МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Р.А. Вирц, А.А. Папин

ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ХРАНЕНИЯ УГЛЕКИСЛОГО ГАЗА В ГЕОЛОГИЧЕСКИХ ФОРМАЦИЯХ

Учебное пособие

Издательство Алтайского государственного университета 2021 УДК 51-7:532:533

ББК 22.253

B 528

Рецензент: доктор физико-математических наук, профессор О.Н. Гончарова

В 528 Вирц, Рудольф Александрович. Проблемы математического моделирования хранения углекислого газа в геологических формациях : учебное пособие / Р.А. Вирц, А.А. Папин ; Министерство науки и высшего образования РФ, Алтайский государственный университет. – Барнаул : Изд-во Алт. ун-та, 2021. – 70 с.

ISBN 978-5-7904-2591-2.

Учебное пособие посвящено математическим вопросам хранения углекислого газа в геологических формациях. Рассмотрены проблемы построения математических моделей, описывающих закачку и хранение углекислого газа. Пособие будет полезно для студентов, аспирантов и специалистов, интересующихся теорией дифференциальных уравнений и их приложениями в механике сплошной среды.

УДК 51-7:532:533 ББК 22.253

ISBN 978-5-7904-2591-2

© Вирц Р.А., Папин А.А., 2021

© Оформление. Издательство Алтайского государственного университета, 2021

Введение

Задачи фильтрации в пористых средах имеют практическое значение для исследований, связанных с прогнозом распространения загрязнений, фильтрацией вблизи речных плотин, водохранилищ и других гидротехнических сооружений, дренажом фундаментов и подвалов зданий, ирригацией и дренажом сельскохозяйственных полей, водоснабжением и нефтегазодобычей, движением магмы в земной коре и т.д. В этих процессах важную роль играет пористость среды (доля пор в единице объема). Характер пористости обуславливается физическими и физико – химическими процессами, протекающими в почве: растрескиванием её под действием увлажнениявысыхания, нагрева-охлаждения, набухания - сжатия; передвижением жидкой фазой, выщелачиванием и выносом различных химических соединений в нижележащие гори-ЗОНТЫ.

Процессы улавливания и захоронения углекислого газа в земной коре так же являются процессами фильтрации газа в пористых средах. В настоящее время в связи с большими выбросами CO_2 , становится очень актуальной проблема эффективного хранения углекислого газа в геологических формациях.

Концентрация диоксида углерода (CO_2) в атмосфере продолжает увеличиваться, что оказывает непосредственное влияние на земной климат. По имеющимся оцен-

кам, деятельность человека стала причиной роста средней температуры на Земле на 1°С выше доиндустриальных уровней. При нынешнем объеме антропогенных выбросов углекислого газа к середине XXI века средняя температура на земле поднимется уже примерно на 1,5°С выше доиндустриальных уровней. Одним из способов предотвращения достижения этой отметки является снижение выбросов CO_2 вместе с использованием методов удаления двуокиси углерода.

Среди методов удаления углекислого газа выделяются: облесение и лесовозобновление, восстановление земель и секвестрация почвенного углерода, использование биоэнергии с улавливанием и хранением двуокиси углерода, прямое улавливание двуокиси углерода из воздуха и ее хранение, более эффективное выведение и подщелачивание океана. Все эти методы находятся на разных стадиях исследования и разработки, однако, ни один из них еще не добрался до масштабной реализации.

Одним из наиболее активно исследуемых и обсуждаемых способов является прямое улавливание CO_2 из воздуха и ее хранение. Этот метод состоит из двух этапов: сбор CO_2 из воздуха и его последующее хранение. Сбор углекислого газа может осуществляться с использованием твердого (amine-functionalized filter, ion-exchange sorbent и др.) или жидкого (раствор гидроксида калия, гидроксид кальция и др.) сорбента [1, 2]. Хранение же предполагает либо повторное промышленное использование собранного CO_2 , либо его перманентное захоронение в геологических формациях [1].

Геологическая секвестрация – необходимый компонент улавливания углекислого газа. После того, как углекислый газ был собран, он сжимается в сверхкритическую жидкость, а затем закачивается в геологическую формацию, настолько глубоко, чтобы он оставался в сверхкри-

4

тическом состоянии (обычно 1 км или более). Подходящие для захоронения геологические формации должны состоять из пористой проницаемой породы, перекрытой сверху непроницаемой породой. Так как сверхкритический СО₂ обладает меньшей плотностью, чем жидкости, изначально заполняющие поры в породе, он будет подниматься сквозь породу резервуара под действием силы выталкивания до тех пор, пока не встретит породу с низкой проницаемостью. Запечатанный углекислый газ считается перманентно секвестрированным, если в низкопроницаемом слое не найдется проницаемая брешь. Надежность захоронения может быть улучшена использованием методов вторичного задержания СО₂ таких как: растворение двуокиси углерода в соляном растворе, иммобилизация капиллярными силами в стадию после закачки и минерализация через геохимическое взаимодействие CO_2 , солевого раствора и породы [3].

На данный момент метод улавливания и хранения углекислого газа находится на стадии коммерциализации такими компаниями как Climeworks (Цюрих, Швейцария), Global Thermostat (Нью – Йорк, США), Skytree (Амстердам, Нидерланды) и др. Самым масштабным проектом на 2021 год является завод Orca, построенный компанией Climeworks совместно с Carbfix (Рейкьявик, Исландия) на территории геотермальной станции Хедлисхейди в Исландии. Это крупнейшая в мире станция по откачке углекислого газа из воздуха и его захоронению, способная захватывать около 4000 тонн СО₂ в год. Процесс работы прост: воздух вентилятором закачивается в коллектор, где углекислый газ захватывается высокоселективным фильтрующим материалом (amine-functionalized filter) и остается в коллекторе. После заполнения фильтра СО₂ коллектор закрывается, и температура внутри поднимается до 80-100°С, благодаря чему чистый и концентрированный углекислый газ высвобождается из фильтра и собирается. Затем он смешивается с водой и закачивается глубоко под землю в ближайшую базальтовую породу, где в процессе естественной минерализации (занимает около 2 лет) при реакции с базальтом превращается в твердые минералы. У метода достаточно спорных сторон. Например, одной из проблем является необходимость использования энергии, полученной из «чистых» источников (без выпуска CO_2 в атмосферу), например, солнечными электростанциями, ГеоТЭС или АЭС. В противном случае такая станция будет низкоэффективной, и её использование для улавливания диоксида углерода будет нецелесообразно. Еще одной проблемой можно считать соотношение цены эксплуатации и объема собираемого из воздуха CO_2 .

Глава 1

Математические модели

1 Моделирование переноса наночастиц в многофазных потоках в пористых средах: секвестрация *CO*₂

Под секвестрацией CO_2 понимается процесс захвата CO_2 из источника выбросов, транспортировка и долгосрочное захоронение в геологических формациях.

В работе [4] представлена математическая модель для описания переноса наночастиц, закачиваемым CO_2 в пористую среду. В модели учитывается плавучесть, капиллярные силы, а также броуновская диффузия. Используется схема IMplicit Pressure Explicit Saturation-Concentration (IMPESC). Разработан численный симулятор для моделирования переноса наночастиц в хранилищах CO_2 .

Геологическое хранение антропогенных выбросов CO_2 в глубоких соленых водоносных горизонтах в последнее время привлекает огромное внимание в научной литературе. Шлейф нагнетаемого CO_2 плавно накапливается в верхней части глубокого водоносного горизонта под герметизирующей покрывающей породой, и есть опасения, что CO_2 под высоким давлением может пробить герметичную породу. Однако СО₂ будет диффундировать в рассол внизу и образовывать немного более плотную жидкость, которая может вызвать нестабильность и конвективное перемешивание. Время наступления нестабильности и характеристики конвективного перемешивания зависят от физических свойств породы и флюидов, таких как проницаемость и разность плотностей. Новая идея заключается в добавлении наночастиц к закачиваемому СО2 для увеличения контраста плотности между насыщенным СО₂ рассолом и находящимся ниже резидентным рассолом и, как следствие, уменьшения времени возникновения нестабильности и увеличения конвективного перемешивания. На самом деле, лишь несколько работ посвящены вопросам, связанным с аспектами математического и численного моделирования явлений переноса наночастиц в хранилищах CO_2 .

В [4] разработана математическая модель для описания переноса наночастиц, двухфазным потоком в пористой среде. Рассмотрим двухфазный поток несмешивающихся несжимаемых жидкостей в неоднородной области пористой среды, описываемый уравнениями сохранения массы для каждой фазы и законом Дарси следующим образом

$$\frac{\partial(\phi\rho_{\alpha}S_{\alpha})}{\partial t} = -\nabla \cdot (\rho_{\alpha}u_{\alpha}), \quad \alpha = w, g, \qquad (1.1)$$

$$u_{\alpha} = \frac{Kk_{r\alpha}}{\mu_{\alpha}} (\nabla p_{\alpha} - \rho_{\alpha} g \nabla z), \quad \alpha = w, g, \qquad (1.2)$$

где S_{α} – насыщенность, u_{α} [м/с] – скорость фазы α , w обозначает смачивающую фазу, g – несмачивающую фазу, ϕ – пористость среды, $\nabla = (\partial/\partial x, \partial/\partial z)$ – оператор градиента; K [м²] – абсолютная проницаемость $k_{r\alpha}$ [безразмерный] – относительная проницаемость, ρ_{α} [кг/м³] –

плотность, p_{α} [Па] – давление фазы α , g = (0, -g) – ускорение свободного падения, μ_{α} – вязкость, k_{α} – эффективная проницаемость. Флюидонасыщенность для двухфазного потока смачивающего (w) и несмачивающего газа (g) должны удовлетворять равенству:

$$S_w + S_g = 1.$$

Относительные проницаемости рассматриваются как функция несмачивающего насыщения:

$$k_{r\alpha} = k_{r\alpha}(S_g), \quad \alpha = w, g.$$

Распространенные формулы для относительной проницаемости – Corey, Naar–Henderson и van Genuchten (см. [5, 6, 7]). Наиболее подходящая формула для системы вода–газ дает формула Brook-Corey [8, 9], а именно:

$$k_{rw}(S) = (1 - S_{eg})^{(2+3a)/a},$$

$$k_{rg}(S) = S_{eg}^2 [1 - (1 - S_{eg})^{(2+a)/a}].$$

Здесь a – безразмерный параметр, характеризующий распределение пор по размерам, диапазон его значений варьируется от небольшого значения для гетерогенного материала (a = 0.2) до a = 3.0 для однородного материала [5]; S_{eg} – нормированное насыщение несмачивающей фазы, определяемое формулой

$$S_{eg} = \frac{S_g - S_{rg}}{1 - S_{rg} - S_{rw}},$$

где S_{rg} – остаточное насыщение несмачивающей фазы, а S_{rw} – остаточное насыщение смачивающей фазы. Для капиллярного давления используется формула из работы [7]:

$$p_c(S_{eg}) = p_g - p_w = p_c^0 (1 - S_{eg} + b_c)^{-m_c},$$
 (1.3)

где p_c^0 – входное капиллярное давление (давление вытеснения), b_c и m_c – постоянные (берутся равными 10^{-4} и 3 соответственно). Поскольку сжимаемость закачиваемого сверхкритического CO_2 может быть небольшой, газ можно рассматривать как несжимаемую жидкость. Определим общую скорость

$$u_t = u_g + u_w.$$

Суммируя уравнения неразрывности фаз, получаем,

$$\nabla \cdot u_t = 0. \tag{1.4}$$

Добавляя определяющие уравнения для каждой фазы в уравнение (1.2) и подставляя затем в уравнение (1.3), получаем,

$$u_t = -K(\lambda_g + \lambda_w)\nabla p_g + K(\lambda_g\rho_g + \lambda_w\rho_w)g\nabla z + \lambda_wK\nabla p_c.$$
(1.5)

Представим дробный поток как, $f_{\alpha} = \lambda_{\alpha}/\lambda_t$, а мобильность, $\lambda_{\alpha} = k_{r\alpha}/\mu_{\alpha}$. Чтобы вывести уравнение для давления газа, подставим (1.5) в уравнение (1.4). Получим,

$$\nabla \cdot (-\lambda_t K \nabla p_g + (\lambda_g \rho_g + \lambda_w \rho_w) K g \nabla z + \lambda_w K \nabla p_c) = 0,$$

ИЛИ

$$\nabla \cdot (K\lambda_t [-\nabla p_g + (f_g \rho_g + f_w \rho_w)g\nabla z] + f_w K\nabla p_c) = 0, \ (1.6)$$

где $\lambda_t = \lambda_w + \lambda_g$. Однако в данном исследовании предполагается, что эта временная скорость объемной деформации пренебрежимо мала. Таким образом, последний член уравнения (1.6) исчезает. Подставляя определяющее уравнение для несмачивающей фазы в уравнение (1.2), уравнение (1.1) дает

$$\phi rac{\partial S_g}{\partial t} +
abla \cdot u_g = 0,$$

где скорость несмачивания (газа) определяется следующим образом:

$$u_g = f_g u_t - f_g \lambda_w (\rho_w - \rho_g) K g \nabla z - f_g \lambda_w K \nabla p_c.$$

Граница области течения состоит из двух частей $\partial \Omega = \Gamma_D \bigcup \Gamma_N$. На Γ_D задается условие Дирихле, а на Γ_N – условие Неймана. Здесь граничное условие Неймана используется только при задании нормальной скорости на входе, а также при отсутствия потока, в противном случае это границы Дирихле. Граничные условия, рассматриваемые в [4], можно кратко изложить следующим образом (см. рис. 1.1):

Рисунок 1.1: Область течения

$$p_n = p^D$$
на Γ_D ,

 $u_t \cdot n = u^N$ при инъекции, $u_t \cdot n = 0$ по нижней и верхней границам,

$$S_n = \begin{cases} 1 & \text{on } \Gamma_N, \\ 0 & \text{on } \Gamma_D. \end{cases}$$

В [10] сообщается, что есть два типа наночастиц поликремния (PN), которые можно использовать на нефтяных месторождениях для повышения нефтеотдачи и увеличения закачки воды, соответственно. Наночастицы поликремния классифицируются на основе смачиваемости поверхности PN. Первый тип называется липофобными и гидрофильными наночастицами поликремния (LHPN) и существует только в водной фазе, а второй тип называется гидрофобными и липофильными наночастицами поликремния (HLPN) и существует только в масляной фазе. Размеры PN находятся в диапазоне от 10 до 500 нм, поэтому рассматривается броуновская диффузия. Предполагается, что есть интервал размера т наночастиц в водной фазе. Уравнение переноса для каждого интервала размеров і наночастиц в фазе вода / масло можно записать в виде

$$\frac{\partial \phi S_{\alpha} C_{i,\alpha}}{\partial t} + \mathbf{u} \cdot \nabla C_{i,\alpha} = \nabla \cdot (\phi S_{\alpha} D_{i,\alpha} \nabla C_{i,\alpha}) + R_{i,\alpha} + Q_{i,\alpha},$$

где $i = 1, 2, \ldots, m$; $C_{i,\alpha}$ – объемные концентрации наночастиц в интервале размеров i в фазе α ; $D_{i,\alpha}$ – коэффициенты дисперсии наночастиц в интервале размеров i в фазе α ; $Q_{i,\alpha}$ – скорость изменения объема частицы, принадлежащей источнику / стоку; $R_{i,\alpha}$ – чистая скорость

потери наночастиц в интервале размеров i в фазе α . Чистая скорость потери наночастиц может быть записана [10, 11, 12, 13, 14] следующим образом

$$R_{i,lpha} = rac{\partial (\delta \phi)_{i,lpha}}{\partial t},$$

где $(\delta \phi)_{i,\alpha} = v_{i,\alpha} + v_{i,\alpha}^*$ – изменение пористости из-за высвобождения или удержания наночастиц интервала *i* в фазе α ; $v_{i,\alpha}$ – объем наночастиц интервала размера *i* в контакта с фазой α имеющейся на поверхности пор на единицу объемного объема пористой среды; $v_{i,\alpha}^*$ – объем наночастиц интервала размера *i*, захваченных в поровых каналах из фазы α на единицу объема пористой среды из-за закупоривания. Кроме того, $v_{i,\alpha}$ и $v_{i,\alpha}^*$ могут быть определены в терминах массы частиц на единицу объема жидкости, отложенных в телах пор $\sigma_{i,\alpha}$ и поровых каналов $\sigma_{i,\alpha}^*$ пористой среды, следующим образом,

$$v_{i,lpha}=\sigma_{i,lpha}/
ho_b, \quad v^*_{i,lpha}=\sigma^*_{i,lpha}/
ho_b,$$

где ρ_b – плотность суспензии твердых частиц.

При критической скорости поверхностного осаждения происходит только удерживание частиц, а выше удержание и увлечение наночастиц происходит одновременно (Gruesbeck and Collins [15]). Модифицированная модель Gruesbeck и Collins для поверхностного осаждения выражается формулой [10],

$$\frac{\partial v_{i,\alpha}}{\partial t} = \begin{cases} \gamma_{d,i,\alpha} u_{\alpha} C_{i,\alpha}, & \text{когда} \quad u_{\alpha} \leq u_{\alpha c}, \\ \gamma_{d,i,\alpha} u_{\alpha} C_{i,\alpha} - \gamma_{e,i,\alpha} v_{i,\alpha} (u_{\alpha} - u_{\alpha c}), & \text{когдa} \quad u_{\alpha} > u_{\alpha c}; \end{cases}$$

где $\gamma_{d,i,\alpha}$ – коэффициенты скорости поверхностного удерживания наночастиц в интервале *i* в фазе α ; $\gamma_{e,i,\alpha}$ – коэффициенты скорости уноса наночастиц в интервале *i* в фазе α ; $u_{\alpha c}$ - критическая скорость фазы α . Точно так же скорость захвата наночастиц в интервалеiв фазе α определяется уравнением

$$\frac{\partial v_{i,\alpha}^*}{\partial t} = \gamma_{pt,i,\alpha} u_{\alpha} C_{i,\alpha},$$

где $\gamma_{pt,i,\alpha}$ – константа блокировки порового канала.

Пористость может измениться из–за осаждения наночастиц на поверхности пор или блокирования каналов пор. Вариация пористости может быть определена формулой [10, 12]

$$\phi = \phi_0 - \sum_{i,lpha} (\delta \phi)_{i,lpha},$$

где ϕ_0 – начальная пористость. Кроме того, изменение проницаемости из-за осаждения наночастиц на поверхности пор или блокировки каналов пор может быть выражено формулой [11],

$$K = K_0 [(1 - f)k_f + f\phi/\phi_0]^l,$$

где K_0 – начальная проницаемость, k_f – константа для просачивания жидкости, допускаемой закупоренными порами. Коэффициент эффективности потока, выражающий долю незаполненных пор, доступных для потока, определяется выражением

$$f = 1 - \sum_{i} \gamma_{f,i} \left(\sum_{\alpha} v_{i,\alpha}^* \right),$$

где $\gamma_{f,i}$ – коэффициент эффективности потока для частицi.

Значение показателя *l* находится в диапазоне от 2.5 до 3.5. В процессе переноса наночастиц потоком жидкости в пористой среде, может происходить отложение частиц на поверхности пор и закупорка поровых каналов. Удерживаемые частицы на поверхностях пор могут десорбироваться под действием гидродинамических сил, а затем, возможно, адсорбироваться на других участках пор или захватываться в других поровых каналах.

Относительная проницаемость может изменяться изза удержания наночастиц в пористой среде. Чтобы определить изменение относительной проницаемости, вызванное наночастицами, сначала определим следующие величины. Площадь песчаного керна может быть рассчитана с помощью следующего эмпирического уравнения [16]

$$a_{sp} = 7000\phi\sqrt{rac{\phi}{K}}.$$

С другой стороны, важно определить общую площадь поверхности в контакте с жидкостями для всех интервалов размеров наночастиц на единицу объема следующим образом [10, 11]

$$a_{tot} = 6eta \sum_{i,lpha} (\delta \phi)_{i,lpha}/d_i,$$

где d_i – диаметр интервала частиц *i*. Когда $a_{tot} \geq a_{sp}$ общие поверхности на единицу объема пористой среды полностью покрыты наночастицами, адсорбированными на поверхностях пор или захваченными в поровых каналах, в то время как, если $a_{tot} < a_{sp}$, поверхности на единицу объемного объема пористой среды частично покрыты наночастицами. Следовательно, относительные проницаемости водной и газовой фаз можно выразить как линейную функцию от поверхности, покрытой наночастицами, то есть $0 < a_{tot} < a_{sp}$. Таким образом имеем

$$k_{r\alpha,p} = k_{r\alpha} + \frac{a_{tot}}{a_{sp}} (k_{r\alpha,c} - k_{r\alpha}), \qquad (1.7)$$

где $k_{r\alpha,c}$ – относительные проницаемости водной/газовой фазы, когда поверхности единицы объема пористой среды полностью заняты наночастицами. В работе [10] отмечено, что эффективная проницаемость $k_{ew} = Kk_{rw,c}$ воды после обработки наночастицами улучшается в 1.627 – 2.136 раза по сравнению с эффективной проницаемостью до обработки наночастицами. Однако абсолютная проницаемость снижается примерно на 10 %. Итак, можно написать $k_{rw,c} = \theta_w k_{rw}$ такое, что θ_w – константа изменения относительной проницаемости из-за суспендирования наночастиц в водной фазе. Таким образом, уравнение (1.7) примет следующий вид:

$$k_{rw,p} = [1 + r_a(\theta_w - 1)]k_{rw},$$

где $r_a = a_{tot}/a_{sp}$. Аналогично для газовой фазы можно написать:

$$k_{rg,p} = [1 + r_a(\theta_g - 1)]k_{rg},$$

где θ_g – константа изменения относительной проницаемости из-за суспендирования наночастиц в газовой фазе.

2 Геологическое связывание *CO*2 в водоносном пласте в условиях гидратообразования

Повышенная концентрация углекислого газа в атмосферном воздухе является серьезной экологической проблемой и требует немедленного вмешательства для смягчения последствий. В этом отношении новую идею связывания CO_2 в геологических условиях стоит изучить с количественной точки зрения. В настоящем исследовании рассматривается численное моделирование процесса закачки СО₂ в пористый пласт. Выбранный пласт представляет подходящие термодинамические условия для образования гидрата CO_2 . Нестационарное моделирование проводится в одномерном случае в изотермических и неизотермических рамках. Также сообщается о дополнительном моделировании закачки СО₂ в истощенный резервуар гидрата метана. В настоящем исследовании реакция коллектора на хранение CO_2 анализируется по четырем параметрам – пористости коллектора, начальной водонасыщенности, температуре коллектора и давлению закачки. Представляют интерес модели образования гидратов и кумулятивная секвестрация массы СО₂ в пласте как функция времени. Численные эксперименты показывают, что начальная водонасыщенность является важным параметром, поскольку она влияет как на миграцию газа CO_2 , так и на образование гидратов. Изотермическое моделирование дает результаты, аналогичные неизотермической модели, что позволяет предположить, что изотермический подход может быть принят для будущих исследований закачки СО₂. Скорость образования гидратов CO_2 около нагнетательной скважины оказывается на порядок выше, чем внутри, но ее величина довольно мала по сравнению с водонасыщенностью и газонасыщенностью. Более высокое давление закачки приводит к непрерывному увеличению закачиваемой массы CO_2 , в первую очередь из-за увеличения плотности газа, хотя также наблюдается увеличение образования гидратов вблизи нагнетательной скважины. Более низкая пластовая температура способствует большему образованию гидратов из закачиваемой массы СО₂ и, безусловно, необходима.

Физические процессы, связанные с секвестрацией CO_2 в гидратном резервуаре, сложны, поскольку включают явления, существенно отличающиеся друг от друга с точки зрения продолжительности и временных масштабов.

Некоторые из них происходят в поровом пространстве на границе раздела жидкость-газ, включая растворение - дегазацию СО₂ из воды и испарение - конденсацию воды. Эти процессы происходят в небольших масштабах, но происходят быстро и в небольших временных масштабах. Образование гидратов, которое происходит на границе раздела гидрат-газ или гидрат-вода, также происходит в объеме пор, но медленнее, чем эти два процесса. Влияние кривизны границы раздела газ-вода на уравнение импульса фиксируется путем обработки капиллярного давления. Процессы, которые происходят в масштабе коллектора – это миграция жидких фаз в пористой среде и перенос тепловой энергии посредством адвекции и диффузии. Те процессы, которые происходят в масштабе коллектора, имеют более длительный временной масштаб по сравнению с масштабом пор, за исключением реакции образования гидрата. С точки зрения моделирования сложно учесть все сложности, возникающие из иерархии продолжительности и временных масштабов, поскольку это может привести к чрезмерным вычислительным затратам. В настоящем исследовании явления короткого временного масштаба рассматриваются как мгновенные, а мелкие масштабы длины, возникающие на границе раздела жидкости и газа, моделируются феноменологически. Ниже представлен упрощенный подход к моделированию, который подходит для долгосрочной закачки CO_2 в резервуар месторождения.

В настоящей работе рассматривается нестационарная неизотермическая многофазная модель для моделирования закачки и секвестрации CO_2 в пористой среде, содержащей гидраты. Математическая модель учитывает три фазы - газообразную, водную и CO_2 -гидратную; и три компонента, а именно вода, CO_2 и CO_2 -гидрат. Первые две фазы, вода и CO_2 , подвижны, в то время как гидратная фаза неподвижна. Считается, что три фазы находятся в локальном тепловом равновесии друг с другом вместе с твердой матрицей пористой среды. Растворимость газообразного CO_2 в водной фазе и присутствие водяного пара в газовой фазе могут быть легко учтены в модели, но не обсуждаются.

Один моль CO_2 объединяется с N_h молями H_2O с образованием одного моля CO_2 – гидрата, как указано уравнением

$$CO_2 + N_h H_2 O \Leftrightarrow CO_2 \cdot N_h H_2 O,$$
 (2.1)

где N_h – число гидратации, которое определяет количество молекул H_2O , прикрепленных к одной молекуле CO_2 . В неизотермических, многофазных и многокомпонентных системах легче иметь дело с формулировкой баланса массы компонентов, чем с балансом фаз. Уравнения (2.2) - (2.4) взяты из [17] и представляют собой уравнения баланса массы для компонентов массы гидрата CO_2 , воды и CO_2 с исходными членами, возникающими в результате реакции гидрата (уравнение (2.1)):

$$\frac{(\partial \phi \rho_h S_h)}{\partial t} = \dot{m_h}, \qquad (2.2)$$

$$\frac{(\partial\phi\rho_1 S_1)}{\partial t} + \frac{\partial}{\partial x}(\rho_1 V_1) = \dot{m_1}, \qquad (2.3)$$

$$\frac{(\partial \phi \rho_g S_g)}{\partial t} + \frac{\partial}{\partial x} (\rho_g V_g) = \dot{m_g}.$$
 (2.4)

Величина \dot{m}_h в уравнении (2.2) представляет собой локальную массовую скорость образования гидрата на единицу объема в реакции образования гидрата, определяемую уравнением (2.1). Величины \dot{m}_1 и \dot{m}_g в уравнениях (2.3) – (2.4) представляют локальный массовый расход воды и газа, произведенных на единицу объема, соответственно; S_h, S_1, S_g – насыщенность гидрата, водной и газообразной фаз; V_1, V_g – объем воды и газа; $\rho_{\gamma}, \gamma = h, 1, w$ – плотности гидрата, воды и газа соответственно. Как и в потоках пористой среды, скорость пор считается небольшой ($Re_{dp} \ll 1$, где индекс dp - диаметр поры), так что преобладает вязкий поток. В этой ситуации закон Дарси справедлив, хотя теоретически его можно вывести из уравнений Навье – Стокса. Закон Дарси в ненасыщенной среде для фазы γ определяется уравнением [17]:

$$V_{\gamma} = -\frac{K_{abs}k_{r\gamma}}{\mu_{\gamma}}\frac{\partial}{\partial x}P_{\gamma},$$

где $V_{\gamma}, k_{r\gamma}, \mu_{\gamma}, P_{\gamma}, \rho_{\gamma}, -$ скорость, относительная проницаемость, динамическая вязкость, давление и плотность для фазы γ соответственно. Влияние границы раздела фаз на подвижность флюида характеризуется функцией относительной проницаемости $k_{r\gamma}$. Когда явления локального энергообмена в масштабе пор происходят намного быстрее, чем в масштабе коллектора, локальное тепловое равновесие является допустимым приближением, и для определения переноса энергии достаточно одного уравнения энергии. Уравнение энергии в терминах локальной средней по фазе температуры задается уравнением [17, 18]

$$\frac{\partial}{\partial t} \left(\phi \sum_{\gamma} \rho_{\gamma} S_{\gamma} U_{\gamma} + (1 - \phi) \rho_s U_s \right) + \sum_{\gamma=1,g} \left(\sum_{i=c,w} \nabla \cdot \rho_{\gamma} V_{\gamma} \omega_{\gamma}^i H_{\gamma}^i \right) = \nabla \cdot (\lambda_{eff} \nabla T) + \dot{m}_h \Delta H_h^f + \dot{E}.$$
(2.5)

гдеU– внутренняя энергия твердой матрицы, ω^i_γ – мас-

совая доля фазы γ , H_{γ}^{i} – энтальпия, T – температура, \dot{E} – энергия активации, ΔH_{h}^{f} – энтальпия образования гидрата. Явление коэффициента Джоуля-Томсона и связанное с этим понижение температуры важно, когда распирение CO_{2} происходит в свободном пространстве. Однако его влияние на изменения температуры невелико, когда расширение происходит в пористой среде при умеренных градиентах давления [19, 20]. Проведенный авторами анализ по порядку величин показал, что максимальное снижение температуры составляет 0.03 К вблизи нагнетательной скважины в течение короткого времени и незначительно в других местах.

Таким образом, физический процесс закачки CO_2 в пористую среду, изначально заполненную газообразным CO_2 и водой, регулируется четырьмя дифференциальными уравнениями в частных производных, возникающими из баланса массы и энергии. Уравнение реакции гидрата (уравнение (2.5)) предполагается более медленным, чем другие процессы в масштабе пор. Четыре основных уравнения содержат несколько параметров, которые необходимо задать априори.

Схематическое изображение физического резервуара, рассматриваемого для изучения связывания CO_2 , показано на рисунке 2.1. Это геологические отложения толщиной 10 м, распространенные горизонтально и ограниченные водонепроницаемым слоем сверху и снизу. Численное исследование проводится на водохранилище длиной 500 м. Поскольку толщина мала по сравнению с длиной, для анализа была принята одномерная модель. Обмены энергией с верхним и нижним непроницаемыми слоями моделируются как элементы стока энергии в одномерной структуре. Левая часть области (x = 0) – это нагнетательная скважина, а крайний правый конец (x = 500 м) изолирован.

Рисунок 2.1: Схематическое изображение резервуара гидрата, рассматриваемого в настоящем моделировании, с соблюдением граничных условий.

3 Модель процесса захоронения углекислого газа в гидратонасыщенном пласте

В работе [21] рассматривается математическое моделирование процесса нагнетания углекислого газа в пласт, заполненный в исходном состоянии метаном и его гидратом. На основе методов механики многофазных систем приведена система уравнений, описывающая для данного случая процессы тепло- и массопереноса в пористой среде. Представлена оценка условий, при которых можно пренебречь кинетическим механизмом формирования газового гидрата и диффузионным перемешиванием углекислого газа и метана.

В настоящее время при эксплуатации большого числа промышленных установок и транспортных средств происходит выброс диоксида углерода в значительных объемах. Это обстоятельство может способствовать катастрофическим изменениям климата, что на сегодняшний день является одной из наиболее глобальных экологических проблем. Рядом исследователей в качестве решения проблемы снижения концентрации углекислого газа в атмосфере предлагается захоронение CO_2 в подземных коллекторах [22, 23]. Причем закачка диоксида углерода в пласт, в исходном состоянии насыщенный гидратом метана, позволила бы заодно и добывать природный газ при достаточно низких энергетических затратах на извлечение этого углеводородного сырья [24, 25, 26, 27, 28]. Данный метод добычи метана основан на том, что гидрат CO_2 является более стабильным, чем гидрат CH_4 , поэтому двуокись углерода может замещать метан в его гидрате. Исследования показали, что при протекании процесса замещения $CO_2 - CH_4$ не высвобождается вода и данная реакция происходит в условиях стабильного существования гидрата метана [24, 25, 27].

При теоретическом изучении особенностей процесса захоронения углекислого газа в гидратонасыщенном пласте возникает необходимость в построении адекватной математической модели, т.к. любые технологические идеи должны быть подкреплены соответствующими расчетами. Математические модели формирования газовых гидратов в пористых средах при нагнетании газа сформулированы, в частности, в работах авторов [29, 30, 31, 32], в которых изучается процесс закачки метана в пласт, в исходном состоянии содержащий тот же газ и его гидрат. Теоретическое моделирование процесса инжекции углекислого газа в пласт, насыщенный метаном и водой, представлено в статье [24].

Примем следующие допущения. Гидраты CO_2 и CH_4 являются двухкомпонентными системами с соответствующими массовыми концентрациями $G_{(1)}$ и $G_{(2)}$. Процесс однотемпературный, т.е. температуры пористой среды и насыщающего вещества совпадают. Скелет пористой среды и газовый гидрат несжимаемы и неподвижны, пористость m постоянна.

Система основных уравнений, описывающая процессы фильтрации и теплопереноса в пористой среде для данной задачи, включает в себя уравнения сохранения масс, линейный закон Дарси и уравнение сохранения энергии. С учетом принятых допущений данные уравнения можно записать в виде [31, 32, 33, 34]:

$$\frac{\partial}{\partial t}(\rho_{g(i)}\phi S_{g(i)} + G_i\rho_{h(i)}\phi S_{h(i)}) + div(\rho_{g(i)}\phi S_{g(i)}\vec{v}_{g(i)}) = 0,$$
(3.1)

$$\phi S_{g(i)} \vec{v}_{g(i)} = -\frac{k_{g(i)}}{\mu_{g(i)}} \bigtriangledown p, \qquad (3.2)$$

$$\rho_c \frac{\partial T}{\partial t} + \phi c_{g(i)} S_{g(i)} \vec{v}_{g(i)} \rho_{g(i)} \bigtriangledown T = div(\lambda \bigtriangledown T) + div(\lambda \bigtriangledown T)$$

$$+\frac{\partial}{\partial t}(\rho_{h(i)}L_{h(i)}\phi S_{h(i)})+\phi S_{g(i)}\rho_{g(i)}c_{g(i)}\left(\eta_{(i)}\frac{\partial p}{\partial t}-\vec{v}_{g(i)}\varepsilon_{(i)}\bigtriangledown p\right),$$
(3.3)

$$\rho c = (1 - \phi) \rho_{sk} c_{sk} + \phi \sum_{j=g,h} \rho_{j(i)} S_{j(i)} c_{j(i)},$$

$$\lambda = (1 - \phi)\lambda_{sk} + \phi \sum_{j=g,h} S_{j(i)}\lambda_{j(i)}$$

Здесь и далее нижние индексы sk, h и g относятся к параметрам скелета, гидрата и газа соответственно, нижние индексы в скобках 1 и 2 соответствуют CO_2 и CH_4 ; p — давление; T — температура; ρ_j , c_j и λ_j (j = sk; h; g) — истинная плотность, удельная теплоемкость и коэффициент теплопроводности j-й фазы; S_j (j = g; h) — насыщенность пор j-й фазой; \vec{v}_g , k_g и μ_g — скорость, проницаемость и динамическая вязкость газовой фазы; L_h — удельная теплота образования гидрата; ε — коэффициент Джоуля-Томсона (дифференциальный коэффициент дросселирования); η — коэффициент адиабатического охлаждения.

В рассматриваемой задаче диапазон изменения давления и температуры сравнительно небольшой, поэтому в уравнении (3.3) можно пренебречь слагаемыми, связанными с баротермическим эффектом [34, 35].

Характерные времена релаксации диффузионной неравновесности можно оценить как:

 $t_r \approx d^2/D_h,$

где D_h — коэффициент диффузии газа в гидрате, d — характерные толщины пленки гидрата (равные примерно размерам пор).

Характерные размеры пор можно записать как

$$d^2 \approx k\phi,$$

где *k* — коэффициент проницаемости пласта.

Тогда для оценки времени t_r получим

$$t_r \approx k\phi/D_h.$$

Характерные времена достижения фронта вытеснения правой границы пласта оценим следующим образом

$$t_f \approx l^2 / X,$$

где X и l-коэффициент пьезопроводности и длина пласта.

Коэффициент пьезопроводности пласта равен

$$X = \frac{kp}{\mu\phi},$$

где $\mu-$ средняя вязкость газовой фазы. Тогда для оценки времен
и t_f получим

$$t_f \approx \frac{l^2 \mu \phi}{kp}.$$

Кинетикой процесса можно пренебречь, если $t_r \ll t_f.$ Тогда

$$\frac{k\phi}{D_h} \ll \frac{l^2\mu\phi}{kp} \Rightarrow k \ll \sqrt{\frac{l^2\mu D_h}{p}}$$

Положим, что пласт имеет достаточно большую протяженность, например, l = 330 м. Тогда для значений параметров p = 10 МПа, $\mu = 10^{-5}$ Па · с, $D_h = 10^{-13}$ м²/с имеем, что кинетикой можно пренебречь, если проницаемость пласта удовлетворяет условию

$$k \ll 10^{-10} \mathrm{m}^2.$$

Данное условие для большинства природных пластов выполняется. Поэтому характерное время кинетики процесса будет много меньше характерного времени процесса вытеснения (при указанной протяженности пласта). Тогда в протяженных природных пластах кинетикой процесса, связанной с диффузией в гидратных пленках на уровне отдельных пор, можно пренебречь.

При нагнетании углекислого газа в метангидратосодержащий пласт скорость массопереноса, обусловленная фильтрацией, значительно превышает интенсивность массопереноса, связанную с диффузией. Также стоит отметить, что для принятых в задаче диапазоне давлений и температур вязкость углекислого газа примерно в полтора раза превышает вязкость метана. В этой связи можно считать устойчивым фронт вытеснения метана углекислым газом [24]. Оценим условия, при которых можно пренебречь диффузионным перемешиванием газов. Для этого, как уже было отмечено выше, скорость фильтрационного массопереноса должна в значительной мере превышать скорость диффузионного массопереноса.

Характерное расстояние, пройденное за некоторое вре-

мя t частицами газа при фильтрации, можно оценить как:

$$x_m \approx \sqrt{Xt} = \sqrt{\frac{kpt}{\mu\phi}}.$$

Характерное расстояние, пройденное частицами газа за это же время t за счет молекулярной диффузии, оценим следующим образом:

$$x_D \approx \sqrt{D_g \phi t},$$

где D_g — коэффициент диффузии углекислого газа в метане.

Тогда диффузионным перемешиванием газов можно пренебречь, если:

$$\sqrt{D_g \phi t} \ll \sqrt{rac{kpt}{\mu \phi}}$$
 или $k \gg D_g \phi^2 \mu/p.$

Для вышепринятых значений параметров, а также для $D_g = 10^{-5} \text{ м}^2/\text{c}$, m = 0,1 получаем, что диффузионным перемешиванием газов можно пренебречь, если проницаемость пласта удовлетворяет условию

$$k \gg 10^{-19} \text{m}^2.$$

Таким образом, предложенную схему процесса правомерно использовать в диапазоне изменения проницаемости

$$10^{-19} \mathrm{m}^2 \ll k \ll 10^{-10} \mathrm{m}^2,$$

что соответствует проницаемости большинства природных пластов.

Пусть пористый пласт постоянной толщины является строго горизонтальным и занимает полупространство x > 0. Положим, что кровля и подошва пласта непроницаемы. В этом случае можно положить, что при фильтрации флюида траектории всех частиц параллельны, а скорости фильтрации во всех точках любого поперечного сечения равны друг другу [34]. Тогда задачу можно рассматривать в плоскопараллельной постановке, а система уравнений (3.1) – (3.3) с учетом приведенных оценок перепишется в виде:

$$\frac{\partial}{\partial t}(\rho_{g(i)}\phi S_{g(i)}+G_{(i)}\rho_{h(i)}\phi S_{h(i)})+\frac{\partial}{\partial x}(\rho_{g(i)}\phi S_{g(i)}v_{g(i)})=0, (i=1,2), (i=$$

$$\phi S_{g(i)} v_{g(i)} = -\frac{k_{g(i)}}{\mu_{g(i)}} \frac{\partial p}{\partial x}, \qquad (3.4)$$
$$\rho_c \frac{\partial T}{\partial t} + \phi c_{g(i)} S_{g(i)} v_{g(i)} \rho_{g(i)} \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right).$$

Начальное и граничное условия запишем следующим образом:

$$t = 0, x > 0 : T = T_0, p = p_0,$$

$$S_{h(2)} = S_{h(2)0}, S_{g(2)} = 1 - S_{h(2)0},$$

$$t > 0, x = 0 : T = T_w, p = p_w.$$

Зависимость коэффициента фазовой проницаемости $k_{g(i)}$ от газонасыщенности $S_{g(i)}$ и абсолютной проницаемости пласта k можно задать на основе формулы Козени

$$k_{g(i)} = k S^3_{g(i)}$$
 (i = 1, 2).

Для газовой фазы примем уравнение Клапейрона

$$p = \rho_{g(i)} R_{g(i)} T$$
 (i = 1, 2),

где $R_{g(i)} = R^0_{(i)} z_{(i)}$ — газовая постоянная. Отклонение от совершенного газа можно учитывать с помощью коэффициентов сжимаемости $z_{(i)}$ (i=1,2), задавая их зависимости от давления и температуры. Проведенные оценки показывают, что изменения газовой постоянной $\Delta R_{g(i)}$ малы по сравнению с $R_{g(i)}$, поэтому положим, что $R_{g(i)} = \text{const.}$

На линии трехфазного равновесия «газ–вода–гидрат» значения температуры и давления связаны соотношением [36]

$$p = p_{s0} exp\left(\frac{T - T_0}{T_*}\right),$$

где p_{s0} — равновесное давление, соответствующее температуре T_0, T_* — эмпирический параметр, зависящий от вида газового гидрата.

С учетом приведенных оценок условия баланса массы углекислого газа и метана на границе между ближней и дальней областями имеют вид:

$$\phi S_{g(i)} \rho_{g(i)} \left(v_{g(i)} - \dot{x_s} \right) = \phi S_{h(i)} \rho_{h(i)} G_{(i)} \dot{x_s} \quad (i = 1, 2), \quad (3.5)$$

где \dot{x}_s — скорость движения границы фазовых переходов. Здесь и далее нижний индекс *s* относится к параметрам на границе между ближней и дальней зонами.

Температура и давление на границе между областями полагаются непрерывными:

$$p_s^- = p_s^+ = p_s, \ T_s^- = T_s^+ = T_s,$$

где знак «—» соответствует параметрам до фронта фазовых переходов, «+» — после.

На базе уравнений (3.5) и закона Дарси условия баланса массы и тепла на границе между ближней (верхний индекс nr) и дальней (верхний индекс fr) зонами можно записать в следующем виде:

$$-\frac{k_{g(1)}}{\phi\mu_{g(1)}}\frac{\partial p^{nr}}{\partial x} = \left(S_{g(1)} + \frac{\rho_{h(1)}}{\rho_{g(1)}}S_{h(1)}G_{(1)}\right)\dot{x}_{s}, -\frac{k_{g(2)}}{\phi\mu_{g(2)}}\frac{\partial p^{nr}}{\partial x} = \left(S_{g(2)} + \frac{\rho_{h(2)}}{\rho_{g(2)}}S_{h(2)}G_{(2)}\right)\dot{x}_{s}, S_{h(1)}\rho_{h(1)}(1 - G_{(1)})\dot{x}_{s} = S_{h(2)}\rho_{h(2)}(1 - G_{(2)})\dot{x}_{s}, \lambda^{nr}\frac{\partial T^{nr}}{\partial x} - \lambda^{fr}\frac{\partial T^{fr}}{\partial x} = \phi\left(S_{h(1)}\rho_{h(1)}L_{(1)} - S_{h(2)}\rho_{h(2)}L_{(2)}\right)\dot{x}_{s}.$$
(3.6)

Третье уравнение системы (3.6) представляет собой условие баланса массы воды, связанной в газовом гидрате.

На основе соотношений (3.6) можно найти координату фронта выте
снения x_s и значения давления p_s и температуры
 T_s на этой границе.

Гидратонасыщенность пласта в дальней области равна исходной, т.е. $S_{h(2)0}$. Тогда на основе условия баланса массы воды можно определить значение насыщенности гидратом ближней области:

$$S_{h(1)} = \frac{S_{h(2)0}\rho_{h(2)}(1 - G_{(2)})}{\rho_{h(1)}(1 - G_{(1)})}.$$

Получим дифференциальные уравнения для давления и температуры (уравнения пьезо- и температуропроводности). Для этого выразим плотность газа из уравнения Клайперона: $\rho_{g(i)} = p/R_{g(i)}T$ (i = 1; 2), и подставим в первое и третье уравнения системы (3.4). При этом учтем, что, если характерные перепады температуры ΔT в области фильтрации небольшие (например, при $\Delta T \ll T_0$), то в уравнении пьезопроводности, которое следует из уравнения неразрывности и уравнения Клапейрона, слагаемое за счет переменности температуры несущественно. Тогда систему уравнений (3.4) после преобразований можно представить следующим образом:

$$\frac{\partial}{\partial t}(p^j)^2 = X^j \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}(p^j)^2\right) \quad (j = nr, fr), \tag{3.7}$$

$$\frac{\partial T^{j}}{\partial t} = \chi^{j} \frac{\partial}{\partial x} \left(\frac{\partial T^{j}}{\partial x} \right) + \chi^{j} P e^{j} \frac{\partial T^{j}}{\partial x} \frac{\partial}{\partial x} (p^{j})^{2} \quad (j = nr, fr),$$
(3.8)

где

$$X^{nr} = \frac{k_{g(1)}p^{nr}}{\phi\mu_{g(1)}(1 - S_{h(1)})}, \quad X^{fr} = \frac{k_{g(2)}p^{fr}}{\phi\mu_{g(2)}(1 - S_{h(2)})},$$

$$Pe^{nr} = \frac{p_{g(1)} g_{(1)} g_{(1)}}{2\lambda^{nr} \mu_{g(1)} p^{nr}},$$
$$Pe^{fr} = \frac{\rho_{g(2)} c_{g(2)} k_{g(2)}}{2\lambda^{fr} \mu_{g(2)} p^{fr}}, \quad \chi^{j} = \frac{\lambda^{j}}{(\rho c)^{j}} \quad (j = nr, fr)$$

 $\rho_{a(1)} c_{a(1)} k_{a(1)}$

Система уравнений (3.7), (3.8) с учетом начального и граничного условий, а также заданных соотношений на границе между ближней и дальней областями, является замкнутой и позволяет определить в различные моменты времени распределения основных параметров по длине пласта для процесса нагнетания углекислого газа в пористую среду, насыщенную в исходном состоянии метаном и его гидратом.

4 Моделирование конвективного перемешивания при хранении *CO*₂

В работе [42] описывается двумерная численная модель, которая была разработана для изучения диффузионного и конвективного перемешивания при геологическом хранении CO_2 .

Если геологическое хранилище будет использоваться в больших масштабах, необходимо точное моделирование динамики закачанного CO_2 . В одной из форм геологического хранения CO_2 закачивается в водоносный горизонт, который имеет герметизирующую крышу. Диффузия CO_2 в нижележащие пластовые воды увеличивает плотность воды в верхней части водоносного горизонта, переводя систему в гидродинамически нестабильное состояние. Неустойчивости могут возникать из-за комбинации нестабильного профиля плотности и внутренних возмущений внутри системы, например неоднородности пласта. Эта нестабильность вызывает конвективное перемешивание и значительно ускоряет растворение CO_2 в водоносном горизонте.

В работе исследуется влияние различных параметров пласта. Результаты показывают, что есть две разные шкалы времени. Первый временной масштаб – это время начала нестабильности, а второй – время достижения окончательного растворения. В зависимости от числа Рэлея системы и неоднородности пласта, конвективное перемешивание может значительно ускорить растворение CO_2 в водоносном горизонте. Были изучены две задачи масштаба поля. В первом случае, основанном на водоносном горизонте Nisku, более 60 % окончательного растворения было достигнуто через 800 лет, в то время как расчетный масштаб времени растворения в том же водоносном горизонте в отсутствие конвекции был на несколько порядков больше. В случае водоносного горизонта глауконитового песчаника конвективная неустойчивость отсутствовала. Результаты показывают, что наличие и величина конвективной нестабильности должны играть важную роль при выборе водоносных горизонтов для хранения CO_2 .

Основные уравнения потока с плотностью в насыщенных пористых средах выводятся из законов сохранения массы и количества движения. Рассматривая двумерный гравитационный поток жидкости, результирующие уравнения из законов сохранения будут уравнениями потока жидкости и массопереноса. Определяющие уравнения представляют собой набор нелинейных уравнений в частных производных, связанных через зависимость вязкости и плотности от концентрации растворенного вещества

$$\nabla \cdot \vec{v^c} = 0,$$

$$ec{v^c} = -rac{k}{\mu} [
abla p -
ho g
abla z],$$
 $\phi rac{\partial C}{\partial t} =
abla \cdot [D
abla C - C ec{v^c}],$

где z – вертикальное расстояние и положительно вниз, $\vec{v^c}$ – однофазная скорость Дарси, k – проницаемость, C– концентрация вторгающегося компонента (например, CO_2), ρ – плотность смеси, μ – вязкость смеси, D – эффективный коэффициент молекулярной диффузии, p – давление, g – гравитационная постоянная, t – время, а ϕ – пористость. Проницаемость и пористость могут быть функциями пространства. Плотность и вязкость смеси зависят от концентрации.

Рассматриваются три варианта начально краевых задач, представленных на рис. 4.1 – 4.3.

Рисунок 4.1: Геометрия модели и граничные условия для задачи

Рисунок 4.2: Геометрия и граничные условия для механистического исследования

Рисунок 4.3: Геометрия модели и граничные условия для водоносного горизонта

5 Конвективное растворение диоксида углерода в закрытой пористой среде в условиях высокого давления реального газа

Использование растворимости – один из основных механизмов улавливания при геологическом хранении диоксида углерода (CO_2) , который является одним из многообещающих средств сокращения выбросов парниковых газов в атмосферу [38], [39]. После закачки СО₂ в глубокие геологические хранилища, например, в резервуары или солевые водоносные горизонты, он образует менее плотную фазу, богатую СО₂ и накапливающуюся в верхней части более плотного рассола и ниже покрывающей породы с низкой проницаемостью. В этой двухслойной конфигурации CO₂ растворяется в рассоле и образует диффузионный пограничный слой под границей раздела СО₂ – рассол. Поскольку полученный раствор более плотный, чем находящийся под ним рассол, конвекция может возникать под действием силы тяжести, когда диффузионный пограничный слой достаточно толстый [40], [41], [42], [43], [44]. Этот процесс может значительно увеличить объем растворения, уменьшить возможную утечку и способствовать безопасному долгосрочному хранению [45], [46].

Рассмотрим двумерную изотропную и однородную пористую среду, содержащую газ над водой (рис. 5.1). Мы пренебрегаем капиллярными силами, так что фазы с учетом плавучести разделены резкой границей раздела при $z_0^* = 0$ [47], [48]. В газовой фазе (т. е. $0 < z^* < H_g$) предполагается, что газ CO_2 является идеальным газом,

$$P_q^* V_q^* = n_g ZRT, (5.1)$$

где P_g^* – давление газа, V_g^* – объем газа, n_g - количество газа в молях, Z – коэффициент сжимаемости газа,

Рисунок 5.1: Схема двумерной ячейки спада давления. (а) Размерная область имеет высоты H_g и H_w для газовой и водной фаз, соответственно, и ширину W; (b) безразмерная область имеет отношение $L = W/H_w$ для водной фазы.

характеризующий степень отклонения от поведения идеального газа [49], R – универсальная газовая постоянная, а T – абсолютная температура. На границе раздела газвода локальное равновесие между газом и растворенным водным CO_2 определяется законом Генри

$$C_s^* = K_h P_g^*, \tag{5.2}$$

где C_s^* – концентрация растворенного газа (или концентрация CO_2 на границе раздела), а K_h – константа растворимости по закону Генри. В предыдущем исследовании при низком давлении [50] газ считался идеальным, поэтому $Z \equiv 1$ и K_h постоянны (в изотермических условиях). Однако для условий реального газа с высоким давлением, величины Z и K_h зависят от давления, то есть $Z = Z(P_g^*)$ и $K_h = K_h(P_g^*)$. Следовательно, уравнение (5.2) дает $C_s^* = K_h(P_g^*)P_g^*$. Более того, при моделировании конвекции изменение объема воды из-за растворения CO_2 пренебрежимо мало при определенных условиях давления (примерно 3.5 % для фиксированного $P_g^* = 12$ МПа), поэтому предполагается, что граница раздела всегда локализована при $z^* = 0$ в закрытых системах [50].

В жидкой фазе (т.е. $-H_w < z^* < 0$) течение несжимаемо и подчиняется закону Дарси

$$\nabla^* \cdot u_w^* = 0,$$

$$u_w^* = -\frac{k}{\mu\phi} (\nabla^* P_w^* + \rho_w^* g e_{z^*}),$$

где $u_w^* = (u^*, w^*)$ – усредненная по объему скорость, k – проницаемость среды, μ – динамическая вязкость жидкости, ϕ – пористость, P_w^* – давление в водной фазе, g – ускорение свободного падения, а e_{z^*} – единичный вектор в направлении z. Предполагается, что плотность раствора " CO_2 – вода" ρ_w^* является линейной функцией концентрации

$$\rho_w^* = \rho_0^* + \Delta \rho_0^* \frac{C_w^*}{C_{s,0}^*},$$

где ρ_0^* – плотность пресной воды, C_w^* – концентрация растворенного CO_2 в воде, и $\Delta \rho_0^*$ и $C_{s,0}$ - соответственно разница плотностей между пресной и насыщенной водой, и концентрация CO_2 в насыщенной воде при начальном давлении газа $P_{g,0}^*$. В этой работе $\Delta \rho_0^*$ моделируется с использованием квадратичной функции P_g^* , описанной в [50].

Процесс переноса концентрации в жидкой фазе определяется следующим уравнением адвекции –диффузии

$$\frac{\partial C_w^*}{\partial t^*} + \nabla^* \cdot (u_w^* C_w^*) = D \nabla^{*2} C_w^*,$$

где D - коэффициент диффузии, $D \approx 3.37 \times 10^{-9} \text{ m}^2 \text{ /s}$ для $\phi \approx 0.4$ при $T = 323.15 K(50^{\circ}C)$.

Изначально вода не содержит растворенного газа,

$$C_w^* \mid_{t^*=0} = 0$$
 при $-1 < z^* < 0.$

Для граничных условий жидкой фазы верхняя граница (т.е. граница раздела CO_2 – вода при z = 0) определяется локальным равновесием с газом и непроницаема для жидкости; а нижняя граница непроницаема для растворенных веществ и жидкости:

$$C_w^* \mid_{z^*=0} = C_s^*(t^*), \quad w^* \mid_{z^*=0} = 0,$$
$$\frac{\partial C_w^*}{\partial z^*} \mid_{z^*=-H_w} = 0, \quad w^* \mid_{z^*=-H_w} = 0.$$

Все поля удовлетворяют условию W – периодичности в направлении x^* . В закрытой системе уравнение баланса масс для газовой и жидкой фаз имеет вид

$$\frac{dn_g}{dt} = -AF^*,\tag{5.3}$$

где площадь границы раздела A = W в 2D-системе, а молярный поток из газа в воду F^* можно оценить как

$$F^* = D \frac{\partial \bar{C}^*_w}{\partial z^*} |_{z^*=0} = \frac{D}{W} \int_0^W \frac{\partial C^*_w}{\partial z^*} |_{z^*=0} dx^*, \qquad (5.4)$$

где $\bar{\ }$ обозначает горизонтальное среднее значение, как определено выше.

В этом исследовании мы моделируем Z и C_s^* с корреляциями, разработанными на основе ранее опубликованных данных о фазовом равновесии (NIST) партии, а именно, для фиксированной температуры T,

$$Z = z_1 P_g^{*2} + z_2 P_g^* + 1$$
 и $C_s^* = K_h P_g^* = (k_1 P_g^* + k_2) P_g^*,$
(5.5)

где $z_1 = -0.00159$ MPa⁻², $z_2 = -0.0361$ MPa⁻¹, $k_1 = -6.916$ mol m⁻³ MPa⁻² и $k_2 = 178.140$ mol m⁻³ MPa⁻¹ при T = 323.15 K.

Из уравнений (5.1) и (5.3) – (5.6) имеем

$$\frac{dP_g^*}{dt^*} = -\frac{(z_1 P_g^{*2} + z_2 P_g^*)^2 RTAD}{V_g^*} \frac{1}{1 - z_1 P_g^{*2}} \frac{\partial \bar{C}_w^*}{\partial z^*} \mid_{z^* = 0}.$$
(5.6)

6 Поромеханическое моделирование секвестрации *CO*₂ на разрабатываемых газовых месторождениях

В последнее время секвестрация CO_2 привлекла большое внимание как метод снижения выбросов парниковых газов в атмосферу. Механизмы улавливания большого количества CO_2 включают растворение в океанах, сорбцию растительностью и геологическое связывание. Последнее может быть реализовано в истощенных газовых/нефтяных месторождениях, водоносных горизонтах солевых вод или неразработанных угольных пластах. В частности, размещение в эксплуатируемых газовых / нефтяных месторождениях дает несколько преимуществ, поскольку инфраструктура закачки и геологическая информация уже существуют. Более того, все резервуары ограничены непроницаемым покровом, который служит барьером против восходящей миграции CO_2 .

Вопросы, связанные с геологической секвестрацией CO_2 , обсуждались более десяти лет с упором в основном на гидродинамику и геохимию процесса, например [51, 52, 53]. В отличие от этого, относительно небольшое количество работ посвящено компьютерным и механическим аспектам, связанным с хранением CO_2 , например,

[54, 55].

В проекте по улавливанию CO_2 должны быть рассмотрены три основных поромеханических проблемы: 1 – прогнозирование движения грунта и соответствующего воздействия на окружающую среду и наземную инфраструктуру; 2 – оценка напряженного состояния, создаваемого в пласте-коллекторе с возможным образованием трещин; 3 – анализ риска активации существующих неисправностей.

В работе [58] исследуется гипотетическая секвестрация CO_2 на истощенном газовом месторождении. Коллектор закопан на глубине 1500 м с переменной толщиной от 90 до 120 м. Закачка CO_2 происходит с такой скоростью, что конечное поровое давление превышает исходное на 40 % за 100 лет. Напряженное состояние бассейна Северной Адриатики [56] реализовано в поромеханической модели конечных элементов (FE) с критерием Мора–Кулона, используемым для элементов интерфейса (IE), представляющих разломы [57]. Поведение геомеханического поля моделируется с момента начала добычи газа, включая прогноз проседания грунта, ожидаемого в конце разработки месторождения. Статья завершается рядом замечаний, касающихся общей безопасности имитации секвестрации CO_2 .

7 Сопряженная модель потока и геомеханика для закачки и хранения *CO*₂

В работе [59] особое внимание уделяется хранению CO_2 в краткосрочной перспективе, поэтому единственная химическая реакция, которая будет рассматриваться, это растворение CO_2 в воде резервуара. В этой статье представлена элементарная гидротермохимическая структурная модель. Почти весь добываемый углеводород используется и будет использоваться в качестве топлива и, следовательно, производить CO_2 , что в конечном итоге будет выпущено в атмосферу. С этой точки зрения, план долгосрочного хранения CO_2 является хорошей и устойчивой идеей для уменьшения воздействия выбросов CO_2 на климат. Одна из самых многообещающих идей – закачка CO_2 в резервуар, где он остается неопределенно долго. Хорошими потенциальными геологическими образованиями для хранения уловленного CO_2 являются истощенные и неиспользуемые нефтяные и газовые месторождения, глубокие соленые водоносные горизонты и глубокие неразработанные угольные пласты [60].

Один из идеальных сценариев – закачка CO_2 в проницаемый водоносный горизонт под очень низкопроницаемым покровом. Когда закачиваемый CO_2 растворяется в воде из резервуара, увеличивая плотность, вода из резервуара не протекает, поэтому вода с растворенным CO_2 тоже не протекает. В течение сотен и тысяч лет закачанный CO_2 будет реагировать с образованием карбонатов и выпадать в осадок, и это самый безопасный механизм хранения CO_2 . Однако миграция CO_2 за пределы естественных изоляторов резервуаров может стать проблематичной, поэтому Определение способов улучшения естественных изоляторов может помочь в использовании этой методологии связывания.

Основными типами механизмов хранения CO_2 в породах – коллекторах являются [60]: (1) Структурное и стратиграфическое улавливание: миграция CO_2 блокируется непроницаемой покрывающей породой. (2) Улавливание остаточного насыщения: капиллярные силы и адсорбция на поверхности минеральных зерен в матрице породы фиксируют (остаточные) части закачанного CO_2 . (3) Улавливание растворимости: CO_2 растворяется и остается в пластовой воде. (4) Улавливание минералов: растворенный CO_2 образует угольную кислоту, которая растворяет окружающий минерал и вступает в реакцию с образованием твердых карбонатов.

При оценке емкости хранения CO_2 необходимо учитывать временные рамки, в которых работают эти процессы. Реакции улавливания минералов, которые вызывают осаждение карбонатов, будут играть незначительную роль в создании дополнительного пространства во время закачки CO_2 , потому что они действуют слишком медленно. Кинетика захвата минералов настолько медленная, что они будут иметь значительный эффект только в течение сотен и тысяч лет. На практике улавливание минералов обычно можно игнорировать как важный механизм хранения в столетнем масштабе. Остальные три механизма необходимо принимать во внимание при любом анализе хранения CO_2 .

Риск утечки является самым большим на этапе закачки, поскольку закачка определяет, как СО₂ распределяется в пласте, который может быть перфорирован скважинами, разломами, трещинами, зонами разломов и т. д. На этом этапе основными путями утечки являются разрушение уплотняющих образований (механических и / или химических) в скважинах или рядом с ними и других искусственных путях и каналах для жидкости: (1) Скважины могут быть повреждены из-за химической реакции, например, разрушения цемента, эрозии и коррозии корпуса. (2) Кроме того, поровое давление флюида изза закачки может вызвать разрушение в уже существующих разломах и даже вызвать новые разломы или разломы в неповрежденной породе коллектора. Кроме того, хрупкая деформация в коллекторе, вызванная закачкой, может создать проницаемость трещин и резко увеличить эффективную проницаемость в этой области.

8 Моделирование фильтрации при подземном захоронении углекислого газа с применением высокопроизводительных вычислительных систем

В работе [61] рассмотрена задача закачки углекислого газа в водонасыщенный проницаемый пласт. Методами прямого численного моделирования определена граница области, занимаемой CO_2 в пласте при различных параметрах нагнетания. Проведено сравнение результатов трёхмерных расчётов по полной модели фильтрации с приближённым автомодельным решением задачи. Установлены условия применимости автомодельной асимптотики. Исследована производительность вычислений и дана оценка эффективности распараллеливания алгоритмов численного моделирования.

Для описания течений в пористой среде, связанных с закачкой углекислого газа в водонасыщенный пласт, используется математическая модель фильтрации бинарной смеси $CO_2 - H_2O$ [62, 63], которая применима к одно-, двух- и трёхфазным течениям сжиженного и газообразного CO_2 и пластовой воды. В настоящей работе исследуются только закритические термодинамические условия для CO_2 [62, 64], при которых возможна лишь одна фаза сверхкритического CO_2 , поэтому уравнения модели формулируются для одно- и двухфазных течений, а трёхфазные течения не рассматриваются.

Предполагается, что различные компоненты бинарной смеси формируют несмешивающиеся друг с другом различные фазы. Первая фаза газовая — CO_2 в закритическом состоянии, а вторая фаза жидкая — H_2O . В данном случае система законов сохранения, описывающих фильтрацию, принимает вид [62, 65, 66]

$$\frac{\partial}{\partial t}(\phi\rho_1 s_1) + div(\rho_1 \mathbf{w_1}) = 0, \qquad (8.1)$$

$$\frac{\partial}{\partial t}(\phi\rho_2 s_2) + div(\rho_2 \mathbf{w_2}) = 0, \qquad (8.2)$$

$$\frac{\partial}{\partial t} \left(\phi \sum_{i=1}^{2} \rho_{i} e_{i} s_{i} + (1-\phi) \rho_{r} e_{r} \right) + + div \left(\sum_{i=1}^{2} \rho_{i} h_{i} \mathbf{w}_{i} - \lambda_{m} gradT \right) = 0,$$
(8.3)

$$s_1 + s_2 = 1, \quad \lambda_m = \phi \sum_{i=1}^2 s_i \lambda_i + (1 - \phi) \lambda_r,$$
 (8.4)

$$\mathbf{w_i} = -K \frac{f_i}{\mu_i} (gradP - \rho_i \mathbf{g}), (i = 1, 2).$$
(8.5)

Здесь индекс *i* обозначает параметры фаз — углекислого газа (i = 1) и воды (i = 2), а индекс r — параметры материала породы; ϕ — пористость породы; s — насыщенность фаз; ρ — плотность; e — внутренняя энергия, h энтальпия; **w** — скорость фильтрации; λ — коэффициент теплопроводности породы (λ_r) и эффективный в пласте (λ_m); T — пластовая температура; K — проницаемость породы; f — относительная фазовая проницаемость; μ вязкость; P — пластовое давление; **g** — вектор ускорения свободного падения. Уравнения (8.1), (8.2) и (8.3) это законы сохранения массы CO_2 , массы воды и энергии соответственно, (8.5)— многофазный закон фильтрации Дарси.

Теплофизические свойства СО₂ задаются в виде:

$$\rho_1 = \rho_1(P, h_1), \quad T = T(P, h_1),
\mu_1 = \mu_1(P, h_1), \quad \lambda_1 = \lambda_1(P, h_1),$$
(8.6)

где h_1 — энтальпия CO_2 , а функции (8.6) — полиномиальные сплайны, рассчитываемые по кубическому уравнению состояния CO_2 [62].

Свойства воды определяются линейными соотношениями [67, 68]:

$$\rho_2(P,T) = \rho_{2(0)}(1 + \alpha(P - P_0) - \beta(T - T_0)),$$

$$h_2 = C_2 T, \quad \mu_2, \lambda_2 = const. \quad (8.7)$$

Здесь $\rho_{2(0)}$ — плотность при опорных значениях давления и температуры $P = P_0, T = T_0$; α — коэффициент сжимаемости; β — коэффициент теплового расширения; C_2 — теплоёмкость при постоянном давлении.

Во многих случаях захоронения углекислый газ находится при околокритических условиях, и его термодинамические параметры изменяются сложным нелинейным образом [62, 64, 69]. Такое их поведение не может быть описано простыми соотношениями, например типа (8.7), и требует привлечения более сложных, вообще говоря, итерационных методов расчёта [62], которые и используются в настоящей работе. При этом выбор в (8.6) энтальпии h_1 в качестве независимой переменной позволяет избежать математических особенностей в критической точке CO_2 [70]. При подземном захоронении вода находится при существенно докритических условиях, поэтому для описания её теплофизических свойств применяются более простые уравнения состояния — (8.7).

Теплофизические свойства материала породы принимаются в виде

$$e_r = C_r T, \quad (\rho_r, \lambda_r) = const,$$
 (8.8)

где C_r — теплоёмкость породы.

Относительные фазовые проницаемости являются функциями насыщенности жидкой фазы, то есть воды s_2 [71]

$$f_1 = (1 - s_2^2)(1 - s_2)^2, \quad f_2 = s_2^4.$$
 (8.9)

Подставляя уравнения (8.5) – (8.9) в (8.1) – (8.3) и учитывая термодинамическое соотношение $h_i = e_i + /\rho_i$, можно получить замкнутую систему трёх уравнений относительно неизвестных P, h_1, s_2 .

9 Влияние закачки *CO*₂ на геомеханические и фильтрационные свойства богатых кальцитом коллекторов

В работе [72] смоделирована закачка CO_2 в карбонатный коллектор и исследовано влияние изменений свойств породы, вызванных геохимическими реакциями. Рассмотрена связанная гидромеханическую задача, которая подразумевает одновременное решение сохранения массы каждой фазы и баланса импульса. Сохранение массы каждой фазы без учета диффузионной составляющей выражается следующим образом [73]:

$$rac{\partial \phi S_lpha
ho_lpha}{\partial t} +
abla \cdot (
ho_lpha {f q}_lpha) = 0, \quad lpha = c, w.$$

где ϕ – пористость, S_{α} – насыщение α -фазы, ρ_{α} – плотность α – фазы, t - время, q_{α} – объемный поток, r_{α} – член фазового перехода, и α представляет собой фазу, богатую $CO_2 - c$, или водную фазу – w. Здесь не учитывается испарение воды в CO_2 , т.е. $r_w = 0$. Свойства жидкости, то есть плотность и вязкость, зависят как от давления, так и от температуры.

Объемный поток определяется законом Дарси

$$\mathbf{q}_{\alpha} = -rac{kk_{rlpha}}{\mu_{lpha}} (
abla p_{lpha} +
ho_{lpha} g
abla z), \quad lpha = c, w,$$

где k – собственная проницаемость, $k_{r\alpha}$ – относительная проницаемость α -фазы, μ_{α} – вязкость, p_{α} – давление, g – сила тяжести, а z – вертикальная координата, направленная вверх.

Степень насыщения зависит от капиллярного давления. Принимается модель van Genuchten [74], в которой

$$S_e = \left(1 + \left(\frac{p_c}{p_0}\right)^{1/(1-m)}\right)^{-m},$$

где p_c – капиллярное давление, p_0 – давление на входе, m – параметр формы и

$$S_e = \frac{S_l - S_{rl}}{S_{max} - S_{rl}},$$

где S_l – насыщение жидкостью, S_{rl} – остаточное насыщение жидкостью, а S_{max} – максимальное насыщение жидкостью.

Для механической задачи, если предположить, что инерционные члены пренебрежимо малы, баланс импульса пористой среды сводится к равновесию напряжений

$$abla \cdot \sigma + b = 0,$$

где σ – тензор полных напряжений, b– вектор объемных сил.

Предполагается, что среда ведет себя хрупким образом, ее устойчивость оценивается с помощью критерия разрушения Мора-Кулона

$$\tau = c' + \sigma'_n tan\phi',$$

где τ – напряжение сдвига, σ'_n – нормальное эффективное напряжение, c' – сцепление, а ϕ' – угол трения.

Рассмотрен карбонатный коллектор мощностью 100 м, который перекрывается и подстилается низкопроницае-

мым пластом мощностью 50 м (рис. 9.1). Кровля водоема находится на высоте 1500 м, CO_2 закачивается через вертикальную скважину, поэтому модель является осесимметричной. Скорость закачки – 0.25 млн. т/год, закачка – 3 года. Модель вытянута в радиальном направлении на 5 км. На внешней границе создается постоянное давление, равное гидростатическому. На боковой и нижней границах не возникает смещения перпендикулярно границе, а на верхней границе накладывается постоянное давление, перекрывающее толщу, равное 36.25 МПа. Рассмотрен режим нормального напряжения разлома с вертикальным напряжением после литостатического напряжения 25 МПа / км и полными горизонтальными напряжениями, равными 0.65 от общего вертикального напряжения. Модель предполагается изотермической с температурой 60 °C, что соответствует температуре поверхности 10.5 °C и геотермическому градиенту 33 °C/км.

Рисунок 9.1: Схематическое изображение геометрии модели, граничных и начальных условий.

Свойства материала были измерены в лаборатории. В

то время как свойства коллектора (апулийский известняк) измеряются в этом исследовании, свойства покрывающих пород (опалиновая глина – юрские сланцы из Швейцарии) были измерены в предыдущих исследованиях. Из-за проницаемости по шкале нанодарси предполагается, что отклик покрывающего пласта недренирован во время закачки [75, 76]. Учитывая относительно низкую проницаемость коллектора (10^{-15} м²), во время фазы закачки преобладают силы вязкости, что приводит к пробковому продвижению шлейфа CO_2 [76, 77]. После трехлетнего периода закачки шлейф CO_2 достиг радиуса 150 м. Чтобы оценить влияние изменений свойств на геомеханический отклик породы, использовались две модели, в одной из которых весь пласт имел свойства нетронутого материала, а в другой – цилиндр радиусом 150 м вокруг нагнетательной скважины имел свойства измененного материала в результате его взаимодействия с CO_2 . Для моделирования этой гидромеханической задачи, использовался числовой код полностью связанных конечных элементов CODE BRIGHT [78], который был расширен для применения к закачке CO_2 [79].

В лабораторных условиях измерено влияние геохимических реакций, вызванных закачкой CO_2 , на гидравлические и геомеханические свойства водонасыщенного апулийского известняка (калькаренита) и оценили последствия этих изменений свойств в полевом масштабе с помощью численного моделирования. Взаимодействие CO_2 –порода вызывает растворение кальцита там, где происходит закачка CO_2 , то есть перед образцами, но приводит к осаждению карбоната ниже по потоку, который считается недренированным. Такая картина растворения / осаждения привела к небольшому снижению пористости, но уменьшению проницаемости в два раза. Кривые относительной проницаемости также были затронуты, особенно

для воды, которая изменилась с квадратичной на квазилинейную в зависимости от степени водонасыщенности. Обработка CO_2 вызвала снижение жесткости и прочности известняка. Учет этих изменений свойств в численном моделировании в промышленном масштабе приводит к перераспределению напряжений в породе, измененной шлейфом CO_2 . Это перераспределение напряжений снижает стабильность покрывающей породы по сравнению со случаем, когда считается, что свойства породы остаются неизменными из-за взаимодействия CO_2 и породы.

10 Модель захоронения углекислого газа в вязкоупругой пористой среде

Рассматривается система уравнений, описывающая фильтрацию газа в вязкоупругой пористой среде [81, 82, 83, 84, 85]. С математической точки зрения рассматриваются уравнения для сохранения газообразной и твердой фаз, закон Дарси, реологическое соотношения для пористой среды и закон сохранения баланса сил

$$\begin{aligned} \frac{\partial \phi \rho_f}{\partial t} + \nabla \cdot (\phi \vec{v}_f \rho_f) &= 0, \\ \frac{\partial \rho_s(1-\phi)}{\partial t} + \nabla \cdot ((1-\phi) \vec{v}_s \rho_s) &= 0, \end{aligned}$$
(10.1)

$$\phi(\vec{v}_f - \vec{v}_s) = -k(\phi)(\nabla p_f - \rho_f \vec{g}), \qquad (10.2)$$

$$\nabla \cdot \vec{v}_s = -a_1(\phi)p_e - a_2(\phi)(\frac{\partial p_e}{\partial t} + \vec{v}_s \cdot \nabla p_e), \qquad (10.3)$$

$$\nabla p_{tot} = \rho_{tot} \vec{g}. \tag{10.4}$$

Здесь $\rho_f, \rho_s, \vec{v}_f, \vec{v}_s$ – соответственно истинные плотности и скорости газообразной и твердой фаз, ϕ – пористость, p_f, p_s – соответственно давления газообразной и твердой фаз, $p_e = p_{tot} - p_f$ – эффективное давление, $p_{tot} =$ $\phi p_f + (1-\phi)p_s$ – общее давление, $\rho_{tot} = \phi \rho_f + (1-\phi)\rho_s$ – плотность двухфазной среды, $\vec{q} = (0, -q)$ – вектор силы тяжести; $k(\phi) = k\phi^n/\mu$ – коэффициент фильтрации, k проницаемость пористой среды, µ – динамическая вязкость газа; $a_1(\phi) = \phi^m/\eta$ – коэффициент объемной вязкости, η – динамическая вязкость твердой фазы; $a_2(\phi) =$ $\phi^b \beta_\phi$ – коэффициент объемной сжимаемости, β_ϕ – коэффициент сжимаемости пор; $m \in [0,2], b = 1/2, n = 3$ – параметры среды. Плотности газообразной и твердой фаз считаются постоянными. В данном исследовании газообразная фаза моделируется как жидкость и считается несжимаемой. Задача записана в эйлеровых координатах $(x, y, t) \in Q_T$. Особенностью рассматриваемой в данной работе модели является переменный характер пористости.

Близкие по структуре системы уравнений рассматривались в работах [86, 87, 88, 89, 90, 91, 92]. В работе [87] выполнено численное решение неизотермической фильтрации вязкой несжимаемой жидкости. В [88] для системы уравнений одномерного нестационарного движения жидкости в теплопроводной вязкой пористой среде доказана разрешимость начально-краевой задачи. Работа [89] посвящена численному исследованию одномерной изотермической задачи фильтрации жидкости.

Допуская предположение о неподвижности твердой фазы, конвективным слагаемым можно пренебречь $(d/dt \sim \partial/\partial t \ [93])$. Тогда система (10.1) - (10.4) сводится к следующим уравнениям для нахождения эффективного давления и пористости

51

$$\nabla \cdot (k(\phi)(\nabla p_e - \rho \vec{g})) = a_1(\phi)p_e + a_2(\phi)\frac{\partial p_e}{\partial t}, \qquad (10.5)$$

$$\frac{1}{1-\phi}\frac{\partial\phi}{\partial t} = -a_1(\phi)p_e - a_2(\phi)\frac{\partial p_e}{\partial t},\qquad(10.6)$$

где $\rho = (1 - \phi)\Delta \varrho, \Delta \varrho = \rho_s - \rho_f.$

Рассматривается область пористой среды глубиной и шириной H и L метров соответственно. Снизу происходит закачка углекислого газа (CO_2) со скоростью v(t). Область фильтрации представлена на рис. 10.1.

Рисунок 10.1: Область фильтрации

На Γ_4 необходимо задать условия для p_s и p_f . Будет считать, что на $\Gamma_4 p_f = p_a + \rho_f g(H - y)$ и $p_s = p_a + \rho_s g(H - y)(p_a -$ атмосферное давление), и так как $p_e = (1 - \phi)(p_s - p_f)$, то условие для эффективного давления на Γ_4 имеет вид $p_e = (1 - \phi)\Delta\varrho g(H - y) = \rho g(H - y)$. На боковых границах рассматриваемой области и снизу ($\Gamma_3, \Gamma_5, \Gamma_2, \Gamma_6$) задаются условия непротекания для газа и твердой фазы, на Γ_1 задается условие притока углекислого газа. Краевые и начальные условия для уравнений (10.5) - (10.6) можно выписать следующим образом

$$ec{v}_s\cdotec{n}=0,\quadec{v}_f\cdotec{n}=v(t):\Gamma_1,$$

$$ec{v}_s\cdotec{n}=0, \quad ec{v}_f\cdotec{n}=0:\Gamma_2,\Gamma_3,\Gamma_5,\Gamma_6,$$

$$p_e = g\rho(H - y) : \Gamma_4,$$

$$p_e^0(x,y,0) = g
ho(H-y), \quad \phi(x,y,0) = \phi^0(x,y),$$

где \vec{n} – вектор внешней единичной нормали на границе.

Используя закон Дарси (10.2), условия непротекания на $\Gamma_2, \Gamma_3, \Gamma_5, \Gamma_6$ и притока CO_2 на Γ_1 примут следующий вид:

$$egin{aligned} & (
abla p_e -
ho ec g) \cdot ec n = 0 : \Gamma_2, \Gamma_3, \Gamma_5, \Gamma_6, \ & rac{k(\phi)}{\phi} (
abla p_e -
ho ec g) \cdot ec n = v(t) : \Gamma_1. \end{aligned}$$

Перейдем к безразмерным переменным x' = x/L, y' = y/H, t' = t/T, $p'_e = p_e/P$, $v'_i = v_i/V$, i = s, f, следовательно, область изменения x', y', t' есть единичный отрезок [0, 1] и система уравнений (10.5) - (10.6) с краевыми условиями примут следующий вид (штрихи опущены)

$$\frac{\partial}{\partial x} \left(\phi^n \frac{\partial p_e}{\partial x} \right) + \varepsilon \frac{\partial}{\partial y} \left(\phi^n \left(\frac{\partial p_e}{\partial y} + (1 - \phi) \right) \right) = \\ = \lambda \phi^m p_e + \omega \phi^b \frac{\partial p_e}{\partial t}, \quad (10.7)$$

$$\frac{1}{1-\phi}\frac{\partial\phi}{\partial t} = -\lambda\phi^{m}p_{e} - \omega\phi^{b}\frac{\partial p_{e}}{\partial t},$$
(10.8)
$$\begin{cases}
\phi^{n-1}\frac{\partial p_{e}}{\partial y} + (1-\phi) = v(t) : \Gamma_{1}, \\
\frac{\partial p_{e}}{\partial x} = 0 : \Gamma_{3}, \Gamma_{5}, \\
\frac{\partial p_{e}}{\partial y} + (1-\phi) = 0 : \Gamma_{2}, \Gamma_{6}, \\
p_{e} = (1-\phi)(1-y) : \Gamma_{4}, \\
p_{e}^{0}(x,y) = (1-\phi)(1-y).
\end{cases}$$
(10.8)

Масштабы давления и скорости и длины принимаются равными $P = \Delta \varrho g H$, $V = \Delta \rho g k / \mu$, $L = \sqrt{kTP/\mu}$ соответственно. $\varepsilon = kPT/\mu H^2$, $\lambda = TP/\eta$, $\omega = \beta_{\phi}P$ – безразмерные параметры.

Начально – краевая задача (10.7) – (10.9) может быть решена численно. Для численной реализации уравнения (10.7) используется схема переменных направлений [94], и для уравнения (10.8) метод Рунге – Кутты второго порядка точности [95].

Алгоритм счета следующий: используя начальные значения для эффективного давления и пористости $\phi^0(x, y)$, $p_e^0(x, y)$ из уравнения (10.7) находим значение эффективного давления на следующем временном слое $(p_e^1(x, y))$. Далее из (10.8) находим $\phi^1(x, y)$. Повторяем алгоритм для следующих шагов по времени.

Заключение

В учебном пособии рассмотрены модели захоронения углекислого газа в геологических формациях. Большое внимание уделяется моделям двухфазной фильтрации, где пористость среды является постоянной. Даны постановки различных моделей, учитывающий как химию процесса так и наличие разной геометрии областей фильтрации. Последний раздел посвящен модели фильтрации газа в пороупругой среде, особенностью которой является переменный характер пористости.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ по теме «Современные методы гидродинамики для задач природопользования, индустриальных систем и полярной механики» (номер темы: FZMW-2020-0008).

Библиографический список

- 1. Board O. S. et al. Negative emissions technologies and reliable sequestration: A research agenda. – National Academies Press, 2019.
- Sanz-Perez E. S. et al. Direct capture of CO₂ from ambient air //Chemical reviews. – 2016. – Vol. 116, No. 19. P. 11840–11876.
- Benson S. M., Orr F. M. Carbon dioxide capture and storage //MRS bulletin. – 2008. – Vol. 33, No. 4. P. 303–305.
- El-Amin M. F., Sun S., Salama A. Modeling and simulation of nanoparticle transport in multiphase flows in porous media: CO₂ sequestration //Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs. – OnePetro, 2012.
- Bielinski A. Numerical simulation of CO₂ sequestration in geological formations. – Stuttgart University, 2006
- 6. Chen Z. Reservoir simulation: mathematical techniques in oil recovery: Society for Industrial Mathematics. 2007.

- Theodoropoulou M. A. et al. Relative permeability and capillary pressure functions of porous media as related to the displacement growth pattern //International journal of multiphase flow. – 2005. – Vol. 31, No. 10-11. P. 1155–1180.
- Hayek M., Mouche E., Mugler C. Modeling vertical stratification of CO2 injected into a deep layered aquifer //Advances in Water Resources. - 2009. - Vol. 32, No. 3. P. 450-462.
- Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrology Papers, Colorado State University 1964.
- Ju B., Fan T. Experimental study and mathematical model of nanoparticle transport in porous media //Powder technology. – 2009. – Vol. 192, No. 2. – P. 195–202.
- 11. Ju B. et al. A study of wettability and permeability change caused by adsorption of nanometer structured polysilicon on the surface of porous media //SPE Asia Pacific oil and gas conference and exhibition. OnePetro, 2002.
- Liu X., Civan F. Characterization and prediction of formation damage in two-phase flow systems //SPE Production Operations Symposium. – OnePetro, 1993.
- Liu X., Civan F. A multiphase mud fluid infiltration and filter cake formation model //International Symposium on Oilfield Chemistry. – 1993. P. 607–621.
- Liu X., Civan F. Formation damage and skin factor due to filter cake formation and fines migration in the near-wellbore region //SPE formation damage control symposium. – OnePetro, 1994.

- Gruesbeck C., Collins R. E. Entrainment and deposition of fine particles in porous media //Society of Petroleum Engineers Journal. – 1982. – Vol. 22, No. 06. P. 847–856.
- Qin J. S., Li A. F. Physics of Oil Reservoir: Publishing Company //UP C. – 2001.
- Sun X., Nanchary N., Mohanty K. K. 1-D modeling of hydrate depressurization in porous media //Transport in Porous Media. – 2005. – Vol. 58, No. 3. P. 315–338.
- Sun X., Mohanty K. K. Kinetic simulation of methane hydrate formation and dissociation in porous media //Chemical Engineering Science. - 2006. - Vol. 61, No. 11. P. 3476-3495.
- 19. Oldenburg C. M. Joule-Thomson cooling due to CO_2 injection into natural gas reservoirs //Energy Conversion and Management. 2007. Vol. 48, Nº. 6. P. 1808–1815.
- 20. Mathias S. A. et al. Analytical solution for Joule–Thomson cooling during CO_2 geo-sequestration in depleted oil and gas reservoirs //International Journal of Greenhouse Gas Control. 2010. Vol. 4, No. 5. P. 806–810.
- Мусакаев Н. Г., Хасанов М. К. Математическая модель процесса захоронения углекислого газа в гидратонасыщенном пласте //Труды Института механики им. РР Мавлютова УНЦ РАН. – 2016. – N 2 (11). – С. 181–187.
- 22. Дучков А. Д. и др. Оценка возможности захоронения углекислого газа в криолитозоне Западной Сибири //Криосфера Земли. – 2009. – N 4 (13). – С. 62–68.

- Чувилин Е. М., Гурьева О. М. Экспериментальное изучение образования гидратов CO₂ в поровом пространстве промерзающих и мерзлых пород //Криосфера Земли. – 2009. – N 3 (13). – С. 70–79.
- 24. Ohgaki K., Takano K., Sangawa H., Sangawa H., Matsubara T., Nakano S. Methane Exploitation by Carbon Dioxide from Gas Hydrates - Phase Equilibria for $CO_2 - CH_4$ Mixed Hydrate System // J. of Chemical Engineering of Japan. – 1996. – Vol. 29, No 3. P. 478-483.
- Цыпкин Г.Г. Математическая модель инжекции углекислого газа в пласт с образованием гидрата // Доклады Академии наук. – 2014. – N 4 (458). – С. 422425.
- 26. Espinoza D.N., Santamarina J.C. P-wave Monitoring of Hydrate-Bearing Sand during $CH_4 CO_2$ Replacement // Int. J. of Greenhouse Gas Control. 2011. Vol. 5, No 4. P. 1032–1038.
- 27. Qing Yuan, Chang-Yu Sun, Bei Liu, Xue Wang, Zheng-Wei Ma, Qing-Lan Ma, Lan-Ying Yang, Guang-Jin Chen, Qing-Ping Li, Shi Li, Ke Zhang Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO_2 // Energy Conversion and Management. 2013. Vol. 67. P. 257264.
- 28. Musakaev N.G., Khasanov M.K. The self-similar solutions of the problem of carbon dioxide injection into the reservoir saturated with methane and its hydrate // AIP Conference Proceedings. 2016. Vol. 1770. 030106.
- 29. Шагапов В.Ш., Хасанов М.К., Мусакаев Н.Г. Образование газогидрата в пористом резервуаре, частично насыщенном водой, при инжекции холодного га-

за // Прикладная механика и техническая физика. – 2008. – N 3 (49). – С. 137-150.

- 30. Гималтдинов И.К., Хасанов М.К., Столповский М.В., Кильдибаева С.Р. Особенности образования гидрата в пористых пластах при продувке газом // Труды Института механики им. Р.Р. Мавлютова УНЦ РАН. – 2012. – N 1 (9). – С. 72–75.
- 31. Shagapov V.Sh., Musakaev N.G., Khasanov M.K. Formation of gas hydrates in a porous medium during an injection of cold gas // Int. J. of Heat and Mass Transfer. – 2015. – Vol. 84. P. 1030-1039.
- 32. Шагапов В.Ш., Мусакаев Н.Г. Динамика образования и разложения гидратов в системах добычи, транспортировки и хранения газа. М.: Наука, 2016. 240 с.
- Нигматулин Р.И. Динамика многофазных сред. Ч. 1, 2. – М.: Наука, 1987.
- 34. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. – М.: Недра, 1993. – 416 с.
- Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. – 238 с.
- Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. – М.: Химия, 1980. – 296 с.
- 37. Hassanzadeh H., Pooladi-Darvish M., Keith D. W. Modelling of convective mixing in CO₂ storage //Journal of Canadian Petroleum Technology. - 2005. - Vol. 44, No. 10.
- Metz B. et al. IPCC special report on carbon dioxide capture and storage. – Cambridge: Cambridge University Press, 2005.

- 39. Orr F. M. Onshore geologic storage of CO_2 //Science. 2009. Vol. 325, No. 5948. P. 1656–1658.
- 40. Ennis-King J., Preston I., Paterson L. Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions //Physics of Fluids. – 2005. – Vol. 17, No. 8. P. 084107.
- Riaz A. et al. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media //Journal of Fluid Mechanics. - 2006. - Vol. 548. P. 87-111.
- 42. Hassanzadeh H., Pooladi-Darvish M., Keith D. W. Stability of a fluid in a horizontal saturated porous layer: effect of non-linear concentration profile, initial, and boundary conditions //Transport in Porous Media. - 2006. - Vol. 65, No. 2. P. 193-211.
- 43. Xu X., Chen S., Zhang D. Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers //Advances in water resources. 2006. Vol. 29, No. 3. P. 397-407.
- 44. Slim A. C. et al. Dissolution-driven convection in a Hele–Shaw cell //Physics of Fluids. – 2013. – Vol. 25, No. 2. P. 024101.
- 45. Neufeld J. A. et al. Convective dissolution of carbon dioxide in saline aquifers //Geophysical research letters. 2010. Vol. 37, No. 22.
- 46. Sathaye K. J. et al. Constraints on the magnitude and rate of CO_2 dissolution at Bravo Dome natural gas field //Proceedings of the National Academy of Sciences. 2014. Vol. 111, No. 43. P. 15332–15337.

- 47. Golding M. J. et al. Two-phase gravity currents in porous media //Journal of fluid mechanics. 2011. Vol. 678. P. 248–270.
- 48. Martinez M. J., Hesse M. A. Two-phase convective CO_2 dissolution in saline aquifers //Water Resources Research. 2016. Vol. 52, No. 1. P. 585–599.
- 49. Anon, 2020. Real gases (deviations from ideal behavior). Available at: https://chem.libretexts.org/@go/page/72664.
- 50. Wen B. et al. Convective carbon dioxide dissolution in a closed porous medium at low pressure //Journal of Fluid Mechanics. – 2018. – Vol. 854. P. 56–87.
- Bachu S., Gunter W. D., Perkins E. H. Aquifer disposal of CO₂: hydrodynamic and mineral trapping //Energy Conversion and management. – 1994. – Vol. 35, No. 4. – P. 269–279.
- 52. Pruess K., Garcia J. Multiphase flow dynamics during CO_2 disposal into saline aquifers //Environmental Geology. 2002. Vol. 42, No. 2. P. 282-295.
- 53. Nordbotten J. M., Celia M. A., Bachu S. Injection and storage of CO_2 in deep saline aquifers: analytical solution for CO_2 plume evolution during injection //Transport in Porous media. – 2005. – Vol. 58, No. 3. P. 339–360.
- 54. Rutqvist J., Tsang C. F. A study of caprock hydromechanical changes associated with CO₂injection into a brine formation //Environmental Geology. – 2002. – Vol. 42, No. 2–3. P. 296–305.
- 55. Comerlati A. et al. Fluid-dynamic and geomechanical effects of CO_2 sequestration below the Venice Lagoon

//Environmental & Engineering Geoscience. – 2006. – Vol. 12, No. 3. P. 211–226.

- 56. Bau D. et al. Basin-scale compressibility of the Northern Adriatic by the radioactive marker technique //Geotechnique. 2002. Vol. 52, No. 8. P. 605-616.
- 57. Ferronato M. et al. Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs //International journal for numerical and analytical methods in geomechanics. 2008. Vol. 32, No. 6. P. 633–657.
- 58. Ferronato M, G. Gambolati , C. Janna and P. Teatini, Poro-mechanical modeling of CO_2 sequestration in exploited gas fields, 4–th Biot Conference on Poromechanics, New York, June 8–10, 2009
- 59. T. I. Bj0rnara, E. Aker and E. Skurtveit Coupled Flow and Geomechanical Model for CO_2 Injection and Storage, 4–th Biot Conference on Poromechanics, New York, June 8–10, 2009
- Chadwick A. et al. Best practice for the storage of CO₂ in saline aquifers-observations and guidelines from the SACS and CO₂ STORE projects. – British Geological Survey, 2008. – Vol. 14.
- Афанасьев А. А., Мельник О. Э., Цветкова Ю. Д. Моделирование фильтрации при подземном захоронении углекислого газа с применением высокопроизводительных вычислительных систем //Вычислительная механика сплошных сред. – 2013. – N 4 (6). – С. 420–429.
- 62. Afanas'ev A.A., Mel'nik O.E. Ob odnom metode rascheta teplofizicheskikh svoistv pri do- i

zakriticheskikh uslovi
iakh // Fiz.-khim. kin. v gaz. dinamike. – 2013. – T. 14.

- Afanas'ev A.A., Mel'nik O.E. O postroenii konechno-raznostnoi skhemy rascheta fil'tratsii pri okolokriticheskikh termodinamicheskikh usloviiakh // Vychisl. mekh. splosh. sred. – 2013. – Vol. 6, No. 2. P. 246–255.
- 64. Алтунин В.В. Теплофизические свойства двуокиси углерода. - М.: Издательство стандартов, 1975. – 546
- 65. Aziz K., Settari A. Petroleum reservoir simulation. -London-NY: Applied Science Publishers, 1979. – 476 p.
- Баренблат Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. - М.: Недра, 1984. – 208 с.
- 67. Афанасьев А.А., Бармин А.А. Нестационарные одномерные фильтрационные течения воды и пара с учётом фазовых переходов // МЖГ. – 2007. – N 4. – С. 134-143.
- Ривкин С.Л., Александров А.А. Теплофизические свойства воды и водяного пара. - М.: Энергия, 1980. – 424 с.
- Pruess K., Spycher N. ECO2N A fluid property module for the TOUGH2 code for studies of CO₂ storage in saline aquifers // Energ. Convers. Manage. – 2007. – Vol. 48, No. 6. P. 1761–1767.
- Афанасьев А.А., Мельник О.Э. О математическом моделировании многофазной фильтрации при околокритических условиях // Вестн. Моск. ун-та. Сер. 1. Математика, механика. – 2013. – N 3. – С. 68–72.

- Brooks R.H., Corey A.T. Hydraulic properties of porous media // Hydrol. Papers. - Fort Collins, Colorado: Colorado State University. - 1964. - N. 3. 37 p.
- 72. Kim K., Vilarrasa V., Makhnenko R. Y. CO₂ injection effect on geomechanical and flow properties of calciterich reservoirs //Fluids. – 2018. – Vol. 3, No. 3. P. 66.
- Bear J. Dynamics of fluids in porous media. Elsevier, New York //Dynamics of fluids in porous media. Elsevier, New York. – 1972.
- 74. Van Genuchten M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils //Soil science society of America journal. – 1980. – Vol. 44, No. 5. P. 892–898.
- 75. Vilarrasa V., Makhnenko R., Gheibi S. Geomechanical analysis of the influence of CO_2 injection location on fault stability //Journal of Rock Mechanics and Geotechnical Engineering. 2016. Vol. 8, No. 6. P. 805–818.
- Vilarrasa V., Makhnenko R. Y. Caprock integrity and induced seismicity from laboratory and numerical experiments //Energy Procedia. – 2017. – Vol. 125. P. 494–503.
- 77. Dentz M., Tartakovsky D. M. Abrupt-interface solution for carbon dioxide injection into porous media //Transport in Porous Media. – 2009. – Vol. 79, No. 1. P. 15–27.
- Olivella S. et al. Numerical formulation for a simulator (CODE BRIGHT) for the coupled analysis of saline media //Engineering computations. – 1996.

- 79. Vilarrasa V. et al. Effects of CO_2 compressibility on CO_2 storage in deep saline aquifers //Transport in porous media. 2010. Vol. 85, No. 2. P. 619-639.
- 80. Vilarrasa V. et al. Liquid CO_2 injection for geological storage in deep saline aquifers //International Journal of Greenhouse Gas Control. 2013. Vol. 14. P. 84–96.
- Biot, M. A. General theory of three-dimensional consolidation / M. A. Biot // J. Appl. Phys. – 1941. – Vol.12, No. 2. P. 155–164.
- Biot, M. A. Theory of propagation of elastic waves in fluid-saturated porous solid / M. A. Biot // J. Acoust. Soc. Amer. - 1956. - Vol. 28, No. 2. - P. 168-191.
- 83. Terzaghi, K. Theoretical Soil Mechanics / K. Terzaghi.
 New York: Jhon Wiley, 1943. 528 p.
- 84. Papin A.A., Tokareva M.A. On Local solvability of the system of the equation of onedimensional motion of magma // Journal of Siberian Federal University. Mathematics and Physics. – 2017. – No. 3. P. 385 – 395.
- 85. Вирц Р. А. Численное решение одной задачи закачки углекислого газа в горную породу //Известия Алтайского государственного университета. – 2021. – N 4 (120). – С. 81-85.
- 86. Папин А. А., Подладчиков Ю. Ю. Изотермическое движение двух несмешивающихся жидкостей в пороупругой среде //Известия Алтайского государственного университета. – 2015. – N 1/2 (85). – С. 131 – 135.
- 87. Virts R.A., Papin A.A., Tokareva M.A. Non-isothermal filtration of a viscous compressible fluid in a viscoelastic

porous medium // Journal of Physics: Conference Series. – 2020. – Vol. 1666, No. 1.

- Papin A.A., Tokareva M.A., Virts R.A. Filtration of Liquid in a Non-isothermal Viscous Porous Medium // Journal of Siberian Federal University. Mathematics & Physics. - 2020. - Vol. 13, No. 6. P. 763-773.
- 89. Вирц Р.А., Папин А.А., Вайгант В.А. Численное решение одномерной задачи фильтрации несжимаемой жидкости в вязкой пористой среде // Известия Алтайского государственного университета. – 2018. – N 4 (102). – С. 62 – 67.
- 90. Сибин А. Н., Сибин Н. Н. Численное решение одномерной задачи фильтрации с учетом суффозионных процессов // Известия Алтайского государственного университета. 2017. N 1 (93). – С. 123 – 126.
- 91. Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration poroelastic media // Journal of Physics: Conference Series. – 2016. – Vol. 722, No. 1.
- 92. Tokareva M.A., Papin A.A. Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium // Journal of Applied and Industrial Mathematics. 2019. Vol. 13, No. 2. P. 350 – 362.
- 93. Connoly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock // Geodinamica Acta. 1998. Vol. 11, No. 2-3. P. 55 – 84.
- 94. Самарский А. А. Теория разностных схем: учебное пособие. Наука. Гл. ред. физ.-мат. лит., 1983.
- 95. Самарский А. А., Гулин А. В. Численные методы. 1989.

Оглавление

Введение 3 Математические модели $\mathbf{7}$ 1 1 Моделирование переноса наночастиц в многофазных потоках в пористых средах: сек-7 Геологическое связывание СО2 в водонос-2ном пласте в условиях гидратообразования 16 3 Модель процесса захоронения углекислого газа в гидратонасыщенном пласте 224 Моделирование конвективного перемешива-31 5Конвективное растворение диоксида углерода в закрытой пористой среде в условиях высокого давления реального газа 35 Поромеханическое моделирование секвестра-6 ции СО₂ на разрабатываемых газовых ме-39 сторождениях $\overline{7}$ Сопряженная модель потока и геомеханика для закачки и хранения CO_2 40 8 Моделирование фильтрации при подземном захоронении углекислого газа с применением высокопроизводительных вычислительных систем 43

9	Влияние закачки CO_2 на геомеханические	
	и фильтрационные свойства богатых каль-	
	цитом коллекторов	46
10	Модель захоронения углекислого газа в вяз-	
	коупругой пористой среде	50
Заключение		55
Библиографический список		56

Учебное издание

Рудольф Александрович **Вирц,** Александр Алексеевич **Папин**

ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ХРАНЕНИЯ УГЛЕКИСЛОГО ГАЗА В ГЕОЛОГИЧЕСКИХ ФОРМАЦИЯХ

Учебное пособие

Опубликовано в авторской редакции Подготовка оригинал-макета Р.А. Виру Дизайн обложки Ю.В. Луценко

Издательство Алтайского государственного университета Издательская лицензия ЛР 020261 от 14.01.1997.

Подписано в печать 26.11.2021. Формат 60×84 ¹/₁₆. Бумага офсетная. Усл. печ. л. 4,06. Тираж 100 экз. Заказ 455.

Типография Алтайского государственного университета: 656049, Барнаул, ул. Димитрова, 66