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Preface

In general we look for a new law by the following process: First we guess

it. Then we compute the consequences of the guess to see what would be

implied if this law that we guessed is right. Then we compare the result

of the computation to nature, with experiment or experience, compare it

directly with observation, to see if it works. If it disagrees with experiment

it is wrong. In that simple statement is the key to science.

| Richard P. Feynman, The Character of Physical Law

Nonlinear inverse problems are common in science and engineering. In fact the quotation

from Feynman shows clearly that the process of discovering physical laws is itself an inverse

problem.

What is an inverse problem? Subtraction is the inverse of addition. Division is the

inverse of multiplication. Root is the inverse of power. Given the answer (say, the number

4) �nd the question (2+2 = ? or 8/2 = ? or
p
16 = ?). This last example (commonly

seen in the game of Jeopardy) is most important since it is clear that the same answer (i.e.,

the data) could come from many questions (e.g., models and methods of analysis) | and

therefore it is not surprising that a degree of ambiguity (sometimes a very high degree of

ambiguity) is an inherent part of most realistic inverse problems. Physical scientists are

used to thinking about situations that lead to equations with unique solutions. Because of

the traditional training they receive, most scientists are very uncomfortable with mathemat-

ical problems that do not have unique solutions. Yet both quantum mechanics and chaos

theory provide numerous examples of real experiments (e.g., the double slit experiment and

weather) where ambiguities are typically encountered. The subject of inverse problems is

another realm where lack of uniqueness commonly occurs. Methods of dealing with the

ambiguities therefore play a vital | if not quite central | role in our analysis.

How do we solve an inverse problem? In general, we use the prescription described by

Feynman: guess, compute, compare. But one more element is added in the inverse problems

we discuss: feedback. When searching for physical laws, we make a guess, compute the

consequences, and compare with experiment. If the comparisons are unfavorable, then we

have learned that our �rst guess is bad, but we may not have any constructive procedure for

vii



PREFACE 1

generating a better guess. In contrast, when trying to solve problems in nonlinear inversion

and tomography, we often think we know the physical laws (i.e., the general equations

governing the processes), but we may not know the precise values of the parameters in

the equations. In such circumstances, it may be possible to make use of the observed

discrepancies between the measured and computed results to adjust the parameters and,

thereby, obtain improved guesses in a systematic way. This process of feeding the errors

back to help produce a better set of parameters for the starting equation then becomes

the paradigm for nonlinear inversion algorithms. In some cases it may happen that one

feedback step is su�cient; in others many iteration steps may be needed to achieve the

desired agreement between model and data.

James G. Berryman

Danville, CA

January, 1994
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Chapter 1

Introduction to the Traveltime

Inversion Problem

Our main topic is seismic traveltime inversion in 2- and 3-dimensional heterogeneous media.

A typical problem is to infer the (isotropic) compressional-wave slowness (reciprocal of

velocity) distribution of a medium, given a set of observed �rst-arrival traveltimes between

sources and receivers of known location within the medium. This problem is common for

crosswell seismic transmission tomography imaging a 2-D region between vertical boreholes

in oil �eld applications. We also consider the problem of inverting for wave slowness when

the absolute traveltimes are not known, as is normally the case in earthquake seismology.

In this Introduction, we de�ne most of the general terminology we will use throughout

our analysis.

1.1 Wave Slowness Models

When a sound wave or seismic wave is launched into a medium, it takes time for the in
uence

of the wave to progress from a point close to the source to a more distant point. The time

taken by the wave to travel from one point of interest to the next is called the traveltime.

For a medium that is not undergoing physical or chemical changes during the passage of the

sound, the wave has a de�nite speed with which it always travels between any two points in

the medium. We call this speed the average wave speed or wave velocity. We can also de�ne

a local wave speed associated with each point in the medium by considering the average

wave speed for two points that are very closely spaced. The local slowness is the inverse of

the local wave speed. It is most convenient to develop inversion and tomography formulas

in terms of wave slowness models, because the pertinent equations are linear in slowness.

We consider three kinds of slowness models. Sometimes we allow the slowness to be a

general function s(x) of the position x. However, we often make one of two more restrictive

assumptions that (i) the model comprises homogeneous cells (in 2-D), or blocks (in 3-D),

with sj then denoting the slowness value of the jth cell, or blocks. Or (ii) the model is

composed of a grid with values of slowness assigned at the grid points together with some

interpolation scheme (bilinear, trilinear, spline, etc.) to specify the values between grid

points. Of course, as cells/blocks become smaller and smaller (down to in�nitesimal), we

3



4 CHAPTER 1. INTRODUCTION:

can think of cells/blocks of constant slowness as a special case of continuous models, or of

continuous models as a limiting case of cells/blocks.

When it is not important which type of slowness model is involved, we refer to the

model abstractly as a vector s in a vector space S. For a block model with n blocks

we have S = Rn, the n-dimensional Euclidean vector space. (R denotes the set of real

numbers.) A continuous slowness model, on the other hand, is an element of a function

space, e.g., S = C(R3), the set of continuous functions of three real variables. No matter

how we parameterize the model, we should always keep in mind that, for real materials, our

models necessarily have far fewer parameters than the actual medium they are intended to

represent. Thus, our models are analogous to cartoon drawings of public �gures, trying to

capture the main features with the minimum of detail.

1.2 Fermat's Principle and Traveltime Functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting

the source and receiver. To make this more precise, we will de�ne two functionals1 for

traveltime.

Let P denote an arbitrary path connecting a given source and receiver in a slowness

model s. We will refer to P as a trial ray path. We de�ne a functional �P which yields the

traveltime along path P . Letting s be the continuous slowness distribution s(x), we have

�
P (s) =

Z
P
s(x) dlP ; (1.1)

where dlP denotes the in�nitesimal distance along the path P .

Fermat's principle [Fermat, 1891; Goldstein, 1950; Born and Wolf, 1980] states that the

correct ray path between two points is the one of least overall traveltime, i.e., it minimizes2

�
P (s) with respect to path P .

Let us de�ne �� to be the functional that yields the traveltime along the Fermat (least-

time) ray path. Fermat's principle then states

�
�(s) = min

P2Paths
�
P (s); (1.2)

where Paths denotes the set of all continuous paths connecting the given source and

receiver.3 The particular path that produces the minimum in (1.2) is denoted P
�. If

more than one path produces the same minimum traveltime value, then P
� denotes any

particular member in this set of minimizing paths.

Substituting (1.1) into (1.2), we have Fermat's principle of least time:

�
�(s) =

R
P � s(x) dl

P �

= minP
R
P s(x) dl:

P (1.3)

1A functional is a function which maps a function space or a vector space to the set of real numbers.
2Fermat's principle is actually the weaker condition that the traveltime integral is stationary with respect

to variations in the ray path, but for traveltime inversion using measured �rst arrivals it follows that the

traveltimes must be minima.
3The notation P 2 Paths means that P is a member of the set Paths.
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Figure 1.1: Snell's law gives the path of least traveltime from point A to point B. Other

paths shown are: least distance through medium 1, least distance through medium 2, and

least total distance.

The traveltime functional ��(s) is stationary with respect to small variations in the path

P
�(s).

1.3 Snell's Law

Snell's law is a consequence of Fermat's principle [Born and Wolf, 1980]. This result can be

derived using a simple geometric argument based on stationarity of the traveltime functional,

illustrated in Figures 5.1 and 5.2. The well-known result is

s1 sin �1 = s2 sin �2, (Snell's law) (1.4)

where �1 and �2 denote the angles of the ray path from the normal to the boundary that

separates the two regions.

A thorough discussion of the physical signi�cance of Fermat's principle and its relation

to Snell's law may be found in The Feynman Lectures [Feynman, Leighton, and Sands,
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1963]. Relations to the principle of least action and Hamilton-Jacobi theory are discussed

by Goldstein [1950], Boorse and Motz [1966], and Born and Wolf [1980]. An interesting and

less technical account is given by Gleick [1993].

The main point to be made here is that Snell's law is special. There are various assump-

tions that go into the derivation such as: the points A and B are far from the boundary,

the two media on either side of the boundary are homogeneous with constant isotropic

slowness, etc. For general imaging problems, the underlying media may be very complex

and it may not be convenient to apply Snell's law. A standard ray tracing method may fail

in some circumstances, so it is preferable to consider more robust methods of determining

approximate ray paths and traveltimes. Such methods will be discussed in some detail in

Chapter 5.

1.4 Seismic Inversion and Tomography

Suppose we have a set of observed traveltimes, t1, : : : , tm, from m source-receiver pairs

in a medium of slowness s(x). Let Pi be the Fermat ray path connecting the ith source-

receiver pair. Neglecting observational errors, we can writeZ
Pi

s(x) dlPi = ti; i = 1; : : : ;m: (1.5)

Given a block model of slowness, let lij be the length of the ith ray path through the

jth cell:

lij =

Z
Pi\cellj

dl
Pi
: (1.6)

Given a model with n cells, Eq. (1.5) can then be written

nX
j=1

lijsj = ti; i = 1; : : : ;m: (1.7)

Note that for any given i, the ray-path lengths lij are zero for most cells j, as a given ray

path will in general intersect only a few of the cells in the model. Figure 1.2 illustrates ray

path segmentation for a 2-D cell model.

We can rewrite (1.7) in matrix notation by de�ning the column vectors s and t and the

matrix M as follows:

s =

0BBB@
s1

s2
...

sn

1CCCA ; t =

0BBB@
t1

t2
...

tm

1CCCA ; M =

0BBB@
l11 l12 � � � l1n

l21 l22 � � � l2n
...

...
. . .

...

lm1 lm2 � � � lmn

1CCCA : (1.8)

Equation (1.7) then becomes the basic equation of forward modeling for ray equation anal-

ysis:

Ms = t: (1.9)
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Figure 1.2: Schematic illustration of ray paths through a cell slowness model.

Note that equation (1.9) may be viewed as a numerical approximation to equation (1.3), i.e.,

it is just a discretized form of the equation. We will study equation (1.9) at great length.

Equation (1.9) may be used for any set of ray paths, whether those ray paths minimize

(1.3) or not. If the ray paths used to form the matrixM actually are minimizing ray paths,

then we should keep in mind that M is then implicitly a function of s.

The methods developed apply to both two-dimensional and three-dimensional imaging

applications. We use the term inversion for either 2-D or 3-D applications. When discussing

only 2-D applications, we will use the term tomography. The pre�x tomo is Greek for slice

and therefore implies a 2-D reconstruction. Similarly, the cells in 2-D are sometimes called

pixels since they are 2-D picture elements, while the cells or blocks in 3-D are sometimes

called voxels since they are 3-D volume elements. Thus, traveltime tomography reconstructs

the slowness values in model pixels (or cells), while traveltime inversion reconstructs the
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values in model voxels (or blocks or cells).

1.5 Backprojection for Bent Rays

The term backprojection will be used to mean a one-step approximate inversion scheme to

solve (1.9) for the slowness vector s.

The physical idea behind backprojection is this: If we have measured a traveltime ti
along the ith ray-path and we know the total path length along that path is Li =

Pn
j=1 lij,

then the path-average slowness along the ray path is

hsii =
ti

Li
=

R
Pi
s dl

PiR
Pi
dl
Pi
: (1.10)

The ith ray path passes through the jth cell if lij > 0 and misses the cell if lij = 0. An

estimate of the slowness in cell j can be obtained by �nding the mean of the path-average

slownesses hsii for all the rays that do traverse the jth cell. This averaging process is

backprojection: accumulating (summing) all the path-averages and then dividing by the

total number of contributions.

We can formalize this procedure by introducing the sign function such that sgn(lij) = 1

if lij > 0 and sgn(lij) = 0 if lij = 0. Then, the total number of ray paths passing through

the jth cell is Nj =
Pm

i=1 sgn(lij), and the mean slowness is

sj ' N
�1
j

mX
i=1

sgn(lij)
ti

Li
: (1.11)

We call (1.11) the formula for elementary backprojection. Variations on this formula are

explored in the Problems.

The formula (1.11) provides a fast but inaccurate estimate of the cell slowness, based

on available data. The formula is so simple that it can easily be evaluated by hand or

using a pocket calculator, whereas the more accurate methods of inverting for slowness (see

Chapter 4) are not really practical unless modern computational facilities are available.

There are many possible modi�cations of the physical arguments for backprojection for-

mulas. Each new choice seemingly leads to a new estimate, showing that the interpretation

of these estimates is ambiguous and these methods should not be used for work requiring

high accuracy reconstruction. For example, suppose that the slowness in cell j is determined

by a weighted sum of the products lijti. This approach seems to be an improvement over

the preceding one, since it still accounts for our expectation that the ith ray path should

not contribute to the estimate if lij = 0 but in addition weights a ray path more heavily

when it samples more of the cell. The formula then becomes

sj '
mX
i=1

wilijti; (1.12)

where some choice of the weights wi must be made. Substituting (1.12) into (1.9), we �nd

that

nX
j=1

lijsj =

mX
k=1

wk

0@ nX
j=1

lijlkj

1A
tk ' ti: (1.13)
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Our initial choice of the form of the weights was too simple to allow a rigorous solution to

be developed this way, but an approximate solution is obtained by choosing

wi =

0@ nX
j=1

l
2
ij

1A�1
: (1.14)

De�ning a diagonal matrix D whose diagonal elements are given by

Dii = (MMT )ii =

nX
j=1

l
2
ij ; (1.15)

we see that (1.12) and (1.14) lead to the estimate

s ' D
�1
MT t: (1.16)

This result is not so simple as the formula (1.11) for elementary backprojection, but the

implied computations are still manageable without using very sophisticated computers.

Formulas (1.11), (1.16), and numerous variations are all backprojection formulas. As

we attempt to compute accurate inverses, these backprojection formulas will frequently

reappear as the starting point of rigorous iteration schemes.

Problems

Problem 1.5.1 De�ne the hit matrix H such that Hij = sgn(lij) and the diagonal matrices

N such that Njj =
Pm

i=1 sgn(lij), and L, such that Lii =
Pn

j=1 lij . Show that (1.11) is

equivalent to

s ' N�1HTL�1t:

Problem 1.5.2 Elementary backprojection can be applied either to wave slowness as in

(1.11) or to wave velocity. Then,

vj =
1

sj
' N

�1
j

mX
i=1

sgn(lij)
Li

ti
: (1.17)

It is a general result that the harmonic mean of a set of numbers fxig (given by x�1harm =

N
�1PN

i=1 x
�1
i ) is always less than or equal to the mean (xmean = N

�1PN
i=1 xi), i.e.,

xharm � xmean: (1.18)

Use this result to determine a general relation between the backprojection formulas (1.11)

and (1.17).
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Problem 1.5.3 Consider an elementary backprojection formula based on weighting the av-

erage ray slowness hsii = ti=Li with respect to the path length lij { instead of with the cell

hit factor sgn(lij). Show that an alternative to (1.11) is then given by

s ' C�1MTL�1t; (1.19)

where C is the diagonal matrix whose diagonal elements are given by Cjj =
Pm

i=1 lij. De�ne

a corresponding estimate for the velocity, then use (1.18) to obtain a relation between these

two estimates. Using (1.19), show that

mX
i=1

(Ms)i =

mX
i=1

ti;

demonstrating that this backprojection formula is an unbiased estimator (i.e., average pre-

dicted traveltime agrees with average measured traveltime). What can be said about the bias

of the backprojection formula for velocity?

Problem 1.5.4 Construct a backprojection formula by supposing that the slowness may be

determined in the form

sj '
mX
i=1

wilij
ti

Li

and by �nding a useful set of weights wi. Compare the resulting formula to (1.16).

1.6 Di�raction Tomography and Full Waveform Inversion

Geophysical di�raction tomography [Devaney, 1983; Harris, 1987; Wu and Toks�oz, 1987;

Lo, Duckworth, and Toks�oz, 1990] consists of a collection of methods including Born [Born,

1926; Newton, 1966] and Rytov [Rytov, 1937; 1938; Keller, 1969; Born and Wolf, 1980]

inversion that make use of full waveform information in seismic data. An example of real

crosswell transmission data is shown in Figure 1.3. Successful inversion of real data has

also been performed using both microwave and ultrasonic di�raction tomography [Tabbara,

Duchêne, Pichot, Lesslier, Chommeloux, and Joachimowicz, 1988]. Instead of using only the

�rst arrival traveltimes as the data in the inversion, amplitude and phase in the waveform

following the �rst arrival are used. It is necessary to use full waveform information whenever

the wavelengths of the probing waves are comparable in size to the anomalies present in the

region to be imaged. The ray approximation is strictly valid only for very high frequencies

or equivalently for wavelengths \small" compared with the size of the anomalies (there will

be a discussion of the eikonal equation in a Chapter 5). The term \small" is subject to

interpretation, but extensive experience with the asymptotic analysis of wave propagation

problems [Bleistein, 1984] has shown that, if the largest wavelength found in bandlimited

data is �max, then the ray approximation is valid when the anomalies are of size ' 3�max

or larger. If this relationship is violated by the tomographic experiment, then di�raction

tomography should play an important role in the reconstruction.
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Figure 1.3: Example of real data for crosswell seismic tomography showing the result of a

single fan beam with a source at 700 feet in one borehole and receivers spaced 10 feet apart

in the other hole. (Courtesy of CONOCO Inc.)
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Di�raction tomography is both more and less ambitious than traveltime tomography. As

it exists today, di�raction tomography is a strictly linear tomography method. A starting

model is required. The usual starting model is a constant, because this method requires

a comparison between predicted wave �elds (planewaves for a constant background) and

the measured wave �elds. If a nonconstant starting model is used, then \distorted wave"

di�raction tomography may be applied to the di�erences between the computed complex

wave �eld and the measured wave �eld. In either case, it is possible to prove convergence

of di�raction tomography to a solution of the inversion problem if the comparison wave

�eld di�ers by a small enough amount from the measured wave �eld. Thus, di�raction

tomography is one type of linear tomography| although in this case the \rays" may not be

straight, it is still linear in the mathematical sense that the perturbations from the starting

model must be very small in some sense. So di�raction tomography is less ambitious than

traveltime tomography in the sense that it is inherently limited to be linear tomography.4

On the other hand, di�raction tomography is more ambitious than traveltime tomog-

raphy, because it tries to make use of more of the information contained in the measured

seismic waveforms. There are serious problems involved with this process, because ampli-

tude information can be ambiguous. It is well known that wave attenuation, scattering,

three-dimensional geometrical spreading, mode conversion, and re
ection/transmission ef-

fects can all mimic each other | producing similar e�ects in the waveform. Thus, to be

successful, di�raction tomography must achieve the ambitious goal of solving all of these

problems simultaneously for real data. To date, most of the work in di�raction tomography

has been limited to two-dimensional inversions and the most successful applications have

used ultrasound for medical imaging or microwaves for imaging metallic reinforcements in

concrete.

I view di�raction tomography and full waveform inversion as challenging long-term

goals. The wave slowness results obtained from our traveltime tomography analysis may

be used as the required starting model for \distorted wave" di�raction tomography. So the

potential bene�ts of di�raction tomography provide an additional motivation for improving

traveltime inversion and tomography.

1.7 Linear vs Nonlinear Inversion and Tomography

We now de�ne three problems in the context of Eq. (1.9). Each of these problems will be

studied at some length in this book.

In the forward problem, we are given s; the goal is to determine M and t. This en-

tails computing the ray path between each source and receiver (e.g., using a ray tracing

algorithm) and then computing the traveltime integral along each path.

In linear tomography or inversion problems, we are given M and t; the objective is

to determine s. The assumption here is that the ray paths are known a priori, which is

justi�ed under a linear approximation that ignores the dependence of the ray paths on the

slowness distribution. Typically, the ray paths are assumed to be straight lines connecting

4An iterative method for di�raction tomography has been proposed recently by Ladas and Devaney

[1991]; a nonlinear least-squares approach to full waveform inversion has been proposed by Tarantola and

Valette [1982] and Tarantola [1984]. Such methods are \nonlinear" in the sense used here.
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sources and receivers, adding a second connotation to the term linear. Linear tomography

is commonly practiced in medical imaging and in many geophysical situations as well.

In nonlinear tomography or inversion problems, we are given only t (along with the

source and receiver locations); the goal is to infer s, and (for most of the methods considered)

incidently M. In this problem, the dependence of ray paths on the slowness distribution

strongly in
uences the design of the inversion algorithm. Nonlinear inversion is required for

problems with signi�cant slowness variations across the region of interest, including many

seismic inversion problems. The ray paths in such media will show large curvature (i.e., be

nonlinear) which cannot be known before the inversion process begins.

Linear tomography and inversion problems can be solved approximately using backpro-

jection techniques (see Section 1.5). Linear inversion problems can also be solved more

accurately using a variety of optimization techniques. In the standard least-squares method

(see Section 3), for example, the normal solution for s is expressed analytically as

ŝ = (MTM)�1MT t; (1.20)

assuming the matrix inverse exists. If the inverse does not exist, then (1.20) must be

regularized. Typically, regularization is accomplished by adding a positive matrix to MTM

and replacing the singular inverse in (1.20) by the inverse of the modi�ed matrix.

For nonlinear inversion, an iterative algorithm is generally needed to �nd an approximate

solution ŝb. The basic structure of such an algorithm (see Figure 1.4) is as follows:

1. Set ŝb to a given initial model (a constant or the previously best-known geological

model).

2. Compute the ray-path matrix M and traveltimes t̂b for ŝb and set �t = t� t̂b.

3. If �t is su�ciently small, output ŝb and stop.

4. Find a model correction c�s as the solution to the linear inversion problem: Mc�s =
�t.

5. Update ŝb to the new model obtained by adding the model correction c�s to the

previous model ŝb.

6. Return to Step 2.

This algorithm looks very reasonable and in fact sometimes it actually works! But not

always. For models with low slowness contrasts, the algorithm will converge to a sensible

result. When the method fails, the failure mode is usually a divergence to a highly oscillatory

model. Ad hoc procedures to reduce the possible range of slowness values and to guarantee

a high degree of smoothness in the reconstructed model have commonly been introduced to

deal with this instability. Such smoothness constraints come from external considerations

(like the class of models in which we want the solution to lie), not from the data. But a

really satisfactory method of stabilizing the iteration scheme based on information in the

data itself has been lacking.

Analyzing the algorithm, we see that there are really only two signi�cant calculations

contained in it. Step 2 is just the solution of the forward problem for ŝb. This step should not
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introduce any instability, since it can be performed essentially as accurately as desired (if

the computing budget is large enough and the computers fast enough). Step 4, on the other

hand, is a linear inversion step imbedded in a nonlinear algorithm. We should be skeptical

of this step. Linear inversion implicitly assumes that the updated model (after adding the

model correction) is not so di�erent from the previous model that the ray-path matrix M

should change signi�cantly from one iteration to the next. If this implicit assumption is

violated, then this step is not justi�ed, and steps 4 and/or 5 in the algorithm must be

modi�ed.

Feasibility analysis supplies a set of rigorous physical constraints on the reconstruction

process. Experience has shown that constraints on smoothness or limits on the maximum

and minimum values of the model are generally not needed if feasibility constraints are

applied.

In the Chapters that follow, these problems will be analyzed in some detail, and several

methods of stabilizing the nonlinear inversion problem will be developed.
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Figure 1.4: Iterative algorithm for traveltime inversion.
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Chapter 2

Feasibility Analysis for Traveltime

Inversion

The idea of using feasibility constraints in nonlinear programming problems is well es-

tablished [Fiacco and McCormick, 1990]. However, it has only recently been realized that

physical principles such as Fermat's principle actually lead to rigorous feasibility constraints

for nonlinear inversion problems [Berryman, 1991]. The main practical di�erence between

the standard analysis in nonlinear programming and the new analysis in nonlinear inversion

is that, whereas the functions involved in nonlinear programming are often continuous, dif-

ferentiable, and relatively easy to compute explicitly, the functionals in nonlinear inversion

(e.g., the traveltime functional) need not be continuous or di�erentiable and, furthermore,

are very often comparatively di�cult to compute. Feasibility constraints for inversion prob-

lems are implicit, rather than explicit.

We present the rigorous analysis here in a general setting, because it is actually quite

easy to understand once we have introduced the concepts of convex function and convex

set. This analysis is important because it will help to characterize the solution set for the

inversion problem, and it will help to clarify questions about local and global minima of the

inverson problem.

2.1 Feasibility Constraints De�ned

Equation (1.5) assumes that Pi is a Fermat (least-time) path and leads to the equalities

summarized in the vector-matrix equation Ms = t. Now let us suppose instead that Pi is

a trial ray path which may or may not be the least-time path. Fermat's principle allows us

to write Z
Pi

s(x)dlPi � ti; (2.1)

where now ti is the measured traveltime for source-receiver pair i. When we discretize (2.1)

for cell or block models and all ray paths i, the resulting set ofm inequalities may be written

as

Ms � t: (2.2)

17
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Figure 2.1: Feasible part of the model space is determined implicitly by the feasible part of

the data space.

Equations (2.1) and (2.2) can be interpreted as a set of inequality constraints on the

slowness model s. When s obeys these m constraints, we say that s is feasible. When any

of the constraints is violated, we say s is infeasible. The set of inequalities collectively will

be called the feasibility constraints.

The concept of the feasibility constraint is quite straightforward in nonlinear program-

ming problems [Fiacco and McCormick, 1990] whenever the constraints may be explicitly

stated for the solution vector. However, in our inversion problems, an additional com-

putation is required. Figure 2.1 shows that the feasibility constraints are explicit for the

traveltime data vector, but they are only implicit (i.e., they must be computed) for the

slowness vector. This added degree of complication is unavoidable in the inversion prob-

lem, but nevertheless it is also very easily handled computationally with only very minor

modi�cations of the usual nonlinear inversion algorithms.

2.2 Quick Review of Convexity

Here we de�ne some mathematical concepts [Hardy, Littlewood, and P�olya, 1934] which

will facilitate the discussion and analysis of feasible models. In the following, let S denote

a linear vector space.

Definition 2.2.1 (convex set) A set A � S is convex if, for every s1; s2 2 A and every

number � 2 [0; 1], we have �s1 + (1� �)s2 2 A.1

Examples of convex sets are

1
A � S means A is a subset of S.
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Figure 2.2: Examples of convex and nonconvex sets.

1. R (the real numbers).

2. R+ (the positive real numbers).

3. The positive n-tant Rn
+; i.e., the set of n-dimensional vectors whose components are

all positive.

4. C+(R
3) (the set of positive, continuous functions, s(x) > 0, where x 2 R3).

5. A closed interval [a; b] in R.2

6. A hyperplane in Rn; i.e., vectors s obeying cT s = 
 where c is a vector and 
 is a

scalar.3

7. The interior of a circular disk in 2-space; i.e., points (x; y) obeying

(x� a)2 + (y � b)2 < c
2

for real a, b and c.

2[a; b] means the set of numbers x such that a � x � b.
3T used in a superscript means to take the transpose of a vector or a matrix.
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We note that Rn
+ (example 3) de�nes the set of n-dimensional block slowness models such

that the slowness of each cell is a positive number. C+(R
3) (example 4) is the space of

positive, continuous 3-D slowness distributions.

Proposition 2.2.1 If A1 and A2 are convex sets, then A1 \ A2 is a convex set.4

Proof: If A1 \A2 is empty, it is convex by default (one cannot �nd s1, s2 and � which

disobey the de�nition).

Assume the intersection is not empty and let s = �s1 + (1 � �)s2 for some 0 � � � 1

and s1; s2 2 A1 \ A2. Since A1 and A2 are each convex, we must have s 2 A1 and s 2 A2.

Consequently, s 2 A1 \ A2.

Definition 2.2.2 (cone) A set A � S is a cone if, for every s 2 A and every number


 > 0, we have 
s 2 A.

Examples 1{4 of convex sets given above are also examples of cones. We infer that the

set of positive slowness models (block or continuous) is convex and conical (a convex cone).

Definition 2.2.3 (linear functional) The functional f :S ! R is linear if, for all

s1; s2 2 S and real numbers �1, �2, we have5

f(�1s1 + �2s2) = �1f(s1) + �2f(s2): (2.3)

Considering �1 = �2 = 0, note that a linear functional necessarily vanishes at the origin.

We will also need to consider the broader class of functionals that are linear except for a

shift at the origin.

Definition 2.2.4 (shifted linear functional) The functional f :S ! R is shifted lin-

ear if the functional

g(s) � f(s)� f(0) (2.4)

is linear.

Definition 2.2.5 (convex functional) Let A be a convex set in S. A functional f :A!
R is convex if, for every s1; s2 2 A and number � 2 [0; 1], we have

f(�s1 + (1� �)s2) � �f(s1) + (1� �)f(s2): (2.5)

Definition 2.2.6 (concave functional) A functional f is concave if (�f) is convex.

Definition 2.2.7 (homogeneous functional) Let A be a cone in S. A functional

f :A! R is homogeneous if, for every s 2 A and 
 > 0, we have

f(
s) = 
f(s): (2.6)

4
A1 \ A2 denotes the intersection of sets A1 and A2 (i.e., the set of elements common to both sets).

5f :S ! R means: the function f which maps each element of the set S to an element of the set R.
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Figure 2.3: Examples of convex, concave, and nonconvex functionals.

It should be clear that every linear functional is also convex, concave, and homogeneous.

Problems

Problem 2.2.1 Is the union of two convex sets convex? Give an example.

Problem 2.2.2 Decide whether the following sets are convex:

1. the interior of a cube;

2. the interior of a tetrahedron;

3. the interior of a rectangular prism;

4. any compact region in n-dimensional vector space, all of whose boundaries are hyper-

planes;

5. the interior of an ellipsoid;

6. the interior of an n-dimensional sphere;

7. the interior of two partially overlapping spheres;

8. the interior of a boomerang;

9. the cheesy part of a swiss cheese;

10. the interior of any object having a rough surface.
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Problem 2.2.3 If c is an arbitrary n-vector, which of the following functionals is linear

in s?

1. cT s;

2. ssTc;

3. (s� c)T (s� c).

Problem 2.2.4 Show that a linear functional is convex, concave, and homogeneous.

Problem 2.2.5 Is a shifted linear functional convex, concave, and/or homogeneous?

Problem 2.2.6 Are all cones convex? If not, give an example of a nonconvex cone.

2.3 Properties of Traveltime Functionals

Proposition 2.3.1 �
P is a linear functional.

The proof of this stems from the fact that integration is a linear functional of the

integrand. Since it is linear, it follows that �P is also convex, concave, and homogeneous.

Proposition 2.3.2 �
� is a homogeneous functional.

Proof: Given 
 > 0 we have

�
�(
s) = min

P
�
P (
s): (2.7)

Using the linearity of �P ,

�
�(
s) = min

P

�

P (s) = 
min
P

�
P (s) = 
�

�(s): (2.8)

Proposition 2.3.3 �
� is a concave functional.

Proof: Given slowness models s1 and s2 and � 2 [0; 1], let s = �s1+ (1� �)s2. Letting
P
�(s) be the Fermat ray path for s, we have

�
�(s) = �

P �(s)(s): (2.9)

The linearity of �P then implies

�
�(s) = ��

P �(s)(s1) + (1� �)�P
�(s)(s2): (2.10)

Since �� minimizes �P for any �xed model, it must be the case that �P
�(s)(s1) � �

�(s1) and
similarly for s2. Further, � and (1� �) are non-negative. Therefore, (2.10) implies

�
�(s) � ��

�(s1) + (1� �)��(s2): (2.11)
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2.4 Feasibility Sets

Given the set of observed traveltimes, ti for i = 1, : : : , m, we de�ne two sets of models:

Definition 2.4.1 (local feasibility set) The local feasibility set with respect to a set

of trial ray paths P = fP1; : : : ; Pmg and observed traveltimes t1, : : : , tm is

FP = fs j �Pi (s) � ti; for all i = 1; : : : ;mg: (2.12)

Definition 2.4.2 (global feasibility set) The global feasibility set with respect to the

observed traveltimes t1, : : : , tm is

F� = fs j ��i (s) � ti; for all i = 1; : : : ;mg: (2.13)

Now we show that the concavity of �Pi and ��i implies the convexity of FP and F�.

Theorem 2.4.1 FP is a convex set.

Proof: Suppose s1; s2 2 FP and let s� = �s1 + (1 � �)s2 where 0 � � � 1. Since, for

each i, �Pi is a concave (actually linear) functional, we have

�
P
i (s�) � ��

P
i (s1) + (1� �)�Pi (s2): (2.14)

(Although equality applies in the present case, the \greater than or equal to" is important

in the next proof.) But �Pi (s1); �
P
i (s2) � ti and � and (1� �) are non-negative. Therefore,

�
P
i (s�) � �ti + (1� �)ti = ti: (2.15)

Thus, s� 2 FP .

Theorem 2.4.2 F� is a convex set.

The proof proceeds in analogy with the previous proof, with ��i replacing �Pi , but the

inequalities come into play this time.

The next theorem follows easily from an analysis of Figure 2.1.

Theorem 2.4.3 Given any model s, there exists a �nite scalalr 
� > 0 such that 
s 2 F�

for all 
 � 

�.

Proof: Let



� = max

k2f1;:::;mg

tk

�
�
k (s)

: (2.16)

For any i, ��i is homogeneous, implying

�
�
i (


�s) = 

�
�
�
i (s) = �

�
i (s)max

k

tk

�
�
k (s)

� �
�
i (s)

ti

�
�
i (s)

= ti: (2.17)
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Figure 2.4: The de�ning conditions for the feasible and infeasible parts of the model space

and the boundary separating them.

We see that 
�s satis�es all the feasibility constraints, so it is in F�, and so is 
s for any


 > 

�.

We can decompose F� into two parts: its boundary and its interior. The boundary of

F�, denoted @F�, comprises feasible models s which satisfy some feasibility constraint with

equality, i.e.,

@F� = fs 2 F� j ��i (s) = ti; for some ig: (2.18)

Models in the interior of F�, denoted IntF� = F� � @F�, satisfy all constraints with

inequality:

IntF� = fs 2 F� j ��i (s) > ti; for all ig: (2.19)

These characteristics of the feasible set are illustrated in Figure 2.4.

Problems

Problem 2.4.1 Prove that F� is convex.
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Problem 2.4.2 De�ne another type of feasibility set R by

R = fs j
mX
i=1

�
�
i (s) �

mX
i=1

tig:

Is R convex? What is the relationship between this set and the other ones de�ned in this

section? (Larger or smaller set?) [relaxed constraints]

Problem 2.4.3 Consider the velocity vector space related to the slowness vector space

through the nonlinear transform v = (1=s1; 1=s2; : : : ; 1=sn). Suppose there is some reason

to expect that all models solving our inversion problem should lie in a part of the velocity

vector space satisfying the hyperplane constraint given by

V = fv j dTv � �g;

where � is some positive constant and d is a nonnegative vector. Now, let V 0 be the set of

slownesses corresponding to

V 0 = fs j v 2 Vg

and de�ne the slowness overlap set

D = V 0 \ F�
:

Assuming that the set D is not empty, is it convex?

2.5 Convex Programming for Inversion

We �rst de�ne convex programming for �rst-arrival traveltime inversion. Then we present

some basic theorems about convex programming in this context.

Definition 2.5.1 Let �(s) be any convex functional of s. Then the convex nonlinear pro-

gramming problem associated with � is to minimize �(s) subject to the global feasibility

constraints ��i (s) � ti, for i = 1; : : : ;m.

Definition 2.5.2 Let

	P(s) =
mX
i=1

wi[�
Pi
i (s)� ti]

2 (2.20)

for some positive weights fwig and some set of ray paths P = fP1; : : : ; Pmg. Then, the

convex linear programming problem associated with 	P is to minimize 	P(s) subject to the

local feasibility constraints �Pii (s) � ti, for i = 1; : : : ;m.

Theorem 2.5.1 Every local minimum s� of the convex nonlinear programming problem

associated with �(s) is a global minimum.
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Theorem 2.5.2 Every local minimum s� of the convex linear programming problem asso-

ciated with 	P(s) is a global minimum.

Proof: This proof follows one given by Fiacco and McCormick [1990]. Let s� be a local
minimum. Then, by de�nition, there is a compact set C such that s� is in the interior of

C \ F� and

�(s�) = min
C\F�

�(s): (2.21)

If s is any point in the feasible set F� and 0 � � � 1 such that s�� � �s� + (1 � �)s is in

C \ F�, then

�(s) �
�(s��)� ��(s�)

1� �

�
�(s�)� ��(s�)

1� �

= �(s�): (2.22)

The �rst step of (2.22) follows from the convexity of � and the second from the fact that s�

is a minimum in C \ F�. Convexity of F� guarantees that the convex combination s�� lies

in the feasible set. This completes the proof of the �rst theorem.

The proof of the second theorem follows that of the �rst once we have shown that the

function 	P is convex. Consider a term of 	P

[�
Pi
i (�s1 + (1� �)s2)� ti]

2 = [��
Pi
i (s1) + (1� �)�

Pi
i (s2)� ti]

2

= �[�
Pi
i (s1)� ti]

2 + (1� �)[�
Pi
i (s2)� ti]

2

��(1� �)[�
Pi
i (s1)� �

Pi
i (s2)]

2

� �[�
Pi
i (s1)� ti]

2 + (1� �)[�
Pi
i (s2)� ti]

2
:

Then, if s� = �s1 + (1� �)s2,

	P(s�) � �	P(s1) + (1� �)	P(s2); (2.23)

so 	P is a convex function.

Thus, linear inversion is a convex programming problem. These results show further

that, if we could �nd a convex functional of slowness s pertinent to the nonlinear inversion

problem, then the nonlinear programming problemwould be easy (i.e., proofs of convergence

become trivial), because there would be no local minima. However, this analysis does not

guarantee the existence of such a functional, nor do we know how to construct such a

functional even if we suppose one exists. It remains an open question whether an appropriate

convex functional for nonlinear seismic inversion can be found.

I expect this question to remain open for a long time, but nevertheless challenge the

reader to prove me wrong in this prediction.



Chapter 3

Least-Squares Methods

We consider solutions to the inversion problem for block models. Given a set of weights

wi > 0, i = 1, : : : , m, we de�ne the functional 	�:S ! R by

	�(s) =
mX
i=1

wi [�
�
i (s)� ti]

2
: (3.1)

	�(s) measures the degree of mis�t between the observed data and traveltimes predicted

by the model s. 	� is the nonlinear least-squares functional since it uses the full travel-

time functional �� in the error calculation. The linear least-squares functional was de�ned

previously in (2.20).

3.1 Normal Equations

The standard least-squares problem is a simpli�ed version of (3.1) with all weights equal

to unity and the traveltime functional replaced by its linear approximation Ms for a cell

model. Then, the squared error functional is

	(s) = (t�Ms)T (t�Ms): (3.2)

The minimum of this functional is found by di�erentiating with respect to the value of the

slowness in each cell. At the minimum, all these derivatives must vanish, so

@	

@sj
= 2

h
MT (t�Ms)

i
j
= 0; (3.3)

for all j = 1; : : : ; n. Thus, (3.3) implies the slowness at the minimum of (3.2) satis�es

mX
i=1

nX
k=1

lij likŝk =

mX
i=1

lijti for j = 1; : : : ; n; (3.4)

or equivalently that

MTMŝ =MT t: (3.5)

27
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There are n equations for the n unknowns sj , sinceM
TM is an n�n square and symmetric

matrix.

These equations are known as the normal equations for the solution ŝ of the standard

least-squares problem. If the number of data m exceeds the number of cells n in the

discretized model so m > n, we say the discretized inversion problem is overdetermined.1 If

the the number of cells n exceeds the number of data m so m < n, we say the discretized

inversion problem is underdetermined. The normal equations may be used in either case,

but the form of the resulting solution is substantially di�erent. We generally assume that

the inversion problem is overdetermined, but there may still be situations where we want to

use only a small part of the available data to make corrections to the slowness model; then

the resulting problem is equivalent to the underdetermined version of the normal equations.

General methods for solving (3.5) will be discussed in Chapter 4.

Problems

Problem 3.1.1 Use the chain rule to show that the minimum of a least-squares functional

occurs at the same model whether we use slowness or velocity as the variable.

Problem 3.1.2 An experimental con�guration has m source-receiver pairs and the region

to be reconstructed is modeled using n cells, so the ray-path matrixM is m�n. Suppose that
p independent measurements of the traveltimes have been made, resulting in p traveltime

m-vectors t1; : : : ; tp. Then, the inversion problem can be formulated as0BBB@
M

M
...

M

1CCCA s =
0BBB@
t1
t2
...

tp

1CCCA :

Show that the normal equations for this problem become

MTMs =MT hti ;

where hti = 1
p

Pp
q=1 tq. Explain the signi�cance of this result.

3.2 Scaled Least-Squares Model

Definition 3.2.1 (scaled least-squares model) The scaled least-squares model with

respect to a given model s0, and set of weights wi, is the model ŝLS[s0] minimizing 	� subject
to the constraint that s = 
s0 for 
 > 0. Thus

	�(ŝLS[s0]) = min



	�(
s0): (3.6)

1Recall that the underlying physical problem is essentially the reconstruction of a continuous function

from �nite data, so this continuous reconstruction problem is always grossly underdetermined.
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The scaled least-squares model associated with s0 is unique.

To solve for the scaled least-squares model, we expand 	�(
s0) as

	�(
s0) =
X
i

wi[�
�
i (
s0)� ti]

2 (3.7)

=
X
i

wi�
�
i (
s0)

2 � 2
X
i

witi�
�
i (
s0) +

X
i

wit
2
i : (3.8)

Using the homogeneity of ��i , we can write

	�(
s0) = 

2
X
i

wi�
�
i (s0)

2 � 2

X
i

witi�
�
i (s0) +

X
i

wit
2
i : (3.9)

This is simply a second-order polynomial in 
 and achieves its minimum at 
 = 
LS[s0],

where


LS[s0] =

P
i witi�

�
i (s0)P

i wi�
�
i (s0)

2
: (3.10)

Thus

ŝLS[s0] = s0

P
i witi�

�
i (s0)P

i wi�
�
i (s0)

2
: (3.11)

Theorem 3.2.1 For any s0, ŝLS[s0 ] =2 IntF�.

Proof: We have from (3.10)


LS[s0]

mX
i=1

wi�
�
i (s0)

2 =

mX
i=1

witi�
�
i (s0); (3.12)

or, given the homogeneity of ��i ,

mX
i=1

wi�
�
i (s0)[�

�
i (ŝLS[s0])� ti] = 0: (3.13)

Since the wi and values of �
�
i are positive, this can only be true if either �

�
i (ŝLS[s0]) = ti for all

i (i.e., ŝLS[s0] 2 @F
� and is an exact solution to the inversion problem) or if ��i (ŝLS[s0]) < ti

for at least one i (i.e., ŝLS[s0] =2 F�). Thus, the scaled least-squares model cannot be in

IntF�.
This important result shows that

a scaled least-squares slowness model can never be a strictly interior point of

the global feasible set.

The only way for a scaled least-squares point to be in the feasible set is for it to be on

the boundary and then only if it solves the inversion problem.
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We can write the scaled least-squares model in matrix notation as follows. Let W be

the diagonal matrix formed from the positive weights wi:

W =

0BBB@
w1

w2
. . .

wm

1CCCA : (3.14)

Further, let M0 be the ray-path matrix computed from s0. Thus, ��i (s0) = [M0s0]i. In

matrix notation, (3.10) becomes


LS[s0] =
sT0M

T
0Wt

sT0M
T
0WM0s0

; (3.15)

implying

ŝLS[s0] = s0
sT0M

T
0Wt

sT0M
T
0WM0s0

: (3.16)

Problem

Problem 3.2.1 If ŝLS[s0] is de�ned in terms of the linear least-squares functional 	P in-

stead of 	�, is there a result corresponding to Theorem 3.2.1 for this model?

3.3 Nonlinear Least-Squares Models

Definition 3.3.1 (least-squares model) A least-squares model, with respect to weights

wi, is a vector ŝLS which minimizes 	�, i.e.,

	�(ŝLS) = min
s

	�(s): (3.17)

The least-squares model may be nonunique. Nonuniqueness is expected when m < n, i.e.,

there are fewer traveltime data than model cells, or when m > n and the ray-path matrix

has a right null space containing ghosts g. The most common method of picking the \best"

least-squares solution [Penrose, 1955b] is to choose the one of minimum Euclidean norm.

This \best" solution has some nice properties as we shall see when we discuss ghosts in

tomography, but it may not represent the \best" solution to the inversion problem.

Theorem 3.3.1 ŝLS =2 IntF�.

Proof: This theorem follows from the fact that ŝLS = ŝLS[ŝLS ], i.e., a least-squares

model is the scaled least-squares model with respect to itself (or otherwise there would be

a model yielding smaller 	�).

Any nonlinear least-squares solution is infeasible unless it solves the inver-

sion problem, in which case it lies on the boundary of the feasible set.
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The preceding proof is entirely adequate to establish the infeasibility of the least-squares

point. However, it may be enlightening to present a second proof based on stationarity of

the ray paths.

Consider the deviation of the least-squares functional induced by a small change in the

model:

�	� = 	�(s+ �s)�	�(s) =
mX
i=1

wi [�
�
i (s+ �s)� ti]

2 �
mX
i=1

wi [�
�
i (s)� ti]

2
: (3.18)

This equation may be rearranged without approximation into the form

�	� = 2

mX
i=1

wi [�
�
i (s+ �s)� �

�
i (s)] [(�

�
i (s+ �s) + �

�
i (s))=2� ti] : (3.19)

For small slowness perturbations �s, the �rst bracket in the sum of (3.19) is clearly of

order �s, while any contributions of order �s in the second bracket are therefore of second

order and may be neglected. If dl�i [s] is the in�nitesimal increment of the (or a) least-time

ray along path i for s, then

�
�
i (s+ �s)� �

�
i (s) =

Z
(s+ �s) dl�i [s+ �s]�

Z
s dl

�
i [s]: (3.20)

Recall that stationarity of the ray paths near the one of least time implies thatZ
s dl

�
i [s+ �s] =

Z
s fdl�i [s] + d�l

�
i g '

Z
s dl

�
i [s]; (3.21)

where d�l�i is the perturbation in the in�nitesimal increment dl�i [s] of the ray path induced

by the fact that dl�i [s+ �s] is the one for the perturbed model and therefore generally2 only

slightly di�erent from that for s. Using (3.21) in (3.20), we �nd that

�
�
i (s+ �s)� �

�
i (s) '

Z
�s dl

�
i [s+ �s] '

Z
�s dl

�
i [s] (3.22)

to lowest order in �s. Thus, (3.19) becomes

�	� = 2

mX
i=1

wi

�Z
�s dl

�
i [s]

�
[��i (s)� ti]: (3.23)

Equation (3.23) is the expression needed to construct the functional (Frech�et) derivative of

	�. If s produces the minimum of 	�(s), then the functional derivative should vanish. We

see that the weights wi are positive, the coe�cient of �s is the integral of the increment of

the ray path itself in the regions of change which is strictly positive, and if the the traveltime

function ��i (s)� ti � 0 as is required for all i in order for the model s to be feasible, then

the derivative cannot vanish and therefore s is not the minimum. This contradiction shows

again that either the minimum of the traveltime function must be infeasible, or it must

solve the inversion problem.

Problem

Problem 3.3.1 Determine whether there is a result analogous to Theorem 3.3.1 for the

linear least-squares functional 	P .
2There are pathological cases where a small change in the model s can induce a large change in the ray

path, but we will ignore this possibility for the present argument.
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Figure 3.1: Schematic illustration of deamped least squares analysis.

3.4 Damped Least-Squares Model

Let C be a diagonal (coverage) matrix formed from the positive weights cj:

C =

0BBB@
c1

c2
. . .

cn

1CCCA : (3.24)

The cjs may be treated here as arbitrary positive weights, but a de�nite choice of the cjs

will be found later.

Definition 3.4.1 (damped least-squares model) The damped least-squares model with

respect to a given model s0, and set of weights wi; cj , is the model ŝLS[s0 ;�] minimizing

	�(s) + �(s� s0)TC(s� s0): (3.25)

[Levenberg, 1944]

Like the scaled least-squares model, the damped least-squares model is unique.

We can solve for the damped least-squares model based on a linear approximation to the

traveltime functionals. Given the model s0, let P
0
i denote the least-time ray paths through

s0. Then, to �rst order in s� s0 we have

�
�
i (s) ' �

P 0
i

i (s): (3.26)

This approximation yields

	P(s) = (t�M0s)
TW(t�M0s); (3.27)

where M0 is the ray-path matrix obtained from the ray paths P 0
i .



CHAPTER 3. LEAST SQUARES 33

Using the �rst-order approximation, the damped least-squares model becomes

ŝLS[s0;�] = s0 + (MT
0WM0 + �C)�1MT

0W(t�M0s0): (3.28)

This equation can be rearranged to show that

�C(ŝLS[s0;�] � s0) =MT
0W(t�M0ŝLS[s0;�]): (3.29)

Then, we obtain the following two theorems:

Theorem 3.4.1 If s0 =2 FP0
, then the model ŝLS[s0 ;�] de�ned in (3.28) does not solve the

inversion problem for any � > 0.

Theorem 3.4.2 If s0 =2 FP0

, then ŝLS[s0;�] =2 F
P0

.

Proof: The proofs are by contradiction.

First, suppose that ŝLS[s0;�] solves the inversion problem soM0ŝLS[s0;�] � t. Then, (3.29)

shows that ŝLS[s0;�] = s0 (if � > 0) soM0s0 � t. But this result contradicts the assumption

that s0 =2 FP0
so ŝLS[s0;�] does not solve the inversion problem if s0 is infeasible.

Second, suppose that ŝLS[s0;�] is feasible (i.e., M0ŝLS[s0 ;�] � t and, using the previous

theorem, we may exclude the possibility that it solves the inversion problem so in fact

M0ŝslss0; � > t), then it follows from the positivity of all the matrix elements in (3.29)

that ŝLS[s0 ;�] � s0. But, if s0 is infeasible so (M0s0)i < ti for some i, then it also follows

that (M0ŝLS[s0;�])i < ti for the same i so ŝLS[s0 ;�] is infeasible, which contradicts the original

feasibility supposition on ŝLS[s0 ;�].

To paraphrase the results, \we cannot get there from here." If we start our computation

at any local infeasible point, we cannot get to a solution or to any local feasible point using

the damped least-squares method. These results are very strong because they show the

infeasibility of ŝLS[s0;�] holds for any value of the damping parameter � > 0 and also for

any choice of the weight matrix C. In fact, damped least-squares always leads to a biased

estimate:

unless the starting point s0 already solves the inversion problem, the damped

least-squares solution never solves the inversion problem for any � > 0.

Practical application of damped least-squares requires a de�nite choice of the damping

parameter �. Some methods for choosing its magnitude will be explored in the problems

and also in the section discussing linear inversion algorithms (Section 4). Types of damping

more general than the norm damping considered in (3.24) will also be discussed.

Problems

Problem 3.4.1 Assume that s0 solves the inversion problem except for a scale factor 
,

i.e.,

M
s0 = t:

Show that the damped least-squares solution with s0 as the starting model does not solve the

inversion problem for any � > 0 unless 
 = 1.
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Problem 3.4.2 Assume the starting point s0 is not a stationary point of 	�(s). Then,

show that the damped least-squares point always gives a function value less than that of the

starting point, i.e., that this point satis�es

	�(ŝLS[s0;�]) < 	�(s0):

[Hint: Show that 	�(ŝLS[s0;�]) + �(ŝLS[s0;�] � s0)
TC(ŝLS[so;�] � s0) � 	�(s0).] Thus, the

squares of the residuals will be reduced. [Levenberg, 1944]

Problem 3.4.3 If ŝLS[s0;0] is the standard least-squares solution, show that

(ŝLS[s0 ;�] � s0)
TC(ŝLS[s0;�] � s0) < (ŝLS[s0 ;0] � s0)

TC(ŝLS[s0;0] � s0):

[Hint: Show that 	�(ŝLS[s0;0]) � 	�(ŝLS[s0 ;�]).] Thus, the weighted sums of the squares of

the model corrections is less than that for the standard least-squares problem. [Levenberg,

1944]

Problem 3.4.4 Consider the model correction �sd = s� ŝ as a function of the damping

parameter �, where

(MTM+ �I)�sd =MT (t�Mŝ) � �sg: (3.30)

The angle � between the damped least-squares solution �sd and the negative of the least-

squares functional gradient �sg is determined by

cos � =
�sTg�sd

jj�sgjj jj�sdjj
:

Show that

1. cos � ! 1 as �!1;

2. cos � ! 0 as �! 0 if MTM is singular.

Use these results to characterize (3.30) as an interpolation formula. [Marquardt, 1963]

Problem 3.4.5 Suppose that traveltime measurements have been repeated K times, result-

ing in the set of data vectors t(k) for k = 1; : : : ;K. Form the data matrix

T = ( t(1) t(2) � � � t(K) )

and the associated solution matrix

S = ( s(1) s(2) � � � s(K) ) :

Also, introduce the noise matrix N de�ned by

N = T�MS = �T�M�S;
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where the correction matrices �T and �S are de�ned similarly by column vectors �s(k) �
s(k) � s and �t(k) � t(k) �Ms. The correlation matrices are then de�ned by

Css = �S�ST ; Ctt = �T�TT
; Cnn = NNT

;

Cst = �S�TT
; Cnt = N�TT

; Cns = N�ST ;

etc. Suppose that Cns ' 0 ' Csn (i.e., these correlation matrices are essentially negligible

compared with the others) so the noise is uncorrelated with the solution. Then, show the

following:

1. Cnn ' Ctn;

2. Cnn = Ctt �MCst � CtsMT +MCssMT ;

3. Cts 'MCss;

4. Ctt =MCst + Cnt.

Show that the best linear unbiased estimate (BLUE) of the solution based on the data set k

is

ŝ(k) = CstC�1tt t
(k) (3.31)

and that

CstC�1tt ' CssMT
�
MCssMT + Cnn

��1
:

Contrast this result with the damped least-squares method assuming that the correlation

matrix Cnn is diagonal. The result (3.31) is known as the \stochastic inverse" [Franklin,

1970; Jordan and Franklin, 1971].

3.5 Physical Basis for Weighted Least-Squares

So far we have treated the weights wi as if they are arbitrary positive constants. But are

they arbitrary? If they are not arbitrary, then what physical or mathematical feature of

the inversion problem determines the weights?

Our goal is ultimately to solve (if possible) the nonlinear inversion problem, so we must

keep in mind that the arguments often given for determining the weights in weighted least-

squares schemes in other contexts may not be relevant to our problem. In particular, these

weights are very often chosen on the basis of statistical (uncorrelated) errors in the data.

The assumption behind these choices may be very good indeed in some cases, but generally

not in the nonlinear inversion problem. Our working hypothesis for this analysis is that

the major source of error in nonlinear inversion is not the measurement error, but the error

due to the erroneous choices of ray paths currently in use in the algorithm. The statistical

errors in the data become a signi�cant issue only after we have constructed a reliable set

of ray paths so that the errors due to wrong ray paths are smaller than the errors in the
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traveltime data. In fact, for high contrast reconstructions, it may be the case that the errors

in the traveltime data are only a small fraction of one percent while the errors introduced

by erroneous choices of ray paths are on the order of several percent, or even more in

pathological cases.

We envision a two step process. First, we solve the inversion problem iteratively to �nd

a good set of ray paths. This step requires the weighting scheme described here. Second,

once we have a reliable set of paths, the weighting scheme can be changed to take proper

account of the statistical errors in the data.

Now we use physical arguments to construct a proper set of weights [Berryman, 1989].

Suppose that the traveltime data in our reconstruction actually come from a model that

is homogeneous, i.e., with constant slowness �0. What will be the characteristics of such

data? Clearly, the rays will in fact be straight and the average wave slowness along each

ray will be the same constant

�0 =
t1

L1
=

t2

L2
= � � � =

tm

Lm
; (3.32)

where

Li =

nX
j=1

lij: (3.33)

Furthermore, it follows that the constant value of slowness is also given by the formula

�0 =

Pm
i=1 tiPm
i=1Li

: (3.34)

This problem is an ideal use for the scaled least-squares approach presented earlier. We

know the ray paths are straight, so we know the ray-path matrix M. We also know that

the slowness has the form s = 
v, where vT = (1; : : : ; 1) is an n-vector of ones. We want

to minimize the least-squares error

	(
v) = (t�M
v)TW(t�M
v) (3.35)

with respect to the coe�cient 
. The minimum of (3.35) occurs for

vTMTW(t�M
v) = 0: (3.36)

Solving for 
 gives

�0 = 
 =
vTMTWt

vTMTWMv
: (3.37)

For easier comparison of (3.37) and (3.34), we now introduce some more notation. De�ne

the m-vector of ones uT = (1; : : : ; 1). Then,

Mv = Lu (3.38)

and

MTu = Cv; (3.39)
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where L is a diagonal m�m length matrix whose diagonal elements are the row sums ofM

given by (3.33) and C is a diagonal n � n matrix whose diagonal elements are the column

sums of M given by

Cjj =

mX
i=1

lij : (3.40)

In our later analysis, we will see that the matrix C (which we call the coverage matrix) is

a good choice for the second weight matrix in damped least-squares (3.24).

Now we see that (3.37) can be rewritten in this notation as

�0 =
uTLWt

uTLWLu
; (3.41)

while (3.34) becomes

�0 =
uT t

uTLu
: (3.42)

Comparing (3.41) to (3.42), we see that these two equations would be identical if

WLu = u: (3.43)

Equation (3.43) states that u is an eigenvector of the matrix WL with eigenvalue unity.

Two choices for the productWL are

WL = I; (3.44)

where I is the identity matrix and

WL = L�1MC�1MT
: (3.45)

The choice (3.45) is undesirable because it leads to a weight matrix that is not positive

de�nite which would lead to spurious zeroes of the least-squares functional. The choice

(3.44) leads to

W = L�1; (3.46)

which is both positive de�nite and diagonal.

The full signi�cance of the result (3.46) becomes more apparent when we consider that

the traveltime data t = �t + �t will generally include some experimental error �t. If we

assume the data are unbiased and the number of source/receiver pairs is su�ciently large,

then to a good approximation we should have uT�t = 0. The result (3.41) can be rewritten

as


 =
aTL�1t

aTu
; (3.47)

where a = LWLu may be treated for these purposes as an arbitrary weighting vector. For


 to be unbiased, we must have

aTL�1�t = uT�t = 0: (3.48)
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Since the �ts are otherwise arbitrary, we must have

u = L�1a =WLu; (3.49)

which is the same condition as that found in (3.43). Thus, the choice (3.46) produces the

simplest weight matrix giving a linear unbiased estimator of the scale factor for a constant

slowness model. In Section 7.2, we derive weights producing unbiased estimates for arbitrary

slowness.

Weighting inversely with respect to the lengths of the ray paths can be justi�ed on

physical grounds using several di�erent arguments [Frank and Balanis, 1989]. Signal-to-

noise ratio is expected to be better on shorter paths than longer ones, since the overall

attenuation will typically be smaller and the likelihood of missing the true �rst arrival

therefore smaller. Shorter trial paths are more likely to correspond to real paths that

remain completely in the image plane for two-dimensional reconstruction problems.

A disadvantage of using this weighting scheme is that sometimes the ray path is long

because the source and receiver are far apart (e.g., from the top of one borehole to the

bottom of the other). Yet the information contained in the ray is important because such

diagonal rays may help to determine the horizontal extent of some feature of interest, espe-

cially when the experimental view angles are severely limited as in crosswell tomography.

Weighting inversely with respect to the ray-path length tends to reduce the possibly signi�-

cant improvement in horizontal resolution that can come from inclusion of these rays. This

disadvantage can be circumvented to some extent by using more of these diagonal rays, i.e.,

using more closely spaced sources and receivers for the diagonal rays. Then, the weights of

the individual rays are smaller, but their overall in
uence on the reconstruction can still be

signi�cant.

In Section 4.3, we show that an argument based on stability and regularization leads to

the same choice of weight matrices.

3.6 Partial Corrections Using Backprojection

Suppose we have found a solution ŝ of the overdetermined (m > n) normal equations

MTMŝ =MT t; (3.50)

but this solution does not satisfy the data exactly so

Mŝ 6= t: (3.51)

Then, we argue that a correction �s could be added to ŝ and the correction should satisfy

M�s = �t � t�Mŝ: (3.52)

Now suppose further that for some subset of the ray paths either �ti = 0, or we are satis�ed

for some other reason with the agreement between the predicted and measured data (e.g.,

j�tij � � for some small threshold �, or ray path i corresponds to a feasible ray path

with �ti � 0). Then, we may want to make corrections using only the ray paths that are
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considered unsatisfactory. We renumber the ray paths so the unsatisfactory ones are the

�rst m0 of the m total paths and suppose m0
< n. Next we rewrite (3.52) as

M0�s = �t0; (3.53)

where M0 is an m
0 � n matrix and �t0 is the corresponding m0-vector of unsatisfactory

traveltime errors. The problem of solving for the �sjs is underdetermined as stated.

We can solve (3.53) using a type of backprojection. We argue that the correction vector

component �sj should be a sumwhose terms are proportional to lij (so that rays not passing

through cell j make no contribution) and it should be a linear combination of the traveltime

errors �ti. However, these corrections should also be made in a way that minimizes the

overall e�ect on the agreement already attained in (3.50). One way to do this approximately

is to weight inversely with respect to the cell coverage Cjj; then, the cells with the most

coverage will change the least and therefore the result should have the smallest e�ect on

(3.50). This argument results in a general form for the correction

�sj = C
�1
jj

m0X
k0k

lk0jwk0k�tk; (3.54)

where wk0k is some weight matrix to be determined by substituting (3.54) into (3.53). On

making the substitution, we �nd that

nX
j=1

m0X
kk0

�
lijC

�1
jj lk0j

�
wk0k�tk = �ti; (3.55)

which implies that

m0X
i=1

0@ nX
j=1

lijC
�1
jj lk0j

1A
wk0k = �ik; (3.56)

showing that wk0k is the inverse of the matrix

h
M0C�1(M0)T

i
kk0

=

nX
j=1

lkjC
�1
jj lk0j: (3.57)

Thus, we have

�s = C�1(M0)T
h
M0C�1(M0)T

i�1
�t0: (3.58)

It is straightforward to verify that (3.58) is a formal solution by substituting it into (3.53).

To use (3.58) in general requires that the inverse of the m0 �m
0 matrix M0C�1(M0)T

must always exist. This may not always be true, but there is one particularly simple case

where the formula can be evaluated: m0 = 1. Then,

�sj =
l1j�t1=CjjPn
k=1 l

2
1k=Ckk

: (3.59)
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Problems

Problem 3.6.1 Let D be an arbitrary n � n positive diagonal matrix. Show that another

set of model corrections can be chosen to be

�s = D�1(M0)T
h
M0D�1(M0)T

i�1
�t0: (3.60)

Other than C, what are some physically relevant choices of the weight matrix D?

Problem 3.6.2 Consider the stochastic inverse (3.31) when the noise correlation is negli-

gible so that Cnn ' 0. Compare the resulting formula with (3.58) and (3.60).

Problem 3.6.3 Using (3.58), �nd an explicit expression for �sj when slownesses along

only two ray paths need correction, i.e., m0 = 2. Show that the required matrix inverse

exists for this problem if0@ nX
j=1

l1jl2j=Cjj

1A2

<

0@ nX
j=1

l
2
1j=Cjj

1A nX
k=1

l
2
2k=Ckk

!
: (3.61)

Use Cauchy's inequality for sums to show that (3.61) is always satis�ed unless l1j = 
l2j

for all j, where 
 > 0 is some scalar. Explain the physical signi�cance of the special case

when l1j = 
l2j and suggest a method of solving the problem in this case.

Problem 3.6.4 Using (3.58), �nd an explicit expression for �sj when slownesses along

three ray paths need correction (m0 = 3). Determine conditions on the matrix elements

necessary to guarantee that the required matrix inverse exists.



Chapter 4

Algorithms for Linear Inversion

In Chapter 3, much of our e�ort was expended showing that least-squares methods generally

produce infeasible models in traveltime inversion, i.e., models that violate at least one and

often many of the physical constraints imposed on the slowness model by the data through

Fermat's principle. Having ruined the reputation of least-squares methods in this way, we

try to recover and arrive at a new understanding of the true signi�cance of least-squares

methods for inversion problems in this section. Two main points should be stressed: (1)

The least-squares methods and generalized inverses are intimately related and, in principle,

lead to the same results. (2) Iterative methods for inversion based on least-squares criteria

fall into the class of \exterior" methods for nonlinear programming, i.e., at each step of the

iteration sequence the \best estimate" of the solution is infeasible so this method approaches

the solution (lying on the boundary) from outside the set of feasible models.

In linear inversion with block models, we must solve the linear system of equations given

by

Ms = t; (4.1)

where we recall that M is a known m � n ray-path matrix, s is an unknown n-vector of

slowness values, and t is a known m-vector of traveltimes.

Three major di�culties arise in solving (4.1):

1. M is not a square matrix;

2. M is often rank de�cient;

3. M is often poorly conditioned.

Because of these three di�culties, we cannot simply solve (4.1) in terms of an inverse

matrix ofM, because such an inverse does not exist. The inverse of an n�n square matrix

A is de�ned as the unique matrix X such that

XA = I = AX; (4.2)

where I is the n � n identity matrix. The standard notation for the matrix inverse is

X = A�1. It is clear from the de�nition of the inverse (4.2) that X must also be an

41
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n � n square matrix. Thus, the fact that M is not square is su�cient to guarantee that

the standard de�nition of an inverse cannot be applied to our problem. It might still be

possible to generalize the concept of inverse so that the equation

XM = I (4.3)

uniquely de�nes a meaningful n � m inverse matrix X associated with M. When n < m

and the discretized mathematical problem is overdetermined, setting

X =
�
MTM

��1
MT (4.4)

gives a formal solution to (4.3) if the inverse (MTM)�1 exists. We will see that this approach

may succeed, but its success is tempered by the second and third di�culties: M is usually

rank de�cient, or poorly conditioned, or both. The rank of a matrix is the dimension of

the subspace spanned by its columns (or rows) and cannot exceed the smaller of the two

dimensions of the matrix. Letting r be the rank of our m by n matrixM, if r = min(m;n)

we say M has full rank. If r < m;n then M is rank de�cient. If M is rank de�cient, then

(MTM)�1 does not exist and more sophisticated solutions than (4.4) are required. A similar

di�culty arises if m < n, so the discretized problem is underdetermined. A matrix is poorly

conditioned if the ratio of largest to smallest nonzero eigenvalue �1=�r >> 1. For example,

this ratio is commonly found equal to 100 or 1000, or even more. Computing an accurate

pseudoinverse for a poorly conditioned matrix is di�cult. IfM is very poorly conditioned, it

may be di�cult to compute the smallest eigenvalues accurately enough to obtain satisfactory

results from the SVD approach for computing My. Then, other numerical techniques for

iteratively computing the solution of (4.1) may be preferred.

Two techniques for handling the �rst di�culty (M not square) are completing the square

and Moore-Penrose pseudoinverses [Moore, 1920; Penrose, 1956a]. Two techniques for han-

dling the second di�culty (rank de�ciency) are regularization and pseudoinverses. Thus,

the Moore-Penrose pseudoinverse is a common solution for both of these problems. Reg-

ularization is usually accomplished either (i ) by altering the rank de�cient square matrix

MTM in a way that produces an invertible matrix, or (ii ) by performing a singular value

decomposition onM and using formulas for the SVD ofMy to construct the pseudoinverse.
There are a number of numerical algorithms for solving the system (4.1) and some of

these are especially useful when M is poorly conditioned. These methods include:

1. standard tomographic reconstruction methods (e.g., ART and SIRT),

2. iterative matrix methods (e.g., Gauss-Seidel and Jacobi's method),

3. conjugate direction/gradient methods,

4. simple iteration,

5. a \neural network" method.

These methods may be analyzed most conveniently in terms of their convergence to the

pseudoinverse.

Since the pseudoinverse plays such a central role in all these problem/solution pairs,

we begin our discussion by deriving and analyzing My. Then, we discuss regularization

techniques and �nally analyze various numerical techniques for solving (4.1).
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4.1 Moore-Penrose Pseudoinverse and SVD

Any nonsymmetric (and/or nonsquare) matrix M of real numbers can be decomposed in

terms of a set of positive eigenvalues and two sets of orthonormal eigenvectors. Let r be

the rank of M. There exist r solutions to the eigenvalue problem

Mz = �y; (4.5)

MTy = �z; (4.6)

such that � > 0 and yTy = zTz = 1. Letting �i, yi, zi, i = 1, : : : , r, denote the solutions,

then

yTi MMTyj = (�2iy
T
i )yj = yTi (�

2
jyj); (4.7)

and

zTi M
TMzj = (�2i z

T
i )zj = zTi (�

T
j zj); (4.8)

so that

(�2j � �
2
i )y

T
i yj = 0 = (�2j � �

2
i )z

T
i zj; (4.9)

for all combinations of i; j. Furthermore,

�iy
T
i yi = yTi Mzi = zTi M

Tyi = �iz
T
i zi; (4.10)

showing that

yTi yi = zTi zi; (4.11)

for all 1 � i � r. Then, after normalizing the eigenvectors, it follows from (4.9) and (4.11)

that

yTi yj = zTi zj = �ij: (4.12)

The vectors yi and zi, respectively, are left- and right-hand eigenvectors ofM corresponding

to the eigenvalue �i. Multiple eigenvectors associated with the same eigenvalue are not

necessarily orthogonal to each other, but they do form a subspace that is orthogonal to all

other eigenvectors with di�erent eigenvalues.

4.1.1 Resolution and completeness

The model space is n-dimensional while the data space is m-dimensional. Any slowness

vector in the model space can be expanded in terms of a complete orthonormal set of

vectors fzjg as

s =

nX
j=1

�jzj =

rX
j=1

�jzj + s0; (4.13)
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and similarly for a data vector

t =

mX
i=1

�iyi =

rX
i=1

�iyi + t0; (4.14)

when expanded in the basis set fyig. The vectors s0 and t0 are respectively arbitrary

vectors from the right and left null spaces of M. Completeness implies that the identity

matrix can be represented in terms of these sets of vectors by taking sums of outer products

according to

In =

nX
j=1

zjz
T
j (4.15)

and

Im =

mX
i=1

yiy
T
i : (4.16)

Then, for example,

Ins =

nX
jk

zj(z
T
j �kzk) =

nX
j=1

�jzj = s: (4.17)

In each space, only the �rst r of these vectors can be eigenvectors of M with � > 0. The

remaining n� r and m� r vectors necessarily lie in the right and left null spaces of M.

The completeness relation can be written using any complete set of vectors; using the

eigenvectors of M is a choice made as a convenience for the SVD analysis of M.

Now we de�ne resolution matrices for the two vector spaces based on partial sums of

the completeness relations

Rn =

rX
j=1

zjz
T
j (4.18)

and

Rm =

rX
i=1

yiy
T
i : (4.19)

Note that for a real, square, and symmetric matrix, there is only one resolution matrix.

Applying the resolution matrices to s and t, we �nd

Rns =

rX
j=1

�jzj (4.20)

and

Rmt =

rX
i=1

�iyi: (4.21)
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Thus, the resolution matrices strip o� the parts of s and t lying in the right and left null

spaces of M, respectively.

The full signi�cance of the resolution matrices will become apparent as we develop

the generalized inverse, and particularly when we examine the relationship between least-

squares methods and the pseudoinverse.

Problems

Problem 4.1.1 Show that R2
n = Rn and R2

m = Rm.

Problem 4.1.2 Show that Tr(Rn) = Tr(Rm).

4.1.2 Completing the square

These results are most easily derived and understood by using a technique of Lanczos [1961]

for completing the square. We de�ne a real, square, and symmetric (m+n)�(m+n) matrix

H =

�
0 M

MT 0

�
: (4.22)

Then, (4.5){(4.6) becomes

H

�
yi
zi

�
= �i

�
yi
zi

�
: (4.23)

Clearly, for each positive eigenvalue �i with eigenvector (y
T
i ; z

T
i )

T , there is a correspond-

ing negative eigenvalue ��i with eigenvector (yTi ;�zTi )T .

Problem

Problem 4.1.3 Show that H is rank de�cient if m+ n is odd.

4.1.3 Finding the generalized inverse

The singular value decomposition (SVD) of M is given by

M =

rX
i=1

�iyiz
T
i : (4.24)

The Moore-Penrose pseudoinverse of M can be expressed as

My =
rX

i=1

�
�1
i ziy

T
i : (4.25)

Our goal in this section is to derive (4.25). Also, notice that this de�nition implies

MyM =

rX
i=1

ziz
T
i = Rn (4.26)
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and

MMy =
rX

i=1

yiy
T
i = Rm; (4.27)

thus making the connection to the resolution matrices.

Completing the square permits us to �nd a simple and intuitive derivation of the unique-

ness conditions required for a meaningful generalized inverse giving rise to the formula

(4.25). First, we �nd the generalized inverse for the square matrices appearing in H2.

Then, we use these results to derive (4.25).

Let A =MTM so that

A =

rX
i=1

�
2
i ziz

T
i : (4.28)

Then, A is real symmetric and therefore has real eigenvalues. Since the zis are assumed to

be an orthonormal and complete set of vectors, any generalized inverse for A can be written

in the form

Ay =
rX
ij

�ijziz
T
j ; (4.29)

where the coe�cients �ij = zTi A
yzj are to be determined and the upper limit on the sum

has been taken as r for the sake of simplifying this derivation. Consistency conditions are

AAy = AyA =

rX
i=1

ziz
T
i = Rn; (4.30)

which are the conditions intuition1 suggests are the right ones for the generalized inverse of

a square matrix. The �nal expression in (4.30) is just the completeness relation within the

subspace orthogonal to the null space of A. Equation (4.30) implies that Ay is the unique
matrix satisfying the conditions

AAyA = A; (4.31)

AyAAy = Ay
: (4.32)

It follows easily from (4.28){(4.30) that

�ij = �ij=�
2
i : (4.33)

Thus, the generalized inverse of this symmetric square matrix is just

Ay =
rX

i=1

ziz
T
i =�

2
i : (4.34)

1Compare (4.2).



CHAPTER 4. ALGORITHMS 47

To �nd the needed relation for the nonsymmetric/nonsquare matrix M, again consider

the square matrix H. We �nd easily that

H2 =

�
MMT 0

0 MTM

�
: (4.35)

Then, for consistency we suppose

Hy = H(H2)y = (H2)yH; (4.36)

from which it follows that

Hy =

�
0 M(MTM)y

MT (MMT )y 0

�
=

�
0 (MMT )yM

(MTM)yMT 0

�
: (4.37)

Equation (4.37) implies that

My =MT (MMT )y = (MTM)yMT
: (4.38)

Using (4.34) in (4.38) then �nally yields (4.25). Thus, we have completed one derivation of

the pseudoinverse.

A more direct derivation comes from (4.34) by writing down the equivalent expansion

for Hy. First, expand H in terms of the eigenvectors as

H =
1

2

rX
i=1

�i

��
yi
zi

�
(yTi zTi )�

�
yi
�zi

�
(yTi �zTi )

�
(4.39)

=

rX
i=1

�i

��
0

zi

�
(yTi 0 ) +

�
yi
0

�
( 0 zTi )

�
: (4.40)

[The factor of one-half in (4.39) arises from the fact that the norm of the eigenvectors of H

(as de�ned here) is 2.] Then, from (4.39) and (4.34), we obtain

Hy =
rX

i=1

�
�1
i

��
0

zi

�
(yTi 0 ) +

�
yi
0

�
( 0 zTi )

�
=

�
0 (MT )y

My 0

�
; (4.41)

and (4.25) again follows, thus completing another derivation.

We observe two special cases in which M is of full rank. If r = n � m so the problem is

either determined or overdetermined but M is of full rank, then s0 | the vector from the

right null space | is necessarily zero. Further, we can write

My = (MTM)�1MT =MT (MMT )y: (4.42)

Second, if r = m � n so the problem is either determined or underdetermined but M is of

full rank, then t0 | the vector from the left null space | vanishes and

My =MT (MMT )�1 = (MTM)yMT
: (4.43)

A subcase of both cases is r = m = n so the problem is just determined and M is of full

rank. M is then also square and invertible. Since in this case (MTM)�1 = M�1(MT )�1

and (MMT )�1 = (MT )�1M�1, (4.42) and (4.43) reduce to

My =M�1
; (4.44)

consistent with the intuitive derivation of the generalized inverse given here.
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Example 4.1.1 Consider a 2� 2 model with the layout

s1 s2

s3 s4

.

Suppose the ray-path matrix is

M =

�
1:00 1:00 0 0

1:05 1:05 0 0

�
;

corresponding to two ray paths going through cells 1 and 2 at slightly di�erent angles. The

SVD of M is

M =

�
1:00

1:05

�
( 1 1 0 0 ) ;

with the single nonzero eigenvalue � =
p
4:205. Then, the generalized inverse of M is

My =
1

p
4:205

0BB@
1

1

0

0

1CCA ( 1:00 1:05 ) :

The corresponding resolution matrices are

R4 =MyM =
1

2

0BB@
1

1

0

0

1CCA ( 1 1 0 0 ) =

0BB@
1=2 1=2 0 0

1=2 1=2 0 0

0 0 0 0

0 0 0 0

1CCA ; (4.45)

and

R2 =MMy =
1

2:1025

�
1:00

1:05

�
( 1:00 1:05 ) =

1

2:1025

�
1:00 1:05

1:05 1:1025

�
: (4.46)

Equation (4.45) shows that the two ray paths contain equivalent information about the two

cells 1 and 2, but no information about cells 3 and 4. Equation (4.46) shows that, even

though the two ray paths do in fact have the same information about the model, the longer

ray path is treated as more reliable simply because it is longer. (It is this sort of contradictory

result that leads us to consider using other weighting schemes in Section 3.5.) Another way

of displaying the information in the resolution matrix R4 is to exhibit the diagonal values

of the matrix on the grid of the slowness cells as

1
2

1
2

0 0
.

This display has nothing to do with the actual slowness values computed in the inversion,

but it does have something to do with the relative reliability of the values computed. We

should have more con�dence in the computed values of slowness in those cells with the higher

diagonal resolution.
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Example 4.1.2 Using the same layout as the preceding example, consider the ray-path

matrix

M =

�
1 1 0 0

1 0 1 0

�
:

This matrix corresponds to having one horizontal ray (through cells 1 and 2) and one vertical

ray (through cells 1 and 3). The symmetric matrix

MMT =

�
2 1

1 2

�
=

3

2

�
1

1

�
( 1 1 ) +

1

2

�
1

�1

�
( 1 �1 ) ;

showing that the left-eigenvectors of M are (1; 1) and (1;�1) with eigenvalues
p
3 and 1,

respectively. Thus, M is of full rank. Multiplying M on the left by the left-eigenvectors

determines the right-eigenvectors and shows that

M =
1

2

�
1

1

�
( 2 1 1 0 ) +

1

2

�
1

�1

�
( 0 1 �1 0 ) ;

which is easily veri�ed. The generalized inverse is then

My =
1

6

0BB@
2

1

1

0

1CCA ( 1 1 ) +
1

2

0BB@
0

1

�1
0

1CCA ( 1 �1 ) :

The resolution matrices are therefore

R4 =MyM =

0BB@
2=3 1=3 1=3 0

1=3 2=3 �1=3 0

1=3 �1=3 2=3 0

0 0 0 0

1CCA (4.47)

and

R2 =MMy =

�
1 0

0 1

�
: (4.48)

The diagonal values of the model resolution matrix are displayed in

2
3

2
3

2
3

0
.

The data resolution matrix is the identity because the ray-path matrixM is of full rank, and

r = m = 2.

Example 4.1.3 Consider a 3� 2 model with the layout

s1 s2

s3 s4

s5 s6

.
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Consider the ray-path matrix

M =

0BB@
1 1 0 0 0 0

0 0 1 1 0 0

0
p
2

p
2 0 0 0

0 0 0 0 1 1

1CCA ;
corresponding to horizontal rays through the three horizontal pairs of cells and one diagonal

ray cutting through cells 2 and 3. The symmetric matrix

MMT =

0BB@
2 0

p
2 0

0 2
p
2 0p

2
p
2 4 0

0 0 0 2

1CCA
has the eigenvalues � = 2 (twice) and � = 3 �

p
5, so M is again of full rank. The

corresponding left-eigenvectors of M are0BB@
0

0

0

1

1CCA ;
0BB@

1

�1
0

0

1CCA ;
0BB@

1

1
1p
2
(1 +

p
5)

0

1CCA ;
0BB@

1

1
1p
2
(1�

p
5)

0

1CCA :
Except for normalization, the right-eigenvectors of M for the nonzero eigenvalues are then

found to be 0BBBBBBB@

0

0

0

0

1

1

1CCCCCCCA
;

0BBBBBBB@

1

1

�1
�1
0

0

1CCCCCCCA
;

0BBBBBBB@

1

2 +
p
5

2 +
p
5

1

0

0

1CCCCCCCA
;

0BBBBBBB@

1

2�
p
5

2�
p
5

1

0

0

1CCCCCCCA
:

The resolution matrices are

R6 =MyM =

0BBBBBBB@

3=4 1=4 �1=4 1=4 0 0

1=4 3=4 1=4 �1=4 0 0

�1=4 1=4 3=4 1=4 0 0

1=4 �1=4 1=4 3=4 0 0

0 0 0 0 1=2 1=2

0 0 0 0 1=2 1=2

1CCCCCCCA
(4.49)

and

R4 =MMy =

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA : (4.50)

The diagonal elements of the model resolution matrix are displayed in
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3
4

3
4

3
4

3
4

1
2

1
2

.

The data resolution matrix is again the identity matrix in this example because the ray-path

matrix M is of full rank and r = m = 4.

Problems

Problem 4.1.4 Using (4.26) and (4.27) show that Tr(Rn) = Tr(Rm) = rank(M).

Problem 4.1.5 If fzjgn is an orthonormal, complete set of n-vectors and fyigm is an

orthonormal, complete set of m-vectors, de�ne the n� n matrix

Z = ( z1 z2 � � � zn )

and the m�m matrix

Y = (y1 y2 � � � ym ) :

Let Om;n be an m� n matrix of zeroes. Then, the matrix � is the m� n

� =

0BBBBBBBBBBBB@

�1 j
�2 j

. . . j Or;n�r
�r j

� � � � �� ��� ��� �j� � �� ���
j

Om�r;r j Om�r;n�r
j

1CCCCCCCCCCCCA
:

where the �rst r components of � along the diagonal are the �rst rp eigenvalues of M.

Then, if the �rst r vectors in the two sets are the right and left eigenvectors of M, show

that (4.24) can be rewritten as

M = Y�ZT
:

Show that

My = Z�yYT
;

where the n�m matrix �y is given by

�y =

0BBBBBBBBBBBB@

�
�1
1 j

�
�1
2 j

. . . j Or;m�r
�
�1
r j

� � � � � � ��� ��� �j� �� � ���
j

On�r;r j On�r;m�r
j

1CCCCCCCCCCCCA
:
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Show that

Rn =MyM = ZZT

and

Rm =MMy = YYT
:

Problem 4.1.6 If A is real and symmetric, prove that its eigenvalues are real.

Problem 4.1.7 Derive (4.25) from (4.24), (4.34), and (4.38).

Problem 4.1.8 Show that (4.38) implies (MMT )y = (MT )yMy.

Problem 4.1.9 It was implicitly assumed in (4.36) that

(H2)y = (Hy)2: (4.51)

Show that (4.51) follows from (4.34). Then, verify that (4.38) is consistent with (4.51).

Problem 4.1.10 Find the pseudoinverse and the resolution matrix of

A =

�
1=2 �1=2
�1=2 1=2

�
:

Problem 4.1.11 Find the pseudoinverse and the resolution matrix of

A =

0@ 5=4 �1=2 �3=4
�1=2 1 �1=2
�3=4 �1=2 5=4

1A
:

Problem 4.1.12 Find the pseudoinverse and the resolution matrices of

M =

�
3=5 6=5 3=5 0

3=5 0 3=5 6=5

�
:

Problem 4.1.13 Suppose that A is nonsingular, w is some normalized vector, and � is a

positive scalar. Show that

h
A+ �wwT

i�1
= A�1 � �

A�1wwTA�1

1 + �wTA�1w
: (4.52)

Then, use (4.52) to show that, if

B = A� �wwT and Bw = 0;

then

By = A�1 �
1

�

wwT
:
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Problem 4.1.14 Suppose A is real and symmetric with SVD given by A =
Pn

i=1 �iziz
T
i

where �i > 0 for 1 � i � r and �i = 0 for r + 1 � i � n. Show that

Ay =

24A+ �

nX
i=r+1

ziz
T
i

35�1 � 1

�

nX
i=r+1

ziz
T
i (4.53)

for any � > 0.

Problem 4.1.15 Suppose that (4.29) is replaced by

Ay �
nX
i;j

�ijziz
T
j ;

where the upper limit on the sum is taken to be the size of the model vector space. Repeat

the derivation of the pseudoinverse and explain the di�ering results.

Problem 4.1.16 Show that the four equations

MXM = M;

XMX = X;

(MX)T = MX;

(XM)T = XM;

have a unique solution X for any real matrix M. Show that X = My. Then show directly

that (MTM)y =My(My)T . [Penrose, 1955a]

Problem 4.1.17 If A is real, square, and symmetric, then show that the equations

AAy = AyA = Rn

are equivalent to the set of uniqueness conditions in Problem 4.1.16 for Ay.

Problem 4.1.18 Show that, if X is a real, square, and symmetric matrix satisfying X2 =

X, then Xy = X. Does Xy = X imply X2 = X?

Problem 4.1.19 Use the de�ning equations for My in Problem 4.1.16 to show directly

that My = MT (MMT )y = (MTM)yM thus verifying (4.38). [Hint: Use the de�ning

equations three times, once each for (MTM)y, for (MMT )y, and for My.]

Problem 4.1.20 If r is the rank of M, show that M can be factored into a product of an

m� r matrix L and an r � n matrix R such that

M = LR;

where L and R are each of rank r. Show that the generalized inverse My may be written

My = RT (RRT )�1(LTL)�1LT : (4.54)

Use (4.54) to show that My = (MTM)�1MT when r = n and that My = MT (MMT )�1

when r = m. [Smith and Franklin, 1969]
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Problem 4.1.21 Any real matrix M can be partitioned into the form

M =

�
A B

C CA�1B

�
(4.55)

after some rearrangement of the rows and columns.

1. If A is a nonsingular submatrix of M whose rank is equal to that of M, then verify

that

My =

�
ATPAT ATPCT

BTPAT BTPCT

�
; (4.56)

where P = (AAT +BBT )�1A(ATA+CTC)�1. [Hint: M =

�
Ir

CA�1

�
(A B )]

2. How do we know the inverses in the de�nition of P exist?

[Penrose, 1955b]

Problem 4.1.22 Rao and Mitra [1971] and Barnett [1990] discuss variations of the gen-

eralized inverse obtained by relaxing the constraints on its de�nition given in Problem

4.1.16.

1. Give an example of a generalized inverse X satisfying

MXM =M; (4.57)

but not satisfying at least one of the remaining conditions.

2. Show that all generalized inverses satisfying (4.57) may be expressed in the form

X = X0 +Y �X0MYMX0;

where X0 is a particular matrix satisfying condition (4.57) and Y is an arbitrary

n�m matrix. Explain this result using singular value decomposition.

3. Show that, if M is rearranged as in (4.55), then one choice of X in (4.57) is

X =

�
A�1 �A�1BZ
0 Z

�
;

where Z is an arbitrary matrix having the proper dimensions.

Problem 4.1.23 Consider the stochastic inverse

X = CstC�1tt :

introduced in Problem 3.4.5. If the noise N is negligible so that MS = T but Ctt is

still invertible, show that X satis�es the �rst three of the Moore-Penrose conditions (see

Problem 4.1.16) for the generalized inverse. Show that this matrix is a special case of

X = Z [MZ]
�1
; (4.58)

where Z is an arbitrary n � m matrix except that MZ must be invertible. What are the

conditions on Z needed to guarantee that the third Moore-Penrose condition is satis�ed?

What is the matrix Z if X satis�es all four conditions?
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4.1.4 Relation to least-squares

Now we can solve the least-squares problem using the SVD of M. To see this, we will let

wi = 1 for simplicity. To begin, �rst recognize that s and t may be expanded in terms of

the left- and right-eigenvectors:

t =

rX
i=1

�iyi + t0; (4.59)

s =

rX
i=1

�izi + s0; (4.60)

where

zTi s0 = yTi t0 = 0 for all i = 1; : : : ; r; (4.61)

and

�i = yTi t; (4.62)

�i = zTi s: (4.63)

In terms of the expansion coe�cients and unit weights, we have

	(s) = (Ms� t)T (Ms� t) (4.64)

= tT0 t0 +

rX
i=1

(�i�i � �i)
2
: (4.65)

For nonzero eigenvalues, setting

�i�i = �i (4.66)

minimizes 	 by eliminating the sum in (4.65). Then,

s = s0 +

rX
i=1

�
�1
i �izi: (4.67)

The vector s0 is an arbitrary vector from the right null space of M. We can minimize sT s

by setting s0 = 0. Thus, we obtain the minimum-norm least-squares model:

ŝLS =

rX
i=1

�
�1
i �izi: (4.68)

The reader can easily verify that

ŝLS =Myt: (4.69)

It is a general result that the Moore-Penrose pseudoinverse solves the least-squares

problem. We will make use of this fact later when we attempt to construct methods of

solving the inversion problem that are both fast and easy to implement.
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Problems

Problem 4.1.24 Verify (4.69).

Problem 4.1.25 De�ne Z0 to be a \best approximate solution" of the matrix equation

MZ = Y if for all Z, either

1. jjMZ�Yjj > jjMZ0 �Yjj, or

2. jjMZ�Yjj = jjMZ0 �Yjj and jjZjj = jjZ0jj,

where jjAjj2 � Tr(ATA). Then, show that Z = MyY is the unique best approximate

solution of MZ = Y. [Penrose, 1955b]

Problem 4.1.26 Let Z0 =MyY and

Z = Z0 +

nX
i=r+1

�iziy
T
i Y;

where the �is are scalars and the zis and yis for r+1 � i � n are vectors from the right and

left null spaces of M. Then, which condition in Problem 4.1.25 does Z violate? Under

what circumstances is the \best approximate solution" de�ned in Problem 4.1.25 really

the best?

Problem 4.1.27 Show that

ŝLS = Rns;

where Rn = MyM is the model space resolution matrix. [Backus and Gilbert, 1968; 1970;

Jackson, 1972]

Problem 4.1.28 Show that

MŝLS = Rmt;

where Rm =MMy is the data space resolution matrix. [Wiggins, 1972; Jackson, 1972]

4.2 Scaling Methods

Given M we de�ne two diagonal matrices based on row and column sums of its elements,

lij. Let L and C be diagonal matrices such that

Lii =

nX
j=1

lij ; i = 1; : : :m; (4.70)

Cjj =

mX
i=1

lij; j = 1; : : : ; n: (4.71)
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Lii is the length of the ith ray path, obtained by summing the lengths of its intersection

with all cells. Cjj , on the other hand, is the total length of ray segments intersecting the

jth cell. Cjj (or its minor variations) is known variously as the illumination, hit parameter,

or coverage of cell j.

Let v be the n-vector whose components are each 1:

v =

0BBB@
1

1
...

1

1CCCA : (4.72)

Similarly, let u be the analogous m-vector. Then Mv is the m-vector containing the ray

lengths. We can also infer that Lu is the same vector. Analogously, MTu and Cv are both

the n-vector containing the cell coverages. That is,

Mv = Lu; (4.73)

MTu = Cv: (4.74)

This implies that � = 1, y = u, z = v is a solution to the eigenvalue problem

Mz = �Ly; (4.75)

MTy = �Cz: (4.76)

This problem is a generalization of our earlier eigenvalue problem (4.5){(4.6) in that it

incorporates positive de�nite weighting matrices L and C. In place of the orthonormality

conditions (4.12), we require the conjugacy conditions

yTi Lyj = zTi Czj = �ij: (4.77)

With these conditions, the generalized eigenvalue problem can be converted to the standard

form of (4.5){(4.6) using the (preconditioning) transformations

M0 = L�1=2MC�1=2
; (4.78)

y0 = L1=2y; (4.79)

z0 = C1=2z: (4.80)

Whenever L�
1
2 and C� 1

2 appear in the formulas, we make the implicit assumption that all

the diagonal elements of both these matrices are nonzero. A zero diagonal component of

L would correspond to a ray path with no length, which is clearly unphysical. However,

a zero diagonal component of C corresponds to a cell with no ray coverage, which clearly

can and does happen in practice. If so, then we assume that this cell is removed from the

inversion problem.2

By construction, the eigenvalues ofM andM0 are the same, but for di�erent eigenvalue

problems: (4.75){(4.76) and

M0z0 = �y0; (4.81)

M0Ty0 = �z0: (4.82)

2Some methods for doing so are discussed in Section 6.
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Proposition 4.2.1 The eigenvalues of M0 lie in the interval [-1,1].

Proof: Recall that the eigenvalues come in pairs: if �;y0; z0 solves the eigenvalue prob-
lem, so does ��;y0;�z0. Then, we may (without loss of generality) restrict the discussion

to eigenvalues satisfying � � 0.

Let �, y, z be any solution to (4.75){(4.76) with � > 0. Then, in components,X
j

lijzj = �Liiyi; (4.83)

X
i

lijyi = �Cjjzj: (4.84)

Let ymax be the largest absolute component of y, i.e., ymax = maxi jyij. Similarly, let

zmax = maxj jzjj. Since lij � 0, we can infer

zmax

X
j

lij � �Liijyij; (4.85)

ymax

X
i

lij � �Cjj jzjj: (4.86)

Recalling the de�nitions of Cjj and Lii given by (4.70) and (4.71), this implies

zmax � �jyij; (4.87)

ymax � �jzj j; (4.88)

which must hold for all i and j; thus

zmax � �ymax; (4.89)

ymax � �zmax: (4.90)

Thus, we have zmax � �
2
zmax, which implies �2 � 1 and therefore �1 � � � 1.

Problems

Problem 4.2.1 Show that the eigenvectors of M0 having eigenvalue � = 1 are y0 = L
1
2u

and z0 = C
1
2v. What are the eigenvectors of (M0)y having unit eigenvalue?

Problem 4.2.2 Using MMyM =M and (4.70), demonstrate the general result

MMyLu = RmLu = Lu: (4.91)

Thus, Lu is an eigenvector of the data resolution matrix Rm, having unit eigenvalue.

Problem 4.2.3 Using MMyM =M and (4.71), derive the general result that

vTCMyM = vTCRn = vTC: (4.92)

Thus, vTC is an eigenvector of the model resolution matrix Rn, having unit eigenvalue.
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Problem 4.2.4 Three examples of data resolution matrices are presented in (4.46), (4.48),

and (4.50). Check to see if they agree with (4.91).

Problem 4.2.5 Three examples of model resolution matrices are presented in (4.45), (4.47),

and (4.49). Check to see if they agree with (4.92).

Problem 4.2.6 Use the de�nition of the pseudoinverse in Problem 4.1.16 to show that,

if

M0 = L�
1
2MC� 1

2 ;

then

X = C� 1
2 (M0)yL�

1
2 ; (4.93)

where X is an approximate generalized inverse satisfying the �rst two conditions (MXM =

M and XMX = X). Use (4.93) to show that the SVDs of M and X have the form

M =
LuvTC

uTLu
+ : : :

and

X =
vuT

uTLu
+ : : : ; (4.94)

where the terms not shown are for eigenvectors of M0 with eigenvalues � < 1. Treat (4.94)

as an approximate inverse, and compare the resulting estimate of s to (3.42). What can be

said about the accuracy of this approximate inverse?

Problem 4.2.7 Use (4.93) and (4.94) to show that

uTMX = uT ; (4.95)

for a ray-path matrix M. Thus, u is a left eigenvector of the approximate data resolution

matrix MX, having unit eigenvalue. What restrictions (if any) are there on the validity of

(4.95)?

Problem 4.2.8 Use (4.93) and (4.94) to show that

XMv = v; (4.96)

for a ray-path matrixM. Thus, v is a right eigenvector of the approximate model resolution

matrix XM, having unit eigenvalue. What restrictions (if any) are there on the validity of

(4.96)?
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4.3 Weighted Least-Squares, Regularization, and E�ective

Resolution

In weighted least-squares, a good choice of weighting matrix is L�1, that is, the inverse of
the ray length matrix. In Section 3.5, we discussed the physical arguments for using such

a weight matrix. Here we will show that mathematical arguments based on stability and

regularization lead to the same choice of weight matrix.

4.3.1 General weights and objective functionals

There is an inherent arbitrariness to the choice of weight matrix in a least-squares minimiza-

tion. Let F and G be two positive, diagonal weight matrices, m�m and n�n respectively.

Then de�ne the scaled inversion problem so that

M0 = F�
1
2MG� 1

2 ; s0 = G
1
2 s; t0 = F�

1
2 t: (4.97)

The (unweighted) damped least-squares minimization problem associated with (4.97) is to

minimize the functional

	0(s0) = (t0 �M0s0)T (t0 �M0s0) + �(s0� s00)
T (s0 � s00); (4.98)

with respect to s0. The normal equations resulting from (4.98) are

(M0TM0 + �I)(s0� s00) =M0T (t0 �M0s00): (4.99)

The result for the untransformed s is exactly the same whether we use the functional (4.98)

or the weighted least-squares functional

	(s) = (t�Ms)TF�1(t�Ms) + �(s� s0)TG(s� s0): (4.100)

In either case, the result is

s = s0 + (MTF�1M+ �G)�1MTF�1(t�Ms0): (4.101)

In truth, every least-squares method is a special case of the general weighted least-squares

method | the more common ones just have unit weights everywhere.

The minimum of (4.100) is achieved by the slowness model given in (4.101) as long as

the matrix MTF�1M + �G is invertible. Thus, some relaxation of the conditions placed

on the weight matrix G is possible. One common choice is to make the regularization

term correspond to minimizing the gradient or curvature of the model. Then, the matrix

G = KTK, where Ks is either the gradient of the model or its Laplacian. Such a weight

matrix is neither diagonal nor positive. In fact, a constant model vector lies in the null

space of such a G. The combined matrix MTF�1M+ �G may still be invertible however,

since the null spaces of the two terms are generally orthogonal.

Problems

Problem 4.3.1 Find explicit expressions for the matrix K such that
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1. Ks is the gradient of the slowness model;

2. Ks is the Laplacian of the slowness model.

Problem 4.3.2 Suppose the desired weight matrices F and/or G are nonnegative diagonal,

(i.e., have some zeroes along the diagonal). Generalize (4.97), replacing these de�nitions

by

M0 = (Fy)
1
2M(Gy)

1
2 ; s0 = G

1
2 s; t0 = (Fy)

1
2 t;

where Fy and Gy are the pseudoinverses of F and G respectively. If F = L and G = C

with some of the cell coverages vanishing, compare the approach using generalized inverses

to the usual method of deleting uncovered cells from the inversion problem.

Problem 4.3.3 Suppose that the damping parameter � = 0 and the diagonal elements of

F are given by

Fii = j(Ms)i � tij ;2�p

where the term in the exponent p � 1 (p = 2 for least-squares). Show that the resulting

special case of (4.101) is the slowness minimizing

	p(s) =

mX
i=1

j(Ms)i � tij :p

Assuming that some of the traveltime residuals vanish and p = 1, use the result of Prob-

lem 4.3.2 to provide an appropriate generalization of (4.101). This method is known as

iteratively reweighted least-squares. [Claerbout and Muir, 1973; Claerbout, 1976; Scales,

Gersztenkorn, and Treitel, 1988]

4.3.2 Regularization

There are physical reasons for choosing particular weighting schemes and some of these

reasons have been discussed in Section 3.5. A sound mathematical reason for choosing

a particular scheme [Burkhard, 1980] might be either \convergence" or \regularization."

It may be di�cult or impossible to compute the result (4.101) unless appropriate weight

matrices are used, since MTF�1M may be poorly conditioned or noninvertible. We will

see in our discussion of simple iteration (Section 4.4.3) that this method converges if the

eigenvalues of the matrixM (or equivalently M0 here) lie in the range �
p
2 � �i �

p
2. So

how can we choose the weight matrices to guarantee that the eigenvalues fall in the desired

range?

For the sake of argument, suppose that

Ms = �Fr; (4.102)

MT r = �Gs: (4.103)
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Then, in terms of components, we haveX
j

lijsj = �Fiiri; (4.104)

X
i

lijrj = �Gjjsi: (4.105)

Letting smax be the magnitude of the largest component of s and rmax the magnitude of

the largest component of r, we have

smaxLii � �Fiijrij; (4.106)

rmaxCjj � �Gjjjsj j: (4.107)

It follows that

smax � �

Fii

Lii
rmax � �

2FiiGjj

LiiCjj
smax: (4.108)

So, in general, we can guarantee that the eigenvalues � will be bounded above by unity

by requiring that

1 �
LiiCjj

FiiGjj
; for all i; j: (4.109)

Many choices of F and G are permitted by (4.109), but perhaps the simplest choice is

F = L and G = C: (4.110)

Thus, although the choice (4.110) is certainly not unique, it is nevertheless a good choice

for the weight matrices in weighted least-squares, and guarantees that �2 � 1 as desired.

In Section 7.2, we �nd that another choice of weight matrices has the same constrain-

ing properties on the eigenvalues, yet has more useful properties in nonlinear tomography

algorithms.

4.3.3 E�ective resolution

Another way of understanding the signi�cance of formulas such as (4.101) is to reconsider

the fundamental relation

Ms = t (4.111)

and its rearrangement

M�s = t�Ms0; (4.112)

where �s = s� s0. Now, view the matrix

X = (MTF�1M+ �G)�1MTF�1 (4.113)
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as an approximate generalized inverse of M. Multiplying (4.112) on the left by X, we have

XM�s = (MTF�1M+ �G)�1MTF�1(t�Ms0): (4.114)

If XM = I were true, then (4.114) and (4.101) would be identical; however, for any � > 0,

XM = I� �(MTF�1M+ �G)�1G 6= I: (4.115)

Thus, the product XM is analogous to the resolution matrix Rn =MyM. We will call the

product XM the n� n e�ective resolution matrix

XM � En; (4.116)

and similarly de�ne the product

MX � Em; (4.117)

as the m�m e�ective resolution matrix.

The generalized inverse My gives optimal performance in the sense that no other choice

of inverse can produce resolution matrices closer to the identity matrix than Rn and Rm.

To see how well the approximate inverse X does in this regard, we can compare the e�ective

resolution matrices with the optimal ones. For simplicity, consider the case F = G = I.

Then, the SVD of En shows that

En = (MTM+ �I)�1MTM =

rX
j=1

 
�
2
j

�
2
j + �

!
zjz

T
j : (4.118)

Then, it is easy to see that the e�ective resolution matrix is closely related to the resolution

matrix Rn by

En = Rn �
rX

j=1

�

�
2
j + �

zjz
T
j : (4.119)

If the damping parameter is su�ciently small but still positive (�! 0+), we expect En !
Rn. Similarly, the e�ective resolution matrix Em satis�es

Em =M(MTM+ �I)�1MT = Rm �
rX

i=1

�

�
2
i + �

yiy
T
i : (4.120)

and Em ! Rm as �! 0+. We see then that the e�ective resolution matrices are suboptimal,

but approach optimal in the limit that �! 0+. This calculation shows that the approximate

inverse X is biased, but not very strongly biased if very small values of � are used.

Problem

Problem 4.3.4 Use (4.119) and (4.120) to show that Tr(En) = Tr(Em) < rank(M) if

� > 0.
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4.4 Sequential and Iterative Methods

First consider the case where r = n. The least-squares solution is then given by

ŝLS = (MTM)�1MT t: (4.121)

We begin by summarizing the main ideas behind two matrix inversion methods that work if

MTM is invertible. Then, we discuss other methods applicable to more realistic problems

in tomography.

Our main focus in this discussion will be to elucidate the general principles behind these

methods and to show how they relate to the Moore-Penrose pseudoinverse. A later section

will be devoted to evaluating iterative methods and making some jugdments about which

algorithms are best for tomography and inversion problems.

4.4.1 Series expansion method

Again letting A = MTM, observe that A is square and suppose it to be of full rank. In

terms of the SVD of M,

A =

nX
i=1

�
2
i ziz

T
i : (4.122)

Let �i = �
2
i . Then, since A satis�es its own characteristic polynomial, we have the

following matrix identity:

(A� �1I)(A� �2I) : : : (A� �nI) = 0: (4.123)

The left-hand side of this equation is simply an nth order matrix polynomial in A, which

can be rewritten as

An � (�1 + � � �+ �n)A
n�1+ � � �+ (�1)n�1 � � � �nI = 0: (4.124)

Multiplying through formally by A�1

An�1� (�1 + � � �+ �n)A
n�2+ � � �+ (�1)n�1 � � � �nA�1 = 0; (4.125)

or

A�1 =
(�1)n+1

�1 � � ��n

h
An�1 � (�1 + � � �+ �n)A

n�2+ � � �+ I
i
: (4.126)

This gives a series expansion for A�1 in powers of A itself. Based on this series, A�1MT t

may be computed recursively if the eigenvalues of A are known, or at least if the symmetric

functions of the eigenvalues that appear in the formulas are known.

This approach clearly fails if A is not of full rank, since the multiplication leading to

(4.125) cannot be performed. The �nal division by the product of the eigenvalues in (4.126)

also cannot be performed.

Problem

Problem 4.4.1 A real symmetric matrix B has a single vector w in its null space. Use

(4.126) to �nd an expression for the pseudoinverse By.
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4.4.2 Conjugate directions and conjugate gradients

In the method of conjugate directions [Hestenes and Stiefel, 1952], a di�erent expansion of

A�1 is used. Let p1, : : : , pn be a set of vectors such that

pTi Apj = �ijp
T
i Api: (4.127)

The vectors pi are not necessarily orthogonal with respect to the usual vector dot product,

but by construction they are orthogonal relative to the matrix A. The vectors pi are said

to be conjugate relative to A. Then consider

A0 �
nX
i=1

pip
T
i

pTi Api
: (4.128)

It follows from (4.127) and (4.128) that

A0(Apj) =
nX
i=1

pi�ij = pj; (4.129)

and

(pTj A)A
0 =

nX
i=1

pTi �ij = pTj ; (4.130)

which is also just the transpose of (4.129) since A = AT . Thus, if the pis span the entire

vector space (i.e., if they are complete), (4.129) and (4.130) show that

A0A = I = AA0
: (4.131)

Uniqueness of the inverse then implies that

A�1 = A0
: (4.132)

The completeness relation in terms of the pis is therefore

I =

nX
i=1

pip
T
i A

pTi Api
=

nX
i=1

Apip
T
i

pTi Api
: (4.133)

This approach produces a valid and simple formula (4.128) for A�1 when A is of full rank,

and furthermore it is guaranteed to converge in a �nite number of steps (see Problem

4.4.5). But, when A is rank de�cient, it must happen that pTi Api = 0 for some pi and,

therefore, this method also fails in the cases often of most interest in tomography.

Conjugate directions may still be useful for singular As if care is taken to choose only

pis orthogonal to the null space of A. Then, this approach may be used to generate the

generalized inverse of A.

To see an example of how this works, consider the method of conjugate gradients

[Hestenes and Stiefel, 1952; Golub and Van Loan, 1983; Ashby, Manteu�el, and Saylor,

1990] for solving Ms = t in the least-squares sense. The normal equations take the form

MTMs =MT t; (4.134)
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which may be rewritten for these purposes as

As = b (4.135)

where A = MTM and b = MT t. Then, starting with the error vector r(1) = b � As(1)

equal to the �rst direction vector p(1), the conjugate-gradient method uses the iteration

scheme

s(k+1) = s(k) +
(p(k))T r(k)

(p(k))TAp(k)
p(k); (4.136)

r(k+1) = b�As(k+1)
; (4.137)

p(k+1) = r(k+1) �
(p(k))TAr(k+1)

(p(k))TAp(k)
p(k): (4.138)

The philosophy of this method is to generate a sequence of directions by taking the latest

error vector (4.137) as the primary source and then orthogonalizing (4.138) relative to A

with respect to all previous directions taken (see Problem 4.4.4). Since the error vectors

are all of the form r =MT� a vector, this iteration sequence cannot generate vectors in the

right null space of M. Thus, in principle, this method can converge to the minimum-norm

least-squares solution.

Nevertheless, �nite but small eigenvalues can have a large e�ect through the in
uence

of the denominators appearing in (4.136) and (4.138). Small computational errors get

magni�ed under circumstances of poor conditioning. Regularization of this method can be

achieved by terminating the process when the latest direction vector satis�es (p(k+1))TAp(k+1) �
� where the scalar � is some preset threshold, or by adding a small positive constant � to

the diagonal elements of A.

Problems

Problem 4.4.2 Using de�nition (4.128), show that

A0AA0 = A0
: (4.139)

Then, use the positivity of A together with (4.128) to show that (4.139) implies

A0A = I = AA0
:

Prove the inverse of a matrix is unique and therefore that A0 = A�1.

Problem 4.4.3 Show that, if

s(k+1) = s(k) + �
(k)p(k)

is one in a sequence of iterates to solve As = b for s and if

(p(k))TAp(i) = 0 for i = 1; : : : ; k � 1;

then a residual reducing choice of the scalar �(k) is

�
(k) =

(p(k))T [b�As(k)]
(p(k))TAp(k)

:
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Problem 4.4.4 Show that p(k+1) as de�ned in (4.138) is conjugate to p(i) for 1 � i � k.

Problem 4.4.5 De�ne the matrix

A0
k =

kX
i=1

p(i)(p(i))T

(p(i))TAp(i)
:

Show that A0
kAA

0
k = A0

k. Then, show that the iterates obtained in the conjugate-gradient

method (4.136){(4.138) satisfy

s(k+1) = A0
kb+

�
I�A0

kA
�
s(1): (4.140)

Use this expression to show that the iteration converges to the solution in n steps if A is

an n� n positive matrix. What conditions (if any) are required on the eigenvalues of A for

this scheme to converge?

Problem 4.4.6 Consider the set of vectors

x;Ax;A2x; : : : ;Anx;

where x is not an eigenvector of A but has components along all eigenvectors with nonzero

eigenvalues (i.e., xTzi 6= 0 for 1 � i � r). Then, use Gram-Schmidt orthogonalization to

produce the new set of vectors

x(k+1) =

24I� kX
j=1

x(j)(x(j))T

(x(j))Tx(j)

35Ak�1x; (4.141)

where x(1) = x, x(2) = Ax � x(xTAx=xTx), : : :. How many orthogonal vectors can be

produced using this technique? If an arbitrary vector x is chosen, analyze the behavior of

this procedure in terms of the eigenvectors of A.

Problem 4.4.7 What changes must be made in the conjugate-gradient method in order to

solve a weighted least-squares problem?

Problem 4.4.8 Use the de�ning relations of conjugate gradients (4.136){(4.138) to show

that

(p(k))T r(k)

(p(k))TAp(k)
=

(r(k))T r(k)

(p(k))TAp(k)
=

(r(k))T r(k)

(r(k))TAp(k)
(4.142)

and

(p(k))TAr(k+1)

(p(k))TAp(k)
= �

(r(k+1))T r(k+1)

(r(k))T r(k)
: (4.143)

[Hestenes and Stiefel, 1952]

Problem 4.4.9 Use the results of Problem 4.4.8 to show that the following algorithm is

a conjugate-gradients algorithm for the traveltime inversion problem:
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s(0) = 0; p(0) = r(0) =MT t;

for k = 0; 1; 2; : : :

f

�k =
(r(k))T r(k)

(p(k))TMTMp(k)
;

s(k+1) = s(k) + �kp
(k);

r(k+1) = r(k) � �kM
TMp(k);

if jr(k+1)j is below threshold then quit;

�k =
(r(k+1))T r(k+1)

(r(k))T r(k)
;

p(k+1) = r(k+1) + �kp
(k);

g

[Hestenes and Stiefel, 1952; van der Sluis and van der Vorst, 1987]

Problem 4.4.10 Use the result of Problem 4.4.8 to show that the following algorithm is

also a conjugate-gradients algorithm:

s(0) = 0; t(0) = t; p(0) = r(0) =MT t;

for k = 0; 1; 2; : : :

f

q(k) =Mp(k);

�k =
(r(k))T r(k)

(q(k))Tq(k)
;

s(k+1) = s(k) + �kp
(k);

t(k+1) = t(k) � �kq
(k);

r(k+1) =MT t(k+1);

if jr(k+1)j is below threshold then quit;

�k =
(r(k+1))T r(k+1)

(r(k))T r(k)
;

p(k+1) = r(k+1) + �kp
(k);

g
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Note that this variation on conjugate gradients does not require the formation of the (gen-

erally) dense matrix MTM. [Bj�orck and Elfving, 1979; Paige and Saunders, 1982; van der

Sluis and van der Vorst, 1987]

4.4.3 Simple iteration

In simple iteration,3 we start with an initial model s(0) and iteratively generate a sequence

s(k), k = 1, 2, : : :using

s(k+1) = s(k) +MT (t�Ms(k)): (4.144)

In terms of eigenvector expansion coe�cients, the iteration sequence becomes

�

(k+1)
i = �

(k)
i + �i(�i � �i�

(k)
i ): (4.145)

To solve this equation, note that it can be rewritten as

�

(k+1)
i = �i�i + (1� �

2
i )�

(k)
i = �i�i + (1� �

2
i )[�i�i + (1� �

2
i )�

(k�1)
i ]: (4.146)

Rearranging the resulting series, we �nd

�

(k+1)
i = [1 + (1� �

2) + (1� �
2)2 + : : :+ (1� �

2)k]�i�i + (1� �
2)k+1

�

(0)
i : (4.147)

The series multiplying �i can be summed exactly for any value of �i 6= 0 as

[1 + (1� �
2
i ) + (1� �

2
i )

2 + : : :+ (1� �
2
i )
k] =

1� (1� �
2
i )
k+1

1� (1� �
2
i )

(4.148)

from which it follows that

�

(k+1)
i =

"
1� (1� �

2
i )
k+1

�i

#
�i + (1� �

2
i )
k+1

�

(0)
i : (4.149)

If �i = 0, (4.145) shows that �
(k+1)
i = �

(0)
i . If we assume that the eigenvalues, �i, are all

between �
p
2 and

p
2, the iteration sequence converges. The condition �

p
2 < �i <

p
2

thus implies that �
(k)
i ! �i=�i as k !1. That is, the iteration converges to a least-squares

model.

We have already seen in Section 4.2 that the stronger condition �1 � �i � 1 can be

guaranteed with an appropriate preconditioning (prescaling) of the matrix M.

Simple iteration is a good method for solving linear tomography problems, and is much

simpler to implement than other methods such as conjugate directions or conjugate gradi-

ents. This method has signi�cant computational advantages when the dimensions ofM are

large. The method is also closely related to SIRT (Simultaneous Iterative Reconstruction

Technique) which will be discussed in Section 4.4.5.

Problems

3Also known as Richardson iteration [Varga, 1962].
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Problem 4.4.11 Repeat the analysis of simple iteration for a damped least-squares objec-

tive functional. Show that

s(k+1)
� = s(k)� +MT (t�Ms(0))� (MTM+ �I)(s(k)� � s(0)) (4.150)

is a valid iteration scheme. Show that

�

(k+1)
i =

"
1� (1� �

2
i � �)k+1

�
2
i + �

#
(�i�i + ��

(0)
i ) + (1� �

2
i � �)k+1

�

(0)
i : (4.151)

What restrictions must be placed on the �is and � to guarantee convergence of (4.151)?

Find the di�erences between the asymptotic results for (4.151) and those for the undamped

least-squares method.

Problem 4.4.12 Show that, if the maximum eigenvalue is �1 =
p
2, then convergence of

simple iteration is improved by considering s(k+1) = 1
2(s

(k+1) + s(k)). [Ivansson, 1983]

4.4.4 Neural network method

Consider a sequence of models s(�) as a function of a continuous index variable �. We

think of � as a measure of the iteration computation time, or as a continuous version of the

iteration counter k used in the preceding discussion. The data mis�t functional, 	, applied

to this sequence then is also a function of �. We have

d	

d�

= 2
dsT

d�

rsT	; (4.152)

where

rsT	 =MT (Ms� t): (4.153)

We would like d	=d� < 0 so that s(�) converges to a model minimizing 	 as � !1. It

is easy to verify that a negative derivative is achieved by requiring, for some positive scalar


 > 0,

ds

d�

= �
MT (Ms� t): (4.154)

Since the di�erential change in s is proportional to the local gradient of the objective

functional, this choice produces a type of gradient descent method. We thus have a �rst-

order di�erential equation for s(�). In terms of the expansion coe�cients, �i, this becomes

d�i

d�

= 
�i(�i � �i�i): (4.155)

Using �i = 0 as an initial condition, the solution to (4.155) is given by

�i(�) = �
�1
i �i

h
1� e

�
�2
i
�
i
: (4.156)
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We see that s(�) does indeed converge to sLS =
Pr

i=1 �
�1
i �izi, with its exponential conver-

gence rate controlled by 
 and the magnitudes of the positive eigenvalues �i for i = 1; : : : ; r.

This approach may be used with other objective functionals. For example, we may

compare the results of this approach directly with those of simple iteration by considering

the damped least-squares functional

	� = (t�Ms)T (t�Ms) + �(s� sb)T (s� sb); (4.157)

where sb is the starting model s(0) = sb. Then, the same analysis shows that a reasonable

equation of motion for s(�) is

ds

d�

= �

h
(MTM+ �I)s�MT t� �sb

i
; (4.158)

where 
 is again some positive scalar. Now the coe�cients satisfy

d�i

d�

= 


h
�i�i + ��i(0)� (�2i + �)�i(�)

i
; (4.159)

which yields upon integration

�i(�) =
�i�i + ��i(0)

�
2
i + �

h
1� e

�
�2
i
�
i
+ �i(0)e

�
�2
i
�
: (4.160)

In the presence of the damping term, the method does not converge to sLS. Instead, it

converges exponentially to an approximation with the coe�cients �i(1) being weighted

averages of the initial value �i(0) and �i=�i. The coe�cients of the eigenvectors in the null

space do not change from their initial values.

Further discussion of this approach together with comparisons to other methods may

found in Je�rey and Rosner [1986a,b] and Lu and Berryman [1990].

Problems

Problem 4.4.13 Repeat the analysis of the simple iteration and neural network methods

assuming the objective functionals are damped and weighted least-squares. Compare the

asymptotic results.

Problem 4.4.14 Compare the convergence rates of simple iteration and the neural network

method.

4.4.5 ART and SIRT

Probably the two best known methods of solving linear equations for tomographic appli-

cations in general geometries are ART and SIRT. ART is the Algebraic Reconstruction

Technique [Gordon, Bender, and Herman, 1970; Tanabe, 1971; Herman, Lent, and Row-

land, 1973; Natterer, 1986], while SIRT is the Simultaneous Iterative Reconstruction Tech-

nique [Gilbert, 1972; Dines and Lytle, 1979; Ivansson, 1983]. ART is closely related to

Kaczmarz's iterative projection method of solving linear equations [Kaczmarz, 1937; Gor-

don, 1974; Guenther et al., 1974]. Our discussion will not distinguish between ART and
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Kaczmarz's algorithm, although the term ART is often used to refer to any algebraic recon-

struction method including the many variations on Kaczmarz's algorithm [Gordon, 1974].

The discussion of ART presented here is a simpli�ed version of Tanabe's analysis of Kacz-

marz's method. The discussion of SIRT follows Ivansson's [1983] analysis of the method

developed by Dines and Lytle [1979].

First, we present de�nitions of two types of projection operators that will be important

for the analysis of ART algorithms. Some of the properties of these operators are presented

in Problem 4.4.15.

Definition 4.4.1 A projection operator P (ai) for a vector ai is

P (ai) �
aia

T
i

aTi ai
:

If a de�nite set of vectors faig is under consideration (so no confusion can arise), we

shorten the notation to Pi = P (ai).

Definition 4.4.2 The orthogonal projection operator P?(ai) for a vector ai is

P?(ai) � I� P (ai):

If a de�nite set of vectors faig is under consideration, the notation is shortened to Qi =

P?(ai).

Once again, to solve for the slowness model s given a traveltime vector t and a ray-path

matrix M, we choose to solve Ms = t in the least-squares sense (although ART does not

require a square matrix) by solving As = b where A = MTM and b = MT t. Now write

the matrix A as

AT = (a1 a2 : : : an ) ; (4.161)

where the ais are the n column vectors of the transpose of A. Now suppose that we have

an estimate of the slowness vector s ' s and we want to improve the agreement between

the data and the estimate of the data by adding an optimal correction in the direction of

vector ai. Then, considering the relation

aTi (s+ �iai) = bi; (4.162)

the optimal value of the coe�cient �i is

�i =
bi � aTi s
aTi ai

: (4.163)

Next, we can de�ne an iterative sequence | starting from a guess s(0) and making use of

only one row of A at a time | given by

s(i) = s(i�1) +
bi � aTi s(i�1)

aTi ai
ai: (4.164)
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Then it is easy to rearrange (4.164) into the form

s(i) = Qis
(i�1) +

bi

aTi ai
ai for 1 � i � n: (4.165)

The signi�cance of (4.165) is that any component of s(i�1) in the direction ai is removed

by the orthogonal projection operator Qi and then the optimal component proportional to

bi=jjaijj in the direction of the unit vector ai=jjaijj is added in its place.

A single iteration of ART is completed when we have cycled once through all the column

vectors of AT . Then, the slowness s(n) is the result and this becomes the starting point

for the next iteration. In fact, (4.165) may be used for further iterations with only the

minor modi�cation that the i subscripts on everything but the slowness estimate should be

replaced by i0 = i mod n, except that i0 = n if i mod n = 0.4 Thus, we have

s(i) = Qi0s
(i�1) +

bi0

aTi0ai0
ai0 for 1 � i

0 � n; and 1 � i; (4.166)

and the iteration number is k = [i=n], where the bracket stands for the greatest integer of

the argument.

Now it is straightforward to show that

s(n) = QnQn�1 � � �Q1s
(0) +

b1

aT1 a1
QnQn�1 � � �Q2a1

+
b2

aT2 a2
QnQn�1 � � �Q3a2 + : : :+

bn

aTnan
an; (4.167)

which can be written more compactly as

s(n) = Qs(0) +Rb (4.168)

by introducing the matrices

Q = QnQn�1 � � �Q1 (4.169)

and

R =
�
QnQn�1���Q2a1

aT1 a1

QnQn�1���Q3a2
aT2 a2

: : :
an
aTnan

�
: (4.170)

It follows easily from (4.168) that

s(kn) =

k�1X
p=0

QpRb+Qks(0); (4.171)

4The choice of range 1 � i � n for subscripts made here is typical of Fortran programming conventions.

An inversion code written in C would more naturally use the range 0 � i � n � 1 and thereby avoid the

need for the exception when i mod n = 0.
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where k is the iteration number. Thus, as k ! 1, the iterates s(kn) ! s, the slowness

solving our linear equation if

lim
k!1

k�1X
p=1

QpR = Ay (4.172)

and

lim
k!1

Qks(0) = n or 0; (4.173)

where n is any vector from the right null space of A. However, it has been found that ART

may not converge in practice if the data are inconsistent and/or if A is singular or nearly

so [Gilbert, 1972; Gordon, 1974; Dines and Lytle, 1979], which brings us to SIRT.

One common version of the SIRT algorithm [Dines and Lytle, 1979; Ivansson, 1983] may

be written in component form as

s

(k+1)
j = s

(k)
j +N

�1
jj

mX
i=1

(ti �
Pn

p=1 lips
(k)
p )lijPm

q=1 l
2
iq

; (4.174)

where Njj is the number of rays passing through cell j (sometimes known as the hit param-

eter). In vector notation, this becomes

s(k+1) = s(k) +N�1MTD�1(t�Ms(k)); (4.175)

where N is the diagonal matrix whose components are Njj and D is the diagonal matrix

whose components are

Dii = (MMT )ii =

nX
j=1

l
2
ij: (4.176)

Convergence of this algorithm has been proven by Ivansson [1983]. We present a similar

proof.

The analysis is very similar to that presented in Section 4.2 on scaling methods. De�ne

M00 = D� 1
2MN� 1

2 ; (4.177)

y00 = D
1
2y; (4.178)

z00 = N
1
2z: (4.179)

Then, consider the eigenvalue problem

M00z00 = �y00; (4.180)

M00Ty00 = �z00; (4.181)
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which is equivalent to

Mz = �Dy; (4.182)

MTy = �Nz: (4.183)

We see that, if yi and zj are eigenvectors for eigenvalues �i and �j,

yTi Mzj = �iy
T
i Dyj = �iz

T
i Nzj; (4.184)

so we are free to normalize the eigenvectors so that

(y00i )
Ty00j = (z00i )

Tz00j = �ij :p (4.185)

Proposition 4.4.1 The eigenvalues of M00 lie in the interval [-1,1].

Proof: The eigenvalue problem (4.180){(4.181) can be written in components as

nX
j=1

lij

(DiiNjj)
1
2

z
00
j = �y

00
i ; (4.186)

mX
i=1

lij

(NjjDii)
1
2

y
00
i = �z

00
j : (4.187)

Now de�ne the sign function as

sgn(lij) =

8><>:
+1 if lij > 0;

0 if lij = 0;

�1 if lij < 0;

(4.188)

and note that

Njj =

mX
i=1

sgn(lij); (4.189)

since the path lengths are never negative. Considering (4.186) and using Cauchy's inequality

for sums, we have

�
2(y00i )

2 �
nX

p=1

l
2
ip

Dii

nX
j=1

sgn(lij)(z
00
j )

2

Njj
: (4.190)

Using the de�nition (4.176) of Dii and summing (4.190) over i, we �nd

�
2

mX
i=1

(y00i )
2 �

mX
i=1

nX
j=1

sgn(lij)(z
00
j )

2

Njj
=

nX
j=1

(z00j )
2
: (4.191)
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Then, the normalization condition (4.185) shows that (4.191) reduces to

�
2 � 1: (4.192)

Thus, an analysis completely analogous to that given previously for simple iteration (see

Section 4.4.3) shows that an iteration scheme of the form

N
1
2 s(k+1) = N

1
2 s(k) +M00T

h
D� 1

2 t�M00N
1
2 s(k)

i
; (4.193)

is guaranteed to converge to a solution of MTMs =MT t.

Problems

Problem 4.4.15 Show that

1. P (a)a = a; aTP (a) = aT ;

2. P?(a)a = 0; aTP?(a) = 0;

3. P 2(a) = P (a); PT (a) = P (a);

4. P (�a) = P (a); P (
a) = P (a) for any scalar 
;

5. P (a)P?(a) = 0 = P?(a)P (a);

6. if aT2 a1 = 0, then P1P2 = P2P1;

7. if aT2 a1 6= 0, then P1P2 6= P2P1 unless a2 = 
a1 for some scalar 
;

8. P y(a) = P (a).

Problem 4.4.16 A beam of light will not pass through a pair of polarizing �lters if their

axes are crossed at right angles. However, if a third �lter is inserted between the �rst

two with its polarizing axis at 45�, then some of the light can get through. Use projection

operators for the vectors a1 = x̂, a2 = (x̂+ ŷ)=
p
2, and a3 = ŷ to explain this physical e�ect.

Design a product of projection operators that will project a vector x̂ onto the direction of

its re
ection �x̂. What is the smallest number of projection operators that can be used to

produce a re
ection? [Feynman, Leighton, and Sands, 1963]

Problem 4.4.17 Verify (4.167).

Problem 4.4.18 Rewrite (4.18) and (4.19) in terms of projection operators.

Problem 4.4.19 Rewrite (4.128) in terms of projection operators.

Problem 4.4.20 Rewrite the Gram-Schmit orthogonalization procedure (4.141) in terms

of projection operators.
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Problem 4.4.21 Reconsider the conjugate gradients approach (4.136){(4.138). Show that

the iteration scheme can be written as

s(k+1) = [I�Q

(k)
A ]b+Q

(k)
A s(k)

and

p(k+1) = Q

(k)
A

h
b�As(k+1)

i
;

where

Q

(k)
A = I�

(p(k))Tp(k)A

(p(k))TAp(k)
:

Show that

s(k+1) = [I�Q

(k)
A Q

(k�1)
A � � �Q(1)

A ]b+Q

(k)
A Q

(k�1)
A � � �Q(1)

A s(1):

Compare this result to (4.140).

Problem 4.4.22 Suppose that AT = (a1;a2;a3;a4). Show that

RA = I�Q4Q3Q2Q1

if

R =
�
Q4Q3Q2a1
aT1 a1

Q4Q3a2
aT2 a2

Q4a3
aT3 a3

a4
aT4 a4

�
:

Show that

Ay =
1X
k=0

[Q4Q3Q2Q1]
kR:

Problem 4.4.23 What changes must be made in ART and SIRT in order to solve a

weighted least-squares problem? Or, a damped and weighted least-squares problem?

Problem 4.4.24 Show that ART may be applied directly to the system Ms = t when the

m� n ray-path matrix M is not square by deriving the formula

s

(i)
j = s

(i�1)
j +

ti0 �
Pn

p=1 li0ps
(i�1)
pPn

q=1 l
2
i0q

li0j (4.194)

for the iteration sequence in component form.

Problem 4.4.25 Since A =MTM in the traveltime inversion problem, the components of

A are given by

Ajj0 =

mX
p=1

lpjlpj0
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and the components of the column vector ai are given by

ai =

0BBB@
Pm

p=1 lpilp1Pm
p=1 lpilp2

...Pm
p=1 lpilpn

1CCCA :

Use these facts to write an expression for the ART iteration scheme (4.166) in component

form.

Problem 4.4.26 Do the two forms of ART in Problems 4.4.24 and 4.4.25 converge to the

same slowness value? [Hint: Consider the generalized inverses of M and A =MTM.]

Problem 4.4.27 The form of SIRT presented in (4.175) is just one of many possibilities.

Show that the following alternatives converge and determine their convergence rates:

1. X
1
2 s(k+1) = X

1
2 s(k) +X� 1

2MTD�1(t�Ms(k)) where X = N=
 for 0 < 
 < 2;

2. D
1
2 s(k+1) = D

1
2 s(k) + D

� 1
2MTN

�1
(t �Ms(k)) where D = diag(MTM) and Nii =Pn

j=1 sgn(lij) is the number of cells traversed by the ith ray;

3. D
1
2 s(k+1) = D

1
2 s(k) + n

�1D
� 1

2MT (t�Ms(k)).

Problem 4.4.28 Jacobi's method for solving As = b for a square matrix A is

s(k+1) = s(k) +D
�1
(b�As(k));

where the diagonal matrix

D = diagA:

If s(�1) = 0, compare s(0) to the backprojection estimate (1.16). Show that, in component

form, the iterates of Jacobi's method are

s

(k+1)
j =

1

Ajj

0@
bj �

j�1X
p=1

Ajps
(k)
p �

nX
p=j+1

Ajps
(k)
p

1A (4.195)

for j = 1; : : : ; n. Does this method converge for the traveltime inversion problem? If not, can

it be modi�ed to guarantee convergence? Under what circumstances are SIRT and Jacobi's

method equivalent?

Problem 4.4.29 The Gauss-Seidel method for solving As = b decomposes the square ma-

trix A into

A = D+ L+U;
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where D is the diagonal of A while L and U are the lower and upper triangular pieces of

A. Then, the iteration scheme is given by

(D+ L)s(k+1) = b�Us(k):

Show that, in component form, the iterates of the Gauss-Seidel method are

s

(k+1)
j =

1

Ajj

0@
bj �

j�1X
p=1

Ajps
(k+1)
p �

nX
p=j+1

Ajps
(k)
p

1A (4.196)

for j = 1; : : : ; n. Compare and contrast (4.195) and (4.196). Does Gauss-Seidel converge

for the traveltime inversion problem? If not, can it be modi�ed to guarantee convergence?

Problem 4.4.30 To apply the Gauss-Seidel method to Ms = t when M is not square,

de�ne the new m-vector q such that s = MTq. Then, the Gauss-Seidel approach may be

applied directly to

MMTq = t:

The resulting iteration scheme is

q

(k+1)
i =

0@
ti �

i�1X
p=1

(MMT )ipq
(k+1)
p �

mX
p=i+1

(MMT )ipq
(k)
p

1A
=(MMT )ii: (4.197)

Write (4.197) in terms of components and compare the result to (4.194). Is ART equivalent

to the Gauss-Seidel method?
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Chapter 5

Fast Ray Tracing Methods

The most expensive step in any traveltime inversion or tomography algorithm is the forward

modeling step associated with ray tracing through the current best estimate of the wave

speed model. It is therefore essential to make a good choice of ray tracing algorithm for

the particular application under consideration. Prior to choosing a ray tracing method, a

method of representing the model must be chosen. Three typical choices are: cells or blocks

of constant slowness, a rectangular grid with slowness values assigned to the grid points

and linearly interpolated values between grid points, or a sum over a set of basis functions

whose coe�cients then determine the model. The ray tracing method should be designed

to produce optimum results for the particular model representation chosen.

We will consider three approaches to ray tracing:

1. Shooting methods.

2. Bending methods.

3. Full wave equation methods.

These three methods are based respectively on Snell's law [Born and Wolf, 1980], Fermat's

principle [Fermat, 1891], and Huygen's principle [Huygens, 1690]. We will �nd that shooting

methods and wave equation methods should generally be used with smooth representations

of the model such as linearly interpolated grids or spline function approximations, while

bending methods are preferred for constant cell representations.

We will study each of these approaches in some detail in this section. But �rst we

address a question commonly asked about the necessity of using bent rays in traveltime

tomography.

5.1 Why Not Straight Rays?

Straight rays are used in x-ray tomography and the results obtained are very good, so why

not use straight rays in seismic inversion and tomography? For x-rays traveling through

the body, the index of refraction is essentially constant, so the ray paths are in fact nearly

straight. Furthermore, the reconstruction in x-ray tomography is performed on the atten-

uation coe�cient, not the wave speed, so the situation is not really comparable to that of

81
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Figure 5.1: Snell's law is a consequence of the stationarity of the traveltime functional.

seismic tomography. Reconstructions in seismic inversion and tomography are most often

performed on the wave speed or wave slowness. Since the earth is not homogeneous, the

speed of sound varies signi�cantly and the e�ective index of refraction is far from being

constant. Thus, the rays in a seismic transmission experiment really do bend signi�cantly

and this fact should be taken into account in the reconstruction.

Suppose that we use straight rays in a tomographic reconstruction when in truth the rays

whose traveltimes have been measured were actually bent according to Fermat's principle

or Snell's law. In a region where the wave speed is quite low, the true rays will tend to go

around the region, but the straight rays go through anyway. So the backprojection along

a straight ray will naturally focus the e�ects of a slow region into a smaller region than it

should. Similarly, in a region where the wave speed is quite high, the true rays will tend

to accumulate in the fast region, whereas the straight rays are free to ignore this focusing

e�ect. Thus, the backprojection along a straight ray will tend to defocus the e�ects of a

fast region into a larger region than it should. If we could train our eyes to look for these

e�ects in straight ray reconstructions, then it might not be essential to use bent rays. But

until then, it is important to recognize that using straight rays has important e�ects on the

resolution of the reconstruction. Regions of high wave speed will appear larger than true,

so such regions are poorly resolved. Regions of low wave speed will appear smaller than
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Figure 5.2: Detail of the stationarity calculation (see preceding Figure).

true, so such regions are poorly de�ned.

Having said all this, nevertheless there are circumstances where I would recommend

using straight rays in the reconstruction. First, if the region to be imaged contains very

high contrasts so that some of the assumptions normally made to speed up the ray tracing

codes are expected to be violated (e.g., rays double back on themselves), then stable re-

constructions with bent rays may be impossible while a straight ray reconstruction can still

give some useful information. Second, if the desired result is just a low resolution image

showing whether or not an anomaly is present, then straight rays are entirely appropriate.

Third, if a reconstruction for anisotropic wave speed is being attempted, then straight rays

are recommended too, since the nonuniqueness expected in the reconstruction when bent

rays are coupled with anisotropy in the model appears so overwhelming that I think little

can be done to overcome the problem at the present time.1

Straight rays are always computed quickly since they depend only on the source and

receiver locations. So if resolution is not an issue but speed of computation is, then of course

straight rays can and probably should be used. However, using straight rays is limiting the

reconstruction to be merely linear inversion or tomography, but | since our subject is

nonlinear inversion and tomography | we will not consider straight rays further.

1See Jech and P�sen�c�ik [1989; 1991].
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5.2 Variational Derivation of Snell's law

For piece-wise constant slowness models, we consider Snell's law.

A medium with two regions of constant slowness s1; s2 is separated by a plane boundary.

The ray path connecting two points, A and B, located on either side of the boundary is

stationary, i.e., small deviations from this path make only second order corrections to the

traveltime. Referring to Figures 5.1 and 5.2, we let the solid line denote the ray path having

stationary traveltime and let the dotted line be a perturbed ray path. Each path is assumed

to comprise straight lines within each medium which then bend into a new direction upon

crossing the boundary. We let �1 and �2 denote the angles of the stationary path from the

normal to the boundary in the two regions, respectively. A simple geometrical argument

can be used to infer the di�erence in length between the two paths to �rst order in h,

the distance between the points where the paths intersect the boundary. We �nd that the

segment of the perturbed path in region 1 is h sin(�1+ ��) units longer than the stationary

path, while in region 2 the perturbed path is h sin �2 units shorter. Therefore, the traveltime

along the perturbed ray di�ers from that along the stationary ray by �t, given by

�t = s1h sin �1 � s2h sin �2; (5.1)

neglecting the second order e�ects due to �nite �� and due to the slight di�erences in the

remainders of these two paths. Since the traveltime is stationary, we set �t = 0 and �nd

that

s1 sin �1 = s2 sin �2. (Snell's law) (5.2)

5.3 Ray Equations and Shooting Methods

Let the ray path P between two points A and B be represented by a trajectory x(u), where

u is a scalar parameter that increases monotonically along the ray. We can then write the

traveltime along the path as

t =

Z
P
s(x(u)) dl(u) (5.3)

=

Z u(B)

u(A)
f(x; _x) du; (5.4)

where _x = dx=du and

f(x; _x) = s(x)j _xj: (5.5)

Fermat's principle implies that the stationary variation [Whitham, 1974]

�t =

Z u(B)

u(A)
[rxf � �x+r _xf � � _x] du = 0: (5.6)
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Integrating by parts

�t =

Z u(B)

u(A)

�
rxf �

d

du

r _xf

�
� �xdu = 0: (5.7)

Since this must be true for all �x, we can infer

rxf �
d

du

r _xf = 0: (5.8)

Now observe that

rxf = j _xjrs; (5.9)

r _xf = s(x)
_x

j _xj
: (5.10)

Further, we have dl = j _xjdu, so stationarity of t implies

rs =
d

dl

�
s

d

dl

x

�
: (5.11)

This is the ray equation.

In a 2-D application, the ray equation may be rewritten in terms of the angle � of the

ray from the x direction. First, note that

d

dl

x = �̂ = cos �x̂+ sin �ŷ (5.12)

and

d

dl

�̂ = �̂

d�

dl

= (� sin �x̂+ cos �ŷ)
d�

dl

; (5.13)

so that (5.11) may be rewritten as

rs =
ds

dl

�̂+ s�̂

d�

dl

; (5.14)

which implies

�̂ � rs = s

d�

dl

: (5.15)

Finally, we obtain

d�

dl

=
1

s

�
@s

@y

cos � �
@s

@x

sin �

�
; (5.16)
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giving an explicit di�erential equation for the ray angle � along a 2-D path.

The ray equations form the basis for shooting methods of ray tracing. Starting at any

source point, we initially choose a set of possible angles. An optimum initial span of angles

can be determined if the range of wave-speed variation is known approximately. Then,

we use the ray equations to trace the rays at each of these angles through the medium to

the vicinity of the receiver of interest. Normally none of the initial angles turns out to

be the correct one (i.e., the one that produces a ray that hits the receiver), but often the

receiver is bracketed by two of these rays. Then, by interpolation, we can �nd as accurate

an approximation as we like: i.e., choose a new set of angles between the pair that brackets

the receiver, trace the rays for these angles, keep the two closest that bracket the receiver,

and continue this process until some closeness objective has been achieved.

Shooting methods are very accurate, but also relatively expensive. We may have to

shoot many rays to achieve the desired degree of accuracy. Furthermore, there can be

pathological cases arising in inversion and tomography where it is di�cult or impossible

to trace a ray from the the source to receiver through the current best estimate of the

slowness model. Such problems are most likely to occur for models containing regions

with high contrasts. Then, there can exist shadow zones behind slow regions, where ray

amplitude is small for �rst arrivals. Such problems can also arise due to poor choice of

model parametrization. Shooting methods should normally be used with smooth models

based on bilinear interpolation between grid points, or spline function approximations. If

the desired model uses cells of constant slowness, shooting methods are not recommended.

Problems

Problem 5.3.1 Verify (5.11).

Problem 5.3.2 Derive Snell's law (5.2) for the change in ray angle at a plane interface

from the ray equation (5.11).

Problem 5.3.3 Can the ray equation be derived from Snell's law?

Problem 5.3.4 Consider a horizontally strati�ed medium with a sequence of layers having

uniform slownesses s1, s2, s3, : : :. Use Snell's law to show that a ray having angle �1 to the

vertical in the �rst layer will have an associated invariant (called the ray parameter)

p = si sin �i (5.17)

in every layer i whose slowness satis�es si > s1 sin �1. If the ray encounters a layer (say

the nth layer) whose slowness satis�es sn � s1 sin �1, then what happens? Show that the

constancy of the ray parameter is a direct consequence of (5.16).
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5.4 The Eikonal Equation

Consider the wave equation for a �eld  (x; t) in a medium with slowness s(x):

r2
 = s

2(x)
@
2
 

@t
2
: (5.18)

Let us assume

 (x; t) = e
i![�(x)�t] = e

�!=�(x)
e
i![<�(x)�t]

; (5.19)

where �(x) = <�(x) + i=�(x) is a complex phase. The imaginary part =� determines the

amplitude of  . Substituting into the wave equation, we geth
i!r2

�� !
2r� � r�+ !

2
s
2(x)

i
 = 0: (5.20)

In the limit ! !1, �! <�, since (5.20) implies that

r<� � r<��r=� � r=� = s
2(x) (5.21)

and

r<� � r=� = 0; (5.22)

and the wave equation reduces to the eikonal2equation

jr�j = s(x): (5.23)

5.5 Vidale's Method

The method of Vidale (1988) uses a �nite di�erence scheme to compute the traveltimes of

waves in an arbitrary medium. The slowness of the medium is represented on the nodes of

a rectilinear grid with bilinear (for 2-D media) interpolation assumed between nodes. The

method approximates the wave �eld which propagates through a given element as a plane

wave. This approximation is valid for the far �eld. (A di�erent approach is used for the

near �eld, but we will not cover this here.)

5.5.1 Algebraic derivation

Figure 5.3 shows one element of the grid. We number the nodes of the element in a

counterclockwise manner, starting with the lower left node. Without loss of generality, we

let the plane wave begin at node 0 with traveltime t0, assumed known. The traveltime to

the other nodes|t1, t2 and t3|will then be greater than t0 by an amount which depends

2The term eikonal (from the Greek "��~!� meaning icon or image) was introduced by Bruns [1895].
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Figure 5.3: Diagram of a grid element used in Vidale's method.

on the direction of propagation and the grid element size h. In general we can write the

Taylor series expansion

t1 = t0 +
@t

@x

h; (5.24)

t2 = t0 +
@t

@y

h; (5.25)

t3 = t0 +

�
@t

@x

+
@t

@y

�
h; (5.26)

valid to �rst order in h. We can solve these equations for the gradient of t, obtaining

2h
@t

@x

= t3 + t1 � t2 � t0; (5.27)

2h
@t

@y

= t3 + t2 � t1 � t0: (5.28)

The eikonal equation implies that jrtj2 = s
2(x). If we substitute from (5.27) and (5.28) for

rt and an element average value of s, we get

(t3 + t1 � t2 � t0)
2 + (t3 + t2 � t1 � t0)

2 = 4�s2h2; (5.29)

where

�s =
1

4
(s0 + s1 + s2 + s3): (5.30)
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Figure 5.4: Geometry of plane wavefront incident on a grid element.

From (5.29), we �nd that the cross terms cancel so

(t3 � t0)
2 + (t1 � t2)

2 = 2�s2h2: (5.31)

Solving for t3, we get Vidale's formula:

t3 = t0 +
q
2�s2h2 � (t1 � t2)2: (5.32)

We can verify (5.32) for two limiting cases. First, for a wave traveling in the +x direction,

we must have t0 = t2 and, assuming s is constant, t1 = t0 + �sh. Substituting these into

(5.32) then yields t3 = t0 + �sh, which is intuitively the correct answer. Similarly, Vidale's

formula implies t3 = t0 +
p
2�sh for a wave travel at 45 degrees to x, i.e., when t1 = t2.

5.5.2 Geometric derivation

We can gain more insight into the signi�cance of Vidale's method by deriving the result

another way. Now consider Fig. 5.4. We assume that to a �rst approximation it is satis-

factory to treat the slowness in the cell as constant. The constant we choose is the average

of the four grid slownesses at the corners of the cell �s = 0:25(s1 + s2 + s3 + s4). If the

planewave impinges on the cell from the lower left, making angle � with the x-axis, then the

simple geometrical construction in the �gure shows that the following identities must hold:

t1 � t0 = �sh cos �; (5.33)

t3 � t2 = �sh cos �; (5.34)
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t2 � t0 = �sh sin �; (5.35)

t3 � t1 = �sh sin �: (5.36)

We see directly from Fig. 5.4 that the right triangle whose hypotenuse is the diagonal of

the cell and whose longest side is proportional to the time di�erence t3 � t0 has its short

side proportional to t2 � t1. The Pythagorean theorem then tells us that

(t3 � t0)
2 + (t2 � t1)

2 = 2�s2h2; (5.37)

in agreement with (5.31) and (5.32). Alternatively, we see that (5.33){(5.36) show

(t3 � t0)
2 + (t2 � t1)

2 = �s2h2(cos � + sin �)2 + �s2h2(sin � � cos �)2 = 2�s2h2: (5.38)

From our examination of the geometry for planewaves, we get a bonus. Now we can

also �nd a simple estimate of the angle � if we know the traveltimes. Clearly,

tan � =
t2 � t0

t1 � t0
=
t3 � t1

t3 � t2
(5.39)

follows from (5.33){(5.36). It also follows from (5.27) and (5.28) that

tan � =
@t=@y

@t=@x

=
t3 + t2 � t1 � t0

t3 + t1 � t2 � t0
; (5.40)

a result that we may also infer from (5.33){(5.36). Thus, it is possible to determine the

angle � to �rst order just by knowing the traveltimes at the corners of the cell. This fact

suggests several alternatives for adding ray tracing to Vidale's �nite di�erence traveltime

computation, but we will not pursue that subject here.

Finally, note that (5.33)-(5.36) show that

t3 = t2 + t1 � t0: (5.41)

Why is this not a useful identity for computing the traveltimes?

5.6 Bending Methods

Although in principle they can be, in practice bending methods are generally not as sys-

tematic or as accurate as shooting methods. However, they are also much less prone to

convergence failures in the presence of pathological models with high relative contrasts

(which can result in shadow zones occurring behind very slow regions). Bending methods

start with some connected path between the source and receiver (generally a straight line for

borehole-to-borehole tomography) and then use some method to reshape or bend that path

to reduce and (we hope) minimize the overall traveltime along the path. Bending methods

are conceptually based on Fermat's principle of least time; the minimization over paths in

(1.2) is being performed now essentially using trial and error. This method is just as legiti-

mate as the others discussed previously and can be just as accurate if the search routine is
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su�ciently sophisticated. Also, bending methods are the only ones that I recommend using

when the model is composed of cells of constant slowness. Other methods such as shooting

take the cell boundaries in these models too seriously | trying to satisfy Snell's law exactly

at these arti�cial boundaries while the approximate satisfaction of Snell's law achieved by

the bending method using Fermat's principle is more consistent with the approximation to

the physics embodied in the model.

5.6.1 The method of Prothero, Taylor, and Eickemeyer

We summarize the bending method of Prothero, Taylor, and Eickemeyer (1988) for the case

of 2-D ray paths.

Let (xS; yS) and (xR; yR) be the given endpoints of the ray. We seek the least time

path between the two points, which we can describe with the function y(x) or x(y). [It is

assumed that one of these functions is single valued.] Let us use y(x) and, with no loss of

generality, we take xS = 0, xR = L.

In ray bending, we begin with an initial ray y0(x) and seek a perturbation �y(x) to the

initial ray such that the traveltime along the perturbed ray is reduced. Typically the initial

ray is taken to be a straight line:

y0(x) = yS(1�
x

L

) + yR
x

L

: (5.42)

The perturbed ray is taken to be a harmonic series of the form

�y(x) =

KX
k=1

ak sin
k�x

L

: (5.43)

The order of the series is usually kept small (e.g., K = 2). Note that only sine, and not

cosine, terms are used so that the endpoints of the ray remain unperturbed.

In terms of the y(x), the traveltime is given by

t =

Z L

0
s(x; y(x))

q
1 + (dy=dx)2 dx: (5.44)

Prothero, Taylor, and Eickemeyer (1988) use the Nelder-Mead search procedure [Nelder

andMead, 1965; Press, Flannery, Teukolsky, and Vetterling, 1988] to �nd coe�cients ak such

that the traveltime is reduced. The Nelder-Mead approach may be used in any number of

dimensions to seek the minimum of a complicated function, especially when local gradients

of the function are di�cult or expensive to compute. The main idea is to perform a sequence

of operations on an n-dimensional simplex, so that the vertices of the simplex converge on

the point where the function is minimum. In 2-D, the simplex is a triangle. The complicated

function to be minimized in our problem is the traveltime functional. Using this approach,

the traveltimes associated with three choices of the ordered pairs (a1; a2) are compared|

for example, the origin (0; 0) and two other points in the a1a2-plane. The point with the

largest traveltime is then replaced with a new point found as the mirror re
ection of the

point about a line passing through the other two points.
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Figure 5.5: Illustration of the Nelder-Mead method.

Figure 5.5 illustrates the method. Starting with three points whose corresponding trav-

eltimes are respectively t1 < t2 < t3, the algorithm seeks to replace the point with the largest

traveltime by a smaller traveltime t03. The �gure shows the �rst attempt in such a process,

which is usually re
ection of the triangle across the line determined by the other two vertices

of the triangle. If the traveltime associated with this point satis�es t03 < t2, then this point

becomes a point of the new triangle. If t03 > t2, then other moves are made such as checking

values between the original vertex and the re
ected vertex or expansion/contraction of the

triangle. When an improved (smaller traveltime) vertex is found, the vertices are relabelled

and the process starts over for the new triangle. If no improvement (or improvement less

than some preset threshold) is attained or some �xed number of iterations is exceeded, the

process terminates for this ray path.

5.6.2 Getting started

One potential pitfall of this method occurs when attempting to choose a set of vertices

for the starting triangle that avoids biasing the �nal results. Bias in this context means

a tendency to choose rays that bow away from the straight path in the same direction. I

recommend always choosing the origin (a1; a2) = (0; 0) as one of the initial vertices, since

this choice corresponds to a straight ray path and is clearly unbiased by de�nition. The

straight path may be a good approximation to the true path whenever the wave speed

constrasts in the model are low. Then, how should the other two vertices be chosen?
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One rather obvious pairing can be excluded immediately: Suppose that we choose the

point (a1; a2) = (�; �). Then the mirror image of the path across the source/receiver line is

given by the point (a1; a2) = (��;��). However, rather than determining a triangle, these

three points (��;��); (0; 0); (�; �) form a straight line in the a1a2-plane. Thus, although

pairing (�; �) with (��;��) is desirable from the point of view of minimizing bias, this

pairing produces an undesirable degenerate version of the triangle needed in the Nelder-

Mead algorithm. Therefore, we should exclude this possibility.

In general, we should expect the ray bending e�ect to be dominated by the coe�cient

a1. Thus, although there clearly may be exceptions, we generally expect ja1j > ja2j and
very often ja1j >> ja2j. So we try to minimize the bias in the initial choice of vertices

by pairing (�; �) with (��; �), where j�j is about an order of magnitude smaller than j�j.
This choice of pairing eliminates the major source of bias in the initial simplex while still

producing a usable triangle for the Nelder-Mead algorithm. The precise value to be used

for � depends on the expected range of variation (or contrast) in the wave speed in the

region being imaged. In fact, the initial choice of � for this approach is closely related to

the optimum choice of the maximum initial span of angles needed to start the shooting

methods described earlier.

5.7 Comparison

On average, the method of Prothero et al. (1988) has been found to be as fast and as accu-

rate as Vidale's method when 100 times fewer cells are used than in Vidale's modelization.

So the bending method is considerably more accurate on a coarser grid, but also corre-

sponding slower to compute. Vidale's method is not as accurate as the bending method for

regions that are very slow compared to the background, due to limitations it has in or near

shadow zones. The bending method is not quite as accurate as Vidale's method for regions

of high wave speed relative to background and comparable computing time, apparently due

to limitations of the ray parameterization embodied in (5.43). The hybrid approach of using

the best (smallest) traveltimes found by either method as the \true" traveltime has been

tested and gives better results than either method alone.
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Chapter 6

Ghosts in Traveltime Inversion

and Tomography

A ghost in seismic traveltime inversion is a model perturbation that does not a�ect the

agreement between the predicted and measured �rst arrival traveltimes. For example, if

Ms = t; M(s+ g) = t; (6.1)

then subtracting shows that

Mg = 0; (6.2)

so g lies in the null space ofM, i.e., in the null space of the traveltime functional. A careful

analysis of the ghosts shows that, while some are unavoidable due to the limited view angles

used when the data were collected, others are caused by unfortunate choices made when

discretizing the model. Thus, some ghosts may be eliminated by making unusual choices

for the model parametrization.

It is important to realize from the outset that it may not be either possible or even

desirable to eliminate all the ghosts. In fact, the normal solution to the least-squares

problem cannot be found if MTM is not invertible. Lack of invertibility is caused by the

presence of a right null space for M and the members of that null space we call ghosts. In

some cases, simple tricks can be developed to eliminate the ghosts, but not always.

One reference on this topic is Ivansson [1986].

6.1 Feasibility Constraints and Ghosts

Because feasibility constraints depend on the traveltime data while ghosts are indepen-

dent of the traveltime data (depending instead only on the ray path matrix), feasibility

constraints are always orthogonal to all ghost vectors. This fact is illustrated in Figure 6.1.

Actually, this statement is somewhat oversimpli�ed in the context of nonlinear inversion

algorithms, where we may want to consider many ray-path matrices simultaneously, but

95
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Figure 6.1: Feasibility constraints are orthogonal to all ghost vectors.

we will ignore this complication here. Thus, the remainder of this Chapter will describe

various kinds of ghost and other means of dealing with them.

6.2 Types of Ghosts

We now carry out an in-depth analysis of a few common ghosts occurring in seismic inverse

problems.

6.2.1 Single cell ghost

A single cell ghost occurs when no ray passes through a certain cell. That cell is uncovered,

not illuminated, not hit by any of the rays in the data set (at least for the current choice of

ray paths). Thus, the slowness of that cell is arbitrary, as it has no e�ect on determining

any of the traveltimes in the data set.

The proper way to deal with such a cell is to assign it some arbitrary value, like the

average slowness of all cells or the average of all contiguous cells.

6.2.2 Two cells with only one ray

When any two cells are covered by one and only one ray, a ghost arises because the increment

of traveltime �ti through these cells is invariant to a perturbation of the form

gT = (0; : : : ; 0; lik; 0; : : : ; 0;�lij ; 0; : : : ; 0); (6.3)

since

�ti = lijsj + liksk = lij(sj + �lik) + lik(sk � �lij); (6.4)
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where � is an almost arbitrary scalar. The one constraint on � is that the perturbed

slowness vector

s0 = s+ �g (6.5)

must be positive. Note that there is no ghost associated with a single cell having only one

covering ray.

The proper way to deal with such pairs of cells (especially if they are contiguous) is

to treat them as if they were combined into one larger cell, i.e., assign the same value

of slowness to both cells. This approach has the e�ect of eliminating the ghost while

simultaneously reducing the size of the model space by one dimension.

If more than two cells are covered by one and only one ray, then there will be multiple

ghosts (for p cells there will be p� 1 ghosts). Again, one way to eliminate this problem is

to treat all such cells as a single cell. This approach may not be the best one if the cells are

not contiguous. Other approaches will be discussed in the section on eliminating ghosts.

6.2.3 Underdetermined cells in an overdetermined problem

The preceding discussion is a special case of a more general problem: underdetermined

cells imbedded in an overdetermined inversion problem. Underdetermination means having

fewer equations than unknowns. The example of two cells with only one ray is a common

example of this e�ect. Others would be three cells with two rays, 20 cells with 15 rays, etc.

The existence of underdetermined cells may be the result of poor experimental design, of

physical limitations at the experimental site that reduce the possible range of view angles

signi�cantly (as in crosswell geometry), or they may be caused by severe ray bending e�ects

when high contrasts in the slowness values are present. In the latter situation, we expect

that rays will tend to avoid very slow regions (Fermat's principle says to take the fastest

path, which may mean to go around the slow region). Since experiments will normally be

planned to achieve the desired resolution assuming straight-ray coverage, the actual coverage

in slow regions is smaller than planned and may be so reduced by these ray bending e�ects

to the extent of causing underdetermination.

This problem with ghosts can now be reduced to

M0s0 = �t0; (6.6)

where M0 is an m0 � n
0 matrix with m0

< n
0, s0 is the subvector of the slowness model of

length n0, and �t0 is the subvector of the traveltime increment of length m0. A particular

solution of (6.6) is given by

s0 =M0T (M0M0T )�1�t0; (6.7)

if the matrix M0M0T is invertible. But the general solution of (6.6) is a vector of the form

s0 =M0T (M0M0T )�1�t0 + g0; (6.8)

where g0 is any vector from the right null space ofM0. This null space must have dimension

at least n0 �m
0.
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The preferred solution to this problem is again to combine contiguous cells until the

number of equations is at least equal to the number of unknowns. Then n0 �m
0 = 0, and

the null space is eliminated. Another method of dealing with the problem if the cells are

not contiguous is to assign a slowness value to n0 � m
0 of those cells that have the least

coverage, thus removing them from the inversion problem.
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Figure 6.2: Stripes are caused by straight rays used in crosswell geometry.

6.2.4 Stripes

One of the most common types of ghosts in borehole-to-borehole tomography is the vertical

stripe. Stripes are ghosts caused by an unfortunate resonance of the model parametrization,
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the limited set of view angles possible in the crosswell geometry, and the use of straight

rays in the reconstruction (see Figure 6.2).

To see how the problem arises, consider the geometry of two vertical boreholes with

square cells of dimension h in the image plane. For purposes of illustration, suppose that

the borehole separation is just three cell widths and the borehole depth is two cell heights.

To get from one borehole to the other, the rays must cross the lines forming the vertical

boundaries between cells. Assuming straight rays, each ray is characterized by a total ray-

path length Li = 3h= cos �i, where �i is the angle the ray makes with the horizontal. So

the total path length in each vertical column is just h= cos �i. This part of the path length

is shared among the cells in a column di�erently for each ray path, but that is not so

important. What is important is that the sum is constant in each column for every ray.

The ray-path matrix takes the form

M =

0BBBB@
d11h
cos�1

d12h
cos �1

e13h
cos �1

e14h
cos �1

f15h
cos�1

f16h
cos �1

d21h
cos�2

d22h
cos �2

e23h
cos �2

e24h
cos �2

f25h
cos�2

f26h
cos �2

...
...

...
...

...
...

dm1h
cos �m

dm2h
cos �m

em3h
cos �m

em4h
cos �m

fm5h
cos�m

fm6h
cos �m

1CCCCA ; (6.9)

where the ds, es, and fs are nonnegative fractions satisfying

2X
j=1

dij =

4X
j=3

eij =

6X
j=5

fij = 1; (6.10)

for every ray path 1 � i � m. The ds are associated with the cells in the �rst column; the

es with the second column; and the fs with the third column. Then it is clear that these

three vectors

g1 =

0BBBBBBB@

1

1

�1
�1
0

0

1CCCCCCCA ; g2 =

0BBBBBBB@

0

0

1

1

�1
�1

1CCCCCCCA ; g3 =

0BBBBBBB@

1

1

0

0

�1
�1

1CCCCCCCA
; (6.11)

are ghosts for this problem, since in each case we �nd that

Mg =

0BBBB@
h

cos �1
� h

cos �1
h

cos �2
� h

cos �2
...

h
cos �m

� h
cos �m

1CCCCA = 0 (6.12)

follows from (6.10).

These ghosts show up in the reconstructed slowness as vertical stripes | a constant

slowness perturbation is subtracted from one column and added to any other column.

To eliminate these ghosts, we need to break the unfortunate symmetry that has caused

this artifact to arise. These ghosts would not exist if the cells were not lined up perfectly
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with both of the vertical boreholes. So one solution is to use cells that are not square or

rectangular, i.e., odd shapes like hexagons, triangles, etc. Using a rectangular but staggered

grid would also remove the degeneracy. Or, combining a few of the poorly covered cells near

the top and bottom would also break the symmetry. A still simpler method of eliminating

the problem (at least conceptually) is to use bent rays, rather than the arti�cially straight

rays that are often incorrectly assumed to be adequate.

Problems

Format for Problems 6.2.1{6.2.4: The next four problems consider a 3 � 3 model

with the layout

s1 s2 s3

s4 s5 s6

s7 s8 s9

.

Problem 6.2.1 A ray-path matrix for a 3� 3 slowness model is

M =

0@ 1:414 0 0 0 1:414 0 0 0 1:414

0 0:9 1:118 1:118 0:218 0 0 0 0

0 0 0 0 0 0 1:054 1:054 1:054

1A
:

Find the ghosts for this set of ray paths. If the measured traveltime vector is

t =

0@ 4:666

3:488

3:794

1A
;

which of the following statements is true of the slowness model?

1. The model is not constant.

2. The average slowness of cells 7, 8, & 9 is 1.2.

3. The model is

0.9 1.2 0.9

1.0 1.3 1.2

1.1 1.4 1.1

.

Problem 6.2.2 A ray-path matrix for a 3� 3 slowness model is

M =

0BBBBB@
0 0 0 1:045 1:045 1:045 0 0 0

0 0 0:403 1:052 1:052 0:649 0 0 0

0 0 0 0:021 1:057 1:057 1:036 0 0

1:011 0 0 0:101 1:112 0:101 0 0 1:011

0 0 0 0 0:502 1:004 1:004 0:502 0

1CCCCCA :
Find the ghosts for this set of ray paths.
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Problem 6.2.3 A ray-path matrix for a 3� 3 slowness model is

M =

0BBBBB@
1:012 0:502 0 0 0:510 1:012 0 0 0

0 0 0:444 1:012 1:012 0:568 0 0 0

0 0 0 0 0 0 1:005 1:005 1:005

0:503 1:103 1:103 0:600 0 0 0 0 0

0 0 0 1:001 0 0 0:009 1:010 1:010

1CCCCCA :

Find the ghosts for this set of ray paths.

Problem 6.2.4 A ray-path matrix for a 3� 3 slowness model is

M =

0BBBBBBBBBBBBBB@

1:033 1:033 1:033 0 0 0 0 0 0

0 0 0 1:049 1:049 1:049 0 0 0

0 0 0 0 0 0 1:101 1:101 1:101

0 0 1:414 0 1:414 0 1:414 0 0

1:118 0 0 0 1:118 1:118 0 0 0

0 0 0 1:052 0 0 0:025 1:077 1:077

0 0 0 0 1:044 1:055 1:055 0:011 0

0 0 0:352 1:068 1:068 0:716 0 0 0

0:022 0 0 1:053 1:075 1:075 0 0 0

1CCCCCCCCCCCCCCA
:

Find the ghosts for this set of ray paths, if any.

Problem 6.2.5 Consider an m� n ray-path matrix M for straight rays through a rectan-

gular model with q columns and r rows, so n = q � r. Suppose that all the rays considered

are crosswell. Show that the diagonal elements of the model resolution matrix R = MyM
satisfy

Rjj �
n+ 1� q

n

: (6.13)

Make a table of these resolution bounds for di�erent choices of the number of columns and

rows. What strategy for model design leads to the best resolution when the rays are straight

and crosswell?

Problem 6.2.6 Consider a slowness model composed of vertical stripes (see Figure 6.3).

Suppose that all slowness values and thicknesses of the stripes are known, but the spatial

order is not known. Use Snell's law to show that the spatial order of the stripes cannot be

determined from vertical crosswell transmission traveltime data. [Hint: Consider the ray

parameter (5.17).]

6.2.5 Linear dependence

Ghosts arise from the linear dependence of M or of submatrices such as M0. The example

of stripes arises from a gross linear dependence of all the rows of the full matrix M. The

examples of underdetermined group of cells arise because of poor coupling (or coverage)
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Figure 6.3: Two indistinguishable models: the spatial ordering of the stripes cannot be

determined from crosswell transmission data using straight rays.

between the rays and the cells. Other, more subtle and complex, linear dependencies may

also occur.

Indeed the de�ning equation for a ghost

Mg = 0 (6.14)

is a statement of linear dependence of the rows ofM. Equation (6.14) contains m equations

for the n unknown components of g, with m > n. Any n of these m equations are su�cient

to determine g and the remainingm�n equations can be determined from these n equations.

An exception to this statement occurs when the ghost is caused by complete decoupling as

in the case of the single cell ghost.

6.3 Eliminating Ghosts (Ghostbusting)

Ghosts may be removed by using a variety of techniques, some of which have already

been described. Although ray bending can introduce ghosts in situations where very slow

regions are avoided by most rays, it can also provide a simple solution to some of the

problems created by the limited view angles available in crosswell measurements. Methods

of improving the coupling between rays and cells include implementations using fat rays

[Kak, 1984; Michelena and Harris, 1991].

6.3.1 Fat rays

The fact that ray paths are stationary (i.e., that small variations in the ray path have no

e�ect on the traveltime to �rst order) means that each ray actually has a bundle of rays

close to it, all with virtually the same traveltime. We can improve the coupling between

the rays and cells in the model by taking advantage of this fact. One possible approach

is to use more than one ray between each source and receiver pair: for example, during

the computation of the ray paths, we could save not only the ray we found with the least
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traveltime, but also save several other trial rays that were close to the best one. Then, in

place of the single row of the ray-path matrix for the ith ray, we now insert multiple rows

Mi =

0BBB@
l11 l12 � � � l1n

l21 l22 � � � l2n
...

...
. . .

...

l�1 l�2 � � � l�n

1CCCA ; (6.15)

where � is the multiplicity of the the ith ray path. This approach is relatively easy to

implement either for bending methods or for shooting methods of ray tracing, and has

the e�ect of multiplying the size of the data set by the number of rays (�) saved per

source/receiver pair. The disadvantage of using multiple ray paths per source/receiver pair

is that the data storage problem also gets multiplied by the number of rays saved per pair.

The method of fat rays is an alternative using the same underlying physics without

increasing the size of our matrices. In this approach, we treat each ray as if it has a

�nite thickness. Then, instead of measuring the linear increment of the ray that has passed

through a cell, in 2-D the ray now has an area associated with it and we measure the overlap

of the ray area with the cell area. In three dimensions, these areas all become volumes. If

the ray width in 2-D is �w and the ray cross section in 3-D has area �a, then the ray-path

matrix becomes

M =
1

�w

0BBB@
a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
. . .

...

am1 am2 � � � amn

1CCCA ; (6.16)

with the aijs being overlap areas in two dimensions and

M =
1

�a

0BBB@
v11 v12 � � � v1n

v21 v22 � � � v2n
...

...
. . .

...

vm1 vm2 � � � vmn

1CCCA ; (6.17)

with the vijs being overlap volumes in three dimensions. For traveltime tomography, it is

still important that the sums of the rows ofM result in sensible ray-path lengths, otherwise

the reconstructed slowness values will not be meaningful. The disadvantage of the method

just outlined is that the overlap areas and volumes are often tedious to compute.

Another method that has the advantages of both of the previous methods is �rst to

obtain the set of near-ray-path lengths shown in (6.15) and then average them according to

�
lij =

1

�

�X
i0=1

li0j: (6.18)

With this approach, we end up with a single e�ective ray path and so do not increase the ray

storage problem, but we have the advantage that the individual contributions li0j leading
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to �lij through (6.18) are comparatively easy to compute. The resulting ray-path matrix is

M =

0BBB@
�
l11

�
l12 � � � �

l1n
�
l21

�
l22 � � � �

l2n
...

...
. . .

...
�
lm1

�
lm2 � � � �

lmn

1CCCA : (6.19)

It is clear that fat rays will accomplish the goal of improving the coupling between the

rays and cells. The matrices in (6.16) and (6.17) will certainly be signi�cantly less sparse

than the the usual M based on skinny rays. Whether this change will be su�cient to make

a signi�cant improvement in the reconstructions will, of course, depend on the particular

application. In general, fat rays should be used in addition to (not instead of) the other

methods of ghostbusting described in this section.

6.3.2 Damping

The general damped least-squares solution s to the inversion problem, including general

weight matrices, was shown in (4.100) to satisfy�
MTF�1M+ �G

�
(s� s0) =MTF�1(t�Ms0): (6.20)

Since damping is designed to reduce the e�ects of contributions from eigenvectors with low

eigenvalues, we should check to see if this approach eliminates ghosts. Multiplying (6.20)

on the right by gT and using the de�nition Mg = 0, we �nd that

gTG(s� s0) = 0: (6.21)

When the weight matrix G = I, (6.21) shows that no ghosts can contribute to s unless s0
already contains such terms. Thus, norm damping successfully eliminates ghosts in this one

case. However, ifG 6= I, (6.21) is a conjugacy condition, showing that g is orthogonal to the

correction vector s� s0 relative to the weight matrix G. Although (6.21) is consistent with

the absence of ghosts in the correction vector, it does not guarantee they are eliminated

in all cases. When G = C (the coverage matrix), the interpretation of (6.21) is almost as

simple as that for the identity matrix; when G = KTK where K is based on gradients or

Laplacians of the the model vector, its interpretation becomes more complex.

6.3.3 Summary

Methods of eliminating ghosts can be divided into two main categories: (i) experimental

design and (ii) model design together with analytical tricks.

No amount of analysis can salvage a badly designed experiment. When designing a to-

mographic experiment, it is important to gather data from as many view angles as possible.

It is also important to gather enough data so that the cells we can resolve from our data

analysis are about the same size as the anomalies we want to detect. A rule of thumb is that

the number of source/receiver pairs should be about twice the number of cells we want to

resolve in our experiment. Another useful rule of thumb is to choose the average cell size to
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be about 3�max, where �max = 1=fminsmin is the maximum expected wavelength associated

with the minimum frequency fmin in the pulse propagation data and the minimum slowness

smin expected in the region to be imaged. This rule arises from extensive experience with

the asymptotic analysis of wave propagation which we will not present here.

The analyst must design the model to take optimum advantage of the data gathered,

while accounting for any prior knowledge of the medium to be imaged. The shapes and

sizes of the model cells are ours to choose, and should be used to advantage to solve any

problems that cannot be eliminated through good experimental design. We are always free

to choose cells larger than the expected resolution of the traveltime data. We may delete

some cells if they have poor ray coverage, or some contiguous cells with poor coverage may

be combined into a single cell for purposes of reconstruction. Cells can be of any shape we

choose; the choice of square or rectangular cells is often made for ease of display and for

ease of computation of ray paths, but other considerations may drive us to use odd shapes

for cells in some applications. Analytical tricks can be applied during the reconstruction

process once we have the data at home. Smoothing and clipping the slowness model values

can be done to force the reconstructed values to lie within reasonable limits. Fat rays are

a last resort if the other methods are not su�cient to eliminate the ghosts.

6.4 Signi�cance of Ghosts

It is important to recognize that elimination of all ghosts may be neither possible nor

desirable. In our e�orts to solve the inverse problem

Ms = t (6.22)

for the slowness model s, we should keep in mind that there are really three stages in the

inversion process. The �rst stage is to �nd, if possible, a particular model s that satis�es the

data. The second stage is to analyze the null space of the operatorM. We may use standard

numerical techniques at this point in the analysis to perform a singular value decomposition

of M and obtain a full characterization of the null space. Having �nished both of these

steps, we can �nally provide the complete solution to the inversion problem. In fact, it may

be that we need perturbations from the null space to satisfy various physical or geological

boundary conditions present at the site where the tomographic data were gathered. This

process is entirely analogous to the process of solving an ordinary di�erential equation

by �nding a particular solution, computing a set of homogeneous solutions, and �nally

producing a linear combination that satis�es the initial or boundary conditions.

Problems

Problem 6.4.1 An inhomogeneous linear di�erential equation of �rst order is

dx

dt

+ �x = f(t);

with the initial condition x(t) = x(0) for t = 0. The solution of this equation is well known

to be

x(t) = x(0) exp (��t) + exp (��t)
Z t

0
f(t0) exp (�t0)dt0:
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Which term of this solution is analogous to sLS = Myt? Which term is analogous to a

ghost satisfying Mg = 0? Which term is analogous to the scalar 
 in the full solution

s = sLS + 
g?

Problem 6.4.2 Solve Ms = t for s when

M =

0@ 13=12 13=12 5=6

13=12 13=12 5=6

5=6 5=6 4=3

1A
and tT = (49=16; 49=16; 23=8), subject to the constraint s2 = s1 + 1=4. If the constraint is

changed to s2 = s1+3, does the problem still have a physical solution (s > 0)? What is the

range of permissible values of � in the constraint s2 = s1 + �?

Problem 6.4.3 Reconsider Problem 6.2.1 in light of the following additional informa-

tion:

1. The total variation in the model from top to bottom is less than 20%.

2. The model is probably horizontally strati�ed, or nearly so.

3. The given ray-path matrix is only a straight ray approximation to the true ray path.

First, solve the problem by considering only the �rst two of the new constraints while using

the straight ray approximation. Then, try to solve the full problem using one-step backpro-

jection based on bent rays.

Problem 6.4.4 Formulate a de�nition of the \best approximate solution" of the matrix

equation MZ = Y when constraints on Z are given. Compare and contrast this de�nition

with the one given in Problem 4.1.25. Is there a unique best approximate solution of

MZ = Y that satis�es the new de�nition?



Chapter 7

Nonlinear Seismic Inversion

The introduction of feasibility constraints into the traveltime inversion problem o�ers a

unique opportunity to develop a variety of new reconstruction algorithms. A few of the

ones that have been explored so far will be discussed in this Chapter.

7.1 Linear and Nonlinear Programming

We will see that linear tomography maps easily onto linear programming, and nonlinear

tomography onto nonlinear programming [Strang, 1986; Fiacco and McCormick, 1990].

Recall that, if uT = (1; : : : ; 1) is an m-vector of ones and vT = (1; : : : ; 1) is an n-vector

of ones, then

uTM = vTC; (7.1)

where C is the coverage matrix, i.e., the diagonal matrix whose diagonal elements are the

column sums of the ray-path matrix. We will now de�ne the coverage vector as

c = Cv: (7.2)

7.1.1 Duality

The concept of duality in linear programming leads to some useful ideas both for linear

and nonlinear traveltime inversion. (Actually it is even more useful for electrical impedance

tomography as we will see in Part II.) We will �rst de�ne the following:

Definition 7.1.1 The primal problem for traveltime inversion is to �nd the minimum of

cT s subject to Ms � t and s � 0.

Definition 7.1.2 The dual problem associated with the primal is to maximize wT t subject

to wTM � cT and w � 0.

The m-vector w has no physical signi�cance, but plays the role of a nonnegative weight

vector. One of the �rst consequences of this formulation is that, if we multiply the primal

107
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Figure 7.1: Mapping the feasibility boundary.

inequality on the right by wT and the dual inequality on the left by s for feasible s and w,

then

cT s � wTMs � wT t: (7.3)

We introduce a Lagrangian functional

L(s;w) = cT s+wT (t�Ms) (7.4)

= (cT �wTM)s+wT t: (7.5)

An admissible (feasible) weight vector is w = u. In fact, this is the only weight vector

we need to consider because it saturates the dual inequality, producing equality in all

components following (7.1) and (7.2). Thus, the dual problem in traveltime inversion is

completely trivial. We introduced it here because, despite its apparent triviality, there is

one interesting feature.

In problems with nontrivial duality structure, it is possible to obtain useful bounds with

inequalities equivalent to (7.3). Here we are left with just the condition

cT s � uT t = T; (7.6)

de�ning the hyperplane of constant total traveltime. Equation (7.6) could have been derived

directly from the feasibility conditions Ms � t for s. The ease of its derivation should not,

however, lead us to think that this equation is trivial. This hyperplane can play an important

role in linear and nonlinear programming algorithms for traveltime inversion.
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7.1.2 Relaxed feasibility constraints

Given the set of observed traveltimes, ti for i = 1; : : : ;m, we de�ne two more types of

feasibility sets.

Definition 7.1.3 (relaxed local feasibility set) The relaxed local feasibility set with

respect to a set of trial ray paths P = fP1; : : : ; Pmg and observed traveltimes t1; : : : ; tm is

RP = fs j
mX
i=1

�
P
i (s) �

mX
i=1

tig: (7.7)

Definition 7.1.4 (relaxed global feasibility set) The relaxed global feasibility set

with respect to a set of observed traveltimes t1; : : : ; tm is

R� = fs j
mX
i=1

�
�
i (s) �

mX
i=1

tig: (7.8)

Proposition 7.1.1 (sum of concave functions) A (nonnegatively) weighted sum of con-

cave functions is concave.

Proof: Let �i(s) for i = 1; : : : ;m be a set of concave functions and let wi be a set of

nonnegative weights. Then,

mX
i=1

wi�i(�s1 + (1� �)s2) �
mX
i=1

wi[��i(s1) + (1� �)�i(s2)] (7.9)

= �

mX
i=1

wi�i(s1) + (1� �)

mX
i=1

wi�i(s2); (7.10)

so the weighted sum is concave.

Theorem 7.1.1 RP is a convex set.

Theorem 7.1.2 R� is a convex set.

Proof: Both theorems follow from the proposition and the fact that the unit-weighted

sums in the de�nitions of the sets RP and R� are respectively sums of the concave functions

�
P
i (s) and �

�
i (s).

Theorem 7.1.3 Any point s� that lies simultaneously on the boundary of both FP and RP

solves the inversion problem.

Theorem 7.1.4 Any point s� that lies simultaneously on the boundary of both F� and R�

solves the inversion problem.
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Proof: The boundary of RP is determined by the single equality constraint

mX
i=1

�
P
i (s) =

mX
i=1

ti = T: (7.11)

The boundary of FP is determined by the set of inequality constraints

�
P
i (s) � ti; for all i = 1; : : : ;m; (7.12)

with equality holding for at least one of the constraints. Summing (7.12) gives

mX
i=1

�
P
i (s) � T; (7.13)

where the equality applies if and only if �Pi (s) = ti for all i. Therefore, any model s� that
satis�es both (7.11) and (7.12) must solve the inversion problem.

The proof of the second theorem follows the proof of the �rst, with ��(s) replacing �P (s)
everywhere.

The boundaries of relaxed feasibility sets (either local or global) are easier to compute

than those for unrelaxed feasibility sets. The di�erence is, for example, a single hyperplane

boundary for a relaxed local feasibility set versus up to m (the number of traveltime mea-

surements) hyperplanes composing the boundary of an unrelaxed local feasibility set. Yet,

the characteristics of the relaxed feasibility sets are very similar to the unrelaxed ones in

other ways.

If the correct ray-path matrix for the inversion problem has been found and the data

are noise free, then we expect that the hyperplane de�ned by cT s = T will intersect the

feasibility boundary exactly at the point or points that solve the inversion problem. If the

correct ray-path matrix has not been found or there is uncorrelated noise in our data t, then

there will be a splitting between the hyperplane of constant total traveltime and the feasible

region. The point (or points) of closest approach between the convex feasible set and the

hyperplane may then be de�ned as the set of points solving the linear programming prob-

lem for �xed M. An iterative nonlinear programming algorithm may then be constructed

wherein the updatedM is determined based on the solution of the last linear programming

problem. This procedure converges if the degree of splitting (Euclidean distance) between

the feasible set and the hyperplane of constant traveltime tends to zero from one iteration

to the next.

Problem

Problem 7.1.1 Consider the following backprojection formulas (see Problems 1.5.1 and

1.5.3):

1. s = N�1HTL�1t;

2. s = C�1MTL�1t.

Does either formula always satisfy the constraint cT s = T ? Find another backprojection

formula that does satisfy the constraint.
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7.2 More about Weighted Least-Squares

We learned in Sections 3.5 and 4.3 that a good set of weights for use with weighted least-

squares was L�1 for the traveltime errors and C for the smoothing or regularization term

in a damped least-squares method. The arguments were based on assumptions of small

deviations from a constant background or on the desire to precondition the ray-path matrix

so its eigenvalues � were normalized to the range �1 � � � 1.

In a sense the methods used to choose the weights previously were based on ideas of

linear inversion. We should now try to see if these ideas need to be modi�ed for nonlinear

inversion. Let s be the latest estimate of the slowness model vector in an iterative inversion

scheme. Then, if uT = (1; : : : ; 1) is an m-vector of ones and vT = (1; : : : ; 1) is an n-vector

of ones,

Ms = Tu; (7.14)

MTu = Cv � Ds; (7.15)

where C is the coverage matrix (diagonal matrix containing the column sums ofM) de�ned

previously and the two new matrices (T and D) are diagonal matrices whose diagonal

elements are Tii, the estimated traveltime for the ith ray path through the model s,

Tii =

nX
j=1

lijsj; (7.16)

and Djj where

Djj � Cjj=sj =

mX
i=1

lij=sj : (7.17)

For the sake of argument, let the inverse of the diagonal traveltime matrix T�1 be the
weight matrix, and compute the scaled least-squares point. The least-squares functional

takes the form

 (
) = (t�M
s)TT�1(t�M
s); (7.18)

which has its minimum at


 =
sTMTT�1t

sTMTT�1Ms
: (7.19)

Equation (7.19) can be rewritten using (7.14) as


 =
uT t

uTTu
: (7.20)

The factor 
 that minimizes the least-squares error is therefore the one that either increases

or decreases the total traveltime of the model s so it equals that of the data. If we assume

that the measurement errors in the traveltime data t are unbiased, then it is very reasonable
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to choose models that have this property, because the total traveltime uT t = T will tend

to have smaller error (by a factor of m�1=2) than the individual measurements.

We see that requiring the models s to have the same total traveltime as the data is

equivalent to requiring that the models all lie in the hyperplane de�ned by

uTMs = vTCs = cT s = T: (7.21)

But this is precisely the same hyperplane (7.6) that arose naturally in the earlier discussion

of linear and nonlinear programming.

To carry this analysis one step further, consider the weighted least-squares problem

��(s) = (t�Ms)TT�1(t�Ms) + �(s� s0)TD(s� s0); (7.22)

where we assume that the starting model s0 satis�es cT s0 = T . Then, the minimum of

(7.22) occurs for s� satisfying

(MTT�1M+ �D)(s� � s0) =MTT�1(t�Ms0): (7.23)

Multiplying (7.23) on the left by sT0 , we �nd that

(1 + �)cT (s� � s0) = uT (t�Ms0) = 0; (7.24)

so the solution of the weighted least-squares problem (7.23) also has the property that its

estimated total traveltime for all rays is equal to that of the data

cT s� = cT s0 = T: (7.25)

Our conclusion is that the particular choice of weighted least-squares problem (7.23)

has the unique property of holding the total estimated traveltime equal to the total of the

measured traveltimes, i.e., it constrains the least-squares solution to lie in the hyperplane

cT s = T . Assuming that the traveltime data are themselves unbiased (i.e., uT�t = 0

where �t is the measurement error vector), the result s is an unbiased estimator of the

slowness. Moreover, this property is maintained for any value of the damping parameter �.

This result provides a connection between the linear programming approach and weighted

linear least-squares. We can now use weighted least-squares and the formula (7.23) in a

linear program as a means of moving around in the hyperplane cT s = T .

Now, from our general analysis of the eigenvalue structure of weighted least-squares,

recall that (4.108) shows, for F = T and G = D, that we have

LiiCjj

TiiDjj
� �

2
; (7.26)

which must hold true for all values of i; j. From (7.17), we have Cjj=Djj = sj so

Liisj

Tii
�
Liismin

Tii
� �

2
; (7.27)

and from the de�nition of Tii we have

Tii =

nX
j=1

lijsj � Liismin: (7.28)
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We conclude that this choice of weight matrices also constrains the eigenvalues to be

bounded above by unity, i.e., 1 � �
2.

If the matrix M is very large, it may be impractical to solve (7.23) by inverting the

matrix (MTT�1M + �D). Instead, we may choose to use some version of the method we

called \simple iteration" in Section 4.4.3. For example, suppose that the kth iteration yields

the model vector s
(k)
� . Then, one choice of iteration scheme for �nding the next iterate is

Ds(k+1)
� = Ds(k)� +MTT�1(t�Ms0)� (MTT�1M+ �D)(s(k)� � s0): (7.29)

It is not hard to show that this iteration scheme converges as long as the damping parameter

is chosen so that 0 < � < 1. 1 Furthermore, if we multiply (7.29) on the left by sT0 , we �nd

that

cT (s(k+1)
� � s(k)� ) = (1 + �)cT (s0 � s(k)� ): (7.30)

It follows from (7.30) that, if cT s0 = T and if s
(0)
� = s0, then

cT s(k)� = T; (7.31)

for all k. Thus, all the iterates stay in the hyperplane of constant total traveltime. If we

choose not to iterate to convergence, then this desirable feature of the exact solution s�

proven in (7.25) is still shared by every iterate s
(k)
� obtained using this scheme.

Problem

Problem 7.2.1 Use the de�nition of the pseudoinverse in Problem 4.1.16 to show that,

if

M0 = T� 1
2MD� 1

2 ;

then

X = D� 1
2 (M0)yT� 1

2 ; (7.32)

where X is an approximate generalized inverse satisfying the �rst two conditions (MXM =

M and XMX = X). Use (7.32) to show that the SVD of X has the form

X =
s0u

T

uTTu
+ : : : ;

where the terms not shown are for eigenvectors of M0 with eigenvalues � < 1. Apply this

result to the inversion problem to show that

s ' Xt = s0 + : : : ;

where in this case the terms not shown are contributions orthogonal to s0.

1The reader may want to check this result using the methods of this section and the ones developed in

Section 4.4.3 on simple iteration.
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7.3 Stable Algorithm for Nonlinear Crosswell Tomography

Here we combine several ideas from the previous sections into an algorithm for nonlinear

traveltime tomography. We recall that such algorithms are inherently iterative. In the

general iterative algorithm posed earlier, the questionable step was how to update the

current model ŝ to obtain an improved model. Here we propose a method for choosing this

step [Berryman, 1989b; 1990].

Let s(k) be the current model. An algorithm (see Figure 7.2) for generating the updated

model s(k+1) is as follows:

1. Set s1 to the scaled least-squares model:

s1 = ŝLS[s(k)]:

2. Set s2 to the damped least-squares model with respect to s1:

s2 = ŝLS[s1;�]:

3. De�ne the family of models

s(�) = (1� �)s1 + �s2;

where � 2 [0; 1].

4. Solve for ��, de�ned so that s(��) yields the fewest number of feasibility violations.

The number of feasibility violations is de�ned as the number of ray paths for which

ti > �
�(s(�)).

5. If �� is less than some preset threshold (say 0.05 or 0.1), reset it to the threshold

value.

6. Set s(k+1) = s(��).

The feasibility structure of the algorithm is illustrated in Fig. 7.3. The model labeled

s3 is a scaled version of s(��), scaled so that s3 is on the boundary of the feasible region

(F�). The iteration sequence stops when the perimeter of the triangle formed by s1, s2 and

s3 drops below a prescribed threshold.

This algorithm has been tested on several problems both with real and with synthetic

data and compared with a traditional damped least-squares algorithm (i.e., setting �� = 1

on each iteration). The new algorithm was found to be very stable and avoids the large

oscillations in slowness often found in traditional least-squares methods.

Example 7.3.1 Reconstructions were performed on models having 16 � 8 cells using 320

rays |including 256 rays (16 sources � 16 receivers) from left to right and 64 rays (8

sources � 8 receivers) from top to bottom. This measurement con�guration was chosen

to minimize the e�ects of ghosts, since the main focus of the exercise is to evaluate the

usefulness of the feasibility constraints in stabilizing the algorithm.
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The traveltime data were generated with a bending method using the simplex search

routine [Prothero et al., 1988; Nelder and Mead, 1965].

Three examples of typical results from the nonlinear algorithm BST (Borehole Seismic

Tomography) are displayed on the following pages. The basic structure of the test problems

has this form:

These slowness models have a low speed anomaly on top and a high speed anomaly on the

bottom in each case. The �rst example has 20% anomalies; the second has 50% anomalies;

the third 100% anomalies. Example 7.3.1.1a shows the target model, i.e., the model that

used to generate the traveltime data; Example 7.3.1.1b shows the reconstructed values

using bent rays and feasibility constraints. The other two examples are presented similarly,

progressing from smaller anomalies to larger ones.

The reconstructions were found to converge after 15 or 20 iterations, and did not vary

signi�cantly if the iteration sequence was continued. In general, we expect slow anomalies

to be harder to reconstruct than fast anomalies, because rays tend to avoid the slow regions

in favor of fast regions. Thus, the coverage of slow anomalies tends to be much less than

for fast anomalies, and therefore the resolution of such regions tends to poorer than for the

fast regions. This e�ect is observed in all the examples. The reconstructions for 20% and

50% contrasts were quite good, while that for 100% was noticeably worse than the other two.

The main reason for this di�erence is that in the presence of high contrasts the ray paths

tend to seek out the fastest regions; thus, even the background in the vicinity of a very fast

anomaly can become poorly resolved, since all the rays close to the fast anomaly go through

it and therefore do not sample the surrounding region well. To improve the resolution of the

reconstruction in the presence of high contrasts requires a substantial increase in the density

of ray-path sampling.
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1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.20 1.20 1.00 1.00 1.00

1.00 1.00 1.20 1.20 1.20 1.20 1.00 1.00

1.00 1.00 1.00 1.20 1.20 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 0.83 0.83 1.00 1.00 1.00

1.00 1.00 0.83 0.83 0.83 0.83 1.00 1.00

1.00 1.00 1.00 0.83 0.83 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Example 7.3.1.1a. The double-cross slowness model with 20% contrast.
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0.98 0.97 1.02 1.06 1.04 1.00 0.98 0.96

1.02 1.00 0.98 1.01 1.02 1.00 1.01 1.02

1.00 1.01 0.98 0.98 0.98 0.98 1.02 1.05

1.01 1.00 1.03 1.15 1.14 1.04 1.02 1.03

0.99 0.99 1.12 1.20 1.18 1.14 1.02 1.02

1.00 1.00 1.00 1.15 1.18 1.06 1.00 1.02

0.98 1.01 1.00 1.02 1.03 0.96 1.02 1.01

1.00 1.01 1.00 1.01 1.00 0.99 1.01 1.01

1.00 1.00 1.00 1.01 1.00 1.01 1.00 0.99

0.99 1.00 0.99 0.98 0.99 1.01 1.00 0.99

0.99 0.99 0.99 0.89 0.87 0.95 1.04 0.97

1.00 0.98 0.89 0.85 0.84 0.87 0.94 0.97

1.03 0.96 0.95 0.87 0.85 0.95 0.94 0.99

1.04 1.00 0.99 0.97 0.98 0.95 1.02 1.00

1.01 1.01 1.03 0.98 0.97 1.00 1.01 0.98

1.00 1.04 0.97 0.98 0.98 0.99 1.01 1.02

Example 7.3.1.1b. Reconstruction of the double-cross slowness model with 20% contrast

using the BST code with feasibility constraints and noisy data (after 41 iterations).
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1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.50 1.50 1.00 1.00 1.00

1.00 1.00 1.50 1.50 1.50 1.50 1.00 1.00

1.00 1.00 1.00 1.50 1.50 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00

1.00 1.00 0.67 0.67 0.67 0.67 1.00 1.00

1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Example 7.3.1.2a. The double-cross slowness model with 50% contrast.
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1.04 0.94 0.97 1.20 1.08 1.02 0.99 0.94

1.05 1.05 0.92 1.06 1.02 0.98 1.00 1.06

1.04 0.93 1.07 0.99 1.04 0.90 0.96 1.14

1.02 1.01 0.99 1.10 1.23 1.33 1.04 1.02

0.95 1.00 1.42 2.20 1.28 1.23 1.05 1.04

0.97 1.03 0.96 1.21 1.21 1.10 1.07 1.05

0.99 1.06 0.98 1.08 0.98 0.92 1.11 1.03

0.97 1.08 0.98 1.01 0.95 1.03 1.03 1.04

0.99 1.00 1.01 1.04 0.95 1.05 1.03 1.01

0.98 1.00 0.94 0.96 0.91 1.04 1.00 0.94

0.97 1.03 0.93 0.81 0.73 0.90 1.06 0.95

1.00 0.98 0.75 0.68 0.68 0.74 0.88 0.96

1.09 0.91 0.88 0.78 0.71 0.92 0.93 0.94

1.06 1.02 0.92 1.05 0.93 0.93 1.02 0.96

1.01 1.03 1.00 0.98 0.97 0.98 1.04 0.95

0.98 1.14 0.92 0.94 0.96 0.96 1.06 1.01

Example 7.3.1.2b. Reconstruction of the double-cross slowness model with 50% contrast

using the BST code with feasibility constraints and noisy data (after 41 iterations).



120 CHAPTER 1. INTRODUCTION:

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 2.00 2.00 1.00 1.00 1.00

1.00 1.00 2.00 2.00 2.00 2.00 1.00 1.00

1.00 1.00 1.00 2.00 2.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00

1.00 1.00 0.50 0.50 0.50 0.50 1.00 1.00

1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Example 7.3.1.3a. The double-cross slowness model with 100% contrast.
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1.04 0.98 1.03 1.04 1.18 1.07 1.00 1.02

1.12 1.05 0.84 1.00 1.10 1.01 1.04 1.16

1.08 0.94 1.01 1.00 1.02 0.81 0.93 1.39

1.05 0.99 1.00 1.09 1.38 1.53 1.08 1.19

0.90 1.00 1.70 2.38 1.46 1.23 1.04 1.12

0.91 1.09 0.97 1.28 1.40 1.10 1.02 1.11

1.08 1.16 0.99 1.17 0.93 0.86 1.15 1.09

1.07 1.13 0.99 0.98 0.91 0.97 1.05 1.09

1.09 0.97 1.00 1.02 0.94 1.03 0.98 1.04

0.99 0.95 0.94 0.86 0.88 1.02 1.00 0.94

0.99 1.03 0.89 0.66 0.62 0.82 1.08 0.90

1.08 0.86 0.66 0.56 0.57 0.62 0.80 0.94

1.05 0.83 0.81 0.69 0.62 0.77 0.84 0.84

1.12 1.00 1.01 0.91 0.81 0.90 0.93 1.02

1.01 0.96 1.04 0.97 0.86 0.99 0.97 0.96

0.97 1.12 0.99 0.95 0.92 0.90 1.08 1.01

Example 7.3.1.3b. Reconstruction of the double-cross slowness model with 100%

contrast using the BST code with feasibility constraints and noisy data (after 41

iterations).
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7.4 Using Relative Traveltimes

When we do not have control over the seismic source location and timing as in the case of

earthquakes, the absolute traveltimes are not accurately known and it is important to un-

derstand how relative traveltimes may be used in seismic tomography [Aki, Christo�ersson,

and Husebye, 1977].

Rigorous application of the feasibility constraintsMs � t requires fairly accurate knowl-

edge of the absolute traveltimes. When such information is sparse or unavailable, we can

use the information known about gross geological structure of the region to estimate the

mean traveltime. Then we remove the physically meaningless mean of the relative data

T=m and add back in the geological mean �0.

The remove-the-mean operator R for an m-dimensional vector space is de�ned as

R = I� u
1

m

uT ; (7.33)

where uT = (1; : : : ; 1) is an m-vector of ones. Note that RR = R so R is a projection

operator. Then, we see that R applied to the traveltime vector t gives

Rt = t�
T

m

u; (7.34)

where T=m = uT t=m is the mean traveltime of the data set. Applying R to the ray-path

matrix, we have

RM =M� u
T

m

vTC =M� u
T

m

cT : (7.35)

The standard procedure for this problem is to solve for s in the equation

M0s = t0; (7.36)

where M0 = RM and t0 = Rt. To apply the feasibility constraints, we must modify the

problem to

Ms � Rt+ �0Im: (7.37)

Hidden in this analysis is the fact that the earthquake sources are often far from the region

to be imaged, so the \e�ective" source locations may be placed at the boundaries of the

region to be imaged.

If we have predetermined the mean for the traveltime data, then it is clearly desirable

to use an inversion procedure that preserves this mean, i.e., choosing �s so that

uTM(s+�s)

m

= �0 (7.38)

for all �s. Preserving the mean is equivalent to preserving the total traveltime along all

ray paths, so

cT (s+�s) = m�0: (7.39)

In other words, vary s so it stays in the hyperplane determined by (7.39). But we have

studied exactly this mathematical problem using linear programming in (7.6) and also using

weighted least-squares in (7.25). So we do not need to develop any new inversion methods

for this special case.
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7.5 Parallel Computation

Traveltime inversion algorithms tend to be parallelizable in a variety of ways. The use of

the feasibility constraints only increases the degree of parallelism that is achievable by these

algorithms.

First, the forward modeling may be parallelized. If the forward problem is solved using

either shooting or bending methods, then it is straightforward to parallelize the code because

each ray may be computed independently of the others, and therefore in parallel. If the

forward problem is solved using a �nite di�erence algorithm or a full wave equation method,

then whether the algorithm is parallelizable or not depends on the details of the particular

algorithm. For example, Vidale's method is not parallelizable, but another related method

by van Trier and Symes [1991] is parallelizable.

Second, the use of the feasibility constraints in inversion algorithms suggests that it

might be advantageous to map the feasibility boundary and then use the information gained

to search for improved agreement between the model and the data. Mapping the feasibility

boundary can be done completely in parallel. Each model s may be treated in isolation,

computing the best ray-path matrix for that model, and then �nding the scaled model in the

direction of s that intersects the feasibility boundary. The di�culty with this method is that

it requires a �gure of merit (in real problems) to help us determine whether (and to what

degree) one point on the feasibility boundary is better than another. In ideal circumstances

(no data error and in�nite precision in our computers), the �gure of merit would be the

number of ray paths that achieve equality while still satisfying all the feasibility constraints

Ms � t: (7.40)

When that number equals the number of ray paths, we have found an exact solution and, as

the number increases towards this maximum value during an iterative procedure, the trial

models s must be converging towards this solution. But in real problems, a �gure of merit

based on the number of equalities in (7.40) is not useful.

In a series of numerical experiments [joint work with A. J. DeGroot], we have found

that a useful �gure of merit for real problems is the nonlinear least-squares functional

	(s) =

nX
i=1

wi[�
�
i (s)� ti]

2
: (7.41)

If we have found an exact solution s� to the inversion problem, (7.41) will vanish at that

point on the feasibility boundary. As we approach this global minimum, (7.41) is evaluated

at an arbitrary point on the feasibility boundary and the values in a cluster of such points

are compared, our analysis of convex programming shows that the points with the smallest

values of (7.41) form a convex set. The smallest value we �nd may not actually vanish, in

which case there is no exact solution to our inversion problem. This procedure has been

implemented on a parallel processing machine, and the results obtained using this algorithm

with the �gure of merit (7.41) are comparable to those of the stable algorithm discussed

earlier.
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Chapter 8

Other Nonlinear Inversion

Problems

Although traveltime inversion has been the main thrust of these lecture notes, I want to

make it clear that the ideas involving the feasibility constraints are very general. In fact,

they apply to any inversion problem where the data are the minima of one of the variational

problems of mathematical physics.

So in this �nal section of these notes, I present two other inversion problems that lead

to convex feasible sets and then show the general structure needed to guarantee convex

global feasibility. Finally, I present another example that leads to a nonconvex feasibility

set and discuss the consequences of this di�erence for computing the solution to the inverse

problem.

8.1 Electrical Impedance Tomography

Electrical impedance tomography [Dines and Lytle, 1981; Berryman and Kohn, 1990] at-

tempts to image the electrical impedance (or just the conductivity) distribution inside a

body using electrical measurements on its boundary. See Fig. 8.1. The method has been

used successfully in both biomedical [Barber and Brown, 1986] and geophysical applications

[Wexler, Fry, and Neuman, 1985; Daily, Lin, and Buscheck, 1987; Daily and Owen, 1991],

but the analysis of optimal reconstruction algorithms is still progressing [Yorkey, Webster,

and Tompkins, 1987; Kohn and McKenney, 1990]. The most common application is moni-

toring the in
ux or e�ux of a conducting 
uid (such as brine in a porous rock) through the

body whose conductivity is being imaged. This method does not have high resolving power

like radiological methods, but it is comparatively inexpensive and it therefore provides a

valuable alternative when continuous monitoring is desired.

First, we review some facts about this problem that play an important role in the

analysis that follows. Recall that the power dissipated into heat is [Jackson, 1962]

P =

Z
J(x) �E(x) d3x; (8.1)

129



130 CHAPTER 1. INTRODUCTION:

Figure 8.1: Experimental setup for electrical impedance tomography.

where

J(x) = �(x)E(x); (8.2)

E(x) = �r�(x); (8.3)

and the current distribution satis�es

r � J(x) = 0 (8.4)

away from all current sources. The quantities displayed are the current distribution J, the

isotropic conductivity �, the electric �eld E, and the potential �. Substituting (8.2) and

(8.3) into (8.4) gives Poisson's equation

r � (�r�) = 0: (8.5)

Substituting (8.3) into (8.1) and using (8.4), we have

P = �
Z
J � r� d3x = �

Z
r � (�J) d3x: (8.6)
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Then, the divergence theorem shows that

P = �
Z
�J � n̂ da; (8.7)

where n̂ is a unit outward normal vector and da is the in�nitesimal surface area on the

boundary. If current is injected through metallic electrodes, the potential takes a constant

value �k on the kth electrode of surface area ak. If there are K electrodes, then (8.7)

becomes

P =

KX
k=1

�kIk; (8.8)

where

Ik = �
Z
ak

J � n̂ da (8.9)

is the total current injected (Ik > 0) or withdrawn (Ik < 0) at the kth electrode. Since

these are the only sources and sinks, we also have the sumrule

KX
k=1

Ik = 0: (8.10)

If there are only two injection electrodes, then (8.8) reduces to

P = (�1 � �2)I1 = ��I; (8.11)

so the power is the product of the measured potential di�erence �� across the injection

electrodes and the injected current I.

The data for electrical impedance tomography have most often been gathered by inject-

ing a measured current between two electrodes while simultaneously measuring the voltage

di�erences between pairs of other electrodes placed around the boundary of the body being

imaged. This process is then repeated, injecting current between all possible (generally

adjacent) pairs of electrodes, and recording the set of voltage di�erences for each injection

pair i. This data set has normally not included the voltage di�erence across the injection

electrodes, because these voltages cannot be measured as reliably. A substantial contact

impedance develops at the interface between the body and the injection electrodes when

large currents are present. This problem can be reduced by using large electrodes or small

currents. In this lecture, we will assume that voltage di�erences (and therefore the powers

dissipated) across the injection electrodes are known, but it is not necessary that they be

known to high accuracy.

Dirichlet's principle [Courant, 1950; Courant and Hilbert, 1953] states that, given a

conductivity distribution �(x) and a potential distribution �(x), the power dissipation pi

realized for the ith current injection con�guration is the one that minimizes the integralR
�jr�j2 d3x so that

pi(�) =

Z
�(x)jr��i (x)j

2
d
3
x = min

�i

Z
�(x)jr�i(x)j2 d3x: (8.12)
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The trial potential �eld for the ith injection pair is �i(x), while the particular potential

�eld that actually minimizes the the power is ��i (x), and this one also satis�es Poisson's

equation r � (�r��i ) = 0 within the body. Furthermore, if the e�ective power dissipation

associated with the trial potential �i(x) is de�ned as

�p
(�i)
i (�) �

Z
�(x)jr�i(x)j2 d3x; (8.13)

then the measured powers Pi must satisfy

Pi = pi(�
�) � �p

(�i)
i (��); (8.14)

if ��(x) is the true conductivity distribution. Note that if we vary the trial power dissipation
(8.13) with respect to the trial potential, we �nd

2

Z
�r� � r�� d3x = �2

Z
r � (�r�)�� d3x = 0 (8.15)

at a stationary point. We integrated once by parts to obtain (8.15). Since the volume

variation �� is arbitrary, its coe�cient inside the integral must vanish, so we just recover

Poisson's equation, as expected.

Now we begin to see the analogy developing between the seismic traveltime tomography

problem and the electrical impedance tomography problem. If we consider the following set

of correspondences:

s(x)! �(x);

ti(s)! pi(�);

�
P
i (s)! �p

(�i)
i (�);

Ti ! Pi;

dl
P
i ! jr�i(x)j2 d3x;

dl
P �

i ! jr��i (x)j
2
d
3
x;

then we see that the analysis of convex functionals and feasibility sets presented for seis-

mic traveltime tomography carries over directly to the electrical impedance tomography

problem when it is formulated this way. For example, the scale invariance property holds

for electrical impedance tomography, so multiplying � by a scalar 
 does not change the

optimum potential distribution.

The feasibility constraints for electrical impedance tomography now take the form

K�̂ � p; (8.16)
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where �̂T = (�1; : : : ; �n), p
T = (p1; : : : ; pm), and the E-squared matrix is given by

Kij =

Z
cellj

jr�ij2 d3x: (8.17)

Least-squares methods may be applied to this problem in much the same fashion as in

traveltime tomography [Kallman and Berryman, 1992].

A thorough analysis of the electrical impedance tomography problem would require

another set of lectures. Lucky for you, I will not try to present them here. However, to

excite your curiosity, I will mention another feature of the electrical impedance tomography

problem not shared by the seismic tomography problem. So far we have discussed only

Dirichlet's principle (8.12). In fact, there are two distinct variational principles for the

conductivity problem: Dirichlet's principle and its dual, known as Thomson's principle

[Thomson, 1848; Thomson, 1884; Maxwell, 1891; Courant and Hilbert, 1953] The second

variational principle takes the form

Pi �
Z
jJi(x)j2=�(x) d3x; (8.18)

where Ji(x) is a trial current distribution vector for the ith current injection pair that

satis�es the continuity equation r�Ji = 0. The trial current distribution Ji(x) and the trial

gradient of the potential r�i(x) are generally unrelated except that, when the minimum

of both variational functionals is attained, then J�i (x) = ��r��i (x). Then, of course, the
current equals the conductivity times the electric �eld.

The existence of dual variational principles is a general property whenever the primal

variational principle is a true minimumprinciple. Fermat's principle is only a stationary (not

a minimum) principle, and so traveltime tomography does not possess this dual property.

(If we attempt to formulate a dual for Fermat's principle as we did in the lecture on linear

and nonlinear programming, we �nd the content of the dual results are essentially trivial.)

The existence of the dual variational principles for electrical impedance tomography is

important because it means that there are two independent sets of feasibility constraints

for the conductivity model �(x). Furthermore, as illustrated in Fig. 8.2, these two sets

of constraints allow us (in some sense) to obtain upper and lower bounds on the region

of the conductivity model space that contains the solution to the inversion problem. See

Berryman and Kohn [1990] for more discussion of this point.

8.2 Inverse Eigenvalue Problems

Inverse eigenvalue problems arise in the earth sciences during attempts to deduce earth

structure from knowledge of the modes of vibration of the earth [Dahlen, 1968; Wiggins,

1972; Jordan and Anderson, 1974; Hald, 1980; Hald, 1983; Anderson and Dziewonski, 1984;

McLaughlin, 1986; Dziewonski and Woodhouse, 1987; Lay, Ahrens, Olson, Smyth, and

Loper, 1990; Snieder, 1993].

Consider the typical forward problem associated with the inverse eigenvalue problem

�r2
u(x) + q(x)u(x) = �u(x) (8.19)
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Figure 8.2: Dirichlet's principle and Thomson's principle provide upper and lower bounds

on the dual feasibility region for electrical impedance tomography.

on a �nite domain with some boundary conditions on u. This is known as a Sturm-Liouville

equation to mathematicians and as the Schroedinger equation to physicists. In quantum

mechanics, the time-independent wave function is given by u(x) and q(x) is the potential.

The eigenvalue is �.

Now it is well-known that a Rayleigh-Ritz procedure may be used to approximate the

eigenvalues � [Courant and Hilbert, 1953]. In particular, the lowest eigenvalue is given in

general by

�0 = min
u

R
(jruj2+ qu

2) d3xR
u
2
d
3
x

; (8.20)

where admissible us satisfy the boundary conditions of (8.19) and have no other constraints,

except being twice di�erentiable. The ratio on the right to be minimized is known as the

Rayleigh quotient, and the denominator
R
u
2
d
3
x serves to normalize the wave function u.

De�ne the Rayleigh-quotient functional as

�(q; ui) =

R
(jruij2 + qu

2
i ) d

3
xR

u
2
i d

3
x

; (8.21)
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where ui is a trial wave function subject to i constraints. Taking the variation of � with

respect to ui, we �nd that the stationary points of � satisfyR
[�r2

ui + qui � �(q; ui)ui]�ui d
3
xR

u
2
i d

3
x

= 0: (8.22)

We integrated once by parts to obtain (8.22) using the fact that the variations of �u vanish

on the boundary. So, since the variations �u within the domain may be arbitrary, the term

in brackets must vanish and the stationary points of the Rayleigh quotient therefore occur

for uis that satisfy (8.19) with �i = �(q; ui).

Clearly, we may de�ne feasibility constraints for this problem in a manner analogous to

that for the traveltime tomography problem and for the electrical impedance tomography

problem. If the eigenvalues �i are our data, then for the correct potential q� we must have

�i � �(q�; u�i [q
�]) � �(q�; ui); (8.23)

where u�i [q] is the eigenfunction associated with eigenvalue �i of the potential q. Thus,

feasible qs satisfy

�i � �(q; ui) (8.24)

for all admissible uis.

To show that this problem leads to a convex feasibility set, consider two potentials that

satisfy the feasibility constraints for some �xed choice of ui. Then,

�i � �(q1; ui) and �i � �(q2; ui) (8.25)

and

�i � ��(q1; ui) + (1� �)�(q2; ui) (8.26)

=

R
(jruij2 + [�q1 + (1� �)q2]u

2
i ) d

3
xR

u
2
i d

3
x

(8.27)

= �(q�; ui); (8.28)

where the convex combination q� � �q1+(1� �)q2. Thus, local (�xed uis) feasibility follows

simply from the linearity of the Rayleigh quotient (except for the shift at the origin) with

respect to the potential q. Global feasibility follows from the variational properties of �

with respect to ui. (See the next section for the proof.)

Note that there is no scale invariance property for � similar to the one for the traveltime

functional. However, it is true that wave functions are invariant to a constant shift in the

potential, since it is easy to see that

�(q + 
; u) = �(q; u) + 
: (8.29)

In our analysis, we can also make use of other members of the invariance group of (8.19)

[Ames, 1972].
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This inverse eigenvalue problem can be reformulated in terms of a di�erent set of vari-

ational functionals. In particular, one such set of generalized Rayleigh-Ritz quotients has

been constructed by Berryman [1988]; however, these functionals have a more complicated

dependence on the potential q. Without linearity or shifted linearity in q, we cannot prove

the convexity of the feasibility set and the structure of the inversion problem becomes less

certain and possibly more complex.

8.3 General Structure for Convex Inversion Problems

The feasibility analysis presented in these lectures applies to a wide class of inverse problems

that can be formulated so the data are minima of an appropriate variational problem. To

see the general structure, consider a set of functionals �i(q; u) of two variables q and u.

Then, if each functional is linear in one variable so that

�i(aq1 + bq2; u) = a�i(q1; u) + b�i(q2; u); (8.30)

and if the data 
i bound �i(q1; u) and �i(q2; u) from below for any second argument u, then


i � �i(q1; u) and 
i � �i(q2; u) for all i = 1; : : : ;m; (8.31)

and we have


i � ��i(q1; u) + (1� �)�i(q2; u) = �i(�q1 + (1� �)q2; u): (8.32)

Therefore, �i evaluated at the convex combination q� = �q1 + (1 � �)q2 is also bounded

below by the data. Thus, linearity for �xed u is su�cient to prove that feasible qs for the

linear problem form a convex set. We call this the local convex feasibility property.

Then, when we consider variations of the second argument and assume that the data

are minima of the variational functional over all possible us, we have


i � �i(q
�
; u

�[q�]) � �i(q
�
; u); (8.33)

where u�[q] is the particular function that minimizes the the functional �i when q is the

�rst argument. Then, we have


i � �i(q1; u
�[q1]) � �i(q1; u

�[�]); (8.34)


i � �i(q2; u
�[q2]) � �i(q2; u

�[�]); (8.35)

where u�[�] is the correct (minimizing) u for some yet to be speci�ed q. Combining (8.34)

and (8.35) using the linearity property of �i for its �rst argument, we have


i � ��i(q1; u
�[q1]) + (1� �)�i(q2; u

�[q2]) (8.36)

� ��i(q1; u
�[�]) + (1� �)�i(q2; u

�[�]) (8.37)

= �i(q�; u
�[�]); (8.38)
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where q� = �q1 + (1� �)q2 is again the convex combination of q1 and q2. Now we are free

to choose the � to be any permissible q, so we choose it for convenience to be q�. Then, we

have the �nal result that


i � �i(q�; u
�[q�]): (8.39)

The conclusion from (8.32) is that there are local convex feasibility sets and from (8.39) that

there is a global convex feasibility set for the full nonlinear inversion problem, just as in the

case for traveltime tomography.

The only properties used in the derivation were the linearity of the variational functional

�i for �xed u and the concavity of the functional that results from its variational nature.

The preceding proof is appropriate for Fermat's, Dirichlet's, and Thomson's principles.

However, the proof must bemodi�ed for the inverse eigenvalue problem because the Rayleigh

quotient is a shifted linear functional of the potential q. We can �x this minor di�culty by

considering

��(q; ui) = �(q; ui)� �(0; ui) =

R
qu

2
d
3
xR

u
2
d
3
x

; (8.40)

which is linear in q. If

�i � �(0; ui) + ��(q1; ui); (8.41)

�i � �(0; ui) + ��(q2; ui); (8.42)

then we carry through the analysis as before and conclude that

�i � �(0; ui) + ��(�q1 + (1� �)q2; ui) = �(q�; ui): (8.43)

This proves the local convex feasibility property for problems with variational functionals

linear in the �rst argument except for a constant. The proof of global convex feasibility

follows the proof already presented step by step and will be left as an exercise.

Problem

Problem 8.3.1 Prove global convex feasibility for the inverse eigenvalue problem.

8.4 Nonconvex Inversion Problems with Feasibility Con-

straints

Although we expect the idea of using feasibility constraints in inversion problems with

variational structure to be a very general method, it may not always be true that the

variational functional is a concave functional of its arguments. If not, then the resulting

nonlinear programming problem will not be convex.
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As an example, consider the electrical impedance tomography problem again, but this

time for complex (still isotropic) conductivity � = �R + i�I . The dissipative part of � is

the real part �R, while the reactive part (proportional to the dielectric constant) is the

imaginary part �I .

The current is proportional to the conductivity and the electric �eld, but now all quan-

tities are complex so

J = �E (8.44)

becomes

jR + ijI = (�R + i�I)(eR + ieI): (8.45)

The power dissipation for this problem is given by

P =
1

2

Z
(J �E� + J� � E) d3x (8.46)

=

Z
(jR � eR + jI � eI) d3x (8.47)

=

Z
�R(eR � eR + eI � eI) d3x: (8.48)

Rewriting (8.45) in matrix notation we have�
jR
jI

�
=

�
�R ��I
�I �R

��
eR
eI

�
: (8.49)

Now we want to reformulate this problem as a variational principle in order to apply the

ideas of feasibility constraints, but to do so we need a positive scalar functional. The power

dissipation is a good choice again, but (8.49) is inconvenient for this purpose since the

matrix is not positive de�nite [Milton, 1990; Cherkaev and Gibiansky, 1994]. Performing a

Legendre transform on (8.49), we �nd that an alternative equation is

�
jR
eI

�
=

 
�R +

�2
I

�R
� �I

�R

� �I
�R

1
�R

!�
eR
jI

�
� �

�
eR
jI

�
: (8.50)

Then, the matrix � is positive de�nite (for �R > 0), since

�

�
eR
jI

�
= �

�
�R 0

0 1=�R

��
eR
jI

�
(8.51)

implies that

�+
1

�

= 2 +
�
2
I

�
2
R

; (8.52)

which guarantees that the eigenvalues � and 1=� are positive.
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So now the power is given by

P =

Z
(jR � eR + jI � eI) d3x (8.53)

=

Z
(eR jI )�

�
eR
jI

�
d
3
x (8.54)

=

Z
[�RjeRj2 +

1

�R
jjI � �IeRj2] d3x: (8.55)

This is the �nal expression for the power. In this form, we have a valid variational principle.

Also, note that the term jI � �IeR = �ReI so the second term in the �nal expression for P

is just �RjeI j2.
To check the conditions for stationarity of this integral, we �nd that, if we vary with

respect to eR, then

2

Z
[�ReR �

�I

�R
(jI � �IeR)] � �eR d3x = 0: (8.56)

If we vary with respect to jI , we �nd that

2

Z
[
1

�R
(jI � �IeR)] � �jI d3x = 0: (8.57)

Since the electric �eld is the gradient of a potential, (8.56) implies that

r � [�ReR �
�I

�R
(jI � �IeR)] = 0: (8.58)

Similarly, since the current distribution is divergence free, (8.57) implies that

1

�R
(jI � �IeR) = �r� (8.59)

for some scalar potential function �. Thus, the expression in (8.59) acts like an electric

�eld (in fact, it is eI) at the stationary point, while the quantity whose divergence is zero

in (8.58) acts like a current distribution (in fact, it is jR). This completes the proof that

(8.55) is a legitimate variational principle for the complex conductivity problem.

We can still talk about feasibility constraints for this problem, since

Pi � �pi(�
�
R; �

�
I ; e

�
R; j

�
I) � �pi(�

�
R; �

�
I ; eR; jI) (8.60)

with the trial power dissipation given by

�pi(�R; �I ; eR; jI) =

Z
[�RjeRj2 +

1

�R
jjI � �IeRj2] d3x: (8.61)

The starred quantities in (8.60) are the true ones for the experimental con�guration. If we

can �nd �s that violate the constraints implied by (8.60), then those �s are infeasible and

the rest form the feasible set. However, �p is not linear in its dependence on �, so we cannot
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prove that this functional is concave. 1 Therefore, we lack a proof of the convexity of the

feasible set.

For �xed �I , jI , and eR, the minimum of (8.61) is achieved, for a model of constant

conductivity cells, when the real conductivity in the jth cell is given by

�
2
R =

R
cellj

jjI � �IeRj2 d3xR
cellj

jeRj2 d3x
: (8.62)

This minimum value is

min
�R

�pi = 2

nX
j=1

[

Z
cellj

jeRj2 d3x
Z
cellj

jjI � �IeRj2 d3x]
1
2 : (8.63)

Since the imaginary part of the conductivity may still be viewed as a variable, we can

further minimize (8.63) by �nding the minimum with respect to �I . This minimum occurs

when

�I =

R
cellj

jI � eR d3xR
cellj

eR � eR d3x
(8.64)

for the imaginary part of the conductivity in the jth cell. Substituting into (8.63), we have

the minimum power

min
�R;�I

�pi = 2

nX
j=1

[

Z
cellj

eR � eR d3x
Z
cellj

jI � jI d3x� (

Z
cellj

jI � eR d3x)2]
1
2 : (8.65)

It follows from the Schwartz inequality for integrals that

(

Z
a � b d3x)2 �

Z
a � a d3x

Z
b � b d3x (8.66)

with equality applying only when b is proportional to a, that each bracket in (8.65) is

positive unless there is an exact solution such that

jI = 
eR; (8.67)

for some scalar 
.

If the nonlinear programming problem is nonconvex but feasibility constraints are still

applicable, what are the consequences for numerical solution of the inversion problem? For

convex feasibility sets, the convex combination of any two points on the feasibility boundary

is also feasible and therefore either lies in the interior or on the boundary of the feasible set.

This property implies a certain degree of smoothness for the boundary itself. Clearly, if the

1Looking at (8.54) we see that the power is a linear functional of the matrix elements of �. However,

this apparent linearity unfortunately does not help the analysis, because a physical constraint on the matrix

elements is that det� � 1. It is not di�cult to show that the convex combination of two matrices with

unit determinant does not preserve this property. So the nonlinearity cannot be avoided by the trick of

considering convex combinations of the matrix elements.
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feasible set is nonconvex, then the convex combination of two points on the boundary may

or may not lie in the feasible set; thus, the boundary itself may be jagged. Since the solution

of the inversion problem still lies on the boundary (just as it did in the convex case), the

lack of smoothness of the boundary may have important computational consequences: the

boundary is still expected to be continuous, of course, but sharp local jumps could occur

that might make convergence of an iterative method di�cult to achieve.

As an iterative scheme progresses, the absolute minimum of the trial power (8.65) de-

creases towards zero. Thus, the feasibility constraints become more important for this

problem as the scheme progresses to convergence.
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Index

acoustic { pertaining to sound waves in

a gas or 
uid (such as air or wa-

ter), generally limited to compres-

sional waves.

backprojection { a one-step, approximate

reconstruction method.

block { an element of a three-dimensional

region whose properties are to be

reconstructed. Usually, the prop-

erties are assumed to constant with-

in the block.

cell { an element of a two-dimensional or

three-dimensional region whose prop-

erties are to be reconstructed. Usu-

ally, the properties are assumed

to be constant within the cell.

consistent { a system of equations with

at least one solution satisfying all

the physical constraints on a model.

determined { a linear system with as

many equations as unknowns (as-

suming that the equations are lin-

early independent). If the equa-

tions are consistent, there is gen-

erally a unique physical solution

to such a systeme.

elastic { pertaining to sound waves in a

solid, and explicitly including both

compressional and shear waves.

feasible { pertaining to a part of a set

(especially the set of all possible

models) that satis�es all known

physical constraints, such as pos-

itivity. Any model that is not fea-

sible is infeasible.

homogeneous { constant, that is a physi-

cal property constant on the scale

of investigation.

image { a picture showing qualitative dif-

ferences in a physical property of

some region.

imaging { the process of producing an

image.

inconsistent { a linear system with no

physical (or feasible) solution. For

example, the system�
1 1

1 2

��
s1

s2

�
=

�
1

3

�
has the unique solution�

s1

s2

�
=

�
�1
2

�
;

but this solution is unphysical be-

cause it fails to satisfy the positiv-

ity constraint. The cause of incon-

sistency is usually a major error

in data collection, but more sub-

tle interactions between forward

modeling and the data can also

produce inconsistency.

infeasible { pertaining to a part of a set

(especially the set of all possible

models) that fails to satisfy any

of the physical constraints, such

as positivity. This set is comple-

mentary to the feasible set.
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inhomogeneous { not constant, that is a

physical property varying on the

scale of investigation.

inverse { the opposite rule. For example,

subtraction is the opposite of ad-

dition, while division is the oppo-

site of multiplication.

inversion { the process of reconstructing

a two-dimensional image or three-

dimensional map of some physical

property in a selected region.

konoscope { a device for reconstructing

the properties of a three-dimen-

sional region using tomography or

inversion.

map { a picture or volume representation

often showing quantitative di�er-

ences in a physical property of some

region. A map is generally quan-

titative whereas an image is qual-

itative. A map is two- or three-

dimensional whereas an image is

two-dimensional.

migration { the process of reconstruct-

ing an image of earth re
ectiv-

ity from seismic re
ection data.

Also known as wave equation

migration.

nonfeasible { same as infeasible.

overdetermined { any linear systemwith

more equations than unknowns.

(Caveat: if many of the equations

are linearly dependent, then the

reduced system may actually be

either determined or underdetermin-

ed; however, it generally requires

much computation to decide if this

is so.) Generally no exact solu-

tion to such a system exists, so

approximate methods of solution

such as least-squares are used to

�nd \best" approximate solutions.

Inverting for local averages of phys-

ical properties may produce an over-

determinedmathematical inversion

problem.

pixel { a picture element, or two-dimen-

sional cell.

reconstruction { the act of constructing

again from pieces that have been

disassembled, as in a puzzle.

seismic { pertaining to sound waves in

the earth, and explicitly includ-

ing both compressional and shear

waves.

seismogram { a record of seismic signals.

Seismogram is to seismograph as

photograph is to camera.

seismograph { a device for measuring

seismograms.

seismography { the study or observation

of seismic signals.

tomogram { the reconstructed image of

some physical property produced

by tomography. Tomogram is to

konoscope as photograph is to cam-

era, or as micrograph is to micro-

scope.

tomograph { same as tomogram.

tomography { the study of cross sections;

the process of reconstructing a two-

dimensional image of some phys-

ical property of a selected plane

region.

underdetermined { any linear system

with fewer equations than unknowns.

There are generally many solutions

(often an in�nite number) to such

a system. Inhomogeneous physi-

cal systems whose properties may

be described as essentially contin-

uous functions of position may be
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considerd to have an in�nite num-

ber of unknowns; therefore, any

attempt to reconstruct the con-

tinuous system from �nite data

leads to an underdetermined phys-

ical inversion problem.

voxel { a volume element, or three-dimen-

sional cell.
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