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Kriging in the Shadows: Geostatistical 
Interpolation for Remote Sensing 

Richard E. Rossi,* Jennifer L. Dungan,* and Louisa R. Beck* 

I t  is often useful to estimate obscured or missing remotely 
sensed data. Traditional interpolation methods, such as 
nearest-neighbor or bilinear resampling, do not take full 
advantage of the spatial information in the image. An 
alternative method, a geostatistical technique known as 
indicator krigingo is described and demonstrated using a 
Landsat Thematic Mapper image in southern Chiapas, 
Mexico. The image was first classified into pasture and 
nonpasture land cover. For each pixel that was obscured 
by cloud or cloud shadow, the probability that it was 
pasture was assigned by the algorithm. An exponential 
omnidirectional variogram model was used to character- 
ize the spatial continuity of the image for use in the 
kriging algorithm. Assuming a cutoff probability level of 
50%, the error was shown to be 17% with no obvious 
spatial bias but with some tendency to categorize nonpas- 
ture as pasture (overestimation). While this is a promising 
result, the method's practical application in other missing 
data problems for remotely sensed images will depend 
on the amount and spatial pattern of the unobscured 
pixels and missing pixels and the success of the spatial 
continuity model used. 

INTRODUCTION 

Interesting ground features are often obscured in visible 
and near-infrared remotely sensed images. Clouds and 
cloud shadows are probably the most common culprits, 
but fire smoke, volcanic plumes, technological problems 
like line dropouts, and self-shadowing by mountains and 
buildings also may cause "gaps" in an otherwise com- 
plete image. If the ground feature of interest is more 
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or less persistent over time, then a researcher may be 
able to use an unobscured image from a later date. 
When cloud or haze is thin enough to allow partial 
recovery of signal from the ground, the cloud or haze 
can be filtered from the data. When these solutions are 
not possible, some interpolation may be necessary to 
complete the image. One method that has often been 
used for classification of missing pixels is linear interpo- 
lation between adjacent pixels (Quarmby, 1992). In this 
article, we describe and illustrate an alternative method 
for interpolating gaps in remotely sensed images. The 
technique, known as "kriging," has theoretical roots in 
multiple linear regression, but was developed mainly 
in the fields of mining engineering and mathematical 
geology to model and map mineral deposits. The method 
is one tool of geostatistics, a branch of applied statistics 
that focuses on the modeling and estimation of spatial 
patterns. 

Although developed for mineral exploration, some 
geostatistical tools have been used for analysis of re- 
motely sensed images. Much of the remote sensing 
literature involving geostatisties has emphasized a tool 
called the "semivariogram" or "variogram" and how it 
may be used to describe an image's spatial structure 
(Woodcock et al., 1988a,b; Jupp et al., 1988; 1989; 
Curran, 1988; Smith et al., 1989; Cohen et al., 1990; 
Weiler and Stow, 1991). This statistic has appealing 
properties and is the traditional measure of spatial de- 
pendence in geostatistics. Others recognize these prop- 
erties and go a step further by suggesting how the 
variogram can be used with kriging algorithms for image 
restoration. Atkinson et al. (1990) discuss the concept 
of subsampling an image and storing the subsample 
with the image's variogram(s) for efficient storage and 
reconstruction. Ramstein and Raffy (1989) illustrated 
this concept with an image degraded by preserving 
only every fifth pixeL An omnidirectional variogram 
calculated from the degraded data was used to assign 
weights to the preserved pixels to interpolate between 
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them, and thereby restore the image. Glass et al. (1988) 
discuss a different application; to create a high spatial 
resolution image from one of low spatial resolution, 
they used a variogram determined from a different high 
spatial resolution image of the same area. This has 
potential for the combination of data from sensors pro- 
viding different spatial resolutions, such as the Syst~me 
Probatoire d'Observation de la Terre (SPOT) high reso- 
lution visible (HRV) sensor and the Landsat Thematic 
Mapper (TM). Haining et al. (1989) show an example 
of estimating missing remotely sensed data using a con- 
ditional autoregressive model with maximum likelihood 
estimator, which is similar to kriging. 

We demonstrate the usefulness and accuracy of 
kriging to interpolate values for missing pixels. Our 
example is from an ongoing National Aeronautics and 
Space Administration (NASA) program known as Global 
Monitoring and Human Health, in which pastures are 
to be mapped over large regions along the coastal plain 
in southern Chiapas, Mexico. These land covers are of 
interest because they provide potential larval habitat 
for the mosquito Anopheles albimanus, a major vector 
of human malaria in southern Chiapas. To identify and 
monitor pastures successfully, temporal data are re- 
quired, once in the dry season and again in the wet 
season. Unfortunately, during the wet season cloud cover 
is an almost daily phenomenon. To obtain a comprehen- 
sive and timely accounting of mosquito habitats, a de- 
pendable interpolation procedure needs to be performed 
for ground areas obscured by clouds or cloud shadows. 
A geostatistical technique known as "indicator kriging" 
was used to interpolate under clouds and cloud shadow 
in a classified Landsat TM image of this area. 

on 23 March and 11 June 1990. These dates represent 
late dry season and early wet season, respectively. The 
March image contained clouds while the June image was 
essentially cloud-free. A subset of each scene covering 
approximately 1814 km 2 of the coastal plain was used 
for analysis. 

Image Classification 

For land cover mapping, the March and June data were 
processed separately using an unsupervised clustering 
routine and maximum likelihood classification. Although 
the March classification provided the best opportunity to 
distinguish pastures from other land covers (e.g, fallow 
annual crops), the presence of clouds obscured some of 
the coastal plain. The final land cover classifications 
included the following classes: pasture/grassland, man- 
grove, transitional swamp, permanent / tree crop, annual 
crop, banana plantation, secondary forest, and riparian. 
Of these land cover types, pasture is associated with 
the highest An. albimanus larval production. Therefore, 
the classification was transformed into a binary (or indi- 
cator) coding, where 0 denoted the absence of pasture 
and 1 the presence of pasture. 

To test the indicator kriging algorithm so that it 
could later be used for processing the classified March 
image, the cloud and cloud shadow patterns from the 
raw March image were used to replace the correspond- 
ing pixels in the classified June image. This allowed the 
assessment of the exact accuracy of the indicator kriging 
technique since the "true" presence or absence of a 
pasture in the June classification was known for all 
removed pixels. 

METHODS 

Study Area 

The study area is located in the southern Pacific coastal 
plain of Chiapas, Mexico, near the city of Tapachula. 
The coastal plain is 20-30 km wide, and consists of a 
series of coalescing alluvial fans created by the deposi- 
tion of eroded volcanic material from the Sierra Madre. 
The plain increases gradually in elevation from sea level 
to approximately 150 m, where the foothills of the 
Sierra Madre begin. Soils are well drained, although 
clay content and soil compaction resulting from human 
activity create local variations in surface drainage. Areas 
with poor drainage tend to be used for livestock grazing, 
whereas the majority of the area is used for growing 
crops. 

In 1991 research in the study area focused on devel- 
oping a land cover map showing the location of pastures 
and subsequently determining if all pastures produce 
equal numbers of Anopheles albimanus larvae. Landsat 
TM scenes were acquired over the Chiapas study area 

Modeling Spatial Dependence 

A fundamental theme of geostatistics is the expectation 
that, on average, samples close together in time and/ 
or space are more similar than those that are farther 
apart. Before using any geostatistical estimation meth- 
ods, this spatial autocorrelation must be inferred using 
spatial continuity tools such as the variogram, covari- 
ance, and correlogram. These tools are used to gauge 
the strength of correlation among the samples or their 
similarity or dissimilarity with distance. The theoretical 
or population definitions of these tools are based on 
random function theory (Journel and Huijbregts, 1978; 
Isaaks and Srivastava, 1989), but we present here the 
experimental estimates of these statistics. Let z(x) repre- 
sent the value of a variable at location x, where x is the 
vector (x, y), and let z(x + h) represent the value of the 
same variable at some h distance (or lag) and direction 
away. One geostatistical tool known as a variogram 
summarizes the spatial continuity for all possible pair- 
ings of data for all significant h: 
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] N(h) 

y*(h) = 2T(h),~l[z(r~) - z(x~ + h)] ~, (1) 

where Y* (h) is the estimated variogram value for lag h 
and N(h) is the number of pairs of samples separated 
by h. The variogram values can be computed either as 
averages over all directions (an omnidirectional vario- 
gram), or specific to a particular direction (a directional 
variogram). If there is a trend (i.e., local means and 
local variances change as a function of location within 
the sampling space), both the underlying lag-to-lag vari- 
ability and the trend variability will be included in the 
variogram. 

Two alternative spatial variability tools in geostatis- 
tics filter mean and variance trend effects so that the 
underlying lag-to-lag variability can be quantified. One 
tool, known as the "nonergodic" or spatial covariance, 
C*(h), is estimated: 

1 N(h) 
C*(h)=.~,,,~{[z(rq)-m_h][z(rq+h)-m+u]} (2) 

~/(nh ffi 1 

(Isaaks and Srivastava, 1988). Datum z(x~) is the tail and 
z(x~+ h) is the head of the vector, N(h) is the total 
number of data pairs separated by lag h, and m_ h and 
m÷h are the mean of the points that correspond to the 
tail values and head values of the vectors, respectively. 
These head and tail means are computed: 

I N~) 
m+h = ""7--_ )'~,Z(X~ + h) ,  

S(h),.1 

I N~) 
m - h  = ( 3 )  

Lvtn/i= l 

The formal definition of "ergodicity" is rather in- 
volved and beyond the scope of this article (c£ Olea, 
1990), but the main idea is that the traditional ergodic 
covariance considers m+ h ffi m_ h ffi m. Differences between 
the head and tail means are thus accounted for in the 
nonergodic covariance. 

The nonergodic eorrelogram p*(h) filters both lag 
means and lag variances. It is related to the nonergodic 
covariance and is estimated similarly: 

1 ~.~h: {[z(r,)-m-hl[z(r,+h)-m÷h]} 
p*(h) = 

N(h) S-hS+h 

_ C * ( h )  (4) 
S - h S + h  

(Srivastava and Parker, 1989). S-h and s+h are the stan- 
dard deviations of the tails and heads of the vectors, 
respectively, and are computed: 

1 N(h) 
~+h = ~--'~_ ~-~,Z(Xi + h )  g - m~+h, 

N(h),ffil 

1 ,,01) 
82-h = - " - ~ -  '~-'~Z(Xi) 2 -- m ~ h .  ( 5 )  

N(h),.1 

Theoretically, the correlogram can vary only from + 1 to 
- 1, depending upon whether the correlation between 

locations is positive or negative, but in practice values 
> 1 and values < - 1 are possible. 

The nonergodic covariance and correlogram values 
can be plotted as a function of lag distance like a 
variogram. However, notice that, unlike the variogram 
which usually contains small values at short h and large 
values at larger h, the nonergodic statistics' values are 
large for small h and small for large h. The variogram, 
covariance, and correlogram of a stationary random 
function model, in which the population mean and 
variance are constant over the sampling space ~-h  = 
#+h=# and a2-h-----a2÷h= O~, i.e., there is no trend) are 
related: 

y(h) = o ~ - C(h), 

p(h) = C(h) / a z, 

1 - p(h) ffi y(h) / a 2. (6) 

The experimental variogram, covariance, and corre- 
logram defined above, which are estimates of the corre- 
sponding "true" measures, should therefore show similar 
relations. The covariance and correlograms can be reex- 
pressed in variogram form to make this comparison 
easier. When the spatial covariance values are sub- 
tracted from the total sample variance, the resulting 
plot is in variogram form. When the correlogram values 
are subtracted from 1, then the resulting plot is in the 
form of a variogram. Differences between the variogram 
and covariance indicate changes in the local means. 
Plotting m-h and m+h as a function of h provides a 
description of the magnitude and direction of local 
mean changes. Differences between the covariance and 
correlogram indicate varying local variances. Plots of 
s-h and s+h versus h show the nature of the variance 
changes. 

In addition to furnishing an appreciation for both 
lag-to-lag and local trend changes, the nonergodic statis- 
tics were computed along with the variogram because 
they provide alternative means of interpreting spatial 
structure. Isaaks and Srivastava (1988) provide an example 
of a gold deposit that has a noisy, pure nugget variogram 
[a nugget variogram is, by definition, 7*(h) --- s 2 for all h] 
but displays a well-structured nonergodic covariance. 
By comparing these statistics calculated on a subsample 
with the ~trne" values calculated on an exhaustive data 
set, they showed that the nonergodic covariance was 
superior to the variogram for describing spatial structure 
in this case. By appraising only the variogram of these 
data, there would have been a false conclusion of no 
spatial dependence. In contrast, Rossi et al, (1992) show 
an example of a structured variogram with near-zero 
nugget (i.e., the apparent intercept at h=  0), but a 
corresponding fiat nonergodic covariance. In this case, 
interpreting spatial dependence using only the vario- 
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gram would have led to the false conclusion that there 
is a small-scale, lag-to-lag spatial dependence. Knowing 
that a spatial pattern occurs on a small and/or  large 
scale and having some idea of the relative strength of 
these patterns can be a valuable aid in understanding the 
distribution of the phenomenon it represents. Moreover, 
the scale of the spatial pattern will influence strongly 
the success of geostatistical tools that provide estimates 
for unsampled locations. 

Variograms, nonergodic covariances, and noner- 
godic correlograms were computed omnidirectionally 
as well as for the four principal directions for both the 
March and June images. These statistics were computed 
using only pixels identified as either pasture or nonpas- 
ture land, and the June data had the March cloud and 
cloud shadow pixels removed prior to analysis. The three 
statistics for the omnidirectional and direction-specific 
models showed similar patterns. Therefore, the omnidi- 
rectional variogram in standardized form [i.e., y*(h) / s ~, 
so that s 2 = 1] was used for interpretation and kriging. 

Estimation for Unsampled Locations: Kriging 

Geostatistics offers a wide and flexible variety of tools 
that provide estimates for unsampled locations. Known 
generally as "kriging" techniques, they estimate values 
by taking a weighted linear average of available samples, 
not unlike multiple linear regression. The term "kriging" 
was named by Matheron (1965) in honor of Danie Krige, 
who first formulated and implemented this form of 
interpolation in 1951. Kriging can be performed on 
nominal as well as continuous variables and is therefore 
suitable for the estimation of a binary variable such as 
the presence and absence of a pasture. 

Like traditional point interpolation methods (e.g., 
inverse distance weighting, triangulation, and local sam- 
ple means), kriging can provide an estimate for a specific 
location. And like traditional areal interpolation meth- 
ods (e.g., polygonal weighting and cell declustering), 
kriging can estimate an average value over an area. 
Often the traditional methods are as accurate and less 
time-consuming than kriging (Agterberg, 1984; Isaaks 
and Srivastava, 1989; Weber and Englund, 1992). How- 
ever, certain characteristics of kriging distinguish it from 
these other methods. First, krigiug can provide an esti- 
mate that is either larger or smaller than any of the 
sample values. The traditional techniques are restricted 
to the range of sample values. Second, whereas the 
traditional methods use Euclidean distance to weight 
available samples, kriging takes advantage of both dis- 
tance and geometry (i.e., the anisotropic relations) 
among samples. Third, unlike traditional methods, krig- 
ing attempts to minimize the variance of the expected 
error. The expected error is the difference between the 
estimate and the true value. Of course, the true value 
is never actually known, so kriging applies a conceptual, 

probabilistic random function model of the true values 
(of. Isaaks and Srivastava, 1989). 

The geostatistical interpolation procedure known as 
ordinary kriging (or OK) is essentially identical to multi- 
ple linear regression with a couple of important differ- 
ences. In its general form, a multiple linear regression 
estimate ~" may be expressed as 

n 

-- t0 + EP~,,  (7) 
i -1  

where the dependent variable (Y) and independent vari- 
ables (X~) represent different variables usually measured 
at the same location in space or time. Thus, the matrices 
used to solve the system of simultaneous equations 
are inferred only once from the data. In geostatistics 
dependent and independent variables usually represent 
the same property, only now measured at different 
locations, and we wish to estimate (i.e., interpolate) 
values at unrecorded locations. 

For example, if z*(xo) is the value to be estimated 
at location x0, z(x~) are the sampled values at their 
respective locations, and 2~ are the weights to be given 
to each sampled value, then an OK estimate may be 
expressed as 

N 

z*(~0) = ~,l,z(~). (8) 
i = l  

Notice that this expression is analogous to the formula 
in Eq. (7). 

In multiple linear regression, a least-squares vari- 
ance is minimized with respect to each independent 
variable's coefficient or weight. Kriging has a parallel 
requirement that seeks to insure that over the estimation 
space the expected value of the estimates will equal the 
expected value of the true (i.e., the random function) 
values. In other words, we expect that our estimates will 
be unbiased. To be unbiased, on average, the difference 
between our estimates and the true, but unknown, 
values will be zero: 

r , [Z(x)  - Z * ( x ) ]  = o .  (9 )  

One consequence of this equation given the stationary 
random function model is that the sum of the weights 
must equal 1: 

n 

E2, = 1. (10) 
i = 1  

Just like multiple linear regression, ordinary kriging 
solves for the weights, 2~, while making sure that they 
sum to unity and while simultaneously minimizing the 
quantity [Z(x)- Z*(x)] for all estimated points. Like the 
minimization of least-squares variance in regression, 
kriging seeks to minimize the estimation variance O~e~, 
which is the variance of the error: 

~ ffi Variance[Z*(x) - Z(x)]. (11) 
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June: 71(h) =O.27+0.54*Exp(14.04)+0.19*Exp(172.11) 

March: 7/(h)=O.E5+O.50*Exp(11.50)+O.25*Exp(135.79) 
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Figure 1. Plot of experimental variograms and fitted mod- 
els. Circles represent the computed variogram values. The 
solid line is the fitted model for the June variogram, and 
the dashed line is the fitted model to the March variogram. 

The geostatistical way to do all this is to infer tr~v 
from an empirical model of the existing spatial continu- 
ity or degree of spatial dependence with distance and 
direction. This empirical model is the variogram, covari- 
ance, or correlogram. We implicitly decide that the 
model is accurate over the whole estimation area. This 
so called "stationarity hypothesis" is perhaps the most 
consequential judgment in all of geostatistical estima- 
tion, for the more it is in error, the less accurate will 
be the kriging estimates. 

Kriging uses matrix algebra to solve a set of simulta- 
neous partial differential equations to minimize the error 
variance [Eq. (11)] with respect to each weight 2,, while 
preventing bias [Eq. (10)]. To accomplish this task, posi- 
tive definite matrices are built from the values of a 
model that is fit to the experimental variogram (or 
covariance or correlogram) points. Positive definiteness 
is a necessary condition in order to insure that there is 
a single solution to the set of simultaneous equations 
and that the estimation variance is positive. For conve- 
nience, the most commonly used models are those that 
have been demonstrated to produce positive definite 
matrices. A sufficiently large and flexible set of positive 
definite models exists so that nearly all experimental 
variograms can be modeled appropriately. 

Kriging with binary or indicator variables is called 
indicator kriging or IK for short. IK is merely OK 
applied to indicator-coded data. As in our example, IK 
performed on binary data results in estimates that range 

from 0 to 1 corresponding to absence or presence, 
respectively. These IK values may be seen as a propor- 
tion or probability that a pasture exists at the given 
location. Journel (1983) provides a discussion of many 
other IK modifications and capabilities. 

RESULTS 

Variography and Kriging 

Figure 1 is a plot of the variogram results and fitted 
models. Each fitted variogram model is composed of 
three structures: a nugget and two exponential models. 
An exponential model is a commonly used model that 
produces positive definite matrices in all dimensions. 
The exponential model's standardized equation is 

y(h) = 1 - exp( - 3h/a) ,  (12) 

where h is now the magnitude of vector h and a is the 
"range." The practical range (3a) is the distance at which 
the variogram value is 95% of the sill. A shorthand 
notation for the fitted models is provided in Figure 1. 
In this shorthand, the first value is the nugget, "Exp" 
represents the exponential model, the coefficient before 
"Exp" is the sill of the model, and the value in parenthe- 
ses is the practical range. Overall, there is slightly 
greater variability in the June image from about lag 10 
to 50, but, for practical purposes, the variograms of both 
images are equivalent. 

Figure 2 shows the IK results over the entire study 
area, with an inset showing a closer look at a subset of 
the area. Qualitatively, the results look realistic, since 
pasture boundaries appear to be followed underneath 
clouds and cloud shadows. These interpolated bound- 
aries appear less sharp than those in the rest of the 
image because of the smoothing effect, a well-known 
side effect of kriging and most other interpolation meth- 
ods (Lam, 1983; Carr and Myers, 1984). 

Assessing Kriging Accuracy 

Since the truth is known from the intact June classifica- 
tion, the exact error, that is, the difference between the 
truth and the estimate, can be computed. Error that is 
positive represents underestimation while negative er- 
ror depicts overestimation. 

There are many ways to appraise the performance 
of kriging, but three common methods are: univariate 
summary statistics of the errors, a histogram of the 
errors, and a posting of errors. Perfect IK performance 
would result in zero mean, median, and all other quan- 
tiles, and zero variance. Deviations from these ideal 
results can be evaluated using a histogram of the errors. 
The overall shape of the histogram can reveal condi- 
tional bias. Conditional bias is a predisposition to either 
over- or underestimate given that the value is either a 
pasture or not. 
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Figure 2. Results of kriging interpolation in clouds and cloud shadows over a portion of study area. The vertical of the 
image is oriented in the north-south direction, which represents approximately 27 km. Small inset box shows an area 
4.5 km on a side, which is expanded to show detail in the large inset box. 
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Univariate summary statistics and a histogram of 
errors show the IK results to be  very good (Fig. 3). 
Of  the 43,077 kriged points, 17,463 or 40.54% were 
est imated perfectly. I f  we adopt a cutoff probability 
value of 0.5 for those pixels that are identified as pasture, 
the accuracy would be 83%, The mean of - 0.0072 is 
nearly zero, and the variance of 0.12 is also quite small. 
More importantly, the first quartile value is only - 0.13 
while the median and the third quartile are both zero. 
The slight positive skew indicates that there is more 
overestimation than underestimation. 

Conditional bias is readily apparent  in the histogram 
of the errors. The overestimation (left side) portion of 

O" 
-1.0 - 0 . 5  0.0 0.5 

E r ro r  ( T r u e -  E s t i m o t e )  
1.0 

Figure 3. Histogram of errors with summary statistics. The 
true value is either the presence ( = 1) or absence ( --- 0) of 
pasture and the estimate is the probability of pasture pres- 
ence, [0,1], 
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the histogram corresponds to those locations that are 
not pastures while the underestimation (right side) rep- 
resents locations that were pastures. Although there is 
a tendency to overestimate the probability of pasture, 
the frequency of overestimation is greatest when the 
actual error is smallest. This tendency is also evident in 
the underestimation portion of the histogram. 

Summary statistics and a histogram of the errors 
tell us something about how well IK performed overall, 
but performance may be location-dependent. Plotting 
or posting the errors helps to assess spatially IK's effec- 
tiveness. That is, some regions of the entire estimation 
space may contain concentrations of systematic over- or 
underestimation. One expected pattern is that the error 
will be greatest in those areas that have the least amount 
of local data, that is, the centers of the larger clouds. 

The kriged results and posting of errors for a subset 
of the data are displayed in Figures 4a and 4b. No 
one region of the whole estimation space contained an 
unusual share of either large or small errors. As ex- 
pected, the largest errors occur in those regions where 
there is a minimum amount of information, that is, in 
the centers of the clouds and cloud shadow patches. 
Kriging's best information is the closest information, so 
the kriging error will be greatest ordinarily when local 
data are scarce. 

DISCUSSION AND CONCLUSIONS 

Geostatistical estimation procedures like indicator krig- 
ing and ordinary kriging can be useful in remote sensing 
by estimating values for missing pixels. The particular 
phenomenon of interest may be represented by either 
a nominal or a continuous variable. In addition, remote 
sensing researchers may gain new insights into the spa- 
tial variability inherent in their images by calculating 
nonergodic covariances and nonergodic correlograms 
along with the traditional variogram. 

Currently, there are many public domain and com- 
mercial computer packages available to implement geo- 
statistics (e.g., Deutsch and Journel, 1992; Englund and 
Sparks, 1988). One implementation problem encoun- 
tered in this study concerned the efficient selection of 
neighboring samples. Typically, millions of samples are 
not available to the geostatistician, but they may be 
routine in remote sensing. Given the large number of 
data (3.6 million pixels), searching all data to select 
each kriging neighborhood was prohibitive. Therefore, 
a spiral search algorithm (Deutsch and Journel, 1992) 
was created to select only the closest data. 

The IK results presented above were especially 
accurate due to the abundant data in the TM image. 
The large amount of data for pasture/nonpasture made 
possible the well-structured experimental variograms, 
covariances, and correlograms. Since these three statis- 
tics all displayed essentially identical behaviors, the 
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Figure 5. Scatterplot of estimation variance (probability ~) 
from kriging versus actual error measured by the difference 
between true and estimated values. 
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decision of stationarity (i.e., the decision that the vario- 
gram was indeed representative of the presence/ab- 
sence of pastures over the whole estimation space) was 
reasonable. Moreover, the relatively small size of clouds 
in relation to the size of the whole image provided many 
local known points for the most accurate estimation. 

Although the errors demonstrated some conditional 
bias due to overestimation, this result is not necessarily 
unfavorable. Since the objective of the kriging exercise 
was to predict pasture presence so that a complete 
pool of available pastures could be identified and later 
sampled, overestimation represents an error of commis- 
sion rather than an error of omission. Identifying an 
area as pasture, when in fact it is not, would not encum- 
ber the objective because once the error was detected 
another potential site could be chosen easily. Not identi- 
fying a pasture, when in fact it exists, might limit unreal- 
istically the available pool of sites. 

Although the estimation error variance [Eq. (11)] 
is minimized and can be estimated using the kriging 
algorithm, only when the random variable is considered 
multivariate normal can it be used legitimately as a 
measure of confidence or reliability in the resulting 
estimate. Journel and Rossi (1989) clearly demonstrate 
this point. Raw data are rarely univariate normal and 
multivariate normality can only be checked, not tested. 
The fact that kriging estimation variances are not a 
good local measure of confidence in the estimate is 
demonstrated in Figure 5, a plot of the IK estimation 
variances for the 43,077 kriged locations as a function 
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of the actual error. If O~v is a worthwhile measure of 
estimate confidence, then a~ will be large when the 
error is large and it will be small when the error is also 
small. This would correspond to a "U'-shaped cloud 
centered on 0 error. Clearly, Figure 5 shows no such 
distinguishing pattern. Estimation error is, however, a 
function of the type (shape) of variogram model and the 
data configuration (i.e., areas represented by a lot of 
data will generally have lower estimation variance). 

In summary, indicator kriging worked very well for 
interpolation of pixels obscured by clouds and cloud 
shadows in our example. Its practical application in 
other missing data problems for remotely sensed images 
will depend on the amount and spatial pattern of both 
the unobscured pixels and missing pixels and the success 
of the spatial continuity model used. 
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