ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

М.Ф. Мохнач, Т.И. Прокофьева, Н.А. Бродская

МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО УЧЕБНОЙ ГЕОЛОГИЧЕСКОЙ ПРАКТИКЕ

РГГМУ Санкт-Петербург 2019 УДК 55(072+076) ББК 26.я73 М86

Рецензент: Н.А. Виноград, ст. научн. сотр. ООО «Геологический центр СПбГУ», кандидат геол.-мин. наук, доцент.

Мохнач М.Ф., Прокофьева Т.И., Бродская Н.А.

М86 Методическое пособие по учебной геологической практике. – СПб.: РГГМУ, $2019.-67~{\rm c}.$

В пособии рассматриваются методы и порядок проведения учебной геологической практики, завершающей изучение дисциплин «Геология» и «Геофизика» для направлений «Экология и природопользование» и «Прикладная гидрометеорология».

Даны методики проведения полевых и камеральных работ, правила техники безопасности при проведении геологических маршрутов. Приведены характеристика физико-географических условий района проведения практики, описание маршрута по долинам рек Саблинка и Тосна.

Пособие рассчитано на студентов и преподавателей, участвующих в проведении учебной геологической и геофизической практик.

УДК 55(072+076) ББК 26.я73

- © Мохнач М.Ф., 2019
- © Прокофьева Т.И., 2019
- © Бродская Н.А., 2019
- © Российский государственный гидрометеорологический университет (РГГМУ), 2019

Введение

В программу обучения студентов Гидрологического факультета и Факультета экологии и природопользования РГГМУ входит учебная практика по геологии, завершающая изучение дисциплин «Геофизика» и «Геология».

Учебная практика по геологии проводится с целью закрепления теоретических знаний студентов и обучения их практическим навыкам работы в полевых условиях при производстве геологической съемки местности. Среди задач, решаемых в ходе учебной практики, выделяются следующие:

- получение обучающимися начальных навыков полевых геологических исследований;
- знакомство обучающихся с методами проведения геологических маршрутов и основными приемами полевых геологических исследований (ведение полевого дневника, изучение и описание обнажений, замеры мощностей и элементов залегания пород, отбор образцов пород и окаменелостей, составление разрезов и стратиграфических колонок);
- обучение обучающихся приемам и методам камеральной обработки собранных полевых материалов.

Кроме того, в ходе учебной практики на различных геологических объектах обучающиеся изучают особенности взаимодействия экзогенных и эндогенных процессов.

Практика проводится летом после завершения второго семестра и включает полевой и камеральный периоды. Район проведения практики — Тосненский район Ленинградской области в пределах геологического заповедника, приуроченного к долинам рек Саблинка и Тосна.

1. Общая характеристика района проведения учебной практики

Учебная геологическая практика проводится в окрестностях п. Ульяновка (ж.д. ст. Саблино) Тосненского района Ленинградской области в долинах рек Саблинка и Тосна. Этот район расположен в северо-западной части Русской платформы вблизи южной окраины Балтийского шита.

1.1. Рельеф

Рельеф северо-западной части Русской платформы сформировался в ходе длительной геологической эволюции в результате действия многих факторов – движений земной коры и колебаний уровня моря, денудации и аккумуляции, климатических изменений. Следствием этого явилось разнообразие форм современного рельефа.

К северу от Санкт-Петербурга на Карельском перешейке на участке Русской платформы, прилегающем к Балтийскому щиту, прослеживается полоса холмистого рельефа. Холмы округлой формы, сложенные мореной, возникли при таянии ледника. Их абсолютные отметки возрастают с юго-востока на северо-запад от 45–50 м до 115–130 м.

К югу от возвышенностей Карельского перешейка располагается обширная Балтийско-Ладожская низменность, так называемая Кембрийская низина. Кембрийская низина представляет собой заболоченную, слабохолмистую поверхность, слегка наклонённую в сторону Финского залива. Она простирается до южных берегов Финского залива и Ладожского озера, где ограничивается глинтом – уступом Ордовикского плато, западная часть которого (Ижорское плато) показана на рис. 1.1. Низина имеет денудационное происхождение. Она выработана в верхнепротерозойских и нижнекембрийских песчаниках и глинах. Кембрийская низина ограничена с севера Балтийским щитом, а с юга Ордовикским плато.

Балтийско-Ладожский глинт, ограничивая с юга Кембрийскую низину, протягивается к югу от Финского залива и Ладожского озера, от р. Нарва на западе до р. Сясь на востоке. Глинт – это абразионный уступ. Он был берегом древнего водного бассейна. Этот бассейн существовал в послеледниковое время (около 7-7,5 тыс. лет назад) на месте современного Балтийского моря, которое было значительно большей площади и занимало, среди прочих, территорию Санкт-Петербурга и его окрестностей. Постепенно, вследствие поднятия земной коры, площадь моря сократилась до современных размеров. Глинт представляет собой хорошо выраженный в рельефе уступ шириной 5-8 км. Максимальные отметки бровки уступа – 100–120 м (относительная высота 30–40 м), приурочены к широтной его части между с. Копорье и г. Красным Селом. Глинт характеризуется извилистыми очертаниями, обусловленными эрозионными процессами. Почти на всём протяжении глинт прорезан оврагами и речными долинами.

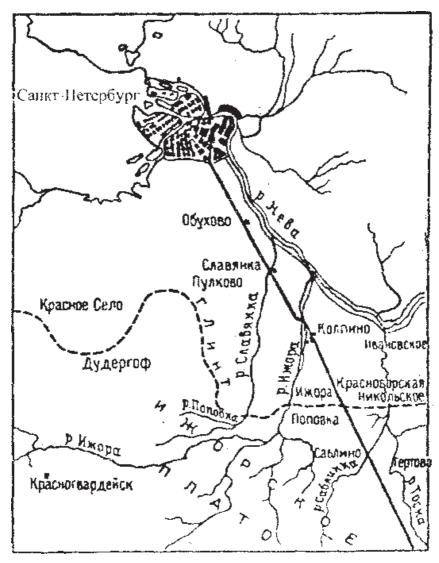


Рис. 1.1. Схема юго-восточных окрестностей Санкт-Петербурга

Глинт пересекают реки Копорка, Ижора, Саблинка, Тосна, Лава и другие, берущие начало на Ордовикском плато. Именно в долинах этих рек находятся главные геологические обнажения с коренными выходами нижнепалеозойских пород.

Ограниченное с севера глинтом Ордовикское плато представляет собой слабохолмистую возвышенность с абсолютными отметками поверхности до 150 м, переходящую к югу в девонскую равнину. Плато разделяется на два обособленных участка: западный, более приподнятый и обширный, называемый, как указано выше, Ижорским плато или Ижорской возвышенностью, и восточный, более пологий, расположенный между реками Мга и Волхов, называемый Волховским плато.

Абсолютные отметки Ижорской возвышенности на большей её части достигают 100 м и более, убывая в восточном направлении. Наибольшие высоты отмечены у ст. Можайская (горы Воронья и Ореховая). Сложена Ижорская возвышенность почти горизонтально залегающими осадочными породами нижнего палеозоя, падающими на юг-юго-восток (угол падения менее одного градуса).

Отличительной чертой Ижорской возвышенности является сравнительно небольшое количество рек и озёр. Это в значительной степени объясняется близостью к земной поверхности легко растворимых горных пород, таких как известняки, что вызывает развитие карстовых процессов. Они заключаются в разрушении известняков и образовании в них многочисленных провальных воронок и подземных каналов, по которым вода уходит вниз.

Вся площадь предглинтовой низменности, глинта и Ордовикского плато перекрыта чехлом четвертичных отложений, преимущественно ледникового и водно-ледникового происхождения. Это указывает на доледниковый возраст этих элементов рельефа — плато, глинта и предглинтовой низменности.

1.2. Гидрография

Геологический маршрут учебной практики проходит по долинам рек Саблинка и Тосна на участке пересечения ими ордовикского уступа Ижорской возвышенности. Предполагают, что название реки Саблинка происходит от французского слова *le sable* — песок. Река Тосна (левый приток р. Невы) берёт начало на Ижорской возвышенности и впадает в р. Неву у Ивановских порогов, в 40 км выше её устья. Река Саблинка (левый приток р. Тосны), вытекает из болот в районе ст. Саблино. Питание этих рек, происходит, в основном, за счёт талых, дождевых, болотных и подземных вод.

Долины рек формируются под влиянием эрозионных процессов. По маршруту учебной практики наблюдаются различные

формы речных долин: симметричные и асимметричные террасированные, каньонообразные (U-образные), V-образные и ящикообразные. На террасированных участках насчитывается до трех надпойменных террас.

Форма речных долин зависит от литологического состава размываемых пород и положения базиса эрозии, которые определяют преобладание того или иного вида эрозии. Наиболее глубокие каньонообразные долины формируются при врезании реки в пески и песчаники на участках, удаленных от устья, т. е. там, где преобладает глубинная эрозия. У-образные долины образуются в сравнительно трудно размываемых водоупорных глинах. Здесь за счет талых и дождевых вод, попадающих на водоупорную поверхность, формируется интенсивный склоновый сток, способствующий смыву глинистых частиц с бортов долины. На участках, находящихся недалеко от базиса эрозии, или при наличии в разрезе трудно размываемых пород преобладает боковая эрозия, в результате которой разрабатываются широкие долины, а русла рек становятся извилистыми с многочисленными меандрами и старицами.

В качестве примера интенсивного развития боковой эрозии на р. Тосне можно указать на участок реки, находящийся примерно в 400 м ниже по течению от автомобильного моста. Здесь в результате развития меандры произошел перехват р. Тосной её левого притока р. Саблинки, которая ранее впадала в р. Тосну приблизительно на 500 м ниже по течению. В долине р. Тосны сохранился останец обтекания — часть размытого этой рекой водораздела.

Процессы углубления и расширения речных долин действуют совместно. Расширение долин происходит в результате подмывания склонов, что сопровождается оползнями и обвалами, и смыва рыхлых продуктов выветривания дождевыми и талыми водами. Наличие террас на склонах речных долин связано с колебаниями базиса эрозии. Опускания низовьев рек или восходящие движения в верховьях вызывают интенсификацию глубинной эрозии, образуется новая пойменная терраса, а от старой поймы остается горизонтальная или слабонаклонная площадка — надпойменная терраса.

Для обеих рек характерен неустановившийся продольный профиль равновесия, о чем свидетельствует наличие порогов, водопадов, частая смена участков с различными скоростями течения. Образование порогов и водопадов связано с присутствием в разрезе пласта плотных глауконитовых известняков, практически горизонтально залегающих на более податливых, легко размываемых

песчано-глинистых породах. Известняки образуют уступы, пересекающие русла рек и являющиеся местными базисами эрозии для вышележащих участков. Падающая с уступов вода образует водопад на р. Саблинке и порого-водопад на р. Тосне.

Ввиду большой прочности глауконитовых известняков, за что они были названы «дикарями», последние слабо поддаются размыву. Вода, падая с уступов, размывает податливые слои песчано-глинистой толщи, подстилающей известняки. Одновременно происходит подземное размывание этой толщи инфлюационной водой, проникающей по трещинам в известняках. Под известняками вырабатывается эворзионный котел, и формируется нависающий карниз. Когда масса нависающего над котлом известняка становится больше предела его прочности, происходит обрушение карниза. Так развивается регрессивная эрозия. Разрушение пласта плотных глауконитовых известняков происходит по системе трещин, ориентированных в северо-западном (315° C3) и реже в северо-восточном (60° CB, 35° CB) направлениях. Трещины расположены преимущественно на расстоянии 2–3 м друг от друга. Ширина трещин колеблется от долей миллиметра до 2-3 см, глубина достигает 2 м. Скорость регрессивной эрозии, наблюдающейся на реках Саблинка и Тосна, составляет, в среднем, 0,15 м/год, достигая в отдельные годы 0,5-0,6 м/год.

1.3. Геологическое строение

Территория Ленинградской области расположена в зоне сочленения двух глобальных геологических структур — Русской платформы и Балтийского щита. Русская платформа сложена комплексом осадочных отложений, залегающих на кристаллическом фундаменте. Балтийский щит образуют породы фундамента платформы, выходящие на поверхность в северной части Ленинградской области примерно вдоль линии г. Выборг — г. Приозерск.

Поверхность фундамента полого погружается па юго-восток. При бурении в районе г. Сестрорецка породы фундамента вскрыты на глубине 150 м, на территории Санкт-Петербурга на глубине 200—215 м, в г. Павловске и в п. Сиверский кровля фундамента вскрыта на глубинах 290 м и 380 м соответственно. Погружение фундамента происходит с углом падения 12'—15', т. е. 2,5—4,0 м на 1 км. Фундамент Русской платформы сложен метаморфически-

Фундамент Русской платформы сложен метаморфическими, сильно дислоцированными архейскими и протерозойскими

породами. Это гнейсы, кристаллические сланцы, амфиболиты с интрузиями кислого и основного составов. Рельеф фундамента осложнён многочисленными поднятиями с небольшими амплитудами.

Формирование горных пород осадочного чехла определялось эпейрогеническими движениями фундамента платформы. Трансгрессии моря и периоды осадконакопления сменялись регрессиями и периодами размыва уже сформированных отложений. Это приводило к продолжительным перерывам в осадконакоплении. На рис. 1.2 приведена схематическая геологическая карта дочетвертичных отложений района учебной практики.

Ниже даётся краткое описание литологического состава горных пород осадочного чехла.

Протерозойская эратема (группа)

Верхнепротерозойские породы являются древнейшими в составе осадочного чехла на описываемой территории. Это отложения валдайской серии, являющейся верхней частью вендского комплекса. Более древние отложения протерозойской группы вскрываются

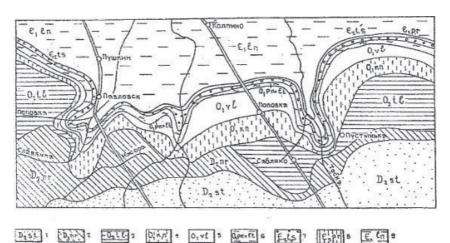


Рис. 1.2. Схематическая геологическая карта дочетвертичных отложений района учебной практики (по материалам СЗГУ): 1, 2 — среднедевонские отложения: 1 — старооскольский горизонт, 2 — наровский горизонт; 3 — среднеордовикские отложения: таллиннский горизонт; 4—6 — нижнеордовикские отложения: 4 — кундский горизонт; 5 — волховский горизонт: 6 — леэтский и пакерортский

4 – кундский горизонт; 5 – волховский горизонт: 6 – леэтский и пакерортский горизонты; 7 – среднекембрийские отложения, тискреский горизонт; 8, 9 – нижнекембрийские отложения: 8 – пиритаский горизонт; 9 – лонтоваский горизонт

только буровыми скважинами в пределах глубоких прогибов кристаллического фундамента, В валдайской серии в данном районе выделяются гдовский и котлинский горизонты.

Осадконакопление в конце позднего протерозоя происходило в морских условиях. Начавшееся в это время интенсивное прогибание земной коры привело к образованию на данной территории обширного мелководного морского бассейна и накоплению терригенных осадков (песчано-глинистые отложения гдовского горизонта). Затем после непродолжительного подъёма земной коры снова произошло её опускание. Наступившая трансгрессия привела к образованию обширного морского бассейна и отложению глин котлинского горизонта. Произошедшее в конце вендского периода поднятие данного участка Русской платформы привело к частичному осущению существовавшего обширного морского бассейна.

 Γ довский горизонт (PR_3gd)

Наименование происходит от г. Гдова, расположенного на р. Гдовке близ её впадения в Чудское озеро. Отложения гдовского горизонта залегают трансгрессивно на эродированной поверхности кристаллического фундамента и образуют почти сплошной покров, в значительной степени нивелирующий неровности поверхности фундамента. Мощность отложений гдовского горизонта к югу от Санкт-Петербурга составляет 60–80 м, далее к югу-юго-востоку она резко возрастает до 250 м и более в районе г. Валдая, где горизонт залегает на глубинах 1100–1300 м. Горизонт представлен песчано-алевритовыми разностями пород с прослоями уплотнённых глин и аргиллитов. Из органических остатков установлено присутствие комплекса спор.

Котлинский горизонт (PR₃kt)

Наименование происходит от о. Котлин в Финском заливе. Мощность котлинского горизонта менее изменчива, чем гдовского. В центральной части Ленинградской области она составляет 80–100 м, далее к югу увеличивается до 170 м и затем в районе г. Валдая снова уменьшается до 105–110 м. Отложения котлинского горизонта, как и других пластов осадочного чехла северо-западной части Русской платформы, погружаются к юго-востоку. Если глубина его залегания в районе Предглинтовой низменности составляет около 70 м, то у г. Валдая она доходит до 1250 м. Котлинский горизонт на рассматриваемой территории характеризуется сравнительным постоянством разреза и представлен однообразной толщей плотных глин зеленовато-серого цвета в различной степени алевритовых.

Для глин характерна тонкая слоистость, обусловленная частым, через 1–3 мм, переслаиванием глинистых и алевритовых прослоев. Слоистость в глинах горизонтальная и мелковолнистая. Органическими остатками глины бедны. На плоскостях напластования обнаружены скопления спор водорослей рода Laminaria (Laminarites sp. Qpik). Отсюда название этих глин — ляминаритовые. Химический состав глин довольно однообразен: преобладают оксиды кремния, алюминия, железа. В ляминаритовых глинах проложены тоннели Санкт-Петербургского метро.

Палеозойская эратема (группа)

Толщу осадков верхнего протерозоя несогласно перекрывают нижнепалеозойские отложения кембрийской и ордовикской систем. Кембрий на рассматриваемой территории представлен двумя отделами – нижним и средним, ордовик – только нижним отделом.

Кембрийская система (Є)

Нижний отдел

Нижний отдел кембрия представлен тремя горизонтами: ломоносовским, лонтоваским и пиритаским.

Образование осадков раннего кембрия, как и позднего протерозоя, продолжалось в условиях мелководных морских бассейнов в периоды погружений платформы (глинистые пески и песчаники ломоносовского горизонта). Затем началось длительное опускание данной части платформы, что привело к накоплению мощной толщи глин лонтоваского горизонта, а после поднятия земной коры в условиях мелководья произошло отложение глинистых песков пиритаской свиты.

Накопление осадков происходило в условиях недостатка кислорода (восстановительная обстановка). На это указывают бедность органических остатков, наличие пирита и марказита и отсутствие карбонатов.

Ломоносовский горизонт (C_1 lm)

Название предложено в 1958 г. академиком Б.С. Соколовым и происходит от г. Ломоносова. Мощность ломоносовского горизонта колеблется от нескольких метров до 20-ти, иногда 30-ти метров, увеличиваясь у г. Валдая до 50 м. В основном ломоносовский горизонт сложен неравномерно переслаивающимися песками, песчаниками, алевролитами и глинами, несогласно залегающими на отложениях котлинского горизонта. Окраска светло-зеленовато-серая.

Глины, весьма сходные с подстилающими ляминаритовыми глинами, присутствуют в виде тонких прослоев и линз, мощностью от нескольких сантиметров до одного метра. Из органических остатков обнаружены остатки трубчатых червей и споры, подтверждающие раннекембрийский возраст ломоносовской свиты.

Горизонты, описание которых приведено выше, непосредственно в районе учебной практики в естественных обнажениях не вскрываются. Отложения, залегающие выше по разрезу, вскрываются в долинах рек Саблинка и Тосна.

Лонтоваский горизонт (C_1 ln)

Название происходит от карьера Лонтова у г. Кунды (Эстония). Лонтоваский горизонт известен также под названием горизонт синих глин. Глины широко распространены. В предглинтовой низменности они залегают под четвертичными отложениями, а к югу от глинта погружаются на значительные глубины, где перекрыты более молодыми палеозойскими породами. На дневную поверхность выходят в многочисленных обнажениях по долинам рек, прорезающих ордовикский уступ: р. Саблинка, Тосна, Ижора, Поповка. Мощность синих глин в предглинтовой низменности составляет 20–50 м, это неполная мощность, так как часть горизонта была размыта последующей денудацией. В районе Ижорского плато мощность синих глин достигает 100–130 м, а в Валдае 160 м и более.

Глины на всей площади распространения отличаются сравнительно однородным составом и строением. Цвет меняется от голубоватого до зеленовато-серого. Глины пластичные, быстро размокают в воде, местами аргиллитоподобные, содержат редкие маломощные прослои и линзы глинистых песков. В сухом состоянии глины сланцеватые, но бывают и массивные с раковистым изломом. Встречаются кристаллы, друзы пирита и марказита. В химическом составе преобладают оксиды кремния и алюминия.

Глины гидрослюдистые. В их составе преобладают различные типы гидрослюд, образование которых обычно происходит на первых этапах выветривания материнских пород в условиях холодного и умеренно тёплого климата.

Органические остатки малочисленны. Встречаются остатки трубчатых червей, трилобитов и спор, подтверждающие раннекембрийский возраст лонтоваского горизонта.

Глины легкоплавкие. Температура плавления слагающих её глинистых минералов менее 1350 °C. Глины используются для производства кирпича, керамзита. При добавлении минеральных

компонентов, повышающих их огнеупорность, глины идут на про-изводство керамической плитки.

К северо-востоку от района проведения практики у г. Никольское кристаллический фундамент образует Никольско-Тосненское структурное поднятие. Лонтоваские глины залегают здесь под маломощными четвертичными отложениями, образуя Чекаловское и Красноборское месторождения. На базе глин Чекаловского месторождения работает ряд крупнейших в Ленинградской области предприятий керамической промышленности.

Пиритаский горизонт (\mathcal{C}_{\imath} pr)

Название произошло от р. Пириты (Эстония). Раньше отложения свиты описывались как эофитоновые песчаники (по названию водоросли *Eophyton sp. Linnarsson*). Контакт пиритаских песчаников с нижележащими лонтоваскими глинами выражен неотчётливо, отмечается постепенный переход через переслаивание песчаников с глинами. В нижней части свиты в песчаниках наблюдаются частые тонкие прослои глин, мощностью от долей сантиметра до 5 см. Верхняя часть свиты представлена мелкозернистыми кварцевыми слабо сцементированными песчаниками светло-зеленовато-серого цвета с редкими тонкими прослоями глин. Глины в прослоях зеленовато-серого цвета. В песчаниках отмечается горизонтальная и косая слоистости. Мощность пиритаских песчаников в районе Ордовикского плато колеблется от 1 до 3 м.

Из органических остатков обнаружены споры нижнекембрийского возраста и раковины беззамковых брахиопод $Mickwitzia\ monilifera\ Linnarson.$

\dot{C} редний отдел (\dot{C} ,)

В начале среднего кембрия произошла новая трансгрессия моря, что привело к накоплению ижорских песков тискреского горизонта. Отложение песков тискреского горизонта происходило в мелководном замкнутом бассейне, окружённом пониженной равниной, временами покрывающейся водой.

В конце среднего кембрия море покинуло эту территорию, на ней установился континентальный режим, и происходил размыв отложившихся песчаных пород, продолжавшийся в течение всего позднего кембрия.

Тискреский горизонт (\mathcal{C}_{2} ts)

Название произошло от р. Тискри (Тискре, Эстония). Пески тискреского горизонта залегают на размытой поверхности пиритаского

горизонта. Мощность пласта на Ижорском плато колеблется от 12 до 14 м, достигая мощности 105 м и более в районе г. Валдая.

Горизонт представляет собой толщу кварцевых, хорошо отсортированных мелкозернистых песков светло-серого и розового цветов. Пески слабо сцементированы, цемент преимущественно глинистый. Наблюдается горизонтальная и косая слоистости. Содержание кварца от 88 % и более. Примесями являются полевые шпаты (2–3 %), карбонаты (1–3) % и минералы тяжёлой фракции: лимонит, гидрогётит, пирит, ильменит и т. п. Местами количество кварца достигает 99 %, но примесь оксидов железа не позволяет использовать песок тискреского горизонта как сырьё для производства прозрачного стекла. К настоящему времени все найденные линзы высококачественных разностей песков, не содержащие оксидов железа, выработаны.

Органические остатки редки. Встречаются остатки раковин беззамковых брахиопод. Есть комплекс акритарх.

В конце 90-х годов стратиграфия пород среднего кембрия в пределах северо-западной части Русской платформы была изменена. Они описываются как отложения саблинской свиты (\mathfrak{C}_2 sb), которые разделяют на две подсвиты: нижнесаблинскую (пиритаский горизонт) и верхнесаблинскую (тискреский горизонт).

Ордовикская система (О)

Нижний отдел

К югу от ордовикского уступа Ижорского плато отложения раннего ордовика представлены породами тремадокского и аренигского ярусов, которые перекрыты четвертичными отложениями.

В нижнем ордовике происходила новая мощная трансгрессия моря. На её начальном этапе образовались оболовые пески и песчаники пакерортского горизонта (тосненская свита). Литологический состав нижнеордовикских терригенных отложений и сохранившаяся в них фауна позволяют сделать вывод, что накопление этих осадков (пески) происходило в мелководном морском бассейне нормальной солёности.

В аренигский век, когда трансгрессия достигла своего максимума, в условиях глубоководного морского бассейна происходило образование мощной толщи карбонатных отложений, представленных толщей известняков в разной степени глинистых, доломитизированных. По мере расширения и углубления морского бассейна стали

откладываться известняки, обогащённые глауконитом. Колебания уровня моря отражались в составе карбонатных отложений, в накоплении мергелей, глинистых и глауконитовых прослоев.

В среднем ордовике начался новый подъём территории, море отступило, и территория Ордовикского плато, прилегающая к Приневской низменности, стала сушей. Установились континентальные условия, которые существуют до настоящего времени.

Пакерортский горизонт (O_pk)

Название произошло от мыса Пакерорт (Эстония). В районе Ижорского плато пакерортский горизонт состоит из двух толщ: нижней, сложенной оболовыми песчаниками (тосненская свита), и верхней, представленной диктионемовыми сланцами (копорская свита).

Тосненская свита. Оболовые песчаники залегают трансгрессивно на песках тискреского горизонта. Мощность песчаников тосненской свиты на Ижорском плато достигает 2–3 м. У г. Чудова она возрастает до 30 м. Слагающие тосненскую свиту пески и рыхлые песчаники плохо отсортированные, разнозернистые, с преобладанием мелкозернистых. Окраска буровато- или кирпично-красная, местами лилово-серая. Интенсивность окраски является результатом просачивания железосодержащих растворов сквозь вышележащие диктионемовые сланцы копорской свиты. Нередко непосредственно под сланцами наблюдаются линзы железистого песчаника. Пески в основном кварцевые (содержание кварца 85–96 %) с примесями полевых шпатов и слюд. Тяжелые минералы представлены магнетитом, пиритом и т. п. На отдельных интервалах, чаще в основании толщи, присутствуют скопления детрита и целых створок раковин беззамковых брахиопод рода *Obolus*.

В состав створок раковин этих брахиопод входит фосфорный ангидрид $P_2 0_5$. В местах скопления раковин содержание форфорного ангидрита в песках становится равным 5–8 % и более. В таких случаях образуется фосфоритовая руда. В прошлые годы на левом берегу р. Луги к западу от г. Кингисеппа разрабатывалась промышленная залежь фосфоритов — Кингисеппское фосфоритовое месторождение. Мощность оболовых песчаников в районе месторождения колеблется от 1 до 5 м. Содержание раковинного детрита в песках иногла достигает 40 %.

Органические остатки оболовых песков и песчаников представлены обломками раковин беззамковых брахиопод различных

видов рода *Obolus*, из которых наиболее, часто встречается вид *Obolus apollinis Eichwald*, показанный на рис. 1.3.

Копорская свита. Диктионемовые сланцы залегают на оболовых песчаниках, распространены на ограниченной территории, только на севере ордовикского плато в пределах полосы шириной от 15 до 25 км, прилегающей к глинту. Мощность пласта диктионемовых сланцев на территории Ижорской возвышенности составляет 0,1–0,2 м. Диктионемовые сланцы представляют собой аргиллитоподобную глинистую породу, буровато-коричневого, почти чёрного цвета, тонкослоистую, тонкоплитчатую. В однородной массе сланца иногда присутствуют прослои и линзы мелкозернистого серого песка или алеврита с обломками раковин *Obolus*. Встречаются мелкие кристаллы пирита, марказита, гипса и ангидрита. В сланцах отмечается высокое содержание органического материала – до 15–20 %.

Органические остатки в диктионемовых сланцах представлены граптолитами рода *Dictyonema flabeiliforme Eichwald*, показанными на рис. 1.4.

Название происходит от п. Леэтсе (Эстония). Горизонт распространён повсеместно к югу от глинта, залегает на диктионемовых сланцах. Мощность горизонта колеблется от 0,3 до 1,5 м, на Ижорском плато — 0,6—1,0 м. Представлен средне-и мелкозернистыми глауконитовыми песками и слабо сцементированными песчаниками с прослоями глин. В нижней части песчаник неплотный, имеет рыхлое строение. По мере приближения к верхней границе он постепенно обогащается карбонатом кальция, становится более твёрдым и постепенно переходит в вышележащие глауконитовые известняки волховского горизонта. Значительное присутствие глауконита окрашивает породу в зеленоватый цвет с буроватыми пятнами вследствие образования оксидов железа при разложении глауконита. Минеральный состав песков леэтского горизонта крайне неоднородный. Содержание кварца 35—45 %, фосфатов 5—50 %, глауконита от первых процентов до 50—70 %.

Из палеонтологических остатков встречаются трилобиты и замковые брахиоподы *Orthis caligramina Dalman*, показанные на рис. 1.5.

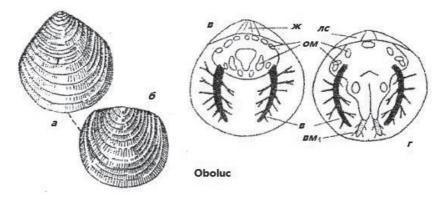


Рис.1.3. Obolus apollinis Eichwald. Типовой вид: а – внешний вид брюшной створки, б – внешний вид спинной створки, в, г – схемы расположения различных отпечатков у Obolus на внутренней стороне брюшной (в) и спинной (г) створок; вм – васкулярные медиальные отпечатки; ж – желобок для ножки; лс – ложная арея; ом – отпечатки мускулов

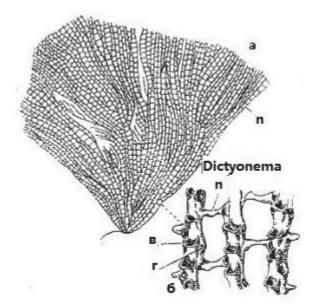


Рис. 1.4. Внешний вид дихотомически ветвящейся сетчатой колонии: $Dictyonema\ coalitum\ Obut\ (a);\ б$ — строение ветвей у $Dictyonema\ flabciliforme\ Eichwald\ (в$ — автотеки, Γ — битеки, Π — перемычки)

Отряд Orthida

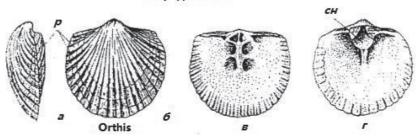


Рис. 1.5. Orthis caligramma Dalman: а – вид сбоку, б – брюшная створка, в – спинная створка изнутри, г – брюшная створка изнутри, р – радиальные ребра, сн – спондилий

Волховский горизонт $(O_{l}vl)$

Название горизонта происходит от р. Волхов, где находится стратотип данного горизонта. Толщу волховского горизонта обычно называют глауконитовыми известняками, так как горизонт сложен в основном доломитизированными известняками, характеризующимися обилием зёрен глауконита. По зеленоватой окраске они легко распознаются в разрезе. Мощность волховского горизонта на Ижорском плато составляет 5–6 м, к западу она уменьшается до 3–4 м, а на востоке увеличивается до 9 м.

Толща известняков волховского горизонта по литологическим признакам и на основании видового состава содержащихся в них трилобитов разделена на три подгоризонта, известных под местными названиями (снизу-вверх): «дикари», «желтяки» и «фризы».

Нижний подгоризонт («дикари») представлен очень твёрдыми, плотными, в различной степени доломитизированными известняками мощностью в приглинтовой полосе 1,6–2,9 м. Окраска зеленовато-серая с охристо-жёлтыми пятнами и полосами. Сложен выдержанными по простиранию слоями известняка мощностью от 8 до 23 см. Число слоев может достигать 14. Слои известняка разделены тонкими (от 1–5 мм до 2–5 см) прослоями известковистых глауконитовых глин. Слои известняка имеют бугристую поверхность напластования, представляющую собой шипообразные выступы на поверхности слоя. По всей толще подгоризонта неравномерно распределены тёмно-зелёные, почти черные, зёрна глауконита, иногда образующие на поверхностях напластования скопления. Зерна глауконита частично или полностью окислены. Слои известняков

разбиты системой трещин в направлениях 315° C3 (наиболее часто), 60° CB (реже) и 35° CB (очень редко). Трещины расположены на расстояниях от 1 до 10 м, но чаще 2–3 м друг от друга. Ширина трещин от долей миллиметра до 2–3 см. Известняки нижнего подгоризонта имеют следующий химический состав (%): CaO – (38,3–50,6); MgO – (1,1–5,0); SiO $_2$ – (3,6–9,0); A1 $_2$ 0 $_3$ – (1,7–4,0); Fe+Fe $_2$ 0 $_3$ – (1,3–3,0); ППП – (34,7–40,6). Фауна в подгоризонте редкая, она сильно перекристаллизована и раздроблена.

Средний подгоризонт («желтяки») сложен сравнительно тонкоплитчатыми мелкозернистыми известняками с прослоями глин. Известняки глинистые, иногда переходят в мергели. Известняки в различной степени доломитизированы. Окраска пятнистая. На сером и зеленовато-сером фоне выделяются неправильной формы пятна охристо-жёлтого цвета. Поэтому «желтяки» заметно выделяются в разрезе по окраске. Мощность «желтяков» на Ижорском плато составляет 1,6–2,0 м. Остатки фауны встречаются чаше в глинистых прослоях. Это трилобиты и замковые брахиоподы. Встречаются единичные наутилоидеи и многочисленные остракоды.

Верхний подгоризонт («фризы») залегает на среднем без чёткой литологической границы. Мощность подгоризонта на Ижорском плато 2,3–2,7 м. Мощность «фризов» к западу убывает до 1 м (р. Луга), а к востоку возрастает до 4,8 м (р. Сясь). Сложен известняками глинистыми, местами сильно доломитизированными. Известняки тонкоплитчатые. Встречаются прослои глины мощностью до 0,1 м. Поверхность напластования неровная, бугристая. Окраска «фризов» зеленовато-серая с жёлто-бурыми пятнами. По всему подгоризонту рассеяны зерна глауконита. Встречаются зёрна кварца. Фауна известняков волховского горизонта разнообразна и многочисленна. Встречаются брахиоподы, эндоцератоидеи *Endoceras Hall* (рис. 1.6); трилобиты *Iilaenus Dalman*. (рис. 1.7), остракоды.

Известняки волховского горизонта широко используются для изготовления строительного камня. Особую ценность имеют «дикари» как штучный камень, бутовая и облицовочная плита. Они используются со дня основания Санкт-Петербурга и до настоящего времени для кладки фундаментов, цокольных этажей, ступеней, оград, облицовки колон и других строительных работ. Наличие в известняках почти перпендикулярных трещин позволяет выламывать плиты без применения взрывных работ, что не нарушает крепости камня, так как исключает появления микротрещин. Добываемые одновременно с «дикарями» менее прочные и менее монолитные

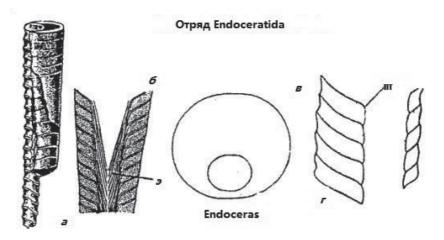
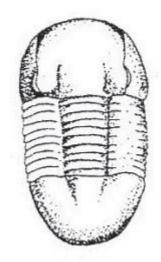



Рис. 1.6. *Endoceras Hall*: а – внешний вид сбоку; б – схема продольного сечения; \mathfrak{I} – эндоконы; \mathfrak{I} перегородочные (септальные) трубки; \mathfrak{I} – схема поперечного сечения; \mathfrak{I} – схема продольного сечения

Iilaenus

Рис. 1.7. Трилобит *Iilaenus Dalman* (натуральная величина)

трещиноватые известняки среднего и верхнего подгоризонтов («желтяки» и «фризы») обычно используются для приготовления шебня.

Кундский горизонт (О,kn)

Название происходит от г. Кунды (Эстония). Кундский горизонт распространён практически повсеместно, отсутствует (размыт) только на некоторых участках, прилегающих к глинту.

Естественные выходы наблюдаются на склонах глинта, в глубоких оврагах и по долинам рек. Граница с нижележащим волховским горизонтом проводится по фаунистическим данным. Мощность кундского горизонта в пределах Ижорского плато составляет 6–8 м, иногда достигая 9–11 м, но в районе ст. Саблино, где большая часть горизонта размыта, уменьшается до 2–3 м.

Кундский горизонт сложен довольно однообразной толщей мелкозернистых, в различной степени глинистых, иногда мергелеподобных эндоцератитовых известняков, в районе глинта слабо доломитизированных. Содержание глинистого вещества от 5 до 20 %. Распределено оно неравномерно, что придаёт породе своеобразную пятнистость: более глинистые участки имеют темно-зеленовато-серую окраску, а участки с незначительным содержанием глины светло-серые. В известняках отмечаются тонкие прослои зеленовато-серых глин, мощностью от нескольких миллиметров до 2–5 см. Почти повсеместно наблюдаются включения зерен глауконита. Местами наблюдаются кристаллы и жеоды кальцита, небольшие конкреции пирита.

Характерной особенностью кундского горизонта на территории учебной практики является наличие в известняках прослоев с чечевицеобразными фосфорно-железистыми оолитами. Эти прослои часто выклинивающиеся, линзовидные, небольшой мощности. В основании горизонта выделяется слой глинистого известняка с прослоями глины и мергеля мощностью 0,5–1,0 м, переполненный чечевицеобразными фосфорно-железистыми оолитами бурой окраски. Это так называемый «нижний чечевичный слой», мощность которого в районе ст. Саблино составляет 0,25–0,35 м.

Фауна в отложениях кундского горизонта многочисленна и разнообразна. Для горизонта характерны трилобиты, замковые брахиоподы, в частности *Porambonites reticulates Pander* (рис. 1.8), наутипоилеи

На рис. 1.9 приведён сводный разрез палеозойских отложений района учебной практики.

Отряд Pentamerida

Porambonites

Рис. 1.8. *Porambonites reticulatus Pander*. Типовой вид: а – вид со стороны брюшной створки; б – вид со стороны спинной створки; в – вид сбоку; г – вид спереди

Четвертичная система

Верхний плейстоцен

В четвертичный период после длительного перерыва в осадконакоплении, в течение которого происходили разрушение и снос ранее отложившегося материала, возобновилось осадконакопление, связанное с материковым площадным оледенением, происходившим в результате резкого похолодания климата. Ранее считалось, что на Русской платформе в четвертичный период было одно оледенение (моногляционизм). Теперь установлено множественность последовательных стадий оледенения (полигляционизм), вызванных многократными ритмическими изменениями природных климатических условий. По минеральному составу моренных валунов было установлено, что на Русскую платформу ледники спускались со Скандинавии, Новой Земли и Северного Урала.

На территории Ижорского плато, прилегающей к Приневекой низменности, нижне- и среднечетвертичные ледниковые отложения не сохранились, так как наступление последующих более поздних ледников практически полностью уничтожило ранее накопившиеся отложения. Ледниковые отложения, залегающие сплошным покровом на нижнепалеозойских породах, являются верхнечетвертичными, связанными с последним поздне-валдайским оледенением — заключительной стадией валдайского оледенения. Валдайское оледенение явилось результатом похолодания климата, происходившего в промежутке 90–70 тыс. лет, когда материковый лёд наступал из Скандинавии на северо-западную окраину Русской платформы и

Светемя	Отдел	Ярус	Горизонт	Нилекс	Литологическая изгления	Мощеость, м	Характеристика
Ордовикская Кембрийская	Н иж ния С реання	A ренигский	Куплений	Oskn	6 6	1,5-7,5	Экдоператитовые известиния. Наминё чеченичный олой.
			Велховний	Ord		1,5-6,5	Глиукомитовые известняки
			Легтовий	H _i O		0,3-1,0	Глауконитовая посчане- глиниствя толща
		Тремадокский	Harepape- cost	O:pk		0,1-0,2	Копорская свита. Диктонемовые сланцы
					, ф. ' ф. '	; 2,6-9,0	Тосненская свита Оболовые посчанники
			Тискерский	6,15		10-13	Мелкозернисты пески (ижорские)
	H H H H H		Пиреттасковій	€ _t pr		0,5-4,0	Песчаники и алевролиты с прослоями глин
			Тонговаской	€,in		6.0-115	Симие и голубы глины

Рис. 1.9. Сводный разрез палеозойских отложений района учебной практики

достиг Валдайской возвышенности (поэтому оледенение называется валдайским).

Для валдайского оледенения характерно многократное чередование периодов похолодания (ледниковые стадии), сопровождавшихся

наступлением ледника, и периодов потепления (межледниковые стадии), сопровождавшихся таянием ледникового покрова. Отложения ледниковых стадий — это валунные суглинки, глины, супеси; а имеющие сравнительно ограниченное площадное распространение озёрно-аллювиальные пески, глины, суглинки — отложения межледниковых стадий.

Валдайское оледенение делится на два периода: ранне-валдайский (7050 тыс. лет) и поздне-валдайский (2412 тыс. лет), которые разделены средневалдайским потеплением (5024 тыс. лет).

Динамика материкового покровного оледенения была связана с многократными ритмическими изменениями природных условий. При частой смене периодов понижения и повышения температуры на фоне общего отступания ледника его край то наступал, то снова отступал. Отражая существовавшие природно-климатические условия, отложения верхне-валдайского оледенения на северозападной части Русской платформы делятся на (снизу-вверх): лужские слои, охтинские, невские и слой Балтийского ледникового озера.

Лужские ледниковые отложения (нижняя морена) занимают западную и северо-западную части Ленинградской области. В пределах Ижорского плато они залегают непосредственно на нижнепалеозойских отложениях. Нижняя морена сложена валунной глиной с включением обломков карбонатных пород из подстилающей толщи, а также моренных валунов из магматических и метаморфических пород Балтийского щита. Мощность лужских моренных отложений на водораздельных моренных долинах достигает 5–8 м, иногда убывая до 1–2 м вследствие денудации при последующем развитии поздне-валдайского оледенения.

На лужских отложениях залегает сравнительно тонкий (0,2—0,5 м) слой среднезернистого песка с редкими включениями гравия. Можно предположить, что они накапливались в период поздне-валдайского потепления при таянии ледника, и тогда их можно условно рассматривать как охтинские слои.

Невские отложения (верхняя морена) на территории Ижорского плато залегают выше по разрезу на слое среднезернистого песка. Верхняя морена имеет буроватую окраску, сложена песчанистым суглинком с гравием, галькой и валунами магматических и метаморфических горных пород, принесённых с Балтийского щита. Мощность невских отложений колеблется от 1,0 до 13,5 м.

Слои Балтийского ледникового озера откладывались в процессе интенсивного таяния ледникового покрова. Они образованы

озёрно-ледниковыми отложениями: песчано-глинистыми пластами, часто с ритмичной слоистостью, и местами ленточными глинами. Они не образуют сплошного покрова и на Ижорском плато залегают участками на террасированных озёрно-ледниковых равнинах бассейна р. Тосны. Их мощность колеблется от 0,2 до 10,0 м. *Голоцен*

Современные (голоценовые) отложения на рассматриваемой территории распространены повсеместно, они представлены аллювиальными, делювиально-коллювиальными и элювиальными отложениями.

Аллювиальные отложения разнообразного состава и мощности представлены русловыми, пойменными и старичными фациями, развитыми в виде узких полос вдоль русел рек. Аллювиальные отложения, слагающие пойменную и надпойменные террасы, сложены перемежающимися слоями песков, супесей и суглинков, иногда с линзами торфа. Литологический состав зависит от состава отложений на водораздельных участках. Аллювий старичных фаций развит незначительно, отмечается на участках формирования широких речных долин, образовавшихся вследствие интенсивной боковой эрозии. После образования стариц происходит сравнительно быстрая их дегенерация в болота. Русло заиливается, старицы зарастают водяными травами, и на дне накапливается растительный перегной. Болотные отложения представлены суглинками, сапропелем с прослоями торфа.

Склоновые отложения речных долин являются делювиально-коллювиальными. Их мощность может достигать 10 м и более. Литологический состав зависит от состава пластов, слагающих склоны речных долин. Склоновый смыв наиболее интенсивен на горизонтах, сложенных песчаным и песчано-глинистым материалом, что приводит к образованию нависающих карнизов из плит известняка волховского горизонта. При постепенном увеличении размеров этих карнизов происходит их обрушение. Обломочный материал, слагающий склоновые отложения, крайне неоднороден и представлен несортированным скоплением песчано-глинистого материала, щебня и плит известняков, валунов магматических и метаморфических пород из моренных отложений. Состав делювиально-коллювиальных образований непостоянен и зависит от состава вскрываемых в данном обнажении коренных пластов.

Элювиальные отложения состоят в значительной степени из продуктов разрушения перекрываемых ими горных пород. На

Система	Слой	Горизонт	Слой	Индекс	Литологическая колонка	Мощность, м	Характеристика
Ч е т в е р т н я	C o B		Элювиальные отложения			0.25-0.6	Почвенно- растительный слой
	р е м.		Аллювиаль- ные отложения	aQıv	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2-3.0	Сугленке, супеси, пески
	B e p x	B e p x	Невские ледниковые	gQ _m vd₃		1.0-13.5	Песчанистый суглинок с гравнем, галькой и валунами
	п л е й с т о ц е н	е в ал ай с к ий	Охтинские меж- ледниковые	fQ ₃ vd ₃		0.2-0.5	Средне- зернистый песок
			Лужские ледниковые (нижняя морена)	gQ _m vd₃	00000	1.0-8.0	Валунная

Рис. 1.10. Четвертичные отложения района учебной практики

водоразделах это суглинистая морена невского оледенения, на террасах — аллювиальные отложения. Элювиальные отложения являются почвенно-растительным слоем. Его мощность 0,2—0,6 м. Цвет тёмно-коричневый, иногда сероватый. Сложен суглинком с примесью обломочного материала, В слое присутствует растительный перегной и развита корневая система растений.

На рис. 1.10 приведен сводный разрез четвертичных отложений района учебной практики.

1.4. Гидрогеологические условия

Физико-географические и геологические условия Ленинградской области благоприятны для формирования значительных ресурсов подземных вод. На территории Ижорского плато развито несколько водоносных горизонтов. К самому верхнему водоносному горизонту — верховодке — относятся линзы подземных вод

в зоне аэрации, приуроченные к моренным отложениям четвертичного возраста. Эти воды локально распространены на правом берегу р. Саблинки, в обнажении у водопада и по берегам р. Тосны. Водообильность верховодки изменяется в широких пределах, так как зависит от литологического и гранулометрического составов водовмещающих пород, их мощности и условий питания. Водоупоры в толще четвертичных отложений – это невыдержанные по простиранию прослои моренных суглинков, глин. Водоносные породы представлены грубозернистыми плохо отсортированными песками, имеющими локальное распространение. Питание осуществляется за счет инфильтрации атмосферных осадков и талых вод. При насыщении суглинков водой, достижении максимальной влагоемкости, формируются оползни, и развивается боковая эрозия, ведущая к расширению долин рек. Воды верховодки пресные, но из-за незащищенности от поступления загрязняющих веществ с поверхности использовать их можно только для хозяйственных нужд. Зимой они промерзают, а летом испаряются или расходуются растениями на транспирацию.

Ниже верховодки под моренными суглинками и глинами находится ордовикский горизонт грунтовых вод, приуроченный к регионально выдержанной толще известняков кундского и волховского горизонтов (O_1kn , O_1vl). Этот горизонт имеет особое значение, он формирует месторождение подземных вод, используемых для водоснабжения. Разгрузка горизонта происходит вдоль Балтийско-Ладожского уступа (глинта) в виде крупных карстовых родников, которые дают начало многочисленным рекам и ручьям. По долинам рек Саблинка и Тосна наблюдается разгрузка вод. Глубина залегания вод ордовикского водоносного горизонта — от 2,5 до 10 м. Воды пресные, умеренно-жёсткие (3—6 мг-экв/л), гидрокарбонатные, магниево-кальциевые, пригодны для питьевых нужд после кипячения, так как они не защищены от внешнего воздействия. Воды насыщены углекислым газом (CO_2), что вызывает выщелачивание карбонатного цемента из известняков. В известняках развивается трещиноватость и карст (крупные полости), что увеличивает скорость фильтрации подземных вод. Процесс этот негативно влияет на устойчивость береговых уступов. Обрушение происходит в периоды активного снеготаяния и обильных осадков, на поверхности образуются провалы. Они являются областями поглощения поверхностного стока и проникновения загрязнений в водоносный горизонт. При этом вода насыщается гидрокарбонатами кальция и

магния. По достижении полного насыщения из водного раствора кристаллизуется кальцит и образуется пористая порода — известковый туф или травертин. Скопления известкового туфа встречаются у подножия склонов и в пещерах, где процесс кристаллизации ведет к образованию натечных форм кальцита (сталактиты и сталагмиты).

Под известняками залегает небольшая толща $(0,5-0,6\ \mathrm{M})$ глауконитовых песков и песчаников (O_1lt) . Водоупором для ордовикского водоносного горизонта является тонкий слой черных углистых диктионемовых сланцев пакерортского горизонта (O_1pk) . При разгрузке вод по их поверхности глауконитовые пески и песчаники вымываются из-под известняков, и под ними образуется ниша, в результате чего нависающие над нишей известняки периодически обрушиваются большими глыбами, скатывающимися по склону. Следы таких обвалов можно наблюдать на склонах р. Тосны выше впадения в неё р. Саблинки. Следствием обильной разгрузки вод ордовикского горизонта в условиях гидравлически связи с верховодкой является формирование боковых каньонов на склонах речных долин (рис. 1.11.)

Под диктионемовыми сланцами находится кембро-ордовикский водоносный горизонт, приуроченный к разновозрастным

Рис. 1.11. Боковой каньон в долине р. Тосны

песчаным отложениям: от пиритаских глинистых песчаников нижнего кембрия (C_1pr) , мелкозернистых тискреских песков среднего кембрия (C_2ts) до оболовых песков и песчаников пакерортского горизонта нижнего ордовика (O_1pk) включительно. Водоупорным пластом, подстилающим водоносный горизонт, являются лонтоваские глины (C_1ln) . Пески и песчаники различаются по составу, глинистости, степени сцементированности. Между ними нет водоупорных слоев, и в гидрогеологическом отношении они представляют единое целое. Воды порово-трещинно-пластовые, напорные. По составу воды пресные гидрокарбонатные кальциево-магниевые или магниево-кальциевые с повышенным содержанием железа, иногда с запахом сероводорода (H_2S) .

В гидродинамическом отношении воды кембро-ордовикского горизонта связаны с водами вышележащих карбонатных пород, от которых они отделены слоем диктионемовых сланцев и прослоями глауконитовых глин леэтского горизонта, т. е. породами, не являющимися полностью водонепроницаемыми. Питание горизонта происходит, в основном, за счет вод, поступающих из вышележащей карбонатной толщи ордовика. Дренируется кембро-ордовикский горизонт уступом Ордовикского плато и глубокими речными долинами.

2. Методика проведения практики

2.1. Организация практики

Практика состоит из трех периодов: подготовительного, полевого и камерального.

Во время подготовительного периода студенты знакомятся с целями и задачами практики, с районом проведения практики и порядком выезда к месту ее проведения. Перед началом полевых работ проводится инструктаж по технике безопасности, подбирается необходимое полевое снаряжение и полевая медицинская аптечка.

Студенты должны хорошо усвоить правила техники безопасности при:

- проведении маршрутов;
- работе в карстовых областях;
- переправе через водные преграды;
- обеспечении питьевой водой;
- оказании доврачебной помощи.

При проведении маршрутов необходимо учитывать местные условия передвижения. Если маршрут проходит по дороге, группа студентов идет по левой стороне, навстречу движения транспорта, головная и хвостовая части колонны обозначаются сигнальными флажками. При описании обнажения студенты должны находиться на некотором удалении от него, чтобы исключить несчастные случае при возможных обвалах. При отборе образцов пород нельзя стоять близко друг к другу и выше по обрыву, чтобы нечаянно не поранить товарища геологическим молотком или лопатой и не обрушить на него горную породу.

Особое внимание к соблюдению правил техники безопасности следует уделять при осмотре Саблинских пещер. Общими правилами здесь являются: недопустимость осмотра пещер без преподавателя, без страховки и освещения, после или во время сильных дождей. Запрещено углубляться в Саблинские пещеры, так как там возможны обвалы, а сами пещеры представляют собой сложные лабиринты.

С большой осторожностью надо относиться к обеспечению студентов питьевой водой. Пить воду из колодцев и родников можно только после установления ее пригодности путем опроса местного населения

Медицинскую помощь на маршрутах оказывает преподаватель, у которого должны быть индивидуальные пакеты и наставление по оказанию первой медицинской помощи.

Подготовительный период заканчивается подбором необходимого снаряжения. В каждой бригаде, состоящей из 8–10 человек, должно быть следующее снаряжение: рюкзак, полевая сумка, лупа, горный компас, сосуд с 10%-ным раствором соляной кислоты, 10 метровая рулетка, лопата, геологический молоток, мешочки, бумага и этикетки для образцов. У каждого студента должны быть простой карандаш, линейка, полевой дневник.

Основную часть практики составляет *полевой* период, за время которого студенты должны научиться:

- проводить обследование, зарисовку и описание обнажений;
- отбирать, описывать и определять горные породы:
- измерять горным компасом элементы залегания слоев;
- составлять геологические разрезы;
- проводить наблюдения за выходами подземных вод;
- описывать основные формы рельефа и устанавливать их связь с геологическим строением местности;

- выделять и проводить измерения элементов речных террас;
- вести полевой дневник.

Заключительный период практики — *камеральный* — проводится в университете и включает в себя следующие виды работ:

- обработку полевых дневников;
- уточнение определений горных пород по отобранным образцам и составление каталога образцов пород и окаменелостей;
- построение схематической геологической карты района учебной практики;
- составление итогового отчета по результатам проведенных работ.

2.2. Методика полевых работ

Основным методом изучения геологического строения района во время учебной практики является проведение маршрута, во время которого осуществляется обследование и описание обнажений и слагающих их горных пород.

Изучение горных пород в полевых условиях

Основным методом изучения горных пород в полевых условиях является визуальный. Наряду с этим используется ряд приемов, простейших приспособлений и реактивов. Для определения твердости пород можно использовать, например, ноготь (твердость 2–3), стекло (твердость – 5), стальной нож (твердость – 6). Состав и структуру породы определяют с помощью лупы (10х), для определения карбонатных пород используют 10%-ный раствор соляной кислоты, с помощью фарфоровой пластинки определяют цвет черты минералов.

При описании горных пород рекомендуется придерживаться такой последовательности:

- название породы;
- цвет и оттенки (во влажном и сухом состояниях);
- минеральный состав;
- структура (форма и размер слагающих породу зерен);
- текстура (характер взаимоотношений составных частей породы);
 - вид излома и характеристика отдельностей;
 - включения (глыбы, галька, конкреции и т. п.);
 - остатки фауны;

- плотность и влажность;
- поверхности напластования и характер перехода в следующий слой.

Описание пластов начинается с названия породы и очень краткой характеристики ее основных особенностей. Например, глина синяя с включениями песка, гальки и гравия. Затем дается развернутое описание всех литологических признаков. Детальные указания по описанию осадочных пород имеются в методической литературе, используемой студентами в процессе лабораторных занятий.

При полевом изучении обломочных пород обращают внимание на следующие признаки.

Распространение и характер залегания. Здесь выделяется линейное развитие, характерное для аллювиальных отложений, и площадное, свойственное морским и озерным осадкам.

Состав обломков. По составу мелкообломочные породы разделяют на полимиктовые, представленные обломками различных пород и минералов; олигомиктовые, сложенные небольшим набором пород и минералов (полевошпатово-кварцевый песчаник и др.), и мономиктовые или мономинеральные (кварцевые пески и др.). По составу обломочных пород можно судить о расположении областей сноса, интенсивности химического выветривания, тектоническом режиме района. Так, для стабильных участков при прочих равных условиях степень мономинеральности будет выше. От набора минералов, из которых состоит обломочная порода, от их окраски и окраски рассеянных в породе примесей зависит цвет породы. Белый и светло-серый цвета указывают на преобладание в составе обломочных пород кварца, кальцита, доломита и пр. Красный и розовый — на примесь в породе оксида железа, желтый и бурый — лимонита, зеленый — глауконита (реже хлорита).

Окатанность обломков. По степени окатанности обломков делают выводы о длине пути переноса обломочного материала от места разрушения до места накопления. На основе визуальной оценки по характеру окатанности обломков выделяют: неокатанный остроугольный щебень, угловатую гальку со слабо округленными углами, слабо окатанную гальку с округленными углами, хорошо окатанную гальку и овальную или круглую гальку. Степень окатанности галечника определяют в пробе из 50–100 галек.

Гранулометрический состав в полевых условиях обычно определяют визуально или с помощью шкалы размеров, расположенной на предметном стекле с использованием десятикратной лупы.

Слоистость. Одним из основных текстурных признаков осадочных пород является слоистость, связанная с периодическими изменениями условий осадконакопления. Если накопление осадков происходило в условиях спокойной гидродинамики водоемов, т. е. когда волнение не достигало их дна, формировалась горизонтальная слоистость с одинаковым составом осадков на значительной площади. В обстановке устойчивого однонаправленного течения водного потока происходит образование косой однонаправленной слоистости. Волнистая слоистость характерна для отложений, образовавшихся в прибрежных мелководных частях водоемов в условиях неустойчивой гидродинамики.

Слоистость проявляется в изменении размеров обломков, смене окраски или минералогического состава. При детальном описании породы указывают углы наклона поверхностей наслоения, мощности слойков, характер их границ и изменение слоистости по разрезу.

Отсутствие слоистости, например, в ледниковых отложениях (моренах) — один из показателей специфических условий накопления осадков. Морены — чаще всего это моренные глины и суглинки — представляют собой несортированную смесь обломков различной крупности с включением гравия, гальки и валунов экзотических пород, перенесенных ледником на очень большие расстояния.

Количество и состав цемента. Для сцементированных обломочных пород важными текстурными признаками являются относительное количество зерен и цемента и расположение зерен в цементе. По составу цемент бывает самый различный: глинистый, алевролитовый, известковый, железистый, кремнистый. Он определяется визуально или с помощь соляной кислоты.

При полевом изучении глинистых пород внимание обращается на их характерные физические свойства, такие как:

- пластичность, т. е. способность влажной глины принимать под давлением любую форму и сохранять ее после снятия давления;
- способность поглощать большое количество воды, от чего порода разбухает;
 - водоупорность после полного насыщения водой.

Глинистые породы разнообразны по составу, окраске, характеру примесей, текстуре, что связано с различными условиями их образования. По генезису глинистые породы можно разделить на две группы: элювиальные (глины кор выветривания) и седиментационные, образовавшиеся в морских или озерных водоемах. Седиментационные

глины отличаются от элювиальных наличием слоистости, органических остатков, четких плоскостей напластования.

При описании глин указывают их следующие внешние признаки:

- цвет и влажность образца;
- пластичность (жирная, пластичная, сухая или опесчаненная);
- характер примесей, часто обуславливающих окраску (углистая темная, битуминозная темного цвета и с битуминозным запахом; известковистая, кремнистая);
 - текстуру (сланцеватая, плойчатая, массивная);
 - наличие растительных и животных остатков.

Среди осадочных пород химические и биохимические породы выделяются своими специфическими морфологическими и геохимическими особенностями. В районе учебной практики они представлены карбонатными породами, к которым относятся известняки, доломиты и мергели. Весьма своеобразными представителями являются известковые туфы — сильнопористые породы, образующиеся в местах выхода на земную поверхность богатых растворенной двууглекислой известью подземных вод.

Наиболее простым способом определения карбонатных пород в полевых условиях является реакция с 10%-ной соляной кислотой. Известняки от капли слабой HCl бурно вскипают (выделяется CO_2), при этом на их поверхности, в отличие от мергелей, не остается грязного пятна. Доломит в куске на кислоту не реагирует, а в порошке вскипает практически сразу.

При полевом описании известняков по возможности устанавливают их происхождение (обломочные, органогенные, хемогенные) и дают характеристику структуры (размер и происхождение обломков, характер зернистости). По структуре известняки бывают крупно-, средне-, мелко- и неравномерно зернистые, афанитовые (плотные), землистые, оолитовые, обломочные, биоморфные, детритусовые.

По наличию примесей выделяют известняки песчанистые, глинистые, битуминозные, глауконитовые, железистые.

При описании текстурных особенностей известняков обращают внимание на характер слоистости, наличие или отсутствие кавернозности. Обязательно отмечают направление и развитие трещин, степень трещиноватости пород; дают характеристику отдельности, при описании которой используют, например, такие морфологические разновидности, как глыбовая (порода состоит из угловатых

кусков неправильной формы) и плитчатая (образуются крупные или мелкие плиты и плитки различной толщины).

Помимо отмеченных признаков, характерных для отдельных генетических групп осадочных пород, необходимо фиксировать и распознавать ряд их общих особенностей, в частности, наличие включений и органических остатков.

Под включениями понимают тела, привнесенные в осадок и не имеющие прямой генетической связи с ним, например, редкая галька, гравий в глинах.

При изучении и описании органических остатков в породах обращают внимание на следующие признаки: видовое разнообразие, морфологию, сохранность, размещение и ориентировку. При наличии большого количества остатков каких-либо организмов в породе их название входит к название породы. Например, известняк ортоцератитовый, песчаник оболовый, сланец диктионемовый и т. п.

Магматические и метаморфические породы в исследуемом районе встречаются лишь в виде валунов, сложенных гранитами, диоритами, гранито-гнейсами. При полевом описании этих пород указывают минеральный состав, структуру, текстуру и вторичные изменения, которые проявляются в изменении окраски.

В районе практики кристаллические породы, слагающие фундамент Русской платформы, залегают на глубине примерно 400 м. Встречающиеся в верхней части разреза валуны кристаллических пород представляют собой породы Балтийского щита, принесенные ледником. Поэтому необходимо изучать и описывать как выветрелые поверхности валунов (наличие штриховки, царапин, шрамов), так и свежие сколы, по которым и осуществляется определение отличительных признаков горных пород.

Изучение и описание обнажений

Изучение обнажений проводится во время маршрута и включает:

- привязку обнажения на местности;
- осмотр, выделение слоев горных пород и описание обнажения;
- измерение мощности слоев горных пород и зарисовку обнажения;
 - отбор образцов горных пород и окаменелостей.

Привязка обнажения на местности осуществляется путем ориентирования по компасу, солнцу и часам с последующей

глазомерной привязкой к географическим объектам, населенным пунктам и дорогам. Местоположение обнажений наносится на топографическую карту местности.

Осмотр и описание обнажения начинается с определения его положения в рельефе, в результате чего делаются выводы относительно геоморфологии и гидрографии изучаемого участка. В ходе общего осмотра устанавливают размеры обнажения, расчищают контакты различных пород, условия их залегания. Для осадочных пород основной формой залегания является слой. Внутри слоя иногда выделяют прослои и пропластки, которые имеют резко подчиненное значение и отличаются по составу или по цвету от слоя, внутри которого залегают.

Измерение мощности слоя проводится рулеткой или геологическим молотком, на рукоятке которого делают насечки. Непосредственно измерить истинную мощность слоя (кратчайшее расстояние между кровлей и подошвой) удается на крутых обрывах. Чаще приходится измерять расстояние между кровлей и подошвой по линии падения склона, т. е. видимую мощность. Истинная мощность в этом случае (при горизонтальном залегании слоев горных пород) определяется как произведение видимой мощности и синуса угла, образованного линией падения склона и проекцией этой линии на горизонтальную плоскость. Угол падения склона определяется с помощью горного компаса.

Положение слоя в пространстве определяется его элементами залегания; азимутами линии простирания и линии падения и углом падения, которые измеряются горным компасом. Измеренные значения элементов залегания поверхностей напластования фиксируются в полевом дневнике.

Зарисовка обнажений осуществляется в полевом дневнике на левой странице (на правой – ведутся записи) и представляет собой схематичное изображение характера залегания слоев горных пород, их литологического состава. Каждый рисунок должен быть ориентирован в пространстве, выполнен в определенном масштабе, иметь подпись и адрес. Зарисовку обнажения начинают с построения поперечного профиля обнажения, на который наносят границы пластов. В районе практики слои горных пород залегают практически горизонтально, поэтому границы слоев на профиле показывают в виде горизонтальных линий. Профиль обнажения строится по данным измерений в относительных отметках. За нулевую отметку принимается уровень воды в реке, относительно которой на

профиле отмечаются границы пластов. Для каждого пласта дается его литологическая характеристика в условных знаках и указывается номер, под которым он описан в дневнике. На рисунках показывают точки отбора образцов с указанием номера последних, места и вид разгрузки подземных вод.

Отбор образцов горных пород производят для составления коллекции горных пород района и последующих лабораторных исследований (проведения химического анализа, определения физических свойств горных пород, гранулометрического состава). При отборе образцов руководствуются следующими правилами:

- образцы отбираются так, чтобы они были представительными, т. е. соответствовали типичному облику пород данного стратиграфического подразделения по минералогии, структуре, текстуре;
 - образец должен быть свежим, невыветрелым;
- размер образца для целей учебной практики должен составлять примерно 6×9 см, при отборе окаменелостей или породы с характерной структурой величина образца определяется размерами этого объекта.

Для каждого образца заполняется этикетка размером 5×9 см. На ней указывают: название учебного заведения, номера бригады и образца, место отбора (номера точки, обнажения и слоя), наименование и возраст породы, дату отбора и подпись отобравшего образец. Нумерацию образцов начинают с \mathbb{N} 1. Для упаковки образцов используют оберточную бумагу и матерчатые мешочки. Этикетки плотно сворачивают и вкладывают в мешочки, на которых пишут номер образца и маршрута.

Проведение геологического маршрута

Полевой геологический маршрут — это пересечение местности в заданном направлении с определенной целью. Количество и содержание полевых маршрутов определяется целями и задачами, планом и программой учебной практики. В РГГМУ во время учебной практики проводится один маршрут по долинам рек Саблинка и Тосна. Планирование маршрута осуществляется с учетом природных условий, особенностей геологического строения, гидрографии и орографии района учебной практики, а также степени надежности склонов, состояния и условий проходимости троп и дорог. Перед выходом на маршрут студенческие бригады знакомятся с порядком проведения маршрута. На маршруте студенты осуществляют последовательную и непрерывную фиксацию геологических объектов,

устанавливают связь этих объектов с различными эндогенными и экзогенными геологическими процессами.

Описание маршрута включает в себя следующие элементы:

- цель маршрута;
- привязка района маршрута;
- привязка начала и конца маршрута;
- описание хода маршрута;
- выводы по маршруту.

Цель маршрута определяется спецификой геологического строения участка маршрутного пересечения и необходимостью решения конкретных вопросов, возникших в ходе учебной практики.

Привязка района маршрута осуществляется путем использования названий географических объектов, имеющихся на физико-географической карте, к которой производится привязка.

Привязка начала и конца маршрута дается по отношению к четко выраженным элементам рельефа, естественным и искусственным объектам (реки, озера, болота, овраги, балки, дома, мосты, дороги, столбы и пр.).

Описание хода маршрута осуществляется в виде геологической характеристики точек наблюдений (обнажений). В это описание входит также описание геоморфологических и гидрографических особенностей территории по пути следования от точки к точке.

Выводы по маршруту завершают его описание и должны содержать обобщенную характеристику геологических условий исследуемого района, особенностей его геоморфологии и гидрографии.

Все записи во время маршрута ведутся в полевом дневнике, куда заносятся описания всех точек наблюдений, данные замеров элементов залегания и мощности слоев горных пород, делаются зарисовки обнажений.

Полевой дневник — основной документ, отражающий работу студента на учебной практике. Существуют определенные правила ведения дневника. На титульном листе полевого дневника приводится название учебного заведения и его адрес, фамилия студента, даты начала и окончания дневника. На следующих страницах ведутся записи всех наблюдений, выполненных на маршрутах и выводы по ним. Все записи нужно делать на одной (правой) странице простым карандашом средней твердости. На другой (левой) странице выполняют зарисовки, схемы, записываются элементы залегания пластов и номера отобранных образцов.

После окончания каждого дня маршрута необходимо проводить предварительную камеральную обработку полевых наблюдений: просмотреть и привести в порядок все записи, проверить наличие записей об элементах залегания и отобранных образцах, привести в порядок зарисовки, схемы.

Во время маршрута студенты не только ведут дневник, но и составляют полевую геологическую карту, на которую наносят точки наблюдений, геологические границы, элементы залегания, выходы подземных вод. В поле все записи на карте делаются карандашом, а после окончания работ закрепляются тушью.

2.3. Методика камеральных работ

Одним из основных видов работ в камеральный период является обработка и оформление геологических коллекций. Все образцы тщательно изучаются и систематизируются, уточняются первичные (полевые) названия пород, минералов и окаменелостей. С этой целью можно использовать определители, эталонные коллекции. При определении ископаемых остатков важно обращать внимание на руководящие формы, анализ распространения которых позволяет устанавливать возраст осадочных отложений. Каждый образец после окончательной диагностики помещают в отдельную картонную коробочку. Все сведения об отобранных образцах приводятся в каталоге образцов.

Еще одним видом работ, выполняемых в камеральный период, является проверка и анализ материалов, приведенных в полевом дневнике: поднимаются неразборчивые записи, сопоставляется описание обнажений с построенными геологическими разрезами, производится сверка информации, приведенной в каталоге образцов, с отметками об их отборе при работе в точке наблюдения.

Важной частью работы является составление сводной стратиграфической колонки района учебной практики. В колонке выделяют общие стратиграфические подразделения: группа (эратема), система, отдел, ярус. Специфические особенности изучаемого района показывают с помощью более дробных подразделений: региональных (горизонт), местных (свита) и ряда вспомогательных (например, пачка). Стратиграфические колонки составляются отдельно для палеозойских и четвертичных отложений. При построении стратиграфического разреза анализируют результаты, полученные в ходе геологического маршрута. В качестве опорного выбирают

обнажение, в разрезе которого наиболее полно представлены горные породы района исследований. Мощность горных пород указывается по данным измерений на всех обнажениях, где они вскрыты. При вариации мощности даются пределы ее изменения от минимальных значений до максимальных. Границы между слоями горных пород при согласном их залегании показываются прямой линией, при несогласном — волнистой.

Итоговой частью камеральной работы является составление схематической геологической карты. На карту наносят границы распространения отложений нижнего кембрия (породы лонтоваского и пиритаского горизонтов), среднего кембрия (породы тискреского горизонта), нижнего ордовика (породы пакерортского, леэтского, волховского и кундского горизонтов, ледниковых отложений (верхний плейстоцен) и аллювиальных (голоцен). Предпосылкой для составления геологической карты района является почти горизонтальное залегание горных пород. С угловым несогласием залегают только аллювиальные отложения. Рекомендуется следующий порядок работы по составлению карты.

Уточняется положение точек наблюдений на карте. Анализируется характер рельефа местности по ходу маршрута с целью выявления речных террас. Это дает возможность нанести на карту границы распространения аллювиальных отложений, которыми сложены аккумулятивные террасы, или они лежат на площадках цокольных террас.

На следующем этапе анализируются результаты измерений мощности пород, определяется суммарная мощность пород каждого отдела и относительная отметка (относительно уреза воды в реке) кровли каждой выделенной толщи пород. По топографической основе масштаба 1: 10 000, на которой горизонтали проведены через 1 м, определяются абсолютные отметки уреза воды в каждой точке наблюдений, а затем абсолютные отметки кровли пород каждого отдела. Полученные результаты наносятся на карту.

В завершении работы над картой показываются места сосредоточенной разгрузки подземных вод ордовикского и кембро-ордовикского водоносных горизонтов и составляется таблица условных обозначений.

На рис. 2.1 приведены условные обозначения, которые применяются при построении геологических разрезов.

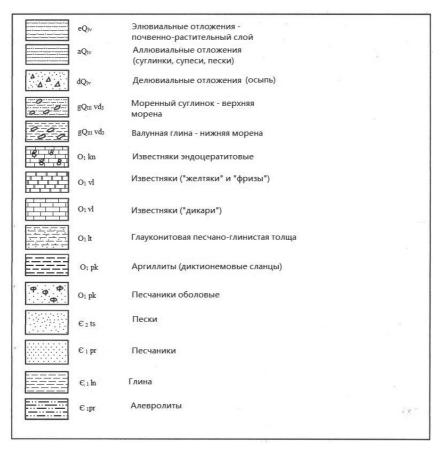


Рис. 2.1. Условные обозначения для геологических разрезов

3. Описание маршрута учебной практики

Маршрут учебной практики проходит по долинам рек Саблинка и Тосна. Здесь, благодаря практически горизонтальному залеганию пластов и значительной глубине речных долин, на сравнительно малых расстояниях (на р. Саблинке менее 2 км и на р. Тосне менее

5 км) вскрывается почти вся толща нижнепалеозойских пород, от лонтоваских глин до известняков кундского горизонта.

Студенты с Московского вокзала элетропоездом едут до ст. Саблино, находящейся в 50 км от Санкт-Петербурга. Большая часть пути проходит по Приневской низменности, представляющей собой равнинную, частично заболоченную местность. Перед ст. Поповка, 30 км от Санкт-Петербурга, поезд подходит к уступу Ижорского плато и начинает идти на подъём. Ст. Поповка и конечный пункт ст. Саблино располагаются на Ижорском плато.

От ст. Саблино студенты идут по Советскому проспекту, параллельно которому протекает р. Саблинка. Вблизи станции русло реки слабоизвилистое, долина неглубокая, слабо врезанная в четвертичные отложения. Примерно в 4-х км от станции студенты сворачивают с проспекта налево и по Пятой линии выходят на правый берег р. Саблинки, где на западной окраине д. Козловки находится точка наблюдения 1.

Точка наблюдения 1. Долина р. Саблинки выработана в четвертичных отложениях. Ширина долины около 250 м (между бровками коренных склонов). Высота коренного берега — 4,0—4,5 м (над урезом воды в реке). Форма долины ящикообразная. По плоскому дну долины медленно протекает р. Саблинка, образуя блуждающие меандры (рис. 3.1). Примерно в 50-ти м от точки наблюдений находится старичное озеро — бывшее русло реки. Долина асимметричная: правый берег долины крутой, левый террасирован. В бортах долины наблюдаются пойменная и надпойменная террасы. Склоны долины покрыты почвенно-растительным слоем.

Студенты проводят измерения для построения геолого-геоморфологического профиля по заданному для каждой бригады направлению. Для этого определяют азимут направления, измеряют угол и длину правого крутого склона долины, размеры и углы наклона элементов террас (уступ, площадка) левого — террасированного.

На правом склоне долины выше пойменной террасы студенты делают расчистку, измеряют мощности почвенно-растительного слоя и залегающего ниже суглинка желтовато-бурого цвета с включениями гальки (отложения верхней морены), после чего отбирают образцы этих горных пород. На левом берегу на пойменной террасе проходят шурф глубиной примерно 0,7 м, устанавливают состав и берут образец аллювиальных отложений, после чего шурф засыпают. Взятые образцы вместе с заполненными этикетками упаковываются.

Рис. 3.1. Блуждающие меандры на р. Саблинке в точке 1

Далее маршрут проходит по левому берегу р. Саблинки до рельсового пешеходного моста в д. Козловке, а затем по правому берегу, где в 25–30 м от моста ниже по течению находится точка наблюдения 2.

Точка наблюдения 2. Долина реки асимметричная: левый берег крутой, правый пологий, террасированный. Правый берег представляет собой обширную пойменную террасу, выполненную аллювиальными отложениями. На левом берегу наблюдаются коренные выходы известняков кундского горизонта (рис. 3.2).

Видимая мощность пласта известняков около 1,5 м, их нижняя граница уходит под урез воды и закрыта русловыми аллювиальными отложениями. При низком уровне воды в основании пласта известняков можно найти «нижний чечевичный слой». На известняках залегает песчанистый суглинок с гравием, галькой и валунами (отложения верхней морены). Студенты берут образец известняка, ищут фауну, делают необходимые замеры для построения геологического разреза обнажения.

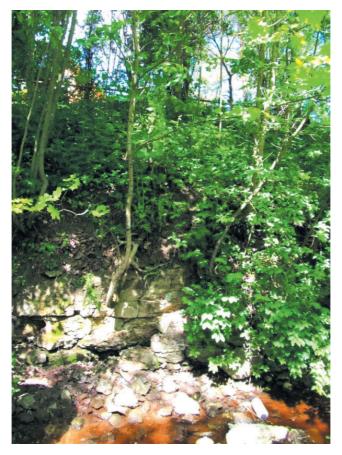


Рис. 3.2. Левый берег р. Саблинки, кундские известняки

Далее маршрут продолжается по левому берегу реки, куда студенты попадают по шоссейному мосту, находящемуся в 70-ти м ниже по течению от точки наблюдения 2. Точка наблюдений 3 находится у водопада на р. Саблинке.

Точка наблюдения 3. Долина глубокая, асимметричная, правый берег крутой, высокий, левый террасирован. Как и в точке 1, студенты проводят измерения для построения геолого-геоморфологического профиля. Наличие водопада указывает на то, что продольный профиль равновесия еще не выработан. Предпосылкой к образованию водопада является наличие в разрезе плотных глауконитовых

известняков волховского горизонта («дикарей»), практически горизонтально залегающих на более податливых, легко размываемых песчано-глинистых породах глауконитовой толщи (леэтский горизонт). Известняки образуют уступ (поперечную террасу), пересекающий русло реки и являющийся местным базисом эрозии. Вода, падая с уступа, образует так называемый эворзионный котел глубиной около 1,5 м с вращательным движением воды. Вода размывает рыхлые песчано-глинистые породы. Размыв усиливается за счет воды, фильтрующейся по трещинам известняка. Совместное воздействие этих двух процессов ведёт к быстрому формированию и обрушению под действием силы тяжести образующихся карнизов глауконитовых известняков и отступанию водопада со скоростью до 0,3 м в год. Обрушение карниза происходит по трещинам. Пласты глауконитовых известняков немного (угол падения 0°12′) наклонены под водопад, т. е. на юг-юго-восток (рис. 3.3).

Под водопадом студенты наблюдают процесс размыва песчано-глинистой глауконитовой толщи, а при низкой воде могут увидеть слой диктионемовых сланцев пакерортского горизонта.

Рис. 3.3. Водопад на р. Саблинке

Примерно в 20-ти м ниже по течению река «вскрывает» верхнюю часть слоя оболовых песчаников.

На правом берегу студенты определяют контакты между подгоризонтами известняков волховского горизонта: «дикарями», «желтяками» и «фризами», находят нижнюю границу известняков кундского горизонта, измеряют мощности пластов известняков и мощность залегающих на них отложений суглинистой морены. Для определения истинной мощности выделенных слоев измеряется их видимая мощность и угол падения склона. Образцы отбираются из трех подгоризонтов волховских известняков и песчано-глинистой глауконитовой толщи.

Далее маршрут проходит по правому берегу р. Саблинки до точки наблюдения 4, расположенной в 600-х м вниз по течению. По ходу маршрута долина быстро углубляется, блуждающие меандры превращаются во врезанные. Форма долины становится каньонообразной. Это происходит благодаря тому, что на этом участке борта долины сложены рыхлыми хорошо проницаемыми песками, через которые происходит инфильтрация атмосферных осадков. Склоновый смыв здесь практически отсутствует, склоны становятся крутыми и обрывистыми, долина в условиях интенсивной глубинной эрозии приобретает U-образную форму.

Точка наблюдения 4. Долина каньонообразная, её глубина составляет 28–30 м. Склоны крутые, обрывистые. Расстояние между бровками коренных берегов 100–150 м. В верхней части обнажения под песчано-глинистой глауконитовой толщей прослеживается пласт диктионемовых сланцев, наблюдаемый в предыдущей точке на урезе воды. Ниже залегают оболовые песчаники кирпично-красного цвета. Достаточно чётко видна граница между отложениями ордовикской и кембрийской систем. Она проводится по основанию детритового слоя с обломками брахиопод Obolus мощностью 0,1 м. Ниже по разрезу идут пески и песчаники тискреского и пиритаского горизонтов, залегающие на толще лонтоваских глин. Видимая мощность лонтоваских глин (над урезом воды) 1,3 м. Нижняя часть склона долины закрыта осыпью до высоты 4–7 м над урезом воды. На контакте глин и песчаников можно обнаружить друзы пирита и марказита.

Над водоупорным пластом лонтоваских глин наблюдается разгрузка в реку вод кембро-ордовикского водоносного горизонта.

Студенты измеряют мощности пластов, вскрываемых в обнажении, и берут образцы диктионемовых сланцев, оболовых песчаников, тискреских песков и пирита.

Далее маршрут продолжается вниз по течению до места впадения р. Саблинки в р. Тосну — это точка наблюдения 5. Точка наблюдения 5. В нижнем течении р. Саблинки геометрия

Точка наблюдения 5. В нижнем течении р. Саблинки геометрия её долины резко меняется. Она становится широкой с относительно пологими террасированными склонами. Изменение формы долины связано с тем, что в своём нижнем течении река переходит из водопроницаемой сравнительно легко размываемой толщи песчаников в водоупорную толщу трудно размываемых синих глин, что затрудняет глубинную эрозию. Преобладает боковая эрозия песков и песчаников, слагающих борта долины.

Долина р. Тосны — асимметричная. Левый берег крутой, правый террасирован. Ширина долины примерно 2 км. Обнажение представляет собой высокий в верхней части достаточно крутой обрыв на левом берегу р. Тосны, расположенный в 130-ти м выше по течению от устья р. Саблинки (рис. 3.4).

В обнажении представлены нижнепалеозойские породы, от лонтоваских глин до известняков волховского горизонта. В нижней части обнажения выходы коренных пород закрыты осыпью.

Рис. 3.4. Обнажение пород в точке 5

Студенты делают расчистки и устанавливают контакт лонтоваских глин с песками и песчаниками пиритаского горизонта и контакт последних с тискрескими песками. Границы вышерасположенных пластов не закрыты осыпями. Студенты отбивают границы слоев и производят измерения их мощности. Отбор образцов горных пород производится из толщи пиритаских песчаников и лонтоваских глин.

Точка наблюдения 6. Это останец обтекания. Он находится на левом берегу р. Тосны в 400 м к северу от устья р. Саблинки. Ширина долины р. Тосны ~ 1 км. Течение реки медленное, русло извилистое. В речной долине наблюдаются три террасы. Пойменная терраса расположена примерно на высоте 1,5 м над урезом воды, первая и вторая надпойменные террасы на высотах 4 м и 7 м соответственно. Ранее р. Саблинка впадала в р. Тосну ниже по течению, она протекала западнее современного останца обтекания. Река Тосна, меандрируя, размыла водораздел и перехватила русло р. Саблинки выше по течению. Анализ топографической карты, определение абсолютных отметок старицы (старое русло р. Саблинки) и абсолютной отметки второй надпойменной террасы р. Тосны, показывают, что перехват русла произошёл, когда р. Саблинка протекала на уровне второй надпойменной террасы. Геологический разрез в точке наблюдений 6 идентичен разрезу в точке наблюдений 5.

Ниже по течению от устья р. Саблинки р. Тосна делает петлю, огибая толщу лонтоваских глин. К северу от точки наблюдения 6 начинается Никольско-Тосненское структурное поднятие — следствие блокового поднятия кристаллического фундамента, произошедшего в неогене-плейстоцене. Отражением этого поднятия является повышение абсолютных отметок поверхности осадочного чехла платформы.

Маршрут продолжается вниз по течению р. Тосны. В этом направлении продолжается повышение абсолютных отметок пластов, и менее чем через 2 км ниже по течению лонтоваские глины выходят под четвертичные отложения.

Точка наблюдения 7. Находится напротив г. Никольское на левом берегу р. Тосны в пределах Кембрийской низины. На эродированной толще лонтоваских глин залегают моренные отложения. Мощность лонтоваских глин достигает 20 м (над урезом воды). На правом берегу р. Тосны на склоне Ижорского плато у г. Никольское мощность лонтоваских глин достигает 40 м и более (над урезом воды). Ширина долины р. Тосны уменьшается до 300 м. Форма долины V-образная с пологими склонами. Такая форма долины

образуется при залегании в ее бортах водонепроницаемых пород, вследствие чего наблюдается не инфильтрация талых и дождевых вод, а поверхностный сток, который способствует плоскостному смыву глинистых частиц с бортов долины. На северной окраине г. Никольское, где синие глины залегают наиболее близко к поверхности, начинается территория Чекаловского месторождения глин. Маршрут продолжается вверх по течению р. Тосны. Точка наблюдения 8. Находится у Саблинских пещер. Это правый берег р. Тосны, Обнажение пород – в 350-ти м выше по течению от шоссейного моста (рис. 3.5). Склон долины в точке наблюдения крутой, почти наполовину закрыт делювиально-коллювиальными отложениями, образованными песчано-глинистым материалом и блоками глауконитовых известняков. Разрез аналогичен разрезу в точке наблюдения 5; отмечаются выходы пластов горных пород от лонтоваских глин до ордовикских известняков волховского горизонта, перекрытых моренными отложениями. В обнажении наблюзонта, перекрытых моренными отложениями. В обнажении наблюдается разгрузка подземных вод трех водоносных горизонтов. Верхний водоносный горизонт приурочен к линзам песков в моренном

Рис. 3.5. Обнажение пород в точке 8 на правом берегу р. Тосны

суглинке. Это верховодка. Второй водоносный горизонт представлен трещиноватыми известняками ордовика. Водоупором для него служат диктионемовые сланцы. Для нижнего кембрийско-ордовикского водоносного горизонта водовмещающими являются пески и песчаники кембрия и нижнего ордовика, а водоупором — лонтоваские глины нижнего кембрия.

Стекающая по склону вода ордовикского водоносного горизонта насыщена ионами ${\rm Ca^{2+}}$ и ${\rm CO_3^{2-}}$. При выходе на поверхность из нее выпадает карбонат кальция, образуя скопления известкового туфа.

Точка наблюдения 9. Расположена выше по течению на левом берегу р. Тосны у учебной базы СПбГУ. Долина асимметричная, правый борт террасирован, левый берег крутой, обрывистый, высотой до 28 м. В обнажении вскрыты те же горные породы, что и в предыдущей точке. Нижняя часть склона, от уреза воды до песчаников пиритаского горизонта, закрыта осыпью, состоящей из песков, обломков плит глауконитовых известняков и валунами магматических и метаморфических пород моренных отложений, залегающих на ордовикских известняках.

Точка наблюдения 10. Расположена выше по течению на левом обрывистом берегу р. Тосны напротив старого кирпичного завода. Вскрываемые в обнажении горные породы аналогичны разрезу пород в точке наблюдения 9.

Точка наблюдения 11. Находится на левом берегу р. Тосны на расстоянии 600 м выше по течению от предыдущей точки. Долина реки асимметричная, правый берег террасирован, левый крутой, обрывистый, но с широкой пойменной террасой. На террасе наблюдаются крупные валуны магматических и метаморфических горных пород размером до 2 м, скатившиеся на дно долины в результате размыва моренных отложений, залегающих на ордовикских известняках. Нижняя часть обрыва, до песчано-глинистой глауконитовой пачки леэтского горизонта, закрыта делювиально-коллювиальными отложениями. В моренных отложениях выделяются три горизонта. Нижний представлен валунной глиной зеленовато-серого цвета с валунами магматических и метаморфических пород (gQ_{III} vd_3), на котором залегают отложения верхней морены, представленные жёлто-бурым опесчаненным суглинком с галькой и валунами (gQ_{III} vd_3) (рис. 3.6). Студенты делают замеры, необходимые для построения геологического разреза обнажения.

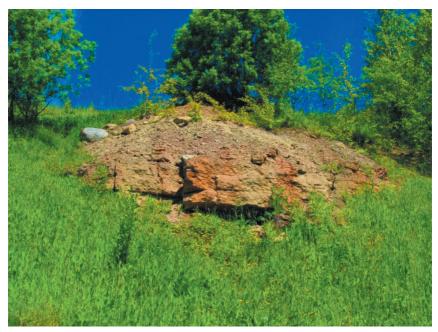


Рис. 3.6. Обнажение пород в точке 11 на левом берегу р. Тосны

Точка наблюдения 12. Находится выше по течению на левом берегу р. Тосны на расстоянии 70 м от водопада. Склон берега в точке наблюдения крутой, выделяются две террасы: узкая пойменная и широкая надпойменная. В основании крутого склона выходит кровля песчано-глинистой глауконитовой толщи леэтского горизонта. Выше залегают ордовикские известняки волховского и кундского горизонтов, перекрытые лужскими и невскими моренными отложениями с прослоем среднезернистого песка (рис. 3.7). Студенты делают замеры, необходимые для построения геолого-геоморфологического профиля, берут образцы валунной глины и межморенного песка, на пойменной террасе находят остатки ископаемой фауны.

Расположенный в 70 м выше по течению порого-водопад указывает, что профиль равновесия у р. Тосны не выработан (рис. 3.8).

Уступ является местным базисом эрозии. Строение водопада аналогично строению водопада на р. Саблинке. Уступ также сложен глауконитовыми известняками волховского горизонта. Студенты замеряют высоту уступа водопада и элементы залегания пласта известняков.

Рис. 3.7. Обнажение пород в точке 12

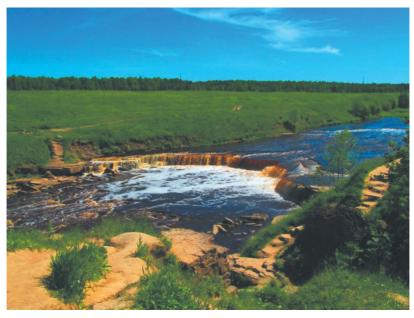


Рис. 3.8. Порого-водопад на р. Тосне

4. Оформление отчёта по практике

Результаты, полученные за время практики как в полевой, так и камеральный периоды, анализируются и обобщаются в итоговом отчете. Ниже дается содержание отчета и рекомендации по его подготовке.

Содержание отчета по практике

Введение (цели и задачи практики).

- 1. Характеристика физико-географических условий территории
 - 1.1. Географическое положение
 - 1.2. Гидрография района практики
 - 1.3. Геологическое строение
 - 1.4. Гидрогеологические условия
- 2. Методика проведения полевых работ (что такое маршрут, работа на точке наблюдений: привязка, осмотр обнажения, выделение слоев, проведение измерений видимой мощности пород и углов падения склона, правила отбора образцов).
- 3. Маршрут по долинам рек Саблинка и Тосна (краткое описание формы речной долины, видов террас, результаты измерений мощности пород и их описание).
- 4. Обработка материалов полевых работ (результаты измерений в точках 2, 4, 6, 7, 9, 10 иллюстрируются рисунками с использованием вертикального масштаба; по измерениям в точках 1, 3, 5, 8, 11 и 12 строятся геолого-геоморфологические профили; приводится каталог образцов, дается методика составления геологической карты; по результатам измерений строятся стратиграфические колонки палеозойских и четвертичных отложений).

Заключение (итоги практики, основные результаты).

Список использованных источников (пособие, учебники, интернет-ресурс).

В качестве примера ниже приводится описание обнажения пород в точке $N \ge 3$. (рис. 4.1).

Точка наблюдений № 3 Водопад на р. Саблинке

Обнажение на правом обрывистом берегу. На левом берегу выделяются низкая и высокая поймы и широкая надпойменная терраса. В русле реки поперечная терраса.

Интервал, м	Описание пород еQгу — почвенно-растительный слой, суглинок желто-бурого цвета, комковатый, влажный				
0,0-0,3					
0,3 – 2,0	gQ _{III} vd ₃ — моренный суглинок, цвет бурый, включения гальки и гравия, влажный.				
2,0 - 2,7	O ₁ kn — известняк ортоцератитовый кундского горизонта, серого цвета, трещиноватый с остатками фауны, толщина плит отдельности 10-12 см.				
2.7 – 7,0	O ₁ vl — известняки волховского горизонта, тонко-плитчатые, пестро- окрашенные, доломитизированные с прослоями глин и мергелей, местное название «желтяки» и «фризы».				
7,0 – 8,6	O ₁ vl — известняки глауконитовые волховского горизонта, серого цвета с зеленоватым оттенком, толщина плит отдельности 20-25 см, местное название «дикари».				
8,6 – 9,4	Oılt – песчано-глинистая глауконитовая пачка леэтского горизонта, переслаивание песков и глин зеленоватого цвета с прослоями мергеле				
9,4 – 9,6	Olpk — сланцы диктионемовые (аргиллиты) пакерортского горизонта (копорская свита), углистые, черного цвета со сланцеватой текстурой				
9,6 – 11,6	O1pk — песчаники оболовые пакерортского горизонта (тосненская свита), кирпично-красного цвета с включением раковин «obolus» с содержание P_2O_5 до 35 %				

Рис. 4.1. Результаты измерения мощности пород и их описание в точке 3

Общие требования к отчету

Каждая бригада составляет отчет самостоятельно. Точные копии не принимаются.

Раздел 1, в котором приводятся общие сведения о районе практики, составляется по «Методическим указаниям...». Текст иллюстрируется рисунками.

Раздел 2 составляется по «Методическим указаниям...» и материалам вводной лекции.

Раздел 3. Содержание раздела — результаты полевых работ. Основной источник информации — полевые дневники. Для более подробного описания точек наблюдений привлекаются сведения, приведенные в «Методических указаниях...». Описание разреза по каждому обнажению представляется в виде таблиц, составленных по результатам измерений, полученным бригадой. При этом дается детальное описание пород (цвет, структура, текстура, включения,

влажность, характер перехода в следующий слой). Текст раздела иллюстрируется фотографиями каждой точки наблюдения. Основные виды работ также желательно сопроводить фотографиями.

Раздел 4. Обработка полевых материалов. Для каждого обнажения на миллиметровке строятся разрезы (тушью или гелевой ручкой с нанесением цвета в соответствии со стратиграфией).

В отчете приводится каталог отобранных образцов и стратиграфические колонки палеозойских и четвертичных отложений района практики.

По результатам измерений строится геологическая карта. Предварительно дается методика составления карты.

Отчет представляется в печатном виде: титульный лист, список исполнителей (с указанием участия каждого в подготовке отчета), содержание и далее – текст.

Перечень геологических терминов

- **Акритархи** (от греч. *akritos* неясный, *arche* происхождение) одноклеточные или кажущиеся одноклеточными микроскопические ископаемые остатки организмов неопределённого систематического положения. Известны с палеозоя.
- **Аргиллит** твёрдая плотная глинистая порода, иногда с тонкой слоистостью, не размокает в воде, образуется в результате дегидратации глинистых пород обычно в результате сжатия.
- **Алеврит** молодая рыхлая мелкообломочная осадочная порода, состоящая из минеральных зёрен размера 0,01–0,1 мм кварца, полевого шпата, слюды и других минералов.
- **Аллювий** (лат. *alluvio* нанос, наносная земля) отложения, формирующиеся постоянными водными потоками в речных долинах.
- **Аммоноидеи** (*Ammonoidea*) наружно-раковинные головоногие моллюски с раковиной, завёрнутой в спираль с большим числом оборотов. Величина раковин от 1 см до 2 м. Существовали с нижнего девона до конца мезозоя.
- **Базис эрозии** поверхность, на уровне которой водный поток (река, ручей) теряет силу и ниже которой он не может углублять своё ложе. Различают постоянный (общий) и временный (местный) базисы эрозии.

- Брахиоподы, плеченогие (Brachiopoda) беспозвоночные морские животные, ведущие донный образ жизни. Тело помещается в двустворчатой известковой раковине. Брюшная створка более выпуклая. Известны с нижнего кембрия. Были многочисленны и разнообразны в палеозое. В настоящее время распространены мало. Число ископаемых форм свыше 10 000, а современных менее 200. Длина современных форм от нескольких мм до 8 см. Делятся на два класса: беззамковые и замковые. Беззамковые (inarticulata) более примитивные, створки не снабжены шарнирными выступами, скрепляются только при помощи мускулов, раковины хитиново-фосфатные, реже известковые. Замковые (Articuiata) более развиты, створки снабжены шарнирными выступами, раковины известковые.
- Верховодка временное или сезонное скопление ближайших к поверхности подземных вод, залегающих на линзах или пропластках водонепроницаемых или слабопроницаемых пород. Могут исчезать в результате испарения и перетекания в нижележащие горизонты.
- **Водоносный бассейн** часть земной поверхности, включающая толщу водоносных горных пород, откуда воды стекают в отдельную реку или речную систему.
- **Водоносный горизонт (пласт)** близкие по литологическому составу и гидрогеологическим свойствам слои водопроницаемых горных пород, в которых поры, трещины и пустоты заполнены подземными водами.
- Гастроподы (Gastropoda) самый обширный класс моллюсков в минувшие эпохи и в настоящее время. Тело заключено в спирально свёрнутую раковину. В процессе роста формируются новые обороты раковины. Передвигаются, ползая по дну при помощи мускульного выроста ноги, расположенной в брюшной полости тела. Известны с кембрия, обитали в мелководных частях моря с низкой солёностью.
- **Гидрослюды** слюдистые минералы. От слюд отличаются меньшим содержанием щелочей (замещаются на H_3O_3) и изменением соотношения алюминия и кремния. Главные гидрослюды: иллит $(K,H_3O)Al_2[(A1,Si)Si_3O_{10}](OH)_2$ и глауконит (K,H_3O) $(Fe,Mg,A)_2$ $[(A1,Si)Si_3O_{10}](OH)_2$.
- Глауконит (от греч. *glaukos* голубовато-зелёный) минерал группы гидрослюд. Образует мелкочешуйчатые агрегаты, зелёные землистые массы. Широко распространён в осадочных

породах различного возраста. Образуется в мелководных морских бассейнах. При образовании близ береговой линии обогащён глинозёмом, а в более глубоких участках развивается глауконит, обогащённый железом.

- **Горизонт** совокупность горных пород, характеризующихся признаками, которые позволяют устанавливать одновременность их формирования в определенном стратиграфическом объеме на всей площади региона. Он объединяет по площади несколько одновозрастных свит. Горизонт имеет географическое наименование, которое обычно совпадает с названием наиболее распространенной и изученной свиты (например, пакерортский горизонт O_1pk).
- **Головоногие, цефалоподы** (*Cephalopoda*) наиболее высокоорганизованный класс моллюсков. Исключительно морские организмы, обитали в океанах и морях с нормальной солёностью. Все современные головоногие – хищники. Это кальмары, каракатицы, осьминоги и т. п. Делятся на два подкласса: наружно-раковинные (Ectocochlia) и внутренне-раковинные (Endocochlia). Наружно-раковинные появились в кембрии. Были широко распространены в палеозое и мезозое. В кайнозое их численность резко сократилась, и в настоящее время существует только один род – Nautilus. Внутренне-раковинные появились в карбоне. В настоящее время известно несколько сот видов. Современные представители подкласса внутренне-раковинных это кальмары, каракатицы, осьминоги и т. п. Из ископаемых внутри-раковинных ценными руководящими формами являются представители подотряда белемнитов (Веlemnoidea). Появились в конце палеозоя, массовое развитие получили в мезозое и исчезли в начале кайнозоя.
- Граптолиты (Graptolithina) класс вымерших морских колониальных животных. Известны от среднего кембрия до нижнего карбона. Достигли расцвета в ордовике—силуре и нижнем девоне. Хитиновые скелеты граптолитов имели ветвистое и сетевидное строение. Ветви были образованы ячейками, в которых помещались зооиды (подвижные клетки). Существовали прикреплённые и планктонные формы.
- **Делювий**, делювиальные отложения (лат. *deluo* смывать) отложения, возникшие в результате накопления смытых со склонов дождевыми и талыми водами рыхлых продуктов выветривания.

- **Денудация** (лат. *denudatio* обнажение) совокупность процессов разрушения, сноса и переноса продуктов выветривания горных пород (водой, ветром, льдом, под действием силы тяжести).
- **Детрит** общее название рыхлого обломочного материала, продукта разрушения коренных пород, вынесенных с места их образования водными потоками.
- Доломит минерал CaMg(CO₃)₂, двойной карбонат кальция и магния. В отличие от кальцита растворяется в соляной кислоте только в тонком порошке или при нагревании. Также доломитом называют осадочную горную породу, состоящую в основном из минерала доломита. Доломитизация процесс замещения кальцита доломитом. Обычно происходит при воздействии на известняки подземных вод, обогащённых магнием.
- Жёсткость воды свойство пресной воды, определяемое содержанием в ней катионов Ca²⁺ и Mg²⁺. Жёсткость выражается в мг-экв на 1 л воды. 1 мг-экв жёсткости воды соответствует содержанию 20,04 мг/л Ca²⁺ или 12,16 мг/л Mg²⁺. Грамм (миллиграмм)-эквивалент есть число граммов (миллиграммов) вещества, равное его эквиваленту. Сумма устранимой и неустранимой жёсткости составляет общую жёсткость. В зависимости от величины общей жёсткости О.А. Алёкин предлагает различать природные воды: очень мягкие (до 1,5 мг-экв/л), мягкие (1,5–3,0 мг-экв/л), умеренно-жёсткие (3–6 мг-экв/л), жёсткие (6–9 мг-экв/л) и очень жёсткие (свыше 9 мг-экв/л).
- **Инфильтрация** (лат. *infiltratio* процеживание) просачивание воды по порам. Инфильтрационные воды подземные воды, образовавшиеся при просачивании атмосферных вод через поры горных пород.
- **Иифлюация** (лат. *in* в, *fluo* течь, струиться) поступление поверхностных вод через трещины, карстовые каналы и воронки в толщу земной коры. Инфлюапионные воды воды, поступающие в толщу земной коры через трещины и крупные пустоты в горных породах.
- **Карст, карстовые явления** (от названия плато Динарский Красс на западе Сербии) явления, связанные с растворением природными водами (поверхностными и подземными) горных пород (известняков, доломитов, гипсов, каменной соли). Среди карстовых форм рельефа наблюдаются, в основном

- отрицательные формы (воронки, котловины, естественные колодцы) и подземные формы (пещеры, полости, ходы).
- **Коллювий**, коллювиальные отложения (лат. *colluvio* беспорядочная груда, свалка) это материал обвалов, оползней, осыпей и т. п., накапливающийся у подножия крутых склонов. Движение материала вниз по склону происходит под действием силы тяжести.
- **Конодонты** (*Conodonti* от греч. *konos* конус и *odus* род. падеж от *odontos* зуб) разрозненные скелетные элементы микроскопических размеров (от долей мм до 3 мм) зубовидной формы неясного систематического положения. Известны, начиная со среднего кембрия по триас.
- **Ламинарии** (*Laminaria*) род бурых водорослей (*Phaephyceae*). Бурые водоросли это высокоорганизованные, многоклеточные, почти исключительно морские формы, прикреплённые к субстрату. Длина может достигать 100 м. Общим для всех форм является бурая окраска. Встречаются в виде отпечатков с нижнего палеозоя в морских прибрежных осадках.
- **Марказит** сульфид железа FeS₂, ромбическая сингония. Цвет бронзово-жёлтый, встречается обычно в осадочных горных породах, реже в гидротермальных отложениях, в жилах малых и средних глубин. По химическому составу идентичен пириту, но выветривается быстрее.
- Маркирующий (опорный) горизонт слой (пласт), выделяющийся окраской, литологическим составом, органическими остатками и пр. Занимает определённое положение в стратиграфической колонке данной территории. Используется для сопоставления отдельных обнажений, разрезов и др.
- **Мергель** известково-глинистая порода с 20–80 % содержанием карбонатов, главным образом кальцита CaCO₃ и магнезита MgCO₃.
- Моллюски, мягкотелые (Mollusca) беспозвоночные животные, предположительно возникли в докембрии, в нижнем кембрии уже существовало несколько классов. В настоящее время распространены по всему земному шару. Количество форм ископаемых и современных моллюсков более 150 000. Большинство моллюсков имеет твёрдые известковые раковины, хорошо сохраняющиеся в ископаемом состоянии. В основном, морские животные, но много пресноводных, а также наземных. Для геологии особое значение имеют три класса

моллюсков: двустворчатые (пелециподы), брюхоногие (гастроподы) и головоногие (цефалоподы). Остальные классы в ископаемом состоянии редки и для геологии не имеют большого значения.

- Морена (от франц. *moraine*) несортированные скопления разнообразных по составу горных пород (валуны, суглинки, супеси, пески, глины и т. п.). Морены состоят из скоплений обломочного материала поверхностной, внутренней и донной морен, оставленных ледником после его отступания.
- Наутилоидеи (Nautiloidea) наружно-раковинные головоногие моллюски. У одних видов раковина была прямой, у других изогнутой. Известны с раннего кембрия, в ордовике силуре существовало уже около 700 родов (около 2000 видов). Некоторые виды достигали в длину 8-ми м. В конце мезозоя началось быстрое вымирание.

Изучение ископаемых остатков наутилоидеи даёт очень много для понимания геологии ордовика и силура. Для стратиграфии особенно ценны представители отрядов ортоцератит и эндоцератит. В настоящее время сохранился только один род — наутилус, обитающий в Тихом океане между Австралией и Филиппинами

- **Оолиты** (греч. *oon* яйцо, *lithos* камень) небольшие минеральные образования шаровидной или эллипсоидальной формы концентрически-слоистого или реже радиально-лучистого строения размером от долей миллиметра до 3 мм и более.
- Остракоды, ракушковые (Ostracoda) подкласс класса ракообразных (Crustacea). Относятся к низшим ракообразным. Известны с нижнего кембрия. Морские и пресноводные мелкие рачки. Размер тела от долей миллиметра до 3 см. Тело заключено в двухстворчатую раковину, похожую на раковину двухстворчатых моллюсков. Для палеозойских видов характерны раковины беззамковые с мощным мускулом-замыкателем. В мезозое появились виды с замковыми раковинами. Тело неясно сегментировано с семью парами конечностей. Руководящие формы при разведке нефтяных и газовых месторождений. Известно около 2500 видов ископаемых и современных остракод.
- Пачка относительно небольшая, но мощная совокупность слоев (пластов), характеризующаяся некоторой общностью признаков или одним признаком, позволяющими ее отличать от

- смежных пачек. Название пачек обычно дается по слагающей ее характерной породе (глауконитовая пачка).
- **Пелециподы,** (*Pelecypoda*) двустворчатые моллюски, появились в кембрии. В палеозое мало, стало больше в мезозое и особенно много в кайнозое. Донные организмы. Форма раковин многообразная, зависит от образа жизни, бывает округлой, уплощённой, шарообразной и т. п.
- **Пирит** сульфид железа FeS_2 . Минерал кубической сингонии. Цвет латунно-содоменно-жёлтый. Иногда образует псевдоморфозы по марказиту. Встречается в горных породах самого различного происхождения. В осадочных горных породах образуется в результате разложения органических остатков в восстановительной среде.
- Платформа обширный участок континентальной земной коры, обладающий двухъярусным строением. Нижний структурный ярус (фундамент платформы) сложен метаморфизованными сильно дислоцированными породами. Верхний структурный ярус (осадочный чехол платформы) сложен залегающими на фундаменте пластами осадочных, реже вулканогенных горных пород.
- **Пойма, пойменная терраса** часть дна речной долины, покрытая растительностью и затопляемая только в половодье.
- ППП потери при прокаливании.
- Профиль равновесия реки продольный профиль русла, вырабатываемый рекой при неизменном базисе эрозии, когда все неровности дна (впадины, уступы) сглаживаются, и река нигде не аккумулирует и нигде не эродирует, т. е. удельная транспортирующая способность речного потока становится неизменной от истоков до устья. В действительности эти условия постоянно нарушаются из-за различного литологического состава пород, слагающих русло, наличия структурных нарушений на пути движения водного потока и др. Поэтому профиль равновесия имеет только теоретическое значение и может рассматриваться как предельная форма профиля, к которому стремится река.
- **Ракообразные** (*Crustacea*) класс ракообразных объединяет большую группу почти исключительно водных членистоногих, дышащих при помощи жабр. Принадлежат типу членистоногие (*Arthropoda*). Систематика класса ракообразных основана на характере сегментации тела. Как все членистоногие, имеют

членистое строение и членистые конечности. Тело покрыто хитиновым, хитиново-известковым или целиком известковым наружным скелетом (панцирем). Головной отдел состоит из пяти сегментов, в разной степени сросшихся между собой, несущих пять пар конечностей. Сегменты грудного отдела также снабжены парными конечностями, конечности брюшного отдела иногда редуцированы. Современные представители класса — речные раки, лангусты, крабы, рачки-дафнии. Известно около 20 000 видов современных ракообразных.

- **Регрессия** (лат. *regressio* обратное движение, возвращение) отступание моря. Происходит в результате поднятия материковой части земной коры или понижения уровня Мирового океана. Последнее может быть связано с опусканием океанического дна или с уменьшением объёма воды в океаническом бассейне (во время ледниковых эпох и т. п.).
- Свита основная и наиболее распространенная единица местных стратиграфических подразделений. Она представляет собой совокупность отложений, характеризующихся единством условий образования и состава слагающих пород. Свита может быть сложена однородными породами или толщей переслаивающихся пород. Внутри свит не бывает стратиграфических перерывов и несогласий. Свита обычно имеет географическое наименование, а по объему часто отвечает ярусу, части яруса или нескольким ярусам (например, тосненская и копорская свиты O_1pk).
- Споры (гр. spora посев, семя) клетки грибов и растений, служащие для размножения и расселения. Прочная оболочка спор хорошо сохраняется в ископаемом состоянии, что позволяет использовать споры для установления возраста и стратиграфического расчленения отложений осадочных горных пород. Стратотип, конкретный разрез обнажения какой-либо стратиграфической единицы (яруса, горизонта, свиты и др.), который указывается и описывается в качестве её типового разреза.
- Суглинок молодые рыхлые песчано-глинистые породы, содержащие не менее 30–50 % глинистого материала, что определяет их основные физико-химические свойства (пластичность и др.).
- Супесь молодые рыхлые песчано-глинистые породы, содержащие до 10–30 % глинистого материала. Пластичность отсутствует или незначительна.

- **Террасы** горизонтальные или слегка наклонённые площадки на склонах речных долин. Каждая терраса это бывшая пойма. Террасы образуются при изменении базиса эрозии и выработки рекой нового профиля равновесия.
- **Трансгрессия** (лат. *transgressio* переход) наступление моря на сушу в результате опускания материковой части земной коры или (реже) поднятия уровня Мирового океана.
- **Толща** породы, характеризующиеся общностью ряда признаков. Часто толщей называют стратиграфическое подразделение, для которого нет достаточных оснований, чтобы считать его свитой. Название ее либо связано с местом распространения, либо происходит от названия горной породы (глауконитовая песчано-глинистая толща).
- **Трилобиты** (*Trilobita*) класс вымерших морских палеозойских членистоногих (*Arthropoda*). Тело уплощённое, удлинённое, овальное, состоящее из трёх отделов (головного, подвижно-сочленённой средней части и заднего хвостового отдела), покрыто твёрдым спинным панцирем (наружный скелет), разделённым на три части: среднюю и две боковые. Длина тела от 2 до 10 см, реже 50 см. Гигантские формы до 75–80 см. Существовали в мелководных морях с кембрия до перми. Расцвет в позднем кембрии ордовике.
- **Туф известковый (травертин)** лёгкая пористая (ячеистая) горная порода, образовавшаяся в результате осаждения карбоната кальция из горячих или холодных водных источников.
- Фации (геологические осадочные) (facies наружность, форма, образ) для осадочных горных пород это комплекс первичных литологических и палеонтологических особенностей отложений, характеризующих одну определённую физико-географическую, тектоническую и геохимическую обстановку осадконакопления. Например, различные виды торфа, возникающие в разных условиях в речных долинах, болотах, прибрежно-морских низменностях и т. п., относятся к разным фациям. Фации могут объединяться в макрофации. Примером макрофации являются отложения речных долин, среди которых встречаются русловые, пойменные, болотные и другие фации.
- **Фитоморфозы** (греч, *phyton* растение, *morphis* формообразование) следы жизнедеятельности животных (ползания, ходы) или неорганические образования, напоминающие растения,

- за которые они раньше принимались. Иногда фитоморфозами неправильно называют псевдоморфозы по растениям.
- Фукоиды (от рода *Fucus* и греч. *eidos* вид) следы жизнедеятельности животных (ползания, проедания), напоминающие остатки растений. Обычно фукоидами называют все фитоморфозы.
- **Щит кристаллический** положительная структура, сложенная выходящими на поверхность породами фундамента платформы.
- **Эворзия** (лат. *evorsio* разрушение) формирование в ложе потока (реки) ям и углублений в результате придонного вращения падающей воды).
- Элювий, элювиальные отложения (лат. *eluo* вымывать) продукты выветривания коренных горных пород, оставшиеся на месте своего образования.
- **Эпейрогенические движения** медленные поднятия и опускания земной коры, охватывающие значительные территории.
- Эрозия (от лат. *erosio* разъедание) размыв или (и) смыв текущей водой горных пород и почв. Часто термину придают более широкое значение, понимая под эрозией все процессы линейной и плоскостной денудации.

Литература

- 1. *Бондаренко О.Б., Михайлов И.А.* Краткий определитель ископаемых беспозвоночных. М.: Недра, 1984. 533 с.
- 2. *Геология* СССР. Т. 1. Ленинградская, Новгородская и Псковская области. М.: Недра, 1971. 502 с.
- 3. *Кузнецов С.С.* О возможной структуре в долине реки Тосна у с. Никольского // Вестник ЛГУ. 1974. № 6, вып. 1. С. 42–46.
- 4. *Леонова Е.П. и др.* Полевая практика по исторической геологии и геоморфологии. Л.: ЛГПИ им. А.И. Герцена, 1978. 170 с.
- 5. *Мохнач М.Ф.*, *Прокофьева Т.И*. Методическое пособие по учебной геологической практике. СПб.: РГГМУ, 2007. 42 с.
- 6. *Натальин Н.А.* Саблино природная жемчужина окрестностей Санкт-Петербурга // Экскурсии в геологию. СПб.: ОМ-ПРЕСС, 2001.
- 7. *Палеонтология* беспозвоночных / под ред. Ю.А. Орлова. М.: МГУ, 1962. 436 с.

- 8. *Селиванов Г.Д., Сваричевская З.А.* Водопад на р. Саблинке (Ленинградская область) // Вестник ЛГУ. 1967. № 24, вып. 4. С. 152—158.
- 9. Спасский Н.Я. и др. Учебная геологическая практика в Ленинградской области. Л.: ЛГИ, 1986. 72 с. Интернет-ресурсы:
 - 1. www.Sablino.ru/arhiv/natalin.htm
 - 2. www.Sablino.net/

Содержание

Учебное издание

Мохнач Михаил Федорович, доцент, канд. геол.-мин. наук Прокофьева Татьяна Ивановна, доцент, канд. геол.-мин. наук Бродская Нина Александровна, доцент, канд. геогр. наук

Методическое пособие по учебной геологической практике

Начальник РИО А.В. Ляхтейнен Редактор Л.Ю. Кладова Верстка М.В. Ивановой

Подписано в печать 08.10.2019. Формат 60×90 1 / $_{16}$. Гарнитура Times New Roman. Печать цифровая. Усл. печ. л. 4,2. Тираж 30 экз. Заказ № 792. РГГМУ, 192007, Санкт-Петербург, Воронежская ул., 79.