Министерство науки и высшего образования РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное

учреждение высшего образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра бурения нефтяных и газовых скважин Кафедра машины и оборудование нефтегазовых промыслов

ОПИСАНИЕ И РАСЧЕТ ПОКАЗАТЕЛЕЙ ИЗНОСА ШАРОШЕЧНЫХ ДОЛОТ ПО СИСТЕМЕ МАБП

Учебно-методическое пособие к лабораторной работе по дисциплине "Разрушение горных пород" Учебно-методическое пособие включает описание, измерение и расчет износа шарошечных по системе Международной ассоциации буровых подрядчиков (кодов МАБП). Эта информация необходима для оперативной коррекции режима бурения скважины и для составления отчетных документов по отработке породоразрушающих инструментов. Пособие предназначено для студентов нефтегазовых вузов и факультетов, обучающихся по направлению 21.03.01 Нефтегазовое дело и 21.05.06 Нефтегазовые техника и технологии очной, очно-заочной и заочной форм обучения.

Публикуется в авторской редакции.

Составители: Исмаков Р.А. зав.кафедрой БНГС, д-р техн. наук

Попов А.Н., проф., д-р техн. наук

Булюкова Ф.З., доцент, канд, техн. наук

Рецензенты: Ямалиев В.У., проф., д-р техн. наук

Сакаев Р.М. доц., канд. техн. наук

[©] Уфимский государственный нефтяной технический университет, 2021

ВВЕДЕНИЕ

Изношенное долото, поднятое из скважины, несет информацию о соответствии долота и режима его работы пробуренным горным породам и о полноте использования ресурса долота. Эта информация используется непосредственно на буровой для уточнения выбора долота и режима его работы. Кроме того, результаты описания износа передаются изготовителю инструмента и выполняют роль обратной связи. Изучение характера и распределения износа и повреждений по рабочей поверхности позволяет выявить слабые элементы породоразрушающего инструмента и наметить пути дальнейшего его совершенствования применительно к конкретным условиям бурения.

Следовательно, добросовестное описание износа породоразрушающих инструментов и его анализ способствуют повышению эффективности бурения скважин, в том числе снижению его стоимости.

В таблице 1 приведен фрагмент отчетного документа об использованных долотах при бурении скважины. В первой колонке дан порядковый номер рейса. Во второй колонке дан размер долота. Долотами диаметром 15 ½" велось бурение под кондуктор. Долотами диаметром 12 ¼" велось бурение под эксплуатационную колонну. Долотами 8 ½" бурение велось под хвостовик, спущенный в горизонтальный участок ствола скважины. В третьей, четвертой и пятой колонках приведены завод-изготовитель долот, их шифр и код по системе Международной ассоциации буровых подрядчиков (IADC code). Правая часть таблицы (колонки с 6-й по 13-ю) содержит описание износа долот по системе кодов Международной ассоциацией буровых подрядчиков (по системе кодов МАБП).

Задача лабораторной работы — познакомиться с кодами износа, научиться измерять параметры износа долот и определять по ним значения кодов.

Таблица 1 – Долота, отработанные при бурении горизонтальной скважины в Западной Сибири, и коды их износа

Размер	Tun namero	1		КОДИРОВКА ИЗНОСА							
	Тип долота	Серийный	Шифр								
(дюйм)	производитель	номер	IADC	ı	0	D	L	В	G	0	R
8 1/2	Reed EHP43AKPR	U67008	437	0	0	WΤ	G	Е	ı	NO	ВНА
8 1/2	Reed EHP43AKPR	U67008	437	0	0	LT	G	F	3	ER	TQ
8 1/2	EHP51HTFKPR	T96740	517	0	0	RG	G	F	2	NR	HR
8 1/2	EHP43AKPR	H38747	437	0	0	NO	1	Е	I	NO	ВНА
8 1/2	PDC DS148DGJNW	102335		1	1	WΤ	Α	Х	ı	NO	ВНА
8 1/2	EHP51HTFKPR	T96737	517	2	2	WΤ	Α	Е	I	ER	HR
-	8 1/2 8 1/2 8 1/2 8 1/2 8 1/2	8 1/2 Reed EHP43AKPR 8 1/2 Reed EHP43AKPR 8 1/2 EHP51HTFKPR 8 1/2 EHP43AKPR 8 1/2 PDC DS148DGJNW	8 1/2 Reed EHP43AKPR U67008 8 1/2 Reed EHP43AKPR U67008 8 1/2 EHP51HTFKPR T96740 8 1/2 EHP43AKPR H38747 8 1/2 PDC DS148DGJNW 102335	8 1/2 Reed EHP43AKPR U67008 437 8 1/2 Reed EHP43AKPR U67008 437 8 1/2 EHP51HTFKPR T96740 517 8 1/2 EHP43AKPR H38747 437 8 1/2 PDC DS148DGJNW 102335	8 1/2 Reed EHP43AKPR U67008 437 0 8 1/2 Reed EHP43AKPR U67008 437 0 8 1/2 EHP51HTFKPR T96740 517 0 8 1/2 EHP43AKPR H38747 437 0 8 1/2 PDC DS148DGJNW 102335 1	8 1/2 Reed EHP43AKPR U67008 437 0 0 8 1/2 Reed EHP43AKPR U67008 437 0 0 8 1/2 EHP51HTFKPR T96740 517 0 0 8 1/2 EHP43AKPR H38747 437 0 0 8 1/2 PDC DS148DGJNW 102335 1 1	8 1/2 Reed EHP43AKPR U67008 437 0 0 WT 8 1/2 Reed EHP43AKPR U67008 437 0 0 LT 8 1/2 EHP51HTFKPR T96740 517 0 0 RG 8 1/2 EHP43AKPR H38747 437 0 0 NO 8 1/2 PDC DS148DGJNW 102335 1 1 WT	8 1/2 Reed EHP43AKPR U67008 437 0 0 WT G 8 1/2 Reed EHP43AKPR U67008 437 0 0 LT G 8 1/2 EHP51HTFKPR T96740 517 0 0 RG G 8 1/2 EHP43AKPR H38747 437 0 0 NO 1 8 1/2 PDC DS148DGJNW 102335 1 1 WT A	8 1/2 Reed EHP43AKPR U67008 437 0 0 WT G E 8 1/2 Reed EHP43AKPR U67008 437 0 0 LT G F 8 1/2 EHP51HTFKPR T96740 517 0 0 RG G F 8 1/2 EHP43AKPR H38747 437 0 0 NO 1 E 8 1/2 PDC DS148DGJNW 102335 1 1 WT A X	8 1/2 Reed EHP43AKPR U67008 437 0 0 WT G E I 8 1/2 Reed EHP43AKPR U67008 437 0 0 LT G F 3 8 1/2 EHP51HTFKPR T96740 517 0 0 RG G F 2 8 1/2 EHP43AKPR H38747 437 0 0 NO 1 E I 8 1/2 PDC DS148DGJNW 102335 1 1 WT A X I	8 1/2 Reed EHP43AKPR U67008 437 0 0 WT G E I NO 8 1/2 Reed EHP43AKPR U67008 437 0 0 LT G F 3 ER 8 1/2 EHP51HTFKPR T96740 517 0 0 RG G F 2 NR 8 1/2 EHP43AKPR H38747 437 0 0 NO 1 E I NO 8 1/2 PDC DS148DGJNW 102335 1 1 WT A X I NO

1 ОПИСАНИЕ ИЗНОСА ДОЛОТА

Описание износа шарошечного долота по системе МАБП выполнить по наиболее изношенной шарошке долота в виде таблицы 1.1, колонки которой содержат условные обозначения (коды) величин преобладающего износа и его местоположения на шарошке.

Шифр долота	Номер	Коды износа вооружения		Код износа опоры, уплотнения	Код износа по диаметру	Примечание			
		I	0	D	L	В	G	0	R
1	2	3	4	5	6	7	8	9	10
215,9MC3- ГНУ	95	2	5	СТ	G	E	1	BT	PR

Таблица 1.1 – Описание износа долота

Рассмотрим запись износа на примере долота 215,9МСЗ-ГНУ R01, фотографии шарошки которого и необходимые для описания обозначения элементов приведены на рисунке 1.1.

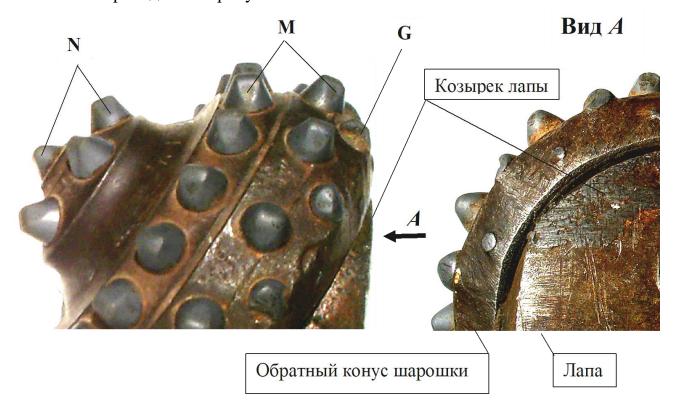


Рисунок 1.1 – Шарошка отработанного долота 215,9МС3-ГНУ

При описании местоположения износа вооружения для колонки ${\bf L}$ таблицы 1.1 приняты следующие обозначения венцов (рядов):

- N венцы, размещенные у вершины конуса шарошки);
- G периферийное вооружение (венцы), находящееся в контакте со стенками скважины);
- М средние венцы (ряды), расположенные между венцами (рядами) «N» и «G»;
- А все ряды. Буква А ставится при равномерном износе вооружения шарошек по венцам).

Контурная часть лапы, закрывающая подшипники опоры и ее уплотнение, называется козырьком.

Колонки 1 и 2 таблицы 1.1 характеризуют долото. Колонки от 3 до 9 содержат описание его износа. Диаметр долота и его шифр записываются по клейму на ниппеле, а при отсутствии клейма измеряется с помощью кольца-калибра. Нормальный ряд диаметров долот приведен в таблице 1.2. Эта таблица нужна для перевода диаметра долота из дюймов в мм.

Диаметр долота		Диаметр	о долота	Диаметр долота			
$\mathcal{M}\mathcal{M}$	дюймы	мм	дюймы	$\mathcal{M}\mathcal{M}$	дюймы		
93,0	3 2/3	171,4	6 3/4	279,4	11		
98,4	3 7/8	190,5	7 1/2	295,3	11 5/8		
114,3	4 1/2	200,0	7 7/8	311,1	12 1/4		
120,6	4 3/4	215,9	8 1/2	339,7	13 3/8		
124,0	4 7/8	244,5	9 5/8	349,2	13 3/4		
139,7	5 ½	250,8	9 7/8	374,6	14 3/4		
161,0	6 11/32	269,9	10 5/8	393,7	15 1/2		
165,1	6 1/2	276,2	10 7/8	444,5	17 1/2		

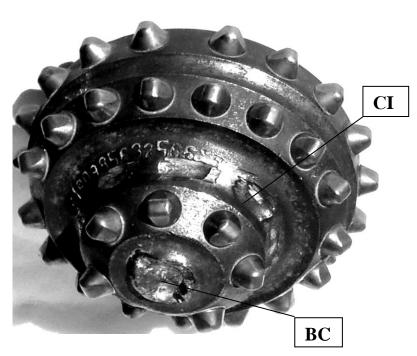
Таблица 1.2 - Диаметры наиболее часто применяемых буровых долот

Виды износа делят на две группы:

- 1) наиболее распространенный, **определяющий** отказ породоразрушающего инструмента;
- 2) следующий по распространенности, но не определяющий отказ породоразрушающего инструмента (другой, не основной вид износа).

Колонка **R** содержит информацию о причине подъема долота. МАБП рекомендует следующие коды для описания причин прекращения бурения и подъема долота:

- BHA Change Bottom Hole Assembly (смена КНБК компоновки низа бурильной колонны);
- DMF Downhole Motor Failure (отказ забойного двигателя);
- DSF Drill String Failure (повреждение бурильной колонны);
- DST Drill Stem Testing (проведение испытаний скважины испытателем пластов);
- DTF Downhole Tool Failure (отказ скважинного инструмента));


- LOG Run Logs (проведение ГИС геофизического исследования скважины);
- RIG Rig Repair (ремонт буровой установки);
- CM Condition Mud (обработка бурового раствора);
- CP Core Point (проведение работ с отбора керна);
- DP Drill Plug (разбуривание цементного стакана);
- FM Formation Change (смена геологической обстановки);
- HP Hole Problems (проблемы в скважине);
- HR Hours (подъём по времени);
- PP Pump Pressure (изменения давления на стояке);
- PR Penetration Rate (падение скорости бурения);
- TD Total Depth (достижение проектного забоя);
- TQ Torque (рост крутящего момента);
- TW Twist Off (снижение веса на крюке);
- WC Weather Conditions (подъём по погодным условиям);
- WO Washout Drillstring (размыв бурильного инструмента).

2 ВИДЫ ИЗНОСА ДОЛОТА И ЕГО КОДЫ ПО СИСТЕМЕ МАБП

В этом разделе приведены коды износа (отказа) по системе МАБП, их расшифровка на английском и русском языках и фотографии соответственно изношенных элементов долота. На одном и том же элементе, например, шарошке могут иметь место несколько видов износа, а поэтому обозначений может быть одно или несколько.

2.1 BC – Broken Cone (слом части шарошки)

Случай, при котором одна шарошка или более расколоты на две части и

более, но при этом большая часть сломанной шарошки остается на цапфе лапы. На рисунке 2.1 показана шарошка со сломанной вершиной.

Рисунок 2.1 – Шарошка долота типа C3 со сломом (BC) ее части (вершины) и со следами зацепления (CI) Некоторые причины поломки шарошек:

- зацепление шарошек вследствие износа (разрушения) опоры;
- удары об уступы скважины при спуске или наращивании колонны;
- удары о забой скважины;
- сероводородное охрупчивание металла.

2.2 CR – Cored (кернование – износ вершин шарошек долота)

В случае слома или износа вершин всех шарошек на забое скважины образуется керн, на котором зависает долото и резко снижается механическая скорость бурения.

Некоторые причины этого вида износа:

- низкая износостойкость вершинных венцов шарошек;
- неправильная приработка нового долота;
- металл на забое.

2.3 CC – Cracked Cone (образование трещины на шарошке)

Трещины в шарошке являются началом процесса, ведущего к поломке и даже к потере шарошки, и могут быть следствием многих причин. На рисунке 2.2 показана поперечная трещина (СС) в шарошке.

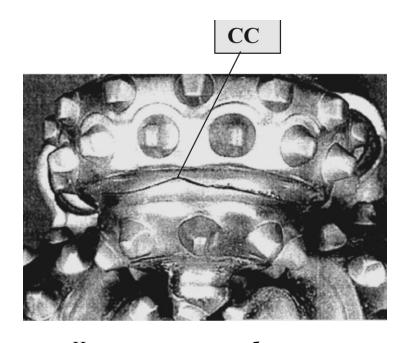


Рисунок 2.2 – Шарошка долота типа ОМЗ с трещиной (СС) на межвенцовой поверхности

Некоторые причины образования трещин:

- металл на забое скважины;
- удары долота о выступ или забой скважины;
- сероводородное охрупчивание;
- перегрев долота;
- уменьшение толщины стенок шарошки из-за эрозионного износа и зацепления шарошек.

2.4 LC – Lost Cone (потеря шарошки)

У отработанного долота отсутствует одна шарошка или более, которые остались в скважине. Причинами могут быть те же, что описаны в 2.3, а также повреждение опоры, приводящее к разрушению замкового устройства.

2.5 BT – Broken Teeth (слом элементов вооружения)

При разбуривании твердых и крепких пород поломка элементов вооружения является нормальным видом износа и не обязательно указывает на неправильный выбор долота или режима бурения. На рисунке 2.3 показан фрагмент шарошки долота типа ТЗ со сломанным и сколотым зубками.

Некоторые причины поломки элементов вооружения:

- металл на забое скважины;
- удары долота о выступы или о забой скважины;
- избыточная нагрузка на долото. Обычно в этом случае поломке подвержены зубья внутренних (вершинных) и средних венцов;
- избыточная частота вращения. Обычно в этом случае поломке подвержены зубья внешних (периферийных) венцов;
 - неправильная приработка долота;
 - слишком твердые породы для данного долота.

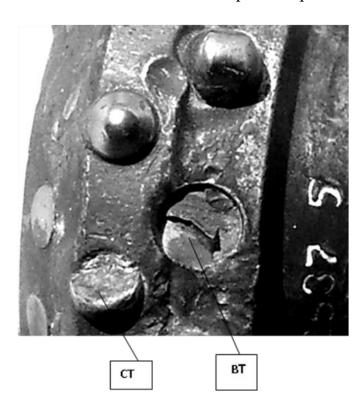


Рисунок 2.3 – Слом (ВТ) и скол (СТ) зубков на шарошке долота типа Т3

2.6 CT – Chipped Teeth (скол элементов вооружения)

Элемент вооружения считается сколотым (в отличие от сломанного), если значительная его часть (не менее ¼ высоты элемента вооружения) остается выступающей над телом шарошки. Вид сколотых твердосплавных зубков показан на рисунках 1.1 и 2.3. На рисунке 2.4 показан вид сколотых зубьев долота типа Т (со стальным вооружением).

Рисунок 2.4 – Скол (СТ) зубьев на шарошке долота типа Т. Несколотые зубья изношены со скруглением (WT)

Некоторые причины скола зубков:

- ударные нагрузки, вызванные тяжелым режимом бурения;
- небольшое зацепление шарошек.

2.7 WT – Worn Teeth (износ элементов вооружения по высоте)

Это нормальный абразивный износ как твердосплавных зубков, так и фрезерованных зубьев. Вид элементов вооружения с таким износом показан на

рисунке 1.1 (долото типа МСЗ) и на рисунке 2.4 (долото типа Т).

Для долот с фрезерованным вооружением, обычно фиксируется и особенности износа: со скруглением вершин (WT), с увеличением притупления (FC) и с самозатачиванием (SS). На рисунке 2.5 показан износ вида FC.

Рисунок 2.5 – Фрагмент шарошки долота типа С (вид с вершины шарошки), у которой износ зубьев по высоте сопровождался увеличением притупления (FC)

2.8 SS – Seft-Sharpening (эффект самозатачивания зубьев)

Самозатачивание зубьев обусловлено, как правило, при работе элементов вооружения шарошек след в след, в результате чего на забое образуется рейка в виде устойчивых выступов и впадин. В этом случае имеет место износ набегающих и сбегающих граней зубьев с приострением (рисунок 2.6), а также износ тела шарошки между зубьями.

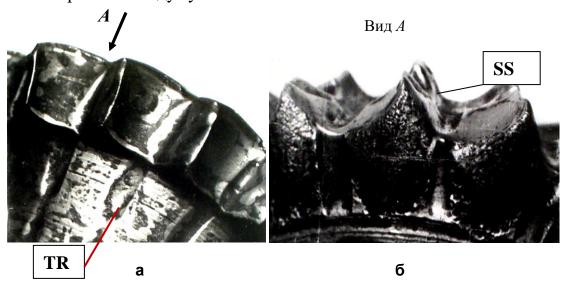


Рисунок 2.6 – Вид сверху (а) и со стороны обратного конуса (б) периферийного вооружения долота типа Т, работавшего с образованием рейки и изношенного с самозатачиванием (SS)

2.9 TR — Tracking (трекинг — шарошки несут следы рейкообразования на забое)

При этом виде износа на теле шарошки имеются выработки от взаимодействия с выступами рейки на забое (см. рисунок 2.6,а). Наибольшую опасность трекинг представляет для долот второго класса, отрабатываемых в абразивных горных породах (рисунок 2.7). Трекинг (**TR**) в сочетании с эрозией (**ER**) обусловливает износ венцовых выступов шарошек вокруг зубков. При этом уменьшается глубина запрессовки зубков и увеличивается вероятность их выпадения (LT).

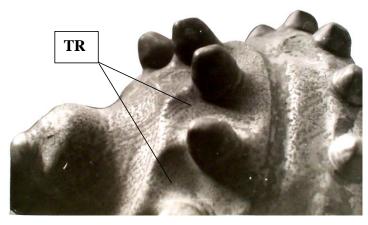


Рисунок 2.7 – Износ стальных поверхностей долота типа М3 под действием трекинга и эрозии

2.10 ER – Erosion (эрозионный износ)

Гидроабразивная эрозия приводит к уменьшению толщины тела шарошек. В долотах с твердосплавным вооружением это ведет к выпадению зубков и даже к разрушению шарошки (рисунок 2.8).

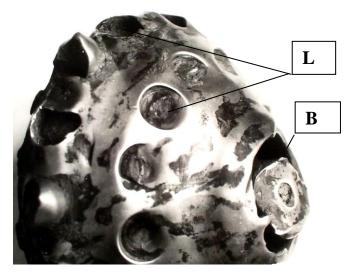
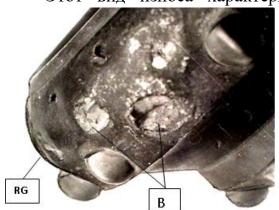


Рисунок 2.8 – Запредельный эрозионный износ шарошки долота типа МЗ и сопутствующие ему выпадение зубков (LT) и слом вершины (BC)


Причинами этого вида износа могут быть:

- контакт абразивных пород с телом шарошки, вызванный рейкообразованием на забое скважины, эксцентричным вращением долота и избыточной нагрузкой на долото;
- износ тела шарошек абразивными частицами породы вследствие недостаточной промывки забоя;
 - избыточная скорость потока промывочной жидкости;
 - высокое содержание песка в промывочной жидкости.

В современных долотах для разбуривания высокоабразивных горных пород предусматривается наплавка поверхностей шарошек твердым сплавом.

2.11 RG – Rounded Gauge (сглаживание, скругление обратных конусов шарошек)

Этот вид износа характеризуется опережающим износом обратных

конусов шарошек в результате разрушения периферийных венцов шарошек долота без существенного уменьшения его диаметра (рисунок 2.8). У шарошки, показанной на

Рисунок 2.9 – Скругление (RG) обратного конуса шарошки долота типа Т3 и слом (BT) его зубков

рисунке 2.8, скруглен обратный конус и сломаны все зубки периферийного ряда, а также некоторые зубки предпериферийного ряда.

Причины, вызывающие скругление:

- бурение в абразивных породах при высокой частоте вращения;
- проработка ствола скважины.

2.12 HC – Heat Checking (термическое растрескивание зубков в результате перегрева их рабочих поверхностей)

Этот вид износа наблюдается при перегреве зубков вследствие скольжения по породе и затем охлаждения их промывочной жидкостью в течение многих циклов (рисунок 2.10). Последующее развитие трещин является одной из основных причин скола и слома элементов вооружения.

Некоторые причины возникновения температурных трещин:

- избыточное проскальзывание шарошек;
- проработка ствола скважины при высокой частоте вращения долота.

Рисунок 2.10 – Температурные трещины на периферийных зубках долота типа МСЗ

2.13 JD – Junk Damage (работа долота по металлу на забое)

Следы работы по металлу могут быть обнаружены в виде вмятин на

любой поверхности долота (рисунок 2.11).

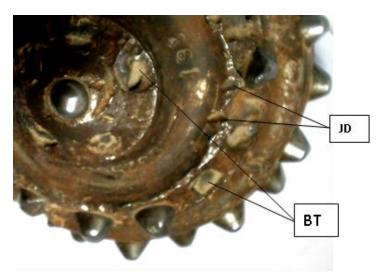


Рисунок 2.11 — Фрагмент шарошки долота типа СЗ, работавшего по металлу на **забое (JD),** в результате чего имел место слом зубков (BT)

Работа по металлу

приводит к поломке элементов вооружения, повреждению козырьков лап и может являться причиной снижения стойкости долота. В этих случаях необходимо очистить забой скважины от металла перед спуском нового долота.

Обычными причинами наличия металла на забое скважины и, как следствие, повреждения долота являются:

- металл с поверхности на забое скважины;
- металл от предыдущего долота (сломанные зубки, тела качения подшипников и т.д.);
 - металл от работающего долота (сломанные зубки и т.д.).

2.14 OC – Off-Center Wear (эксцентричный износ)

Этот вид износа имеет место, когда геометрическая ось вращения долота и геометрическая продольная ось скважины не совпадают. В результате получается скважина увеличенного диаметра.

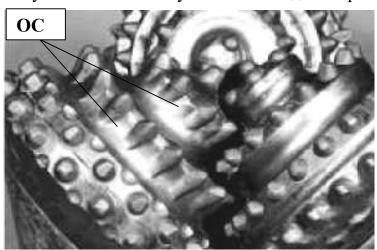


Рисунок 2.12 - Вид шарошки при эксцентричном износе (ОС) Эксцентричный износ

может быть распознан по наличию характерного износа тела шарошек между зубками (зубьями) и увеличенному износу калибрующей поверхности одной из шарошек. На рисунке 2.12 показана шарошка с характерным износом тела шарошки и межзубковых впадин. Основной причиной такого износа является недостаточная стабилизация долота в скважине.

2.15 PB – Pinched Bit (механическое повреждение долота при СПО)

Этот вид повреждения долота характеризуется его механической деформацией до диаметра меньше первоначального.

Возможные причины деформации долота:

- спуск долота в скважину уменьшенного диаметра;
- спуск шарошечного долота после режуще-истирающего долота (из-за разницы в допусках на диаметры долот);
- спуск долота в обсадной колонне при недостаточном зазоре между нагруженным диаметром долота и внутренним диаметром колонны;
 - деформация долота в доске отворота;
- спуск долота через превентор несоответствующего (меньшего) диаметра.

CD

2.16 SD – Shirttail Damage (повреждение козырька лапы)

Повреждение и износ козырька лапы обычно приводит к повреждению уплотнения. Пример повреждения козырька лапы показан на рисунке 2.13.

Рисунок 2.13 – Повреждение козырька лапы (CD) при бурении в трещиноватых горных породах

Возможные причины повреждения козырька:

- металл на забое;
- проработка ствола скважины в трещиноватых породах;
- большой износ калибрующего вооружения шарошек;

- плохая промывка;
- большой угол наклона скважины.

2.17 CD – Cone Dragged (подклинка или заклинивание шарошки)

Этот вид износа имеет место, когда одна шарошка и более в процессе работы долота застопорены и не вращаются, на что указывают плоские лыски на поверхности одной или нескольких шарошек (рисунок 2.14).

Возможные причины подклинки:

- отказ опоры одной или нескольких шарошек;
- попадание металла между шарошками;
- заклинка шарошек вследствие зацепления;
- сальникообразование;
- недостаточная приработка долота.

Рисунок 2.14 – Шарошка долота типа С с износом (CD) в результате заклинивания опоры

2.18 BU – Balled Up Bit (образование сальника на долоте)

Поднятое из скважины долото все или частично покрыто слоем налипшей горной породы (сальником). Горная порода, запрессовавшаяся между шарошками, стопорит их, как и в случае отказа опоры. Поэтому износ очищенного от сальника долота выглядит как в случае отказа опор, хотя на самом деле опоры не повреждены.

Некоторые причины сальникообразования:

- недостаточная очистка забоя скважины;
- работа долота при отсутствии циркуляции промывочной жидкости;
- разбуривание липких горных пород.

2.19 LN – Lost Nozzle (потеря насадки)

Выпадение (потеря) одной или нескольких насадок является отказом системы промывки долота, который отражается при оценке состояния долота в колонке О "Другие характеристики износа".

Потеря насадки приводит к падению давления на насосе (на стояке), что сопровождается преждевременным прекращением бурения.

Некоторые причины потери насадки:

- неправильная установка насадок;
- механическое повреждение насадки и (или) узла крепления насадки.

2.20 PN – Plugged Nozzle/Flow Passage (закупорка насадки или промывочного канала)

Закупорка насадки относится к отказу системы промывки долота и требует прекращения бурения из-за повышения давления на стояке. Так же как и потеря насадки она отражается при оценке состояния долота в колонке (О) "Другие характеристики износа".

Причины закупорки насадок:

- спуск долота в шлам на забое при отсутствии циркуляции;
- попадание твердых предметов в буровой раствор.

2.21 WO – Washed Out Bit (промыв корпуса долота)

Этот вид износа характерен для гидромониторных долот и приурочен к сварным швам и подводящим каналам системы промывки долота. На рисунке 2.15 показан промыв корпуса долота из подводящего канала системы промывки.

Если сварные швы имеют поры или непровары, промыв их начинается с началом циркуляции промывочной жидкости. Трещины в сварных швах могут возникнуть при ударах долота об уступы или забой скважины. При наличии дефекта сварного шва или появлении трещины промывочная жидкость движется через них и расширяет их, создавая промыв. Промыв прогрессирует чрезвычайно быстро, при этом снижается давление на стояке, которое бурильщик фиксирует как отказ в системе промывки.

3 ИЗМЕРЕНИЕ И РАСЧЕТ КОДОВ ИЗНОСА

Необходимые инструменты:

- 1) штангенциркуль с глубиномером;
- 2) проходные кольца-калибры для долот диаметром 190,5 и 215,9 мм.

Преподаватель дает задание описать износ конкретного долота. Студент **заготавливает таблицу наблюдений по форме 1.1**, осматривает долото и выбирает наиболее изношенную шарошку.

Первая операция описание и измерение износа вооружения.

Для описания состояния износа вооружения по высоте применяется линейная шкала кодов от 0 (вооружение не изношено) до 8 (вооружение изношено на 100 %). Величина износа определяется в восьмых долях от начальной высоты зуба. Принцип определения и значения кодов приведен на рисунке 3.1. Например, при отсутствии износа записывается цифра 0, при износе на 2/8 от начальной высоты зуба — цифра 2, при износе на всю высоту зуба — цифра 8.

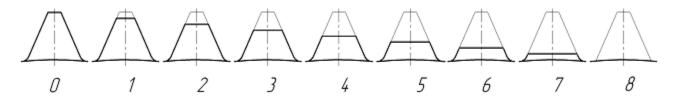


Рисунок 3.1 – Величины износа элементов вооружения и соответствующие им коды

В колонку I записывается величина определяющего износа внутренних (не соприкасающихся со стенкой скважины) венцов (inner rows) долота.

Расчет:

высота элемента вооружения нового долота h_3 ; высота изношенного элемента вооружения h, тогда величина кода I

$$I = 8 \cdot h/h_3. \tag{3.1}$$

Полученная величина округляется до целого числа.

Внутреннее вооружение (колонка **I**) имеет несколько венцов. Поэтому рассчитывается средний износ по венцам. Например, на трехвенцовой шарошке (два венца внутренних и один периферийный) один внутренний венец изношен на 1/8, а другой на 3/8 от начальной высоты зуба. Тогда средний износ

$$I = (1 + 3)/2 = 2$$
.

Полученную цифру записать в заготовленную таблицу наблюдений.

В колонку О записывается величина определяющего износа периферийных венцов (outer rows) долота, соприкасающихся со стенкой скважины.

Например, на периферийном венце долота 2-го класса 70% зубков изношено на 4/8 от начальной высоты зуба, а 30 % — сломаны до основания или выпали (износ 8/8). В этом случае износ определяют следующим образом:

$$I = 0.7 \cdot 4 + 0.3 \cdot 8 = 5.2 \approx 5.$$

Цифра 5 заносится в таблицу износа в колонку О, как показано в таблице 1.1.

В колонке D записывается двухбуквенный код характера износа или отказа наиболее изношенной части вооружения. У долота (рисунок 1.1) наиболее изношены периферийные венцы. Характер износа — скол (СТ) зубков. Подробно обозначение других видов износа рассмотрено в разделе 2.

В колонке L дается уточнение местоположения наиболее изношенного вооружения долота в соответствии с обозначениями на рисунке 1.1. В случае неравномерного износа по шарошкам в колонке **L** ставят цифры, обозначающие номера шарошек с наиболее изношенным вооружением.

В колонке В ставится код, характеризующий состояние опоры шарошек. Для открытых опор долота использование ресурса определяется по величине радиального люфта в подшипнике (по размаху "качки" торца шарошки относительно козырька лапы). В качестве кода используются цифры от 0 до 8. Ноль – состояние опоры не отличается от состояния нового долота.

Предельная величина размаха "качки" торца шарошки, соответствующая ресурсу опоры, зависит от размера долота. *Для долот диаметром 190,5 и 215,9 мм она составляет 5 мм.* Для долот диаметром более 215,9 мм предельная величина размаха качки составляет 8 мм.

Величину кода B для открытой опоры подсчитать по формуле

$$B = 8 \cdot k/5. \tag{3.2}$$

где k — измеренная величина качки торца долот диаметром 190,5 и 215,9 мм.

В случаях, когда шарошка заклинена или потеряна, значение кода принимается равным 8.

В случае долот с герметизированными опорами оценивается только состояние системы смазки для наиболее изношенной опоры:

- Е опора (уплотнение опоры) находится в работоспособном состоянии);
- **F** опора разгерметизирована (уплотнение разрушено), т.е. опора вышла из строя);
- N нет возможности определить состояние опоры долота.

У долота (рисунок 1.1) герметизация опор не нарушена, поэтому в таблице 1.1 проставлена буква E.

Колонка G используется для описания уменьшения диаметра долота (износ по диаметру в 16-х долях дюйма). Буквой I обозначается отсутствие износа (износ находится в пределах допуска на диаметр долота). Нижний допуск равен нулю, а верхний допуск — от 1/32" (+0,313 мм) до 3/32" (+0,938 мм). В таблице 3.1 приведены данные по назначению цифр кода по результатам замера износа долота по диаметру. По данным измерений удобнее выполнить расчет цифры кода.

Таблица 3.1 — Соответствие цифр кода износу долота по диаметру ΔD

ΔD , MM	0	1,6	3,2	4,8	6,4	7,9	9,5	11,1	12,7
Код	0	1	2	3	4	5	6	7	8

Схема измерения износа долота по диаметру приведена на рисунке 3.2. На долото I одевается кольцо-калибр 2 так, чтобы оно касалось двух шарошек в плоскости наибольшего диаметра, и измеряется наименьшее расстояние Y между кольцом и третьей шарошкой. Далее по формуле

$$\Delta D = \frac{2}{3}Y$$

рассчитывается уменьшение диаметра долота ΔD .

1 – шарошка;

2 – кольцо-калибр

Рисунок 3.3 – Схема измерения износа долота по диаметру

Измерить величину y и рассчитать значение кода G:

$$G = 8 \cdot y/12,7.$$
 (3.3)

Например, результат замера $\Delta D = 3.5$ мм. Тогда

$$G = 8.3,5/12,7 = 2,2 \approx 2$$
 кода.

Колонка О (другой, не основной вид износа) используется для записи кода в дополнение к записи в колонке D. При этом используются те же двухбуквенные коды, что и для колонки D. В таблице 1.1 основной износ приведенного в качестве примера долота охарактеризован кодом CT (износ зубков по высоте в результате скола зубков), но 30 % зубков было сломано. Поэтому в колонке O поставлен код BT (разрушение зубков).

Колонка R содержит информацию о причине подъема долота из скважины. Рассматриваемое долото (см. рисунок 1.1) было поднято из скважины из-за уменьшения механической скорости бурения более чем вдвое от начальной. Поэтому в этой колонке R таблицы 1.1 проставлены буквы PR (**Penetration Rate**).

4 ЗАКЛЮЧЕНИЕ

В конце лабораторной работы дается заключение о состоянии долота, в том числе в виде кода:

NO – No Dull Characteristic (отсутствие износа);

RR – Rerunnable (долото пригодно для повторного спуска);

NR – Not Rerunnable (не пригодно для повторного спуска).

Эти буквы кода могут быть указаны в примечании. Коды *NO* и *RR* свидетельствуют о том, что долото пригодно для дальнейшего использования.

Например, долото № 14 (см. таблицу 1) было поднято из скважины для изменения компоновки бурильного инструмента (код ВНА) без существенного износа. Долото было спущено в скважину для бурения следующего интервала (№ 14RR).

СОДЕРЖАНИЕ

	Введение	3
1	Описание износа долота	4
2	Виды износа долота и его коды по системе МАБП	6
3	Измерение и расчет кодов износа	17
4	Заключение	20