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Preface

The digital era has caused an outstanding change in the acquisition of information
concerning our planet. We are accustomed to an uninterrupted monitoring by means of
satellite imagery, measurements of ground deformation in the context of geodynamical
studies, seismic and geochemical data acquisition, etc. Continuous data acquisition in Earth
sciences, in general, and geophysics, in particular, leads to the accumulation of a huge
amount of information. Terabytes and Terabytes of data pile up in digital archives over short
times. Often, we are left without a key to these archives, which turn them into “data
graves,” containing precious information difficult to unearth. In addition, many geological
processes are slow phenomena, the study of which comes along with the need to cover time
spans as long as possible. Therefore, the necessity to “unearth” old archives becomes of
paramount importance.

Data collection usually brings along considerable technological effort and cost, which must
be balanced by the profit gained from the information acquired. In some way, data are the
background of actions and decisions, once we have understood the relations between our
observations and the processes we are interested in. However, how can we establish these
relations? Looking at a long sequence of numbers is useless unless we extract parameters
useful for our task of drawing conclusions and take action, if necessary. Sometimes
decisions have to be fast, as in the case of an impending natural threat, such as a volcanic
eruption or the development of a thunderstorm, for which efficient data handling and
interpretation are mandatory. Near real-time processing and the application of automatic
procedures to support decision-making are strongly desired. Apart from that, an important
aspect, especially in Earth sciences, is the reanalysis of archives. Old data broaden our
knowledge concerning the characteristics of natural phenomena and their development with
time. The use of long time spans helps us improve the significance of our conclusions and
decisions. No need to mention that postprocessing of huge data masses accumulated over
long time spans requires patience and/or highly automatized processing schemes for the
extraction of essential information, avoiding that a user feels overwhelmed and gives up the
task.

A propaedeutic step in pattern recognition is the definition of “objects” related to the
phenomena we deal with. A single value in a time series does not constitute an object or
pattern; a seismic phase is indeed a pattern. Weather is another example for an object.
Observed in a given time span, it can be understood as a pattern described by various
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values, which refer to temperature, humidity, cloud coverage, etc. In meteorology, we may
distinguish patterns characterized by strong cloud coverage, high temperature, and humidity,
being possible precursors of a thunderstorm. Similarly, the susceptibility of an area prone to
slope failure can be characterized by different parameters, such as precipitation, geographic
relief, and subsurface structure. In geology, we can study the object “rock” and describe it
by a number of components, for instance, key minerals. In the famous “Streckeisen”
diagram, we use the minerals quartz, feldspar (Orthoclase, Plagioclase), and feldspathoids.
The “TAS” scheme is another example for the description of the object “rock.” We then aim
at the identification of structures within our population of patterns and refer to these
structures as classes. For example, the rock “granite” is identified on the base of its position
in the “Streckeisen” diagram; it forms during collision and subduction of tectonic plates.

When handling a multivariate dataset, we face specific problems in statistical treatment and
graphical representation of results. Conventional 2D graphs, where one component is
plotted versus another, can be nicely displayed on a sheet of paper, but we have to choose
among a large number of possible combinations. In theory, having n components, we should
design n*(ne1)/2 bidimensional graphs. Even plotting all possible graphs may be
insufficient, as the components cannot be supposed to be independent from each other.
Thus, the identification of homogeneous data groups and heterogeneities between them may
not be possible in any of the plots. We must also be aware of the possibility that a
component may provide key information only for a limited number of patterns rather than
for the whole ensemble. The conventional 2D graphs represent so-called “marginal distribu-
tions,” and the problems aforementioned with this kind of representation are well known in
multivariate analysis. A solution can be found in techniques of pattern classification.

Pattern recognition can be understood as an element of classification, that is, the process of
assigning objects to a category or class. Objects are characterized by a number of features,
which can be metrical, ordinal, or nominal data. The set ofdin our case
numericaldfeatures forms a feature vector, the so-called pattern. The choice of the features
essentially depends on practical considerations and is governed by two rules: (i) the features
should allow us to identify objects uniquely, and (ii) the smaller the feature vector, the
better. Sometimes features can be gained directly from the description of the object, but
frequently the preprocessing of data, such as the normalization of numerical values, is
necessary to meet these goals properly.

The task of classification is tackled following various strategies. Perhaps, the oldest one is
the so-called genetic classification, in which the origin (or the cause) of an object is
considered. In climatology, three types of genetic classification may be distinguished based
on (1) geographic determinants of climate, (2) surface energy budget, and (3) air mass
analysis. In geology, we distinguish between sedimentary and igneous rocks based on their
genesis. Igneous rocks can be further divided into volcanic and plutonic rocks, again consid-
ering the process at the base of their formation; meanwhile, the mineralogical composition
is irrelevant in this distinction. In seismology, we often use the source of a seismic signal as
a criterion of classification, for example distinguishing seismic noise from the seismic
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radiation generated by magma dynamics inside a volcano (so-called volcanic tremor) or the
record of a nuclear explosion from a trace recorded in case of an earthquake.

Supervised classification can be understood as the inverse process of genetic classification.
First, we see an object and wonder where it comes from. From the 1960s on, intense
research has been carried out on the distinction between nuclear explosions and other
events, such as earthquakes, chemical explosions, and quarry blasts. The object we have in
hand may be a seismic record (or a number of seismic records) and we ask to infer the
origin from its characteristics. In geology, we may ask whether we can trace back rock
characteristics to an origindfor instance, the provenience of a volcanic product from an
eruptive center. Supervised classification uses a priori information inferred from example
objects, supposing to know which class they belong to. In modern techniques of supervised
classification, this can be achieved without (or with very limited) a priori definition of
similarity.

Supervised classifiers typically use an iterative procedure, which tries to find a mathematical
formalism to reproduce the expert’s way of assigning a class membership to a pattern. The
iterative process is often called as training or learning phase of the classifier. Besides,
parameters governing operational characteristics of the classifiers have to be identified either
by trial and error or by optimization procedures, such as genetic algorithms. With advanced
supervised pattern classification methods, for instance support vector machines (SVM) or
the multilayer perceptron (MLP), the mathematical structure of the classifier can be, in
principle, arbitrarily complex. This brings the huge advantage of generality, in the sense that
there is no limitation in the typology of the discrimination function delimiting the classes
from each other. Important in this context is that there are enough examples to learn from.

On the contrary, unsupervised classification is based on a suitable definition of similarity
between patterns rather than on a priori knowledge of their class membership. The task of
unsupervised classification can be formulated as finding groups with a minimum degree of
heterogeneity, being most distant from each other. The degree of heterogeneity is defined as
a distance measure, or metric, for example, the Euclidean distance, the Mahalanobis
distance, Manhattan (or city block distance), etc. Unsupervised classification is preferred
when the definition of targets is difficult. Of course, the targets may not be known, and
perhaps are only identifiable after a thorough study of structures within the dataset. In other
cases, the relation between pattern characteristics and target undergoes changes throughout
the dataset. Unsupervised classification is often addressed to as “clustering,” that is, the
identification of data groups with similar characteristicsdwhere similarity is defined on the
base of an a priori defined metrics. The shape of clusters can be spherical, elliptical, or
hyperbolic, but also clusters with very irregular shapes can be found. Unsupervised
techniques are able to “detect” structures in data, even though their description is not
straightforward at first glance. All these characteristics resemble to principles of human
cognition, such as learning a language, identifying a character even being hand-written,
recognizing similarities among objects, and analyzing interrelations between patterns.
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Therefore, there is a strong link with artificial intelligencedthe science where we make
automates do similar things as human brains do.

Beside grouping single objects, we may also be interested in their interrelation. This aspect
is important not only in pattern recognition, but also in forecast. In geophysics, a sequence
of objects may be related to the development of some phenomenon, being it a typhoon, a
flood, or a volcanic unrest. This implies that a specific pattern is meaningful not only for the
components making up its feature vectors, but also for the context defined by other patterns.
This is also a typical problem in speech and text analysis, where the meaning of a word or a
number not only depends on single characters or digits, but also on their order. Techniques
regarding this aspect of related objects can be addressed to as context-dependent methods.
Among them, we shall discuss hidden Markov models and (dynamic) Bayesian Networks in
more detail.

Pattern recognition is strongly related to data mining, revealing structures within datasets
and facilitating the set-up of rules for decisions and actions. The techniques described in
this book are based on mathematically formulated procedures; their results are therefore
reproducible. Their implementation on modern computers allows us the automatic process-
ing of large amounts of information, which implies a strong relation with the field of
machine learning.

The book presented here comprises both the theoretical background of pattern recognition
methods as well as practical suggestions for their application. An important aspect is the
proper formulation of the classification problem, which implies an appropriate definition of
the objects and their description by features. Chapter 1 deals with objects, features, and
metrics. Chapter 2 presents the theoretical background of supervised learning. It begins with
a simple discrimination problemdthe distinction of earthquakes and nuclear explosions on
the base of surface and body wave magnitudes. Principles of more advanced techniques,
such as the MLP and SVM are demonstrated for that simple case. Hidden Markov models
and (dynamic) Bayesian networks are context-based methods, where both features of single
objects as well as their interrelation are of interest. Chapter 3 outlines the concepts of unsu-
pervised learning, among these various approaches of clustering as well as Self-Organizing
Maps, which are a popular technique of vector quantization. Chapter 4 and 5 present appli-
cations of supervised and unsupervised learning partly taken from the literature, partly
collected during research projects of the authors themselves. A number of examples regards
Mt Etna volcano (Italy), which is often addressed to as a “volcano laboratory” for its persis-
tent activity, favorable logistic conditions that allow the deployment of cutting-edge equip-
ment for multidisciplinary measurements, and long tradition of monitoring also for
surveillance purposes. Beside already existing and published material, the authors also pre-
sent new applications to underscore the potential use of pattern classification techniques in
geophysics as well as in a wide field of disciplines. Chapter 6 deals with a critical a posteri-
ori analysis of pattern recognition results, which goes beyond the simple enumeration of
some error. This chapter offers keys to answer questions such as “what can be expected
from the pattern recognition techniques? Is a somewhat unsatisfying result a failure of the
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method or there are lessons to learn regarding the problem?.” A further, crucial point
addressed to is how clustering quality can be measured.

Finally, the book comes along with example programs and datasets. Most of programs are
MATLAB� scripts, which allow the user the reproduction of some of the figures in the
book. Besides, there are ready-to-use packages regarding MLP, SVM, and unsupervised
learning, in particular clustering and Self-Organizing Maps. The computer codes should
allow the reader to perform experiments both using the delivered datasets as well as their
own data.
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CHAPTER 1

Patterns, objects, and features

1.1 Objects and patterns

Before entering into the details of pattern recognition, we should define basic terms. The

first question is “What is a pattern?” After careful reasoning, we become aware that this

term encompasses a variety of phenomena. Patterns are described by a variety of

characteristics, which can be of various types. For instance, how do we describe a fine

summer day? Certainly, we expect a high temperature, a low degree of humidity, sunshine,

no or little clouds, and no rain. That is, we describe the pattern “fine day” by a series of

parameters. In a similar way, we characterize a rock sample by its chemical or

mineralogical composition, along with other parameters (e.g., density, strength, etc.).

Defining a pattern that way, we can also use the term “object,” which is described by

“features” and “feature vectors.” In this context, we carry out pattern recognition or

classification considering the single objects independent of each other. In other words, an

object K will be assigned to class M only on the basis of its proper characteristics

described in the feature vectors.

However, the definition of patterns may go beyond this. Suppose we succeed to identify a

few objects as pattern ‘9’, ‘7’, ‘0’, and ‘6’. Now consider the pattern 9706. The role of

each cipher critically depends on its contextdthe position where it is founddand the

pattern depends on the sequence of objects. In applications like speech recognition or text

analysis, this type of context-dependent classification is a critical issue. Instead of dealing

with objects described by a single feature vector, we face with frames of those vectors,

and the class a pattern belongs to critically depends both on the single feature vectorsdfor

instance, the feature vector for ‘9’dand the order of the vectors.

1.2 Features
1.2.1 Types

The description of objects uses data of different types. For example, we can describe a person

by height, weight, and agednumerical data. Then we may add other information, such as fat,

normal, and slimdwhich are ordinal data. We may also add categorical information, for

instance, blond, brown, or black haired. All these different data types may entail specific

steps of processing in order to bring them into a form appropriate for our purposes.
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Ordinal data can be ranked, that is we can treat them in some way as “low”, “middle”, or

“high”. The “Beaufort scale” is a ranked measure of wind speed, based on the effects

observed. For instance, a hurricane can disrupt trees, whereas a smooth breeze just creates

small waves at the sea surface. In earthquake seismology, the intensity of an earthquake in

the famous “Mercalli scale” is specified considering its effects on buildings or the

behavior of the populations. Both Beaufort and Mercalli scales are typical examples of

ranked values, and their relation to numerical parametersdespecially with regard to the

Mercalli scaledis still an unresolved question. On the other hand, we may decide to

define metrics allowing to handle this type of data. For instance, we may compare their

ranks, as done in Spearman’s rank correlation.

In categorical data, one may use some type of coding, creating a vector with ‘1’, when a

feature corresponds to a category (e.g., a blond-haired person), and ‘0’, when the feature

does not belong to that category (not brown- or black-haired person). Then a blond

receives the code (1,0,0), a brown-haired person has the code (0,1,0), and black-haired

people are coded (0,0,1). Having multivariate categorical feature vectors, we may consider

the number of coincidences, creating tables of contingency. For instance, besides the hair,

we may consider the eye color (‘blue’, ‘green or gray’, ‘brown’) and exploit it in defining

specific metrics such as the “Tanimoto distance”.

Here we shall focus on numerical features, which are the most common ones in

geophysics and the most suitable for the type of analyses discussed. However, recall that

the aim of pattern recognition resides in assigning the patterns to a class. Thus at the end

of our application, we transform our, often numerical, features to categories! In our

applications for clustering, we shall try to identify groups of patterns considering

numerical features, but obtain classes ‘A’, ‘B’, and ‘C’, which do not often have numerical

meaning. In other applications, we find that patterns belong to a certain, a priori defined,

class, such as a type of rock, a meteorological phenomenon, a signal originating from a

type of source. Again, these classes are not specified numerically, but from a verbal

description, for which we may use some coding as mentioned above.

1.2.2 Feature vectors

The choice of features is essentially based on effectiveness. First of all, features should

describe the object in a way that it can be identified and distinguished without ambiguity.

As a single feature is often not sufficient for this purpose, a number of features stored in a

feature vector are taken into account. Augmenting the number of components of the

feature vector, we increase the probability that we can identify our object without

confusing it with others. Nonetheless, the dimension of the feature vector and the choice

of the components are a tricky issue. First, it is wise to limit the dimensionality of the

feature vector for computational issues. It is a general rule of common sense that the
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robustness of the classifier increases if the number of free parameters is low compared to

the number of training patterns. Care has to be taken when choosing the components of

the feature vector. All the components should be closely related to the core problem of

classification we intend to resolve. For instance, for classifying the composition of a rock

sample, the geographical coordinates of the place where it was found are probably

irrelevant, but may disturb the discrimination as they are included in the calculation of the

discrimination function.

A further issue is the appropriate aggregation of feature vectors in the case of

multiparametric and multidisciplinary data. In multidisciplinary analyses, it may be

tempting just to combine features of varying origin, for instance, seismic and infrasound

signals recorded on a volcano. However, we may run into problems if these signals are not

generated by the same source. Our feature choice therefore should include a sound

reasoning about the physical processes, which relate our data to a phenomenon.

Culling together multidisciplinary features entails the problem of biases introduced by the

differences in the number of components. For example, suppose to have 20 features

related to seismic data, but only three related to deformation data; then changes in the first

ones will have a stronger effect than those caused by the latter. This happens because the

number of feature vectors jjxjj2 is obtained from the squared sum of the normalized xi.

Thus, the 20 features of seismic data are likely to outweigh the three features of the

deformation data.

1.2.3 Feature extraction

1.2.3.1 Delineating segments

In some applications, we may gain features from the data quite directly, such as in the

case of weather conditions (temperature during day and night, number of sunshine hours,

etc.). In other applications, the direct use of our available data is not possible. Those cases

are represented by time series or images, where we face a sequence of samples, which

when taken alone do not have a particular meaning. When dealing with waveforms, such

as seismograms, infrasound recordings, or ground deformation signals, we have to identify

segments of the data set we can relate to an event that forms our object of interest. In the

framework of the CTBT (Comprehensive Test Ban Treaty), we look at seismograms,

hydro-acoustic, or infrasound signals to recognize earthquakes and explosions. In ground

deformation records, we may be interested in signs left behind by processes of rupturing

or ground failure.

Looking at waveforms, the first question we pose is “Was there an event?” Questions like

this can be tackled by identifying “local” features, which help the identification of

segments in the data set containing events of interest. In time series for instance, we shall
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be interested in the “phase” in a wide sense. In image processing, we may focus on areas

with a specific aspect that can be assigned to a given category, such as a forest, a

cornfield, lakes, and rivers. Feature extraction in this context consists of browsing through

the whole data set, revealing parameters that depend on a few samples in the small region

where we focus on.

From intuition, the answer to the question “Was there an earthquake?” can be answered

looking at time series where wave trains have amplitudes significantly higher than the

background signal observed over long times. In many applications, such as in seismology,

we are not able to wait for the whole seismogram. For example, shortage of storage

capacity on our recording system leads to the idea to start recording only when we have

clear signs that there is an event interesting for us. As signals are often sampled with a

high frequency (such as hundreds of samples per second), parameters or features have to

be identified in order to recognize the time of the onset of an event automatically. A

classical trigger criterion is the STA/LTA parameter. The STA (“short-time average”) is

calculated from the mean squared sum of seismic amplitudes over a short-time window,

say 1 s, whereas the LTA (“long-time average”) is a measure of the background noise. It is

obtained in the same way as the STA, but considering longer time windows, for instance a

minute (Fig. 1.1).

Figure 1.1
Recognition of an event on a seismogram. The “trigger on” line marks the arrival time of the P

wave.
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The so-called characteristic functions are applied in automatic reading of first arrivals (“P-

wave picking”). P-waves are compressional waves. As they travel with higher velocities

than other types of waves, they will be the first to be recorded on a seismogram. Typically,

their arrival times are easy to identify with the best precision, as the seismogram is not yet

blurred by other phases, being shear waves, surface waves, or caused by effects of

scattering in a wide sense.

Crampin and Fyfe (1974) defined a set of functions, i.e.,

flðkÞ¼ jxk � xk�lj (1.1)

with xk being the k-th sample measured on a seismogram and l being a time shift, such as

four or eight in their paper. Stewart (1977) proposed a modified characteristic function f(k)

in the following way

dk ¼ xk � xk�1 (1.2a)

f ðkÞ¼ dk�1 if gðkÞ 6¼ gðk� 1Þ (1.2b)

f ðkÞ¼ dk if gðkÞ ¼ gðk� 1Þ and hk ¼ 8 (1.2c)

f ðkÞ¼ dk þ dk�1 if gðkÞ ¼ gðk� 1Þ and hk 6¼ 8 (1.2d)

with g(k) ¼ 1 for dk � 0 else g(k) ¼ �1 and hk ¼ jSlgkj, l runs from k-7 to k. As shown in

Fig. 1.2, this function is sensitive to changes with respect to spectral characteristics, which,

besides mere amplitudes, are an important feature for the identification of a seismic phase.

We refer to the seismological literature on this topic for more details, for instance to Diehl

and Kissling (2000) who give a detailed description of methods which account for the

development of the “signal to noise” ratio; features are obtained from the rise of the signal

Figure 1.2
A chracteristic funcion obtained after fStewart (1977). The input signal is a sinusoid, where the
frequency changes at a certain time, while peak amplitudes remain constant. The lower trace is
the response of Stewart’s function. We can define an amplitude threshold where we “declare”

the arrival of a phase.
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and the slope (“ASNR”, Amplitude Signal to Noise Ratio approach). In the “FSNR”

approach (Frequency Signal to Noise Ratio), changes in the frequency content are taken

into account.

1.2.3.2 Delineating regions

In image processing, we rarely use the field of pixels without any preprocessing step.

Often we shall analyze an image with respect to a “texture”, which can be in the form of

“brick”, “checker board”, “grass”, “leaves”, etc. In Fig. 1.3, we show simple examples of

textures made up of 50% white and black pixels. We recognize the differences between

the various images based on the order of pixels.

Various parameters characterize the texture (see, e.g., Shapiro and Stockman, 2000). One of

them is the so-called “cooccurrence matrix” for which a simple example is shown in Fig. 1.4.

This matrix considers the relation of neighborhood between pixels. For instance, in the

4 � 4 image of Fig. 1.4, we construct the matrix for neighborhood C(0,1), that is we look

along the rows to the right. We find pairs (1,0) two times, thus the value for the position

(1,0) in this matrix is 2, whereas it is 0 for position (0,1) as we do not find any ‘1’ to the

right of a ‘0’. Similarly, we may look along columns, where we find four times a ‘0’

below a ‘0’, two times a ‘0’ below a ‘1’, but zero times a ‘1’ under a ‘0’. Finally, we

consider the neighborhood along the diagonals and find the configuration (0,0) two times,

(1,1) once, and (2,2) once. Note that we have been considering only direct neighborhoods.

We can define similar matrices for larger distances among the pixels.

Figure 1.3
Example for different textures with 50% of white and black pixels.

Figure 1.4
Construction of the cooccurrence matrix (redrawn from Shapiro and Stockman, 2000). (A) 4 � 4

image, (B) configuration (0,1), (C) configuration (1,0), and (D) configuration (1,1).
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Other variants of the cooccurrence matrix are considered. For instance, we may define

CNði; jÞ¼Cði; jÞ=SiSjCði; jÞ (1.3)

where the CN(i,j) value fall into a range between 0 and 1. A further variant is the creation

of a symmetric cooccurrence matrix CS ¼ Cd(i,j) þ C-d(i,j), where d gives the length of the

neighborhood interval (in our example above d ¼ 1). With CS, we consider configurations

“right” or “left” together with “below” and “above”.

The cooccurrence matrices are still cumbersome for further analysis, such as for

comparing two textures. The derivation of numeric features offers a way out of this

problem. For instance, we may define

“Energy”¼Cði; jÞ=SiSjCNði; jÞ2
“Entropy”¼SiSjCNði; jÞ2log2 CNði; jÞ

“Contrast”¼SiSjði� jÞ2CNði; jÞ
“Homogeneity”¼SiSjCNði� jÞ=ð1þ ji� jjÞ

“Correlation”¼SiSjði�miÞ
�
j�mj

�
CNði; jÞ=sisj

where mi, mj are the means over the rows and columns, and si, sj are the corresponding

standard deviations.

Laws (1980) proposed convolution masks for the texture-based feature generation. We

start with the vectors

L5 (level) ¼ (1,4,6,4,1)

E5 (edge) ¼ (�1,�2,0,2,1)

S5 (spot) ¼ (1,0,2,0,1)

R5 (ripple) ¼ (1,�4,6,�4,1)

and create, for instance, the convolution mask E5L5 forming the product E5TL5. As a

result, we obtain a 5 � 5 convolution matrix, which is applied to the pixels of an image by

carrying out a convolution in two dimensions.������������

�1 �4 �6 �4 �1

�2 �8 �12 �8 �1

0 0 0 0 0

2 8 12 9 2

1 4 6 4 1

������������
In the same way, we can form other combinations, such as E5E5, S5S5, R5R5, E5L5,

S5L5, R5L5, S5E5, R5E5, and R5S5, which yield nine features suitable for the pattern

recognition techniques discussed in the following chapters.
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1.2.4 Transformations

The performance of any automatic recognition approach can be only as good as the data

used to train it. Thus, the appropriate representation of the raw data provides the basis for

a well-working classification system. In order to achieve this goal, we often must

“translate” the raw data to a form, which is suitable for learning and allows a

generalization for the given problem. The procedure of converting the data in this optimal

format is known as feature transformation, at the end of which, the signal space is mapped

into a transformed feature space. Viewing the data in this transformed space may allow us

to recognize elementsdseparating functions, data clusters, etc.dthat could not be seen

before. The choice of the applied transformation is imposed by the specific problem and

its practical implementation issues. It might also be necessary to apply several

transformations consecutively.

The often-used Principal Component Analysis (PCA) (also called KarhuneneLoève

transformation) allows us to represent any multidimensional feature vector to a new

system of variables, which are uncorrelated to each other. In that way, redundant

information is decreased while the discriminative information of individual components is

exposed. The Independent Component Analysis (ICA) follows a strategy similar to PCA.

Using ICA, we transform our data into variables independent of each other, which is a

stronger condition than uncorrelated variables.

The Fourier transformdoften applied in the analysis of (time) sequencesddoes not

directly lead to a data reduction. We first map the raw data into the frequency domain

where data reduction can be achieved more easily. By decomposing the raw signal into its

individual frequency components, specific constituents not interesting for our problem can

be eliminated, which renders the recognition easier. Variants of the Fourier transform, as

the Short-Time Fourier Transform (STFT) and spectrograms, allow accounting for local

fluctuations within the data set. The wavelet transforms follow a scope similar to the STFT

using basis functions of finite length, which limits the effects of window margins.

1.2.4.1 KarhuneneLoève transformation (Principal Component Analysis)

Transforming our original data set to a new feature space, we aim at reduction of

dimensionality. Therefore, many of the techniques are based on the creation of an

orthogonal vector space, so that we have components that are independent of each other.

That way we are able to omit components that are considered of minor relevance, as they

contribute little to the total variability of the observations. A frequently applied technique

is the PCA, also known as KarhuneneLoève transformation.

Looking at the bivariate Gaussian in Fig. 1.5, we may define a unique variable, which

measures a principal axis along the major axes of the ellipse rather than measuring in two
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directions X1 and X2. This new variable represents the majority of the dispersion, and at

the same time, it reduces the dimensionality of the problem. We start with

y¼Atx (1.4)

where both E(y) ¼ E(x) ¼ 0

and

E
�
yyT

�¼E
�
ATxxTA

�
(1.5)

(dispersion of y in terms of x).

The matrix xxT is symmetric; hence, the eigenvectors are orthogonal. If A is chosen so that

the columns correspond to the eigenvectors, we get E(yyT) ¼ E(ATxxT)A ¼ L, which is a

diagonal matrix with elements being the eigenvalues ll. We can achieve a reduction of

dimensions by considering only a limited number of eigenvectors. These are not

necessarily the largest ones as illustrated in Fig. 1.6.

Even though we are tempted at the first glance to use the eigenvector with the largest

eigenvalue, as it explains the major part of the dispersion, it may not be the best choice for

the separation. In Fig. 1.6, the separation of the two groups is more efficient using the

eigenvector corresponding to a smaller eigenvalue. Nonetheless, there is a big advantage

of using the KarhuneneLoève transformed data: after the transformation, linear separating

elements can be recognized in the marginal distribution, whereas they may be blurred in

the original system of axes.

Figure 1.5
A bivariate Gaussian distribution.
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1.2.4.2 Independent Component Analysis

As seen above, the KarhuneneLoève (PCA) transform creates features, which are

mutually uncorrelated. It is an appropriate solution for reducing dimensionality

minimizing the approximation (squared) error. In Fig. 1.6, however, we recognize that this

minimization may be questionable, for instance, for discrimination purposes. In ICA (see

Hyvärien et al., 2001 and references therein), we go beyond the goal of mere

decorrelation. Similar to PCA, we define a transform

y¼Wx (1.6)

such that the components of y are mutually independent. This is a stronger condition than

uncorrelated and applies for data not following a Gaussian distribution. In fact, for our

discrimination purposes, the component orthogonal to the eigenvector with the largest

eigenvalue is the preferable one. A way to identify these components resides in the

analysis of the higher-order cumulants (see Appendix A1.1), such as the skewness and, in

particular, the kurtosis ue4 (see Eq. A1.10 in the appendix A1.1). ICA based on the kurtosis

is carried out in two steps:

- perform PCA on the input data in order to obtain

ey¼Atx (1.7)

- obtain a second matrix eA and create new components by

y¼ eAx (1.8)

such that the sum of the squared fourth-order auto-cumulants,
P

ieu4ðyiÞ2, is maximum.

This is achieved by a suitable diagonalization of eA. At the end, we get the transform

Figure 1.6
Separation of two groups using the eigenvectors.
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y¼ �
AeA�Tx ¼ Wx

Note that the diagonalization (making that cross-kurtosis vanishes) may succeed only

approximately, e.g., if input data do not obey a linear model or are noisy, and cumulants

are only approximately known.

The approach consisting in nulling the second- and fourth-order cumulants is the most

commonly used ICA. For the sake of completeness, we mention the approach for estimating

W based on minimizing the mutual information. First, we write the information entropy

HðyÞ¼
Z

pðyÞlnðpðyÞÞdy (1.9)

where p(y) is a joint probability density function. The mutual information between the

components of y is given by

IðyÞ¼ � HðyÞ þ SiHðyiÞ (1.10)

which is the so-called KullbackeLeibler distance. It measures the distance between the

joint probability density function p(y) and the product of the respective marginal

distributions Pip(yi). Thus W is designed with the scope of minimizing I(y), in order that

the joint p(y) is close to the product of the marginal distributions p(yi). In PCA, for

Gaussian distributions, this is already achieved by nulling the off-diagonal elements of the

covariance matrix. That way, the ICA approach exploiting the KullbackeLeibler distance

can be understood as generalization of PCA.1 We address the interested reader for more

details to the textbook on ICA by Hyvärien et al. (2001).

1.2.4.3 Fourier transform

The Fourier transform belongs to the family of integral transformations where a data set is

represented by a superposition of the so-called “basis functions”. It is defined by the

Fourier integral

f ðxÞ¼
Z

f ðuÞe�iuxdu (1.11)

or, in the discrete formulation, as Fourier series

f ðxÞ¼Snf ðuÞe�inu0x (1.12)

with i denoting the imaginary part. In the discrete formulation, we use the fundamental

frequency u0 ¼ 2p/T; T gives the length of our series (in time series analysis, we call it a

“window”). Higher frequencies are given as multiples, overtones, of u0. From the equality

1 Note, however, that I(y) is not always a metric in a strict sense, as the condition for a metricdd(a,b) ¼ 0 if
a ¼ bdis not always warranted (see Duda et al., 2001).
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e�iux¼ cosðuxÞ þ i sinðuxÞ;
one can immediately recognize that our data series is a sum of sine and cosine functions

with an angular frequency u. We can consider the pair of sine and cosine functions as a

basis function of the Fourier transform. The f(u) are the weights expressing the degree to

which a frequency u contributes to a signal and are found from

f ðuÞ¼ 1=ð2pÞ
Z

f ðxÞe�iuxdx (1.13)

and

f ðnu0Þ¼ 1=T S0<x<Te
�inu0x (1.14)

The Fourier integral converges for a series of finite length, such as transient phases in a

waveform record (seismogram, electrocardiogram, etc.), which has an onset and dies out

after some time. Assuming a transient, however, we implicitly add an infinite number of

zeros outside the window of interest (“zero-padding”). Thus, our time window T is actually

infinite, and the fundamental frequency u0 tends to 0. With increasing T, we gain in

“frequency resolution” as the frequency steps nu0 become smaller.

Following the definition above, f(u) and f(nu0) are complex values. Taking the squared

sums of the real and imaginary parts, we get the power spectral density

Pow f ðnu0Þ¼Re2f ðnu0Þ þ Im2f ðnu0Þ (1.15)

which is a measure of energy of a series of samples (often a time signal) represented by a

frequency. We get a spectrum by plotting the power spectral density as a function of u.

1.2.4.4 Short-time Fourier transform and spectrograms

In case of long-time series, one could opt to consider them all at once. In this case, we

lose information about fluctuations in the window. A way out is the Fourier transform over

a short series (time windows) of samples. In a gliding window scheme, we shift the short

window over a number of samples and carry out the Fourier transform for each step (see

Fig. 1.7). As a result, we get an ensemble of spectra, the so-called “spectrograms”.

Spectrograms are popular as they have a better resolution “in time” (for time series);

however, they lack in the representation of low frequencies due to the limited length of the

window. Their use requires specific steps of preprocessing, such as tapering, baseline

correction (offset and trend removal, high-pass filtering) for which we refer the interested

reader to textbooks of signal processing (e.g., Oppenheim and Schafer, 1999; Hamming,

1983; Kanasewich, 1981).

A further advantage of the spectrogram method is the variety of statistical parameters,

which can be extracted from an ensemble of STFTs. Besides considering the means of the
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spectral components in the windows Ti, we can calculate standard deviations, peak holds,

and consider quantiles, such as the median (50% of all values are lower than the median),

25% or 75% percentiles. For instance, focusing on low percentiles, we may efficiently

eliminate short-lived “transient” parts of the original signal, where high amplitudes, and

consequently high PSD, are observed (see, e.g., Di Grazia et al., 2006; Langer et al.,

2011).

1.2.4.5 Discrete wavelet transforms

The Fourier transform is a widely used concept for data representation for its intuitive

understanding. We recognize music not from the crude time series, but we perceive

sequences of tones, similar to what we have seen in spectrograms. A drawback, however,

is the superposition of infinite sinusoidal functions. This leads to unpleasant margin effects

at the beginning and at the end of a data series. Commonly these problems are cured by

applying tapering functions with the cost to disrupt the original data.

An alternative to using infinite basis functions, as sines and cosines, resides in the

representation of data as a superposition of the so-called “wavelets”, i.e., functions with a

Figure 1.7
(A) Flowchart of STFT applying overlapping gliding windows. For each window Ti, Fourier Power
Spectral Densities (PSD) are calculated and stored in a matrix. Each row reports the frequency
components (PSD values) obtained in the window Ti in columns. (B) Example of a spectrogram
obtained from a seismic signal. It shows the development of the spectral characteristics with

time. PSD are represented by the colors (dark brown: high values of PSD, yellow and green: low
PSD).
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finite length. Typical wavelets resemble tapered versions of sinusoid functions; unlike the

latter, however, their application does not lead to any loss of the original information.

Here we briefly outline the concepts, and for more details we refer to Theodoris and

Koutroumbas (2009). We start with the Haar transform. The formalism is quite

straightforward and provides an insight into fundamentals of the discrete wavelet

transform in a more general sense.

The Haar transform is based on functions in a closed interval [0, 1] and entails only

additions and subtractions, making its use in computers very effective. With k being the

order of the function, we decompose it into two integers p and q

k¼ 2p þ q� 1 (1.16)

k¼ 0; 1;.2n � 1; 0 � p � n� 1; 0 � p � 2pc p 6¼ 0; q ¼
�
0 � q � 2p; p 6¼ 0

q˛ f0; 1g; p ¼ 0

The Haar functions of order L are given as

h00ðzÞ¼ 1ffiffiffi
L

p ; z˛ f0.1g (1.17)

and

hpqðzÞ¼

8>>>>>>><
>>>>>>>:

1ffiffiffiffiffiffiffiffiffiffiffiffi
L 2p=2

p cðq� 1Þ�2p � z �
�
q� 1

2

��2p

1ffiffiffiffiffiffiffiffiffiffi
L�2p

p c

�
q� 1

2

��2p

� z � q�2p

0

(1.18)

for other z.

Consider the Haar functions of order L ¼ 8, i.e., k ¼ 0,1 . 7; we get k, p, and q as.

k 0 1 2 3 4 5 6 7
p 0 0 1 1 2 2 2 2
q 0 1 1 2 1 2 3 4

The Haar transform is applied as follows. Let L ¼ 2, then

y1ðkÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxð2kÞ þ xð2k þ 1ÞÞp

y0ðkÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxð2kÞ � xð2k þ 1ÞÞp
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and k runs from 0 to N/2�1 with N being the lenght of the wavelets. Note that in y1, we

form a sum of two adjacent x, and in y0, we take the difference. The first one is a low-pass

filter and the second a high-pass filter.

The transfer function of the two filters is

H1ðzÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ zÞp

H0ðzÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� zÞp

here z is a complex variable of unit length. Fig. 1.8 shows the impulse response.

The eight order Haar transform H8¼

1
. ffiffiffi

8
p

�������������������

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1ffiffiffi
2

p ffiffiffi
2

p � ffiffiffi
2

p � ffiffiffi
2

p
0 0 0 0

0 0 0 0
ffiffiffi
2

p ffiffiffi
2

p � ffiffiffi
2

p � ffiffiffi
2

p

�2 �2 0 0 0 0 0 0

0 0 2 �2 0 0 0 0

0 0 0 0 2 �2 0 0

0 0 0 0 0 0 2 �2

�������������������

Figure 1.8
The Haar wavelets (low- and high-pass wavelets).
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We perform the transform

y¼H8x (1.19)

where x is an input series with eight elements (k ¼ 0 . 7), and y is the output. The lower

four components of y correspond to y0(k). The upper elements are obtained iteratively. We

take the output of our low-pass filter and apply again our two filters

F1ðzÞ¼H0

�
z2
�
H1ðzÞ ¼ 1

2
ð1þ zÞ�1� z2

� ¼ 1

2

�
1þ zþ z2� z3

�
F0ðzÞ¼H1

�
z2
�
H1ðzÞ ¼ 1

2
ð1þ zÞ�1þ z2

� ¼ 1

2

�
1þ zþ z2þ z3

�
and

y1ð0Þ ¼ ½ 1=2 1=2 �1=2 �1=2 0 0 0 0 �xT
y1ð1Þ ¼ ½ 0 0 0 0 1=2 1=2 �1=2 �1=2 �xT

which corresponds to the output of the third and fourth row in H8. We further split

considering F1(z) that is the response of the applied low-pass filter in this iteration and

obtain

y2ð0Þ ¼ 1ffiffiffi
8

p ½ 1 1 1 1 �1 �1 �1 �1 �xT

output with respect to the second row in H8, and finally the last one

y3ð0Þ ¼ 1ffiffiffi
8

p ½ 1 1 1 1 1 1 1 1 �xT

Given the components of y, we reconstruct the original data sequence by

x¼HTy (1.20)

As the low- and high-pass filters established in the Haar transform are poor with respect to

their frequency characteristics, filters with more satisfying characteristics have been

proposed.

With h0(k) and h1(k) being the impulse responses of our filters, we may write

y0ðkÞ¼SlxðlÞ h0ðn� lÞjn¼2k (1.21a)

y1ðkÞ¼SlxðlÞh1ðn� lÞjn¼2k (1.21b)

Similar to the Haar transform, we obtain the impulse responses of the filters

y¼Tix (1.22)

where Ti is the filter matrix.
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�������������������

:: :: :: :: :: :: ::

:: h0ð2Þ h0ð1Þ h0ð0Þ h0ð� 1Þ h0ð� 2Þ ::

:: h1ð2Þ h1ð1Þ h1ð0Þ h1ð� 1Þ h0ð� 2Þ ::

:: :: :: h0ð2Þ h0ð1Þ h0ð0Þ ::

:: :: :: h1ð2Þ h1ð1Þ h1ð0Þ ::

:: :: :: :: :: h0ð0Þ ::

:: :: :: :: :: h1ð2Þ ::

:: :: :: :: :: :: ::

�������������������
The reconstruction matrix G, which restores the vector x, is obtained easily, provided that

the hi(2k � n) are orthogonal. Its elements are obtained from

giðnÞ¼ hið� nÞ (1.23)

The “Daubechies” wavelets (Daubechie, 1991) come with the nice property to have filters

with maximal flat properties. At the same time, they are orthogonal (Fig. 1.9).

Figure 1.9
Daubechies wavelets (low- and high-pass impulse response) of order 2 (A), 4 (B), 6 (C), and 8

(D).
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Their low-pass filter coefficients are

DB2 ¼ h1(n) ¼ [0.7071 0.7071]

DB4 ¼ [0.4830 0.8365 0.2241e0.1294]

DB6 ¼ [0.3367 0.8069 0.4599e0.1350 �0.08544]

DB8 ¼ [0.2303 0.7148 0.6309e0.0280 �0.1870 �0.0308 0.0329e0.0106]

The inverse filter coefficients are obtained simply as

giðnÞ¼ hið� nÞ
i.e., the mirrored version of hi(n). Coefficients of the high-pass filters h0 can be found

from

h0ðnÞ¼ ð� 1Þnh1ð� nþ 2L� 1Þ (1.24)

with L being the length of the filters.

There are various alternative wavelet transforms, such as the “Morlet” wavelet, “Mexican

hat”, “Gaussian” wavelets, etc. These alternatives are attractive at a first glance as they are

symmetric and are described with explicit expressions. However, they come with a number

of drawbacks, such as they do not obey orthogonality, reconstruction is not available, and

the numerical algorithms are relatively slow. The “Meyer” wavelet (Meyer, 1993, see

Fig. 1.10) is orthogonal and symmetric; however, it is not strictly finite.

Figure 1.10
The Meyer wavelets.
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1.2.5 Standardization, normalization, and other preprocessing steps

Multivariate data are often composed of features, which are measured in different units

and ranges. For example, the height of a person can be measured in centimeters, inches, or

meters, and the weight can be measured in pounds or kilograms. In order to warrant a

balanced weight of these features, we must normalize them appropriately. Typical

normalizations are

range: f(x) ¼ (x � min(x))/(max(x) � min(x))

standard deviation: f(x)¼(x � m)/s,

s being the standard deviation of the population and m its mean

logistic: f(x) ¼ 1/(1 þ e�ax)

logarithm f(x) ¼ log(x � min(x) þ 1)

Hist: sort the xk, creating a sequence from low to high and use their rank as new values.

1.2.5.1 Comments

Even though the normalizations with respect to range and standard deviation look very

similar, there are considerable differences. The first is sensitive to the tails of a

distribution, as one single value at the extremes may control the normalization. In the

second, the term in the denominator depends on the whole population rather than single

extreme values, which brings a larger stability. Still, extreme values have a strong impact

on the normalization, as the standard deviation is based on the squared distances of the

samples from their average (see Appendix A1.1). Alternatively, one could consider the

mean of the absolute distances of the samples from their average.

The logistic function and its variants reserve a specific treatment of values in the tails of a

distribution. For small values, the denominator tends to infinity, thus f(x) / 0. On the

other side, for large x, the denominator tends to 1, and f(x) / 1 as well.

Many processes in geology entail processes of growth and variation that are expressed “by

a factor of” rather than “by a value”.

Self-similar objects2 are quite common in geology and related fields. They are at the basis

of the “fractal geometry of nature” (Mandelbrot, 1983). Underlying distributions turn out

as “exponential” or “log-normal” instead of “uniform” or “normal”, i.e., Gaussian (see

Appendix A1.2). With a logarithmic normalization, we turn log-normal distributions into a

normal ones.

2 Varying feature components by a factor leads to self-similarity, in the sense that geometrical aspects, besides
the size, are maintained. Increasing all sides of a body by a factor, a brick remains a brick as the ratio of
length, width, and height is not altered. Geologists know that and always add a reference (e.g., a coin) to a
photo taken in the field.
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With the “Hist” normalization (see, e.g., Vesanto et al., 2000), we work with ranked data,

which implies a considerable loss of information. The rank difference between two

neighboring samples does not measure the real difference between them. On the other

hand, we get rid of distortions related to the peculiarities of the probability function of the

samples (see Appendix A1.1). In fact, many statistical procedures are based on ranked data

rather than on their absolute values (e.g., Wilcoxon test, Spearman’s rank correlation, etc.).

1.2.5.2 Outlier removal

Outliers are points falling far away from the mean of the corresponding random variable,

and they may severely affect the assessment of the error and the quality of our pattern

recognition techniques. Often the error is given in the form of squares, which exacerbates

the problem with outliers. However, there is no fixed rule for their identification. If we

work with few samples and in a low-dimensional feature space, they may be easily

identified and discarded. Otherwise, one may rely on percentile-based criteria, for example

considering only a high percentile of the data, such as 99% or 99.9%, removing 0.5% or

0.05% of the data at the tails. Such a technique is known as “winsorizing”. We might

prefer not to touch the data set with any a priori defined criterion by using a cost function,

which is not sensitive to the presence of outliers.

1.2.5.3 Missing data

It may happen that some samples were not collected, leaving for instance a gap in a time

series. In other cases, the feature vector is incomplete, i.e., there are some missing

components. A missing value in a time series can be replaced by the average of the two

neighboring ones, i.e., we carry out a linear interpolation. Such a simple estimation of

missing values can be justified, as the linear interpolationdcompared to other methods to

fill a gapdhas less degrees of freedom. Following Occam’s Razor, we may adopt this

solution in the majority of the cases. In the case of incomplete feature vectors, we may

follow the strategy of “Expectation Maximization”. Suppose our feature vector is

xcom¼ ½xobs; xmis� (1.25)

where subscripts “com”, “obs”, and “mis” stand for complete, observed, and missing parts

of the vector. We ask for the conditional probability that xmis assumes values given by the

xobs. considering

pðxmisjxobs; qÞ¼ pðxobs; xmis; qÞ=pðxobs; qÞ (1.26)

with q being an unknown set of parameters of the probability density function (pdf),

which are estimated from the xobs, and

pðxobs;qÞ¼
Z

pðxcom; qÞdxmis
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In other words, we first infer an estimation of missing components from a set of complete

l-dimensional feature vectors, where we can design a pdf of components where missing

values occur along with those for which observations exist. For instance, we may have an

incomplete vector x, where the component j is not recorded. Then we get a most likely

guess on the basis of the other complete feature vector considering p(xijx1 . j�1,jþ1 . L).

Preprocessing encompasses all necessary steps for a proper application of pattern

recognition tools. For this purpose, we should make sure that all components of the feature

vectors have equal weight, regardless of the physical units they may have. This is usually

achieved by carrying out a normalization. We also want to represent the data space with

our samples as good as we can. Therefore, we request that feature values have a

continuous distribution between their extremes. We try to avoid occurrences as large gaps,

overcrowded intervals, and outliers. Further steps are specific transformations, which aim

at a reduction of the dimensionality of the problem. For the latter, there is a large variety

of available techniques; we limit ourselves to the description of a few of them.

1.2.6 Curse of dimensionality

The term “curse of dimensionality” encompasses phenomena that arise in the presence of

high-dimensional data spaces. The expression was coined by Bellman (1961) considering

problems in dynamic optimization. One of the most striking examples is the phenomenon

of data concentrating at the boundaries of a high-dimensional hypercube.

Imagine a circle and a sphere, both having a diameter 2r (see Fig. 1.11). They can be

inserted in a square or a cube having the same side length 2r. Assuming samples being

uniformly distributed in the area given by the square, then the probability of finding a

sample in the circle is given by p r2, which is ca. 78.5% of the total. In the three

dimensional case, we have to compare the volumes of the hypercube and the sphere, the

Figure 1.11
With increasing dimensionality, more samples tend to be found at the margins of a feature

space.
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latter being 4/3p r3, which is 52%. In general, for dimension n, we find a volume of the

hypersphere given by

VðrÞ¼p
n
2rn=G

	n
2
þ 1



(1.27)

with G being the gamma function. The ratio of hypersphere/hypercube volume vanishes

rapidly as the dimension n increases.

A related effect is the matter of distances. Suppose randomly distributed samples in an

n-dimensional data space. Then the ratio of encountered minimum and maximum

distances approaches 1, or

lim
n/N

½ðdistmax� distminÞ = distmin� ¼ 0 (1.28)

In other words, distances tend to concentrate around a certain value.

All these effects have a common source, that is, that data become sparse when the

dimension increases. In “nearest neighborhood” approaches, the curse of dimensionality

becomes a serious drawback. In two dimensions, we need a subcube with a side length of

ca. 30% of the total to gather 10% of the samples, and in a ten-dimensional case, we need

over 80%. At the same time, the samples have an increasing number of near neighbors,

which entails a considerable computational burden in algorithms based on neighborhood

considerations. Eventually, we conclude that any effort to limit the dimensionality of the

problem is justified. As a minimum condition, we may require that the number of samples

is greater than the number of dimensions.

1.2.7 Feature selection

In machine learning and statistics, feature selection (sometimes referred to as variable

selection, attribute selection, or variable subset selection) is the process of selecting a

subset of relevant features (variables, predictors) for use in model construction. Feature

selection techniques are applied for three reasons:

- simplification of models to make them easier to interpret by users,

- shorter training times, and

- enhanced generalization

The central premise when using a feature selection technique is that the data contain many

features that are either redundant or irrelevant and can thus be removed without incurring

much loss of information. Redundant or irrelevant features are two distinct notions, since

one relevant feature may be redundant in the presence of another relevant feature with

which it is strongly correlated. Feature extraction and transforms may be a part of the
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selection process. As we have seen earlier, they may help to reduce the number of

components to be considered.

Features should allow the definition of a suitable metric for the difference between two

patterns. A metric must have four properties. Given the feature vectors a, b, and c, with

d( , ) being the distance between two vectors, these properties are.

Nonnegativity: d(a,b) � 0

Reflexivity: d(a,b) ¼ 0, if and only a ¼ b

Symmetry: d(a,b) ¼ d(b,a)

Triangle inequality: d(a,b) þ d(b,c) � d(a,c).

In the literature, various options are reported, such as the Euclidean distance, the

Mahalanobis distance, Manhattan distance (or city block distance), etc. More about these

definitions can be found in textbooks like that of Duda et al. (2001). In numerical features,

Euclidean distances and modifications are the most common ones.

Typically, a metric is interpreted in a statistical sense. For example, given a certain

distance of a pattern A to the centroids of class B or ℂ, what is the probability that A

belongs to B rather than ℂ? In Appendix A1.1, we show how we can transform a distance

d into a probability. A in this sense is a single pattern described by a feature vector a, B

and ℂ are two classes of patterns described by the same type of parameters as A, and the

centroids of B and ℂ are denoted as b and c. Knowing d(a,b), d(a,c), and the probability

density functions of B and ℂ, we shall be able to answer the question. We may exploit the

distance of the two centroids of B and ℂ, d(b,c), for the selection of the features. Clearly,

we wish that classes B and ℂ are indeed two different classes. In classical statistics, the

answer can be found in statistical tests, which are based on metrics using a normalization

with respect to the standard deviation. In univariate statistics, we may apply Student’s t-

test, otherwise we use Hotelling’s T2 test (Hotelling, 1933, see Appendix A1.2), which is

based on the Mahalanobis distance (Mahalanobis, 1925). In this metric, the distance vector

d(b,c) is normalized by the inverse covariance matrix

ed2¼ðb� cÞC�1
B;Cðb� cÞT (A1.29)

where CB,C is the pooled covariance matrix of samples belonging to classes B and ℂ. On
the basis of the Hotelling’s T2 test, we may also derive a criterion for deciding whether

some components are relevant for our distinction. Recall Hotelling’s T2

T2¼NBNC=ðNBþNCÞ ed2 (1.30)

(see Appendix A1.2). We first obtain T2 for the full set of components T2 and eT2
for the

reduced set with eL. We define
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F ¼ðNBþNC � L� 1Þ��L� eL��T2� eT2���ðNBþNC � 2Þþ eT2�
(1.31)

where NB and NC are the number of samples in groups B and ℂ. F follows an F

distribution with degrees of freedom L � Leand NB þ NC � L � 1 (see, e.g., Krzanowski,

1988). For small levels of significance, we may decide that working with a reduced feature

set is sufficient for our purposes.

The t- and T2-tests can give useful hints if our problem is linear and our features follow a

multivariate Gaussian distribution. Recall that the T2 test uses a pooled covariance matrix;

in other words, we assume that it describes dispersion of both groups B and ℂ. In many

practical applications, this does not hold, and we also have to be aware that features are

not normally distributed. Therefore, we may follow more general testing schemes, which

rely on the available data themselves.

In the classification techniques with supervision (see Chapter 2), we will first examine

whether our classification scheme is able to reproduce the a priori information. For a given

feature vector, our classifier will output a ‘1’ (or TRUE) if a pattern belongs to some class

A, otherwise the output is ‘0’ (or FALSE). In this phase, we verify whether our classifier

is able to “learn” how to distinguish the patterns. If the problem is well conditioned, we

get a high rate of success, i.e., ‘1’ assigned to the desired class. Nonetheless, the only

success of learning does not suffice to warrant a high quality classifier. In Chapter 2, we

shall learn that nonlinear classification can be transformed to a linear one augmenting the

dimensionality of the feature vector. This is exploited in the Multilayer Perceptron and the

Support Vector Machines. In the extreme case, we may be able to resolve any

classification problem, provided that we have an unlimited number of dimensions or

features. Even though we may achieve a (close to) 100% percent of success, the

punishment is just round the corner. Applying the classifier to other patterns, outside the

basket of samples used for learning, we risk considerable error. Therefore, in supervised

classification schemes, we perform the so-called “cross-validation”. In cross-validation,

some data are set aside in the sense that they are not used for learning the classifier

criteria. This data set is referred to as the “test set” whereas the data used for learning are

called the “training” set. The success of a classifier is assessed by applying it to the test

data and checking whether we obtain the desired output. That way we are able to verify

whether our whole scheme, comprising the chosen features, is valid.

We shall learn more about testing schemes in the chapters presenting real data applications

(in particular, Chapter 4 and 6). Here we just cite some elements, which guide the design

of the testing schemes:

- test and training sets are defined by a random selection. As data are always limited, we

may decide to use a minor part for testing such as 20%e30%;
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- testing has often to be repeated several times so that (almost) all patterns have a chance

to be selected as test patterns; and

- testing schemes should go beyond the simple rate of success of matching classifications,

as they may achieve a success by chance, particularly when one class has much more

samples than the competing ones.

We can exploit our general test schemes for purposes of feature selection in the same way

as the conventional statistical test. We may repeat the classification using various

configurations of features, for instance by applying a jack-knife approach or nonlinear

optimization algorithms such as genetic algorithms where we search for an optimum

configuration of features considering the error for the test data set.

Appendix 1 Basic notions on statistics
A1.1 Statistical parameters of an ensemble

Many considerations presented here are based on statistics, where we describe the

distribution of ensembles of values and objects. As their number is typically large, we

condense the information by using some parameters summarizing the essential properties

of the distribution of our data.

The mean of an ensemble of N data xi is given by

m¼ 1=N Sixi (A1.1)

where i runs from 1 to N. In the same way, we define the mean vector

m¼ 1=N Sixi (A1.2)

which sometimes is referred to as the “centroid” of an ensemble. The second parameter is

a measure of the dispersion of the data, which we express by the variance

s2¼ 1

N � 1
Siðxi � mÞ2 (A1.3)

The square root s (standard deviation) is the root mean square of the distances of the

samples from the average. We now may ask about probability to find a sample within a

certain range. Alternatively, we might consider the rank of our samples and the percentiles

of the data found at the limits of the range. This requests ordering the data with respect to

their size. The use of ranked data and percentiles makes no assumption on the probability

density function of our population of samples. However, it comes with severe drawbacks

when we face with multivariate data.

Most commonly, the probability density function is assumed to be Gaussian:

f ðxÞ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ps2Þe�1

2
ðx�mÞ2=s2

q
(A1.4)

Patterns, objects, and features 27



Given the mean m and the variance s2, we can calculate the probability of finding a value

xi in the range of m � Dx, for instance m � s, i.e., 68%, and m � 2s, i.e., 95%. That is, the

distance Dx transforms into a probability using the variance as the parameter of

conversion. In pattern recognition, we first search for a distance measure and then use it as

a criterion for assigning a pattern to a class.

In the multivariate case with L components, the distance m � Dx can be a criterion for

assigning a pattern to a class only if the data are normalized and uncorrelated. In general,

the sum of variances Sis
2
j ; j running from 1 to L, does not represent the total dispersion of

our data. A generalized measure of dispersion of a multivariate ensemble is given by the

covariance matrix C.

Considering the random variable X1 and X2, then

s21¼
1

N � 1
Siðx1i � m1Þ2 ¼ EðX1 � m1Þ2

s22¼
1

N � 1
Siðx2i � m2Þ2¼ EðX2 � m2Þ2

and

s12¼ s21 ¼ E½ðX1�m1ÞðX2�m2Þ�
where E(.) is the expectation of the argument specified in the parantheses.

For the L-dimensional ensemble, the covariance matrix C reads as

C¼

2
64
s11 / s1L

« 1 «

sL1 / sLL

3
75 (A1.5)

C is symmetric, i.e., sij ¼ sji. Together with the centroid vector, the covariance matrix

allows us to identify position and orientation of the ensemble in the data space. Recall, for

instance, the regression coefficient in the two-dimensional case, which is given by

bij¼ sij=sii

and gives the slope of the regression line. Rather than using the regression coefficient, we

may use the eigenvalues and eigenvectors of C, specifying the shape and orientation of the

distribution of our ensemble. In PCA, we exploit the eigenvectors for rotating our samples

to a new system of axes, facilitating the discrimination of data groups.

Similar to the univariate case, we may use the distance of a sample xii from the centroid

mA as a measure of the probability that the sample belongs to class A. In doing so, we

suppose that members of class A are multivariate normally distributed around mA with CA

being the covariance matrix.
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The distance, which can be read as probability, is the so-called Mahalanobis distance, i.e.,

d2¼ðxi�mAÞC�1
A ðxi � mAÞT (A1.6)

In the case of a univariate Gaussian, we were able to say that 68% of data fell in a range

of �s around the average, i. e., we consider a normalized distance (xem)/s for the

transformation of a, physical, distance into a probability measure. In the multivariate case,

this kind of transformation is obtained by calculating the Mahalanobis distance, where

C�1 appears instead of the s in the denominator (Fig. A1.1).

For some distributions, the parameters such as mean or variance are not defined. Consider,

for instance, the Cauchy probability distribution

f ðxÞ¼ �
1þ x2

��
p (A1.7)

The theoretical mean is obtained from

m¼
Z

x f ðxÞdx (A1.8)

Carrying out the integration from �N to N, we discover that the integral does not

converge. A (imaginary) body having a Cauchy mass distribution has no defined center of

gravity, as its tails are too heavy.

Figure A1.1
Variance and distance. In the univariate case (A), a Euclidean distance measured in multiples of
the standard deviation turns into a probability. In the multivariate case (B), we have to account

for the direction in which we measure. The colored ellipses depict bivariate Gaussian
distributions for two different ensembles. Even though the Euclidean distance of the black

asterisk to the centroid of the upper ensemble is smaller than the one to the other centroid, the
asterisk belongs more likely to the latter one. The Mahalanobis distance accounts for that.
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The standard deviation has been derived from the summed squares of the differences of x

with respect to its mean. For distributions not being uniform or Gaussian, the so-called

“higher-order cumulants” can be of interest. The “skewness” g is given by

g¼EððX � mÞ=sÞ3 (A1.9)

and is a measure of asymmetry of a distribution. For instance, the log-normal distribution

is asymmetric (Fig. A1.2).

The “kurtosis” is obtained from

u4¼EðX � mÞ4 (A1.10)

In order to compare it more easily with a Gaussian (or “normal” in Fig. A1.3) distribution,

one defines

eu4¼u4

.�
s2
�2

Figure A1.2
Distributions with positive (A) and negative (B) skewness. For reference, a Gaussian distribution

is shown as a dotted line.

Figure A1.3
Shape of distribution functions with positive and negative kurtosis. A Gaussian (or normal)

distribution is depicted as reference.
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Having ue4 ¼ 3 for a Gaussian distribution, we speak of a positive kurtosis for ue4 > 3, and

a negative kurtosis for ue4 < 3.

A1.2 Distinction of ensembles

In classical statistics, we face with a problem which is closely related to the classification

issues discussed in our book. A typical question is whether two ensembles belong to the

same parent population. For instance, we check a number of batteries finding that some of

them do not match the requested lifetime. Did something deteriorate during the process of

fabrication? In our problem of feature selection, we may have the inverse questiondare

the features appropriate for discrimination purposes?

A first answer is given by the famous “Student’s t-test”. Suppose we have two groups A and

B, for which we estimate the means mA and mB. We consider the difference mA � mB ¼ d

and normalize d for the pooled variance, i.e., s2 ¼ (sA
2 (NA � 1) þ sB

2 (NB � 1))/(NA þ NB),

with the s2A,B being the estimated variances of groups A and B. The variable

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½NANB ðNA þ NB � 2Þ=NA þ NB Þ�d=s

p
(A1.11)

can be used for testing the hypothesis that the two ensembles differ with respect to their

mean. For instance, for t ¼ 1.97, we can reject the hypothesis “the two means are equal”

with a level of significance of 95%.

For a similar testing in the multivariate case with L dimensions, we may again exploit the

concept of the Mahalanobis distance

D2 ¼ðmA�mBÞCA;B
�1ðmA � mBÞT

where CA,B is the pooled covariance matrix of A and B. Similar to the Student t-test, we

define Hotelling’s T2, i.e.,

T2¼NANB=ðNAþNBÞD2 (A1.12)

and test for

F¼ðNAþNB� L� 1 = ½ðNAþNB� 2ÞL�T2 (A1.13)

where F follows the F-distribution. From these, we may get a first idea whether the choice

of features is appropriate. Note that we also can formulate a minimum request on the

number of samples with respect to the dimension of the feature vector L. If

NA þ NB � L þ1, the separation of the two groups will be rejected whatever distance we

may find.
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CHAPTER 2

Supervised learning

2.1 Introduction

In the preceding chapter, we learned about patterns and objects, and the way about how

these are characterized. We discussed on how to identify suitable feature vectors and

outlined some procedures, which facilitate our task, such as choosing a suitable

standardization, carrying out some calculus for the extraction of features, and performing

transformations, which further make our task more affordable. In this chapter and the next

chapter, we shall learn about techniques on how to handle the complex objects and

patterns, allowing one to establish criteria for making decisions or taking actions. The first

group of methods, treated in this chapter, belongs to the “supervised learning” and

“supervised classification” strategies. These strategies make use of a priori information

inferred from examples of patterns, supposing to know to which class they belong. For

instance, we look at a rock, anddbased on our observationsdwe assign it to a

categorydvolcanic, plutonic, sedimentary, etc. In the analysis of images, we shall assign

certain areas to “woods”, “farmland”, “water”, and other, moving on from texture

properties. In the following, we shall present an example problem, which consists of

assigning seismic signals to the category “earthquake” or “explosion”. For the sake of

ease, we keep it simple, considering only two dimensional feature vectors and only two

classes, in fact “earthquakes” or “explosions”. Nonetheless, being a quite simplified

problem, basic concepts become quite clear and generalization to more complex tasks with

higher dimensional feature vectors and more classes is straightforward.

Our decision, whether to assign a pattern to a class, exploits features and feature vectors,

such as the ones described in Chapter 1. However, this a priori classificationdcarried out

by us as expertsddoes not always follow well established criteria or rules, in the sense “if

condition TRUE then class A”. Indeed, being faced with multivariate featuresdfeature

vectorsdthe definition of those rules is rather difficult requiring the construction of

multibranched decision trees or being even an unaffordable task at all. So, we often base

our decision on some not explicitly stated experience, intuition.

The techniques of supervised classification offer possibilities of identifying reproducible

formalisms, i.e., rules or criteria in a wide sense. Those will help us to find an answer,

when the expert’s opinion is not available, or when we have to make many decisions in

little time. An important factor is the reevaluation of a priori established class membership
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of the patterns. First, we examine whether our adopted scheme is able to provide this

formalism, in other words, it is able to learn. Failure during learning may have two

reasons:

- the chosen method or features are inappropriate or

- the a priori classification (expert opinion) has flaws.

The first reason can be quite easily discovered, whereas the second one requires further

analysis known as the test phase.1 In Chapter 1, we mentioned, among others, cross-

validation tests in the context of feature selection and reduction; here we may exploit them

for checking whether our classification scheme is stable. Cross-validation tests are based

on data with (presumably) known class membership, which is set aside, i.e., not used for

learning. Once the classification formalism has been found, it is applied to the data set not

used for learning, in the sense of a blind check. Unsatisfying results mean that we reject

the formalism as it “overfits”. The error estimated during learning is overly optimistic,

because the classifier used has too many degrees of freedom. If the a priori classification is

flawed, the classifier may be able anyway to find a solution that is valid only for the

specific data used during learning, but fails if applied to new data.

In the following, we shall outline basic concepts of some learning schemes with

supervision. We start with linear discrimination, applying it to a famous problem in

seismologydthe discrimination of earthquakes from nuclear test explosions. Being far

from presenting an exhausting solution for the issue, it allows an intermediate

understanding of the discrimination problem. Besides using the classical Fisher

discrimination technique, we can generalize linear discrimination in the perceptron

approach and the Support Vector Machines. The latter have become rather popular as they

can be extended to problems, where discrimination with linear functions is not possible.

An intriguing property of these techniques is that we do not have to make any a priori

assumptions on the distribution of the features of our patterns.

In Hidden Markov Models (HMM) we consider sequences of observations rather than

single patterns. In our framework of supervised classification we have to restate the

problem, as we have no straight forward metrics allowing to distinguish between the

classes. Generative models, such as HMMs and Bayesian Networks (BNs), are based on

the solution of the task “find the most likely model explaining the sequence of

observations at best”. These strategies offer an appealing characteristics, asvariables

making up our observations can be of any type: numerical, ordinal or categories. Even

class member ships found by other classification methods can be re-used in HMMs or

BNs.

1 The necessity for this kind of testing resides in the fact that techniques like the MLPs and SVMs allow us to
classify any data, even consisting of noise. The same holds if the number of features is unlimited.
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2.2 Discriminant analysis
2.2.1 Test ban treatydsome history

Back in 1954, 9 years after the “Trinity” testdthe world’s first nuclear explosion was

conducted in Alamogordo (New Mexico, USA), on 16 July, 1945, and the Prime Minister

of India, Jawaharlal Nehru, advocated a “standstill agreement” on nuclear testing (http://

www.ctbto.org/the-treaty/history). By the mid-1950s, USA and USSR started conducting

high-yield thermonuclear weapon testing in the atmosphere. As the radioactive fallout

from these tests increased international concern, the Partial Nuclear Test-Ban Treaty

(PTBT) was signed in 1963 banning nuclear testing in outer space, the atmosphere, and

underwater.

However, underground testing was not banned. Therfore, the number of tests greatly

increased. The reason for not banning underground nuclear tests was partly due to

verification difficulties. Nuclear test ban discussions held in 1958 provided a strong boost

to fill that need. A panel of US experts considered research needs for improving the

national capability in the detection and discrimination of underground nuclear explosions

(see Peterson and Hutt 2014). One of the panel recommendations was the installation of

standardized seismographs with accurate clocks at 100 to 200 existing seismograph

stations. Even though the needs for the detection of underground nuclear tests provided a

decisive kick, the boost of the monitoring systems achieved a broader target, producing

valuable data needed for fundamental research in seismology.

The deployment of the “World Wide Standard Seismic Network” (WWSSN) by the USA

in the 1960s formed the backbone of the surveillance system for nuclear testing carried out

by the USSR and other countries, such as China and India. Many countries around the

world participated in the WWSSN, making it the first true global seismic network. The

stations were equipped with two types of three component seismographs: short-period

sensors with a natural period of T0 ¼ 0.8 s and long-period sensors with T0 ¼ 15 s.

Records on the short-period seismometers were commonly used for the estimation of the

body wave magnitude mb, whereas the surface magnitude MS was defined on the

amplitude of surface waves, whichdfor teleseismic earthquakesdhave a dominant period

of ca. 20 s and can be well read on the long-period records of the WWSSN network.

2.2.2 The MSemb criterion for nuclear test identification

The distinction between nuclear tests and earthquakes exploits differences in their sources,

which mirror in the characteristics of the radiated seismic signals. In a first approximation,

nuclear shots are explosive events causing compression in all directions and a radiation

pattern of seismic energy showing spherical symmetry. Typically, the geometrical
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dimensions of the sources are small and the duration of the radiated signal, which mainly

travels in the form of compressional (P-) waves, is short.

Earthquakes are the result of a sudden release of energy accumulated in rock during long-

lasting tectonic deformation. At some point, the material fails in a shear fracture and seismic

energy radiates with a prevailing content of shear (S-) waves and, to a minor degree, in the

form of P-waves. Besides, earthquake sources can reach considerable geometrical

dimensions, such as tens or hundreds of km. The duration of the source signal is proportional

to the dimensions of the seismic source, about 3 s for each 10 km of rupture length.

Let us suppose that an earthquake and explosion emit equal-amplitude P-waves. The

earthquake also emits large shear waves, which together with the compressional waves are

converted to Rayleigh waves at the earth’s surface (see Blanford, 1977). Thus, the surface

magnitude MS based on Rayleigh waves from an earthquake is larger than that from an

explosion even in the case of equal mb. From these considerations, we may infer that the

evaluation of MS and mb should provide a valid criterion for this discrimination problem.

Nevertheless, there are occasional earthquakes (and explosions) for which the MS/mb

discriminant fails.

2.2.3 Linear Discriminant Analysis

The discrimination between earthquakes and nuclear explosions is a two-class distinction

problem with two variables: MS and mb (see Fig. 2.1). In classical univariate statistics, we

can base our distinction criterion between the two groups on average and variances, asking

for instance whether the average value of the group A is higher than that of the group B,

and the significance of the distinction resulting. The Student t-test is based on this

consideration. Such reasoning, however, is quite meaningless for our purposes, as

Figure 2.1
MSemb relation for earthquakes (red triangles) and nuclear tests (blue squares). Values correspond

to Marshall and Basham (1972).
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earthquakes are not simply “larger” or “smaller” than nuclear explosions. In other words,

we cannot solve the problem considering MS or mb only.

An example of distribution of the magnitudes Ms and mb is shown in Fig. 2.1. In this

example, group A corresponds to earthquakes with NA samples and group B covers NB

samples of nuclear tests. Components Xi are the magnitudes. In univariate problems, the

dispersion of the data is defined by its variance. As discussed in Box 2.1, the variance with

respect to the single components may not suffice to describe properly the dispersion of

these multivariate data sets. We use instead the covariance matrix C, in which the variance

(with respect to the single components) is found in the diagonal elements, whereas the

covariance is given in the off-diagonal elements (see Appendix 2.1). We notice that a

distinction between the two groups in Box 2.1 is enabled by a rotation of the axis. The

angle of rotation is chosen so that the direction of one of the new axes coincides with the

direction where the elongation, or spread, of the data clouds is maximum. The other axis

is perpendicular. For the identification of the orientation of the new axes, we can exploit

the covariance matrix C, which is symmetric and positive semidefinite. The identification

of the axis where the maximum elongation/spread is measured is an eigenvalue problem,

where the largest eigenvalue describes the maximum elongation of the data cloud, and

the corresponding eigenvector gives its orientation with respect to the original axes. On the

contrary, the minimum dispersion is encountered along the axis corresponding to the

smallest eigenvector, and this is the one where the distinction can be seen more clearly.

In our specific problem of distinction between earthquakes and nuclear tests, we describe

the position of the two data setsdearthquakes and nuclear testsdin the two dimensional

MSemb data space by the coordinates of the centroids, which are obtained by

XA;B¼
XNA;B

i¼1

xi

where NA,B indicates the number of earthquakes or nuclear test. In our example the

centroids or average vectors are

XA¼ �MS;mb

� ¼ ð3:99; 4:58Þ
XB¼

�
MS;mb

� ¼ ð3:89; 5:33Þ
The extension and orientation of the data sets in the MSemb system of axes are given by

the covariance matrices CA and CB of the two groups, here

CA 0.3866 0.2706

0.2706 0.2311

CB 0.4922 0.3603

0.3603 0.2865

Supervised learning 37



Box 2.1 Marginal Distributions.

The above-mentioned reasoning is strongly related to a general problem encountered with the
so-called marginal distributions. They come as a projection of a multivariate distribution to a
low-dimensional representation. In the figure shown here, we demonstrate the issue with a hy-
pothetical two-dimensional (2D) test set, created randomly from two Gaussian distributions.
In the central panel of the figure, we clearly recognize a separation of the two data groups. In
the projection of the distribution to one of the axes (either X1 or X2, see panels at the left and
bottom), the distinction is essentially eclipsed. The drawback of marginal distributions pops
up every time there is a plot for a number of variables less than those originally present in the
data set. The problem can be fixed by a suitable data transformationdhere a simple rotation,
which allows us to distinguish the two groupsdwhich is illustrated in the panel in the upper
left corner. The user may reproduce the figure using the MATLAB™ script “S2_2” coming
along with the book.

On a sheet of paper, we can easily create 2D plots, but the representation of higher dimen-
sional distributions is a complicated issuedand this difficulty is one of the motives for
applying pattern recognition techniques!
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we form the pooled covariance matrix

CP¼ðNA,CA þ NB,CBÞ
ðNA þ NBÞ

where NA and NB are the number of earthquakes and nuclear tests, respectively.

We now calculate the eigenvalues l and eigenvectors w of CP, getting

l1¼ 0:6773; l2 ¼ 0:021

w1¼ð0:602; � 0:7985Þ
w2¼ð�0:7985; � 0:602Þ

Finally, we rotate our original vectors multiplying them with the eigenvector wi, getting a

new set of now univariate values, i.e.,

Z1¼XT
A;B,w1

Z2¼XT
A;B,w2

For the sake of distinction, we should establish a threshold between the two data sets. As

we use a pooled covariance matrix, we assume implicitly that CA wCB w CP, and the

separating line should pass at equal distance from the two average vectors XA and XB. We

take the global mean

Xglob¼ 0:5,
�
XAþXB

�
and rotate to get

z1¼X
T
glob,w1

z2¼ X
T
glob,w2

and find z1 ¼ �1.5874 and z2 ¼ �6.1355. In our example, all elements of Z1 belonging to

group A (earthquakes) are above z1 ¼ �1.5874 and those belonging to group B (nuclear

tests) are below (Fig. 2.2). In the original system of axes, the discriminating line passes

through Xglob ¼ (3.9435, 4.9611) and has a slope of 0.75. A MATLAB™ script

“S2_1”reproducing Fig. 2.2 is included.

The approach outlined here exploits the concept of PCA and can be easily understood

from the underlying geometrical concepts. A more formal description of FLDA is given in

Appendix 2.1, where we also discuss the case where CA s CB and the discrimination

function becomes quadratic.
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2.3 The linear perceptron

The perceptron concept was invented by Rosenblatt (1958) as a probabilistic model for

information storage in the brain. Fig. 2.3 outlines the basic characteristics of a simple

linear perceptron. In the jargon of artificial neural networks, x is referred to the input

layer. Interconnections between the neurons are activated or inhibited according to the

stimulus arriving at a sensorial layer. The degree of activation (or weights) of the

interconnection can be adjusted by comparing the response of the network to some known

information (‘target’). In the ‘untrained’ network, the weights of the interconnections have

some random values and are successively adjusted in a manner that the network finally

responds in the desired way.

Rosenblatt was able to proof the convergence of the learning, i.e., thatdin linear

problemsdit is possible to adjust the network weights such that their response is close to

the desired one. For the intriguing similarity of the computer-based processing scheme to

learning process encountered in brains, those systems of interconnected neurons are often

referred to as “Artificial Neural Networks”. However, these somewhat mystical terms lead

to overly optimistic expectations, finally reflecting discredit on the whole field of research.

Minsky and Papert (1969) reformulated the perceptron approach in rigorous terms of

prediction calculus. Their harsh criticism, in particular with respect to limits of the

approach in nonlinear classification problems (impossibility to resolve the simple XOR

Figure 2.2
Earthquakes and nuclear tests after rotation.
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problem), brought the perceptron concept almost to an eclipse. In the following decades, it

turned out that the limits can be overcome by considering more complex configurations

and nonlinear activation functions. Consequently, the method remains on the screen of

researchers working on classification problems.

Here we outline the perceptron concept in terms of prediction calculus and underscore the

link to the more conventional, statistics-based approaches outlined in Section 2.1. In the

PCA and FLDA (see Appendix 2.1) example, we solved the discrimination problem by

reducing the multivariate variable X to a one-dimensional variable Z, carrying out a

suitable linear combination of the components. We have discussed generalizations

allowing for differences in the covariance matrices between the groups. In both cases, we

assume that the distance of a sample xi to the average mk of the k-th group or class is a

measure for the probability that the sample belongs to this group. Finally, we assign a

class membership to the group for which the highest probability is achieved.

Figure 2.3
Flow chart of the basic perceptron model. We distinguish an input layer where the data vectors x
with components xi are stored. A weight wi is applied to each of the xi. Lines representing the

weights wi are often referred to as “synapses”, whereas the nodes (both the input nodes xi as well
as the processing units, such as the “S”) are “neurons”. Finally, the sum of the weighted xi is
further transformed applying an activation function f (in this context f is linear). During the
learning phase, the output of the perceptron is compared to a desired output; weights wi are

adjusted in order to minimize the difference of the perceptron’s output and the target.
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In the perceptron approach, we follow a slightly different idea (see, e.g., Bishop, 1995;

Theodoridis and Koutroumbas, 2009). We ask for a function g(x) which separates the

members of two groups A;B to the highest degree.2 Once established, we wish to use it as

a decision criterion for the class membership of the samples. Ideally, it will be able to

separate all samples, that is, the class memberships using our distinction element are the

ones originally defined.

We start with the linear case:

gðxÞ¼wTxþ w0 (2.1)

which is a line for a 2D case and becomes a (hyper)plane if the number of dimensions is

greater. Having the so-called biases w0 s 0, g(x) will not pass through the origin. We

extend the dimension of the vector x considering ex ¼ (x,1) and search for g(ex) such that

wTex > 0 for all ex ε A (2.2a)

wTex < 0 for all ex ε B (2.2b)

The solution is searched in terms of optimization; to this purpose, we choose a cost

function

JðwÞ¼
X
ex˛Y

�
dxw

Tex� (2.3)

with Y being the set of misclassified samples. dx ¼ �1 forex ε A (but classified as B),

dx ¼ 1, and ex ε B (but classified asA), making sure that J is positive at any time and zero

if no samples were misclassified. Compared to PCA/FDLA or quadratic discrimination,

the solution for x is not unique. Typically, iterative procedures have to be applied for its

identification (see Appendix 2.2).

The iteration will formally not converge if the two groups cannot be separated by a linear

element. We could accept a number of misclassifications but this tolerance had to be fixed

a priori, which is a severe drawback of such an approach. As we have to live with errors

and noise, we may attempt to design a linear classifier where the desired output is again

�1, but the output of our classifier may not be exactly equal to the desired one.

We redefine our cost function

JðwÞ¼E
��

y� xTwÞ
�2

(2.4)

2 It is an intriguing property of the perceptron approach that the degree of separation is a user-defined
measure. Rather than depending on the statistical properties of the data setsdas the PCA or the FLDAeit is
based on the a priori defined target classes. It also allows the application of specific cost functions that
weigh individually the contribution of each sample to the error.
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E(.) is the expectation. J(w) corresponds to the mean square error (MSE). Taking the

derivative and setting to 0 (looking for the minimum of J), we find

2E
�
w
�
x
�
y� xTw

���¼ 0 (2.5)

and solve for w

w¼E
�
xTx
��1

EðxyÞ (2.6)

The term EðxTxÞ is the so-called “autocorrelation matrix” of x (corresponds to the

covariance matrix if averages of x are zero), and E(xy) is the cross-covariance of x and y,

i.e.,

EðxyÞ¼E

0
B@
0
B@

x1 y

«

xl y

1
CA
1
CA

The mean square optimal vectors are obtained by solving the linear equation above. We

can apply this scheme to our mb/MS example of earthquakes and nuclear explosions. For

this purpose, we have created a small MATLAB script named “S2_3”, which starts with

the steps:

1. Augment the dimension of the data vectors by adding a column of ‘1’s.

2. Form the expectation matrix EðxTxÞ and take its inverse.

3. We need the vector y for the target output, and calculate w as above.

4. Calculate the vector of outputs from the product xTw, considering only positives.

5. Sum over outputs multiplied with the targets. Here we consider only negative products,

i.e., misclassifications. As we noticed earlier, earthquakes and nuclear explosions can be

perfectly separated with a linear function. Therefore, we shall get a zero error.

We can also create a test data set. This can be achieved by generating values randomly,

assuming a multivariate Gaussian with the averages and covariance of our original data

sample (for instance, using the MATLAB “mvnrnd” command). As the earthquakes and

nuclear explosions were well separated, we get zero error also for the random test set. We

may simulate a situation in which we have a stronger noise in the test data (Fig. 2.4). This

helps us to understand whether our distinction criterion is robust, i.e., whether we can trust

the result when it is applied to new data (that is, the target outputdearthquake or nuclear

explosiondis not known a priori). We shall come back to the test issue repeatedly in our

book as it forms a critical issue, especially in Chapter 4.

In our example, we just multiplied the covariance matrix of our random set by a factor 4,

simulating a stronger presence of noise. In fact, we get some small error, as for some

samples of the test data set, linear separation is not possible (Fig. 2.5).
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Fig. 2.6 shows the calculated class membership values, xTw. The blue circles are those

obtained for our random simulation of MSemb pairs (see Fig. 2.4, left panel). From the

figure, we can see that 27 correspond to randomly generated MSemb pairs of earthquakes

(index 1e27) and 27 correspond to those of nuclear tests (index 28e54). All class

memberships for the simulated earthquake data are found with class membership below

0 and all nuclear tests have class memberships above 0. In other words, all samples fall

into the red fields in Fig. 2.6, which indicate the range of matching classification. We

obtain a 100% separation of the two data groups. We can apply our discrimination

criterion if the averages and the pooled covariance matrix are of the same order as in the

original data set. The red triangles show the scores when we simulated MSemb pairs with

a covariance matrix four times greater than the original one (see Fig. 2.5). Here we get a

Figure 2.4
Left panel: original data setdblue squares are the nuclear explosions and red triangles are the

earthquakes. Right panel: randomly generated test set using the averages and covariance
estimated from the original data set. Note that the test set was created using the pooled

covariance matrix of the two data groups, which causes slight differences in the aspect of the
data clouds. Nonetheless, our distinction rule yields zero error for the test set.

Figure 2.5
Randomly generated test set, using the averages from the original data set and covariance four

times greater than those of the original data.
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few positive class membership values for the simulated earthquakes (the desired output is

negative) and some negative for the nuclear tests (where the target is positive). In other

words, having more noise in the test data set than in the original one, we get some

misclassifications, which fall into the blueish fields shown in Fig. 2.6.

The treatment of the multiclass problem with M classes is straightforward. We modify our

cost function

JðwÞ¼E
��

y� xTwÞ
�2

(2.7)

such that

E
���jy�WTxj���¼E

 X
i

�
yi � wT

i x
�2! ¼ min

Here y is the vector of class memberships of dimension M, and has a ‘1’ for the class i to

which x is supposed to belong and ‘0’s for all other classes. W is the matrix of weight

Figure 2.6
Classification scores applying the MSemb discrimination criterion to randomly generated test
data. The blue circles stand for data where averages and covariance matrix correspond to the
original MSemb pairs of earthquakes and nuclear tests. Red triangles stand for data generated
with covariance four times greater than in the original data. All blue circles fall into the red

areas, i.e., no misclassification is observed. Some of the red triangles fall into the blueish areas,
i.e., are misclassified.

Supervised learning 45



vectors wi, i running from 1 to M. It is sufficient to design each of the discriminant

functionsdone by onedsuch that the target output is 1 for the corresponding class and

�1 for all the others.

2.4 Solving the XOR problem: classification using multilayer
perceptrons (MLPs)

In the perceptron approach discussed so far, we assumed that our data groupsdat least in

principledcan be separated by a linear function. The strategy of minimizing the squared

error allows us to account for noise, the presence of which may lead to a situation where

the data groups cannot be separated linearly in a strict sense, i.e., we have to accept some

misclassified samples. However, this strategy fails in problems that are intrinsically not

solvable with linear discrimination functions. A simple example for such a problem is the

well-known “eXclusive OR” (referred to as XOR) Boolean function. In the XOR problem

(Fig. 2.7), we assign the samples (0,1) and (1,0) to class A, odd parity, and (0,0) and (1,1)

to class B, even parity.

It is evident that the two classes cannot be separated by a single linear element, but we

have to insert a second element as shown in Fig. 2.8. In the architecture of the perceptron,

this is achieved by adding a new layer of nodes (“neurons”) and appropriate “synaptic”

weights, obtaining a “Multilayer Perceptron” (MLP). Here we have one input layer, a

second layer, called the “hidden” layer, and an output layer (see Fig. 2.9). The hidden

nodes can be referred to as “processing units”, which become active under specific

conditions. For the moment, we assume a threshold or step activation function and we

assign �1 for negative values and 1 for positive values. The formalism of such an MLP

consists of two steps. In the first step, the input vector x is transformed (“mapped”) to a

new one, y ¼ (y1, y2)
T.

Figure 2.7
The XOR problem.
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In the next step, we define the decision element separating the new sample vectors yi.

Suppose the configuration of the MLP shown in Fig. 2.9, which transforms to the

equations for the decision elements:

y1 ¼ g1ðxÞ ¼ x1 þ x2 � 1=2 ¼ 0

y2 ¼ g2ðxÞ ¼ x1 þ x2 � 3=2 ¼ 0

gðyÞ ¼ y1 � y2 � 1=2 ¼ 0

Figure 2.8
Decision area for the XOR problem.

Figure 2.9
Perceptron with one hidden layer. Biases (constants) are represented in the smaller circles.
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(see, e.g., Bishop, 1995). The yi depends on the input values xi and some constants that are

referred to as “biases” in the neural network jargon. The sample x ¼ (0,0) transforms to

y ¼ (�1/2, �3/2), x ¼ (1,1) becomes y ¼ (3/2,1/2), x ¼ (1,0) is mapped to y ¼ (1/2,-1/2),

and x ¼ (0,1) to y ¼ (1/2, �1/2). Now apply the step activation function (or sign function)

to the yi, i.e., zi ¼ 1 for positive and zi ¼ �1 for negative yi. We may plot the transformed

values in a new system with the yi as axes and recognize that we get a linearly separable

problem. We use again a step activation function in the output, i.e., we set z ¼ 1 for

g(y) > 0, class A, and z ¼ �1, class B, for g(y) < 0. We find g(y) ¼ �1/2 for the two

samples with even parity, x ¼ (0,0) and (1,1). For our samples with odd parity, x ¼ (1,0)

and x ¼ (0,1), we find g(y) ¼ 1/2. In other words, our even-parity samples are mapped to

a negative range and are assigned to class B (z ¼ �1), and the odd parities are mapped to

a positive range, i.e., z ¼ 1, and are assigned to class A.

In our XOR case, the solution of the classification problem resides in the addition of a

second decision element, i.e., the function g2(x). In the MLP scheme, this corresponds to

the addition of the second layer (the hidden layer). We can add more units defining more

complex decision boundaries. Note that each hidden unit divides the input space with a

line or hyperspace. That way, the decision boundaries surround a convex region. The

classification capabilities of the two-layer MLP are therefore limited to decision bodies

with a convex hull (see Bishop, 1995).

In Fig. 2.10, we reproduce a figure by Bishop (1995), illustrating a few decision

boundaries that can be generated with MLPs having no, one, or two hidden layers. It can

be demonstrated (see Bishop, 1995; Theodoridis and Koutroumbas, 2009) that, by

applying the step activation function in the hidden units, at least two hidden layers are

necessary for solving an arbitrarily complex classification problem.

Even though any classification problem could be solved with an MLP having at least two

hidden layers (applying the step activation function in the nodes), those configurations are

not very popular yet, as they entail many nodes and weights. A further problem is the step

activation function, which is not differentiable and hinders the application of gradient

methods for the search of optimum weights. For a more detailed discussion, we refer the

interested reader to the already mentioned textbook by Bishop (1995) and to Theodoridis

and Koutroumbas (2009) (Box2.2)

2.4.1 Nonlinear perceptrons

The identification of the weights using iterative schemes, such as gradient search methods,

is facilitated when activation functions in the units are continuous and differentiable. A

well-known example is the sigmoid function

f ðxÞ¼ 1
��

1þ e�ax
�

(2.10)
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Such a sigmoidal function can be considered as a generalization of the step activation

function, allowing for smooth flanks. A variation of this is given by a function like

f ðxÞ¼ 2
�
1þ e�ax

�� 1 (2.11)

which varies between �1 and 1 (see Fig. 2.11).3

Figure 2.10
Decision boundaries created with perceptrons of varying configuration. Note that this holds for
nodes with a step activation function (see Bishop, 1995). Biases are omitted for the sake of

simplicity.

3 A frequently used alternative to the sigmoid is the hyperbolic tangent (tanh) function, which has a shape
similar to the curve shown in Fig. 2.11. Besides, these so-called “radial base functions” (RBF) have gained
some popularity. They have the general form f(jjx -cjj), where c is some center. The most widely used form
of f is a Gaussian function. Perceptrons with RBF activation functions are reported to learn more rapidly
than their multilayer counterparts but have a minor performance with respect to their generalization
properties. Centers c may not be known and have to be identified with a clustering method, typically
K-means (see Chapter 3). In that case, RBF networks represent a scheme where a combination of supervised
and unsupervised learning is used. For more details, see e.g., Skorohod (2017).
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Box 2.2 XOR and statistical discrimination.

In the FLDA and PCA approach, we have been using statistical properties of the groups for
their discrimination. These parameters are namely the averages and the covariance. In both
the FLDA and PCA approach, we have been assuming that both groups have the same covari-
ance matrix, which is estimated by calculating the so-called pooled covariance matrix. This
leads to a linear discrimination function by lines and (hyper)planes.

In Appendix 2.1, we discuss on how to use a likelihood approach for discrimination. In that
case, we used the covariance matrix for the definition of a metric, whichdonce we assume a
certain underlying distributiondcan be interpreted as a probability that a sample placed at a
certain distance from the centroid of a group belongs to that group. The likelihood strategy
also allows for cases where the covariance matrices of the data group differ. This case leads to
nonlinear discrimination functions. In the example shown here, we have two ensembles where
diag C1 ¼ diag C2, but off-diagonal elements are of opposite sign. Averages of both groups
coincide and the distribution of both classes is bivariate Gaussian.

In the figure, to the left, we show the two data groups with red and blue symbols indicating
their target classification. On the right, we see the same data, but class membership has been
assigned a posteriori based on a likelihood approach. There are a few differences around the
centroids. This is no surprise as the two Gaussians are very similar around the centroids. In
general, we notice that the a posteriori classification matches the target pretty well. We may
identify the data lying along the diagonal as those with more or less even parity, such as the
elements (0,0) and (1,1) in the XOR problem. The other data in perpendicular direction
represent the odd parity data (i.e., they correspond to the elements (0,1) and (1,0) in the
XOR problem). The reasoning outlined here follows a Bayesian strategy, i.e., we assume that
the probability that a sample belongs to a class can be inferred from the Mahalanobis dis-
tance to the centroid of the class. In the perceptron approach, we avoid this a priori assump-
tion. In unsupervised classification, however, the application of a likelihood strategy can be
very successful.
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The clue of using those sigmoidal activation functions resides in the theorem of Cybenko

(1989), which says:

Denoting the n-dimensional unit cube as In and the space of the continuous functions as

C(In), then the final sums of

GðxÞ¼
Xn
i¼1

bis
�
wT
j xþwj

�
(2.12)

where w˛ Rn, bj, wj˛ R, and s(.) a sigmoidal function, are dense in C(In).

In other words, it is possible to approach any function of arbitrary degree of complexity

by a two-layer neural network, whose hidden neurons apply a nonlinear weighting

function. Thus classes, whose envelopes are of complicated shape, can be anyway

distinguished from each other, and it is possible to establish any kind of regression

function between input and output vectors.

We can denote the output of an MLP with one hidden layer (see, e.g., Hornik et al., 1989)

as

ykðxÞ¼
XNH

j¼1

cj

h
s
�
wT
j x
�
þ tj

i
þ ck (2.13)

(see Fig. 2.12), where NH is the number of nodes in the hidden layer. The output consists

of the weighted sum of sigmoidal functions applied to the units of the hidden layer. We

can understand this operation as a kind of transform, similar to the well-known Fourier

transform in Fourier analysis, where we represent our original data as the sum of sine and

Figure 2.11
The sigmoid function.
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cosines. The accuracy that can be achieved depends on the number of elementsdhidden

nodes and number of sigmoidal functions. The higher the number, the better the accuracy.

As before, the determination of the weights is an optimization problem. Among the most

popular ones, there are the backpropagation algorithm (originally proposed by Werbos,

1974), simulated annealing (Kirkpatrick et al., 1983), and genetic algorithms (e.g.,

Holland, 1975, 1992; Goldberg, 1989). Even though being very powerful, the latter are

highly time consuming; this prevents their application to larger networks. Backpropagation

is considerably faster, but one may be trapped in local minima. However, this problem can

often be fixed by starting over with a new set of initialization weights or a slight change to

the number of hidden neurons. Despite that backpropagation does not always lead to a

global optimum of the weights, it is the most frequently applied method.

The essence of backpropagation relies on the fact that the error encountered in the output

can be traced back (backpropagated) to the weights in a simple way following the

Generalized Delta Rule. During the training, the data vectors are passed one by one to the

network updating the weights by a fraction h of the backpropagated error. The choice of

the learning parameter depends on the problem, a small value leads to a better but slower

convergence whereas too high values will make the iteration bounce between solutions

with an unsatisfying error. The interested reader may find more details and practical hints

on training problems in textbooks like Freeman and Skapura (1992). Here we outline the

backpropagation algorithm in Appendix 2.2.

Figure 2.12
A perceptron with one hidden layer and nonlinear activation functions in hidden nodes. This

configuration represents the minimum scheme for a perceptron able to resolve general nonlinear
classification problems.
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2.5 Support vector machines (SVMs)

In SVMs, we try to separate the examples belonging to different a priori known classes by

a gap that is as wide as possible. The elements that delineate the margins of the gap are

the so-called “support vectors” from which the name of the techniques is derived. In the

linear case, the identification of the widest gap leads to a unique solution, which is not

guaranteed by a linear perceptron approach (see Section 2.3). Though being essentially

based on the identification of a linear discriminating function, nonlinear classification

problems can be tackled by applying the so-called “Kernel Trick”. The trick consists in

applying a suitable mapping function of the original feature space to a higher dimensional

one, at the same time maintaining numerical efficiency. In the following, we give a short

description of the SVM concept, starting from the linear problem and outlining the

“Kernel Trick”.

SVMs were invented by Vapnik in 1995 (see Vapnik, 1999; Vapnik and Kotz, 2006) and

are by now one of the most popular methods in supervised machine learning. Among the

rich literature on the subject, we mention here Campbell and Ying (2011), Han et al.

(2011), Schöllkopf and Smola (2002), Theodoridis and Koutroumbas (2009).

2.5.1 Linear SVM

Similar to the perceptron, we start with the linear separable problem, i.e., we search a

linear function given in Eq. (2.1)

gðxÞ¼wTxþ w0 ¼ 0

which separates our two groups at best. In the linear perceptron, we considered the term

“at best” simply defined by the number of misclassified samples, i.e., samples ending up

on the wrong side of the discrimination function. That way the solution of the

discrimination problem is not unique, however. In Fig. 2.13, we recognize various lines

separating the two groups without any misclassification, for instance the two dotted lines,

the thin solid and the fat line right in the middle of the two groups. In the SVM approach,

we raise the request on the quality of separation. Indeed, we look for the elements that

separate the convex hulls of the two groups with the largest margin.

In Fig. 2.13, we delineate this margin with two thin solid lines. These lines touch the

border elements of the two groups, highlighted as circles with orange and blue rings,

which are addressed to as “support vectors”. The fat line represents the optimum

discrimination element. From conventional math, we calculate the width of the margin by

2/jjwjj.
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As in the linear perceptron, we require

wTxþ w0 � 0 cx˛A

wTxþ w0 � 0 cx˛B

or

yi
�
wTxiþw0

� � 1 (2.14)

for all i ¼ 1.N.

In this case, we define the cost function as

Jðw;w0Þ¼ 1 = 2kwjj2 (2.15)

which has to be minimized. This corresponds to maximizing the width of the margin

between the two groups. The two elements delineating the margins are defined by the

vectors for which

wTxþw0 ¼ �1 (2.16)

Those vectors are referred to as “support vectors”.

The identification of the minimum of the cost J thus becomes a nonlinear (quadratic)

optimization problem with linear constraints. Optimization problems with constraints are

typically tackled using the Lagrange multipliers, see Appendix 2.3.

Figure 2.13
The (linear) SVM problem. The support vectors are marked with blue and orange rings around

the corresponding circles.
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Finally we have to identify the optimum Lagrange multipliers such that

maxl¼
0
@X

i

li� 1 = 2
X
ij

liljyiyjxixj

1
A (2.17)

subject to

Siliyi � 0

l � 0

In the real world, we are faced with noisy data. Suppose the gross of our data remains

separable with a linear element. We want to maintain the concept of linear classification,

despite some few samples behaving as outliers and falling on the wrong side of the

hyperplanes. For SVMs, where separation relies critically on the marginal

samplesdsupport vectors are at the marginsdthose outliers may become a nasty

phenomenon. For this reason, we introduce the so-called slack variables x.

We distinguish between points where

0� yi
�
wTxiþw0

� � 1 (2.18a)

i.e., points which fall between the hyperplanes but are anyway correctly classified,and

yi
�
wTxiþw0

�
< 0 (2.18b)

i.e., definitely misclassified samples.

We generalize our criterion to

yi
�
wTxiþw0

�� 1� xi (2.19)

where xi is the slack variable. For 0 < xi � 1, samples are inside the space between the

two hyperplanes, but are still correctly classified. Samples, for which the slack variable

xi � 1, are misclassified.

The cost function reads as

J
�
w;w0; x¼ 1 = 2kwjj2þC

X
i

IðxiÞ
�

(2.20)

with I being 1 for positive xii. That means that we wish to maximize the distance between

the two hyperplanes (as before), minimizing the number of samples for which xi > 0. C is

a parameter that weights to which degree the number of samples xi > 0 is considered to be

important.
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Finally, we end up with

maxl¼
0
@X

i

li� 1 = 2
X
ij

liljyiyjxixj

1
A (2.21)

subject to

0 � li � C

and X
i

liyi � 0

More details on this can be found, e.g., in Theodoridis and Koutroumbas (2009).

Corresponding standard solutions can be found in libraries like MATLAB™. The MATLAB

script “S2_4” coming along with this book exploits routines downloaded from the companion

website of Theodoridis et al. (2010) (http://booksite.elsevier.com/9780123744869). These

routines are based on the so-called Sequential Minimal Optimization (Platt, 1999; Mattera

et al., 1999) and we address the interested reader to this material.

2.5.2 Nonlinear SVM, kernels

In the perceptron approach, we were able to overcome the original limitations to linear

separable classes by applying specific activation functions in the nodes, in particular the

sigmoid activation function. In SVMs, we can follow a strategy of trying to transform the

nonlinear distinction problem to a linear one. This can be achieved by applying a mapping

y¼ ½f1ðxÞ; f2ðxÞ.fkðxÞ� (2.22)

and then work with the y, asking for functions f(.) which assure that

w0 þ wTy > 0 cx˛A

w0 þ wTy < 0 c x˛B

In terms of the original feature vector x, the discrimination function has the form

gðxÞ¼w0 þ
X
i

wifiðxÞ (2.23)

i.e., an approximation in terms of preselected interpolation functions fi(.). For instance, in

regression we may generate a nonlinear functional from a sequence of polynomials. Here

let us consider again the XOR problem discussed earlier. Choosing a mapping

y¼ ½x1; x2; x2x2�
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we map [0,0] to [0,0,0], [1,1] to [1,1,1], [1,0] to [1,0,0], and [0,1] to [0,1,0]. The vertices

of the XOR-square in the original system of axes [x1, x2] are mapped to vertices of a cube

in the new system of axes [y1, y2, y3]. which can be separated by a plane

y1þ y2 � 2y3 � 0:25 ¼ 0

thus the distinction function is

gðxÞ¼ � 0:25þ x1 þ x2 þ 2x1x2

and we assign class A if g(x) > 0 and B vice versa (Box 2.3).

Recall that the linear separation problem is solved by

gðxÞ¼wTxþ w0

In the SVM approach, we find the weights from the (support) vectors xi

w¼
X
i

liyixi

(see Appendix 2.3) so that

gðxÞ¼
X
i

liyix
T
i xþ w0 (2.24)

i.e., depending on the inner product of the two vectors, xTi x.

Now suppose we are using the mapping function f(x),

f ðxÞ¼
h
x21;

ffiffiffi
2

p
x1x2;x

2
2

i
¼ z

and apply the 3D z for our linear separation problem. Then, the term zTz. transforms into	
x21ix

2
1; 2x1Ix1x2ix2; x

2
2ix

2
2



but this corresponds to the product

�
xTi x
�2

In other words, choosing a suitable mapping function, V(x), we are able to express the

product V(xi)V(xj) by a kernel K(xi,xj) which itself is a simple function of the original

feature vectors xi,xj. In our decision function, we can directly use the kernels K(xi,xj), so

our task is limited to specify the kernels instead of the mapping function V(.). Most

commonly used kernels are:

Linear : Kðxi; xjÞ ¼ xTi xj

Polynomial : Kðxi; xjÞ ¼
�
xTi xj þ 1

�q
; q > 0

Radial Basis Functios ðRBFÞ : Kðxi; xjÞ ¼ exp
�
� jjxi � xjk2

.
s2
�q

Hyperbolic Tangent : Kðxi; xjÞ ¼ tanh
�
bxTi xj þ g

�
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Box 2.3 Cover’s theoremdlinear dichotomies.

In our discussion of the XOR problem, we have applied a transformation of a 2D feature
vector x to a 3D y, which enabled us to resolve the classification task applying a linear separa-
tion element. There is a deeper reason behind that as found by Cover (1965). Given the
number of points in an l-dimensional space, we have

OðN; lÞ¼ 2
X
i

PðiÞ

possibilities to arrange separations of the N points in two classes using a linear distinction
element. P(i) is obtained as P(i) ¼ (N � 1)!/(N � 1 � i)!i!, with i running from 0 to l. At the
same time, we have 2N possible configurations of our samples in the two groups (including
configurations for which linear separation is not possible. An example is shown in the figure
below, where we indicate eight configurations. In reality, this number has to be doubled, as
a group of samples may be assigned to either of the two classes. The configuration in red is
not separable with a line.

The probability to meet linear separable configurations among all possible ones is

pðl;NÞ¼OðN; lÞ,2�N
X
i

ðN � 1Þ!
ðN � 1� iÞ!i!

with i running from 1 to l. For large dimension l and small N (N < 2l þ 2), the probabilities
of finding linear separable configurations approach 1. Given N samples (feature vectors), a
mapping to a higher dimensional space increases the probability of locating them in spaces
which can be separated linearly from each other. This phenomenon is exploited in nonlinear
SVMs, where the original feature vectors undergo a transformation applying the so-called
kernel functions, which lead to variables with a higher dimension than the original feature
vectors. The treatment of the XOR case in the text above highlights this fact.
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The choice of the kernel functions is a matter of convenience. No doubt that, as they bring

along a nonlinear mapping, their behavior (and performance) may vary, in particular when

the number of feature vectors is limited. This is shown in Fig. 2.14, where we use the data

set used in Fig. 2.5 for the SVM training and apply it to the data in Fig. 2.4 (right panel).

2.6 Hidden Markov Models (HMMs)/sequential data
2.6.1 Backgrounddfrom patterns and classes to sequences and processes

In the previous sections, we have considered objects and classes being independent from

each other. In Geophysics as in other scientific fields, however, we often deal with

processes characterized by a sequence of observations. The objects we are interested in

cannot be characterized by single patterns but require to consider their interrelations. For

example, in speech analysis, we first characterize sounds or vowels, and then we form

words and expressions as a sequence of such vowels. Sentences are again a sequence, a

sequence of words in this case. Numbers can be understood as a sequence of digits, such

as 293 being composed of ‘2 ‘ ‘9’, and ‘3’. No doubt that identifying the single digits

Figure 2.14
Application of an SVM using the radial base functions (RBF) kernel. Target classes are

represented by the red diamonds and black triangles. In the training set (left panel), the classifier
creates a nonlinear decision function shown by the isolines. Isolines can be obtained with the
MATLAB script “S2_4”. The support vectorsdmarked by yellow crossesdare placed around the
“0” isoline, which forms the final discrimination element, whereas the nonlinear margins can be

inferred from the distribution of the support vectors. On the right panel, we see possible
problems when applying such a decision function to a test set not used during training. Some

elements in the center of the plot turn out as clearly misclassified.
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alone is not sufficient to correctly recognize the numberdwe must read them in the right

sequence.

Sequences can have complex interrelations with a lot of hidden information about the

underlying phenomenon. Let us take the prominent example of the weather forecast. If we

try to predict if it is going to snow tomorrow based on a snapshot of today’s observations,

we may fail because we miss all the context information. Besides observing the actual

weather conditions at our site, we need to know the past: what was the temperature

gradient over the last days? Does the barometric pressure history tell us that there is a

depression crossing? In weather forecast, we need to take into account the patterns over

the last days or even weeks to make a realistic prediction for the future.4

HMMs are the techniques that allow us to analyze observations in a context. The name

“Markov model” comes from the Russian mathematician Andrey Andreyevich Markov.

The underlying principle of Markov models is that they express chains of observations,

being them patterns or classes of patterns. We do not know the underlying process; rather

we attempt to derive the hidden information considering the chain of interrelations

between the observations.

The first application of HMMs was in speech recognition beginning in the 1970s (e.g.,

Baker, 1975; Jelinek et al., 1975; Huang et al., 1990). In the subsequent decades, HMMs

were applied to the analysis of biological sequences (Bishop and Thompson, 1986),

bioinformatics (Durbin et al., 1999; Pachter and Sturmfels, 2005), face identification

(Nefian and Hayes, 1998), and electrocardiogram classification (Koski, 1996). Motivated

by the similarities of acoustic and seismic waveforms, HMMs were introduced in the field

of seismology about 20 years ago (Ohrnberger, 2001). Besides their application in seismic

signal classification (e.g., Dammeier et al., 2016), HMMs have also been employed for

volcano state description (Bebbington, 2007), snow fall prediction (Joshi et al., 2017), and

avalanche forecasting (Joshi and Srivastava, 2014).

In a general sense, HMMs are the so-called “double stochastic processes”, which can be

described by a set of parameters q. In the following, the evolution of weather conditions and

avalanche release is used to illustrate the concepts of single and double stochastic processes.

In meteorology, the weather of consecutive days can be described as a process. Fig. 2.15

shows the weather example with the three states, S ¼ {sunny s1, snowy s2, cloudy s3}. The

weather observations on each single day can be classified into one of these three states.

However, we neglect the information whether a low-pressure front is to arrive or whether

we are in a regime of a stable high-pressure phase. In other words, overall meteorological

4 In principle, we can apply the philosophy of sequential data also to the spatial distribution of observations.
In weather forecast, we consider indeed the distribution of relevant parameters over an extended area besides
their temporal development.
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conditions can change over time, meaning that the process will change between the states

generating a sequence of visited states q ¼ q1, q2,.. qT, with qT ˛ ℚ. The change between
state i and state j is a random process which is described by a so-called transition

probability aij. The first-order Markov assumption presumes that today’s weather can always

be predicted solely given the knowledge of the weather of the past day. In other words, the

choice of state is made purely on the basis of the previous state, which is assumed to

summarize all the past information. Hence, transition probabilities are given by

aij¼Pðqt ¼ sjjqt�1¼ siÞ
Classically, these transition probabilities are collected in a state transition matrix A

A ¼

sun snow cloud

sun 0.5 0.25 0.25

snow 0.375 0.125 0.375

cloud 0.125 0.625 0.375

In terms of the weather example that translates to the following: we observe a sunny day

today, which has the initial or a priori probability p1, i.e., the probability to see a sunny

day at all. With a transition probability of

a11¼Pðq2¼ s1jq1¼ s1Þ ¼ 0:5

it will be sunny again tomorrow with a probability of 50%. With a probability of

a13¼Pðq2¼ s1jq1¼ s1Þ ¼ 0:25

it will be cloudy the day after tomorrow. The probability for the total observation

sequence, here ‘sun’ and ‘cloud’, will then be p1a11a13.

Now we extend the Markov chain above to an HMM. The observation sequence is now

the number of avalanche releases in the Swiss Alps. On three consecutive days T ¼ 3, we

observe o ¼ (o1 ¼ 10, o2 ¼ 5, o3 ¼ 8). Now we use an HMM whose states correspond to

Figure 2.15
Sketch of a Markov model describing the weather. The model consists of three states (sunny,

cloudy, and snowy). Transition probabilities aij are indicated by arrows.
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the weather conditions relating the observed number of avalanche releases. For each

weather state, there exists a probability density function bi(o) for the number of avalanche

releases. The connections between hidden states and observations are called “emission

probabilities”. Fig. 2.16 shows such an example of HMM. If it is cloudy, a reduced

number of avalanche releases is observed, while when it snows, the number of avalanche

releases increases. Therefore the hidden state sequence q ¼ (q2, q3 q1) might have

generated/might be the reason for the observed number of avalanche releases.

An HMM is a double stochastic process. The first process describes the transitions

between hidden states which gives the hidden state sequence q ¼ (q1, q2,.. qT). The second

process determines the output of the HMM. Based on the emission probability of the

current state, an observation symbol is issued. Thus, we can completely describe an HMM

with N states by the triple (P, A, B):

� initial state probability vector P ¼ (p1, p2, p3, .,pN),

� transition probability matrix ANxN, where aij ¼ P(qt ¼ sjjqt�1 ¼ si), and

� emission probability matrix BNxM, where bj(k) ¼ P(ok at time tjqt ¼ sj) (Box 2.4)

2.6.2 The three problems of HMMs

When using HMMs for any pattern recognition problem, we have to solve the following

tasks (see, e.g., Duda et al., 2001):

a. Evaluationdgiven an HMM (i.e., transition and emission matrix are known): what is

the probability that it has created a particular sequence of observations?

Figure 2.16
Sketch of a hidden Markov model. Transition probabilities aij are indicated by the arrows. For
each hidden state, a probability density function bi exists which determines the output of the

corresponding state.
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b. Decodingdgiven an HMM: which sequence of hidden states leads most likely to the

given sequence of observations?

c. Trainingdwe know the principal structure of the HMM, i.e., size of the transition and

emission matrices, but ignore their elements. Based on a given set of observations, we

determine the triple (P,A, B) that most probably created the set.

In Box 2.5, we present a simple example of an HMM and outline the solution for all three

tasks. A detailed description can be found in Appendix 2.4.

In general, classification considers the probability of seeing class ℂk given an observation

o,P(ℂkjo). The classification schemes discussed in the previous sections consider some

measures allowing us to establish whether some patterns belong to a certain class. In

FLDA (see Chapter 2.1), such a measure is obtained from the distance of an object oi to

the centroid of a class of objects ℂk. In its generalization (Appendix 2.1, Eq. A2.1.10 ff.),

we transform such a distance into a probability of an object belonging to a class, assuming

a certain probability density for the classes. In the linear SVM problem (see Fig. 2.13 in

Chapter 2.5.1), the probability of seeing class ℂk given an observation o,P(ℂkjo), can be

related to the distance between observations and the separating element.

In HMMs, we have neither a “centroid” of a class nor a straightforward metrics to

measure the similarity of an object to a prototype of some category; also, we do not have

linear or nonlinear discriminating elements. This is certainly a consequence of the

characteristics of the objects we deal with in HMMs, which are formed by a sequence of

observations whose order is decisive. We therefore have to restate our strategy in the sense

Box 2.4 Tossing coins behind a curtain.

Consider an experiment where coins are tossed behind a curtain, producing a sequence of
‘heads’ (H) and ‘tails’ (T), with the probabilities of getting heads or tails given by P(H) and
P(T). With a single coin we have P(T) ¼ (1 � P(H)). This is a process with observable states i
and j, as they coincide with the outcomes H and T. Consider now two coins and we again see
the outcomes, whereas the experimenter tossing the coins is hidden behind the curtain. That
entails, when seeing a head H, we do not know which of the coins produced it. Consequently,
a sequence being ‘HT’, ‘HH’, ‘TH’, or ‘TT’ can be obtained either by tossing coin 1 and then 2
or by tossing the same coin two times. The full number of necessary parameters is 6, i.e., we
need to know P1(H), P2(H), P(1,1), P(2,2), P(1,2), and P(2,1), with the P(i,i) being the tran-
sition probabilities from i to j and vice versa. As probabilities of an event add to 1, the
number of parameters reduces in effect to 4. In general, we report all transition probabilities
in the matrix ANxN, as above in the text. On the other hand, we can identify the Pi(H), Pi(T)
with the emission probability matrix B.
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Box 2.5 Going through an HMM.

Suppose we have a sequence of observations, say the result of rolling two dice. The first, red
die is fair, i.e., the results {1, 2, 3, 4, 5, 6} are equally probable. The second, green die is
loaded. The behavior of the two dice is given by the “emission matrix” [1/6 1/6 1/6 1/6 1/6
1/6; 1/10 1/10 1/10 1/10 1/10 ½]. The experimenter (behind the curtain) has two coins of
red and green color. The outcome of the coins is weighted, with probabilities of getting ‘head’
of 0.9 and 0.95, respectively. Correspondingly, the probabilities of getting ‘tail’ are 0.1 and
0.05. We write down this as a matrix [0.9 0.1; 0.95 0.05]. The sequence of observations is
composed of the outcomes of dicing. At any time of the experiment, we toss the coin in order
to decide which die to roll.

We start with the experiment, rolling the red die, i.e., we begin the state 1, and notice the
outcome (“emission”).

We toss the red coin. If the result is ‘head’dwhich happens in 90% of the casesdwe keep on
with the red die. If the result is ‘tail’dthis is to happen in 10% of the casesdwe switch to the
green die. In other words, we switch to state 2 in this case.

We continue tossing now the green coin and roll the green die, adding its outcome to the
sequence of our observations. We continue with the green die, unless the coin gives ‘tail’,
which makes switch to state 1 (red die).

As observers from outside, we ignore how the experimenter acted behind the curtain. None-
theless, we are curious to understand, for instance, whether dicing was performed with fair
dice and what could be the parameters controlling the outcome of the experiment. For this
purpose, we try to get an estimate on the two matrices, i.e., the transition matrix describing
the switch from one state to another and the emission matrix, which tells us the probability of
outcomes at each state. An algorithm doing this is known as the ‘BaumeWelch’ algorithm.
Having gained a guess for the two matrices, we can also reconstruct the most probable
sequence of states. For this purpose, we may use the ‘Viterbi’ approach. The reader can play
with the MATLAB code ‘S2_5’ coming along with this book (see also Theodoridis et al.,
2010).

In our avalanche problem, we may put us in the position of the observer, i.e., just monitoring
the occurrence of avalanches. How are they related to the states, here given by the weather
conditions? There are now two possibilities: we have a rough idea about the structure of the
HMM, but do not know either the sequence of states or the values in the transition end emis-
sion matrices.

On the other hand, we may have observed also the weather conditions, i.e., we know the
sequence of states, but still ignore the matrices. We can formulate the problem like this: find
the best matrices relating the occurrence of avalanches to the weather conditions.
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that we ground our decision on the probability that the observation sequence o was created

by a model with specific characteristics. In other words, its model belongs to class ℂk. We

state the problem as

seek the class k which has the maximum probability given the observation sequence o, i. e.,

argmaxkðPðℂkjoÞ (2.25)

To solve Eq. (2.25), we use the Bayes’ rule for conditional probabilities

PðAjBÞ¼PðBjAÞPðAÞ
PðBÞ

where P(AjB) is the likelihood of event A given that B has occurred and P(BjA) is the
likelihood of event B given that A has occurred. P(A) and P(B) are the probabilities of

observing A and B independently of each other (see statistical textbooks, e.g., Kreyszig,

1982). For our problem, we have

PðℂkjoÞ¼PðojℂkÞPðℂkÞ =PðoÞ (2.26)

Maximizing (ℂkjo) can now be replaced by maximizing P(ojℂk), if the a priori

probabilities P(ℂk) and P(o) are known. Being the relative frequency of class ℂk, P(ℂk) is

assumed uniform if not known. Therefore, it does not affect the maximization of Eq.

(2.26). In addition, P(o) is independent of class ℂk and also does not affect the maximum

argument of Eq. (2.26). Hence P(ojℂk) is the driving factor for maximizing the left side of

Eq. (2.26). The estimation of P(ojℂk) can be obtained by a multiplication of the sequence

of probabilities (i.e., transition and emission probabilities) that generated the observed data

sequence, summed over all possible state sequences (see Fig. 2.17).

However, calculating the probability in this manner is computationally expensive,

particularly with large models or long sequences. The introduction of the so-called

forward or backward probabilities (also called partial probabilities) reduces the complexity

of the problem. Details on the procedure can be found in Appendix 2.4. Hence, while a

discriminative approach does not make any assumption about the data-generating process,

a generative approach turns the problem around. Instead of finding the class given the

observations, we aim to maximize the likelihood of our observations given the class. In

other words, we picture individual observation samples to be generated from the class

distribution P(ojℂk) and match a new observation against all available models to see which

class is most likely to generate the observed signal.

The optimal state sequence is the combination of hidden states that maximizes P(O,ℚ jq),
where ℚ is the set of all possible states. Unlike the former problem, we are not summing

up over all path, but we are looking for the maximum. We can find the most probable

sequence of hidden states by listing all possible sequences and finding the probability for
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each combination. As with the forward algorithm, we can reduce the complexity of the

problem using partial probabilities. Having calculated those partial probabilities, it is

possible to record in what state the system must have been at time t � 1, if it is to arrive

optimally at state i at time t. This recording is done by holding for each state a back

pointer f, which points to the previous state that optimally provoked the current state.

Besides a reduction of complexity, this so-called Viterbi algorithm provides the best

interpretation given the entire context of observationsdit looks at the whole sequence

before deciding on the most likely final state and then backtracking through the f pointers

to indicate how it might have arisen. A mathematical description and more details are

given in Appendix 2.4.2.

As in HMMs, the hidden states are not observable and a direct training approach cannot

be adopted. The parameters describing an HMM can only be inferred from the available

observations. Hence, we would like to find the HMM parameters l which maximize the

“Maximum Likelihood” function

LHMMðlÞ¼ log P

0
@OjqÞ¼ log

X
q˛S

PðO; qjq
1
A

Figure 2.17
Trellis representation of HMM. Suppose we are the q2 at t ¼ 2. Then, at t ¼ 3, the probability of

qj(t ¼ 3) is found by adding over aj2. From that state, an observation will be emitted with a
probability bjk.
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Here, O is the set of all observations. There is no analytical way to maximize the

probability of an observation sequence. However, one way to achieve this goal is to

estimate the unknown parameters, so that the output for each model becomes locally

maximized using an iterative procedure such as the BaumeWelch algorithm (Baum and

Sell, 1968).

2.6.3 Including prior knowledge/model dimensions and topology

There are a number of HMM characteristics and appropriate parameters to be chosen by

the user to achieve a well-working system. While the number of observation samples is

normally a fixed quantity, the number of states comprising an HMM is defined by the user.

The states might correspond to certain physical quantities. For example, in speech

recognition, the number of states depends on the number of distinct sound phenomena

within one word. Another example comes from seismology. When applied to seismic

waveforms, our visible observation is the raw time series or sequence of features obtained

by some transformation. The hidden states could be the distinct seismic phases. For local

earthquakes, an HMM with three statesdP-phase, S-phase, and the so-called

“coda”dmight be appropriate. For regional or teleseismic events, which occur at a larger

distance from our receiver, there may be more phases, and our HMM with only three

states is inadequate.

In addition to the number of states, the model topology can be determined based on the

underlying process. The most common model topology is the ergodic one. In this

configuration, the model can change from each state to every other state without any

restriction. However, causality can be introduced, for example modeling purposes a left-to-

right topology (Fig. 2.18), which prevents transitions in previous states. Taking again the

example of an HMM modeling the seismogram of a local tectonic event: the P-phase will

always be followed by the S-phase that is followed by the coda. The left-to-right model is

Figure 2.18
HMM with left-to-right topology. For clarity, the sketch shows the simplest version of a left-to-

right model. Transitions from state 1 to 3 might also be possible but are not shown.
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the most appropriate description of the process and this causality is implemented by

restrictions in the transition matrix ANxN. Whenever appropriate, it is advisable to

introduce such restrictions as they also reduce the number of parameters to estimate.

The last point concerns the time dependence of transition and emission probabilities. The

probabilities in the transition and emission matrix are independent of time, which means

that the probabilities do not change in time as the system evolves. This so-called

homogenous Markov model is one of the most unrealistic assumptions of Markov models

about real processes as data tend to change in time.

2.6.4 Extension to conditional random fields

As we have seen, there are many advantages but also some limitations when using HMMs

for labeling sequential data. If the observations are truly sampled from the learned model,

it provides a correct description of the corresponding class. However, as in most real-

world applications, the trained models are only approximations of the true underlying

processes. Consequently, a number of assumptions and/or simplifications might not be

correct. For instance, it is not granted that the segmentation of the signal in a number

almost stationary parts is appropriate to describe a given class. Furthermore, HMMs

evaluate the joint probability of hidden state sequence and observations. To model the

joint probability tractably, only dependencies between state variables are modeled while

observations are represented as isolated units independent of all other observations in the

sequence. Observations depend only directly on the current state. In some cases, it might

be advantageous to consider additional information. For instance, when classifying seismic

events, information such as seismic phases preceding the current observation or the signal

onset quality (e.g., impulsive or emergent) could be considered in the labeling process.

Thus, although the approach performs well in many applications (e.g., Koski, 1996; Nefian

and Hayes, 1998; Benitez et al., 2007), the question remains: “Is the signal properly

described by this model topology or might another less restrictive approach even perform

better?”

Discriminative learning strategies for HMMs have also been introduced. A review is given

by Jiang (2010). For labeling sequential data, another promising discriminative approach

called “Conditional Random Field” (CRF) has been introduced by Lafferty et al. (2001).

CRFs are widely used in various research areas, such as text processing (Settles, 2005) or

bioinformatics (Sato and Sakakibara, 2005). Instead of using the joint probability of

observations and hidden state sequence, CRFs maximize the conditional probability of

hidden state sequence given the observations. Arbitrary dependencies between variables

are allowed providing a much larger flexibility than classical HMMs. As shown by Sutton

and McCallum (2007), HMMs can be easily generalized to CRFs. Similar to HMMs, there

are two problems for CRFs: learning the classifier parameters and classifying an unknown
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observation sequence to one of multiple classes. Both tasks can be performed efficiently

by modified versions of the standard dynamic-programming algorithms for HMMs

(Rabiner, 1989). The parameters describing a CRF are learned from available training data

using the principle of maximum likelihood. The forwardebackward algorithm is applied

to iteratively solve this task. To label an unknown sequence of observations, we can

compute the most likely labeling using the Viterbi algorithm. For that reason, CRFs might

provide a valuable alternative for labeling sequential data.

2.7 Bayesian networks

BNs, also known as “Bayesian Belief Networks” or simply “Belief Networks” deal with

problems where a distribution cannot be simply described by a parameter vector, but also

requires probabilistic or causal dependencies. For instance, we may define the weather by

observations like clouds, rainfall, snow, temperature, etc. Certainly, precipitation depends

in general on the presence of clouds, and the temperature will condition the type of

precipitation, i.e., rain or snow.

The probabilistic or causal dependencies are typically represented in graphs, where we

have ‘nodes’, i.e., the variables, and arrows, which show the relation among the nodes. In

Fig. 2.19, we show a graph for our avalanche problem. The figure has a node “snow fall”,

which is causal for “avalanche” and accumulation of snow with a thickness of “>2m”.

In Fig. 2.19, we imagine a problem with snow fall (perhaps somewhere in the high parts

of a mountain region), the release of avalanches along the flanks of the mountain, and the

accumulation of snow at some site (perhaps a chalet or mountain hut). We analyze the

conditions of having a “snow height above 2 m” (for the sake of brevity, we rename this

as “Snow > 2 m”) at our hut. In this example, the snow height depends on two

Figure 2.19
A Bayesian network consisting of the three nodes “Snowfall”, “Avalanche”, and “Snow Height>
2 m”, which influence each other as indicated by the arrows. Whether or not the snow height is

larger than 2 m depends on the status of its parents< “Snow fall” and “Avalanche”; the
occurrence of an avalanche depends on the snow fall.

Supervised learning 69



parameters. First of all on meteorological conditions: if it snows, the measured snow

thickness at the site will increase. The second factor influencing the snow height is a

possible avalanche release: if an avalanche occurs, its deposits will increase the snow

height. Besides, avalanche occurrence depends on snow fall. In our example, the

phenomenon “snow fall” is a parent process for both “snow height” and “avalanche”.

“Avalanche” is a parent process for a “snow height > 2 m”, but a child of “snow fall”.

The relation between these processes can be captured by a BN, which can be represented

as a Directed Acyclic Graph (DAG). DAGs are defined by arcs and nodes. In addition to

the DAG, we need a table of the conditional probabilities (see Charniak, 1991), as shown

in Table 2.1. Each node has a potential value, which can be ‘true’/‘false’, probabilities

‘low’/‘medium’/‘high’ or an integer. Fig. 2.19 shows an example where all nodes have a

‘true’ or ‘false’ value. Each node has a local probability that describes the likelihood of its

value without any additional information. If a node has one or more parent, then its prior

probabilities are conditioned on the values of the parents. Thus, an arc between two nodes

represents some kind of influential relationship between corresponding variables. These

relationships correspond to probabilistic dependencies and are specified for each variable

Xi by its probability distribution conditioned on its parents P(XijXparent(i)). For example,

given a BN as shown in Fig. 2.19, we may have the following dependencies.

Parent snow:

The joint probability of all variables is factorized into the local conditional probabilities,

i.e.,:

PðSnow > 2m;Ava; SnowÞ ¼ PðSnow > 2mjAva; SnowÞPðAvajSnowÞPðSnowÞ
Conditional local probabilities are given applying the Bayes law:

PðSnowjSnow > 2mÞ¼ PðSnow; Snow > 2mÞ=PðSnow > 2mÞ

Table 2.1: Conditional (“local”) probabilities for the SnoweAvalanche example.

Snow fall: True/False

P(Snow[ True): 0.4 P(Snow[ False): 0.6

Parent (child) AvalanchejSnow:
AvalanchejSnow [ True AvalanchejSnow [ False

P(Ava [ True): 0.6 P(Ava[ False): 0.4 P(Ava [ True): 0.2 P (Ava [ False): 0.8

Child Snow > 2 mj(Snow, Avalanche):
Snow Avalanche P(Snow > 2 mjSnow, Avalanche)
True True P(True): 0.9 P(False): 0.1
True False P(True): 0.5 P(False): 0.5
False True P(True): 0.7 P(False): 0.3
False False P(True): 0.1 P(False): 0.9
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For instance, we are interested in the total probability of having Snow > 2 m. Going step

by step, we consider all four scenarios leading to a snow height of more than 2 m:

P(Snow>2) ¼ P(Snow>2m, Ava ¼ True, Snow ¼ True) þ P(Snow>2m, Ava ¼ True,

Snow ¼ False) þ P(Snow>2m, Ava ¼ False, Snow ¼ True) þ P(Snow>2m, Ava ¼ False,

Snow ¼ False). Every single joint probability is now decomposed into the local

conditional probabilities:

1. P(Snow>2m, Ava ¼ True, Snow ¼ True) ¼ P(Snow>2mjAva ¼ True, Snow ¼ True) ∙
P(Ava ¼ TruejSnow ¼ True) *P(Snow ¼ True)

2. P(Snow>2m, Ava ¼ True, Snow ¼ False) ¼ P(Snow>2mjAva ¼ True, Snow ¼ False) ∙
P(Ava ¼ TruejSnow ¼ False) ∙ P(Snow ¼ False)

3. P(Snow>2m, Ava ¼ False, Snow ¼ True) ¼ P(Snow>2mjAva ¼ False, Snow ¼ True) ∙
P(Ava ¼ FalsejSnow ¼ True) ∙ P(Snow ¼ True)

4. P(Snow>2m, Ava ¼ False, Snow ¼ False) ¼ P(Snow>2mjAva ¼ False, Snow ¼ False) ∙
P(Ava ¼ FalsejSnow ¼ False).

Given the conditional probabilities in Table 2.1, we find the total probability from 0.9 ∙
0.6 ∙ 0.4 þ 0.1 ∙ 0.8 ∙ 0.6 þ 0.7 ∙ 0.2 ∙ 0.6 þ 0.5 ∙ 0.4 ∙ 0.4 ¼ 0.216 þ 0.048 þ
0.084 þ 0.08 ¼ 0.428.

In this way, not only the joint probability distribution of all variables but also any other

conditional distribution of interest can be derived from the provided local distributions.

Thus, one can infer and reason into any direction. For instance, given our example shown

in Fig. 2.19, we can answer any question like “What is the probability to have less than

2 m of snow, given the fact that it is snowing?” Using Bayes’ law, the answer is:

P(Snow>2m ¼ FalsejSnow ¼ True) ¼ P(Snow>2m ¼ False, Snow ¼ True)/

P(Snow ¼ True) ¼ [P(Snow>2m ¼ False, Ava ¼ True, Snow ¼ True) þ
P(Snow>2m ¼ False, Ava ¼ False, Snow ¼ True)]/ P(Snow ¼ True).

After again decomposing into the local conditional probabilities, we end up with

PðSnow > 2m ¼ FalsejSnow ¼ TrueÞ ¼
PðSnow > 2m ¼ FalsejAva ¼ True;Snow ¼ TrueÞ$PðAva ¼ TruejSnow ¼ TrueÞ þ
PðSnow > 2m ¼ FalsejAva ¼ False; Snow ¼ TrueÞ$PðAva ¼ FalsejSnow ¼ TrueÞ

which yields, inserting the values in Table 2.1:

0.1$0.6þ 0.5$0.4 ¼ 0.26

Suppose now, we have noticed a snow height of more than 2 m. What is the probability

that there was an avalanche? That is, we ask for probability of a node being both child and

parent of other nodes, here P(AvalanchejSnow>2m). We calculate
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PðAva ¼ TruejSnow > 2m ¼ TrueÞ ¼ PðAva ¼ True;Snow > 2m ¼ TrueÞ
= PðSnow > 2m ¼ TrueÞ ¼

½PðAva ¼ True; Snow ¼ True;Snow > 2m ¼ TrueÞ
þ PðAva ¼ True;Snow ¼ False; Snow > 2m ¼ TrueÞ� = PðSnow > 2m ¼ TrueÞ.

Again decomposing into local conditional probabilities, we have

PðAva ¼ truejSnow > 2mÞ ¼

½Pðsnow > 2mjAva ¼ True; Snow ¼ TrueÞ,PðAva ¼ TruejSnow ¼ TrueÞ,PðSnow ¼ TrueÞ
þ PðSnow

> 2m ¼ TruejAva ¼ True;Snow ¼ FlaseÞ,PðAva ¼ TruejSnow ¼ FalseÞ,P

ðSnow ¼ FalseÞ�=PðSnow > 2mÞ
Inserting the local values from Table 2.1 and the total probability of having a snow height

of more than 2 meters:

PðAva¼TruejSnow > 2m¼TrueÞ¼ ð0.9$0.6$0.4þ 0.7$0.2$0.6Þ=0.428 ¼ 0.70

In other words, from the observation of a snow height >2 m, we deduce the probability of

an avalanche of ca. 70%.

If we further know that it is snowing, we have just

P(Ava ¼ True, Snow>2m ¼ True, Snow ¼ True)/P(Snow>2m ¼ True, Snow ¼ True)

with PðSnow > 2m; Snow ¼ TrueÞ ¼
PðSnow > 2m;Ava ¼ True; Snow ¼ TrueÞ þ PðSnow > 2m ¼ True;

Ava ¼ False; Snow ¼ TrueÞ ¼
PðSnow > 2m ¼ TruejAva ¼ True; Snow ¼ TrueÞ$PðAva ¼ TruejSnow ¼ TrueÞ$
PðSnow ¼ TrueÞ þ

PðSnow > 2m ¼ TruejAva ¼ False; Snow ¼ TrueÞ$PðAva ¼ FalsejSnow ¼ TrueÞ$
PðSnow ¼ TrueÞ ¼

we have

0.4$0.6$0.9=ð0.9$0.6$0.4þ 0.5$0.4$0.4Þ ¼ 0.7297

i.e., ca. 73%. In both cases, we should be concerned about the possibility that someone

was struck by an avalanche. When it is snowing, our level of alert is even increased.

BNs have a number of interesting properties. Every time new information enters the BN

(which can be at any node), it is propagated through the network and the probabilities of
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all unobserved variables are updated. This new information can be of any type: objective

data as well as subjective belief. If no new information arrives, the BN assumes the prior

distributions. This allows predictions for missing elements in an incomplete data set. We

have seen that using probabilities instead of single point estimates allows us to handle

missing data in an elegant way. Uncertainties are modeled explicitly. By learning the BN

from data, it is possible to identify the variables that are relevant to the system. Finally,

any prior knowledge available (e.g., expert knowledge) about the features can be included.

In the simplest case, the structure of a BNdthe elements making up the DAGdis

specified by an expert and only the parameters of the conditional (or “local”) probability

distributions P(XijXParent(i)) (such as the ones given in Table 2.1) are learned from available

data. Those networks mostly aim at supporting a decision analysis or at predicting a

specific target variable. Traditionally, the learning is based on a score optimization

algorithm (e.g., steepest gradient descent, see Russell et al., 1995; Han et al., 2011, or

maximum likelihood approach and expectationemaximization algorithm, see Dempster

et al., 1977). Alternatively, we may seek to discover internal relationships or causalities in

the system. Thus, we are interested in finding the dependency structure of the considered

variables that is most probably responsible for generating the observed data, i.e., we chase

the network structure and parameters that best explain the data. Vogel et al. (2014)

proposed a procedure to learn the network structure (DAG) and the parameters q (the local

probabilities). The algorithm searches for the most probable BN (DAG,q), given the

observed data by aiming to maximize the a posteriori probability P(DAG,qjdata), as
suggested by Riggelsen (2008).

Evolving systems in time (i.e., sequential data) can be modeled by the so-called dynamic

BNs (DBNs) (Murphy, 2002; Riggelsen et al., 2007; Runge et al., 2014). DBNs relate

parameters to each other over one or more adjacent time frames. DBNs form BNs which

are unrolled in time and their probability distributions change with time.

Appendix 2
Appendix 2.1 Fisher’s linear discriminant analysis

In FLDA (Fisher, 1936), we tackle the problem of distinction by reducing the multivariate

problem with m components to a one-dimensional component. For this purpose, we define

Z ¼ w1X1þw2X2$wmXm (A2.1.1)

For the sake of simplicity, we work with two components, but the formalism outlined here

can be easily generalized. The wi coefficients are chosen with the scope of maximizing the

degree of separation of the two groups. As a proxy, we use the distance between the

averages of the groups A and B. In the 2D case, this is
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mA¼w1X1A þ w2X2B (A2.1.2a)

mB¼w1X1B þ w2X2A (A2.1.2b)

where the averages are expressed in terms of Z.

First, we assume that the variance/covariance of both groups are the same and can be

estimated as their weighted means. The pooled variances of the groups, in terms of the

new variable Z, are given by

s2Z ¼
X
i

ðZAi � mAÞ2 þ
X
j

ðZBj � mBÞ2 ¼ w2
1s

2
1 þ w2

2s
2
2 þ 2w1w2s12 (A2.1.3)

(s1
2 and s2

2 are the pooled variances in the original system of axes, and s12 is the pooled

covariance).

The coefficients wii are now identified with the conditions that

d2
�
s2 ¼ jmA � mBj2

.
s2 ¼ max (A2.1.4)

which can be solved by partial differentiation with respect to ai and searching for the

extremes.

Finally, we have

d1¼X 1A � X1B ¼ w1s11 þ w2s12

d2¼ X2A � X2B ¼ w1s21 þ w2s22

where sij are the elements of the pooled covariance matrix C of the two data sets A and B.

In matrix form, we write briefly

d¼Cw (A2.1.5)

and resolve for the coefficients of w

w¼ C�1d (A2.1.6)

where w is the vector of coefficients and d the distance vector of the two groups of

averages. The discriminant function is then given by

Z¼wXT (A2.1.7)

We can express a critical value for Z just by considering the averages of groups A and B

in terms of Z

Z A ¼ Siw XT
�
NA

Z B ¼ Sjw XT
�
NB

(i, j running from 1 to NA and NB) and by taking the averages of ZA andZB.
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ZCrit¼ðZA þZ BÞ = 2
The formalism we presented here corresponds to Fisher’s approach of discriminant

analyses (Fisher’s Discriminant Relation). Recall that it is based on the assumption that

both groups follow the same distribution around their averages and the covariance matrices

are the same, i.e., the pooled covariance matrix is a reasonable estimation of the true one.

We can obtain a more general formulation using a likelihood approach. We consider the

ratio

L¼ f1ðxÞ=f2ðxÞ (A2.1.8)

where the fi are the probability densities of x to belong to one of the groups. Assuming

normal distributions for the two groups

f ¼ 1

ð2pjC�1jÞ exp
�� 1

2

�
x�mÞTC�1ðx�mÞ� (A2.1.9)

we get the log-likelihood ratio

ln L¼ 1

2
ln

�jC1j
jC2j

�
� 1=2ðx� m1ÞTC�1

1 ðx�m1Þ þ 1=2ðx� m2ÞTC�1
2 ðx�m2Þ (A2.1.10)

The terms of the form (x � m)TC�1(x � m) are known as “Mahalanobis Distance”, which

expresses the squared distance d2 of the vectors x and m.

For C1 ¼ C2 ¼C

ln L¼ 1

2
xTC�1ðm1�m2Þ ¼ xTw (A2.1.11)

where

w¼C�1d

For L ¼ 1 (same probability of x to belong to group 1 or 2)

ln L¼ 0

and we get the same solution for w as before. Compared to the formalism above, the

likelihood approach allows for C1 s C2. The discrimination then is a quadratic problem

of the form

ln L¼ 0 ¼ ln

�jC1j
jC2j

�
� d21 þ d22 (A2.1.12)

(di
2 being the Mahalanobis Distance mentioned above). The class membership of a vector x

can be assigned for ln L > 0 or ln L < 0.
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Appendix 2.2 The perceptron

A function g(x) which minimizes the cost function J can be identified using a scheme

known as the “gradient descent” method. At each iteration step t þ 1, the vector w is

modified with respect to the preceding step t,

wðtþ 1Þ¼wðtÞ � rðtÞvJðwÞ=vðwÞ (A2.2.1)

here r(t) is the degree to which w at the (t þ 1)th iteration is updated with respect to the

preceding step. Typically, r is a small number and decreases during the iterative process.

Having

JðwÞ¼
X
x˛Y

�
dxw

Tx
�

we obtain

vJðwÞ = vðwÞ ¼
X
x˛Y

ðdxxÞ

and

wðtþ 1Þ¼wðtÞ � rðtÞ
X
x˛Y

ðdxxÞ (A2.2.2)

Backpropagation

The backpropagation algorithm was proposed by Werbos (1974). Here, we briefly outline

the derivation given by Freeman and Skapura (1992). For the sake of simplicity, we limit

ourselves to a perceptron with one hidden layer and a sigmoidal activation function in the

hidden and output nodes.

Denote the values being passed to the hidden units as

hy¼ hwxþ hwo (A2.2.3)

Then, we get in the output

Oy¼ O
wThyþ Ow0 (A2.2.4)

(the superscripts h and O indicate units in the hidden and output layer, respectively). When

we apply an activation function different from linear, we write instead

hy¼ f ðhwxþ hw0Þ (A2.2.5)

and

76 Chapter 2



Oy¼ f ðOwxþ Ow0Þ (A2.2.6)

with f being, for instance, our sigmoidal function.

Let us express the error encounter from each pattern as

E¼ 1

2

X
ik

ðyk � okÞ2 (A2.2.7)

Here we denote the target output with yk and the calculated output in the k-th output node

with ok, i.e.,

ok ¼ Of

0
@X

j

owkjhjþ Owk0

1
A (A2.2.8)

where Owkj are the weights for the transfer from the j-th hidden node to the k-th output

node.

We notice that ok depends on the output of the hidden nodes hj

hj¼ hf

 X
i

hwijxiþ hwj0

!
(A2.2.9)

and the hj depends on the sum of the weighted input xi, which represents the components

of the feature vector x. hwij are the weights for the transfer from the i-th input node to the

j-th hidden node.

The error E then reads as

E¼ 1

2

X
jk

0
@yk � Of

0
@X

j

Owkjhj þ Owk0

1
A
1
A2

(A2.2.10)

The activation functions in the output nodes Of and in the hidden nodes hf are supposed to

be of linear and sigmoidal form. For the sake of simplicity, we use the abbreviations for

the arguments of the activation functions in the hidden and output layers, i.e.,

uj ¼
X
i

hwijxi þ hwj0

vk ¼
X
j

Owkjhj þ Owk0

The gradient of error E with respect to the weights is obtained by applying the chain rule

vE = vOwkj ¼ ðyk � okÞðvf ðvkÞ = vvkÞðvvk = vOwkjÞ
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and for the weights between input and hidden

vE = vowij ¼ ðykeokÞ ðvof = vonet okÞ
�
vonet ok

�
vhf
� �

vhf = net hj
��
v net hj

�
vhwij

�
(A2.2.12)

vE = vhwij ¼ 1

2

X
k

vðyk � okÞ2
.
vhwij ¼ �

X
k

ðyk � okÞ vok
vvk

vvk
vf ðujÞ

vf ðujÞ
vuj

vuj
vhwij

We upgrade the weights taking the negative portions of the error gradients:

Owkjðtþ 1Þ¼ OwkjðtÞ þ hðyk � okÞ vf ðvkÞ
vvk

(A2.2.13a)

hwkjðtþ 1Þ¼ hwkjðtÞ þ h

 
vf ðujÞ
vuj

X
ik

ðyk � okÞxi
!

(A2.2.13b)

(see also Freeman and Skapura, 1992). The parameter h is addressed to as a “learning

parameter” and is typically small with respect to w(t).

Appendix 2.3 SVM optimization of the margins

Recall the definition of the cost function as

Jðw;w0Þ¼ 1

2
kwjj2

which has to be minimized. This corresponds to maximizing the width of the margin

between the two groups. The two elements delineating the margins are defined by the

support vectors for which

wTxþw0 ¼ �1

and impose the constraints of the optimization of J. The research of minimum of the cost

J thus becomes a nonlinear (quadratic) optimization problem with linear constraints.

There the Lagrange function is given by

Lðw;w0; lÞ¼ 1

2
wTw�

X
i

li
�
yi
�
wTxiþw0

�� 1
�

(A2.3.1)

The first-term of the Lagrange function corresponds to the cost function J, and the second

is the constraint
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yi
�
wTxiþw0

�� 1 � 0 (A2.3.2)

multiplied by the Lagrange multipliers li. In addition, we require that all li � 0. Taking

the derivative of L(w,w0,l) with respect to w and w0 and equating to 0 yields

w¼
X
i

liyixi (A2.3.3)

and X
i

liyi ¼ 0 (A2.3.4)

Consider now the two linear elements that define the margins. Their position is given by

wTxþw0 ¼ �1

Consequently, the support vectors mentioned earlier obey that relation.

We now search for the l. This can be solved using the Lagrange function above, i.e.,

Lðw;w0; lÞ (A2.3.5)

under the constraints

w ¼
X
i

liyixiX
i

liyi ¼ 0

and

l � 0

ending up with

maxl¼
 X

i

li� 1

2

X
ij

liljyiyjxixj

!
(A2.3.6)

subject to X
i

liyi � 0

l � 0
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Appendix 2.4. Hidden Markov models

Appendix 2.4.1. Evaluation

In the evaluation task, we aim to find the probability P(ojq) that the observation sequence

o has been generated by the model q. The estimation of P(ojq) can be obtained by a

multiplication of the sequence of probabilities (i.e., transition and emission probabilities)

that generated the observed data sequence, summed over all possible state sequences.

PðojqÞ¼
X
q

Pðo; qjqÞ (A2.4.1)

However, calculating the probability in this manner is computationally expensive,

particularly with large model sequences with a long d length T. In a model with N states, it

would require 2 T NT multiplications.

By sorting individual sums by time and factorizing, we can reduce the complexity of the

problem. The forward-probability a is defined as the probability of the first part of the

observation sequence.

o¼ o1;..:ot

ending at time t in state qt ¼ j

atðjÞ¼Pðo1;.:; ot; qt ¼ jjqÞ (A2.4.2)

Thus, the computation of at(j) can be carried out by mathematical induction

Initialization : a1ðjÞ¼pjbjðo1Þ for j ¼ 1;.;N (A2.4.3a)

Induction : atðjÞ¼
"XN

i¼1

at�1ðiÞaij
#
bjðotÞ; for j ¼ 1.N; t ¼ 2;.T (A2.4.3b)

Termination : PðojqÞ¼
XN
j¼1

aTðjÞ (A2.4.3c)

In contrast, we can also start the sorting with the latest terms. The backward probability

bt(i) is defined as the probability of the partial observation sequence starting at time t þ 1,

given that at time t, the model is in state qt ¼ i

btðiÞ¼Pðotþ1;.::oT jqt ¼ i; qÞ: (A2.4.4)

Then the following induction scheme can be used to calculate bt(i)

Initialization : bTðjÞ¼ 1; for j ¼ 1;.;N (A2.4.5a)

Induction : btðiÞ¼
XN
j¼1

aijbjðotþ1Þbtþ1ðjÞ; for i ¼ 1;.;N and t ¼ T � 1;.; 1

(A2.4.5b)
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Termination : PðojqÞ¼
XN
j¼1

pjbjðo1Þb1ðjÞ (A2.4.5c)

Thus, for the evaluation problem either the forward or the backward variable can be used.

In contrast, both are needed for the training problem Box 2.6.

Box 2.6 HMM representation as a trellis.

Consider an HMM given by the two matrices.

Transition matrix between states

Aij¼

���������

1 0 0 0

0:2 0:3 0:1 0:4

0:2 0:5 0:2 0:1

0:8 0:1 0:0 0:1

���������
Emission matrix for observables given the state j

Bjk¼

���������

1 0 0 0 0

0 0:3 0:4 0:1 0:2

0 0:1 0:1 0:7 0:3

0 0:5 0:2 0:1 0:2

���������
(see Duda et al., 2001). We now wish to know the probability of observing a particular
sequence

O¼ fo1; o3; o2; o0g
Suppose that our initial state is q1 (our indices start with 0). We shall obtain the probability
of getting o3 at time t ¼ 1, given that we have o1 at time t ¼ 0. In our example, the aj, i.e., the
probability that the model generated the sequence up to t, can be obtained as follows. For
instance, we know that at t ¼ 0, our system was in a hidden state q1.

Thus a1(0) ¼ 1 and

ajð0Þ¼ 0 c j 6¼ 1

Next, we calculate aj(1). Because the visible state o1 was emitted at t ¼ 1, we get a0(1) ¼
a1(0)a10b01 ¼ 1,0.2,0 ¼ 0. In an analogous way we get a1(1) ¼ a1(0)
a111 ¼ 1,0.3,0.3 ¼ 0.09. In a similar way, we can calculate all the other a0s along the red
arrows shown in the HMM trellis below. The calculus here is simple as we have to account
only for the transitions from the known hidden state q1 (all the other transitions have contri-
bution 0 to aj(1)). For the subsequent time steps, things get a bit more nasty as we have to
sum over all hidden states at the previous time steps, as described in Appendix 2.4.1.

Continued
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Appendix 2.4.2. Decodingdthe Viterbi algorithm

The probability of the sequence of hidden states q is defined as

Pðqjo; qÞ¼Pðo; qjqÞ=PðojqÞ (A2.4.6)

The best hidden state sequence q* is defined by

P(o, q*jq) ¼ maxqεℚP(o, qjq), where ℚ is the set of all possible state sequences.

Instead of the forward probability at(j), we now compute only the maximum probability

for generating the partial observation sequence

o¼ o1;..:ot

ending at time t in state qt ¼ j

jtðjÞ¼max½ðPðo1;.ot; q1;.qtjqÞjq ˛ ℚ; qt ¼ j� (A2.4.7)

Box 2.6 HMM representation as a trellis.dcont’d

In HMM decoding, we may consider only the path where the a0s are maximum. For instance,
being started from q1 and o3, the highest probability for getting o1 goes via q3. Step by step,
we go through the trellis moving along the green arrows. This is a simplification as we avoid
considering all the a0s in the trellis. This simplification has a price: the path delineated by the
green arrows includes a transition from q3 to q2, which is not possible from the transition
matrix A. Indeed, the corresponding element for this transition is 0. For more details with
respect to this example, see Duda et al. (2001).
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The jt(j) are computed recursively as follows. In doing so, the best path is kept by the

matrix Jt(j) and the best single path is obtained via backtracking after termination

Initialization : j1ðjÞ¼pjbjðo1Þ;J1ðjÞ ¼ 0; for j ¼ 1;.;N (A2.4.8a)

Recursion : jtðjÞ¼maxiðjt�1ðiÞaijÞbjðotÞ;JtðjÞ ¼ argmaxiðiÞjt�1ðiÞaij; for t > 1

and j ¼ 1;.;N

(A2.4.8b)

Termination : P�ðojqÞ¼maxjjTðjÞ; q� ¼ argmaxjjTðjÞ (A2.4.8c)

The optimal single state sequence can then be derived via backtracking

q�T ¼Jtþ1

�
q�tþ1

�
; for t ¼ T � 1;.; 1 (A2.4.9)

Appendix 2.4.3. Trainingdthe expectationemaximization /BaumeWelch algorithm

The “ExpectationeMaximization” (EM) algorithm is an iterative process, which can be

used to estimate the parameters of normal density function of an unlabeled training data

set. In other words, given the joint distribution P(c,ojq) of observations o and unknown

class labels c, and the model parameters q, the EM algorithm aims to maximize the

likelihood function P(cjq) with respect to q.

The iterative process can be summarized in the following four steps, where each cycle

increases the log likelihood of the data until it reaches a local maximum

1. Choose initial model parameters q.

2. Evaluate P(cjo,q)dthe “E-step” in the EM process

3. Evaluate qnew ¼ argmaxq
P
c

�
P
�
cjo; qold�lnP�c����o; q

�
dthe “M-step” in the EM

process.

4. Check if the convergence criterion is satisfied. If not, replace q by qnew and return to

the E-step.

The BaumeWelch algorithm is a special case of the EM algorithm and it is used to

estimate the parameters of an HMM. The algorithm is based on the forward and backward

variables. The parameters to learn are q, the emission matrix B, and the transition matrix

A. Each emission probability of an HMM can be described as a multivariate density

function defined by

bjðotÞ¼
XM
m¼1

cjmN
�
ot;mjm;Cjm

�
(A2.4.10)
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where cjm is the mixture coefficient of the mth mixture in state j. N is a Gaussian function

with mean mjm and covariance matrix Cjm

Hence, to be more precise, we aim to learn the mean, covariance matrix, and the mixture

coefficient of each mixture component at each state and the transition probabilities

between states. In the following, N denotes the number of states.

Using the forward and backward variables, the probability of changing from state si to sj,

given the observation sequence o and the model q, can be calculated from

gtði; jÞ ¼ Pðqt ¼ si; qt�1 ¼ sjjo; qÞ ¼ Pðqt ¼ si; qtþ1 ¼ sjjo; qÞ
PðojqÞ

¼ atðiÞai;jbjðotþ1Þbtþ1ðjÞ
�
SN
n¼1atðnÞbtðnÞ; 1 � t � T

(A2.4.11a)

From Eq. A.2.4.11a we can get the probability of being in state i, given the observations

and the model parameters

dtðiÞ¼Pðqt ¼ ijo; qÞ ¼
XN
j¼1

gtði; jÞ ¼ atðiÞbtðiÞ
,XN

n¼1

atðnÞbtðnÞ (A2.4.11b)

In addition, we need the probability of being in the mth Gaussian mixture component

N mðotjmm;CmÞ given by its mean mm and its covariance Cm at time t

εtði;mÞ ¼ Pðqt ¼ i;mt ¼ mjo; qÞ ¼ Pðqt ¼ i;mt ¼ m; ojqÞ
�
PðojqÞ

¼
XN
j¼1

picimN mðo1jmm;CmÞbtðiÞ
,XN

j¼1

atðjÞbtðjÞ; t ¼ 1

¼
XN
j¼1

at�1ðjÞaijcimN mðotjmim;CimÞbtðiÞ
,XN

j¼1

atðjÞbtðjÞ; t > 1

(A2.4.12)

Now, we can reestimate the model parameters using at(i) and bt(i)

pnew
i ¼ d1ðiÞ ¼ a1ðiÞbiðiÞ

,XN
n¼1

a1ðnÞbiðnÞ (A2.4.13)

anewi ¼
XT�1

t¼1

gtði; jÞ
,XT�1

t¼1

dtðiÞ (A2.4.14)

cnewjm ¼
XT
t¼1

εtðj;mÞ
,XT

t¼1

dtðjÞ (A2.4.15)
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mnew
jm ¼

XT
t¼1

εtðj;mÞot
,XT

t¼1

dtðjÞ (A2.4.16)

Cnew
jm ¼

XT
t¼1

εtðj;mÞ
�
ot �mnew

jm

��
ot � mnew

jm

�T,XT
t¼1

dtðjÞ (A2.4.17)

We can explain the BaumeWelch algorithm in terms of EM. For example, the E-step first

calculates the number of expected transitions from state i to state j, i.e.,
PT�1

t¼1
gtði; jÞ, and

the overall number of transitions from state i, i.e.,
PT�1

t¼1
dðiÞ. The M-step then calculates the

new transition probability anewij from the number of expected transitions from state i to j

normalized by the expectation of being in state i (Eq. A.2.4.14). Analogously, the

coefficient cnewjm is calculated from the expectation of being in state j with the mixture

component m, normalized by the expectation of being in state j (Eq. A.2.4.15). Finally, the

mean mnew
jm and the covariance Cnew

jm are calculated from the expectation of the observation

ot and the covariance
�
ot �mnew

jm

��
ot � mnew

jm

�T
in state j with the mixture component m,

normalized of the expectation of being in state j (Eqs. A.2.4.16 and A.2.4.17).
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CHAPTER 3

Unsupervised learning

3.1 Introduction

In supervised learning, we deal with labeled patterns for the identification of formalisms

that relate specific features to a category, which is supposed to be known. Once the

formalism is found, it can be applied to other patterns to rapidly assign their category.

Supervised techniques have been proven to be effective, as even complicated relationships

between features and categories can be learnt. However, they can also give misleading

results, if applied to patterns belonging to a parent population that differs from the one

considered during the learning phase. The problem is known as “overfitting”. In

geophysical applications, the risk of facing patterns belonging to a new parent population

is quite frequent. Indeed, we often deal with time-dependent data, that is, data with pattern

characteristics that develop over time, eventually making our classification procedures

obsolete. A further issue is the high number of degrees of freedom that nonlinear

classification schemes often have. This implies the necessity to consider large training data

sets. Defining target values for many examples brings along a considerable effort together

with the risk of committing errors (i.e., the choice of partially flawed examples for the

learning process).

In unsupervised learning, we leave the whole job to the computer, asking the machine to

identify groups or clusters of similar patterns based on a measure of (dis)similarity.

Ideally, the groups can be clearly distinguished from each other. In some circumstances,

we can use a few patternsdeven only one single patterndas a prototype for a whole

group. As the patterns of a cluster are supposed to have similar characteristics, we do not

lose much information neglecting the internal variability among the patterns of the same

cluster. If the clusters are well distinguished, the variability of the whole ensemble

maintains a fair fidelity by considering only the prototypes. We may also limit ourselves to

label the prototype patterns, i.e., all members of a cluster are automatically assigned to the

same target as the prototype pattern. We can set up a semisupervised classification scheme

as follows: (i) carry out the unsupervised classification, identify clusters and prototypes,

(ii) assign targets to all patterns according to the one of the corresponding prototype, and

(iii) carry out supervised classification on prototypes. At first glance, this looks like

nonsense, but turns out as a useful scheme, for instance in the presence of very large data

sets. As shown below, we may create the so-called “Self-Organizing Maps”, where we first

Advantages and Pitfalls of Pattern Recognition. https://doi.org/10.1016/B978-0-12-811842-9.00003-0
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form microclusters using an unsupervised clustering scheme and then use the prototypes in

further classification steps.

3.1.1 Metrics of (dis)similarity

A key point here is that we must establish a measure of (dis)similarity or a metric. Recall

the four basic properties of a metric mentioned in Chapter 1. Given the feature vectors a,

b, and c, with d(,) being the distance between two vectors, these properties are

Nonnegativity : dða; bÞ � 0

Reflexivity : dða;bÞ ¼ 0 if and only if a ¼ b

Symmetry : dða;bÞ ¼ dðb; aÞ
Triangle Inequality : dða;bÞ þ dðb; cÞ � dða; cÞ
The well-known Euclidean distance

dða; bÞ¼
 Xd

i¼1

ðai � bixÞ2
!1=2

is certainly a metric. It can be seen as a specific case of the more general Minkowski

metric

dða;bÞ¼
 Xl

i¼1

��ai � bixjk
!1=k

(3.1)

often referred to as the Lk norm of an l-dimensional distance vector d. The Euclidean

distance is a Minkowski metric with k ¼ 2. Setting k ¼ 1, we obtain the “Manhattan” or

“city block” distance. We can better understand the implications of choosing different

values for k by considering the shapes of equidistance functions. For the Euclidean

distance k ¼ 2, all points with d(a,b) ¼ constant lie on a sphere. Setting k ¼ 1, the

equidistance curves are described by linear elements, such as lines, planes, and

hyperplanes; from that, we can easily understand the name of this metric as the “city

block” distance. An interesting case arises for k [ 1. Indeed, for k / N, the distance is

controlled by only one component i, for which

jai� bij ¼max

Thus, the elements of equidistance are given by the set of planes perpendicular to the axes

of components (see Fig. 3.1).

The “Tanimoto Distance” (TD) is based on the number of elements two patterns have in

common and the number of elements where they differ. It compares two vectors, a and b,
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having n1 and n2 elements, respectively. The number of common elements is given by n12.

The distance d(a,b) is then the Tanimoto Distance

TD¼ n1 þ n2 � 2n12
n1 þ n2 � n12

¼ 1� n12
n1 þ n2 � n12

(3.2)

(see, e.g., Duda et al., 2001). It is used when we deal with categorical data. Note that here

we distinguish elements in Boolean form, in which no graded similarity is allowed. For

real-valued vectors, we can use the term

TD ¼ 1� aTb

jjajj2 þ jjbjj2 � aTb
(3.3)

The “Jaccard index” J is a general measure of (dis)similarity. It is defined as

JðA;BÞ¼AXB

AWB
(3.4)

where A and B are two sets of elements (see Fig. 3.2).

A further measure for (dis)similarity of real-valued feature vectors is the cosine similarity

measure, given by the term

r¼ aTb

jjajjjjbjj (3.5)

Figure 3.1
Minkowski distance for k ¼ 1, 2, N. The green, red, and blue figures represent elements of

equidistance depending on the exponent k.
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This measure is of particular importance, when normalized feature vectors are considered.

A similar measure is the “Pearson correlation coefficient”

r0 ¼ a0T b0

jja0jj jj b0jj (3.6)

where we consider vectors a0 ¼ ½a1� a . al� a�; b0 ¼ ½b1� b . bl� b�; with

a; b ¼ 1

l

Xl
i¼1

ai; bi

3.1.2 Clustering

In cluster analysis, we try to identify groups or segments of objects as subsets of an

ensemble to achieve an easier interpretation of the information stored in our whole data

set. We are often able to define the so-called prototypes, i.e., objects with features that

represent a large number of patterns in our data. A critical issue is the choice of the

Figure 3.2
The Jaccard index can be seen as a generalization of the approach considered in the Tanimoto

Distance.
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measure of (dis)similarity or metrics, for which we mentioned some examples above. A

further issue is the choice of the clustering strategy (see Anderberg, 1973). This choice

depends on the ideas we may have on the underlying structure of data, for example, if

they have a hierarchy. For instance, in taxonomy it is useful to follow a strategy

accounting for such a structure. Otherwise, we may assume that data form clusters

independent of each other. In the latter case, we shall adopt methods of “partitioning

clustering”.

3.1.2.1 Partitioning clustering

In partitioning clustering, we have to fix the number of clusters a priori. Often we start

with a small number of clusters and augment this number in the following steps, until we

find a solutionda “partition”dfeasible1 to our goals. The “K-means” algorithm is perhaps

the most popular clustering method for its straightforward concept and the computational

simplicity.

Consider the dispersion S in our ensemble consisting of n feature vectors, xi having the

global mean x,

S¼
Xn
i¼1

kxi� x jj2; STot ¼
Xn
i¼1

ðxi� xÞðxi � xÞT (3.7)

STot denotes the dispersion matrix of the whole data set. Having a partition such that each

xi belongs to some cluster j, we measure the dispersion within each cluster by

Sj¼
Xm
i¼1

�
xi� xj

��
xi � xj

�T
(3.8)

The dispersion between the k clusters is

Sc¼
Xk
j¼1

mj

�
xj� x

��
xj � x

�T
(3.9)

where we assume that each cluster is composed of mj samples. It can be shown that

STot ¼
Xk
j¼1

Sj þ Sc (3.10)

1 This implies some subjectivity, which is however an intrinsic characteristic of unsupervised learning
techniques. Literature proposes criteria that may guide our decision whether or not to accept a clustering;
nevertheless, the user eventually decides. Unsupervised learning is therefore said to be “data-driven and
user-defined”.
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i.e., the total dispersion is given by the sum of the dispersions measured within the

clusters and the dispersion measured between the cluster centroids xj. In the framework of

ANOVA (“ANalysis Of VAriance”, Appendix 3.1, also see Davis, 1986; Borradaile, 2003),

SC is termed “between” dispersion and
Pk
j¼1

Sj is referred to as “within” dispersion (or

variance). All three matrices are quadratic and symmetric. For those matrices, we may find

the total amount of dispersion from the sum of their eigenvalues
Pl
i¼1

li or their trace, i.e.,

the sum of the diagonal elements. For our purposes here, we note that once we find a

partition that minimizes the “within” dispersion (trace of
Pk
j¼1

Sj), the “between” dispersion

(trace of SC) s maximum. This corresponds exactly to our goal “find clusters with the

highest degree of compactness (the highest degree of homogeneity), which are the most

distant from each other (with the highest degree of heterogeneity)”.

In practice, we may follow the scheme outlined in Box 3.1.

As a practical example, consider Table 3.1, which reports the concentration of important

chemical components found in volcanic rock samples (see Corsaro et al., 2013). The

numbers have quite different physical meanings: SiO2 and K2O are components given as

the percentage of total weight; Ca/Al and Rb/Nb are ratios between components; others

(so-called “trace elements”, e.g., Th, La) are present only in very small concentrations

expressed as parts per million (ppm). The direct application of the K-means clustering to a

set of 103 samples yields results like those shown in Fig. 3.3.

In K-means clustering, we just take numbers as they are, without any a priori assumption

about the meaning they may have. For instance, in our example of Table 3.1, “Cr” ranges

from 22.15 to 39.88 and “K2O” from 2.02 to 2.19, by far less than “Ni” or “Sr”.

Accordingly, “Sr” has a stronger influence than “K2O”, which is not necessarily justified

from the viewpoint of a petrologist. To neutralize the effects of the various units of

measuredin Table 3.1, percentage, ratios, and ppmdwe normalize our data as already

proposed in Chapter 1; here the normalization is with respect to the range encountered in

each component of the feature vector. Without normalizing the data, the clustering would

be controlled by one component (Sr, see Fig. 3.3A). A suitable standardization overcomes

this effect. In Fig. 3.3B, we see that more components contribute to clustering, as clusters

in the 2D marginal distributions overlapdwhich is a common effect of low-dimensional

representations of high-dimensional data (see Chapter 2, Box 2.1).

Applying normalization to the feature vectors, the K-means clustering tends to create

clusters having circular, spherical, or hyper-spherical convex hulls. This is clearly

recognized from Fig. 3.1. As K-means uses the Euclidean distance as a metric, the
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Box 3.1

Start at step t ¼ 0.

Choose the maximum number of iterations, ITMAX > 0, choose the number of desired
clusters.

Define an initial partition, such that each pattern i belongs to some cluster Cj. Avoid parti-
tions where some Cj ¼ { }dempty clusters. A way to do this is to define the initial average
vectors (“centroids”) for each cluster randomly. An alternative is to assign randomly each
pattern to a cluster j by setting j randomly.

Loop:

In a procedure called “interchange technique” (see, e.g., Späth, 1983), select a pattern and
calculate its distance to each centroid. Assign the pattern to the cluster with the closest
centroid. Update centroids and dispersion encountered within the clusters. Suppose that we
shift a pattern originally to a cluster p, which becomes a new cluster q. Then,

Sq ¼ Sp þ
mp

mp þ 1

�
xi� xp

��
xi � xp

�T
On the other hand, for a cluster p from which a pattern is taken away, we have

Sq ¼ Sp �
mp

mp � 1

�
xi� xp

��
xi � xp

�T
In a similar way, we update the centroid vectors

xq ¼
mp

mp þ 1

�
mpxpþ xi

�
- for the cluster receiving a new pattern, and

xq ¼
mp

mp � 1

�
mpxp� xi

�
- for the cluster from which a pattern is removed. We may accept or refuse the new partition,
verifying whether the sum of dispersions, trace (

P
j¼p;q

Sj), has decreased. Note that it is suffi-

cient to consider only the two clusters involved in the interchange, as the dispersions and
centroids of the remaining clusters do not change. The computational effort is limited as the
updating formula is very simple.

Continue with this pattern and compare to other clusters until no further decrease occurs.

Set t ¼ t þ 1. Take the next pattern and start again the interchange technique.

Continue unless the number of iterations t reaches ITMAX.

Unsupervised learning 93



Table 3.1: Example of concentration of chemical components in volcanic rock samples (see Corsaro et al., 2013).

Mg# SiO2 K2O Ca/Al Th La Nb Nd Sr Tb Cr Ni Rb/Nb

0.48 47.84 2.14 0.556 7.97 57.0 42.18 46.87 1153 0.99 22.58 21.04 1.16
0.47 48.12 2.19 0.564 8.07 57.2 41.49 46.49 1133 0.97 22.15 20.54 1.16
0.50 47.25 2.02 0.635 6.74 51.0 37.09 44.38 1079 0.98 36.92 29.16 1.23
0.51 46.86 2.06 0.645 6.72 50.6 36.09 44.06 1067 0.97 39.88 29.45 1.25
0.50 46.89 2.05 0.642 6.60 50.0 35.95 43.34 1056 0.95 39.75 28.59 1.22
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Minkowski exponent is k ¼ 2, and the shape of the equidistance figure is circular or

(hyper)spherical. This can be a serious limitation, as such cluster components of the

feature vectors are supposed to be statistically independent of each other. This is not

necessarily the case even after normalization. For instance, recall the example of the

mbeMS criterion for the distinction of earthquake and nuclear test seismograms we

discussed in Chapter 2; mb and MS are correlateddthe greater the body wave magnitude

mb, the greater the surface magnitude MS. Applying the K-means clustering (e.g., script

S3_2 accompanying this book) after a normalization, we get the results shown in

Fig. 3.4A.

Selecting a partition with two clusters, K-means forms two groups: the first one in the

lower left angle of the diagram, where both kinds of magnitudes have low values, and the

second group in the part where mb and MS have high values. The picture shown in

Figure 3.3
Results of K-means applied to petrochemical composition of volcanic rock samples. Marginal dis-
tributions of two clusters are shown, selecting two components out of 13. Panels (A) are related
to results using data as is, and panels (B) were obtained after a normalization of the compo-

nents with respect to their units of measure. In panels (A), we clearly recognize that the separa-
tion of the two clusters is controlled by one component (Sr).
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Fig. 3.4A is in contrast with our a priori knowledge we outlined in Chapter 2. Recall that

for that discrimination problem, we invoked the Mahalanobis distance, which accounts for

groups of feature vectors with correlated components. In fact, accounting for the

covariance matrix of our samples, we were able to establish a discrimination criterion.

In clustering, we can exploit the same idea using a metric called “determinant” metric (see

Späth, 1983). In K-means, we use the metric for the distance of a sample xi from a center xj

d
�
xi; xj

�¼ h�xi � xj
�T�

xi � xj
�i12 ¼ jjxi � xjjj (3.11)

which describes a sphere if jjxi � xjjj � constant for all xi. A more general metric is

obtained from

d
�
xi; xj

�¼ h�xi � xj
�T
G
�
xi � xj

�i12
(3.12)

with G being a positive definite matrix.

Similar to K-means, we consider the (squared) sum of the distances measured within the

clusters, i.e.,

Xk
j¼1

Xmj

i¼1

�
xi � xj

�T
G
�
xi� xj

�
(3.13)

which we want to be minimum. Keeping the partition fixed for the moment, we find (see

Späth, 1983, Appendix 3.2) that the matrix G ¼ (detS)1/lS�1, where S is the sum of the

Figure 3.4
Clustering of MSemb data related to earthquakes and nuclear tests using (A) K-means and
(B) adaptive distances. Fig. 3.4A may be generated using the MATLAB™script S3.1 and

Fig. 3.4B by using script S3_2.
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l-dimensional dispersion matrices encountered within the clusters, matches this request.

From a geometrical point of view, the metric is very similar to the Mahalanobis distance.

Note that the elements of the covariance matrix are obtained from the dispersions by

dividing the latter by the number of samples in the ensemble. In other words, the same

covariance matrix may correspond to a variety of dispersion matrices obtained from

groups of different sizes. In the metrics proposed here, clusters with a large number of

members will have a higher degree of homogeneity than those where the number of

members is small.

So far, we have applied a concept already followed by Fisher’s discriminant analysis

described in Chapter 2, where we measured the distance by applying a normalization with

respect to the inverse of the pooled covariance matrix (see Appendix 2.1, Eqs. A2.1.9,

A2.1.10). In our new context, we also envisaged the case in which the pooled covariance

matrix does not truly represent the covariance measured in the single groups. In fact, we

had the log-likelihood L

lnL¼ 1=2ln

�jC1j
jC2j

�
� 1=2ðx� m1ÞTC�1

1 ðx�m1Þ þ 1=2ðx� m2ÞTC�1
2 ðx�m2Þ

for C1 s C2. In this case, the separation function is not given by a linear element, but has

a quadratic form. In our clustering scheme, we can allow Wj s Wk by a criterion called

“adaptive distance criterion” (see Späth, 1983). We simply reuse Eq. (3.13), but instead of

summing over all dispersion matrices, we consider the individual ones obtained for each

cluster. Consequently, we minimize the sum

Xk
j¼1

Xmj

i¼1

�
xi � xj

�T
Gj

�
xi� xj

�
(3.14)

where Gj ¼ ðdetSjÞ1=lS�1
j .

We can apply the “interchange method” outlined above in order to find an optimum

partition in the sense of Eq. (3.14). At each step, we verify whether the sum

detðSpÞ1=l þ detðSqÞ1=l

with l denoting the dimension of the feature vector, has decreased when transferring a

pattern from cluster p to cluster q. The upgrade formula limits the computational burden,

as we do not have to go through all data of a cluster to calculate averages and dispersion

matrices, considering only the single pattern to be transferred. In Fig. 3.4B, we apply such

a kind of clustering to our example of earthquake and nuclear test magnitudes,

reproducing fairly well our former results obtained with supervised classification. Use the

MATLAB™ script S3_2 for reproducing Fig. 3.4B.
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3.1.2.1.1 Fuzzy clustering

In K-means clustering, we have been considering the dispersion

Sj¼
Xm
i¼1

�
xi� xj

��
xi � xj

�T ¼
Xm
i¼1

d
�
xi; xj

�
(3.15)

and defined the optimum partition for a configuration where

XM
j¼1

Sj ¼ min

Such a partition is the one where clusters have the highest degree of homogeneity. Up to

now, we have assumed that a pattern belongs exclusively to one single cluster. In Box 3.2,

we outline a clustering based on probabilistic considerations, in the sense that the distance

expresses a probability that a pattern belongs to a certain cluster. Finally, we decided to

assign thedcrispdclass membership based on the largest probability found among all the

clusters. Crisp clustering sometimes comes along with unpleasant threshold effects: a

small difference in the distances of a pattern to the clusters may flip a pattern from one

class to another. In geophysics, where we often wish to monitor the development of

pattern characteristics with time, we may get apparently strongly fluctuating graphs even

though the changesdexpressed in absolute termsdare minor (Fig. 3.5).

Therefore, we may be interested to keep track of the minor probabilities. For instance, we

could do this following the GMDAS strategy outlined in Box 3.2. However, the sum of

cluster memberships of a pattern inferred from this method is not 1. At the same time, we

use the a priori assumption that clusters follow multivariate Gaussian distributions, for

which we can achieve a stable estimation of the parameters. This is not always guaranteed.

A way out of these problems is the minimization of a redefined cost function for the

optimum partition (see, e.g., Zadeh, 1965; Bezdek, 1981), i.e.,

XN
I¼1

XM
j¼1

u
q
ij d
�
xi; xj

�¼ Jðcj ;UÞ ¼ min (3.16)

where U is composed of the fuzzifiers uij expressing the membership degree of the i-th

pattern to the j-th cluster, and cj is the representative vector for the j-th cluster, such as its

centroid. We also require that

XM
j¼1

uij ¼ 1
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Box 3.2 Distances and probabilities

Note that in both K-means and adaptive distance clustering, we work with dispersions rather than
variances. In the adaptive distance clustering, we carried out the normalization by using the
inverse of the dispersion matrix rather than considering the classical Mahalanobis distance, which
we exploited, for instance, in Fisher’s discriminant method. The difference between the two strate-
gies is not marginal. Whereas the Mahalanobis distance is a direct measure of the probability that

a sample xi belongs to a cluster p with a centroid xp, the measure
�
xi � xp

�T
Gj

�
xi�xp

�
cannot be

read as a probability, being derived from the dispersions (i.e., we do not normalize it with respect
to the number of samples in the cluster). Dispersions may be large if the number of samples is
high; however, at the same time, the corresponding variance may be small. Dispersion-based mea-
sures tend to favor large clusters (large dispersion in relation to their variance), which can be a
desired effect from a practical point of view.

Nonetheless, we can apply clustering focusing on the probabilities that a pattern belongs to a
certain cluster. The ExpectationeMaximization (EM) Algorithm allows us to tackle this task. The
algorithm is based on the a priori assumption that the distribution of our samples is obtained by
the sum of multivariate normal distributions, each of which is described by the parameters mj and
Cj (i.e., their centroid vectors and covariance matrices). Given cluster j, the probability that a
pattern xi belongs to this cluster follows from

pðxijjÞ¼C
�1=2
j exp

�
� �xi�mj

�
C�1

�
xi � mj

�T�
At the same time, we should be aware that clusters j and k themselves are not equally likely to
occur.

Therefore,

pðxÞ¼
XM
j¼1

pðxjjÞPj

where Pj is the a priori probability of getting cluster j. In other words, all M distributions
contribute in a weighted way to p(x).
Typically, we do not know a priori the parameters of the distribution, and our task is now the
blind identification of all the parameters, i.e., the centroid vectors and covariance matrices of
the single cluster, mj and Cj, as well as the a priori probabilities Pj. For this purpose, we can apply
the “Generalized Mixture Decomposition Algorithmic Scheme” (GMDAS, for more details see
Theodoridis and Koutroumbas, 2009).

The algorithm starts with an initial guess for mj,Cj and the a priori probabilities Pj. At step t, we
calculate the probabilities

pðxijjÞ¼C
�1=2
j exp

�
� �xi�mj

�
C�1
j

�
xi � mj

�T�

and the a priori probabilities from

Continued
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Box 3.2 Distances and probabilitiesdcont’d

Pj¼
Xmj

i¼1

pðxijjÞ

Considering the pattern xi, we are interested to find

pðjjxiÞ
that is the probability thatdgiven the pattern xidwe have a member of the j-th cluster. It is easy
to understand that this probability depends on the (Mahalanobis-) distance of the pattern to
the centroid, but also on the overall probability to find the cluster j at all. Large clusters will be
more likely than those with few members, that is, they have a higher a priori probability than
small ones. Consequently,

pðjjxiÞ¼ pðxijjÞPj
,XM

k¼1

pðxijkÞPk

At step t þ 1, we read just the parameters of the distributions, mj, Cj, and Pj using

mjðtþ 1Þ¼
XN
i¼1

pðjjxiÞxi
,XN

i¼1

pðjjxiÞ

and

Cjðtþ 1Þ¼
XN
i¼1

pðjjxiÞ
�
xi�mjðtÞ

��
xi � mjðtÞ

�T,XN
i¼1

pðjjxiÞ

In an iteration scheme, these steps are repeated until the change of parameters falls below a
threshold. We understand that the algorithm converges from a simple consideration: as soon as
we find a set of improved parameters of the distributions, we shall get a better estimation of the
corresponding probabilities. During the subsequent steps, having better estimated probabilities,
we improve the estimation of parameters of the distributions, entailing a still better estimation of
the probabilities, and so forth. Eventually, we assign the cluster membership to xi considering the
maximum of p(jjxi).
In the three plots shown below, we apply the GMDAS scheme to a data set. Panel (A) shows the
distribution of randomly generated data using three values for the centroids and covariance
matrix; panel (B) is the result when we try to blindly reconstruct the original groups using the
GMDAS approach discussed above, assuming that our samples mirror three underlying multivar-
iate Gaussians. Besides the narrow zone where blue and red samples intersect, the identified clus-
ters correspond well to the original distributions of the randomly generated data. The application
of GMDAS to our earthquake/nuclear test magnitude data (panel (C)), however, differs from the
results of the adaptive distance clustering and from our a priori knowledge. Possible explanations
for this different result are i) the a priori assumption of multivariate Gaussians does not hold for
this data and ii) the data set (27 samples each) is too small for a stable estimation of the param-
eters, in particular centroids and covariance matrices.
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In the fuzzy cost function, the exponent q has a specific role. It determines whether the

minimum cost is achieved either by fuzzy or crisp clustering. We demonstrate this with a

simple example (see Theodoridis and Koutroumbas, 2009). Suppose X ¼ [x1, x2, x3, x4],

with xi being [0,0], [2,0], [0,3], [2,3], and two cluster representatives cj given by [1,0] and

[1,3]. In crisp clustering, the membership vector U ¼ [u11, u12], [u21 u22], [u31 u32],

Box 3.2 Distances and probabilitiesdcont’d

Figure B3.2
Application of GMDAS. (A) Three groups of randomly generated test data. Each group was
generated assuming a Gaussian distribution with varying centroids and variance. (B) Blind

reconstruction of class membership using GMDAS. (C) Application of GMDAS to the MSemb

data (magnitudes of earthquakes and nuclear tests). Note the difference to the results depicted
in Fig. 3.4B. Panel (B) was obtained applying the GMDAS method to data shown in panel (A),

invoking the MATLAB script S3_3. Panel (B) was created with the MATLAB S3_4a. Panel
(C) can be generated with the script S3_4b.
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[u41 u42] ¼ [1, 0], [1, 0], [0, 1], [0, 1], and the corresponding cost is 4. Assume now q ¼ 1

and the uij in the range between 0 and 1. Then we get for the cost

Jðcj ;UÞ¼
X2
i¼1

�
ui1þ ui2

ffiffiffiffiffi
10

p �
þ
X4
i¼3

�
ui1

ffiffiffiffiffi
10

p
þ ui2

�
which is greater than 4 for any 0 < uij < 1, as ui1 þ ui2 ¼ 1. In other words, for q ¼ 1,

crisp clustering remains the most effective one with respect to the cost. Things change if

q > 1. Setting q ¼ 2, we find J(cj,U) < 4 if ui1 falls in the range [0,0.48] for i ¼ 1,2 and

ui2 lies in the interval [0,0.48] for i ¼ 3,4. Setting q ¼ 3, the ranges where fuzzy clustering

gives better cost functions than crisp clustering are 0 < ui1 < 0.67 for i ¼ 1,2 and

0 < ui2 < 0.67 for i ¼ 3,4. Obviously, these ranges are valid accounting for the condition

ui1 þ ui2 ¼ 1. In our small example, we learn that the ranges for uij, for which fuzzy

clustering outperforms crisp clustering with respect to the cost function, increase in

relation to q. In other words, choosing high q values will increase the fuzziness of the

clusters.

In “fuzzy C-means”, the most popular method of fuzzy clustering, we face the task of

identifying suitable representative vectors cj dtypically the centroids of the clustersdand

the cluster membership vector U. For this purpose, we use an iterative upgrade scheme,

starting with an initial guess of the cj. The elements of U can be calculated from

urs¼ 1

XM

j¼1

ððdðxr; csÞ=dðxr; cjÞÞ1=ðq�1Þ (3.17)

Figure 3.5
Time series of cluster membership: (A) crisp clustering and (B) fuzzy clustering.
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and for the representative vectors, we find

cj¼
XN
i¼1

uqijxi

,XN
i¼1

uqij (3.18)

In the subsequent iterations, we use the cj in order to find improved versions of U, which

are then used to update the cj. We stop the iteration, once the update rate of the cj falls

below a certain threshold.

In Fig. 3.6, we show the fuzzy cluster membership values obtained for our rock

composition data set. In fuzzy-C-means, we have applied three values for q, i.e., q ¼ 1.05

Figure 3.6
Fuzzy clustering of 161 13-dimensional rock composition data, using exponents q ¼ 1.05, 2, and
3. Note that with q ¼ 1.05 (A), we have an essentially crisp clustering, with increasing q (B and

C), the clustering tends to be less crisp.
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(quasi crisp), q ¼ 2, and q ¼ 3, assuming three clusters. As mentioned earlier, the higher

the q, the less crisp the clustering. We may set q ¼ 50, getting almost equal cluster

membership values of w1/3. Such a setting turns out as rather useless. In practice q is set

somewhere between 1.5 and 3, typical default settings provide q ¼ 2. The reader may play

with the various options using script S3_5 coming along with this book.

3.1.2.2 Hierarchical clustering

In the methods considered so far we have been using an approach forming disjoint

clusters, so to say the data description is “flat” (Duda et al., 2001). However, we may be

faced with data structures, where clusters still exhibit heterogeneities, subclusters, etc. In

partitioning cluster analysis, we had to choose a priori the number of clusters we wished

to form. Here, our a priori decision regards the resolution we want to have. A fundamental

of hierarchical clustering is the fact that once two patterns are assigned to a class, they

will remain within that cluster all the way. The only way they may be separated is when

we introduce a new level of clustering, identifying subclusters.

The hierarchical clustering scheme is commonly represented by the so-called

“dendrograms”, looking like a net of roots, which have an initial branch at the highest

level of the hierarchydwhich is simply the whole ensemble of patterns, then split into

thinner branches as subclusters appear. In Fig. 3.7, we illustrate this scheme. We have two

principal options: agglomerative (or bottom up) and divisive (top down). In Fig. 3.7, we

use the agglomerative method starting with singletons, i.e., each pattern itself forms a

cluster. In our example (see Theodoridis and Koutroumbas, 2009), we use Euclidean

distances as a metric and derive a distance matrix Dij, which describe the (dis)similarities

of pattern i with respect to pattern j. We consider all the distances between the samples

Figure 3.7
Construction of a dendrogram.
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and join the two for which the smallest distance is encountered, in Fig. 3.7 this is the case

for samples #1 and #2. Then we find that #4 and #5 are close to each other, so we joined

the two, forming a cluster. From the distance matrix, we recognize that the sample #3 is

close to #4 and #5, but distant from #1 and #2., i.e., we add it to the cluster formed by

samples #4 and #5.

During the clustering procedure, we may meet configurations of singletons and clusters

containing two or more samples. The choice that controls the next step regards the

definition of the distance. In our example, we had to decide what to do with sample #3. As

it was closer both to #4 and #5 than to #1 and #2, our decision was clear.

In general, however, we may use various criteria for measuring the distance of singletons

or clusters to another cluster. In the “single linkage” method, we decide on the basis of the

smallest distance between a sample and the members of a cluster (see Fig. 3.8). In our

case, sample #3 is closest to sample #4 (D34 ¼ 1.4), whereas its distance to the samples #1

and #2 is larger. In the “complete linkage” method, we consider the distance from our

pattern to the cluster, for which the largest value is encountered. For our sample #3 and

the cluster consisting of #4 and #5, the distance to the latter is relevant (D45 ¼ 2.5).

Considering the cluster consisting of #1 and #2, we must consider D13 which is 5, i.e.,

greater than D45. In our example, complete linkage and single linkage lead to the same

dendrogram. In general, when comparing clusters, we base our decision on

Dðℂq;ℂsÞ¼minðDðℂi;ℂsÞ;Dðℂj;ℂsÞÞ (3.19)

Figure 3.8
Complete and single linkage.
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where ℂi, ℂj, and ℂs are old clusters, and ℂq is the new cluster to be formed. That is we

consider the elements of the i-th cluster and those of the j-th cluster and compare them to

elements of ℂs. We merge on the basis of the minimum distance found, either ℂi, ℂs or ℂj,

ℂs. In complete link, we use the distances

Dðℂq;ℂsÞ ¼ maxðDðℂi;ℂsÞ;Dðℂj;ℂsÞÞ (3.20)

In other words, the single linkage follows a “min-min” conceptdwe measure the distance

of two clusters by taking the pair of closest patterns (the first “min”) and then repeat this

comparing all clusters to each other, finally merging the two clusters for which D(ℂq,ℂs) is

minimum (the second “min”). The complete link is a “max-min” approachdwe measure

the distance between two clusters by taking the pair of most distant patterns (“max”) and

then merging the two clusters for which D(ℂq,ℂs) is minimum (which is the “min”).

In Fig. 3.9 we recognize clusters of data in a 2D data space. From intuition, we would

start with two groups, having x1 > 5 and the other one x1 < 5. Besides, we notice a

somewhat less sharp separation with respect to x2 > 5. It means that we can further split

the two groups identifying subclusters.

Applying standard MATLAB™ procedures for agglomerative clustering using the single

linkage method, we obtain a dendrogram shown in Fig. 3.10. As outlined above, at the

lowest level, we merge singletons to clusters on the basis of their distance to each other,

subsequently we merge more and more clusters forming larger groups. At the beginning,

we merge patterns and groups being very close to each other. Toward the higher levels, we

have to merge groups being more distant to each other. In the dendrogram in Fig. 3.10, we

keep trace of the degrees of dissimilarity where a merge of clusters takes place. Jumps in

Figure 3.9
Demonstration of a data set for hierarchical clustering.
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the dissimilarities are an important feature in the dendrograms. When they appear, we

have to bridge large distance for a merge. In Fig. 3.10, we notice only small jumps at the

early stage, which means that we are merging at quite close distances. At some moment,

we do not find groups having a distance, let’s say less than 10. Defining a threshold of 10

as a measure of critical dissimilarity, we end up with four clusters, as shown by the bold

lines in Fig. 3.10. Another jump of the dissimilarity is found at a distance slightly below a

value of 30. That is if we want to merge our four subgroups to two major clusters we have

to bridge this distance.

In Fig. 3.11, we applied the “complete linkage” metric; however, the dendrogram has

essentially the same feature as the one obtained with single linkage. Obviously, the

numerical values of dissimilarity are higher, but the structure is essentially the same as in

Fig. 3.10.2 The reader may play with some aspects of agglomerative clustering using the

MATLAB™ script S3_6 coming along with this book.

Besides the single and complete linkage metrics, one finds other definitions in the

literature. For instance, we may use the distances between the centroids of two clusters or

Figure 3.10
Dendrogram for clustering of data shown in Fig. 3.8, using the agglomerative method and single
linkage distance metric. Note that the lowest levels of the dendrogram are suppressed (“cut”) for

the graphical representation.

2 Single and complete linkage metrics may differ considerably when elongated clusters are involved. One end
of such a cluster may lie close to a certain group, but the other may be very distant. Therefore, what looks
close in single linkage gets far distant with complete linkage. This situation is shown in Fig. 3.8.
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their median vectors. A further method is Ward’s linkage. It considers the sum of the

variances encountered within each cluster and merges the two clusters for which this sum

increases less. However, there is a caveat related to the request of monotonicity, i.e., the

measure of dissimilarity increases for higher cluster levels as observed in our dendrograms

in Figs. 3.10 and 3.11. Single linkage, complete linkages, and the Ward’s algorithm

comply with this request. The “centroid” and “median” methods, however, can produce a

cluster tree that is not monotonic. This occurs when the distance from the union of two

clusters, ℂr, ℂs, to a third cluster ℂq is less than the distance from either ℂr or ℂs to ℂq. In

this case, sections of the dendrogram change direction. This is an undesired effect and one

should use another metric.

Alternative to the agglomerative scheme, we could follow the “top-down” or “divisive”

strategy. In divisive schemes, we start with an initial division of the whole data set into

two clusters, searching for the partition, which maximizes the distance between the two

groups. In the next step, we go through the new generation of clusters. We try to divide

them with the scope to establish a new partition of the clusters where we achieved a

maximum distance between two clusters. The procedure is repeated unless we end up at

the lowest level, with clusters consisting only of singletons. As before, we may adopt

various metrics, such as single or complete linkage, Ward’s linkage, etc. Again, we may

design dendrograms, monitoring jumps in the dissimilarity measures in order to identify

suitable partitions, i.e., configurations where the number of clusters is limited, meanwhile

Figure 3.11
Dendrogram for clustering of data shown in Fig. 3.8, using the agglomerative method and

complete linkage distance metric. Note that the lowest levels of the dendrogram are suppressed
(“cut”) for the graphical representation.
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their degree of homogeneity is acceptable. The divisive schemes come with a rather high

computational burden, which renders them less popular than agglomerative schemes.

3.1.2.3 Density-based clustering

In partitioning clustering, we followed variance and dispersion-based metrics, which

represent the scatter of patterns from centroids. Often they have convex hulls,3 with a

(hyper)spherical or (hyper)ellipsoidal aspect. The number of clusters has to be specified by

the user. Even though there are some parameters which may give a hint on the suitable

number of clusters, this choice depends on the judgment of the analyst. Hierarchical

algorithms create a hierarchical decomposition of the data set. In contrast to partitioning

algorithms, hierarchical algorithms do not need the number of desired clusters as an input.

We can decide having the results in our hands, where to cut. However, we have to provide

a criterionda level of dissimilaritydindicating when the merge or division process should

be terminated.

In density based (DB) Clustering, we focus on the local structure of a data set. We

consider a unit volume in our data space and derive the density of samples within this

volume. Moving toward neighboring volumes, we verify whether the number of samples

has dropped below a threshold. If this is the case, we identify a heterogeneity in our data

set. In the absence of such heterogeneity, we declare that the neighboring volumes belong

to the same cluster.

In a more formal way we define:

A point y (i.e., a feature vector) is directly density reachable from x (another feature

vector), if

y˛ VεðxÞ (3.21)

and

NεðxÞ � q (3.22)

where V
ε
(x) is the unit (hyper)volume around a pattern and N

ε
(x) is the number of pattern

in the unit volume around that pattern. Consequently, we use the definition:

A point y (i.e., a feature vector) is density reachable from x (another feature vector), if

there is a sequence of points x1, x2 . xp, with x1 ¼ x, xp ¼ y, such that xiþ1 is directly

reachable from x1.

In other words, the x1, x2 . xp form a chain or coherent volume where the density does

not fall below a certain limit. A pattern x is a “core point” (see Fig. 3.12), if it has at least

3 Nonetheless, clusters may intersect each other, as we have seen in the Gaussian mixture model in Box 3.2.
The adaptive distance clustering allows intersecting clusters, too.
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q neighbors. Noncore points can be those situated at the margins of a cluster (these are

density reachable from a core point) and are called “border points”. Other points, not

being density reachable from others, are referred to as “noise points”.

A cluster is a set of points, density reachable from a core point. Clearly, a cluster can have

many core points and is thus uniquely determined by any of them. There are also noise

points, which cannot be density reached and from which no other point can be reached. As

the method accounts also for patterns not belonging to a cluster, it is also named

Box 3.3 DBSCAN algorithm

Define the set of unclassified patterns U. At the beginning, all patterns belong to this set.

While U s{}, select x ε U. Set number of clusters m ¼ 0.

Check whether x is a noncore point. If TRUE then U ¼ U\{x}, and x is noise.

If x is core, m ¼ m þ 1. Search all density reachable points, and form the cluster ℂm.

Border points, previously marked as noise, will be added to the cluster. Set U ¼ U\{ℂm}.

End.

Figure 3.12
Basic elements in density-based clustering. The V

ε
(x) are indicated as circles, we further require a

minimum of q ¼ 6 patterns being present in the elementary volume. Border points are density
reachable from the core points, but core points cannot be density reached from border points.
Noise points are not density reachable, and no other point can be reached from noise points.

They are outside all clusters.
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“DBSCAN”, “Density-Based Spatial Clustering of Applications with Noise” (see

Hochspringen et al., 1996, Sander et al., 1998).

In Fig. 3.13, we show an example application of DBSCAN clustering to a test data set.

The most interesting aspect is the possibility to form clusters of both convex or concave

shapes. In the figure, those clusters are indicated by the blue and red crosses. At the same

time, we notice the noise points. These are separated from the other points and do not

form a cluster on their own as they are not density reachable from either point of the data

set.

Unfortunately, the clustering results depend critically on the choice of the two parameters,

ε (for the definition of V
ε
(x)), and q. Clusters having varying densities may therefore not

be separated appropriately. Various alternatives have been proposed in order to bypass the

problem, among those is a technique known as OPTICS (Ordering Points To Identify the

Clustering Structure, see Ankerst et al., 1999).

In OPTICS we have two important terms:

core distance of an object x: the smallest value ε such that the ε-neighborhood of x has at

least q objects and

Figure 3.13
Application of DBSCAN to clusters with irregular shapes. Black circles correspond to patterns
identified as “noise”. See the link http://yarpiz.com/255/ypml110-dbscan-clustering. The tool is

also provided in this book (script S3_7).
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reachability distance of an object x from the core object y: this corresponds to the min

radius value that makes x density reachable from y.

OPTICS orders the samples, starting from an object not considered so far, and determines

its nearest neighbors. All samples being identified as nearest neighbors are temporarily

stored applying a ranking with respect to the reachability distance. In the following steps,

we take the object situated nearest to the previous one and repeat the search. In this way,

one terminates a whole cluster before passing to the next one. Finally, there will be only

unprocessed samples available, which have a high reachability distance. It means that such

a sample will be positioned at the ultimate rank in the cluster. However, if such an object

is a border or core point of another cluster, it may have close neighbors. Such a switch

from high to low values in the reachability distance is a clear sign for a new cluster. For

demo version, see https://github.com/alexgkendall/OPTICS_Clustering.

DENCLUE (DENSity based CLUstEing algorithm, see Hinneburg and Keim, 1998) starts

with the identification of “local maxima” of the density of patterns applying a predefined

Kernel function, typically having a Gaussian shape. The local density maxima form

“density attractors” that are treated as cluster centers. A proper DENCLUE cluster ℂ is a

set of density attractors together with the set of objects. Each density attractor in ℂ must

be reachable along a path with a predefined finite density. For more details, see e.g., Han

et al. (2011).

DBSCAN-STRATAdalgorithms with the so-called “stratification”dinclude an analysis of

the distribution of distances encountered within a data set. Here stratification is a

preprocessing step to divide data into layers where the objects have similar global

characteristics (Cassisi et al., 2013). In particular, it sorts subsets in which objects have

similar distances between each other. Once those subsets are identified, we can add

the information with respect to the distances to the original data, i.e., augment the

dimensionality and carry out a density clustering on the augmented data set. As the

authors point out, such a procedure has the advantage of being efficient for clusters with

varying densities, avoiding the tedious research on the choice of the parameters, ε and q

(see Eq. 3.21, 3.22) in DBSCAN, which in general has some difficulties in identifying

clusters having differing densities (see Huang et al., 2017). A certain drawback resides in

the fact that uniformly distributed noise may blur the results.

Besides the stratification option, Cassisi et al. (2013) proposed a modified definition of

neighborhood in density-based clustering. Recall that in classical density-based clustering,

we add a pattern y to a cluster, if it is recognized as falling in a range no larger than

ε0 from a core or neighbor pattern x of the cluster. In the modification, the pattern y to be

added can “reject” the new membership if it has at least q nearest neighbors, which are

closer than x. That way we can form clusters with varying densities (see Fig. 3.14).
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Figure 3.14
(A) Test data, clustered with DBSCAN-STRATA, ε ¼ 30, q ¼ 10. (B) Clustered with modified

DBSCAN, q ¼ 16. Note that in (B) only q has to be specified a priori. Patterns belonging to the
“noise” are indicated with black symbols in both plots. (B) Redrawn after Cassisi et al., 2013.
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For more details, we refer the reader to Cassisi et al. (2013) and references cited therein.

A beta version of the DBSCAN_STRATA program can be downloaded from the site http://

www.dmi.unict.it/wcassisi/DBStrata/ (see also Aliotta et al., 2011).

3.2 Self-Organizing Maps

The Self-Organizing Maps (SOMs) were invented by Teuvo Kohonen (1984, 2001) and are

often referred to as Kohonen maps. They are based on two key ideas: reduction of the

number of objects and reduction of the dimensionality of the problem. The first goal is

achieved by identifying prototypes of our patterns, each of which represents a number of

samples with a reasonable degree of similarity. These prototypes form clusters and are

referred to as “nodes” in the terminology of SOMs. In clustering the original set of

samples, we achieve a considerable reduction of the number of objects to deal with. The

second aspect regards the representation of multidimensional data in much lower

dimensional spaces than the original data set. We shall refer to these low dimensional

spaces as “representation spaces”. For the ease of visualization, the representation spaces

are often two-dimensional, and therefore, we use the term “map”. The process of reducing

the dimensionality of vectors corresponds to a data compression technique known as

vector quantization. An intriguing aspect of Kohonen’s method is to project the prototypes

onto a mesh where the information is stored in such a way that the topological

relationships within the patterns of the data set are conserved. In other words, patterns and

nodes being close to each other in the original feature space are also close to each other in

the representation space.

The usual arrangement of nodes follows a 2D regular spacing along a grid. As shown in

Fig. 3.15, we may use different surfaces for the mapping. The most frequently used

geometry is the “sheet”, i.e., a classical flat and rectangular map (Fig. 3.15A). Alternatives

are, for instance, the projection onto a cylinder surface or a torus. The choice of the

projection surface may depend on the characteristics of the features. Typically, we define

the distance between two patterns exploiting the Euclidean distance between the

Figure 3.15
2D mapping geometries: (A) sheet, (B) cylinder, and (C) torus (see Vesanto et al., 2000).
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corresponding feature vectors. In those cases, the projection onto a sheet is likely the most

suitable one. On the other hand, we may define (dis)similarity on some correlation bases

metric, i.e., we look at the shape or aspect of an object rather than its overall size. In those

applications, a projection onto a cylinder or torus surface may be preferable, as the

correlation coefficient corresponds to the angle formed by the two feature vectors rather

than the Euclidean distance.

As an alternative to the torus topology, Ritter (1999) proposed a spherical surface for the

projection. Using a spherical topology, the results of the SOM can be visualized in a

straightforward and easy-to-read way by standard map-projections well known in the field

of geodesy. One major shortcoming of a spherical model is that options of perfectly

regular placement of neurons on the sphere are rather limited. These options are known as

platonic polyhedra. A compromise bypassing the problem has been proposed by Wu and

Takatsuka (2006), using so-called geodesic domes (see Fig. 3.16).

The concept starts with the creation of an icosahedron, which has 24 vertices that can be

distributed on a sphere with equal distances from each other. The icosahedron has a

property comparable to a hexagon in two dimensions, which represents the polygon

optimizing the ratio between area and length of edges, and at the same time, its vertices

have equal distances to each other. The icosahedron is the platonic polyhedron most

similar to a sphere. Unfortunately, an SOM with only 24 units is often insufficient for

large data sets. As pointed out by Wu and Takatsuka (2006), this limitation can be solved

by carrying out an appropriated tessellation, which essentially consists in splitting the

triangle elements making up the icosahedron surface into smaller triangular elements with

equal side-lengths. Carrying out tessellation for subsequent steps, we can obtain a large

number of points distributed almost equally on the sphere. Most of the points have six

neighbors, only 12 of themdthe vertices of the original icosahedrondhave five. An

alternative method approaching a homogeneous mesh consists in deploying the nodes

Figure 3.16
Approximation of a sphere by tessellation of icosahedron surfaces: (A) first-order triangle tessella-
tion, (B) icosahedron, and (C) its first-order tessellation. The higher the degree of tessellation,

the closer the approach to a sphere. (C) redrawn from Wu and Takatsuka, 2006.
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along a spiral or in a helix which winds up over the sphere (Nishio, 2005; see also Jagric

and Zunk, 2013). The helix structure offers a better degree of homogeneity in the

distribution of nodes over the sphere, especially when the number of nodes is large.

Here we focus on the classical sheet topology, which is at the base of one of the most

famous applications: the so-called “World Poverty Map” (see Fig. 3.17). It is based on

economical parameters provided by the World Bank for the year 1992. In total, there were

39 variables, representing the economic status of a country. These variables include

income, education, health, nutrition, etc. Because of the high amount of variables,

Figure 3.17
World Poverty Map (Neural Networks Research Centre (1997), see http://www.cis.hut.fi/

research/som-research/worldmap.html, see also http://www.ai-junkie.com/ann/som/som5.html).
(A) The position of the countries on a Kohonen sheet and (B) their geographical position on the

globe.
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visualization of homogeneous groups is a problem. The use of an SOM is an attractive

solution to give a summarized view of which of the patterns may belong to a certain

category and which of them show clear differences. In our World Poverty Map, we notice

in the lower right corner, countries with the highest poverty, while the countries with a

higher economic status are found on the left border of the map.

Besides, we also recognize differences between rich countries, i.e., those having a high

procapita gross domestic product. European countries, such as Germany (“DEU” on the

map), France, Austria (“FRA”, “CHE”), etc., have close positions on the sheet, at some

distance to the USA or Canada (“USA”, “CDN”). The latter countries resemble to

geographically distant states like Australia (“AUS”) or New Zealand (“NZL”). Applying a

color code to each country, depending on its position on the Kohonen sheet, helps to

evidence the distribution of economic features on the world. Thus, we find a block of

orange formed by the countries of the Western European Union (Fig. 3.17B). Eastern

European countries, which made part of the communist block before 1990, are clearly

identifiable as patterns with red colorsdmirroring their common history after World War

II. On the other hand, the USA, CDN, and AUS resemble each other. They are countries

of immigration starting some 100 years ago and have a considerable geographical

extension. Compared to the European countries, they have a lower density of population

and a different welfare system.

3.2.1 Training of an SOM

For the sake of simplicity, we outline the construction of an SOM with nodes being placed

on a map with a sheet geometry. At the beginning of the learning process, each node of

the SOM is assigned an initial weight vector Wi (Fig. 3.18A), for instance by assigning

random values. The Wi have the same dimensionality as the original feature vectors. The

construction of the SOM follows an iterative procedure, considering the differences

Dij¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWi � VjÞTðWi � VjÞ

q
between the normalized input vector Vj and the weights Wi of the nodes. A core step is the

identification of the closest node to the actual input vector, i.e., the best matching unit

(BMU) for the j-th pattern. Throughout this identification process, neighboring nodes lying

within a certain radius of influence are considered as well. This is an important

characteristic of SOM training, as it makes sure that weights of nodes being situated

closely to each other on the sheet will be updated in a similar way.4 Once BMU and the

nodes falling within the area of influence are identified, the weights are gradually adjusted

4 Ideally, at the end of the training process, we obtain an SOM with “topological fidelity”. Nodes being
situated closely to each other on the map are close to each other also in the original feature space.
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according to the so-called learning rate. The rate, to which the weight of the nodes are

adjusted, decreases with the distance D between each node and the BMU. The upgrade of

weights follows the relationship

Wiðtþ 1Þ¼WiðtÞ þ fðD; tÞ,lðtÞ,DijðtÞ
where 4 describes the distance dependence of the upgrade of a node. 4(D,t) can have

various shapes, such as Gaussian, inverse parabolic, boxcar (see Messina and Langer,

2011, “KKAnalysis, Extended documentation” downloaded from http://earthref.org/ERDA/

974/); it has its maximum for the BMU, whereas nodes outside the radius of influence are

not upgraded at all (Fig. 3.18B). During a cycle of training, this procedure is repeated for

all input vectors. To achieve the stabilization of the map, both the learning rate and radius

of influence decrease during each iterative cycle. Eventually, the map will depict the input

vectors, the BMU, and the weight vectors calculated.

As we have seen in the World Poverty Map, visualization becomes extremely effective

when pattern characteristics are visualized using color codes. In this context, instead of

considering the original feature vector of the single patterns, we use the weights of the

Figure 3.18
Constructing an SOM placing the nodes on a sheet. (A) For each pattern, we search the nearest

node on the sheet, accounting for the Dij. Some of the Dij are indicated by the arrows. The
nearest node is identified as BMU (“Best Matching Unit”). (B) We upgrade the weightsdnot

only the ones of the BMU (the node in dark blue at the center), but also those of the
neighboring nodes, which fall inside a certain radius around the BMU (shown by the black dashed
circle). The rate of upgradedthe “learning” rateeshrinks with time; besides, it also decreases
inversely to the distance of a node from the BMU. We indicate those nodes by blue circles,

which get increasingly pale for nodes distant from the BMU.
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BMU to which a pattern belongs. For instance, countries “AUT”, “DEU”, and “FRA”

belong to the same BMU, and we shall consider the weight vector of this node as being

representative for all these countries. The color code of the nodes is determined in a way

that it represents its position on the map. We determine the position of the nodes by

carrying out a PCA (see Chapter 1) on the covariance matrix of the weight vectors and

keep the two biggest eigenvalues and eigenvectors. Say that the first eigenvalue is z1 and

the second is z2. We now normalize both z1 and z2 with respect to a range [0 . 1]. In an

RGB (red-green-blue) scheme, we assign the zi to the degree of saturation of red and

green. In order to improve the graphics, we define an auxiliary variable z3 controlling the

saturation of blue tones. We can obtain z3 for instance as z3 ¼ 1 � z2. For more technical

details for the construction of SOM with a sheet geometry, see Appendix 3.3. There we

also give some hints on the assessment of the quality of an SOM.

The color code of the SOM provides a synopsis of the classification results, allowing an

immediate comparison between various groups. In the presence of time-dependent pattern

characteristics, we may follow their development by plotting sequences of colored

symbols exploiting the RGB-coding derived from the SOM. Being time-dependent data

frequent in geophysics, SOMs have proven as a successful tool for the monitoring of

geophysical observations. We shall report more on these applications in Chapter 5.

Appendix 3
Appendix 3.1. Analysis of variance (ANOVA)

Analysis of variance (ANOVA) is used to analyze the differences among group means and

their associated procedures (such as “variation” among and between groups). In its

simplest form, ANOVA provides a statistical test of whether or not the means of several

groups are equal, and therefore generalizes the t-test to more than two groups.

The term “variance” is a bit sloppy, as ANOVA is based on the dispersion rather than the

variance.

The fundamental technique is a partitioning of the total sum of squares into components

related to the effects used in the model. A fundamental concept is the split of the total

dispersion in terms regarding the variation between groups and the one encountered within

(Table A3.1).

Table A3.1: ANOVA table (see Davis, 1986).

Source of variation Sum of squares Degrees of freedom Mean squares F-test

Between groups SB M-1 MSB MSB/MSW
Within groups SW N-M MSW
Total variation STot N-1 MSTot
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We have

STot ¼
XN
i¼1

ðxi � xÞ2 (A3.1)

Sw¼
Xmj

i¼1

�
xi � xj

�2
(A3.2)

where x is the global mean, xj is the mean of the j-th group, and mj is the number of

samples in that group. The two relations are nothing else than the Eqs. (3.7) and (3.8) for

the univariate case. The term

SB¼
Xk
j¼1

mj

�
xj � x

�2
(A3.3)

which is the univariate version of Eq. (3.9). The total dispersion corresponds to the sum

STot ¼ SB þ SW (A3.4)

we can apply an F-test on MSB/MSW
where MSB ¼ SB/(M � 1), MSW ¼ SW/(N �M), checking whether at least one of the

groups differs from the total population with respect to its mean. ANOVA requests that

group members are randomly sampled, all groups have the same variance and follow a

normal distribution. More details can be found in the referenced textbooks.

Appendix 3.2 Minimum distance property for the determinant criterion

In Chapter 3, we have discussed a normalization of dispersion by introducing a matrix G

Xk
j¼1

Xmj

i¼1

�
xi � xj

�T
G
�
xi� xj

�
(3.13)

and required a form of G such that the Eq. (3.13) is minimum. First, we require that

detðGÞ1=l¼ 1

and search the minimum with constraints using the Lagrange multipliers, i.e.,

FðG; lÞ¼
Xk
j¼1

Xmj

i¼1

�
xi � xj

�T
G
�
xi� xj

�� l
�
detðGÞ1l � 1

�
(A3.5)

Differentiating F(G, l) with respect to G and l and equating to zero yields
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�
xi � xj

�T�
xi� xj

�¼ S ¼ 1

l
lG�1ðdet GÞ1=l (A3.6)

Therefore,

l¼ lðdet SÞ1=l
and

G¼ðdet SÞ1=lS�1 (A3.7)

(see Späth, 1983).

Appendix 3.3. SOM quality

The issue of SOM quality is a complicated one. Typically, two evaluation criteria are used:

resolution and topology preservation. If the dimension of the data set is higher than the

dimension of the map grid, these usually become contradictory goals. The first value

returned concerns the resolution and is addressed to as the quantization error QE. In the

Introduction section, we learned that SOMs are created on the basis of the Euclidean

distance between map nodes and the feature vectors, i.e.,

Dij¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWi � VjÞTðWi � VjÞ

q
(A3.8)

Once concluded the training phase, we define a generalized measure summing the

distances between the feature vectors and the BMUs they belong to:

QE¼
X
i

X
j

Dij (A3.9)

with j running from 1 to the number of BMUs and j from 1 to the number of patterns

belonging to the j-th BMU. QE is the quantization error of the BMU and decreases with

the number of BMUs.

Topological error

A fundamental clue of SOMs resides in the fact that units having the smallest distances

between each other are ideally placed side by side. In terms of map with sheet geometry,

we may express the neighborhood relation on the map as some kind of “topological

distance” (TD). These distances are calculated along the map grid. Consider, for example,

the case of a 4 � 3 map. The unit (“1” to “c”) positions for “rectangular” and “hexagonal”

lattice (and “sheet” shape) are depicted below (Fig. A3.1):

Most neighboring nodes ideally have a topological distance of 1, such as the elements

labeled with 2, 5, a, and 7 with respect to element 6, whereas the elements 1, 9, b, 8, and
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3 have the TD ¼ 2. Suppose now that during training, a node labeled “9” is found to be

closer to the node labeled “6” than one of the nodes 2, 5, 7, or a. Then, in the rectangular

lattice, there will be a node closer to another, whose “topological” distance is 2 instead of

1. This is undesired and consequently considered as a topological error. On the other hand,

in the hexagonal lattice, the element 9 has a TD ¼ 1, so no topological error is

encountered in this case.

The global topological error reports the number of cases where a TD > 1 occurs, even

though two elements are less distant from each other. A high global topological error is a

diagnostics of an unsuitable choice of the map geometry. For instance, the map

representations proposed here (i.e., “sheet” shape) may fail for patterns distributed on a

circle or a sphere.

Designing the map

A further issue regards the overall aspect of the map and the number of nodes. As we see,

for instance, in Fig. A3.2, our nodes are placed on the sheet along rows and columns, i.e.,

9 rows and 52 columns. The choice of this aspect ratio, which has to be taken before

starting the training, is guided by the 2D PCA carried out on the covariance matrix of the

data set, where we keep the two largest eigenvalues together with their corresponding

eigenvectors. That way the overall shape of the sheet mirrors the distribution of the data

along the two major principal axes. Our nodes will represent our original data with a

reasonable homogeneity.

Figure A3.1
Rectangular (left) and hexagonal (right) configuration of nodes on a sheet. Nodes in light gray
have a topological distance TD of 1 with respect to the central node (“6”, dark gray). There are

four nodes with TD ¼ 1 in the rectangular configuration, but six in the hexagonal.
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In our specific case shown in Fig. A3.2, the ratio of the two eigenvalues was ca. 5.8. As

we decided to use 468 nodes, we choose to distribute nodes on a sheet with 9 rows and 52

columns. Small numbers in the hexagons (upper panel in Fig. A3.2) give the number for

which node is a BMU. For instance, the node in the upper left corner of the sheet is a

BMU of 41 patterns; the node in the lower left corner represents 64 patterns.

Whereas the upper panel in Fig. A3.2 gives some generic idea concerning the

configuration of the nodes on our sheet, their real position in the 2D representation space

is shown in the lower panel. It allows a visual inspection of the homogeneity of the node

distribution on the sheet. In our example, the homogeneity is quite reasonable for most

parts, some areas are poorly covered (such as the range [5 . 15] on the abscissa and

[-4..0] on the ordinate). Note that the position of the nodes in the lower panels governs the

colors assigned to the nodes.

The choice of the total map size, i.e., the number of nodes, depends highly on the user’s

needs. Smaller maps be at lower risk of topological error, at the same time the

Figure A3.2
A lattice of 9 � 52 nodes. The upper panel shows the distribution of the nodes using the

hexagonal configuration. Small numbers in the hexagons give the number of patterns represented
by the node. Some nodes carry a “0”, they are “loser” nodes, not being BMU for any of the

patterns. The lower panel represents the distribution of the nodes in the 2D representation space
and gives an idea about the homogeneity of pattern representation by the nodes. “Loser” nodes
are more likely in less densely covered areas. Color-coding follows the position of nodes in the

lower panel. See also Section 7.2.7 (Toolbox KKAnalysis).
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quantization errors increases inversely with the number of nodes. As a thumb rule, we may

follow the suggestions in the SOM toolbox 2 (Vesanto et al., 2000, see also Messina and

Langer, 2011). Here, the number of nodes for a “normal” sized map is obtained

heuristically according to n_nodes ¼ 5 * n_patterns0.5.. Then, accounting for the afore-

mentioned ratio of the two largest eigenvalues, we determine the length and the width of

the map in a way that the resulting number of nodes is as close as possible to the number

of nodes calculated with the heuristic formula. The choice “large” in Vesanto et al. (2000)

gives a map with doubled side lengths (i.e., 4 times the number of nodes of “normal),

conversely “small” produces a map where the side lengths are only 50% of a “normal”

size map.
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CHAPTER 4

Applications of supervised learning

4.1 Introduction

In Chapter 2, we understood “learning with supervision” as a way to establish a relation

between observations and a target, that is, information that is supposed to be known. In

our earthquake-nuclear test example, supervised learning methods were applied to

establish a formalism whose predictions had to reproduce with a reasonable accuracy our

target, that is, our a priori knowledge. Knowing the two magnitude valuesdMS and

mbdwe should be able to assign the right category to an event. In a more general

understanding, the essence of learning with supervision resides in establishing a function

that allows to make predictions from observations in a way that they match our a priori

information at best. Applying advanced methods of learning, such as the multilayer

perceptron or the support vector machines, the prediction function can be of arbitrary

complexity, allowing to handle highly nonlinear problems.

The models we derive from this kind of learning are essentially “black box,” as a priori

knowledge about the physical relation between observation and the target is absent or very

limiteddbasically helping to choose features or carrying out some data transformation. As

our prediction functions can be of arbitrary complexity, we are abledin the extreme

casedto fit even noise. Not having any clue whether our black-box models make sense

from a physical point of view, specific procedures have to be applied to verify the validity

of our models. These procedures imply testing we mentioned already in Chapter 2, and

that will be discussed in more details here.

In this chapter, we present practical applications of supervised learning in various

geophysical problems, such as the classification of time series (waveforms of explosion

quakes and infrasound events recorded at Stromboli volcano and at Mt Etna, respectively).

A further example is the classification of rocks. Here, we examine how conventional

classification schemes based on the mineralogical composition can be replaced by

geochemical analyses.

The application of methods of supervised learning to problems of inversion and regression

is also straightforward. Such problems are frequently met in Geophysics. In this chapter,

we present the inversion of model parameters from seismic waveforms. The integrated

inversion using data of static ground deformation along with magnetic and gravity fields
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originated from an opening crack is discussed in detail, as it offers specific clues on

preprocessing problems as well as the importance of model parameters.

Inversion using supervised learning is based on synthetic data in input and the parameters

of the physical model obtained as output. The input/output pairs form the examples from

which the inverse relation between data and model parameters is derived. A further

straightforward application of supervised learning schemes is given by regression and

interpolation, where we aim at making predictions of values based on a set of input data.

As in classical regression, we pick up the coefficients of our regression function from a set

of examples, in which we know both the input data as well as the target output. In this

chapter, we shall outline the concept in a problem of establishing cross-relations between

seismic velocities and electric resistivity; a further example regards ground motion

prediction equations, which are of paramount importance in seismic hazard analysis.

Successful learning strictly depends on appropriate feature selection and data

preprocessing, as we discussed in Chapter 1. In our applications, we will come back to

these issues in more detail. In the classification of waveforms (seismic, infrasound, or

other data), the direct use of the raw data is troublesome, which makes some

transformation necessary. In this case, spectral representations can be envisaged. Another

simple transformation is the autocorrelation function of the waveform. Geophysical data

often have a large dynamic range, that is, there is a high number of small values mixed

with a few large ones. As the latter are not outliers, we cannot just neglect them. Specific

normalization techniques can fix the problem.

An alternative approach to black-box learning applications is given by generative models

such as hidden Markov models (HMMs) or Bayesian networks, which allow an appraisal of

the model dynamics. Consequently, the evaluation of the physical relations each model

provides can lead the user to its validation or rejection. In particular, HMM are used to build a

classification system that is extremely valuable in case of task-force action. Most automatic

classification approaches need a large preclassified dataset for training. However, in case of a

volcanic crisis, observatories are often confronted with limitations in the training dataset due

to insufficient prior observations. We describe in this chapter a learning-while-recording

approach to construct a seismic-event spotting technique that is less dependent on previously

acquired databases and classification schemes. Based on a single waveform example, the

classification process can be started as early as events have been identified.

4.2 Classification of seismic waveforms recorded on volcanoes

An earthquake source is generally the result of a sudden displacement along a tectonic

fault, a manifestation of the activity of our restless planet. Further manifestations of

Earth’s activity are volcanoes. Similar to earthquakes, volcanoes are mainly located along
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the margins of tectonic plates continuously remodeling the planet with their eruptions.

Nevertheless, volcanic areas offer indispensable natural resources, such as fertile ground

and abundance of water, which render their environment attractive for human settlements.

This explains why volcanic areas are often densely populated regions.

The paroxysmal activity of volcanoes poses a threat to human life and structural facilities,

entailing the necessity of continuous surveillance and monitoring. Among the geophysical

data measured on and around volcanoes, seismic data play a key role in the detection of a

volcano unrest. Indeed, there is a well-documented evidence of links between enhanced

ground motion and volcanic activity. Numerous felt earthquakes heralded the cataclysmic

eruption of Vesuvius in 79 AD; however, the population was not particularly concerned, as it

had become accustomed to ground shaking in previous years. Moderate to strong earthquakes

before eruptions are also documented at Arenal volcano, Mt S. Helens, Mt Usu, Pinatubo,

Unzen only to cite a few examples (McNutt, 2000). Volcanic activity is also often heralded

(from hours to days) by seismic swarms with hundreds to thousands of small earthquakes.

More than 2600 earthquakes with magnitude �1 were recorded during the 4 days preceding

the onset of the July 2001 eruption of Mt Etna (Patanè et al., 2003). Similarly, more than 800

shallow tectonic earthquakes occurred a few hours before and at the onset of the following

eruption of Mt Etna, which started on October 27, 2002 and lasted until February 2003.

Earthquakes tied to volcanic activity are the response to deformation of rocks. Indeed, the

intrusion of magma and fluids leads to rapid accumulation of stress, with the consequent

failure in the form of shear fracturing of the rocks surrounding the rising path. The physics

behind such volcano-tectonic (VT) earthquakes resembles that of tectonic earthquakes

outside the volcanic environment. Having a broad spectral content with high-frequency

peaks, VT earthquakes are also addressed to as “high-frequency” (HF) events (Fig. 4.1A).

Well-known parameters in earthquake seismologydsuch as magnitude, seismic moment,

fault mechanism, and stress dropdare also used for their description. On the other hand,

there are also seismic transients the characteristics of which differ from tectonic

earthquakes. As the parametrization of their sources is still a matter of debate, the type of

seismic signals recorded on volcanoes is identified on the base of some morphological

aspects of the waveforms rather than addressing directly to source parameters. In a certain

sense, the classification of the signals based on their waveforms forms a propaedeutic step

in the identification of the physics of the sources.

McNutt and Roman (2015) give a summary of the types of seismic events recorded in

volcanic environment:

Long period events (“LP” events; Fig. 4.1B): They are transients having an emergent

onset, a wave train without easily recognizable phases, and a clearly dominant period over

the whole signal. Their spectra appear narrow-banded, and dominant frequencies (between

1 and 5 Hz) are lower than those of VT earthquakes. The mechanism at the origin of this
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Figure 4.1
Example waveforms recorded at Stromboli (A, D, E, F) and Montserrat (B, C): Volcano-Tectonic
(A), Long Period (B), hybrid event (C), explosion quake (D), rockfall (E), and volcanic tremor (F).
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event type is a matter of intense research. Most of them are understood as being caused by

fluid pressurization, such as bubble formation and collapse. In this light, LP events have

attracted considerable attention as potential precursors of an impending volcano unrest.

With the advent of broadband seismometers, a subgroupdcalled very long period (“VLP”)

eventsdwas identified, being their dominant period well above 1 s.

Hybrid events (Fig. 4.1C): Morphologically, their seismic signature is a wave train with

dominant high frequencies at the beginning and lower frequencies in the coda. In some

way, they appear as a mixture of HF and LP events. Many authors suppose that the high-

frequency part is truly generated by an HF, which triggers oscillation of fluid-filled

cavities. Note, however, that volcanoes are particularly complex with respect to their

geological structure. Wave propagation effects and attenuation may strongly affect the

waveforms of seismic signals, hindering the identification of the real source process.

Explosion quakes (Fig. 4.1D): They can be explained by a mechanism similar to nuclear

tests mentioned in Chapter 2, that is, their source is a sudden release of energy caused, for

instance, by the burst of bubbles within a magma conduit. When the source is close to the

surface, their seismic signature is associated with an air shock, as part of the energy

propagates through the air as acoustic wave.

Superficial events (Fig. 4.1F): They originate at the very surface of the volcano edifice and

include nonvolcanic processes. Glacial events, shore-ice movements, lahars, landslides,

and rockfalls are “secondary” signals recorded on a volcano. Although not directly linked

to the dynamics inside the volcano, these signals may be a hint of ongoing processes. For

example, the growth of lava domes in andesitic volcanoes with highly viscous magma is

often accompanied by an increase in rockfall activity. On the other hand, ground shaking

associated with seismic events may act as a trigger for those superficial events.

Volcanic Tremor: McNutt (1992) and McNutt and Roman (2015) define volcanic tremor as

a signal with duration ranging from minutes to days. It can have origin from the

coalescence of transients, such as Hybrid or LP events. On basaltic volcanoes with

permanent open conduits, like Mt Etna or Stromboli, tremor is recorded at any time,

forming a persistent signal in which the energy radiation varies smoothly with time. Its

amplitude as well as its spectral content changes with the state of the volcano activity. The

spectral content is narrow-banded, sometimes with the presence of one dominant peak

together with overtones. The source mechanism is supposed to be similar to that of LP

events, that is, oscillations of fluid-filled cavities (see Aki et al., 1977; Chouet, 1985).

Other authors like Ferrick et al. (1982) and Schick (1988) underscore the role of

nonsteady fluid flow causing pressure fluctuations that would generate the seismic signal.

An example of volcanic tremor recorded at Stromboli is depicted in Fig. 4.1F.
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4.2.1 Signal classification of explosion quakes at Stromboli

Known as the lighthouse of the Mediterranean Sea, for its persistent activity over more than

2000 years, Stromboli volcano belongs to a chain of volcanic islands forming the Aeolian

Archipelago in southern Italy (Fig. 4.2). Stromboli’s activity consists of continuous degassing

as well as so-called Strombolian explosions. These explosions are frequent (10e20 min) and

cause the ejection of ash, lapilli, and lava bombs. Periodically eruptive crises occur, with

occasional lava effusions and/or paroxysmal activity. In the 21st century, the major reasons of

concern for the local population were in December 2002 and March 2003, during the same

episode of lava effusion. A landslidedover both land and sea bottomdassociated with a

tsunami happened 2 days after the onset of the effusive activity on December 28, 2002;

3 months later, these phenomena were followed by a paroxysmal sequence of explosions,

which remodeled the summit part of the volcano. Such events had a strong social impact and

fostered the setting of a cutting-edge monitoring system.

The majority of seismic signals recorded at Stromboli has a strong link with Strombolian

explosions and is known as explosion quakes. The count of the daily occurrence unveils

hundreds of such events, the manual analysis of which is a daunting task. Nevertheless, a rapid

and reliable analysis of these events is important, for their distribution in classes (according to

their seismic signature) changed before a few well-documented paroxysmal activities heralding

their occurrence (Falsaperla et al., 1989). For these reasons, Falsaperla et al. (1996) proposed

the automatic classification of Stromboli’s explosion quakes by using neural networks.

Generally speaking, the motivations for the application of an automatic classification system

are inherent to the necessity to quickly process a large amount of signals as well as the lack of

easily identifiable and physically well-constrained parameters for their characterizationdsuch

as the aforementioned parameters mb/MS for tectonic earthquakes and nuclear test

explosions. An answer to this need can be found in supervised classification with neural

(A) (B)

Figure 4.2
The Stromboli island (A); detail of the Sciara del Fuoco with the active summit craters (B).

Reprinted with permission of the author Alfio Amantia.
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networks, for instance using multilayer perceptron (MLP). As we have learned in Chapter 2,

they overcome the drawbacks of methods based on statistical considerations like

discrimination analysis, which are limited to problems where classes can be separated by

linear or quadratic discrimination functions. On the other hand, methods based on cluster

analysis, which can deal with nonlinear processes, require an “a priori” definition of metric

for the distance of the classes. This is not necessary with MLP networks, as they can

generalize the main features of the discrimination functions from examples (see Chapter 2).

The dataset of explosion quakes analyzed by Falsaperla et al. (1996) was recorded by

means of a 1 Hz vertical-component seismometer 1.8 km distant from the summit craters.

A 12 bit A/D converter digitized the original analogue signal at a sample rate of 33 Hz.

Based on a previous study (Falsaperla et al., 1989), the 75 explosion quakes of the dataset

analyzed were then divided into four classes labeled K, L, M, and N. Examples for the

four event classes are shown in Fig. 4.3.

The first class, “K,” depicts a low-frequency phase (1e2 Hz) that lastsw3 s, followed by a

phase with higher frequency content (2e4 Hz) and a much smaller amplitude with respect to

the first part The second class, “L,” is monochromatic (w2 Hz), generally with brief duration.

Figure 4.3
Example waveforms of ground velocity for the four classes of explosion quakes recorded at

Stromboli (Falsaperla et al., 1996). Abscissa reports the number of points.
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The third class, “M,” is characterized by a low-frequency phase (1.3e2.5 Hz) followed by

another one with higher frequency (4e6 Hz) but comparable amplitude. Finally, the fourth

class, “N,” shows no clear phase and is dominated by frequencies in an interval from 4 to

6 Hz. As a fixed duration was necessary for the application of the MLP, each explosion quake

had assigned a time series containing only 600 samples (w18 s), independently of the

original duration of the signal. This length was a good compromise for representing each

individual seismogram without loss of significant information.

For their application, Falsaperla et al. (1996) used an MLP with topology UeV-4, where

U is the length of the input feature vector (600 nodes), V is the number of nodes in the

hidden layer, and four are the nodes in the output, representing the classes “K,” “L,” “M,”

“N.” For the input feature vector, the classification task posed the problem of data coding,

that is, the choice of the best way to present the features of the input patterns for an

efficient separation of the different classes. This is a key aspect, as the performance of a

neural network depends on the chosen feature representation. Being poorly guided by

theory, this aspect of pattern classification requires a heuristic approach based on trials to

reach an appropriate data coding. The authors considered a variety of options for the

generation of the feature vectors, such as time series, spectra, envelopes, and

autocorrelation functions (ACF). Here, we focus on the latter, which turned out as a good

choice in terms of MLP’s performance (Falsaperla et al., 1996). Typical ACFs for events

of the four classes are depicted in Fig. 4.4. ACF has a zero phase, that is, the phase

information of the traces is lost. This overcomes the problem of a proper phase alignment,

which may be critical when using time series.

We reproduce here some of the results obtained by Falsaperla et al. (1996), considering

the same dataset encompassing 75 patterns. Given the length of the ACF input vectors

(600 nodes) and the number of classes (4), the only free parameter in our network is the

number of hidden nodes. As we mentioned in Chapter 1 (Section 1.2.7), the choice is

guided by two goals: (i) find the mapping function which gives the highest accuracy, and

(ii) avoid overfitting effects. Overfitting occurs when a model has too many degrees of

freedom. Such a model can fit any kind of datadin theory even noisedbut once applied

to a set not used during the estimation of the model parameters (“training”), the number of

mismatch may be high (see Appendix 4.3). We therefore prefer functions that give a

reasonable accuracy with the lowest number of parameters. The identification of a suitable

number of model parametersdhere the number of hidden nodesdis achieved by a

strategy called cross-validation. It consists in setting aside a part of the data, excluding it

from the training. In our specific case, we divide the 75 patterns into two sets, namely a

training set of 38 patterns and a test set of 37 patterns. During each cycle of training, we

apply the current mapping function to both sets, obtaining error histories such as the ones

shown in Fig. 4.5. We leave to the readers their own experimentsdvarying the number of

hidden nodes and analyzing the corresponding error historiesdusing the code and data
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accompanying the book (see Chapter 7.3.1 code BPNN, training, and test data). In the

following, we shall discuss the results obtained with eight nodes in the hidden layer, that

is applying a topology 600-8-4. Note that topologies with only one hidden layer are

generally sufficient to solve the same class of problems as more complex networks

(Freeman and Skapura, 1992).

We assign an a priori class membership to each pattern using a classification vector of length

4. As targets, we define the class “K” as the vector (1, 0, 0, 0), “L” (0, 1, 0, 0), “M” (0, 0, 1,

0), and “N” (0, 0, 0, 1). During the training phase, the MLP tries to establish a function from

the input vector (here the ACF), optimizing the difference between calculated output and

target vectors. Compared to the a priori target vectors, where there are only “1”s and “0”s, the

calculated output vector is a floating-point value. Let us consider results and targets for the

following example pattern

f1.02998; 1; � 0.0116104; 0; � 0.00754332; 0; � 0.0113994; 0g
in which the floating-point values represent the calculated output (the target values are in

bold). The target class is “K” (“1” in the first position). The calculated output with respect to

Figure 4.4
Typical autocorrelation functions for the event classes “K,” “L,” “M,” and “N.” Abscissa reports

the number of points.
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the first element of the class vector is 1.02., whereas the next calculated values are close to

zero. This is a typical “success” of the classifier in the sense that target- and calculated-class

vector are similar. Now, consider another pattern with the following results:

f0.429063; 0; � 0.0689474; 0; 0.433669; 1; 0.205585; 0g
These are still a “success” if we look for the largest calculated value for the identification of

the class membership. Indeed, in this case, “1” is in the third position (see class “M”) and the

corresponding calculated output 0.433. is the largest among the calculated values.

An example of misfit is

f0.447428; 0; � 0.0216334; 0; 0.237053; 0; 0.337737; 1g
with the largest calculated output 0.44 . in the first position, whereas the target “1” is in

the fourth position (class “N”).1

Figure 4.5
Training set (blue) and test set errors (red) throughout the training of an MLP with eight hidden

units.

1 It is worth examining in hindsight the calculated output values, in particular, when they are far from 0 or 1.
In our second example, we face with features in between class “K” and “M.” Eventually, “M” is the
assigned class membership, but the classification is uncertain, as the second highest score is close to the first
one. Similar cases merit an in-depth investigation of the a priori input classification. Note that we shall use
the gradualness in the MLP output for nonlinear regression and inversion purposes. Here, we should mention
that the network training is controlled by the mean square error (MSE) between calculated output and target,
whereas in the confusion matrix we simply count the patterns with matching/mismatching classification. The
squared errors for the second and the third example are w0.55 and 0.69, respectively. Even though they
share a similar square error, the classification is “successful” only for the second pattern. This is a typical
threshold effect and must be kept in mind in the a posteriori analysis of the classification results, especially
when the dataset is small.
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Based on the number of successesdhere achieved considering the maximum of the

calculated valuesdwe summarize the results in so-called confusion matrix (Table 4.1).

In the confusion matrix, columns and rows report the a priori classification and the classes

identified by the MLP, respectively (Table 4.1). Table 4.1a has no nonzero entries at the

off-diagonal elements of the confusion matrix for the training set, documenting a success

of 100%. The a priori classification encompasses 11 patterns in class “K” and “L,” and

eight in class “M” and “N.” Using the “BPNN”-code for the MLP (with autotuning of the

learning parameters) we get somewhat better results compared to Falsaperla et al. (1996).

In fact, we find (see Table 4.1a) that all patterns in the training set were correctly

identified. For comparison, the matrix in Table 4.1b reports the results obtained for the test

set containing a few nonzero off-diagonal elements, which are misclassifications. For

instance, MLP assigned the class “L” and “N” at two of the a priori labeled “K” patterns.

Problems of misclassification also rose for patterns of class “M” and “N” (Table 4.1b).

4.2.2 Cross-validation issues

The results of the test set (Table 4.1b) show more misclassifications than the ones for the

training set (Table 4.1a). This comes from intuition and corresponds to the error history

shown in Fig. 4.5. At the beginning of the training, both errors decrease at each iteration;

later, however, the error for the test increases, whereas the one for training continues to

decrease. Note that the results reported in Table 4.1 covers the whole training process (400

cycles). From the error history, however, we might suspect that we were better off stopping

the training after only w30 cycles, as the error related to the test set increases, reaching a

stable level after w70 cycles. Although being a tempting solution, it requires caution. If we

Table 4.1: Confusion matrix for training (a) and test set (b).

(a)

A priori K A priori L A priori M A priori N
Calculated K 11 0 0 0
Calculated L 0 11 0 0
Calculated M 0 0 8 0
Calculated N 0 0 0 8

(b)

A priori K A priori L A priori M A priori N
Calculated K 10 1 1 1
Calculated L 0 10 0 0
Calculated M 1 0 6 2
Calculated N 0 0 1 4

The results for the training set are slightly better than those reported in Falsaperla et al. (1996), as we used an improved
algorithm for network training.
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use the test set to decide when iterations should stop, then the test set is no more a true test!

In theory, one could restart the training repeatedly, just changing the initial conditions and

taking the best results out of all these attempts. From a statistical point of view, the test

error is a random variable itself. Let p being the true but unknown error rate of our

classifier, pe the estimated value, and k the number of misclassified samples in a test set of

size ne; then k follows a binomial distribution (see Duda et al., 2001)

PðkÞ¼
� en
k

�
pk (4.1)

for which the maximum likelihood estimation of p is

ep¼ k=en (4.2)

In our example in Table 4.1b, we have 37 patterns in the test set and an estimated rate of

misclassification of 7/37 ¼ 0.19. The 95% confidence intervals of true error for the

corresponding binomial distribution (Eq. 4.1) is w0.08 < p< 0.38 (see, e.g., Kreyszig,

1982). In other words, if we use the test set to stop the training, there is the risk of being

biased toward the lower bounds of the confidence interval. Therefore, we must not use the

test set for the decision when to stop the learning. In general, we must warrant the

principle that the test has to be independent from the training process in any regard. At the

same time, we learn that with a single test set of limited size the performance of our

classifier is uncertain. There are several ways to overcome these drawbacks:

(i) Validation set: Besides the training and test set, we can create a third ensemble, called

validation set. In this case, we can stop the iterations when the error decreases for the

training set and increases for the test set; the third ensemble will allow us the final

validation of the performance of the classifier, avoiding the problem of being biased

toward the lower limits of the confidence interval (see, e.g., Hastie et al., 2002).

(ii) N-fold cross-validation: Having a limited quantity of data, we may find difficult the

application of the earlier-mentioned solution to achieve an unbiased and, at the same

time, statistically robust estimation of the classifier’s performance. An alternative is

the random division of the whole ensemble into N roughly equal-sized subsets. After

carrying out training and test N-times, we can create statistics on the performance of

the classifier with the N-resulting errors obtained.

(iii) Bootstrap and jack-knife methods: Other ways out in case of limited quantities of data

are techniques that exploit bootstrap and jack-knife methods. Using bootstrap, we

resample the whole dataset, by drawing random patterns from the original dataset. We

set aside the patterns that are not drawn during the bootstrap and use them in the test.

That way we have on average about 63% of the data in the training set and 37% in

the test set (see Hastie et al., 2002). Performing the bootstrap several times, we can

get statistics on the performance of the classifier. Jack-knife cross-validation is also
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known as the “leave-one-out” approach, as one of the patterns is set aside for testing,

whereas the rest remains in the training set. In this case, the training goes on N-1

times, with n being the number of patterns in our dataset. This method is unaffordable

if N is large.

4.3 Infrasound classification

Seismic monitoring is functional if the sources are buried in the crust, and energy remains

trapped in the surrounding material. However, it may lose its efficiency for sources located

close to the surface, which release their energy also into the atmosphere. Shallow sources

are often accompanied by acoustic and infrasound signals, that is, waves that propagate in

the air. For instance, strong superficial earthquakes are reported to be felt by the

population as a “bang”; the same holds for explosive events on volcanoes or explosions in

the context of human activity (such as quarry blasts). Perhaps the first air waves

documented during a volcanic eruption were barometric disturbances recorded during the

explosion of the Krakatau volcano in 1883 (see Evers and Haak, 2010). Those

disturbances recorded worldwide allowed the precise determination of the origin time of

the eruption (see Verbeek, 1885; and Symons, 1888; cited in Evers and Haak, 2010).

With their dominant frequencies well above 20 Hz, acoustic signals propagate only over

short distances. On the contrary, infrasound signals have a typical frequency range

between 0.01 and 10 Hz and can therefore be recorded over long distances. (Infra)Sounds

are longitudinal waves and can stem from numerous sources, such as the aforementioned

shallow earthquakes, volcanic eruptions, weather-dependent sources (storms and tornados),

and various man-made sources. Infrasound monitoring plays a key role in nuclear test

monitoring and is one of the four key technologies exploited in the International

Monitoring System of the CTBTO (“Comprehensive Test Ban Treaty Organization” of the

UNO). In fact, nuclear testing has been carried out in the crust (with buried sources

causing strong seismic signals), in the sea (where sources are revealed by hydro-acoustic

monitoring), and in the atmosphere with a strong radiation of infrasound signals.

Following Cook (1962), molecular attenuation is unimportant to infrasonic propagation

(5 � 10�8 dB per km). In comparison, a sound at 2 kHz will attenuate at 5 dB per km.

Therefore, an infrasound below 1 Hz is virtually unattenuated by atmospheric absorption,

and remains detectable at distances of thousands of kilometers from the source. At long

distances, several phenomena may complicate the propagation of infrasound signals.

Temperature changes in the atmosphere affect the signal in the same way that light waves

are refracted by lenses. Wind speed changes contribute to sound refraction, guiding sound

waves as they travel for long distances. Some waves escape and travel upwards to great
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heights in the ionosphere where they dissipate, while others are trapped in the upper

atmosphere as they travel horizontally (see Georges and Beasley, 1977).

Although the atmosphere is nonhomogeneous and dynamic, it is relatively uncomplicated

compared to the solid medium through which seismic waves propagate (Johnson and

Ripepe, 2011). In general, the volcanic edifice is a medium with large impedance

contrasts, therefore with high scattering and attenuation of seismic waves. Compared to

the solid earth, the atmosphere is relatively homogeneous and isotropic at short

propagation distances, such that infrasonic pressure records can be fairly directly related to

source processes occurring at a volcano. Therefore, on local scale, infrasound data have

achieved considerable attention in the framework of volcano monitoring, as they allow a

quantitative description of the eruptive behavior. At local recording distances, amplitude

and power, coda duration, signal envelope, and frequency spectra are easily quantified.

This enables a comparison of infrasound signals for suites of eruptions either at a single

volcano or a group of volcanoes. Similar to seismograms, infrasound signals are

commonly processed as time series or as spectrograms, which depict the frequency content

in a signal over time (e.g., see Fig. 4.1). Qualitative insight into infrasound signals may

also be realized by speeding up infrasound into the audio band. Although the human ear

does not have a flat frequency response, it is sensitive to subtle variations in tone.

Compact volumetric sources are the most efficient sources of infrasound signals in a volcanic

region (Johnson and Ripepe, 2011). For these sources, the dimension of the volcanic vent (or

acoustic radiator) is small compared to the wavelength of the radiated sound. A simple

monopole source approximation may then be made, and the resultant sound field will be

proportional to the source strength or change in rate of mass injection (Lighthill, 1978)

PMðr; tÞ¼ r

U
Q
�
t� r

c

�
(4.3)

with t being the time variable, r the source-to-receiver distance, and c the sound velocity.

Q is the mass acceleration at the source, which is the effective volumetric acceleration of

the atmosphere at the source. Under the assumption of a monopole source mechanism, the

mass flux history and cumulative explosive flux may be recovered from single and double

time integration of Q.

Infrasound waveforms from volcanic eruptions often begin with an abrupt compressional

phase followed by a rarefaction phase of similar amplitude (e.g., Morrissey and Chouet,

1997). These bipolar pulses have an N-like shape similar to a chemical explosion shock

wave after it decays to acoustic wave. N-shaped waveforms are quite a common feature of

the onset of many explosive eruptions. Infrasound signal may acquire a more complex

waveform when followed by a broadband or harmonic “tremor”da signal being persistent

for some time, similar to its equivalent in seismology. Such a waveform has been
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interpreted either as a sequence of pulses or as resonance modes of fluid-filled conduits

(Johnson and Ripepe, 2011, and references therein).

Air displacement caused by rockfall associated with volcanic activity has been modeled by

Moran et al. (2008) using the monopole approximation mentioned earlier.

4.3.1 Infrasound monitoring at Mt Etnadclassification with SVM

Mt Etna, situated on the eastern coast of Sicily, is Europe’s largest and most active

volcano. The volcanic edifice of Mt Etna covers an area of w1200 km2. The flanks of the

mountain are densely populated. Catania, Sicily’s second largest city with w300,000

inhabitants, is about 15 km south of the summit craters. There are also important

infrastructuresdlike the International Airport Catania-Fontanarossa; the Freeways

CataniadPalermo, CataniadMessina, and CataniadSiracusa. To protect this metropolitan

area, Mt Etna is continuously monitored for the identification of precursory phenomena

heralding a possible volcanic threat.

Mt Etna’s summit area has undergone profound modifications even in relatively brief time

spans. For example, it has five active summit craters at present, but there was only one

central crater at the beginning of the 20th century (Bonaccorso et al., 2004). In an analysis

of infrasound signals during a period of unrest in fall 2007, Cannata et al. (2009) located

the sources of infrasound signals using the so-called “semblance” approach (Neidel and

Tarner, 1971). This is a commonly used technique for determining both seismic and

infrasound source locations at volcanoes, especially when signals have no easy-to-pick

onset. The method applies a forward grid search in which each unique sensor pair is time-

shifted for each grid node, and then cross-correlated to determine which time shift and

respective node provide the best fit. During the location of the infrasound sources it turned

out that many of them were situated close to three main craters of the volcano, namely

“North-East Crater”, “Bocca Nuova” and “South-East Crater” (Fig. 4.6).

It turned out that waveforms can be distinguished on the base of the crater that is closer to

the source location (see Fig. 4.6). Considering for instance the recordings of the EBEL

station, there were clear differences between the waveforms of signals radiated at the

South-East Crater and those related to the North-East Crater. In terms of classification

with supervision, one can exploit the location of the source as a priori information of the

crater of origin. Accordingly, one can form a training set assigning the class membership

with respect to the location of the signal source. The learning phase will attain a function

that enables to infer which of the craters yielded a certain signal. This can be extremely

helpful especially when more than one sensor is out of order, overcoming the necessity to

locate each signal (Fig. 4.7).
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For the feature extraction, Cannata et al. (2011) applied the so-called Sompi method. This

accounts for the specific characteristics of infrasonic events, the waveforms of which can

be represented as decaying complex exponential functions (Kumazawa et al., 1990, and

references therein). The method is a high-resolution spectral analysis technique based on

an autoregressive filter, which describes a given time series as a number of “wave

elements” consisting of decaying harmonic components, and additional noise.2

Figure 4.6
Digital elevation model of the summit craters of Mt Etna by Neri et al. (2008) (reprinted by

permission of the publisher John Wiley & Sons, Inc.). Red numbers give the year of relevant lava
flows observed in the years from 1955 to 2007.

2 Besides classical spectral representations and autocorrelation functions, the features of infrasound signals can
be also obtained from Hilbert Transforms, the Hilbert Huang Transform (see Huang and Wu, 2008), or using
the Wavelet Transforms.
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(B)

(A)

Figure 4.7
Typical infrasound waveforms recorded during fall 2007: (A) infrasound event occurred on

September 4, 2007, located at the South-East Crater; (B) infrasound event recorded on October
2, 2007, located close to the North-East Crater (Cannata et al., 2009, 2011).
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Cannata et al. (2011) defined the a priori class membership by a DBSCAN-based

clustering and applied support vector machine (SVM) classification using this target

definition. The testing phase provided the following confusion matrix.

On the whole, the results gave about 12% off-diagonal patterns, which provide the rate of

misclassified items. The separation of clusters 2 and 3 is rather poor in the SVM

application (Table 4.2). Note, however, that these two clusters represent infrasound events

located close to the South-East Crater. Combining the two clusters into one single family

representing the location, the mismatch decreases to 5.25%. This example highlights the

important role of the confusion matrix, as it can help the user in the choice of the number

of classes to handle for the definition of the a priori target.

Mt Etna and, in particular, its summit area undergoes changes at any time due to frequent

eruptive activity. We shall discuss later on how such changes in active volcanoes may pose

severe problems for the application of supervised classification schemes over long-time

spans, as the characteristics of targets may change. For instance, modifications in the

geometry of a volcano conduit can alter the waveforms of seismic and infrasonic signals.

It is recommendable to repeat the whole learning and testing scheme from time to time

(see Cannata et al., 2011). In case of relevant changes in the source characteristics, the

definition of the target becomes obsolete and must be replaced accounting for the new

situation.

4.4 SVM classification of rocks

Conventional classification of igneous rocks is based on the rock composition considering

a few key minerals. The famous Streckeisen diagrams provide a descriptive classification

of “rock modes” on triangular diagrams in which the key minerals are Quartz, Orthoclase,

and Plagioclase (e.g., Streckeisen, 1974, 1978). In complete diagrams, one also adds the

Feldspathoid-branch (Fig. 4.8). As Feldspathoid and Quartz cannot be together in the same

rock, they are placed at the opposite vertices of the triangles.

Let us focus on the upper triangle of Fig. 4.8. The three components Quartz, Orthoclase,

and Plagioclase are calculated from the mode to sum to 100%. Each component marks the

corners of the equilateral triangle, the sides of which have a length divided into 100 equal

Table 4.2: Confusion matrix of infrasound classification at Mt Etna (Cannata et al., 2011).

Actual/Predicted Cluster 1 Cluster 2 Cluster 3

Cluster 1 476 9 6
Cluster 2 9 15 8
Cluster 3 8 33 46
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parts. Any composition plotted at a corner has thus a mode of 100% of the corresponding

component. Any point on the sides of the triangle represents a mode which is the sum of

the two adjacent corner components. For example, a rock with 60% Quartz and 40%

Orthoclase lies on the left hand side of the triangle (QuartzdOrthoclase) at a “distance”

of 60% from Orthoclase; this composition belongs to the field of Rhyolite (Fig. 4.8). A

rock with 60% Quartz and 40% Plagioclase lies on the right hand side of the diagram

(QuartzdPlagioclase) at a distance of 60% from Plagioclase. In this case, the composition

belongs to the field of Dacite (Fig. 4.8).

In case of aphanitic (fine grained) texture of volcanic rocks, the mode cannot be readily

determined; the chemical classification overcomes the problem and is widely used by most

petrologists. One popular scheme of such a classification is based on both chemical

components and normative mineralogy.

Conventionally, a chemical classification is obtained by plotting the content of SiO2 versus

the content of Alkali minerals (Na2O þ K2O) in the so-called total alkali silica diagram

(Le Maitre, 2002). An alternative to these classical schemes is the application of

Figure 4.8
Streckeisen diagram for volcanic rock (simplified from Streckeisen, 1978). See also https://web.
archive.org/web/20110930102012/http://geology.csupomona.edu/alert/igneous/igclass.htm.
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supervised classification. In the following, we examine the application of SVM to

geochemical data that were downloaded from the “Geochemical Rock Observatory”

(http://georoc.mpch-mainz.gwdg.de/georoc/). For the sake of simplicity, we consider nine

chemical components only, that is SiO2, TiO2, Al2O3, CaO, MgO, MnO, K2O, Na2O, and

P2O5 (see Table 4.3).

In total, our dataset consisted of 8000 samples; 7000 of them were used for training, while

the test was carried out on the remaining 1000 samples. Table 4.3 reports eight rock

names given in the “Georock Observatory” database, which mark eight classes. The

acronyms stand for rock types of Streckeisen diagrams, such as the one shown in Fig. 4.8:

AND stands for Andesite; BAS for Basalt; DAC for Dacite; RYD for Rhyo-Dacite, that is,

a rock composition falling in between the two fields Rhyolite and Dacite; RYL stands for

Rhyolite; TRA for Trachyte; TAN for Trachy-Andesite (rock with composition in between

Andesite and Trachyte). Eventually, TRB stands for Trachy-Basalt. In this application of

SVM, we use the aforementioned eight classes as a priori targets; the numbers in the

corresponding rows of Table 4.3 form their features.

In our previous description of MLP in Chapter 2, we tackled similar multiclass problems,

and set as output a vector the length of which was equal to the number of classes. In this

vector, the target value was “1” for the class to which a pattern belonged, and “0” for all

the other classes. In Chapter 2, we also introduced SVM as a “binary classifier,” as SVM

establishes whether a pattern belongs to the class A or to a complementary class B. In the

light of this binary scheme, the literature proposes two strategies to tackle multiclass

problems with SVM. In the strategy called “One-against-All” (it would be better to say

“One-against-All others”), we set an SVM classifier for each class. For instance, we take

all examples labeled “AND”dwhich form the class A and run the training of SVM so that

patterns belonging to this class are truly distinguished from the others that are all members

of the complementary class B. Repeating this procedure for the eight classes, we finally

obtain eight classifiers. During the test, we have to apply all the eight classifiers to the test

patterns: ideally, for each test pattern, all classifiers except one will assign “true” to the

complementary class B. In reality, we often have more than one classifier giving “true” to

the class A, leaving us with an ambiguous classification. Criticisms toward the “One-

against-All” strategy also comes from the typical imbalance between the two classes A

(“One”) and B (“All others”). The complementary set B is almost always larger than A.

Having many classes, this imbalance can get indeed substantial, limiting the reliability of

the results.

An alternative strategy is the “One-against-One” method. In this case, we take one class,

say “AND,” and run the training of a classifier able to distinguish its patters from another

class, for example, “BAS.” In the next step, we set a classifier that distinguishes again

“AND” patterns from those of another class, for instance “DAC.” Going through all
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Table 4.3: Example feature vectors used in rock classification. Numbers report the composition in weight%. Values and

corresponding rock names were taken from the “Georock Observatory” available on the site mentioned in the text.

SiO2 TiO2 Al2O3 CaO MgO MnO K2O Na2O P2O5 Rock name

6.64Eþ01 4.75E�01 1.44Eþ01 1.45Eþ00 3.00E�01 1.1E�01 5.80Eþ00 3.55Eþ00 7.00E�02 RYD
4.61Eþ01 2.01Eþ00 1.63Eþ01 1.16Eþ01 5.98Eþ00 1.6E�01 1.08Eþ00 2.58Eþ00 3.20E�01 BAS
6.84Eþ01 7.90E�01 1.25Eþ01 2.13Eþ00 1.13Eþ00 1.5E�01 4.37Eþ00 3.24Eþ00 1.50E�01 TAN
6.36Eþ01 6.20E�01 1.49Eþ01 3.42Eþ00 2.89Eþ00 6.0E�02 4.85Eþ00 2.27Eþ00 2.10E�01 DAC
6.41Eþ01 6.10E�01 1.65Eþ01 5.62Eþ00 2.34Eþ00 1.3E�01 1.00Eþ00 4.03Eþ00 1.50E�01 DAC
6.88Eþ01 4.70E�01 1.62Eþ01 1.29Eþ00 4.20E�01 7.0E�02 6.41Eþ00 4.00Eþ00 1.00E�01 TRA
6.63Eþ01 8.40E�01 1.54Eþ01 3.40E�01 2.80E�01 1.1E�01 6.03Eþ00 7.03Eþ00 7.00E�02 TRA
6.94Eþ01 4.80E�01 1.32Eþ01 3.25Eþ00 1.32Eþ00 1.0E�02 2.86Eþ00 3.73Eþ00 1.40E�01 TAN
5.29Eþ01 1.39Eþ00 1.63Eþ01 7.93Eþ00 5.57Eþ00 1.3E�01 2.72Eþ00 2.84Eþ00 4.60E�01 TAN
5.04Eþ01 2.37Eþ00 1.84Eþ01 7.53Eþ00 2.89Eþ00 2.1E�01 2.45Eþ00 4.98Eþ00 8.10E�01 TAN
6.57Eþ01 6.30E�01 1.61Eþ01 4.15Eþ00 1.73Eþ00 7.0E�02 2.75Eþ00 4.32Eþ00 1.70E�01 DAC
4.96Eþ01 9.50E�01 1.58Eþ01 6.96Eþ00 5.31Eþ00 1.9E�01 2.44Eþ00 3.07Eþ00 3.20E�01 TAN
4.62Eþ01 7.90E�01 1.35Eþ01 1.36Eþ01 9.35Eþ00 1.7E�01 1.40E�01 4.00E�02 7.00E�02 BAS
7.48Eþ01 5.50E�01 1.29Eþ01 2.37Eþ00 6.70E�01 1.0E�01 1.57Eþ00 4.31Eþ00 4.00E�02 RYL
5.86Eþ01 8.50E�01 1.54Eþ01 5.02Eþ00 1.99Eþ00 1.5E�01 2.05Eþ00 2.30Eþ00 3.00E�01 AND
6.56Eþ01 1.08Eþ00 1.37Eþ01 2.70E�01 7.50E�01 3.4E�01 4.99Eþ00 6.57Eþ00 7.00E�02 TRA
7.46Eþ01 1.96E�01 1.35Eþ01 8.90E�01 1.80E�01 3.6E�02 5.19Eþ00 3.69Eþ00 3.13E�02 RYL
4.97Eþ01 1.60Eþ00 1.18Eþ01 8.40Eþ00 1.00Eþ01 1.2E�01 3.50Eþ00 3.30Eþ00 1.40Eþ00 TRB
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possible configurations, we end up with mðm�1Þ=2 classifiers, where m is the number of

classes. Even though the high number of classifiers increases the computational burden, it

may be preferred as the imbalance problem between classes A and B is certainly less

important than in the “One-against-All” method. Ambiguities in the results can be

resolved by assigning the class-membership using a voting scheme. For example, we may

assign the membership after counting how many times a “true” was encountered for the

classes, and selecting the one with the highest number of hits. However, even in this case,

we cannot rule out the occurrence of ambiguities.

Standard routines, such as the ones in the MATLAB toolboxes or in “LIBSVM”-libraries

(a GUI version of the SVM librarydsee Chapter 7.3.2dcomes along with this book),

solve the problem of ambiguities exploiting the shape of the decision function calculated

by the SVM, that is, the scores. In this context, recall Section 2.4 and Fig. 2.14, where we

generated a map of scores applying SVM to our earthquake-nuclear test problem. The

isoline plot in Fig. 2.14 was obtained by applying the trained SVM to a dataset forming a

2D mesh of mb-MS values ranging from 0 to 9 on both axes, and calculating the score for

each mb-MS couple on the mesh. In our rock classification problem, we shall get a set of

scores for each classifier. In case of ambiguities, we may base our decision simply on the

absolute value of the scores, that is, adopting the class for which the highest score was

achieved.

In Table 4.4, we report the scores obtained for 1000 samples in the test set by the eight

classifiers. Class #1 corresponds to “AND” against all others, class#2 corresponds to “BAS”

against all others, etc. As we did with MLP, we can evaluate the performance of SVM by

considering the confusion matrix, which compares results and target classes (see Table 4.5).

Mismatches are typically concentrated along the borders of the table (see Table 4.5). For

instance, in the second row of Table 4.5, there are 25 TRB (Trachy-Basalt) classified as class

#2 corresponding to BAS (Basalt). We also notice 15 TRA (Trachyte) classified as class #6

(TAN, Trachy-Andesit). Summing up over the diagonal elements of the confusion matrix, we

get an overall performance of 72%. This value can increase to 78% considering only the main

fields of the Streckeisen diagram in Fig. 4.8, that is, summing up “RYL þ RYD” (Rhyolites

in Fig. 4.8) and “TANþ TRA þTRB” (the Trachyte group in Fig. 4.8), which correspond to

the boxes highlighted in green in the confusion matrix (Table 4.5).

Beside using directly the scores, it has been proposed to translate them into some

probability of a pattern to belong to class AA (e.g., the “LIBSVM” by Hsu et al., 2016;

http://www.csie.ntu.edu.tw/wcjlin or Curilem et al., 2014). In the “LIBSVM” libraries,

scores are supposed to follow a La Place distribution given by the formula

pðxÞ¼ 1=ð2bÞe�ðx�mÞ=b (4.4a)
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Table 4.4: “One-against-All” SVM using an “RBF” kernel.

ID Class #1 Class #2 Class #3 Class #4 Class #5 Class #6 Class #7 Class #8 

1 -1.026206 -1.041498 -1.017813 -0.656297 0.635242 -1.100609 -1.028002 -1.028422 

2 -0.882416 -0.819696 -0.920802 -0.989131 -0.920967 -0.858945 0.260838 -0.875199 

3 -1.009073 -0.969436 -0.618396 -0.676063 -1.062127 0.171056 -0.962861 -1.081983 

4 1.193229 -1.079358 -1.075857 -1.040684 -1.013825 -1.313198 -1.075944 -1.023170 

5 -0.989012 -0.994284 -0.989902 -1.002267 0.911086 -0.987550 -0.990446 -0.988781 

6 -1.011119 -1.017025 -1.007411 -1.006480 0.894498 -1.013574 -1.014625 -1.011816 

7 -1.215311 -1.022992 0.857179 -0.831355 -1.072003 -1.007886 -1.178329 -1.016602 

8 -0.361467 -0.875871 -1.027402 -1.008877 -1.021268 0.169757 -0.957333 -0.989916 

9 -0.752209 -0.620382 -0.836054 -0.932597 -0.778129 -0.678760 -0.698196 -0.737281 

10 0.421636 -0.838195 -0.990682 -0.995358 -0.974988 -0.808162 -0.961391 -0.971999 

11 -0.567711 -0.719801 -0.673550 -0.854544 -0.838898 -0.764921 -0.781981 -0.807309 

12 -0.851733 -0.735595 -0.905792 -0.961258 -0.872379 -0.541764 -0.828286 -0.277139 

13 -0.378405 -0.839352 -0.930913 -0.971455 -0.906271 -0.672945 -0.542975 -0.904009 

14 0.978692 -1.072714 -1.013912 -1.005605 -1.018832 -1.240773 -1.025870 -0.957699 

15 -0.985000 -0.974639 -0.981705 -1.022176 -0.983381 -0.996069 0.892069 -0.982918 

16 -0.757292 -0.597234 -0.839427 -0.933986 -0.782677 -0.675464 -0.705980 -0.742681 

17 -1.012813 -1.032598 -1.009627 -1.193033 1.089109 -1.015531 -1.016664 -1.014071 

18 -1.094160 1.554906 -1.042149 -1.017559 -1.057200 -1.078973 -1.076955 -1.213966 

19 0.570700 -0.777291 -0.995448 -0.998178 -0.993680 -1.044610 -0.991730 -1.267975 

20 -1.417787 -0.971778 1.352412 -1.169737 -1.034851 -1.018345 -1.002835 -0.977666 

21 -0.755587 -0.623361 -0.838352 -0.933544 -0.781224 -0.686447 -0.704012 -0.710577 

.. .. .. .. .. .. .. .. .. 

Scores of the eight classifiers for 21 patterns of the test set. On the whole, the classifiers give a unique prefer-
ence for all the 21 patterns. For instance, the first pattern is assigned class #5 (score in bold). For the patterns
highlighted in red, we have only negative scores. Accepting the “least bad” score, we assign class #2 to pattern
21. For this table, we use the class coding: 1 ¼ AND, 2 ¼ BAS, 3 ¼ DAC, 4 ¼ RYD, 5 ¼ RYL, 6 ¼ TAN,
7 ¼ TRA, and 8 ¼ TRB. The results were obtained using the MATLAB routine “fitcsvm” and “predict.” In alter-
native, the user may use the GUI version of the SVM library in the accompanying material. For more details, see
Chapter 7.3.2.
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and its cumulative form

DðxÞ¼ 1=2
h
1þ sgnðx�mÞ

�
1� e

�jx�mj
b

�i
(4.4b)

(Fig. 4.9; Abramowitz and Stegun, 1972; Weisstein, 2018). In Eqs. (4.4a) and (4.4b) m is

the mean, and b is related to the variance: s2 ¼ 2b2.

We may use the scores obtained for the training set to obtain the necessary

parametersdthe mean m and the variance s2 of the scoresdfor the design of the La Place

distribution. In a multiclass SVM, the use of the La Place probabilities instead of the mere

Table 4.5: Confusion matrix of the rock classification using SVM trained with the “One-against-

All” method.

We use the class coding: 1 ¼ AND, 2 ¼ BAS, 3 ¼ DAC, 4 ¼ RYD, 5 ¼ RYL, 6 ¼ TAN, 7 ¼ TRA, and 8 ¼ TRB. Summing up
“RYL þ RYD” (Rhyolites in Fig. 4.8) and “TAN þ TRA þ TRB” (the Trachyte group in Fig. 4.8), the performance of SVM im-
proves (see text for explanations). This combination would allow to refer the rock composition to the five main fields (here
highlighted in green) of the Streckeisen diagram (upper triangle in Fig. 4.8).

Figure 4.9
Scores and probabilities (Laplace distribution). With a score of 0, we assumed a 50% probability

that a pattern belongs to class A. For positive scores, the probability increases. Values were
obtained from a test example in “LIBSVM.”
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scores may be preferred. In fact, having more than one classifier, the meaning of the

scores can vary from classifier to classifier.

4.5 Inversion with MLP
4.5.1 Identification of parameters governing seismic waveforms

In Section 2.4 we introduced the MLP that allows to resolve the famous XOR

classification problem. Furthermore, exploiting Cybenko’s theorem (see Eq. 2.12), we were

able to solve classification problems of arbitrary complexity. This was achieved by

constructing a function that maps an input vector X to some output vector Y. In

classification problems the desired output vector Y has a form like (0, 0,..1, 0, 0..), where

“1” is in the position of the class to which our object is supposed to belong to. We have

seen that the calculated output, however, is a float. In other words, MLP solves the

classification task as a problem of nonlinear regression rather than separating in TRUE and

FALSE, as SVM does.3 Being the MLP a type of nonlinear regression scheme, we are able

to apply it to target vectors, whose components are not necessarily “1”s or “0”s, but some

floating point value. In geophysics, those target vectors may represent model parameters

we want to identify from data. Röth and Tarantola (1994) were among the first to apply

MLPs in the nonlinear inversion of seismic waveforms for the identification of a one-

dimensional velocity structure. Along this line, Langer et al. (1996) investigated the

application of ANN (Artificial Neural Networks) to the inversion of waveform governing

parameters of earthquake seismograms, essentially the geotechnical parameters of a

horizontally layered structure and the parameters of the seismic source (see Fig. 4.10). In

all cases, the inversion is based on the forward modeling of the training set of X/Y pairs,

varying randomly (within given limits) the parameters yj of the model, and calculating the

vector of observations X. With the increasing computing capacities and the development

of efficient and reliable simulation methods, the forward modeling of many X/Y pairs

becomes affordable. On the other hand, little or nothing is known about the inverse

relation, that is, how to recover the model vector Y from the observations given by X. The

lack of knowledge about the inverse relation justifies the treatment of inversion problems

with a black-box approach, such as MLP. Indeed, no a priori assumptions are made on the

mapping function and, at first glance, the obtained results have to be accepted as they are.

The application of MLP to unknown data presumes that they can be described by the

models used during the forward modeling. In other words, it is assumed that the unknown

data belong to the same parent population as the ones of the training set.

3 We shall see later that SVM can be also exploited in regression. However, that needs a restatement of the
optimization problem. MLP does not require this reformulation.
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4.5.2 Integrated inversion of geophysical data

Earth’s dynamics mirrors in a wide variety of geophysical observations, being them

seismic signals, but also static ground deformation, changes in the electromagnetic field or

gravity. Volcanoes are places where processes of tectonic deformation, rock fracturing, and

fluid movements are particularly intense; therefore, they are environments able to provide

a huge quantity of observations in relatively short times. In addition we consider the

example of Mt Etna, which is the Europe’s largest and most active volcano.

Static ground deformation may reflect a possible intrusive process when magma starts to

fill cracks, leading to tensile deformation of the ground. Ground deformation can be

expressed either as shift vectors measured in a network of sensors (nowadays GPS

sensors) or as variations of the distance between two sensors, in terms of strain. The direct

Figure 4.10
Inversion of seismic waveform governing parameters (see Langer et al., 1996). Along its path to

the receiver, the signal radiated from the source undergoes changes due to reflection and
refraction as well as viscoelastic attenuation. The spectral characteristics of the seismogram

recorded at the surface is controlled by the duration of the signal radiated by the source, that is,
the source radius r, and reflection and refraction, which essentially depend on the seismic

velocities Vsi. Furthermore, the shape of the seismogram is affected by the thickness di of the
layer and the quality factor Qi that controls the viscoelastic attenuation of the signal within a
layer. The parameter Mo (seismic moment) governs the amplitude of the signal but has no

further impact on its shape. Mo is left out in the inversion process.
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use of shift vectors requires the possibility of referring them to some fix baseline, which

was not an easy task in a volcanic environment before the advent of high-sensitive GPS

sensors (see Nunnari et al., 2001).

Changes in the gravity field occur when the intruding material that forms a dike has a

different (typically higher) density than the surrounding rock. During important eruptions

at Mt Etna (1989, 1991e93, 2001) there were changes in the gravity field of up to several

hundreds of mgal, compared to changes of some tens of mgal, caused by the variations of

the ground water level (e.g., Budetta and Carbone, 1995).

During phases of volcanic unrest, the geomagnetic field may be affected by various

effects, such as re- and demagnetization due to thermal effects, piezomagnetic phenomena

in consequence of ground deformation, and electrokinetic effect due to the movement of

electrolyte carrying fluids (see Del Negro et al., 1997). The electrokinetic effect was

discussed in the framework of earthquake prediction (see Fitterman, 1979, 1981), but can

be expected to have even higher intensities in volcanically active areas.

In the following, we outline the application proposed by Nunnari et al. (2001), who used

MLP for the inversion of dike parameters using simultaneously ground deformation,

gravity and magnetic field data. This application is particularly interesting for several

reasons. It highlights the importance of multidisciplinary data analysis and analyzes the

role of noise in training and test. Similar to Langer et al. (1996), the authors compare the

results obtained with MLP inversion to those of nonlinear optimization using simulated

annealing. Among the electronic material coming along with this book, we provide a

software, the “DMGA” package for the generation of the synthetic datasets. The output of

this program allows the user a straightforward application of the “bpnE” program, which

was already used in the classification example of Strombolian explosions. Using the two

programs, the reader may try to apply the software in a similar way as Nunnari et al.

(2001).

The model of the volcanogenic source considered here is represented by an opening crack

filled with magma. The density of the intruding magma is supposed to differ from that of

the surrounding material. Depending on various parameters (see Fig. 4.11, Table 4.6), the

dike is assumed to produce a static ground deformation, changes in the gravity field, and

an electrokinetic-magnetic effect. The measure of changes in the gravity field is attained

after Ehrismann et al. (1966); the static ground deformation for the tensile crack is

calculated using the Okada model (1985); and the electrokinetic-magnetic field is obtained

following the models by Fittermann (1979, 1981) and Murakami (1989).

In terms of the inversion scheme, these observations form the input vector X. In Fig. 4.12

we show the graphical representation of X as an isoline plot. The output vector Y is given

by the searched parameters of the dike, i.e., its length and width, the crack opening, its
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coordinates (longitude, latitude, and depth), and its orientation (azimuth, dip angle; see

Fig. 4.11). The examples used for the network training are obtained by creating a set of

synthetic models in which each parameter has a random fluctuation according to the

values given in Table 4.6, and the corresponding expected observations are computed for

each model.

To verify the consistency of the inversion, the network has to be tested applying a test set

not used during the network training.

In their application, Nunnari et al. (2001) considered 16 stations deployed on a rectangular

mesh with 5 km spacing. Ground deformations, originally calculated as absolute three-

dimensional shift vectors, were converted to changes of the distances among the stations,

which makes 120 values. Moreover, 16 more values represented the changes in the gravity

Figure 4.11
Geometry and parameters of the dike.

Table 4.6: Model parameters used for synthetic pattern generation azimuth and dip angles are

given in degrees (deg).

Crack length 5 km �4 km
Crack width 2 km �2 km

Longitude (UTM) 0 km �10 km
Latitude (UTM) 0 km �10 km

Depth 5 km �4 km
Azimuth 0 deg �90 deg
Dip 90 deg �50 deg

Crack opening 2 m �1 m
Poisson ratio 0.25 �0.0

Density contrast 300 kg/m3 �100 kg/m3
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field at the stations; eventually, 48 values were obtained for the vertical and horizontal

components of the electrokinetic-magnetic effect. The size of the input layer of the neural

network was obtained as sum of the considered observations (e.g., 120 þ 48þ16). The

number of neurons in the hidden layer had to be found using a total of 45,000 patterns in

the training set. A good accuracy of the parameter identification was achieved with 130

nodes in the hidden layer.

Normalization turned out as a critical issue: During the generation of the 45,000 dataset

vectors, the absolute values of ground deformation ranged from w4 � 10�15 to 7.3 � 10�3.

In Fig. 4.13 there isw90% of the values in the range w�10�5. It is obvious that this type

Figure 4.12
Sample fields for (A) vertical ground deformation, (B) magnetic field (vertical component), and
(C) gravity changes. All physical dimensions are given in SI units. Axes are longitude and latitude
expressed in m. Note that in Nunnari et al. (2001), the three components of the magnetic and

ground deformation fields are considered.
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of distribution required a normalization scheme, providing a reasonable resolution in the

range where most of the values (i.e., the flat part in Fig. 4.13) were found. Some of the

options discussed in Nunnari et al. (2001) are reported in Appendix 4.1.

Neglecting the presence of noise in both the training and test set, the resolution for the length

and width of the dike isw10%; the location mismatch of its center (longitude, latitude, and

depth) isw5%; the azimuth (orientation with respect to North) is identified with an

error <5%; the error for the dip angle is slightly above 5%. The presence of noise only in the

test set considerably affects the accuracy of the results. With a noise level of 20% in the test

set, the relative mismatch almost doubles for all parameters. On the other hand, the effect of

noise is fairly weak if noise is present in both the training and test set. In other words, the

inversion scheme is robust under the condition that training and test set belong to the same

parent population, that is, they are generated by the same physical process (here a crack

undergoing tensile deformation) and are subject to the same random fluctuations.

One of the main aspects of the aforementioned application is the effect of combining various

types of geophysical data in an integrated inversion scheme. Using only ground deformation

data, the mismatch obtained with the test set is considerably higher than the mismatch

reported in Table 4.7. It almost doubles for the parameters concerning the location and

orientation of the dike, and the mismatch isw50% higher for the other parameters. We invite

the reader to conduct further experiments using the software “DMGA.”

An additional important conclusion of the paper was drawn from the comparison between

the inversion with MLP and that with nonlinear optimization carried out with simulated

annealing (SA hereafter). For the SA application, first a reference data vector for a set of all

Figure 4.13
Cumulative plot of the ranked ground deformation values (w1 million). For graphical reasons,
we omitted the extremes. Nonetheless, we notice a distribution with a large part of values having
very low absolute values. This peculiarity requires specific precautions during the normalization.
Distributions with a large flat part in the middle of the graph (i.e., where small values are found)

are also obtained for magnetic and gravity values.
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model parameters was created. Then, SA was applied starting from some initial guess of the

model. In an iterative scheme (see Kirkpatrick et al., 1983; Sen and Stoffa, 1991), SA

adjusted the model parameters until there was an acceptable fit between the original dataset

and the data generated by the inverted model parameters. A solution was accepted if the

correlation between the reference data and those obtained with the new model parameters

was 0.999. SA was run 85 times, every time using a different initial model. The model

parameters found during the optimization differed on average only to a few percent from the

original ones. SA was carried out under various conditions, assuming different levels of

noise, and using only ground deformation data or ground deformation plus magnetic data.

Similar to the inversion with MLP, the mismatch of the inverted parameters with respect to

the target increased in a considerable manner when only ground deformation data were

used. Besides, the inversion with SA was sensitive to the presence of noise. Similar to the

inversion with MLP, the parameters for the location and orientation (longitude, latitude,

depth, azimuth, and dip angle) were the ones for which the mismatch was relatively low.

The findings achieved by Nunnari et al. (2001) resemble those reported in the previously

cited applications by Röth and Tarantola (1994) and Langer et al. (1996), where model

parameters were identified with different accuracy. In particular, Langer et al. (1996)

investigated the reasons of these differences by carrying out a number of inversions using

the SA global optimization for the identification of the underlying model parameters.

Similar to the strategy discussed earlier, synthetic seismograms were calculated varying

the model parameters as long as the mismatch between synthetic calculations and some

reference data was beyond a given threshold. Langer et al. (1996) run SA 31 times on the

same reference seismogram, and accepted a solution for the model parameters only when

the cross-correlation between reference and calculated seismogram was 0.999 or higher.

The authors found a considerable scatter for a few parameters. Interestingly, the scarcely

identified model parameters during the SA corresponded to the ones where the MLP

Table 4.7: Results of the parameter inversion with ground deformation, magnetic

and gravity data. The table reports the relative mismatch in % with respect of the

total range of parameter variation given in Table 4.6.

Crack length 12
Crack width 10

Longitude (UTM) 4.5
Latitude (UTM) 4

Depth 6
Azimuth 2.5
Dip 8

Crack opening 15
Poisson ratio e

Density contrast 21.5

.
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inversion reported major errors. In conclusion, the poor results obtained for those

parameters could not be attributed to a failure of the MLP application, but are probably

intrinsic to the inversion problem.

4.6 MLP in regression and interpolation

In our previous examples, we established a function able to map a vector of observations

to get a vector of parameters associated with a physical model. During the test phase, we

have applied this mapping function to predict model parameters for a set of observations

not considered before, using the mapping function instead of an inverse physical model.

The mapping function can be understood indeed as some kind of regression, where we

predict a value y on the base of a number of observations x.

Nonlinear regression is frequently implemented in empirical prediction analysis. In a

recent paper, Spichak and Goidina (2016) applied MLP for establishing cross-correlations

between seismic velocities and electric resistivity of rock. Seismic and electric resistivity

soundings of rock are among the most important noninvasive methods revealing the

properties of the ground. Electric resistivity is applied in studies of geological mapping,

hydrogeology, void mapping (detection of cavities), environmental studies, and exploration

for minerals and oil resources. Seismic measurements provide wave velocity and

attenuation properties that can be translated into stiffness and quality factors. Most of the

relevant parameters for oil prospection mirror in the electric conductivity and wave

velocities. In particular, the presence of voids in a rock and its microstructure are a first-

class issue in this context.

Mixture theories have been used to obtain conductivity and velocities of rock in the

presence of voids and pores (see, e.g., Carcione et al., 2007). On the base of mixture

theories, a number of cross-property relations between electric conductivity and seismic

velocity data have been established. Those relations are exploited when one type of

information is missing, as both seismic velocities and electric resistivity are highly

dependent on the porosity of the material. In Archie’s classical model for sands and

sandstone (Archie, 1942), we neglect the electric conductivity of the matrix with respect to

the conductivity (the inverse of the resistivity) of the pore fluid, that is,

sTotzsff
m (4.5)

where sTot is the total conductivity, sf the conductivity of the fluid, f
�m the so-called

“formation factor” with m being the “cementation factor.” These two factors represent

internal structural characteristics of rock and pore volumes. Often, sandstone contains clay

minerals, which are good conductors. For such a material, Bussian (1983) proposed a relation
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s¼
 1� sc

sf

1� sc

s

!m

sff
m (4.6)

where sc is the conductivity of clay.

On the other hand, we may consider for example the relation for seismic velocities in

consolidated sand (Raymer et al., 1980)

vB¼ð1� fÞ2vS þ fvf (4.7)

where vB is the bulk P-wave velocity of the porous sandstone, vS the P-wave velocity of

the matrix, and vf the seismic velocity of the fluid.

Combining Archie’s (1942) law and the relation by Raymer et al. (1980), we obtain the

cross-property relation

vB¼
h
1� ðs=sf Þ1=m

i2
vS þ ðs=sf Þ1=mvf (4.8)

For more details and other cross-property relations, we address the reader to Carcione

et al. (2007). Although being rather simple, a number of criticalities can be recognized

immediately in the cross-property relation. First, Archie’s law holds for pure sandstone,

whereas the modification proposed by Bussian reveals the importance of clay for the

conductivity. Even though limiting ourselves to these two types of sedimentary rock, we

face a considerable dependence with respect to the lithological composition of the

materialdhere just the presence of clay minerals. Besides, we have to account for the

formation and cementation factors, which are supposed to vary, for instance, as a function

of depth. Indeed, the geometrical characteristics of the pores are expected to undergo

changes, such as flattening and changes in their connectivity, due to compression. As

Spichak and Goidina (2016) point out, porosity is not the only factor controlling seismic

velocities and electric resistivity (or conductivity). A way out from the shortcomings of

model-based empirical relations is a full black-box strategy, where we use input/output

pairs and learn their relation from given examples. In doing so, we follow a classical

scheme of MLP application similar to the one discussed earlier about inversion problems.

In their application, Spichak and Goidina applied MLP to a dataset measured in Central

Siberia, close to the city of Abakan. The measurements were carried out along a profile

within the structural formation of early orogenic molassa Caledonides, which frame

siliceous-carbonate massifs of baikalides. Both seismic and electric soundings reached a

depth of 10 km, whereas the profile covered a length of w60 km. Both P- and S-waves

were considered together with data inferred from magnetotelluric soundings. The authors

started with an estimation of seismic velocities from logarithmic values of electric
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resistivity. To examine the role of the size of the dataset, they varied the ratio of the

number of samples in the training and test set, considering the cases k ¼ 4:1, 1:1, and 1:4.

In all cases the best results were obtained with a training set four times larger than the test

set. Comparing the configurations k ¼ 1:1 and 1:4, the authors reported a slightly higher

mismatch for the ratio 1:4 (see Table 4.8)

Besides, we note that the mismatch for shear-wave velocities is somewhat higher than that

for P-waves. We may speculate about the reasons for this evidence. From observations

reported by Hamilton (1978, see also 1979), Schön (1983) concluded that P-wave

velocities in dry sediments essentially depend on the matrix, whereas the influence of

pore-fluid effects becomes important in case of wet sediments. On the other hand, shear

wave velocities strongly depend on the characteristics of the matrix both for dry and wet

rock. As electric resistivity is strongly controlled by the pore-fluid properties, we can

easily imagine that the link between seismic wave velocity and electric resistivity is

weaker for shear waves than for P-waves.

In their study, Spichak and Goidina considered also the inverse case, that is, the estimate

of electric resistivity from seismic waves.

On the whole, the mismatch numbers reported in Table 4.9 are higher than in Table 4.8.

We should recall, however, that the mismatch in Table 4.9 regards logarithmic values,

whereas the ones in Table 4.8 are linear values. Besides, the comparison of the two tables

highlights that the assessment in inversion problems of seismic velocities from electric

resistivity is more robust than the opposite case.

An interesting aspect of Table 4.8 is the difference between the data in the input layers with

and without the location, as including the geographical coordinates of the sites where the data

were taken improves the estimation of seismic velocities. From a mere physical viewpoint,

this appears strange, but it can be understood as a “tendency of conservation” frequently

noticed in geology. This means that data measured at some point tend to be similar to those

obtained in the neighborhood. Comparing the mismatches reported in Tables 4.8 and 4.9 we

infer that the tendency of conservation is strong using resistivity data in the input layer of the

Table 4.8: Mismatch of estimated seismic velocities using resistivity/resistivity plus location data

in the input layer of the MLP. Results are averaged over five cross-validation tests.

Output P-wave velocity (%) Output S-wave velocity (%)

K Only resistivity Resistivity þ location Only resistivity Resistivity þ location

4:1 6.0 � 0.6 1.4 � 0.3 7.7 � 1.0 4.0 � 0.8
1:1 7.9 � 0.3 2.5 � 0.6 12.7 � 1.3 5.0 � 0.6
1:4 8.4 � 1.1 3.8 � 1.5 13.0 � 1.8 6.0 � 1.5
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MLP, whereas combining geographical information and seismic velocities in the input layer

does not improve the accuracy of estimations in Table 4.9.

MLP have been also applied in regression in the context of seismic hazard analysis. In

probabilistic seismic hazard assessment we apply so-called “Ground Motion Prediction

Equations” (GMPE), in which a parameter of ground shaking, such as the peak ground

acceleration, is inferred from earthquake magnitude, focal depth, and source-to-receiver

distance. In more sophisticated relations, further parameters are added, such as site correction

factors or the focal mechanism of the seismic source. A simple empirical GMPE is given in

Eq. (4.9)

logðyÞ¼w0 þ w1M þ w2log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ h2

p
þ w3iSi (4.9)

where y is the ground shaking parameter, M the magnitude, R the epicenter distance, h the

focal depth4 and Si a site specific parameter, depending from an a priori assigned soil class

i. Here, we consider measured data concerning earthquakes for which we know the depth

h, the distance to our recording sites R, the magnitude M, and a site specific parameter Si
(see Ambraseys et al., 1996; Sabetta and Pugliese, 1987), along with instrumentally

recorded ground shaking parameters (y in Eq. 4.9). It is worth mentioning that the GMPE

is not fully a black-box assessment, as it encompasses a physical background. For

instance, one assumes a linear relation of log(y) to magnitude and hypocenter distance.

In the empirical prediction of ground motion during an earthquake, traditional models such as

the one given in Eq. (4.9) come with severe limits. For instance, theoretical modeling

demonstrates that a simple linear relation between log(y) and magnitude is highly

questionable (see, e.g., Langer et al., 2016); the same also holds for the distance dependence

of ground motion parameters. In the light of these limits, various authors applied MLP for the

prediction of peak ground motion during earthquakes (see Derras et al., 2012, and references

therein). Similar to the GMPE in Eq. (4.9), they considered magnitude, focal depth, and

distance as relevant parameters. In the seismological community, site characteristics are also

Table 4.9: Mismatch of resistivity from seismic velocities/seismic velocities plus location data in

the input layer of the MLP. Results are averaged over five cross-validation tests. The mismatch

regards logarithmic values of resistivity expressed in %.

Input P-wave velocity Input S-wave velocity

k Only seismic velocity Velocity þ location Only seismic velocity Velocity þ location

4:1 15.5 � 2.9 14.8 � 0.8 14.7 � 0.7 17.5 � 5.6
1:1 19.6 � 2.2 14.7 � 0.2 16.7 � 0.9 20.0 � 4.6
1:4 24.4 � 5.0 16.1 � 0.6 15.3 � 0.6 25.6 � 10.5

4 The parameter h is often kept fixed, that is, constant for all events of the dataset. Its value can be estimated
during the nonlinear regression together with the other coefficients wj.
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claimed to have a relevant impact on ground motion. In particular, the presence of weak

material at the surface, having low shear-wave velocities, may lead to considerable

amplifications of ground motion during an earthquake. To account for these effects, site-

specific parameters, such as the site-resonance frequency and the shear-wave velocity of the

uppermost 30 m-thick layer (in seismology known as “Vs30”), are also acquired. For this

reason, in their MLP application, Derass et al. (2012) considered five nodes (for magnitude,

depth, distance, site-resonance frequency, and Vs30) in the input layer, and one node in the

output layer (for the ground motion parameter of interest, here the peak ground acceleration).

The number of hidden nodes was obtained on the base of a joint analysis of the error and

the Akaike criterion (Akaike, 1973). The Akaike criterion AIC is given by

AIC¼ LlnðMSEÞ þ 2m (4.10)

where L is the number of patterns, and m the degrees of freedom given by the number of

weights of the MLP. An optimum score was achieved with 20 nodes in the hidden layer.

From the analysis of the results, the authors also found that the residuals had a normal

distribution and, considering skewness and kurtosis (see Appendix Chapter 1) of this

distribution, there was no obvious trend with respect to the input parameters. Regarding

the misfit, the MLP-based predictions of ground motion parameters outperformed all

considered conventional models. The relevance of the parameters with respect to the

goodness of the fit was estimated in two ways. First, the authors compared the accuracy

achieved using all five parameters in the input layers; then they left out some parameters

and recalculated the misfit. In alternative, they looked directly at the weights of the

connections between input and hidden layer, considering the term

Wi¼
PNh

j¼1w
h
ijnPN

i¼1

PNh

j¼1w
h
ijn

(4.11)

where Wi is the importance of the i-th input parameter, wh
ij the node connections between

the i-th node in the input layer and the j-th node of the hidden layer, N is the number of

input parameters or nodes in the input layer, and Nh the number of nodes in the hidden

layer. The results highlighted the major importance of the epicenter distance (29.5%) and

the magnitude (26.1%), whereas Vs30 (9.1%) was found of minor importance for the final

result.5 Note that such an analysis requires that input parameters are properly normalized,

and that they are not correlated. The latter condition is, however, not warranted. For

instance, we may suspect that large magnitude earthquakes are more likely to have records

at long distances than smaller ones.

5 The limited importance of this parameter is surprising at first glance, as a low-velocity material is supposed
to produce considerable amplification of ground motion. However, these effects are known to be distance
dependent, with a tendency to be stronger near the seismic source and having a rapid decay at more distant
sites (see Scarfi et al., 2016).
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4.7 Regression with SVM
4.7.1 Background

Although achieving a considerable improved fit with respect to conventional regression

methods, the MLP is known to come with some drawbacks, such as problems of

overfitting or the risk of being trapped in local minima. In Chapter 2, we introduced the

SVM as an alternative to MLP in the discrimination problem for classes that cannot be

separated by a linear function or a hyperplane. As the discriminating elements in SVM are

found by solving a quadratic programming problem, their training is not affected by the

issue of local minima.

As we have seen in Chapter 2, classification with SVM is based on the criterion of

separating two classes with the highest possible margin. This margin is defined by two

hyperplanes. Ideally, no pattern should be found inside this margin (see Fig. 2.13). Using

the SVM concept in regression, we have to restate the optimization problem: Instead of

searching two hyperplanes separated by a margin where no patterns are found, the

hyperplanes should be the smallest possible separating margin where possibly all patterns

are present (see Fig. 4.14).

The basic idea can be outlined starting from a linear problem (Smola and Schölkopf,

2004). We search a function f

f ¼wTxþ b (4.12)

from a training dataset {(x1,y1 . .(xN,yN)}. The principal condition f should obey is the

“maximum flatness,” which corresponds to minimize jjwjj2 ¼ wTw. This can be rewritten as

the following optimization problem

minimize
���jwjj2

subject to

�
yi � wTxi � b � ε

wTxi þ b� yi � ε

We may prefer to allow some errors, for instance when we have most of our data

concentrated in a narrow space and a few ones scattered in a larger space. We are then

interested to define a narrow dominated range or “tube” (in case of dimensions larger than

2) at the cost that some patterns remain outside. Formally, we rewrite our optimization

problem by introducing the slack variables xi; x
�
i

minimize

�����jwjj2 þ C
XN
i¼1

	
xiþ x�i
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subject to

8><
>:

yi � wTxi � b � εþ xi

wTxi þ b� yi � εþ x�i
xi; x

�
i � 0

The constant C � 0 determines the importance we want to give to errors. For instance, if

one sets C ¼ 0dno errors permitteddthen all patterns have to fall into the “tube.”

Eventually, we deal with so-called “ε-insensitive” loss function (Smola and Schölkopf,

2004), i.e., ����xjε¼
�

0 c jxj � ε

jxj � ε c jxj > ε

(4.13)

In Fig. 4.14, we show the geometrical ideas behind regression with SVM for the linear 2D

case: we aim at finding two linear elements, that is, lines or (hyper)planes that embrace

the highest number of samples (represented as dots). For the prediction of y, we can use

the element placed at the center of the margin. The concept of “flatness” is graphically

explained in Fig. 4.15. In minimizing the flatness, we look for the hyperplane having the

lowest possible coefficients. In the 2D case, this corresponds to the search of the line

having the smallest slope w ¼ wmin. As shown in Fig. 4.15, there may be a trade-off

between minimizing the flatness and the goal of finding a narrow tube, that is, a small ε.

Figure 4.14
The concept of the SVM regression. Red dots represent samples falling within the range � ε, that
is, inside the margin. The blue dots are outliers. Appropriately choosing C, the influence of those
samples on the optimization can be limited keeping the width of � ε small. Support vectors are

represented by circled red dots.
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Allowing larger εdin other words, a larger tube inside which patterns do not contribute to

the errordcan help improve the flatness of the regression function f.

In both conventional- and MLP-based regression, we have been identifying the optimum

solution considering the difference between target and prediction. As we have seen in the

formalism earlier, the optimization in SVM regression accounts only for samples falling

outside the margin, whereas samples falling between the two elements do not contribute to

the error. Clearly, choosing a narrow width (ε small) comes along with the risk of leaving

many samples outside the margin. With the introduction of the slack variables and the

factor C, we can adapt the regression to the structure of our problem. Having a rather

compact dataset nicely arranged along a regression function, we can keep C small as we

are likely to find our samples inside a narrow tube. Suppose now that besides such a

dataset we also find a few outliers. Trying to embrace them all by the tube requires that its

width has to be large. “An appropriate choice of C” means that we can keep the width of

the tube narrow, as the importance of the outliers is downsized by the constant C.

The minimization of the “ε-insensitive” loss function is an optimization problem with

constraints, for which we outline more details in Appendix 4.2.

Figure 4.15
Flatness and ε trade-off in regression with SVM. Support vectors are indicated by encircled dots.

We can embrace the red dots by a steep flatness but within a narrow tube (blue lines) or a
wider tube (green lines) having a better flatness. With such a wider tube we can also embrace

some outliers (shown as blue dots). In case we decide to “tolerate” the presence of outliers, this
is achieved by an appropriate choice of C.
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As in classification tasks, we can generalize to the nonlinear problem by introducing the

kernel functions mentioned in Chapter 2:

Linear : Kðxi; xjÞ¼ xTi xj

Polynomial : Kðxi; xjÞ¼
	
xTi xj þ 1


q
; q > 0

Radial Basis Functions ðRBFÞ: Kðxi; xjÞ¼ exp
�
�
������xi � xj

���j2.s2�q
Hyperbolic Tangent : Kðxi; xjÞ¼ tanh

	
bxTi xjþg



The appropriate choice is based on similar considerations as in classification, that is, we

shall train the SVM regression using a part of our data as training set and another part as

test set, applying the trained SVM to the test dataset and then comparing the mismatch

obtained for the training and test dataset. As an applicative example, we present the

prediction of ground motion parameters mentioned earlier. Instead of using a model such

as the one given in Eq. (4.9), we perform a full black-box regression with SVM.

In Fig. 4.16, we demonstrate the application of SVM regression to a dataset related to

shallow earthquakes at Mt Etna. The independent input vector X is given by the local

magnitude, epicenter distance, and focal depth. The output vectors used for training are

represented by observed peak ground accelerations encountered at ca. 50 stations. Stations

were deployed on the volcano and adjacent areas, with epicenter distances ranging from

Figure 4.16
Regression of peak ground acceleration (PGA) using an SVM with a Gaussian (“RBF”) kernel.

Data correspond to 1000 shallow earthquakes recorded at Mt Etna in the years 2006e12 (Tusa
and Langer, 2016). Earthquake magnitudes range from 3.0 to 4.3. In Fig. 4.16a we plot the

observed PGA (red crosses); the support vectors are shown as blue circles. In Fig. 4.16b we again
plot the support vectors as blue circles, whereas the red crosses indicate the predicted PGA. Note
the interval between 30 and 70 km, where PGA are rather constant. This behavior is represented

fairly well in the SVM predictions and the support vectors.
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less than 1 to 100 km. Here we have been applying the MATLAB™ machine learning

functions, in particular the “fitrsvm” tools. The “Gaussian kernel” in the toolbox uses an

exponent q ¼ 1 (and s2 ¼ 1). Besides, we set the “epsilon” parameter to 0.2 keeping the

default value for C (here addressed to as “BoxConstraint,” which depends on the

interquartile range of the response y, iqr(y), divided by 1.39). Playing with the settings, we

found that the results were rather robust.

The predicted ground accelerations (PGA) are expressed as log(nm/s2). In Fig. 4.16a, we

show only the marginal distributions for PGA and epicenter distance; the scatter in the

PGA values is partly due to the fact that we plot the data for all ranges of magnitudes and

focal depth. In Fig. 4.16b, we represented the predicted PGA obtained with a trained SVM

regression. We notice that the predictions (red crosses) fall nicely inside a range delineated

by the blue circles, which mark the position of the support vectors. In the right hand side

of the figure we compare the position of the support vectorsdwhich represent the space

where our predictions are founddto the truly observed values. The tube delineated by the

support vectors embraces a large part of the observations. On the whole, we find an

average prediction error of w0.32, which is below the values w0.39 obtained by Tusa and

Langer (2016) for the conventional GMPE prediction models proposed by Sabetta and

Pugliese (1987) and Boore and Atkinson (2008). Note, however, that with the black-box

approach (SVM- or MLP-based regression) we have no physical clue about the validity of

the model. In a certain sense, with this approach we minimize the aleatoric uncertainty by

choosing a sufficiently complex regression function to match the target. The remaining

error in this logic is basically epistemicdit regards the model itself. If we tried to fit an

error being truly random, we would get model parameters that are falsified during the test

phase. Testing is therefore an important issue.6 Here, we have carried out a fivefold cross-

validation of our SVM regression. We obtain a test error of 0.357, which is still below the

errors obtained with the conventional GMPE models.

4.7.2 Brief considerations on pros and cons of SVM and MLP in regression
problems

Both SVM and MLP methods have their pros and cons when applied in regression

problems. In the literature, MLPs are often reported to be more sensitive to overfitting

than SVM. On the other hand, their application to problems with a multivariate prediction

is rather straightforward. SVMs are based on the solution of binary problemsdin

classification (A or B) as well as regression (“in” or “outside” the tube)dwhich makes

their application to problems with multivariate targets questionable. At the same time, the

mathematical structure of MLP is somewhat more transparent than that of SVM, allowing

6 Obviously, cross-validation is also useful in nonlinear regression based on physical models. Unfortunately, it
has not become a common practice as yet.
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to get a first guess on the importance of the input parameters just from the analysis of the

weights (see Eq. 4.11). In the example by Derass et al. (2012), we found that some

parameters were of minor importance for the prediction, as their corresponding weights

were low. Such an analysisdsimilar to the one leading to Eq. (4.11)dis not

straightforward in SVM regression.

4.8 Classification by hidden Markov models and dynamic Bayesian
networks: application to seismic waveforms of tectonic, volcanic and
lunar origin

4.8.1 Background

In the applications discussed before, we considered patterns described by single feature

vectors, being them spectral components, a combination of various geophysical

observations, rock composition, etc. Each of the patterns was assigned to a target,

typically a category or a set of target values related to a physical model. The HMMs

discussed in Chapter 2 are based on a different approach. Rather than considering the

single patterns, they focus on a sequence of observations. In our context here, the

sequences are made up of patterns, even though the strategy allows for more general

sequences, such as actions and events.

In Chapter 2, we mentioned HMMs being a double stochastic process, where the first

process describes the transitions between hidden states given the hidden state sequence

q ¼ (q1, q2,.. qT), and the second process determines the output of the HMM. Based on the

emission probability of the current state, an observation symbol is issued. Thus, an HMM

with N states is described by the triple (P, A, B):

initial state probability vector P ¼ (p1, p2, p3, .,pN)

transition probability matrix ANxN, where aij ¼ P(qt ¼ sjjqt�1 ¼ si)

emission probability matrix BNxM, where bj(k) ¼ P(ok at time tjqt ¼ sj)

the number of states N.

In waveform classification, a suitable description of an event through an HMM requires

the identification of the HMM parameters based on a first training set, i.e., a set for which

the targets are known. The optimum models are found following a maximum likelihood

strategy. An early version of such a strategy is the Baum-Welch algorithm, which was

described in Chapter 2 (Appendix 2.4.3). A more general method is the expectation

maximization (EM) algorithm, which we also mentioned in Chapter 3 (Box 3.2). An

alternative is the Viterbi algorithm (see Appendix 2.4.2 in Chapter 2).
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4.8.2 Signals related to volcanic and tectonic activity

In case of a continuously recorded data stream, each single sequence of time frames can

be classified as a specific category, being it simply noise, a rockfall or another event. In

contrast to the previous methods illustrated in Chapter 4, the approach allows detection

and classification at the same moment. In other words, the classification method is not

“input signal present / classify,” but immediately assign each frame in the continuous

data stream to one of the classes (Hammer et al., 2012). In conventional applications of

HMM, some issues remain. First as in all supervised methods mentioned so far, there is a

need of having enough examples for training. Besides, the number of states must be

defined at the beginning. This may require some a priori knowledge, for instance, the

number of relevant sections in the signal (P-wave, S-wave and coda in an earthquake

record). On volcanoes, however, signals have a widely varying aspect, with clear phases in

“vt,” sharp onset and smooth amplitude decay in the “hy,” or the cigar-like envelope of the

“rf” example in Fig. 4.17.

In their application to seismic signals recorded at Soufrière Hills volcano, Montserrat,

Hammer et al. (2012) developed a strategy offering more flexibility, which is described in

the following.

Consider the case in which there is a large number of unlabeled data and a researcher is

interested in a classification system based on a limited number of waveform samples,

which means saving preparation time. In this context the reference event (e. g., Fig. 4.18,

Figure 4.17
Example waveforms of volcano tectonic events (vt), hybrid events (hy), and rockfall events (rf)

recorded at Soufrière Hills volcano, Montserrat. Figure modified from Hammer et al. (2012).
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upper panel) is described by the statistics of the unlabeled data stream. The overall feature

distribution P(fv), where fv is the feature vector, is modeled by Gaussian mixture densities

(see Chapter 3, Box 3.2).

The overall density function is therefore modeled by the convex combination

PðxÞ¼
XM
m¼1

PðmÞ � N ðxjmm;CmÞ

with P(m) being the mixture weight, and N ðxjmm;CmÞ is a normal distribution with mean

mm and the covariance matrix Cm.

Using the EM method, the authors describe their unlabeled data as a combination of 16

Gaussian distributions and defined the characteristics of each category on the base of the

Gaussians. To fix the appropriate number of states for the event models, the statistical

description of the overall wavefield (Fig. 4.19, upper panel), expressed as Gaussian mixture

density (Fig. 4.19, lower right panel), is used. A reference waveform for each class of

interest has to be chosen. Starting from the raw time seriesdsuch as the one shown in

Fig. 4.18 (upper panel)dfeatures are extracted for gliding windows, here the normalized

instantaneous frequency and the largest eigenvalue are calculated from the covariance

matrix over the three seismic components (for more details, see Hammer et al., 2012). In a

plot of feature #1 versus feature #2, one obtains a trajectory, which represents the

Figure 4.18
Raw waveform of a hybrid event (top trace) replaced by time series of normalized instantaneous
frequency (middle trace) and normalized largest eigenvalue (measure of correlation, bottom

trace).
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development of the time series in the feature space. At the same time, one checks, at each

time step, which of the Gaussians is closer to the actual position on the trajectory. Keeping

that indication, information on the state of the time series over time is obtained. We

summarize the whole procedure of feature extraction and state identification in Fig. 4.19.

From the time series of the unlabeled data (top of Fig. 4.19), the features x1 and x2 (Fig. 4.19,

bottom left) are extracted and their distribution is modeled by Gaussian mixture densities

(Fig. 4.19, bottom right). Reflecting its random structure, the corresponding background

model is composed of a parallel connection of M states, one for each Gaussian mixture

component (Fig. 4.20, left). The model can change from each state in every other state with a

probability >0, that is given by the mixture weights P(m) of the m-th mixture component.

Consequently, the noise is a signal without a specific temporal structure.

In the next step, features x1 and x2 are extracted from a reference event waveform.

However, here a temporal structure is assumed, so a specific path in the feature space is

followed as shown by the black trajectory (Fig. 4.19, bottom right). During the way across

the feature space, the path approaches one of the Gaussians, and one denotes the closest

one in that moment as the current state. In a prewhited feature space, the assignment is

based on the minimum Euclidean distance. Following this procedure, one obtains a

Figure 4.19
Schematic description of feature extraction (modified from Hammer et al., 2012). From an

unlabeled data stream (top trace), features �1 and �2 are extracted (bottom left). Note that no
temporal structure is assumed. Their overall distribution is modeled by Gaussian mixture

densities (bottom right). Event trajectory is shown in black. Means of visited and nonvisited
mixture components are marked by colored circles and white diamonds, respectively.
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sequence of “visited” mixture components that gives the number of states appropriate to

describe the reference event. Each time the index of the assigned mixture component

changes, a new state is created in the corresponding event model. If an already selected

Gaussian is “visited” later again, this generates a new state in the model. In this way a

data-driven segmentation of the event in parts of similar observations is obtained without

any preconceptions of the researcher. Further on, we shall notice for each event class

differing trajectories, and differing sequences of states.

Capturing its specific temporal structure, the states in the event model are arranged in

sequence. Each time the model can stay in the current state or change in next state only

(Fig. 4.20 right). The emission probability of each state is a Gaussian with the provisional

mean and covariance of the less distant mixture component. The transition probabilities

are estimated as follows. During the procedure described earlier, a partial sequence FV ¼
(fvt1 . fvtN) of the feature vector sequence is assigned to the closest mixture component.

Assuming the length of the partial sequence is equal to the expected state duration di of

state i, the self-transition probability is set to

Pðqt ¼ i; qtþ1¼ iÞ¼ aii ¼ 1� 1=di

The state transitions to the next state are then set to a fixed value of 1 � aii as the

probability constraints require the transition probabilities to sum to unity. The model

parameters obtained by this procedure are reestimated as follows. With a small training

sample size, the number of parameters to be estimated needs to be kept as low as possible.

For that reason, states corresponding to the same mixture component are tied together, that

is, states generated by the same mixture component share the same mean and the same

covariance matrix. Thus, the means are reestimated using all time segments assigned to

the corresponding mixture component. The covariances as well as the transition

probabilities are not updated, as a larger training dataset would be necessary to robustly

estimate the parameters.

Figure 4.20
The complete model (see Hammer et al., 2012). The noise model (left) is a parallel connection

of M states. In the event model, states are arranged in sequences. The number of states is
estimated from the sequence of “visited” mixture components in Fig. 4.19. Colors correspond to

means in Fig. 4.19 (bottom right).
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Hammer et al. (2012) applied their classification system to seismic data recorded at

Soufrière Hills volcano, Montserrat. The authors focused on three event classes, that is,

rockfalls (“rf”), hybrid events (“hy”) and volcanotectonic events (“vt,” see Fig. 4.17).

These signals were embedded in a “noise” part, which has no temporal structure. The

considered dataset was recorded in January and May 1997 by the permanent seismic

network run by the Montserrat Volcano Observatory (MVO). This time span was

characterized by a high level of volcanic activity that culminated in a major dome collapse

on June 25. Hammer et al. (2012) used data from a single station only. The station was

equipped with a three component broadband sensor; the sampling frequency was 75 Hz.

The dataset was composed of individual recordings with duration from 25 s to several

minutes. Similar to the application discussed in Section 4.1, the authors did not use the

waveforms directly, but extracted a number of features. In particular, the features regarded:

Spectral attributes (half octave bands, dominant frequency, bandwidth, central fre-

quency, cepstral coefficients).

Complex trace attributes (Instantaneous bandwidth, normalized envelope, instantaneous

frequency, centroid time)

Polarization attributes (planarity, rectilinearity, largest eigenvalue)

More details regarding the features are given in Hammer et al. (2012). After computing the

features, the authors performed a normalized Karhunen-Loève transform to prewhiten the

signal. That way, in the covariance matrices of the multivariate Gaussian distributions only

the diagonal elements must be estimated which reduces the computational burden efficiently.

The application allows the recognition of transients within continuous seismic data. That

means seismic events were not pretriggered. Training was carried out on an HMM for

each event type of interest while an HMM was trained for the background noise. In the

classification step, the incoming signal was then assigned to the most similar signal class,

which was either an event or noise. The complete dataset consists of 193 hybrids, 197

rockfalls, and 115 volcanotectonic events. Hammer et al. (2012) showed that the

classification based on the described draft models provide an appropriate description of

individual event classes. More than 84% of the events were classified correctly (Fig. 4.21

left). However, additional information about the event class may improve the recognition

accuracy. Thus, Hammer et al. (2012) suggested to use correctly classified events to even

better adjust the system to individual class patterns. The manually positively confirmed

samples provide a larger training dataset to retrain event models. Given the availability of

a sufficiently large training dataset, the retraining is done by using the classical formulas

by Baum and Welch (see Chapter 2, Appendix 2.4.2). The draft models are here used as a

seed model for the iterative training process, and states generated from the same mixture

component are still tied. However, now, the covariances of the emission probabilities as
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well as transition probabilities are adjusted to the newly added training data. This

reestimation increases the classification rate to more than 97% (Fig. 4.21 right).

4.8.3 Classification of icequake and nonterrestrial seismic waveforms as base for
further research dHMM

4.8.3.1 Icequakes

The automatic detection and classification of interesting seismic signals, as outlined

earlier, has encouraged further research investigations beyond the classical field of

earthquake and volcano monitoring. Hammer et al. (2015) applied the system for the

automatic detection and classification to icequakes recorded by the Neumayer seismic

network in Antarctica. As we have seen, the approach described earlier allows to construct

classifiers on the fly while enabling the recognition of highly variable time series. In that

way, we do not rely on a large number of manually classified training events, which are

not available for the Neumayer seismic network. Hammer et al. (2015) focus on a specific

event type occurring close to the grounding line of the Ekström ice shelf. Seismic events

cover a very narrow frequency range shifting from 1 Hz in the beginning to 2 Hz at the

end of the events (Fig. 4.22A-C).

The waveform is first “translated” into different wavefield parameters (e.g., spectral

features) which facilitates the discrimination between different seismic signal types. Then,

for each signal class of interest (e.g., calving event and basal event) and the background

noise, a generative probabilistic model (here an HMM) is learned from prelabeled training

data. Using prototypes for each class of interest, the trained HMM aims to summarize

Figure 4.21
Classification results of draft models (left) and after re-training with 30 positively confirmed

events. From Hammer et al. (2012).
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typical class characteristics, and the number of training samples directly influences the

system performance. As by now there is no systematic study of cryoseismic events

observed at Neumayer seismic network, a reliable a priori classification scheme as well as

a sufficiently large database of preclassified events for learning appropriate prototypes is

not available. For that reason, the authors relied on an approach that requires a minimum

(A)

(B)

(C)

(D)

Figure 4.22
Waveforms and spectrograms of manually detected icequakes (AeC) and other events (D). The
two panels in aec show the events recorded at two stations under back-azimuths of 3000 and

450. Modified from Hammer et al. (2015).
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amount of training data, that is, a single reference waveform (Hammer et al., 2012). After

construction of the prototypes the classification of unseen data can start. First, the

incoming continuous data stream is converted into the chosen feature set. Second, the

likelihood is computed that the observation sequence at hand has been generated by a

specific HMM for each individual class HMM and the noise/background HMM. The

classificaton of unseen data is carried out by first converting short time segments of the

continuous waveform into the chosen feature set. Second, computing the likelihood that

the observation sequence at hand has been generated by a specific HMM for each

individual class HMM and the noise/background HMM. Third, the HMM that best

describes the observed feature sequence (i.e., achieving the highest likelihood) is chosen

as the winning model. In this way each time instance in the continuous data stream is

assigned to one of multiple classes, which can be a specific seismic signal type or noise,

and no pretriggering is required.

The number of events is strongly correlated to the semi-diurnal tides (see Fig. 4.23). More

precisely, events exclusively occur during rising tides. In combination with observed

waveform characteristics, this observation leads Hammer et al. (2015) to propose the

following model. Near the grounding line, ice masses are partly floating. The vertical tidal

movement then generates an extensive state of stress causing fracturing at the top or

bottom of the glacier. Filling the resulting cavities, sea water flows into the resulting

cracks. Similar to volcano seismology, the fluid is stimulated to oscillate, causing the

cavity to resonate and thus producing the observed monochromatic seismic signature. This

model is supported by the temporal position of the events. Although ice fracturing due to

bending is likely to be active at rising and falling tides most of the events are observed

during rising tide. Although the sea/ice interface at the bottom provides conditions for

event generation, the ice/snow interface does not. Consequently, falling tides induce

fracturing but no resonance is excited.

4.8.3.2 Moon quakes

The stations of the Apollo lunar seismic network, installed on the Moon between 1969 and

1972, recorded the only confirmed seismic events on any extraterrestrial body so far (e.g.,

Figure 4.23
Hourly detected events in 2004 together with sea level changes (top panel). Gray periods

indicate data gaps. Dashed lines mark individual month. Modified from Hammer et al. (2015).
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Lognonné, 2005; Lognonné and Johnson, 2007). The large number of events recorded on

the Moon, which had been considered as tectonically “dead,” came as a big surprise at that

time (e.g., Frohlich and Nakamura, 2009). The waveforms recorded on the Moon were

readily recognized to be very different from what had been expected based on Earth data

(Gold and Soter, 1970; Dainty and Toksöz, 1981). Lunar event seismograms have

emergent onsets, a strong body wave coda, and a lack of coherent, dispersive surface-wave

trains. In contrast to classical terrestrial signals, the lunar events are characterized by

longer event durations of up to 100 min (Fig. 4.24). Source processes of these events

probably differ from those on the Earth, where most quakes is related to plate tectonics.

The Apollo seismic recordings are a valuable test case for any future experiment in

planetary seismology and algorithms that could be employed in it. The main lunar event

types, listed in the long-period event catalog (Nakamura et al., 1981), are given by deep

moonquakes, impacts, and shallow moonquakes. Deep moonquakes, occurring in a depth

range between 700 and 1200 km (Nakamura, 2005), make up more than 55% of all

identified events and form spatial clusters of periodic activity (e.g., Lammlein et al., 1974;

Lammlein, 1977; Nakamura, 2003; Bulow et al., 2007). The established periodicities of

1 month, 7 months, and 6 years correlate with the Moon’s position with respect to the

SuneEartheMoon system, indicating variations in tidal stress as cause of deep

moonquakes (Lammlein, 1977; Nakamura, 1978; Minshull and Goulty, 1988; Weber et al.,

2010). Frohlich and Nakamura (2009) have argued that fluid phases or partial melts in the

lunar mantle could additionally play an important role, similar to the case of intermediate-

depth subduction-zone seismicity on the Earth, as deep moonquakes occur at depths where

brittle failure is impossible in dry rock. The second largest group of lunar seismic events,

around 13% of all identified events, are generated by impacts, both of natural meteoroids

and of artificial sources. Artificial sources are spent stages of the Saturn-V launch vehicles

and lunar modules that were directed at the lunar surface on purpose to create seismic

sources of well-defined timing and location. The natural impacts, especially of meteoroids

with masses smaller than 1 kg, show temporal clustering correlating with known meteor

showers (Nakamura et al., 1982; Oberst and Nakamura, 1991). In contrast to deep

moonquakes, shallow moonquakes with focal depths of less than 200 km are rare events,

making up less than 1% of all identified events. They are significantly larger than the deep

moonquakes (Mw of up to 4.7), have a low b value (Nakamura, 1977), and are sometimes

also associated with exceptionally large stress drops (Oberst, 1987). As tectonic quakes on

a stagnant-lid planet, they might be comparable to intraplate earthquakes, which exhibit

some similar properties (Nakamura et al., 1982).

Knapmeyer-Endrun and Hammer (2015) identified and classified specific seismic event

types in the Apollo 16 lunar seismic data by using an HMM based classification system.

The original event catalog was composed in 1981 by Nakamura et al. (1981) and

contained 13,058 events. More than a half of the events was classified as deep
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Figure 4.24
Typical lunar seismograms for different event types. The plotted events were used as prototypes
in the event classifier. (A) Shallow moonquake. (B) Deep moonquake. (C) Impact. Note the
different amplitude scale of the plots as given by the black bars. Black parts of LPY and SPZ

components indicate the time intervals used to learn the features of the respective events for the
classifier. Traces signed as “LPX (Y, Z)” were recorded with a long-period seismometer having an
eigenperiod of 15 s “SPZ” is a vertical short period record (eigenperiod of the sensor 1 s). From

Knapmeyer-Endrun and Hammer (2015).

178 Chapter 4



moonquakes while shallow moonquakes and impacts represent only a small part of

detected events. In contrast to classical terrestrial signals, the lunar events are

characterized by longer event durations of up to 100 min. However, not all events, listed in

the catalog, are assigned to a specific seismic signal class. Ranging from two third in the

initial catalog, this number could be reduced to about 25% through intense multiple

analyses throughout the last 25 years (Knapmeyer and Weber, 2015). To test the proposed

“learning-while-recording” approach also for nonterrestrial signals, Knapmeyer-Endrun

and Hammer (2015) first focus on matching the existing event labels. The automatic

system classified more than 80% of the events correctly (i.e., according to the manually

given label). As a next step, the previously unclassified signals were fed into the classifier

and about 60% could be assigned with a reliable class label. Finally, it was possible to find

210 new events in the continuous raw data which were not recognized before. The

additional events can be used for a more detailed study of temporal variations in event

occurrence or to improve the cluster stacks for phase picking.

4.8.3.3 Classification of seismic waveforms using dynamic Bayesian networks

An alternative approach providing more flexibility than classical HMMs are dynamic

Bayesian networks (DBNs) (e.g., Murphy, 2002; Riggelsen et al., 2007; Riggelsen and

Ohrnberger, 2014). As we have seen in Chapter 2, Bayesian networks (BNs) are graphical

models that can be used to model static systems. When modeling dynamic systems, such

as an observed time series, we also want to include their temporal structure in the model.

Here, so-called dynamic DBNs come into play. As well as HMMs, DBNs are temporal

generative models, that is, statistical models that are able to model characteristics of

patterns that evolve in time while allowing for the interpretation and inclusion of expert

knowledge. In contrast to HMMs the hidden nodes are not represented by a single variable

but by a set of variables. In simple terms, a DBN represents a BN that is unrolled in time

and that probability distributions can change in time. Riggelsen et al. (2007) introduce

DBNs for seismic waveform classification. In their study, Riggelsen et al. (2007) model

the temporal structure of the spectral evolution of the observed characteristic ground

velocity. A continuous wavelet transform (CWT) provides the input for the classification

system: features that cover the time-frequency decomposition of the observed seismic

signals. Throughout the seismic waveform, CWT coefficients evolve in time but also

depend on neighboring frequency bands at the same point in time. Thus, multiple variables

are active at a time t and that is what is captured by the DBN.

The performance of the DBN classifier is tested on continuous seismic data recorded by the

European broadband network. Riggelsen et al. (2007) are able to achieve an average accuracy

of 95%. Later on, the approach was further refined by Riggelsen and Ohrnberger (2014). The

main improvement covers the change in the background seismic noise with time. Besides

regular daily and seasonal variations, the noise characteristics can also change suddenly due
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to the installation of a new instrument or other environmental modifications. To account for

this, Riggelsen and Ohrnberger (2014) suggest a continuous gradual model adaption. Instead

of mixing new and old training samples, the noise DBN is trained on the new samples only

but not until convergence. By doing so, previous training samples are implicitly contained in

the updated model and the model is adapted gradually to actual environmental conditions.

4.9 Natural hazard analysesdHMMs and BNs
4.9.1 Estimating volcanic unrest

Besides the identification of different seismic event types, potentially reflecting specific

seismic source processes, overall seismicity rates are often subject to intense research as

they are assumed to correlate to the level of volcanic activity (e.g., McNutt, 1996). The

idea of an increasing likelihood of an eruption with an increasing number of events has led

to many successful eruption predictions as at Tolbachik volcano, Kamchatka, in 1975

(Tokarev, 1983) or Mt. St. Helens, Washington, in 1980 (Malone et al., 1981). Thus, daily

counts of seismic events are a common method of choice for monitoring active volcanoes.

In addition, there are various stochastic approaches to describe eruptive volcano activity.

This allows to incorporate uncertainties in the prediction of eruptions. Often, repose

intervals are suggested to estimate the probability of a volcanic crisis (e.g., Wickman,

1966; Bebbington and Lai, 1996). However, such a static strategy does not allow for

changes in the volcanic activity. In other words, their problem resides not just in the lack

of detecting change points, but even in the omission of considering changes in the

dynamic behavior as we will explain later.

Although the probability of an eruption can be determined by modeling repose intervals,

no change point in the system behavior is accounted for. The type of distribution cannot

change over time, once determined all periods of activity are assumed to follow this

distribution. However, this is not always correct as shown by Varley et al. (2006). Thus,

different levels of volcano activity (represented by different states of eruptive behavior) are

characterized by different probability distributions (e.g., Wickman, 1966; Mulargia et al.,

1987). To combine both aspects Bebbington (2007) introduced HMMs for identifying

different volcanic regimes. The idea is based on a volcano switching between a fixed

number of different hidden regimes, represented by the hidden states, which are assumed

to control the observations such as eruption rates or erupted volume. Besides forecasting

the probability of the next onset, this allows to detect points where the system changes

into another state. Bebbington (2007) identified different regimes, that is, states with

persistent activity, on a timescale of decades to centuries.

Aspinall et al. (2006) applied the HMM approach to the development of volcanic unrest. The

method is based on accelerated earthquake occurrence, following ideas of the generic “time-
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to-failure” or “Material Failure Forecast” concept. Each state in the HMM represents another

level of unrest that is characterized by a specific number of daily earthquake occurrences.

Thus, identifying transitions between the states enables to detect accelerated earthquake rates.

The representation in terms of an HMM offers the possibility to switch backward into an

earlier state characterized by a lower earthquake rate. Monitoring the sequence of “visited”

states allows to identify specific patterns that can be useful for forecasting. Although not

seized by the authors, this approach offers the interesting opportunity to forecast the next day

seismicity in a probabilistic fashion. Based on past observations of successive daily

earthquake rates transitions between different states can be quantified probabilistically. Thus,

being in one state we can give a reliable estimate of residing in this state (i.e., observing

today’s number of earthquakes tomorrow again) and of changing into each other state,

characterized by another specific number of daily earthquakes.

Approaches based on Bayesian analysis exploit similar strategies. Their main advantage is

the possibility to include a variety of observations (e.g., number of earthquakes,

deformation, elevated temperature) in the forecasting process. In the Bayesian event tree

(BET), alternative scenarios are modeled: all starting from a common start point and

ending in a final outcome, which depends on the evolution of the volcano in the meantime

(Marzocchi et al., 2008). The evolution is described in terms of different observations

(e.g., magma ascent, number of earthquakes). Each observation (also called node) has

different possible outcomes determining the path through the event tree. Although the BET

is characterized by a specific sequence of observations, the approach of BN has no such

restrictions (Hinks, 2008). Different nodes do not necessarily follow in sequence allowing

more flexibility in the modeling process. However, more flexibility goes side by side with

a more complicated construction of the network. Given sufficient data, both structure and

parameters of a BN can be estimated purely from observations. However, this is precisely

the problem. For volcanological BNs, there are relatively few “samples” of eruption even

on a global scale. In this case, expert knowledge must be applied to impose physical and

logical constraints enabling the construction of a BNN with sparse training data.

4.9.2 Reasoning under uncertaintydtsunami early warning tasks

The classical way to reveal dependencies between variables are correlation coefficients,

which imply that there is at least a monotonic relationship between the variables.

However, correlation must not be confused with causality. In climate sciences, so-called

causality networks are widely used to infer causality (e.g., Zerenner et al., 2014). In

natural systems, often the single and joint effects of the driving forces are not fully

understood and this may introduce a large degree of uncertainty into any quantitative

analysis. Scarcity of observations is another source of uncertainty. Given these problems

and the complexity of the underlying physical process (i.e., the large number of
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influencing factors), a possible solution may be found in a probabilistic framework such as

BNs, which capture most of the described problems. By using a BN, we are able to

represent (in) dependencies between involved variables in a graphical network that allows

us an improved understanding and direct insights into the relationships and mechanisms of

the system. The approach has been successfully implemented for tsunami early warning

(Blaser et al., 2011, 2012) and probabilistic seismic hazard assessment (e.g., Kuehn et al.,

2011). See Vogel et al. (2014) for an overview. In the following, we demonstrate the

application for tsunami early warning tasks (Blaser et al., 2009, 2011, 2012).

Commonly, tsunami early warning systems evaluate seismic source parameters either by a

simple rule based model or by using a precalculated database to select the most

appropriate tsunami scenario. Those deterministic approaches usually give a warning level

for a particular region or the arrival time and the maximum expected wave height for a

specific site. Their deterministic nature does not account for the uncertainties arising from

incomplete and inaccurate evidences. Blaser et al. (2009) suggest to capture the

uncertainties inherent in the tsunami early warning by using a BN. BNs are able to

integrate and quantify the uncertainties via the joint probability distribution that represents

the dependencies of all variables in a statistically proper way. Blaser et al. (2011) evaluate

real-time seismic source parameters in combination with prior information, physical

knowledge, and expert judgment to a probabilistic real-time threat assessment. The authors

demonstrate a BN-based tsunami early warning system for the region Sumatra, Indonesia.

The BN is composed of eight variables: the “tsunami warning level” and seven seismic

parameters, where the latter are

hypocenter location (epicenter and depth)

magnitude

rupture direction

centroid location

rupture width and length.

The variable “tsunami warning level” is linked to the expected tsunami height:

no tsunami (wave height at the coast smaller than 10 cm)

minor tsunami (between 10 and 50 cm)

tsunami (50 cme3 m)

major tsunami (larger than 3 m).

The structure as well as the local probability distributions of a BN can be learned from

data. As the historical tsunami database is much too sparse to learn from data alone, a

synthetic database is created. Blaser et al. (2009) introduced an approach based on

ancestral sampling to generate these data. The available domain knowledge (expert

knowledge as well as physical/mathematical laws known to hold in the realm of tsunami
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generation) together with a priori information about the geological and geographical

situation is used to construct a Bayesian network. First, the mathematical formulations of

the subprocesses (e.g., about the tsunami excitation and propagation) are ordered

hierarchically. The output of one subprocess is used as input in the next one. Together

with the assumption of prior probability distributions Blaser et al. (2009) compile in that

way a large synthetic database that is in turn used to train a BN.

Given the probabilistic framework of BNs a first estimate on the expected tsunami height

can be given as soon as first evidences are available. Generally, they become available at

irregular time instances and are updated continuously. New or updated evidences can be

integrated instantaneously and the probability of the imminent tsunami risk is estimated

straight away. Blaser et al. (2012) tested the implemented tsunami early warning system

for 10 large earthquakes offshore Sumatra. The probabilistic tsunami threat assessment

shows close agreement to the observations. Blaser et al. (2012) obtain the best

performance for threat assessments based on evidences which are derived in

postprocessing steps. Nonetheless, the real-time application (evaluation based on

parameter estimates available 5 min after origin time) shows satisfying results. Although

results are quite promising, Blaser et al. (2012) also note that even though the

uncertainties inherent in the process are quantified the results are hardly unambiguous.

This leaves the decision maker with some uncertainty with respect to the actions to be

taken considering probabilistic warning level.

Appendix 4.1. Normalization issues

In Fig. 4.13, we noticed a rather particular distribution of the ground deformation data,

and a similar picture was also obtained for magnetic and gravity data. In geophysics such

a distribution is not so uncommon. By their nature, data are often controlled by

exponential processes, and perturbations on geophysical fields may rapidly decay as the

distance between source and observation point increases.

In Chapter 1, we already mentioned some options for normalization purposes. Here,

logarithmic scaling is unfeasible, as part of the values are negative, and accounting only

for the absolute data values brings along the loss of precious information on the

geophysical field. A way out is given by the logistic function f ðxÞ ¼ 2
1þe�ax � 1 (see

Chapter 2, Eq. (2.11)), which varies between �1 and 1 (see also Fig. 2.11). Similar to this,

we may use the hyperbolic tangent function

f ðxÞ¼ tanhðaxÞ (A4.1)

where a is a gain factor which controls the slop of the functions around x ¼ 0. For their

application of MLP, Nunnari et al. (2001) proposed the following scheme:
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flag¼ signðxÞ (A4.2a)

f ðxÞ¼ ðx,flagÞpow,flag (A4.2b)

where pow is a float which is obtained by trial and error (typically somewhere between 0.1

and 0.4). The term ðx$flagÞ is always � 0, whereas through (A4.2b) we warrant that the

polarity of the original value is maintained in f(x).

Appendix 4.2. SVM Regression

In regression with SVM, we search the smallest margin width jjwjj which embraces our

samples. We allow samples that may fall out of this range to keep the margin width small,

even when we have outliers or noise. We restated the SVM optimization problem

accounting for the slack variables

xi; x
�
i

minimizejjwjj2 þ C
XN
i¼1

	
xiþ x�i



(A4.3)

subject to

8><
>:

yi � wTxi � b � εþ xi

wTxi þ b� yi � εþ x�i
xi; x

�
i � 0

where C � 0 determines the importance of errors. Finally, we deal with so-called

“insensitive” loss function (Smola and Schölkopf, 2004), that is,

jxj
ε
¼
�
0 c jxj � ε

jxj � ε c jxj > ε

(A4.4)

The minimization of the “insensitive” loss function is an optimization problem with

constraints.

Similar to the SVM classification outlined in Section 2.5, this optimization problem with

constraints is solved using the Lagrange multiplier method, that is,

L¼ 1 = 2jjwjj2þC
XN
i¼1

	
xiþ x�i


� XN
i¼1

	
hixiþ h�i x

�
i


 �
XN
i¼1

ai
	
εþ xi � yi þ wTxi þ b




�
XN
i¼1

a�i
	
εþ x�i þ yi�wTxi� b



(A4.5)

with the ai, a
�
i , hi, h

�
i being the Lagrange multipliers.
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Finally, we obtain

w¼
XN
i¼1

	
ai�a�i



xi (A4.6a)

and

f ðxÞ¼
XN
i¼1

	
ai�a�i



xTi xþ b (A4.6b)

To determine b we make use of the so-called KarusheKuhneTucker (KKT) conditions

(Karush, 1939; Kuhn and Tucker, 1951), after which at the point of the solutions the

product between dual variables and constraints vanishes.

ai
	
εþ xi� yiþwTxiþ b


¼ 0

a�i
	
εþ x�i þ yi�wTxi� b


¼ 0

and

ðC�aiÞxi¼ 0	
C�a�i



x�i ¼ 0

From this we conclude that

εþ xi � yi þ wTxi þ b � 0 and xi ¼ 0 cai < C (A4.7a)

εþ xi � yi þ wTxi þ b � 0; cai > 0 (A4.7b)

A similar reasoning holds considering a�i .

Appendix 4.3. BiasdVariance Trade-off in Curve Fitting

In Chapter 2, we stated that a classifier with supervision is a system that after a learning

phase (training) makes predictions using new data, that is, it achieves capabilities of

generalization. This implies the assumption that the new data are produced by the same

mechanism of the data used for training, with some additional noise component. The crux

resides in the fact that we may fit data with an arbitrary accuracydallowing many degrees

of freedom (i.e., number of parameters or coefficients)dbut we may run into an increasing

risk when we apply the system to new data. This is known as the “Bias-Variance” Trade-

off. A model with few degrees of freedom may have a high bias, as it fits the training data

poorly but, in turn, it has a small variance. On the other hand, complex systems may have

a low bias as they fit the data well, but they come along with a high variance. In the

following, we show (see Bishop, 1995; Geman et al., 1992) that we can split the

prediction error into two parts: the “bias” and the “variance.”
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Given:

- the true function, we want to approximate

f ¼ f ðXÞ
- the dataset for training

D ¼f.xi; ti.gwith target t ¼ f þ ε; and expectation EðεÞ ¼ 0

we train an arbitrary neural network to approximate the function f by

y¼ gðx;wÞ
The mean-squared error of this network is

MSE¼ 1

N

XN
i¼1

ðti � yiÞ2

Now, suppose that we test a network on an arbitrary number of test points, that is, we pass

to the expectation of MSE

E½MSE� ¼E

"
1

N

XN
i¼1

ðti � yiÞ2
i
¼ 1

N

XN
i¼1

E
h
ðti � yiÞ2

i

We scan split the expectation inside the sum with an augmentation trick:

E
h	
ti � yi


2i ¼ E
h	
ti � fi þ fi � yi


2i
¼ E

h	
ti � fi


2iþ E
h	

fi � yi

2iþ 2E

h	
fi � yi


	
ti � yi


�
Recall that t ¼ f þ ε, so we can continue

E
h	
ti� yi


2i¼E
�
ε
2
�þE

h	
fi� yi


2iþ 2$
�
E½fiti� �E½fi�2�E½yiti� þE½yifi�

�
Now, we note that

E½fiti� ¼ f 2i

because f is deterministic and E[fiti] ¼ fi

E
h
f 2i

i
¼ f 2i

Finally, we note

E½yiti� ¼E½yiðfiþ εÞ� ¼ E½yifiþ yiε� ¼ E½yifi� þ 0
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which exploits the fact that the expectation of the noise is 0 and it is statistically

independent from the prediction of our system. Consequently, we get

E
h	
ti� yi


2i¼E
�
ε
2
�þE

h	
fi � yi Þ2

i
(A4.8)

The MSE can be decomposed into a variance term induced by the noise, and the variance

expressing the difference between the variables predicted by the true model and our

estimate.

The term E
h
ðfi � yiÞ2

i
can be further decomposed again using the augmentation trick

E
h	

fi � yi

2i¼E

h	
fi � E½yi� þ E½yi� � yi


2i
which becomes

E½	 fi � E½yi�

2þE

h	
E½yi� � yi


2iþ 2E½	E½yi� � yi

	

fi�E½yi�

i

that is

bias2þVarðyiÞ þ 0

as the product 2E[..]) vanishes. We therefore can understand the MSE as composed of

three parts: error introduced by noise, bias introduced by error in the fit, and the variance

introduced by the model complexity

MSE¼E
�
ε
2
�þ bias2 þ VarðyiÞ (A4.9)

Note, however, that we do not have any a priori idea of the variance of the noise. The only

model-dependent terms are the bias2 and Var(yi). Let us consider the case in which the

true MSE corresponds to the variance of the noise. Trying a perfect fit of the data, we have

a vanishing bias. Thus

MSE¼ E
�
ε
2
� ¼ bias2 þ VarðyiÞ ¼ VarðyiÞ

and we may end up to fit noise.
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CHAPTER 5

Applications with unsupervised learning

5.1 Introduction

Modern geophysical data analysis entails the accumulation of a large amount of

information which often relates processes undergoing changes in time and space. In

Chapter 4 we have learned about some applications of learning with supervision, i.e., we

assume to have a-priori information, such as the membership of a pattern to a category, or

a set of model parameters corresponding to observations made in the field. Supervised

learning techniques can be extremely effective as they allow to design functions relating a

set of observations (“input”) to targets (“output”), whatever may be the complexity of the

problem. We have also seen that the undesired phenomenon of overfitting can be fixed

applying appropriate test schemes. The success of these methods, however, critically

depends on the validity of the target information. This information can be either flawed

oreeven worseesimply not available, in particular when the observational data set is large

and assigning the targets becomes overly tedious. Besides, Earth is an always changing

planet, which means that a-priori information found to be valid for some time may

become obsolete at some moment. A priori information found to be valid for data

collected in a certain region is often found not being applicable in some other place.

Unsupervised learning techniques (such as the ones outlined in Chapter 3) do not depend

on a priori targets as they focus on the internal structure of the set of observations.

Similarity among patterns is defined on a metricsethe only a-priori information used in

unsupervised learning. The choice of the metrics is strongly related to the features, and

some data transformation may be necessary in order to obtain an appropriate measure for

(dis)similarity among patterns.

The example applications presented in this chapter regards: centroid based clustering using

various metrics; fuzzy and density based clustering as well as vector quantification, here in

the form of “Self-Organizing Maps” (SOM). Clustering covers a wide field in the

framework of unsupervised learning, and is successfully applied when the data set has

internal heterogeneities. The possibility to reveal them, however, relies on the chosen

method and the underlying structure of the set of observations. Having numerical

dataehere we widely focus on this kind of featuresewe may use a metric based on

distances like Euclidean, Mahalanobis, Manhattan, etc., which lead to clusters with a

regular shape, i.e., with spherical, ellipsoidal or hyperbolic symmetry. Other techniques
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allow us to treat clusters with irregular shape, for instance density-based approaches. With

these techniques we aim at identifying gaps on a local scale which interrupt the

connectivity of data ensembles. In the first case, cluster centroids play a key role; in

the second case the centroids have no specific meaning. Besides, we discuss data where

the metrics regards the direction of feature vectors rather than their magnitude. The

orientation of principal stresses in a seismic source is a typical example.

A further question regards the choice of the number of clusters. In partitioning

clustering (see Chapter 3) we have to answer this question at the beginning. The

definite “right” answer then is obtained in hindsight, i.e., carrying out various

experiments with differing numbers of clusters and comparing the results obtained

during various trials. In hierarchical clustering our clustering gets finer and finer as we

proceed, but we have to decide when to stop. In approaches like density-based

clustering we do not set the desired clustering, but we govern the process by setting

some control parameters. Again, we have to carry out several experiments and compare

the results in hindsight.

Besides detecting heterogeneities, cluster analysis aims at data reduction. This goal is

reached at best when there are strong heterogeneities among the clusters. In the techniques

with centroid-based measures, we can explain a good deal of the total data variability just

by considering centroids. In the ANOVA terminology (see Chapter 3), we would say we

can limit ourselves to the dispersion “between”e the dispersion of the cluster centroids

only - neglecting the “within” part, i.e., the dispersion measured inside the clusters.

In the wider framework of data reduction, we find vector quantification techniques, in

particular the SOM, which we introduced in Chapter 3.2. SOM comprise micro-clusters

each of which represents a number of patterns, being prototypes of the patterns assigned.

A specific feature of SOM is the projection of the prototypes in a low-dimensional

representation space, typically a 2D map. The projection is carried out in a way that

prototypes representing similar patterns are found close to each other on the map. The

number of micro-clusters can be rather large. On the other hand, the detection of

heterogeneities becomes of secondary interest. Vector quantization and SOM are often

applied to very large data sets, being them structured or characterized by smooth,

transitional regimes. At the same time, due to the projection in a low-dimensional

representation space, the visualization of large and high-dimensional data sets becomes

extremely simple and effective, providing that the projection fulfills the condition of

“topological fidelity” which was discussed in Appendix 3.3.

We present a few applications of unsupervised learning techniques to geophysical data.

The first application deals with seismic data recorded at Stromboli volcano, the feature

vectors of which are given by spectral density values. We show how cluster analysis can

be exploited to identify regimes of volcanic activity. Another application handles density-
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based clustering for the identification of clusters with irregular shape. These clusters are

formed by the distribution of earthquake hypocenters which mark structural elements

buried in the Earth crust. Further examples regard SOM for the purpose of data reduction.

The possibility of the projection of high-dimensional data in a low-dimensional

representation space, such as maps, allows an efficient application to regionalization

problems. We show an example using climatic data in Europe, relating the zones defined

with SOM to more conventional ones, such as the “Köppen zones”. Beside regionalization,

the representation of patterns using the SOM allows a straightforward visualization of

changing pattern characteristics. Here we discuss the technique in the framework of

volcano monitoring and the definition of alert procedures. A final example regards data for

which we are interested in the orientation of the feature vectors rather than the absolute

values of the components. This is the case when we deal with values normalized between

�1 and 1. The greatest difference between two feature vectors is then encountered when

they point into two opposite directions. In our example, we present the clustering of

seismic moment tensor, trying to identify groups in which stresses acting in the seismic

source show similar orientations.

5.2 Cluster analysis of volcanic tremor data

The seismic background radiation of active volcanoes like Mt. Etna or Stromboli provides

useful information about the state of activity, even when visual monitoring or field surveys

are hindered, for instance, by unfavorable meteorological conditions or during nighttime.

At Etna (see Chapter 4), tremor is a persistent signal without clearly identifiable transients,

such as explosions or earthquakes. The analysis of this signal is based on the extraction of

some key parameters, in particular the RMS (Root Mean Square) amplitude. Besides, the

spectral content allows more detailed analyses of the signal characteristics and their

relation to volcanic activity.

In the framework of pattern recognition, we may process the spectra as feature vectors

whose components are spectral densities measured in various frequency intervals. In other

words, spectra are considered as multivariate random variables to which one can apply all

the suit of techniques introduced in the Chapter 2 and 3.

To highlight the changes in the spectral characteristics of patterns with time, we may plot

spectrograms, such as the one shown in Fig 4.1 (see Chapter 4). The full resolution of

spectra would render the graphs difficult to read; therefore, it is convenient to simplify the

spectral feature vectors by defining “frequency bins”, i.e., averaging over the spectral

amplitudes (see Fig. 5.1) measured in predefined frequency intervals. An example of such

a simplified representation is shown in Fig. 5.2; the spectra were calculated from the

background seismic radiation recorded at Stromboli volcano in 1993.
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The use of a limited number of frequency bins also allows the statistical treatment,

avoiding problems arising from feature vectors with many dimensions. For example,

Falsaperla et al. (1998) considered nine frequency bins and calculated essential statistical

parameters of the spectra, i.e., mean values and covariance matrix, for the tremor signal

recorded at the vertical component of a short-period seismometer (Table 5.1).

The development of spectral characteristics depicted in Fig. 5.3 reveals changes not only

with respect to amplitudes, but also to spectral shapes. For instance, at the beginning of

the time window, the components #1 and #9 have the lowest amplitudes, whereas the

Figure 5.1
Stack of ca. 300 tremor spectra, which were calculated from the signal recorded by the vertical
component of a short-period (1 s) velocity sensor at Stromboli in 1993. The original spectral res-

olution was 0.05 Hz.

Figure 5.2
Spectral feature vectors as reported by Falsaperla et al. (1998). To reduce the number of

components, the Authors considered nine frequency bins averaging over the spectral amplitudes
in the intervals: 1e1.5, 1.55e2, 2.05e2.5, 2.55e3, 3.05e3.5, 3.55e4, 4.05e4.5, 4.55e5, and

5.05e5.5 Hz. The chosen overall frequency limits (1e5.5 Hz) covered the most relevant
frequency range of the signal.
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component #7 achieves the highest amplitudes. In June 1993, however, the relatively

lowest amplitudes correspond to the component #2. We may now ask whether - beside

mere overall RMS amplitudes directly available from the raw time series - there was some

relation between spectral characteristics (both shape and spectral energy) and the state of

the volcano. One can try to answer this question applying cluster analysis to the nine-

dimensional feature vector.

It is a good praxis to start with a simple clustering technique. Here we have chosen the

conventional K-means. The K-means technique is a partitioning clustering method, for

which we have to choose the desired number of clusters a priori. Clusters are formed on

the base of the Euclidean metrics (see Chapter 3). Consequently, we suppose that the

clusters have (hyper)spherical hulls. The separation of the dispersion follows essential

concepts of ANOVA, in this case the “within” dispersion (sum of distances of cluster

members with respect to the centroid) in the clusters, which we wish to minimize. This

entails that the “between” dispersion, i.e., the distances measured between the cluster

Table 5.1: Mean values and covariance matrix of tremor spectra (from Falsaperla et al., 1998).

x m Covariance matrix

1.00e1.5 26.2 69 86 66 51 49 45 55 42 35
1.55e2.0 39.6 198 122 94 72 48 74 36 30
2.05e2.5 35.6 149 125 132 141 168 127 94
2.55e3.0 31.3 124 132 155 279 239 178
3.05e3.5 43.2 206 353 324 238 21
3.55e4.0 49.2 350 352 324 238
4.05e4.5 56.0 449 347 271
4.55e5.0 46.1 339 248
5.05e5.5 34.2 196

Figure 5.3
Development of the nine spectral features with time considered by Falsaperla et al. (1998).

Amplitudes reported on the vertical axis are in digital unit.
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centroids, is maximized. The separation of “within” and “between” dispersion has allowed

to establish formal criteria for the selection of the number of clusters, which is certainly

an important advantage of the K-means clustering. One of the most popular indices is the

so-called Davies Bouldin (“DB”) index (Davies and Bouldin, 1979), whose definition is

given in Appendix 5.1.

First, we carry out a sequence of clustering trials, changing the number of clusters.

Eventually, we adopt the number of clusters that achieves the lowest DB index (see

Fig. 5.4).

Fig. 5.4 can be obtained using the package “KKAnalysis” coming along with this book.

Here we carry out the clustering trials starting with two clusters up to a partition with

seven clusters. Based on the results of Fig. 5.4, one adopts a partition with three clusters

as a reasonable choice. The sequence of cluster IDs can now be plotted over time

(Fig. 5.5).

In Fig. 5.5, cluster #3 prevails in April and May 1993; cluster #1 is widespread almost all

time, whereas cluster #2 appears in disrupt time intervals. Even though the occurrence of

Figure 5.4
Choosing the number of clusters using the Davies-Bouldin index.
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cluster #3 coincides with a lava effusion reported between 16 and 18 May 1993 (see

Falsaperla et al., 1998), possible prevailing regimes do not turn out clearly. One of the

reasons for the somewhat unsatisfactory picture may reside in the fact that data groups do

not actually form (hyper)spherical bodies. In other words, there is a change in the spectral

shape within groups besides the variations encountered between groups.

In alternative to K-means, Principal Component Analysis (PCA, see Chapter 2) may

provide more immediate clues. Table 5.2 reports the three largest eigenvalues and

corresponding eigenvectors of the data set (for the full PCA, see Falsaperla et al., 1998).

The largest eigenvalue in Table 5.2 explains w80% of the total variance in the data set.

The largest components of the corresponding eigenvector belong to the features #6, #7, #8,

i.e., the spectral values in the intervals 3.55e4 Hz, 4.05e4.5 Hz, and 4.55e5 Hz, which

means that the variability in the data set is strongly controlled by these frequency bands.

On the other hand, the largest components corresponding to the second largest eigenvalue

are found for the features #2 and #3 (1.55e2 Hz and 2.05e2.55 Hz). We therefore surmise

that fluctuations in spectral amplitudes do not occur independently, but are mutually

related. As K-means forms (hyper)spherical clusters, possible correlations among the

Figure 5.5
Sequence of clusters from K-means. Note that the cluster labels #1, #2, and #3 are categorical.
Cluster #1 is the largest one, clusters #2 and #3 are the second and third one with respect to

number of cluster members.

Table 5.2: The three largest eigenvalues and corresponding eigenvectors of the covariance

matrix reported in Table 5.1.

l Eigenvectors eT

1604 0.08 0.12 0.23 0.23 0.35 0.45 0.5 0.44 0.33
304 0.33 0.73 0.41 0.28 0.04 �0.16 �0.11 �0.22 �0.17
58 �0.04 �0.22 0.15 0.42 �0.09 0.41 �0.73 0.20 0.09
€ € € € € € € € € €
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feature components within a cluster are not accounted for. For this reason, the use of

Euclidean metric in K-means is not the best choice for the afore-mentioned problem.

In Chapter 3 we introduced clustering metrics that account for correlations among the

components of the feature vectors. Let’s consider the Adaptive Distance Criterion (Section

3.1.2.1), which exploits such a metrics; in this case, we calculate the individual dispersion

matrices Sj obtained for each cluster and minimize the sum

Dtot ¼
Xk
j¼1

Xmj

i¼1

�
xi � xj

�T
Gj

�
xi� xj

�
(3.14)

where Gj ¼ (det Sj)
1/lSj

�1 (see Chapter 3).

Recall that by using Gj one gets a metric that resembles the Mahalanobis distance, beside

the fact that one works with the inverse of the dispersion matrix instead of the covariance

matrix. In this way, we can form clusters whose shape resembles, for instance, elongated

ellipsoids.1 Even clusters which apparently intersect each other can be separated.

In comparison to Fig. 5.5, the sequence of clusters in Fig. 5.6 allows us to identify well

developed regimes. Data belonging only to cluster #2 mark the beginning of 1993. Similar

to Fig. 5.5, cluster #3 shows up between April and May 1993. This further supports the

hypothesis of a correlation with the state of unrest of the volcano, with magma closer to

the surface until the start of lava emission on 16 May 1993. From June on, data belonging

to cluster #1 are the only ones present (Fig. 5.6). Following Falsaperla et al. (1998), this

regime may be related to the return of magma at depth. Explosive sequences at the end of

1993 actually yielded the ejection of rather cold, detritic material, with no juvenile

Figure 5.6
Sequence of clusters using the Adaptive Determinant Criterion.

1 In general, the elements which distinguish two clusters from each other are given by quadratic functions. See
Appendix 2.1 for a more detailed discussion.
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magmatic component. In the volcanological context, this is interpreted as an evidence of a

relatively low position of the magma column with respect to the previous period.

Though these results look sound, we are still left with the problem of choosing the “right”

number of clusters. Formal criteria, such as the Davies-Bouldin Index or alternatives (see

Appendix 5.2e5.4), depend on the relation of heterogeneity measured within and between

the clusters. In the case of the Adaptive Distance Criterion, there is an individual metric

for the distance of a cluster member to its centroid. This entails that for the metrics

“between” the cluster centroids we have difficulties to identify a meaningful choice.

In a heuristic approach we may plot the total sum Dtot (Eq. 3.14) over the number of

clusters (Fig. 5.7). Assuming two clusters as the minimum number to choose, we note that

passing to three clusters there is an improvement of Dtot of w0.015 points. With more

clusters, the curve in Fig. 5.7 tends to flatten out. We therefore may limit ourselves to a

small number of clusters, such as indeed three, but not more than four.

As a further diagnostic, we may look for the detection of crucial, new heterogeneities with

substantially modified partitions. For example, comparing the clustering information using

partitions with three (Fig. 5.8) and five clusters (Fig. 5.9), we notice that cluster #1 is quite

stable and with a low degree of heterogeneity. In both the partitions, this cluster essentially

occurs from June on. Conversely, the other clusters are diversely distributed in time (from

January to May). The increase in the number of clusters in the partition (from three to

four) yields the splitting of clusters in that time span without an effective gain of new

information (Fig. 5.9).

5.3 Density based clustering

The clustering with K-means and Adaptive Distance highlights data groups whose hulls

have rather simple and mathematically well-described shapes. However, many problems of

Figure 5.7
Sum of distances (Dtot) versus a priori choice of the number of clusters.
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geology and geophysics deal with data samples with irregular-shaped bodies. This is the

case of the spatial distribution of seismic sources in the context of seismic hazard, in

which earthquake location is a key question.

The occurrence of earthquakes is strongly linked to the geodynamic framework of a

region. Strong earthquakes concentrate in places where there are strong deformations of

the Earth crust (the so-called solid Earth). The occurrence of strong ground motion outside

tectonically active zones is also a matter of concern, as the shaking may have been caused

by man-made sources, in particular during nuclear armament testing. The advent of

modern seismic monitoring instruments has allowed the record and location of even small

magnitude events with high accuracy. Earthquakes with small magnitude occur more

frequently than the strongest ones, roughly 10 times for each magnitude unit. On the other

hand, even small earthquakes are linked to deformation processes in the Earth crust. This

link makes them efficient tracers for active tectonic structures, in particular those buried at

depth, invisible to geologists.

Commonly, tectonic faults are depicted as plane elements. Earthquake hypocenters

following those elements can be supposed to form groups described in simple

Figure 5.8
Overall clustering information using three clusters. The figure reports the number of patterns and

heterogeneity (Dtot) in each cluster.
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mathematical terms. K-means or Adaptive Distance based clustering may work fine for the

identification of groups with such a geometry. Famous examples are the seismicity maps

along the San Andreas Fault (USA), where the hypocenters of large and small earthquakes

line up on linear elements, following the main fault and secondary tectonic structures. In

many cases, however, tectonic elements have quite complex geometries. For example,

normal faults are known to exhibit a “listric” geometry, i.e., a shallow dip angle at depth,

which steepens up toward the surface, where it may become vertical. Bow-formed

structures are typical, for instance, in collisional boundaries with the presence of an

indenter, where deformation vectors delineate a fan-shaped arrangement. Around

extensional zones, shear fractures may show a geometry similar to a circular rosette (see

Fig. 5.10)

Bow-shaped elements on Mt. Etna (Italy) can have origin from the presence of an

extensional center in the area of the summit craters. Extension may be caused by the

upraise of magma from the deeper parts of the volcano. At the same time, the topography

of the mountain itself causes an outward directed load on its flanks, which is particularly

intense on the eastern quadrant, adjacent to the Ionian Sea. On the other hand, in a

Figure 5.9
Overall clustering information using four clusters. The figure reports the number of patterns and

heterogeneity (Dtot) in each cluster.
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volcanic context like Mt Etna, the deeper structure is characterized by irregular

heterogeneities separating various geological bodies from each other. Those bodies can be

unveiled by both tomographic investigations as well by the location of hypocenters,

highlighting possible pathways for the ascent of fluids and magma, and shedding further

light on the feeding system of the volcano. The link between earthquake locations and the

3D structure of the volcano (both revealed from seismic velocities and attenuation

parameters) was clearly proven by Chiarabba et al. (2004).

In Fig. 5.11 we apply the DBSCAN-STRATA code to a data set consisting of 328

hypocenter locations of a seismic swarm, which occurred in 2003 in the context of a major

eruption of Mt Etna (see Mostaccio et al., 2013). The clustering clearly reveals non-linear

elements, such as an arc-shaped group in the northern part of the mountain, aligning along

the “Pernicana Fault System”. This structure is a shallow fault along which horizontal

displacement prevails, and with deformation rate that may reach even several cm per year.

The body marked by blue diamonds matches the high-velocity (and low-attenuation) body

highlighted by seismic tomographic studies (e.g., Chiarabba et al., 2004).

To obtain the clustering shown in Fig. 5.11, we ran the DBSCAN-STRATA code with

k ¼ 10 nearest neighbors. This value was proposed as a default by the software after

selecting the option “Stratify”. The setting of the “epsilon” parameters turns out to be

uncritical. The stability of the result with respect to the “epsilon” settings is also claimed

in the paper by Cassisi et al. (2013; see also Cassisi, 2013), where one can found more

Figure 5.10
Shear trajectories around an extensional circular hole. Redrawn form Jaeger and Cook, 1979.
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details on the software.2 One of the advantages of this code is that it does not require the

a-priori selection of the number of clusters. The formation of new clusters is invoked

when a new pattern is encountered which is not density reachable. Using k ¼ 10 for the

nearest-neighbor parameter we obtain 4 clusters and 70 samples considered as noise.

Nonetheless, the picture shown in Fig. 5.11 may change, in particular when the nearest

neighbor parameter k differs. In Fig. 5.12 we compare two runs of the clustering, one

using k ¼ 8 (Fig. 5.12A) and the other one with k ¼ 12 (Fig. 5.12B). In the first case, the

Figure 5.11
Density based clustering of earthquake hypocenters at Mt Etna in October 2003 using the

DBSCAN-STRATA code by Cassisi et al. (2013). See https://sites.google.com/a/ingv.it/carmelo-
cassisi/home/software/dbstrata. Two dashed lines give the reference x¼0 (corresponding to

15� E), and y¼80 (corresponding to 37.72� N). We thank Tiziana Tuvè, who provided the hypo-
center localizations shown in the figure. The map includes some major tectonic elements, for

more details see Azzaro et al. (2012).

2 The DBSCAN-STRATA program reports an “Approximate” Davies-Bouldin Index, which must be met with
some caution here. As clusters have any type of shape, such as bows, snakes etc., the internal dispersion
measured with respect to a centroid provides poor information whether the classes are compact, in the sense
that there are no important losses of connectivity within a cluster. It is tempting to express the internal
heterogeneity by means of some average distances in the unit (hyper) volume (see Section 3.2.3);
nonetheless the role of noise remains unclear (such as the black crosses in Fig. 5.11). In fact, we wish to
have clusters as compact as possible, but limiting the amount of data assigned to the noise group.

Applications with unsupervised learning 201

https://sites.google.com/a/ingv.it/carmelo-cassisi/home/software/dbstrata
https://sites.google.com/a/ingv.it/carmelo-cassisi/home/software/dbstrata


Figure 5.12
DBSCSAN-STRATA clustering with k ¼ 8 (A) and k ¼ 12 (B). Horizontal coordinates are refer-

enced to 15� E for x ¼ 0 km, and 37� N for y ¼ 0 km.
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code finds 5 clusters plus 105 samples assigned to the noise group (black symbols), while

it gets 3 clusters and 85 samples in the noise in the second case. Based on these results,

our choice of the clustering with k ¼ 10 is a good compromise in terms of number of

clusters obtained and samples assigned to the noise.

5.4 Climate zones

In Chapter 1 we mentioned weather as an example of all-day multivariate phenomenon

characterized by varying data, such as temperature, humidity, presence of clouds or sun-

shine, and the amount of precipitation. Considering a single site, we define its

meteorological conditions as “climate”. Culling together all sites where relevant

meteorological data are collected allows us to identify climate zones, for instance zones

with dry and hot summers and cold winters. Such conditions are commonly referred to as

“Continental Climate” as they are often met inside extended lands distant from the sea.

The first attempts of global climate classification date back to the times of Pythagoras,

when Greek philosophers developed a first zoning, in particular aiming at gaining some

clues about the figure of the Earth (see Sanderson, 1999). In fact, the word “climate”

derives from “clima-ata”, defined as the “slope of the Earth from equator to north pole”

(Sanderson, 1999; Barnhardt, 1957). Moving on from the concept of a spherical Earth,

Pythagoras’ disciple Parmenides defined five zones, two of which cold, two temperate, and

one torrid. The simple Greek system became more and more questionable with the

increasing knowledge of the Earth, in particular after the great discoveries made from the

15th century onwards. Indeed, the lands in the New World have climates that cannot be

understood as simple extrapolations of European climates, as they exhibit strong

irregularities and contrasts with respect to both temperature and moisture supply.

The first comprehensive world-climate classification was proposed by the German-Russian

scientist Wladimir Köppen (Köppen, 1900). Köppen, a plant physiologist, surmised that

vegetation can serve as a proxy of climatic elements. He chose the five vegetation groups

established by the French botanist De Candolle (De Candolle, 1874) to distinguish five

climatic zones: “A” with plants typical of the Torrid Zone; “B” with plants of the Dry

Zone; “C” with Temperate Zone vegetation, and finally “D” and “E” for the Frigid Zone,

where typical plants of the rigid weather grow. With the increasing amount of available

numerical weather parameters collected worldwide (mainly temperature and precipitation/

moisture), new discrimination rules were established to replace or refine these climatic

zones. For instance, the Köppen zone “A” is defined on the base of temperature (high

temperature), while a second letter expresses the degree of moisture; for example, “Af”

stands for tropical and rainy conditions.
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Four out of the five bio-climates defined by Köppen are defined thermally. Monthly

temperature maxima of 0�, 100, and 18�C form boundaries among: ice, cold winter wet,

warm winter wet, and tropical wet climates (Prentice, 1990). The boundary between moist

and dry climates lies close to the point where annual precipitation is less than annual

potential evapotranspiration. In the most commonly used Köppen-Geiger scheme (see

Köppen, 1936), the five primary types are subdivided according to the seasonality of

precipitation and the severity of the dry season (when existing). Further distinctions are

based on additional thermal criteria, among which the mean temperatures of the coldest

and warmest month. For the most recent versions of the Köppen-Geiger scheme see

Kottek et al. (2006), and Peel et al. (2007).

The modern versions of Köppen’s scheme and its alternatives are based on numerical data,

such as temperatures, precipitation, evapotranspiration, etc. However, they come as a

classification, based on rules established a priori, fixed in order to reproduce the older

vegetation-based scheme using the one defined by numbers. Various efforts have been

undertaken exploiting the numerical data in a formal classification scheme rather than by

rules and thresholds fixed by the experts. Cannon (2012) proposed a global climate

classification obtained by Multivariate Regression Tree (MRT). An MRT is a binary tree

with nodes of simple “below/above” decision rules applied to predictors (our climate

parameters). They have a hierarchical structure similar to the hierarchical clustering

described in Chapter 3. Cannon’s study aims at formulating a rule- and computer-based

global climate classification, comparing it to the homogeneity of the zones defined with

the Köppen-Geiger classification. Cannon applied rules that describe the Köppen-Geiger

scheme in terms of variables derived from long-term climate normals of monthly mean

temperatures and precipitations.

At the base level, Cannon (2012) divided the data into two subgroups using the criterion

of the “mean annual temperature” (MAT threshold), for instance set up at 12�C. In the

next level, the search climbs up the tree, setting splits for new branches. At each split

node, a decision is made on which branch is followed for a specific pattern. The decision

process continues until patterns are assigned to their corresponding class. Throughout an

exhaustive search for the best splits, each value of the predictors is considered as a

possible threshold. The gain in homogeneity after each hypothetical split is monitored

considering

DWSS¼WSSA � ðWSSBþWSSCÞ (5.1)

where WSSA is the dispersion measured in the parent class and WSSB, WSSC are the

dispersions measured in the two child classes created during the splitting.

From the formal point of view, binary decision trees come with the advantage of

simplicity and ease of understanding. They work fine when classes can be separated
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linearly, and decisions are based only on one component of the feature vector. In other

words, the discriminating element is parallel to the axis of this component. As class

boundaries are rarely that simple, many nodes of decision trees may be needed in order to

mimic more complex class boundaries.3

Unsupervised learning and clustering may offer a more efficient answer to the

identification of climate zones, as these techniques are data driven. Decision boundaries

are ideally detected along heterogeneities between groups of patterns; at the same time we

can define centroids around which many patterns are concentrated. The characteristics of

those centers, together with some measure of dispersion around them, lead to a

considerable data reduction facilitating the task of zoning. Zscheischler et al. (2012) used

multivariate statistics and clustering to a sequence of parameters measured at a monthly

rate worldwide. Beside the classical parameters already considered by Köppen -

temperature and precipitation - the authors considered the “Downward Short-Wave

Radiation”, “Enhanced Vegetation Index” (known to be responsive to structural variations

in the canopy) and the “Fraction of Absorbed Photo-synthetically Active Radiation”

(related to the primary productivity). The authors measured the quality of clustering by the

amount of dispersion explained in terms of the sum of “within” dispersions encountered

inside the clusters ℂi , i.e,

WCSSk ¼
Xk
i¼1

X
xj˛ℂi

jjxj � mijj2 (5.2)

with mi being the centroid of ℂi. We get the degree of explained variance from the ratio

EV ¼ 1�WCSSk
WCSS1

(5.3)

which is 0 for k ¼ 1 (all data in one cluster) and is one for WCSSk ¼ 0: The choice of the

suitable number of clusters remains open. Dealing with a K-means clustering, one could

opt for the Davies-Bouldin Index or the Dunn Index. The authors used the “Variation of

Information” (VI) as a distance measure of clustering (see Appendix 5.5). This allows

them to evaluate the stability of clustering, for instance, restarting it varying the initial

conditions (such as the often randomly defined initial clustering).

Zscheischler et al. (2012) performed resampling experiments in order to evaluate the

stability of clustering. K-means clustering was applied to a subset of data selected

3 Imagine a straight line dividing two areas in a sheet. We can use the equation of the line for the description
of the discriminating element. In a binary strategy we compose the line as a sequence of steps in vertical
and horizontal direction. Many small steps may be necessary to mimic the line. However, the binary strategy
has its appeal when highly non-linear discrimination functions are needed. It adapts in a mathematically
simple way to those non-linear elements.
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randomly. In a subsequent step, the left-out samples were assigned to the clusters

considering the closest centroid. In this way, a full clustering was obtained from a part of

the whole subset. We can compare this to the original clustering using the VI index. In a

boot-strap like approach, it is possible to repeat this procedure, every time carrying out a

new random selection of events used for clustering. We therefore get an idea on the

uncertainty of the VI distance estimation. From a comparison between the VI indices and

the instability, Zscheischler et al. (2012) inferred a cluster number of 12 or 13 as a

reasonable choice, even though difficult to handle as described in the following.

Using the PCA the authors investigated how well the data matched the original Köppen

classification (see Fig. 5.13). For the sake of simplicity, they referred to the five major

Köppen zones (A to E), to each of which they assigned a color code. Only the two

eigenvectors with the largest eigenvaluesethe first two Principal Componentsewere

considered from the results of the PCA, as the further principal components had small

eigenvalues and could be neglected. Then the authors plotted the colored symbols

Figure 5.13
The Köppen classification (see Chen and Chen, 2013).
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representing the Köppen zones in a system of axes with the two most relevant principal

components. They obtained an immediate graphical information on how the data used in

clustering and PCA were related to the Köppen zones. It turned out that colored pixels

formed well identifiable areas but no strong heterogeneity could be distinguished. The

authors concluded that the Köppen zonesein terms of the variables considered in their

studyeform rather transitional regimes, without erratic changes in the parameters when

passing from one zone to another (see Fig. 5.14).

The clustering methods shown so far are based on identifying groups along

heterogeneities, or gaps between objects. Patterns having a small distance from each other

form clusters, and it may be sufficient to deal with parameters describing those clusters

rather than considering the patterns one by one. In this way, we considerably reduce the

amount of data, neglecting only a minor part of the information. Beside the identification

of heterogeneities, data reduction is indeed a key issue in unsupervised learning. Actually,

in contexts with transitional regimes, the aspect of data reduction becomes the main target,

whereas revealing heterogeneities turns into a minor issue. In our example of the climate

data, we probably face with such a situation. Having more than four or five clusters

produces a picture which is difficult for the analysist to understand. Therefore, in their

comparison of their PCA to the original Köppen zones, Zscheischler et al. (2012) limited

Figure 5.14
Projection of the data analyzed in Zscheischler et al. (2012) onto the first two principal

components. Data points of the northern hemisphere are shown. Their colors were selected
according to the five main climates of the Köppen-Geiger classification to which they belong.

Modified from Zscheischler et al. (2012).

Applications with unsupervised learning 207



themselves to a simplified representation, considering only the main five climate regimes

from A to E (instead of 12 or 13 previously suggested as a reasonable choice).

In case of transitional regimes, we may adopt fuzzy clustering as an alternative to the crisp

schemes applied in our previous examples. In Chapter 3 we mentioned Fuzzy C-means,

whichesimilar to K-meanseis based on the Euclidean metric. However, instead of

assigning a pattern exclusively to a single category, it allocates a class membership vector

that expresses the varying degrees of similarity of a pattern to each cluster. Even though

fuzzy clustering may be a convenient choice where no strong heterogeneities exist, we are

still left with the problem to represent the results of clustering - here the geographical

distribution of the class-membership values. Colored symbols are a possibility, especially

when the number of clusters is small. For example, a classification with three clusters can

be envisaged for the European Continent. Here we may identify three climate zones

considering the Mediterranean region as one macro-unit, Western and Northern Europe as

a second one, and finally a third region encompassing the Northern and Eastern part of the

continent. We provide a graphical example of this separation based on the application of

Fuzzy C-means to a data set freely downloaded from Iten (2016; http://www.iten-online.

ch/klima/klimatabellen.htm). It consists of data collected at 348 stations deployed in

Europe. Table 5.3 reports the data of a few stations, located in Denmark, Germany, and

Italy.

Three is a “magic number” for our classification purposes as we can assign an RGB color

code to each of the classes, so that cluster 1, cluster 2, and cluster three control the

saturation in red, green, and blue, respectively. Mixing the three contributions, we design

symbols the color of which highlights the class membership degrees. Fig. 5.15 depicts the

results of the classification obtained using the “KKAanalysis” package by Messina and

Langer (2011), which offers an option for the Fuzzy C-means clustering with a fuzzy

exponent q ¼ 2 (see Eq. (3.15) and (3.16) in Chapter 3).

In Fig. 5.15 we clearly identify the three major climate regimes in the European continent.

The red triangles dominate in the Mediterranean countries; Table 5.3 reports a few data

from the station Otranto (Southern Italy) as an example. Mediterranean sites are

characterized by hot temperatures in summer, and mild temperatures in winter;

precipitations mainly occur in fall and winter. For the station Otranto the class

membership value for red is w0.94. Blue colors dominate in Central and Eastern Europe

(see the values in Table 5.3). The blue cluster covers regions with moderately warm

summers and cold winters; precipitations (rain and snow fall) occur all the year round. The

class membership corresponding to the blue cluster for the station Berlin is w0.87. The

area around the Northern Sea has dominant green cluster. The Station Roskilde (see

Table 5.3; class membership for the green cluster 0.86) is a typical example for such

patterns. Compared to the station Berlin, summer temperatures are lower, winters are less
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Table 5.3: Climate data set collected at sites in Europe. The parameters reported are the maximum temperature (during

daytime), minimum temperatures (during nighttime), duration of daily insulation (“Sun(h)”), and days with Precipitation

(“Pr”.(d)”) encountered within a month.

Roskilde (Denmark), Latitude 55.6419 N, Longitude 12.0878 E

Mon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Day 2 2.1 5 10.4 16.1 19.4 21.8 21.2 17.5 12.1 7.3 4.2
Night �2 �2.5 �0.8 3.1 7.5 11.2 13.6 13.5 10.5 6.7 3.3 0.7
Sun(h) 1.2 2 3.8 5.4 7.9 8.2 7.7 6.7 5.2 2.8 1.1 0.6
Pr. (d) 17 13 12 13 11 13 14 14 15 16 16 17

Berlin (Germany), Latitude 52.520 N, Longitude 13.404 E

Mon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Day 1.8 3.5 7.9 13.2 18.6 21.8 23.1 22.8 18.7 13.3 7 3.2
Night �2.9 �2.2 0.5 3.9 8.2 11.4 12.9 12.4 9.4 5e9 2.1 �1.1
Sun(h) 1.5 2.6 3.9 5.2 7.1 7.4 7 6.8 5.2 3.6 1.7 1.2
Pr. (d) 10 9 8 9 10 10 9 10 9 8 10 11

Otranto (Italy), Latitude 40.4643 N, Longitude 17.2470 E

Mon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Day 12.1 12.8 14.6 18.1 22.3 27 30 29.9 26.7 22 17.3 13.7
Night 6.3 6.6 8.1 10.9 14.8 19.1 21.8 21.8 19.4 15.4 11.6 8.2
Sun(h) 4.1 4.6 5 7.4 9.2 10.5 11 10.5 8.2 6.4 4.7 3.5
Pr. (d) 7 6 6 5 4 3 1 2 4 6 6 8
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cold, and rain (or snow) fall happens all over the year, but more frequently. Beside these

prototype zones (with class membership values predominantly belonging to one cluster),

there are other zones, for instance around the Black Sea, with climate conditions in

between the Mediterranean and Eastern Europe continental areas. They are marked with

colors of the symbols varying from dark red to purple, a mixture of blue tones typically

assigned to the continental climates, and red tones of the Mediterranean zones.

Even though the representation of pattern characteristics using the fuzzy cluster

membership values in our example looks good at a first glance, some caveats must be kept

in mind. First of all, such a method may work only when the number of clusters is limited,

say three or four. In addition, Fuzzy C-means may give surprising results when applied to

outliers. In Table 5.4 we report data from the station in Murmansk (Northern Russia),

which is the northernmost harbor in that country, and known for a rather harsh climate.

The fuzzy cluster membership vector is given by the tuple

½0.1267; 0.4184; 0.4548�
which could be (mis)understood as a climate half-way between continental and

northwestern, as the class membership corresponding to the blue and green clusters are

similar. Actually, the values just report that the pattern has the same distance to the

centroid of the blue and green class, but does not tell anything with respect to the absolute

Figure 5.15
Fuzzy clustering of climate data in Europe. Mediterranean sites are characterized by a prevailing
‘red’ cluster, blue colors are found at sites with continental conditions, whereas the green cluster

membership prevails in NW Europe.
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distance, which is large indeed. Langer et al. (2011) show an example of fuzzy clustering

behavior for patterns far away from the centroids. We can leave it as an exercise to

examine how fuzzy clustering behaves in the presence of strongly outlying patterns, where

distances are large to all cluster centroids.

A further issue is the limitation to three or four cluster centroids, when we wish to create

colored symbols. Common visualization systems allow a color coding according to the

RGB scheme; modern systems may allow four color components.

An alternative responding to the needs of data reduction and efficient representation of

pattern characteristics, is given by vector quantization methods, in particular the Self-

Organizing Maps (SOM) that we already presented in Chapter 3. SOM are more robust for

a priori choices than clustering; at the same time, the color coding in SOM mirrors the

numerical characteristics of a pattern better than its membership to a cluster. Finally, SOM

do not lead to misinterpretations, such as the Murmansk case afore-mentioned.

Recall the two decisive steps in SOM applications:

(i) we identify prototypes of feature vectors, each of which represents a number of pat-

terns. Similar to clustering, the prototypes are defined as the centroid vectors of the

patterns they represent. The metrics to decide which pattern is assigned to a prototype

is given by Euclidean distances, similar to K-means clustering. Note that the number

of prototypes created in SOM can be high (several hundreds or even more).

(ii) Having so many prototypes, we must find a code allowing an effective representation.

As we have seen in the application to the World Poverty Map (see Chapter 3.3,

Fig. 3.17), this is achieved by the projection of the prototype feature vectors in a low-

dimensional representation space, ideally a 2D map. At the same time, the projection

of the prototype vectors, the “Best Matching Units” (BMU in the SOM jargon), is

carried out so that BMUs being close to each other in the original data feature space,

i.e., representing similar patterns, are placed close to each other on the map. Finally,

applying a color code to the BMUs allows us to represent the prototypes (or BMUs)

by colored symbols. The color of a BMU depends on its position on the map. Contrary

to the fuzzy class membership, BMUs with a highly saturated color represent border

Table 5.4: Example data set for an extreme climate.

Murmansk (Russia), Latitude 68.9585 N, Longitude 33.0827 E

Mon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Day �8.3 �8 �3.2 1.4 7.5 14 17.5 15.2 9.6 3.2 �2.6 �6.2
Night �14.8 �14.3 �10.3 �5 0.8 5.8 8.9 7.8 4.4 �1.1 �7.7 �12.3
Sun(h) 0.1 1.1 3.8 6.4 6.3 7.7 7.5 4.9 2.8 1.4 0.1 0
Pr. (d) 9 7 6 7 7 10 9 11 11 11 10 10
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or extreme positions rather than positions close to the centroid (i., e., the average

vector) of a cluster.

On the whole Fig. 5.16 shows tendencies similar to those observed in Fig. 5.15: a clear

regime in NW Europe, where essentially green tones prevail; red tones in the

Mediterranean part; blue tones in Central and North-Eastern Europe. Compared to the

representation with Fuzzy C-means, saturated colors represent extreme climate conditions

more faithfully. For instance, the color of the symbol for our Murmansk example is given

by the RGB tuple

½0.4395; 0.5605; 1�
i.e., a full saturation in blue. That means the associated pattern takes a position at a border

of the SOM. On the other hand, the first two values (given by the contribution of red and

green in the RGB tuple) highlight other climate influences. In fact, even though being so

far in the Northern part of Russia, Murmansk is the only harbor of that country in Europe

being ice-free all the year round.

Transitional zones are recognizable for instance around the Black Sea. The symbols for

these sites show dark red to purple tones, which stand for the presence of some elements

Figure 5.16
SOM representation of climate data in Europe. For the sake of visualization, we interchanged red

and green components in the output files produced by the KKAnalysis software. Thus the
Mediterranean sites with hot and dry climates are represented by red symbols. Green tones
prevail in the NW part of the continent, whereas sites in the Central and Eastern part are

characterized by blue tones. At single sites, such as those situated in the Alpine Mountains, we
may notice specific conditions with strong differences with respect to the surrounding areas.
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of the Mediterranean climate, such as high temperatures in summer and little rain. On the

other hand, the influence of the large surrounding land mass is evident. Winter

temperatures are generally low; besides, there is a strong difference between day and night

temperatures. Finally, mountain areas, such as the Alpine mountain belt, are marked by

symbols with colors clearly differing from those for the sites in the nearby areas.

5.5 Monitoring spectral characteristics of seismic signals and
volcano alert

In Section 5.2 we discussed the application of cluster analysis to the seismic signal

radiated by volcanoes, known as volcanic tremor. In the example concerning Stromboli, it

turned out that spectral characteristics of this signal undergo well identifiable changes

according to the activity of the volcano. Similar observations were also made at Mt Etna

(see, e.g., Alparone et al., 2003; Falsaperla et al., 2005). Fig. 5.17 summarizes amplitude

and spectral content at Etna in 2001, when the activity of the volcano showed numerous

paroxysms, with violent episodes of lava fountaining from eruptive centers situated in the

summit area, but also flank eruptions with explosive phases and lava effusions. In

particular, Falsaperla et al. (2005) observed that with increasing volcanic activity also the

signal amplitude augmented, but the increase in energy mainly affected the frequency

band between 1 and 3 Hz (see spectrograms of 4 and 5 July in Fig. 5.17).

Figure 5.17
RMS Amplitude of the tremor signal at Etna recorded from July 3 until August 14, 2001.

Spectrograms provide information on the spectral content in selected time spans.
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In other words, changes in the state of volcanic activity came along with changes in the

spectral shape that became increasingly narrow. Moving on from these findings, Langer

et al. (2009) explored the possibility to reveal a formally reproducible link between the

style of volcanic activity and the spectral characteristics. They applied supervised learning

techniques, namely MLP and SVM, as well as unsupervised classification to data collected

before and during the flank eruption of Mt Etna which started on July 17, 2001 and ended

21 days later, on August 8. From the application of supervised classification, four neatly

distinguished regimes could be identified: (i) a Pre-eruptive (“PRE”) period (from July 1

to July 16); (ii) episodes of lava fountaining (“FON”), five of which occurred shortly

before the flank eruption and one at its beginning (July, 17); (iii) the (flank)eruptive

(“ERU”) phase (from July 17 to August 8); and (iv) the post-eruptive (“POS”) period with

data collected in the time span between August 9 and 15, 2001. Fig. 5.18 outlines the

signal characteristics encountered during these four regimes. We recognize slight

differences both in amplitude and spectral shape between the pre-eruptive and

Figure 5.18
From top to bottom, examples of pre-eruptive, lava fountain, effusive and post-eruptive patterns:
(left-hand column) time-series, (middle column) spectrograms, and (right-hand column) 62-D
feature vector. The examples are referred to the Z (vertical) component of the seismometer. PSD

stands for power spectral density. From Langer et al., 2009.
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post-eruptive patterns, the latter having the flattest spectral shape among all groups.

Spectra of signals recorded during the flank eruption exhibit a well-developed peak around

1 Hz, whereas in the spectra related to lava fountains a second peak around 3 Hz can be

recognized.

For the definition of the feature vectors, Langer et al. (2009) calculated the Fast Fourier

Transform of the tremor samples and obtained spectrograms from successive time

windows of 1024 points, with overlap of 50%. The spectrograms had a range of

frequencies between 0.24 and 15 Hz, and a frequency spacing resolution of approximately

0.24 Hz. Undesired transients, in particular frequent earthquakes during the seismic swarm

from July 12 to 17, had to be excluded manually, which led to a reduction of the length of

the time-series in a few cases down to ca. 2 min. Typically spectrograms were calculated

over 10 min with frequencyetime dimensions of 62 � 145 points. For the sake of having

a homogeneous number of featuresdas requested by the classification techniques

adopteddthe rows of each spectrogram were averaged, ending up with a feature vector of

62 components. All the three components (Z, NS, and EW) of a seismic station were used,

even though this might imply a certain degree of redundancy of the patterns. However, the

use of this information accustomed the classifiers to recognize the same embedded

information within different patterns, contributing to improve its performance. Such a

strategy resembles to those procedures where new patterns are generated from existing

ones just adding random perturbations (see, e.g., Freeman and Skapura, 1992). Overall, the

authors considered 425 data vectors, 284 of which were obtained from Z and NS (142 for

each component), and 141 data vectors were from the EW component.

Supervised classifications were tested using a “leave-one-out” - technique for testing, i.e.,

setting aside one sample for testing and using the remaining ones for training. As all the

425 patterns had to be tested, the classification had to be run 425 times. Finally, the

authors found w95% and 82% of match using SVM and MLP, respectively.

Misclassifications were essentially encountered during the transitions from one stage of

volcanic activity to another.

Using a partition with five clusters, the results resemble to those obtained with four

classes. However, the partition using five clusters is more intriguing as it identified groups,

which could be easily related to the a priori labeling (Fig. 5.19AeC). The partition

revealed that the majority of the patterns with a priori classification POS formed a cluster

on their own. Clusters of the period PRE correspond to ‘1’ and ‘2’. Changes among the

two do not occur randomly but are concentrated before and after eruptive episodes (lava

fountainseFON - and before the flank eruption ERU). Besides, the clustering suggests a

distinction within the patterns encountered during the flank eruption, with the presence of

a cluster ‘3a’ at the beginning and toward the end of the ERU, and a cluster ‘3b’

throughout its most energetic phase.
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Figure 5.19
Synopsis of clustering (using the Adaptive Distance Criterion) and SOM for (A) EW, (B) NS and
(C) Z-component (from Langer et al., 2009). Each triangle represents a pattern. The position of
the triangles on the vertical axis corresponds to the labels assigned to the patterns during the
cluster analysis. Green, black, red, and blue colors of the vertical bars mark the a priori classifi-
cation, i.e., PRE, FON, ERU and POS, respectively. Patterns are ordered with respect to time;
gaps indicate times where a component is missing. (D) Hexagonal grid of nodes making up the
SOM. The number inside the hexagons reports the number of patterns for which the node was

identified as best matching unit (BMU). The colors of the single triangles in (A), (B) and
(C) correspond to the ones of the BMU in (D) to which the patterns belong.
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The time distribution of the patterns, with changes between clusters concentrated before or

shortly after an eruptive event (FON or ERU), suggests the presence of transitional

regimes, that is, signal characteristics that change gradually rather than abruptly. As

noticed before, crisp clustering does not catch these transitions as the decision whether a

pattern belongs to a class is defined by some threshold. Transitional regimes can be

effectively visualized using SOM colors, as the slow changes in pattern characteristics

mirror in the sequence of colored symbols. Such a result can be also achieved applying

fuzzy clustering to the tremor features, similar to what we discussed for the climatic data

example. Both techniques allow to highlight even small changes related with an impending

criticality at an early stage of a volcanic unrest. Such a strategy was proposed by Langer

et al. (2011; see also D’Agostino et al., 2013). On the base of seven episodes of volcanic

unrest at Mt Etna between 2007 and 2008, the authors learnt how to identify criticalities

well before the onset of an eruptive phenomenon. In particular, they noticed that SOM had

blue colors before an eruptive event, which turned to an increasingly red component (in

the RGB color code) when the onset of the eruption approached. Similar changes also

occurred in the fuzzy class membership values, which clearly mirrored the gradual

transition from a pre-eruptive to an eruptive condition. A typical example for such an

episode e a lava fountain occurred on March 29, 2007 - is shown in Fig. 5.20. Lava

Figure 5.20
SOM colors and fuzzy cluster membership values before, during and after the onset of a lava
fountain event. SOM colors switch from blueish tones to purple and red when the unrest

develops. Prevailing cluster membership values switch from ‘A’ to ‘B’ and ‘C’. Beside the increase
of spectral amplitudes, we also notice changes in the shape of the spectra which tend to become
narrower during a paroxysm. Noise is often characterized by green SOM colors. Modified from

Falsaperla et al., 2014.
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emission started at 05:20 UT (see arrow in Fig. 5.20); it was preceded by changes in SOM

colors as well as fuzzy cluster membership from w04:15 UT, that is about 1 hour before

the eruptive event.

As repeated episodes of lava fountaining may occur at any time, the link between changes

of pattern characteristics and status of volcanic activity was exploited for setting up an early

warning system for Mt Etna. At this aim, Langer et al. (2011) first developed a scheme for

automatic feature extraction, which is summarized in Fig. 5.21. The first step of the scheme

requires the calculation of the Short Time Fourier Transform (STFT) with a gliding window

of 1024 points applied to the whole time series. Each short-time spectrum forms an element

in a spectrogram. To reduce the number of features, frequency bins are averaged over the

spectral amplitudes in a selected frequency band. Instead of considering directly the short-

time spectra as feature vectors, a further simplification is obtained by considering an

ensemble of 60 short-time spectra. Such an ensemble corresponds to a time span of 5 min.

The authors also preferred to consider the 10% (bottom) percentile, focusing on the lower

amplitudes encountered in the 5-minute time span. In this manner one widely eliminates the

effect of transients like wind gusts or local earthquakes that are considered as noise in the

context of volcanic tremor analysis (see also Di Grazia et al., 2006).

After completing the scheme for automatic feature extraction, the further issue was the

link to the applications of unsupervised classification for the identification of criticalities.

Now suppose an online system, in which patterns of the last 24 h are processed by SOM

and fuzzy clustering. These methods “adjust” their results according to the data set

considered. Consequently, for example, fuzzy clustering will use the full number of

clusters (three in the case discussed here) for each of the 24-hour time frames, even in the

absence of a paroxysm. Similarly, in the SOM some of the patterns will be assigned fully

saturated red or blue colors regardless the presence of a paroxysm or a perfect quiescence

of the volcano. To overcome the problem, Langer et al. (2011) included a reference data

set in the data to analyze in order to scale the information embedded in the new patterns

according to the results of past (known) eruptive episodes. In so doing, the data set also

encompassed patterns recorded during previous eruptions, including short pre- and post-

eruptive periods.

The reference data set ideally represents the parent population of the patterns under study.

The new data (in this case, the samples corresponding to the last 24 h) are stored in a ring

buffer, in which the less recent pattern is removed any time a new pattern arrives. For the

classification purposes, the merged data (reference and new patterns) are pooled in such a

way that a red symbol produced by SOM will correspond to a paroxysm, and a blue

symbol will signal a “quiet” condition.

In Langer et al. (2011), the fuzzy cluster membership values of clusters ‘A’ and ‘B’

marked relatively “quiescent” periods. An example is shown in Fig. 5.22; the eruptive
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Figure 5.21
Preprocessing scheme for the creation of patterns. (A) Volcanic tremor signal recorded at a
seismic station; the red rectangle highlights a time window of 1024 points. (B) Short Time
Fourier Transform (STFT) carried out in a gliding window scheme. During the analysis the

window is shifted in time steps of 5 s. (C) Sorted ensemble of 60 individual spectra from STFT.
Each column in the table corresponds to a frequency bin with a width of w0.25 Hz. The sixth

row (highlighted in red) corresponds to the 10th percentile spectrum, which is the feature vector
describing the pattern. (D) Examples of patterns used in the classification. Colors represent the

prevailing cluster membership encountered in fuzzy cluster analysis.



episodes occurred in 2007 and 2008 made up the reference data set (Fig. 5.22A). The

other panels in the figure depict SOM colors and fuzzy cluster membership during: a

“quiet” day (5.22B); a day with noisy conditions (5.22C); a stormy day (5.22D); and

finally, a mild unrest episode that did not lead to an eruption (Fig. 5.22E).

Cluster membership values belonging to cluster ‘C’ showed up during the passage of a

strong storm (Fig. 5.21D). In this case the SOM colors remained green and indeed no

volcanic activity occurred.

To explain the functioning of the alert system, let us consider the episode that corresponds

to the lava fountain occurred on August 29, 2011 (Figs. 5.23A, B and C, see also Fig. 5.20).

Figure 5.22
Examples of unsupervised classification during periods in which volcanic activity is low or absent
(see Langer et al., 2011). SOM colors and cluster membership vectors of the reference data set

are shown in (A). BeD are examples corresponding to: a day with quiet conditions (B);
anthropogenic noise during daytime (C); a stormy day (D). The case shown in (E) belongs to
episodes of presumably failed (aborted) eruptions occurred in the time span between February

and April 2007 (Falsaperla et al., 2014).
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Soon after midnight of August 28, there was a mild increase of red tones in the SOM,

accompanied by fuzzy cluster membership changes (Fig. 5.23A). Accordingly, the

development of the saturation degrees with respect to ‘green’ and ‘red’ changed (Fig.

5.23B). The alert system for the recording site ‘EBEL’ (a seismic station located closed to

the active craters) was tuned to flag a criticality with the ‘red’ saturation’ beyond 0.2. Note

that the tuning of the alert criteria is based on empirical considerations. The analyst has to

formulate criteria which should accomplish a high-sensitivity system minimizing ‘false

alarms’ due to noise, meteorological conditions, or even regional earthquakes/teleseisms

whose wave trains may last many minutes. Therefore a second parameter relevant for the

alert issue is the difference ‘green-minus-red’ saturation, which should not go beyond 0.25

in that specific site (see D’Agostino et al., 2013, for more details). A further issue is the

declaration of the end of a criticality. Fuzzy cluster membership information has proven to

be important for this purpose. In particular, for the ‘EBEL’ site it is required that the

cluster membership values switch from ‘B’ to ‘A’.

Fig. 5.23 documents the efficient performance achieved by such an alert system. Following

the established criteria, the alert was flagged shortly after midnight of August 28 (see the

red arrows in Fig. 5.23A and C). The signal amplitude was still rather low in that moment

(Fig. 5.23B). The alert flag provided precious time to INGV staff to inform competent

Figure 5.23
Application of the classifier during the unrest on August 29, 2011. The upper left panel displays
the image seen in the monitoring room at INGV-OE. Each colored triangle represents a pattern
of 5 min of tremor. As in Fig. 5.20 and 5.22 fuzzy cluster membership are also shown. Panel (B)
depicts the original time series. Panel (C) depicts the degree of red-green saturation as a function
of time. The red arrows indicate the time when the automatic alert was issued, the blue ones the

onset of the lava fountain.
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authorities, as the lava fountain started at w04:00 UT, that is 3 hours later (see blue

arrows in Fig. 5.23).

5.6 Directional features

In the examples outlined so far we have dealt with Euclidean metrics or some variants,

like the Mahalanobis distance or similar. In all objects we had feature vectors in which the

components could be small or large; consequently, the distance of two objects was large

when the values of the feature vectors were small for one pattern and large for the other

one. This kind of metrics leads us off-road when we consider angular data, such as for

instance the direction of wind, the position of the pointer on a watch, or strike and dip of a

fault in geology. For example, the angle between the wind directions 350 degrees and 10

degrees is 20 degrees rather than 340 degrees, and the difference between 360 degrees and

0� is null. Indeed, large differences in angular values do not automatically mean that two

objects are very different from each other. The consequences for the application in

unsupervised classification can be severe. Consider the case of a SOM with sheet

geometry: Data in which the angle is given by low values would be projected alongelet’s

say - the lower margin of the sheet, whereas higher angles end up at the opposite margin.

Their distance on the map is large (corresponding to 340 degrees) even though it is small

(20 degrees) in the original data space. In other words, this case violates the request of

topological fidelity. The problem of losing topological fidelity may also occur with

normalized data. For instance, when we compare the spectral shapes neglecting the

absolute amplitudes of the components. The similarity among those data is then given by

the correlation coefficient among the components of the feature vectors. In some way this

is a situation similar to the angular data, as the correlation coefficient corresponds to the

angle between the direction cosines between two feature vectors.

Directional data with feature vectors given by angles are quite frequent in geology and

geophysics. For instance, the orientation of a tectonic elementesuch as a planar faulteis

given by its strike and dip (see Fig. 5.24). Earthquakes are commonly understood as being

caused by a sudden shear fracture occurring along a tectonic element. In earthquake

seismology such a rupturing element is addressed to as the seismic source. During

rupturing, elastic energy is radiated in the form of transversal shear waves and longitudinal

compressional waves. In seismotectonic analysis, the distribution of seismic energy

recorded at receivers deployed around the fault can be exploited to gather useful

information. In fact, the amount of energy measured at a specific receiver depends on its

position with respect to the seismic source, the orientation of the fault, and the slip

direction. Having enough receivers deployed around the source, one can observe

characteristic “radiation patterns”, which allow the identification of the orientation of the

fault and the slip vector.
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As we show schematically in Fig. 5.25, the distribution of radiated seismic energy around a

source can be exploited for the identification of the type of dislocation occurred during an

earthquake. A simple and robust method is based on the distribution of the polarities of the

first arrivals (P-wave onsets, see the wavelets depicted in Fig. 5.25). For a source plane with

arbitrary orientation and oblique slip vector the interpretation is not as simple as shown in

Fig. 5.25, as the polarities depend not only on the azimuth, but also on the angle against the

vertical under which the signal of the first arrival is emitted from the source. For this reason,

the distribution of the polarities is represented on a stereographic net, accounting both for

the azimuth and angle of emission (see Fig. 5.26). To identify the nodal planes on the

stereographic net, the fields of positive and negative polarities are separated by delineating

two perpendicular great circles, one of which corresponds to the orientation of the fault.

An alternative form for representing the geometry of dislocation in the seismic source is

given by the identification of the principal stress axes. In the case shown in Fig. 5.26A (a

horizontal dislocation along a vertical plane) the axis of maximum compression ‘P’ is

found at an azimuth of 45 degrees measured clockwise against North. Correspondingly,

the axis of maximum distension ‘T’ is perpendicular to the former. Both ‘P’ and ‘T’ are

parallel to the Earth surface. The third intermediate axis ‘B’ is orientated perpendicular to

‘’P’ and ‘T’, i.e., perpendicular to the surface. In general, its position corresponds to the

point where the nodal planes intersect. The three principal axes ‘P’, ‘T’ and ‘B’ can be

understood as the normalized eigenvectors of the moment tensor

M¼

2
64
m11 m12 m13

m21 m22 m23

m31 m32 m33

3
75 (5.4)

Figure 5.24
Geometry of faulting. The orientation is described by the strike angle a, i.e., the angle between
the geographical North and the line formed by the intersection of a tectonic element with a

horizontal plane. The dip angle d represents the slope of the element, and is measured
perpendicular to the strike. The slip angle l describes the orientation of the dislocation, and it is

measured to a line on the fault parallel to the strike direction.
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(see Kagan, 2007). Here the mij indicate the strength of the stress measured along the

vertical and horizontal axis. For instance, a moment tensor for the case shown in

Fig. 5.26A has the form

M¼

2
64

0 m12 0

m21 0 0

0 0 0

3
75 (5.5)

The moment tensor is symmetric, so we have m12 ¼ m21.
4

Figure 5.25
Schematic representation of seismic P-wave radiation around a vertical fault (green solid line)
with horizontal dislocation (black arrows parallel to the green line). The fault forms a nodal

plane, i.e., P-wave amplitudes measured in that direction vanish. Moving clockwise around the
source we notice P-wave amplitudes forming lobes shaped similar to Four-leave clover. Ampli-
tudes reach their maxima at angles of 45, 135, 225 and 315�. Besides, one identifies four

distinct fields characterized by the polarity of first onset of the wave. Two of them (depicted as
red fields) have negative polarities, the two remaining (blue fields) show positive polarities. The
seismic radiation forms the elastic response of the shear stress release during rupturing; there-
fore, there are two nodal planes, one given by the fault plane itself, while the second comple-

mentary nodal plane (dashed green line) is perpendicular to the first one.

4 In reality the moment tensor is given in terms of normalized vector components, with values varying
from �1 to 1, and a scalar part, expressed in physical units, dyn$cm or N$m. The scalar part is related to
the earthquake strength; consequently, a so-called moment magnitude Mw is calculated from the scalar
values of the moment tensor. Here we are interested in the orientation of the forces; therefore, we consider
only the normalized vector components of the tensor as features.
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There are various options to express the difference between two focal mechanisms. Kagan

(2007) proposes a metric which considers the principal axes of two fault plane solutions P,

T, B and P0, T0, B0. The metric is based on the angle by which a system P, T, B must be

rotated so that the axes fall in the same position as P0, T0, B0. The orientation of axes is

given by the orientation matrix

D¼

�������
t1 p1 b1

t2 p2 b2

t3 p3 b3

������� (5.6)

where each vector t, p, b is given by plunge and azimuth angles. For example

t1¼ cosðatÞ cosðbtÞ (5.7a)

t2¼ cosðatÞ sinðbtÞ (5.7b)

t3¼ sinðatÞ (5.7c)

(see Kagan, 2007). The rotation angle is obtained from

F¼ arccos

�
1

2ðjt,t0j þ jp,p0j þ jb,b0j � 1Þ
�

(5.8a)

for F � 90� and

F¼ arccos

�
1

2ðt,t0 þ p,p0 þ b,b0 � 1Þ
�

(5.8b)

Figure 5.26
Fields of polarities in a stereographic net. Panel (A) corresponds to a horizontal dislocation

along a vertical fault, in the jargon a “horizontal strike slip”. Panel (B) corresponds to a dipping
fault plane with an oblique slip vector. “Beach balls” like the ones shown here are addressed to
as “focal mechanisms” or “fault plane solutions”. For more details, we address the interested
reader to classical seismological text books, e.g., Aki and Richards (1980). Negative polarities
(“down”) mean displacement toward the source, i.e., compression; positive polarities indicate

displacement away from the source, i.e., dilatation.
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for F > 90�. The angle F is known as the “Kagan” angle. In theory, up to four solutions

may be obtained, in practice the minimum angle is used. It can be shown that the

minimum Kagan angle is always � 120�.

In the context of clustering, the Kagan angle can be used in the framework of a clustering

strategy, in which the angle replaces the Euclidean distance as a metric. In alternative to

the Kagan angle, one can directly use the moment tensor as feature vector as proposed by

Cesca et al. (2014). Various options are proposed for the definition of the metrics. The

independent components of the tensor can be treated as vectors, and the difference is then

obtained by applying L1 or L2 norms. Besides, a metric can be defined on the base of the

correlation, among the components, i.e.,

d¼ 1�
X

mini

�� ffiffiffiffiffiffi
m2
i

q ffiffiffiffiffi
n2i

q 

(5.9)

where the mi and ni are the components of the two moment tensors to be compared. In

comparison to the Kagan angle, the use of moment tensor components in classification and

clustering has a few advantages. As Cesca et al. (2014) pointed out, uncertainties can be

accounted for by simply applying a weight, which has an inverse - for instance, reciprocal

- relation to those uncertainties. A further issue is that the Kagan angle is measured using

the principal axis obtained for a pure double couple mechanism, which we introduced

earlier. Though being of outstanding importance in earthquake seismology, the double

couple mechanism is only a specific case, as it describes sources with a shear dislocation

(see Figs. 5.25 and 5.26). Other source types (tensile or compressive cracks, with isotropic

expansion or compression) do not follow a scheme which can be coped with the Kagan

angle (see Box 5.1). Besides, centroid based clustering using the Kagan angle may become

cumbersome as efficient upgrade rules for the centroids and dispersion inside a cluster (see

Box 5.1) are not available.

For the moment-based clustering, Cesca et al. (2014) applied the DBSCAN method (see

Chapter 3.1.2.3). Considering the micro-seismicity in a coal mine in the Ruhr area

(Germany), the authors identified six families of signals, each of which was distinguished

by the orientation of the stress axis, the degree of the contribution of the tensional/

compressional component as well as the isotropic deformation. The major part of the

events was classified as “noise”.

Moment tensor components can be dealt with centroid-based clustering. As an example,

we present the application of SOM to moment tensors calculated for earthquakes in the

Central Mediterranean area (see http://rcmt2.bo.ingv.it/Italydataset.html; Pondrelli et al.,

2006). The choice of SOM is appropriate as we can deal not only with compact clusters

(where members are similar to each other), but also with clusters the characteristics of
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which scatter to a large degree. The latter will be found in parts of the map where little

populated BMUs appear.

In general, a careful inspection of the SOM allows us the identification of highly

populated BMUs and fields of BMUs which represent compact groups with similar

characteristics. On the other hand, parts on the map with poorly populated BMUs - found

in distant places - mirror patterns having little similarities to other members of the data

set. Those pattern can be addressed to as outliers.

Box 5.1 Double Couple and Other Mechanisms

Most part of seismic energy is released by earthquakes caused by shear fracturing along a tec-
tonic fault. The forces acting in the source are described by a so-called “double couple” as
shown in Fig. 5.25, where shear forces are present parallel and perpendicular to the fault
plane. Beside this classical model, seismic sources such as explosions or implosions can release
isotropic energy, i.e., energy that is equal in all directions. Such an isotropic source has no
nodal lines separating fields of compression and extension. In monitoring nuclear tests, the
differences in the radiation pattern between tectonic earthquakes and explosions are an
important criterion for the distinction of the two types of events.

Actually, even tectonic earthquakes often do not come as pure shear fracture events due to
the complex distribution of stress around the crack tip (see left hand side of the figure below).

In those mixed cases, we get a beach ball like the one shown on the right hand side of the
figure (courtesy of G. Foulger; see also Miller et al., 1998; Foulger, 2018). We still recognize
fields of compression and extension; we can also define a P and T axis. However, the B axis
(given by the intersection of the nodal planes) is not properly defined. Modern techniques aim
at identifying the forces acting during the source process by a so-called “moment tensor inver-
sion” that includes the modeling of waveforms. In the results of such an inversion, the analysts
distinguish: the “double couple” part (reported as “DC”), the isotropic part (“ISO”), and the
tensile/compressive part (“CLVD”).
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Using moment tensor components for classification, we deal with normalized data. Large

differences between normalized feature vectors do not mean that we compare small to

large values, but deal with feature vectors whose orientation points in opposite directions.

Consequently, using a SOM with a classical 2D representation space - the ‘sheet’

geometry - is inappropriate, as such a geometry is in contrast with topological fidelity. A

way out can be a Torus geometry for the representation space rather than a sheet. In

Fig. 5.27 we show the SOM applied to moment tensor components obtained for 628

Mediterranean earthquakes, using a Torus geometry. Note that with such a geometry the

full saturation of the RGB code of BMUs is not necessarily found along the borders of the

map. At the same time, units situated at the lower left hand corner of the map are similar

to those on the upper left. As we will see in the following, patterns whose BMUs lie in

opposite margins of the map can be indeed close to each other.

Fig. 5.28 depicts the beach balls obtained for patterns of BMUs #12, #13, #14, #27, #28,

# 131, #132, #133, #134 and #135. These BMUs are placed close to each other on the

Torus map shown in Fig. 5.27. We also notice the similarity of their colors, essentially

characterized by a strong saturation in red, and some presence of green. From a

seismotectonic viewpoint, the mechanisms of this group belong to the type of “reverse

faulting”, with maximum compression (P axis) and intermediate axis (B) in horizontal

direction, and more or less vertical dilatation (T axis). The mechanisms reflect a

compression of the crust in NEeSW direction.

Figure 5.27
SOM of moment tensors obtained for 628 Mediterranean earthquakes. To identify the index of
BMUs, we start from the lower left corner, i.e., the green node carrying a ‘2’ which corresponds
to the BMU #1; the dark yellow node on the lower right corner is BMU #15; the purple one in
the upper right is BMU #135. Beach balls corresponding to BMUs highlighted with yellow and

red margins are shown in Figs. 5.28 and 5.30.
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On the other hand, we may gather patterns for which the BMUs have color code

dominated by blue (over 90%). The corresponding beach balls are depicted in Fig. 5.29.

Most of them represent horizontal strike slip motions, again with a P axis in NE direction,

but dilatation axis more or less horizontal.

Beach balls with a strong concentration of green BMU colors are shown in Figs. 5.30A

and B. Both groups are e in terms of seismotectonic interpretation e so-called normal

faulting mechanisms, with a principal axis P essentially vertical. As the two groups share

similar mechanisms, their chromatic differences are negligible. Nonetheless once can still

notice an evident distinction: Nodal planes tend in NNW direction in Fig. 5.30A, whereas

they are generally NW or WNW oriented in Fig. 5.30B.

The results of classification so far described focus on the most compact groups, encompassing

w200 out of the 628 earthquakes considered. The distribution of their seismic sources

follows the main direction of the Apennine chain, which forms the backbone of the Italian

Peninsula. The reverse faulting mechanism shown in Fig. 5.28 is Northeast the Apennines,

i.e., in the foreland of the Alpine mountains, in the Adriatic Sea, and adjacent the Dinarides

Figure 5.28
Moment tensors (in the form of beach balls) corresponding to patterns at the upper and lower
right margin of the SOM in Fig. 5.27. The correspondent BMUs in Fig. 5.27 are highlighted as

hexagons with red margins.
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mountains. The pattern of crustal deformation inferred from the fault mechanisms discussed

here is in good agreement with findings from geological and geodetic studies (see, e.g.,

Serpelloni et al., 2007; Anzidei et al., 2014; Heidbach et al., 2016).

Appendix 5
Appendix 5.1 Davies-Bouldin index

The Davies-Bouldin Index (DBI) (Davies and Bouldin, 1979; see also Stein et al., 2003)

provides a simple guideline for the choice of a suitable number of clusters in partitioning

clustering algorithms. The DBI for the partition is obtained by comparing the average

similarity encountered among all clusters to the largest one.

The similarity between clusters i and j is given by

Rij¼ðsiþsjÞ=kci � cjk (A5.1)

where si and sj are the variance measures in each cluster; ci and cj are the corresponding

cluster centroid vectors. With Ri ¼ max (Rij), the DBI is obtained from the average of the

Ri taken over all k clusters, i.e.,

Figure 5.29
Patterns where saturation of blue is larger than 90%.
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DBI ¼ 1=k
X

i
Ri (A5.2)

The DBI is used as a standard in the KKAnalysis package by Messina and Langer (2011),

which is provided along with this book.

Appendix 5.2 Dunn index

Here we compare the degree of heterogeneity encountered in the clusters (“within”) to the

minimum of the distances between the cluster centroids (Dunn, 1973). Formally we write

Di¼maxdðx; yÞ; x; y˛ℂi

An alternative is

Di¼ 1

Ni
dðx;mÞ; x˛ℂi

Figure 5.30
Patterns with a strong saturation in green and low blue (A), and stronger blue (B). Patterns in
(A) correspond to BMUs #2, #17e19, #31e34, i.e., close to the lower left corner of the map in
Fig. 5.27 (hexagons in Fig. 5.27 evidenced with solid yellow margins). Patterns in (B) correspond

to BMUs #62, #77e78, and #91e92 (hexagons in Fig. 5.27 evidenced with yellow dashed
margins).
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with m being the centroid vector of the i-th cluster ℂi. Note that d stands for some metric,

such as the Euclidean distance or the Manhattan distance. We further define the inter-

cluster metric and consider

min dðℂi; ℂjÞ
for instance, the Euclidean distance. The Dunn Index is then obtained by the ratio

min dðℂi; ℂjÞ
maxDk

; k¼ 1::m

where m is the number of clusters.

A peculiar problem occurs when all clusters are tightly packed but one. This comes from

the denominator containing a ‘max’ term instead of an average term. That way the Dunn

Index may be uncharacteristically low, becoming a strong indicator of the “worst case”.

Appendix 5.3 Silhouette index

Given a sample xi in a data set, we define ai to be the mean distance of point xi w.r.t. all

the other points in the cluster A to which our sample belongs. ai is a measure of how well

the point is assigned to the cluster. The smaller the value, the better the assignment.

We define bi as the mean distance of our sample w.r.t. other points of its closest

neighboring cluster B. The cluster B is a cluster to which our sample is not assigned.

Among all clusters to which the sample does not belong, cluster B has the closest distance

to our sample xi .

For each xi we obtain a silhouette value si

si¼ðbi� aiÞ=maxðbi; aiÞ
si lies in the range of [-1,1]. An overall measure of clustering quality is obtained from the

average over all silhouette values. High bi represent a good separation of our sample,

while small ai indicate that the sample is well assigned to the cluster to which it belongs.

The better the overall clustering quality, the higher the average of silhouette values.

Besides, one can calculate average silhouette values for each of the clusters to distinguish

well defined clusters from the others. For more details see, e., g., Kaufmanm and

Rousseeuw (1990).

Appendix 5.4 Gap index

In the “Gap Statistics” we start with the sum of the distances dðxi; xjÞ between the patterns

in a cluster
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Dij¼
X
xi ˛ℂq

X
xj ˛ℂq

dðxi; xjÞ

and use WM ¼ PM
q¼1

Dq=ð2nqÞ, where M is the number of clusters. Clearly, a low value of

WM corresponds to a clustering with compact clusters. This is compared to Wr
M , which is

obtained from n reference data set with uniformly distributed points located in the same

data space as our samples xi. The Gap index is given by

GapnðMÞ¼En

�
log

�
Wr

M

�� logðWMÞ
�

(see Tibshirani et al., 2001).

Appendix 5.5 Variation of information

We have a total of n patterns, grouped in K clusters, and nk patterns in each cluster ℂk,

i.e.,

n¼
XK
k¼1

nk

Consider a second clustering ℂ0
k, with cluster sizes n0k. We now create a confusion matrix,

reporting the class memberships to both clusterings:

nkk0 ¼ jℂkXℂ0
k0 j

Picking a sample at random with equal probability, the probability that our sample belongs

to cluster ℂk is

PðkÞ¼ nk
n

The uncertainty of the picking is expressed by the entropy

HðC1Þ¼ �
XK
k¼1

PðkÞlogPðkÞ:

denoting the first clustering experiment by C1. This experiment leads to the afore-

mentioned cluster ℂk. Similarly, we denote as C2 the clustering leading to cluster ℂ0
k0.

We can define the joint probability Pðk; k0Þ that a sample is found in the clusters ℂk; ℂ0
k0

Pðk; k0Þ ¼ℂkXℂ0
k0

n
¼ nkk0=n
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and the information as

IðC1;C2Þ¼
XK
k¼1

XK 0

k0¼1

Pðk; k0Þlog Pðk; k0Þ
PðkÞPðk0Þ

Finally, we obtain the VI from

VIðC1;C2¼HðC1ÞþHðC2Þ� 2IðC1;C2Þ¼HðC1;C2Þ� IðC1;C2Þ
(see Zscheischler et al., 2012; Meil�a, 2007).
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CHAPTER 6

A posteriori analysesdadvantages and
pitfalls of pattern recognition techniques

6.1 Introduction

In the previous chapters, we have seen that researchers may apply a variety of methods in

Geophysics and related fields to handle large datasets. Those data can be used to support

or decline a theoretical model developed to explain observations. For instance, the motion

of planets follows well-established physical laws, which can be exploited to predict the

future behavior of astronomical objects with great precision. On the other hand, theoretical

models may not be available or are insufficient to match a complex reality. In Geology

and Geophysics, we often face such a condition. As a consequence, researchers try to draw

conclusions from the observation as is, establishing empirical relations in regression

schemes or setting up rules formulated in “if . then . else” terms to provide guide lines

whether to take action, for instance. Furthermore, they may be interested in the

identification of structures within datasets to find out where observations tend either to

cluster themselves or lack in a feature space. Indeed, researchers can exploit data even in

the absence of clear-cut physical models following a data-driven approach, similar to

concepts in statistics. In case of a data-driven approach, the meaning and reliability of the

drawn conclusions are not based on the logic or plausibility of a model, but must be

verified on the data themselves. For example, in supervised learning we identify the

parameters of the model simply by comparing the calculated output to the target,

validating the model when the error is acceptable.

In unsupervised learning, we face the question whether we should consider meaningful the

structures revealed in the data. Cluster analysis offers rules that give a formal answer to

this question. These rules, however, are not generally applicable to all clustering methods.

Some heuristic approach may be necessary to explain why a specific clustering result is

accepted or preferred to an alternative solution. Finally, one may be interested just in

reducing the data, for instance by identifying a limited number of prototypes without

taking care of heterogeneities separating one group from another. Here, the choice of

features and metrics becomes a key issue.

In the following, we present methods and considerations regarding the a posterior analysis

of supervised and unsupervised learning techniques. Among these, we compare various
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methods of cross-validation. The uncertainty of tests can be assessed by specific

techniques, such as the “Receiver Operation Curve” and the “Kappa-Statistics.” We

highlight the importance of appropriate target information, as in the methods we use we

cannot remedy flaws in the chosen target; nonetheless, we may bring out deficiencies in

the a priori knowledge. Furthermore, features may not be properly chosen, for instance,

when they do not allow us to describe objects in a unique way, or when they introduce

effects bringing us off road as not being related to the phenomena of interest.

As we have seen in the previous chapters, pattern recognition offers efficient methods to

handle large and complex datasets. Nonetheless, in this chapter, we invite the reader to

assume a critical attitude when validating the success of an application. A high score of

correctly identified patterns does not automatically mean that the method is truly effective,

for instance, when a random guess leads to a high score as well. At the same time, users

should not despair when an approach does not lead to the desired success. A sound a

posteriori analysis on the reasons for an apparent failure may provide interesting insights

into the problem, such as an inappropriate definition of the targets, inadequate features,

etc. Often the problems can be fixed just by adjusting some choices regarding targets,

features, metrics, etc. Sometimes, a change of strategy may be necessary to achieve a

satisfying result.

6.2 Testing issues

Supervised learning strategies furnish methods for the formulation of models, which allow

us to establish a mathematical relation between input (our observations) and output, that

is, target values that are a priori defined on the base of expert knowledge. Different from

models based on some theory, data-driven models do not offer intrinsic clues on their

validity. In this context, the successful application of such models to new data becomes an

important criterion. As previously described in the Chapters 2 and 4, we face the risk of

“overfitting,” which means that a model is exactly valid for the data considered during the

learning phase, but is unsuitable when applied to new data. Chapter 4 provided examples

about how to test the validity of a model. Testing is carried out on a dataset not used

during the learning phase. The model is considered valid when the test achieves good

results. One may also request that the results for the test dataset have a similar

achievement as the results obtained for the learning dataset. From a statistical point of

view, the test error is a random variable itself (see Section 4.2). Recall Eqs. (4.1) and

(4.2), which allow us to quantify the uncertainty of the estimated mismatch. In our

example for the Stromboli explosion quakes, we obtained an estimated mismatch of 17%

of the patterns. This value has its own uncertainties. In fact, the 95% confidence interval

for the number of misclassifications is defined by 8% (lower boundary) and 38% (upper

boundary).
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To limit the degree of uncertainty in the assessment of the results, it is commonly proposed

to conduct a cross-validation by resampling data used during learning and testing. This

strategy, which is known as N-fold cross-validation, yields N models or classifiers instead

of a single one. Eventually, we have to decide which of the various models should be used.

Each single application may have a considerable scatter, and each model is tested on a

different test dataset. A possibility to reduce the scatter is to consider all models and

identify, for each pattern, the result for which most models vote. A procedure like this,

however, requires a further independent test set, not used for any of the models. This

implies the partition of data into three datasets: one for learning, a second one for the

cross-validation, and a third unified test set, to which all learned models are applied. The

triple partition of data may work well when sufficient samples are available, but may be

difficult to apply for small datasets. An alternative, which comes with the cost of a

considerable computational effort, is found in jack-knifing or “leave one out” schemes.

Langer et al. (2009) applied such a scheme to feature vectors derived from volcanic tremor

spectra (see also Section 5.5). In their application, they considered 425 spectral patterns

and repeated MLP (Multi Layer Perceptrion) or SVM (Support Vector Machine) training

425 times, always setting aside one pattern for test, and using the remaining 424 patterns

as a training set. Each cycle gave either one success or one mismatch. The final, overall

score was then obtained summing over all successful classifications during the 425 cycles.

The choice of the best one among the n (425) classifiers was not critical in this case, as

they were obtained for very similar training datasets and were supposed to differ only to a

minor degree from each other. A further advantage of this procedure is that you can

monitor each pattern, identifying the ones where an error occurs. This allows a posteriori

analysis of all patterns one by one, highlighting patterns that may exhibit peculiarities, for

instance, with respect to the data quality.

6.3 Measuring error

In classification, we are interested in the number of patterns for which the output of our

model matches the a priori given target categories. Typically, the results are reported in so-

called confusion matrices, such as the ones in Table 4.1. Relating the numbers in the diagonal

elements to the total of patterns, we measure the overall score of success (e.g., 83% in

Table 4.1b). Recall that, rather than counting the number of patterns falling on the desired

side of a distinguished element as in SVM, in MLP learning is based on minimizing the RMS

error between calculated output and target. As discussed in Chapter 4, we train MLP on the

base of the RMS error, but we report its success considering the sum of the diagonal elements

in the confusion matrix, defining a success when the maximum of the calculated scores is

found for the category of the target. As an alternative, one could consider a success when the

maximum is at least 0.5, for instance, and label as uncertain category or noise all patterns

where none of the calculated output values reaches such a score.
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The score governs the degree of certainty to which a pattern is assigned to a class. For

binary classification problemsdlike the distinction between earthquakes and nuclear tests

(see Section 2.1)dthere are well-established procedures for determining a proper choice.

In a two-class problem, they reduce it to a yes/no issue, that is, give a “1” or “yes,” when

the pattern is assigned to, let us say, class A, otherwise “0” or “no.” In this case, the 2 � 2

confusion matrix is �
True Positives False Positives

False Negatives True Negatives

�

Correctly classified patterns are represented in the diagonal elements of the matrix,

mismatching classifications in the off-diagonal elements. In this context, a “False Positive”

is a pattern for which the classifier gives an output “yes” (class A); whereas, its a priori

membership is “no.” A “False Negative” is a pattern classified as “no,” even though it

belongs to class A. Based on these rules, one defines the following parameters (see, e.g.,

Fawcett, 2006; Hossin and Sulaiman, 2015)

• True positive rate: Tp ¼PTrue PositivesP
Positivesa�priori

• False positive rate: Fp ¼PFalse PositivesP
Negativesa�priori

• Accuracy:

 P
True Positives þP ðTrue NagativesÞ

ðPPositivesa�prioriþ
P

Negativesa�prioriÞ

!

• Precision:
P

True Positives

ðPTrue Positivesþ
P

False PostivesÞ
In practice, it is desired to maximize the Tp maintaining Fp at the lowest possible value.

In the context of the earthquake/nuclear test problem, for example, it is of paramount

importance to catch the nuclear events at best; however, a high Fp comes with the cost of

diplomatic trouble when a country is repeatedly blamed for nuclear testing without reason.

Playing with the threshold score, we can draw a diagram called “Receiver Operating Curve”

(ROC) (see, e.g., Metz, 1978)), which can give us a general measure for the quality of a

classification scheme. The plot of an ROC is depicted in Fig. 6.1. It is obtained from a

sequence of Tp versus Fp pairs, each of which corresponds to a chosen threshold.

Here, we illustrate the principles of ROC analysis for the example of earthquakednuclear

test discrimination described in Section 2.2.3. Recall the discrimination criterion in that

example, which was obtained by rotating the dataset using the PCA. The critical threshold

to obtain the best separation of the two datasets was given by the value that fell in the

middle of the centroids of the two datasets. As in the use of ROCs we are interested in the
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trade-off between Tp and Fp, we can now introduce some bias motivated by the need to add

some extra certainty in declaring a sample as a nuclear test. In fact, a false detection entails

considerable troubles in the test ban treaty context, as a country accused of nonauthorized

testing can be subject to sanctions and expensive procedures, such as “On-Site-Inspections”

aiming at verifying the ground truth.1 In case of a perfect separation taking the dataset as is

(Fig. 2.1), Tp would be equal to 100% without even a single False positive (Fig. 6.2A), that

is, Fp ¼ 0. Adding more certainty would just increase Fp without any gain in Tp, as this is

already at its maximum. The problem posed by Fig. 2.4 (see Chapter 2) is more interesting.

In addition, a set of MbeMS pairs from earthquakes and nuclear tests is considered,

assuming that the original values are affected by additional noise.

As we notice in Figs. 2.5 and 6.3, the two datasets cannot be separated perfectly with a

linear discrimination function. However, here we decide to conduct a linear discrimination

for its simplicity and for the paucity of the available data. What is the price to pay for this

choice? In addition, we can play with a threshold, adding a positive or negative bias.

Increasing the number of earthquakes erroneously declared as nuclear test (in other words,

accepting a higher Fp), most or all tests will be detected. On the other hand, if we wish to

avoid troubles coming along with false detections (low Fp), then some tests will escape

our attention. The diagram shown in Fig. 6.2B summarizes the FpeTp trade-offs applying

biases to the threshold from �0.4 to 0.4.

The overall quality of discrimination can be expressed by a parameter called AUC (area

under the curve), which is obtained by integration of the ROC. With the ROC shown in

Figure 6.1
Receiver operation curve (ROC). Modified from Spampinato et al. (2019).

1 In reality, the decision whether to declare an event as a nuclear testda violation of the Comprehensive Test
Ban Treaty (CTBT)dis based on a multidisciplinary analysis, including investigations on the emission of
radioactive elements. Once the CTBT will be in force (not yet), a country may present an
“On-Site-Inspection- OSI” request at the CBTO, the organization watching the treaty. An OSI request cannot
be refused by the accused state. As the phenomena related to tests are volatile, an OSI has to be carried out
swiftly and must be well prepared.
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Fig. 6.2A, for which the quality of the separation is maximum, we get an AUC equal to 1.

The quality is still very good in Fig. 6.2B, with the AUC over 0.9. One recognizes some

robustness also in Fig. 6.3, as Tp remains high and Fp is rather low for a wide range of

biases. Conversely, a poor classification quality is encountered when the Tp versus Fp

pairs in the ROC follow a diagonal line (AUC ¼ 0.5); such a situation is schematically

represented by the red dashed line in Fig. 6.1. In a diagram such as the one in Fig. 6.3, the

samples of the two categories (here earthquakes and nuclear tests) would be grouped

around centroids situated close to each other and scattered in similar ranges. In other

words, their distinction would fail.

The extension of ROC to multiclass problems, like the ones discussed in Sections 4.2e4.4,

is not straightforward. Instead of managing trade-offs between Tp and Fp, we deal with m

rates of true and m2 em rates for errors, namely the off-diagonal elements in the confusion

matrix (Fawcett, 2006). Choosing a high threshold score, that is, a high degree of certainty

in assigning a category to a pattern, there will be patterns for which no score would be

above the threshold for either class. As a way out, you may split the multiclass problem

with m categories into m binary One-against-All classifications. Each of these

Figure 6.2
ROCs for the discrimination problem of nuclear tests from earthquakes on the base of the Mb-
MS criterion (see Section 2.2.3). The ROC in (A) is obtained for the original data in case of a
perfect separation, whereas (B) represents the case in which some additional noise is present.
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classifications is quoted with respect to their quality parameters, such as accuracy and

precision. Finally, some global measure can be defined, for instance by forming the

averages of the parameters themselves or calculating the sum of all true and false positives

encountered during the m classifications.

Some caveats must be kept in mind. As we classify one class against a global

complementary rest, the composition of the complementary class changes to some degree.

Implicitly, some patterns may be always classified as “false,” that is assigned to the

complementary class. The number of those patterns is expected greater for higher

thresholdsda higher certainty is requested in assigning a pattern to a category. The

patterns with an uncertain class membership could be labeled as “noise,” but there is no

straightforward concept about how to treat such a group in the context of quality

assessment of classification.

An elegant way to evaluate multiclass confusion matrices is given by the k parameter

(Cohen, 1960), which provides an overall measure for the success. It accounts for the

possibility that a correct classification of a pattern is achieved by a mere random guess

(see, e.g., McHugh, 2012). Let us consider the confusion matrix C of Table 4.1b.

Figure 6.3
Rotation of data shown in Fig. 2.5. The green line marks the discrimination threshold obtained
by a linear discriminant analysis, analog to Fisher’s Linear Discriminant Analysis (LDA). Shifting
the discrimination threshold to the right (positive bias) increases the detection rate of the blue
samples (nuclear tests). Following a more conservative choice, the shift of the threshold to the

left (negative bias) causes the missing detection of more tests.
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A priori K A priori L A priori M A priori N Total

Calculated K 10 1 1 0 12
Calculated L 0 10 0 0 10
Calculated M 1 0 6 2 9
Calculated N 0 0 1 4 5

Total 11 11 8 6 */*

where the elements cij reported the results of the 36 patterns in the test set. Counting the

diagonal elements, we have in total 30 successes. Class K has in total 11 patterns, class L

11, M 8 patterns, and N 6. At first glance, one could start with the a priori hypothesis that

all classes are equally probable. Running a random predictor 100 times on all 36 patterns,

we expect 275 “K,” 275 “L,” 200 “M,” and 150 “N,” that is, a total of 900, which means

nine random guesses during each application to the 36 patterns in the dataset. We obtain k

by subtracting the 9 random guesses from the 30 correct classifications, which is 21, and

form the ratio with respect to possible extra successes, 36 � 9 ¼ 27, which is 77% instead

of the raw rate of 83% obtained just summing up the diagonal elements in the confusion

matrix.

As the random guess confusion matrix is created for equal a priori class probabilities, a

validation based on the k parameter is inappropriate in case of strongly inhomogeneous

classes. Indeed, in datasets where one or a few classes outnumber the other ones, a strong

random success will be achieved just by voting always for the category (or categories) with

the largest number of samples. Consequently, the random guess confusion matrix will create

guesses such that both marginal sums (total of calculated classes and total of a priori classes)

are reproduced. The elements ecij of the random confusion matrix are obtained by

ecij¼X
J

cijn

,X
I

cij

where i indicates the column, and j the row. Our random expected confusion matrix is then

A priori K A priori L A priori M A priori N Total

Calculated K 3.66.. 3.66.. 2.66.. 2 12
Calculated L 3.055.. 3.055.. 2.22.. 1.66.. 10
Calculated M 2.75 2.75 2 1.5 9
Calculated N 1.5277.. 1.5277.. 1.11.. 0.833.. 5

Total 11 11 8 6 */*

which yields 9.55 matches obtained randomly. For instance, the element ec11is 11$36/12¼ 3.66.
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The general relation for obtaining k is

k¼ ½PðaÞ�PðexpectedÞ�=½1�PðexpectedÞ� (6.1)

with P(a) being the rate of raw success (here 0.833), and P(expected) the expected random

success rate (here 0.265). Using a simplified relation, the 95% confidence interval of k is

obtained from its standard deviation

SDðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PðaÞ1� PðaÞ�

.
½1� PðexpectedÞ�2

r
(6.2a)

SEðkÞ¼ SDðkÞ� ffiffiffi
n

p
(6.2b)

and

k� 1:96 SEðkÞ < k < kþ 1:96 SEðkÞ (6.2c)

(see McHugh, 2012; Cohen, 1960; Fleiss et al., 1969; Flack et al., 1988).

The k parameter (or Kappa-statistics) may prevent an overly optimistic interpretation of

the classification results, especially when strong differences in the size of classes exist. We

met such a case in Chapter 4, Table 4.2. Although the raw success rate was over 88%, we

get a k of only 0.64, with confidence intervals given by the limits 0.56 and 0.716 (one can

easily do these calculations with a little routine available on http://vassarstats.net/kappa.

html). This k value corresponds to a moderate or substantial agreement (see Viera and

Garrett, 2005), but is certainly far from being outstanding as the 88% raw success rate

may suggest. In a similar way, one might argue the 78% success rate of event

classification achieved by Langer et al. (2006), as for the confusion matrix reported in

their Table 4, k is 0.6 with confidence intervals 0.55 and 0.65, respectively. From the

viewpoint of the Kappa-statistics, the success is moderate. An interesting case is offered

by the classification of rock samples reported in Table 4.5 (Chapter 4). Here the raw

success is ca. 72%, whereas k is 0.68 (upper and lower confidence limits at 0.647 and

0.711), that is, the discrepancy between raw success and k is small. From the viewpoint of

the k parameter, the quality of the rock classification is better than that obtained for the

infrasound events mentioned in Chapter 4, even though the raw success of the latter was

almost 90% (see Table 4.2). A reason for the differences in classification qualities is

certainly given by the distribution of classes in the dataset. In the rock samples, the classes

were quite equally represented. Having eight classes, the expected rate of random success

is limited, some 13.5%, which brings k close to the raw success rate. Besides, working

with a high number of classes (eight in the rock dataset, only three in the infrasound

example) renders the classification problem more difficult for MLP, SVM as well as

classifiers working randomly. To conclude, k can be understood as a measure of the

additional value a classification method provides with respect to random guess, similar to

a statistical test that complements the estimation of a statistical parameter. In this light,

our suggestion is to consider both the raw success together with k.
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6.4 Targets

As discussed in Chapters 2 and 4, modern supervised learning schemes are able to identify

a formalism such that any relation between observations (input data) and a priori defined

targets (output) can be matched. On the other hand, having achieved an excellent

agreement between input and output does not mean that this relation is true or generally

applicable. In Chapter 2, we mentioned the phenomenon of overfitting, which means that d

in an extreme case d you can even fit noise, establishing a formal relationship that does

not exist in reality. Testing is therefore necessary, keeping in mind all the caveats we

mentioned earlier.

In some cases, one may fail to achieve appreciable results from the classifier, even

changing methods of learning, for instance passing from MLP to SVM or HMM.

Inappropriate features may be one of the reasons of such a failure. Another aspect regards

the definition of the targets. The role of the target definition was discussed by Langer et al.

(2006) in an application of supervised learning to seismic data recorded at Montserrat, an

island belonging to the Lesser Antilles.2

The island is known for the Soufrière Hills volcano, which focused the scientific interest

when it resumed its eruptive activity in 1995 after 400 years of relative quiescence (Druitt

and Kookelaar, 2002). The volcano provideddand providesda large volume of data,

boosting the study of volcanic processes in the framework of various research projects.

The volcano complex has been regularly monitored since 1992, when enhanced seismic

activity was locally recorded. The monitoring at Soufrière Hills volcano encompasses

visual observations, ground deformations, seismic radiation, and geochemical analyses

(e.g., Aspinall et al., 2002). Continuous seismic monitoring has proven to be a

fundamental key for surveillance purposes (e.g., Young et al., 1997). Beside the social

impact of its activity, the volcano is an interesting object of study for the variety of

seismic signals recorded. On volcanoes like Soufrière Hills with andesitic and SiO2-rich

magma, seismic radiation is dominated by transient signals. The general categories of

transient seismic signals proposed by McNutt (2000; see also Fig. 4.1) apply well to this

volcano. In particular, one distinguishes “High Frequency Events” (also called “Volcano

Tectonic Events”), “Long-Period Events,” “Hybrid Events,” “Regional Tectonic

Earthquakes” (relatively distant tectonic earthquakes, not directly linked to volcano

dynamics), and “Rockfalls,” which are seen as a consequence of a growing lava dome. For

their application of pattern classification to the aforementioned events, Langer et al. (2006)

started using a dataset with the original a priori classification defined by the staff of the

2 Hammer et al. (2012) applied hidden Markov models to data recorded on this volcano (see Chapter 4). As
they used a simplified classification scheme and considered only a seismic station, their results are not
comparable to the ones published by Langer et al. (2006).
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Montserrat Volcano Observatory during their routine analysis. Applying an MLP, the

authors got stuck with an overall raw success of ¢70% (and k amounting to 0.57) both

during training and test, even though devoting considerable efforts with respect to a proper

selection of featuresdchoosing autocorrelation functions and high-order statistical

moments of amplitudesdand quality assessment of the signals. Not being able to improve

the overall performance of the MLP classifier, the authors decided to give a closer look to

the original classification of the signals. They observed that a part of the a priori defined

target categories had flaws. Those errors arose as the staff in some cases was overwhelmed

by the amount of events to handle daily. After a revision of the targets, the MLP classifier

achieved a success of 78% for the test set and over 80% for the training samples.

Although the revision of the target classification led to a considerable improvement of the

success rate, some questions regarding the 20% of mismatches remained. Beside the fact

that even their revised targets may be not free of flaws, the authors pointed out intrinsic

difficulties that hindered a better performance of the classifier. Uneven representation of

the signal categories leads to relatively high errors for underrepresented classes. The

confusion of some classes, especially “Hybrid Events” and “Long Period Events” being

confused with “Rockfalls,” was explained by the heterogeneity of the category “Rockfalls”

that was in reality composed of three subclasses, in part indeed resembling the “Hybrid”

or “Long Period” class members. The fact that these mismatches showed up in a very

similar way both in the training and test sets was a strong hint of some intrinsic

contradiction that no classifier would resolve.

Supervised learning schemes can be successfully applied in the classification of rocks,

such as in the example reported in Chapter 4. Lacassie et al. (2006) used MLP to

distinguish basalt, andesite, dacite, and rhyolite of different volcanic arcs based on their

geochemical features. They obtained better results than those with the classical total alkali

silica scheme, that is, diagrams where the concentration of Na2O and K2O in a rock

sample is plotted against the concentration of SiO2. Corsaro et al. (1996) applied an MLP

to geochemical data of Mt. Etna, considering exclusively major elements of the bulk rocks

belonging to the entire stratigraphic sequence of the volcano (about 600,000 years). The

target classes were defined considering the paleoeruptive centers that formed Mt. Etna.

However, the variability of those compositional data led to just a fair score (64% of

match) of the MLP classifier. In supervised learning, it is necessary that the targets are

free from intrinsic contradictions; in turn, the lacking success may shed light on those

contradictions. In the case study proposed by Corsaro et al. (1996), the definition of targets

identifying the eruptive center was misleading. An alternative to the previous approach

came from Corsaro et al. (2013), who applied unsupervised learning (in particular, Self

Organizing Maps, SOM hereafter) to a set of patterns defined on the base of the

geochemical composition of volcanic products (see Table 3.1, partly repeated below).
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Mg# SiO2 K2O Ca/Al Th La Nb Nd Sr Tb Cr Ni Rb/Nb

0.48 47.84 2.14 0.556 7.97 57.0 42.18 46.87 1153 0.99 22.58 21.04 1.16
0.47 48.12 2.19 0.564 8.07 57.2 41.49 46.49 1133 0.97 22.15 20.54 1.16

The authors were able to show that volcanic products emitted by the same eruptive center

undergo considerable compositional variations (see Fig. 6.4). It is known in petrology that

the magma “evolves,” changing its composition with time. For example, the formation of

crystals during the cooling process carries away a few elements from magma, leading to a

depletion of these components in the remaining liquid. The classification results obtained

by Corsaro et al. (2013) document that an eruptive center is a questionable target as it is

not uniquely related to a given geochemical composition (or range of composition) even

over a relatively short period of time.

Consider for instance the volcanic products erupted at the South East Crater throughout 10

years (SEC; Fig. 6.4). Bluish and green SOM colors are associated with their

petrochemical characteristics in the years preceding 2000. In terms of the original

Figure 6.4
Variability of petrochemical characteristics of volcanic products erupted from various centers at
Mt Etna, as seen from SOM and fuzzy clustering. Labels on the vertical axis report the cluster to
which a pattern prevalently belongs. Numbers on the abscissa indicate the pattern ID. Summit
activity is linked to the summit craters “NEC” (North East Crater), “BN” (Bocca Nuova), “VOR”

(Voragine), and “SEC” (South East Crater). The flank activity regards eruptions in 2001,
2002e03, and 2004e05, the acronyms “LV,” “UV,” “NF,” and “SF” indicate local eruptive

centers that were active during the eruptions 2001, and 2002e03. For more details, see Corsaro
et al. (2013). Modified from Corsaro et al. (2013).
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components, this corresponds to a composition rather rich in SiO2 along with a minor

concentration of Mg#, CaO/Al2O3, a low ratio Rb/Nb, etc., indicating a so-called

“evolved” magma, which has undergone changes before being erupted. The lava fountains

occurred at the SEC in 2000, however, erupted rather “primitive” products, being rich in

Mg# and Al2O3, having a high ratio Rb/Nb, but relatively low concentration of SiO2.

Those primitive products are indicative of magma rapidly ascending from depth without

undergoing changes on the way to the surface. In the context of our discussion, the

observation that compositional variations also occurred to nearby craters (Fig. 6.4) gives

support to the assessment that SEC and the other summit craters were not a suitable target

in this supervised learning scheme. Conversely, the approach with unsupervised learning

brought out elements that helped the interpretation of the processes the magma underwent

over the study period (see Corsaro et al., 2013). Regarding for instance the SEC, the

authors point out that products corresponding to this crater showed the strongest

compositional variations, with rather evolved products in 1997e99, followed by the

eruption of the most primitive products of the whole summit dataset in 2000. This

evolution is efficiently represented applying SOM to the petrochemical patterns.

The aforementioned example highlights the importance of targets as a key aspect for the

success of classification methods. In our next case study, we consider applications of

supervised learning schemes in inversion problems and how they can guide in the choice

of appropriate target parameters. In Chapter 4, we presented two examples for such

applications. Both cases dealt with synthetic simulations of geophysical field data,

obtained assuming a physical model with given parameters. In the example studied by

Nunnari et al. (2001), the parameters were the size, orientation, and location of a magma-

filled dyke causing deformations at the Earth’s surface as well as changes to the magnetic

and gravity field. As the model parameters used for the generation of synthetic data are

known, targets are in this case clearly defined. The simulated data are considered as input

during the inversion, and the MLP is trained with the aim to reproduce the model

parameters at best. It turns out, however, that for some parameters the output calculated by

the MLP shows a considerable error. Nonlinear optimization methods, such as simulated

annealing, reveal that the lack of accuracy obtained for given model parameters is partly

an intrinsic problem, in the sense that the inversion cannot be resolved uniquely for those

parameters. Those criticalities lead to peculiarities in the shape of the mapping function

created by the MLP. A paper published by Barron (1993) may help to understand this

phenomenon.

Recall Chapter 2 where we formulate the output of a nonlinear MLP with one hidden

layer, consisting of NH units. This forms a regression function that maps the input vector X

to the output vector Y

ykðxÞ¼
XNH

j¼1

cj

h
s
�
wT
j x
�
þ tj

i
þ ck (2.13)
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We request that

F ¼
Z
R

juj,jyðuÞjdu (6.3)

with y(u) being the Fourier transform of the theoretical function y(x), and R (denoting the

space that is explored) is finite. Then, the maximum error of an optimally trained

network is

jjby� yjj � 2ONI,F,
1ffiffiffiffiffiffiffi
NH

p (6.4)

where NI gives the number of units in the input layer. From this equation, which is known

as Barron’s result (Barron, 1993), one learns that the approximation should generally

improve as the number of neurons in the hidden layer is augmented. This is similar to

conventional regression approaches, where the explained variance increases with the

complexity of the regression function, however, at the cost of a decreasing significance. At

the same time, we obtain a small error for a smooth function y as the contribution of large

frequencies u to the integral F is minor.

A nonuniqueness of the inversion implies that there is more than one model that could

generate an observation vector X. A weaker assumption is that certain parameters may

have a stronger influence on the observed data than others. We may express the sensitivity

by the derivative

sk ¼ vef ðaÞ
vak

with ef being the function that relates our model parameters ak to our data vector X. Our

data will strongly depend on the parameter ak if the sensitivity of our model with respect

to this parameter is high. ef ðaÞ can be understood as the inverse of y(x). Accounting for

Eq. (6.4), we understand that yk(x) will have a flat shape in case of high sensitivities. In

the opposite case, yk(x) is characterized by steep slopes or high values of the derivatives

dyk/dx, as the factor u in the integral renders the factor F sensitive to the presence of

high frequencies. In the case of a nonuniqueness of the inversion in a strict sense, the

derivative dyk/dx becomes singular and the integral F does not converge. It is often not

feasible to figure out rigorously whether an inversion problem is nonunique in a strict

sense. In practice, nonuniqueness arises for less significant parameters in the presence of

disturbances, such as noise, deficiencies of the model, etc. The inversion of parameters

with little influence on the observations thus becomes truly ambiguous. Scarcely identified

parameters from properly trained MLP are therefore always an indication for an ill-

conditioned problem, and should give rise to a sound analysis of the reasons rather than

frustration for the unsatisfying result.

250 Chapter 6



The evaluation of the supervised learning schemes critically depends on the reliability of

our a priori information, as we evaluate the system performance by comparing its

prediction to the a priori definition of a target, being it a category in classification or some

set of values in regression and inversion. The question to be asked is: “Is the a priori

classification correct?” This question touches two different aspects. The first one can be

summarized by “Is the distinction into different classes based on the underlying physics?”

In our example of rock classification with SVM (see Chapter 4), we started from the

mineralogical composition of a sample, represented in the “Streckeisen diagram,” and

asked whether we can achieve a similar classification on the base of geochemical features.

In this case, the a priori definition of the target is uniquely defined, given the position of a

sample in the “Streckeisen diagram.” Similarly, in inversion problems, our targets are

given on a set of physical model parameters, and the quality of our learning regards the

question how uniquely the targets can be related to the observations. Considering seismic

waveforms, the a priori class separation could be done by using the epicenter distance of

an event to the station (Beyreuther and Wassermann, 2008). In that case, we can justify the

distinction on the base of the underlying physical process. Therefore, it is possible to

evaluate the overall system performance correctly.

Often, we do not have clear physical criteria to establish unique and reproducible rules for

the a priori classification. Recall the explosion quakes on Stromboli in Section 4.2.1. Here,

the targets were defined considering the waveforms; this is not a criterion based on

physics, but needs the exercised eye of an expert. Can the human analyst be assumed as an

error-free reference? Often, corresponding ground-truth data are not available. In seismic

signal analysis, the problem is exacerbated by the fact that there is no clear separation

among the waveforms of different signal classes. Even though the separation in different

event types is justified by true underlying processes, the recorded waveforms are often

blurred. The signal characteristics vary with propagation, as paths with greater attenuation

produce a depletion of high frequencies, and the duration of the signals tends to lengthen.

In case of a missing classification scheme, we have to define event classes manually. By

reasoning about causality, an objective systematization of events would become available

at hand. Reasoning about causality, it could be done by using so-called relevance or

influence networks (i.e., Bayesian networks). Thus, using such a data-driven approach may

allow the discrimination of different signal classes based on their inherent nature.

Combined with the possibility to incorporate domain knowledge at any step of the

procedure, a well-founded classification scheme may become available.

6.5 Objects

In supervised learning, we collect information of different type, defining objects on the

base of a set of observations. In the seismological examples, we considered the observed
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ground motion and created the feature vectors on the base of these geophysical data.

Besides, in the example regarding the magma-filled dyke, we created the feature vectors

combing information stemming from different sources, that is, ground deformation,

gravity, and magnetic field. As shown in the paper by Nunnari et al. (2001), this can be a

winning strategy. The highest accuracy of the output calculated by the MLP was achieved

when data from all the three geophysical fields were included. The aforementioned

deficiencies of poorly conditioned inversions were limited to a few parameters. In general,

multidisciplinary analysis is highly appreciated and is often a decisive add-on in

fundraising for research projects.

Falsaperla et al. (2014) presented an application of unsupervised learning to a set of

multidisciplinary data recorded during peculiar episodes of volcano unrest at Mt Etna. The

research was motivated by the fact that the automatic alert systems, which we outlined in

Chapter 5, occasionally signaled criticalities in volcanic tremor even though no manifest

activity could be observed. Similar “false alerts” are disturbing as they jeopardize the

credit of any institution involved in monitoring and warning issues. In this context, it is of

primary interest to verify whether those warnings are linked to noise, instrumental

disturbances, bad weather conditions, or the system does unveil some hidden activity that

cannot be observed at the surface. For example, during bad weather conditions, fog and

clouds may hinder the visual observation even in the presence of significant phenomena of

volcanic activity. Evidence of unrest may also arise when magma moves inside the

volcano edifice but does not make it to the surface, occasionally intruding laterally the

surrounding rock. Falsaperla et al. (2014) used the term “failed” or “aborted eruptions” for

such a phenomenon. To shed light on the source of the critical status signaled by the alert

system, the authors looked for additional evidence of a change in the internal dynamics of

the volcano. Gas emission, routinely monitored at Etna, was considered in this context

also in terms of emission of in-soil radon and ambient parameters.

Radon is a radioactive, noble gas emitted from soil and soluble in water. Especially in

volcanic/geothermal areas with vigorous circulation of magmatic or hydrothermal fluids at

shallow depth, in-soil radon emissions are the surface expression of convective flows of

gases along fractures. Convection facilitates the transport of radon from depth to the

surface, and the abundance of the radon transported also depends on the abundance of

uranium-bearing rocks. Radon emission is sensitive to barometric pressure. Besides, under

steady flow conditions, water condensation may cause both an increase in soil temperature

due to heat loss and an apparent increase in radon activity in the condensing zone, due to

the lower proportion of residual water vapor and the higher proportion of noncondensable

gases (particularly CO2) after water condensation. For this reason, pressure and

temperature are simultaneously monitored together with the emission of radon, allowing to

account for anomalies being caused by these phenomena rather than the volcano’s activity.
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During one of the unrest episodes that Falsaperla et al. (2014) analyzed, there was an

explosion at a summit crater of Mt Etna that was preceded by high tremor amplitude and a

sudden depletion of radon emission together with an increase in temperature. The idea

behind their likely connection was that the phenomena were linked to a gas-pulse reach in

water vapor, which diluted the concentration of radon and temporary increased the

temperature. The authors applied unsupervised learning, in particular SOM and fuzzy

clustering, to feature vectors obtained by a combination of tremor spectra with concurrent

radon, atmospheric pressure, and temperature measurements at the same site. The raw

application of SOM and fuzzy clustering to the combined feature vectors turned out

somewhat disappointing. The overall results were indeed very similar to those obtained

from the tremor spectral data alone (see Fig. 6.5A and C), whereas radon and ambient

parameters seemed to affect the overall picture to a very minor degree (Fig. 6.5B). The

similarity of the panels (A) and (C) in Fig. 6.5 led the authors to suspect that the feature

vectors were not well balanced. Indeed, the metrics used in SOM and fuzzy clustering

encompassed 62 summands of the spectral data, but only three corresponding to radon and

ambient parameters. The authors fixed the problem by reducing the dimension of the

spectral features. In a preprocessing step, they applied a PCA to these data and kept

the three largest eigenvalues. These remaining three components were combined with the

radon-related data, obtaining a six-dimensional feature vector with equal weights. The new

result of classification with SOM and fuzz clustering is presented in Fig. 6.5D. We notice

that the combined features remained stationary from March 14 to March 18, 2007. In the

afternoon of the same day, slight but evident variations occurred until the sudden changes

shortly before the explosive event.

Although multidisciplinary analysis is intriguing, this example highlights some caveats and

pitfalls when data from various fields are mixed together. A further issue is that the

underlying source processes are not always the same. For example, Falsaperla et al. (2017,

2018) proposed a conceptual model in which the emission of radon at a probe close to the

Etna’s summit craters may be linked to both the magmatic source and the occurrence of

tectonic earthquakes, even at distance from the site of measure. The mix of

multidisciplinary data entails therefore the risk of putting together objects that do not

represent the same type of source process.

6.6 Features and metrics

In the previous sections, we frequently addressed the problem of a suitable selection of

features and how to measure the degree of similarity of objects. In learning with

supervision, we get an immediate feedback whether our choices are effective. If not, the

success of the chosen method remains unsatisfying. Inappropriate features and metrics are

the most probable candidates for being responsible of failure. In unsupervised learning,
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there is no direct information whether our choice is meaningful. This has to be verified a

posteriori on the base of our own needs, for instance, whether we obtained a clear

distinction among clusters and achieved a good reduction of data without losing too much

information.

In Chapter 1, we have discussed the problem of feature vectors with many components.

One of the drawbacks resides in the “curse of dimensionality,” with the major part of the

patterns concentrated on the margins of the feature space. Besides, Barron’s result (Eq.

6.4) states that the maximum error of an MLP increases both with the number of nodes in

Figure 6.5
SOM and fuzzy clustering (considering the three clusters A, B, and C) applied to volcanic tremor

spectra and data related to radon emission. The time span starts on March 14, 2007 at
00.00 UT and ends on March 20, 2007 at 24.00. (A) Results of SOM and fuzzy clustering for 62
spectral components of tremor; (B) results for the three radon-related components (radon emis-
sion itself, temperature, and pressure); (C) combination of the 62 spectral components of volca-

nic tremor with the three radon-related components; (D) combination of three components
related to tremor (obtained from the original 62 after a PCA) again with the radon-related com-
ponents. The purple and orange arrows mark the change from cluster “A” to “C” and the occur-

rence of an explosive event, respectively. The figure was redrawn from Falsaperla et al. (2014).
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the hidden layer and the input layers, that is, the dimension of the feature vectors. In

“nearest neighborhood” approaches, the curse of dimensionality becomes a serious

drawback as the samples have an increasing number of near neighbors, which entails a

considerable computational burden in algorithms based on neighborhood considerations

(see Chapter 1). At the very end, we conclude that any effort to limit the dimensionality

of the problem is justified. As a minimum condition, we may require that the number of

samples is greater than the number of dimensions. The choice of a suitable number of

features is often carried out by trial and error, A more formal approach was proposed by

Köhler et al. (2009), who used SOM to select the most relevant features for discriminating

objects. They outlined a two-step procedure. First, the number of features is reduced by

testing their relevance. This is done by estimating the randomness of individual features by

the Wald-Wolfowitz runs test. Features that do not provide significant discrimination

among objects, that is, are random, are rejected. The second step aims at reducing

redundant information. Strong dependencies among features decrease the discriminative

power of nonredundant features. Evaluating so-called component planes (each component

corresponds to a particular component of the feature vector) allowed Köhler et al. (2009)

to visualize dependencies between individual feature vector components. In that way, the

complete feature set can be reduced to the most relevant subset.

In the examples regarding volcanic tremor (see Chapter 5), spectral features turned out as

a reasonable choice, allowing us to link the identified structures to some physical concept.

The dimensionality of the feature vector was limited by forming frequency bins instead of

using the original components obtained by the Fourier Transform. In the Stromboli

example (Section 5.2), two different metrics were considered. The use of the Euclidean

metrics in K-means clustering has the advantage that formal criteria, such as the Davies-

Bouldin Index, are available for choosing the appropriate number of clusters. However, the

relation between the resulting clusters and the activity of the volcano was somewhat

unclear in that case. A metric defined on the base of the adaptive determinant criterion

offered a better relationship, as it complied with the observation that both amplitudes and

spectral shapes change with the state of activity at Stromboli. Accordingly, the clustering

with adaptive determinant criterion mirrored the dynamics of that volcanic system in a

more appropriate way than K-means. In Section 5.2, the choice of the metric was clearly

based on the a posteriori analysis of the results rather than formal criteria of clustering

quality.

In a similar way, a posteriori considerations should follow density-based clustering. The

technique focuses on local heterogeneities measuring the distance between single patterns;

therefore, the choice of the metrics is typically Euclidean. Methods like “OPTICS” (see

Section 3.1.2.3) or “DBSCAN-Strata” (Sections 3.1.2.3 and 5.3) reduce the problem of the

a priori setting of the parameters (the latter requires the choice of the nearest neighbors)

without the necessity of the a priori choice of the number of clusters. Nonetheless, some
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experiments must be carried out for the comparison of the results to decide the kind of

clustering to adopt. Classical concepts applied for the K-means, such as the Davies-

Bouldin index or other options mentioned in Appendix 5, are questionable. In general,

they require the definition of cluster centroids. Given the irregular shape of clusters

identifiable with density-based clustering, such a centroid is often meaningless.3 The lack

of meaningful centroids brings along a further problem: density-based clustering is of

questionable value when used to identify a prototype, that is, a feature vector that is close

to all members of a cluster. Indeed, forming centroids in the classical waydaveraging

over the feature vectors of the cluster membersdmay lead to paradoxical situations, such

as the one shown in Fig. 6.6. Here, the centroids of the two clusters fall inside the area of

the other cluster. In other words, they are similar to patterns that do not belong to the

cluster for which the centroids were defined. From this example, we can see that density-

based clustering is powerful for the identification of separations, that is, realms in the data

space where no or few patterns are encountered. On the other hand, its application for the

purpose of data reduction can be argued.

The methods of pattern recognition are essentially data-driven approaches; they “see”

feature vectors just as pieces of information (frequently numbers) useful to describe

Figure 6.6
C-shaped clusters and their centroids (marked by small circles). It turns out that centroids of
such clusters may be closer to members of other clusters rather the ones for which they were

calculated. They are inappropriate as prototypes.

3 Imagine a C-shaped cluster. Its centroid falls outside its body, that is, it is not density reachable.
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whether patterns are similar to each other. This brings along some risk, as a pair of items

in a feature vector may be inappropriate to establish a metric, even though it describes the

patterns well in a physical sense. This was the case in Section 5.6, where we discussed the

classification of directional data, in particular focal mechanisms of earthquakes. In

Figs. 5.24e5.26, we demonstrated how one can describe the orientation of the forces

acting in a seismic source by indicating three angles: strike, dip angle of the fault plane,

and direction of motion along the fault plane. From a physical point of view, these three

angles are sufficient to uniquely characterize the source mechanismdat least as long as

we are interested only in the contribution of shear, that is, the “DC” part in the moment

tensor. Such a characterization of the source mechanism is likely to fail in pattern

recognition. This can be immediately understood from Figs. 5.25 and 5.26 where we

identify two nodal planes orientated perpendicular to each other. Each of the two planes is

sufficient to fully describe the mechanism with a physical difference NULL, even though

the two planes span up an angle of 90 degrees. Such a discrepancy between the physical

difference (NULL) and the one measured in the angles (here 90 degrees) renders them

inappropriate as feature vector components in the context of pattern recognition, in

particular in unsupervised learning. On the other hand, in Section 5.6, we learnt about the

Kagan angle, which provides a reasonable metric for the distinction between two source

mechanisms. It can be used, for instance, in density-based clustering where the focus is on

local differences between two single patterns. However, its application in centroid-based

clustering, such as K-means, fuzzy clustering, and adaptive determinant criterion, is more

complicated as it requires additional computation to define the centroids of the clusters. In

the example mentioned in Section 5.6, we bypassed the problem by using the moment

tensor components. In that case, strongly different mechanisms showed up without

ambiguity in the metrics. At the same time, the moment tensor components allow us to

distinguish also other types of source mechanism apart from shear (see Box 5.1).

Nonetheless, one has to be aware of the peculiarities that appear working with normalized

features. Differences among normalized feature vectors correspond to the angle included

by the two vectors. A conventional sheet geometry of the SOM is questionable for the

reasons stated in Section 5.6, but the problem can be fixed by choosing a toroidal topology

of the SOM.

6.7 Concluding remarks
6.7.1 Multilayer perceptrons

One obvious advantage of MLP over SVM is that artificial neural networks may have any

number of outputs, while SVM originally have only one. The most direct way to solve the

multiclass problem with SVM is to create multiple support vector machines and train each

of them one by one. On the other hand, the multiclass problem with MLP can be tackled
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in one go. Effects of overfitting can be an issue, but can be controlled designing the

optimization problem correctly. It also depends on the training examples if they scan

correctly and uniformly the search space.

6.7.2 Support Vector Machines

Unlike the development of MLPs which followed a heuristic approach, with applications

and extensive experimentation preceding the theory, SVMs involve sound theory first and

then implementation and experiments. A significant advantage of SVMs is that while

MLPs can suffer from multiple local minima, the solution with SVMs is global and

unique. Two more advantages of SVMs are that they allow us a simple geometric

interpretation of results and give a sparse solution. Different from MLPs, the

computational complexity of SVMs does not depend on the dimensionality of the input

space. MLPs use empirical risk minimization, whereas SVMs use structural risk

minimization.

6.7.3 MLP and SVM in regression analysis

In nonlinear regression, the calculation of the error in MLP can be directly considered as a

measure of the fit, as the targets in this case are not given by categories but by floating

point vectors. On the other hand, in the case of regression with SVM, first we must apply

the trained SVM to our data, and compare the prediction with the target. Recall that

optimization in SVM regression is based on the number of patterns one finds correctly

inside a tube (see Chapter 4). In short, MLP fitting in classification problems is measured

on RMS, but a posteriori validation is found using Boolean information; in regression

fitting and a posteriori validation is based on RMS. SVMs in classification are based on

fitting Boolean information (pattern on the right sitedyes or no), and so is the a posteriori

validation. In regression with SVM, fitting is again based on Boolean information (inside

the tube or not), but the a posteriori validation carried out by the user is based on classical

definition of the errors like RMS.

6.7.4 Hidden Markov models and Bayesian networks

MLP and SVM can be understood as “error-based” techniques, where we minimize the

distance of the patterns from separating elements. On the other hand hidden Markov

models (HMMs) and Bayesian networks (BNs) represent probability-based schemes.

HMM and BN do not necessarily apply numerical metrics, such as an Euclidean or

Mahalanobis distance. HMM and BN are based on identifying models that are determined

by some transition probability from one state or observation to another.

The objects we are interested in cannot be characterized by single patterns, but require to

consider their interrelations. Speech analysis is a frequently mentioned problem. Here, we
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first characterize sounds or vowels, and then we form words and expressions as a sequence

of such vowels. Sentences are again a sequence, a sequence of words in this case. In

Chapter 2, we mentioned numbers that can be understood as a sequence of digits, such as

293 being composed of “2,” “9,” and “3.” No doubt that for a correct interpretation we

must read them in the right sequence. In this simple example, the numerical meaning of

the digits is irrelevant. At the end, we ask ourselves which HMM is most likely to produce

a sequence of observations. HMMs and BNs deal with problems where a distribution

cannot be simply described by a parameter vector, but also requires probabilistic or causal

dependencies. This is a crucial difference with respect to the other techniques such as

SVM, MLP, or even classical discrimination analysis. In the latter technique, each pattern

is considered on its own. Although HMMs become of interest to handle a process, the

more advanced BNs come into play when we would like to model a large number of

variables and their relationships, especially to evaluate inconsistent and incomplete data.

Examples are a volcano with an increasing or decreasing level of unrest, or the passage of

a cyclone that is characterized by a sequence of meteorological phenomena. HMM and

BN allow a straightforward handling of categorical data. On the other hand, their

application in regression and inversion is by far not so obvious.

6.7.5 Supervised and unsupervised learning

Even though unsupervised learning follows distinct strategies from the learning techniques

with supervision, they can sometimes be used in a complementary manner. For instance,

the application of HMM to data on Soufrière Hills volcano, Montserrat, by Hammer et al.

(2012; see Chapter 4) include an a priori clustering following the expectation

maximization (see also Box 3.2 in Chapter 3), which allow to fix the number of states of

the HMMs. In the classification of infrasound signals, Cannata et al. (2011) used the

results of clustering as targets. Even though such a mix of supervised and unsupervised

may be argued, it can be justified as the clusters are found in different locations around the

summit area of Mt Etna. That way, locations could replace the cluster membership as

targets that avoid mixing of supervised and unsupervised learning.

Unsupervised strategies come with the advantage that little a priori knowledge is necessary

for their application. On the other hand, it happens that we wish to see how new results

match with our experience. In Chapter 5 (Section 5.5), we discussed an alert system based

on SOM and fuzzy clustering. The integration of a priori knowledge is mandatory in this

case because we want to issue warnings on phenomena that were recognized as critical in

the past. Langer et al. (2011) accomplished this integration by combining the actually

recorded data with a large reference dataset. In this context, the reference dataset

corresponds to the a priori knowledge, although the learning process formally remains

unsupervised.
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CHAPTER 7

Software manuals

7.1 Example scripts related to Chapter 2
7.1.1 Linear discrimination, principal components, and marginal distributions

In Chapter 2, we have applied Fisher’s linear discrimination method to pairs of body wave

and surface magnitudes (mb and MS) measured for earthquakes and nuclear tests. The

routines S2.1 and S2.2 illustrate how the discrimination of datasets can be facilitated by

using an appropriate rotation of the samples. In the light of this action, we restate the

discrimination problem in principal component analysis (PCA), where eigenvalues and

corresponding eigenvectors are considered. Eigenvectors and eigenvalues allow us to

create a new system of axes, and the original feature vectors are transformed to this new

coordinate system. The two small routines illustrate the concept in the 2D-case (two-

dimensional feature vectors).

In Fig. 7.1, obtained with the script

S2_1

we start with the frequency distribution of earthquake and nuclear test magnitudes.

Although some differences between the two datasets can be recognized, the distinction is

blurred as the distributions of earthquake and nuclear test magnitudes overly. Figs. 7.2 and

7.3 show the distributions in two rotated systems of axis, using the components of the

eigenvectors for the projection. In one of the two systems, the two datasets can be nicely

distinguished. The position of the discrimination function is depicted in Fig. 7.5, which is

obtained by rotating the values shown in Fig. 7.4.

The script

S2_2

considers two randomly generated data clouds. For the sake of simplicity, the data samples

consist of 2D-feature vectors. X1 and X2 relate to the first cloud, and X3 and X4 relate to

the second. The features X2 are derived multiplying features X1 by a constant. Note that

X3 has the same dispersion as X1, and X4 has the same dispersion as X2. X3 and X4 are

shifted with respect to X1 and X2 by 1.8 units (see Fig. 7.6). We now pool the two

datasets and plot the marginal distributions shown in Fig. 7.7. For the sake of distinction,
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Figure 7.1
Frequency distribution of mb and MS for earthquakes (in red) and nuclear tests (in blue).

Figure 7.2
Frequency distribution for earthquakes (in red) and nuclear tests (in blue) after the rotation

according to the first and the second eigenvector.
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Figure 7.3
Synopsis of Fig. 7.2, again with earthquakes in red and nuclear tests in blue. In the first panel,

we note a clear distinction between the two groups.

Figure 7.4
Reproduction of Fig. 2.1. MSemb relation for earthquakes (red triangles) and nuclear tests (blue

squares).
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Figure 7.5
MSemb relation for earthquakes (red triangles) and nuclear tests (blue squares) after the

rotation of the axes.

Figure 7.6
Single univariate distributions x1, x2, x3, and x4, obtained as linear combinations, starting from

two normal distributions of random numbers: x0 and x1.
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we address axes of the two components of the pooled dataset as Z1 and Z2. They have the

same orientation as X1 and X2 (or X3 and X4, respectively).

The marginal distributions do not allow a distinction of the two groups (see Fig. 7.7). In

Fig. 7.8, we conduct a rotation, again exploiting the eigenvectors obtained from the PCA

performed on the pooled covariance matrix of the two groups. N.B.: The pooled

covariance matrix is obtained as explained in Chapter 2 and must not be confused with the

covariance matrix of the pooled dataset! The reader is invited to use the latter and

reproduce Fig. 7.8.

In Fig. 7.9, we depict the samples in the original system of axes (X1, X2) and in the

rotated system of axes (here named Y1 and Y2). The distinction between the two groups

is evident in both plots of Fig. 7.9, as the two-dimensional feature vectors can be

represented in a 2D sheet without loss of information. In case of higher dimensional

feature vectors such 2D-plots are insufficient, as they are marginal projections, bringing

along all the problems discussed earlier. Pattern recognition aims at resolving these

problems.

Figure 7.7
Univariate distributions Z1 andZ2 obtained from the merger between X1 and X3 and between X2

and X4, respectively.
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Figure 7.8
Distributions of the pooled and rotated dataset using the two eigenvectors obtained from PCA.
Both vectors were calculated for the pooled covariance matrix (not to be confused with the

covariance matrix of the pooled dataset!).

Figure 7.9
Z1eZ2 relation in the original dataspace, on the left, Y1 e Y2 (rotated dataset according to the
eigenvectors of the covariance matrix), on the right. For two-dimensional feature vectors, the

separability of the two groups is evident in both panels.
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7.1.2 The perceptron

The script

S2_3

is a small routine based on the perceptron concept. It exploits some routines published in

Theodoridis et al. (2010), which can be downloaded from the website http://booksite.

elsevier.com/9780123744869. In its original form, it is an alternative for solving linear

discrimination problems. The difference with respect to the afore discussed methods

resides in the definition of the measure of separability, which is user-defined in the case of

the perceptron. The program loads two files representing the groups A and B. The learning

rate r of the perceptron is fixed to 0.01. A Boolean class membership is assigned to each

pattern, that is, “1” or “�1,” depending on its a priori defined class (here earthquakes or

nuclear test magnitudes). This simple artificial neural network converges if the classes can

be separated by a linear element. For our earthquake/nuclear test example, we get the

result shown in Fig. 7.10.

N.B: An MLP software allowing for a hyperbolic-tangent activation function in the hidden

layer is presented in the context of the programs related to Chapter 4. The program comes

with a GUI, the numerical kernel has been written in C-language that renders the

Figure 7.10
Discrimination between earthquakes and nuclear explosions using an artificial neural network
based on the perceptron. Original datasets are represented by red triangles and blue squares
whereas classification results are shown by means of circles colored according to the class-

membership. The diagram demonstrates a perfect separation of the two classes, with a misclassi-
fication equal to zero.
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application efficient and fast when applied to large datasets. It has a multiple output thus

allowing the straightforward treatment of multiclass problem.

7.1.3 Support Vector Machines

In script

S2_4

we demonstrate the application of various support vector machine (SVM) kernels to the

earthquake and nuclear test magnitudes example. The SVMs are trained with the original

dataset and applied to a second test set, which has the same structure as the training set

but values are blurred with some noise. The kernels available in this script are “linear,”

“polynomial,” and “RBF” (Radial Basis Function). The user can play with controlling

parameters, in particular “C” and “tol.” Besides, there are the kernel parameters “kpar?,”

etc. In the “RBF” kernel, we specify only “kpar1” that corresponds to a sigma and

controls the resolution of the kernel. In the polynomial option, one can play with “kpar2”

that controls the degree of the kernel polynomial. The following plots give a summary

how the program may work. First, the program loads the training data, which consists of

the members of the groups A and B. In a similar way, a test set is loaded, again containing

members of the two groups. Fig. 7.11A and B show the diagrams for the two files.

Note that we have been using the noisy dataset of Chapter 2 for training to highlight

chances and pitfalls of the various kernels. We intuitively see that our training set will

probably favor a nonlinear kernel.

Comparing the performance of the linear and RBF kernel, we realize that the latter performs

better for the training dataset (see Figs. 7.12 and 7.13). Fig. 7.14 is a 3D plot of the scores,

and we can recognize that the delimiting level is given by the dark green color that fills the

plots in Figs. 7.12 and 7.13. In the test set, we see the risk of overfitting one may run when

a nonlinear kernel is used in the training phase. Being the test data linearly separable, the

RBF kernel leads to some misclassification in this set. On the other hand, the linear kernel

has less misclassified samples in the test set though being less performant during training.

Besides the figures, the script creates ASCII files reporting the support vector for each

kernel, and files formatted as [X Y score] to be easily imported to standard graphic

software, such as “Surfer.”

N.B.: The SVM presented here allows only the resolution of the two-class problem. It

exploits routines of Theodoridis et al. (2010), which can be downloaded freely from http://

booksite.elsevier.com/9780123744869). For the multiclass SVM and SVM regression, use

the SVM_multi_class program, which has been designed on the base of the LIBSVM
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Figure 7.11
Training (A) and test data (B) used in the SVM example code.
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Figure 7.12
Shape of the linear kernel decision function, and position of (A) training set samples, (B) test set

samples.
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Figure 7.13
Shape of the RBF kernel decision function, and position of (A) training set samples, (B) test set

samples.
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package (https://www.csie.ntu.edu.tw/wcjlin/libsvm/) and will be presented later in this

document.

7.1.4 HMM example routines (from Theodoridis et al., 2010, see http://booksite.
elsevier.com/9780123744869)

The script summarizes some example applications given in Theodoridis et al. (2010).

Besides, we furnish some material that can be. This regards example sequences such as

“sequence2.txt” or “sequence.txt”. Apart from some transition and emission matrices given

as “hard coded” in the script, transmission matrices “trans.txt,” as well as emission

matrices “emi.txt,” are available, so that readers may play also with some self-defined

situations. Some sample calls are given later in the script

S2_5

1. What you need: “BackTraining (*.m-files in Chapter 5 of Theodoridis et al., 2010)

“*.m-files in Chapter 6 of Theo2010”

A sequence of observations, for instance generated by an HMM (Hidden Markov Model)

(it comes along with our examples, and can also be generated using the “hmmgenerate”

function of MATLAB).

Figure 7.14
3D plot of the RBF kernel decision function.
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2. Define example transition and emission matrices (or load them from the disk):

Suppose

trans =
[0.80,0.05,0.15;
0.05,0.90,0.05;
0.1,0.2,0.7];

emis =

[1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;
1/12, 1/12, 1/12, 1/12, 1/12, 7/12];

and define the a priori vector pi, for example, pi = [0.7 0.2 0.1]'

Such an HMM describes a situation in which three dies are rolled, the first being a fair

one (all six outcomes are equally probable), while the two others are biased. The

probabilities of outcomes of the three dies are reported in the “emission” matrix. Using the

fair die means that we are in state 1, otherwise we are in state 2 or 3. At any roll dice, we

have to decide in which state we are. For this purpose, the transition matrix is used.

Now use the “BWDoHMMst” function to calculate the probability that the sequence O

was generated by the HMM, that is,

[Pr1]=BWDoHMMst(pi,trans_guess, emis_g’,O);

or

[Pr1]=BWDoHMMsc(pi,trans_guess, emis_g’,O);

which is often preferred as it gives the logarithm of the probability, and does not suffer

from round-off problems. The algorithm uses the “BaumeWelch” method, which we have

presented in Chapters 2 and 4. Alternatively, one can use the “Viterbi” algorithm, that is,

[Pr1, BestPath1]=VitDoHMMst(pi,trans_guess, emis_g’,O);
[Pr1, BestPath1]=VitDoHMMsc(pi,trans_guess, emis_g’,O);

Recall that different from the BaumeWelch algorithm, which considers all paths in the

trellis, the Viterbi algorithm considers only those with the highest scores (i.e., the Viterbi

path). The BestPath1 is expressed as a complex variable, by convention being the y-

coordinate of the node in the trellis (state number) real, the imaginary part stands for the

x-coordinate, that is, the index of the observation. At the end, we obtain the sequence of

states by taking the real part only.

A variant of

[Pr1, BestPath1]=VitDoHMMsc(pi,trans_guess, emis_g’,O);
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is

[Pr1, BestPath1]=VitCoHMMsc(pi,trans_guess, emis_g’,O);

where the sequence is composed of continuous variable, that is, floats. Note that the

entries in the emission matrix receive a different definition and meaning. The emission

probabilities are given as a 2 � K matrix, where K is the number of states. It has the form

emis=

[b11 b12 b13..b1k
b21 b22 b23..b2k];

The two elements in a column express the probability that a (float) value is emitted in the

current state i, assuming that the value follows a Gaussian distribution, with averages m

and standard deviation s. The emission matrix therefore is composed of the elements,

which specify the Gaussian distributions:

[m_1 m_2 m_3..m_k
s_1 s_2 s_2..s_k]

In classification problems, we typically do not know the emission and transition matrices.

These have to be learned using a training set of sequences. In the software downloaded

from Theodoridis et al. (2010), we find the routines “MultSeqTrainDoHMMBWsc,” which

has the following calling sequence

[pi_Train, trans_train, emis_train, sum_probs] =
MultSeqTrainDoHMMBWsc(pi_init, trans_guess, emis_guess, Data(1:n), maxEpoch);

that is, we use initial guesses for the a priori setting of the state, transition and emission

matrices. maxEpoch is an integer giving the number of training cycles; Data is a

MATLAB™ cell structure, and it contains a one-dimensional sequence of values, such as

‘1 1 1 2 2 1’ in a binary problem. The sequence is a multiple sequence, as it consists of a

multitude of sequencesdin the example below, they have a length of 3djust in a row. The

cell structure of Data looks like this:

The length of each elementary sequence is defined by the properties of the cell structure.

Specifying “Data(1:n),” we specify that we are considering the sequences with index from

1 to n out of the L elementary sequences present in the data. Once having learned the

parameters of the HMM, that is, pi_Train, trans_train, emis_train,

we can apply them to new sequences and check the quality of the HMM, just calculating

the probabilities using

[Pr1]=BWDoHMMsc(pi,trans_train, emis_train,O);

where “O” is a sequence of interest.
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Remark: A general environment for HMM application is the “HTK Toolbox,” which

provides a variety of HMM-related routines in C-language. Sources and documentation

can be downloaded after registration on http://htk.eng.cam.ac.uk/download.shtml. Both

Linux and Microsoft™ versions are available. For complex and big datasets, we address

the reader to this software, which has been frequently used in geophysical applications.

7.2 Example scripts and programs related to Chapter 3 (unsupervised
learning)

7.2.1 K-means clustering

“K-Means” algorithm is perhaps the most popular partitioning clustering method for its

simplicity. Besides, formal criteria regarding the choice of the number of clusters are

available. The small script

S3_1

presented here performs a K-means cluster analysis on mb/MS values of earthquakes and

nuclear tests. Note that the K-means clustering is also available in the KKAnalysis

software. Script S3.1 reads the two files separately and allows comparison of the two files

and the resulting clustering (see Fig. 7.15A, B).

Script

S3_2

loads a bidimensional file (here mbms_all2.txt) and carries out a clustering using the

“Adaptive Determinant criterion.” A similar option is available in the package

“KKAnalysis.” The number of cluster number is set to “N ¼ 2” (see m-file) and can be

changed if desired. It is interesting to compare the results of this script shown in Fig. 7.16

to the application of script S3_4b that uses essentially the same data. Caveat: Avoid

clustering of high-dimensional data when the number of samples is small.

7.2.2 Mixed models

The script

S3_3

generates a mixed dataset composed of three Gaussian distributions, each of which given

by the mean vectors and corresponding covariance matrices. The program produces a

figure (see Fig. 7.17) where each of the Gaussians is shown as a cloud of colored symbols.

As a result a bidimensional “test_data.txt” is obtained with a length of 500 samples.
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Figure 7.15
(A) Original data (mb/MS of earthquakes and nuclear tests), (B) clusters obtained with K-means

clustering.
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Figure 7.16
Application of the “Adaptive Distance” criterion to clustering of data shown in Fig. 2.1.

Figure 7.17
A Gaussian mixture composed of three groups.
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7.2.3 Expectation maximization clusters

In the script

S3_4a

we apply the generalized mixture decomposition algorithmic scheme (GMDAS, see

Chapter 3, Box 3.2) to three bidimensional Gaussian distributions. The script loads three

bidimensional files “test_1.txt, test_2.txt, test_3.txt,” which were randomly generated a

priori. The files can be obtained, for instance, by randomly splitting the “test_data.txt”

earlier mentioned into three parts. Initial guesses for the parameters of the Gaussians are

the mean vectors and the covariance matrix of each single file. At the end, the user obtains

a “Bayesian” clustering, that is, Gaussian models where each sample can be assigned to a

group by expectation maximization of the probability of its membership. The program

produces a figure (Fig. 7.18) where each sample is assigned to a Gaussian; membership is

expressed by colored symbols.

The program exploits the routine “gmdas.m” that can be found in Theodoridis et al. (2010,

http://booksite.elsevier.com/9780123744869). Caveat: Avoid clustering of high-

dimensional data when the number of samples is small.

Figure 7.18
Clustering obtained with expectation maximization. The dataset considered corresponds to the

samples depicted in Fig. 7.17.
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The script

S3_4b

applies the same principles as script S3_4a to two files with mb and MS values of

earthquakes and nuclear tests. The initial guesses of the statistical parameters are obtained

from the mean vectors and covariance matrices of the original files. The script tries to find

a mixed model (two Gaussians) that maximizes the expectation of probability of

membership of the samples (see Fig. 7.19).

7.2.4 Fuzzy clustering

The script

S3_5

performs a fuzzy-C-means clustering using the standard MATLAB function “fcm.” In this

code, clustering is carried out on the file “data_rocks_tot.txt” (a 13-dimensional dataset)

with three clusters. In the script, we set the exponent q ¼ 2. The bidimensional plot in

Fig. 7.20 (using the first and second feature vectors out of the 13) shows the results,

assigning each sample to the cluster for which the highest membership is obtained.

Figure 7.19
Application of expectation maximization clustering to the data shown in Fig. 7.15.

Software manuals 279



The reader is invited to play with the exponent q and compare the fuzzy cluster

membership vectors. These values can be accessed in the file “classMemb.txt” that reports

the fuzzy cluster membership vectors for all samples.

7.2.5 Hierarchical clustering

The script

S3_6

performs agglomerative clustering using either “single” or “complete linkage.” Here, we

load the file “Iris_data.txt.” The number of clusters can be controlled by setting the

parameter “n_clust” (line 120 in the script). The program creates a number of figures, such

as the dendrogram (see Fig. 7.21A) and some plots showing the clusters in the original

data space (Fig. 7.21B). The vector “belx” reports the cluster membership for each

sample. These are written to a file “agglom_clust.txt.”

7.2.6 Density-based clustering

The script

Figure 7.20
Fuzzy clustering of a 13-dimensional dataset regarding geochemical analysis. The prevailing class

membership is marked by the colors of the symbols.
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S3_7

carries out density-based clustering, here on an example (“mydata”) provided by the

developers (yarpiz.com). Controlling parameters are the critical distance (epsilon) and the

parameter q (in Fig. 7.22A addressed to as “MinPts”). The program identifies two clusters,

besides some samples, which are noise as they are not density reachable. The reader can

Figure 7.21
(A) Dendrogram obtained with agglomerative clustering of the “Iris” dataset, using the

“complete linkage” option. (B) Distribution of clusters in a 3D plot.
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also play with a file “LocOct2003_rev.” Good results are obtained setting q ¼ 10, and

epsilon ¼ 2 (see Fig. 7.22B).

7.2.7 Unsupervised learning toolbox: KKAnalysis

7.2.7.1 Preliminaries

KKAnalysis is a collection of methods for unsupervised classification and clustering. In its

original form, the software package was published by Messina and Langer (2011) and widely

exploits routines of the SOM Toolbox 2 for MATLAB (Vesanto et al., 2000, see http://www.

cis.hut.fi/projects/somtoolbox/). Besides functions related to the SOM, it includes K-means

Figure 7.22
(A) Density-based clustering of a test dataset. (B) Density-based clustering of a dataset regarding

hypocenter locations (courtesy of T. Tuvè, see also Mostaccio et al., 2013).
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clustering, available in the toolbox, the MATLAB fuzzy clustering as well as adaptive

determinant clustering, the latter taken from Späth (1983). All clustering schemes can be

applied to the map created by the SOM routines and to the original patterns as well.

KKAnalysis was tested on x86 architecture Microsoft Windows 7™, 8™, 10™.1 The

requirements regarding the hardware are moderate. A reasonable performance was achieved

on a machine with a Pentium 4 processor with a 3 GHz clock frequency, and 1 GB RAM.

For the sake of simplicity all alphanumeric files are standard ASCII. Besides, figures can be

saved either as MATLAB™ “*.fig* or *.tiff* files. The latter option allows the creation of

plots for users who do not have a MATLAB™ environment installed on their computers.

7.2.7.2 Installation

KKAnalysis was developed under MATLAB. This programming language requires a

“virtual machine” (using the common Java terminology) called MCR (MATLAB

Component/Compiler Runtime) for the execution of deployed applications. If a MATLAB

environment is not available, the MCR (the original version, downloaded from http://

earthref.org/ERDA/974/, requires v.7.7 or higher for Windows) must be installed to run

KKAnalysis. The MATLAB Component Runtime installation on Windows systems can be

carried out clicking “MCRInstaller.exe” file and following the wizard. As MCR is included

in the MATLAB environment, no extra installation is necessary when a MATLAB is

already present on the computer. The MATLAB version should be R2007b or higher for

Windows operating systems.

On Windows systems, the installation of the program can be carried out clicking

“KKAnalysis_setup.exe” file. Accepting the license conditions the installation performs

straightforward. KKAnalysis can be invoked either from the “Programs / KKAnalysis”

item or by clicking the shortcut on the desktop (if this option was accepted during the

installation process). For the versions downloaded from the companion website of this

book see the documention coming along with the programs.

7.2.7.3 Files

7.2.7.3.1 Input files

CRLF the input files of KKAnalysis concern the data used in classification.

The data file must be provided by the users. In its typical format, it consists of rows and

columns, where a row contains a feature vector of a pattern. In the example of Table 7.1,

the turquoise area highlights such a kind of data file. Sometimes a data file may contain

1 The original version of the program KKAnalyis together with documentation can be found on the site
https://earthref.org/ERDA/974/. This older version is similar to the present one, but lacks the sheet options
for a Torus and Cyclinder geometry.
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additional information, which is not exploited for classification purposes, although being

useful for the user. For instance, there may be descriptive rows at the top, so-called

“header.” Furthermore, there may be labels for each pattern written in the first columns of

the data file (in our example, the labels “red,” “green,” “blue,” etc.). KKAnalysis

automatically recognizes these nonnumeric rows and columns and does not consider them

in the analysis. If desired, one of the columns (purple, in the example of Table 7.1) may

be exploited for the creation of the abscissa in the graphical representation of the results.

In this case, make sure that the corresponding column contains only integer values.

7.2.7.3.2 Output files

CRLF files created by KKAnalysis can be distinguished in two types: log files and files

containing the results of a session. In the log files, KKAnalysis reports controlling parameters

related to the various runs carried out during the session, producing a sort of “execution

history.” The log file is created by the program at the beginning of each session, that is, every

time KKAnalysis is started. Its name is “KKA_Log_YYYYMMDDThhmmss, where

YYYYMMDD is the date (year/month/day) and hhmmss is the time (hours/minutes/seconds),

both of them referred to the beginning of the session.

The settings used during a specific run can be saved in a configuration file, the name of which

is specified by the user. A configuration file created during a previous session can be reloaded

to reproduce the corresponding classification results. However, note that KKAnalysis

automatically reloads the setting values of the last working session at the beginning of a new

one. More details on the configuration parameters are given in the following.

KKAnalysis creates files storing the results of each session in alphanumeric form using

ASCII standard. Files “KKA_Results_YYYYMMDDThhmmss” (indicating date and time

of execution) generally contain five columns: the index of the pattern (column 1), the

cluster membership (column 2), and the RGB color code of the BMU (Best Matching

Unit) to which each pattern belongs (columns 3, 4, 5). Another file, named

“KKA_Node_Weights_YYYYMMDDThhmmss,” has a first column containing the

Table 7.1: A typical KKAnalysis input file, with: headers row, columns

label, and a specific column for the abscissa of the graphical output.

The format is plain ASCII.

Header     Kopf Testa Hair Hat
Header     Kopf Testa Hair Hat
red 4.927 4.953 4.568 1
green 4.872 4.905 4.52 3
blue 4.85 4.916 4.594 5
yellow 4.821 4.861 4.516 6
grey 4.959 4.975 4.604 7
black 4.996 5.03 4.686 9
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indexes of the map node, then a sequence of columns with their corresponding weights.

The number of weight columns corresponds to the number of components used in the

classification. As mentioned earlier, KKAnalysis permits saving the graphical output; this

is described in more detail in Section 7.2.7.4.2.

7.2.7.4 Getting started

Click on the desktop shortcut “KKAnalysis” (or use the corresponding item in your

Program Files menu). KKAnalysis prompts you the subsequent “Welcome” sheet

(Fig. 7.23A) offering various options. If you are running the program for the first time, all

fields in the sheet will be empty. Otherwise, all fields report the choices of the last session,

which you can reuse if you want. In the “welcome” sheet, there is also a “Console” that is

used by KKAnalysis to prompt some information during run time, permitting the user to

check whether the program is working properly.

7.2.7.4.1 The “Input File” frame

CRLF the “Input File” frame (Fig. 7.23B) contains four subframes: “Path,” “Rows,”

“Columns,” and “Show.” In the field “Path,” you insert the full name (path included) of the

raw input data, which should have the format of a matrix, where data are written in rows

and columns. The operation of file selection can be carried out either by using the

“Browse” button next to the edit box or writing its name by hand.

Once identified the right file, KKAnalysis reads it and reports the structure found, that is,

the number of rows and columns encountered. This information is shown in the frames

“Rows” and “Columns.” In KKAnalysis, the feature vectors of the patterns correspond to

the rows in the input file. The number of rows is equivalent to the number of patterns,

whereas the number of columns corresponds to the number of components of the feature

vector. As mentioned in the section “Input Files,” nonnumeric lines and columns inside the

file are automatically discarded, and are not used for classification purposes. The values

shown in the fields “From” and “To” (placed inside the frames “Rows” and “Columns”)

are referred to the effective range of data matrix inside the whole file. For example, it can

be possible to see a “From” value equal to “4” because the first three lines of the file are

row headers. The entries in these fields can be modified to choose the number of the data

columns and rows to be used for the construction of the SOM and for clustering. Note that

any part of data within the table can be selected, with the only condition that lines and

columns neighbor each other.

The “Show” and “X Axis” frame contain useful settings concerning the graphical output.

The former allows the user to set a range of patterns to bring into focus. In other words,

the analysis is done, for example, on the entire dataset whereas the output files and figures

contain only the range of patterns chosen by the user. Finally, the “X Axis” option can be

enabled whenever you want to represent the cluster-ID or the color of the BMU not only
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one by one, but as a function of some additional variable, for an index representing time

(e.g., hours, Julian day number, etc.). Note that a column used as “X Axis” must contain

integers! Activating this option, KKAnalysis will display the clustering results as a

function of the values given in the column specified in the “Col” field.

Figure 7.23
(A) Welcome to KKAnalysis! (B) The “Input File” frame. (C) The “Figures” frame.

286 Chapter 7



7.2.7.4.2 The “figures” frame

CRLF besides storing alphanumerical information, such as weights, class membership IDs,

etc., KKAnalysis produces a number of graphs helping the user to understand its results

(Fig. 7.23C). On the right-hand side of the frame, we may select two graphs related to the

SOM, “U-Matrix and Component Planes” (Fig. 7.24) and “Map Color Code and PCA-

Proj” (Fig. 7.25).

The idea of the U-Matrix is to represent the dissimilarities measured between neighboring

units of the SOM. To improve the readability of the graph, the units of the SOM

themselves make part of the U-matrix as well. At the end, the total number of elements in

the U-matrix is given by the number of nodes of the map and the number of distances

between neighboring nodes. Suppose a grid with a 24*7 SOM units. That means we

measure 23 distances in vertical and 6 distances in horizontal dimensions, giving a total of

24 þ 23 ¼ 47 rows and 7 þ 6 ¼ 13 columns. As stated earlier, the nodes of the SOM

themselves are represented in the U-matrix as well. The distance of an object measured

with respect to itself does not make sense; therefore, the value reported for the nodes is

calculated as average of distances measured to all neighboring nodes.

Distances in the U-matrix are represented by colors. Dark and blue stand for small values,

bright to red for large values. An inspection of the U-matrix may reveal an immediate idea

about the presence of major clusters among the SOM nodes. These clusters would

Figure 7.24
U-matrix and component planes. The number of columns of the data file used here is 14.
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correspond to extended areas with prevailing blue color, meanwhile cluster borders are

easily recognized by bright areas. An interesting aspect of clusters showing up in the U-

matrix is that their hulls may have more or less arbitrary shape, whereas hulls of

conventional cluster analysis necessarily have a rather simple geometry. At the moment,

however, we have no practical rule available about how clustering could be established on

the base of the U-matrix.

The “Component Planes” represent the position of each BMU with respect to the original

variable components (Fig. 7.24). A color code is used also in this case. Warm colors

(redebrown) stand for large values, dark blue for small ones. For instance, on the panel

“x1,” the BMU at the lower right cornerdwith a dark brown colordhas a position on the

x1 axis of the original data space close to 5.3; the exact values can be read in the files

“KKA_NodeWeights_*” created by KKAnalysis (the wildcard * stands for date and time

of file creation). Note that Fig. 7.24 can be saved as MATLAB (*.fig) or TIF file and

carries the name “U_matrix_ YYYYMMDDThhmmss, where YYYYMMDD is the date

(year/month/day) and hhmmss is the time (hours/minutes/seconds). The “T” in the middle

helps to see where the data string ends and day time information begins. Saving of

graphical output is activated with the appropriate selections in the “Settings Screen.”

Setting the tick on “Map Color Code and PCA Projection,” KKAnalysis summarizes

basic properties of the SOM created during the training process.

Figure 7.25
Example of SOM using a lattice with a hexagonal topology.
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Here, the program has created a SOM made up of 7 � 24 ¼ 168 nodes. For the definition

of the map geometry and size, KKAnalysis internally performs a principal component

analysis of the covariance matrix of the data vector set. The relation length/width of the

map approximately corresponds to the ratio of the first two eigenvectors.

The uppermost frame in Fig. 7.25 shows the position of each BMU in a system of axes

made up by the eigenvectors corresponding to the two largest eigenvalues. Note, however,

that eigenvectors and eigenvalues used for the creation of the first frame are obtained from

the SOM values instead of the data vectors. We see that the gross of the nodes scatter in a

range from w5 to �5 on the abscissa (that is 10 units in total) and from w�1.5 to w1.5

on the ordinate (i.e., w3 units). By taking the ratio 10/3 ¼ 3.3, we understand that the

geometrical shape spanned by the BMUs, that is, 24/7 ¼ 3.4, corresponds well to the one

made up by the eigenvalue ratio obtained from the covariance matrix of the data.

The second frame shows the color coding of the BMUs. As mentioned earlier, the colors of

the BMUs are obtained from a 2D PCA of the SOM values, firstly extracting the two largest

eigenvalues plus corresponding eigenvectors of the covariance matrix to define a new

representation space. In this new space, the axes are identified with the principal colors, such

as red and green. The third color (blue) scales with respect to a linear function of one of the

two principal components. Then, the position of a node can be easily inferred from its color,

which is a mixture of the three principal colors. The numbers given for each node correspond

to the number of patterns for which this node was identified as BMU. In our example, the

green node on the upper left corner of the frame was identified as BMU for nine patterns.

Some nodes turn out to be “losers” as they were never BMUs; consequently, the middle panel

in Fig. 7.25 reports a “0” within these nodes.

SOM nodes can be understood as microclusters, each attracting and representing a number of

patterns. In the third frame of Fig. 7.25, KKAnalysis shows how compact these microclusters

are. For the definition of compactness, KKAnalysis uses the information stored in the U-

matrix, that is, the average of distances separating a node from the neighboring ones. These

large symbols represent compact clusters not sharply distinguished from the surrounding

ones; small ones indicate clusters with a high degree of heterogeneity. Loser nodes, for which

no measure of separation can be defined, are simply marked by a dot.

Note that Fig. 7.25 can be saved as MATLAB (*.fig) or TIF file and has the name

“ColCode_ YYYYMMDDThhmmss, where YYYYMMDD is the date (year/month/day)

and hhmmss is the time (hours/minutes/seconds). The “T” in the middle helps to see

where the data string ends and the day time information begins. Saving of graphical output

is activated with the appropriate selections in the “Settings Screen.”

The “Clustering Info” figure is related to options of KKAnalysis for cluster analysis

sensu stricto, that is, K-means, fuzzy C-means, and clustering with the adaptive
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determinant criterion for the metrics of distance (the various available clustering criteria

are shown in Fig. 7.32). It provides some basic parameters to check the quality of

achieved results, helping the user to compare various set ups and to identify the most

suitable configuration. As we shall discuss later, KKAnalysis incorporates three strategies

of cluster analysis. The first, default option is the traditional “K-Means.”

In Fig. 7.26A, we see how many patterns were assigned to the various clusters (“Number

of Patterns in Clusters”). Here a partition with three clusters is considered. Different

from the nodes of the SOM (for which we claimed the property of “topological fidelity”),

the cluster IDs do not have a numerical or topological meaning. Instead of using cluster

“1,” “2,” “3,” we could have also used “A,” “B,” “C.” KKAnalysis assigns by convention a

“1” to the biggest cluster, “2” to the second biggest, and so on.

As mentioned earlier, in partitioning nonhierarchical clustering algorithms, the number of

clusters must be chosen a priori by the user. A popular criterion for this choice is the

“DavieseBouldin Index” (DBI). KKAnalysis offers its use as an option (see the paragraph

regarding the KKAnalysis configuration, i.e., “Settings”). The DBI balances the summed

internal dispersion against distances measured among cluster centroids (external dispersion).

In doing so, we account for the trade-off between compactness of clusters (which is

optimum when dispersion is minimum) and number of clusters, which is also preferred to

be small. The most suitable partition for which the DBI is minimum is identified. Note that

when the DBI option is used, all related results make reference to this partition.

As we shall learn laterdin the context of KKAnalysis configurationdclustering can be

carried out both on the original data as well as SOM nodes. Using the K-means clustering

on the original data, one obtains a Clustering Info figure such as shown in Fig. 7.26A.

For K-means on SOM values, the Clustering Info figure looks like the example shown in

Fig. 7.26B.

The cluster ID here is given by assigning a color to the nodes of the map. Numbers given

in the single nodes correspond to the number of patterns for which a node is a BMU. A

representation like Fig. 7.26B is only available for K-means clustering on SOM data.

A further option for clustering in KKAnalysis is fuzzy C-means. Fuzzy clustering is

similar to classical, crisp K-means clustering beside the fact that the class membership of

a pattern is given by a vector of scores, stating the degree to which a pattern belongs to a

certain class or cluster. The upper frame (“Number of Patterns in Clusters”) of Fig. 7.27

resembles to the one seen for the K-means clustering, with the difference that a partition

with three clusters was adopted. The frame reports how patterns would be grouped

considering only the highest score of class membership. The second frame “Fuzzy C-

Means Clustering Quality” depicts the degree of fuzziness of the clustering. Here, 18%

have a maximum score of 0.9 or greater; 49% have maximum scores between 0.7% and
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Figure 7.26
(A) Results of K-means clustering performed on original data. Based on the DavieseBouldin

index, a partition with three clusters is identified as the most suitable. (B) Clustering Info figure
for K-means clustering on SOM data.
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0.9%; 30% reach a maximum score between 0.5 and 0.7. Eventually, 3% have a maximum

score of only 0.5 or less.

A further clustering method provided by KKAnalysis, named “CA,” is based on the use of

the adaptive distance criterion explained in Chapter 3. The optimal choice of the number

of clusters can be achieved observing Fig. 7.28. This figure may help to understand

whether the number is large enough (containing many patterns, see frame “Number of

Patterns in Clusters”) and compact at the same time (frame “Cluster Heterogeneity”).

For instance, the cluster #3 has 152 elements, and is the smallest one in the partition. Its

degree of heterogeneity is also the smallest one (1.9e-2). Clusters #1 and #2 have

somewhat larger heterogeneity (4.0e-2 and 3.4e-2), but are by far prevailing. It is expected

that the sum of all heterogeneities (“Dtot”) decreases when a partition with a higher

number of clusters is chosen. Consequently, one tends to prefer a partition with few

clusters unless a significant decrease of Dtot is obtained with more clusters. Note,

however, that these considerations furnish only very generic guidelines, whereas the final

decision on the suitable partition may include other considerations going beyond these

numbers.

Note that Figs. 7.27 and 7.28, can be saved as MATLAB (*.fig) or TIF file and have the

name “ClustInfo_YYYYMMDDThhmmss, where YYYYMMDD is the date (year/month/

day) and hhmmss is the time (hours/minutes/seconds). The “T” in the middle helps to see

Figure 7.27
Info on fuzzy clustering.
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where the data string ends and the day time information begins. Saving of graphical output

is activated with the appropriate selections in the “Settings Screen.”

On the lower part of the “Figure” frame (see Fig. 7.23C), the user has three options to

visualizedpattern by patterndthe classification results obtained from the SOM and the

various clustering methods. For the generation of Fig. 7.29, we have applied cluster

analysis using the adaptive determinant criterion. The corresponding figures obtained with

K-means clustering have the same layout and are therefore not shown. To obtain the graph

depicted in Fig. 7.29, we have applied the option “Plot of Clusters and Kohonen

ColorMap 1.” The cluster membership of each pattern can be read from the vertical

position of its colored shaped marker, whereas the color of each triangle corresponds to

the one of the BMU the pattern belongs to.

In the “Plot of Clusters and Kohonen ColorMap 2” and "Plot of Clusters and Kohonen

ColorMap 3” the same information is represented in an alternative manner. For the sake

of conciseness, we omit the details here.

The content of Fig. 7.29 and its variants are slightly modified when the clustering is

carried out with the fuzzy C-means option. The light gray bars indicate the “preferred”

class membership. In addition, dark bars represent the maximum score, that is, the

Figure 7.28
Clustering Info figure for adaptive determinant cluster analysis.
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maximum of all encountered class membership values for a pattern. It determines to which

cluster the pattern should be preferably assigned (see Fig. 7.30). The coverage of light

gray with a dark gray bar expresses the degree of fuzziness of the class membership. If the

coverage is complete, then the assignment of the class membership is crisp, that is, with

no fuzziness. Conversely, fuzziness is high where large parts of the light gray bars remain

visible. In the graphs, the patterns between #0 and #100, for instance, are assigned with a

good score to the cluster 2, that is, their membership is rather crisp. The degree of

fuzziness is substantial for some patterns belonging to the cluster 3. For example, patterns

between #660 and #710 have a maximum score of class membership slightly above 0.5,

that is, they show a high degree of fuzziness.

The colored stripe placed underneath the abscissa in Fig. 7.30 reports the full class

membership vector encountered for all patterns. The cluster IDs are represented with colors.

Each bar of this graph is composed of as many subbars as the number of clusters. Obviously,

the sum of all class membership values is 1, and the length of the subbars is proportional to

the membership rate of the patterns to the clusters. For instance, in Fig. 7.30, the largest

subbars of the first 100 patterns are blue colored, and these patterns are assigned to cluster 1.

The synoptic graphs (see Figs. 7.29 and 7.30) can be zoomed either by editing the plots with

MATLAB or by setting the interval in the “Show” panel in the “Welcome Screen”

(Fig. 7.23A). To prepare Fig. 7.31, we have applied the fuzzy C-means with three clusters,

Figure 7.29
The first of three alternatives for representing the classification results (called as “ColorMap 1").
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Figure 7.31
An example of result using the zoom function of KKAnalysis.

Figure 7.30
“Clustering Results and Kohonen ColorMap 2” obtained with fuzzy C-means clustering.
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indicating “150” and “300” as the first and the last pattern to show, respectively. In Fig. 7.31,

the color of the BMUs and the class membership values for each pattern can be clearly

recognized.

7.2.7.5 Configuring KKAnalysisdthe “settings”

KKAnalysis has been designed to be applicable to a wide variety of fields. This flexibility

entails the existence of a considerable number of parameters that govern the tasks of the

program. Clicking the “Settings” button on the “Welcome sheet,” KKAnalysis prompts the

“Settings sheet” (Fig. 7.32) with a number of configuration options shown later. Before

discussing all the various items on the configuration sheet, please note the four buttons at

the lower right corner: “Load,” “Save As,” “OK,” and “Cancel.” Running KKAnalysis for

the first time, all options are set to their default values. After choosing the various options,

click the “OK” button to start the program. Note that changes accepted with “OK” will be

valid for the current session and will be set as default choices in the following session.

The configuration can be customized to reproduce a run in a later moment. For this

purpose, press “Save As.” KKAnalysis permits to create a configuration file, which should

have the extension “*.kfg.” Using the “Load” button, it can be loaded so that the program

recovers the parameters of the desired run. Clicking “Cancel,” the user stops editing the

Figure 7.32
The “Settings” sheet of KKAnalysis.
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configuration and returns to the “Welcome window,” ignoring all changes of the

configuration that were not previously saved.

The options in the “Normalization” frame give the possibility to keep the data in a certain

range. KKAnalysis uses in this context the procedures provided by the SOM Toolbox 2.

All normalization operations are carried out considering each component (feature)

separately. In detail,

� “Variance” is the default option. The normalized values x’ are obtained with the rela-

tion: x’ ¼ (x-mean(x))/stdev(x)) where mean(x) is the average and stdev(x) is the stan-

dard deviation of x.

� “Logarithmic” is the preferred option for data with a high dynamic range. Normaliza-

tion is carried out using the formula x’ ¼ log(x � min(x) þ 1), min(x) being the

minimum of all values in the dataset.

� “Range” scales values so that x’ ranges from 0 to 1, that is, x0¼(x-min(x)/(max(x)-

min(x)), max(x) being the largest value in the dataset.

� “Logistic” uses the famous sigmoidal function: x’’ ¼ 1/(1 þ exp(-x’)). x0 is the normal-

ized value of x with respect to the standard deviation, just like in the “Variance”

normalization.

� “HistD” and “HistC” transform the metric values of x into ordinal ones, sorting them

with respect to their amount and keeping only the index (or rank). In “HistD” sorting

and ranking is carried out as is, whereas in “HistC” the ranking is carried with respect

to bins, which is faster as the number of items to be sorted is lower. As in “HistC,” the

number of bins is obtained from the up-rounded square root of the number of patterns;

consequently, the distribution of data within the bins will not be perfectly uniform. The

data falling within a certain bin are linearly scaled with respect to the lower and upper

rank boundary of the bin. For example, data in the bin 3 will be linearly transformed

such that they cover the range between 3 and 4.

The “Initialization” frame has two options: “linear” and “random.”

� The linear option is based on the eigenvalues of the covariance matrix. Having a bidi-

mensional SOM, only the two largest eigenvalues are considered. The initial weight of

each node of the SOM is obtained interpolating the two largest eigenvectors, which

represent length and width of the SOM.

� The “random” option bypasses problems when the calculation of the eigenvalues of the

covariance matrix is ill-conditioned. In this case, the initial values xi for the i-th feature

are set to rand(1)*(max(xi)-min(xi)).

The “Neighborhood” frame offers various choices on how the influence area during the

SOM training is defined, and how the upgrade of nodes neighboring a BMU is handled.

The distance dependence of the upgrade of a node is described by a function 4. The latter
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can be as follows: “Gaussian” (this implies that all nodes are considered, even having

small and gradually decreasing importance); “Cut Gaussian” (i.e., tails of the Gaussian

representing distant nodes are omitted); “Bubble” (a rectangular or box-car function, 1

inside the radius of influence, 0 outside); “Ep” (with importance decreasing proportionally

to the square of the distance).

An important issue is the “Map Size.” KKAnalysis follows the strategy applied in the

SOM toolbox 2, where the design of the map is based on the covariance matrix of the data

and its eigenvectors. The number of nodes for a “Normal” sized map is obtained

heuristically according to n_nodes ¼ 5 * n_patterns^0.54321. The ratio of the two largest

eigenvalues is used to determine the length and the width of the map. The actual side

lengths are chosen in a way that the resulting number of nodes is as close as possible to

the number of nodes calculated with the heuristic formula. The choice “Large” gives a

map with double-sided length (i.e., 4 times the number of nodes of the “Normal”);

conversely, “Small” produces a map where the side length is only 50% of a “Normal.”

KKAnalysis offers various options regarding the Shape of the map. Beside the classical

sheet, which applies well in many problems, the “Toroid” or “Cylindrical” geometry

options may be preferred when, for instance, angular data are considered. Furthermore, the

two geometries may be preferred in case of normalized feature vectors, when we focus on

the shape of an object rather than its size.

The “Lattice” can be made up either by “Hexagon(s)” or “Rectangle(s)” nodes. The

choice affects the definition of neighborhood of nodes. In a hexagon lattice, each node has

six neighbors with exactly the same distance, in a rectangle lattice only four. From a

geometrical point of view, hexagons are an optimum polygon, as one can cover a mesh

without leaving gaps, minimizing the sum of side length. The “Hexagon” option is,

therefore, proposed as default choice.

The “Training” is carried out using the batch training algorithm proposed in the SOM

Toolbox 2. Batch training means that an upgrade of the node weights is made only once

during a cycle, that is, after comparing all patterns with the nodes of the map. Conversely,

in sequential trainingdnot adopted heredweights are updated every time a pattern is

presented to the map. Benchmark tests revealed that batch training is the fastest among

other methods. The training length depends on the ratio of the number of data and nodes

of the SOM, called as mpd. Suppose a map with 100 nodes and 450 patterns in input; then

mpd ¼ 0.22. KKAnalysis carries out ceil(10 * mpd) ¼ ceil (2.2) ¼ 3 steps in ‘rough

tuning,” and ceil (40*mpd) ¼ 9 steps in “fine tuning” mode, adjusting the learning rate

first rapidly, then more slowly. Choosing “short” training, the number of steps is four

times smaller, for “long” training four times larger. The learning rate is adjusted as a

function of time following a relation l(t) ¼ l0 /(1 þ 100 t /T), T being the training length
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and l0 the initial learning rate. It is equal to 0.5 in the “rough” tuning phase and 0.05 in

the “fine” tuning phase.

The Color Code option allows the user to choose among different configurations of

heuristic color code. It permits to show the same results with different color maps. It can

be possible that some details are visible in a better way using a color code rather than

another. RGB1 is the default. The first eigenvalue and eigenvector are assigned to “Red,”

the second to “Green,” whereas “Blue” corresponds to a linear combination of the first two

eigenvalues. In the options RGB2, RGB3, and RGB4, the assignment of colors to

eigenvalues and vectors is changed in a round-robin manner. For the example shown in

this document, we have selected the “RGB4” option.

In the frame “Clustering Algorithm,” the user can choose among the classical “K-

Means”, the “CA (Adaptive Distances)” based on the adaptive determinant criterion, and

the “Fuzzy C-Means” option. All algorithms are partitioning ones; therefore, the number

of clusters has to be specified a priori in the field “Maximum Number of Clusters.” Note,

that the term “Maximum” is related to the K-means option. In this case, setting the tick in

the field “Use DavieseBouldin Index,” the clustering is carried out from two to the

number given in the field “Maximum Number of Clusters.” When the DavieseBouldin

Index is not used, KKAnalysis creates only the partition corresponding to the number of

clusters selected in the field “Maximum Number of Clusters”.

In “Clustering Source,” the user specifies whether clustering is carried out on the raw

data or using the SOM values. With the latter option, the scatter of patterns considered in

clustering may considerably reduce, which can facilitate the task. Note that with the

adaptive distance option there is the risk of ill-conditioned inverse of the dispersion

matrix, especially when the number of components is high and only a limited amount of

patterns is available.

It is possible to simplify the clustering problem reducing the dimensionality of data,

performing a principal component analysis. For this option, set a tick on “PCA Proj.

before clustering” and specify the number of principal components to be considered (field

“Comp”). Of course, the number of principal components should be less or equal to the

original number of components of the dataset or of the SOM.

In the frame “Figures,” the user can choose between the possibility of saving the produced

figures or not. In the former case, there are two available formats: TIF format guarantees

an optimum quality of the picture; FIG format allows the user to open and edit the picture

using MATLAB. Note that figure files saved in the MATLAB format are much smaller

than the corresponding TIF images.
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7.3 Programs related to applications (Chapter 4)

The codes we are presenting here exploit methods and techniques explained earlier, but

come in a fashion to be applied to large multivariate sets. In particular, these codes regard

the multilayer perceptron (MLP) and the SVM.

7.3.1 Back propagation neural network (BPNN)

The neural network presented here is a MLP with one hidden layer of nodes, in which a

hyperbolic-tangent activation function is applied. This function is similar to the sigmoidal

function mentioned in Chapter 2 and allows us in principle to solve classification problems of

arbitrary complexity. Recall that the MLP resolves the classification problem in a nonlinear

prediction. Thus, its application to both inversion and regression is straightforward, as there is

no need to adjust the architecture of the MLP to perform such tasks.

The GUI (Fig. 7.33) asks to load two files: the training data and the test data. Both

datasets have the same format. The feature vectors are given in rows, similar to the

standard used in KKAnalysis. The targets are given in tail to the feature values. Clicking

“Load,” the user can browse the filesystem and select the desired file. The user is

prompted the preliminary length of the feature vector (field “Input Layer Size”), which by

default corresponds to the total length of a row �1. The last item is reserved to the target,

at minimum 1. If there is a multiple output, for instance four targets, the user can adjust it

Figure 7.33
General input for the BPNN code.
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in the field “Output Layer Size.” Consequently, in the “Input Layer Size,” the length is the

total length of the row e number of targets (here equal to four).

Defining the “Hidden Layer Size” (the number of nodes in the hidden layer of the perceptron),

we complete the definition of the network architecture. The remaining fields are related to

operation parameters. The user must specify the “Network Error Log File” (reporting the

global training and test errors at each training cycle), the “Weights Log File” (saving the

weights encountered after a number of iterations), and the “Training Results file” where

the errors for each sample after n (n ¼ “Intermediate Saving Step”) iterations are stored.

Setting the “Random Generator Seed” (Fig. 7.34), we randomly initialize the weights. It

can be necessary to repeat the training changing the seed, as the back propagation does

not guarantee a global optimum. The “MSE” stop value puts a limit on when the iteration

should be interrupted. A defined end iteration is also warranted to be defined with the

“Max Number of Cycles.”

The learning rate is controlled by two parameters, that is, the “Init. Learning Rate” and the

“Init. Momentum.” The first parameter specifies the adjustment of the weights along the

direction of the steepest descent. The momentum represents a memory parameter, stating

that the adjustment should account the direction and amount of the rate of adjustments in

the previous steps. In this way, small local minima can be escaped, as the weight

adjustment maintains the earlier direction, even though a small inversion of the gradient is

encountered. By activating the “Autotuning,” the learning rate gradually increases as long

as the training error “L.M.S.E.” decreases; otherwise, the learning rate decreases. The

moment term behaves similarly.

Figure 7.34
Operational parameters for BPNN.
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During training, the program provides some output concerning the accuracy reached at each

cycle. The reported parameters are as follows: the learning rate (“eps”), the momentum

(“mom”), and the global errors for training and test set (“L.M.S.E.” and “T.M.S.E.,”

respectively). The graphical representation (Fig. 7.35) is certainly helpful when training

takes many cycles. “Bumpy” learning curves are often a bad sign, questioning some choices

with respect to the size of the training dataset and the number of hidden nodes.

7.3.2 SVM library

The tool presented here is based on a library for SVMs (http://www.csie.ntu.edu.tw/

wcjlin/libsvm). It is organized in the following steps:

(1) Load data and targets (Training and Test)

(2) SVM training and model creation

(3) SVM prediction of test dataset

(4) Writing output ASCII files

In the code coming along with this book, we have added a GUI that facilitates the use of the

SVM scripts. We start reading training and test data. These two datasets contain alphanumeric

values, with rows forming the feature vectors. A second pair of files adds the corresponding

labels/targets of the patterns. Using SVM as classifier, the targets can be strings; using SVM

in regression, the targets correspond to the desired output of the regression function. In that

case, the values are supposed to be numerical. In the example already considered in Chapter

4, the features regard the geochemical composition of igneous rock samples; the labels

correspond to their a priori classification following the scheme in the “Streckeisen” diagram.

For SVM training, the library offers a variety of options. These can be specified with

command lines in a script launching the classification. For the options, see Table 7.2:

The script “svmclassifier” loads features and targets of the training and test data. Results

of the SVM prediction are written to an ASCII file, here named “svm_class.txt.” The script

invokes training with the two command lines.

Figure 7.35
Graphical output during a run of BPNN.
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Table 7.2: Options for SVM classification.
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tr_opts = '-s 0 -b 1'; 
model = svmtrain(tr_lab_dou, tr_data, tr_opts);

where tr_lab_dou are the labels, and tr_data are the values of the training set (Fig. 7.36).

That means, we use an “RBF” kernel (default) and transform the scores into probabilities.

We recover the test results using the SVM for prediction. The corresponding commands in

the script are as follows:

ts_opts = '-b 1'; 
[pr_lab_dou, acc, dec_vals] = svmpredict(ts_lab_dou, ts_data, model, ts_opts);

where ts_lab_dou are the labels,and ts_data are the values of the test set.

For the results of the training set, use

[pr_lab_dou, acc, dec_vals] = svmpredict(tr_lab_dou, tr_data, model, ts_opts);

that is, carry out the SVM prediction of the training data. The overall accuracy for the

training data is ¢83%.

The script for SVM regression is similar. After loading training and test data, the script

invokes training as follows:

Figure 7.36
SVM-GUI, settings for SVM use as classifier.
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tr_opts ¼ ‘-s 3 -b 1 -t 2’;

model ¼ svmtrain(y_trdata, x_trdata, tr_opts)

and produces the results with the commands.

ts_opts ¼ ‘-b 1’;

[pr_lab_dou, acc, dec_vals] ¼ svmpredict(y_tsdata, x_tsdata, model, ts_opts)

Instead of using the earlier-mentioned command lines, the user can use the GUI deployed in

the directory “.libsvmLIB_SVM_GUIcode” and click on “SVM_GUI.m” (or “SVM_GUI.exe”

when using the compiled version). The GUI asks for training and test files as well as

corresponding targets, which can be string-type labels when SVM is used as classifier.

The labels are temporarily converted to numbers to count the columns. In the results file

“svm_class.txt,” the program reports the probability that a pattern belongs to a specific class

(see Table 7.3). Fig. 3.4 gives an example for a session where SVMs are used as classifiers.

Four files must be specified: the training set with the numerical feature, the corresponding

targets, then a test set, again with the numerical features, and the targets, which are compared

to the computed output to assess the success. The predictions for the test are written to the

output. During runtime, the program prompts some messages, such as the conversion of string

targets to integer class IDs, the command line invoked by the GUI, and finally some

information concerning the overall success. In the panel on the right, the user specifies the

operation characteristics. There is a choice between SVC (use SVM as classifier) and SVR

(for regression). In the classification option, we can further choose among “C-CVC” and so-

called nu n-SVC (here called as “nu-SVC”). Recall that in the first case one specifies the

weight of patterns falling inside the separating margins. Using the n-“nu” option, the

parameter C is replaced by a parameter n˛ ½0; 1�, which defines the lower and upper bound of
the number of examples that are support vectors and that lie on the wrong side of the

hyperplane, respectively (Chen et al., 2005). We further specify the kernel function.

Activating “shrinking” (set by default), specific operations are enabled simplifying the

optimization problem. Furthermore, we can activate the transformation of the scores into a

probability measure, as mentioned earlier. As a result, we obtain Table 7.3.

Note that we have applied the option of transforming the scores into probabilities

following the formalism given in Chapter 4, Eqs. (4.4a) and (4.4b). For the example test

set, the program reports an overall success of 77% (Fig. 7.36).

The SVM regression can be carried out by activating the “epsilon-SV” or “nu-SVR”

options. The “epsilon” version considers the width of the regression tube as explained in

Section 4.7. The GUI asks for a training file containing the features and a target file (in

regression, the values that should be predicted). The program performs a test on test

features and compares the predictions to corresponding target values.
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Table 7.3: Summary of SVM multiclass classification results (test).

Pred. Lab MaxProb. Prob.AND Prob.BAS Prob.DAC Prob.RYD Prob.RYL Prob.TAN Prob.TRA Prob.TRB

RYL 0.8740 0.0026 0.0016 0.0063 0.0990 0.8740 0.0081 0.0076 0.0009
TRA 0.8945 0.0203 0.0035 0.0110 0.0136 0.0224 0.0301 0.8945 0.0045
DAC 0.4619 0.0628 0.0037 0.4619 0.0355 0.0079 0.3805 0.0417 0.0061
AND 0.8491 0.8491 0.0292 0.0062 0.0133 0.0020 0.0919 0.0037 0.0046
RYL 0.8665 0.0053 0.0092 0.0118 0.0711 0.8665 0.0123 0.0212 0.0026
RYL 0.8753 0.0024 0.0020 0.0074 0.0998 0.8753 0.0055 0.0060 0.0017
DAC 0.8192 0.0375 0.0007 0.8192 0.1134 0.0124 0.0033 0.0130 0.0005
TAN 0.7222 0.2084 0.0273 0.0082 0.0068 0.0075 0.7222 0.0096 0.0100
TRA 0.4159 0.0907 0.1168 0.0215 0.0191 0.0357 0.2507 0.4159 0.0497
AND 0.8120 0.8120 0.0364 0.0103 0.0038 0.0025 0.1281 0.0025 0.0045
DAC 0.6807 0.1579 0.0095 0.6807 0.0922 0.0318 0.0110 0.0130 0.0039
TRB 0.6267 0.0113 0.0399 0.0037 0.0030 0.0033 0.2986 0.0136 0.6267
TRA 0.7898 0.0361 0.0027 0.0026 0.0043 0.0055 0.1483 0.7898 0.0106
AND 0.9677 0.9677 0.0120 0.0032 0.0020 0.0012 0.0086 0.0027 0.0026
TRA 0.9199 0.0213 0.0017 0.0061 0.0035 0.0142 0.0309 0.9199 0.0025
BAS 0.8260 0.0429 0.8260 0.0080 0.0083 0.0120 0.0472 0.0177 0.0379
RYL 0.8873 0.0033 0.0025 0.0061 0.0858 0.8873 0.0072 0.0065 0.0013
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7.4 Miscellaneous

For the sake of the reader’s convenience, we also provide some codes and scripts

mentioned in Chapters 4 and 5, not directly related to pattern recognition but propaedeutic

for the applications discussed in these chapters.

7.4.1 DMGAdgenerating ground deformation, magnetic and gravity data

The inversion of geophysical model parameters using MLP is based on the generation of

training and test datasets using synthetic simulations. In this case, our target vector Y is

given by the geophysical model parameters, for which we simulate the data vector X. To

allow the readers to conduct their own experiments, we provide the software DMGA. The

program follows essentially Nunnari et al. (2001). Here we explain a few, essential steps

using the software. Starting DMGA, the user sees the prompt

For new users, the best option is “6,” that is, generate a prototype for input file. This file

looks like this

Figure 7.37
GUI for SVM regression.
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The program generates data vectors using random variations of the model parameters. We

set a seed (of integer type) to initialize the random generator, and specify how many data

vectors may be created; these can be used in the application of the MLP (e.g., the back
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propagation neural network (BPNN) program mentioned earlier) in inversion. The

simulated annealing parameters control the options for the global optimization. The

“simman.ref” (or some other file specified by the user) contains the reference data vector

that the optimization tries to match; “simman.out” is the file in which the inverted model

parameters are written; “simman.rnd” is a control file for checking the random number

(not of specific interest here). The next two lines regard the control parameters for the

simulated annealing and when to stop the optimization (i.e., “Target error”).

The following lines regard the model parameters of a dike, together with the range of

variation during the random generation of the model parameters. We specify the average

length L with range DL, and the average width W with range DW. The values xx, yy, and

zz indicate the location of the dike center, while the values in the second column are their

range of variation. We then need azimuth, crack opening, and Poisson’s ratio. The next

four parameters regard the parameters in the Murakami model for the electrokinetic effect;

the second column always reports the range of variation

s1 ¼ streaming coefficient upper side

s2 ¼ streaming coefficient lower side (given in S[iemens]/m)

m ¼ magnetic permeability (N[ewton]/A[mpere]2, or H[enry]/m. Typically m ¼ 1.26e-

6 H/m.

S ¼ source (in V)

Finally, we specify the density contrast of the intruding material with respect to the

surrounding rock, indicate the number of stations, and add the x and y coordinates of each

site.

As an exercise, one may use the parameter file given in Chapter 4, Table 4.6. We

recommend the use of SI units (the gravitation constant in the program is specified in SI);

an example is reported in the following (Table 7.4).

Table 7.4: Example of parameter settings for random simulations in DMGA.

Crack length (m) 5000 �4000
Crack width (m) 2000 �2000

Longitude (UTM) (m) 0 �10,000
Latitude (UTM) (m) 0 �10,000

Depth(m) 5000 �4000
Azimut (deg) 0 �90
Dip (deg) 90 �50

Crack opening (m) 2 �1
Poisson’s ratio 0.25 �0.0

Density contrast (kg/m3) 300 �100
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Specify the coordinates of the network x and y in meters. “16” gives the number of

stations.

Now we load an input file and get the menu below. In addition, typing “1” we can load an

existing input file. We can use options from “2” to “5” to modify our input, and then save

the modified model parameters. “7” is important for the generation of a reference data

vector for option “10” (simulated annealing). Invoking option “10,” the user will be asked

for such a file. Together with the data vector, it contains the physical model parameters for

its generation.

Option “8” is used for the generation of a set of data vectors, which can be directly used

for network training and testing. We create a large number of data vectors by setting a

large number of random simulations. It is a good idea to split the file in hindsight into test
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and training set to warrant that all the feature vectors are normalized in the same way.

Output data and parameters are written all in a column; therefore, use the script “reshape”

to transform it into a format that can be imported directly to BPNN. Two versions of the

output files are provided. The file without extension reports normalized values in a range

[�1.0, 1.0] both for the simulated geophysical data as well as the model parameters. At

the tail of the file, the user will find maximum ranges of the model parameters

encountered during the simulations. Discard them when passing the data to BPNN. Note

that the normalization of the geophysical data is nonlinear (see Chapter 4, Appendix 4.1).

For the sake of documentation, a second *.tmp file is created reporting the absolute values

of both synthetic geophysical values and the model parameters.

Option “11” is used for purposes of plotting. The user is asked to define a 2D field,

specifying the number of nodes and spacing in x (horizontal, or “easting”) and y direction

(vertical, or “northing”). The plot files can be directly imported to standard graphical

software, for example, the Microsoft “Surfer” programs.

7.4.2 Treating fault plane solution data

Fault plane solution data discussed in Chapter 5 are given in a format shown below:

40.96 19.67 10.00 4 70 e167 270 78 -21 2.330 23 R199701121210A.

40.82 19.67 10.00 2 65 e177 270 87 -25 1.460 23 R199701191942A.

41.40 14.63 10.00 280 27e110 122 65 -80 7.700 22 R199703192310A.

33.96 8.29 10.00 66 44 89 247 46 91 3.770 23 R199703201802A.

The first three columns give the hypocenter coordinates, columns 4e9 report strike, dip,

and rake of the two planes, columns 10 and 11 give the scalar moment (dyn cm) (mantissa

and exponent as a power of 10). Finally, the string starting with “R..” gives the origin time

of the event. Here, we are interested only in the columns 4e9, columns 1e3 may be of

interest for the creation of the plots showing the geographical distribution of the beach

balls. As explained in Chapter 5, moment tensor components are preferred to the angles.

The small routine “mom” can be used for the transformation of the angles into moment

tensors. The user can enter the angles manually or create a list like the one shown below:

282 23 119

95 37 63

89 48 60

..

Software manuals 311



Type “mom <list >out”, which produces a file “out” containing the conversions from

angles to moment tensor components.

Strike, Dip, Lambda �999 to end

dMxx, dMxy, dMxz

�6.790006E-01 4.510440E-02 6.870698E-01

dMyy, dMyz, dMzz

4.985183E-02 -3.101986E-01 6.291487E-01

Strike, Dip, Lambda �999 to end

dMxx, dMxy, dMxz

�8.025405E-01 -3.434316E-01 -2.130597E-01

For the use in KKAanlysis, the comment lines “Strike, Dip, Lambda .,” “dMxx.”, “dMyy

.” must be deleted.

In Chapter 5, KKAnalysis was applied to moment tensor components. The plots showing

the geographical position of the fault planes solutions were created using the “General

Mapping Tools” (downloaded from https://www.soest.hawaii.edu/gmt/), in particular the

“psmeca” command. Note that “psmeca” uses the fault plane solutions given as angles. A

file reporting the necessary information looks like this.

Columns 1e3 are the hypocenter coordinates (longitude E, latitude N, depth), and

columns 4e9 are the angles.

The plot can be obtained, for instance, by typing

psmeca RGB_blue90.txt eN -Jm0.5 -R5.0/25.0/30.00/48.0 -Sc2.5 -W1/0/0/0 -Gblack

-Fa0.05c/cc -P eO >> test_7.ps

which considers a file “RG-blue90.txt”; “-Jm0.5” means a standard meridional projection

around a central meridian of 0.5; “-R5.0..” defines west/east longitude and south/north

latitude shown in the map; “Sc2.5” controls the size of the beach balls; “-W..” controls the

option of the pen; “-Gblack” means that the compressive fields of the beach-balls are filled

in black; with “Fa0.05c/cc we define how P- and T-axes are represented. In addition, “-O”

means that we append to an existing postscript image, “-N” means that symbols outside

the area (defined by the “-R..” frame) are not skipped. Further information can be found in

the documentation of psmeca.
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For showing the coastlines, we used first the command

pscoast.exe -Jm0.5 -R5.0/25.0/30.0/48.0 -B0.5 -Dh -G230/188/143 -S205/238/252

-Wblack -K > test_7.ps

before the psmeca command. “-S..” controls the filling of the wet areas, “-G..” the filling

of land. “-K” allows the user to add more information to the plot, for instance, applying

“psmeca” discussed earlier.
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Blaser, L., Ohrnberger, M., Krüger, F., Scherbaum, F., 2012. Probabilistic tsunami threat assessment of 10
recent earthquakes offshore Sumatra. Geophysical Journal International 188 (3), 1273e1284.

Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), 2004. Mt. Etna: Volcano
Laboratory, Geophys. Monogr. Ser., vol. 143. AGU, Washington, D.C. https://doi.org/10.1029/GM143,
369 pp.

Boore, D.M., Atkinson, G., 2008. Ground-motion prediction equations for the average horizontal component of
PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24,
99e138.

Borradaile, G., 2003. Statistics of Earth Science Data. Their Distribution in Time, Space and Orientation.
Spriner, Berlin-Heidelberg, 351 pp.

Bradley, J.V., 1968. Distribution-free Statistical Tests. Prentice-Hall, 388 pp.
Budetta, G., Carbone, D., 1995. Improvement and assessment of gravity networks on Etna, 2nd Interim Report.

In: ETNATECH e the Shallow Magmatic Plumbing System at Etna: Method and Technique Development
for Spatial and Temporal Evolution, pp. 14e21.

Bulow, R.C., Johnson, C.L., Bills, B.G., Shearer, P.M., 2007. Temporal and spatial properties of some deep
moonquake clusters. Journal of Geophysical Research 112, E09003. https://doi.org/10.1029/2006JE002847.

Bussian, A.E., 1983. Electromagnetic conductance in porous media. Geophysics 48, 1258e1268.
Campbell, C., Ying, Y., 2011. Learning with Support Vector Machines. Morgan and Claypool Publishers, ISBN

978-1-60845-616-1, 95 pp.
Cannata, A., Montalto, P., Privitera, E., Russo, G., 2009. Characterization and location of infrasonic sources in

active volcanoes: Mt. Etna, SeptembereNovember 2007. Journal of Geophysical Research 114. https://
doi.org/10.1029/2008JB006007.

316 Bibliography

https://doi.org/10.1007/978-1-4757-045-1
https://doi.org/10.1029/GM143
https://doi.org/10.1029/2006JE002847
https://doi.org/10.1029/2008JB006007
https://doi.org/10.1029/2008JB006007


Cannata, A., Montalto, P., Aliotta, M., Cassisi, C., Pulvirenti, A., Privitera, E., Patanè, D., 2011. Clustering and
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Köppen-Geiger scheme
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