite’s path on the Earth’s surface is done by
a process called resampling of pixels. This function does not change the initial values of the
pixels and will have a little visual effect on the image features (Legg, 1994).

In the process of geometric correction, it is usually necessary to specify the datum and
the map projection. The datum can be selected locally (such as the sea level of open water)
or based on a mathematical model suggested by geodesists based on accurate satellite infor-
mation. In recent years, the World Geodetic System (WGS84) model has been suggested as
the standard level that can be used globally. For the map projection, we can refer to conical,
cylindrical, and planar systems.
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2.8.3.3 Random geometric correction
Auxiliary control points should be used for random geometric correction. In the geometric
correction operation, which is also called georeferencing, several processes are performed in
one image, which includes translation, scale change, and rotation (Fig. 2.18).

FIGURE 2.17 Systematic geometrical corrections on the images for the Earth and satellite rotations: (A) before
correction, (B) after correction. The boxes are the scan lines for the detectors.

FIGURE 2.18 Translation, scale change, and rotation in the georeferencing process.
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The coordinates of the control points should be used in a regression analysis to obtain
coefficients for two coordinate transfer equations that can connect the coordinates on the
map with the coordinates on the satellite image (Lillesand et al., 2015), as shown in the fol-
lowing equation:

X 0 5 a0 1 a1x 1 a2y
Y 0 5 b0 1 b1x 1 b2y; (2.1)

where X0 and Y0 are the positions of the points in the corrected image or map, and x and y
are the coordinates of the same points in the uncorrected image. For example, for the geo-
metric correction on an image, as in Table 2.10, eight control points with UTM coordinates
have been selected and the coefficients of the previous equation have been calculated in the
following equation:

Xmap 5 432; 511:2591 25:010 Xpixel

� �
6 0:074 Ypixel

� �

Ymap 5 7187; 448:1392 24:906 Ypixel

� �
1 0:087 Xpixel

� �
: (2.2)

If we put the values of the first row of Table 2.10 in Eq. (2.2), the new coordinates for the
map will be obtained. These coordinates are slightly different from the captured coordinates
that were obtained. These errors are attributed to the measurement and wrong location of
the point in the image:

Xmap 5 432; 511:2591 25:010 100ð Þ 6 0:074 98ð Þ 5 435; 005:007 (2.3)

Ymap 5 7187; 448:1392 24:906 98ð Þ 1 0:087 100ð Þ 5 7185; 016:051: (2.4)

In this way, the amount of error in X and Y can be calculated for eight control points
(Table 2.11).

According to the values obtained in Table 2.11, the control points that have a high error
can be removed. For example, control points, number 4 and 6, have a high error. Of course,
the amount of these errors is determined according to the scale of the map. Table 2.12 shows
the amount of standard error defined by the US Mapping Organization.

Table 2.10 Selected control points for image geometric correction.

Y Map (GPS) X Map (GPS) Pixel Y (row) Pixel X (col) GCP no.

7185,000 435,000 98 100 1
7175,000 435,000 501 101 2
7185,000 445,000 100 499 3
7175,000 445,000 499 500 4
7172,500 445,000 600 500 5
7175,000 447,000 510 605 6
7175,000 450,000 500 700 7
7172,500 450,000 601 700 8
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The more control points are selected, the better the coordinate accuracy of the resulting
image. The following relationship can be used to estimate the error:

RMSerror 5
������������������������������������������������������
X 02Xorig

� �2 1 Y 02Yorig

� �2
q

; (2.5)

where Xorig and Yorig are the coordinates of the control points in the raw image, respectively,
and X0 and Y0 are the calculated coordinates of the image, respectively.

In the process of geometric correction, all pixels must be moved to the new locations.
The new values of the pixels are calculated by the three methods of the nearest pixel in the
neighborhood, intensity interpolation, and cubic convolution. Each pixel is moved to a new
coordinate and based on the values of adjacent pixels, which assumes a new pixel value that
is calculated based on basis of the intensity interpolation relationship:

Bv 5
P

Zk=D2
k

� �
P

1=D2
� � ; (2.6)

where Bv is the brightness values of the corrected image pixels, Zk is the values of the surrounding
and neighboring pixels, and D is the distance among the pixels to the desired position. This rela-
tion is for four pixels that are placed around the transition pixel. The same relationship is used in
the cubic convolution method, but the number of pixels used in calculating the transition pixel
value is 16. In the nearest neighbor method, each point takes the value of the nearest pixel in its
neighborhood. The raw image is corrected during this process and transferred to new coordinates.

Table 2.11 The amount of error in the control points.

YError
Y Map
(predicted)

Y Map
(GPS) XError

X Map
(predicted)

X Map
(GPS)

Pixel Y
(row)

Pixel X
(col)

GCP
no.

216.051 7185,016.051 718,5000 25.007 435,006.007 435,000 98 100 1
21.209 7174,978.791 7175,000 20.069 435,000.059 435,000 501 101 2
20.695 7185,000.695 7185,000 16.018 444,983.982 445,000 100 499 3
263.140 7175,063.140 7175,000 20.660 444,979.340 445,000 499 500 4
247.597 7172,547.597 7172,500 28.166 444,971.834 445,000 600 500 5
201.741 7174,798.259 7175,000 2104.607 447,504.607 447,000 510 605 6
255.545 7175,055.545 7175,000 18.668 449,961.332 450,000 500 700 7
40.002 7172,540.002 7172,500 26.174 449,973.826 450,000 601 700 8

Table 2.12 The amount of standard error according to the scale of the map.

Scale Standard error (ft) Scale Standard error (ft)

1:1200 6 3.33 1:12,000 6 33.33
1:2400 6 6.67 1:24,000 6 40.00
1:4800 6 13.33 1:63,360 6 105.60
1:9600 6 26.67 1:100,000 6 166.67
1:10,000 6 27.78
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2.9 Image-processing algorithms
Digital image processing is an important stage of the remote sensing process in which the
surface features of the Earth are detected, and information is extracted in the form of new
maps by using a computer. The preprocessing of satellite images can be considered a part of
the image-processing process. An image-processing system is divided into two parts, namely,
software and hardware, which means personal computers and the software section is related
to remote sensing software available in the global market. Some of the image-processing
software is an open source and freely available. In this section the common methods of
image processing for extracting geological information from satellite images are explained.

2.9.1 Color combinations

Since most of the satellite images are available in the form of multiple spectral bands, the
analysis of one band alone cannot provide suitable and sufficient information to the user.
Understanding the spectral properties is very important in diagnosing phenomena and the
type of area coverage. This insight will be useful in using more than one spectral band in the
image-processing systems and producing multiband composite color images. In this process,
the three-color channels such as blue, green, and red are assigned to different bands so that
they can be seen on the color display screen. White light, which is produced from a light
source such as the sun or any other artificial source, is a mixture of all the colors in the spec-
trum, which can be divided into three main colors, including red, green, and blue, or RGB.
Colors can be combined. This combination allows the production of a wide range of colors.
By combining the three spectrums of red, green, and blue light in equal and maximum
amounts, white light is obtained again, which is known as additive colors. Computer moni-
tors, televisions, and industrial displays use the RGB model to display color images. Contrary
to additive colors, subtractive colors are the ones that produce black color by combining
them (Fig. 2.19).

FIGURE 2.19 (A) Subtractive and (B) additive colors.
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Before we continue with the color composition of images, let us examine the human
visual system in relation to color perception. A part of the electromagnetic waves, which
cover a certain wavelength range, passes through the lens of the eye and the clear liquid
inside it, and reaches the cylindrical and cone cells of the retina. Retinal cells are sensitive to
light, and the interaction of light with these cells, through a complex process, creates an elec-
tric signal that reaches the brain cells through the nerves and the image is perceived by the
brain. Cylindrical cells are sensitive to low light and do not record information related to
color, while cone cells record the intensity and saturation of colors. There are three types of
cone cells in the human eye, each of which is sensitive to one of the main colors such as
blue, green, and red. The human eye works like an advanced camera and by combining the
light that reaches these cone-shaped cells, which produces various colors (Mather and Koch,
2011). Various color models have been used to improve the quality of digital images, of
which RGB and Intensity, Hue, and Saturation (IHS) models are the most famous ones. The
RGB model is based on the principle that red, green, and blue are the three primary additive
colors. This model is depicted with the three-dimensional Cartesian coordinate system, in
which the three-color axes of red, green, and blue starting from black or zero exist
(Fig. 2.20). The equal combination of all three colors is placed on the gray axis, and the com-
bination of different values of all three colors creates composite colors. For example, the
combination of blue and red creates magenta.

Fig. 2.21 shows how to create color images using the RGB model and three arrays stored
in the graphics memory. The upper array contains digital numbers in the range of 0�255,
which represent 256 levels of red (in an eight-bit dynamic range). Similarly, the middle and
bottom arrays show the distribution of green and blue levels, respectively. The values of
these arrays are converted from digital to analog form with three digitals to analog converters
before being displayed on the screen (Fig. 2.21).

There are many color compositions that can be obtained from multiband images. For exam-
ple, 6 color compositions can be obtained from a 3-band set, such as SPOT multispectral data,
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FIGURE 2.20 RGB color model. RGB, Red�green�blue.
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and 84 color compositions can be obtained from a 7-band set, such as Landsat TM data. Of
course, to have an interpretable image, known color compositions are used. For example, we
can refer to the compositions of the second (blue), third (green), and fourth (red) bands of the
ETM1 sensor, which shows vegetation in red and water in blue, or the 4�6�8 ASTER band
composition, which shows the altered regions in pink. Color images are created in two ways:
true color composite and false color composite. In true color compositions, colors and wave-
lengths are compatible, which means that the band that is imaged in the red wavelength will be
placed in the red channel, the band that is imaged in the green wavelength will be placed in the
green channel, and the band that is in the blue wavelength will be placed in the blue channel,
while in the false color compositions, the images with different wavelengths will be placed in the
red, green, and blue channels (colors and wavelengths are not compatible) (Fig. 2.22).

Chavez et al. (1984) used the optimal index factor (OIF) to select the most appropriate
color compositions. Based on this, about 20 compositions of three bands from 6 Landsat
bands can be made. Of course, this is applicable to any remote sensing data. This equation
is based on the value of total standard deviation and correlation coefficients among different
bands. The relationship calculated based on three bands is as follows:

OIF5
P3

k51 SkP3
j51 Abs rj

� � ; (2.7)

where Sk is the standard deviation for band k, and rj is the correlation coefficient between
any two bands out of the three bands that have been used. The three combined bands with
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the largest OIF value usually have the highest information. The OIF helps in choosing the
right band combination for creating a color image (Jensen, 2005). It is worth mentioning that
combining bands based on the trial-and-error method is more common. In this method,
based on the objectives and the known spectral characteristics of the surface phenomena,
the spectral bands are used accordingly (Gupta, 2018).

2.9.2 Color space transforms

Color compositions usually consist of three spectral bands corresponding to different
wavelengths or three different images for an area, in which the mentioned bands will be
placed in three colors of blue, green, and red. The color image is generated based on
Fig. 2.23. Another way of generating the color images is using intensity, hue, and satura-
tion (Fig. 2.23). (In different texts, you may see this color space with the names of IHS,
ISH, or HSV.) This display method is more compatible with the way of perception of
colors by human eyes.

FIGURE 2.22 Sentinel-2 data: (A) true and (B) false color composites.
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Intensity is an estimate of brightness, hue is the expression of color, and saturation esti-
mates the depth of the color of each pixel, which is calculated based on the following rela-
tionships, and the RGB color model can be converted to the ISH color space:

I r; g; bð Þ 5
1
���
3

p r 1 g 1 bð ÞH r; g; bð Þ 5 arccos
2b 2 g 2 r

2V
;

where

V 5
�������������������������������������������������������������
ðr2 1 g2 1 b2Þ 2 ðrg 1 rb 1 gbÞ

p
S r; g; bð Þ 5 arccos

r 1 g 1 b
������������������������������
3 r2 1 g2 1 b2ð Þ

p :
(2.8)

Image-processing systems can convert RGB images to IHS images and vice versa. In ISH images,
which are more compatible with color perception by the human eyes, lithological changes can be
seen well. Fig. 2.24A and B shows the color conversion from RGB space to ISH space. Fig. 2.24C
shows the average intensity image of three 7�4�1 bands, but in the saturated image (Fig. 2.24D),
vegetation is more visible. In the grayscale image, complications become more obvious, which are
not easily seen in the other two images. For example, roads can be seen better in Fig. 2.24E.

2.9.3 Contrast stretching

Satellite images often have a low range of pixel values, which makes the image appear dark. In
the method of stretching the contrast in an 8-bit image, this range is converted into 0 and 255
ranges, which results in a brighter image. Contrast stretching is performed linearly and nonli-
nearly. In the linear contrast method, pixel values are converted with the following equation:

BVout 5
ðBVin 2 BVminÞ

ðBVmax 2 BVminÞ

� �
3 255BVout 5 a 3 BVin 1 b: (2.9)
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FIGURE 2.23 Diagram of the color space model from RGB to HSI (Cao et al., 2019). The intensity axis overlaps the
gray axis in the RGB model. HSI, Hue�saturation�intensity; RGB, red�green�blue.
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In Fig. 2.25A, the Landsat 4 image is shown. The dynamic range of the image is very low,
and the image looks dark. Fig. 2.25B shows the histogram related to the Landsat 4. The range
of pixel values is in the range of 4�79, although most of these values are in the range of
10�55. The narrow peak at values 14 and 15 represents water, while the wider and main
peak represents the land. The number of pixels with a value greater than 60 is too low, so
the image is dark. In fact, the range of pixel values is not large (approximately between 8 and
60) and as a result, the contrast of the image is low. Fig. 2.26A shows the result of linear con-
trast stretching on the image. Fig. 2.26B shows the histogram of this image.

Although the image in Fig. 2.26A is clearer than the original image, it is still relatively
dark, and this is because xmin and xmax, which are the minimum and maximum brightness

FIGURE 2.24 (A) RGB:7,4,1, (B) ISH color combination, (C) intensity image, (D) saturation image, and (E) hue image.
ISH, Intensity, saturation and hue; RGB, red�green�blue.
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values of the pixels, do not have a suitable distribution in the range of 0�255. To solve this
problem, very low and high pixel values can be removed from the original raw image.
Visually, the limit of pixel values seems to be 8 and 58, while the lowest value is 4 and the
highest value is 79. These relatively low and relatively high values have affected the linear
stretch. Therefore if 5% of the low values and 5% of the high values of the pixels are
removed, we will see an improvement in the brightness of the image resulting from the con-
trast stretching technique. As seen in Fig. 2.27A and B, the image is brighter and has more
contrast than the image in Fig. 2.25A.

FIGURE 2.25 (A) Landsat-4 image and (B) histogram of band 4 image.
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2.9.4 Nonlinear contrast stretching methods

Power stretching method: In this method, the values of each pixel are raised to the power of
two and then stretched linearly between 0 and 255. As a result, higher DN values become brighter.

Logarithmic stretching method: In this method, the logarithm of the pixel values is cal-
culated and then they are stretched between 0 and 255. As a result, the pixel values in the
lower half become brighter.

Exponential stretching method: In this method, based on the following relationship, the
values of the pixels are calculated and then stretched between 0 and 255:

BVout 5 aeðBVinÞ: (2.10)

FIGURE 2.26 (A) Landsat-4 image after applying linear contrast stretching and (B) histogram of the image.
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Square root stretching method: In this method, the square root of the pixel values is
taken, then they are normalized between 0 and 255. As a result, smaller pixel values become
brighter.

Gaussian stretching method: In this image-stretching method, parts of the image that
are dark or bright become clearer by losing information from the middle parts (in the range
of 1, 2, or 3 times the standard deviation).

FIGURE 2.27 (A) Applying percentage linear contrast stretching on the image of Fig. 2.25A. (B) Histogram of the
image.
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Histogram equalization method: In this method, the histogram distribution of the raw
image is changed in such a way that an almost uniform distribution is obtained. Here some
categories should be combined. As a result, the number of color shades in the final image is
reduced. In this method, the middle parts of the histogram are stretched and become
clearer. Contrast stretching can be applied to all three bands of true or false color composite.
This is illustrated in Fig. 2.28A and B.

2.9.5 Density slice

The human eye shows a much greater ability to understand the difference between subtle
color changes and slight changes in grayscale levels. To highlight differences in a single-
band image, it is often useful to assign a color to each gray level or to a group of DN values.
This method is called density slicing. Each simple density slice assigns a uniform color to
each interval of gray levels defined by the user. By doing this, the difference between the
land covers will be shown, but the intra-group changes will still remain hidden (Legg, 1994).
In more practical methods of density slicing the user can assign colors to the upper and
lower limits of each slice. This method is successful in revealing features with outstanding
differences, but it does not show the details of the original image. The reason for removing
details is to convert a black-and-white image with 256 levels to an image with a limited num-
ber of color layers. Fig. 2.29 shows an ASTER band 4 (SWIR) image of the Sarcheshmeh
Copper Mine in southeastern Iran. Alteration zones intensely show reflection at 1.6 µm and
appear as light tones (Fig. 2.29A). In Fig. 2.29B, the conversion of the black and white image
into a color image using the density slicing method can be seen. Color values are assigned to
each DN range. This image conversion is done manually and in each step, a color is assigned
to the DN range selected by the user.

FIGURE 2.28 (A) Sarcheshmeh copper mine raw RGB image and (B) after applying contrast stretching, histogram
equalization for three bands. RGB, Red�green�blue.
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2.9.6 Band ratios

Band ratios are useful methods for detection of the geological features in multiband images.
This method is used to reduce the effect of sunlight, and topography, and highlights spectral
information in the images. A new digital image is created based on the division of the corre-
sponding pixel in two or more images or the input band based on the following equation:

DNnew 5 m
DNA 6 k1
DNB 6 k2

� �
1 n; (2.11)

where DNA and DNB are the values of the corresponding pixels in the two input images, k1
and k2 are factors depending on the brightness of the path of the two images, and m and n
are the scaling factors obtained for the black and white image (Gupta, 2018). The obtained
image can also be stretched again or used as a component in the preparation of a color
image (Gupta, 2018). The most important advantage of using band ratio is the preparation of
an image that is completely independent of lighting conditions (Gupta, 2018). The result of
dividing the two bands for a feature on both sides of the mountain is almost the same. As a
result, applying the band ratio method removes the shadow effect (Fig. 2.30). Also, this
method is used to map the vegetation, sediments, rocks, and soils and to identify the hydro-
thermal alteration zones.

2.9.6.1 Vegetation detection
The presence of vegetation in the areas for exploratory studies using satellite images is one
of the main problems. Indubitably, in some cases, the investigation of vegetation cover helps

FIGURE 2.29 (A) ASTER band 4 image of the Sarcheshmeh copper mine and (B) converting the black and white
image “ A” to a color image using the slicing technique. ASTER, Advanced Spaceborne Thermal Emission and
Reflection Radiometer.
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exploratory studies for detecting faults. The presence of similar spectra between vegetation
and clay minerals requires special methods to eliminate the effect of vegetation, especially in
low spectral resolution satellite images. There are different methods for detecting and elimi-
nating the effects of vegetation. The commonly known index used is the normalized differ-
ence vegetation index (NDVI), which is defined as follows:

NDVI5
NIR2 R
NIR1 R

; (2.12)

where NIR is the band in the near-infrared range, and R is the band in the red wavelength
range. Fig. 2.31 shows the NDVI image of the Sarcheshmeh area.

2.9.6.2 Minerals detection
To detect alteration minerals and lithologies using the band ratio method, it is necessary to
know about their spectral behavior. Here are some examples of the ability of band ratio to
identify alteration minerals. To use the band ratio, it is suggested that the spectra be
resampled based on the wavelength range of the bands. For example, as shown in Fig. 2.32,
to detect iron oxides using Landsat 8 images, a band ratio of 4/2 is used, and the reason for

FIGURE 2.30 Applying the band ratio on ASTER data: (A) image of band 4, (B) an image of band 6, and (C) the
result of a band ratio of 4/6. ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer.
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using these bands is the high reflection of iron oxides in band 4 and the higher absorption in
band 2 of Landsat 8. Bands 4 and 2 of Landsat 8 are equivalent to bands 3 and 1 of Landsat
7, respectively. In Fig. 2.32 the brighter pixels indicate the most likely presence of iron oxides
in the scene.

A band ratio of 6/7 (Landsat 8 data) is used to detect minerals related to hydrothermal
alteration that contain kaolinite and muscovite. Considering that these minerals have a
reflection in band 6 and absorption in band 7 (Fig. 2.33), this band ratio can be used. Bands
6 and 7 of Landsat 8 are equivalent to bands 5 and 7 of Landsat 7, respectively. As can be
seen in Fig. 2.33, in addition to altered areas, vegetation has also been enhanced, which is

FIGURE 2.31 The spectral curve of vegetation (walnut tree) and NDVI index image. NDVI, Normalized difference
vegetation index.
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due to the spectral similarities of vegetation and OH-bearing minerals, related to the hydro-
thermally altered zones.

2.9.7 Absorption band depth

Based on alteration minerals’ spectral properties, absorption band depth (ABD), a common
method is used to enhance alteration minerals. In this method, the sum of two reflectance
bands is divided by an absorption band. In such a way, reflectance properties could be
amplified. ABD is calculatable for relative and true situations (Fig. 2.34A and B). Laboratory
reflectance spectra resampled to ASTER VNIR1 SWIR bands for three different minerals are
presented in Fig. 2.35.

FIGURE 2.32 Band ratioimage of 4/2 using Landsat 8 data.
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FIGURE 2.33 Band ratio image of 6/7 using Landsat 8 data.
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Muscovite is recognizable by using the true ABD (TABD) and relative ABD (RABD) as
follows:

TABD5
Band51Band7

Band6
; (2.13)

RABD5
Band41Band6

Band5
: (2.14)

Fig. 2.36A�D shows ASTER scene of the Abdar porphyry copper deposit. In this figure,
argillic alteration (kaolinite as indicator was considered), phyllic alteration (muscovite as
indicator was considered), and propylitic alteration (chlorite indicator was considered) are
enhanced and presented using RGB color composition in which phyllic alteration appeared
in magenta, and propylitic alteration is visible in green color tone (Fig. 2.36D).
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FIGURE 2.35 Laboratory reflectance spectra resampled to ASTER VNIR1 SWIR bands for muscovite, kaolinite, and
alunite. ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer; SWIR, shortwave infrared;
VNIR, visible and near-infrared.
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In the band ratio technique, we can divide band 4 into band 5 (ASTER data) to enhance
kaolinite zones. In Fig. 2.37 the band ratio method is used to enhance kaolinite in the
ShirKouh granites in Yazd province, Iran. Note that the vegetated areas are also enhanced
along with kaolinite, because of their spectral signature similarities (Fig. 2.37).

2.9.8 Logical operators

One of the widely used methods in investigating and detecting alteration zones is the use of logi-
cal operators. This method includes specific algorithms, which are defined on the basis of band
ratios, logical operators, and thresholds obtained from the images. One of the comprehensive
and applied studies using this method was conducted by the US Geological Survey in the
Urmieh-Dokhtar magmatic arc of Iran, the results of which were published in 2006 and 2014
(Mars and Rowan, 2006; Mars, 2014). The purpose of this study was to investigate and highlight
argillic and phyllic alteration zones to explore porphyry and epithermal deposits. To use the
method of logical operators, the following algorithms can be implemented (Table 2.13).

FIGURE 2.36 Results of RABD method for ASTER scene of Abdar porphyry copper deposit: (A) kaolinite, (B) muscovite,
and (C) chlorite (D) RGB image of muscovite (R)�chlorite (G)�kaolinite (B). ASTER, Advanced Spaceborne Thermal
Emission and Reflection Radiometer; RABD, relative absorption band depth; RGB, red�green�blue.
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FIGURE 2.37 Kaolinite as bright zones in the Shirkuh granites in Yazd province, Iran (applying simple band ratio to
ASTER data). ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer.

Table 2.13 Logical operators for hydrothermal alteration mapping.
Target Algorithm References

Argillic alteration ((float(b3)/b2) le?) and (b4 gt?) and ((float(b4)/b5) gt?) and

((float(b5)/b6) le?) and ((float(b7)/b6) ge?)

Mars and Rowan (2006)

Phyllic alteration ((float(b3)/b2) le?) and (b4 gt?) and ((float(b4)/b6) gt?) and

((float(b5)/b6) gt?) and ((float(b7)/b6) ge?)

Mars and Rowan (2006)

Silica-rich hydrothermal alteration ((float(b3)/b2) le?) and (b4 gt?) and ((float(b4)/b7) ge?) and

((float(b13)/b12) ge?) and ((float(b12)/b11) lt?)

Mars (2014)

Propylitic alteration (carbonate) ((float(b3)/b2) le?) and b4 gt? and (float(b6) / b8 gt?) and (b5 gt b6) and

(b7 gt b8) and (b9 gt b8) and ((float(b13) / b14) gt?)

Mars (2014)

Propylitic alteration (chlorite/epidote) ((float(b3)/b2) le?) and b4 gt? and (float(b6) / b8 gt?) and (float(b5) /

(float(b4) 1 b6) gt 0.456) and (b5 gt b6) and (b6 gt?) and (b7 gt b8)

and (b9 gt b8) and ((float(b13) / b14) le?)

Mars (2014)

Alunite ((B3/B2)�(B1/B2) lt? and ((B4/B5)� (B7/B5))^0.3 ge? and (B5/B6) lt? and

((B7/B5)� (B6/B5))^2 ge? and DPC 3 (B3/B2; B4/B6; B5/B6; B7/B5) ge?)

Tözün and Özyavaş (2020)

Kaolinite/halloysite ((B3/B2)�(B1/B2) lt? and ((B4/B5)� (B7/B5))^0.3 ge? and ((B4/B5) �(B4/B6))

^0.3 ge? and (B5/B6) ge? and ((B5/B6)� (B8/B6))^0.5 ge?)

Tözün and Özyavaş (2020)

Fe31 ((B3/B2)�(B1/B2) lt? and (B2/B1)^2 ge? and (B2/B1)/(B3/B2)^2 ge?) Tözün and Özyavaş (2020)

Note: Instead of the question mark values, the threshold values calculated from the image should be replaced. ge, greater or equal to; lt, less than; le, less than or equal to;

gt, greater than.
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Three important points regarding the implementation of logical operators are as follows:

1. If atmospheric corrections are made on input data, there is no need to use the float
function in the above algorithms, such as the algorithms introduced in the study of
Tözün and Özyavaş (2020).

2. To implement logical operator algorithms in ENVI software, you can use the Band Math
(BM) tool.

3. To determine the thresholds for the formulas in the logic operators algorithm, you can
use mean 1 2 3 standard deviations.

2.9.9 Principal component analysis

In satellite images, there is a lot of correlation between the spectral bands, so most of the areas
that are bright or dark in one band have the same characteristic and appearance in other bands.
In fact, this similarity and correlation between bands cause a series of additional and redundant
information. If this additional information is reduced, the data in the multispectral images will
be compressed. The principal component analysis (PCA) is a method to remove or reduce such
redundant information in image processing. The PCA method can be performed on multispec-
tral/hyperspectral data containing any number of bands. Therefore in short, the analysis of the
main components leads to the reduction of the size of the main data. In other words, the aim of
this method is to compress all the information obtained in a main composite data set of n bands
into n new components. For this reason, the first principal components have the most informa-
tion compared to other components.

If a color composite is created by using the first three PCs, the information is more than
that created in the simple color combination of three normal spectral bands and shows
more details of the spectral difference of different geological phenomena such as rock units.
The use of principal components helps geologists in distinguishing the lithological bound-
aries that cannot be recognized in the color composite images obtained from the raw bands.
Also, when the three components with high degrees are displayed as color images, it is pos-
sible for the user to identify small areas that are spectrally completely different from the
whole scene (for instance, altered zones) (Vincent, 1997). The theory of PCA states that the
ultimate goal of this method is to transfer the pixel values of the input bands from the initial
coordinate axes to the new coordinate axes. For a better understanding of this point, pay
attention to Fig. 2.38.

If the number of input bands is two (Fig. 2.38A), first the pixel values of both bands are
plotted. Now, to determine the axes of the new coordinates (new components), the first axis
is drawn along the cloud of points in such a way that it has the largest variance around it.
The second axis for PC2 is drawn perpendicular to the PC1 axis. In multispectral images, the
resulting PC axes are orthogonal to each other. Therefore the y1 axis is drawn in such a way
that the maximum variance of the data is placed around this axis. The second axis (y2) is per-
pendicular to the y1 axis and has a lower variance. The length of these axes is proportional
to the variance percentage of the same component, which is also called the eigenvalue. The
coordinates of these axes are obtained using mathematical operations based on the
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variance�covariance matrix or the correlation coefficient matrix, which are called eigenvec-
tor values. The mathematical relationship of this coordinate axis transfer is as follows:

PC1 5 a11x1 1 a12x2; PC2 5 a21x1 1 a22x2: (2.15)

In the previous equations, the value of a represents the coefficients or loading, x1 and x2 are
the DN values of the pixels in the original bands, and PC1 and PC2 are the new values of the pix-
els. For example, if we want to write the first component for Table 2.1, we have the following:

PC1 5 0:26ðb1Þ 1 0:34ðb2Þ 1 0:49ðb3Þ 1 0:34ðb4Þ 1 0:53ðb5Þ 1 0:42ðb7Þ: (2.16)

For more familiarity with the calculation of eigenvalues and eigenvectors of a matrix, it
can be referred to Davis and Sampson (1986). For multispectral data (such as Landsat,
ASTER, and Sentinel-2), the first principal component (PC1) contains the highest percentage
of the total variance of the image, and the next components (PC2, PC3, . . ., PCn) each contain
a smaller percentage of variance or image information (Fig. 2.38B). In addition, due to the
fact that each of the subsequent components is chosen to be perpendicular to the previous
component, the main components have a minimal correlation between themselves (Sabins,
1987; Lillesand et al., 2011).

Each PCA image has information from all spectral bands and can be displayed as a black-
and-white image in the output. Each principal component can show a specific phenomenon.
In the first step, the user should have a correct image of the spectral characteristics of a phe-
nomenon in mind, so that he or she can find out the absorption and reflection wavelengths
corresponding to the used spectral bands and according to the vector loadings and signs.
The vector loadings, and the mathematical signs for different bands in each component,

y2
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FIGURE 2.38 (A) DN scatterplot of two separate bands (bands 1 and 2 of TM as X1 and X2 axes). Y1 and Y2 are the
newly transformed axes after PCA (Sabins, 1987). (B) Three principal components of three different bands. DN,
Digital number; PCA, principal component analysis.
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specify that a component represents a particular phenomenon. For example, Table 2.14
shows the results of PCA on six bands of Landsat 7.

As shown in this table, the first three components contain 98.44% of the information of
the six bands used. The first principal component (PC1) has positive loadings for all bands
and contains the information of all bands. The PC1 is also called an albedo image
(Fig. 2.39). The PC2 has negative loadings for visible bands and positive loadings for the
near-infrared and short-wave infrared bands, which can be related to the areas with hydro-
thermal alteration (Fig. 2.39). In the case of the PC3, due to having a loading of 20.91 for
the reflective band of vegetation (band 4), it is expected that the vegetation to be shown as
dark in the resulting image of this component (Fig. 2.39). The PC4 shows the areas with
hydrothermal alteration with a dark tone. Since the loading of band 5 is negative (band 5
of Landsat corresponds to the reflective band of clay minerals), the pixels associated with
the hydrothermally altered areas are seen as dark (Fig. 2.39). In PC5, band 3 (reflective
band of iron oxide) has a high loading and a negative sign, but band one that is the absorp-
tion band of iron oxide, has a high loading but with a positive sign. As a result, the PC5

shows areas containing iron oxide with a dark tone (Fig. 2.39). In PCA analysis, usually, the
last component shows the noise in the images. Accordingly, the PC6 has the texture of salt
and pepper that is attributed to the noise (Fig. 2.39). However, this PC shows the areas
containing argillic alteration in the northeast of Sarcheshmeh (Sereidoon) with a dark tone
due to the negative loading of band 5.

Cŕosta et al. (2003) introduced a modified PCA in which the appropriate bands are
selected based on the spectral properties of the desired minerals. Landsat 7 images have
been used to highlight areas containing iron oxide out of bands 1�3. To highlight areas
with vegetation cover, bands 2�4, and to highlight areas with hydrothermal alteration
bands 3, 5, and 7 are used, respectively. In Table 2.15, bands used for highlighting iron
oxides, clay minerals, and vegetation are presented. If you use the ASTER data to high-
light the minerals, you can use the directed PCA method, based on the standard spectra
of the minerals to choose appropriate bands. For example, bands 5�7 are used to high-
light muscovite, and bands 7�9 are used to highlight chlorite. These bands can easily be
determined from the spectral properties of minerals (absorption and reflection bands)
(Honarmand et al., 2012).

Table 2.14 Eigenvector matrix of six bands of Landsat-7 derived from principal
component analysis for the Sarcheshmeh copper mining region in Kerman, Iran.

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 Eigenvalue % Variance

PC 1 0.26 0.34 0.49 0.34 0.53 0.42 1193 88.04
PC 2 20.49 20.40 20.39 0.01 0.54 0.39 115 8.50
PC 3 0.20 0.18 0.02 20.91 0.13 0.29 26 1.90
PC 4 0.02 20.21 0.09 0.11 20.62 0.74 12 0.88
PC 5 0.63 0.14 20.73 0.20 0.05 0.13 7 0.52
PC 6 20.51 0.79 20.26 0.05 20.16 0.13 2 0.15
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FIGURE 2.39 PCA images derived from six bands of Landsat 7. PCA, Principal component analysis.

Table 2.15 Principal component analysis results and eigenvector loadings based on
Crosta technique for Landsat-7 bands.

Eigenvector PC1 PC2 PC3

Band1 Fe oxide 0.507 20.834 20218
Band 2 0.458 0.046 0.888
Band 3 0.731 0.549 20.405
Band 2 Vegetation 0.366 20.510 20.778
Band3 0.593 20.517 0.617
Band4 0.717 0.687 20.904
Band 3 Hydrothermal alteration 0.331 0.920 0.210
Band 5 0.843 20.388 0.372
Band 7 0.424 0.054 20.904
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2.9.10 Independent component analysis

Independent component analysis (ICA) is a computational signal-processing method that
aims to describe random variables as a linear combination of statistically independent com-
ponents (e.g., Comon, 1994; Hyvärinen and Oja, 1997; Stone, 2004). This is achieved by the
decomposition of a mixed signal using the assumption that each constituent component has
a non-Gaussian probability distribution. This assumption is based on the premise that the
sum of a sufficient number of non-Gaussian probability distributions tends toward a
Gaussian distribution (the central limit theorem), so that a strongly non-Gaussian compo-
nent is unlikely to be produced by a combination of different sources.

The assumption of statistical independence employed by ICA makes it possible to find a
unique solution to the decomposition of a mixed signal, in a similar way that the assumption
that sources are uncorrelated is the basis of PCA. As ICA retrieves sources by maximizing sta-
tistical independence (rather than signal variance, as in PCA) it is appropriate for the extrac-
tion of low-magnitude signals, even where noise is high, without a priori assumptions
beyond the independence of the components (Hyvärinen et al., 2004). Statistical indepen-
dence is assessed by non-Gaussianity. This can be quantified by using different properties of
the random variables, of which kurtosis and negentropy are widely used. Kurtosis describes
the relative contribution of extreme deviations to a probability distribution (“tailedness”) and
is normally measured as the absolute value of the fourth standardized moment of the data,
with a Gaussian distribution taking a value of 3. The calculation of kurtosis is simple, but in
practice, it is more sensitive to outliers than negentropy, which is more widely used for ICA.
Negentropy is a concept from information theory that describes the difference in entropy—a
measure of the unpredictability of information content—relative to the Gaussian distribution
of the same mean and variance. This is based on the result that a Gaussian distribution has
the highest value of entropy of all the possible random variables with the same variance. To
avoid the challenging estimation of the probability density function, most algorithms use an
approximation of negentropy to assess Gaussianity (e.g., Hyvärinen and Oja, 2000).

2.9.11 Minimum noise fraction

The minimum noise fraction (MNF) method proposed by Green et al. (1988) is a well-
known data dimension and noise reduction technique. This linear transform is widely
used for feature extraction, noise whitening, and spectral data reduction of remote sens-
ing imagery, especially for hyperspectral data (e.g., Kruse et al., 2003; Khan et al., 2007;
Pengra et al., 2007; Pournamdari et al., 2014; Assiri, 2016). The transform consists of two
separate PCA rotations, in which the noises in the data are readjusted and separated in
the first transformation. In the first rotation, the data noises are decorrelated and
rescaled, and in the second phase, the PCs are derived from the noise-whitened data.
Through the two steps of affine transforms, a set of decorrelated PCs is generated, which
contain steadily decreasing useful information with the increasing component numbers
(Boardman and Kruse, 1994).
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2.9.12 Spectral angle mapper

The spectral angle mapper (SAM) is an efficient method for mapping a specific mineral or a
rock by comparing the spectrum of a pixel to an image-derived spectrum or a standard
(library) spectrum. The algorithm of this method calculates the similarity between the two
spectra by a parameter called spectral angle. The spectra are converted to vectors in a space
with the dimensions of the number of bands. The spectral angle between the vectors is cal-
culated. For a better and simpler understanding of this topic, two references (standard) and
the studied spectrum can be considered in two-band or two-dimensional space (Fig. 2.40).
For calculating the angle, the direction of the vectors is important and not their length, so
the illumination of the ground does not affect the final result (Mather and Koch, 2011).

To obtain the angle (�) between the two vectors obtained from the images or laboratory
spectrum (t) and the reference spectrum (r) (Fig. 2.40), the following relationship is used
(Kruse et al., 1993):

� 5 cos21
~t �~r

~t
		 		 � ~rj j

 !

: (2.17)

If n bands are used to identify the desired phenomenon, the following relationship is
used to obtain the following angle:

� 5 cos21
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where nb is the number of bands.
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FIGURE 2.40 The vectors were obtained from the laboratory spectrum and the reference spectrum (Kruse et al., 1993).
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In fact, the lower the angle (between 0 and 1 radians), the greater the similarity between
the two spectra. This method was first presented by Kruse et al. (1993).

2.9.13 Linear spectral unmixing

The linear spectral unmixing (LSU) is a subpixel sampling algorithm (Boardman, 1989, 1992;
Adams et al., 1993). The reflectance at each pixel of the image is assumed to be a linear com-
bination of the reflectance of each material (or end-member) present within the pixel. For
example, if 25% of a pixel contains material A, 25% of the pixel contains material B, and 50%
of the pixel contains material C, the spectrum for that pixel is a weighted average of 0.25
times the spectrum of material A, plus 0.25 times the spectrum of material B, plus 0.5 times
the spectrum of material C (Research Systems, 2008). The LSU is used to determine the rela-
tive abundance of end-members within a pixel based on the end-members’ spectral charac-
teristics. This algorithm assumes that the observed pixel reflectance can be modeled as a
linear mixture of individual component reflectance multiplied by their relative proportions.
Mathematically, the LSU can be represented as

Ri5N
X

i 5 1FeRi 1 Ei; (2.19)

where Ri is the surface reflectance in band i of the sensor; Fe is the fraction of end-member
e; Re is the reflectance of end-member e in the sensor wave band i; N is the number of spec-
tral end-members; and Ei is the error in the sensor band i for the fit of N-end-members
(Adams et al., 1995).

2.9.14 Matched filtering

Matched filtering (MF) is used to find the abundance of user-defined end-members using
partial unmixing. This technique maximizes the response of the known end-member and
suppresses the response of the composite unknown background, thus “matching” the known
signature. The results of the MF appear as a series of grayscale images (fraction maps), one
for each selected end-member. These fraction maps have values that range from 0 to 1,
where 0 represents a nonmatch to the end-member (training) spectrum and 1 represents a
perfect match. Thresholds can then be identified to create binary maps from the fraction
maps to show areas with relatively good matches to the end-member spectra, or they can be
combined with other fraction maps as ternary images to produce a lithological�composi-
tional map. Unlike linear unmixing, MF does not require knowledge of all the end-members
within the scene. Thus in areas of highly mixed rocks, where identification of all the end-
members is difficult, MF may be a better choice for classification (Harris et al., 2005).

2.9.15 Mixture-tuned matched filtering

The mixture-tuned matched filtering (MTMF) algorithm is a hybrid method based on the MF
method with physical constraints imposed by mixing theory (Boardman, 1998; Chang, 2003;
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Boardman and Kruse, 2011). This method uses linear spectral mixing theory to constrain the
result to feasible mixtures and reduce false alarm rates (Research Systems, 2008; Boardman
and Kruse, 2011). From MF, it inherits the advantage of its ability to map a single known tar-
get without knowing the other background end-member signatures, unlike traditional spec-
tra mixture modeling. From spectral mixture modeling, it inherits the leverage arising from
the mixed pixel model, the constraints on feasibility, including the unit-sum and positivity
requirements, unlike the MF that does not employ these fundamental facts. As a result,
MTMF can outperform either method, especially in cases of subtle, subpixel occurrences
(Boardman, 1998).

Two sets of images are presented as MTMF results, including (1) MF score images (values
from 0 to 1.0) that assess the relative degree of match to the reference spectrum and approxi-
mate subpixel abundance (where 1.0 is a perfect match) and (2) infeasibility images, where
highly infeasible numbers show that mixing between the composite background and the target
is not feasible. The greatest match to a target is acquired when the MF score is high (near 1)
and the infeasibility score is low (near 0) (Research Systems, 2008). This method performs simi-
larly to MF and also adds an infeasibility image to the results. The infeasibility image is used to
reduce the number of false positives that are sometimes found when using MF. Pixels with a
high infeasibility are likely to be MF false positives. The infeasibility values are in noise sigma
units that vary in DN scale with an MF score (Fig. 2.41) (Research Systems, 2008).

2.9.16 Constrained energy minimization

The constrained energy minimization (CEM) is a target signature-constrained algorithm that
restrains the desired target signature with a particular attain, minimizing effects made by
other unknown signatures derived from the background (Harsanyi, 1993; Chang and Heinz,
2000; Chang et al., 2000; Jiao and Chang, 2008). For implementing this algorithm, just pre-
ceding information about the preferred target signature is necessary. It accomplishes a
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FIGURE 2.41 Diagram showing the performance of the MTMF method. MTMF, Mixture-tuned matched filtering.
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partial unmixing of spectra to determine the abundance of end-member (user-defined) for a
number of reference spectra from image or laboratory spectra (Chang and Heinz, 2000). The
CEM algorithm uses a finite impulse response (FIR) filter to pass through the desired target
while minimizing its output energy from a background other than the desired targets
(Harsanyi, 1993; Harsanyi et al., 1994; Johnson, 2003).

2.9.17 Adaptive coherence estimator

The adaptive coherence estimator (ACE) is a target detection algorithm that carries out a
partial unmixing approach to isolate features of interest from the background, and its input
is a single score (abundance of the target) per pixel (Bidon et al., 2008). It is generated from
the generalized likelihood ratio (GLR) approach, which is a homogenously most powerful
invariant detection statistic (Kraut et al., 2001; Alvey et al., 2016). The ACE is invariant to the
relative scaling of input spectra and has a constant false alarm rate for such scaling (Warren,
1982). Geometrically, it determines the squared cosine of the angle between a known target
vector and a sample vector in a whitened coordinate space. The space is faded based on
assessing the background statistics, which straightforwardly influences the presentation of
the statistic as a target detector (Hall et al., 2002). The standard formulation of the ACE
detection statistic is defined as follows:

ACE Xð Þ 5
t2µð ÞTSP21 x2µð Þ
� 2

t2µð ÞTP21 t 2 µð Þ
� 

t2µð ÞTSP21 x 2 µð Þ
�  ; (2.20)

where t is a known target signature (reference spectra from a spectral library signature), and
x is a data sample. The background is assumed to be a Gaussian distribution parametrized
by µ and � that represent the mean and covariance, respectively. The ACE statistic is a num-
ber between 0 and 1, which can be interpreted as a measurement of the presence of t in x.
The ACE can be estimated as the square of the cosine of the angle between x and t, in a
coordinate space transformed by the background estimation. For example, if ACE produces
0.85, it indicates a relatively strong presence of t in x. The key to effective ACE performance
is accurate background estimation. Furthermore, the ACE does not need information about
all the end-members within an image scene.

2.9.18 Spectral feature fitting

The spectral feature fitting (SFF) algorithm eliminates the continuum of absorption features
from the spectra of the reference spectral library and also from each spectrum of the image
dataset. The SFF compares the continuum-removed spectrum of the image with the
continuum-removed spectrum of reference spectra and operated the least square fitting. The
selection of the best fitting material based on spectral features or group of features is done
by comparing the correlation coefficient of fits (Clark et al., 1993a,b).

The process of feature extraction involved the first step continuum removal (CR) that is used
to identify the individual absorption features carrying the spectrum (Kruse, 1993). The convex
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hull using straight line segments fitted on the top of the spectrum that joins the maxima of local
spectra is known as a continuum. For the removal of the continuum, the original spectrum (S) for
every pixel in an image is divided by the (C) continuum curve (Harris Geospatial Solutions, 2017):

Scr 5
S
C

; (2.21)

where Scr is the continuum-removed spectra, S is the original spectra, C is the continuum
curve.

Initially, the subtraction of the continuum removed spectra by one is done to generate
the Scale image that helps for the predictions; thus inverting spectra and continuum is made
to zero. The scale is used for the determination of the depth of the absorption feature in
each pixel. The scale factor represents the abundance of spectral features. Band-by-band cal-
culation is performed for the computation of least squares fit. A higher scale value represents
the strong absorption in the mineral’s spectral band. Mineral abundance is highly related to
the scale value (Van der Meer, 2004; Verdel et al., 2001). Brighter pixels in the scale image
represent better matching of the pixel spectrum from the reference spectrum of the mineral.
RMS (root mean square) error image is also produced for each end-member to compute the
total RMS error. Low RMS pixels appear black (darker) in the image, and the shape of the
spectra is highly similar to the reference spectrum of the mineral. RMS is a method, which is
used for the examination of the existence and absence of minerals (Van der Meer, 2004;
Verdel et al., 2001). Those pixels that are having low RMS error and high scale factor are
closely matched. An equal number of images are generated by the scale and RMS. The Fit
images are generated by making a ratio between the scale image and RMS error image to
measure the similarities (match) between the unknown spectrum and reference spectrum
based on pixel-by-pixel (Van der Meer and De Jong, 2003).

2.9.19 Image classification

The main goal of image classification is to place pixels in separate groups based on their
spectral properties. In this method the pixels related to each object such as soil, water, and
rocks are grouped and displayed in different colors. But there are certain limitations in this
field. For example, the soil and vegetation cover on the outcrops (rocks) makes it impossible
to classify the rocks. The spectral pattern in each pixel is used as a basis for classification.
Two objects may have the same reflection in one band, while their reflection in other bands
is different. As a result, the spectral classification of the image is based on the spectral prop-
erties of the pixels and not on their geometrical position. In another classification method
the spatial pattern of the pixels and their placement relative to each other are considered. In
this classification method, size, image texture, shape, orientation, proximity to other pixels,
and others are the basis of classification.

When the pixels are classified in only one specific category, the term hard classification is
used. In this method, it is possible that a pixel is covered by two or more types of coverages,
but it is placed in a category that has more coverage within the pixel’s surface. The soft
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classification method is used when a pixel consists of two or more different features. When
such pixels are classified, the effect of each phenomenon appears in the output image based
on the area of the pixel that each feature is covered. Assume that a pixel contains 60% basalt,
30% granite, and 10% vegetation. In the hard classification, it is placed in the basalt category,
but in the soft classification, it shows the percentage of each cover. The fuzzy classification
method is included in this category. To classify satellite images, it is not possible to be satis-
fied with only one solution. There are two general methods for classifying images, which are
(1) supervised classification and (2) unsupervised classification.

In the supervised classification, the user defines several different groups such as water, plants,
soil, urban areas, or different lithological units in the form of training areas for the software.
Then the classification process is done, while in the unsupervised classification method, the soft-
ware classifies the image according to the number of groups given to it. In this method, after
classifying the image, the user specifies the names of the categories, while in the supervised clas-
sification method, the names of the categories are specified before the classification.

The supervised classification includes the steps of image preprocessing, training and sep-
aration of categories, image classification, data display, and finally evaluating the accuracy of
the classification.

a. The training and separation of categories
In this step, the number of categories is determined and the areas that belong to these

categories are marked in the images. This information can be obtained from existing
data, such as geological maps or actual ground data.

b. Image classification
At this stage, with a series of mathematical and statistical operations, the pixels are

classified into their respective groups. There are many image classification methods such
as minimum distance to the mean, parallelepiped, maximum likelihood classifier (MLC),
SAM, neural networks, fuzzy, and support vector machine (SVM). Here, we explain
minimum distance to mean, parallelepiped, MLC, SAM, and SVM.

c. Data display
At this stage, the pixels of the image are classified and displayed in different colors.

The colors are determined according to the user’s choice.
d. Accuracy assessment

At this stage, the accuracy of the classification is evaluated using ground truth or auxiliary
data and is usually expressed as a percentage.

2.9.20 Supervised classification

2.9.20.1 Minimum distance to mean classification
In this method, the mean of each category is calculated. If we want to place an unknown
pixel in any of these categories, we can calculate its distance with the means of the categories
(Fig. 2.42), then this pixel will be placed in the category that has the least distance with the
mean of that category.
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The distance can be calculated with the following equation:

D12 5
��������������������
ðx12x2Þ2;

q
(2.22)

where D is the Euclidean distance between the unknown pixel value (x2) and the average of
the training class (x1).

This method has simple calculations and does not consider the variance of the groups’
data. This method is not used when the spectral groups are similar and have a large vari-
ance. When the categories have a low and homogeneous variance, it is considered a
suitable classification method. If a pixel is in the edge position of the group indicated by
“ 1 ” (the position of the pixel is indicated by the red arrow), it is placed in the group indi-
cated by the solid circle. The reason is that it has a smaller distance than the mean of this
group, though it should be in the “ 1 ” category.

2.9.20.2 Parallelepiped
In this method, the sensitivity to the variance of the data of the categories can be increased.
In this regard, it is possible to consider the range of specific pixel values for each category.
This range can be the maximum and minimum values in each category. As a result, the

++
+

+ +
+

+
++

+ +
+

+ + +
+

++
+

+
+

+

+

+
+
+

+
+ + +

+

+

+
+

+

+

X
X X

XXX
X
X

X
X

X
XX

Band X DN

Ba
nd

 Y
 D

N

FIGURE 2.42 The concept of the minimum distance to the mean method (here the values of the pixels are
displayed only for two bands on the x and y axes).
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border of the groups is surrounded by rectangles (Fig. 2.43). Each unknown pixel is classified
in the same category if it is located within the border of any of these rectangles. The pixels
that are outside these rectangles are not classified. For this reason, in this classification
method, a large number of pixels may not be classified. In cases in which the rectangles
overlap in this method (Fig. 2.43), the user is allowed to alter the value range of the catego-
ries and make decisions and categorize them in stages.

2.9.20.3 Maximum likelihood classification
In this method, the variance and covariance of the categories are considered and the proba-
bility of each unknown pixel belonging to a category is calculated and evaluated. Here, we
must assume that the pixels of each training area have a normal or Gaussian distribution.
The software calculates the probability of each pixel belonging to each category, according to
the probability function, and finally, the unknown pixel is transferred to the category that has
the most similarity (highest probability value) (Fig. 2.44). As a result, the mean and variance
of the data should be known.

FIGURE 2.43 The general scheme of the parallelepiped classification (the border of the squares is determined based
on the variance border of each category).
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2.9.20.4 Support vector machines
SVMs have received particular attention in the classification of hyperspectral remote sensing data
(Melgani and Bruzzone, 2004; Camps-Valls and Bruzzone, 2005; Pu, 2017) because SVMs can
robustly classify high dimensional and noisy datasets. Classic classification approaches could not effi-
ciently classify a limited number of training hyperspectral samples with high dimensions. In SVMs,
kernel methods are used to map the data from the original nonlinear space to the higher dimension
and linear space. The SVMmethods are popular to classify two-class separation problems; however,
they can be extended to multiclass separation as well (Melgani and Bruzzone, 2004). In the following
a two-class problem classification for linear and nonlinear cases has been explained.

2.9.20.4.1 Linear support vector machine
Assume that, there are two classes (xi, yi) for (i5 1, 2, . . ., N), in this case xi is the training sample
and yi shows the label of the ith sample with values 11 or 21, N is the number of training sam-
ples. SVMs find a hyperplane that separates the two classes. Each class is located on one side of
the hyperplane, and the minimum distance of the closest training samples (these samples are
called the support vectors) to either side of the hyperplane should be maximized (Fig. 2.45A).

If the training samples are linearly separable, the general linear hyperplane is defined as
(Pu, 2017):

w � xi 1 b $ 1 1yi 51 1
w � xi 1 b # 2 1yi 5 2 1

�
; (2.23)

where and are the hyperplane parameters and show the direction and position of the hyper-
plane, respectively. The inequalities in Eq. (2.23) can be integrated into one inequality as

yi w � xi 1 bð Þ 2 1$ 0; i 5 1; 2; 3; . . . ; N : (2.24)

FIGURE 2.44 (A) Equiprobability contours are defined by a maximum likelihood classifier, and (B) probability
density functions are defined by a maximum likelihood classifier (Lillesand et al., 2011).
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The aim of SVM classifiers is to find the optimal values of w and b, which maximize 2
wj jj j or

minimize the norm-2 (12 wj jj j2). Therefore the following optimization problem should be solved:

min
1

2

8
<

:
wj jj j2

yi w:xi 1 bð Þ $ 2 1; i 5 1; 2; 3; . . . ; N

8
>><

>>:
: (2.25)

To solve Eq. (2.25), the dual problem based on the Karush�Kuhn�Tucker (KKT) condi-
tions is calculated and Eq. (2.25) is obtained as follows:
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(2.26)

where some of unknown Lagrange multipliers will be zeros and the training samples with
nonzeros are called the support vectors (Fig. 2.45A).

If the classes are not completely linearly separable due to the noise or mixture during
training data collection, a regularization parameter and slack variable are added into the
constraints in Eq. (2.20) to consider the noise or error in the dataset due to misclassification
(Fig. 2.45B). The optimization problem for the linearly nonseparable case becomes
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FIGURE 2.45 (A) The optimal separating hyperplane in a linearly separable case. (B) The optimal separating
hyperplane in a linearly nonseparable case (Bekkari et al., 2013).

92 Geospatial Analysis Applied to Mineral Exploration



where C is a penalty factor and controls the misclassification error. The dual optimization
problem is obtained as

8
>><

>>:
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i51 �i 2
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XN
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XN

j51
�i�jyiyj xixj

� ��

XN

i51
�iyi 5 0 and 0# �i # Ci 5 1; 2; 3; . . .; N

:
(2.28)

The only difference between Eqs. (2.26) and (2.28) is the Lagrange multipliers, �i are
bounded by the penalty value C.

2.9.20.4.2 Nonlinear support vector machine
Most cases in hyperspectral data classifications are nonlinear. The following popular kernel
functions can be used to map the nonlinear data into higher linear feature space (Fig. 2.46):

1. Linear kernel: X � Xi

2. Polynomial kernel with order p: ðX � Xi11Þp

3. Radial function kernel: e2 ðx2xi Þj jj j2
2�2

4. Sigmoid kernel: tanhð�ðXi; XjÞ 1 �Þ

The original data ðxi; xjÞ with the inner product are converted to �ðxiÞ; �ðxjÞ
� 

using
Mercer’s theorem in which there exists a kernel k such that (Vapnik, 1998)

kðxi; yiÞ 5 �ðxiÞ � �ðxjÞ: (2.29)

In this case, the optimization problem Eq. (2.29) can be considered as follows:
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FIGURE 2.46 Mapping nonlinear data into a higher dimension and linear feature space.
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The kernel and regularization parameters have a large effect on the classification accuracy
they should appropriately select based on the dataset. Some algorithms such as k-fold cross-
validation can be used (Anguita et al., 2009).

2.9.20.4.3 Nonlinear support vector machine
In general, the hyperspectral dataset includes more than two classes. Recently different
approaches have been introduced to classify multiclass problems such as the one against all,
one against one, binary hierarchical tree balanced branches, and binary hierarchical tree one
against all algorithms (see Melgani and Bruzzone, 2004; Vapnik, 1998 for more details).

2.9.21 Methods of increasing the spatial resolution of satellite images

Usually, multispectral sensors have a panchromatic band with high resolution along with a
number of multispectral bands with lower spatial resolution. For example, the QuickBird sat-
ellite has a spatial resolution of 2.5 m for multispectral bands, while it has a panchromatic
band with a spatial resolution of 60 cm. It is possible that a color image created with a pixel
size of 2.5 m can be upgraded to an image with a pixel size of 60 cm. Combining images
with a low spatial resolution with images with a high spatial resolution is called improving
spatial resolution or image sharpening (Du et al., 2007; Alimuddin et al., 2012; Pushparaj
and Hegde, 2017). This operation is done to insert the spatial resolution of some images,
such as single-band panchromatic images, into multispectral images. It is possible that if the
previous conditions are met, satellite images from different sensors can be combined
together. Fig. 2.47 shows panchromatic and multispectral images belonging to the Kahang
area, located in Isfahan province. It should be noted that the improvement of spatial resolu-
tion should be done according to the conditions and characteristics of the images.

FIGURE 2.47 (A) Multispectral data with 2.4 m resolution and (B) panchromatic data with 0.6 m resolution.
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For instance, simultaneity, precise geometric matching, and the sameness of geometrical
conditions (Sun angle) are among these conditions. To increase the power of spatial separa-
tion of multispectral images, Brovey, IHS, principal component, and color normalization
(CN) methods can be used.

2.9.21.1 Brovey method
The Brovey method is perhaps the fastest and easiest method of combining images with dif-
ferent resolutions. In this method, first, the bands of the multispectral image are normalized
and then they are multiplied into the image with a higher resolution. Brovey’s method can
be summarized as follows:

DNfi 5
DNbi

DNb1 1 DNb2 1 DNb3

� �
3 DNp; (2.31)

where DNbi is the gray level of the pixel in the ith band of the multispectral image, DNp is
the gray level of the pixel in the image with higher resolution and DNfi is the digital number
obtained for the pixel in the output image (Fig. 2.48A). In this way, more spatial information
is added to the multispectral image, and the result will be an image with better visual quality
(Price, 1999). One of the disadvantages of this method compared to other methods is that
the improvement of spatial resolution is applied only to the three bands from which the
color composition is made, not to all bands.

2.9.21.2 Intensity, Hue, and Saturation method
The application of IHS conversion in image sharpening is that, first, the three input bands
that are displayed as RGB are converted to IHS space. Then, the image with a higher spatial
resolution is matched with an intensity (I) image in terms of the histogram. After this stage,
the mentioned image replaces the intensity image. The reverse conversion from IHS space to
RGB is done in the next step. The resulting color composition will contain more spatial
details than the original composition of the multispectral image (Vrabel, 1996). One of the
main drawbacks of this method is that it can be performed only on three bands (Fig. 2.48B)
and is suitable for visual studies. In the case of other methods such as principal components
and CN, this operation is applied to all bands.

2.9.21.3 Principal component analysis method
In the PCA method, improving the power of spatial resolution is done based on principal
components analysis. Several principal components are obtained based on the variance-
covariance matrix or the correlation coefficient matrix. The first principal component has the
highest data variance. The panchromatic band is replaced with the first PC and then the
images of the principal components are converted back into raw bands (Vrabel, 1996).
Fig. 2.48C shows the image improved by the PC method.
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2.9.21.4 Color normalization method
The CN algorithm uses bands with a higher spatial resolution (but lower spectral resolution)
to increase the spatial resolution of bands with a higher spectral resolution of the input
images. The input images are sharpened if the wavelengths of the input bands fall within the
range of the spectral width of the high-resolution images, and all other input bands that do
not fall within this range remain unchanged in the output bands (Fig. 2.48D). The bands of
the input images are grouped into spectral sections, which are defined by the spectral range
of the panchromatic bands. This means that if the spectral range of the pan band is between
0.4 and 0.9 µm, all the bands that are in this wavelength range are placed in one group. Each

FIGURE 2.48 The results of different image-sharpening methods: (A) Brovey, (B) IHS, (C) PCA, and (D) CN. CN, Color
normalization; IHS, Intensity, Hue, and Saturation; PCA, principal component analysis.
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input band is multiplied by the panchromatic band, then it is normalized by dividing by the
sum of the input bands in the spectral range of the panchromatic band (Eq. 2.32).

CN Sharpened Band5
InputBand3 SharpeningBand3 ðNum Bands In SegmentÞ
ð
P

Input Bands In SegmentÞ 1 ðNum Bands In SegmentÞ
: (2.32)

2.9.22 Image filtering

Image filtering is a very important domain of digital image processing. All filtering algorithms
involve so-called neighborhood processing as they are based on the relationship between
neighboring pixels rather than a single pixel in point operations. Filtering is widely used to
sharpen images. However, care should be taken because filtering is not so “honest” in retain-
ing the information of the original image. It is advisable to use filtered images in close refer-
ence to color composite images for interpretation (Liu and Mason, 2016).

In the image filter method the brightness of the pixels is enhanced or reduced based on
the contrast they have with the neighboring pixels. Images are presented in grayscale (black
and white) or pseudocolor. This is to emphasize or strengthen some desired features in the
image for the user. For example, in the discussion of geology and exploration of mineral
deposits, this method is used to enhance faults, geological boundaries, land and water
boundaries, and roads. Image filters are used in various cases, especially for smoothing an
image, highlighting the edge, etc. Digital filtering can be applied either by “box filters” based
on the concept of convolution in the spatial domain or using Fourier transform (FT) in the
frequency domain. In the practical applications of remote sensing, convolution-based box fil-
ters are the most useful for their computing efficiency and reliable results. In this text, box fil-
tering is explained.

Herein, the concept of spatial frequency needs to be introduced to the reader. Changes in
brightness values of pixels relative to location in images are called spatial frequency. If these
changes are small, the image has a low spatial frequency, and if these changes are large, the
image has a high spatial frequency (Fig. 2.49).

The background pattern with slow changes in the brightness of pixels in an image can be
considered a two-dimensional waveform with a long wavelength or low frequency. Therefore
the filter that separates this component with slow changes from the remaining information
in the image is called a low-pass filter. On the other hand, details with faster changes such
as two-dimensional waveforms with short wavelength or high frequency are known. A filter
that highlights this type of detail is called a high-pass filter. These two types of filters are
used separately. Low-frequency information makes it possible to identify the background
pattern. The details in the output image of this type of filter are smoothed or removed from
the main (input) image. This type of filter is used as an image retouch filter and some
unwanted details of the image can be removed with this type of filter. Therefore the low-pass
filter is a type of image blurring. High-frequency information causes the separation or
highlighting of local details such as faults or lithology boundaries (Mather and Koch, 2011).
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2.9.22.1 Low-pass filters
Fig. 2.50 shows the performance of a low-pass filter on a pixel row of a digital image. The
original image data (input) is in dark blue. The output image data resulting from the applica-
tion of the 5 3 5 moving average filter is shown in red. As can be seen, the sharp changes
in the values of the pixel number in the red diagram have been removed. Therefore com-
pared to the raw data curve, a smoother graph has been obtained. In this case the trend of
the data can be seen more clearly. Sharp changes in the raw curve indicate the high-
frequency component of the data and may be the result of local or spurious features. The
low-pass filter includes mean, mode, median, and Gaussian.

FIGURE 2.49 (A) A low- and (B) a high-frequency image.

FIGURE 2.50 The digital number of a row of pixels of a digital image before and after applying the filter (Mather
and Koch, 2011).
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2.9.22.2 Mean filter
A two-dimensional moving average filter or kernel is defined as its horizontal and vertical dimen-
sions. These dimensions are odd, positive, and integer. A two-dimensional moving average filter is
defined according to its size (e.g., 3 3 3 pixels). In a matrix (image) the location of a pixel is deter-
mined by its row (vertical, y) and column (horizontal, x) coordinates. The origin is defined as the
upper left corner of the matrix or image. The central element of the filter is located at the intersec-
tion of the middle row and column of the kernel window n 3 m. Therefore for a 3 3 3 window,
the central element is placed at the intersection of the second row and the second column. To
start, the kernel is placed in the upper left corner of the filtered image (Fig. 2.51).

2.9.22.3 High-pass filters
High-pass filters are filters that enhance the sudden changes in the image. Image quality is
improved by selectively increasing the distribution of its high-frequency components. These
changes include faults and streets. High-pass filters include (1) filters that enhance features
in all directions and (2) filters that enhance features in a specific direction.

2.9.22.3.1 Filters that enhance features in all directions
In this type of filter the kernel consists of a 3 3 3 or 5 3 5 matrix. The constituent numbers
of this kernel include even and odd numbers whose algebraic sum is zero. The Laplace filter
is one of these filters (Fig. 2.52).

FIGURE 2.51 (A) Performance of a mean filter. (B) The pixels in the gray part are averaged and assigned to the
pixel in the center of the kernel.
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The function of this filter is that the kernel moves on the image and at each stop, the
values of the pixels are multiplied by the numbers in the kernel, and the algebraic sum of
the products is added to the value of the pixel in the middle of the kernel. In this method,
pixels with high frequency are sharpened in all directions.

2.9.22.3.2 Filters that enhance features in a specific direction
In these types of filters, the numbers are arranged in a certain direction. As its name sug-
gests, this type of filter highlights linear features in certain directions. Fig. 2.53 shows four
types of directional filters.

This filter functions like the Laplace kernel. At each stop, the pixels of the image are multi-
plied by the kernel numbers, and the algebraic sum is added to the central pixel in the kernel.
In Fig. 2.54, after applying the NE�SE filter the value of 50 is increased to 104
(2463 22 273 21 453 01 503 01 283 01 263 01 503 01 353 01 503 45 54). If the
NW�SE kernel is applied to this part of the image, the value of the pixel is remained unchanged
(463 02 273 01 453 02 503 2 21 283 01 263 01 503 2 21 353 01 503 45 0).

2.10 Accuracy assessment techniques
2.10.1 Principle of accuracy assessment

Accuracy assessment is a crucial step in any remote sensing�based classification exercise,
given that classification maps always contain misclassified pixels and, thus, classification
errors. The impact of these errors depends on many factors, including

• the type of input data to the classification process,
• the quality of the training signatures,

FIGURE 2.52 Two types of directional filters (Laplacian filter).

FIGURE 2.53 Four types of directional filters.
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• the performance of the selected classification algorithm,
• the complexity of the classification scheme and the separability of the underlying classes.

For subsequent use of the classification map, the map accuracy and the sources of errors
have to be known. In this regard, the quality of the classification map is evaluated through
comparison to validation data representing the truth (also called ground truth data). The
accuracy assessment aims to provide answers to the following questions:

• What is the overall accuracy (OA) of the classification map?
• What is the accuracy of single classes in the classification map?
• Which classes are misclassified and confused with each other?

FIGURE 2.54 Performance of a directional filter on an image: (A) after applying the NE�SW filter and (B) after
applying the NW�SE filter on the shaded part. NE, North-eastern; NW, north-western; SE, south-eastern; SW,
south-western.
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2.10.2 Validation of the classified image

The availability of validation data is indispensable for assessing the accuracy of classification
maps. Mostly, validation data are represented by point samples with class labels representing
the truth. These are then statistically compared to the respective class labels of the classifica-
tion map. In the classified image, all the pixels are usually not placed correctly in the groups
they belong to. Examining the amount of image classification error helps the user to under-
stand the accuracy of the classified image. In most cases, samples are generated and labeled
by the map producer. To get a statistically sound estimate of map accuracy, attention must
be paid to the way sample locations are selected:

• Samples should be created independently from training data.
• Samples should be drawn randomly (different strategies to do so, you may take a look at

the advanced materials).
• Samples and training data should not be autocorrelated, that is, a minimum distance

between points should be defined.

Different strategies exist regarding the labeling of the samples. Often, class labels are
assigned through visual interpretation of the underlying satellite image or very high-
resolution imagery, for example, from the Google Earth. Sometimes, samples are labeled
based on field visits or based on available independent land cover information (Fig. 2.55).

FIGURE 2.55 Examples of samples labeled based on field visits or based on available independent land cover
information for the validation of the classified image.
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2.10.3 Determining the number of samples

Statistical methods are usually used to determine the number of samples. In addition, involv-
ing the science of geostatistics can be one of the effective methods to estimate the number of
samples (Jensen, 2016). Fitzpatrick-Lins (1981) proposed the following relationship to deter-
mine the number of samples for evaluating a classified map:

N 5
Z2ðpÞðqÞ

E2
; (2.33)

where p is the expected accuracy level for the map, q5 1002 p, E is the acceptable error level and
Z5 2 are considered. For example, if an accuracy of 85% with a permissible error of 5% is consid-
ered, the number of samples needed to obtain valid results is equal to the following equation:

N 5
22ð85Þð15Þ

52
5 aminimum of 204 points: (2.34)

According to Eq. (2.34), for 85% accuracy and 10% acceptable error, the number of
required samples is reduced to 51 samples:

N 5
22ð85Þð15Þ

102
5 51: (2.35)

Therefore the lower the expected accuracy (p) and the higher the allowable error (E), the
less the number of real ground data to evaluate the results of classification. These equations
are presented in the evaluation studies of agricultural land classification maps. In the past
and in the initial studies of evaluating the results of remote sensing, a lot of emphases have
been placed on the accuracy of 85%. Foody (2008) stated that in other fields, using 85% accu-
racy can be considered a completely biased choice. Pontius and Millones (2011) suggested
that there is no need to pay attention to a universal standard for accuracy assessment
because this standard cannot be defined in the same way in all situations.

Unfortunately, it is not always possible to collect the number of calculated samples. As a
result, a balance should be established between what is obtained through statistics and what
can be achieved in practice. Congalton and Green (2009) suggested that as a general rule,
we should have at least 50 samples in the error matrix for each class. If the area and the
number of classes are very large (the area is more than 1 million hectares and the number of
classes is more than 10 classes), the minimum sample required for each class should be
increased to 75 or 100 samples (McCoy, 2005). Of course, the number of samples can be
determined based on the importance of each class and the goals of the project. In general,
the goal is to obtain a representative sample to be used in the error matrix.

2.10.4 Confusion matrix

Fig. 2.56 is used as an example herein to provide a step-by-step overview of the basic procedure
and common error metrics for assessing the accuracy of classification maps. The left side
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illustrates the classification result of an image with a dimension of 10 3 11 pixels. The right side
illustrates a set of 15 samples with labels representing the true classes. Please note that compari-
son between classification and validation is mostly on a pixel basis and samples are therefore
rasterized to match with the image pixels of the classification map as demonstrated here.

From here onward, we focus further analysis on the samples by comparing predicted
classes from the classification map with the true classes from the validation data (Fig. 2.57).

At first look, we see both agreements, but also confusion, between classification and vali-
dation. A simple summary is as follows:

Classification: Five dolomite samples, four limestone samples, three shale samples, and
three evaporate samples.

FIGURE 2.56 An example is used to show a step-by-step basic procedure and common error metrics for assessing
the accuracy of classification maps in this subsection.

FIGURE 2.57 Comparison of classified pixels and validation pixels.
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Validation: Four dolomite samples, three limestone samples, four shale samples, and
four evaporate samples.

This summary provides an indication that the classification contains errors when com-
pared to the truth. However, it does neither provide a statistical measure of the accuracy nor
information on class confusion. We, therefore, extend our example to identify correctly and
falsely classified samples (Fig. 2.58).

This leads to the following summary:

Correct: 10 out of 15 samples
False: 5 out of 15 samples

This summary allows us to calculate the percentage of correctly classified samples as a
measure of accuracy but still does not provide information on class confusion. We, therefore,
translate our comparison between classification and validation into a table layout, which is
referred to as a confusion matrix (Fig. 2.59).

The confusion matrix is the foundation for statistical accuracy assessment and enables us
to calculate a variety of accuracy metrics. The columns of the matrix contain the instances of
the validation, and the rows of instances of the classification (Congalton, 1991; King and
Clark, 2000). The diagonal of the matrix illustrates the correctly classified samples. Row and
column sums are additionally presented.

FIGURE 2.58 Comparison of classified pixels and validation pixels for identifying correctly and falsely classified
samples.

FIGURE 2.59 Generating a confusion matrix for the previous example.
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2.10.5 Overall accuracy

The OA represents the proportion of correctly classified samples (Story and Congalton,
1986). The OA is calculated by dividing the number of correctly classified samples by the
total number of samples (Fig. 2.60).

The OA is a general measure of map accuracy, however, does not tell us whether errors
are evenly distributed for all classes. We do not know which classes were well classified or
poorly mapped.

2.10.6 User’s accuracy and commission error

The User’s accuracy represents class-wise accuracies from the point of view of the map user.
The User’s Accuracy is calculated by dividing the number of correctly classified samples of
class x by the number of samples classified as class x. It, therefore, provides the map user
with a probability that a particular map location of class x is also the same class x in truth
(Story and Congalton, 1986). The Commission Error is the complementary measure to the
User’s Accuracy and can be calculated by subtracting the User’s Accuracy from 100%.

Based on our initial example as in Fig. 2.58, we only focus on the classification (map user
perspective) and summarize the following:

User’s Accuracy:

Dolomite (80%): Four correctly classified dolomite samples, five classified dolomite
samples

FIGURE 2.60 The formulation for calculating the overall accuracy.
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Limestone (50%): Two correctly classified limestone samples, four classified limestone
samples
Shale (67%): Two correctly classified shale samples, three classified shale samples.
Evaporate (67%): Two correctly classified evaporate samples, three classified evaporate
samples

Commission Error:

Dolomite (20%): One wrongly classified dolomite sample, five classified dolomite
samples.
Limestone (50%): Two wrongly classified limestone samples, four classified limestone
samples.
Shale (33%): One wrongly classified shale sample, three classified shale samples.
Evaporate (33%): One wrongly classified evaporate sample, three classified evaporate
samples.

The User’s Accuracy for each class is calculated by going through each row of the
confusion matrix and by dividing the number of correctly classified samples through the
row sum. The Commission Error is simply calculated as 100% of the User’s Accuracy
(Fig. 2.61).

FIGURE 2.61 The formulation for calculating User’s Accuracy and Commission Error.
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2.10.7 Producer’s Accuracy and Omission Error

The Producer’s Accuracy represents class-wise accuracies from the point of view of the map
maker. The Producer’s Accuracy is calculated by dividing the number of correctly classified
samples of class x by the number of samples with the true labels of class x. It, therefore, pro-
vides a probability that a particular sample of class x is mapped as the same class x in the
classification map (Story and Congalton, 1986). The Omission Error is the complementary
measure to the Producer’s Accuracy and can be calculated by subtracting the Producer’s
Accuracy from 100%.

Based on our initial example as in Fig. 2.58, we only focus on the validation (map maker
perspective) and summarize the following:

Producer’s Accuracy:

Dolomite (100%): Four correctly classified dolomite samples, four dolomite samples.
Limestone (67%): Two correctly classified limestone samples, three limestone samples.
Shale (50%): Two correctly classified shale samples, four shale samples.
Evaporate (50%): Two correctly classified evaporate samples, four evaporate samples.

Omission Error:

Dolomite (0%): 0 wrongly classified dolomite, four dolomite samples
Limestone (33%): One wrongly classified limestone sample, three limestone samples.
Shale (50%): Two wrongly classified shale samples, four shale samples.
Evaporate (50%): Two wrongly classified evaporate samples, four evaporate samples.

The Producer’s Accuracy for each class is calculated by going through each column of the
confusion matrix and by dividing the number of correctly classified samples by the column
sum. The Omission Error is simply calculated as 100% Producer’s Accuracy (Fig. 2.62).

2.10.8 Kappa coefficient

Kappa can be used as another measure of agreement or accuracy. Kappa values can range
from 11 to 21. However, since there should be a positive correlation between the remotely
sensed classification and the reference data, positive values are expected (Lillesand and
Kiefer, 1994; Lunetta and Lyon, 2004). Landis and Koch (1977) divided the possible ranges
for kappa into three groups: A value greater than 0.80 (i.e., 80%) represents strong agree-
ment; a value between 0.40 and 0.80 (i.e., 40%�80%) represents moderate agreement; and a
value below 0.40 (i.e., 40%) represents poor agreement. The kappa coefficient is calculated
according to the following equation:

ð2:36Þ

where r is the number of rows in the matrix, xii is the number of observations in row i and
column i (i.e., the ith diagonal element), xi1 and x1i are the marginal totals of row i and
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column i, respectively, and N is the total number of observations (Bishop et al., 2007). The
kappa coefficient, unlike the OA parameter, includes all the pixels that are correctly or incor-
rectly classified in its calculations. For this reason, some researchers consider the validity of
this coefficient to be much higher than the OA parameter. Fig. 2.63 shows an example of the
calculation of the kappa coefficient.

2.11 Interpretation of remote sensing data for alteration
mineral mapping

Porphyry copper deposits typically occur in association with hydrothermal alteration mineral
zones such as phyllic, argillic, potassic, and propylitic (Fig. 2.64; Lowell and Guilbert, 1970).
A core of quartz and potassium-bearing minerals is surrounded by multiple zones that con-
tain clay and other hydroxyl minerals with diagnostic spectral absorption features in the
SWIR portion of the electromagnetic spectrum. The hydrothermal alteration zones associated
with porphyry copper deposit is illustrated in Fig. 2.64.

Furthermore, at the same time, an oxide zone with extensive iron oxide minerals is devel-
oped by virtue of supergene alteration processes over porphyry copper bodies. Iron oxides
are one of the important mineral groups that are associated with hydrothermally altered

FIGURE 2.62 The formulation for calculating the Producer’s Accuracy and Omission Error.
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FIGURE 2.63 An example of calculating the kappa coefficient.

FIGURE 2.64 Hydrothermal alteration zones associated with porphyry copper deposit. (A) Schematic cross section of
hydrothermal alteration mineral zones, which consist of propylitic, phyllic, argillic, and potassic alteration zones;
and (B) schematic cross section of ores associated with each alteration zone. Modified from Mars, J.C., Rowan, L.C.,
2006. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using advanced
spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere 2
(3), 161�186. https://doi.org/10.1130/GES00044.1.
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rocks and are rendered to characteristic yellowish or reddish color to the altered rocks that
are termed gossan (Sabins, 1999). Iron oxide minerals have low reflectance and high absorp-
tion properties in the VNIR region (Hunt, 1977; Hunt and Salisbury, 1974). Hydrothermal
alteration minerals with diagnostic spectral absorption properties in the VNIR through SWIR
can be identified by multispectral and hyperspectral remote sensing data as a tool for the ini-
tial stages of porphyry copper exploration.

As mentioned before, an ideal porphyry copper deposit is typically characterized by
hydrothermal alteration mineral zones (Lowell and Guilbert, 1970). The core of quartz and
potassium-bearing minerals is surrounded by multiple zones that contain minerals with
diagnostic spectral absorption features in the SWIR region. Fig. 2.65 illustrates laboratory

FIGURE 2.65 Laboratory spectra of muscovite, kaolinite, alunite, epidote, calcite, and chlorite resampled to ASTER
bandpasses (Mars and Rowan, 2006). ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer.
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spectra of muscovite, kaolinite, alunite, epidote, calcite, and chlorite resampled to ASTER
bandpasses. The broad phyllic zone is characterized by illite/muscovite (sericite) that yields
an intense Al�OH absorption feature centered at 2.20 µm, coinciding with ASTER band 6
(Fig. 2.65). The narrower argillic zone includes kaolinite and alunite, which collectively dis-
plays a secondary Al�OH absorption feature at 2.17 µm that corresponds with ASTER band
5 (Fig. 2.65). The mineral assemblages of the outer propylitic zone include epidote, chlorite,
and calcite that all exhibit absorption features situated in the 2.35 µm, which coincide with
ASTER band 8 (Fig. 2.65) (Mars and Rowan, 2006; Rowan et al., 2006; Hecker et al., 2010).

The differentiation between the hydrothermal alteration zones and especially targeted
identification of the phyllic zone is important in the exploration of porphyry copper minerali-
zation because phyllic zone is an indicator of the high-economic potential for copper miner-
alization within the central shell of mineralization (Lowell and Guilbert, 1970). This
alteration zone normally overprints the potassic and chlorite�sericite assemblages, which
are the main and common ore contributors to the porphyry copper mineralization system
(Dilles and Einaudi, 1992; Sillitoe, 2010). The Fe31 absorption features of the supergene
minerals, limonite, goethite, and hematite (limonite-rich rocks) are a potential indicator of
supergene deposits (Rowan et al., 1974; Schmidt, 1976; Krohn et al., 1978; Raines, 1978).
Multispectral and hyperspectral sensors have been used for mapping hydrothermally altered
rocks associated with porphyry copper deposits. Although hyperspectral detectors have more
limited coverage (swath width) compared to multispectral sensors, hyperspectral detectors
(i.e., HyMap and AVIRIS) have much higher spectral resolution than multispectral sensors
(i.e., ASTER and Landsat TM) and can map a detailed variety of hydrothermal minerals asso-
ciated with porphyry copper deposits (Pour et al., 2021b).

Landsat TM and ETM1 bands 1�4 span the Fe31 absorption features of iron oxide/
hydroxide minerals. Band 7 (centered at the 2.20 µm) spans the Al�OH, Mg�OH, and CO3

absorption features associated with alunite, kaolinite, muscovite, epidote, chlorite, and cal-
cite. TM and ETM1 spectra of alunite, kaolinite, muscovite, and calcite show a lower reflec-
tance (absorption features) in band 7 compared with band 5 spectral reflectance features
due to Al�O�H and CO3 absorption. Thus the TM and ETM1 band ratio 5/7 typically has
been used to map advanced argillically, sericitically, and propylitically altered rocks associ-
ated with porphyry copper deposits (Abrams et al., 1983; Ott et al., 2006). Nonetheless,
because Landsat TM and ETM1 band 7 is the only band that spans all of the argillic, sericitic,
and propylitic SWIR absorption features, it is not capable of spectrally delineating the differ-
ent types of altered rocks.

Iron oxide/hydroxide mineral groups can be detected using three VNIR spectral bands of
ASTER. SWIR bands of ASTER have sufficient spectral resolution to illustrate different spec-
tral signatures for advanced argillic (alunite�kaolinite), sericitic (muscovite), propylitic (epi-
dote�chlorite�calcite), and supergene mineral assemblages. TIR bands of ASTER have
sufficient spectral resolution to delineate the quartz reststrahlen feature (Rowan and Mars,
2003). ASTER mineral maps from previous studies illustrate that structurally undeformed
porphyry copper deposits are typically characterized by circular to elliptical patterns of serici-
tically and advanced argillically-altered rocks (Mars and Rowan, 2006; Rowan et al., 2006; Di
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Tommaso and Rubinstein, 2007; Yousefi et al., 2021, 2022). Spectral resolution of AVIRIS
data is sufficient to map advanced argillic (alunite and kaolinite), sericitic (muscovite), and
propylitic (epidote, chlorite, and calcite) alteration minerals with AL�O�H, Fe, Mg�O�H
and CO3 absorption features (Berger et al., 2003; Cunningham et al., 2005; Chen et al., 2007).
High-altitude AVIRIS data have been used to map several concealed porphyry copper depos-
its in the Patagonia Mountains, Argentina (Berger et al., 2003).

2.12 Remote sensing structural analysis for mineral exploration
Geologic structures serve as reminders of significant Earth history events. Patterns in the
arrangement of rock inside the Earth are known as geologic structures. They can be of enormous
economic significance because of the fact that they frequently serve to concentrate deposits of
significant resources, such as metals and petroleum. Then, several studies of ore deposits world-
wide, such as porphyry ore deposits, volcanic massive sulfide (VMS) deposits, IOCG deposits,
skarn deposits, and epithermal deposits, have revealed that they are controlled by specific struc-
tural/lithological settings (Bark and Weihed, 2012; Joly et al., 2010; Zoheir and Emam, 2012; Hor,
1998; Blenkinsop and Doyle, 2014; Dalstra, 2014; Peng et al., 2019; Zhou et al., 2021; Santosh
and Groves, 2022; Kwak et al., 2022). Among the different types of structural controls on mineral-
ization, the most common are (1) expansion and contraction along faults/shear zones
(Micklethwaite et al., 2015; Kwak et al., 2022); (2) intersection of two synmineralization structures
(Robert et al., 1995; Robert and Kelly, 1987; Robert and Poulsen, 2001; Bark and Weihed, 2012;
Kwak et al., 2022); (3) intersection of faults/shear zones with highly competent and/or chemically
reactive rocks (Robert and Poulsen, 2001); (4) faults/shear zones along lithological contacts
between competent and less competent rocks (Bierlein et al., 2006; Micklethwaite et al., 2015;
Zoheir et al., 2019a,b,c); (5) areas dipping parallel to a stretch lineation and (Alsop and
Holdsworth, 2004; Alsop and Holdsworth, 2012; Alsop et al., 2021; Bons et al., 2012; Groves and
Santosh, 2021); and (6) fold limbs and hinge zones (Robert and Poulsen, 2001). Therefore explora-
tion and development of rock-hosted ore deposits at the regional, district, and orebody scales
depend heavily on structural geology.

It is possible to analyze and categorize fluid conduits and create genetic models for ore pro-
duction by determining the time of significant structural events in an ore region (Pour et al.,
2016; Pour and Hashim, 2017; Funedda et al., 2018; Abd El-Wahed et al., 2016; El-Wahed
et al., 2021; Cocco et al., 2022; Xie et al., 2022). The most useful applications of structural geol-
ogy involve defining and measuring the various constituent parts of the orebody, which may
then be directly used for ore reserve estimation, ground control, grade control, safety concerns,
and mine planning. Long-term strategic planning, economic analysis, and property ownership
are all directly applicable to the district- and regional-scale structural investigations. A thor-
ough understanding of the structural regulation of the mineralization processes is necessary
for the accurate identification, quantification, and utilization of ore deposits. This is especially
true for ores housed in polydeformed basements, where the superposition of many deforma-
tion periods highlights the complexity of the structural context. The formation of hydrothermal
ore deposits is highly dependent on structural controls (Funedda et al., 2018; Zoheir et al.,
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2019a,b,c; Xie et al., 2022). In crustal regions impacted by mineralizing events, they specify the
pattern, range, and modalities of fluid flow (Cathles, 1981; Ord et al., 2012; Lester et al., 2012;
Ingebritsen and Appold, 2012; Cocco et al., 2022). The prevalence of structural controls, in
which a frequently multiscale network of previously existing structural discontinuities in the
host rocks forms a preestablished plumbing system for circulation and entrapment of hydro-
thermal fluids, which depends on the tectonic regime in which the mineralizing phenomena
occur (Cocco et al., 2022).

Although it can have a significant influence on a successful exploration plan or resource recov-
ery, the analysis of the role of structures in determining mineralization or deposit form and stabil-
ity is frequently overlooked and is crucial for safe mine operation. By thoroughly comprehending
the structural system, including the fault network, the morphology of the faults, the strain (and
fractures) related to the faulting, and the development of structures through time, exploration for
deeply buried or blind deposits may be enhanced and costs lowered. By having a greater under-
standing of the fracture distribution and the risk of structures failing under specific pressures,
mining procedures like block caving may be better planned for. When there are numerous gen-
erations of mineralization, structural controls of ore deposits housed in polydeformed low-grade
metamorphic basements are sometimes difficult to identify, primarily because the connections
between structures and ore bodies are frequently unclear (Funedda et al., 2018). In fact, describ-
ing the deposit’s properties, its emplacement style, its age, and, consequently, its origin, requires
an accurate knowledge of the structural controls. Sometimes, the complexity of the tectonic struc-
tures prevents an understanding of the geometry of the ore bodies, which causes errors in min-
eral exploration, ore deposit appraisal, mine design, and even mineral exploitation. It can be
useful to know if the structural controls on ore deposits are “active,” or connected to tectonic
structures that are gradually evolving with mineralization, as opposed to “passive,” which is owing
to tectonic structures created before mineralization (Funedda et al., 2018; Xie et al., 2022).

Remote sensing data are commonly used to identify geological structures associated with
extensive shear belts, particularly in vast and rugged terrains. The innovative technologies in
remote sensing promoted the application of multispectral and SAR imagery for detailed
structural geology mapping (Pour et al., 2013, 2014, 2016; Pour and Hashim, 2017, 2017;
Pour and Hashim, 2014a,b, 2017; Zoheir et al., 2019a,b,c). Remote sensing satellite imagery
has a high capability of providing a synoptic view of geological structures, alteration zones,
and lithological units in metallogenic provinces. Typically, the application of multisensor sat-
ellite imagery can be considered a cost-efficient exploration strategy for prospecting orogenic
gold mineralization in transpression and transtension zones, which are located in harsh regions
around the world (Zoheir and Emam, 2014; Pour and Hashim, 2014a,b; Adiri et al., 2017; Pour
et al., 2018a,b; Zoheir et al., 2019a,b,c; Sheikhrahimi et al., 2019; El-Wahed et al., 2021).

2.13 Case studies
In this section, some of the most cited and recent studies that used remote sensing data as a
tool for mapping hydrothermal alteration zones, lithological units, and structural features for
ore minerals exploration were concisely reviewed and introduced to readers.
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Cudahy et al. (2001) evaluated the capacity of VNIR and SWIR subsystems of Hyperion
data for mineral mapping at Mount Fitton, South Australia. The Hyperion-derived mineral
map indicated spatially coherent mineral distributions consistent with the geology map as
well as superimposed alteration. The results showed the capability of Hyperion data and the
spectral power for mineral mapping, especially in SWIR bands. Hewson et al. (2001) simu-
lated the capability of the ASTER multispectral data for geologic and alteration mineral map-
ping in Mt Fitton, South Australia. This test site has been previously surveyed by visible-
shortwave hyperspectral AMS (HyMap), Thermal Infrared Multispectral Scanner (TIMS)
data, and several field campaigns collecting relevant spectral measurements. They applied
decorrelation stretch on simulated ASTER bands 3-2-1 to delineate drainage and vegetation,
and band 13-12-10 for the identification of quartz-rich areas. They also implemented the
MTMF method on the simulated ASTER SWIR bands to obtain spectrally unmixed end-
members related to the rich areas of hydrothermally alteration mineral assemblages. Their
results showed good accuracy with field spectral measurements and compared well with
HyMap and TIMS outputs that were collected previously for the study area.

Cudahy and Barry (2002) used MTMF method to Hyperion data that involved all available
bands with particular attention to the SWIR region (2000�2400 nm) for hydrothermal alter-
ation mapping at Panorama, Western Australia. They recognized two types of white mica
(Al-rich and Al-poor), chlorite and pyrophyllite. The resultant Hyperion-derived mineral
maps of white mica abundance and Al-chemistry were correlated well with the correspond-
ing HyMap white mica maps and the published geologic maps. Kruse et al. (2003) compared
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data with Hyperion for mineral
mapping in Cuprite, Nevada, and northern Death Valley, south-central California/Nevada,
USA. They used Hourglass hyperspectral imaging (HHI) analysis approach for processing the
data. Visual comparison of the Hyperion and AVIRIS mineral maps for both case studies
indicated that Hyperion generally identified similar minerals and produced similar mineral
mapping results to AVIRIS. However, the lower SNR of the Hyperion data in the SWIR region
has affected the ability to extract characteristic spectra and identify individual minerals.
Results established that the Hyperion SWIR (2.0�2.4 µm) data can be used to produce use-
ful mineralogic information. Hubbard et al. (2003) used ALI, Hyperion, and ASTER data for
alteration mineral mapping in the Central Andes between Volcan Socompa and Salar de
Liullaillaco located in the border region between Chile and Argentina. The comparison
between results revealed that ALI has a sufficient spectral resolution in the VNIR wavelength
range to discriminate several important ferric-iron oxide minerals. ASTER SWIR bands allow
key distinctions to be mapped between various clay and sulfate mineral types. Hyperion is
useful for calibrating ASTER and ALI data and can also be used for evaluating the mineral
mapping results. They concluded that the integration of ALI, ASTER, and Hyperion imagery
can be an effective technique for mapping a variety of minerals characteristic of hydrother-
mally altered rocks in remote areas of the earth, where available geologic and other ground
truth information is limited.

Rowan et al. (2003) evaluated the capability of the ASTER data for mapping the hydro-
thermally altered rocks and the unaltered country rocks in the Cuprite mining district in
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Nevada, USA. They used MF method for identifying the surface distribution of hydrothermal
alteration minerals. Their results indicated that spectral reflectance differences in the nine
bands of visible near-infrared through the SWIR (0.52�2.43 µm) can provide subtle spectral
information for discriminating main hydrothermal alteration mineral zones. They identified
a silicified zone, an opalized zone, an argillized zone, and the distribution of unaltered coun-
try rock units. Their results compared well with those obtained using Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) hyperspectral data. Rowan and Mars (2003) used
ASTER data for lithological mapping in Mountain Pass, California, USA. They applied RABD,
MF, and SAM methods for differentiating calcitic, granodioritic, gneissic, granitic, and quart-
zos rock units. The results showed good similarities between the patterns of the identified
rock units and the geologic map of the study area.

Cŕosta et al. (2003) used PCA on ASTER VNIR and SWIR bands to target key alteration
minerals associated with epithermal gold deposits in Los Menucos, Patagonia, Argentina. PCA
was applied to selected subsets of four ASTER bands according to the position of characteristic
spectral absorption features of key hydrothermal alteration mineral end-members such as alu-
nite, illite, smectite, and kaolinite in the VNIR and SWIR regions. Their results revealed that the
PCA technique can extract detailed mineralogical spectral information from ASTER data by pro-
ducing abundance images of selected minerals. Thus this technique can be used for identifying
hydrothermal alteration minerals associated with precious and base�metal deposits. Volesky
et al. (2003) distinguished the propylitic alteration zone and gossan associated with massive sul-
fide mineralization in host rocks by ASTER (4/2, 4/5, 5/6) band ratio images covering the
Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia. Hewson et al. (2005) gener-
ated “seamless” regional-scale maps of Al�OH and Mg�OH/carbonate minerals and ferrous
iron content from ASTER SWIR data, as well as a map of quartz content from ASTER TIR data
for the Broken Hill, Curnamona province of Australia.

Rowan et al. (2005) evaluated ASTER band ratio and RABD, MF, and SAM methods for
lithological mapping of the ultramafic complex in the Mordor Pound, NT, Australia. They
identified subtle and major spectral features useful for distinguishing and classifying felsic
and mafic�ultramafic rocks, alluvial�colluvial deposits, and quartzose to intermediate com-
position rocks from one another. The classification was based on spectral absorption features
of Al�OH and ferric-iron mineralogical groups for felsic rock, ferrous-iron, and Fe, Mg�OH
mineralogical absorption features for mafic�ultramafic rock in the ASTER VNIR1 SWIR
data. Additional Si�O spectral features were used to map more lithologic diversity within
ultramafic complex and adjacent rocks such as mafic-gneisses, felsic�gneisses, intermediate
composition rocks such as syenite and quartzite using ASTER TIR data. Ninomiya et al.
(2005) applied the quartz index (QI), carbonate index (CI), and mafic index (MI) to ASTER-
TIR “radiance-at-sensor” data for detecting the mineralogic or chemical composition of
quartzose, carbonate, and silicate rocks in Mountain Yushishan, China and Mountain Fitton,
Australia. These lithologic indices discriminated quartz, carbonate, and mafic�ultramafic
rocks, which were compatible well with published geologic maps and field observation. They
suggested that these lithologic indices can be one unified approach for lithological mapping
of the Earth, especially in arid and semiarid regions.
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Hubbard and Crowley (2005) used ALI, ASTER, and Hyperion data for mineral mapping
in a volcanic terrane area of the Chilen�Bolivian Altiplano. ASTER and ALI channels were
coregistered and jointed to produce a 13-channel reflectance cube spanning the visible to
SWIR radiation (0.4�2.4 µm). MNF transformation, pixel purity index (PPI), and n-dimen-
sional visualizer were applied to identify spectral end-members. SAM and LSU were applied
to map altered rocks using extracted spectral end-members. Results showed that the
Hyperion data were only marginally better for mineral mapping than the merged
ALI1ASTER datasets. Galvão et al. (2005) used the SAM method on the ASTER SWIR bands
to investigate the spectral discrimination of hydrothermally altered minerals in a tropical
savannah environment in the northern portion of Gious state, central Brazil. Their results
showed the efficacy of ASTER SWIR data in discriminating areas of altered minerals from the
surrounding vegetated environment.

Gomez et al. (2005) evaluated the nine ASTER bands for geological mapping in the
Western margin of the Kalahari Desert in Namibia. They applied PCA and supervised classifi-
cation on visible near-infrared and SWIR ASTER bands to identify lithological units. The pro-
cessing of ASTER data demonstrated the validation of the lithological boundaries defined on
the previous geological maps and also provided the information for characterizing new litho-
logical units, which were previously unrecognized. Kruse et al. (2006) used Hyperion and
AVIRIS data for district-level mineral surveying in the Los Menucos District, Rio Negro,
Argentina. Hourglass hyperspectral imaging (HIS) analysis approach has been applied to
detect hydrothermal alteration minerals associated with the epithermal gold system in the
study area. VNIR and SWIR bands of Hyperion and AVIRIS were analyzed to identify iron
oxides, clay minerals, and carbonates. Hematite, goethite, dickite, alunite, pyrophyllite, mus-
covite/sericite, montmorillonite, calcite, and zeolites were identified in the study area using
Hyperion and AVIRIS data. Field reconnaissance verification and spectral measurements
showed the accuracy of hyperspectral mapping results.

Rowan et al. (2006) identified the distribution of hydrothermally altered rocks consisting
of phyllic, argillic, and propylitic alteration zones based on spectral analysis of VNIR1 SWIR
ASTER bands. Additional hydrothermally silicified rocks were mapped using TIR ASTER
bands covering the Reko Diq, Pakistan Cu�Au mineralized area. In a follow-up study, Mars
and Rowan (2006) developed logical operator algorithms based on ASTER-defined band
ratios for regional mapping of phyllic and argillic altered rocks in Zagros magmatic arc, Iran.
The logical operator algorithms were used to illustrate distinctive patterns of argillic and
phyllic alteration zones associated with Eocene to Miocene intrusive igneous rocks, as well
as known and undiscovered porphyry copper deposits. Numerous high-potential areas of
porphyry copper and epithermal or polymetallic vein-type mineralization were identified
based on argillic and phyllic alteration patterns in the study area.

Ducart et al. (2006) applied MTMF method to ASTER SWIR data to provide regional and
local information on the spatial distribution of hydrothermal alteration zones associated with
epithermal gold mineralization at the Somún Curá Massif, Patagonia, Argentina. Three major
areas of alteration were clearly recognized: Cerro La Mina, Cerro Abanico, and Aguada de
Guerra. They identified alteration zones such as advanced argillic, argillic, and silicic with
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satisfactory correlation with their field spectroscopy data. Zhang and Pazner (2007) employed
MF method to EO-1 Hyperion and ASTER data to extract abundance images for gold-
associated lithological mapping in southeastern Chocolate Mountain, California, USA. The
assessment of MF score index indicated that the ASTER data have good capability in the dis-
crimination and classification of rock types. Although the Hyperion data can produce better
accuracy than ASTER data, the lithologic information extracted from ASTER image data is
mostly similar to Hyperion results. The better availability and vast spatial coverage of ASTER
data make it more suitable for regional-scale lithological mapping. Di Tommaso and
Rubinstein (2007) used band ratios, certain color band combinations, and the SAM method
for mapping hydrothermal alteration minerals associated with Infiernillo porphyry copper
deposit using ASTER data covering the San Rafael Massif, southern Mendoza Province,
Argentina. They detected illite, kaolinite, sericite, and jarosite through spectral analysis of
SWIR bands, and surface silica and potassic alteration using ASTER TIR bands.

Gad and Kusky (2007) resolved geological mapping problems by using new ASTER band
ratio images 4/7, 4/6, and 4/10 for lithological mapping in the Arabian�Nubian Shield, the
Neoproterozoic Wadi Kid area, Sinai, Egypt. These ASTER band ratios mapped the main
rock units consisting of gneiss and migmatite, amphibolite, volcanogenic sediments with
banded iron formation, metapelites, talc schist, metapsammites, metaacidic volcanics, meta-
pyroclastics volcaniclastics, albitites, and granitic rocks. Zhang et al. (2007) evaluated ASTER
surface reflectance (AST-07) data for gold-related lithologic mapping and alteration mineral
detection in the south Chocolate Mountains area, CA, USA. They applied PCA transformation
to mineralogic indices, including the OH-bearing altered mineral Index (OHI), kaolinite
index (KLI), alunite index (ALI), and calcite index (CLI) for delineating alteration zones. The
CEM technique (a subpixel unmixing algorithm) was used to detect alunite, kaolinite, mus-
covite, and montmorillonite fractional abundances using ASTER VNIR and SWIR surface
reflectance data and reference spectra from the ASTER spectral library (Baldridge et al.,
2009). Moghtaderi et al. (2007) used ASTER data for distinguishing sodic�calcic, potassic,
and silicic�phyllic alteration patterns associated with hydrothermal iron oxide deposits in
the Chadormalu paleocrater, Bafq region, Central Iran. The alteration minerals were identi-
fied by using false color composite (FCC), decorrelation-stretch, MNF transform, correlated
filter, and mathematical evaluation method (MEM) to ASTER data.

Kruse and Perry (2007) integrated ASTER multispectral data with the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion hyperspectral data to extend
hyperspectral signatures to regional scales mineral mapping and environmental monitoring
in northern death-valley, south-central California/Nevada, USA. The AIG-Developed hyper-
spectral analysis approach was applied to ASTER data. Their results indicated that the AIG
methods are not only a way to analyze hyperspectral data but can achieve accurate results
when selectively employed on ASTER multispectral data. Moreover, AIG methods can also
provide a consistent way to extract spectral information from hyperspectral and multispectral
data without prior knowledge or requiring ground observations. Rockwell and Hofstra (2008)
used ASTER TIR emissivity data for identifying quartz and carbonate minerals in northern
Nevada, USA. A QI and a CI were implemented using ASTER Level-2 surface emissivity
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(Level-2B04) data for geologic mapping and mineral resource investigations. They concluded
that mapping hydrothermal quartz and carbonate rocks at regional and local scales have
considerable economical attention for ore deposit exploration because these rocks can host
rock a wide range of metallic ore deposit types.

Gersman et al. (2008) identified hydrothermally altered rocks and a Percambrian meta-
morphic sequence at and around the Alid volcanic dome, at the northern Danakil
Depression, Eritrea using Hyperion data. They discriminated the different types of rock
groups by using unsupervised and supervised classification approaches. The ability of the
Hyperion to detect ammonium spectral signatures was reported. The existence of ammo-
nium in hydrothermally altered rocks within the Alid dome has been confirmed by previous
studies. Amer et al. (2010) suggested new ASTER band ratios (21 4)/3, (51 7)/6, and
(71 9)/8 for mapping ophiolitic rocks (serpentinites, metagabbros, and metabasalts) in the
Central Eastern Desert of Egypt. PCA was also applied for discriminating between ophiolitic
rocks and gray granite and pink granite. The achieved results from field works verified the
accuracy and potential of these methods for lithological mapping in arid and semiarid
regions. Aboelkhair et al. (2010) used ASTER Level-1B “radiance-at-sensor” and Level-2B04
“surface emissivity” TIR bands for mapping albite granite in the Central Eastern Desert of
Egypt. Running band ratio, band combinations, and QI allowed the discrimination of albite
granite from the other rock types in the study area.

Gabr et al. (2010) detected areas of high potential gold mineralization using ASTER sur-
face reflectance (AST-07) data covering Abu Marawat, North-Eastern Desert of Egypt.
Spectral discrimination between high-potential and low-potential areas of gold mineraliza-
tion was recognized by using PCA-transformed mineral indices, color ratio images (e.g., 4/8,
4/2, 8/9 displayed as RGB), CEM, and SAM methods. The results of their field investigations
proved the accuracy of their image-processing results. Mars and Rowan (2010) assessed two
new ASTER SWIR surface reflectance data products, namely, RefL1b and AST-07XT for a
spectroscopic mapping of rocks and minerals. Their results indicated that the new ASTER
products are more capable than previous ASTER products for discriminating hydrothermal
alteration minerals and mineral groups without the use of additional spectral data from the
site for calibration. Mars and Rowan (2011) used ASTER Level-1B “radiance-at-sensor” data
for lithologic mapping of the Khanneshin carbonatite volcano, southwest of Kandahar,
Afghanistan. They used false-color composite image, band ratio, logical operator algorithms,
and MF methods to VNIR-SWIR and TIR bands of ASTER. Quaternary carbonate rocks within
the volcano were identified and discriminated from Neogene ferruginous polymitic and argil-
lite rocks. Their results showed the distribution of calcitic and ankeritic carbonatites, agglom-
erates, contact metamorphosed rocks, argillic and sandstone, and iron-rich sandstone using
VNIR-SWIR bands. Widespread silica and carbonate rocks, mafic-rich rock, and sediment
were identified using TIR bands. Results provided an image-based map of rocks and miner-
als that are consistent with the available geologic map of the study area.

Bishop et al. (2011) used Hyperion and ASTER data for mineral mapping in the Pulang,
Yunnan Province, China. They used ASTER data to locate target areas characterized by hydro-
thermal alteration minerals and Hyperion data for detailed mineral mapping. PCA and band
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ratioing methods were applied to ASTER data to detect target areas characterized by argillic
alteration, iron oxides, and sulfate minerals. SAM and MTMF were implemented on Hyperion
data to discriminate mineral species in the target areas. Iron oxide minerals consisting of
hematite, goethite, limonite, and jarosite were detected using VNIR bands of Hyperion.
Sericite, kaolinite, montmorillonite, muscovite, and illite were discriminated using SWIR bands
of Hyperion. Results indicated that the combination of multispectral and hyperspectral data
can be advantageous for mineral exploration in remote areas with limited or unavailable pri-
mary information. Ranjbar et al. (2011) evaluated the ASTER, ETM1, and airborne magnetic-
radiometric data for hydrothermal alteration mapping at the Sar Cheshmeh porphyry copper
deposit, in southeastern Iran. They used PCA, band ratio, and the SAM methods to map
hydrothermally altered rocks. The results showed that ASTER SWIR�derived images enhanced
hydrothermally altered rocks using PCA (PCs 2 and 3) and band ratios (4/9 and 7/6) methods.
SAM classification image detected sericite, chlorite, and calcite with a total accuracy of 71.3%.
ETM1 data were used to enhance iron oxide-rich areas using the PC5 image. The potassic
alteration was recognized well using airborne magnetic-radiometric data.

Haselwimmer et al. (2011) used ASTER data for lithological mapping in the Oscar Coast
area, Graham Land, Antarctic Peninsula. MF method was applied to ASTER Level-1B and the
standard TIR emissivity (AST05) data to discriminate the major lithologic groups within the
study area as well as delineation of hydrothermal alteration zones. The results have shown
the discrimination of most of the major lithologic units, and the delineation of propylitic and
argillic alteration zones associated with volcanic rocks. The outcomes have enabled impor-
tant revisions to the existing geological map of the study area. Bedini (2011) used ASTER and
HyMap data for mineral and lithological mapping in the Kap Simpson complex, central East
Greenland. MF algorithm was applied to map jarosite, ferric oxides, and Al�OH clays miner-
als using ASTER VNIR/SWIR data. Lithological units have been identified by applying a color
composite of the ASTER TIR bands. The integration of the results with HyMap data produced
useful information for mineral exploration activities in the Arctic regions of central East
Greenland. Amer et al. (2012) used ASTER data for mapping lithology and gold-related alter-
ation zones in the Um Rus area, Central Eastern Desert of Egypt. They applied PCA and
band ratioing on VNIR1 SWIR bands of ASTER to discriminate lithological units. SAM and
Spectral Information Divergence (SID) classification methods were used to detect alteration
minerals consisting of sericite, calcite, and clay minerals associated with mineralized grano-
diorite. Their field verification work indicated that the image-processing methods were capa-
ble of lithological and alteration mineral mapping. Zoheir and Emam (2012) used band
ratioing, PCA, false-color composition (FCC), and frequency filtering (FFT-RWT) of ASTER
and ETM1 data to improve the visual interpretation for detailed mapping of the Gebel Egat
area in South Estern Desert of Egypt. By compiling field, petrographic and spectral data, con-
trols on gold mineralization have been assessed in terms of the association of gold lodes
with particular lithological units and structures.

Pour and Hashim (2014a) used PALSAR data for structural geology mapping in the Bau
gold mining district, Sarawak, Malaysia. Geological analyses combined with the PALSAR data
were used to detect structural elements associated with gold mineralization. The PALSAR
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data were used to perform lithological�structural mapping of mineralized zones in the study
area and surrounding terrain. Structural elements were detected along the SSW to NNE trend
of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the
gold mineralization in the Bau Limestone. Most of quartz�gold-bearing veins occur in high-
angle faults, fractures, and joints within massive units of the Bau Limestone. The results
show that four deformation events (D1�D4) in the structures of the Bau district and structur-
ally controlled gold mineralization indicators, including faults, joints, and fractures, are
detectable using PALSAR data at both regional and district scales. Pour et al. (2016) investi-
gated the Bentong-Raub Suture Zone (BRSZ) of Peninsular Malaysia using PALSAR remote
sensing data for sediment-hosted/orogenic gold mineral systems exploration. Major struc-
tural lineaments such as the Bentong-Raub Suture Zone (BRSZ) and Lebir Fault Zone, duc-
tile deformation related to crustal shortening, brittle disjunctive structures (faults and
fractures), and collisional mountain range (Main Range granites) were detected and mapped
at regional scale using PALSAR ScanSAR data. Gold-mineralized trend lineaments are associ-
ated with the intersection of N�S, NE�SW, NNW�SSE, and ESE�WNW faults and curvilin-
ear features in shearing and alteration zones. Compressional tectonic structures such as the
NW�SE trending thrust, ENE�WSW-oriented faults in mylonite and phyllite, recumbent
folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in
the Central Gold Belt of Peninsular Malaysia.

Ahmadirouhani et al. (2018) integrated the information extracted from SPOT-5 and
ASTER data, field and mineralogy studies to map phyllic alteration zone associated with
NW�SE structural fractures to explore Cu�Fe�Au vein-type mineralization in the Bajestan
region, the Lut block, east Iran. The fractal pattern was calculated for the fractures map using
the Box-Counting algorithm to the SPOT-5 data. Statistical parameters of fractures, such as
density, intensity, and fractures’ intersection were also determined. Band composition, spe-
cialized band ratio, and SAM classification methods were implemented in the ASTER dataset
for detecting hydrothermal alteration zones, such as propylitic, phyllic, argillic, and gossan.
Results indicate that the maximum value of the fractal dimension, intensity, density, and the
intersection of the fractures are concentrated in the NW and SE parts of SPOT image maps.
On the other hand, phyllic alteration zone containing sericite, alunite, kaolinite, and jarosite
mineral assemblages was also identified in several zones of the NW and SE parts of the
ASTER image maps. Integration of the results indicates the high potential zones for the
occurrence of Cu�Fe�Au mineralization in the Bajestan region.

Pour et al. (2018b) used Landsat 8, PALSAR, and ASTER data for exploring zinc in the
trough sequences and shelf-platform carbonate of the Franklinian Basin, North Greenland.
A series of robust image-processing algorithms were implemented for detecting the spatial
distribution of pixels/subpixels related to key alteration mineral assemblages and structural
features that may represent potential undiscovered Zn�Pb deposits. Fusion of directed PCA
(DPCA) and ICA was applied to some selected Landsat 8 mineral indices for mapping gos-
san, clay-rich zones, and dolomitization. Major lineaments, intersections, curvilinear struc-
tures, and sedimentary formations were traced by the application of feature-oriented
principal components selection (FPCS) to cross-polarized backscatter PALSAR ratio images.
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MTMF algorithm was applied to ASTER VNIR/SWIR bands for subpixel detection and classi-
fication of hematite, goethite, jarosite, alunite, gypsum, chalcedony, kaolinite, muscovite,
chlorite, epidote, calcite, and dolomite in the prospective targets. Several high-potential
zones characterized by distinct alteration mineral assemblages and structural fabrics were
identified.

Sheikhrahimi et al. (2019) mapped hydrothermal alteration zones and lineaments associ-
ated with orogenic gold mineralization in the Sanandaj-Sirjan Zone, Iran using ASTER data.
Image transformation techniques such as specialized band ratioing and PCA are used to
delineate lithological units and alteration minerals. Supervised classification techniques,
namely, SAM and spectral information divergence (SID) are applied to detect subtle differ-
ences between indicator alteration minerals associated with ground-truth gold locations in
the area. The directional filtering technique is applied to help in tracing the strike of the dif-
ferent linear structures. The structural intersections that are associated with zones rich in jar-
osite, epidote, chlorite, hematite, and muscovite are considered the high-potential zones in
the study area.

Pour et al. (2019a) used Landsat 8, ASTER, and WorldView-3 data for hydrothermal alter-
ation mapping and prospecting copper�gold mineralization in the Northeastern Inglefield
Mobile Belt (IMB), Northwest Greenland. DPCA technique was applied to map iron oxide/
hydroxide, Al/Fe�OH, Mg�Fe�OH minerals, silicification (Si�OH), and SiO2 mineral
groups using specialized band ratios of the multispectral datasets. For extracting reference
spectra directly from the Landsat 8, ASTER, and WorldView-3 data s to generate fraction
images of end-member minerals, the automated spectral hourglass (ASH) approach was
implemented. LSU algorithm was thereafter used to produce a mineral map of fractional
images. Furthermore, the ACE algorithm was applied to the VINR1 SWIR bands of ASTER
using laboratory reflectance spectra extracted from the USGS spectral library for verifying the
presence of mineral spectral signatures. Results indicate that the boundaries between the
Franklinian sedimentary successions and the Etah metamorphic and metaigneous complex,
the orthogneiss in the northeastern part of the Cu�Au mineralization belt adjacent to Dallas
Bugt, and the southern part of the Cu�Au mineralization belt nearby Marshall Bugt show a
high content of iron oxides/hydroxides and Si�OH/SiO2 mineral groups, which warrant high
potential for Cu�Au prospecting.

Pour et al. (2019b) used ASTER data to detect listvenite occurrences and alteration min-
eral assemblages in the poorly exposed damage zones of the boundaries between the
Wilson, Bowers, and Robertson Bay terranes in Northern Victoria Land (NVL), Antarctica.
Spectral information for detecting alteration mineral assemblages and listvenites were
extracted at pixel and subpixel levels using PCA/ICA fusion technique, LSU, and CEM algo-
rithms. Mineralogical assemblages containing Fe21, Fe31, Fe�OH, Al�OH, Mg�OH, and
CO3 spectral absorption features were detected. Silicate lithological groups were mapped
and discriminated using PCA/ICA fusion to TIR bands of ASTER. Fraction images of prospec-
tive alteration minerals, including goethite, hematite, jarosite, biotite, kaolinite, muscovite,
antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite, and siderite and
possible zones encompassing listvenite occurrences were produced. Several potential zones
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for listvenite occurrences were identified, typically in association with mafic metavolcanic
rocks (Glasgow Volcanics) in the Bowers Mountains.

Pour et al. (2019c) investigated the applications of Landsat 8 and ASTER data to extract
geological information for lithological and alteration mineral mapping in poorly exposed
lithologies located in inaccessible regions of the northeastern Graham Land, Antarctic
Peninsula (AP). In this study, a two-stage methodology was implemented to differentiate
pixel and subpixel targets in the satellite images. In the first stage, the CR spectral mapping
tool and ICA techniques were applied to Landsat 8 and ASTER spectral bands to map the
pixels related to poorly exposed lithological units. The second step was accomplished based
on the application of target detection algorithms such as CEM, orthogonal subspace projec-
tion (OSP), and ACE to SWIR bands of ASTER for detecting spectral features attributed to
alteration mineral assemblages at the subpixel level. Pixels composed of distinctive absorp-
tion features of alteration mineral assemblages and Si�O bond emission minima features
were detected by applying the CR mapping tool to reflective and thermal bands of Landsat 8
and ASTER. Anomaly pixels related to spectral features of Al�O�H, Fe, Mg�O�H, and CO3

groups as well as lithological attributions from felsic to mafic rocks were detected by the
implementation of the ICA technique to reflective and thermal bands of Landsat 8 and
ASTER. ICA method provided image maps of alteration mineral assemblages and lithological
units (mafic to felsic trend) for poorly mapped and/or unmapped regions. A fractional abun-
dance of alteration minerals, such as muscovite, kaolinite, illite, montmorillonite, epidote,
chlorite, and biotite, were detected in poorly exposed lithologies using target detection algo-
rithms. Several prospecting areas for Cu, Mo, Au, and Ag mineralization related to propylliti-
cally and argillically altered units of Andean Intrusive Suite (AIS) were identified in the
southern sector of the study region.

Zoheir et al. (2019a) used Sentinel-1, PALSAR, ASTER, and Sentinel-2 datasets to explicate
the regional structural control of gold mineralization in the Barramiya�Mueilha area in the
Central Eastern Desert of Egypt. Feature-oriented Principal Components Selection (FPCS)
applied to polarized backscatter ratio images of Sentinel-1 and PALSAR datasets show appre-
ciable capability in tracing along the strike of regional structures and identification of poten-
tial dilation loci. The PCA, band combination, and band ratioing techniques were applied to
the ASTER and Sentinel-2 datasets for lithological and hydrothermal alteration mapping.
Results demonstrated that gold occurrences are confined to major zones of fold superimposi-
tion and transpression along flexural planes in the foliated ophiolite-island arc belts. The
radar and multispectral satellite data abetted a better understanding of the structural frame-
work and unraveled settings of the scattered gold occurrences in the study area.

Zoheir et al. (2019b) used ASTER, Sentinel-2, Sentinel-1, and PALSAR remote sensing
data for interpreting the setting and controls of gold-bearing quartz veins in the central part
of the greater Wadi Allaqi district in the South Eastern Desert of Egypt. The ASTER
VNIR1 SWIR band combinations and band rationing techniques were used to enhance the
spectral differences between bands and to enable detailed lithological mapping. The
Sentinel-2 data promote lithological mapping of the gold mine areas. Band combinations
and ratios of Sentinel-2 were used for discriminating the rock units and delineating the

Chapter 2 • Remote sensing for mineral exploration 123



mineralized alteration zones. The Sentinel-1 and PALSAR data have significantly enhanced
structural mapping and lineaments extraction. Zoheir et al. (2019c) used Landsat 8, ASTER,
PALSAR, and Sentinel-1B data coupled with field and microscopic investigations to unravel
the setting and controls of gold mineralization in the Wadi Beitan�Wadi Rahaba area in the
South Eastern Desert of Egypt. Band rationing, RABD, PCA, ICA, directional filtering, and
automated and semiautomated lineament extraction techniques were implemented. The
results reveal no particular spatial association between gold occurrences and certain litholog-
ical units but show a preferential distribution of gold�quartz veins in zones of chlori-
te�epidote alteration overlapping with high-density intersections of lineaments.

Takodjou Wambo et al. (2020) used Landsat 8 and ASTER remote sensing data to identify
and map high potential zones of gold mineralization in the Ngoura-Colomines goldfield,
eastern Cameroon a subtropical region. The PCA, ICA, and specialized spectral band ratios
were used to extract spectral information related to vegetation, iron oxide/hydroxide miner-
als, Al�OH, Fe�Mg�OH, carbonate group minerals, and silicification. The LSU algorithm
was implemented to ASTER VNIR1 SWIR bands for detailed discrimination of hematite, jar-
osite, kaolinite, muscovite, chlorite, and epidote at the district scale. The ASH technique was
employed to extract reference spectra directly from the ASTER bands for producing fraction
images of end-members using the LSU. Several hydrothermal alteration zones of iron oxide/
hydroxide, clay, carbonate minerals, and silicification zones were identified, and high-
potential prospects were also delineated, including the Ngoura-Colomines prospects and the
newly discovered Yangamo-Ndatanga and Tapare-Tapondo prospects.

Sekandari et al. (2020) integrated Landsat 8, Sentinel-2, ASTER, and WorldView-3 datasets
were used for prospecting Zn�Pb mineralization in the central part of the Kashmar�Kerman
Tectonic Zone (KKTZ), the Central Iranian Terrane (CIT). Band ratios and PCA techniques
were adopted and implemented. Fuzzy logic modeling was applied to integrate the thematic
layers produced by image processing techniques for generating mineral prospectivity maps
of the study area. The most favorable/prospective zones for hydrothermal ore mineraliza-
tions and carbonate-hosted Pb�Zn mineralization in the study region were particularly
mapped and indicated. Ngassam Mbianya et al. (2021) used VNIR and SWIR bands of
Landsats 8 and 7 (ETM1 ) images and field data for lineaments and hydrothermal altera-
tions mapping in tropical mining goldfield of Ketté in Cameroon. PCA, MNF transformation,
and band ratios were applied to map alteration minerals. The result revealed NE�SW to
ENE�WSW main trends. Gold mineralization occurrences are spatially associated with
WNW�ESE to NW�SE lineaments/faults and show a strong correlation with medium-to-
high lineament density zones. Hydrothermal alteration minerals are spatially associated
closely with gold occurrences and known mining sites that are structurally controlled by the
NE�SW to ENE�WSW shear zone.

Ishagh et al. (2021) used Landsat 8 and ASTER data to map lithological units and alter-
ation minerals, aiming at uranium exploration in the Bir Lemjed area of the eastern
Paleoproterozoic domain, the Reguibat Shield, north Mauritania. Band ratios, PCA, MNF,
and maximum likelihood classification were exclusively applied to Landsat 8 data for map-
ping lithological units and alteration zones in the study area. Besides, specialized band ratios
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and LSU algorithm were executed to ASTER VNIR1 SWIR bands to detect alteration miner-
als, particularly. Some zones contain a high surface abundance of iron oxides, and Mg,
Fe�OH, and CO3 minerals were identified, which are typically associated with calcrete
deposits in the study area. Abd El-Wahed et al. (2021) processed Landsat 8 OLI, ASTER, and
PALSAR remote sensing data using band combinations, BM, PCA, decorrelation stretch and
mineralogical indices for identification of shear-related gold ores in the Wadi Hodein Shear
Belt, South Eastern Desert of Egypt. Gold-mineralized shear zones cut heterogeneously
deformed ophiolites and metavolcaniclastic rocks and attenuate in and around granodioritic
intrusions. Shallow NNW- or SSE-plunging mineral and stretching lineations on steeply dip-
ping shear planes depict a considerably simple shear component. The results of image-
processing complying with field observations and structural analyses suggest that the coinci-
dence of shear zones, hydrothermal alteration, and crosscutting dikes in the study area could
be considered a model criterion in the exploration of new gold targets.

Guha et al. (2021) evaluated the potential of Airborne Hyperspectral AVIRIS-NG Data for the
exploration of base-metal deposits in Bhilwara, Rajasthan. The spectral bands of AVIRIS-NG data
were processed for delineating the surface signatures associated with the base�metal minerali-
zation. The FCCs of different RBD images were used for delineating alteration minerals. These
minerals are typically associated with the surface alteration resulting from the ore-bearing fluid
migration or associated with the redox-controlled supergene enrichments of the ore deposit. The
results show that the AVIRIS-NG image can delineate surface signatures of mineralization in
1:10,000 to 1:15,000 scales to narrow down the targets for detailed exploration.

Pour et al. (2021a,b) evaluated the capability of ASTER data for mapping and discrimina-
tion of phyllosilicate mineral groups in the Antarctic environment of northern Victoria Land.
The MTMF and CEM algorithms were used to detect the subpixel abundance of Al-rich,
Fe31-rich, Fe21-rich, and Mg-rich phyllosilicates using VNIR, SWIR, and TIR bands of
ASTER. Results indicate that Al-rich phyllosilicates are strongly detected in the exposed out-
crops of the Granite Harbour granitoids, Wilson Metamorphic Complex, and the Beacon
Supergroup. The presence of the smectite mineral group derived from the Jurassic basaltic
rocks (Ferrar Dolerite and Kirkpatrick Basalts) by weathering and decomposition processes
implicates Fe31- and Fe21-rich phyllosilicates. Biotite (Fe21-rich phyllosilicate) is detected
associated with the Granite Harbour granitoids, Wilson Metamorphic Complex, and
Melbourne Volcanics. Mg-rich phyllosilicates are mostly mapped in the scree, glacial drift,
moraine, and crevasse fields derived from weathering and decomposition of the Kirkpatrick
Basalt and Ferrar Dolerite. Chlorite (Mg-rich phyllosilicate) was generally mapped in the
exposures of Granite Harbour granodiorite and granite and partially identified in the Ferrar
Dolerite, the Kirkpatrick Basalt, the Priestley Formation, and Priestley Schist and the scree,
glacial drift, and moraine. Ground truth with detailed geological data, petrographic study,
and XRD analysis verified the remote sensing results. Consequently, an ASTER image map of
phyllosilicate minerals is generated for the Mesa Range, Campbell, and Priestley Glaciers,
northern Victoria Land of Antarctica.

Sekandari et al. (2022) used ASTER and WorldView-3 datasets for mapping lithological
units and hydrothermal alteration zones associated with Pb�Zn mineralization in the
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Kerman�Kashmar Tectonic Zone (KKTZ), Iran. The VNIR, SWIR, and TIR bands of ASTER
were used to map iron oxide/hydroxides, Al�OH minerals, Fe, Mg�OH minerals, quartz,
and carbonate minerals. The VNIR bands of WV-3 were used to discriminate Fe31 and Fe21

absorption intensities. Selective PCA (SPCA), SAM, LSU, and Automatic Lineament
Extraction techniques were implemented. Lithological units were discriminated based on Al/
Fe�OH, Fe21/Fe31, and Mg�Fe�OH/CO3 absorption properties. The spatial distribution of
hematite, goethite, jarosite, gypsum, calcite, dolomite, kaolinite, and muscovite were com-
prehensively detected. Some prospective zones were identified in the intersection of N�S,
NW�SE, and NE�SW trending fault systems, gossan, argillic/phyllic, and dolomitic units.

Yousefi et al. (2022) evaluated Hyperion data to map alteration zones of porphyry copper
systems using the Dirichlet process Stick-Breaking model-based clustering algorithm. The
DPSB clustering algorithm was implemented and subsequently compared with the k-means
algorithm, CLARA clustering, hierarchical clustering, Gaussian finite mixture model (GFMM),
Gaussian model for high-dimensional (GMHD), and spectral clustering as well as spectral
angle mapping (SAM). Results derived from the DPSB model-based clustering algorithm
show 88.6% accuracy in distinguishing propylitic, argillic, advanced argillic, propylitic�argil-
lic, and phyllic alteration zones. Maleki et al. (2022) integrated ASTER remote sensing data
with geological, structural, geophysical, and geochemical datasets for gold prospectivity map-
ping in the Godarsorkh area, Central Iran. The evidential belief functions (EBFs) algorithm
was executed to fuse the evidential layers. Results show that the orogenic gold mineralization
occurred in shear zones, which are mainly controlled by tectonic structures. Therefore ana-
lyzing the structural features can be considered a key feature for identifying potential oro-
genic gold mineralization zones in the study area.

Shirazi et al. (2022) developed the neuro-fuzzy-AHP (NFAHP) technique for fusing
ASTER alteration mineral image maps, lithological map, geochronological map, structural
map, and geochemical map to identify high-potential zones of VMS copper mineralization in
the Sahlabad mining area, east Iran. Argillic, phyllic, propylitic, and gossan alteration zones
were identified in the study area using band ratio and SPCA methods implemented to
ASTER VNIR and SWIR bands. For each of the copper deposits, old mines, and mineraliza-
tion indices in the study area, information related to exploration factors such as ore minerali-
zation, host-rock lithology, alterations, geochronological, geochemistry, and distance from
high-intensity lineament factor communities were investigated. Subsequently, the predictive
power of these factors in identifying copper occurrences was evaluated using Back propaga-
tion neural network (BPNN) technique. The BPNN results demonstrated that using the
exploration factors, copper mineralizations in the Sahlabad mining area could be identified
with high accuracy. Lastly, using the fuzzy-analytic hierarchy process (fuzzy-AHP) method,
information layers were weighted and fused. As a result, a potential map of copper minerali-
zation was generated, which pinpointed several high-potential zones in the study area.

Aali et al. (2022) fused Sentinel-2 and Landsat 7, aerial magnetic geophysical data, and
geological data for identifying polymetallic mineralization potential zones in the Chakchak
region, Yazd province, Iran. Hydrothermal alteration mineral zones and surface and deep
intrusive masses, hidden faults and lineaments, and lithological units were detected using

126 Geospatial Analysis Applied to Mineral Exploration



remote sensing, aerial magnetic, and geological data, respectively. The exploratory/informa-
tion layers were fused using fuzzy logic modeling and the multi-class index overlap method.
Subsequently, mineral potential maps were generated for the study area. Some high-
potential zones of polymetallic mineralization were identified and verified through a detailed
field campaign and drilling programs in the Chakchak region.
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3.1 The geographical information system toolbox for
mineral exploration

3.1.1 Introduction

Despite numerous applications of geographical information system (GIS) in earth sciences
and mineral exploration, ranging from visualization to manipulation of geoscientific data-
bases, this chapter focuses on predicting the location of both known and unknown mineral
deposits using a GIS. In mineral exploration, different datasets gathered from diverse sources
(i.e., geochemical, geophysical, geological, and remotely sensed datasets) should be man-
aged and integrated into predictive models that show the probability of discovering new
mineral deposits of a certain type. This process is often referred to as mineral prospectivity
modeling/mapping (MPM). Since laying the foundations of MPM by Bonham-Carter and
Agterberg (1990), there have been many studies and/or reviews explaining the fundamentals
and advances of GIS-based MPM (e.g., Carranza, 2008; Zuo, 2020). This chapter further sum-
marizes the main aspects of MPM from the authors’ point of view.

A geological framework describing certain types of mineral deposits, a GIS for managing
and manipulating the spatial datasets gathered from different sources, and mathematical fra-
meworks, including numerical and machine-learning techniques, for generating predictive
models constitute the building blocks of MPM. A geological framework helps determine a
suite of predictive variables that are used for modeling. Here, predictive variables, or the so-
called evidence layers, are a set of spatially modeled exploration targeting vectors that
describe certain features of a mineral deposit type or processes involved in the formation,
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deposition, and preservation of ore deposits. A GIS is employed to visualize and manipulate
these variables. Mathematical frameworks are then used for integrating these variables into
predictive models of mineral prospectivity.

Initially, a general description of GIS is given in this chapter, followed by describing
the geological framework commonly employed in MPM. Then, two major categories of
mathematical frameworks, including conceptual and empirical methods, are discussed. The
final section describes a GIS-based predictive model of porphyry copper exploration in
Central Iran.

3.2 Geographical information system
As discussed in the introduction, a GIS is used to generate, visualize, and manipulate predic-
tive variables derived from geochemical, geophysical, geological, drilling, and remote sensing
datasets, helping determine areas with commonalities in geophysical, geochemical, and geo-
logical anomalies. Given the definition mentioned earlier, one should select a unique cell
size for all predictive variables, and the GIS is then used to overlay the variables. Several fac-
tors contribute to selecting a suitable unit cell size for MPM. These include the type of data-
sets being used, the extent of the study area, and the complexity of bedrock geology in a
given study area (Hengl, 2006; Carranza, 2009; Zuo, 2012).

With respect to geochemical data, sampling density (d) determines the unit cell size.
Sampling density is defined by d 5 A/n, where A and n are the total area and the total num-
ber of samples, respectively. From a geostatistical point of view, selecting a coarse unit cell
size for a relatively dense geochemical sampling scheme can negatively affect the recognition
of geochemical anomalies. Likewise, selecting a fine cell size for a sparse set of geochemical
samples can lead to biased visualization and modeling of geochemical anomalies. The
denser the sampling scheme, the finer the unit cell size required. As a rule of thumb, a
proper unit cell size is derived by 0.05(d0.5) (Hengl, 2006). In addition, line spacing (l) of air-
borne geophysical surveys plays a pivotal role in selecting a proper unique cell size, where
B0.25l has been recognized as the proper cell size (Isles and Rankin, 2013).

Predictive variables are determined based on the geological characteristics of the particu-
lar mineral deposit type being studied. Two types of geological frameworks, descriptive
deposit models (Cox and Singer, 1986) and mineral systems (Knox-Robinson and Wyborn,
1997), are employed to define predictive variables. These intrinsic aspects of GIS-based
MPM are explained in the following subsections. It is worth noting that the format for predic-
tive variables employed for MPM can be binary, multiclass, or continuous. Binary variables
depict the presence or absence of a given geological setting. For example, a binary variable
can model the presence or absence of geochemical anomalies. Multiclass variables are useful
when it is necessary to have values for different geological settings. For example, lithological
diversity can be modeled by a multiclass variable where different values are assigned to dif-
ferent lithologies. Continuous variables such as geophysical information are used for repre-
senting a continuous pattern.
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3.2.1 Descriptive models of mineral deposits

Descriptive deposit models focus on local features of mineral deposits. The features
described by these models are alteration patterns, geochemical depletion and enrichment
patterns of certain elements, local geological features, local structures, and feeder zones (i.e.,
faults). These are usually key exploration vectors that have long been used to define a set of
predictive variables (e.g., Porwal et al., 2003a). For example, it has long been recognized that
porphyry copper deposits display certain alteration patterns, leading to key characteristics
that can often be recognized by remote sensing and geophysical surveys (Sillitoe, 2010).
Also, felsic�siliciclastic volcanic-hosted massive sulfide deposits might locally be capped by
an exhalative iron formation (Peter, 2003), leading to key geophysical and geochemical fea-
tures that can aid GIS-based MPM.

3.2.2 Mineral systems framework

The presence of mineral deposit models does not mean that mineral deposits of a certain
style are identical. Local geological settings exert substantial control over the quality and
the extent of certain features of mineral deposits. In other words, there are key differences
in size, tonnage, shape, alteration patterns, and local geochemical and geophysical signa-
tures linked to mineral deposits. Accordingly, one might fail to define effective predictive
variables using descriptive deposit models because (1) these models strictly adhere to
local-scale features and (2) they are feature-oriented; that is, descriptive deposit models
fail to define effective predictive variables for regional- and district-scale studies. To
account for the preceding problems, many researchers use a process-oriented, scale-free
framework, namely, the mineral systems approach, to define predictive variables. They
usually start by grouping key ore-forming processes into a suite of components, namely,
(1) drivers, (2) sources, (3) pathways, and (4) traps (Mccuaig et al., 2010). A series of geo-
chemical or tectonic processes that trigger magma or fluid flow, namely, drivers, leads to
accumulating ligands or metals in certain regions, called sources. Ore-bearing fluids then
migrate through certain pathways until they are trapped and precipitate their ores/metals.
A series of maps that represent the mineral deposit processes is then developed and used
as predictor variables in a GIS-based MPM.

3.3 Mathematical frameworks used for geographical
information system-based mineral prospectivity mapping

Mathematical frameworks are used within a GIS system to (1) assign weights to predictive
variables and (2) integrate various predictive variables into models of mineral prospectivity.
Two major categories of mathematical frameworks are used for GIS-based MPM: conceptual
and empirical frameworks (Carranza, 2008). The former or the so-called knowledge-driven
methods are used for greenfield areas with few known mineralized zones. The latter methods
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comprise data-driven techniques and are employed for areas with a sufficient number of
known mineralized zones that can be used to train and validate the algorithm. These two
categories are explained in the upcoming subsections.

3.3.1 Knowledge-driven methods

In the absence of known mineralized zones, knowledge-driven methods are used for
assigning weights to predictive variables. Expert opinions are translated into numerical
weights directly or through simple or more complex mathematical procedures. A general
workflow for knowledge-driven MPM is shown in Fig. 3.1 Traditionally, boolean logic
(Harris, 1989; Harris et al., 2001), index-overlay (Rencz et al., 1994), and fuzzy logic
(An et al., 1991) have been used for knowledge-driven MPM. Besides these techniques,
multicriteria decision-making systems, such as analytic hierarchy process (Harris et al.,
1995), and the technique for order of preference by similarity to ideal solution (TOPSIS:
Abedi and Norouzi, 2016), have also been used for MPM. In addition, hybrid techniques
combining two numerical techniques have been used (Zuo et al., 2009). Despite differences
in these methods, they share a number of commonalities, namely, (1) the initial weighting
of predictive variables depends on expert opinion and (2) the use of specific operators,
such as fuzzy operators (Dombi, 1982).

One can evaluate the performance of knowledge-driven models of mineral prospectivity
in the presence of mineralized zones with fitting-rate (Chung and Fabbri, 2003) curves, also
referred to as success-rate (Agterberg and Bonham-Carter, 2005) curves or efficiency of clas-
sification curves, and measure how the model matches known mineralized zones. In the
fitting-rate curves, horizontal and vertical axes represent the portion of the area delineated
by a given threshold value and the percentage of mineralized zones within the delineated
area, respectively (Fig. 3.2). The higher a curve is positioned in these plots, the better the
performance of a model. In Fig. 3.2, for example, the model depicted by the black curve is
more robust compared to the one depicted by the gray curve.

FIGURE 3.1 The general framework of knowledge-driven models of mineral prospectivity.
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Besides the fitting-rate curves, receiver operating characteristic (ROC) curves have also
been frequently applied to assess a model’s performance by measuring four quantities: true
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs) (Swets,
1988) (Fig. 3.3). As shown in Fig. 3.3, these quantities can be visualized by contingency plots.
AROC curve plots the FP rate or “1 2 specificity” versus the TP rate of “sensitivity” (Fig. 3.4).
The former and the latter are derived by FP/(FP 1 TN) and TP/(TP 1 FN). The area under
the ROC curve (AUC) measures the model’s performance. AUC values range between 0.5
and 1, with the former and the latter representing a random pattern and a perfect match,
respectively. Although knowledge-driven models of mineral prospectivity remain a feasible
alternative for frontier regions and grassroots projects, an element of subjectivity is inextrica-
bly intertwined with these models, impeding their reliability (Zuo et al., 2021), which is fur-
ther explained in the upcoming subsections.
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FIGURE 3.2 An example of fitting-rate curves (after Parsa et al., 2017). The model depicted by the black line
outperforms the other model as its fitting-rate curve is positioned higher in the diagram.

FIGURE 3.3 An example of a contingency plot showing that TPs and TNs are generally higher than FNs and FPs
(after Parsa and Carranza, 2021). FNs, False negatives; FPs, false positives; TNs, true negatives; TPs, true positives.
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3.3.2 Data-driven methods

With a sufficient number of known mineralized zones, be they mineral deposits, occur-
rences, or even drill cores intersecting mineralization, one can use data-driven techniques to
create maps of mineral prospectivity. In data-driven methods the known mineralized zones
are used to train a given algorithm to find zones of known and unknown potential minerali-
zation. Despite the recent advances in applying these techniques, researchers are yet to
reach a consensus on the number of known mineral deposits/occurrences required to
develop a data-driven mineral prospectivity model (Zuo, 2020).

The weights of evidence technique (WofE) marks one of the earliest applications of MPM
data-driven models (Bonham-Carter, 1989). Using the Bayes theorem, this method estimates
the posterior probability of discovering mineralized zones. The locations of known mineral-
ized zones are the only requirement of this method. Presently supervised machine-learning
techniques continue (i.e., random forest, neural networks, SVM) to gain popularity in data-
driven MPM. Besides known mineralized zones, these techniques also require a set of non-
mineralized locations (Zuo, 2020). Although generating a coherent set of nonmineralized
locations remains a challenge, there are some guidelines for generating these locations.

Foremost among the features of nonmineralized zones is their spatial distribution; these
locations should be randomly distributed in space (Carranza et al., 2008; Carranza and
Laborte, 2015). One of the primary justifications for this is that mineral deposits usually form
distinctive spatial patterns. Volcanic-hosted massive sulfide deposits, for example, usually
appear as clusters (Galley et al., 2007). Also, using a random spatial pattern helps promote
the diversity of multiattribute features of nonmineralized zones, which also appears to be
essential for data-driven MPM. Important to note is that in regional- to district-scale studies,
mineralized and nonmineralized zones are considered points. In addition, some studies

FIGURE 3.4 The ROC curve for the contingency plot of Fig. 3.3 shows an AUC value of 0.96 (after Parsa and
Carranza, 2021). M shows a very good model, whereas Gauge represents a model that is no better than random.
AUC, Area under the receiver operating characteristic curve; ROC, receiver operating characteristic.
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suggest an equal number of nonmineralized and mineralized zones are required to establish
a balance in data-driven MPM (Porwal et al., 2003b). Also, some researchers suggest select-
ing nonmineralized zones far enough away from mineralized locations so that they do not
share commonalities with mineralized zones is desirable (Carranza and Laborte, 2015). In
addition to the previous procedure, for MPM of a given type of mineral deposit, researchers
have used the location of other types of mineral deposits as negative labeled samples (e.g.,
Nykänen et al., 2015). According to this scenario, for example, when the goal is to target
areas of high potential for epithermal Au mineralization, one can use the location of
carbonate-hosted Zn�Pb deposits as negative labeled samples.

Fig. 3.5 depicts a general framework for developing data-driven models of mineral pro-
spectivity. As shown in this figure, this process starts with selecting positive labeled samples
or mineralized zones, followed by selecting negative labeled samples or nonmineralized
zones using the earlier mentioned procedures. Labeled samples are then divided into train-
ing and testing sets. The former set is employed for training models, while the latter is
employed for measuring the performance of models. Different methods for dividing labeled
samples into training and testing sets are discussed in Chapter 7.

Bias and variance are used for assessing the performance of data-driven models. Bias
evaluates how the training set fits the developed model, and variance evaluates how the

FIGURE 3.5 The general framework of data-driven models of mineral prospectivity.
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test data fit the developed model (Parsa and Carranza, 2021). ROC and fitting-rate curves
can measure bias and variance. If the latter is used, the fitting-rate curve is called the
prediction-rate curve. Chapter 7 further describes these concepts (Parsa, 2021; Parsa and
Carranza, 2021).

Using data-driven methods can help avoid subjectivity in MPM. However, since minerali-
zation is generally a scarce phenomenon, the lack of mineralized zones might pose addi-
tional problems to data-driven MPM, especially while applying supervised machine-learning
methods (Zuo, 2020). These problems are further discussed in Chapter 7. In addition,
Chapter 7 discusses methods for verifying data-driven models of mineral prospectivity.

3.4 Uncertainty in geographical information system-based
mineral exploration

GIS-based MPM is intrinsically subject to multiple errors and uncertainties (Zuo et al., 2021).
Important to note is the difference between the concepts of uncertainty and error. The latter
refers to the difference between a real value of something one tries to measure and the mea-
sured value. The former, however, refers to the status while there could be tons of measure-
ments for something in the absence of its realistic value, which is the case for predictions
(Oberkampf et al., 2002).

As illustrated in Fig. 3.6, different stages of GIS-based MPM are not without errors and
uncertainties (Zuo et al., 2021). These will inevitably affect the final predictive model, leading
to unreliable predictive models of mineral prospectivity. One should always try to identify

FIGURE 3.6 Uncertainties of GIS-based MPM. GIS, Geographical information system; MPM, mineral prospectivity
modeling/mapping.
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the main sources of errors and uncertainty to reduce their effects on MPM. Generally, a sig-
nificant difference between different predictions for a given cell undermines the reliability of
predictions. Such a cell, therefore, should be identified by a high value of uncertainty
(Jurado et al., 2015). Uncertainty can be defined by the standard deviation of different pre-
dictions for a given cell (Jurado et al., 2015).

Different errors and uncertainties arising from various stages of MPM (Fig. 3.6) will inevi-
tably propagate to the final predictive model, posing challenges to their reliability. Therefore
it is important to understand the sources of these uncertainties and try to reduce their effect
on the final prospectivity model.

To begin with, our geological assumptions for defining a suite of exploration targeting cri-
teria, be they descriptive deposit models or mineral systems framework, might be erroneous,
which is rooted in our incomplete perception of geological, geochemical, and thermody-
namic processes that lead to the precipitation of ores from ore-bearing fluids (Mccuaig et al.,
2010). Researchers are still pondering multiple questions linked to the formation of mineral
deposits, and research is yet to unravel many aspects of the ore-forming processes. Added to
this are the effects of local geological settings in the accumulation and preservation of miner-
alized zones, which could bring about major differences in mineral deposits of the same style
(cf. Parsa and Carranza, 2021). Therefore care should be taken while using general assump-
tions in defining exploration targeting criteria for MPM.

Database errors are perhaps the most serious problems in GIS-based MPM, rendering
predictive models unreliable (Zuo et al., 2021). Therefore care should be taken to ensure
that the data collected are reliable and rigorous. In addition to the errors linked to databases,
data processing is yet another source of uncertainty in GIS-based MPM. For example, geo-
chemical datasets are usually sparsely sampled. One should, therefore, interpolate geochemi-
cal samples to create raster maps for MPM. However, there could be multiple outcomes
while estimating an interpolated model, meaning that the interpolated models are also
uncertain due to the lack of a sufficient number of samples (Wang and Zuo, 2019). A possi-
ble solution for reducing these effects is generating multiple scenarios using simulation (e.g.,
Wang et al., 2020). Sequential Gaussian simulation, for example, has been used to enhance
the reliability of geochemical anomaly mapping and MPM (Wang and Zuo, 2019). It should
be noted, however, that if there are an insufficient number of samples, the data should not
be interpolated. A variogram can determine whether the geochemical data should be inter-
polated or not or, alternatively, use a small zone of influence around each geochemical sam-
ple point (Yuan et al., 2012); lake sediment and stream sediment geochemical data can use
the drainage basin as a zone of influence (e.g., Parsa et al., 2016).

Eventually, data integration models are yet another source of uncertainty in GIS-based
MPM. As mentioned in the previous sections, knowledge-driven models are plagued by the
issue of subjectivity and bias. Human input used for prioritizing and ranking exploration target-
ing criteria is governed by the geologists’ cognitive heuristics and mental traits. Therefore differ-
ent opinions on weighting and prioritizing exploration targeting criteria result in different
predictive models, meaning that there is an uncertainty linked to the subjectivity of opinions in
knowledge-driven models of mineral prospectivity (Wang et al., 2020; Parsa and Pour, 2021).
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Simulation-based methods have tried to simulate diverse opinions on weighting predictor vari-
ables for MPM (e.g., Parsa and Pour, 2021). These frameworks yield an array of predictive mod-
els. Average voting is then commonly used for deriving a final model of mineral prospectivity
(Parsa and Pour, 2021). These methods also deliver a map of uncertainty, which could be fur-
ther used for delineating low-risk exploration targets. Low-risk targets have a relatively high
average value of prospectivity and low uncertainty (Parsa and Pour, 2021).

Using data-driven methods also leads to other types of uncertainties. First, different sets
of random nonmineralized zones could be defined for data-driven models. Each set could
lead to a different predictive model (Zuo and Wang, 2020). Besides, despite commonalities
in mineral deposits of the same genetic type, local geological settings significantly affect min-
eral deposits’ geochemical and geophysical signatures. While using the location of mineral
deposits for training the models, larger mineral deposits with stronger geochemical and geo-
physical signatures tend to dominate the trends in predictive models. Also, the presence or
absence of a given mineral deposit in the training set could significantly change a predictive
model. Therefore there is uncertainty linked to the presence or absence of certain mineral
deposit locations in the training set. This uncertainty has been accounted for by taking a
suite of random subsamples from the training set and developing an individual predictive
model with each set. Average voting can be used to select a modulated predictive model
from the developed suite of models (Parsa and Carranza, 2021).

3.5 Case studies
The concepts of MPM are explained herein with a case study of knowledge-driven MPM for
porphyry copper exploration in Central Iran. The study area is located in the Central Iranian
volcano plutonic zone, namely, the Urumieh�Dokhtar magmatic belt. This area hosts a
number of prominent porphyry copper deposits, namely, Sarcheshmeh and its neighboring
porphyry copper deposits (Fig. 3.7), accounting for significant production of copper.
However, the ever-rising demand for copper linked to the green transition and achieving
net-zero carbon emissions require discovering further copper resources.

The concepts of mineral systems are applied to translate essential ore-forming processes,
namely, source, transport, trapping, and deposition, into a suite of vectors or predictive vari-
ables for MPM using geochemical and geological datasets (Table 3.1).

A data-driven model with only five mineral deposits as training locations is insufficient,
thus leading to the use of a knowledge-driven method. With knowledge-driven modeling,
however, comes the issue of subjectivity as was mentioned previously. A simulation-based
framework, summarized in Fig. 3.8, is applied to control the effects of subjectivity in the
MPM of this study area. This framework starts with transferring all predictive variables into a
[0,1] range, thus helping to standardize the variables. A Monte Carlo simulation (Janssen,
2013) adhering to a normal probability distribution function with the mean and standard
deviation of 0.5 and 0.2 was formulated for generating a set of 100 weights between 0 and 1,
which were later assigned to individual variables (Fig. 3.9).
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FIGURE 3.7 The location of the study area and its porphyry copper deposits (after Parsa and Pour, 2021).



The following demonstrates the set of simulated weights where w j k is the kth weight
assigned to the jth predictor variable ( j 5 1, 2, 3, . . ., n), and t is the number of iterations:

w1
j ; w2

j ; w3
j ; . . .; wt

j


 �
: (3.1)

For the kth iteration, the weighted value of each cell, xi
j (i is the id value assigned to each

cell, and j is the number of predictor variables), is calculated using the following equation:

Table 3.1 Predictive variables derived by mineral systems analysis.

GIS-based
exploration
targeting
criterion Description

The critical
ore-forming
process linked
to the criterion

The constituent process is
linked to the criterion

Data used for generating
the criterion

W1 Distance to
intrusive rocks

Source Plutonic and subvolcanic
lithologies serve as heat and
metal sources for porphyry Cu
systems (Sillitoe, 2010)

Outcrops of
Oligocene�Miocene plutonic
rocks were compiled from
the published geological
maps of the study district

W2 The density of
fault
intersections

Transport Fault intersections are low-
pressure zones allowing for
the circulation and ascent of
ore-bearing fluids (Pirajno,
2012)

Fault intersections were
compiled from the digitized
geological maps of the study
district

W3 N-trending fault
density

Transport Faults serve as pathways for
transporting ore-bearing fluids
(Pirajno, 2012)

Fault traces were the
constituent compiled from
the digitized geological maps
of the study area

W4 NNW-trending
faults’ density

W5 ENE-trending
faults’ density

W6 Argillic and
phyllic altered
zones

Trap Circulation of hydrothermal fluids,
acidic in compositions,
promotes chemical reactions
with country rocks, leading to
the development of certain
mineral assemblages in the
form of argillic, phyllic, and iron
oxide alterations (Sillitoe, 2010)

Remotely sensed ASTER
imagery data

W7 Iron oxide-
bearing zones

W8 Multielement
geochemical
signature
linked to
mineralization

Deposition Geochemical halos can represent
mineralized zones of porphyry
systems (Sillitoe, 2010)

Stream sediment geochemical
data were specifically
collected by the Geological
Survey of Iran

GIS, Geographical information system.

xk
ij 5

wk
j 3 xij

Pn
j51 wk

j

j 5 1; 2; . . .; nð Þ; k 5 1; 2; . . .; tð Þ: (3.2)
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The prospectivity value of the ith cell in the kth iteration is then derived using the
following:

Ek 5
Xn

j51

xk
ij j 5 1; 2; . . .; nð Þ; k 5 1; 2; . . .; tð Þ: (3.3)

While average voting is used for estimating the modulated prospectivity values, µ, the
standard deviation of simulated prospectivity scores for a given cell, is deemed its uncer-
tainty value, U; confidence is also defined by C 5 µ/U (Jurado et al., 2015). Maps of modu-
lated prospectivity values, uncertainty, and confidence are demonstrated in Fig. 3.10 Plots
of µ against U and µ against C are useful tools for selecting low-risk targets (Fig. 3.11).

Geo-spatial data
available

Mineral systems
framework

Exploration
targeting criteria

Monte Carlo-
based weighting

Fuzzification

Ensemble
modeling

Modulated
prospectivity values

(µ)

Uncertainty
(�)

Model confidence
(µ/ �)

Low-risk
exploration targets

High-risk
exploration targets

Cells having high
            prospectivity values and

         high model confidence

Cells having high
             prospectivity values with

        low model confidence

FIGURE 3.8 The framework used for modulating the effect of subjectivity in MPM. MPM, Mineral prospectivity
modeling/mapping.
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FIGURE 3.9 The suite of simulated weights assigned to predictor variables is explained in Table 3.1.
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FIGURE 3.10 Maps of (A) modulated prospectivity values, (B) uncertainty, and (C) confidence.
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While having high modulated prospectivity values, low-risk targets are also marked by high
confidence and low uncertainty values. High-risk exploration targets, on the other hand,
are those marked by high modulated prospectivity values while having high uncertainty
values. These targets are selected and demonstrated on the map of exploration targets
(Fig. 3.12).
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FIGURE 3.11 Plots of modulated prospectivity values versus uncertainty and confidence values. Rectangles 1 and 2
are low- and high-risk exploration targets, respectively.

FIGURE 3.12 Delineated low- and high-risk exploration targets.

166 Geospatial Analysis Applied to Mineral Exploration



3.6 Summary and conclusion
This chapter has provided an introduction to mineral potential modeling. A GIS is fundamental
for compiling, visualizing, and analyzing the data to create predictor variables (vectors to miner-
alization) for input to knowledge or data-driven algorithms for producing an MPM. The choice
of an appropriate unit cell size is critical to the modeling process, and the performance of an
MPM can be measured using the efficiency of classification or ROC curves. The MPM process
can be characterized by different uncertainties which the geologist must understand to interpret
the results correctly. Simulations can reduce the subjectivity of the weights. The deposit model
is the most important aspect of the MPM process as it governs what predictor maps are gener-
ated as vectors to possible mineralization. An MPM is not a target map per se but rather a map
that shows zones of higher mineral potential for a given commodity. Such a map should predict
zones of known mineralization, as well as areas of possible new mineralization worthy of explo-
ration, and follow-up.
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4.1 Introduction
Geochemical surveys are bound to collect samples from diverse types of media, including
bedrock, soil, till, stream sediments, and lake sediments, at various extents, ranging from
continental to deposit scales. Samples are then analyzed chemically for single- or multiele-
ments using the methods that suit the purpose of geochemical surveys (Govett et al., 1975).

The purpose of a geochemical survey, bedrock geology, and geomorphological settings of
the study are among the components exerting control over the scale, method of chemical
analysis, and sampling media (Levinson, 1974). These surveys reveal beneficial information
on the enrichment and depletion of elements that might be associated with mineral deposits.
Geochemical surveys can also reveal information on the bedrock geology of the area being
studied (e.g., Kirkwood et al., 2016), making them invaluable tools for the study of covered
regions.

Generally, the goal of geochemical surveys is to identify some anomalies that are linked
to mineral deposits (Carranza, 2008; Carranza et al., 2012). However, there are multiple chal-
lenges associated with meeting the foregoing objective. First, the emplacement and preserva-
tion of mineral deposits generate different multi- and unielement geochemical signatures
(cf., Pirajno, 2012). It is, therefore, of utmost importance to recognize geochemical signatures
that describe mineral deposits and ore-forming processes (Parsa et al., 2016). The dispersion
pattern of uni- and multielements is a function of the sampling medium, the size fraction of
samples being analyzed, the method of chemical analysis, and secondary processes involved
in the migration of chemical complexes (cf., McClenaghan et al., 2013).
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It is worth noting that a given mineral deposit may show different geochemical signatures in
different sampling media (Levinson, 1974). Thus selecting the right sampling media is a crucial
aspect of geochemical surveys. In addition to the previous aspects, defining geochemical anom-
alies is yet another challenge that requires considering multiple factors (Carranza et al., 2012).

The previous aspects of geochemical datasets are discussed herein. This chapter consid-
ers the geospatial aspects of geochemical data and explains how these datasets are collected
and how one should analyze and process these datasets to get the most of them for mineral
exploration purposes.

This chapter is organized in five sections. After this section the most common geochemi-
cal sampling media are described in the second section. The third section describes the com-
mon methodologies used for assessing the chemical composition of geochemical samples.
This is followed by the interpretation of geochemical datasets and a case study representing
the use of a set of geochemical data for mineral exploration.

4.2 Geochemical sampling media
The main goal of a sampling process is to collect a representative sample—a sample that col-
lectively describes the chemical composition of the sampling medium and suits the purpose
of the study (McClenaghan et al., 2013). In other words, one should consider the purpose of
a geochemical survey and the chemical characteristics of the sampling medium when con-
ducting a sampling survey.

The complexity of geological settings, the extent of the study area, the budget, and the
purpose of the study are among the factors that control the density of geochemical sampling.
As an example, only a few samples might be enough while trying to determine the average
composition of a homogenous rock formation. On the other hand, while studying an area
with variable lithological units, different alteration halos, and complex geomorphological set-
ting, a dense sampling scheme might be required to account for the variability and complex-
ity of the area. In the latter example an enough number of samples must be collected from
each geological facies to reveal their average chemical composition (Haldar, 2013).

Generally, denser sampling schemes are well suited for mineral exploration purposes.
This is owing to the fact that a dense sampling scheme is useful for (1) describing the under-
lying geological variability of an area and (2) recognizing anomalous dispersion patterns of
elements and multielements (Garrett, 1969).

Common geochemical sampling media (Govett et al., 1975), namely, water samples,
rock samples, soils samples, till samples, and stream sediment samples are explained
herein. It should be noted that there are other sampling media, such as vegetation, that are
not explained in this section. Readers are referred to the literature on biogeochemistry for
finding information on this type of samples (Kovalevsky, 1987; Dunn, 2011; de Verneil
et al., 2018).

172 Geospatial Analysis Applied to Mineral Exploration



There are two general geochemical environments that are considered and studied in
exploration geochemistry—primary and secondary (Grigoryan, 1974; Beus and Grigorian,
1977). Primary environments are those derived from rock samples. The term “primary” used
herein refers to the premise that fresh rock samples do not describe weathering, mechanical
transportation, and erosion (Boyle, 1982). Therefore these samples are suitable for assessing
mineralized zones or their adjacent rock units (Haldar, 2013). In diamond drilling surveys,
for example, rock samples are analyzed for delineating mineralized zones. The geochemistry
of rock samples is usually referred to as lithogeochmeistry (Alexandre, 2021). It is worth not-
ing that lithogeochmeistry is applicable in terrains with outcropping rock units, meaning that
lithogeochmeical surveys are not usually applicable in glaciated zones or zones covered by
regolith (McClenaghan et al., 2013).

In addition to primary environments, secondary geochemical halos, derived from the
analysis of till, soil, lake sediment, and stream sediment samples, represent a secondary
migration of elements in their sampling media. Dispersion pattern of elements in secondary
environment is controlled by the degree of mechanical dispersion, mobility of elements, cli-
mate, topography, bedrock geology, and even anthropological factors (cf., Kelley et al., 2006).
Given the previous premise, it is of utmost importance to recognize geochemical dispersion
patterns that might be rooted in the presence of underlying mineralized zones. The upcom-
ing subsections are focused on the sampling procedures used for the most common sam-
pling media in exploration geochemistry.

4.2.1 Water samples

Collecting water samples is relatively easy as water is homogenous, and large volumes of
samples are not typically required. A plastic vial is usually filled with approximately
100 cm3 of water collected even from a certain depth or the surface of eater. Some addi-
tives, including HNO3, are commonly introduced to the collected sample. These additives
are used as a deterrent to the separation of water’s solid phase (Haldar, 2013).

Most sampling campaigns also measure the pH of water samples. Lake and stream sam-
ples are suitable for regional- to district-scale geochemical surveys. Hydrogeochemistry,
the study of water geochemical samples, has been frequently employed for mineral
exploration (Simpson et al., 1993; Taufen and Gubins, 1997; Leybourne et al., 2003; Caron
et al., 2008).

4.2.2 Rock chip samples

Rocks are the most common sampling media, especially in detailed mineral exploration
phases (Govett, 2013; Alexandre, 2021). While sampling from outcrops, usually a geological
hammer is used to remove the weathered parts and take a fresh sample. Usually, several
midsized samples are taken from a given rock unit. Lithological diversity exerts control on
the number of samples taken from a given unit (Haldar, 2013).
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A significant difference between the geochemistry of rock samples and that of other sam-
pling media is the fact that rock samples represent primary geological halos, meaning that
the signatures revealed by rock samples are indicators of primary geological environments.

4.2.3 Soil geochemical samples

Soil geochemical surveys are also among common surveys in mineral exploration (e.g.,
Cohen et al., 2010; Bini et al., 2011). There are three soil horizons available: From the top to
bottom, there are postorganic horizon A, transitional horizon B, and also the bottom horizon
C, containing most of fragmented rock particles (Haldar, 2013). Horizons B and C appeal the
most to exploration geochemists given their enrichment in rock fragments.

The soil profile should be entirely exposed to determine different horizons. Factors con-
trolling the depth and the presence of different soil horizons include climate, topography,
and age of soil. It goes without saying that the depth of soil horizons and their presence vary
in different areas. Arid and semiarid areas, for example, might lack horizon A (Haldar, 2013).

Considering the heterogenous nature of soil and that there are variable grain sizes in a
soil profile, soil samples could be fairly heavy. After selecting the appropriate horizon for
sampling, a sample of around 2�5 kg is collected and placed in a plastic bag. One should be
careful about keeping the initial conditions of samples as any changes may significantly
affect the results of geochemical analysis. Soil surveys are conducted in various scales, rang-
ing from regional- to local-scale studies.

4.2.4 Till geochemical samples

Till, a cycled sediment deposited directly by glacier ice, is deemed an effective sampling
medium for mineral exploration in glaciated terrains as it can reflect the initial composition
of its underlying bedrock (McClenaghan et al., 2013). Till is a combination of crushed bed-
rock mixed with older sediments and is subject to a mechanical transportation mechanism
(McMartin and McClenaghan, 2001). This transportation occurs in an orientation related to
the movement of glacier ice and can vary from few meters to several kilometers. Therefore
the interpretation of till geochemical data requires knowledge of the Quaternary geology of
the area and the movement of ice glaciers (Shilts, 1984). Therefore drift sampling of tills is
essentially useful when applied in combination with boulder tracing and striation mapping
(McClenaghan et al., 2013).

Usually, the finest fraction of soil’s C horizon is subject to sampling and chemical analy-
sis. Although the sampling techniques vary in permafrost and forested areas, a fine fraction
of weakly oxidized till (,2 mm) is usually selected in both cases as this fraction size can
reveal concentrations of ore-related elements. This fraction is usually derived by abrasion
and physical crushing of primary minerals, distributing metal-bearing components into dif-
ferent grain sizes. The accumulation of metal-bearing components of till in clay-sized frac-
tion of soil is highly likely, which is mostly linked to the large surface area of clay minerals,
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their cation exchange capacity, and that they can accommodate various ranges of ionic radii
(McClenaghan et al., 2013).

In the case of a thin draft covers, samples can be collected by trenching or hand excava-
tion at a depth of less than 5 m. However, while dealing with a thick draft cover,
portable drills, reverse circulation rotary drills, or rotosonic drills are employed for collecting
till samples at depth. Compositional variability of bedrocks, the targeted elements, and the
budget are among the factors affecting the choice of analytical techniques and size fraction
of samples (McClenaghan and Paulen, 2018).

Geochemical anomalies derived by till samples usually represent a thin plume extending
in the direction of glacier movement from the underlying ore zone toward the surface of gla-
ciers; that is, ore-bearing components are more frequent near their source, and their popula-
tion usually decreases while moving away from their source. Dispersion pattern of elements
in till samples is usually a function of the degree of mechanical transportation, the mobility
of elements, and the degree of weathering and contamination processes (McClenaghan
et al., 2013; McClenaghan and Paulen, 2018).

Postglacial weathering and its subsequent soil formation affect till geochemistry, espe-
cially in oxidization zones above the permafrost table or groundwater. These processes help
decompose minerals liable to clastic dispersion, such as carbonates and sulfides, into the
oxidization zone. This leads to the migration of elements that are transported by the perco-
lating rainwater. As a result, elements in the oxidized zones are (1) immediately precipitated
in the soil, (2) trapped in organic matter, secondary oxides/hydroxides, or clay-sized phyllo-
silicates, or (3) completely leached out from the soil profile. Conditions are different under
the permafrost table where ore minerals can remain intact. Therefore, a solid understanding
of vertical variations in soil profiles is essential prior to interpreting till geochemical patterns
(McClenaghan et al., 2013; McClenaghan and Paulen, 2018).

Overall, because of the effects of biogeochemical enrichment in the surface organic
layer, postdepositional mobilization of elements, differences in elements’ mobility, and
their mechanical dispersion patterns, the interpretation of till geochemical anomalies is
a complex process. Prior to sampling, one should determine the thickness, distribution,
glacial deposit types, and glacial history of sampling sites. Till surveys are also con-
ducted in various scales, ranging from regional- to local-scale studies (McClenaghan
et al., 2013).

4.2.5 Stream sediment geochemical samples

Stream sediments contain particles derived from the upstream weathered rocks and are dis-
persed by water (Fletcher, 1997). Stream sediment geochemistry is a popular tool for mineral
exploration, especially for reconnaissance surveys (Painter et al., 1994), as stream sediments
represent a relatively large area of their upstream catchment basin (Spadoni, 2006). Several
parameters, including climate, lithological diversity, water chemistry, topography, and
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anthropological factors, contribute to the chemical composition of stream sediments (Parsa
et al., 2016). Dispersion pattern of elements in stream sediments is also a function of ele-
ment’s mobility in surficial environments (Levinson, 1974).

It goes without saying that the interpretation of stream sediment geochemical samples is
different from that of rock samples. First, stream sediment samples represent secondary geo-
chemical halos that are under the effect of multiple parameters. Second, it has been recom-
mended to draw the upstream sample catchments and assign the values of samples to the
catchments for their spatial interpretation (Spadoni, 2006).

Designing the sampling scheme and choosing the right sampling density are materials to
the breadth and depth of study, scale, budget, and access to sampling sites. It is worth noth-
ing that selecting the right fraction of samples is important for chemical analysis. Generally,
many elements tend to accumulate in finer fractions of stream sediments. These include but
are not limited to Mn, Cu, Zn, and Fe (Levinson, 1974). Given this fact, the collection of
,176-µm portion of sediments is a common practice in stream sediment surveys (Haldar,
2013). An example of using stream sediment geochemistry for mineral exploration is pre-
sented in the fifth section of this chapter.

4.3 Instrumental techniques applied to geochemical data
Geochemical samples are usually sent to a laboratory for chemical analysis. Except for using
water samples, regardless of sampling media, samples are usually subject to dissolution.
Element particles are already dissolved in water, meaning that, in most cases, water samples
can be subject to direct chemical analysis.

A jaw or disk crusher is usually used to crush rock samples. These are later sieved to a
given size that meets the requirement of study and the chemical analysis method. Important
to note is the fact that the crushing process, itself, is a source of contamination.

Soil samples are usually subject to drying, and some external particles, such as wood, are
removed from samples. Generally, sieving is not required for samples, and immediately after
drying and removing external particles, soil samples can be directly used for dissolution. The
same logic can be applied to stream sediment and till samples. Sample dissolution is meant
to convert the insoluble component of samples into soluble chemical species.

Acid digestion is a frequently used method for sample preparation in exploration geo-
chemistry. Usually, HCl, HNO3, HClO4, H2SO4 and HF, or a combination of them, are used
for acid digestion. Aqua regia, a combination of HCl and HNO3, is among the popular solu-
tions used for the analysis of trace elements. Further information on sample preparation
methods can be found in Balaram and Subramanyam (2022). It is not the purpose of this
chapter to delve into different analytical techniques, but a brief summary of analytical techni-
ques is given in the next subsections followed by general guidelines on the quality control of
geochemical data.
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4.3.1 Instrumental techniques

There are numerous instrumental techniques that can be applied to the chemical analysis of
geochemical samples. Some of the commonly used instrumental techniques in exploration
geochemistry, namely, X-ray fluorescence (XRF) spectrometry, atomic absorption spectro-
photometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and inductively
coupled plasma optical emission spectrometry (ICP-OES), are briefly explained herein. It
should be noted that each instrumental technique comes with its pros, and it is for geoche-
mists to decide on the type of method they want to use.

XRF is well suited for the analysis of solid materials, meaning that it generally does not
require sample digestion. Most of geochemical elements can be identified by XRF at concen-
trations below parts per million (ppm). This technique is useful for mineral exploration,
especially when a quick analysis of samples is required. Portable XRF techniques, for exam-
ple, can result in rapid, in situ preparation of geochemical datasets. The limits of detection
for XRF are not as good as other techniques, including ICP-OES and ICP-MS. ICP-OES is
well suited for the analysis of solutions. Very low limits of detection and the multielement
analysis of samples are the pros of using ICP-OES. Likewise, ICP-MS also works on solutions
and results in the analysis of multielements. It is marked by lower limits of detection com-
pared to ICP-OES. ICP-MS can also detect the isotopic composition of some elements. ICP-
OES and ICP-MS are among the commonly used techniques in regional geochemical sur-
veys. This is owing to the fact that these techniques can determine the concentration of mul-
tielements with an acceptable detection limit. AAS is a cost-effective option compared to
ICP-OES and ICP-MS and is suitable for the analysis of single elements. General guidelines
and conclusions on the use of instrumental techniques in geochemistry can be found in
Willis (1986).

4.3.2 Quality control

The reliability of geochemical data is very important for mineral exploration surveys.
Accuracy and precision of chemical analysis are two factors that are generally assessed in the
quality control stage. The latter is assessed by using duplicate samples, two identical samples
submitted to the laboratory. Usually, one duplicate sample is considered for every 10 sam-
ples. A well-known method for assessing the precision of chemical analysis using duplicate
samples is described by Thompson and Howarth (1976).

The former, however, is assessed by placing standard samples in the batch of sam-
ples. These are samples with predetermined concentrations of elements. Standard sam-
ples, or certified reference materials, typically constitute 1% of samples one submits to
the laboratory. It means that 11% of samples placed in a batch of samples submitted for
chemical analysis are for the mere purpose of quality control. Standard samples can be
either purchased from reputable sources or produced internally during the exploration
surveys.
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4.4 Interpretation of geochemical data
Interpretation of geochemical data is not a trivial process owing to intrinsic complexities
embedded in these datasets. This section is centered on the interpretation of geochemical
data as a part of geospatial analysis applied to mineral exploration. Several factors should be
taken into consideration while analyzing geochemical data. The complex interrelationship
between element concentrations in different sampling media (Templ et al., 2008; Zuo et al.,
2021), the compositional nature of geochemical data (Aitchison, 1982; Buccianti and
Grunsky, 2014), and the presence of extreme (Reimann et al., 2005) and censored values
(Sanford et al., 1993; Grunsky, 2010; Carranza, 2011) are among the common problems asso-
ciated with geochemical data.

As mentioned earlier in Section 4.1 and will be discussed in the following subsections, ore-
forming processes lead to the enrichment of a suite of elements in the mineralized zones, fol-
lowed by the depletion of other elements (Pirajno, 2012). Therefore, one should recognize
multielement associations that describe mineralization (e.g., Parsa et al., 2016). This is a funda-
mental step one should take while interpreting multielement geochemical data.

It is worth mentioning that geochemical data contain censored values. These are element
concentrations that are lower than (or higher than) the detection limit of the instrumental
technique employed (Sanford et al., 1993; Grunsky, 2010; Carranza, 2011). For dealing with
censored values, one should employ a substitution procedure to replace values that are
below the detection limit of the instrument used. There are substitution procedures pro-
posed in the literature to which readers are referred (Sanford et al., 1993; Carranza, 2011).

Besides the previous aspect, many traditional techniques employed for the interpretation
of geochemical data require the dataset to follow a normal distribution (Shuguang et al.,
2015). While employing such techniques, the presence of extreme values (i.e., outliers) pre-
sents a further challenge to processing geochemical data as these values deter the data from
following a normal distribution. Therefore, in the case of employing those techniques, treat-
ing extreme values also becomes important.

Traditionally, unielement concentrations are analyzed by exploratory data analysis and
box plots (Tukey, 1977) to determine geochemical anomalies. The problem with this proce-
dure is that these methods only assess the statistical distribution of geochemical samples
and completely neglect the spatial distribution of samples (Cheng et al., 1994). Also, these
methods are merely focused on single-element compositions. However, ore-forming pro-
cesses usually result in the depletion and enrichment of a suite of elements rather than sin-
gle elements.

For multielement analysis of geochemical datasets, one should also consider the using
multivariate and machine learning techniques. Care must be taken while applying these
methods to geochemical data as these datasets are compositional in nature (Aitchison,
1982). The concept of compositional analysis of geochemical data is explained in the upcom-
ing subsection followed by general guidelines on delineating geochemical anomalies.
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4.4.1 Compositional data analysis

Geochemical data contain only positive values that are reported in proportions, such as
ppm, ppb, and percentage. Ideally, for a given sample, the sum of all the analytes, including
elements analyzed and the loss of ignition (LOI), should reach a constant value. In theory,
this value must equal 1 or 100%. This means that an increase in the concentration of a group
of elements should result in a decrease in the concentration of other elements. This complies
with the nature of geochemical anomalies; ore-forming processes result in the enrichment
and subsequent depletion of mineralized zones from certain elements/metals.

From a statistical point of view, the earlier issue means that we are dealing a number of
nonindependent variables. According to Aitchison (1982), this is usually referred to as the
closure problem of compositional geochemical data. The compositional nature of geochemi-
cal data renders their statistical indices, including the covariance and correlation between
elements, biased. To address the previous challenge, one should treat geochemical data with
a series of transformation, namely, log-ratio transformation. Applying these transformations
is a prerequisite to many geochemical analysis.

Log-ratio transformations, initially introduced by Aitchison (1982), have been used as a
method for projecting compositional datasets into the real number space, addressing the
problem of spurious correlations and, thus, allowing for the application of standard statistical
techniques. These include the additive (alr: Aitchison, 1982), the centered (clr: Aitchison,
1982), and the isometric (ilr: Egozcue et al., 2003) log-ratio transformations. Full details of
these techniques and the pros and cons of using them have been described in numerous
publications (e.g., Grunsky, 2010; Buccianti and Grunsky, 2014), to which the readers are
referred.

As applied in numerous research papers (e.g., Carranza, 2011), log-ratio transformations
help enhance our understanding of geochemical data through enhanced interpretation
(Grunsky and Caritat, 2020) and visualization (e.g., Somma et al., 2021) of the interrelation-
ship between element concentrations.

Herein, a common compositional-based approach for processing geochemical data is
explained. Factor analysis (FA) employs a correlation or covariance matrix of measured vari-
ables (Treiblmaier and Filzmoser, 2010) to assist in unraveling the underlying patterns of
geochemical data and providing links between elements.

The outcome of applying FA to a set of geochemical data is a suite of secondary factors
summarized in two matrices, namely, loadings and scores. Information on the interrelation-
ship between elements and factors is summarized in the former, and information on the
relationship between samples and factors is given by scores (Tripathi, 1979).

FA should be coupled to log-ratio transformation techniques for interpreting geochemical
data (Aitchison, 1982; Egozcue et al., 2003). In addition, the presence of outliers in geochem-
ical data adversely affects the estimation of correlation and covariance matrix, and thus, the
results of FA carry exploration bias (Filzmoser et al., 2009). Therefore, this problem should
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be modulated by the robustification of factor estimation using robust estimators, for exam-
ple, the minimum covariance determinant (MCD), instead of using a correlation or covari-
ance matrix (Pison et al., 2003). Robust factor analysis (RFA) of compositional data considers
the previous aspects and is suitable for processing and interpreting geochemical data. An
example of using RFA is explained in the case study presented in this chapter.

Among log-ratio transformations, the clr transformation results in symmetric results and
an one-to-one explanation of transformed variables (Aitchison, 1982). Thus the clr transfor-
mation is the most proper transformation for multivariate geochemical data analyses
(Filzmoser et al., 2009). However, due to the singularity of transformed variables, the appli-
cation of MCD and the other robust estimators and thus robustification of FA is not possible
in the clr space (Filzmoser et al., 2009). According to Filzmoser et al. (2009), one way out of
this is to apply MCD on ilr-transformed data for estimating the covariance matrix. Then, for
interpreting the results, the estimated matrix should be backtransformed to the clr-space
where interpretation of factors is possible via compositional biplots and loading matrices.

4.4.2 Techniques used for delineating geochemical anomalies

To delineate geochemical anomalies, one should consider geochemical data’s statistical and
spatial characteristics (Cheng et al., 1994). The latter, however, is neglected in traditional
methods of anomaly recognition, namely, setting subjective threshold values (Hawkes and
Webb, 1962), exploratory data analysis (Tukey, 1977), and probability plots (Sinclair, 1974).

The concept of fractal theory (Mandelbrot, 1982) has been adopted in exploration and
environmental geochemistry to address the issue mentioned before. The idea of using this
concept in applied geochemistry lies in the premise that geochemical data can reveal self-
similarity, helping delineate anomalous patterns (Cheng et al., 1994). This idea sparked the
development of many fractal/multifractal methods for interpreting geochemical data,
namely, the concentration-area (Cheng et al., 1994), singularity mapping (Cheng, 2007),
and other variants of fractal modeling. Fractal tools consider both spatial and statistical
characteristics of geochemical data (Zuo et al., 2021), making them invaluable tools for
delineating geochemical data, as practiced in many studies (e.g., Parsa et al., 2017 and
references therein).

A common methodology applied to delineating geochemical anomalies is summarized
herein. This method, the concentration�area (C�A) fractal model (Cheng et al., 1994), is
based on the fact that in an interpolated map of a geochemical signature, each contour,
representing a given concentration (C), is marked by an occupied area (A). This method is
explained by Cheng et al. (1994) and summarized in many publications (e.g., Parsa et al.,
2017). As per Cheng et al. (1994), there is a power-law relationship between these two quan-
tities. This relationship becomes a linear equation that can be applied to delineating geo-
chemical anomalies. The slopes of straight lines, which could be fitted to the log�log plots
of concentration versus the area, denote the fractal dimensions of different geochemical
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populations. The intersections of straight lines determine the threshold, which may delineate
geochemical populations (Cheng et al., 1994). This is further explained by drawing an exam-
ple from the literature in the upcoming subsection.

4.5 Case study
The case study presented here explains how a suite of stream sediment samples can help
guide exploration programs using the methods explained in this chapter (Fig. 4.1). This case
study belongs to the eastern part of Iran with a few minor occurrences of Ni mineralization
(Parsa et al., 2017). A simplified outcrop map of this area can be observed in Fig. 4.1.

A total of 188 stream sediment samples have been collected. The samples were sieved by
a 180-µm screen and the fractions b180 µm were selected for chemical analysis. The sieved
fractions were digested in HNO3 1 HCl and analyzed by ICP-OES for multielement analysis.

FIGURE 4.1 Simplified outcrop map of the area being investigated and the location of geochemical samples.
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The detection limits were 0.2 ppm for Cu, 0.2 ppm for Pb, 0.2 ppm for Zn, 0.2 ppm for
Co, 2 ppm for Ni, 0.5 ppm for As, 0.1 ppm for Sb, and 2 ppm for Cr.

RFA was applied to the dataset according to the following procedure. Initially, ilr-
transformation was applied on the raw data of seven analyzed elements for the estimation of
the covariance matrix (Filzmoser et al., 2009). Then, as the ilr-transformation sacrificed one
variable (Egozcue et al., 2003), the resultant covariance matrix was backtransformed to the
clr-space for deriving interpretable robust factors (Filzmoser et al., 2009). The number of fac-
tors was set to be three, because these three factors not only explained 85.6% of the total var-
iability but also yielded in a precise discrimination of element associations. Fig. 4.2
represents the biplots derived from this analysis. As per this figure, Ni, Cr, and Co could be
deemed mineralization-related element associations. The readers are referred to Parsa et al.
(2017) for details on the interpretation of these results. According to the histogram of these
elements Fig. 4.3, these are marked by positively skewed distributions, showing the existence
of geochemical enrichment in the area. Spatial distribution of these three elements is also
depicted in Fig. 4.4. These maps are derived by the application of inverse distance weighting
method for the interpolation of element concentrations.

The C�A method was further applied to interpret these maps. As per Fig. 4.5, the C�A
log�log plot was resulted in the delineation of four separate geochemical populations for Ni.
These were labeled as low-background, background, anomaly, and high anomaly.
Concentrations above 570 ppm have been marked as highly anomalous zones for Ni in the
area. Likewise, C�A plots separated four geochemical populations for Co in the area, with
values above 45 ppm as highly anomalous values. However, only three populations were

FIGURE 4.2 Biplots of elements derived by robust factor analysis showing the association of Cr, Co, and Ni.
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FIGURE 4.3 Histograms of Ni, Cr, and Co, showing positively skewed distributions for these elements.
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FIGURE 4.4 Interpolated maps of (A) Ni, (B) Cr, and (C) Co.



FIGURE 4.5 The results of C�A fractal method in delineating geochemical populations of (A, B) Ni, (C, D) Cr and
(E, F) Co.



recognized for Cr. These were marked as background, anomaly, and high anomaly, with
values above 789 ppm pertaining to the highly anomalous zones. Field work was carried
out for ground-truthing of geochemical anomalies, revealing the existence of mineralized
zones in a highly anomalous area.
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5.1 Introduction to geophysical exploration
Geophysical exploration is the applied branch of geophysics for economic purposes. This
depends on the use of physical methods, such as gravitational, electromagnetic, seismic,
magnetic, and electrical at the surface of the Earth to study the physical properties of the
subsurface. It is used to infer or detect the existence and position of economic geological
deposits, such as fossil fuels, other hydrocarbons, and geothermal and groundwater reser-
voirs. Exploration geophysics can be utilized to delineate the target style of mineralization,
via estimating its physical characteristics directly (Elkhateeb et al., 2021; Melouah et al.,
2021; Eldosouky et al., 2021a, 2022a; Ekwok et al., 2022).

Mineral exploration concentrates on the activities that are interested in searching for a
new mineral and evaluating economic ones (Haldar, 2018). The main target of mineral
exploration is to map the economic deposits with minimum time and cost. The geophysical
survey represents an effective tool to detect subsurface objects and preferred sites for drilling
(Haldar, 2018). The geophysical survey uses physical techniques such as electric, electromag-
netic, seismic, magnetic, and gravity to measure the physical characteristics of the Earth and
search for anomalous zones. It is also used to detect the locations of economical deposits,
such as ore minerals, hydrocarbons, geothermal and groundwater reservoirs, and archeologi-
cal remains. In addition, it is used to delineate the structures and rock units’ distribution.

Geophysical exploration can be a cost-effective tool by supplying information about min-
eralization, structures that contain mineralized zones, and archeological targets. In general,
there are promising areas for mineralization (uranium, gold, manganese, iron, copper, zinc,
lead, cobalt, nickel, silver, and others) (Abbas et al., 2005; Abdallatif et al., 2010; Odah et al.,
2013; Assran et al., 2019; Ahmed et al., 2020).
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5.2 Geophysical methods
5.2.1 Gravity methods

Gravity exploration is based on the measurement of variations in the gravitational field
caused by density structures within the subsurface (Hinze et al., 2012). The gravity methods
are used frequently in oil, gas, and mineral exploration to map subsurface geological struc-
tures and to directly determine ore reserves for some massive sulfide (Ms) orebodies
(Nabighian et al., 2005). Many different techniques have been introduced to interpret gravity
data. These techniques can be classified into four main groups. The first one is the edge
detection techniques. The second group consists of the inversion techniques. The third
group is the semiquantitative techniques.

The group of edge detection techniques leads to two subgroups of gravity interpretation
techniques. The first one is known as the unbalanced filters and the second one comprises
the balanced filters. The unbalanced filters are based on the derivatives of gravity data
(Evjen, 1936; Cordell, 1979; Roest et al., 1992), while the balanced filters use the ratio of the
derivatives of gravity data (Miller and Singh, 1994; Wijns et al., 2005; Cooper and Cowan,
2006, 2008; Pham et al., 2019, 2020a,b, 2021; Pham, 2021; Oksum et al., 2021). The second
group of techniques aimed at estimating depth-to-interface estimates is based on the inver-
sion of gravity data. These methods are based on the Bott (1960) stacked prism model or
fast Fourier transform (FFT)-based algorithm of Parker (1973) (Oldenburg, 1974; Granser,
1986, 1987; Santos et al., 2015; Chakravarthi et al., 2016; Silva and Santos, 2017; Pham et al.,
2018, 2022; Oksum, 2021). The inversion techniques require a mean depth, density contrast,
or low-pass filtering. The group of semiquantitative techniques includes the Euler deconvo-
lution, Werner deconvolution, and tilt-depth methods that became widely used tools for
interpreting gravity data. The mathematical basis of these methods was presented by Werner
(1949), Thompson (1982), and Oruç (2011). The major advantage of the semiquantitative
methods is that they can determine the source depths without specifying prior information
about the mean depth, density contrast, or low-pass filtering (Pham et al., 2022).

5.2.2 Magnetic methods

The magnetic method is one of the oldest and most widely used geophysical techniques for
the exploration of the Earth’s subsurface. It is a relatively inexpensive and easy tool to apply
to subsurface exploration problems with subsurface magnetic property variations from the
uppermost layer of soil to the base of the Earth’s crust. The magnetic method maps this vari-
ation in the Earth’s normal magnetic field (Eldosouky et al., 2017; Eldosouky et al., 2020a).

Magnetic anomalies can be produced based on the lateral contrast in rock composition
(Lithology) and in rock structure (Millegan and Bird, 1998; Lyatsky, 2010). Magnetic field
data come from a few rock types, such as volcanic, intrusive, and basement rocks (Okiwelu
and Ude, 2012).

Magnetic susceptibility is a dimensionless quantity in SI. Further, magnetic susceptibility
depends on the composition, size, and domain properties of magnetic grains. Generally, larger
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grains have a greater susceptibility than smaller magnetic grains (Reynolds et al., 1990). The
more susceptible a material, the more highly magnetized it becomes when placed in an induc-
ing field. Table 5.1 lists the magnetic susceptibility values for common minerals and rocks.

The magnetic method requires an in-depth understanding of its basic principles, and careful
data collection, reduction, and interpretation. Traditionally, useful information was extracted
from geophysical field results by examining line profiles of raw or filtered survey data and maps.
Enhanced maps are useful for estimating quantities of buried materials and locations, for exam-
ple, maps of magnetic data often show the geologic structure or identify an anomalous region
that might be associated with the desired target (Nabighian et al., 2005; Eldosouky et al., 2021b).

Interpretations may be limited to qualitative approaches that simply map the spatial loca-
tion of anomalous subsurface conditions, but under favorable circumstances, the technological
status of the method will permit more quantitative interpretations involving a specification of
the nature of the anomalous sources (Nabighian et al., 2005).

5.2.2.1 Instrumentation
The magnetic survey data are acquired with the ground and airborne magnetic surveys at
just about every conceivable scale and for a wide range of purposes. In exploration, the mag-
netic survey has been employed in the search for minerals. Detailed and regional magnetic
surveys continue to be a primary mineral exploration tool, used for the direct detection of
mineralization such as gold�iron oxide�copper deposits, Mss, and heavy mineral sands; for
locating favorable host rocks or environments such as kimberlites, porphyritic intrusions,
carbonatites, hydrothermal alteration, faulting, and for mapping geological structure in the
study area (Nabighian et al., 2005).

5.2.3 Magnetotelluric methods

Magnetotellurics (MTs) uses a natural electromagnetic field to image electrical conductivity
beneath the Earth (Tikhonov, 1950; Cagniard, 1953). Recently, developments in theories,

Table 5.1 Magnetic susceptibility values for common mineral and rock types (Sharma,
1997).

Mineral or rock type Magnetic susceptibility (k x 102 6 SI)

Granite (with magnetite) 20�40,000
Slates 0�1200
Basalt 500�80,000
Oceanic basalt 300�36,000
Limestone (with magnetite) 10�25,000
Gneiss 0�3000
Sandstone 35�950
Hematite (ore) 420�10,000
Magnetite (ore) 7 3 104�14 3 106

Magnetite (crystal) 150 3 106
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instrumentation, data processing, and interpretation techniques have yielded MT to be a
competitive geophysical method, suitable to image a broad range of geological targets.

The MT technique involves measuring fluctuations in the natural electric, E, and magnetic,
B, the field in orthogonal directions and at the surface of the Earth. When electromagnetic
fields diffuse into a ground medium, according to the behavior of electromagnetic waves, the
penetration of the electromagnetic wave depends on the oscillation frequency. Hence, the fre-
quency of the electromagnetic fields being measured determines the study depth.

The orthogonal components of horizontal electric and magnetic fields are related via a
complex impedance tensor (Simpson and Bahr, 2005):
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� �
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� �
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The apparent resistivity and phase are defined as follows:
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where Re and Im are real and imaginary components of the Z, respectively.

5.2.4 Seismic methods

Although the seismic method is mainly employed for hydrocarbon exploration, there have
been many recent applications to mineral prospecting. Reflection seismic techniques are uti-
lized to deliver high-resolution pictures of lithological boundaries and subsurface structures, as
well as details about the physical properties of rocks, such as their seismic velocity and density.
To date, several hundred [two dimensional (2D)] lines and tens of [three dimensional (3D)]
surveys have been obtained and documented in significant metallogenic sections worldwide.
The researcher has a variety of geophysical strategies to map the subsurface. His preference
depends on multiple factors, including the depth and physical properties of the target body,
the properties of the overburden and host rock, and the logistic necessities and expenditure
of surveys. Magnetic, electromagnetic, and gravity methods have been successfully employed
to explore metallic ore bodies. Regardless, reflection seismic procedures provide a foremost
trade-off between depth and resolution. This technology, mainly 3D seismic, is speedy evolving
as an established strategy for mine planning and deep exploration (Malehmir et al., 2014).

Moreover, the current trend in exploring and exploiting mineralization at greater depths favors
the usage of seismic techniques, not only for targeting deep-seated deposits and deep mine plan-
ning but also for attaining a more acceptable interpretation of the prevailing architecture of min-
eralized areas. This information is particularly essential when developing strategies to investigate
mining camps where most surface deposits have been discovered and exploited. Ms bodies have
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more increased seismic densities and velocities than their host rocks. If the bodies are large
enough, they can provide rise to strong reflections (Eaton et al., 2010; Malehmir et al., 2014).

5.2.5 Radiometric method

Gamma-rays are emitted during the decay of some naturally occurring elements on the
Earth. The original discovery of radioactivity was made by Becquerel in 1896 after Röentgen
had announced in 1895 the discovery of X-ray. Curie in 1898, investigating minerals of ura-
nium, extracted two new elements, polonium, and radium that were much more active than
uranium. The conventional approach to the acquisition and processing of gamma-ray spec-
trometric data is to monitor three or four relatively broad spectral windows [International
Atomic Energy Agency (IAEA), 2003] (Table 5.2 and Fig. 5.1).

Table 5.3 indicates the concentration of the three radioelements (potassium, uranium,
and thorium) in common rock types. Within igneous rocks, potassium, uranium, and tho-
rium are increased in overall abundance with increasing silica content up to and including
the pegmatite phase [International Atomic Energy Agency (IAEA), 1979].

The gamma-ray spectrometric survey used to map the radioelements (potassium, tho-
rium, and uranium) rather than the total radiometry of rocks is also widely used in environ-
mental, geological, and soil mapping (El-Qassas and Abu-Donia, 2019). It is also used to
estimate and assess the terrestrial radiation dose to the population and to identify areas of
potential natural radiation hazard [International Atomic Energy Agency (IAEA), 2003]. Moreover,
the airborne gamma-ray survey is used to determine the heat production maps (Richardson and
Killeen, 1980; Granar, 1982; Salem et al., 2005).

5.2.6 Ground-penetrating radar

Ground-penetrating radar (GPR) is a real-time nondestructive testing technique that uses
high-frequency electromagnetic waves and can provide data with very high resolution for a
short amount of time. This technique operates by transmitting electromagnetic waves into
the probed material and receiving echo signals back from subsurface layer interfaces that
could be boundaries between materials with different dielectrics. The corresponding arrival
times and the amplitudes of the obtained echo signals can then be used to detect the loca-
tion and nature of the interfaces. Since the GPR is able to detect buried objects, it is recom-
mended as a helpful tool for mapping structures, shallow geological features, and subsurface

Table 5.2 Standard gamma-ray energy windows are recommended for natural
radioelement mapping [International Atomic Energy Agency (IAEA), 1991].

Window Nuclide Energy range (MeV)

Total count � 0.400�2.810
Potassium 40K (1.460 MeV) 1.370�1.570
Uranium 214Bi (1.765 MeV) 1.660�1.860
Thorium 208Tl (2.614 MeV) 2.410�2.810
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targets (Sato, 2015; Dewi et al., 2017). In recent years, the GPR technique has gained accep-
tance as an important tool in the exploration of natural resources, the detection of under-
ground pipes, and studies in archeology (Francke, 2010; Porsani et al., 2019; Mierczak and
Karczewski, 2021).

Table 5.3 Radioelement concentrations in crustal rocks (Clark et al., 1966).

Rock type
K (%)
average

U (ppm)
average range

Th (ppm)
average range

Th:U average
range

Crustal average 2.1 3 12 4
Mafic igneous 0.5 1 0.2�3 3 0.5�10 3 3�5
Inter. igneous 1�2.5 2.3 0.5�7 9 2�20 4 2�6
Acidic igneous 4 4.5 1�12 18 5�20 4 2�10
Arenaceous sediments 1.4 1 0.5�2 3 2�6 3
Argillaceous sediments 2.7 4 1�13 16 2�47 4 1�12
Limestone 0.3 2 1�10 2 � 1 �
Black shale 2.7 8 3�250 16 � 2 Wide
Laterites Low 10 3�40 50 8�132 5 Wide
Metamorphism Depends on the parent rock type

Source: Adapted from Clark, S.P., Peterman, Z.E., Heier, K.S., 1966. Abundances of uranium, thorium and potassium, handbook of
physical constant. Geol. Soc. Am. Memoir. 47; and International Atomic Energy Agency (IAEA), 1979. Gamma-Ray Surveys in Uranium
Exploration. International Atomic Energy Agency (IAEA).

FIGURE 5.1 Typical airborne gamma-ray spectrum showing the positions of the conventional energy windows
[International Atomic Energy Agency (IAEA), 2003].
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5.2.7 Self-potential and induced polarization

5.2.7.1 Self-potential method
Self-potential (SP) technique is one of the oldest geoelectrical methods that is considered the
cheapest of the surface geophysical surveys. This method was used in 1920 as a secondary
tool in base metal exploration to detect the presence of massive ore bodies. Recently, it is
used in groundwater and geothermal investigations to outline near-surface structures (shear
zones, faults, and contacts). The method involves the measurement of natural potential dif-
ferences as a guide to the existence of mineralization. The SP anomalies are produced from
the flow of ions, heat, and fluids in the surficial layers of the Earth.

Several hypotheses have been developed to explain the mechanism of SP in mineral
zones, but a reasonably complete illustration of mineralization potential is that proposed by
Sato and Mooney (1960). This mechanism is illustrated in Fig. 5.2, showing the flow of elec-
trons and ions that leave the upper surface negatively charged and the lower positively
(Telford et al., 1990).

Current flow

Water table

Electrons

Surface

O2 gas

HFeO2 O2 dissolved

H2O2

H2O

OH�

H +

H+

OH�

Fe + +

Fe + +
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FeS2 

Fe(OH)2 

Fe(OH)3 

FIGURE 5.2 The self-potential mechanism in pyrite (after Sato and Mooney, 1960).
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5.2.7.2 Induced polarization method
Induced polarization (IP) is one of the most widely used techniques in ore deposit explora-
tion. It is applied due to its sensitivity to the electronic and ionic conductors. It was devel-
oped for detecting small concentrations of disseminated mineralization in base metal
exploration (Sumner, 1976; Pelton et al., 1978; Parasnis, 1986; Assran et al., 2007). It is also
used in groundwater, geotechnical, and environmental exploration (Anderson et al., 1990;
Drascovits Hobot et al., 1990; and others). The 2D resistivity/IP prospecting can give infor-
mation about both vertical and lateral variations of the Earth’s properties and can be used in
the delineation of the structure and depth of buried features.

IP surveys can be made in time- and frequency-domain modes. According to Seigel
(1979), it is generally appreciated that the time-domain technique has the advantage of
higher potential sensitivity. It also provides absolute measurements since the measure-
ments are made after the cut-off of the current pulse. Thus it is possible to improve
the signal-to-noise of such measurements by increasing the transmitter power, thereby
increasing the sensitivity of measurements for low IP response. In addition, the distortions
introduced by the electromagnetic coupling on the measured IP signal are very weak in the
time-domain technique.

5.3 Methodologies, processing, and interpretation
5.3.1 Gravity

The enhanced horizontal gradient amplitude (EHGA) was introduced by Pham et al. (2020a,b)
for detecting the edges of potential field sources. The EHGA method provides the maximum
amplitudes on the horizontal boundaries of the sources. The method is given by

EHGA5 � asin k
HGAz�����������������������������������������������������

HGAx
2 1HGAy

2 1HGAz
2

q 2 1

0

B@
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0

B@

1

CA

0

B@
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CA; (5.4)

where HGA is the total horizontal gradient amplitude of the potential field F, and given by
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�����������������������������������
@F
@x

� �2

1
@F
@y
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and k is a positive number decided by the interpreter. In this study, we used k 5 5 (Pham
et al., 2020a,b).

To determine the depth of density sources, we used the Euler deconvolution method that
was introduced by Thompson (1982) and Reid et al. (1990). They calculated the 3D form of
Euler’s homogeneity equation that can be defined as follows:

x 2 x0ð Þ
@F
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1 y 2 y0ð Þ
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@z

5 N B 2 Fð Þ; (5.6)
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where x0, y0, and z0 is the location of the potential field source, F is the field measured at x,
y, and z, B is the regional value, and N is the structural index that characterizes the source
geometry.

5.3.2 Magnetic

A variety of semiautomatic and automatic methods, based on the use of gradients of the
potential field, have been developed as efficient tools for the determination of geometric
parameters, such as locations of boundaries and depth of the causative sources (O’Brien,
1972; Nabighian, 1972, 1974; Cordell, 1979; Thompson, 1982; Barongo, 1985; Blakely and
Simpson, 1986; Hansen and Simmonds, 1993; Reid et al., 1990; Roest et al., 1992; Salem and
Ravat, 2003).

Processing techniques provide subsurface imaging capabilities that are used in geological
interpretations. However, no single processing technique can be applied in all areas as the
geologic field can vary widely. Therefore applying multiple techniques will yield the best
results. Several numerical interpretation approaches have been developed. The techniques
of interpretation can be divided into three categories (Fig. 5.3). Each category has the
same goal, to illuminate the spatial distribution of magnetic sources, but they approach
the goal with quite different logical processes. Fig. 5.3 shows the measured anomaly that
is represented by A, calculated anomaly by Ao, and transformed measured anomaly by A0.
Parameters p1, p2, and p3 are attributes of the source, such as depth, thickness, density, or
magnetization.
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FIGURE 5.3 Three categories of techniques to interpret potential field data (Blakely, 1995).
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Forward method: An initial model for the source body is constructed based on geologic
and geophysical intuition. The model’s anomaly is calculated and compared with the
observed anomaly, and model parameters are adjusted to improve the fit between the two
anomalies. These three-step processes, body adjustment, anomaly calculation, and anomaly
comparison, are repeated until calculated and observed anomalies are deemed sufficiently
alike. Inverse method: One or more body parameters are calculated automatically and
directly from the observed anomaly. Data enhancement and display: No model parameters
are calculated, but the anomaly is processed in some way to enhance certain characteristics
of the source, thereby facilitating the overall interpretation (see, e.g., Blakely, 1995, p. 182).

Traditionally, the magnetic method is used to estimate the depth of the basement structure.
Additionally, the magnetic method is the oldest of the geophysical methods for locating both
hidden ores and structures associated with mineral deposits, oil, and gas (Telford et al., 1990).
In mineral exploration, the magnetic method is most often used to prospect for magnetic
minerals directly, but also effective in the search for useful minerals that are not magnetic
themselves but are associated with other minerals having magnetic effects detectable at the
surface (Dobrin, 1960). Pham et al. (2020a,b) suggested the use of the improved logistic (IL)
filter that is defined as

IL 5
1

11 exp 2p RHGA 2 1ð Þ 1 1
�  ; (5.7)

where RHGA is the ratio of the vertical derivative/horizontal derivative of the HGA
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��������������������������
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� �2

q
1 @HGA=@y
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and p is a positive (real) value that is decided by the researcher (between 2 and 5).

5.3.3 Inversion of magnetotelluric data

There are many models that can adequately fit the observation data regarding the noise
level. To narrow the solution domain of geophysical inversion, the inverted model is chosen
as the smoothest model (Constable et al., 1987; Kelbert et al., 2014). The objective function
of the inversion is as follows:

[ 5 [d 1 	[m; (5.9)

where [d and [m are the misfit and smoothness terms, and b is the regularization parame-
ter balancing between the misfit and the model structures.

5.3.4 Seismic attributes contributing to geology interpretation

Strong reflection seismic amplitude can be used to reveal geology boundaries. Moreover, seis-
mic patterns can also be useful in detecting different geologies. However, seismic interpretation
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needs skilled scientists. In this research, we have provided some seismic texture seismic attri-
butes for assisting seismic interpretation. The attributes can help to reveal some blurred but
meaningful seismic features that one person finds difficult to detect by the naked eye.

The definition of texture attributes is well illustrated in the grey level co-occurrence
matrix (GLCM) Texture Tutorial document by Hall-Beyer (2017). Characteristics of an image
can refer to the level of roughness or smoothness. A seismic image that is constructed by dif-
ferent amplitudes can take the advantage of the texture attributes’ application. Two steps are
designed for computing a seismic texture. First, a GLCM term, known as a 2D matrix, com-
putes the probability of occurrence of any two specific nearby values (Hall-Beyer, 2017).
Second, a statistical equation is applied to the GLCM to compute a texture.

Three seismic texture attributes can be produced as the following equations:

GLCMMeanµi 5
XN21

i;j50

iPi;j ; (5.10)
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In our research, GLCMMean and GLCMCorrelation for seismic are used for enhancing
seismic interpretation. The Variation shows a level of chaos/dispersion of the values within
the mean (Hall-Beyer, 2017; dGB Earth Sciences, 2015). Meanwhile, GLCMCorrelation refers
to the linear dependency of the seismic inputs with the nearby ones (Hall-Beyer, 2017; dGB
Earth Sciences, 2015). The Correlation can be linked useful with another texture attribute
(Hall-Beyer, 2017; dGB Earth Sciences, 2015).

5.3.5 Radiometric data

There are many types of gamma-ray spectrometric surveys. The survey can be achieved by
aircraft, vehicles, ground, and borehole spectrometers [International Atomic Energy Agency
(IAEA), 2003]. The data are presented as contour maps, and they have been subjected to a
qualitative and quantitative interpretation.

A major objective of the interpretation of airborne gamma-ray spectrometer data is to
define the probable boundaries of potential uraniferous provinces in which the rocks and
soils are preferentially enriched in uranium (Saunders and Potts, 1976). The qualitative inter-
pretation of gamma-ray spectrometric data depends mainly upon the correlation between
the radioactivity measurements and the surface distribution of the various rock units. The
quantitative interpretation deals with the processes that control the distribution of radioele-
ments in rocks and soils [International Atomic Energy Agency (IAEA), 2003]. Besides, the sta-
tistical analysis was applied to the three radioelements (K, U, and Th) for each geologic rock
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unit. The statistical analysis includes minimum, maximum, arithmetic mean (X), standard
deviation (S.D.), and coefficient of variability (CV%) that check the normality of each rock
unit. Coefficient of variability [CV%5 (S.D./X)3 100] is applied, if CV% of a certain rock unit
is ,100; the unit tends to exhibit normal distribution (Sarma and Koch, 1980).

The structural lineaments analysis can be deduced from the total count (TC) and three
radioelements’ maps to determine the significant trends that are the affecting factors on the
distribution of the radiometric anomalies.

5.3.6 Self-potential

The field survey using SP is carried out by measuring the difference in electric potential
between two electrodes that relate to the Earth’s surface at survey stations in the interested
area. One station is selected as a base station, and all measured potentials were referenced
to that point. The base station is located at a calm SP potential point as possible, and one of
the two electrodes is put in this station. The other electrode is moving on the grid stations.

The processing of the SP data is very simple, and it can be done simultaneously in the
field. The value of the base for each profile is subtracted from the reading of each station
on the same profile. The net reading could be plotted against the distance to produce the
SP-processed profiles. These profiles first were drawn on millimeter papers to determine
some parameters graphically with relatively more accuracy.

The results of a SP survey are presented as a set of profiles, plotting SP values against the
distance. These profiles are usually used to construct a contour map showing equipotential
lines. The structure to be detected is generally 3D; therefore it is better to interpret a contour
map rather than profile data (Thanassoulas and Xanthopoulos, 1991). The interpretation of
these data is mainly qualitative, where the interpretation procedure selected will depend on
the desired goals of the investigation, the quality of the field data, and the availability of
additional geophysical and hydrological data (Sharma, 1997).

The quantitative interpretation of SP is usually used to transform the conductive body
into a physical model of a simple geometric shape. The parameters of the source may be
evaluated by using the method of characteristic curves. In this method, mathematical rela-
tions among the parameters of the body and a few readily identifiable points on the anomaly
curve are used for interpretation. There are two methods of quantitative understanding
(Ram Babu and Atchuta Rao, 1988; Murty and Haricharan, 1985). They presented curves for
interpreting the SP anomalies using a few characterizing points of the nomogram.

5.3.7 Induced polarization

The IP/resistivity measurements are first viewed in a traditional 2D pseudosections
presentation. These measurements are influenced, to a large degree, by the rock materials near-
est the surface (or, more precisely, nearest the measuring electrodes), and the interpretation of
the pseudosections of IP data is mostly uncertain. This is because stronger responses that are
located near the surface could mask a weaker one that is located at depth. Also, the pseudosec-
tions do not create particularly good images of the subsurface (Pelton et al., 1978; Barker, 1981;
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Smith et al., 1984; Oldenburg and Li, 1994; Loke and Barker, 1996b; Ulrich and Slater, 2004). So,
the apparent resistivity and chargeability measurements were inverted into models using the
RES2DINV program (Loke, 2004). This program automatically determines 2D models for both
the resistivity and chargeability data obtained from the IP/resistivity survey (Griffiths and Barker,
1993). This computer program uses the smoothness-constrained least-square inversion tech-
nique (Sasaki, 1992) to convert measured apparent IP/resistivity values to true resistivity and
chargeability values and plot them in cross section (2D model). The program creates a resistivity
and chargeability cross section, calculates the apparent resistivity and chargeability for that cross
section, and compares the calculated apparent resistivity and chargeability to the measured
apparent resistivity and chargeability. The iteration continues until a combined smoothness-
constrained objective function is minimized. The surface topography can have a significant
effect on the resistivity measurements (Tsourlos et al., 1999); for this reason, the surface topo-
graphic data of the IP profiles were included in the resistivity and chargeability models.

Recently, 3D models of resistivity and chargeability data were generated from IP/resistiv-
ity surveys or combined with 2D models of resistivity and chargeability (Chambers et al.,
2006; Vieira et al., 2016; Halim et al., 2017). The 3D models are useful in delineating the lat-
eral and vertical variations of resistivity and chargeability to get the best understanding of
the ore deposit existences and contaminated sites, etc. (Ustra et al., 2012; Vieira et al., 2016).

5.4 Case studies
5.4.1 Voisey’s Bay deposit (gravity data)

The Voisey’s Bay nickel�copper�cobalt deposit located on the northeast coast of Labrador
(Canada) is known as one of the most significant mineral discoveries in the past half-century
(Farquharson et al., 2008). The main ore body is a Ms lens roughly ellipsoidal in shape
with horizontal sizes of 350 m3 650 m (Farquharson et al., 2008). Fig. 5.4A shows Bouguer
ground gravity over the Voisey’s Bay deposit digitized from King (2007). In this study, we
applied the EHGA filter to determine the horizontal boundaries of the deposit and used the
Euler deconvolution method to estimate the depths of these horizontal boundaries. Fig. 5.4B
shows the result obtained from applying the EHGA filter. We can see that the peaks of the
EHGA demonstrated the existence of the main ore body with an approximately ellipsoidal
shape as reported by Farquharson et al. (2008) and Lelièvre et al. (2012). Fig. 5.4C shows the
depth estimates determined by applying the Euler deconvolution method. Fig. 5.4D shows
the histogram of the depth estimates in Fig. 5.4C. It is clearly seen that most of the horizontal
boundaries are in the depth range of 20�40 m. This depth result agrees well with the results
given by other authors (Farquharson et al., 2008; Maag and Li, 2018).

5.4.2 Gabal Semna region, Eastern Desert of Egypt (magnetic data)

Gabal (G) Semna region, Eastern Desert (ED) of Egypt, has become a major exploration
target for deep minerals in some promising zones, due to a program of the Egyptian
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government that began to provide high-resolution airborne geophysical data (Fig. 5.5).
Aeromagnetic survey data were used to estimate the structures and their relation to ore
deposits. The 3D inversion was applied to estimate the depth and geometry of the magne-
tized ore bodies. The 3D magnetic inversion results revealed that high-amplitude magnetic
anomalies correspond to metavolcanics and mafic rocks. High-amplitude (positive) magnetic
anomalies are correlated with the large susceptibilities’ metavolcanics.

Aeromagnetic data were used to map surface geology and alteration zones that can host
mineralization, and the 3D inversion was applied to outline the subsurface distribution of
these promising areas. Many filtering techniques have been applied to map edges, structures,
boundaries, and other geologic features basis on the contrast of magnetic susceptibility and
remanence (Holden et al., 2008; Elkhateeb and Eldosouky, 2016; Sehsah et al., 2019; Eldosouky
et al., 2020b, 2022b, 2022c; Saada et al., 2021a,b; Eldosouky and Mohamed, 2021; Sehsah and
Eldosouky, 2022; El-Sehamy et al., 2022). For deep mineral exploration, this approach can be
used in the Egyptian ED and identical areas around the world. Several corrections have been

FIGURE 5.4 (A) Bouguer ground gravity over the Voisey’s Bay deposit, (B) EHGA of gravity data in (A), (C) depth
estimates determined from the Euler deconvolution method, and (D) histogram of the depth estimates in (C).
EHGA, Enhanced horizontal gradient amplitude.
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applied to the aeromagnetic data such as aircraft altitude, diurnal correction, and removing
the regional gradient of the Earth’s magnetic field (Aero-Service, 1984).

Significant progress has been made in mineral exploration, especially with advances in
inversion and 3D modeling. It has become easier to integrate geophysics and geology into
consistent and more reliable models (Robert et al., 2007). In mineral exploration, 3D inter-
pretation of magnetic data has become common practice. The main objective of the 3D
interpretation is to estimate the magnetic susceptibility distribution and remanence proper-
ties of the rocks that host minerals-bearing veins with a particular emphasis on the

FIGURE 5.5 Geographic location and geology of G. Semna area. Modified after Conoco Coral Corporation and the
Egyptian General Petroleum Corporation EGPC (1987a).
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relationships among magnetic physical properties, alteration, and mineralization (Mohamed
et al., 2018; Oldenburg and Pratt, 2007). Previous studies show the diverse applications of 3D
inversion in ore prospecting, crustal imaging, and environmental studies (e.g., Abdelrahman
and Essa, 2005; Balkaya et al., 2017; Mohamed et al., 2018).

Total magnetic field data are shown in Fig. 5.6. Total magnetic field data have been
reduced to the magnetic pole (RTP) (Baranov, 1957) map (Fig. 5.7). The magnetic anomaly
of the RTP map varies between 2209 nT and .300 nT (Fig. 5.7). The high magnetic
anomalies correspond to surface geology and are related to intrusive metagabbro, serpenti-
nite, metagabbro, and metavolcanics (Fig. 5.7). Also, buried magnetic bodies are the primary
source for these positive anomalies. The negative magnetic anomalies are correlated with

FIGURE 5.6 Total intensity maps of G. Semna area (Aero-Service, 1984).
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some parts of Hammamat clastics and acidic metavolcanics, granitic rocks, and metasedi-
ments (Fig. 5.7).

The separation of regional and residual magnetic anomalies is a crucial step in mineral
exploration. RTP data are separated into their residual and regional components (Fig. 5.8A
and B) (Spector and Grant, 1970). The FFT was applied to the RTP magnetic data to explore
the frequency content of these data. The analysis shows that the deep-seated magnetic com-
ponent frequency has a long wavelength cutoff of 200 km and a short-wavelength cutoff of
17.2 km, while the near-surface magnetic component frequency has a long-wavelength cutoff
of 17.2 km and a short-wavelength cutoff of 8.3 km. It is obvious that the locations of most
gold mineralization deposits are related to positive magnetic anomalies and their contacts

FIGURE 5.7 RTP map of G. Semna area (Aero-Service, 1984). RTP, Reduced to the magnetic pole.
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with negative magnetic anomalies of the RTP and residual maps (Figs. 5.7 and 5.8). The
investigation of the residual magnetic anomaly (Fig. 5.8A) shows that the southern portion of
the area consists of alternative magnetic anomalies (positive and negative) that are charac-
terized by high amplitudes and frequencies and have an E�W trend. The trend of the anom-
alies changes from E�W to WNW�ESE direction in the southwestern and central parts of
the study area (Fig. 5.8A). Also, the frequencies and amplitudes of these anomalies change
with trends changing. They were dissected by NW�SE, NE�SW, and WNW�ESE faults.
Magnetic anomalies (positive and negative) belts with varying amplitudes and frequencies,
trending in the NNE�SSW directions, can be observed in the northwestern portion of the
G. Semna area (Fig. 5.8). Several faults intersect these belts with major trends in E�W,
NNE�SSW, NWN�SES, and N�S directions. The low-pass (regional) aeromagnetic map
(Fig. 5.8B) appears to be related to four magnetic anomalies (positive) with high magnitudes
and frequencies situated at the eastern, southeastern, western, and northwestern parts of the
study area. These anomalies trend in northeastern and northwestern directions, respectively.
Moreover, three moderate positive anomalies are separated from high positive magnetic
anomalies by faults trending NNW�SSE, NNE�SSW, and NW�SE (Fig. 5.8B). This reveals
that the three moderate positive subanomalies are related to deeper magnetic sources than
the four high positive anomalies that belong to shallow magnetic sources.

Five negative anomalies are trending in NNE�SSW, NW�SE, and ENE�WSW directions
(Fig. 5.8B) and spread out over the study area, with different amplitudes and frequencies.

FIGURE 5.8 (A) Residual and (B) regional RTP maps of G. Semna area. RTP, Reduced to the magnetic pole.
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These anomalies are trending in NNE�SSW, NW�SE, and ENE�WSW directions (Fig. 5.8B).
An IL filter is applied to the RTP, residual, and regional data (Figs. 5.7 and 5.8A and B
respectively) to reveal the faults, edges, and contacts of the G. Semna area. The study area
was affected by main structural trends: NW�SE, NE�SW, ENE�WSW, and N�S directions
as revealed by the results of the IL filter for aeromagnetic maps (Fig. 5.9A�C). Contacts of
deep and shallow features are delineated clearly with the IL filter maps in the RTP, residual,
and regional data.

5.4.2.1 3D magnetic inversion
In this study, 3D inversion is applied to help target mineral exploration deposits. Inversion
refers to constructing a 3D magnetic-susceptibility model that is consistent with the geology
and related to the measured magnetic response. TMI field data (Fig. 5.6) provide a compre-
hensive 3D magnetic susceptibility model in the study area. Three different areas are
selected to construct a 3D magnetic susceptibility model. The locations of two areas where
known gold deposits have been studied during previous exploration, area A (Hamama and
West Garida) area B (Abu Marawat), are shown in Fig. 5.6. The 3D inversion is applied to
area C (Fig. 5.6) where no known gold deposit has been identified. The inversion results
are shown in Fig. 5.10 for the study area (C). Measured and calculated magnetic field data
overlaid the 3D magnetic susceptibility model (Table 5.4; Fig. 5.10). The subsurface of the
study area was represented with cuboid cells in the x, y, and z (magnetic field components)
directions (see Table 5.2).

The relation between magnetic susceptibility (Ms) and rocks or minerals is the critical
link between geological and geophysical interpretation (Mohamed et al., 2018). Table 5.1
shows the Ms values for some rocks and minerals in the world that also occur in the studied
areas. For this method to be successful, there must be a physical property contrast between

FIGURE 5.9 Improved logistic (IL) filter of (A) RTP, (B) residual, and (C) regional data of G. Semna area. IL, Improved
logistic; RTP, reduced to the magnetic pole.
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the geologic materials. Fig. 5.10A�C shows the 3D magnetic susceptibility model with a
series of slices at different positions along with eastern, northern, and depth directions in
figures to show the location of the high-Ms zones. The inversion indicated the presence of
continuous zones of high magnetic material at different depths. Metavolcanic rocks are the
main magnetic rocks in the study area, so it seemed likely that the high magnetic region

FIGURE 5.10 Cross sections (A�C) through the susceptibility model. Slices at X5 (543,500, 544,500), Y5 (2,957,500,
2,958,000), and Z5 (1000, 2000) for area C.

Table 5.4 Mesh parameters of the base and padding of the magnetic data (area C).

Base Horizontal padding Vertical padding

Dimensions (cells) 14 5 5
Cell expansion ratios 1.08 1.5 1.5
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found at depth has the same lithology as that of known deposits. Wadi deposits and older
granitoids are correlated with low magnetic field data. The inversion results have been used
in this study, and new geologic and economic reserves have been found.

5.4.3 Cloncurry�Georgetown�Charters Towers, North Queensland,
Australia (seismic and magnetotelluric)

The 2D geophysical datasets as seismic and MT data are measured in the Cloncurry�
Georgetown�Charters Towers, North Queensland, Australia. The vast area, North Queensland
(Korsch et al., 2012), located on the cratonic margin of Australia, has experienced a complex
crustal history connecting with the successive development of several Proterozoic-to-Paleozoic
orogenic systems. A deep survey seismic reflection and low-frequency MT band measurements
were conducted in 2007 for a better understanding of the regional geological factors linking to
the known rich mineral resources. The seismic survey was conducted by a cooperation among
the Australian Government’s Onshore Energy Security Program, the Queensland Government’s
Smart Mining and Smart Exploration initiatives, and AuScope (an unincorporated company
funded by the Australian Government under the National Collaborative Research Infrastructure
Strategy, NCRIS). For MT data collection and processing, Quantec Geoscience Ltd. was in
charge of MT data collection and processing.

The 2D profile we use for analysis is named 07GA-IG1 (Fig. 5.11). Useful information on
seismic data measurement settings can be extracted from the paper by Korsch et al. (2012).
Migrated 20-s two travel time seismic section (07GA-IG1) shown in Fig. 5.12 is the input for

FIGURE 5.11 Location of profile 07GA-IG. The figure is taken from the work of Korsch et al. (2012).
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computing its seismic texture attributes (i.e., Correlation and Variation). The equivalent max-
imum depth is 60 km using a medium velocity of 6000 m/s. For MT data inversion the fre-
quency band ranges from 0.0053 to 238 Hz.

5.4.3.1 Results
5.4.3.1.1 Magnetotelluric analysis
We have run unconstrained smooth MT inversion with the prior resistivity model as 100-� m
value for all blocks. The inverted resistivity model (Fig. 5.12) can share many similar features
with the seismic interpretation result. Some importation remarks can be made as follows:

For the detection of geological faults: Shapes of resistivity models can match the trend of
geological faults (see the white arrows in Gidyea Suture zone and Rowe Fossil).

High-resistivity zones can show a high correlation with geology features (i.e., Millungera Basin).
Geological faults do not always refer to low resistive zones (see cyan arrows).

5.4.3.1.2 Seismic analysis
Two seismic texture attributes, Correlation and Variation, are calculated from the processed
migrated data (Fig. 5.13). It does look like the Variation can keep more details like the seis-
mic input than the Correlation can (Fig. 5.14). Importantly, we also present an overlay image
of Correlation and Variation in gray scale to see how it looks with the migrated section and
the published seismic interpretation (Korsch et al., 2012) (Fig. 5.15). Note that color repre-
sentation is one kind of attribute technique. Many clear strong seismic events can be seen in
the three images (see green dashed ovals in Fig. 5.15). Interestingly, some weak signals that
are hardly seen in the seismic original section can easily be targeted by visible events in the
overlay of its attributes (see black dashed ovals in Fig. 5.15).

5.4.3.1.3 Integration
k-Means clustering technique is commonly used in evaluating and connecting different geo-
physical parameters. We have used k-means for clustering two cases: (1) two seismic texture
attributes as Correlation and Variation, and (2) the two seismic attributes and inverted MT
resistivity. A number of seven clusters are chosen for the two cases.

FIGURE 5.12 Resistivity model of MT inversion. The geological interpretations are taken from the work of Korsch
et al. (2012). MT, Magnetotelluric.
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FIGURE 5.14 The seismic variation attributes illustrate clearly geological structures, Gidyea Suture Zone and Moho
(A) and Rowe Fossil Subduction Zone (B).

FIGURE 5.13 Seismic amplitude (A) and its texture attributes Correlation (B), and Variation (C). The triangles on the
top of the profile mark the location of MT. MT, Magnetotelluric.
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For the first case with only the seismic ones, Moho zones are well defined with the exis-
tence of clusters 5 and 6 as yellow and orange colors, respectively (Fig. 5.16). Meanwhile, its
upper part (from the surface to the Moho interface) is dominated by clusters 1�3.

For the second case with the combination between seismic texture attributes and MT
resistivity, more detailed features are preserved than just interpreting individual seismic or
MT data (Fig. 5.17). Fantastically, we can see an orange wedge bounded by Moho and Rowe
Fossil subduction zone (see the white arrow). Again, Moho can be represented by blue zones
(clusters 1 and 2) for the new clustering setup. However, there are still distortions made by
clusters that are conflict with seismic faults (i.e., Gidyea Suture Zone) (see the black arrow).

5.4.3.2 Conclusion
A combination of seismic and MT data can provide a useful tool for understanding the
Earth. Highly detailed delineation of different geological objects is supported by deep reflec-
tion seismic, while the MT method can give the distribution of electrical resistivity parameter
on large scale. Geological features such as basins, faults, and Moho zones can be detected by

FIGURE 5.15 Seismic migrated section, overlay of its seismic texture attributes (Correlation and Variation), and
geology interpretation extracted from the work of Korsch et al. (2012).
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both methods. In a nicer way, their integration can even provide more useful information
with the application of the k-means technique. For seismic attributes analysis, representa-
tions of each attribute, their overlay, or clustered results can be good indicators for support-
ing geology interpretation.

5.4.4 Gebel El-Bakriyah—Wadi El Batur area, Central Eastern Desert,
Egypt (radiometry)

The study area is located in the Egyptian Central Eastern Desert (Fig. 5.18). The geologic set-
ting of this area depends on the geologic map of the Gebel Hamata area at a scale of

FIGURE 5.16 k-Means clustering result of the seismic attributes only.

FIGURE 5.17 k-Means clustering result of the seismic attribute and resistivity of MT model. MT, Magnetotelluric.
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1:500,000 (Conoco Coral Corporation and the Egyptian General Petroleum Corporation
EGPC, 1987b; El-Qassas, 2018). It contains a vast variety of metamorphic, igneous, and sedi-
mentary rocks having ages ranging from Precambrian to Quaternary (Fig. 5.18). The previous
geological and radiometric studies indicated that phosphates and granitic rocks contain con-
siderable concentrations of uranium mineralization (Sadek, 1972; Salman, 1974; El-Amin,
1975; Abdel Hadi, 1978; El Shazly et al., 1981; Ammar et al., 1988; Gharieb, 1995; Hanafy,
2002; Abd El Nabi, 2009, etc.).

The study area was surveyed using airborne gamma-ray and magnetic by Aero-Service
(1984). This survey represents a part of the mineral, petroleum, and groundwater assessment
program (MPGAP). The main target of this case study was to construct the surface radioactive

FIGURE 5.18 Location and simplified geologic map of Gebel El Bakriyah—Wadi El Batur area, Central Eastern Desert,
Egypt. Reproduced after Conoco Coral Corporation and the Egyptian General Petroleum Corporation EGPC (1987b).
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heat production (RHP) map from the airborne gamma-ray data of the Gebel El Bakriyah—
Wadi El Batur area, Central Eastern Desert, Egypt (El-Qassas, 2018).

The interpretation of airborne gamma-ray spectrometric data of the study area deals with
TC and the radioelements content of potassium (K), equivalent uranium (eU), and equivalent
thorium (eTh), besides the ratios of eU/eTh, eU/K, and eTh/K (Figs. 5.19 and 5.20). The area
possesses radiation ranging between 1.6 and 33.5 Ur as Tc, 0.07%�3.7% for K, 0.1�30.1 ppm
for eU, and 0.8�28.9 ppm for eTh (El-Qassas, 2018). The TC map (Fig. 5.19A) showed that
the lowest level (1.6�6.8 Ur) is situated at the eastern, central, and northwestern parts of the
map and related to serpentinite, some parts of metagabbro, metavolcanics, metasediments;
Taref, Quseir, and Dakhla Formations. While the highest level of TC (Fig. 5.19A) has values
varying from 13 to 33.5 Ur, recorded over the younger granites of the Gebel El Bakriyah and
Gebel El-Shalul and some parts of Duwi Formation that covers the southeastern, northeastern,
and western parts of the map (El-Qassas, 2018).

K% map (Fig. 5.19B) displayed the lowest level (,0.5%) over the Taref Formation, some
parts of the Dakhla Formation, serpentinites, and metavolcanics, and over the Duwi
Formation. The highest level (. 1.3%) covers the eastern part and correlated geologically
with older granites, younger granites, leucocratic metamorphic rocks, and some parts of

FIGURE 5.19 Airborne radiometric contour maps: (A) total-count (TC in Ur), (B) potassium (K in %), (C) equivalent
uranium (eU in ppm), and (D) equivalent thorium (eTh in ppm), Gebel El Bakriyah—Wadi El Batur area, Central
Eastern Desert, Egypt (Aero-Service, 1984).
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metasediments and metavolcanics (El-Qassas, 2018). The existences of alkali-feldspars and
hydrothermal alteration lead to the increase in K% values.

eU values (6�30.1 ppm) occurred over the younger granites of the Gebel El Bakriyah,
Dakhla, and Duwi formations. These values represent the highest uranium content in the study
area (Fig. 5.19C). The lowest eU values (. 2.3 ppm) are restricted to serpentinite, metavolca-
nics, metagabbro, some parts of metasediments, and Taref Formation (El-Qassas, 2018).

Fig. 5.19D reveals that the lowest values of eTh content range from 0.8 to 3 ppm and
the highest values (7�28.9 ppm) are related to younger granites, leucocratic metamorphic
rocks, Quseir Formation, and some parts of Duwi Formation at the southeastern, northern,
central, and southwestern parts (El-Qassas, 2018).

Fig. 5.20A�C describes the ratios of eU/eTh, eU/K, and eTh/K. The eU/eTh ratio map
(Fig. 5.20A) is important for uranium exploration because it maps the relatively uranium-
enriched areas. The highest eU/eTh values (. 4) may have been produced by highly
enriched formations in uranium, which have higher mobilization than thorium. These values
are mainly associated with some parts of the Duwi and Dakhla formation in the western part
(El-Qassas, 2018). The eU/K ratio map (Fig. 5.20B) confirms the highest eU/eTh values at the
western part and agrees with eTh/K ratio (Fig. 5.20C) in determining the lowest values at the
eastern part. In addition, the eTh/K map (Fig. 5.2C) displayed the contact between the sedi-
mentary and basement rocks, which has NNW to N�S direction (El-Qassas, 2018).

FIGURE 5.20 (A) eU/eTh, (B) eU/K, (C) eTh/K airborne radiometric ratio contour maps, and (D) radioactive heat
production (RHP in µW/m3) map, Gebel El Bakriyah—Wadi El Batur area, Central Eastern Desert, Egypt (El-Qassas, 2018).
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The radioactive heat production (A) can be calculated from the following formula
(Bücker and Rybach, 1996):

A µW=m3
� �

5 1025� 9:52 CU 1 2:56 CTh 1 3:48 CKð Þ; (5.14)

where � is rock density (kg/m3), and CU (ppm), CTh (ppm), and CK (%) are the radioactive
element contents of uranium, thorium, and potassium, respectively.

The average density for each rock unit in the area is obtained from Telford et al. (1990)
and Sharma (1997) as shown in Table 5.5. Fig. 5.20D exhibits the RHP values ranging from
0.19 to 6.92 µW/m3 (Fig. 5.20D and Table 5.5). Some parts of the younger granites at
Gebel El Bakriyah, as well as Dakhla and Duwi Formation, possess the highest RHP
values (2�6.92 µW/m3), located in the southeastern and western parts of the area (Figs. 5.18
and 5.20D). Dakhla and Duwi Formation showed relatively high values of RHP (6.38 and
6.92 µW/m3) as shown in Table 5.5. The relatively high values exist due to the higher content
of uranium in shale and phosphate. Also, Fig. 5.20D reveals that the lowest values of the RHP
(0.19�1 µW/m3) are associated with serpentinite, metasediments, metagabbro, metavolcanics,
Taref Formation, and some parts of Dakhla and Quseir formations. The lowest values of RHP
are due to the low uranium contents in these rocks (El-Qassas, 2018).

5.4.5 Wadi El-Ghawaby, Central Eastern Desert, Egypt (induced
polarization)

The study area is located about 30 km southwest of Qussier city that lies on the Red Sea
coast, Central Eastern Desert, Egypt. The importance of this area and its adjacent is due to
bostonite (trachyte) rocks, which represents one of the important igneous rocks that host

Table 5.5 Airborne spectral gamma-ray data, average density, and estimated
radioactive heat production values for each rock unit of Gebel El Bakriyah—Wadi El
Batur area, Central Eastern Desert, Egypt (El-Qassas, 2018).

Rock units TC (Ur) K (%) eU (ppm) eTh (ppm)
Average density
(�) (kg/m3)

Estimated radioactive
heat production (A)

(µW/m3)

Min Max Min Max Min Max Min Max Min Max Average

Dakhla Formation 4.5 28.14 0.20 0.70 2.10 27.0 2.20 6.20 2400 0.75 6.38 2.05
Duwi Formation 6.27 33.50 0.20 0.80 2.10 30.1 2.00 12.0 2350 0.91 6.92 2.09
Quseir Formation 4.00 11.25 0.30 0.85 0.70 6.00 3.30 12.0 2400 0.56 1.87 1.06
Taref Formation 2.73 9.32 0.07 1.30 0.70 3.80 2.20 10.1 2350 0.36 1.30 0.74
Granite (younger) 3.54 30.55 0.30 3.70 0.50 11.8 2.00 28.9 2670 0.32 4.83 1.50
Granite (older) 4.50 12.86 0.80 3.00 0.70 3.90 2.80 9.50 2670 0.49 1.92 1.07
Metasediments 1.66 10.29 0.20 2.20 0.10 3.40 1.20 5.70 2720 0.19 1.45 0.61
Metavolcanics 1.77 11.10 0.30 1.85 0.20 2.50 1.20 5.50 2790 0.21 1.24 0.56
Metagabbro 1.93 8.04 0.10 1.40 0.20 2.80 1.40 7.10 3030 0.29 1.31 0.68
Serpentinite 1.6 6.27 0.20 1.25 0.30 2.20 0.80 4.40 2780 0.21 0.90 0.47
Leucocratic metamorphic 4.18 14.80 0.40 2.70 0.50 3.50 3.70 9.80 2740 0.61 1.64 1.07
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uranium and/or thorium minerals (Assaf, 1966; Ibrahim, 1968; El Kassas, 1969). Uranium
mineralizations are found commonly associated with some sulfide mineralization mainly of
iron, copper, zinc, and lead (Hussein and Kassas, 1972). The highest values of eU (90 ppm)
were recorded over some parts of the bostonite and its contact with slate and siltstone rocks
(El-Qassas, 2014). During the field measurements, it was noticed that the values of uranium
content increase with depth as recorded in the previously excavated trenches and by making
small holes around the recorded high radiometric values (El-Qassas, 2014).

The main target is to identify the radiometric and conductive anomalous zones. Therefore
the time-domain-IP with dipole�dipole surveys were carried out to follow the lateral and ver-
tical extensions of the exposed mineralization and to explore any subsurface mineralization
(El-Qassas, 2014). The spacing between the transmitter (Tx) and receiver (Rx) dipoles was
from one to six (n 5 1�6), which allows considerable depth penetration. The depth of explo-
ration of each measurement is controlled by the value of (n) and dipole length, while the
location point occurs at the intersection of 45� lines drawn from the midpoints of each dipole
(Fig. 5.21). The plotting procedure is continued from level 1 to level 6 (n 5 1�6) to attain
deeper penetration in the subsurface.

An example: profile A�A2 was set up close to the excavated trenches in the bostonite
with 600-m length (Fig. 5.22). It was carried out using dipole lengths of 20 and 40 m
(Figs. 5.23�5.26) to follow the near-surface radioactive anomalies, which are recorded at the
excavated trenches, for 70-m depth (El-Qassas, 2014). The 2D pseudosections of profile
A�A2 show the filtered lines and the pseudosections of metal factor, resistivity, and charge-
ability (Figs. 5.23 and 5.25).

Inspection of the chargeability model reveals a gradual increase of the chargeability
values downward (Fig. 5.24). Two portions can be distinguished in the chargeability model
according to the chargeability values (Fig. 5.24B). The first portion extends from the near-

FIGURE 5.21 Diagram showing the method of construction of dipole�dipole pseudo section.
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surface to a depth of about 20 m with chargeability values varying from less than 1 to 11 mV/V.
The lowest chargeability values (,1 mV/V) of this section are centered at stations 80 and 360
(El-Qassas, 2014). Meanwhile, the second portion extends from 20- to .35-m depth with char-
geability values varying from 12 to .33 mV/V. It is considered a broad high chargeability zone
containing six chargeability anomalies (. 33 mV/V), which may be related to higher concen-
trations of metallic content. They are centered at stations 100, 200, 260, 330, 410, and 470.
These chargeability anomalies have lateral extensions (widths) ranging from 20 to 60 m, vertical
extensions (thickness) varying from 10 to 20 m, and depths ranging from 15 to .25 m. All
the six chargeability anomalies are corresponding to relatively low-to-moderate resistivity
values (35�200 � m) (Fig. 5.24A). This may suggest that these anomalies are associated
with the contact zone between the bostonite and Hammamat sediments (El-Qassas, 2014).

FIGURE 5.22 A photograph showing the location of A�A2 the induced polarization profile (after El-Qassas, 2014).

FIGURE 5.23 Filtered lines (A) and pseudosections of metal factor (B), resistivity (C), and chargeability (D) along line
A�A2 with a dipole spacing of 20 m, Wadi El-Ghawaby area, Central Eastern Desert, Egypt.
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Three trenches were excavated along this line at stations 360, 390, and 430 (Fig. 5.24C).
Low chargeability values are corresponding to moderate resistivity values at the first
trench, which may reflect that the surface radiometric anomalies have a limited depth and
are associated with clay and altered materials (El-Qassas, 2014). Meanwhile, at the second
and third trenches, relatively moderate and high resistivity values are corresponding to
moderate and high chargeability values, respectively. This may attribute to the recorded
radiometric anomalies having a considerable depth and are associated with disseminated
metallic mineralization of relatively moderate and high grades, respectively. It is recom-
mended to carry out a core drilling at station 440 with an angle of 45� to the west and east

FIGURE 5.24 Resistivity model (A), chargeability model (B), and the detailed corresponding surface geology
(C) along with profile A�A2 with a dipole spacing of 20 m, Wadi El-Ghawaby area, Central Eastern Desert, Egypt
(after El-Qassas, 2014).
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to follow the surface radiometric anomalies at a depth of about 40 m and to determine
the extensions and grades of mineralization for the fifth and sixth chargeability anomalies
(El-Qassas, 2014).

Inferred faults (Marked F) can be deduced from the resistivity model, which is based on
the abrupt and significant lateral changes in the resistivity values and the thickness of materi-
als. Some of these faults are observed on the corresponding surface geology, and most of
them are confirmed by the chargeability model (Fig. 5.24). These deduced inferred faults are
recorded at stations 60, 160, 230, 360, 390, 460, and 510 (El-Qassas, 2014).

Fig. 5.26 shows the surface geology with the 2D resistivity and chargeability sections that
provide the resistivity and chargeability distributions from the surface to a depth of about
75 m along profile A�A2 with a dipole length of 40 m (El-Qassas, 2014). They confirm the
obtained results from resistivity and chargeability models with a dipole length of 20 m. Also,

FIGURE 5.25 Filtered lines (A) and pseudosections of metal factor (B), resistivity (C), and chargeability (D) along line
A�A2 with a dipole spacing of 40 m, Wadi El-Ghawaby area, Central Eastern Desert, Egypt.
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they determine the bottom of the mineralization zone displayed in Fig. 5.24B.
The chargeability model displays a well-defined high chargeability zone (stations 140 to the
end of profile), which is sandwiched between low and moderate chargeability layers. This
zone is corresponding to moderate resistivity values that are also sandwiched between low-
and high-resistivity values that are mainly associated with Hammamat (top) and bostonite
(bottom), respectively. This reflects that the high chargeability zone is associated with the
contact zone between these rocks. Meanwhile, the western part (station 0�140) is separated
from the eastern part by an inferred fault, as deduced from the resistivity and chargeability
data, and the direction of movement is well observed along the chargeability model. At this
part, the high chargeability zone has a higher depth (B40 m), and the expected

FIGURE 5.26 Resistivity model (A), chargeability model (B), and the detailed corresponding surface geology
(C) along profile A�A2 with a dipole spacing of 40 m, Wadi El-Ghawaby area, Central Eastern Desert, Egypt
(after El-Qassas, 2014).
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mineralization may be continued to more than 70 m as deduced from the opening of the
chargeability zone downward. Also, the resistivity and chargeability models of dipole length
40 m confirm some of the deduced inferred faults from the models of dipole length 20 m
(Fig. 5.24) (El-Qassas, 2014).
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Vieira, L.B., Moreira, C.A., Côrtes, A.R.P., Luvizotto, G.L., 2016. Geophysical modeling of the manganese
deposit for Induced Polarization method in Itapira (Brazil). Geofisica Int. 55 (2), 107�117. Available from:
http://www.geofisica.unam.mx/unid_apoyo/editorial/publicaciones/investigacion/geofisica_internacio-
nal/anteriores/2016/02/2vieira.pdf.

Werner, S., 1949. Interpretation of magnetic anomalies at sheet-like bodies. Sver. Geol. Underso. Ser. C. 43.

Wijns, C., Perez, C., Kowalczyk, P., 2005. Theta map: Edge detection in magnetic data. Geophysics 70 (4),
L39�L43. Available from: https://doi.org/10.1190/1.1988184; http://library.seg.org/loi/gpysa7.

Chapter 5 • Geophysical data for mineral exploration 231

http://refhub.elsevier.com/B978-0-323-95608-6.00005-6/sbref103
https://doi.org/10.1016/0375-6505(91)90026-R
https://doi.org/10.1190/1.1441278
http://refhub.elsevier.com/B978-0-323-95608-6.00005-6/sbref106
http://refhub.elsevier.com/B978-0-323-95608-6.00005-6/sbref106
http://refhub.elsevier.com/B978-0-323-95608-6.00005-6/sbref106
https://doi.org/10.1190/1.1444640
https://doi.org/10.1190/1.1759462
http://library.seg.org/loi/gpysa7
http://library.seg.org/loi/gpysa7
https://doi.org/10.1007/s12665-011-1284-5
http://www.geofisica.unam.mx/unid_apoyo/editorial/publicaciones/investigacion/geofisica_internacional/anteriores/2016/02/2vieira.pdf
http://www.geofisica.unam.mx/unid_apoyo/editorial/publicaciones/investigacion/geofisica_internacional/anteriores/2016/02/2vieira.pdf
http://refhub.elsevier.com/B978-0-323-95608-6.00005-6/sbref111
https://doi.org/10.1190/1.1988184
http://library.seg.org/loi/gpysa7


This page intentionally left blank



6
Geological data for mineral
exploration

Ahmed M. Eldosouky1, Hatem Mohamed El-Desoky2, Ahmed Henaish3,
Ahmed Moustafa Abdel-Rahman2, Wael Fahmy2, Hamada El-Awny2,

Amin Beiranvand Pour4

1GEOLOGY DEPARTMENT, FACULTY OF SCIENCE, SUEZ UNIVERSITY, SUEZ, EGYPT 2GEOLOGY

DEPARTMENT, FACULTY OF SCIENCE, AL-AZHAR UNIVERSITY, CAIRO, EGYPT
3DEPARTMENT OF GEOLOGY, FACULTY OF SCIENCE, ZAGAZIG UNIVERSITY, ZAGAZIG, EGYPT

4INSTITUTE OF OCEANOGRAPHY AND ENVIRONMENT (INOS), UNIVERSITY MALAYSIA

TERENGGANU (UMT), KUALA NERUS, TERENGGANU, MALAYSIA

6.1 Introduction
Exploration and prospecting of mineral deposits is a branch of geology that explores the ori-
gins of mineral resources and the methods for estimating economic deposits, or those that
can be recovered under current conditions. It is a part of applied geology, together with eco-
nomic geology, engineering geology, and hydrogeology. The duty of exploration concludes
with the gathering of data, while the development and exploitation of resources fall under
the purview of mining and mining geology (Pohl, 2011). Mining has supplied resources for
fire, housing, and food acquisition from prehistory to the present. From the dawn of man
until the dawn of civilization, the earth’s goods obtained via mining were vital for the peo-
ple’s needs in the creation of implements, buildings, trade, jewelry, cosmetics, and treasure
(Gandhi and Sarkar, 2016). There would be no mining, processing, or industry if mineral
exploration did not exist, as well as a lack of cultural amenities and creature comforts. It is
unavoidable for every country’s economy to have an appropriate supply of mineral
resources. Mineral exploration is distinct from other resource sectors in that it has its own
set of features (Gandhi and Sarkar, 2016). Today, the world’s people’s level of living is mea-
sured by their per capita consumption of various metals. Transportation, communication,
and building have all evolved over time as a result of the materials gained from the earth’s
resources. Metal and mineral products will continue to play an important part in satisfying
society’s demands for the foreseeable future. This chapter is intended to serve as a field
guide for geologists who are concerned with ore and mineral exploration.
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6.1.1 Definitions

It’s important to establish a few keywords that will serve as the foundation for the book in
question. This chapter has been written as a field guide for those geologists interested in ore
and minerals exploration.

6.1.2 Mineral and rock

The International Mineralogical Association defines a mineral as a naturally occurring, inor-
ganic, homogeneous element or compound with a specified chemical structure and an orga-
nized atomic arrangement that has been formed as a result of geological processes (Gandhi
and Sarkar, 2016). It’s also important to remember that a rock is a naturally occurring
assemblage of several varieties of crystals or mineral particles (Fig. 6.1A).

Ore is another important word in mining and is only used to describe the material that is
removed for treatment purposes. The ore is described solely as a concentration of minerali-
zation, with no economic context; however, this is a somewhat uncommon term (Bateman,
1950). Ore is a naturally occurring assemblage of one or more minerals that may be mined,
processed, and profitably sold (Fig. 6.1B; Guilbert and Park, 1986). Ore deposit is a mineral
deposit that has been evaluated and confirmed to be of sufficient size, grade, and accessibil-
ity to be profitable to mine. Surface mapping and sampling, as well as drilling through the
deposit, are popular methods of testing (Gandhi and Sarkar, 2016). In general, ore deposits
of metal are rocks with considerably greater metal concentrations than the typical crust.

FIGURE 6.1 (A) Hand specimen of granite sample composed of large; (B) interlocking mineral crystals; (C) gold
flakes associated with a hydrothermal vein in gray quartz, Greenland. Deep open pit at El-Sukari gold mine, Egypt;
(D) underground (subsurface) gold mine; (E) reclamation stage around mining sites.
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They are geochemical anomalies or natural enrichments of metal in the Earth’s crust.
Deposits of industrial minerals have a similar definition: They are natural concentrations of
the material of interest (Ridley, 2013).

Gangue minerals mean the valueless mineral particles or crystals within an ore, while
waste is while; waste is the material that must be mined to obtain the ore. Gangue minerals
must be separated through milling, followed, typically, by flotation to separate the minerals
of economic interest from the gangue (Ridley, 2013).

Grade of ore: In terms of the ore idea, it’s important to remember that the ore (or
mineralization) has a grade, which is defined as the average concentration of a valuable
substance (e.g., gold or tin) in a sample or a mineral deposit. Metal ores are often graded
as a percentage or grams per ton, which is equivalent to parts per million (ppm).
Prospect is a phrase that is commonly used in the mining industry. It may be described
generically as a small patch of land with the potential to contain a mineral deposit. It is
frequently given the name of a specific locality. The Geological Survey of Western
Australia uses the definitions given out by Cooper et al. (1998), which define prospect as
any working or exploratory operation that has discovered subeconomic mineral deposits
but no documented production.

Ore body is a solid and relatively continuous body of ore containing gangue minerals
that differ in form and character from host rocks. A single ore body or multiple ore bodies
can make up an ore deposit. The ore bodies appear in a range of forms, including isometric,
flat, veins, lenses, and pipes (Gandhi and Sarkar, 2016). Mineral exploration, or simply
exploration, is the process of looking for ore. Exploration is a multistep process that can take
years, if not decades, to identify and define an ore body that could be mined. Syngenetic
deposits form at the same time as the rock in which they are found. They developed in the
same way as the surrounding rocks and at the same period in geological history. On the
other place the epigenetic deposits are believed to have come much later than the host
rocks in which they occur. They were introduced into the preexisting country rock by the
movement of metal-bearing fluids after its formation. A good example is a mineral vein.

6.1.3 Stages of mineral exploration

1. Exploration and prospecting stage
The exploration or prospective stage, known as the search for mineral resources, is

considered the first phase in the mining life and involves a diverse set of operations
(Stevens, 2010). To start a mine, businesses must first locate a deposit that is
economically viable (an amount of ore or mineral that makes exploitation worthwhile).

2. Discovery and exploitation
Mining will be the next step if the economic evaluation of a mining operation shows

that there is a good possibility that exploiting the mineral deposit will provide benefits.
The extraction and recovery of mineral and waste rock from the Earth’s crust is known as
exploitation or mining. Surface (Fig. 6.1C) and subsurface (Fig. 6.1D) mining methods are
classified according to the distance from the surface.
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3. Development
Feasibility, geology, and engineering studies are all part of the mine development

stage. If all of these outcomes are positive and all necessary approvals have been
obtained, the firm will determine whether or not to proceed with the project. At this
point the firm is raising funds to commence the construction and development of a mine.
This is the most costly stage of the mining process.

4. Production and mineral processing
The extraction, grinding, and processing of raw materials, such as coal, metals, industrial

minerals, and aggregate, are all part of the production phase. The volume and grade of mineral
or metal in the deposit, as well as the profitability of the operation, determine how long a mine
will be in operation. Mineral processing removes valuable minerals from waste rock or gangue
during extraction, resulting in a more concentrated substance for subsequent processing.

5. Closure and reclamation
Because mining is a transitory industry with an operational life varying from a few years

to many decades, mine closure is the final phase of the mining cycle. The land that was
mined will be rehabilitated and parts of this objective include ensuring public safety and
health, minimizing environmental impact, preserving water quality, establishing new
landforms and vegetation, stabilizing land to protect against erosion, and removing waste
and hazardous material (Fig. 6.1E). Fig. 6.2 shows the different stages of mineral exploration.

6.1.4 Mineral system

A mineral system, according to Wyborn et al. (1994), is “all the geological processes that regu-
late the creation and maintenance of mineral deposits and is similar to petroleum systems.”
According to them, there are major geological variables to consider, as indicated in Fig. 6.3.

FIGURE 6.2 Stages of mineral exploration (lifecycle of mine).
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The mineral system idea is a useful framework for mineral exploration because it provides
more flexibility in interpreting their data than typical ore deposit models depending on geologi-
cal information systems (GIS) (Brauhart, 2019; Duuring, 2020). The assumption of this concept
is that mineral deposits will only form and remain preserved where critical earth processes
(geodynamic setting, lithosphere architecture, fluid, ligand, and ore component reservoir(s),
fluid flow drivers, and pathways, depositional mechanisms, and postdepositional processes)
have occurred in a spatial and temporal coincidence and that the occurrence of these critical
processes can be recognized from mappable geological features expected to reappear (Fig. 6.3).

6.2 Mineral deposits and occurrence
6.2.1 Definition and formation of mineral deposits

Mineral deposit: Any precious lump of ore a mineral deposit is what it’s called. It is a con-
centration of valuable minerals or metals found in the crust of the Earth of sufficient size

FIGURE 6.3 The mineral systems concept of ore-body formation (Knox-Robinson and Wyborn, 1997). From Knox-
Robinson, C.M., Wyborn, L.A.I., 1997. Towards a holistic exploration strategy: using geographic information systems
as a tool to enhance exploration. Austr. J. Earth Sci., 44(4), 453�463. https://doi.org/10.1080/08120099708728326.
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and grade that may be commercially exploited under current technology and economic con-
ditions. A mineral deposit that can be exploited for profit is known as an ore deposit. As a
result, all ore deposits are mineral deposits, but not the other way around (Perkins, 2020).

6.2.2 Criteria for the mineral deposits classification

Mineral deposits have a wide variety of shapes and sizes, and under such a wide range of condi-
tions, attempts by various authors to create a classification based on natural criteria have largely
failed (Park, 1906). Ore deposits are typically ranked by geologists based on (1) the product,
(2) the tectonic environment, (3) the natural environment, (4) the mineral deposits genetic model,
and (5) additional factors (e.g., the temperature of mineral formation and the deposits form). For
example, Gabelman (1976) proposes various criteria for classifying stratabound mineral deposits,
incorporating primary governing mechanisms, chemical reactivity, direct emplacement method,
host lithology, metal supply, and/or fluid movement, transporting fluids’ direction, and deposit
and host relative age. Mineral deposits can be easily classified using key earth-process systems.
Igneous, sedimentary, and metamorphic rocks are the three types of rocks that express the basic
processes that occur in the crust. Similarly, because ores are rocks, they are frequently connected
with rocks of many sorts. Consequently, because it depicts the genetic process that occurs during
ore production, this property (sedimentary, igneous, or metamorphic) might serve as a solid foun-
dation for categorization. Fig. 6.4 depicts mineral deposits are classified genetically, highlighting
the main groups of ore formation and modification processes (McQueen, 2005).

6.2.3 Mineral deposits classification

6.2.3.1 Industrial classification
Mineral deposits are classified into three categories according to their industrial classifica-
tion: metallic minerals, nonmetallic (industrial) minerals, and combustible (energy) miner-
als. Metallic minerals include gold, silver, iron, titanium, manganese, nickel, chromium,
copper, tin, lead, molybdenum, zinc, while nonmetallic (industrial) minerals are represented
by bentonites, kaolin, phosphate, clay, graphite, gravel, mica, fluorite, sulfur, asbestos, and

FIGURE 6.4 The four basic geological conditions for the formation of every mineral deposit (McQueen, 2009). From
McQueen, K.G., 2009. Ore Deposit Types and Their Primary Expressions, 14.
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sands. On the other hand, combustible (energy) minerals include oil and gas, bituminous
shales, coal, tar sands, tight gas, and uranium.

6.2.3.2 Geological classification based on origin or genetic and occurrence
Fig. 6.5 illustrates mineral deposits’ genetic categorization system, highlighting the primary
aggregates of ore formation and modification procedures (McQueen, 2005). To summarize, clas-
sifying deposits based on their relationship to the processes of ore formation and origin is poten-
tially the best method (Herrington, 2011). Internal, hydrothermal, metamorphic, and surficial
processes can all be categorized as ore-forming processes (Evans, 1993). The first three processes
are concerned with subterranean phenomena, whereas the fourth process is concerned with
those occurring at the surface of the Earth. Thus the first method of ore formation can be sum-
marized as follows: magmatic, metamorphic, sedimentary, and hydrothermal procedures.

1. Magmatic ore deposits
Magma is a molten material (i.e., melt, including dissolved gases and any floating

crystals in it). Magma may cool down and harden at depth to create a huge rock body
called a pluton, erupt as lava at a volcano, or ascend as a finely fragmented ash cloud.
Corresponding igneous (magmatic) rocks are known as plutonic (or intrusive) and
volcanic (or extrusive) rocks. Ortho-magmatic deposits (also known as magmatic
igneous-related deposits) are generated directly from the melt by magmatic operations.
Certain ore deposits are so closely related to igneous rocks that a shared common
ancestor may be deduced.

There are mainly three types of magmatic deposits. The first type relates to primordial
magmas that are directly formed from the basalt of the Earth’s mantle. Cr, Ni, Mn,
platinum (Pt), iron (Fe), Ti, and V deposits can occur in such basic and ultrabasic

FIGURE 6.5 Ore deposit classification scheme based on genetics (McQueen, 2005). From McQueen, K.G. (2009). Ore
Deposit Types and Their Primary Expressions, 14.
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magmas. The second type is associated with granitic rocks. They could be generated by
severe fractionation from a primitive melt that originated in the mantle or through melt
production in the crust. The third kind of magma is alkali-rich magma (also known as
alkaline magma and alkaline rocks), which is found near continental rifts and hotspots
Fig. 6.6A�D.

FIGURE 6.6 Photograph showing magmatic and hydrothermal deposits: (A) a hand specimen of the chromite
deposit from Barramiya area, Egypt; (B and C) massive ilmenite ore deposit from Abu Ghalga area, Egypt; (D) a
hand specimen of the pyrolusite from Um Bogma area, Egypt; (E) gold deposits disseminated in quartz vein from
Umm El-Russ, Egypt; (F) gold deposits disseminated in quartz vein from Gabal Elba, Egypt; (G) a hand specimen of
the galena of Um Gheig area, Egypt; (H) cubic pyrite crystals disseminated in quartz vein from Eqat, Egypt; (I) cubic
and triangular pyrite crystals disseminated in quartz vein Colorado, USA; (J and K) quartz vein bearing chalcopyrite
from El-Fawakhir mine, Egypt.
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6.2.3.3 Classification of chromite deposits
These chromites are thought to have developed during the development of the new oceanic
crust by early crystallization followed by crystal settling from basic magmas at spreading centers.
Chromite ore is frequently discovered in ophiolite complexes. Exploration for novel chromite
deposits interstratified with the lowermost areas of layered mafic-ultramafic intrusions, along
with serpentinite ophiolite belt segments, must be prioritized (Hussein and El Sharkawi, 2017).
Most of the chromite globally comes from mafic and ultramafic rocks (Fig. 6.6A). Chromite ores
are usually assigned to one of the following two classes based on the mode of occurrences, pet-
rologic character, and tectonic setting of their host rocks (Thayer, 1970).

Stratiform ores are sheetlike chromite agglomerations connected with mafic rocks.
Precambrian ultramafic layered intrusions in an intracranial context. The majority of the
chromite attributed with layered intrusions is excavated from South Africa at the Bushveld
Complex and the Great ‘Dyke’ in Zimbabwe, which is usually observed within the southern
African Proterozoic mega-fracture system.

Podiform ores are chromite-rich rocks that are irregular but lenticular, podlike, and tabu-
lar. They are found mostly in tectonic peridotites and basal dunite cumulates of ophiolites
and Alpine-type peridotites (Naldrett and Gruenewaldt, 1989; Zhou et al., 1996; Shi et al.,
2012). They are mostly Phanerozoic in age, with very irregular shapes and associations with
ophiolites. The combination of podiform deposits with ophiolites limits their presence to
Palaeozoic or relatively young island arcs and dynamic orogenic belts (Thayer, 1970).
Despite size or shape, podiform chromites are often surrounded by a dunite sheath or halo
(Ahmed and Arai, 2002).

2. Hydrothermal ore deposits
Hydrothermal ore deposits are those generated by hydrothermal action in conjunction

with igneous rocks deposited at higher elevations in the crust of the Earth (Fig. 6.6E�K).
A hydrothermal fluid is a hot (more than 50�C) aqueous solution that contains solutes
frequently precipitate as characteristics of the solution change over time and distance. It
is critical to recognize that the terms fluid and solution are interchangeable. Hot water is
an excellent carrier and enrichment medium for certain elements, which are then
precipitated from the water. This can happen in several sites, including a cave, small
cracks above a granite pluton, a hot spring on the seabed, a fault, or rock pores.

Saltwater, meteoric, connate, metamorphic, juvenile, and magmatic water can all be
encountered within hydrothermal solutions. Connate water sometimes called formation
water (is water that is caught during sediment deposition and formed during diagenetic
processes). It is widely known that hydrothermal fluids may arise during burial diagenesis
and achieve high salinities and temperatures. During diagenesis, temperatures can
fluctuate at a few degrees below 8�C to 30�C�250�C; however, water ejection is carried
out at temperature points ranging between 90�C and 1208�C throughout diagenetic
operations (Hanor, 1979).

The existence of volatile-rich fluids liberated through metamorphism is well known,
and these fluids may be regarded as diluted brines containing H2O, CH4, and CO2. The
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presence and quantity of these volatiles in magma are frequently linked to their chemical
composition and origin. Generally, hydrothermal solutions are often supposed to be
liquid combinations with water as the solvent. The fluids that compose ore could be
colloidal or molecular in origin. The movement of hydrothermal fluids in the crust of
Earth causes the genesis and maintenance of hydrothermal systems. Because they help in
the separation of components from solution, boiling and solubility are significant in the
deposition of ores from hydrothermal fluids. The boiling of hydrothermal solutions is
important since it causes ore constituents to precipitate (e.g., Au, As, Sb, Ag).

Hydrothermal activity is defined by the existence and transportation of these fluids,
whether they drain at the surface or not. A hydrothermal system is composed of two
main parts: a heat source (magmatic, geothermal gradient, radiogenic decay, or
metamorphism) and a fluid phase (solutions formed from magmatic/juvenile fluids,
metamorphic fluids, meteoric, connate waters, or saltwater). Hydrothermal change is
crucial for mineral exploration due to its extension further than the boundaries of the ore,
facilitating exploration work to be concentrated in fewer locations. Porphyry deposits and
volcanic-associated sulfide deposits are considered two of the most prevalent kinds of
deposits produced by magmatic�hydrothermal operations (pyrite and chalcopyrite, gold)
(Fig. 6.6G�K), (gold) (Fig. 6.6E and F). The best evidence of hydrothermal fluid
movement is hydrothermal veins, which can also be thought of as a manifestation of the
conduits or cracks through which fluids circulate.

3. Sedimentary ore deposits
Mineral deposits, developed by sedimentary practices, are known as sedimentary

mineral deposits. At or near the ground surface, economic mineral deposits can be
formed because of low-temperature surface processes, under certain conditions.
Sedimentation can result in the production of mineral deposits by clastic accumulation
(e.g., diamond or gold placer deposits) and biochemical precipitation and/or chemistry of
economically significant elements in coastal settings, lakes, or shallow to deep seas,
including evaporation.

By forming metal�organic complexes, organic compounds generated as a result of
bacterial breakdown of more complex organic materials may facilitate the metal
transfer. Similarly, biogenic H2S may form persistent aquatic complexes with metal
ions, enabling the transportation of specific metals, such as Ag at low temperatures
(Kyle and Saunders 1996). Weathering can also reveal the reformation of a residual
concentration of the parent rock’s weathering-resistant minerals or relatively insoluble
components being reconstructed into stable minerals (Misra, 2000). Weathering is an
essential ore-forming process that involves migrating solutions causing chemical
changes and redeployment of components in surface rocks. Chemical differences
between minerals at the surface�crustal boundary and at the Earth’s surface can result
in chemical dissolution, residue upgrading, and reprecipitation operations that
concentrate the desired mineral/metal.

The circulation of mostly meteorically produced water near the Earth’s surface drives ore
production in these settings; however, identical equivalent processes can occur on the
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seafloor. At favorable mineral locations or surface contacts, these subterranean waters can
dissolve and reprecipitate components (Herrington, 2011). Numerous raw minerals, such as
iron, manganese, and aluminum ores, are often produced by supergene processes. The
process known as supergene enrichment comprises leaching ore-forming components (e.g.,
copper) off the surface of a low-grade sulfide deposit, and reprecipitation under the water
table is a kind of weathering.

The ore metals are released from weak sulfide minerals into descending meteoric water,
whereas, in the subsurface ecosystem, more stable secondary oxide and sulfide mineral
assemblages are precipitated. These deposits are commonly referred to as (gossan)
(Fig. 6.7A). Gossans were significant guides for prospectors looking for underground
mineral resources in the 19th and 20th centuries.

6.2.3.4 Placer deposits
They comprise deposits connected to supergene modification, water infiltration, and diage-
netic processes, as well as placer deposits formed by erosion, transportation, and sedimenta-
tion processes. A placer ore body is a sedimentary deposit of soil, gravel, or sand that

FIGURE 6.7 Photograph showing: (A) goethite (iron-bearing mineral) of Abu Ghalaga, Egypt; (B and C) gold
production from placer deposits by vibrating from Eqat, Egypt; (D�F) beach and black sand deposits at Rashid and
Damietta, Egypt; (G) banded iron ore from Abu Ghalaga, Egypt; and (H and I) greisen from Abu Dabbab, Egypt.
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includes eroded valuable mineral particles. Minerals have the ability to withstand erosion
and become concentrated in the surface environment due to their physical and chemical
characteristics. Platinum metals, gold (Fig. 6.7B and C) in its metallic or native form, ilmen-
ite, rutile, monazite, and zircon, and gemstones, such as diamond, ruby, garnet, are all com-
mon minerals found in placer deposits (Revuelta, 2017). Furthermore, the precious minerals
contained in this sort of deposit are far denser than those carried at the Earth’s surface.

Minerals may then be recovered and concentrated in ore bodies from the detrital ele-
ments or rock fragments that compose the majority of the sediment load. Numerous catego-
rization schemes have been suggested by Wells (1969), Smirnov (1976), and Macdonald
(1983), which are founded principally on geological environment. The most important classi-
fications for placer deposits of economic relevance are residual, fluviatile, colluvial, eluvial,
and coastal; coastal placer deposits are often referred to as marine and beach placers.

Other processes that lead to successful fractionation include weathering, transport, and sedi-
mentation. When weather-resistant minerals with higher densities are enriched, placer deposits
occur. Palaeo-placers are the lithified counterparts to placer deposits. Nevertheless, high mineral
concentrations retained in sedimentary layers are often of scholarly relevance exclusively
(Zimmerle, 1973). Because placer deposits are created by natural surface processes, black sands,
they can be found all over the world. Most of the World’s placer deposits are of Tertiary and
Quaternary age. In Egypt, black sand can be found along the Mediterranean Sea shoreline from
Rasheed to Rafah, 400 km. In those places, it is disseminated by sea currents and waves, and it is
found in sand dunes. Ilmenite, magnetite, zircon, rutile, garnet, and monazite, which contain
radioactive minerals, are among the key minerals found in black sand (Fig. 6.7D�F).

4. Metamorphic and metamorphosed mineral deposits
Ore deposits can occur before, during, or after metamorphic processes in

metamorphosed rocks. The first is the class of metamorphosed ore deposits, which are of
premetamorphic origin and are unaffected by later metamorphic overprinting, graphite
veins, orogenic gold, and many significant talc deposits are among the ore deposits
formed by regional metamorphism, according to Pohl (2011). Contact or regional
metamorphism causes metamorphic deposits, which entail recrystallization and the
mobilization of dispersed ore components by metamorphic fluids (Misra, 2000).
Numerous metal deposits are found in metamorphic rocks, and it is hypothesized that
metamorphic fluids are the source of a variety of mineral deposits. For example, gold ore
is a kind of mineralization that is frequently associated with metamorphic fluids. As a
result, according to chemistry, it is conceivable to assert that metamorphic fluids can
contain high concentrations of metals and hence constitute prospective ore fluids under
specific scenarios (Banks et al., 1994). Ore deposits are generated in three distinct ways as
a result of metamorphic fluid processes, according to Yardley and Cleverley (2015): (1)
where metal-rich metamorphic fluids act as a segregation medium, (2) decarbonation
processes cause concentrated fluid flow and the creation of skarns, and (3) the pace of
fluid generation is not restricted by heat flow because rapid uplift drives dehydration
processes despite dropping temperatures. Given the prevalence of magmatic activity in
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certain metamorphic environments, it is reasonable to assume that some mineral
deposits in metamorphic rocks are magmatic (Fig. 6.7G), which were created by a
combination of magmatic and metamorphic processes.

Skarn deposits are without a doubt the most important ore deposit type. Thermal
aureoles of magmatic intrusions are intimately linked to skarn and contact
metamorphism ore deposits. They can be thought of as contact metamorphism products,
but the interaction with magmatic fluids is the causal agent, not just heating (Pohl, 2011).
Skarn deposits, on the other hand, have enough distinguishing properties to be
considered a separate class (Misra, 2000). Skarn is an ancient Swedish mining word that
refers to a broad spectrum of mostly coarse-grained calc�silicate rocks that are rich in
iron, aluminum, calcium, manganese, and magnesium, regardless of their association
with potentially important minerals. They were created by metasomatic processes
replacing formerly carbonate-rich rocks (Einaudi et al., 1981). Mineral assemblages are a
diagnostic feature of typical skarns; the main assembly varies in structure according to
the constitution of the skarn-forming fluids and invaded rocks but is dominated by
anhydrous Ca�Fe�Mg silicates and pyroxenes (including pyroxenoids), with garnets
playing a significant role. They are the world’s leading source of tungsten as well as key
sources of copper, molybdenum, iron, and zinc and range in age from Precambrian to
late Cenozoic. Between porphyry and skarn ore deposits, there is a continuum, and at
least several skarn deposits appear to be mined within porphyry systems’ carbonate wall
rocks. The composition, metallogenic affinities, and oxidation states of the igneous
intrusion all contribute to the variety of metals found in skarn deposits. Au and Fe skarn
deposits, for example, are frequently linked with mafic to intermediate-composition
intrusions. The bulk of large and commercially viable skarn deposits are associated with
calcic exoskarns, which are composed of limestone (calcic) host rock and a metasomatic
assemblage located outside the intruding pluton (exo—prefix).

Greisen is a type of endoskarn created by self-produced modification of granite. Greisen is a
granitic rock that has been hydrothermally metamorphosed. It’s largely made up of quartz and
light-colored mica (muscovite, zinnwaldite, and lepidolite) (Fig. 6.7H and I). Greisen develops
near the ceiling of several granite plutons, sometimes capped by pegmatite, and frequently hosts
workable—though not necessarily economically viable—W�Sn�Mo ore deposits.

6.3 Geological mapping
6.3.1 Lithological mapping

Lithological mapping is considered one of the vital steps in mineral exploration which deals with
determining the spatial distribution of various rock types, including igneous, metamorphic, and
sedimentary rocks. It represents a challenging step as it requires integrative field, laboratory, and
remote sensing techniques. Moreover, lithological mapping techniques of sedimentary rocks dif-
fer from those used in igneous as well as metamorphic rocks. Consequently, the next paragraphs
deal with clarifying the different procedures used for mapping each rock type.
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6.3.1.1 Petrography
The geological environment is divided into two parts (Hawkes, 1957; Hawkes and Webb,
1963): (1) the primary environment, including the igneous differentiation and metamor-
phism; and (2) the secondary environment comprises weathering and sedimentation pro-
cesses at the Earth’s surface.

6.3.1.1.1 Igneous Rocks
Magma (magma5molten materials) is the more general term that embraces mixtures of
melt and any crystals that may be suspended in it inside the surface of the Earth. Magmatic
rocks are classified into four main groups based on their chemistry: ultramafic/ultrabasic,
mafic/basic, intermediate, and felsic/acid categories.
Ultrabasic igneous rocks Although ultramafic and ultrabasic rocks are not widespread on the
surface of the Earth, they give important information on basalt magma generation and mantle
source zones (Gill, 2011). Igneous rocks classified as ultrabasic or ultramafic have SiO2 (45%),
MgO (. 18%), high FeO, and low potassium. In ultrabasic rocks, ferromagnesian minerals,
including olivine, clinopyroxenes, orthopyroxenes, hornblende, and opaque minerals, comprise
more than 90% of the mineral composition. These rocks are containing iron ores, Cu�Ni�Co
sulfides, chromite�ilmenite, talc, magnesite deposits, and gold mineralization, associated with
other mineral deposits. Petrographical characterization of distinct kinds in ultrabasic rocks is
shown in Fig. 6.8. There are well-known examples of rocks in this group: peridotite, lherzolite,
harzburgite, hornblendite, websterite, dunite, and pyroxenite, kimberlite, and komatiites.

FIGURE 6.8 Petrographic characteristics of ultrabasic rocks (A�D) and basic rocks (E�H): coarse grains of dominant
Ol crystals in dunite, Crossed Polarized Light (XPL) image, 23 (7 mm). Well-developed Hbl crystals in a
hornblendite rock. Plain Polarized Light (PPL) image, 23 (7 mm). Hypidiomorphic texture in pyroxenite rocks in
Antarctica. XPL image. 23 (7 mm). Spinifex texture in Komatiite rock showing skeletal pyroxene (Cpx) at Alexo,
Canada. PPL image, 103 (2 mm). Coarse grains of Pl and Ol altered to Idd in gabbroic rocks at Wadi Dungash and
Wadi Shait. CN, 253 Ol-pyroxene ferrogabbros rocks showing brown Hbl contain opaques as inclusions at Wadi
Khashir and Ras Al-Khair. CN, 403 . Diabasic and subophitic textures between Pl and Aug crystals. XPL image, 23
(7 mm). Pl and Ol crystals in Ol basalt rocks. XPL image, 103 (2 mm). Aug, augite; calcite; Cpx, clinopyroxene; Hbl,
hornblende; Idd, iddingsite; iron oxides; Ol, olivine; Op, orthopyroxene; Pl, plagioclase; spinel.
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Basic rocks igneous rocksBasic rocks have a low-content silica concentration, ranging from
45% to 52% SiO2. It is mostly made up of calcic plagioclase (labradorite�bytownite) with
high ferromagnesian minerals such as orthopyroxene, clinopyroxene, olivine, and opaque
minerals. Pyroxene (diopside, augite, and hypersthene), hornblende, and olivine are ferro-
magnesian minerals that can be found together or separately. These families include the gab-
bro, norite, gabbronorite, troctolite, anorthosite, dolerite, and basalt (Fig. 6.8). Gabbros are
common examples of coarse-grained igneous rocks that are similar in composition to basalts
and reflect basalt magma that has slowly crystallized at deep. The widespread textures in
these rocks are allotriomorphic, ophitic�subophitic, and diabasic texture (Fig. 6.8).
Intermediate igneous rocks Intermediate rocks have an SiO2 content of 52%�63% and are
divided into two types based on chemical calcic-intermediate. The sodic-intermediate
includes the syenite, monzonite, trachyte, while the calcic-intermediate comprises andesite
and diorite analysis. The sodic-intermediate rocks have a similar overall composition to
granite, but quartz is either missing or present in minor levels (less than 5%). It is essentially
composed of alkali feldspar (60%�80%, orthoclase�sanidine) and a ferromagnesian mineral
(20%�40% hornblende, biotite, and pyroxene). The alkaline feldspar component (typically
orthoclase or sanidine) is the most common. Plagioclase feldspars (oligoclase) can be found
in small amounts, less than 10%. Feldspathoids (nepheline), titanite, apatite, zircon, magne-
tite, and pyrites are among the accessory minerals.

Syenite is a plutonic intermediate rock with a coarse-grained texture that is panidio-
morphic and hypidiomorphic (Fig. 6.9A). On the other place the trachytic rocks are the vol-
canic equivalent of the plutonic (intrusive) rock syenite, which is distinguished by directive
texture (Fig. 6.9B).

Regarding, calcic-intermediate rocks are mostly composed of 75% of plagioclase feldspar and
25% of mafic minerals (amphiboles, biotite, augite, and orthopyroxene). They contain a low of
quartz, zircon, apatite, sphene, magnetite, ilmenite, and sulfides that occur as accessory minerals.
The prominent rocks of this category are diorite and andesite, which have hypidiomorphic
(granular) and porphyritic textures, respectively (Fig. 6.9C and D).

The intermediate rocks are containing the most abundant wall rock alterations such
as carbonatization, kaolinitization, sericitization, chloritization, pyritization, and propyli-
tization. The mineralization is represented by the occurrence of banded iron formation
(BIF), uranium deposits, Zn�Pb�Cu sulfide minerals associated with syenite and andes-
ite rocks.
Acidic igneous rocks Felsic/acidic igneous rocks define as light-color, low specific gravity,
and high-silicate minerals (. 65% SiO2). The most prominent felsic minerals are quartz,
orthoclase and sodic plagioclase, and mica (biotite and muscovite). Granitic rocks (alkali
feldspar granites, granodiorite, tonalite, adamellite) are representing plutonic felsic rocks,
whereas rhyolite and dacite indicate volcanic felsic rocks (Fig. 6.9). The primary mineral
composition of granitic rocks is K-feldspar (microcline and/or orthoclase: 50%�80%), quartz
(20%�40%), Na-plagioclase, and micas (biotite and rare muscovite). It is characterized by
granitic texture such as hypidiomorphic, perthitic, myrmekitic, rapakivi, graphic, poikilitic,
and porphyritic texture.
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On the other side, rhyolitic rocks are similar to granite in mineral composition, but it has
a porphyritic texture. For acidic rocks, the most prevalent types of alteration are sericitiza-
tion, epidotization, argillic, and silicification. The common mineralizations recorded in acidic
rocks are Ta�Nb�Sn�W, uranium, and gold.

FIGURE 6.9 Petrographical characterization of intermediate rocks (A�D) and acidic rocks (E�I); granular and
perthite texture in alkali feldspar syenite as well as hornblende and titanite. XPL image, 23 (7 mm). Phenocryst of
sanidine crystal within fine groundmass in trachyte rocks. XPL image, 23 (7 mm). Hypidiomorphic texture in diorite
showing plagioclase and brown hornblende. XPL image, 23 (7 mm). Large phenocryst of hornblende and
plagioclase crystals in andesite. XPL image, 23 (7 mm). Plagioclase altered to saussuritization (epidote and sericite)
in granodiorite, Hamash mine. XPL image, 43 (7 mm). Large muscovite�biotite crystal and saussurite in core of
plagioclase in biotite granites, Samadai-Um-Tunduba area. XPL image, 43 (7 mm). Kaolinite and chlorite alteration
associated with goethite after pyrite and granophyric texture in alkali feldspar granite, Samadai-Um-Tunduba area.
PPL image, 43 (7 mm). Phenocryst of quartz crystal in rhyolite with felsic groundmass at Vincenzo (Italy). XPL
image, 23 (field of view5 7 mm). Aegirine crystals in fine-grained quartz and feldspar at Brandberg Complex
(Namibia). XPL image, 23 (7 mm). Agt, Augite; Bt, biotite; Chl, chlorite; Ep, epidote; Gt, goethite; Hbl, hornblende;
Kln, kaolinite; Ms, muscovite; Pl, plagioclase; PPL, plain polarized light; Qtz, quartz; Sa, sanadine; Ser, sericite; Ttn,
titanite; XPL, crossed polarized light.
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6.3.1.1.2 Sedimentary rocks
Sediments and sedimentary rocks represent more than 85% of Earth’s crust. Detrital sediments
account for more than 75% of all sediments on Earth’s surface (Hefferan and Brien, 2010).
Sedimentary rocks are considered a host of a variety of metallic and nonmetallic minerals,
including iron ore and a small amount of copper, manganese, uranium, and magnesium.
Classification of sedimentary rocks Sedimentary rocks are divided into two groups: (1) exog-
enous (clastic) and (2) chemical and biological (endogenous) sediments. This classification
is based on the sorts of physical, chemical, biological, and geological processes they undergo.
Between these two separate and different groups, there are mixed sediments and sedimen-
tary rocks.

1. Exogenous (clastic5 terrigenous)sediments
The weathering of rocks produces clastic (terrigenous) materials. These materials are

also known as siliciclastic because they are essentially siliceous (quartz-rich) clastic
sediments transported by detrital mechanisms. Except for those erupted from volcanoes,
clastic deposits, and sedimentary rocks are classified according to the size of the clasts,
independent of their origin: rudaceous, arenaceous, and argillaceous.

A sedimentary rock composed mainly of rounded grains and boulder-sized fragments
welded together in a matrix is known as a conglomerate (Fig. 6.10A). Grain rounding
occurs when grains are moved a long distance from their original source (e.g., by a river
or glacier). By contrast, breccias are angular aggregates consisting of angular to
subangular, randomly oriented clasts from different sedimentary rocks (Flint et al., 1960).
It is classified into cataclastic breccia, talus breccia, and volcanic breccia (Fig. 6.10B).

Sandstones are a common and significant sedimentary rock type. Sandstones are
composed essentially of quartz, feldspar (which can be partly or completely converted to
clay minerals), micas, and clay minerals (Fig. 6.10C). Two main groups of sandstone are
recorded: pure sandstone (arenites) and impure sandstones (graywacke). Graywacke is a
variety of sandstone and composed of quartz, fine-grained clay, while many of the cloudy
grains are feldspar (Fig. 6.10D).

2. Chemical and biochemical sedimentary rocks
This type is classified into two essential types: allochemical carbonates and

orthochemical rocks. Allochemical carbonates are divided into three groups: the calcite,
dolomite, and aragonite group, that is, rocks composed constituted mostly more than
50% of CaCO3 composition such as calcite, Mg�calcite, and aragonite, or dolomite. The
grains that make up the structure of limestones and dolomitic limestones are known as
allochems (Haldar, 2020). They appear in a range of forms, including fossils, skeletal,
ooids, peloids, and intraclasts (Fig. 6.10E). According to Haldar (2020), dolomite can
originate in two ways: a primary origin and secondary replacement of calcite�aragonite
(Fig. 6.10F).

Orthochemical rocks comprise evaporite deposits of halite, gypsum, anhydrite, and
BIFs (Fig. 6.10G�I). Minerals that precipitate straight from salty fluids because of
evaporation make up evaporites. Sulfates, halides, and carbonates are the three most
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frequent types of evaporite minerals. Gypsum (CaSO4 � 2H2O), anhydrite (CaSO4), sylvite
(KCl), barite (BaSO4), and halite (rock salt) are the most common evaporite minerals
among the sulfates and halide minerals (NaCl). Gypsum is the most common sulfate
mineral and may be found in limestones, shales, and evaporite deposits (Fig. 6.10G and E).

Iron is present in most sedimentary rocks, but those that contain more than 15% iron
are known as iron-rich sedimentary rocks. Iron stones and BIFs (Fig. 6.10I) are the two
forms of deposits that can be found (BIFs).

FIGURE 6.10 Photograph showing clastic and chemical rocks (A) Rounded grains of conglomerate. Crossed
polarized light (XPL), 23 (7 mm); (B) angular habit of breeccia grains. XPL, 23 (7 mm); (C) quartz and feldspar
fragments in sandstone, XPL, 103 (2 mm); (D) medium grains of quartz and iron oxides in greywacke, plain
polarized light (PPL); (E) small particles of carbonate (Car) with tiny fragments of shells fossil in Limestone. XPL
3.5 mm; (F) medium rhombohedral crystals of dolomitized (Dol) fossils in fossiliferous limestone, Tunisia, PPL,
13 (9 mm); (G) high interference colors of anhydrite (Anh) and gray color of gypsum (Gp) crystals, Tuscany, Italy.
XPL, 103 (2 mm); (H) plumose texture and well-developed crystals of barite crystals. XPL, 23 (7 mm);
(I) alternative mode between Fe oxide-rich bands (Hematite [Hem] 1 Magnetite [Mgt]) and silica (Qtz)1
carbonate (Car) band thickly banded in BIF, Precambrian age from Australia.
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6.3.1.1.3 Metamorphic rocks
The metamorphic rocks were classified into foliated rocks and nonfoliated (granular) rocks.
The foliated rocks include slate, phyllite, schist, gneiss, and migmatite. Meanwhile, the non-
foliated rocks comprise amphibolite, marble, quartzite, eclogite, serpentinite, soapstone,
skarn, greisen, jasperoid, fenite, rodingite, spilite, mylonite, phyllonite, buchite, argillite,
hornfels, granulite, granofels, metabasite, charnockites, and cataclasite.

6.4 The foliated rocks
The foliated rocks were originated from regional metamorphic terranes. They readily break
along a foliation that is usually characterized by lepidoblastic phyllosilicate minerals; how-
ever, flattened felsic and carbonate grains are less prevalent (Best, 2003).

6.4.1 Schists

6.4.1.1 Tourmaline-bearing schists
Tourmaline-bearing schists are forming a large exposure of low-to-moderate relief extending
between the muscovite granites and mélange rocks at Wadi Sikait, Um El-Debbaa, Wadi Abu
Rusheid, and Wadi El-Gemal, South Eastern Desert, Egypt (Fig. 6.11A and B). Beryl and

FIGURE 6.11 Photograph showing (A) muscovite granites intruded within tourmaline-bearing mélange schists at
Wadi Um El-Debbaa, Egypt (Looking NW); (B) tourmaline-bearing mélange schists at Wadi Um El-Debbaa, Egypt
(Looking NW); (C and D) hand specimen of tourmaline minerals-bearing mélange schists at Sikiat area, Egypt.
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tourmaline occur as elongated crystals disseminated in the tremolite�graphite schists and
tremolite�actinolite schists (Saleh, 1997), many of ancient beryl mines related to that unit
are located near the contact with peraluminous granitic rocks.

The tourmaline-bearing schists and tourmalinites occur as layers within tremolite�
graphite schists and were interpreted as being deposited under pneumatolytic metasomatic con-
ditions (El-Rahmany et al., 2015; El-Awny, 2015). The elongate tourmaline crystals of foliated
tourmaline-bearing schists are commonly parallel to bedding and minor crenulations (Fig. 6.11C
and D). Tourmaline (60.47%), tremolite (21.62%), and graphite (16.18%) were the most abundant
minerals in these rocks discovered in Wadi Um El-Debbaa. Opaque mineral (1.15%) is a widely
distributed accessory constituent, whereas rutile (0.58%) is a minor accessory. They have a schis-
tose structure and a brownish color and are medium to coarse-grained.

Petrographically, tourmaline is found as idiomorphic prismatic crystals with two sets of cleav-
age, hexagonal crystals (Fig. 6.12A). They have a brownish color, complicated twinning, and
irregular zoning, and range in length from 2 to 13 mm and width from 2 to 3 mm. It comes in a
variety of pale brown colors that is pleochroic. Most tourmaline grains are optically unzoned,
although some tourmalines have dark brown cores and lighter rims in narrow parts (Fig. 6.12B).
The peripheral parts of some tourmaline porphyroblasts contain subidiomorphic crystals of
tremolite, graphite, rutile, and opaque minerals conforming to the schistosity (Fig. 6.12C). This
feature appears to be due to later growth or recrystallization and this indication on poikiloblastic
texture. In equidimensional tourmaline crystals and porphyroblastic texture (Fig. 6.12D).

6.4.1.2 Tourmalinites
Dismembered fragments of tourmalinites are known in the mélange schists around granitic
rocks encountered at Wadi Sikait, Um El-Debbaa, and Wadi Abu Rusheid (El-Desoky, 2010).
The essential components of tourmalinites are tourmaline (65.23%) and quartz (26.98%).
Rutile (1.72%), graphite (3.54%), actinolite (1.03%), and opaque minerals (1.5%) comprise
the accessory minerals. It is surrounded by numerous slender radiating aggregates of tour-
maline (Fig. 6.12E; El-Rahmany et al., 2015; El-Awny, 2015).

There are two generations of tourmaline encountered in the tourmalinites. The first gen-
eration of tourmaline is usually massive prismatic and much embayed by corrosion
(Fig. 6.12F). The distribution of the color zones is very irregular (Fig. 6.12G). The core is gen-
erally nearly colorless to greenish-brown or yellowish-brown (Fig. 6.12H). The second gener-
ation of tourmaline is idiomorphic prismatic crystals, which shows two sets of cleavage,
pleochroic from pale yellow to yellowish-brown, coarse- to medium-grained from 1 to
13 mm in length and from 1 to 2 mm in width (Fig. 6.12F; El-Awny, 2015).

6.4.1.3 Sillimanite-bearing schists
Sillimanite-bearing schists are strongly foliated, fine- to medium-grained, and characterized by
their grayish-white color and resistance to weathering. These schists are encountered in Gabal
Hafafit, and Wadi Allaqi, South Eastern Desert, Egypt. The major constituents are sillimanite
(more than 25%), quartz, and plagioclase (El-Desoky, 2010; Abdel-Rahman, 2020). Sillimanite
differs in color from white, yellowish-brown, grayish-green to dark gray (Fig. 6.13A). These
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FIGURE 6.12 Photomicrograph showing (A) hexagonal tourmaline (Tur) porphyroblast and well-developed
schistosity at wadi Nugrus area, Egypt (CN & TD); (B) well-developed dentations of tourmaline (Tur) crystals
(CN & TD); (C) zonation in tourmaline (Tur) crystals associated graphite (Gr) and rutile (Rt) at wadi Nugrus, Egypt
(PPL & TD); (D) wrapping on tourmaline (Tur) crystals (CN & TD); (E) tourmaline (Qtz) filling the tourmaline crystal
(Tur; CN & TD); (F) toothed shape of tourmaline (Tur) crystal parallel to the schistosity (Tur; CN & TK); (G) pressure
has done the teeth of well-developed tourmaline (Tur) crystals with graphite (Gr) (CN & TS); (H) Hexagonal
tourmaline (Tur) crystals and kinking shape of tremolite (Tr), graphite (Gr), and opaque minerals (Op. Mi; CN & TS).



FIGURE 6.13 Photomicrograph showing (A) hand specimen of fibrous sillimanite aggregate from Jeseniky Czech. Photo:
Zbynÿek Buÿrival. https://mineralexpert.org/article/sillimanite-aluminosilicate-mineral-overview; (B) the structural contact
between the foliated metagabbro and sillimanite-bearing schists at Hafafit area, Egypt; (C) sillimanite (Sil) crystals altered
to muscovite (Ms) at wadi Allaqi, Egypt, C.N; (D) sillimanite aggregates of hair-like shape and fibrous bundles, parallel to
the foliation in the sillimanite-bearing schists. C.N; (E) very coarse almandine crystals in garnet-bearing schists, Passo Rombo,
Alto Adige, Italy; (F) well-developed garnet crystals (Grt) in the same direction of the foliation within garnet-bearing schists;
(G) large porphyroblast of garnet (Grt) perforated by quartz (Qtz) and replaced along its cracks by iron oxides. Plain
polarized light (PPL), 3 2.5/0.08; (H) Garnet (Grt) porphyroblast and muscovite (Ms) infiltered by the later medium quartz
crystals (Qtz) in micaschist. Val Lanterna area (Valmalenco), Italy. Crossed polarized light (XPL), 23 (7 mm).



rocks are extending between the foliated metagabbros (Fig. 6.13B) and/or in between the foli-
ated metagabbros and Hafafit psammitic gneisses (El-Desoky, 2010).

Sillimanite occurs often in sheaves of fine fibers with cross-fractures (Fig. 6.13C and D) or
as aggregates of hairlike needles and fibrous bundles, such as Quartzforms’ granoblastic
aggregates as well as individual crystals. Plagioclase occurs as hypidiomorphic crystals,
0.3 mm long, oftentimes untwined, and highly altered and saussurite. Muscovite forms irreg-
ular streaks as well as small flakes, up to 0.06 mm long. Iron oxide forms allotriomorphic
crystals, up to 0.2 mm long, frequently coating biotite and rarely titanite (El-Desoky, 2010).

6.4.1.4 Garnetiferous schists
Garnetiferous schists are predominant and related to amphibolite facies of medium-grade
metamorphism and are to be considered of sedimentary origin. They show graded bedding,
to be foliated, fine- to medium-grained, moderately hard to compact, change in color (from
yellow, brownish-yellow to green), and containing variable amounts of garnet, mica, potash
feldspar, and plagioclase (El-Desoky, 2010). Garnetiferous schists are crop out mainly in the
eastern part of the Gabal Hafafit, South Eastern Desert, Egypt, as a low hilly to the moder-
ately elevated country with gentle slopes.

The outer inclusions show that the garnet has well-developed crystals between quartz
grains (Fig. 6.13E). Although the garnet is poikiloblastic, its grain boundaries show a very
strong tendency to run parallel to the edges of a hexagon with the quartz and feldspar crys-
tals, which represents a cross section through the rhombic dodecahedron that is a common
crystal habit of members of the garnet group of minerals (Fig. 6.13F).

Petrographically, garnet-bearing schists are fine- to medium-grained, foliated, and char-
acterized by porphyroblast texture (El-Desoky, 2010). Garnet occurs either as allotriomorphic
porphyroblasts, or as fragmented crystals, up to 2.0 cm across almandine and spessartine
composition. It is highly corroded and sieved by quartz blebs and replaced along its cracks
by biotite and slightly altered to chlorite (Fig. 6.13G). Garnet occurs as pretectonic crystals
that form shattered (Fig. 6.13H).

6.5 The nonfoliated rocks
6.5.1 Greisens

Trace and rare-earth-element-bearing greisens of the Eastern Desert Province of Egypt can
be recorded in the following regions: Abu Dabbab, Igla, Nuweibi, Mueilha, Homrit Waggat,
Um Naggat, Abu Rusheid, Wadi Zarieb, Ras Barud, and Wadi El-Miyah (El-Desoky, 2020).
The Abu Dabbab greisen consists of a series of sheeted quartz and quartz greisen veins and
zones-bearing cassiterite-rare-metal mineralization. Abu Dabbab greisenization displays an
intensive greisenization, producing pocket-like bodies of lithionite granites, where fine disse-
minations of cassiterite and tantalite�columbite are recorded (Figs. 6.14 and 6.15). Three
types of ore veins at Abu Dabbab are composed mainly either of quartz, or of quartz greisen
with, rare-metal mineralization, topaz, and fluorite or of quartz�microcline�amazonite
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(Fig. 6.14). According to El-Desoky (2020), the quartz greisen veins are composed occasion-
ally of muscovite, phlogopite, and cassiterite (Fig. 6.15).

The Igla greisen bodies are represented by several greisens-bearing tin�beryllium miner-
alizations (Figs. 6.14 and 6.15). The mineralized fluids are found as quartz stockworks and
veins and also as greisen zones-bearing Sn, W, Nb�Ta, and Be elements. These deposits
seem to be genetically related to the albitized granites (Mohamed and Bishara, 1998). The
greisen samples bearing cassiterite, quartz, and phlogopite minerals come from the edges of
fissures in the altered granites (Fig. 6.15). Nuweibi greisen is represented by albite granite

FIGURE 6.14 Photograph showing hand samples of Igla and Abu Dabbab greisen deposits (A) Igla muscovite-topaz-
beryl greisen veins; (B) Abu Dabbab muscovite-topaz greisen veins; (C) Nuweibi muscovite-garnet-quartz greisen
veins; (D�F) Abu Dabbab cassiterite-quartz greisen veins.
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masses and quartz�cassiterite veins. These veins display extremely erratic dissemination of
cassiterite. Almandine and spessartine occur as red to brownish-red cubic euhedral crystals
distributed in Nuweibi greisens. Remarkably, and unlike the Abu Dabbab granite, the
Nuweibi intrusion does not contain Sn mineralization.

6.5.2 Chromite in serpentinites

The serpentinite forms N�S ridge covering about 40 km2 encountered at El-Rubshi, Central
Eastern Desert, Egypt. El-Rubshi serpentinite�talc carbonate range forms a mountainous
ridge with sharply irregular peaks with dark black to pale violet colors (El-Desoky et al.,

FIGURE 6.15 Photograph showing hand samples of greisen deposits (A) Nuweibi zinnwaldite-quartz greisen veins;
(B) Nuweibi zinnwaldite-ferrugination-quartz greisen veins; (C & D) Abu Dabbab greisen-hosted Sn deposits; (E) Igla
phlogopite-quartz greisen veins; (F) Abu Dabbab quartz-fluorite greisen veins.
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2015). Petrographically, the serpentinites are mainly composed of serpentine minerals (anti-
gorite, chrysotile as well as lizardite) associated with variable amounts of talc, carbonates,
magnetite, chromite, and tremolite with relics of the parent olivine and pyroxene. Serpentine
crystals replacing the parent olivine, particularly at the grain boundaries, form a mesh tex-
ture (Fig. 6.16A). Magnetite, of primary origin, is fine-grained with euhedral to subhedral
form and is generally dispersed throughout the rocks. Talc forms minute colorless aggregates
replacing antigorite and may occur as microveinlets (Fig. 6.16B). Huge veins of carbonate
minerals (magnesite and calcite) disseminated the serpentinite rocks (Fig. 6.16C and D).
Chromite occurs interstitially as rounded and fine-sized grains with a deep red to reddish-
brown color (Fig. 6.16E; Abdel-Rahman, 2020).

6.5.3 Talc

Talc is a common metamorphic mineral that occurs in metamorphic belts, which are derived
from ultramafic rocks, such as soapstone (a high-talc rock) and within metavolcanics and blues-
chist metamorphic terranes (Deer et al., 1992). The majority of talc occurrences in Egypt are
derived from or hosted within the ultramafic rocks, mainly by serpentinite and mafic rocks as
highly sheared metabasalts that are encountered in Umm Rilan, South Eastern Desert. Talc
occurs as a secondary mineral formed by the alteration of magnesium carbonates (magnesite and
dolomite) and magnesium and/or iron silicates such as serpentine (El-Desoky and Khalil, 2011).
Umm Rilan area is of low-to-moderate relief, made up of two suites, metamorphic talc carbonate
and talc serpentinite rocks of ophiolitic mélange (Fig. 6.16F and G), metavolcanics (metabasalts),
and granitic rocks. Talc carbonate rocks contain euhedral cubes of goethite pseudomorphs most
probably after pyrite or hematite (Fig. 6.16H); these goethite cubes are well developed and show
colloform texture. Petrographically, talc is the most abundant mineral constituent that forms
more than 90% of the rock volume. It occurs in coarse to fine platy or fibrous aggregates that
often have a more or less parallel arrangement (Fig. 6.16I).

6.5.3.1 Stratigraphy
Stratigraphic studies, including sequence stratigraphy, are considered the most important
steps when dealing with sedimentary ore deposits. This can help in sedimentary basin analy-
sis and classify the facies changes relative to different depositional environments. Hence, it is
possible to predict and understand mineralization associated with different sedimentary
facies (e.g., red-beds, evaporites, organic-rich shales, and carbonates). Several factors can
control the ending locality of sedimentary ore deposit, including the type of depositional
environment, regional structural setting of the basin, and the geometry of sedimentary
sequence. Tracing and mapping various stratigraphic units and sequences depend mainly on
surface investigation and rock sampling to trace the boundaries of different sequences and
judge the depositional environment. Also, this is verified by laboratory investigation of the
collected rock samples. Additionally, the geometry and structure of a basin can be deter-
mined using the seismic stratigraphy method integrated with good data. Particularly, many
examples of sedimentary-ore deposits can be provided worldwide. For, instance, in Egypt,
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FIGURE 6.16 Photomicrograph showing (A) Serpentine minerals exhibits mesh texture and olivine grains is
surrounded by fibrous serpentine and black magnetite. Crossed Polarized Light (XPL), 23 (7 mm); (B) Talc
microveinlets replacing antigorite and hourglass texture in the serpentinite matrix. XPL, Germany. 103 (2 mm);
(C) Carbonate veins (white color) in partially serpentinized peridotites, Ophiolite, Oman; (D) Two veins of
carbonate within serpentinite, XPL, Wadi Allaqi, Egypt; (E) Chromite associated with secondary veins of carbonates
in serpentinite, XPL, Wadi Allaqi, Egypt; (F) Talc-carbonate lens within the metavolcanics, Umm Rilan area, Egypt;
(G) Talc serpentinite rocks of ophiolitic mélange, Umm Rilan area, Egypt; (H) Goethite cubes after pyrite within the
talc-carbonate rocks; (I) Talc fibrous associated to hematite, C.N.



the Duwi Formation (Red Sea Coast) represents important phosphate-bearing strata; also,
the Um Bogma Formation (Sinai) is an example of manganese-bearing strata. Many studies
dealt with the origin and depositional environments as well as the digenetic factors control-
ling the hosting of the manganese in Sinai (e.g., Abou El-Anwar et al., 2017) and the phos-
phate in the Eastern Desert (e.g., Kora et al., 1994).

6.5.4 Structural mapping

6.5.4.1 Relation between geological structures and ore deposition
Worldwide, mineral deposits are controlled by different tectonic settings, including subduction-
related settings, continental margins, strike�slip settings, collision-related settings, spreading
centers, and extensional settings (Fig. 6.17). Additionally, the spatial distribution of the major
mineral deposits all over the world is highly correlated to the major structural elements and plate
boundaries (Fig. 6.17). For instance, copper can be formed accompanied by compressional

FIGURE 6.17 The role of plate tectonics controlling the distribution of ore deposits (after, Murck and Skinner,
2012). From Murck, B., Skinner, B., 2012. Visualizing Geology. Wiley Visualizing.
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tectonics at magmatic arcs, back-arc, and fore-arc basins (e.g., Sun et al., 2018) as well as exten-
sional tectonics through mid-ocean ridges (e.g., Wang et al., 2006). Also, gold is favorable at
magmatic arcs and back-arc basins (e.g., Groves et al., 2018).

Particularly, for several decades, geologists registered many attempts to relate different
types of mineralization and ore deposits to geological structures affecting the Earth’s crust.
In fact, geological structure plays a chief role in controlling ore deposits in different tectonic
regimes (e.g., Blenkinsop and Doyle, 2014; Funedda et al., 2018; Qin et al., 2022). Almost, all
hydrothermal deposits display a few degrees of structural control on mineralization. Such
control is reflected through various types of geological structures, including fractures, folds
and faults, and/or shear zones.

Faults and shear zones constitute types of the most famous structures controlling min-
eralization. They are closely related structures where both are strain localization struc-
tures. Also, both occupy displacement parallel to the walls, and both are likely to develop
in width and length throughout displacement accumulation. Hence, the term shear zone
can be simply defined as a tabular zone where strain is remarkably greater than in the sur-
rounding rock. Commonly, a single shear zone is bordered by two boundaries (i.e., shear
zone walls) that divide the main shear zone from its wall rock (Fig. 6.18A). Generally,
shear zones can be categorized according to ductility and plasticity (Fig. 6.18B). Usually,
field measurements deal with defining the thickness, extension, and displacement of the
shear zone. Where markers are found around both walls of the shear zone, the displace-
ment can be honestly measured. Also, the width and extension of a shear zone can be
defined from field investigation or with the aid of remote sensing data regarding the scale
of the shear zone. Shear zones enclose internal complex patterns of deformation second-
order structures, including veins, dykes, and fracture systems. Such structures influence
localizing ore deposits as it provides pathways for hydrothermal solutions. Also, fault
zones and their associated fractures and fault breccias due to the grinding action of the
rocks nearby to the fault plane increase the structural permeability of hydrothermal solu-
tions (e.g., Grare et al., 2018).

The structure controlling ore bodies is commonly complex to observe and its relations to
the regional structural framework are often absent. Folds and domal structures represent
one of the challenge structures where mineralization can be with (e.g., Cugerone et al., 2018;
Jacques et al., 2018). Cleavage and veins are planar structures that are usually abundant in
folded metamorphic rocks. Also, they play a major role as indicators for mineralization zones
and deformation processes (Fig. 6.19). Veins represent planar structures that can be
described as extensional structures filled with minerals. Geometrically, a cleavage splits the
fold relatively along the axial surface, near the hinge zone. It is necessary to measure and
record geometric parameters of cleavages and veins, also, structural analysis using stereo-
graphic projection techniques is crucial. As a result, structural studies focusing on the inter-
action between mineralization and geometry of veins are vital. Also, determining locations
where structures such as cleavage are secant, as well as interpreting textural associations
between metamorphic minerals and mineralization, can guide to a well again considerate of
the ore-body genesis.
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FIGURE 6.18 (A) Ideal shear zone deforming a grid with two planar markers and circular strain markers and (B)
simple classification of shear zones based on the deformation mechanism and mesoscopic ductility (after, Fossen,
2010). From Fossen, H., 2010. Structural Geology. Cambridge University Press.
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6.5.4.2 Mapping techniques of structural controlled mineralization
Exploring structural-controlled ore deposits is directly linked to delineating and mapping various
geological structures via remote sensing data, field geology investigation, and geophysical data.
Hence, defining the type, geometry, and timing of crustal deformation is a critical step for mineral
exploration. Field data acquisition of structural geometric parameters is usually achieved through
recording strike and dip of planar structures, including fault planes, fold limbs, and fractures as
well as trend and plunge of linear structures. Also, the width and extension of fault zones are an
important demand in structural mapping. The importance of geological structures comes from the
deformation characteristics of each structural type and its controls on the nature of forming ore
deposits. The nature and characteristics of the most common types of geological structures con-
trolling ore deposits are explained in the next paragraphs. Remote sensing techniques have been
widely used as an initial step for geological mapping. Particularity, structural delineation, and

FIGURE 6.19 Schematic 3D sketch displaying the three main mineralization types of veins associated with folded
rocks (after, Cugerone et al., 2018). From Cugerone, A., Oliot, E., Chauvet, A., Gavaldà Bordes, J., Laurent, A., Le
Goff, E., Cenki-Tok, B., 2018. Structural control on the formation of Pb�Zn deposits: an example from the Pyrenean
axial zone. Minerals, 8(11), 489. https://doi.org/10.3390/min8110489.
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mineral exploration were among the most prominent applications (e.g., Eldosouky et al., 2017).
Multispectral and hyperspectral remote sensing sensors were used for geological applications,
ranging from a few spectral bands to more than 100 contiguous bands, covering the visible to the
shortwave infrared regions of the electromagnetic spectrum (Pour and Hashim, 2014). Passive and
active remote sensing systems are widely used for mineral exploration for two applications: (1)
extraction of faults and shear zones that localize ore deposits; and (2) distinguishing hydrother-
mally altered rocks by their spectral signatures (Fig. 6.20).

Generally, geophysical methods are usually used in interpreting geological structures
because of their more spatial resolution. Particularly, geophysical potential data can provide
an image of the major structural setting where deep faults and shear zones can be delineated
(Faruwa et al., 2021; Zhang et al., 2022). Also, it gives an image of faults intersection, which
is an important locality for mineral exploration (Fig. 6.21A). Nowadays, it represents a crucial
step for defining mineralization zones according to the interpreted structural pattern.
Different advanced processing methods provide tools for understanding both the regional
distribution and the trends in geophysical properties to be related to near-surface and sub-
surface geology. The selection between different enhancement and transformation techni-
ques depends on the geological question of interest. Processing procedures, including
enhancement techniques, can provide a precise structural image of the subsurface
(Eldosouky et al., 2022). The integration of remote sensing techniques, geophysical methods,

FIGURE 6.20 Landsat 8 (R:4, G:1, B:2) shows an example of a mineral-bearing shear zone from the Egyptian Eastern Desert.
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FIGURE 6.21 (A) Lineaments extraction and analysis remote sensing, magnetic and field geologic data at Wadi
Allaqi area, Eastern Desert, Egypt. (B) Density map of lineaments of Wadi Allaqi overlain by known 277 sites of
mineralization (after, Eldosouky et al., 2017).
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and field-measured data is a very important step for determining alteration and/or minerali-
zation zones (Fig. 6.21B).

Currently, development in mapping software and enhancement algorithms (e.g., Arc GIS)
provides a platform for correlating and integrating multiple datasets. This is considered a final
stage for delineating the optimum zones of mineralization occurrences. Also, machine-learning
and statistical analysis techniques are widely used in the last decade, which, in turn, provide
more knowledge and reliability about the constructed models. Hence, the uncertainties about
mineral exploration can be reduced, which makes decision-makers more confident.

6.6 Laboratory analysis
6.6.1 X-ray diffraction analysis

X-ray diffraction (XRD) is a conventional technique to pinpoint minerals in a laboratory envi-
ronment. It is an adaptable and nondestructive analytical technique to obtain detailed struc-
tural and phase information of materials, quickly. XRD is a significant device in mineralogy
for identifying, quantifying, and characterizing minerals in complex mineral assemblages
(Stanjek and Häusler, 2004; Ali et al., 2022). It is typically useful for detecting fine-grained
minerals and mixtures or intergrowths of minerals. In many geologic investigations, XRD
complements other mineralogical methods, including optical light microscopy, electron
microprobe microscopy, and scanning electron microscopy.

Mineralogical identification of ore minerals and associated minerals, including fine-grained
hydrothermal alteration minerals, provides evidence used to deduce the conditions under which
ore deposits formed and the conditions under which, in many cases, they were subsequently
altered (Mathieu, 2018). Mineralogical analysis by XRD is utilized along with remotely sensed
data in several mineral exploration investigations (Pour et al., 2021; Yousefi et al., 2021, 2022).
XRD is applicable to distinguish the minerals composing clay-rich, hydrothermally altered rocks.
Many hydrothermal alteration minerals produce diagnostic spectral bands, and spectral data
provide a basis for mineral exploration using remote sensing data (Hunt and Ashley, 1979).
Analysis of remote imaging spectrometer data can openly map mineral occurrences by detecting
diagnostic spectral absorption bands, the shape, and position of which are determined by indi-
vidual mineral structures. A detailed knowledge of sample mineralogy, provided at least in part
by XRD, is required to understand the observed spectral absorption features.

For X-ray powder diffraction, a micronized sample is constrained into a specialized holder
and placed into the X-ray diffractometer. The instrument bombards the powdered sample with
X-rays at varying angles. As the X-rays come into contact with the particulate material, they are
diffracted by the crystal structure of the phase or phases that are being analyzed. The scan
results in a diffraction pattern that contains numerous peaks or humps (Gräfe et al., 2014). The
resulting peaks or humps are similar to a fingerprint, as they can be matched to specific mineral
or crystalline phases. The interpretation of the diffraction pattern is a comparative method where
the data are matched to an exhaustive list of reference patterns. By using this interpretation tech-
nique, it is possible to identify well over 10 different minerals or crystalline phases within an
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unknown sample (Artioli, 2013; Ameh, 2019). Fig. 6.22 shows the XRD spectrum of a clay sam-
ple. A variety of minerals present in the sample were identified. For example, five Q (quartz)
peaks are observed with varying peak positions and intensities, indicating a variety of atomic
positions, the size, and the shape of the quartz unit cell.

6.6.2 Analytical spectral devices

Field measurements of surface reflectance are widely utilized for the identification of altered
minerals and assemblages and verification of satellite remotely sensed results. Spectral data are
characteristically acquired for small areas at ground level or from laboratory conditions in a vari-
ety of configurations using Analytical Spectral Devices (ASDs) field portable spectroradiometers
(Deering, 1989; Milton and Goetz, 1997). The ASDs improve remote sensing field capabilities
and accurately measure reflectance, transmittance, radiance, or irradiance in the full spectrum
range of 350�2500 nm (UV/Vis/NIR/SWIR) with a spectral resolution of 10 nm. They deliver
comprehensive spectral information of target minerals in the field or laboratory conditions.

Typically, the amount of energy reflected from a ground area or object of interest over different
wavelengths is measured by the ASDs (Milton et al., 1995). Consequently, the measurements are
transformed to spectral radiance values using equipment calibration factors (Peddle et al., 2001).
Key spectral signatures derived from ASD data countenance the detection of iron minerals in the
VNIR and clays, carbonates, micas, sulfates, and other minerals in the SWIR wavelengths (Kruse,
2012; Calvin and Pace, 2016). The USGS spectral library version 7 (https://speclab.cr.usgs.gov/spec-
tral-lib.html), the ASTER spectral library version 1.2 (http://speclib.jpl.nasa.gov), and ECOSTRESS
spectral library version 1.0 (http://speclib.jpl.nasa.gov) contain a comprehensive collection of spec-
tra for a wide variety of materials especially minerals, rocks, lunar and terrestrial soils acquired by
the ASDs (Baldridge et al., 2009; Kokaly et al., 2017; Meerdink et al., 2019).

FIGURE 6.22 X-ray diffractogram of a sample collected from clay mineral assemblages.
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6.7 Case studies
Title Case Study 1: Gold-mineralization of Wadi Hodein Belt, Egypt.

Audience:
Researchers and investors interested in prospecting for gold ore benefit from this study;

several authors participated in this study as Mohamed Abd El-Wahed, Basem Zoheir, Amin
Beiranvand Pour, and Samir Kamh.

Rational:
The main reasons for these activations:

1. Knowing the structural factors controlling the formation of gold mineralization in the study area
2. The link between the results of remote sensing analysis, field studies, and the structure

data in the possibility of the presence of gold ore

Expected results and deliverables:

1. The Wadi Khashab shear zone hosts several occurrences of gold-bearing quartz veins
that are commonly associated with sericitized and silicified rocks.

2. The most important conclusion of this study is that gold mineralization in the Wadi
Hodein�Wadi Beitan shear belt was mostly confined to steeply dipping strike�slip
shear zones in the marginal parts of the shear belt (Fig. 6.23).

3. The gold mineralization event was evidently epigenetic in the metamorphic rocks and
was likely attributed to rejuvenated tectonism and the circulation of hot fluids during
transpressional deformation.

4. The gold mineralization event was evidently epigenetic in the metamorphic rocks was
clearly epigenetic, and it was most likely caused by revitalized tectonism and hot fluids
circulation during transpressional deformation.

5. The results of image processing complying with field observations and structural
analysis suggest the coincidence of shear zones, hydrothermal alteration, and
crosscutting dikes in the study area.

6. In the South Eastern Desert the Wadi Hodein shear belt is a high-angle NW-oriented
transcurrent shear zone. Imbricate thrust-bounded sheets and slices of serpentinized
ultramafic rocks, amphibolite, and metabasalt are embedded in a strongly tectonized
matrix of talc carbonate, schists, and metasiltstones in the Wadi Rahaba�Gabal Abu
Dahr and Gabal Arais ophiolites (Fig. 6.24).

7. The concurrence of shear zones, hydrothermal alteration, and crosscutting dikes in the
research area might be used as a model criterion in the search for new gold targets,
according to the results of image processing in accordance with field observations and
structural analysis.

8. Neoproterozoic rocks in Hodein shear belt include variably deformed ophiolitic
mélange rocks, and island-arc metavolcanic and metavolcaniclastic successions.

9. Gold-bearing quartz veins intersect sheared metavolcanics, volcaniclastic
metasediments, and gabbro�diorite complexes in the studied area.
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10. Mineralized quartz veins are constantly regulated by NW- and NNW-trending shear
zones, and they are linked with widespread hydrothermal alteration.
El-Beida, Khashab, El-Anbat, Um Teneidab, Urga Ryan, Hutit, and Um Eleiga are all
gold occurrences in the research region.
Gold-mineralized shear zones penetrate across deformed metavolcaniclastic and
ophiolites rocks in and around granodioritic intrusions, attenuating the signal.
Albitization of the gabbroic host rocks is widespread in the Um Eleiga gold mine area.
The high strain zones are mostly connected with a variety of gold occurrences in the
Wadi Hodein shear band.
The Urga Ryan gold deposit is located 3 km south of the Wadi Urga Ryan/Wadi Hutib
intersection. Gneisses, volcaniclastic metasediments, and mafic to intermediate
metavolcanic rocks underpin the area around Wadi Urga El-Ryan.
The serpentinite, mafic metavolcanics, volcaniclastic metasediments, ophiolitic
metagabbros, syn-orogenic metagabbros, and postorogenic granites underpin the
Hutit mine area.

FIGURE 6.23 Distribution of the known gold mining sites and gold�quartz vein occurrences relative to the major
fault/shear structures and ophiolitic masses in the South Eastern Desert terrane (Zoheir et al., 2019). Modified after
Zoheir, B., Emam, A., Abd El-Wahed, M., Soliman, N., 2019. Gold endowment in the evolution of the Allaqi-Heiani
suture, Egypt: a synthesis of geological, structural, and space-borne imagery data. Ore Geol. Rev. 110, 102938.
https://doi.org/10.1016/j.oregeorev.2019.102938. Inset shows a location map of the study.
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FIGURE 6.24 Geological map of Wadi Hodein�Beitan shear belt (El Amawy et al., 2000; Zoheir, 2012). Complied
and modified from El-Amawy, M.A., Wetait, M.A., Alfy, Shweel, A.S., 2000. Geology, geochemistry and structural
evolution of Wadi Beida area, South Eastern Desert, Egypt. Egypt J. Geol. 44, 65�84; Zoheir, B.A., 2012. Lode-gold
mineralization in convergent wrench structures: examples from South Eastern Desert, Egypt. J. Geochem. Explor.
114, 82�97. https://doi.org/10.1016/j.gexplo.2011.12.005.
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Results:

1. The Wadi Hodein�Wadi Beitan shear belt is thought to have a preferential distribution of
gold mineralization.

2. The study’s most noteworthy finding is that gold mineralization in the Wadi
Hodein�Wadi Beitan shear band is primarily restricted to steeply dipping strike�slip
shear zones at the shear belt’s fringes.

3. So far, no gold-bearing quartz veins have been discovered in the center shear zone.
4. The coincidence of shear zones, alteration, and acid dikes in the research area is

translated into highly prospective zones for new and perhaps important gold occurrences
in a conceptual model for evaluating new and unexplored targets of gold�quartz veins in
the region.

Title Case Study 2: Lithium-bearing pegmatite deposits in Dahongliutan area, China.
Audience:
Several researchers contributed to this work, including Yongbao Gao, Leon Bagas, Kan,

Moushun Jin, Yuegao Liu, and Jiaxin Teng, who are all interested in exploring lithium-
bearing pegmatite deposits.

Rational:
The following are the key reasons for these activations:

1. This work used a mix of geochemical methodologies, geological mapping, and high-
resolution remotely sensed multispectral images to determine prospective areas of
pegmatite-hosted Li deposits.

2. Our findings reveal that the Li mineralization in the Dahongliutan area is similar in age
and genesis to the pegmatite-hosted deposits in the Jiajika area in western Sichuan
province, implying that the Dahongliutan area is rich in pegmatite-hosted mineral
deposits (Fig. 6.25).

Expected results and deliverables:

1. The value of rare metals used in rechargeable batteries, such as lithium and cobalt, has
climbed as demand for them has grown.

2. Lithium compounds are widely employed in industries such as aerospace, chemical,
pharmaceutical, and new energy.

3. Lithium has become an important commodity as a result of continuing discoveries in the
research and development of rechargeable batteries.

4. Although many pegmatite veins and dykes in the vicinity of the deposit are anomalous in
Li�Be�Ta�Nb, only 10 have been proven to be economically viable, with lengths
ranging from 180 to 300 m and widths up to 40 m.

5. The process of using satellite photos for mineral exploration starts with data collection,
which is often done in a geographic information system (GIS) context. This comprises
exploration data, georeferenced geological maps, and preliminary interpretations of
satellite pictures and orthorectified aerial photographs, among other things.
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6. Lithium-bearing minerals can be found in closed-basin brines, granitic pegmatites, and
associated granitic rocks that include spodumene (LiAl(SiO3)2) and other economically
valuable minerals.

7. A pegmatite dyke swarm in NW China hosts the recently discovered Dahongliutan Li
mineral deposits, which are also potential for Be, Rb, Nb, and Ta mineralization.

8. Landsat 5, Landsat 7, and ASTER are examples of low-resolution remote sensing satellites
with high spectral resolution.

Results:

1. The main topic of this publication is remote sensing in conjunction with fieldwork and
geochemistry. This resulted in the discovery of mineralized pegmatites at a high altitude
in the Dahongliutan region.

FIGURE 6.25 The geological map of the Dahongliutan area, as well as the distribution of spodumene-bearing pegmatites.
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2. Joints and shears within the Bayankala Formation and Dahongliutan Granite structurally
limit the distribution of pegmatites in the area. Between tourmaline-bearing pegmatites near
granites and feldspar-rich pegmatites and quartz veining outside the contact hornfels zone,
spodumene-bearing pegmatite dykes and veins can be found. Spodumene-bearing pegmatite
veins and dykes are associated with higher Be, Rb, Nb, and Ta assays.

3. Recognizing Li-bearing pegmatites in sedimentary layers is part of the exploratory
method devised for discovering spodumene-bearing pegmatites in the difficult Bayankala
Fold Belt. Following that, pegmatite veins were identified on high-resolution
hyperspectral remote sensing pictures, as well as anomalies connected to pegmatite-type
Li deposits using multispectral remote sensing.

4. The approach developed for the Dahongliutan area was successful in locating many
important Li and Be deposits in the area.
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7.1 Introduction
Modern-day exploration programs are faced with multiple challenges. First, there is an infor-
mation overload given the availability of multiple datasets, requiring sophisticated tools for
handling big datasets. False positives (FP) also pose certain challenges to exploration
programs; anomalous contents of zinc in surficial geochemical data, for example, are not
necessarily ore-related anomalies (cf. Levinson, 1974), nor are high magnetic anomalies nec-
essarily associated with ore-bearing igneous complexes. Added to these are weak ore-related
geochemical and geophysical anomalies of covered and blind mineral deposits (e.g., Zuo,
2014). In addition, to fully exploit the potential of legacy geoscientific data, one should trans-
late the datasets into modern, digital formats. Most legacy bedrock geological maps available
in hardcopy formats, for example, cannot be directly used in mineral prospectivity mapping
(MPM), and manual transformation of these maps into digital formats is a time-consuming
and labor-intensive process. All the previous challenges have inclined many researchers to
exploit machine-learning algorithms (MLAs) for manipulating, processing, as well as translat-
ing legacy data into digital formats (Zuo, 2020; Lawley et al., 2022).

Generally, MLAs can be categorized into supervised and unsupervised algorithms. What
constitutes the difference between these two categories is the use of labeled samples—sam-
ples tagged with some known features that are employed for calibrating and validating
supervised algorithms. Supervised algorithms can be applied to address classification and
regression problems. Some algorithms are unique to classification; there are, however, many
algorithms that could be applied to both classification and regression. Predictive modeling of
mineral prospectivity (also known as MPM) is a prime example of regression problems
addressed by supervised algorithms. Unsupervised algorithms are commonly employed for
clustering and dimensionality reduction of geoscientific data. Common applications of
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clustering have been demonstrated for geochemical data (Templ et al., 2008).
Dimensionality reduction intends to reduce the complexity of datasets with numerous vari-
ables and has been applied to multispectral and hyperspectral remotely sensed datasets
(Pour and Hashim, 2012) as well as geochemical data (Reimann et al., 2002). This chapter
reviews the applications of MLAs in the geospatial analysis of geoscientific data for mineral
exploration, followed by discussions on the limitations of these techniques.

7.2 Supervised algorithms
As described in Section 7.1, two common applications of supervised techniques, classifica-
tion and regression, have been applied to the geospatial analysis of mineral exploration data-
sets. Notwithstanding the differences between these problems, applying supervised
algorithms generally follows a framework summarized in Fig. 7.1. As per this figure, this pro-
cedure starts by developing two matrices—the matrix of labeled and unlabeled samples.

For predictive remote bedrock mapping (e.g., Harris et al., 2011), as an example of a clas-
sification procedure, one may pick some samples with predetermined, known bedrocks to
develop a matrix of labeled samples. In a matrix of labeled samples, samples are usually
represented by rows, while variables are represented by columns. The matrix constitutes the
values of predictor variables (i.e., independent variables) and a target (i.e., dependent) vari-
able, i.e., predetermined known bedrocks for some samples, in sample locations.

For MPM, as an example of a regression procedure, developing the matrix of labeled sam-
ples is more complicated. First, two types of locations should be marked for developing this
matrix: positive and negative sites. Mineralized zones are usually deemed positive sites in
MPM; in regional-scale studies, these are the location of mineral deposits/occurrences. Some

FIGURE 7.1 The general procedure employed for using supervised machine-learning algorithms, including MPM.
MPM, Mineral prospectivity mapping.
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criteria have been suggested for selecting negative sites in MPM (Nykänen et al., 2015).
Foremost among these criteria is to ensure that the negative sites follow a random spatial pat-
tern. This is because mineral deposits usually demonstrate a clustered spatial distribution
(Carranza, 2009), and the spatial distribution of negative sites should be different from that of
positive sites. In addition, to help maintain a data balance in the matrix of labeled samples, it
has been recommended to use an equal number of positive and negative sites (Porwal et al.,
2003). Furthermore, some researchers suggest selecting negative sites far from deposit loca-
tions (Carranza, 2009). This is to ensure that negative sites do not bear similarities in terms of
geochemical and geophysical anomalies with positive sites. This is legit as some hydrothermal
deposits, such as porphyry deposits (Sinclair, 2007), usually represent large halos of alteration.
The matrix of labeled samples is then generated by assigning the values of predictor variables
to positive and negative sites. Each predictor variable is considered an independent variable in
the matrix, whereas a dependent variable (i.e., the target variable) is further defined by assign-
ing the values of 1 and 0 to positive and negative sites, respectively.

Labeled samples are divided into calibrating and validating sets, which are used for the
training and verification of supervised algorithms, respectively. Random splitting and k-fold
cross-validation are among the methods used for dividing the labeled samples into two cate-
gories (Refaeilzadeh et al., 2009). In random splitting, usually a higher percentage of ran-
domly selected labeled samples (usually 70%�80%) are assigned to the calibration category,
leaving the remnant samples for validation (Refaeilzadeh et al., 2009). The k-fold cross-
validation procedure is an iterative procedure, starting with randomly splitting the labeled
samples into k groups. Each group is then considered once as the validation set, while the
rest of the groups are fed into the algorithm for training. This is followed by measuring the
performance of the algorithm using this training and validation set. The process is iterated k
times until each group is separately considered the validation set. The average performance
of the different iterations is then considered the algorithm’s general performance
(Refaeilzadeh et al., 2009). Selecting the number of folds depends on the number of labeled
samples available, whereas fivefold and tenfold cross-validations have been commonly used
for MPM (e.g., Parsa et al., 2022a,b). For a smaller number of labeled samples, k may be set
to the total number of samples. This procedure is then referred to as the leave-one-out
approach, which is also a common procedure in MPM given the scarcity of mineralized loca-
tions (e.g., Parsa et al., 2018a).

Bias and variance refer to the ability of a model to match the calibrating and validating
samples, respectively. Receiver operating characteristic (ROC: Swets, 1988) curves, plotting
the values of false-positive rate (FPR), also known as 1 2 specificity, in the horizontal axis
against the values of true-positive rate (TPR), also known as sensitivity, in the vertical axis,
help measure the performance of a model. A prerequisite to measuring FPR and TPR is cal-
culating the values of FP, true positives (TP), true negatives (TN), and false negatives (FN)
for different threshold values. In the context of MPM, these quantities are defined by a con-
tingency matrix as demonstrated in Fig. 7.2 (Parsa et al., 2018b). FPR and TPR are then esti-
mated by FP/(FP 1 TN) and TP/(TP 1 FN), respectively. Once these values are quantified,
the performance of a model is estimated by measuring the area under the curve (AUC). An
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AUC value of 1 determines an ideal performance, whereas a random variable usually demon-
strates an AUC value of B0.5. In other words, the higher the AUC value, the better the per-
formance of a model (Swets, 1988).

AUC values measured for calibrating and validating sets determine the values of bias and
variance for a model. Higher values of variance versus low values of bias are indicators of
overfitting in the model, which is further discussed in the upcoming paragraphs. If a model
satisfies the bias�variance tradeoff test, it can be applied to the matrix of unlabeled samples
for predictive modeling. For generating the matrix of unlabeled samples a grid of equal-sized
cells is defined throughout the area being investigated. The extent of the area being investi-
gated, the data used, and user preferences exert control over the size of cells (Carranza,
2009). In the case of using geochemical data, sample density helps determine a cell size
(Zuo, 2012), as determined by Hengl (2006).

Independent variables are among the commonalities between labeled and unlabeled
matrices, yet a dependent target variable is only defined for labeled samples. Perhaps the
most important difference between these matrices is determined by their unbalanced size;
that is, unlabeled samples largely outnumber labeled samples. The paucity of mineralized
zones eventually leads to the small size of labeled samples, posing problems to the generali-
zation of predictive models (Li et al., 2021). In other words, a majority of MLAs cannot be
adequately trained with a small-sized matrix of labeled samples. Models developed with a
small set of labeled data usually fit the calibration category, yet they fail to adequately corre-
late with the validation set. This is in fact an alert, showing that the predictive models
derived from these data are probably unreliable.

Research into this problem suggests generating additional labeled samples for calibrating
and validating supervised algorithms (Li et al., 2021). However, given the fact that minerali-
zation is a rare geological phenomenon, it is intrinsically hard to define additional positive
sites. One may define additional mineralized zones using the results of drilling surveys,

FIGURE 7.2 The contingency table is used for defining the values of TP, FP, FN, and TN for measuring the bias and
variance of predictive models. FN, False negatives; FP, false positives; TN, true negatives; TP, true positives.
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which is especially useful while analyzing a small area. In regional-scale studies, buffering of
mineral deposit location (Prado et al., 2020) and geospatial data augmentation methodolo-
gies (Li et al., 2021) have been used. These solutions assume that neighboring cells share
similar geophysical and geochemical signatures to mineral deposits. This assumption, how-
ever, only makes sense when the mineral deposits of the type being investigated are marked
with large halos of alteration and mineralization. For example, a window-based data aug-
mentation procedure has been applied to generate additional positive sites in a terrain host-
ing supergiant porphyry copper deposits (Parsa et al., 2022a). Using augmented samples
helps modulate the effects of data imbalance, thereby controlling the effects of overfitting in
machine-learning-based MPM (Li et al., 2021; Parsa et al., 2022a). Geologically constrained
data augmentation tools have been successfully coupled to many supervised algorithms,
including convolutional neural networks (Li et al., 2021), deep group method of data han-
dling neural networks (Parsa et al., 2022a), and extreme gradient boosting (Parsa, 2021), for
MPM. Nevertheless, in most cases, the thickness of the sedimentary cover, the morphology
of mineral deposits, and other contributing factors prevent the use of data augmentation
tools. In these scenarios, some algorithms, such as regularized regression techniques (e.g.,
Parsa et al., 2022a,b), can be applied to reduce the effect of overfitting in MPM. The case
studies presented in this chapter further explain the use of such algorithms. It is also impera-
tive to note that some researchers have used positive and unlabeled algorithms to account
for the data imbalance problem in MPM (Xiong and Zuo, 2021). These algorithms generally
do not require negative sites, making them ideal for MPM.

An additional challenge faced by machine-learning-based MPM is the fact that given the
criteria outlined for selecting negative samples, multiple sets of random negative sites can be
selected for modeling mineral prospectivity. However, each set results in a different prospec-
tivity model, questioning the reliability of some models. Research into this problem suggests
selecting different sets of negative samples and developing a model with individual sets, fol-
lowed by model averaging for generating the final prospectivity model (Zuo and Wang,
2020). Other researchers suggest using bootstrapping and taking subsamples from the origi-
nal labeled samples instead of developing different sets of random negative samples (Parsa
and Carranza, 2021). Although both approaches basically follow the same rationale, the latter
appears to be less time-consuming. The latter also helps quantify a type of stochastic uncer-
tainty linked to the discrepancies between mineral deposits used as positive sites.

A wide variety of supervised algorithms have been applied to mineral exploration, espe-
cially to MPM, making it next to impossible for the authors to delve into the details of these
algorithms. Considering MPM as the focal point of this section, three categories of algorithms
exceptionally work well for developing predictive models despite the intrinsic challenges
mentioned earlier. These are bagging (e.g., Harris et al., 2015), boosting (e.g., Parsa, 2021),
and regularized regression (e.g., Parsa et al., 2022a,b). Bagging and boosting are ensemble
learning algorithms and are based on the idea of using multiple simple classifiers or regres-
sors and combining their results (Dong et al., 2020). The difference between these two cate-
gories is that the latter employs a progressive learning algorithm, meaning that the classifier/
regressor adjusts itself based on the errors of the previous classifier/regressor in the
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ensemble. The former, however, integrates the results of individual classifiers/regressors in
the ensemble. Both bagging and boosting help reduce the effect of overfitting in predictive
modeling (Dong et al., 2020). Many studies demonstrate that bagging and boosting usually
outperform other algorithms in MPM (e.g., Harris et al., 2015). Likewise, regularized regres-
sion techniques also resist the effects of overfitting in MPM (e.g., Parsa et al., 2022a,b). The
idea behind these algorithms is to use a penalty to prevent the regression from depending
too much on the calibrating set of labeled samples. Although the limited number of labeled
samples poses a serious challenge to the application of supervised algorithms, bagging and
regularized regression have proven effective while dealing with a small number of labeled
samples. In addition to these categories, supervised deep learning algorithms, such as convo-
lutional neural networks (e.g., Zhang et al., 2021), work effectively for MPM. However, these
algorithms usually need to be supplemented with additional labeled samples either with
data augmentation or other procedures and, thus, have limitations for being applied to many
styles of mineral deposits. Table 7.1 briefly reviews some supervised algorithms that have
been applied to MPM.

From a user perspective, these algorithms either require too many or only a few parameters.
Parameter tuning is an extremely important step in using MLAs, and optimization of hyperpara-
meters usually requires extra effort. Although a majority of studies have used a trial-and-error
procedure for hyperparameter optimization of these algorithms, some studies (e.g., Parsa et al.,
2022a) have employed algorithm optimization procedures to optimize their parameter.

7.3 Examples of using supervised algorithms in mineral
exploration

This section presents a case study centered on the use of supervised algorithms for MPM. This
case study was selected to be presented herein as they highlight prime examples of challenges
faced by machine-learning-based MPM, namely, unbalanced data and uncertainty.

Table 7.1 A brief literature review of studies employing supervised algorithms in
mineral prospectivity mapping.

Categories Algorithms Examples

Bagging Random forest Harris et al. (2015); Carranza and Laborte
(2015); Harris et al. (2022)

Boosting AdaBoost Brandmeier et al. (2020)
XGBoost Parsa (2021)

Regularized regression LASSO, ridge regression, and Elastic Net Parsa et al. (2022a,b)
Other common classifiers Naïve Bayes Parsa and Carranza (2021)

Support vector machine Zuo and Carranza (2011)
Deep learning and ANNs Convolutional neural networks Li et al. (2021)

GMDH-type neural networks Parsa et al. (2022a)

ANN, Artificial neural networks; GMDH, group method of data handling neural networks.
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7.3.1 Predictive modeling of volcanic-hosted massive sulfide deposits
using supervised algorithms

In the first case study a geospatial database comprising geochemical, geophysical, and geo-
logical data is exploited to model the prospectivity of volcanic-hosted massive sulfide
(VHMS) deposits in the Bathurst Mining Camp of New Brunswick, Canada. This area is
extensively covered by glacial sediments (Parkhill and Doiron, 2003), posing challenges to
the effectiveness of most geochemical and geological surveys conducted in the area. In addi-
tion, the morphology of these deposits does not warrant the use of geologically constrained
data augmentation (cf. Lentz, 1999). These are all tabular ore bodies mostly overlain by an
iron formation. These were historically significant producers of Pb, Zn, and Cu as prime
commodities as well as Ag as a byproduct (McCutcheon et al., 2003). As presented in the
bedrock map of this area (Fig. 7.3), VHMS deposits of the camp strictly occur at the upper-
most contacts of the Nepisiguit Falls Formation underlying the Flat Landing Brook
Formation (Lentz, 1999), both belonging to the Ordovician Tetagouche group.

The legacy geochemical, geological, and geochemical datasets were used to define a suite
of predictor (independent) variables. Using these datasets, 11 independent variables describ-
ing the commonalities between VHMS mineral deposits of the study area were defined
(Table 7.2). Despite the rationality employed for defining these variables, most of them are
not strongly associated with the VHMS deposits, as presented by their low AUC values (see
Parsa et al., 2022a,b). This is rooted in the glacial cover of the area, diluting and dislocating
the concentration of elements in glacial sediment media.

Given the AUC values of these variables, the MPM of this area is faced with poor predictor
variables. This problem becomes even more complicated considering the data imbalance
problem, which is intrinsic to MPM. Also, despite the commonalities between the VHMS
deposits employed as positive labeled sites in this study, there are discrepancies in their geo-
chemical and geophysical signatures. Therefore a decent algorithm was required to account
for all the previous challenges. An ensemble regularization technique was employed for
addressing these challenges. This technique uses a bootstrapping technique for taking 10 sub-
samples from the original set of labeled samples. Each subsample is fed into the ridge regres-
sion model (Ahrens et al., 2020)—a regularization model that helps prevent the effects of
unbalanced data in MPM. For each subset a random splitting was applied to assign 70% of the
samples for calibration leaving the rest of the samples for validation. Care was taken to account
for data imbalance in calibration and validation sets, meaning that an equal number of positive
and negative sites were considered for each set. This procedure was somehow similar to ten-
fold cross-validation; however, each time a random population was selected for feeding the
algorithms. For hyperparameter optimization a trial-and-error procedure was used.

Model averaging is used for generating the final predictive model, and the stochastic
uncertainty is measured by calculating the standard deviation of predictive values derived
per iteration. A detailed account of this hybrid framework can be found in Parsa et al.
(2022a,b). The results of using this methodology are summarized in Fig. 7.4. This predictive
model is marked by low bias (0.033) and low variance (0.076) and is visually correlated with
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FIGURE 7.3 Upper left corner: The location of the Bathurst Mining Camp in the contacts of Dunnage and Gander zones, respectively, representing the
sediments of the Miramichi group and the volcanic suites belonging to arcs, back arcs, and the Iapetus oceanic crust (Williams, 1995). Right: The bedrock
map of the study area (van Staal et al., 2003). Large circles are the VHMS deposits with estimated tonnage and grade, whereas small circles are VHMS
deposits that are devoid of measured tonnage and grade. VHMS, Volcanic-hosted massive sulfide.



most of the known mineral deposits in the area. Given the values of bias and variance, the
model is not significantly overfit compared to other models generated for comparative pur-
poses (Fig. 7.5).

7.4 Unsupervised algorithms
Unsupervised learning is commonly used to find structures and trends within a given data-
set. These tools are user-friendly and do not require much from the user, making them spe-
cifically popular in mineral exploration. Two common forms of unsupervised learning,
clustering and dimensionality reduction, are briefly explained herein. Since there are plenty
of examples delving into the details of these algorithms, this section merely focuses on their
application. Clustering is used for classifying the samples or variables into groups. Indices of

Table 7.2 The list of independent, predictor variables used for mineral prospectivity
mapping in the Bathurst Mining Camp.

Id Predictor variable
Rationale behind defining the predictor
variable

AUC
value

V1 Measured Euclidean distance from the contacts of
volcanic rocks of Nepisiguit Falls Formation and
the sedimentary rocks of Miramichi group

The metal content of VHMS deposits probably
originates from the underlying volcanic and
sedimentary rocks. The circulating hydrothermal
and meteoric waters become acidic in nature,
helping absorb cations from the surrounding
rocks. This is supported by the fact that the
sediments of Miramichi group and the rocks of
Nepisiguit Falls Formation are depleted from Ag,
Pb, Zn, and Cu.

0.88

V2 Measured Euclidean distance from the contacts of
Nepisiguit Falls Formation and the Flat Landing
Brook Formation

This contact represents the mineralized horizon.
Also, the rhyolitic rocks of the Flat Landing Brook
Formation have preserved the mineralized horizon
from interacting with oxidizing sea water
(Goodfellow, 2007).

0.87

V3 Map of equilibrium Th Mineralized horizons have been affected by a phase
of potassium depletion (Lentz, 1999). Radiometric
data can thus help narrow down these horizons
(Shives et al., 2003).

0.62
V4 Map of total K 0.69
V5 Map of equilibrium U 0.72

V6 Reduced to pole total magnetic intensity Most VHMS deposits of the area are capped by an
iron formation (Peter, 2003), which is traceable by
magnetic anomalies

0.9
V7 First vertical derivative map of magnetic data 0.75

V8 Pb anomalies in till samples Pb, Zn, and Cu are the prime commodities of VHMS
deposits, meaning that their geochemical
anomalies could be significant

0.68
V9 Zn anomalies in till samples 0.47
V10 Cu anomalies in till samples 0.62
V11 Apparent conductivity The premise that sulfides are generally conductive

warrants the use of this variable
0.78

AUC, Area under the curve; VHMS, volcanic-hosted massive sulfide.
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FIGURE 7.4 (A) The predictive model derived from the hybrid methodology is explained. (B) The estimated values of stochastic uncertainty versus the
normalized predictive values. ROC curves for individual iteration for calibrating (C) and validating (D) data. ROC, Receiver operating characteristic.



similarity, be they Euclidean-based or correlation-based, are employed for recognizing clus-
ters, where samples bearing similarity are grouped into homogenous clusters (Madhulatha,
2012). Some applications of clustering were demonstrated in Chapter 4 for processing and
interpreting geochemical data.

Dimensionality reduction is applied to project a large number of variables into a smaller
number of variables explaining the variability of datasets. Principal component (PC) analysis
(PCA) and factor analysis are two popular methods of dimensionality reduction (Sorzano et al.,
2014). PCA summarizes the variables into a number of PCs. The application of this method
was also discussed in Chapter 4 with examples of regional-scale geochemical data. PCA can
also be applied for preprocessing of datasets before using them in supervised algorithms.

7.4.1 Examples of using unsupervised algorithms in mineral exploration

The following presents an example of using dimensionality reduction techniques in processing
geochemical data. In this example, PCA has been applied to the results of chemical analysis
for a set of stream sediment geochemical data, including Pb, Zn, Ag, Cr, Ni, Co, V, Sr, Cu, and
Ba. The intent of this survey was, in part, to recognize patterns that describe carbonate-hosted
Zn�Pb mineral systems in terrain in Western Iran (see Parsa, 2021). Primary commodities
linked to these deposits are Pb, Zn, and Cu, appearing in sulfide and nonsulfide minerals,
whereas barite is a common gangue mineral observed in these deposits (see Parsa, 2021).

What PCA does is translate the original variables into a secondary set of variables (PCs)
that describe the interrelationship between original elements. Usually, the first couple of PCs
explains most of the variability inherited in the dataset. In this case, as presented in Fig. 7.6,
the first four PCs account for some 80% of data variability, meaning that these PCs can be

0.2
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0.05

0.1

0
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Bias Variance Over-fitting
LogisticElastic_Net

FIGURE 7.5 Plot comparing the performance of the ridge regression model with other models.
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employed as a proxy to describe the interrelationship between the original variables (here
Pb, Zn, Ag, Cr, Ni, Co, V, Sr, Cu, and Ba).

Using PCA requires extra effort for the interpretation of its results, and this interpretation
can be quite subjective. Loadings are employed to understand the relationship between PCs
and original variables, whereas scores describe the relationship between samples and PCs.
Loadings demonstrate a positive relationship between original variables and PCs. In the case
of using geochemical data a positive loading for a given element points to the fact that
enriched samples should have higher PC scores and vice versa. Getting back to the earlier
example, the first PC, PC1, shows positive loadings for Ba, Cu, Pb, and Zn (Fig. 7.7).

FIGURE 7.6 Cumulative variability explained by PCs. The first four PCs account for some 80% of the total variability.
PC, Principal component.

FIGURE 7.7 Loading chart for the first four principal components, indicating positive loadings for ore-related (Zn,
Pb, Cu, and Ba) elements in PC1.
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These are all ore-related elements, meaning that the first PC can serve as a proxy for tracing
carbonate-hosted deposits in this terrain. Therefore the scores of this PC were mapped in
this terrain for mineral exploration purposes, as can be seen in Fig. 7.8.
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Nonmetallic minerals, 238�239
Normalized difference vegetation index (NDVI),

70�71, 72f
Northeastern Inglefield Mobile Belt

(IMB), 122
Northern Victoria Land (NVL), Antarctica,

122�123

O
Olivine, 246�247, 259f
Omission error, 108, 109f
Opaque mineral, 252
Operational Land Imager (OLI), 23
Optical “crosstalk” effect, 27�28
Optimal index factor (OIF), 62�63
Optimization problem, 92�94
Ordovician Tetagouche group, 285
Ore, 234�235
Ore body, 235
Ore-forming processes, 171, 178�179
Ore minerals, 17�18
Orthochemical rocks, 249�250
Orthogonal subspace projection (OSP), 123
Ortho-magmatic deposits, 239�240
Orthopyroxene, 247
Oscar Coast area, 120
OSP. See Orthogonal subspace projection (OSP)
Overall accuracy (OA), 101, 106, 106f

P
Palaeo-placers, 244�245
PALSAR. See Phased array�type L-band SAR

(PALSAR)
PCA. See Principal component analysis (PCA)
Petrography analysis, 7
Phased array�type L-band SAR (PALSAR), 5�6,

43, 45�46
Pixel purity index (PPI), 117
Placer deposits, 243�245
Plutonic, 239�240
Polarimetric mode, 46
Pollution control, 37�38
Porphyry copper deposits, 109
Postdepositional mobilization, 175
Postglacial weathering, 175
Potassium (K), 215
Power stretching method, 67
Precursore IperSpettrale della Missione

Applicativa (PRISMA), 4�5, 37�38, 38t
Prediction-rate curve, 157�158
Predictive modeling, 9�10, 279�280
Predictive remote bedrock mapping, 280
Predictive variables, 152, 162t
Preprocessing techniques, 5�6, 50�59
atmospheric corrections, 52�55
geometric distortions of satellite images, 55�59
noise reduction/correction, 51�52

Primary environments, 173
Principal component analysis (PCA), 78�81, 81f,

81t, 289, 291f
Principal component analysis method, 95
PRISMA. See Precursore IperSpettrale della

Missione Applicativa (PRISMA)
Processing techniques, 197
Producer’s accuracy, 108, 109f
Propylitization, 247
Prospecting, 2
Push-broom scanning technique, 37�38
Pyrite, self-potential mechanism in, 195f
Pyritization, 247

Q
Quality control, 177
Quartz, 18, 22�23
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Quartz index (QI), 116
Quaternary geology, 174
Quseir formations, 215�216

R
RADARSAT data, 5�6, 43�44
Radioactive heat production (RHP), 214�215
Radiometric data, 199�200
Radiometric method, 193
Random geometric correction, 57�59
Random splitting, 281
Rare-earth-element, 255�256
Receiver operating characteristic (ROC), 155, 156f,

281�282
Relative ABD (RABD), 75
Remote sensing, 3�6, 17�18
accuracy assessment techniques, 100�109
commission error, 106�107, 107f
confusion matrix, 103�105
determining number of samples, 103
kappa coefficient, 108�109, 110f
omission error, 108
overall accuracy, 106, 106f
principle of accuracy assessment, 100�101
producer’s accuracy, 108, 109f
user’s accuracy, 106�107, 107f
validation of classified image, 102, 102f

for alteration mineral mapping, 109�113
data acquisition, 48�50
ALOS—JAXA/EORC, 49
Copernicus Open Access Hub, 48
DigitalGlobe Open Data Program, 48
Earthdata Search—NASA, 48
EOS LandViewer, 49
Google Earth Engine, 50
NASA Worldview, 49
NOAA CLASS, 49
NOAA Digital Coast, 49
Sentinel Hub, 50
USGS EarthExplorer, 48

hyperspectral sensors, 35�39
airborne sensors, 39
spaceborne sensors, 36�38

image-processing algorithms, 60�100
absorption band depth, 73�76

adaptive coherence estimator, 86
band ratios, 70�73
color combinations, 60�63
color space transforms, 63�64
constrained energy minimization, 85�86
contrast stretching, 64�66
density slice, 69
image classification, 87�88
image filtering, 97�100
independent component analysis, 82
linear spectral unmixing, 84
logical operators, 76�78
matched filtering, 84
methods of increasing spatial resolution of
satellite images, 94�97

minimum noise fraction, 82
mixture-tuned matched filtering, 84�85
nonlinear contrast stretching methods,
67�69

principal component analysis, 78�81
spectral angle mapper, 83�84
spectral feature fitting, 86�87
supervised classification, 88�94

multispectral sensors, 23�35
advanced land imager data, 31�32
advanced spaceborne thermal emission and
reflection radiometer data, 26�30

Landsat data, 23�24
Sentinel-2 MSI data, 33�34, 33t
SPOT data, 24�26
WorldView data, 34�35, 34t

preprocessing techniques, 50�59
atmospheric corrections, 52�55
geometric distortions of satellite images,
55�59

noise reduction/correction, 51�52
spectral features of hydrothermal alteration

minerals and lithologies, 18�23
carbonates, 20
hydroxyl-bearing minerals, 20
iron oxide minerals, 18�19
lithologies, 20�23
silicate minerals, 20�23

structural analysis for, 113�114
synthetic aperture radar, 42�48
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advanced land observing satellite phased
array�type L-band synthetic aperture
radar data, 45�47

European remote sensing satellite synthetic
aperture radar data, 45

JERS-1 synthetic aperture radar data, 44
RADARSAT data, 44
Sentinel-1 synthetic aperture radar data,
47�48

unmanned aerial vehicle, 40�42
RES2DINV program, 200�201
Resampling of pixels, 56
Resistivity model, 220f, 222f
Resource management, 37�38, 44
Retinal cells, 61
RFA, 182
RHP. See Radioactive heat production (RHP)
ROC. See Receiver operating characteristic (ROC)
Rock, 234�235
Rock chip samples, 173�174
Root mean square (RMS), 87
Rural planning, 24�26

S
Sampling density, 152
Sandstones, 249
SAR. See Synthetic aperture radar (SAR)
Satellite Pour I’Observation de la Terra-1

(SPOT-l), 17�18, 23�26
Scale image, 87
ScanSar mode, 46
Schists, 251�255
garnetiferous schists, 255
sillimanite-bearing schists, 252�255
tourmaline-bearing schists, 251�252
tourmalinites, 252

Sedimentary rocks, 249�250
chemical and biochemical, 249�250
exogenous sediments, 249

Seismic analysis, 210
Seismic attributes contributing to geology

interpretation, 198�199
Seismic methods, 192�193
Selective PCA (SPCA), 125�126
Self-potential (SP) technique, 195, 200

Semiquantitative techniques, 190
Sensitivity, 281�282
Sentinel-1 data, 5�6, 43
Sentinel-1 synthetic aperture radar data, 47�48
Sentinel-2 MSI data, 33�34, 33t
Sentinel-2 sensor, 4
Sentinel Hub, 50
Sentinel series, 17�18
Sentinels Scientific Data Hub, 48
Sequential Gaussian simulation, 159
Sericitization, 247
Shadows, 43
Shear zones, 261
Shortwave-infrared (SWIR) regions, 3�4, 18, 20
Signal-to-noise ratio (SNR), 31
Silicate minerals, 20�23
Siliciclastic, 249
Singhbhum Shear Zone (SSZ), 45
Skarn, 244�245
Skarn deposits, 244�245
SNR. See Signal-to-noise ratio (SNR)
Soil fertility mapping, 37�38
Soil geochemical samples, 174
Soil samples, 176
Spaceborne sensors, 36�38
Hyperion data, 36�37, 37t
Prcursore IperSpettrale della Missione

Applicativa data, 37�38
Spatial distribution, 182
Spatial frequency, 97
Spectral angle, 83
Spectral angle mapper (SAM), 83�84, 126
Spectral feature fitting (SFF) algorithm, 86�87
Spectral features of hydrothermal alteration

minerals and lithologies, 18�23
carbonates, 20
hydroxyl-bearing minerals, 20
iron oxide minerals, 18�19
lithologies, 20�23
silicate minerals, 20�23

Spectral information divergence (SID), 120, 122
SPOT data, 24�26
SPOT-l. See Satellite Pour I’Observation de la

Terra-1 (SPOT-l)
Spotlight mode, 46�47
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Square root stretching method, 68
Stacked prism model, 190
Statistical methods, 103
Stratigraphy, 258�260
Stream sediment geochemical samples,

175�176
Stripmap (SM) mode, 46�47
Structural mapping, 260�266
mapping techniques of structural controlled

mineralization, 263�266
relation between geological structures and ore

deposition, 260�262
Supervised algorithms, 279�284, 284t
in mineral exploration, 284�287
predictive modeling of volcanic-hosted

massive sulfide deposits, 285�287
Supervised classification, 87�94
maximum likelihood classification, 90
minimum distance to mean classification,

88�89
parallelepiped classification, 89�90, 90f
support vector machines, 91�94
techniques, 122

Supervised machine-learning techniques, 156
Support vector machines (SVMs), 88, 91�94
linear support vector machine, 91�93
nonlinear support vector machine, 93�94

Support vectors, 91�92
SVMs. See Support vector machines (SVMs)
Switching spatial resolution, 43
Syenite, 116, 247
Sylvite, 249�250
Syngenetic deposits, 235
Synthetic aperture radar, 42�48
advanced land observing satellite phased

array�type L-band synthetic aperture
radar data, 45�47

European remote sensing satellite synthetic
aperture radar data, 45

JERS-1 synthetic aperture radar data, 44
RADARSAT data, 44
Sentinel-1 synthetic aperture radar data,

47�48
Synthetic aperture radar (SAR), 5�6, 17�18,

42�48
Systematic image rectification, 56

T
Tabular zone, 261
Talc, 258�260
stratigraphy, 258�260

Taref formation, 215�217, 217t
Technique for order of preference by similarity to

ideal solution (TOPSIS), 154
Temperature-emissivity separation (TES)

algorithm, 27
Terrain Observation with Progressive Scanning

SAR (TOPSAR), 47
Testing set, 157
Thermal Infrared Multispectral Scanner (TIMS),

115
Thermal infrared (TIR) region, 18, 22f
Thermal Infrared Sensor (TIRS), 23
Three-dimensional Cartesian coordinate system, 61
3D magnetic inversion, 207�209
3D magnetic susceptibility model, 207�209
3D modeling, 203�204
Till geochemical samples, 174�175
TIMS. See Thermal Infrared Multispectral Scanner

(TIMS)
Top of atmosphere (TOA), 38
TOPSIS. See Technique for order of preference by

similarity to ideal solution (TOPSIS)
Tourmalinites, 252
Trace, 255�256
Training set, 157
True ABD (TABD), 75
True-positive rate (TPR), 281�282
2D matrix, 199

U
UAS. See Unmanned aircraft system (UAS)
UAVs. See Unmanned aerial vehicles (UAVs)
Ultrabasic igneous rocks, 246
Unbalanced filters, 190
Uncertainty, 158�160, 158f
Unmanned aerial vehicles (UAVs), 5, 17�18
Unmanned aircraft system (UAS), 40�42, 41t
Unsupervised algorithms, 279�280, 287�291
in mineral exploration, 289�291

Unsupervised classification, 87�88
Urban planning, 24�26
Urumieh�Dokhtar magmatic belt, 76, 160
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US Department of Defense Meteorological
Satellite Program (DMSP), 49

User-guided interpretation of datasets, 8�9
User’s accuracy, 106�107, 107f
USGS EarthExplorer (EE) tool, 48

V
Variogram, 159
VHMS. See Volcanic-hosted massive sulfide (VHMS)
Vignettes, 47
Visible and near-infrared (VNIR), 3�5, 18, 23
VMS. See Volcanic massive sulfide (VMS)
VNIR. See Visible and near-infrared (VNIR)
Voisey’s Bay deposit, 201
Volcanic-hosted massive sulfide (VHMS), 1�2,

156�157, 285�287
Volcanic massive sulfide (VMS), 113, 126

W
Wadi deposits, 207�209
Wadi El-Ghawaby, Egypt, 217�223, 220f

Water samples, 173
Weights of evidence technique (WofE), 156
Wilson Metamorphic Complex, 125
Wind Scatterometer (WS), 45
World Geodetic System (WGS84)

model, 56
WorldView-3 (WV-3) sensor, 4, 122
WorldView data, 34�35, 34t
Worldview series, 17�18
WS. See Wind Scatterometer (WS)

X
X-ray diffraction (XRD), 8, 17�18
X-ray diffraction analysis, 266�267
X-ray diffractometer, 266�267
X-ray fluorescence (XRF) spectrometry, 177
X-ray powder diffraction, 266�267
XRD. See X-ray diffraction (XRD)

Z
Zagros magmatic arc, Iran, 117
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