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Introduction

Geostatistics, which can be defined as the tools for studying and predicting the spatial
structure of georeferenced variables, have been mainly used in soil science during the past
two decades. Since now, hundreds of geostatistical papers have been published on soil
science issues (see bibliography ibid., this volume). The use of geostatistical tools in soil
science is diverse and extensive. It can be for studying and predicting soil contamination in
industrial areas, for building agrochemical maps at the field level, or even to map physical
and chemical soil properties for a global extent. The users of the output maps are going
from soil scientists to environmental modelers. One of the specificity of geostatistical
outputs is the assessment of the spatial accuracy associated to the spatial prediction of
the targeted variable. The results which are quantitative are then associated to a level of
confidence which is spatially variable. The spatial accuracy can then be integrated into
environmental models, allowing for a quantitative assessment of soil scenarios.

Geostatistics are one of the most popular tools of pedometrics (the application of math-
ematical and statistical methods for the study of the distribution and genesis of soils), as
well as digital soil mapping which is defined as the creation and the population of geograph-
ically referenced soil databases generated at a given spatial resolution by using field and
laboratory observation methods coupled with environmental data through quantitative
relationships. In pedometrics, geostatistics are then exploratory tool for understanding
the distribution and the genesis of soil whereas in digital soil mapping they have mapping
as finality. Geostatistics are also valuable supplement to classical soil mapping since they
allow for recovering data knowledge hidden in traditional soil maps.

In this book, we call ‘soil geography’ the study of the spatial distribution of the soil
cover which concerns physical, chemical and biological soil properties, their vertical and
lateral variability (the spatial variability), and their description through the use of tax-
onomic tools. The spatial variation of soil properties can be defined as a function of
three parameters: (1) the average value determined by the soil forming factors (the cor-
pan factors or climate, organisms, relief, parent material, time and location), (2) its local
variation (function of scale and extent), (3) the stochastic or pseudo-stochastic variation
(Chapter 1). The geostatistics are then applied in this context. So that to illustrate the
spatial variation factors and strength the advantages of using geostatistics, we can use the
following example. Let say that the target issue is to map values of humus content of a
specific area. The first spatial soil variation parameter can be determined by a certain
amount of samples. The humus content values may vary regularly, e.g., along the slope or
any other gradient of local factors. In most cases, this variation is not found at first glance,
because the values increase or decrease irregularly; in other situations, the changes can be
along a more complex surface. In that case, one should search for a trend, a regression
dependence on the coordinates. Medium value and local trend constitute a deterministic
component of soil variability. The second parameter of spatial variation does not depend
on coordinates, but only on the distance between the sampling units (sampling resolution).
This component can be analysed with geostatistics. Finally, the third parameter of spatial
soil variation is completely random, and practically cannot be interpreted; in geostatisti-
cal models, it is expressed by the “nugget” — variability that does not depend either on
coordinates or on the lag distance. These notions and concepts are further detailed by
Webster (chapter 1 of this book).
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This book aims then first to present the different concepts of geostatistics with an
introductory chapter of Prof. Richard Webster, one of the fathers of geostatistics in soil
science, and thus, to illustrate the use of geostatistical methods in different geomorpho-
logical contexts (Chapters 2, 3, 4, 5, 6, 7, 8). The aim is also to present the limits of
geostatistics by opening the discussion on the use of soil diversity indices (Chapter 9 by
Dr. Juan-José Ibanez and Dr. Asuncién Saldafia). The vocation of this book is then
not to be a theoretical handbook on geostatistics but only to provide some examples of
applications of geostatistics in soil geography followed by a discussion on the limits of
geostatistics.

The basis for this monograph is the collection of studies conducted by the Laboratory
of Soil Ecology and Soil Geography of the Institute of Biology, Karelian Research Centre
of the Russian Academy of Science (KarRC RAS) within the research project supported
by the Russian Foundation for Basic Research “Soil geographical interpretation of spatial
variation of soil properties” (N 03-04-48089). The monograph is also supplemented with
the results of the bilateral project “Spatial variation of chemical and agrophysical soil
properties” of the Institute of Biology, KarRC RAS and the Research Institute of Soil
Science and Agrochemistry of the Hungarian Academy of Sciences, and of a number of
other projects supported by the Ministry of Education of Hungary (NKFP6,/0079/2005
and NKFP 4/064/2004), the Hungarian Scientific and Technological Foundation (OTKA
T062436, T042996 and T048302), and the National Council for Science and Technology
of Mexico (SEP-CONACyT 43702 and 55718).

Some research activities were conducted in the territory of the Karelian Republic,
where geostatistical methods were used for mapping particular soil horizons (Chapter 7),
for studying spatial variation of the soil floor (Chapter 3), and for characterization of
changes in the spatial structure of soils due to beavers’ activity (Chapter 6). Another
chapter attempts to evaluate the spatial structure of some soil properties using geosta-
tistical methods on the zonal sequence of soils in the Great Russian Plain (Chapter 5).
One chapter deals with Hungarian soils and shows the possibility of spatial interpolation
of water transport models (Chapter 8). Another chapter studies the spatial distribution
of the soil properties controlling soil aggregate stability in coffee-growing areas of Mex-
ico (Chapter 4). The volume also includes a brief bibliography of research papers where
geostatistics were used in soil research.

Finally, we would like to thank the authors of the different chapters who contributed
to the book with a lot of successful efforts and we are also very grateful to the different
foundations which gave financial support to the research studies.

Pavel Krasilnikov
Florence Carré
Luca Montanarella
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Chapter 1

Soil science and geostatistics
R. Webster

Abstract !

Pedologists want sound quantitative measures of spatial variation in soil, and they are
turning increasingly to geostatistics to provide them. They are treating the soil’s properties
as the outcomes of random processes and characterizing their variation by variograms.
Ordinary kriging is proving sufficiently robust for estimating values at unsampled places
in most cases. More sophisticated technique is needed where there is evident trend; it
includes universal kriging and restricted maximum likelihood (REML) to estimate the
parameters of the underlying models. Simulation is needed to portray the full magnitude
of the variation and to generate distributions in assessing risk and sampling effects. There
is a correspondence between the geostatistical expression of variation and fractals, but
whether variation in the landscape is fractal remains moot.

Background

Farmers have for centuries recognized variation in the soil and taken it into
account in their management. They have divided their land into fields within any
one of which they could treat the soil as if it were uniform. In recent times they have
come to realize that the fields that they or their predecessors created are not uniform,
that in many instances the variation within them is substantial, and that with
modern technology they can increase yields and make better use of fertilizers and
other agrochemicals by taking that variation into account in their management. This
realization has led to the current interest in precision agriculture and the need to map
the variation. At the same time people and their governments, at least in the richer
countries, have grown increasingly concerned about soil pollution and even naturally
occurring toxins, whether salts or trace elements, in the soil. They too now want
maps of individual soil properties, in these instances showing where the pollutants
are and how much of them there is. Both they and the precision farmers want

IThis chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 8-18.



quantitative information on the substances of concern. There are similar demands
being made by scientists in closely related disciplines, such as geochemistry and
hydrology.

Quantitative information must derive from measurement, and we cannot mea-
sure the soil everywhere; we can at best measure the soil on samples. So accurate
information for any region is available only at isolated points or for small bodies
of soil. Whatever we state for intermediate positions or larger blocks of land in-
volves some kind of interpolation or estimation from the measurements. That in
turn carries with it uncertainty, and so we want some measure of that uncertainty
too.

Engineers first tried to predict values of soil properties from sample data by
combining classical statistics with soil classification. They sampled classes delineated
on soil maps at random. Then, for each soil property of interest, they computed
from their data the means for the classes and used those means as predictors for
the classes. They also computed the associated prediction variances, which gave
them measures of uncertainty. The method proved a success for several engineering
properties of the soil, such as Atterberg limits and particle size fractions. It did
not work for the plant nutrients in the soil, which are strongly affected by farm
management, nor could it be expected to work for pollutants, which bear no relation
to the geology or physiography. Further, the results depended on the skill and
predilections of the individual soil surveyors who made the maps in the first place.
Some other approach was needed.

Early attempts to break from soil classification treated soil properties as math-
ematical functions of the spatial coordinates. The functions were fitted by least
squares approximation to give regression surfaces or trend surfaces. Typically they
were polynomials in the coordinates. The technique had been applied with con-
siderable success in petroleum geology. However, it soon became apparent that
polynomials of very high orders were needed to represent actual variation in soil
and that they could have no generality. Soil properties appeared as if they were
random rather than deterministic, and it was this recognition that provided the
break-through: if the soil appeared to be random then why not treat it as if it were
random?

The question was rhetorical; pedologists did treat the soil as if its spatial variation
were random, as miners had treated ores and rocks shortly before them in the birth
of geostatistics. Pedologists discovered that the techniques developed for mining
and the underlying theory could be applied equally to soil. And so began a new
era in quantitative pedology. Initially, in the 1970s, pedologists had to master
the mathematics, to program computers and to explore the potential of their new-
found theory. Then, as results of their work were reported in research journals from
1980 onwards, the techniques were increasingly applied in practice in such fields as
precision agriculture, pollution assessment and remediation.



The geostatistical approach

What characterizes the geostatistical approach?, we may ask. A brief answer
is that it views the soil is as suites of variables that are continuous in space, and
it describes their variation in terms of spatial dependence. Specifically it treats
those variables as though they were the outcomes of random processes, and it uses
geostatistics to estimate both plausible generating functions of the processes and
values of the realizations at unsampled places.

It will help to formalize mathematically the basic ideas here as a prelude to the
contributions that follow.

Random variables and random functions

In geostatistics we regard any region of interest as comprising an infinite number
of points x;,7 = 1,2,...,00. At each point x we regard the soil property as a random
variable, Z(x), which can take many values. For a continuous variable such as the
soil’s strength or pH this number is infinite, and the whole process may be regarded
as a doubly infinite super-population. The variable at x has a distribution with a
mean and variance and higher-order moments, and the actual value there, z(x), is
just one drawn at random from that distribution. Other variables may occur in only
a finite number of discrete states, and the actual value at any place is one of these
states drawn at random.

In these circumstances the quantitative description of the variation involves
estimating the characteristics of what are assumed to be the underlying random
processes. The characteristics include the means and variances, and perhaps higher-
order moments, as above, and, most important, the spatial covariances.

The spatial covariance between the variables at two places x; and x; + h, sepa-
rated by the vector h, is given by

Cxi,xi+h) = E{Z(x) —px)}{Z(x; +h) —p(xi +h)}] (L)

where 1(x;) and p(x;+h) are the means at x; and x;+h, and E denotes the expected
value. If the mean is constant then Equation (1.1) generalizes to

C(h) = E[{Z(x)—-pi{Z(x)— u}]
= E{Z&®)}{Z(x+h)} -], (1.2)
which is constant for any given h. This constancy of the mean and variance and of a
covariance that depends only on separation and not on absolute position constitutes
second-order stationarity.

So the covariance is a function of the lag and only of the lag. It is readily
converted to the dimensionless autocorrelation by

p(h) = C(h)/C(0), (1.3)
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where C'(0) = o2 is the covariance at lag 0. This too is a function of h, namely the
spatial correlogram.

In many instances it is unreasonable to assume that the mean is the same every-
where in a region. In these circumstances covariances cannot be defined because
there is no value for u to insert in Equation (1.2). Georges Matheron (1965), the
founder of modern geostatistics, recognized the situation and proposed a less de-
manding statistic to describe variation. He defined the expected squared difference
between Z(x) at any two points separated by h, thus:

E[{Z(x) - Zx+h)}| = var[Z(x) - Z(x+h)]
= 2y(h) . (1.4)

The variance per point is half of this, i.e. v(h), which Matheron called the ‘semivari-
ance’. Like the covariance, it depends only on the separation of the points and not
on their absolute positions. As a function ~y(h) is the variogram, often still called
the ‘semivariogram’. Russians should be glad to know that Kolmogorov (1939) had
already defined the same function and called it the ‘structure function’.

If the process Z(x) is second-order stationary then the semivariance and the
covariance are equivalent:

A(h) = C(0)-C(h)
— o1 ph)}. (L5)

If it is intrinsic only then the covariance does not exist, but the semivariance remains.

The validity of Equation (1.4) in a wide range of circumstances makes the var-
iogram very useful, so much so that it has become the central tool of geostatistics.
It summarizes quantitatively spatial variation in terms of dependence, and it is the
essential intermediary for spatial prediction with minimum variance by kriging. It
features prominently in several of the chapters that follow, and it will be helpful
here to display some of its common characteristics. These appear in Figure 1.1 in
their isotropic form, i.e. with lag in distance only: h = |h|.

Figure 1.1 (a) shows a variogram rising from its origin with ever decreasing
gradient towards an asymptote, its upper bound, also known as its ‘sill’. Its equation
is a simple negative exponential:

V() = ¢ {1 ~exp <_Z>} , (1.6)

where c is the sill, the a priori variance of the random process, and a is a distance
parameter. It describes a second-order stationary process, and so has a correspond-
ing covariance function, which is also shown. The latter is simply a mirror image of
the variogram with equation

C(h) = ¢ {exp (-Z)} . (1.7)

4
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Figure 1.1: Some common kinds of variogram and their corresponding covariance
functions: (a) negative exponential variogram and covariance function; (b) spher-
ical function with nugget; (c) five power functions, which have no corresponding
covariance functions; (d) ‘hole effect’ variogram and covariance function



These functions arise frequently in spatial statistics and are the basis of much the-
oretical work in spatial statistics.

A function that more often describes reality in soil is the spherical function,
shown in Figure 1.1(b). It increases to its maximum, its sill, at a finite range,
beyond which it remains constant. Its formula is

ho (kY
~v(h) = co—l-c{?; —() }for O<h<r
r

r

= ¢+c for h>r
= 0 for h=0, (1.8)

where 7 is the range, or ‘correlation range’ as it is often called. It represents repetitive
patches of soil of roughly similar size, sometimes called ‘transition’ features.

Figure 1.1(b) shows another feature of variograms: models fitted from data often
appear to have positive intercepts on the ordinate, whereas theoretically the variance
a zero lag should itself be zero. This intercept has the symbol ¢y in Equation (1.8)
and is known as the ‘nugget variance’. The term derives from gold mining where
gold nuggets occur apparently at random and without any relation to one another in
low-grade ores. In soil survey the cause is usually unaccountable variation within the
shortest sampling interval in surveys, though measurement error also contributes.
The nugget variance is constant for all lags and swells the variogram everywhere, as
you can see in Figure 1.1(b).

As above, the mean might not be constant, and in those circumstances the
variance is unbounded, at least within the regions that pedologists study. A simple
power model will often describe such variation:

v(h) = B, (1.9)

in which the parameter (§ is a measure of the rate of change, a scaling factor.
The exponent «, which must lie within the range 0 to 2, defines the shape of the
curve. When a = 1 we have a straight line. If 0 < a < 1 then the curves are
convex upwards; if 1 < o < 2 the curves are concave upwards. Figure 1.1(c) shows
several curves with their exponents printed alongside. There are nor corresponding
covariance functions. Note also that the limits 0 and 2 are excluded; a = 2 defines a
parabola and is not legitimate to describe random variation. At the other extreme,
when o = 0, the variogram would be flat.

Figure 1.1(d) shows another kind of variogram, one in which there is fluctuation
with a peak. The corresponding covariance function has a depression, or ‘hole’,
and is often called a ‘hole effect’ function. It describes variation in the underlying
random process that has some degree of periodicity. In one dimension the variogram
may fluctuate repeatedly with a constant amplitude. In two dimensions the function
must damp as in Figure 1.1(d).



These features appear in several of the chapters below, and you can find fuller
descriptions of them in Webster and Oliver (2007).

FElaboration

The above equations form the basis of geostatistics. But notice that they describe
models of reality; they are not themselves the reality. Rather, they are products of
our imaginations (see Webster, 2000). No real soil behaves exactly as our mental
models would predict.

At its simplest we can write our mental model mathematically as

Z(x) = p+e(x), (1.10)

in which p is constant, at least locally, and the residual £(x) has a mean of zero and
the covariance structure described above.

As several contributors to this volume show, such a model is in many instances
too simple. If there is trend across the region then p in Equation (1.10) cannot be
treated as constant; it must be replaced by a term that depends on position. And
so we elaborate our model to

Z(x) = z_:akfk(x)qu(x), (1.11)

in which the fi(x) are known functions of x and the a;, are coefficients determined
by the particular situation. Typically the trend term, the first term on the right-
hand side of Equation (1.11), can be represented by a polynomial in the spatial
coordinates. The second term is as before a random residual with variogram, ~(h)

This more elaborate model is the basis of universal kriging, so named by Math-
eron (1969) and now more accurately termed ‘kriging with trend’. The trend need
not be in Z(x) but in some related variable, say Y (x), and provided that the relation
between the two is linear the kriging can incorporate it.

There is a difficulty in applying the model. It lies in estimating the variogram of
e(h), the residuals from the trend, because the trend cannot be estimated properly
without knowledge of the variogram. Olea (1975) showed how to obtain an estimate
from data on a regular grid or transect, but his technique cannot be used where
sampling has been irregular, which is usual in soil survey. Another method that is
sometimes tried where the trend is linear (an inclined plane) is to estimate the direc-
tion of the inclination, compute a sample variogram in the perpendicular direction,
and use a model of that sample variogram as the variogram of the residuals. It too
has its limitations, especially if there are few valid paired comparisons from which
to estimate in that direction. Zimmerman (1989) proposed the theoretically more
attractive method, namely restricted maximum likelihood (REML) and set out the
mathematics. There are still technical difficulties to be overcome before the method



can be used widely, largely because some of the popular variogram models do not
have smooth likelihood functions. Nevertheless, the approach is promising. Lark
and Cullis (2004) have adapted the method for separating the contributions from
deterministic and random components, and Lark and Webster (2006) and Webster
and Oliver (2007) illustrate its application in geomorphology and precision agricul-
ture, respectively.

Kriging—geostatistics in practice

I have mentioned kriging above, almost as an aside. We should remember, how-
ever, that the force driving the development of geostatistics was practical and eco-
nomic. In Russia meteorologists wanted to interpolate atmospheric variables from
sparse recording stations; in South Africa miners wanted to estimate the gold con-
tents of ores locally from measurements on drill cores (Krige, 1966); elsewhere pe-
troleum engineers wished to estimate oil reserves from logged boreholes; and all
wanted their estimates to be unbiased with minimum variance. Local estimation,
i.e. spatial prediction, was the ultimate goal of geostatistics, and kriging was the
means of achieving that goal. Kolmogorov (1939) had written out the equations
for the purpose in the 1930s, but without computers no one could solve them. The
advent of computers gave mining and petroleum engineers the opportunity. Now
computers enable us pedologists to predict soil conditions at unsampled places from
more or less sparse data and to make maps at the press of a few buttons. Kriging
is almost automatic.

What is not automatic is the design of efficient sampling to obtain data; that
requires serious thought. Even less automatic is the modelling of variograms, which
remains perhaps the most contentious topic in geostatistics. There are still practi-
tioners who fit models to sample variograms by eye, but their number is dwindling as
software for statistical estimation becomes increasingly powerful, with better diag-
nostic facilities, and congenial and affordable packaging. The greater flexibility and
larger numbers of options in the packages, however, means that we must understand
more widely than before what we are doing so as to choose sensibly.

Interpretation

One reason for the cavalier attitude to the choice of variogram and its modelling
is that kriging is robust; its outcome is not very sensitive to the variogram. So, why
worry unduly about getting the ‘right” model? If all we want to do is to interpolate
to make a map then perhaps we need not worry.

In many instances, however, investigators want quantitative expressions of varia-
tion that they can interpret. There are several examples in the contributions that fol-
low. In particular, they often want estimates of the range of spatial dependence, and
in those circumstances it is important that they understand the nature of bounded



variation, the characteristics of the models, such as the popular spherical and ex-
ponential models, to describe it, and technicalities of estimating variograms. Other
characteristics of interest are the ratio of ‘nugget’ to ‘sill’ variances, which indicates
the degree of local smoothness of variation, and apparent lack of an upper bound,
which some investigators interpret as signifying fractal behaviour. I return to that
below.

Geostatistical simulation

A kriged estimate is an example of a best linear unbiased predictor, a ‘BLUP’.
It is, as the U in its acronym denotes, unbiased, and it is best in the sense of
minimizing the variance of the prediction. If you krige at a place where you have
a measurement then kriging returns the measured value there with zero variance.
Elsewhere it returns a weighted average of the data. The result is a statistical surface
in which there is less variance than in the original data; kriging loses variance, it
smoothes, and the further are estimates from data the more it smoothes. A map
made by ‘contouring’ from a grid of kriged values, which is often the final outcome
of a geostatistical exercise, gives a more or less smoothed picture of reality. This is
not always what is wanted.

Often an investigator would like a more realistic picture of the truth in the sense
that all the roughness that he or she believes to be present in the soil on the land
appears in the map. The investigator wants to retain the variance and perhaps even
more importantly the spatial covariance. In these circumstances he or she should
simulate, and geostatistics provides the means.

Simulation is based on the same underlying models of random processes, e.g.
Equations (1.10) and (1.11), as is kriging. It takes the variogram or covariance
function as a necessary and sufficient summary of the spatial variation; and it gen-
erates values, often referred to as ‘data’; that have in principle the same variogram
as the generator. Typically the values are simulated at the nodes of a grid, from
which a map can be made. Simulation can be conditional on data, meaning that it is
constrained by known values, and in that mode it returns those known values at the
sampling points. Maps made from such grids show the main pattern of variation de-
termined by the data with intermediate detail predicted from the variogram model.
The technique is also used repetitively to build empirical distributions of values at
unsampled places and assess risks of pollution, toxicity and deficiency. Alternatively,
simulation can be unconditional, disregarding any data or producing fields of values
where there are no data. The latter is often done in studies of sampling (see, for
example, Webster and Oliver, 1992). There are several well-tried algorithms for the
simulation, and these have been programmed in Fortran and made available in the
Geostatistical Software Library by Deutsch and Journel (1998). Goovaerts (1997)
describes them in detail and illustrates their use.



Fractals

The spherical and exponential functions I mention above describe patterns of
variation that, though irregular, are essentially repetitive so that their variances are
bounded. In some instances the variance seems to increase without bound as the
lag distance increases. At its simplest the variogram in its one-dimensional form has
the equation

SE[(26) — 2@+ WY = 2() = S (1.12)

which is a reformulation of equation (1.9). If H = 0.5 then the variogram is linear.
This is the variogram of one-dimensional Brownian motion,

Z(x) = Z(x+h)+e¢, (1.13)

in which € is a Normal (Gaussian) random deviate.

If the lag interval is divided by any arbitrary positive value, w, and the resulting
semivariances of Equation (1.12) rescaled in the ratio w* then the new variogram
will be identical to the original one. Brownian motion is thus seen to be a self-similar
or fractal process.

In ordinary Brownian motion the successive values of € are independent, and we
can create traces using Equation (1.12) as generator with H set to 0.5. If, however,
we increase H in the range 0.5 to 1 we can generate traces that are smoother than
those of ordinary Brownian motion and in which successive values of € are positively
correlated. Conversely, if we diminish H to between 0.5 and 0 we shall obtain
rougher traces in which successive values of € are negatively correlated. If H = 1
then the variogram is a parabola, describing smooth differentiable variation that is
not random. At the other extreme, H = 0 describes white noise, which is impossible
for a continuous variable in continuous space. So, the values 1 and 0 are precluded.

Within the limits 0 < H < 1 H is related to the Hausdorff-Besicovitch dimen-
sion, or fractal dimension, D, by

H=2-D. (1.14)

Further, if the experimental variogram is expressed in double logarithmic form, i.e.
logy(h) against log(h), then D is obtained from the slope, m, of the relation by

D =2-m/2. (1.15)

In this way we see the connection between geostatistics and fractals.

Many pedometricians have computed the fractal dimension from soil survey data
in this way, found values of D greater than 1, and sought to interpret the soil as
fractal therefore, at least over the range of distances they considered. Whether the
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soil really is fractal at the field scale is moot. Burrough (1983), who was one of the
first pedologists to investigate the matter, concluded that apparently unbounded
variation was more likely to have arisen from nested processes rather than Brownian
ones. We should bear his conclusions in mind when we seek to understand the
meaning of unbounded variograms.

Conclusion

Pedologists have made very substantial progress in applying geostatistics and in
understanding the nature of soil variation. They now have the confidence to explore
new situations and hitherto little known regions. The contributions that follow,
largely describing the results of case studies, show that the spirit of adventure that
got us started is alive and well. Let us also realize also, however, that we do not
have technical answers to every question and that there are still problems to solve.
Practice and theory need to advance together.
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Chapter 2

Variography of discrete soil properties
P. Krasilnikov

Abstract

The chapter deals with simple models of regular spatial distribution of data: “chessboard”,
“spot-effect model”, and “Sierpinski carpet”. We show that a mosaic distribution of data
(“chessboard”) can be described by a periodic model, if the lag in the variogram is equal
to the size of the square of the board. Otherwise, the experimental variogram is fuzzy,
and can de described by the “pure nugget” model. If the range of semivariance values for
different lags is wide, we recommend trying to vary the minimum lag to find out a periodic
structure. If an area with significantly different properties (a “spot”) exists in the site, the
variogram has a pseudoperiodic form. In that case, we recommend finding a square trend
in data distribution. When an incomplete self-similar structure was studied, we found
out that the variogram had a form close to a pseudoperiodic structure with elements of a
periodic distribution. We do not recommend interpreting such a distribution as a fractal
one since the evidences of self-similarity are fuzzy even in an ideal model.

Introduction

Initially, the main objective of geostatistics in soil science was to enhance the
quality of spatial prediction of soil properties (Kuzyakova et al., 2001). However,
it is not the only possible application of geostatistical analysis: it is known that,
while managing the data, one can get important additional information on spatial
distribution of the studied values, particularly for variography (Demianov et al.,
1999). The aim of this study is then to explore the role of the spatial structure for
expressing different types of variography above all periodicity and mosaics (mainly
found for soil data distribution) by using commonly used models of variograms. We
first review the geostatistical methods which can help finding and interpreting these
periodical structures, including latent ones. Then, we propose a list of reference
models, which might be interpreted as evidence of certain structures in soil properties
spatial distributions.
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Background

In most cases, soil properties with an expressed mosaic structure are character-
ized by high variability, and the quality of variograms is lower than for the soils with
a smooth distribution of properties (Jongman et al., 1995). For the properties, regu-
larly repeating in space, the variogram would be approximated by a periodic model,
and the period would correspond to the medium size of the structural unit. Webster
(1977) studied the distribution of spectral reflectance of Vertisols in Australia and
found out periodicity of reflectance connected with gilgai microrelief. Hummatov et
al. (1992) studied the bulk density, moisture content, and cation exchange capacity
of gray forest soils (Greyic Phaeozems), and found periodicity in the distribution
of the studied properties; the authors explained the phenomena by the presence of
paleocryogenic polygonal structure in the soils. Similar results were obtained by
Litvak et al. (1997). These authors studied the acidity and exchangeable bases
content in the same soils, and also concluded that the periodicity was a result of
ancient block structure. In all the cases mentioned above the researchers used a
periodic (sinusoidal) model of variogram. In contrast, Bruckner et al. (1999), who
found periodicity with a period of 1-1.5 m for humidity, acidity, and respiration and
N mineralization rates in forest litter, used a spherical model of variogram.

Apart from periodicity, several researches also discussed pseudoperiodicity, which
was realized in a variogram as an incomplete cycle of oscillation, i.e. the vari-
ogram had a reverse slope (semivariance decreased with an increase in lag distance)
(Burgess and Webster, 1980; McBratney and Webster, 1981), or inverse parabolic
form (semivariance increased, and then decreased with an increase in lag distance)
(Shein et al., 2001). In most cases, such a behavior of a variogram is regarded as
an indicator of a square trend. In a real soil cover, a square trend means there is a
big “spot” with significantly different properties, typically a regular change of soils
within a study plot (Shein et al., 2001). However, Oliver (1987) regarded a reverse
slope of a variogram as an evidence of irregular periodicity of soil properties.

Still, it is not completely clear what kind of spatial structure of properties corre-
sponds to a linear model of a variogram with no sill. There are simple cases, when an
unlimited growth of semivariance occurs along a gradient, i.e. there is a linear trend
in the distribution of properties (Jongman et al., 1995). Samsonova et al. (1999)
gave an example of such a distribution of acidity and K content in sod-podzolic soils
(Albeluvisols) over a field where fertilizers were applied irregularly. A linear trend
can be found in directional variograms if the direction is perpendicular to a sharp
boundary of two different blocks of the same plot. Goovaerts (1998) found a linear
form of one of the directional variograms, because one of the fields within the study
plot was limed, and the other one was not. Elimination of the trend can help in
the cases mentioned. However, more complex situations have also been described.
Burgess and Webster (1980) found a linear form of directional variograms for soil
stoniness, and elimination of trends did not change the form of the variograms. An

13



interesting interpretation of linear variograms was proposed by Burrough (1983; also
discussed in Webster, this volume). He suggested that soil variation had the same
nature as Brownian movement and, thus, could be described as a fractal. Linear
model of variogram reflects a particular case of soil properties’ distribution (Fig. 2.1)
with a fractal dimension D=1.5. Higher or lower values of the fractal dimension re-
sult in a power function for a model variogram, at D=1 it transformers into a line
parallel to the X axe (“pure nugget”), and at D=2 it has a parabolic form.

¥ 14 - D=2
12 D=1875
10 Ti=175
B _
) =15
4
D=1 25
2 D=1,125
D=1.0
I:I T T T T T 1
] 2 4 A g 10 12
h

Figure 2.1: Variograms for data with a fractal distribution (one-dimensional case)
depending on the value of the fractal dimension (h — lag distance in provisional
units)

However, there are serious doubts that the distribution of soil properties really
has fractal nature (Webster, this volume). Burrough (1983) himself noted that infi-
nite increase of variance indicates a nested structure rather than fractal behaviour.

Jongman et al. (1995) gave a review of variogram model interpretations based
on various spatially distributed data sets. They showed that a signal with sharp
boundaries at regular distances in a one-dimensional case (e.g., a transect) might
be better approximated by a linear model with a sill, the same regular signal in a
two-dimensional case, or an irregular signal — by a spherical model, a signal with
sharp boundaries at all distances — by an exponential model, a signal with a linear
trend — by a linear model without sill, a periodic signal — by a periodic (sinusoidal)
model, white noise — by a “pure nugget” model, and gradually varying signal —
by a Gaussian model. It remains unclear in this grouping what the difference is
between a signal at regular distances, and a periodic signal. The authors (Jongman
et al., 1995) regard signals of various intensities as regular, and signals with fixed
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amplitude — as periodic ones. It is important to note that the authors worked with
model variograms, which were smoothed down in comparison with experimental
ones. In most cases, model approximation leads to partial loss of data, especially
if the geostatistical software employed lacks some possible models (e.g. Pannatier,
1996).

Methods

In order to represent different spatial distributions, we applied three models:
1) the “chessboard”, 2) the “spot”, and 3) the “Sierpinski carpet”. For geosta-
tistical treatments and for constructing experimental and (in several cases) model
variograms we used Variowin (Pannatier, 1996) and Genstat (2002 — evaluation
version) software.

“Chessboard”

Let us model a simple “chessboard” type of periodic alternation of properties on
a surface. This two-component model reflects a hypothetical soil cover, where some
soil property takes fixed values  and y at a certain regular distance. To facilitate
modeling let us consider x=1 and y=2. The soil cover is considered isotropic, i.e. the
property alternates at the same distances in all directions. This model corresponds
to a number of real soil properties’ distributions with an expressed periodicity in
the soil properties, e.g. in polygonal tundra, in zones where salts, moisture or
any other components are distributed according to the microrelief. Also at other
scales, many landscapes have a periodic structure related to mesorelief and erosional
processes. Of course, real soil seldom has regular periodic distribution, and it seems
improbable that any property can take fixed values in alternating areas. However,
all these deviations from an ideal model would only be less expressed variants of the
presented model.

Let us consider the variant where “samples” were collected from the center of
each polygon on a “chessboard” 15x15 with a lag corresponding to the periodicity
of alternation of soil properties (225 experimental points). It is known that for
an experimental variogram it is enough to have 150 sampling points (Wackernagel,
2003). For modeling, let us use various lags: equal to, less and more than the
sampling resolution.

If we use the lag 0.5, the experimental variogram looks like a cloud of points
with variance ranging from 0 to 0.4 (Fig. 2.2 a). Facing such a distribution of
experimental points on a variogram, a researcher usually concludes that the data
are distributed irregularly (“white noise”). The only possible model to approximate
data in this case is a line parallel to the X axis — a “pure nugget” model. Even if
we can find any periodicity, no valuable information can be derived from it. One
can speak of periodicity when the points are interconnected, but a periodic model is
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difficult to apply. If the lag is equal to 1.0 (Fig. 2.2 b), the variance decreases to a
range of 0.15 to 0.35, and periodicity can be found and modeled. Increasing the lag
to 2.0 (Fig. 2.2 ¢) one can observe further smoothing of the data. A linear model
with a reverse slope in that case may approximate experimental points.

Thus, in the case of a significant range of variance of experimental points we
should permit a hypothesis that the data have a periodic structure. Modeling using
standard software products yields a linear model with a reverse slope or the “pure
nugget” model. A periodic model can be successfully applied only if the lag corre-
sponds to the characteristic distance of alternation of a given property. Thus, for
interpretation of the data characterized by a linear model with reverse or zero slope
it seems useful to try to change the lag for the experimental variogram. If some lag
allows us to use a periodic model, we should conclude that the spatial distribution
of the data is regular, and the period approximately corresponds to the lag distance.

As mentioned above, in a real soil cover sharp changes in the values of any
parameters are seldom, in most cases they are smooth. Thus, we also modeled such
a situation. The model is a slightly complicated, tri-component version of the same
“chessboard”, where the values in squares are distributed in the order 1-2-3-2-1
etc.

As we expected, the experimental variograms for “smoothed chessboard” were
similar to those obtained for the bi-component “chessboard” periodic distribution of
data (Fig. 2.3). Absolute variance values are higher in the case of the tri-component
distribution due to a bigger difference between the lowest and the highest values, but
the range of variance values is narrower than for the bi-component “chessboard”. In
the same manner, a periodic model may approximate a variogram if the lag distance
corresponds to the characteristic size of a single polygon. For other lags, the only
possibility is to use a linear model with reverse slope or the “pure nugget” model.

Spot effect

The spot effect, often called a “hole effect” in the literature (Oliver, 1987), de-
scribes a relatively uniform surface with an area (or areas) with contrasting prop-
erties. We do not use the term ‘hole effect” because it is confusing: some authors
understand the term as referring to sharp periodic changes in soil properties in
space (e.g. Jongman et al., 1995). In the latter case, a linear or periodic model may
describe the spatial distribution of soil properties, while the presence of a spot is
usually called “quasiperiodicity”.

We described a simple model of a bi-component system of a uniform plot 15x15,
where there is a spot sized 9x9. The values of the background were taken as equal
to 1, and the values within the spot — equal to 2.

As it has been previously described for quasiperiodic models, the distribution
of experimental points indicates the presence of a square trend: the variance first
increases with an increase in the lag distance, and then decreases (Fig. 2.4). The
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shape of the variogram practically does not depend on the lag distance. The ex-
perimental variograms fit well to standard functions, such as Gaussian one (Fig. 2.4
d). It is important to note that such a form of the variogram curve might also
result from a linear change of values (e.g., a change of soil groups), if we deal with
a directional variogram in the direction perpendicular to the borders between two
distinct objects.
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Figure 2.4: Experimental variograms for the distribution of data with the spot effect:
a—lag 0.5; b —lag 1.0; ¢ — lag 2.0; d — Gaussian model for the experimental variogram
with lag 1.0

If such a distribution is found, the best way to deal with the data is to find out
and describe a square trend, and then use it for interpreting the spatial distribution
of the data.
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Fractal model

The use of fractal models for interpretation of data on structural organization
of soil properties is still under discussion. Above we discussed the theoretical back-
ground for unlimited growth of variance with increasing lag distance (linear or power
model) as fractal behavior. However, as was mentioned also, it is not clear yet how
these mathematical models correspond to the reality. To interpret the fractal nature
of the soil cover it is necessary to understand the physical meaning of fractals for
soils. In fact, when we speak of fractal organization of the soil cover, we purport
that the soil cover contains some structural elements of various scales, bearing evi-
dence of self-similarity. The latter might characterize both qualitative (e.g. shape)
and quantitative soil attributes. For example, a soilscape having depressions of var-
ious sizes would show some fractal properties. Does it mean that an increase in lag
distance would lead to a rise in variance? It is doubtful, because the difference in
values between the “background” and “depressions” mostly does not depend on the
scale. However, scale-dependent values in “depressions” are also possible, and such
a situation will be discussed below.

To clear up the situation we attempted to model a partially fractal distribution
of soil properties. The model was based on a simplified classical fractal surface —
“Sierpinski carpet” (Fig. 2.5). Previous studies showed that the spatial distribution
of some soil physical properties evidenced self-similarity, and could be successfully
modeled using “Sierpinski carpet” (Perfect et al., 2006). This surface has a fractal
dimension less than 2 but more than 1 (1.892...). The “background” values were
considered to be uniform and equal to 1.0, the values in “depressions” — equal to
2.0.

It is obvious that the model we use is not a mathematical fractal in a strict
sense: a fractal should be infinitely self-similar both at an increase and a decrease in
scale. This model, however, can be used because its “incomplete fractal” behavior
completely corresponds to the situation existing in nature. First, real natural objects
are almost never fractals in the mathematical sense, but have only elements of fractal
structure: a tree has no roots of infinitely high orders, a river does not branch out
infinitely etc. Second, in a practical study of the nature we are forced to limit the
scale of our study to a certain range; the upper limit depends on the grid size, and
the lower limit — by the sampling resolution. Thus, such a three-level fractal can be
used as a model for fractal behavior of soil properties.

As the result, we obtained experimental variograms for our incomplete fractal
distribution of data. We found that experimental variograms have no tendency to
unlimited growth according to linear or power law. The variance increased to some
limit of the lag distance, and then decreased (Fig. 2.6). The form of the experimen-
tal variogram practically repeated that for the quasiperiodic model corresponding to
the distribution of data with a “spot effect”. It is not surprising since the biggest el-
ement of the fractal is a “spot” with values different from those of the “background”.
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Figure 2.5: Simplified “Sierpinski carpet” model grid

Comparing with the quasiperiodic model, the “fractal” shows some secondary pe-
riodicity of distribution, which can be found after elimination of the square trend.
The “spots” of secondary and tertiary order scales form this periodicity.

To check the effect of fractal distribution with the values, varying with the scale,
we made a slightly complicated model. The biggest elements (the “spot” in the
center) received the values equal to 4.0, the secondary “spots” — 3.0, and the tertiary
“spots” — 2.0. Thus, the scale factor was included: the values in bigger elements of
the plot had higher difference from the “background’ values, than smaller ones. The
experimental variogram showed even more clearly quasiperiodic character (Fig. 2.6
d). It was explained by higher contrast (difference in values) between the biggest
“spot” and “background”.

Experimental variograms both for “Sierpinski carpet” distribution and for its
complicated model might be successfully approximated by standard models, such
as Gaussian one (Fig. 2.7). Also a “layer by layer” interpretation is possible, first
eliminating a square trend, and then searching for periodic components in various
scales. However, we should note that in reality the latter might be difficult, because
pure fractal distribution, even incomplete, is seldom found in soil cover structure.
Data interpretation based on fuzzy periodicity can lead to groundless speculations.

Concluding we should stress that fractal spatial distribution of data does not lead
to expected infinite growth of variance with increasing lag distance. The model pro-
posed by Burrough (1983) implies infinite mathematical fractal distribution, while
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Figure 2.6: Experimental variograms for a fractal distribution of data: a — lag 0.5;
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Figure 2.7: Gaussian variogram models for a fractal data distribution (lag=1.0): a
— normal “Sierpinski carpet”; b — “Sierpinski carpet” with a scale factor

in reality we are limited by the scales applied. The variograms have a high nugget
value (Fig. 2.6), because no data on spatial distribution on the scale finer than sam-
pling resolution are available. At the distances bigger that 1/ of the grid size, the
semivariance drops down, because its growth is limited by the extension of the study
plot. The behavior of the variogram resembles that in the case of the “spot effect”,
and the bigger “spot” determines the variogram shape.

Thus, the reported “fractal dimension” of soil cover should be regarded with
caution. It would be better regarding this type of soil properties distribution as
some elements of self-similar structure.

Conclusions

The modeling of spatial structures of soil properties distribution resulted in the
following main results. The presence of a mosaic structure (periodicity) of soil prop-
erties of a “chessboard” type in most cases show a experimental variogram resem-
bling “white noise”, indicating the absence of spatial correlation of data. However,
properly selected lag distance allows describing the spatial structure with a periodic
model. If a linear model parallel to X axe or with inverse slope approximates ex-
perimental variogram we recommend searching for a minimum lag distance equal to
the characteristic size of a polygon. An indirect evidence of a mosaic structure is a
drastic decrease in the range of variance after increasing the minimum lag distance
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if a set of data is different from the “background” values (“spot effect”), or, in other
words, there is quasiperiodicity in data distribution, the variance first increases with
increasing lag distance, and then decreases. In that case we recommend selecting a
square trend to describe the spatial distribution of data. If some elements of fractal
structure are present, the experimental variogram has the form similar to that for
quasiperiodic distribution of data, because the biggest element of the fractal struc-
ture is included in the model as a “spot”. If after eliminating a square trend the
variogram has evident periodicity, it can mean that the spatial distribution of data
has elements of self-similarity.

Possible presence of spatial structure might be expected at study sites, where
variograms show low spatial correlation. We propose the following steps to find out
possible spatial structures in data distribution. First, linear trends should be elim-
inated, if present. Then, the experimental variograms should be constructed with
different lag distance. The distribution, well described by a periodic or quasiperiodic
model would indicate the presence of a mosaic structure or a “spot”. The fractal
structure, if present, is not well described by geostatistical modeling. Possible pres-
ence of self-similarity phenomena is reflected by a variogram, resembling that for
quasiperiodical distribution.

However, one should be careful with the interpretation of the results of variogra-
phy, since similar experimental variograms might reflect completely different spatial
structures. Variography should be a tool for elaborating a working hypothesis rather
than the final interpretation. Also, further research on the variography of real soil
structures is needed for a better understanding of the relation between soil cover
structure and geostatistic modeling.
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Chapter 3

Spatial variability of forest litters in
bilberry spruce forests of Fennoscandia

E. Solomatova, V. Sidorova

Abstract !

Variability of the forest floor thickness was investigated in old-growth and disturbed bil-
berry spruce forests of Karelia and Finland. Coeflicients of variation in old-growth forests
reached 58-107 %, being much higher than corresponding coefficients for disturbed forests.
Variography of litter depths has shown experimental variograms for old-growth forests to
be best approximated by the “pure nugget” model or exponential models close thereto.
The litter thickness in disturbed forests demonstrated a periodic distribution or a ten-
dency towards one. We presume the periodicity of the litter thickness in disturbed forests
is determined by its regular distribution from tree trunks to gaps. Regular distribution
in old-growth forest ecosystems is veiled by a multitude of overlapping litter formation
cycles, each having its own specific structure. At the same time, total variability of the
litter thickness increases with age due to accumulation of random factors determining its

distribution.
Introduction

Forest litters have long been an object of soil scientists’ and silviculturists’ close
attention. There are various theoretical approaches to classification of forest litters
based on traditional ideas about the object (Stepanov, 1929; Meyer, 1943; Muller,
1979; Bogatyrev, 1990, 1993). Being a biogeocoenotic formation, the litter pos-
sesses an essential property — lability (the capacity to respond quickly to changes
in external factors), which is manifest in its morphology (Kylli, 1980; Chertov,
1981; Nikonov, 1988). Thickness is a basic morphological parameter of the for-
est litter, yet considered to be fairly subjective. Stepanov (1929) believed the bias

!This chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 81-91.
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could be eliminated through systematization of massive material on soil genetics and
silvicultural-biogeocoenological characteristics, and suggested using this parameter
as a subordinate (secondary) trait in classification of forest litters (Sapozhnikov,
1984, 1987). Indeed, litter thickness can vary widely even within the same forest
type (Skorodumov, 1940; Karpachevsky, 1977; Morozova and Fedorets, 1992; etc.).
A shallow floor indicates that litter decomposition rate is relatively high, a thick
one — that the decomposition rate is rather slow. The floor thickness in undisturbed
ecosystems is determined by quite a number of factors such as the topography, soil
moisture conditions, stocking density, composition and age of the tree stand. Stud-
ies have demonstrated (Wallace Covington, 1981; Kolomyts, 2000) that the litter
thickness and, hence, its stocks, are the lowest in younger, relatively sparse forest
ecosystems. As the stand matures, annual amounts of litterfall stop influencing the
floor thickness, and the factor of significance is the rate of decomposition and hu-
mification of dead organic matter, the floor thickness remaining relatively constant
(Lull, 1959).

The present study aimed to assess and compare actual spatial variability of forest
litter in bilberry spruce forests and a secondary forest type in East Fennoscandia.
The litter thickness is considered here as the criterion through which spatial vari-
ability of the forest floor can be described.

Study areas and methods

Surveys were carried out in the middle and northern taiga of Karelia and South
Finland, which lie on the Baltic shield. The terrain is broken, with frequent alterna-
tion of hills and ridges generated both by tectonic denudation and by aqueoglacial
processes and of topographic lows. Numerous small lakes and mires are scattered
over the territory (Atlas of Karelian Autonomous Soviet Socialist Republic, 1989).

The mid-taiga subzone belongs to the Central agroclimatic district. General
climatic features are a short cool summer and lengthy winter (150-190 days), con-
siderable precipitation, high cloudiness and unstable weather through most of the
year. Annual precipitation is 600-700 mm, the coefficient of humidity is 1.2; tem-
peratures above +5° C over the growing season total 1600-1700 ° C, above +10 " C
— 1400-1600 ° C; mean air temperature in January is —11...-11.5" C, in June +15
...+16 " C.

The climate of the northern taiga subzone is even colder and wetter. The sum
of temperatures higher than +5 " C during the growing season is 1300-1600 * C, and
of temperatures higher than +10 " C is 1000-1200 ° C. Mean annual precipitation is
500-650 mm, but the coefficient of humidity due to lower evaporation rate is higher
(1.42).

Surveys were done in six key sites (Fig. 3.1).

Site 1 (25x30 m) is situated in the integrated monitoring area Valkea-Kotinen,
Finland. The parent rock is silty-sandy bouldery till. The forest is classified as fresh
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Figure 3.1: The location of the study sites

bilberry spruce forest. Trees are 155-190 years old. The stand composition is spruce
mixed with birch and pine. The soils are sandy-loamy podzolized podburs (Entic
Podzols). Bedrock outcrops are abundant.

Site 2 (54x54 m) is situated in the Kivach strict nature reserve, central Karelia
(Kivach 1). Loamy till is the parent rock. The forest is classified as fresh bilberry
spruce forest. Trees are 70 to 220 years old. The stand composition is spruce mixed
with pine and birch. The soils are sandy-loamy and loamy iron, humus-iron and
iron-humus podzols (Rustic and haplic Podzols).

Site 3 (54x54 m) is situated in the Kivach strict nature reserve (Kivach 2). The
parent rock is banded clays. The forest is classified as fresh bilberry spruce forest.
The stand age is 80 to 250 years. The stand composition is spruce mixed with birch.
The soils are clayey, surface podzolic (Stagnosols).

Site 4 (2500 m?) (Gabselga) is a remnant fragment of a spruce forest on a steep
morainic ridge on Lake Kask shore, at the boundary between middle and northern
taiga of Karelia. The parent rock is sandy-loamy, bouldery till. At a depth of 1.2-1.5
m, diorite bedrock underlies the till. The forest is classified as fresh bilberry spruce
forest. The stand is dominated by spruce with some birch present. Trees are 100-
120 years old. The soils are groundwater-gleyed loamy-sandy humus-iron podzols
(Endogleyic Podzols).

Forest in site 5 (81x81 m) (southern Bolshoi Klimetskiy Isl., Lake Onego) is
classified as moist bilberry spruce forest. The parent rock is sandy till. The stand
is dominated by spruce with some birch and aspen present. Trees are 100 year old.
The soil cover is a variation of podzolized podburs (Entic Podzols), iron podzols
(Rustic Podzols), and humus-iron podzols (Haplic Podzols) with patches of gravelly
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(Leptosols) and peaty gley soils (Histic Gleysols).

The territory of site 6 (81x81 m) (Gomselga) used to be covered by spruce
forest, which was nearly totally cut down. The parent rock is silty-sandy till. The
site is now under a secondary forest stand defined as a secondary type aged 50 years.
The stand composition includes birch and aspen with some pine and spruce. The
soil is silty-sandy iron-humus podzol (Haplic Podzol).

To determine litter thickness, the sample plots were split into 1 m? squares
following a regular grid. Measurements were done in small soil pits. The number of
litter thickness measurements done in site 1 was 400, in sites 2 & 3 — 2916 in each,
in site 4 — 72, in site 5 — 6500, and in site 6 — 2500.

Spatial variability of the litter thickness was studied using geostatictical meth-
ods. Geostatistics provides a set of statistical tools for incorporating the spatial
coordinates of soil observations in data processing, allowing description and model-
ing of spatial patterns, predictions at unsampled locations, and assessment of the
uncertainty attached to these predictions (Goovaerts, 1998).

The semivariance is the central tool of geostatistics. It quantifies how proper-
ties vary spatially. The semivariance that summarizes the spatial variation for all
possible pairing of data is calculated by (3.1)

N(h)
1) = gy 2 (206) = =6+ )Y )

where ~(h) is the semivariance at each lag (separating distance), h, N(h) is the
number of point pairs separated by the giving lag, and z(x;) and z(x;+ h) are
the results of measurements at location x; and x;+ h respectively. A plot of the
estimated ~y(h) values against h is called a semivariogram or variogram.

By definition, the variogram value at zero lag should be zero, but in practice
it usually intercepts the ordinate at a positive value known as the nugget variance
(Cp). The nugget represents measurement error and unexplained or random spatial
variability at distances smaller than the shortest sampling interval. The variogram
value, at which the plotted points level off is known as the sill, and the lag distance
(a), at which the variogram levels off is known as the range (or the zone of influence),
beyond which there is no longer spatial correlation and, hence, no longer spatial
dependence. The difference between Cy and sill is called the structural variance, C,
representing the variance accounted for by the spatial dependence.

Positive definite models are fitted to empirical variograms to capture the ma-
jor spatial features of the property. The most commonly used models are: linear,
power, linear with sill, spherical, exponential, and Gaussian (McBratney and Web-
ster, 1986). More complicated nested model assumes that the value of a soil property
at a point x; is the sum of a number of independent, spatially random functions.
Nested model accounts for situations, where differences in soil have been caused by
independently acting soil-forming processes having different weights that operated
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at different scales (Taylor and Burrough, 1986).

Semivariance estimations may depend on parameters, such as lag intervals, num-
ber of lags, anisotropy, etc. In this study, we chose the lag of h=1 m, the maximum
lag of h did not exceed linear dimensions of the plots, the minimal number of pair
was not less than 70. Geostatistical analyses were performed using Variowin, version

2.2.; models were fitted by eye and by minimizing the “Indicative Goodness of Fit”
(Pannatier, 1996).

Results and discussion

The statistical parameters describing litter thickness variability are shown in Ta-
ble 3.1. High variation of litter thickness values indicates its formation processes
had diverse manifestations within the same forest type depending on ecological con-
ditions. The greatest variability was demonstrated by fresh bilberry spruce stands
(Kivach 1, Kivach 2, Valkea-Kotinen), where the coefficient of variation of the litter
thickness reached 107%, 99% and 81%, respectively. As the soils grew moister, litter
thickness stabilized, its coefficient of variation decreased to 33% and 58% (Gabselga,
Bolshoi Klimetskiy). The coefficient of litter thickness variation in a secondary for-
est type (Gomselga) equalled 51%. Some zero values of litter thickness have been
recorded from all sites except for site 4 (Gabselga). Litter was missing where the
measurement point coincided with a trunk, uprooting, fallen tree, bedrock outcrop,
etc. The greatest litter thickness was recorded from the moist bilberry spruce stand
(site Bolshoi Klimetskiy) and equalled 37 cm. The increase in litter thickness in the
site was due to higher moisture of the soils.

Table 3.1: Summary statistics of forest litter cores

secondary | moist bilberry fresh bilberry
forest type | spruce forest spruce stand
Gomselga Bolshoi Gabselga | Valkea- | Kivach | Kivach
Klimetskiy Kotinen 1 2
Stand 50 100 100-120 | 155-190 | 70-220 | 80-250
age
n 2500 6500 72 400 2916 2916
min 0.00 0.0 4.0 0.0 0.0 0.0
max 29.0 37.0 24.0 19.0 19.0 14.0
T 4.2 10.7 12.1 3.2 3.8 2.4
med 1.0 10.2 12.0 3.0 3.5 2.0
S? 4.5 38.5 16.4 6.7 14.0 6.6
S 2.1 6.2 4.1 2.6 3.7 2.6
CV, % 51 58 33 81 99 107

As demonstrated by Fig. 3.2, total percent cover of the forest litter also varied.
Compared to other sample plots, the two sites situated in the Kivach reserve had
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the lowest percent cover of the forest litter, equaling 63% and 66%, respectively.
The reason for that was a great number of tree uprootings.

Gomselga
Klimetskiy
Gabselga
Kivach 2
Kivach 1

Valkea-Kotinen

I I I I ] I I I I I 1 0/0

0 10 20 30 40 S0 60 70 80 90 100

Figure 3.2: Total percent cover of the forest litter

Calculations of v(h) were performed and variograms were plotted for all six sites.
The results revealed a wide range of values, which could not be described by the
simplified model of regular change in litter thickness from the trunk to the crown of
the edificator plant.

The litter thickness variogram for site 1 (fresh bilberry spruce stand, Valkea-
Kotinen) reflected a nearly 100% nugget effect (Fig. 3.3, Tab. 3.2). The variogram
was described by a linear model, but the slope being insignificant:

~v(h) = 6.42 + 0.0149h (3.2)

1T 32 8 7T 9 11 13 15 17 19 21 23 25
lag h, m

Figure 3.3: Variogram models for forest litter thickness for site 1 (fresh bilberry
spruce stand, Valkea-Kotinen). Hereinafter, points indicate sample semivariances,
solid lines is fitted models, dotted line is variance

Nugget variance nearly coincided with the variance (Tab. 3.1, 3.2). One can
conclude that litter thickness variations could not be distinguished from variations
of the uncorrelated random variable, i.e. with the selected lag (1 m), large-scale
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Table 3.2: Parameters for semi-variogram models for forest litter thickness

Site Forest type Model Nugget | Sill | Range
and age (Co) (C) | (a), m
Gomselga secondary forest type, Exponential 2.69 4.53 30
50 years and periodic

Bolshoy | moist bilberry spruce stand, | Exponential | 29.03 | 39.16 | >50
Klimetskiy 100 years

Valkea- fresh bilberry spruce stand, Linear 6.42 6.79 >25

Kotinen 155-190 years

Kivach fresh bilberry spruce stand, | Exponential | 13.50 | 16.05 30
1 70-220 years

Kivach fresh bilberry spruce stand, | Exponential 5.67 7.69 35
2 80-250 years

variation was indistinguishable from “noise”. Data variation occurred around a
mean value of 3.18 (Tab. 3.1).

The variograms for the sites 2 and 3 (fresh bilberry spruce stand, Kivach 1 and
Kivach 2) (Fig. 3.4) were best described by the exponential model. The equations
for the function y(h) for the sites 2 and 3 had the following form, respectively:

v(h) = 13.5 4 2.55 % (1 — exp(—h/97.6)) (3.3)
v(h) = 5.67 4 2.02 % (1 — exp(—h/97.6)) (3.4)

a b
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Figure 3.4: Variogram models for forest litter thickness for: a. site 2 (fresh bilberry
spruce stand, Kivach 1); b. site 3 (fresh bilberry spruce stand, Kivach 2)

The insignificant slope of the curve in the variograms of the sites 2 and 3 indicated
that the study area could be considered to be homogeneous. High nugget variance
for the sites 2 and 3 was ascribed to the variability of soil properties at distances
smaller than the lag (1 m), and to measurement errors.
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The variogram plotted to determine the variation of litter thickness in site 4
(fresh bilberry spruce stand, Gabselga) looked quite unusual (Fig. 3.5). Neither of
the models fitted to the variogram sufficiently well. Visually, the periodic model
corresponded to the experimental variogram, but approximation yielded no satis-
factory results. Apparently, the periodicity of litter thickness change related to the
patchy structure of the community complicated the situation in our case: in places
the semivariance was higher than variance (which value appears in the figure as a
straight dotted line parallel to the X axis), although theoretically the former should
be tending toward the latter. One should note that the number of point pairs, for
which the calculations were done, significantly decreased for the lag h > 5, making
data for greater distances less reliable (though the number of pairs was more than
70 for every lag distance, making possible geostatistical analyses).

o 2 4 B & 10 12 14 16 1§ 20 22
lagh, m

Figure 3.5: Variogram models for forest litter thickness for site 4 (fresh bilberry
spruce stand, Gabselga)

The variogram for the site 5 (moist bilberry spruce stand, B.Klimetskiy)
(Fig. 3.6) was best described by the exponential model. The equation for the func-
tion (h) had the following form:

~(h) = 29.03 + 16.03 * (1 — exp(—h/84.8)) (3.5)

Thus, the variogram had a limited form. Its sill was slightly higher than the
variance value (Tab. 3.2). Nugget variance equaled 29.03. High semivariance and
nugget variance were ascribed to a very motley soil cover. The variance increased
with growing lag distance, and had a high range value. This fact might testify
the presence of a linear trend in the data distribution. The trend appeared as an
increase/decrease in the value along a certain gradient. Since the topography of
the site was characterized by the presence of a moderate slope from NE to SW, we
suggested that the trend was due to the difference in soil moisture content along the
slope, which affected the thickness of forest litter.
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Figure 3.6: Variogram models for forest litter thickness for site 5 (moist bilberry
spruce stand, B. Klimetskiy)

The variogram plotted for the site 6 (secondary forest type, Gomselga) had a
periodic form (Fig. 3.7), and was described by a complex function, representing the
sum of exponential and periodic models (nested model).

0+
1 4 7 10131619 22 2525 31 34 37 40 43 46 49
lagh,m

Figure 3.7: Variogram models for forest litter thickness for site 6 (secondary forest
type, Gomselga)

The equation for the function «(h) had the following form:

v(h) = 2.69 + 1.49 (1 — exp(—h/10.98)) — 0.35 * sin(2.09h + 1.81) (3.6)

The sinusoidal function period equaled 3, approximately corresponding to the
radius of tree crowns. The variogram had a limited form. The sill value was 3.83
(variance equals 4.54, Tab. 3.2). The nugget variance value was 2.69. The vari-
ogram’s complex form might be due to high heterogeneity of the litter thickness,
since the territory have been exposed to human impact (fellings) and actually is
covered by a secondary forest.
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Conclusions

The study has demonstrated that forest litter depths are described by several
models. For secondary forest types, the litter thickness variogram is described by
exponential and periodic models (Gomselga), or tend to have periodicity (Gabselga).
Thus, large-scale spatial coherence of litter thickness in old-growth relatively undis-
turbed forests is low. We attribute this fact to superimposition of many litter forma-
tion stages during the forest community development, each of the stages “recording”
its own parcellar structure. This superimposition averaged regular spatial variability
of the forest litter out. On the other hand, total litter thickness variability increased
due to accumulation of random disturbances (uprooting, local-scope paludification,
etc.). In regenerating disturbed forests, litter thickness is determined by the only
cycle of organic residue deposition, which is controlled by the unit structure of the
new biogeocoenosis. As the result, such forests demonstrate a more or less expressed
periodicity of the litter thickness distribution. Recent study in montane cloud forests
(Negrete Yankelevich et al., 2006) showed that during the first stages of succession
(first 100 years) the patchiness, or spatial structure of litter distribution increased;
we suppose that for spruce forests it should be also true. However, later cycles of
development of forest ecosystems and random processes (such as windfall) should
mix and homogenize the spatial structure of the litter. For the litter of the forests
older than 100 years, no significant changes occur with time. A linear model de-
scribes the variogram showing the variation of litter thickness in the Valkea-Kotinen
fresh bilberry spruce forest. Exponential models with very high nugget values were
chosen for the Kivach 1 and Klimetskiy bilberry spruce stands. For these sites also
the sill was the highest. We ascribed high variability of forest litter depth to high
surface stoniness (Kivach 1) and abundant rock outcrops (Klimetskiy) effects on
forest litter distribution. Thus, our data show, that for old-growth forests the geo-
logical situations affects the spatial distribution of forest litter, rather than the age
of the stand.
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Chapter 4

Spatial distribution of the soil properties
controlling soil resistance to erosion at a
coffee growing farm in Sierra Sur de
Oaxaca

N.E. Garcia Calderon, Y. Uriostequi Delgado, G. Alvarez Arteaga,
A. Ibanez Huerta, P. Krasilnikov

Abstract

The chapter deals with the spatial distribution of soil aggregates stability, which deter-
mines soil resistance to hydric erosion, in the territory of a coffee growing farm El Sinai,
situated in a subtropical altitudinal belt of Sierra Sur de Oaxaca. We found aggregate sta-
bility to depend positively on organic C and sand fraction contents in the soil. The latter
finding (the presence of more stable aggregates in light-textured soils) does not agree with
data from the literature. We proposed a hypothesis explaining this unusual dependence.
The soils having high clay content are rather old, and contain mainly kaolinite in their clay
fraction. This mineral does not form complexes with soil organic matter. Slightly lighter-
textured soils contain, together with kaolinite, some 2:1 minerals, which form complexes
with humic substances through bivalent base “bridges”. The presence of clay-organic
complexes, first, stabilizes soil organic matter, wherefore soils with a more sandy texture
generally contain more organic C in the study area. Second, clay organic complexes are
known to form more resistant soil aggregates than free organic matter. Thus, the most
stable aggregates are found in relatively light-textured soils with high organic C content.
The spatial distribution of aggregates stability seemed strange in the quadrates studied in
detail. No similarity was found either between the studied properties (organic C and sand
contents, aggregate stability), or between the quadrates. We concluded that distances less
than 100 m are not suitable for determining the spatial structure in the studied landscape.
Study of the spatial distribution of organic C content and aggregate stability at the scale
of the whole farm (distances up to 2000 m) revealed a distinct periodic structure for both
features, and some periods were the same for the two properties. We concluded that
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the heterogeneity of the studied soil properties’ distribution is related mainly to slope
processes, determining the age of the surface, which, in turn, regulates organic matter
accumulation and aggregate stability.

Introduction

Intensive slope processes characterize mountainous territories. These processes
are of major importance in wet tropical areas, where rainfall events are often very
intensive (Drees et al., 2003). Also, clayey kaolinitic tropical soils are easily affected
both by landslides (Dykes, 2002) and by intensive sheet erosion (Veihe, 2002). The
development of slope processes leads to the development of a mosaic structure of the
soil mantle, where deeply weathered profiles are neighboring immature soils formed
on the surfaces exposed by erosion and landslides (Krasilnikov et al., 2005).

Thus, the spatial organization of the soil mantle in mountainous tropical and
subtropical areas depends to a great extend on slope processes. It is clear also that
these processes are regulated by internal soil properties, related to soil stability as
an integral characteristic of soil resistance to various external disturbances. One of
the most important characteristics related to soil resistance to erosional processes
is aggregate stability (Gavande, 1992; Marti et al., 2001). The spatial distribution
of aggregate stability is difficult to predict, because it depends, in turn, on various
soil parameters, and this dependence is complex. Most researchers pointed out that
aggregate stability depended on soil texture. It was generally believed that an in-
crease in clay content resulted in an increase in aggregate stability (Gavande, 1992);
in clayey soils the stability of aggregates was regulated by clay mineralogy and com-
position of exchangeable cations (Akaigbo et al., 1999; Warrick, 2002). Some recent
papers (e.g., Veihe, 2002) showed that for practical purposes it was better to esti-
mate correlation between aggregate stability and sand fraction content instead of
clay fraction content, which was more difficult to determine; since sand and clay
content were interdependent, there was a negative correlation between sand content
and aggregate stability. The joint effect of the content of clay and organic matter was
discussed for tropical soils of Brazil and Venezuela (Roth, 1992). Many researchers
reported a positive effect of organic matter on aggregate stability (van der Watt and
Valentin, 1992; Gavande, 1992; Warrick, 2002). However, the aggregating effect of
organic matter was reported to be more pronounced in sandy textured soils (van
der Watt and Valentin, 1992). A number of authors (van der Watt and Valentin,
1992, see also bibliography) stressed a significant role of the mineralogical compo-
sition of the clay fraction in aggregate formation. According to these authors, the
most stable aggregates were found in kaolinite-dominated soils, whereas soils con-
taining mainly smectite and illite minerals were found to be less stable. Similar
results were reported by Warrick (2002), who found that soils with high kaolinite
and iron oxides content were less compact (i.e. better structured), than soils where
2:1 minerals dominated in the clay fraction. However, some recent studies (Denef
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et al., 2002) showed that aggregate stability depended not only on soil mineralogy
and soil organic matter content separately, but on their interaction, as well. The
above researchers found that the highest aggregate stability was in soils with a high
proportion of 2:1 minerals in the clay fraction and high organic matter content. The
results were considered to corroborate the importance of organic-mineral interac-
tions for aggregate stability. Clay minerals with the 1:1 structure and Fe and Al
(hydr)oxides poorly interact with soil organic matter (due to the lack of permanent
charge), while most 2:1 soil clay minerals are negatively charged (illites, vermiculites,
smectites and mixed-layered minerals). The latter group of minerals tends to form
complexes with soil organic substances (also mostly negatively charged) through
“bridges” of bivalent exchangeable bases (Nayan et al., 2002). Thus, aggregate sta-
bility can be expressed as a complex function of soil texture, clay mineralogy, organic
mater content and composition, and exchangeable bases content. Obviously, all the
parameters mentioned above have their own rules of spatial distribution; however,
certain interdependence should also be expected. Thus, the spatial distribution of
aggregate stability should be rather complex, especially in mountainous areas. One
should realize also that for every given area these rules would be of local significance,
and would depend on regional environmental conditions.

The objectives of the present study were: (1) to estimate aggregate stability in
the territory of the coffee-growing farm El Sinai, situated in the subtropical altitu-
dinal belt of Sierra Sur de Oaxaca, (2) find out the factors determining aggregate
stability in the study area, (3) establish the rules of spatial variation of aggregate
stability and the factors controlling it, and to interpret the results.

Objects and methods

The research was conducted at the coffee-growing farm El Sinai, Oaxaca State,
Mexico (Fig. 4.1). This region is a typical landscape of the south-western escarpment
of the Sierra Sur de Oaxaca mountains, the system formed by a tectonic uplift in
the Miocene (Moran et al., 1996; Centeno-Garcia, 2004); minor uplifts also occurred
in the Pliocene and even the Quaternary time. The rocks are mainly gneiss and
amphibolites formed during the Paleozoic epoch, and Cenozoic granites (Herndndez
et al., 1996). Recent sediments of the area are much less studied. It is believed that
mainly there are weathering products of igneous and metamorphic rocks, sometimes
deep weathered regoliths, redistributed on the slopes by gravitation and temporal
water flows (Centeno-Garcia, 2004). All of the Pacific coast of Mexico is a seismically
active zone (Rojas et al., 1987). The first seismic event reported from the region
happened in 1460. Later, numerous earthquakes of varying intensities were observed
in the 18 and 19*" centuries. The two most intensive ones occurred in 1784 and
1787. Several major earthquakes were reported from this area in the 20th century;
the last one was in 1999.

The climate of the region is classified as warm humid isothermal, with annual
rainfall of about 1800 to 2000 mm and mean annual temperature of 21 to 21.9° C
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Figure 4.1: The location of the study area and a schematic hypsographic map of the
coffee-growing farm El Sinai
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(Garcfa, 1973). The region has two main seasons — dry from December through May
and wet from June through November. In autumn, rapid air movement often pro-
vokes hurricanes, which cause treefalls, enhancing water erosion (Garcia Calderén et
al., 2000). The climate and vegetation on the Pacific escarpment of the mountainous
system are arranged in distinct altitudinal belts: under 500 m asl there are xero-
phytic tropical forests, Bosque tropical caducifolio; between the altitudes of 500 up
to approximately 1500 m asl — tropical semideciduous forest, Bosque tropical subca-
ducifolio; and over 1500 m asl — pine forests with fragments of montane cloud forests
(Rzedowski, 1978). The study was conducted in the tropical semideciduous forest.
Vegetation in the area consists of coffee plantations (Coffea arabica var. typica L.)
under the canopy of residual natural vegetation. The most abundant tree species
include Brosimum alicastrum, Enterolobium cyclocarpus, Pterocarpus acapulcensis,
Bursera simaruba, Caesalpinia coriacea, Ceiba pentandra, Cordia aliodora, and Fi-
cus spp. (Lorence and Garcia, 1989; Flores and Manzanero, 1999). Closed-canopy
coffee growing is the main agricultural practice in the region; it has been success-
fully used there for more than 150 years. The practice involves partial cutting of
the original forest vegetation and cultivating coffee under the shadow of remaining
trees. No fertilisers are used except for decomposed coffee pulp. The productivity of
these coffee plantations is relatively low, but the quality of the coffee is high (Staver,
1998).

Little is known about soils of the region. A recent review (Alfaro Sanches, 2004),
based mainly on the analysis of soil maps of the scale 1:250,000, has demonstrated
a lack of data rather than a clear understanding of the distribution of soils in the
region. Some results of the study of soils in the area were published recently (Garcia
Calderén et al. 2000; Krasilnikov et al., 2005). According to the data reported, soils
of the coffee-growing farms of the Sierra Sur of Oaxaca are Alisols, Acrisols, Luvisols,
Umbrisols, Leptosols and Cambisols (IUSS Working Group WRB, 2006). Soils of the
Finca Sinai farm were also partially described (Ibanez et al., 1995; Garcia Calderén
et al., 2006).

The farm Finca Sinai is situated at 16 °07°41.5” N and 97 °06'12.9” W, at alti-
tudes ranging from 700 to 1200 — 1300 m above sea level. Total area of the farm is
365 ha. Mountain slopes are complex, with the aspect varying from north-eastern to
south-western direction and slopes reaching 40 °. The slope surfaces are dissected
with erosional processes, forming deep gullies.

To study the spatial distribution of the factors controlling soil resistance to ero-
sion in a detailed scale, we established two squares 100x100 m. From each square,
we collected 100 samples from the surface layer (0-20 cm) following a regular grid
with a 1 m lag. To show the overall spatial distribution of soil properties, we col-
lected also 152 samples from the soil surface (0-20 cm) throughout the farm territory
following a regular grid with a lag distance of 100 m.

Organic carbon content was determined using wet combustion method (van
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Reeuwijk, 2002), the percentage of the sand fraction (particles 0.02-2 mm) — by
sieving, and aggregate stability — by calculating resistant aggregates after 10 aggre-
gates had been immersed in water for 3 minutes (Marti et al., 2001). Aggregate
stability was classified into 4 classes: very stable, stable, slightly stable, and unsta-
ble.

To interpret the results we employed also data on the clay mineralogy of surface
horizons of 6 selected profiles of contrasting morphology and properties. The clay
fraction was separated and pre-treated using methods described in Kunze and Dixon
(1986), and Dixon and White (1999). X-ray difractograms were obtained on the
difractometer DRON-3 (SIE ”Burevestnik”, St. Petersburg, Russia, 1987), Cu-Ka
radiation — with a graphite monochromer, 26 2-45°, U = 40 kV, I = 25 mA.

To find out the dependence of aggregate stability on the organic ¢ content and
soil texture we used linear regression analysis (Dmitriev, 1995). Since the aggregate
stability was determined semiquantitatively (i.e. the level of aggregate stability was
established for every range of the numbers of aggregates decomposed in water), the
values might be regarded as non-parametric values, and the coefficients of regression
were expected to be low (Dmitriev, 1995). For the regression graphics we used
standard software package Excel (Microsoft). To find out the spatial structure of the
variables, we used variography, with a special emphasis on the search of periodical
distribution. Variorams were calculated and approximated with VARIOWIN 2.2
(Pannatier, 1996) and GenStat (2002) (evaluation version) software. The maps of
spatial distribution of soil properties were constructed using SURFER Version 6.02
software (Copyright (© 1993-1996, Golden Software, Inc.). For the construction of
the cartograms ordinary kriging was used throughout.

Kriging is a generic name adopted by the geostitisticians for a family of gener-
alized least-squares regressions algorithms. There are many different kriging algo-
rithms. A standard version of kriging is called ordinary kriging. The predictions are
made as in the equation:

Zo = Mz(x1) + Aoz(x2) + ... + A\pz(xy) (4.1)

where the Ajare coefficients or weights associated with the data points. In kriging,
the weights are chosen in that a way, that the error, associated with the estimate, is
less than for any other linear sum. The weights take into account the known spatial
dependences expressed in the semivariogram, and the geometric relationships among
the observed points. In general, closer points carry more weight than distant point
(Burgess and Webster, 1980).
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Results

As a rule, mapping of soil properties in a cartogram is the last stage in the study
of spatial distribution of soil characteristics. In our case, however, the aim was not
depiction of soil properties, but scientific interpretation of the factors controlling
spatial distribution of aggregate stability.

The distribution of organic carbon content in the surface soil horizon in the farm
territory at large is shown in Fig. 4.1. The range of values was great: from almost
zero to more than 140 g-kg~! of organic carbon. The relation between organic carbon
content and relief was found to be weak (data not shown): the only general tendency
was that carbon content, as it had been expected, at the bottoms of the gullies and
on relatively flat surfaces was higher than on steep slopes, especially on convex ones.
Unfortunately, more precise estimation of the relation of organic carbon content with
relief forms and elements was impossible, since no detailed topographic maps were
available for the study area. Our topographic map (which was based on 400 points
where we determined the coordinates using GPS system, and altitudes using an
altimeter) did not reflect all minor elements of the relief, which might have major
importance for organic carbon distribution.

Two squares in the farm territory were established tentatively in the areas with
low and high organic carbon contents (Fig. 4.2). The internal distribution of organic
carbon inside both squares was complex. In the first square, carbon content varied
in a wide range (10 to 120 g-kg™!) (Fig. 4.3). The soils with higher carbon content
were found mainly in the south-western part of the square (situated lower along the
slope). The distribution of the sand fraction was somewhat different (sand content
was the highest along a small gully); however, more sandy soils tended to contain
more organic carbon. Aggregate stability had another distribution pattern, which
corresponded with the distribution of neither carbon nor sand. The most stable
aggregates were found both in sandy soils rich in organic carbon, and in heavier
soils, poor in organic matter.

In the second square, the variability of organic carbon content was not so high.
The soils rich in organic matter were found in a flat area and at the bottom of
shallow gullies. The sand fraction content varied significantly, and had little in
common with the distribution of carbon. The aggregate stability followed mainly
the distribution of the organic carbon content.

Linear regression showed a positive correlation between aggregate stability and
both organic C content and sand content in soil (Fig. 4.4). Leaving apart a detailed
discussion of these results (see our previous paper Garcia Calderdn et al., 2004), we
should note that the regression equations are not very reliable, since the aggregate
stability was not expressed quantitatively. Nevertheless, the results were obtained
on 200 samples from two squares, and could not be regarded to be an error or an
accident. Positive dependence of aggregate stability on soil organic matter content
was confirmed by many authors (van der Watt and Valentin, 1992; Gavande, 1992;
Warrick, 2002).
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Figure 4.2: Spatial distribution of organic carbon content in the surface horizons of
soils of the coffee-growing farm El Sinai; the small squares are 100x100 m grids: 1
— first square, 2 — second square
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45



IN
>
>
>
>
>
S

y = 0,0641x - 2,6274

> > R?=0,0736
";: E 4 A A A
$3 y=01158x + 2,2849 4 &
2 R? = 0,1496 £3 A A A A A A A A
g2 MM MMMMA MMA AL A A A g /
5} > 2 A A A A A A A A A 4
> =]
< <
1 1+ T T T T T T )
0 2 4 6 8 10 74 76 78 80 82 84 86 88
C, % Sand content, %
c d
4 A "y A 4 A A A y:O,(2J474x-1,2013
2z ) R? = 0,0604
3 5
£ 3 A AA A 83 AAAAAAAAAAAD
7}
2 y=0,3083x + 1,3372 @
® 2 _ <
g2 ry L g2 Iy AAAAAAAAAAA 4
g g

70 75 80 85 920

S)
N
N
w
N
o
)
~
&

C, % Sand content, %
e f y = 0,0457x - 1,0903
R? = 0,0654
4 A A AA A AA 4 4 4 ah 4 4
> z
3 AAAAAAAAAAAAALAA
ke 3 A % 3
Q
g y = 0,1549x + 2,0453 &
2, Ama 4 R R? = 0,1874 ®2 i AAAAAAAAAAAAAA
5 >
2 <
1+ h— T T T T ] 1 & i * i i !
0 2 4 6 8 10 12 65 70 75 80 85 90
C, % Sand content, %

Figure 4.4: Linear regression for the dependence of aggregate stability on organic
carbon content (a — square 1, ¢ — square 2, e — for the two squares together), and
sand fraction content (b — square 1, d — square 2, f- for the two squares together)

46



However, the increase in aggregate stability with increasing sand content con-
tradicted both general considerations (Gavande, 1992) and experimental results ob-
tained by other researchers (Akaigbo et al., 1999; Veihe, 2002).

We hypothesized that the stability of aggregates depended on soil mineralogy
and, thus, indirectly to soil texture. The hypothesis was based on the data on soil
mineralogy obtained both for the region of the study — Sierra Sur de Oaxaca (Garcia
Calderén et al., 2000; Krasilnikov et al., 2005), and for the particular study area
(Garcia Calderén et al., 2005). Thus, we analysed the mineralogical composition of
the clay fraction in 6 points, where soil profiles had been established previously. The
results are shown in Table 4.1; the points in the table are presented in accordance
with increasing sand content in soil samples. The data show that the dominant
minerals in heavier soils with a lower sand content were kaolinite and gibbsite. In
soils with a higher sand content there were significant amounts of 2:1 minerals in
the clay fraction.

Table 4.1: Mineralogical composition of clays and percentage of the sand fraction
in some surface horizons of soils of the coffee-growing farm El Sinai

i Clay fraction mineralogical composition
Site Sand content, % |- P ite | Kaofinite | Gibbsite
Los Zanjones 54.0 XX*
La Presa 68.0 X XX XX
La Primavera 68.8 X XX X
El Mirador 64.0 XX XX X
El Portillo 74.8 X X XX X
El Espinaso 77.6 X X XX

*XX — dominant mineral; X — detectable mineral

The spatial distribution of the studied soil properties was processed using geo-
statistical methods. The variograms obtained for organic carbon and sand contents
and aggregate stability are shown at Fig. 4.5. The shapes of the experimental vari-
ograms differed between the soil properties studied in the same square, and between
the squares for the same soil parameter. The distribution of organic carbon in the
first square was close to pure nugget.

The distribution of the sand fraction was close to a linear function, which indi-
cated the presence of a trend. The distribution of aggregate stability had a tendency
to quasiperiodicity. In the second square, all the properties had a distribution simi-
lar to vague periodicity. The variogram for organic carbon distribution had maxima
of semivariance at lags of about 40 and 120 m, for the sand fraction — of about 20
and 60 m, and for aggregate stability — of about 60 and 120 m. Some similarity in
the spatial pattern of organic carbon content and aggregate stability distributions
could be noted for the second square only. The periodic structure of the distribution

47



of organic C and sand content was ascribed to the effect of the system of gullies,
which has a characteristic distance between minor gullies of about 20 m.

We also processed the data for carbon content and aggregate stability for the
whole farm, taking also the data for small grids into account. The variograms for
both parameters had distinct periodicity (Fig. 4.6). Selection of standard model
variograms was possible, although it was clear that neither an exponential model
(used for organic carbon distribution) nor a Gaussian one (used for aggregate sta-
bility distribution) fit our experimental data adequately. Periodic models were also
difficult to apply, since the maxima of semivariance had no regular periodic distri-
bution. The variogram for organic carbon content had maxima at lags of about
120, 250, 350, 600, 850, and 1300 m, and semivariance values were different at these
maxima. An extremely strong increase in semivariance was found for the lag 1300
m. Such extreme values are usually related to insufficient data set, but in our case
(a more than 400-point data set) the explanation was not suitable. Moreover, a
maximum at the same lag distance was found also in the variogram for aggregate
stability distribution. The latter also showed maxima at lags of 250 and 750 m. In
general, one can see that at least some lag distances with maximum semivariance
are the same for organic carbon content and aggregate stability. It may indicate
similar patterns of spatial distribution for these two soil parameters.

Discussion

The spatial distribution of aggregate stability in the study area has a regular
character, which allows predicting soil resistance to erosion. In the study area, we
confirmed that aggregate stability increased with increasing organic carbon content
in topsoil; the data correspond well with those presented in the literature. We
found also that aggregate stability grew with increasing sand content, too. This
result contradicts most data reported in the literature, and we have to explain the
phenomenon. We proposed the following hypothesis. Soils with high clay content
(consequently, poor in sand) are usually old, and the dominant mineral in the clay
fraction is kaolinite, which does not form complexes with organic substances in
the soil. Soils with a higher sand content are generally less mature and, together
with kaolinite, contain minerals of the 2:1 structure in the clay fraction. These 2:1
minerals form complexes with soil humus through “bridges” of bivalent exchangeable
bases (Nayan et al., 2002). The presence of clay-organic complexes, on the one hand,
stabilizes soil humus, and hence, the mineralization rate is lower in these soils. As
the result, the residual organic matter concentration is higher. On the other hand,
clay-organic complexes are known to stabilize the soil structure better than free
organic matter. Thus, the most stable aggregates would be found in relatively light-
textured soils with elevated content of organic carbon.

Earlier, we proposed a general scheme for the formation of the soil pattern
in this study area (Garcia Calderén et al., 2005). According to our scheme, the

48



.r . 4 -r <
4 . < . 1.75 A .
354« 154 ~ § )
3 1251 <l
2.5 1 1
2 0,75
1.5 1 ’
1 4 0,5 1
0,5 A 0.251
0 T T T T T T O T T T T T T
0 20 40 60 80 100 lag h, m 0 20 40 60 80 100 lag h, m
b
! . T " N
10 . 10 4 %o, ®
8 - " 8 - o
6 i ®ox ® : 6 .
4 N * 4 4 ®
2 A 2
O T T T T T T 0 1 1 1 T T T
0 20 40 60 80 100|ag h, m 0 20 40 60 80 100Iagh m
C .
T f
0.35 1 LT 0.35 1 )
034 0301 - I
0.25 - 0.25 |
0.20 A 0.20
0.154 0.15 |
010' 010 ]
0.05 1 0.05 1
O 1 T T T 0 1 T T T T T

0 20 40 60 80 ’IO%1

0 20 40 60 80 109
lag h, m agh, m

Figure 4.5: Experimental variograms for organic carbon distribution (a), sand frac-
tion content (b), and aggregate stability (c) in surface horizons of soils in small
squares; left-hand column — data for square 1, right-hand — for square 2.
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(points — experimental variogram, line — exponential model), and (b) — aggregate
stability (points — experimental variogram, line — Gaussian model) for the whole
territory of the coffee-growing farm El Sinal.

zero-moment for soil formation should be the exposure of “fresh” surface by slope
processes. At this stage, one can observe immature light-textures soils with low
humus content, rich in exchangeable bases (Regosols). Later on, percolating water
and living organisms lead to the formation of the surface humus horizon and alter-
ation of the subsurface material, thus forming Cambisols. Leaching of bases results
in Umbrisols formation. Mineral weathering and clay illuviation finally lead to the
formation of soils with a clay-enriched illuvial horizon: Luvisols and Alisols. At the
final stage, the soils can be truncated by landslides, which occur in the clay-enriched
horizon when it grows saturated with water (Dykes, 2002). In this manner, one can
interpret this mountainous territory as a mosaic of surfaces of different ages, exposed
by slope processes; these surfaces are occupied with soils at different development
stages.

This study allowed explaining an additional mechanism behind the formation of
this polychronic soil mosaic. At early stages of development, the surface exposed by
slope processes has a sandy soil. Rapidly — due to intensive biochemical processes
in wet tropical environment — organic matter accumulates in this soil, forming clay-
organic complexes with 2:1 clay minerals still present in this soil, thus stabilizing soil
aggregates. At a millennium time scale, however, the situation turns different. First,
lixiviation results in the loss of bases, which served as “bridges” for clay-organic
complexes. Then, weathering destroys 2:1 layer silicates, leaving inert kaolinite
and gibbsite. Untied organic matter rapidly gets mineralized, soil aggregates lose
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stability, and erosion destroys the soil. A new cycle of soil formation starts on the
exposed surface.

Since the above scheme is based on slope processes, the spatial distribution of
aggregate stability, as well as the soil properties controlling it, is related to the
geomorphology of the area. Landslides and erosional landforms have certain char-
acteristic size; for example, a landslide cannot occur if the mass of ground does not
reach a critical value. Thus, the pattern of soil properties appears at certain scales
only. Our data shows that in small grids there are hardly any regularities in the
spatial distribution of the studied soil properties, or, more precisely, these regulari-
ties have a local scope (depending on the aspect, gradient, form and cleaving of the
slope) and do not reflect regional specificity of the soil distribution pattern.

Organic matter content and aggregate stability at the scale of the whole farm
show a periodic structure, which indicates a distinct regularity in data distribution.
Lag distances found in periodic variograms both for carbon content and aggregate
stability (250 and 1300 m) are more likely to reflect variations in the dissection of
the relief. The data corresponds to our field observations: small gullies are separated
by distances of 150-300 m, and deep canyons — by distances of about 1200-1500 m.

Special attention should be given to irregular periodicity of maximum semivari-
ance values in periodic variograms of the carbon content and aggregate stability
distribution. We believe these variograms to reflect superimposition of several pe-
riodic spatial structures. Unfortunately, we still have no mathematical methods
to enable the study of such spatial patterns. Better understanding of the physical
meaning of the spatial pattern of soil variables is needed to apply mathematical
models, which may provide further information on the organization of soil cover.
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Chapter 5

Geostatistical analysis of the spatial
structure of acidity and organic carbon in
zonal soils of the Russian plain

P. Krasilnikov, V. Sidorova

Abstract !

The chapter considers geostatistical parameters of variation in pH values (in the aque-
ous and saline extracts) and organic carbon content in the zonal series of the Russian
plain soils: gray soils (Greyic Phaeozems), illuvial clay chernozerms (Luvic Chernozems),
chernozerms (Glossic Chernozems) and chestnut soils (Kastanozems). Zonal patterns are
shown to exist in the variation of the above soil properties: the correlation radius of acid-
ity fluctuations increases north to south whilst spatial coherence grows weaker; the period
of organic carbon content fluctuations grows longer. At the same time, many parame-
ters demonstrate regional or local characteristics. More studies are needed to successfully
extrapolate geostatistical models onto unsurveyed areas.

Introduction

For a global scale, the distribution of soils, is regulated by bioclimatic zonality
(Arnold, 1994). These zones have a different extent and configuration throughout
the world, and a regular sequence of zones from north to south might be found
only in few places, including the Russian plain. Unlike at the early stages of the
development of soil geography, we believe that a soil zone is characterized by a
certain combination of soils, rather than by a single dominant soil group. The soil
cover of a soil zone should be described in the terms of soil cover structure (Fridland,
1974), or soilscapes (Finke and Montanarella, 1999). These soilscapes are specific
in the different soil zones (Fridland, 1976). However, we still do not know, how the

!This chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 67-80.

95



internal spatial structure of soil polygons varies between soil-bioclimatic zones. It
is an important characteristic to take into account and we believe that geostatistics
can be a useful tool for providing adequate methods to study it.

The objective of the present study was to find out whether specific patterns
of some soil properties (acidity and organic carbon content) can be identified in
relatively uniform soil cover such as within extensive soil zones at the Russian plain.

Background

To be able to create expert systems capable of extrapolating geostatistical data
onto a more or less wide class of objects we need to identify geographically inter-
pretable parameters of model variograms on which the geostatistical method is in
fact based (Demianov et al., 1999). The first parameter to be named is spatial
correlation proper. Its presence — although geostatistics is declared to view all para-
meters as a field of values, generated by a random function (Webster, this volume)
— indicates there exists a spatial structure. Where values are distributed absolutely
randomly, chaotically, no correlation is found, and the variation is described by the
“pure nugget” model (Jongman et al., 1995). To estimate spatial correlation, Cam-
bardella et al. (1994) suggested using the empirical criterion: if the ratio of nugget
to threshold (max semivariance the variogram attains reaching the sill) is lower than
25%, spatial correlation is classed as high; if it is 25 to 75% — as medium, over 75%
— as low. This criterion is certainly not applicable to linear, power and periodic
models. In the geographic sense, the presence of spatial correlation points to fuzzy
data periodicity at characteristic distances greater than the sampling interval (lag
distance), but smaller than the range (interval at which the variogram reaches the
sill attaining maximum semivariance). According to Jongman et al. (1995), smooth
variation is reflected by the Gaussian model, whereas abrupt data changes at irreg-
ular distances — by the spherical and exponential models, the spherical model being
characteristic of not totally regular changes in space, and the exponential one — of
changes at all distances, i.e. of the most random distribution. However, even the
presence of the “pure nugget” does not always imply total absence of spatial corre-
lation: quite often, it means that variation mainly takes place at distances smaller
than the sampling interval. Where the periodic model is present, data can be said
to have relatively strict mosaic organization. The presence of a trend (reflected
by a linear or a power, or, in the case of a quadratic trend, by a pseudoperiodic
variogram) indicates a regular increase/decrease of the values within a study site.

Material and methods

Surveys were done in the Tula (site 1), Belgorod (site 2), Rostov (site 3) and
Volgograd (site 4) regions (Fig. 5.1).

Site 1, which area is 126 ha, was established in an arable field near the town
of Shchyokino (53°497 N 37°19” E). The study area belongs to the gray forest
soil subzone of the Oka-Don province of podzolized, leached and typical medium
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Figure 5.1: The location of the study sites

humic, and of rich (very humic) deep chernozems (Haplic Chernozems in WRB (IUSS
Working Group WRB, 2006)) and gray forest soils (Dobrovolskiy and Urusevskaya,
1984). Mantle calcareous loams are the parent rock there. Topographically, the
site features a gentle slope of the southern aspect; gray forest soils (gray soils — in
the new Russian classification (Shishov et al., 2004), or Greyic Phacozems in WRB
(IUSS Working Group WRB, 2006)) predominate in the soil cover structure; gray
gleyic soils (Greyic Gleyic Phaeozems) lie on the lower slope. Site 2, covering 182
ha, was established in an arable field near the town of Alekseevka (51 38/ N 36 ° 13’
E). The study area belongs to the forest-steppe chernozem subzone of the Oka-
Don province of podzolized, leached and typical medium humic, and of rich (very
humic) deep chernozems and gray forest soils (Dobrovolskiy and Urusevskaya, 1984).
The parent rocks are mantle heavy loams, locally calcareous. The relief includes a
relatively low, sublatitudinally trending ridge; the soil cover is made up of leached
chernozems (illuvial clay chernozems (Shishov et al., 2004), or Luvic Chernozems
(IUSS Working Group WRB, 2006)). Site 3, covering 270 ha, was established in an
arable field near the town of Millerovo (49 “ 02’ N 40 ° 30’ E). The study area belongs
to the South-Russian province of ordinary medium humic and southern slightly
humic chernozems (Dobrovolskiy and Urusevskaya, 1984). The parent rocks are loess
heavy loams. Topographically, the site is a gentle slope of the SW aspect; southern
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chernozems (textural calcic chernozems (Shishov et al., 2004), or Glossic Chernozems
(IUSS Working Group WRB, 2006)) dominate in the soil cover structure; meadow-
chernozemic soils (hydrometamorphozed chernozems (Shishov et al., 2004), or Gleyic
Chernozems (IUSS Working Group WRB, 2006)) are the subordinate soil groups
found in depressions. Site 4, covering 290 ha, was also established in an arable field
near the town of Kotelnikovo (47 °50° N 4306’ E). The study area belongs to the
Don province of dark-chestnut and chestnut soils (Dobrovolskiy and Urusevskaya,
1984). The parent rocks are loess loams. Topographically, the site is a gentle
slope of the southern aspect. Chestnut soils (termed chestnut in the new Russian
classification, too (Shishov et al., 2004), or Kastanozems (IUSS Working Group
WRB, 2006)) predominate in the soil cover structure. Samples were taken from
a depth of 0-20 cm following a random-regular pattern with an interval of 150 m.
The geopositioning system was used to determine sampling point coordinates and
absolute elevation. All in all, 59 samples were taken from site 1, 85 — from site 2,
100 — from site 3 and 74 — from site 4.

The soil samples were analysed for pH of the aqueous extract and KCI, as well
as for organic carbon content by wet combustion (van Reewijk, 2002).

We studied the variability of soil properties using geostatictical methods, cal-
culating directional variograms for all plots and properties. The variation of soil
is not always the same in all directions; in other words, it is not always isotropic.
For example, the variation of soil texture parallel to a river would be different from
that sampled normal to the river; soil properties may have a gradient along a slope;
drainage and irrigation channels also affect the distribution of soil characteristics in
a certain direction etc. In these situations the variation of soil properties in each
direction may be described by its own semi-variogram, differing from those for other
directions, which is called anisotropic, or directional variogram. The direction is set
by the value of the angle ¢, (the angle between the vector and an axis X). To both
sides from this vector the angular tolerance « is added. It determines the spatial
sector within the limits of which the points for calculation of the variogram are
considered.

The anisotropy of variograms can testify the presence of a trend in the data
spatial distribution. The trend appears as an increase/decrease in the value along a
certain gradient. The trend can be determined using the regression on coordinates
(trend surfaces interpolation) (Dmitriev, 1995; Lark and Webster, 2006; Hengl,
2007). The regression on coordinates is based on the following model:

Z(s) = f(x,y) +¢ (5.1)

and the predictions are made by:

2(s0) = > apx"y’ (5.2)

r,s€N

o8



where r+s<p, p is the order of the surface. The model coefficients (a) are determined
by maximizing the local fit:

> (2 — %)* — min (5.3)
i=1
For the statistical analysis we used standard software package Excel (Microsoft).
Regression analysis was conducted using STATGRAPHICS Plus. Variograms were
plotted using VARIOWIN 2.2 (Pannatier, 1996) and GenStat (2002) (evaluation
version) software packages. Both omnidirectional variograms, and variograms for
the directions along and across the slopes or other landforms were plotted. Lag of
h was 150 m, the minimal number of pair was not less than 70, and the angular
tolerance was 20 °. Where a trend was found, variograms were built both for source
data and for detrended data (residuals of regression).

Results

Table 5.1 shows the data obtained through statistical treatment of the results
gathered. Mean values reflected well-known patterns in the zonal distribution of soil
properties (Dobrovolskiy and Urusevskaya, 1984): pH values (both in the aqueous
and in the saline extracts) grow north to south in a regular way from acidic to neutral
and weakly alkaline values. The content of organic carbon increases from Greyic
Phaeozems through Luvic Chernozems to Haplic Chernozems, then decreasing in
Kastanozems of the dry steppe subzone.

Table 5.1: Statistical indices of the properties of: 1 — Greyic Phaeozems, 2 — Luvic
Chernozems, 3 — Glossic Chernozems, 4 — Kastanozems

statistical pH(KCI) pH(H20) C, %
index 1 2 3 4 1 2 3 4 1 2 3 4
n 59 85 100 74 59 85 100 74 59 85 100 74
mean 4.79 | 5.00 | 6.72 7.12 595 | 6.07 | 7.17 7.89 0.73 | 2.65 | 3.64 2.50
variance 0.50 | 0.17 | 0.17 0.26 0.39 | 0.14 | 0.21 0.26 0.06 | 0.05 1.68 0.29
range 3.70 2.00 1.75 1.80 3.20 2.10 1.88 1.70 1.46 1.41 8.83 2.52
CV, % 14.81 | 8.18 | 6.19 7.13 | 10.40 | 6.11 | 6.45 6.40 | 33.19 | 8.38 | 35.69 | 21.40
min 3.10 | 4.60 | 5.70 6.00 4.50 | 5.60 | 6.02 6.90 0.30 1.97 | 0.14 1.23
lower 4.23 | 4.70 | 6.44 6.71 5.50 | 5.80 | 6.79 7.51 0.59 | 2.53 | 2.76 2.10
quartile
median 4.90 | 4.90 | 6.75 7.30 6.00 | 6.00 | 7.20 8.10 0.73 | 2.63 | 3.56 2.38
upper 5.20 | 5.30 | 7.07 7.50 6.28 | 6.30 | 7.56 8.20 0.85 2.75 | 4.58 2.86
quartile
max 6.80 | 6.60 | 7.45 7.80 7.70 | 7.70 | 7.90 8.60 1.76 | 3.38 | 8.97 3.75
skewness | 0.095 | 1.58 | -0.30 | -0.64 | 0.23 | 2.13 | -0.37 | -0.66 1.21 0.24 | 047 0.21
kurtosis 0.26 3.53 | -0.93 | -0.92 0.56 6.75 | -0.85 | -0.86 3.64 1.68 1.81 -0.19

The highest variability of all variation indices (variance, range, coefficient of
variation) of the saline extract pH is observed in Greyic Phaeozems. These indices
are significantly lower in all Chernozems (especially in Luvic Chernozems), and are
slightly higher in the Kastanozems than in Chernozems. Variability of the aqueous
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extract pH is also maximal (all indices) in Greyic Phaeozems. Variability of the
aqueous pH in Glossic Chernozems and Kastanozems is equally low. The situation
with organic carbon variability is more complicated. As regards variance and range,
the lowest variation is demonstrated by Greyic Phaeozems and Luvic Chernozems,
and the highest — by Glossic Chernozems. The coefficient of variation decreases in
the following sequence: Glossic Chernozems — Greyic Phaecozems — Kastanozems —
Luvic Chernozems.

For all the soils, pH values had medium to low coefficients of variation, less than
25%. Thus, at the studied scale, the heterogeneity of these properties was not very
high. Coefficients of variation obtained for organic carbon content were considerably
higher for Greyic Phaeozems and Glossic Chernozems, than for the other soils. Thus,
the heterogeneity of organic carbon content for the soils mentioned above was high.

The coefficients of skewness and kurtosis indicated that organic carbon content
had normal distribution or close to that. However, the organic carbon content for
Greyic Phaeozems seemed to depart slightly from the normal distribution, because
it had a positive skewness and a bigger tail than it should have.

The pH values (both in the aqueous and in the saline extracts) for Greyic
Phaeozems had the near-normal distribution. Southwards, the soil acidity decreased,
as it have been expected according to the classical zonal theory. However, it is in-
teresting to note that the decrease in medium acidity values was mainly related to
the increase of the minimum values. In Greyic Phaeozems, the lowest 25% of the
pH (KCI) values were in the range from 3.10 to 4.23 (for aqueous pH — from 4.50 to
5.50). In Luvic Chernozems the same range was much narrower, from 4.6 to 4.7 for
pH (KCl), and from 5.6 to 5.8 for aqueous pH. However, the other statistical para-
meters, such as median, upper quartile, and maximum, did not change. As a result,
we observed a positive asymmethry in data distribution, which was also confirmed
by high coefficients of skewness and kurtosis for the pHs of Luvic Chernozem.

For Glossic Chernozems and Kastanozems, the distribution of the pH values was
almost normal. However, a certain negative asymmetry was observed there, because
a number of higher pH values were detected: more than a half of the values were
higher than the mean. Thus, the data distribution of pH values in the studied soils
were near normal. However, it is important to note that a slight asymmetry existed:
a positive one in acid soils, and a negative — in slightly alcaline.

The simplest way to model large-scale spatial variation in the studied charac-
teristics is to plot the regression surface (trend surface) on the basis of the data
obtained at separate sampling points. The following regression equations (linear
trend) were obtained for the Greyic Phaeozems:

2z = 5.62 — 0.001321: (a < 0.01; R? = 36.23) (5.4)
2z = 6.68 — 0.0011z1; (a < 0.01; R? = 36.01) (5.5)
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For Luvic Chernozems the quadratic trend was obtained:

21 = 5.60 + 0.00019z; — 0.0014x5 + 3.61 * 10~ "22; (o < 0.01; R* = 51.89)  (5.6)

2 = 6.11 + 0.0006721 — 0.00033z5 — 6.33 % 1021 25; (v < 0.01; R? = 47.20) (5.7)

23 = 3.16 — 0.00078z1 — 0.00063z5 + 9.46 % 10~ 21 25; (v < 0.01; R? = 19.28) (5.8)

where x; and x, are the coordinates of the sampling points, z;is the estimate of the
pH of the KCI extract value, z, is the estimate of aqueous extract pH value, z3 is
the estimate of the organic carbon content, « is the significance level, and R? is the
multiple determination coefficient.

For the rest of the studied soils the regression models explained not more than
10% of the observed variability in the studied soil properties, or were not statisti-
cally significant (Sidorova and Krasilnikov, 2007). So, they did not allow reaching
unambiguous conclusions about the relationship between these properties and the
coordinates of the sampling points.

Variographic data are shown in Table 5.2. Acidity values of the Greyic Phaeo-
zems KCl extract were distributed according to a power model (of 0.99 power, i.e. the
variogram was nearly linear). Linear shape of the variogram testifies the presence of
a trend, and we made corrections (detrending) of the data. The detrended variogram
took the shape of a spherical model. Variograms were plotted also direction-wise.
Since the along-slope variogram was also modeled by the power function, the trend
was related to the slope. Aqueous extract pH values had the same distribution
parameters and were approximated by the same models. The distribution of organic
carbon was also periodic in nature, both for all directions, and for the directions
along and across the slope. It is interesting that the period for all the data falls
into the along-slope and across-slope vectors (periods of 1012, 509 and 863 m form
a nearly perfect right-angled triangle with an angle of ca. 30 °). Thus, the direction
of periodicity does not coincide with the slope.

Acidity values of the Luvic Chernozem KCI extract were distributed according to
a power model (of 1.04 power, i.e. the variogram was also linear). After detrending,
the variogram took the shape of a spherical model. Variograms were plotted also
direction-wise. Periodicity of distribution with a period of ca. 800 m was detected
along the ridge. A power function modeled the distribution of values across the ridge.
Aqueous extract pH values had nearly the same distribution parameters, but after
the data had been detrended, the variogram became periodic in nature. Organic
carbon distribution was periodic both for source data and for detrended data, with
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Table 5.2:

Model parameters of variograms for the properties of 1 — Greyic

Phaeozems, 2 — Luvic Chernozems, 3 — Glossic Chernozems, 4 — Kastanozems

property | soil direction model nugget sill range, | period,
m m
source data power (0.99) 0.22 0.00054 - -
detrended data spherical 0.20 0.32 198 -

1 along the slope power (1.34) 0.21 0.00009 - -
across-slope spherical 0 0.492 485 -
source data power (1.04) 0.032 0.00018 - -

detrended data spherical 0.019 0.084 288 -

2 along the ridge | pseudoperiodic 0.11 0.060 - 798

pH(KCI) across the-ridge | power (1.54) 0.084 | 0.0000079 - -
source data power (1.27) 0.15 0.000004 - -

3 along the plot nugget 0.18 - - -

across the plot | pseudoperiodic - - - -
source data Gaussian 0.217 0.26 483 -

4 along the slope spherical 0.069 0.28 546 -
across-slope Gaussian 0.16 0.29 406 -
source data power (0.99) 0.14 0.00047 - -

detrended data spherical 0.18 0.24 208 -

1 along the slope power (1.46) 0.16 0.000028 - -
across-slope spherical 0 0.4 565 -
source data power (1.01) 0.03 0.00017 - -

detrended data | pseudoperiodic | 0.073 0.013 - 1525

2 along the ridge | pseudoperiodic | 0.074 0.029 - 1400
pH(H20) across the-ridge | power (1.38) 0.08 0.00003 - -
source data spherical 0.15 0.21 340 -

3 along the plot nugget 0.22 - - -

across the plot | pseudoperiodic 0.16 0.038 - 908
source data exponential 0.14 0.28 358 -

4 along the slope nugget 0.27 - - -
across-slope Gaussian 0.11 0.29 350 -
source data periodic 0.041 0.0052 - 1012

1 along the slope periodic 0.044 0.012 - 509
across-slope periodic 0.031 0.013 - 863
source data pseudoperiodic | 0.059 0.019 - 2059

detrended data | pseudoperiodic | 0.049 0.014 - 2060

2 along the ridge power (1,32) 0.03 | 0.0000036 - -

C across the-ridge periodic 0.042 0.010 - 635.6
source data pseudoperiodic 1.68 0.17 - 1934
3 along the plot | pseudoperiodic 1.57 0.34 - 3239
across the plot | pseudoperiodic 1.67 0.33 - 988
source data spherical 0.099 0.28 357 -

4 along the slope | pseudoperiodic 0.28 0.039 1685

across-slope Gaussian 0.16 0.33 553 -
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a similar period of ca. 2060 m. The along-ridge distribution was described by a
power function, and the across-ridge distribution was periodic, but the period was
much smaller than for the whole data pool (636 m).

Discussion

We have investigated the spatial variability of the sites established within the dis-
tribution range of the zonal series soils. The study has revealed certain distinctions
in geostatistical parameters of the sites. Greyic Phaeozems feature high variability
of acidity measured as pH of the KCl and aqueous extracts. Acidity varies regularly
in space at characteristic distances of up to 200 m, the spatial correlation of the data
assessed as high. At the same time, these parameters show quite high variation also
at characteristic distances smaller than the sampling interval (less than 150 m).
Yet, high sill /nugget ratio indicates that most variation takes place at characteristic
distances of 150-200 m. Regular change of pH values usually proceeds along the
slope — most probably due to more intensive leaching of carbonates from the upper
slope or the vicinity of carbonaceous groundwater discharge at the foot of the hill.
Across-slope distribution of pH values is described by a spherical model, indicating
that the parameter values change abruptly at irregular distances; the correlation ra-
dius in this direction is larger, reaching 480-565 m (for pH values of the saline and
aqueous extracts, respectively). Zero nugget means that in this direction hardly any
changes take place in the values at characteristic distances smaller than 150 m, i.e.
pH values change at 150-500 m distances. Organic carbon content shows relatively
little variation, its spatial distribution being periodic, with a period of ca. 1000 m;
variation at distances below 150 m is negligible. Periodicity of the organic carbon
distribution has no correlation to the slope; the period in our case being at an angle
of ca. 30" to the slope. Detailed in situ studies are needed to determine the rea-
son for such periodicity; this is exactly the case when geostatistical data, revealing
hidden patterns in data distribution, provide the ground for soil-geography studies.

Acidity in Luvic Chernozems shows little variation in the saline extract pH, but
the variation of pH values in the aqueous extract is much higher. The pH of KCl
extract is known to be a more stable acidity parameter, since it does not depend on
the initial ionic force of the solution. Apparently, it should be taken into account
that it is in Luvic Chernozems that the values of the aqueous extract pH are the least
stable. The same factor seems to be responsible for differences in the spatial distri-
bution of these acidity parameters. The distribution of the KCI extract pH values
is described by a spherical model; spatial correlation is of medium strength, most
variation takes place at characteristic distances of 150-300 m. Acidity distribution
is determined by the topography: the distribution along the ridge slope is described
by a power function, i.e. a trend is present in the data distribution. Periodicity of
the distribution is observed along the ridge, the reasons for it still undetermined.
Little variation is seen in organic carbon content; its distribution is periodic, with a
period of ca. 2000 m, which may be connected to the mesotopography.
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Acidity variation in Glossic Chernozems is minor (variation of all indices is lower
than in other soils). Spatial coherence of the aqueous extract pH values is described
as medium, but close to weak; the distribution is characterized by a spherical model.
Judging by the high nugget, variation most probably occurs at distances less than
150 m. The presence of “across-the-site” periodicity (or, more accurately, pseudo
periodicity) is most probably due to the forest strips growing along the site edges
and producing a slight acidifying effect on the soil. The pH(KCI) distribution is
described by a low-slope power function, i.e. approaches pure nugget. Glossic Cher-
nozems are noted for maximal variation of the organic carbon content, which is
described by a periodic model in all directions. The data, however, are somewhat
doubtful: direction-wise periods queerly coincide with the linear dimensions of the
site, and the period in all directions is their arithmetic mean. If our guess is correct,
this is a case of pseudo periodicity caused by the “edge effect” of the field. Anyhow,
even if periodicity of some kind does exist, the amplitude of change appears negli-
gible against the high nugget background. Most changes in organic carbon content
take place at distances smaller than 150 m — a fact we attribute to the microtopog-
raphy and short-range transport of organic material along the slope (Sidorova and
Krasilnikov, 2004, 2007).

The variation of acidity in Kastanozems is relatively low, although somewhat
higher than in Glossic Chernozems. A Gaussian model with a low degree of spatial
correlation was used for the distribution of the saline extract pH values. Changes
mostly occur at distances less than 150 m; changes at distances of 150-480 m are
smaller and smoother. On the other hand, changes along the slope are described
by a spherical model, which implies more abrupt shifts in values, this fact possibly
being an outcome of slope-related processes. The structure of the distribution of
the aqueous extract pH values is somewhat different. The model for all values
is exponential, and spatial correlation is classified as medium. The distribution
along the slope is described as pure nugget, across the slope — as a Gaussian model.
Organic carbon content shows medium variation (lower than in Glossic Chernozems,
but higher than in Luvic Chernozems). The spatial distribution of organic carbon
content is described by a spherical model; spatial correlation is of medium strength,
the correlation radius is ca. 360 m, i.e. the variation is made up of two nearly
equal components: variation at distances less than 150 and 150-360 m. Variation
across the slope is described by a Gaussian model, whereas variation along the slope
demonstrates periodicity with a period of ca. 1500 m, which may be due to sheet
erosion.

The research results for zonal soils are summarized in Table 5.3 (data distribu-
tion by directions and trends not taken into account). The distribution of the saline
extract pH values is characterized by a spherical model in Greyic Phaeozems and
Luvic Chernozems, by a power model — in Haolic Chernozems, and by a Gaussian
model — in Kastanozems. The nugget is the lowest in Luvic Chernozems, and nearly
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equal to each other in the rest of the soils. The sill is also the lowest in Luvic Cher-
nozems, somewhat higher in Greyic Phaecozems and the highest in Kastanozems;
this parameter is not applicable to the power model. The range increases in the
north-to-south zonal series: its value for Greyic Phaeozems is ca. 200 m, for Luvic
Chernozems — ca. 300 m, for Kastanozems — nearly 500 m. Spatial correlation is
defined as high for Greyic Phaeozems, as medium — for Glossic Chernozems and as
low — for Kastanozems. The patterns in the distribution of the aqueous extract pH
values are somewhat different: the distribution is described by a spherical model
in Greyic Phaeozems and Glossic Chernozems, by a periodic model — Luvic Cher-
nozems, and by an exponential model — in Kastanozems.

Table 5.3: Model parameters of variograms (omnidirectional; detrended data) for the
properties of 1 — Greyic Phaeozems, 2 — Luvic Chernozems, 3 — Glossic Chernozems,
4 — Kastanozems

properties | soil model nugget sill range, | period, | nugget/sill,
m m %
1 spherical 0.20 0.32 198 - 62
2 spherical 0.019 0.065 288 - 29
PHKCD == 7over (1.27) | 0.15 | 0.000004 | - - -
4 Gaussian 0.21 0.26 483 - 78
1 spherical 0.18 0.24 208 - 75
2 periodical 0.073 0.013 - 1525 -
PH(H20) —s——Spcical [ 015 | 021 | 340 - &
4 exponential 0.14 0.28 358 - 50
1 periodical 0.041 0.0052 - 1012 -
2 periodical 0.049 0.014 - 2060 -
C 3 periodical 1.68 0.17 - 1934 -
4 spherical 0.099 0.28 357 - 36

The distribution of organic carbon follows periodic models in Greyic Phaeozems,
Luvic Chernozems and Glossic Chernozems, and a spherical model — in Kastano-
zems. The period is ca. 1000 m in Greyic Phaeozems and ca. 2000 m in Luvic and
Glossic Chernozems. The correlation radius (range) in chestnut soils is ca. 350 m,
and spatial correlation is defined as medium.

Conclusions

The study shows that it is quite feasible to interpret geostatistical parameters of
the zonal soil series. This finding raises one hope about the possibilities of typifying
such parameters, at least at the regional level, and of allowing for further extrapola-
tion. However, one of the main outputs showed also how difficult it is to distinguish
any spatial variability patterns in very specific locations, and it is therefore impor-
tant to consider the results as preliminary. This is maybe due to the low number
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of study sites (four only). Thus, further research is needed to distinguish general
patterns of spatial variation of soil properties for such regional scale.
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Chapter 6

Effect of beavers on variability of soil
properties in southern Karelia
V. Sidorova, F. Fyodorov

Abstract !

We studied the alteration of spatial variability of soil properties in southern Karelia in-
duced by inundation caused by beavers’ activity. The study was conducted at an unaltered
reference site and at a site affected by flooding. After flooding the territory was paludi-
fied; causing an increase in organic carbon content and a slight decrease in pH values. The
spatial distribution of organic carbon in the surface soil horizon changed after flooding.
The reference site had a pseudostochastic spatial distribution of organic carbon, whereas
in the once flooded site there was a square trend oriented outward from the lake.

Introduction

Animal activity is one of the main soil formation factors (Jenny, 1941). Dmitriev
and Gauricheva (1983) introduced the notion of the zoophytochore — a specific struc-
ture at the biogeocoenosis level in which one of the key factors for the development
of vegetation and soils is animal activities. Naiman (1988) notes that mammals
produce a considerable effect on ecosystems due to their significant size, life span,
demand for food and shelter.

Many researchers have focused in their studies on the role of digging mammals in
soil formation processes (Abaturov and Karpachevsky, 1965; Abaturov and Zubkova,
1969; Tadzhiev and Odinoshoev, 1987; Dmitriev, 1988). Abaturov (1984) distin-
guished the following impacts of digging animals on soils: their burrows loosen the
soil, enhance aeration, facilitate deeper moistening; material from deeper horizons is
moved to the surface; specific landforms are generated; the thickness of the humus

IThis chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 92-108.
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horizon increases as it is mixed with the parent rock; the loosened soil material
becomes more prone to weathering.

There exists however indirect impacts of animals, in addition to those listed
above. One of the agents is the beaver, which influences soil not only directly,
through digging and foraging activities, but also indirectly — through changing the
hydrology of water-bodies and soils.

Settling at a water-body, beavers transform the whole waterside rapidly and
profoundly: a vegetation shift takes place, changes occur in the chemical composition
of the soil and water, in the hydrological conditions in water-bodies, in waterside
features and fauna, etc. The presence of beavers in a water-body affects, sometimes
enormously, the whole waterside complex. Beavers considerably enhance the self-
purifying capacity of water-bodies. Other important factors are the effects of beaver
ponds such as equalizing streamflow, improving the habitat conditions for forest
animals and fish (Dezhkin et al., 1986; Balodis, 1990; Burns and McDonnell, 1998;
Zavyalov and Bobrov, 1999).

Beaver activities are also a powerful soil formation factor, e.g., burrowing con-
tributes to micro- and nanotopography formation, modifies the temperature and
water regime in soils, influences the direction and rate of soil-formation processes
(Zavyalov and Zueva, 1998). Drainage is another function of burrows. Owing to wa-
ter seepage from the pond, the aquifer gets recharged to a distance of 100-150 m, and
the groundwater level around the pond rises by 1 m. The rise in the groundwater
level leads to intensified gleying and peat deposition. A tendency for the devel-
opment of Histic and Mollic Gleysols, immature peaty soils is observed in beaver-
modified flood plains. Histic Gleysols with high content of clay particles in organic
layer form in microtopographic lows due to intensive clay deposition. Beaver activ-
ities induce degradation and water-logging of soils; conditions are created for the
formation of wetland plant communities (Sinitsyn and Rusanov, 1989). Drawing
upon their studies in the northern USA and Canada, Naiman et al. (1988) also
note that wetlands or occasionally inundated meadows form in place of abandoned
beaver colonies. Gilliam et al. (1999) observe that the properties of a “young”
wetland formed 8 years after the erection of beaver dams and resulting flooding are
not any different from those of “old”, naturally formed wetlands.

Tree root systems also get impaired by the rise in the groundwater level. Large
old trees fall and block the channel. Spruce trees of different size, sometimes reaching
3-4 m in diameter, get uprooted. Windthrow processes suppress the ground cover
underneath the fallen trunks and lead to degradation of the soil in the uprooting
points (Sinitsyn and Rusanov, 1989).

Physiochemical properties of soils also change under the effect of inundation.
Zavyalov and Zueva (1998) studied soils on the banks of two beaver ponds and in
a reference site of the river floodplain unaffected by beavers (in the Darwin nature
reserve). The authors distinguish three affected zones: 1) from water edge to 7 m
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away from the shore — pH values close to neutral (5.97), high oxalate-soluble Fe
content in the gleyed B horizon and exchange Al in the A horizon; 2) 7 to 25 m —
pH falling sharply to acidic values (4.1), reduction in the content of oxalate-soluble
Fe and exchange Al; 3) 25 m and further away from the water edge — pH values
gradually changing to medium acidity (4.73), oxalate-soluble Fe and exchange Al
content leveling out. No such dramatic differentiation was observed in the reference
site. Organic material content was also observed to decrease in the inundated site
outward from the river (from 26.0 to 0.18 %) (Zavyalov and Zueva, 1998).

Donkor and Fryxell (2000) arrived at similar conclusions studying the effect of the
Canadian beaver on lowland boreal forests surrounding beaver ponds in Algonquin
Park, Ontario. Deposits in their study sites varied from dry, thin, gravelly till
overlying crystalline bedrock to very wet heavy lacustrine loams. They investigated
changes in organic matter content, pH values (in the aqueous extract), moisture
and concentrations of P (after Olsen), K and Mg (exchange) depending on the
distance from the pond. Regression analysis revealed a square correlation between
all the investigated parameters and the distance to the pond. As the distance
increased, moisture, potassium concentrations and pH values decreased, whereas
organic material content, phosphorus and magnesium concentrations grew, and then
vice versa. Changes in the distance are responsible for 75% of variation in moisture,
43% — in organic material content, 25, 23 and 16% — in potassium, magnesium and
phosphorus concentrations, respectively, and for only 6% of pH variation.

Naiman et al. (1988) researched into changes in soil properties and vegetation
at inhabited and abandoned beaver ponds of Minnesota in relation to the moisture
status. A nearly two-fold drop in pH values was observed along the hydrological
gradient: 6.0 or more in bottom sediments and near the bank, 4.7 — in moist soils
and 3.9 — in well-drained forest soils. The studies have demonstrated also that
paludification involves a sharp (4.3-fold) rise in nitrogen available to plants (nitrogen
determined in the KCl extract and nitrogen in the soil solution) — 29.8 and 6.8 kg/ha
in the flooded area and in the forest, respectively. Thus, beavers increase the amount
of available nitrogen in the landscape through their activities.

The environment-shaping function of beavers has been studied quite profoundly
(Dezhkin et al., 1986). Yet, quantitative details on the effect of beavers on soil
formation processes are insufficient. The aim of the present study has been to assess
changes in the spatial distribution of basic soil properties under the action of beavers
in taiga forests of Karelia.

Objects and methods

Surveys were done in an abandoned beaver colony on Lake Pertilambi (vil.
Kaskesnavolok, Pryazha District, Republic of Karelia). The predominant type of
forest along the shore prior to the arrival of beavers had been the herb-rich birch
stand Betuletum mizto-herbosum with a minor proportion of aspen (reconstrued
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context). After the beavers had arrived and erected two dams at the lake out-
let, ca. 15 ha of adjoining forest was flooded. After the beavers’ departure (14
years ago), collapse of the dams and fall in the water level a wetland community
of a mixed category including birch-overgrown Sphagnum, sedge-Sphagnum ( Care-
cetum sphagnosum), Sphagnum-cottongrass (Sphagnetum eriophorosum) and vari-
ous dwarf shrub-Sphagnum communities (Fruticuletum sphagnosum) with different
dwarf shrub species prevailing formed in the place of the former beaver pond. Two
sample plots 20x95 m each were established. One in the formerly flooded area,
where the soils are gley peaty podzols (Histic Gleyic Podzols), the other one — in an
undisturbed reference area, where the soils are gleyic podzols (Endogleyic Podzols).
The plots were oriented outward from the lake.

Samples were collected from a depth of 0-10 cm immediately beneath the litterfall
horizon (O) following a regular grid, the sampling points preferably spaced 5 m. A
hundred samples were taken from each plot. The samples were not differentiated by
types of horizons underlying the litter (A, Ah, H). We determined the parameters,
which are known to alter readily after soil disturbance or a change in environmental
conditions: pH(H20), pH(KCI), and organic carbon content. Total nitrogen content
was determined only in 20 samples from plot 1 and in 28 samples from plot 2.
The sample volume was calculated by statistical analysis of a single sample entity
(Dmitriev, 1995). The numbers of the samples to be included in the analysis were
determined by the random numbers method.

Spatial variability of soil properties was determined using the geostatistical me-
thod for estimating the relationship between the variance of the properties and the
sampling interval (Burgess and Webster, 1980; Jongman et al., 1995; Demianov
et al., 1999; Kuzyakova et al., 2001). The resultant data were employed to plot
variograms — curves showing the relationship between semivariance v(h) and shift
values h. Kriging was used to compile cartograms of soil properties. If trends
were present, then regression kriging was used. Like regression, regression kriging
recognizes that the variation has two components, namely the trend and the residuals
from the trend. 1t differs from regression in that it takes into account the dependence
in the residuals, which it treats as spatially correlated stationary random variables.
So the residuals have a variogram, and the kriging systems draw their entries from
this variograms.

The regression kriging predictions are computed as follow. The first step is to
model trend, as in trend-surface analysis, and remove it from the data. The residuals
from the trend (or detrended data) are treated as spatially correlated stationary
random variables. Their variogram is computed and modeled and then used to krig.
Finally, the trend is added back to the kriged estimates (Lark and Webster, 2006;
Hengl, 2007).

Calculations and variogram plotting were made with Variowin, version 2.2. (Pan-
natier, 1996) and Excel (Microsoft) software packages, spatial distribution maps
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based on forecasted values — with SURFER Version 6.02 software (Copyright (©
1993-1996, Golden Software, Inc.). GenStat (2002) (evaluation version) software
was used for kriging.

Results

The range of values of the parameters studied is quite wide. Therefore, all sample
extremes were subjected to statistical check for bias in rejection of results. As the
result, 5 samples from plot 2 were rejected. No grounds were found for rejecting the
rest of the values.

Comparative analysis of the two sample entities (Blagoveshchenskii et al., 1987)
revealed reliable distinctions between the two plots in organic carbon, total nitrogen
and acidity. Thus, the saline extract pH in the soil of the formerly flooded plot
was reliably (Pg3) 0.4 lower than in the reference site, the aqueous extract pH was
reliably 0.22 lower (Pgg9), organic carbon content was on average reliably 32.7%
higher (Pgg99), total nitrogen content was reliably 1.6% higher (Pg.g99). The range
of values of the properties and the coefficient of variation were also observed to grow
in the once flooded site (Tab. 6.1, Fig. 6.1).

Table 6.1: Statistical indices of the properties of upper (0-10 cm) soil horizons: 1 —
formerly flooded site, 2 — reference site

D pH (KCl) | pH (HO) C, % N, %
statistical index 1 5 1 5 1 5 1 5
no of observations | 100 95 100 95 100 95 20 28
range of values 1.74 | 1.50 | 2.13 | 1.66 | 50.76 | 5.88 | 1.17 | 0.25
min 2.96 | 3.06 | 3.51 | 3.64 1.44 1.20 | 1.12 0.12
lower quartile 3.20 | 3.60 | 4.06 | 4.38 | 34.80 | 2.82 | 1.53 0.23
median 3.38 | 3.84 | 442 | 4.64 | 39.30 | 3.51 | 1.89 0.26
upper quartile 3.56 | 4.01 | 4.65| 4.82 | 43.20 | 4.14 | 2.14 0.29
max 4.70 | 456 | 5.64 | 5.30 | 52.20 | 7.08 | 2.30 0.37
mean 3.46 | 3.82 | 4.38 | 4.60 | 36.28 | 3.61 | 1.84 0.26
variance 0.13 | 0.09 | 0.18 | 0.10 | 148.52 | 1.20 | 0.12 | 0.0031
standard deviation | 0.37 | 0.30 | 0.43 | 0.32 | 12.19 | 1.10 | 0.35 | 0.056
CV, % 10.57 | 7.98 | 9.75 | 7.01 | 33.59 | 30.35 | 18.75 | 21.61
kurtosis 1.72 | -0.15]0.13 | 0.11 2.54 0.23 | -0.83 | 0.52
skewness 1.36 | -0.14 | 0.35 | -0.38 | -1.74 | 0.39 | -0.38 | -0.32

The simplest way to model large-scale spatial changes is to draw the regression
line or surface using empirical data from individual points (trend surface interpola-
tion) (see Chapter 5).

We applied the least squares method to data from both plots to select the
quadratic surface (2"¢ order trend) in the form (Dmitriev, 1995; Jongman et al.,
1995):
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Figure 6.1: Statistical parameters for pH(KCI) (a), pH(H2O) (b), organic carbon
content, % (c) and total nitrogen content, % (d). 1 — formerly flooded site, 2 —
reference site

2 = by + b1 + boy + b3 + bay® + byzy (6.1)
The reference site yielded no trend surface. The following surfaces were found

for the formerly flooded site:

pH(KCl) = 3.98 — 0.023y — 0.001122 + 0.000163> + 0.00051zy (6.2)
pH(H,0) = 4.96 — 0.025y — 0.000752% + 0.00014y* + 0.00060zy (6.3)
C = 3.56 + 1.262 + 1.07y — 0.0069y> — 0.019zy (6.4)

N = 1.34 +0.01y + 0.002z% — 0.000067y* — 0.00026xy (6.5)

The surfaces account with quite high probability (95-99%) for the changes in
carbon content (58.8%), total nitrogen content (56.2%), aqueous (31.9%) and saline
(25.5 %) pH values. Thus, the pattern observed in the formerly flooded site in the
direction outward from the lake is a decrease in pH values and a rise in the humus
and nitrogen content first, and, vice versa, a rise in pH and a decrease in the humus
content further away (Fig. 6.2).
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Figure 6.2: 2" order trend estimated field for pH(KCI1) (a), pH(H2O) (b), organic
carbon content, % (c) and total nitrogen content, % (d). Hereinafter, the grid scale
is expressed in metres from the coordinate (0,0).
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Like any regression equation, the trend surface equation can be used to calculate
or interpolate trait values to sites not covered by empirical surveys. Yet, trend
surfaces do not ensure precise interpolation. Since they are models of large-scale
variations, the influence of the extremes of remote data points may be too high,
leading to erroneous estimates.

Then, we applied geostatistical methods. The semivariances were computed for
original data and for quadratic residuals, so that we could choose a function to
interpolate the surfaces by kriging.

The variograms for pH(H,0O) and pH(KCI) of both sites were represented quite
well by the spherical model in the form (McBratney and Webster, 1986):

0,h=0

=1 cote(3t-1(2)) 0<h<a (6.6)
co+c,h>a

The nugget variance values for pH(KCI) nearly coincided (Tab. 6.2, Fig. 6.3a).
One should note however that the nugget effect for the formerly flooded site ac-
counted for a smaller part of the variance compared to the reference site (43% vs.
60%). Since there is little probability of an increase in the analytical error when the
same analysis procedure is employed, the above fact indicates that variation in acid-
ity values in the reference site takes place mostly at distances below 5 m (sampling
interval). Sill and range values in site 1 grow 1.5 times.

Table 6.2: Variance and model parameters of variograms for the properties of la —
formerly flooded site, source data; 1b — formerly flooded site, detrended data; 2 —

reference site

property | site model nugget, sill, range | Cy/(Co+C),

C() (CO—I—C) (a), m %

la spherical 0.052 0.120 22.9 43.3

pH(KCI) | 1b spherical 0.037 0.087 10.2 42.5

2 spherical 0.058 0.096 16.4 60.4

la spherical 0.054 0.180 26.1 30.0

pH(H,O) | 1b spherical 0.058 0.118 10.7 49.1

2 spherical 0.084 0.104 20.16 80.8

la linear 52.50 - - -

C 1b | power (p=0.01) | 57.95 58.09 - 98.9

2 spherical 0.828 1.236 12.6 67.0

Variograms for the carbon content in the two sites differed significantly. A sharp
rise in the variogram in the flooded site testifies to the presence of a trend. The
nugget effect in the reference site again accounts for a substantial part of the variance
(Tab. 6.2, Fig. 6.3c).
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Figure 6.3: Variogram models for pH(KCI) (a), pH(H20) (b), organic carbon con-
tent, %? (c) and total nitrogen content, %?* (d). 1 - formerly flooded site, 2 - reference
site. Hereinafter, the dots indicate the semivariance, the lines are the corresponding
models.
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Analysis of the total nitrogen content yielded disordered data (Fig. 6.3d). We
failed to find the model describing the variation of the property. The possible reason
for that is that the number of observation points is insufficient for the analysis of
the variograms, or the sampling resolution was too coarse.

Since all properties of site 1 demonstrated regular alteration depending on point
coordinates, variograms were additionally plotted for regression residuals (detrended
data). The sill and range values in the resultant variograms decrease significantly,
virtually degenerating into the nugget effect (Tab. 6.2, Fig. 6.4). This fact indicates
that the dimension of the next level of heterogeneity is less than 5 m.
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Figure 6.4: Variogram models for pH(KCIl) (a), pH(H20) (b), organic carbon con-
tent, % (c) and total nitrogen content, %?* (d) for formerly flooded site. 1 - source
data; 2 - detrended data

Drawing upon the variograms, soil property cartograms can be produced using
the ordinary or regression kriging methods (Burgess and Webster, 1980; Lark and
Webster, 2006). Spatial patterns in the variability of the properties are readily
distinguishable from the cartograms (Fig. 6.5- 6.7).

Discussion

Soils in the reference site feature a medium level of acidity and organic carbon
variability. Values of pH(KCI) in the investigated site varied from 3.06 to 4.56, the
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Figure 6.5: Kriging maps of pH(KCI) (a), pH(H20) (b) in the formerly flooded site
(upper) and in the reference site (lower)
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Figure 6.6: Kriging maps of organic carbon content in the formerly flooded site (a)
and in the reference site (b)
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Figure 6.7: Kriging maps of total nitrogen content in the formerly flooded site (a)
and in the reference site (b)
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mean being 3.82. Carbon content varied from 1.20 to 7.08% (mean — 3.61%), total
nitrogen — from 0.12 to 0.37% (mean — 0.26%). The coefficient of variation of the
properties was 8 to 30%. Thus, at a first approximation, the plot can be said to have
homogenized values of pH(KCI), organic carbon and total nitrogen. The distance
at which samples remained spatially correlated (range) ranged from 12 to 16 m.
Spatial coherence is evaluated as medium to weak (residual variance is 60-67%).

The results are in conformity with data from other studies of undisturbed forests
(Bruckner et al., 1999; Goovaerts, 1998; Liski, 1995; Qian and Klinka, 1995). Chemi-
cal properties of forest soils usually exhibit spatial correlation at a distance of several
meters (5 to 20 m). The correlation is of medium strength (30-70%). The authors
believe this range of spatial correlation to reflect the effect of woody vegetation
(location, distance between trees, crown diameter) on soil properties.

Inundation alters both soil properties and their spatial distribution. The least
affected parameter is pH. The range of acidity values increases, and an average
significant decrease in values by 0.5 takes place. Organic carbon and total nitrogen
concentrations grow sharply (7-10-fold), and their distribution changes.

In the once flooded site, a correlation is observed between the studied properties
and the location of the sampling points. The distribution of organic carbon, total ni-
trogen and acidity in the flooded site depends primarily on the distance from the lake
and is described by a quadratic function. Samples collected closer to the shore have
higher pH values. The explanation suggested by Shcherbakova and Zavyalov (1995)
as applied to forest-steppe areas is that the groundwater level is higher closer to the
shore, and alkalinization by water from the impoundment takes place. This explana-
tion is not applicable to our sites, since water mineralization in natural water-bodies
of Karelia is negligible and no alkalinization can happen. Some authors (Sinitsyn
and Rusanov, 1991; Stavrovskiy and Stavrovskaya, 1983) attribute spatially-related
alterations in soil properties to shifts in vegetation, since the vegetation factor is the
most labile. Vegetation is quick to respond to changes in the environment, rapidly
replaced and, hence, alters chemical parameters of soils. Donkor and Fryxell (2000)
found that the richness and diversity of plant species around a beaver pond was
also a square function of the distance to the lake. The species diversity was the
highest 25 m away from the water edge. Our data about a decrease in organic car-
bon content and a rise in pH values with distance from the water edge can also be
interpreted as a result of changes in biogeochemical cycles in the soil related to a
shift in vegetation and the conditions for decomposition of organic material. The
total input of organic remains to the soil is lower in moister sites, whereas decom-
position of organic material under anaerobic conditions is slower. As the result, the
soil accumulates some organic material and its acidity grows somewhat lower since
lower amounts of acidic products of primary plant remains are generated.

Naiman et al. (1988) note that the effect of beavers on soils is the strongest at
a distance of 40 m away from the shore. Donkor and Fryxell (2000) also confirm
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that the distance hardly ever exceeds 60 m. Geostatistical analysis of our data has
demonstrated that the correlation radius in the formerly flooded site is 23 m for
acidity and over 95 m — for organic carbon content, i.e. different points remain
spatially interconnected in terms of the above properties within these distances.

The variograms plotted for regression residuals indicate that the dimensions of
the next level of heterogeneity are equal to or smaller than 10 m for pH and 5 m — for
organic carbon content. These correlation radii are smaller than the corresponding
values for the reference site. A possible explanation is the shift in vegetation, since
a dwarf shrub community replaced a birch stand, eliminating the effect of trees
and their crowns on the soil. At the same time, a primary factor in hydromorphic
soils in the microtopography, which is responsible for moisture fluxes. Since the
microtopography in the studied landscape has smaller characteristic distances than
the patchy structure of the original birch forest, the average size of the lowest level
of heterogeneity changes, too.

Conclusions

Beaver engineering in Karelia leads to inundation of riparian areas, and gley
peaty podzols (Histic Gleyic Podzols) replace gleyic podzols (Endogleyic Podzols)
there.

A distinct trend in the distribution of acidity, organic carbon and total nitrogen
is observed in the flooded site: carbon and nitrogen concentrations grow, whereas
acidity decreases somewhat towards the river bank.

The correlation radius reflecting the characteristic size of the soil properties’
heterogeneity is 12-16 m for the reference site, and is determined by the forest
community structure (tree locations and crown sizes). The characteristic dimension
of heterogeneity after flooding and a shift in the plant community is 5-10 m. It
is determined by the microtopography, which is responsible for redistribution of
moisture in soils.
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Chapter 7

The use of geostatistical methods for
mapping soil horizons
V. Sidorova, P. Krasilnikov

Abstract !

We studied spatial variation of the thickness of soil horizons (litter, A, E, and B) at three
sites in southern and central Karelia, each having an area of 15-20 km?. The results
were obtained from a detailed (1:10 000) soil survey of the sites. The variability of the
horizons’ thickness increased in the sequence B-O-E-A. For mapping purposes, indicator
kriging was found to be more effective. It allows generating probability maps (maps of
the probability of soil horizons’ existence, in our case). We performed indicator kriging
at the three sites for O, A, E, and B horizons. The shift in the zones of the horizons’
presence/absence occurs mainly at distances of 700-900 m. In all the sites surveyed only
the litter layer and the B horizon have continuous distribution, while the A and E horizons
are represented by numerous polygons of various sizes. We found that a similar spatial
arrangement of different soil horizons indicates low pedodiversity of the area. Ordinary
kriging was used for estimating variability of soil horizons’ thickness. In disturbed forests,
the spatial coherence of forest litter thickness is low, increasing with recuperation of the
community and reaching a maximum in old-growth spruce forest. A horizon thickness
at the Gomselga site (the only one in which the horizon is present continuously) shows
a "nested structure”. At Gabselga site (which has large areas of the E horizon present),
the thickness of the E and B horizons shows periodic distribution. The period for the B
horizon thickness is twice as much as for the E horizon. We explain the phenomena by
higher ”sensitivity” of the podzolic horizon thickness to soil forming factors (mesorelief)
compared to the B horizon, wherefore lower intermediate morainic ridges affected the
thickness of the E, but not the B horizon.

IThis chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 19-42.
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Introduction

The soil profile is a sequence of soil horizons. For classification purposes, at any
level of taxonomy, soil surveyors usually first establish diagnostic horizons in the soil,
and then make a conclusion about the taxonomic position of the soil. Laboratory
analysis either confirms or disproves the field diagnosis, but soil division into horizons
is the first step in soil survey anyway, being a basis for soil mapping. Thus, we can
regard a soil map as a planar projection of the spatial distribution of complexes of
soil horizons. Hence, soil mapping can be done as superimposition of the maps of
the presence and absence of certain soil horizons. The presence of a complete set
of horizons indicates the presence of a soil group X, the absence of one or several
of them — some groups Y, Z etc. The process might seem more complex than a
classical soil survey: the latter works with existing complexes of horizons, with soil
profiles, which are extrapolated to a certain area. However, classical methods are
not always effective for successful extrapolation of soil data. On the one hand, a soil
profile is extrapolated to a soil polygon relying on the hypothesis of uniformity of
soil formation factors; the boundaries where landforms, parent material, vegetation
etc. change mainly delimit soil polygons (Hudson, 1992). Also, a methodology
exists for establishing the limits of soil polygons using small soil pits, augering,
and remote sensing data. On the other hand, many factors cannot be detected
directly, e.g. ancient processes, such as paleocryogenesis, might form the soil mantle.
Furthermore, many relations between soil forming factors and soil characteristics are
still not well understood, and cannot be easily extrapolated. Consequently, some
traditional soil maps are blamed for poor quality, mostly because soil limits do
not correspond to reality. Thus, the use of geostatistical methods may help us to
interpolate the presence and depth of soil horizons. Although geostatistics cannot
replace soil surveys completely, it may be a useful tool for improving traditional soil
mapping (Di et al., 1989; Warr et al., 2001).

An additional advantage of the use of geostatistics in soil survey is that it allows
interpolation of quantitative characteristics — the horizons’ depth. The depth of a
particular soil horizon is often of major interest from a practical viewpoint. For
example, the depth of the A horizon reflects the stores of nutrients in soil. In
agriculture, the depth of the E horizon determines whether only A and E horizons
would be included in the plough layer, or the material of the B horizon should also
be included. Thus, in many countries, for example, in Russia, the depth of surface
horizons is used as a diagnostic criterion in soil taxonomy at the lower level, and
the polygons at detailed soil maps are separated according to the thickness of the A
or E horizons (Rozanov, 1983; Krasilnikov, 2002). Correct soil diagnostics at lower
levels of taxonomy is an important task in soil survey. The task is not so easy at it
may seem. The depth of a particular soil horizon varies significantly in space, and
often does not depend directly on easily observed external factors.

The objective of this study was to study the spatial variation of the presence
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and depth of soil horizons in three different forests in middle and northern taiga
subzones.

A number of earlier studies illustrate high variability of soil horizons depth in
various scales. Vazhenin et al. (1969) studied the variability of Albeluvisols, Greyic
Phaeozems, and Chernozems in trenches. The study showed that the limits of
the horizons had the most complex shape in the Albeluvisol profile, and the most
smoothed outline — in the Chernozem profile. Fridland et al. (1969) studied the
variation in the depths of the horizons of Chernozems in virgin steppe (Belgorod
region). The most stable attribute was found to be the depth of the A horizon, less
stable — the depth of (A+AC), and the least stable — the secondary carbonates depth.
Also, Fridland (1976) studied the variability of soil properties in various elements of
mesorelief in the Central Chernozemic Reserve, Kursk region. The depth of both the
A and (A+AC) horizons increased from the drainage divide to the ravine slope. The
depth of secondary carbonates leaching increased correspondingly. Zebarth et al.
(2002) studied the relationship between landscape elements and soil characteristics
in Canada. On the summit and shoulder of the hillslope Orthic Humic Podzols
and Orthic Sombric Brunisols were found, while at the footslope there were Gleyic
subgroups of the same great groups. The depth until the C horizon and until
the underlying hard rock were found to have the strongest relation with landscape
elements. The depth of the B horizon was the least at the backslope, and the
highest at the footslope positions. The depth of the A horizon was the same at all
the landscape elements, which was ascribed to the mixing of the upper horizons due
to agricultural activities. Liski (1995) studied the variation of the organic F/H and
mineral E horizon depths in Podzols in Southern Finland. The variation coefficients
for F/H and E horizon depths were found to be 25 and 76%, respectively. The depth
of horizons was 17% greater under the trees than in gaps. The greatest depth of
both horizons was detected at a distance of 1-3 m from the trunk.

Traditional statistical methods are not always effective for managing spatially
distributed data, thus, a number of researchers used geostatistical methods for
the study of the spatial structure of soils, and for spatial interpolation of data.
Blagoveshchenskii and Samsonova (2001) analysed the data on the depth of the A
horizons, measured in three 20-m trenches made on sediment exposures of differ-
ent age (40, 80, and 150 years). The medium depth of the A horizon significantly
increased from 40 years-old sediments to 80 years-old ones, without any further
significant increase. However, absolute variability increased throughout the soil de-
velopment time range: the variation increased almost three times comparing the
soils 40 and 150 years old. All the variograms were approximated by spherical mod-
els. The nugget constituted 1/5 to 1/3 of the whole variation. The nugget increased
with soil age due to the increase of variability at the distances less horizontal than
sampling resolution (1 m). The range was similar for all ages (15-20 cm). The
authors showed that the fractal dimension of the boundary of the A horizon in-
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creases with soil age, and can be interpreted as an increase in the complexity of the
boundary.

Qian and Klinka (1995) studied the depth of organic soil layers in three coastal
forest ecosystems in British Columbia using kriging. The first plot was a T'suga forest
ca. 80 years old, after clear-cutting, with hemimor and lignomor as the dominant
humus forms (Green et al., 1993). The second plot was a Tsuga forest with a well-
developed grass floor, ca. 70 years old (after clear-cutting and consequent forest fire),
with mor-moder as the dominant humus form. The third plot was an undisturbed
juniper forest with a well-developed shrub and grass floor, ca. 450 years old, with
leptomor and mull-moder as the main humus forms. The variograms for the depth
of organic horizons were described well by spherical and exponential models. The
residual variance (the percent ratio of nugget to sill) was as low as 0.2-14%. As
the authors explained the phenomena, the surface horizons’ depth was an easily
measured property, thus the analytical error (which is a part of the nugget value)
was not too great.

Liski (1995) used the method of variography to estimate spatial variation of the
depths of the organic (F/H) and mineral (E) horizons. The residual variance was
29% for organic horizons, and 57% for the mineral one; the range was 1.7 and 2.6 m,
respectively. The author concluded that the ranges reflected the effect of trees on
the spatial distribution of the horizons (average distance between trees in the plot
was 3 m). Additional analysis of cross-variograms confirmed also that the depth of
the E horizon strongly depended on the organic C content in the layer 10-20 cm.

In many cases, analysis of anisotropic variograms can be a source of valuable
information on spatial organization of soils. Di et al. (1989) used anisotropic var-
iograms to analyse the distribution of the depth to gleyic mottling, the depth to
gravel layer, and the depth of sandy loam or coarser surface sediments in Incepti-
sols and Entisols in New Zealand. The three studied characteristics were strongly
anisotropic. The variogram for the depth of the surface sandy loam layer had the
highest nugget value. The anisotropy of soil properties reflected gradual change in
alluvial sediments and soil drainage in the direction perpendicular to the drainage
channel. In the direction parallel to the drainage channel, the variation in soil
properties was found to be insignificant.

There are a number of methods of interpolation, based on spatial correlation
between observations for predicting values in unsampled points using data on one
or several variables (Goovaerts, 1999; McBratney et al., 2000).

Bourennane et al., (1996, 2000) compared the use of universal kriging with other
kriging methods: ordinary kriging, ordinary kriging with external drift, universal
kriging with external drift, and linear regression. The study was made for the
total depth of loose sediments, and for the depth of the silty clay layer in soil of
a limestone plateau covered with Quaternary silt loam loesses and carbonate-free
leached loams in Central France. The slope gradient, which correlated well with the
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depth of sediments, was used as the external variable. The results showed that the
best prediction was made by the method of universal kriging with external drift.
Also, expansion of the data set increased the precision of prediction by universal
kriging, whereas the precision of prediction by linear regression remained the same.

Knotter et al. (1995) compared the use of kriging, co-kriging, and kriging com-
bined with regression for spatial interpolation of the depth of loose sediments. Soil
electric conductivity was used as the external variable. The depth of subsurface
soil horizons is a property difficult to measure, and the authors recommended using
additional information on correlated variables for spatial interpolation. The best
prediction was made using kriging combined with regression. This method also had
an advantage that it needed less parameters for modeling, and, thus, the calculation
was facilitated.

The depth of a soil horizon is a continuous variable, in many cases having a
positively skewed distribution. Positive skewness and abundant zero values make the
use of ordinary kriging and logarithmic transformation of data impossible. However,
precise estimation of soil properties requires information about whether a soil horizon
is present or not. Warr et al. (2001) proposed using indicator kriging to find out the
areas where the horizon was present, and then using ordinary kriging for horizon
properties interpolation within the area. Precise estimation of the distribution of soil
horizons using indicator kriging allows avoiding problems with data transformation,
and enables delineation of the zones where the probability of the presence of horizons
is higher than the probability of their absence.

Objects and methods

The study was made in the territory of the Karelian Republic, Northwest Russia
(Atlas of Karelian Autonomous Soviet Socialist Republic, 1989). The study plots
South Klimetski and Gomselga are situated in the subzone of middle taiga, and the
plot Gabselga — in northern taiga (see Chapter 3 and Fig. 3.1).

All the study plots were established in hilly glacial and glaciofluvial landscapes
with intensive tectonic discontinuities in pre-Cambrian crystalline rocks. The plots
were characterized by the complexity of relief, the abundance of depressions occupied
by lakes and peatlands, and the presence of bedrock outcrops.

The plot Klimetski was established under an old-growth (the age of the tree stand
is more than 100 years) bilberry spruce forest with minor admixture of birch and
aspen trees. The ground cover was represented by Vaccinium myrtillus (bilberry),
Ozalis (wood sorrel), Fragaria (strawberry), Convallaria (lily-of-the-valley), Rubus
sazatilis (stone bramble), Vicia cracca (tufted vetch), Vaccinium wvitis-ideae (cow-
berry), Equisetum sylvaticum (wood horsetail). There were also some spots with
no ground cover, and with abundant bedrock outcrops. The soil-forming material
was mainly sandy and loamy sandy morainic till, in places — glaciolacustrine sands
and loams. The soils were podzolized podburs (Entic Podzols), iron podzols (Rustic
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Podzols), and humus-iron podzols (Haplic Podzols), with some spots of peaty gley
soils (Histic Gleysols) and gravel soils (Leptosols).

The territory of the Gomselga plot used to be covered with spruce forests, which
later were almost completely clearcut, and the territory grew occupied by secondary
forests about 50 years old, where the dominant species were birch, aspen with admix-
ture of pine and spruce. Undergrowth comprised pine, birch, aspen, rowan, willow,
spruce and juniper. The ground cover was represented by Vacccinium myrtillus
(bilberry), Vaccinium vitis-ideae (cowberry), Rubus sazatilis (stone bramble), Con-
vallaria (lily-of-the-valley), Dryopteris filiz-mas (fern), Fragaria vesca (strawberry),
Epilobium angustifolium (rosebay willoherb), Paris quadrifolia (herb Paris), Ozalis
acetosella (wood sorrel), Trifolium pratense (clover), Sphagnum sp. (peat moss),
Polytrichum commune (hair cap moss). The soil-forming material was represented
by silty sandy morainic till, and, to a lesser extent, by glaciolacustrine sands, loams
and clays. The soils of the plot are diverse: iron-humus podzols (Haplic Podzols),
podburs (Entic Podzols), raw-humus burozems (Dystric Cambisols), high-moor peat
soils (Dystric Histosols), mud gley soils (Histic Gleysols), and sod-gley-podzolic soils
(Dystric Planosols).

The plot Gabselga was situated in an uplifted ice-dividing hilly plain. About one-
half of the total area of the plot carried a primary spruce forest 100-120 years old,
with minor inclusions of birch. In undergrowth there were rowan, birch and juniper.
On the surface, there were mainly Vacccinium myrtillus(bilberry) and green mosses,
with less abundant Vaccinium vitis-ideae (cowberry), Mayanthemum bifolium and
Deshampsea coaespitosa. However, secondary forests at various development stages
occupied the other half of the area. The soil-forming material was loamy sandy
morainic till; diorite underlay the till at a depth of 1.5-2.0 m. The soils were relatively
uniform: iron-humus podzols (Haplic Podzols) and high-moor peat soils (Fibric-
Dystric Histosols) occupied almost the entire area of the plot.

We studied spatial variability of various soil horizons, using the data of soil
surveys of 15 to 20 km? from each plot. At each point we recorded the depth of O,
A, E, and B horizons. No subdivision of B horizons (e.g. spodic, cambic, argic etc.)
was done, and the presence of additional characteristics such as gleyic and stagnic
properties, was not taken into account. At the Klimetsky plot, we recorded data
from 159 profiles, at Gomselga — from 162, and at Gabselga — from 138 profiles. The
scheme of data collection is presented in Fig. 7.1.

The distribution of sampling points was not uniform, and showed certain clus-
tering. This clustering was due to two main reasons. First, there are abundant rock
outcrops at all the sites (in these landscapes in places rock outcrops occupy more
than 50% of the total area). No profiles were made, of course, at these outcrops.
Second, the sampling density depended on the complexity of the soil cover. In places
we found a more complex situation, and had to make additional profiles there.

We studied the spatial variation of soil horizons depth using geostatistical meth-
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Figure 7.1: Sampling points in the study plots Klimetski (a), Gomselga (b), and
Gabselga (c). Hereinafter, the grid scale is expressed in kilometers from the coordi-
nate (0,0).
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ods (Burgess and Webster, 1980; Jongman et al., 1995; Kuzyakova et al., 2001).

Ordinary and indicator kriging were used to map soil horizons. Indicator kriging
(Demianov et al., 1999; Lark and Ferguson, 2004) is a non-parametric non-linear
estimator, which allows modeling of spatial correlation for various levels of values
even if the data variability is high. Indicator kriging is identical to ordinary kriging
made for indicator variables, derived from initial data in the following way:

1,2(x) < z

I(x,2.) = { OZZ(X) ; 2. (7.1)

Indicator estimations are the evaluations of the probability that z () < z.. The
derived functions of distribution of the estimations allow making maps of probability
and risks: evaluation of the probability of exceeding a certain value, or evaluation of
the values exceeded with a given risk level, etc. Usually, indicator kriging is used for
mapping the probability of exceeding critical concentration levels for radionucleids
(Demianov et al., 1999) and heavy metals (Goovaerts et al., 1997), or, alternatively,
the deficit of nutrients in soils (Lark and Ferguson, 2004).

The first step of indicator kriging is the change of ordinary variables into corre-
sponding indicator variables according to equation (7.1).

The next step is finding the characteristics of spatial distribution of the indi-
cator. To do that, indicator semivariance is used, which is identical to ordinary
semivariance and is calculated in the following way:

N(h)

v(h,z) = ( ) ; Z {1(xj,2c) — I(x; + h,2c)}” (7.2)
where I(x;,2.) and I(x; + h, z.) are indicators in points x; and x; + h, divided by
the lag distance h, and N(h) is the number of pairs divided by this lag. The value
v(h,z.) is the measure of frequency of the event that two z values divided by the
lag distance h are found on different sides of the limit value z.. In other words,
it is the measure of frequency of changes between two classes divided by the limit
level z as a function of distance. The higher the value v(h,z.), the less is the spatial
dependence between low and high values (Goovaerts et al., 1997; Goovaerts, 1998).

For a set of indicator semivariances with different lags A it is possible to find one
of the standard continuous models used for approximating variograms (McBratney
and Webster, 1986). The indicator function can be estimated for a point x using
ordinary kriging for neighboring data transformed by the indicator.

The advantage of indicator kriging is that it can be used not only for quantitative
variables, but also qualitative data, which have a limited quantity of states.

At the first stage of our study, we used indicator kriging to delineate the areas
of the presence of horizons. To do that we used an additional indicator variable:
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I(x,0) = { (1): 223 0 (7.3)

where h(x) is the depth of a horizon in point x. Additional “virtual” points with zero
values, and corresponding indicator variables located in the coordinates of lakes, rock
outcrops, and other non-soil bodies were added to the data obtained from sampling
points.

The indicator variables were subjected to ordinary kriging. Then experimental
semivariograms were calculated, and corresponding models were approximated using
the least squares method.

For calculating and plotting the variograms we used the software Excel (Mi-
crosoft) and Variowin 2.2. (Pannatier, 1996), and for kriging procedure and drawing
maps of the spatial distribution of predicted values — GenStat (2002) (evaluation
version) software and Surfer 6.02 (Copyright (© 1993-1996, Golden Software, Inc.).

Results and discussion

The statistical parameters related to spatial variability of the depth of soil hori-
zons (Dmitriev, 1995) are presented in Table 7.1.

One of the main parameters of data variability is the coefficient of variation. For
example, a 25% coefficient of variation is regarded as the limit dividing uniform and
non-uniform areas (Rosanov, 1983). Thus, of all the horizons in our plots varied in
depth, and the degree of variation increased in the following sequence of horizons:
O — A — E — B. According to the traditional point of view, upper soil horizons have
the highest variability, and the parent material — the lowest one. Rosanov (1983)
concluded that spatial variability is a soil feature that increases gradually with time,
and can be considered to be a result of pedogenesis. Our data generally agreed with
these ideas, but the depth of organic horizons appeared to be less variable, than
that of mineral surface horizons (A and E horizons). The data might seem strange,
given that previously the spatial variability of the organic horizon depth in the study
area was reported to be high (Solomatova et al., 1999). Yet, the latter results were
obtained from small study sites (1 to 2.5 ha), and in the present study a different
scale was used, and the situation was different. We believe there are two main
reasons for the relatively low spatial variation of the depth of the O horizon in this
study. First, the forest floor is a continuous layer in forest ecosystems, thus covering
the whole territory except of non-soil bodies (water and rock outcrops) and Histosols,
unlike the A and E horizons, which were discontinuous in the studied landscapes,
and their variability increased due to the presence of zero values. Second, in the
studies conducted in small plots the litter depth was measured precisely at every
point, while the present study employed morphological descriptions of soil profiles.
In soil surveys, the variability of forest litter within the soil profile is in most cases
neglected, and researchers use averaged data.
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Table 7.1: Summary statistics for the depth of soil horizons

Plots Statistical values O A E B
Number of profiles 159 159 159 159
Presence of horizons | 131 92 70 132
Max and min values | 3+-20 | 138 | 136 | 19+83
Medium value 9.86 | 12.04 | 13.76 | 47.04
Lower quartile 8.00 | 7.00 | 825 | 38.00
Median 10.00 | 10.00 | 12.00 | 47.50
Klimetski Upper quartile 12.00 | 15.00 | 19.50 | 54.25
Moda 10.00 | 10.00 | 8.00 | 50.00
Variation 10.53 | 60.97 | 50.97 | 146.53
Deviation 3.25 | 781 | 7.14 | 12.11
Variation coefficient | 32.91 | 64.83 | 51.90 | 25.73
Skewness 0.26 | 1.75 | 0.81 0.37
Kurtosis -0.11 | 3.24 | 0.77 | -0.004
Number of profiles 162 162 162 162
Presence of horizons | 150 128 63 145
Max and min values | 117 | 130 | 2=24 | 1580
Medium value 7.15 | 9.52 | 11.90 | 40.97
Lower quartile 5.00 | 5.00 | 8.00 | 30.00
Median 7.00 | 8.00 | 12.00 | 40.00
Upper quartile 9.00 | 11.25 | 15.00 | 50.00
Gomselga Moda 7.00 | 10.00 | 20.00 | 40.00
Variation 9.20 | 33.56 | 30.22 | 161.23
Deviation 3.03 | 5.79 | 550 | 12.70
Variation coefficient | 42.44 | 60.88 | 46.17 | 31.00
Skewness 0.78 | 1.32 | 0.11 0.61
Kurtosis 0.79 | 1.81 | -091 | 0.19
Number of profiles 138 138 138 138
Presence of horizons | 104 20 97 98
Max and min values | 217 | 220 | 1+25 | 2580
Medium value 895 | 7.95 | 12.18 | 46.56
Lower quartile 6.00 | 5.00 | 10.00 | 36.25
Median 8.00 | 6.50 | 11.00 | 45.00
Upper quartile 10.00 | 10.00 | 15.00 | 55.00
Gabselga Moda 10.00 | 5.00 | 15.00 | 40.00
Variation 11.33 | 19.94 | 24.75 | 151.84
Deviation 3.37 | 4.47 | 4.98 | 12.32
Variation coefficient | 37.60 | 56.18 | 40.86 | 26.46
Skewness 0.43 | 1.23 | 0.20 0.39
Kurtosis -0.39 | 1.41 | -0.53 | -0.45
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The indicator variables were subjected to ordinary kriging. Then experimental
semivariograms were calculated, and corresponding models were approximated us-
ing the least squares method (Figs. 7.2 and 7.3). The variogram parameters are
presented in Table 7.2.

Table 7.2: The parameters of indicator variograms for the depth of soil horizons

Plot Horizon Model Nugget | Sill | Range, | Period, | Nugget/sill,
m m %
0] periodic 0.156 | 0.235 - 4290 -
. . A periodic 0.116 | 0.180 - 4335 -
Klimetski ¢ periodic | 0.004 | 0.147 | - 1617 -
B periodic 0.151 | 0.236 - 4541 -
0] exponential | 0.045 | 0.246 750 - 18.3
A exponential | 0.030 | 0.264 810 - 11.4
Gomselga E exponential | 0.020 | 0.196 | 750 - 10.2
B exponential | 0.066 | 0.255 990 - 25.9
O exponential | 0.111 | 0.255 870 - 43.5
A spherical 0.009 | 0.097 270 - 9.3
Gabselga E exponential | 0.111 | 0.255 | 720 - 435
B exponential | 0.108 | 0.255 720 - 42.4

For the Gomselga and Gabselga plots, the variograms of the depths of all the
horizons (except of the A horizon in the Gabselga plot) were well described by
exponential models with a range of 720 to 990 m.

For the Gabselga plot, indicator variograms for the horizons O, E and B had
relatively high nugget values (42-43%). It means that the shifts of zones with the
presence and absence of these horizons occurred at distances less than 100 m (the
lag distance used for experimental variograms). The parameters of variograms were
almost the same for different soil horizons; it might mean that the patterns in the
spatial distribution of horizons were the same. The phenomenon was explained by
low soil diversity of the plot, reported previously (Krasilnikov et al., 2000). Two
soil groups, Podzols and Histosols, were the most abundant ones in the plot. It
is natural that in Podzols O, E, and B horizons were always present together by
definition. Our general conclusion was that a similar spatial structure for different
soil horizons characterizes a monotonous soil cover (uniform, or a mosaic with few
components). If patterns in the spatial distribution of soil horizons differ, one can
expect more a complex soil combination.

For the Klimetski plot, the variograms had a pseudo-periodic character (increase
in variance, followed by its decrease with increasing lag values). We ascribed this
fact to the “island effect”: the plot was situated on a peninsula, and was almost
surrounded by water. The period of the variogram was equal to the width of the
peninsula. It was just a mathematic effect of the zero values included for the water-
covered area. This effect should be considered in the study of any plots surrounded
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Figure 7.2: Indicator varigrams for the depth of organic horizons (a) and the A
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by non-soil bodies. May be, we can consider eliminating these values from the data
set. Lower sill values for A and E horizon depths resulted from the discontinuity of
these horizons: in most places their depth was equal to zero.

Using indicator variograms as the basis, we generated probability maps of the
presence of soil horizons (Figs. 7.4-7.6).

The B horizon and forest litter were distributed relatively uniformly in all the
plots. In contrast, the E horizon in the Gomselga plot, the A horizon in the Gabselga
plot, and both of the above horizons in the Klimetski plot were present as rare spots.
The comparison of probability maps and sampling schemes showed that most single
polygons in the probability maps included 2 to 35 sampling points. This number was
insufficient for kriging. Thus, for mapping the depths of soil horizons we recommend
using medium values or, alternatively, the reverse distance method or any other
deterministic or regression method (Laslett et al., 1987; Savelieva et al., 1999).

Further probability maps can be used in soil survey for making classical soil
maps. Combining the probabilities of the presence of each soil horizon one can
predict the presence of certain soil groups in every point, thus making the limits of
soil polygons more precise. The maps can also be verified using disjunctive kriging
(Webster and Oliver, 1989; VonSteiger et al., 1996).

This method allows including a range of limiting values, and, thus, dividing soils
into polygons according to the classes based on the depth of horizons (deep, medium,
shallow, etc.).

The spatial variability of the depth of soil horizons was estimated using variog-
raphy. The parameters of model variograms are presented in Table 7.3.

Table 7.3: Parameters of model variograms for the depth of soil horizons

Plot Horizon | Model | Nugget Sill Range, | Period, | Nugget /sill,
m m %

0 spherical 3.41 10.23 390 - 33.3
A - - - - - -

Klimetski E - - - - - -
B spherical 99 144 240 - 68.8
O spherical | 6.30 9.40 900 - 67.0
A double 6.82 32.53 210 - 20.6

Gomselga spherical 3000
E _ _ _ _ _ -
B spherical 128 169.60 | 3000 - 75.5
O spherical 7.44 11.76 180 - 63.3

Gabselga A - - - - - -
E periodic | 21.19 24.28 - 2036 -
B periodic 151 182.4 - 4162 -

The parameters of the models for different soil horizons and different plots showed
a range of values (Fig. 7.7; Table 7.3).
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Figure 7.4: Probability maps of the presence of the horizons O (a), A (b), E (¢) and
B (d) in the Klimetski plot. Grey colour indicates the zones where the probability
of the soil horizons’ presence is more than 70%, blue - water bodies
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Figure 7.5: Probability maps of the presence of the horizons O (a), A (b), E (c) and
B (d) in the Gomselga plot. Grey colour indicates the zones where the probability
of the soil horizons’ presence is more than 70%, blue - water bodies
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Figure 7.6: Probability maps of the presence of the horizons O (a), A (b), E (¢) and
B (d) in the Gabselga plot. Grey colour indicates the zones where the probability
of the soil horizons’ presence is more than 70%, blue - water bodies
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Figure 7.7: Variograms for the depth of the horizons O (a), A (b), E (¢), and B (d)

The forest floor in the Gabselga plot was mainly randomly distributed; this fact
was evidenced by a low range and high nugget values. The variation occurred mainly
at distances less than 100 m, and deviations from medium values were rather strong:
the sill of the variogram for forest floor thickness was the greatest in this plot. In the
Gomselga plot, the variogram for the O horizon also had a high nugget value, but
the range was also high. It means that, in addition to variation at short distances,
spatial correlation existed until a distance of 900 m. In the Klimetski plot, the
nugget and range values were significantly lower. Spatial correlation was observed
at distances less than 390 m. The difference in the spatial structure of the forest floor
depth was interpreted in the following way. The plots Gabselga and Gomselga were
disturbed by clearcutting, and the forest floor has not completely restored in places.
Also, clearcutting has locally led to secondary paludification, and, consequently,
the thickness of the organic horizon is higher there. These randomly distributed
factors lead to an increase in nugget values. The spatial correlation was higher in
the Gomselga plot because the vegetation cover and forest floor have recovered in
most of the site.

The A horizon was present in a significant area only in the Gomselga plot. The
variogram was best approximated by a double spherical model. It means that at
least three levels of spatial organization could be found there. The first level was
the nugget-variation. It was rather low (the least nugget value detected for all the
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horizons in all the plots). The second level was variation at a distance less than
210 m. The highest variation in the thickness of the A horizon was found within
this distance. The third level was variation at a distance less than 3000 m. Such
a wide range means that spatial correlation between the points existed throughout
the plot. Such a distribution indicates the presence of a “nested structure”. In real
geographical space, it means that within some areas of a medium linear size of about
200 m there is significant variation in the depth of the A horizon. At a distance of
about 3000 m the landscape changes, one can find other sites where variation is also
high, but the absolute values of the variation range are different.

The E horizon was present in a significant area only in the Gabselga plot.
Changes in the horizon depth there had a periodic nature, with a period of about
2000 m. The maximum values of variation were found at distances of 500 and 2500
m. This periodicity was ascribed to regular changes in the albic horizon thickness
according to the relief: its depth on the summit of the hills is lower than at foot-
slopes.

The variograms for the B horizon had high nugget values. We think it was
mainly due to subjective error in the horizon depth determination. Most surface
horizons had sharp lower boundaries, and their depth could be determined with a
1-3 cm precision. In contrast, the B horizon in most places had a gradual transition
to parent material, and the precision of its determination was about 10 cm. In the
Gabselga plot, the variogram for the B horizon had a periodic character, as for the
E horizon, but the period was twice bigger (4160 m). Analysis of the relief and soil
cover enabled us to propose a hypothesis explaining this periodicity. The territory
had hills and ridges of different altitude. We purported that only the highest ridges
affected the depth of the B horizons, while the E horizon, more sensitive to soil-
forming factors, depended on all landforms.

Conclusions

The study of three forested areas in Southern and Middle Karelia showed that
the depth of all soil horizons had high spatial variability. The variability increased
in the sequence of horizons B-O-E-A.

When the variability of data is high, the best method for spatial interpolation is
indicator kriging, which allows creating probability maps. Indicator kriging for the
presence and thickness of the horizons O, A, E and B in the three plots showed that
the change of the zones of absence/presence of the horizons occurred at distances of
700-900 m.

Similar spatial structure of different soil horizons, estimated using indicator krig-
ing, testifies to low pedodiversity of the site.

Ordinary kriging of the forest floor depth revealed low spatial correlation of data
in disturbed landscapes. After the original forest type restored, spatial coherence
increased, and was the highest in the old-growth spruce forest.
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“nested structure”:

Ordinary kriging of the thickness of the A horizon showed a
it means that within the plot there were blocks with different ranges of variation of
the horizon depth, and internal variability within every block was high.

Ordinary kriging of the horizons E and B showed periodicity in the data distri-
bution, and the period for the B horizon depth distribution was twice bigger than
for the albic horizon. We hypothesized that intermediate low ridges did not affect

the depth of the B horizon, but affected the thickness of the E horizon.
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Chapter 8

Spatial variability of soil hydro-physical
properties: A case study in Herceghalom,
Hungary

Cs. Farkas, K. Rajkai, M. Kertész, Zs. Bakacsi, M. van Meirvenne

Abstract !

Soils developed on loess material are the most homogeneous and best fertile agricultural
areas in Hungary. However, even on these homogeneous areas the crop development
and productivity is spatially variable. In a case study in Herceghalom — about 50 km
NW from Budapest — spatial variability of different soil properties was studied in order
to establish their potential effect in crop productivity. A regular grid sampling of the
1500 ha large-scale farm was used to establish the spatial validity of a point sample, and
to generate the territorial pattern of the different soil properties and characteristics as
water-retention values, particle-size fractions, organic matter and lime content, etc. The
standard geostatistical methods were used to describe the spatial behaviour of the studied
soil properties. Soil water content dynamics and soil water balance elements of two ref-
erence soil profiles were simulated for the vegetation periods of two meteorological years.
Measured soil water content dynamics were used as references. Two different approaches
— a regression technique and the scaling concept, (assuming geometrical similarity of soil
structural elements) - were applied to perform spatial extension of the point simulation
models. The scaling concept is commonly used in natural sciences to derive quantitative
characteristics for a system, the properties of which can not be directly measured due
to some (distance, size etc.) difficulties. The concept of scale is applicable if a system
is represented proportionally by another system. Assuming the same spatial validity of
the simulated evapotranspiration values, maps, indicating the spatial pattern of the cu-
mulated evapotranspiration values as well as the transpiration ratio of the different crops
were produced. Beside the area pattern of different soil properties of the Chernozem soil

!This chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 43-66.
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cover the simulation results showed that the spatial variability of the soil hydrophysical
properties appears in the soil-crop water balance, and they affect the plant activity when
the climatic conditions are dry and unfavourable.

Introduction

In Hungary Mollisols, developed on loess parent material are the best for agri-
cultural utilisation. In agricultural practice they are handled and considered as
homogeneous in most of the cases. Spatial variability of soil properties may appear
in yield variation within a single field even in areas considered homogeneous from
the soil survey point of view. Soil spatial distribution is represented by the soil
patch pattern on soil maps. The identification of the pattern’s border is based on
reference soil profiles, assuming, that borders also mark the ‘spatial pattern’ of the
soil. In many cases, like in precision agriculture practice, the within pattern spatial
heterogeneity of soil properties has to be handled. The level of heterogeneity within
the soil pattern depends on the examined soil property. Upchurch et al. (1988)
studied the spatial variability of main soil properties using data, measured from soil
samples, taken from different locations of a soil unit, identified on the soil map as
homogeneous. The coefficient of variation (CV) of the studied soil properties ranged
between 7 (bulk density) and 75 (saturated hydraulic conductivity). Wosten et al.
(1985) found, that the CV of the potential amount of plant available water (PAW)
is much lower, than that of the soil properties, used for calculation of the PAW.
This indicates that the spatial variability of soil properties is different for basic and
derived soil properties.

Effects of various sources of soil heterogeneity on the annual or long-term av-
erage soil water budget appear to be markedly different (Kim, 1995). Simulation
models are tools for analysing the water regime with respect to physical properties
of soils (e.g. Majercak and Novdk, 1994; Djurhuus et al, 1999). Simulation models,
when used at field scale, have to be up-scaled from the point valid soil profiles using
geostatistical methods (Van Meirvenne et al, 1995; T6th and Kuti, 2002), or effec-
tive hydraulic parameters (Smith and Diekkriiger, 1996). Use of effective hydraulic
parameters reduces the number of simulations significantly, but interprets the whole
field as an equivalent soil profile. Disadvantage of this approach is that it does not
reflect the spatial pattern of the soil water balance elements.

Our purpose was to analyse the differences of the soil water budget of a Mollisol
due to spatial heterogeneity of soil hydraulic properties (soil water retention char-
acteristics (SWRC) and soil hydraulic conductivity function). Since individual soil
physical properties influence crop yield in different ways and in different extents, we
decided to integrate their influence by simulating the soil water balance and to use
transpiration as a crop yield indicator. We assumed that the field is composed by a
set of one-dimensional non-interacting soil profiles each of them is represented by a
set of soil hydraulic functions. The SOIL (Jansson, 1996) and SWAP (Soil-Water-
Plant-Atmosphere) (Van Dam et al, 1997) soil water and heat dynamics simulation

108



models were applied for soil water regime simulations, while regression and scaling
techniques were used for spatial extension of the point models.

Materials and methods

Experimental site

The field studies were conducted on a Mollisol, formed on loam texture loess
material at Herceghalom, Hungary (50 km W from Budapest). The investigation
area belongs to the Herceghalom State Farm with an area of about 15 km? (1500
ha), with a moderately undulating relief (130-200 m above the see level).

The land use types in the study period were corn (498 ha), winter wheat (485 ha),
alfalfa (150 ha) and grass (140 ha). The spatial variability of soil physical properties,
caused probably by moderate wind and water erosion as well as by differences in
land use, was mainly expressed in the cultivated soil layer. Two representative soil
profiles; corresponding to the main land use types of corn and winter wheat were
chosen. Description of the soil profiles was given in (Rajkai et al., 1997).

Soil sampling and analysis

Sampling of the reference soil profiles

Disturbed and undisturbed (100 ¢cm?®) soil samples were taken from the genetic
soil horizons of the representative soil profiles. The locations of the representative
soil profiles were chosen based on the results of a reconnaissance sampling (Kertész
and T6th, 1994) and in-situ investigations of soil properties. Undisturbed soil cores
of 5 cm length and 5.5 cm diameter were carefully trimmed, wrapped in plastic, and
stored in refrigerator of 4°C before analysis. The disturbed soil samples were used to
determine the particle size distribution by the pipette method (Buzas, 1993). From
the undisturbed cores, bulk density and soil water retention data were determined.
Thus, soil water content was measured at pF values 0.0, 0.4, 1.0, 1.5, 2.0, 2.3 and
2.7 according to Varallyay (1973) and at pF values 3.4 and 4.2 on disturbed soil
samples by the pressure membrane method (Varallyay, 1973). Soil water retention
data were expressed in terms of volumetric water content using the bulk density of
the sample cores for the conversion. From the undisturbed cores, bulk density and
soil water retention data were determined.

Spatial soil sampling programme

A preliminary (reconnaissance) sampling, data and variogram analyses were per-
formed in 1991 in order to work out the proper sampling strategy. The preliminary
sampling consisted of two parts:

Taking soil samples from 64 points of an equidistant grid that covered the whole
study area. The orientation of grid was nearly NS-EW, the distance between the
grid points was 425 m.

Sampling the soil at 5 places along 2 transects in the NW-SE and NE-SW di-
rections for a more precise calculation of variogram’s parameters. Both transects
had 4 sampling points, with the following distances from the main point: 25, 50,
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100 and 200 m for the NW-SE transect and 35, 70, 140 and 280 m for the NE-SW
transect. Two short additional transects were sampled in one of the cases. The
distances between the main points and the sampling points were 5, 10, 15 and 20 m
in order to find out the possible existence of spatial structure at finer scales.

The disturbed and undisturbed samples were taken from the topsoil (5-10 cm)
layer. Soil bulk density, texture and soil water retention characteristics were deter-
mined, using the same methods as in case of samples, taken from the reference soil
profiles.

The main purpose of the representative sampling, carried out in 1992 was to ob-
tain data for the detailed farm-scale mapping of the selected soil physical properties
of the study area. The 425 m long gridlines, used for soil sampling in 1991, were
shortened into halves by 153 new sampling points such, that the distance between
the soil sampling points became 212 m. Further division of the sampling distance
into halves (with a sampling distance of 106 m) was performed on the 1/6 of the
study area by taking additional 126 samples. Besides we took soil samples from 30
randomly selected locations to estimate the accuracy of the maps. The sampling
points are shown in Fig. 8.10.

The soil sampling consisted of taking disturbed and 100 cm?® undisturbed soil
samples from the upper 5-10 cm soil layer at 448 locations. Considering the soil
development in the study area, the subsoil was assumed to be homogenous. Soil
properties, determined from the collected samples were similar to those, measured
for the genetic soil horizons of the representative soil profiles. Besides the sampling,
the elevation categories (hilltop, slope and valley) were recorded.

A spatial dataset consisting of geographical coordinates and soil physical prop-
erties of 448 measurement points was created to characterise the soil variability of
the farm area.

Geostatistical analysis

Analysis of variance was applied to examine the effect of elevation and land
use differences on the selected soil physical properties. We used the theory of re-
gionalized variables to investigate the spatial variability of soil physical properties
(Matheron, 1971). The semivariance function y(h) is equal to half the expected
squared difference between values at locations separated by a given lag and used to
express spatial variation (Journel and Huijbregts, 1987). The GEO-EAS (1991) and
GeoPack (Yates and Yates, 1990) geostatistical software were used to calculate the
semivariogram function model fitting and to perform the spatial interpolation using
punctual kriging. The Gaussian, spherical and exponential models were explored as
models to fit the semivariogram functions for the selected soil physical properties.
Cross-validation procedure was used to test the adequacy of the selected semivar-
iogram models applying kriging. Punctual kriging was used to estimate values of
soil physical properties at the unsampled locations.

110



Field measurements

Volumetric soil water contents were measured at the representative soil profiles
up to 140 cm depth in 10 cm resolution. The measurements were performed 7 and
10 times in 1993 in soil profiles with wheat and corn, respectively and 12 times
during the vegetation period of 1994. The soil water content measurements were
performed by a BR-150 capacitive probe developed in the RISSAC (Andrén et al.,
1991; Vérallyay and Rajkai, 1987).

The near-saturated hydraulic conductivity of the soil surface (Rajkai et al., 1993;
1997; Jarvis et al., 2002) was determined next to the representative profiles by a
tension disc infiltrometer (Ankeny et al., 1988) at -3, -6 and -12 cm tensions. The
saturated hydraulic conductivity of the soil matrix was defined by the extrapolation
of the exponential function, fitted to the measured conductivity values (Ankeny et
al., 1988).

Evaluation of the soil water content dynamics

Application of the SOIL simulation model

The SOIL model represents, in one dimension, the water and heat dynamics in
a layered soil profile covered with vegetation. As the solution to model equations
is performed with a finite difference method, the soil profile is divided into a finite
number of layers. Compartments for intercepted water and surface pounding are
included to account for processes at the upper soil boundary. A detailed technical
description of the model is presented in Jansson (1996).

Since deep groundwater table (> 5 m) is characteristic in the study area, only
the unsaturated part of the soil was dealt with. Calculations were based on partial
differential equations describing flows in the soil profile and are based on an extension
of Richard’s equation, assuming that soil water flow is laminar. Two soil physical
functions must be known to solve the flow equation, namely the relation between
soil water content and soil tension described by Brooks and Corey (1964) expression,
and the function of unsaturated water conductivity. The unsaturated conductivity
is calculated using the model given by Mualem (1976). To account for macropores
the conductivity is increased when water content exceeds porosity minus 4%.

Vegetation can be seen as a link between water in soil and water vapour in the
overlying air. Water flows from an area of high potential in soil to the atmosphere,
which has a low water potential. The transition is governed by different resistances.

The potential vapour flow is calculated with the Penman-Monteith equation
(Monteith, 1981). Reduction in water uptake caused by low soil temperature and/or
dry soil conditions are simulated by using empirical reduction-factors. The Penman-
Monteith equation is also used for calculating evaporation from soil and from inter-
ception storage. The various types of evaporation sources differ in term of available
energy, surface resistances at the different boundaries and the aerodynamic resis-
tances above their surfaces. The net radiation is distributed between the canopy
and soil surface according to Beer’s law.
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The most important parameters describing the influence of vegetation are the
leaf area index and surface resistance (Jansson, 1996; Van Dam, 2000). Root depth
mainly affects the total storage of plant-available water. Water uptake by roots
is described by defining the proportional distribution of roots among the different
layers.

The model is driven by daily meteorological data such as air temperature, wind
speed, air humidity, solar radiation and precipitation.

The simulation period started in mid April in case of wheat and mid May in case
of maize. Input data, such as meteorological data and soil physical properties were
determined by either, direct or indirect measurements. Model outputs, in terms of
soil water dynamics were compared to field measured soil moisture contents and
used for adjusting the unknown model parameters as e.g. soil surface resistance.

Model parameters are mainly related to either soil or stand properties. To the
largest extent possible, independent measurements in the field or data reported in the
literature have been used. Soil parameter values, as water retention characteristics
and hydraulic conductivities were based on undisturbed soil samples, or direct in
situ measurements.

Application of the SWAP simulation model

The SWAP numerical model (Van Dam et al. 1997) simulates the water flow in
the unsaturated zone in relation to plant growth at field scale level for the entire
growing season (Van Dam, 2000). The SWAP employs the Richards’ equation for soil
water movement in the soil matrix. The soil hydrophysical functions are introduced
by the analytical expressions of Van Genuchten and Mualem (Van Genuchten, 1980).
The model input data consisted of meteorological data, crop growth data, soil data
plus initial and boundary conditions.

Daily meteorological data of Martonvasar (located 20 km from Herceghalom) me-
teorological station, consisting of air temperature, wind speed, solar radiation, air
humidity for the vegetation periods of 1993-94 were used to estimate daily potential
evapotranspiration according to Penman-Monteith (Monteith, 1981). The SWAP
calculates the potential and actual soil evaporations according to expressions, sug-
gested by Belmans et al. (1983) and Boesten and Stroosnijder (1986), respectively.

The simple crop subroutine of the SWAP model was chosen, that requires data
on crop height, leaf area index, root depth, root distribution and soil cover fraction
as functions of the development stage. The crop parameters were set according to
Rajkai et al. (1997).

Initial conditions specified for the simulation consisted of initial soil water con-
tent profiles, measured on Julian Day (JD) 130 and 151 in 1993 and 1994, respec-
tively. Assuming zero gradient of the soil water pressure head at the bottom of the
soil profiles because of deep ground water level, free flux bottom boundary condi-
tions were defined. Upper boundary conditions consisted of daily precipitation data,
measured directly at the study area in 1993 and 1994.
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The input data on soil properties, required by the model were the parameters of
the soil water retention curve (0,, Oy, o, n and m=1-1/n) and hydraulic conductivity
function (K, and M), specified for each genetic horizon of the soil profiles according
to Van-Genuchten — Mualem (Mualem 1976, Van Genuchten 1980). The RETC
computer program (Van Genuchten 1980) was used to quantify the parameters of
the Mualem-Van Genuchten model based on the experimental data of soil water
retention characteristics and measured values of saturated hydraulic conductivity.
The input data are given in Table 8.1.

Table 8.1: Mualem-Van Genuchten parameters, fitted to the measured soil hy-
drophysical data
Crop | Layer O, O, o n K, A
(cm) | (m®/m?®) | (m*/m?) | (1/em) | (-) | (em/day) | (-)
wheat | 0-30 0.06 0.47 0.012 | 1.25 10.1 0.15
30-70 0.06 0.51 0.052 | 1.22 8.6 0.14
70-150 0.01 0.49 0.021 | 1.26 8.6 0.21
corn 0-20 0.09 0.49 0.012 | 1.26 15.2 0.17
20-40 0.01 0.46 0.014 | 1.16 10.5 0.18
40-70 0.01 0.50 0.040 | 1.14 10.5 0.18
70-150 0.01 0.47 0.023 | 1.25 8.6 0.22

O, and O, are the saturated and residual water contents, respectively;
a and n are the Van Genuchten model parameters;

K, is the saturated hydraulic conductivity and

A is the parameter of the conductivity function.

The SWAP as the SOIL model was calibrated for the representative soil pro-
files against the measured soil water content data. The climate-, location- and
crop-specific parameters were set this way, so the sensitivity of the soil water regime
characteristics to changes in soil physical properties could be studied further. Model
adaptation was achieved by tuning of model parameters. Because of the uncertain-
ties in the estimation of the hydraulic conductivity function parameters, these data
were tuned during the calibration. The adaptation was continued until the precision
of prediction stopped responding to the changes in model parameters. The method,
suggested by Addiscott (1993) was used to assess the accuracy of SWAP model
fitting. Thus, the necessary level of accuracy (p) was defined and compared with
the mean difference (M) between the simulated (O, ) and measured (O,,eqs.) soil
water content values:

1 N
M = = |Omes — Osiml (8.1)
N =1

N refers for the number of cases. In case M < p, and the difference between the
measured and simulated soil water contents does not exceed the accuracy level p

113



in 85-90% of the cases, the adaptation of the model is successful. Taking into
consideration the soil water content sampling and measurement errors the level of
accuracy, p, was set as +5%.

The study consisted of four model calibrations (2 different years x 2 crops). In
total 41 comparisons of measured and simulated soil water content profiles were
performed: 7 (wheat) plus 10 (corn), and 12 (wheat) plus 12(corn) for 1993 and
1994, respectively. The accuracy of the model fitting was tested for 11 layers in case
of each profile. Hence, the M measurements were applied for 41x11 layers.

Spatial extension of the profile-based simulation models
The spatial extension of the soil and SWAP simulation models was performed
by regression and scaling methods, respectively.

Spatial extension of the SOIL simulation model

The regression technique, used for spatial extension of the simulation results
consisted of statistical analyses followed by model sensitivity analyses. The spatial
distribution of the soil water retention curves was represented by 5 curves (Table 8.2),
each of the 6 characteristic points (soil water contents, corresponding to pF values of
0.0, 1.0, 2.3, 2.7, 3.4 and 4.2) of which was derived from the cumulative probability
function (representing the average, min., max., 25%, and 75% values). These values
were then used to perform sensitivity analyses with the previously calibrated SOIL
model for testing the relationship between the soil physical input data and the model
outputs (transpiration and other soil water balance elements).

Table 8.2: Characteristic values of the soil water retention curves, derived from the
cumulative probability function

Value Soil water content (v%), corresponding to
pF=0.0 | pF=1.0 | pF=2.3 | pF=2.7 | pF=3.4 | pF'=4.2
Minimum 39.6 38.5 29.7 24.9 17.9 13.4

25% 49.0 47.6 36.5 30.4 21.6 15.8
Average 50.6 49.1 37.6 31.3 22.2 16.3
75% 52.4 50.9 39.0 32.3 22.9 16.7

Maximum 59.4 57.6 44.0 36.4 25.6 18.6

Spatial extension of the SWAP simulation model

The scaling theory, introduced by Miller and Miller (1956) was applied for the
spatial extension of the simulation model results. 445 soil water retention charac-
teristic curves from 448 were scaled, using the SCALING software, developed by
Clausnitzer et al. (1992). The program calculates a mean (reference) soil water
retention curve for the study area and scaling factors for each SWRC curve, rep-
resenting the deviation of the individual curve from the mean one. Providing the
parameters of the reference curve and the scaling factors, SWAP generates the soil
hydrophysical functions for each scaling factor value and simulates the corresponding
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water balance. Thus, the elements of the soil water balance, such as transpiration,
evaporation, leaching and changes in soil water storage were estimated for the 445
measurement points for the vegetation period of two crops (wheat and maize).

The transpiration ratio (R) between the simulated transpiration and potential
transpiration values was calculated for each sampling point. In this respect we
assumed uniform (wheat or corn only) vegetation cover in the whole area. Punctual
kriging was applied as interpolation technique to demonstrate the spatial pattern of
the simulated transpiration ratio. The spherical model was fit to the experimental
semivariogram.

Results and discussion

Statistical and geostatistical analyses

Statistical evaluation of the soil physical data
Results of the statistical evaluation of the saturated water content (©,r—00),
field capacity (©,r=23) and wilting point (©,p—4.2) data are given in Table 8.3.

Table 8.3: Means (v%), standard deviations (SD) and coefficients of variation (CV
%) of the characteristic points of the soil water retention curves

Landuse | Num. of Opr=0.0 Opr=23 Opr—1.2
type samples | Mean | SD | CV | Mean | SD | CV | Mean | SD Cv
Corn 168 50.3a | 3.74 | 7.44 | 35.1a | 3.02 | 8.60 | 15.9a | 3.06 | 19.20
Wheat 164 50.7a | 3.13 | 6.18 | 35.6a | 2.85 | 8.00 | 15.0b | 2.08 | 13.83
Alfalfa 51 49.0b | 2.72 | 5.55 | 35.6a | 1.55 | 4.35 | 16.6a | 2.02 | 12.18
Grass 62 48.9b | 2.94 | 6.02 | 36.9b | 2.02 | 5.06 | 15.1b | 1.54 | 10.20
Total 445 0.50 | 0.03 | 6.7 | 0.36 | 0.03 | 7.7 | 0.16 | 0.02 | 15.8

Mean values are significantly different at a probability level of 0.05 if the same letters
do not follow them.

Statistically significant differences between the soil physical properties according
to land use types were found. The relatively lower saturated soil water contents and
bigger bulk density values (Table 8.4) in the alfalfa and grass fields indicate more
compacted topsoil compared to that of the wheat and cornfields. These differences
could be caused by the soil loosening effect of ploughing, applied in the annual crop
fields. We suppose, that the bigger earthworms activity could increase the field
capacity in the grassland due to its soil mixing and soil structure improving effect.
According to the clay(highest in the alfalfa fields) and organic matter (highest in
the grass) content data (Table 8.4), significant differences, found between the wilting
point values could be caused by differences in the amount of organic and inorganic
colloids (Rajkai et al., 1981).

The variability of clay and humus contents of the grass was much lower than
that of the alfalfa fields. On the other hand, the coefficients of variation of the bulk
density were similar for tilled (corn and wheat) and non-tilled or not regularly tilled
(grass and alfalfa) soils.
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Table 8.4: Mean, standard deviation (SD) and coefficient of variation (CV, %) of
the clay content, bulk density (Bd) and organic matter content (OM)

Landuse | Num. of Clay content (%) Bd (g cm™?) OM (%)
type samples | Mean SD CV | Mean | SD CV | Mean | SD (A%
Corn 168 27.23a | 5.83 | 21.41 | 1.32a | 0.10 | 7.58 | 3.31a | 0.81 | 24.47
Wheat 164 25.06b | 3.16 | 12.61 | 1.31a | 0.10 | 7.63 | 2.56b | 0.79 | 30.86
Alfalfa 51 28.32a | 4.09 | 14.44 | 1.39b | 0.07 | 5.04 | 3.53a | 0.78 | 22.10
Grass 62 24.52b | 2.22 | 9.05 | 1.38b | 0.08 | 5.80 | 3.83a | 0.62 | 16.19
Total 445 26.2 | 4.57 | 17.4 | 1.33 | 0.10 | 7.50 | 3.40 | 0.80 | 23.40

Mean values are significantly different at a probability level of 0.05 if the same letters do
not follow them.

No significant differences according to elevation categories between bulk den-
sities, clay content and total porosity values were found (not shown). The field
capacity values for the hilltops were generally bigger than for slopes and valleys.

The results of the statistical evaluation indicated, that model simulation of the
effects of soil hydrophysical properties on soil water balance has to be performed
separately for the different land use types.

Geostatistical analyses

Semi-variogram models and model parameters, fitted to the measured soil physi-
cal properties are shown in Table 8.5. To define distinct classes of spatial dependence
among soil properties with depth, ratios similar to those presented by Cambardella
et al. (1994) were used. If the ratio is between 25% and 75%, the variable is con-
sidered moderately spatially dependent; if the ratio is bigger than 75% or less than
25%, the variable is considered weakly or strongly spatially dependent, respectively.

Table 8.5: Parameters for semi-variogram models for pF0, pF2.3 and pF4.3
Soil Model Nugget | Sill | N/S | Range | Spatial
property %> %? % m class
Opr=0.0 | Exponential 4.35 10.85 | 40.1 475 moderate
Opr=23 Spherical 2.65 7.50 | 35.3 | 475 | moderate
Opr=4.2 Spherical 0.10 6.25 | 1.6 545 strong
Clay | Exponential | 0.69 | 21.75 | 3.17 | 437 strong

Semi-variograms for pF0 and pF2.3 indicated the existence of moderate, while
for pF4.2 of strong spatial dependence (Fig. 8.1). The 425 m distance between the
measurements points was enough to construct variograms and perform kriging.

The level of the spatial dependence increase in the following order: pF0, pF2.3
and pF4.2. Because of the strong relationship between the wilting point moisture
content and clay content, variogram for clay content had similar parameters to the
one for pF4.2, and showed similar spatial structure as well. The weakening of the
spatial structure towards pF0 can be explained by increasing independency of these
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Figure 8.1: Experimental (points) and theoretical (lines) semi-variograms, calculated
for the characteristic points of the soil water retention curves

characteristics from the clay content as well as by increasing of other soil effects
(e.g. compactness, soil structural status, soil cultivation etc.). Spatial patterns of
the saturated soil water content (©,r—g,), field capacity (©,r—23) and wilting point
(Opr—42) soil water contents are given in Fig. 8.2-8.4. We found, that the spatial
variability of the ©,r—p was higher in maize and wheat fields than that of alfalfa
and grass fields.

The field capacity water content values, measured at the experimental sites
ranged within a relatively small interval of 10%. Thus, no valuable differences
between the land use types were found. The effect of soil tillage could be found in
higher SD values of tilled fields. The spatial pattern of the wilting point soil water
contents reflected the relief and the land use types of the territory. As it was shown
by the statistical evaluation of the spatial data, the clay and the organic matter
contents depend on the elevation and the land use. Thus, the spatial pattern of the
wilting point can be related to the spatial pattern of the clay- and organic matter
contents of the soil. Consequently, fields belonging to the same land use types can
be considered homogeneous in soil texture as well as in the high suction part of the
soil water retention curve.
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Figure 8.2: The total water capacity water content pattern of the Herceghalom
study area
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Figure 8.3: The field capacity soil water content pattern of the Herceghalom study
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Figure 8.4: The witling point water content pattern of the Herceghalom study area

Calibration of the soil water balance simulation models

Calibration of the SOIL model

The simulated soil water content dynamics were in good agreement with the
measured ones for the wheat field (Fig. 8.5). Similar results were obtained (not
shown) for the maize field.

The main difference between the two years consisted of the amount of precipi-
tation during spring. In March and April it was 27 and 96 mm for 1993 and 1994,
respectively. Consequently, the soil was dry at the beginning of the growing sea-
son in 1993, and it was drying out until August without any increase in soil water
content. In 1994 several rainfalls followed the relatively wet spring, so drying and
wetting periods could be observed.

We concluded, that the estimation of the soil water content dynamics using the
SOIL model was successful, and the model described the soil water flow and its
redistribution in different weather conditions.

Calibration of the SWAP model

The measured and calculated volumetric soil water content profiles for 6 days
are presented in Fig. 8.6. Figures show that predicted soil water content profiles do
not differ much from the measured ones, so the simulation can be qualified as good.
The difference between the two increases next to the soil surface and at the bottom
of the profile, especially in case of wheat. The model calibration for the uppermost
layer is more difficult compared to lower ones, because of the more complex nature
of the water movement and redistribution phenomena (Zsembeli, 2000). On the
other hand, the relative error of the capacitive probe, used for soil water content
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Figure 8.5: Measured (points) and simulated (lines) with the SOIL model soil wa-
ter content values for a dry (1993, left side) and relatively wet (1994, right side)
year. Squares/triangles show the soil water content values, measured at depths of
40-50/50-60 cm (for 35-55 cm layer) and 70-80/90-100 cm (for 70-105 cm layer),
respectively.
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measurements, increases towards the soil surface. This might also be the reason of
the less precise calibration of the model for the upper 15 cm layer of soil. At the
lower boundary of the soil profile a rather thick (70-150 cm) layer was considered
to be homogeneous and represented with one set of soil hydrophysical parameters.
This could cause a higher inaccuracy of the simulated soil water content values in
the 80-110 cm layer.

JD=189  Soil water content (ini) JD=161  Soil water content (i) JD=202  Soil water content (ifm’)
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
e e mErversea.
-10 —— —44 Wheat -10 —— —a Wheat -10 — &—  Wheat
L] 1]
C g, 1993 L, 1993 — L 1994
30 + / 230 + . -30 + N
SN ol —A— 2ol
E' — Ak— 'E_' —A— 'E' —y e
D D D
Q70~ v—-.l—| Q70” v—-.L—| Q70~ ——k
) ——A— ) — A ) — A
1 ”
1 —A— | —h— 1 A= —
0 h— — -0 A— — -0 A—0—
tA—— A — A—r—
-110 — -110 — -110 —
JD=138  Soil water content (ifni) JD=180  Soil water content () JD=213  Soil water content (im)
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
f ; f f f ; f f : 1 " 1 " 1
ik —h— A
-10 s~ Corn -10 — a— Corn 0T L Corn
e L]
o 1993 L, 1993 L 1994
=30 + ” =30 " -30 T b
2 n—{ — 2 A — ' —A—
=50+ L S0t =50+ —
= & — =N — A = e
D
S0 \ A -t T 8 e
—A— ) — A ) —A—
00 — A 0 —A— 0 A —
90 + 90 + 90 + Iy
— & 0 —A— 0 HA——
— A —A— A —
-110 — -110 — -110 —

Figure 8.6: Measured (dashed) and simulated (solid) soil water content profiles (JD
refers for Julian Days; the error bars are also indicated)

The analyses of the model accuracy according to Addiscott (1993) are presented
in Table 8.6. We concluded, that the model calibration was successful in general.
The differences between the simulated and observed soil water contents can also
be explained by seasonal changes of soil physical properties caused by biological
activity and weather conditions. Farkas et al. (1999) reported about strong sea-
sonal variability of soil hydrophysical properties of an agricultural soil and proofed
the sensitivity of the SWAP model to this variability (Farkas et al., 2000). They
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established that considering the seasonal variability of soil physical properties using
seasonally different parameters improved the simulation accuracy significantly.

Table 8.6: The mean difference (M) between the simulated (SWAP) and observed
soil water content values and the percentage of cases (K%), when the difference does
not exceed the accuracy level p=5%. N refers to the number of cases.
Wheat Corn
1993 1994 1993 1994
M |[K|N| M [K|N M K | N M | K| N
0.030 | 77 | 90 | 0.047 | 83 | 132 | 0.015 | 100 | 110 | 0.034 | 85 | 132

Spatial extension of the simulation models

Spatial extension of the SOIL model, using a regression technique

Based on regression analyses, the soil water content at saturation (©,p—¢) was
found to be the most important soil property, influencing the simulated actual evap-
otranspiration (ET) and, consequently, the root water uptake. Fig. 8.7. demon-
strates the relationship between the simulated evapotranspiration values and the
©,r—ovalues, corresponding to the 5 water retention curve groups (Table 8.2) used
to represent the spatial variability of soil hydrophysical properties.
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E 230 L 2
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=
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= A Wheat ¢ Corn
150 .

35 40 45 50 55 60

Soil water content at saturation (v%)

Figure 8.7: Relationship between the ©,r—y values of the five soil water retention
curve groups and the simulated evapotranspiration

The regression equations, used for spatial extension of the SOIL model results
were as follows:

ET = 88.212 + 2.097 * O, p—¢(wheat); (8.2)

and

ET = 190.01 + 1.030 % ©,7_o(corn) (8.3)
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The spatial pattern of the ET values for wheat and corn are given in Fig. 8.8
and 8.9, respectively. Block kriging was used for the interpolation of the ET values,
derived for each measurement point, assuming, that wheat (or corn) was grown in
the whole area of the farm and that the nutrition support was uniform through the
area.

Herceghalom study area R
RISSAC ©ud
Winter wheat, 1993 GISLAB ™

Evapotranspiration
(mm)
D 184-188
D 188-191
@ 191-1%4
@ 194198
@ 15202
.
&

location
of sampling

fields 0 250 500 750 1000 m
i —

Figure 8.8: Spatial pattern of the SOIL model simulated evapotranspiration of wheat
(1993)

Since the actual transpiration is strongly related to the plant water uptake, we
assume that areas with high wheat/corn yield are marked with dark colour.

Maps were created for an extremely dry vegetation period (year 1993). After
the wheat was harvested, rains started, so the corn could get water from the soil.
This means, that the drought stress for wheat was bigger than that for corn, and
the spatial distribution of the ET values was more uniform for corn than that of
wheat (Figs. 8.8-8.9).

Spatial extension of the SWAP model, using the scaling method

The spatial pattern of the simulated transpiration ratio for wheat is presented in
Fig. 8.10-8.11 for 1993 and 1994, respectively. The amount of precipitation differed
a lot between the two years. 1993 was an extremely dry year with a total of 158 mm
precipitation in the vegetation period. The following year was relatively wet with
302 mm of total rainfall during the growing season.

The spatial pattern of the simulated transpiration ratio for 1993 and 1994 was
rather similar, but less uniform in the dry year. The transpiration range, (not shown)
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Figure 8.9: Spatial pattern of the SOIL model simulated evapotranspiration of maize
(1993)
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Figure 8.10: Spatial pattern of the simulated transpiration ratio R (-) for wheat
(1993)
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Figure 8.11: Spatial pattern of the simulated transpiration ratio R (-) for wheat
(1994)

was twice as big (62 mm/growing season) in 1993 than in 1994 (27 mm/growing
season), the coefficients of variation were 6.8% and 1.8%, respectively. The bigger
range and less uniform spatial pattern of the transpiration ratio in the dry year
indicates, that in case of less favourable conditions a stronger effect of the spatial
variability of soil hydrophysical properties on the spatial pattern of soil water balance
can be expected.

Similar conclusions can be drawn regarding the spatial pattern of the simulated
transpiration ratio for corn (not shown). The transpiration ranges for the vegetation
period in this case were 59 and 22 mm/growing season, the coefficients of variation
5.3% and 1.5% in 1993 and 1994, respectively.

Note, that in this study neither the spatial pattern of the crop parameters nor the
adaptation of the vegetation to unfavourable environmental conditions were taken
into account. No conclusions can be drawn for territories, where no sampling points
appear.

Conclusions

The adaptation of the SOIL and SWAP simulation models to the Herceghalom
study area was successful. We found, that the spatial variability of the soil hy-
drophysical properties influences the spatial pattern of the soil water balance ele-
ments, especially in dry, unfavourable weather conditions.
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The applied methods, used for spatial extension of the profile-based simulation
models are appropriate for optimisation purposes and suitable for precision agricul-
ture aspects. They make possible to analyse the integrated effect of the variability
of different soil physical properties on the soil water balance for a given crop and
weather scenario. Moreover, this type of simulation allows selecting the most ap-
propriate land use pattern on the area.
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Chapter 9

The continuum dilemma in pedometrics
and pedology
J.-J. Ibdnez, A. Saldana

A conflict between doctrines is not a disaster
but a great challenge

(Prigogine and Stengers, 1988:

Entre le temps et l'eternité)

Abstract !

This chapter deals with a controversial matter within the community of soil scientists. In
the last years classical pedology has been questioned about the concept of soil as a natural
body on the landscape and also about how soils are classified and mapped. Main criticisms
coming from pedometricians regard the ability of classical pedology to describe properly
soil variability. Aspects under analysis regard the discussion about continuum-discrete
entities, the natural-artificial classification, the objectivity of the soil classifications, the
basic-applied nature of pedology and the need of universal classifications. It is shown
here that many criticisms are similar to those that have been already overcome by other
sciences. The conclusion is that according to the philosophy of science, the quantitative
(geostatistics) and the qualitative (classical pedology) approaches are not incompatible
and it should be possible to analyse the soil cover using both of them.

Introduction

Soil spatial variety and variability are crucial elements to quantify the pedogenic
concepts and better understand the causal factors of soil distribution patterns and
landscape evolution (Wilding and Drees, 1983). On a classical soil map, variation is
displayed using geomorphic and soil knowledge (Hudson, 1992), mainly in terms of

IThis chapter is an extended and improved translation of the text published in Russian in
” Geostatistics and Soil Geography”, Moscow, Nauka Publ., P. 109-120.
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systematic variation, which according to Jenny (1941) entails any gradual or marked
change in soil properties as a function of landforms, soil-forming factors and/or soil
management.

In the last years classical pedology has been questioned about the concept of
soil as a natural body on the landscape and also about how soils are classified and
mapped. Main criticisms coming from pedometricians regard the ability of classical
pedology to describe properly soil variability. Grunwald (2003) opened a very inter-
esting debate asking whether it is possible to reconcile the two approximations to
soils analysis: quantitative/mathematical versus taxonomy.

This chapter deals with a controversial matter within the community of soil
scientists. Many pedometricians claim against classical approaches to the analysis
of the pedosphere continuum. Most criticisms regard: (1) the separation of soils
into hard classes due to the inherent large variability of soil properties; (2) the
application of hierarchical classifications to soil systems in the same way they are
used for biological systems; (3) do classical soil scientists (particularly in the United
States) have such a narrow focus on Soil Taxonomy, as suggested by Grunwald
(2003)7; (4) classical pedology is viewed by some geostatisticians as really obsolete,
like fossils of a “dark age” (Heuvelink and Webster, 2001).

In few words, are we talking about two different paradigms? We think that both
pedologists’ schools could learn a lot from this controversy if the current intuitive
attacks were replaced by constructive statements based on conceptual tools pro-
vided by other branches of knowledge. Other scientific disciplines such as biological
taxonomies, biodiversity analysis or geomorphology (Rhoads and Thorn, 1996) are
involved nowadays in similar controversies.

Arguments to defend classical pedology
Continuum versus discrete entities

One of the main criticisms arriving from pedometricians concerns the continu-
ous nature of the soil mantle with fuzzy boundaries (e.g., Odeh, 1998 and personal
communication; McBratney and De Gruijter, 1992). And not only: they are also
“adjacent” (Ibanez et al., 2005a). Compared to most of biological organisms, soil
bodies are usually not separated by non-soil bodies, and this makes it difficult to
detect different soil classes. However, novel approaches in biology show that the
horizontal gene flow and other biological mechanisms are very important and then,
the separation of different biotaxa in hard classes is also (at least in many instances)
questionable (Ghiselin, 1974; Sattler, 1986 and references therein). Thus, biological
individuals are discrete only in appearance or in some features. Novel trends in
biology claim that the species are the true individuals, whereas the termed biolog-
ical “individuals” of a given species are only mere “organisms” of the formers (the
species) (Ghiselin, 1974). Since there are not two identical organisms, it is impossi-
ble to quantify the inner genomic variability of a single species without sampling all
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his variability (all individuals) and then, the central concept of species is intrinsi-
cally vague. Many philosophers (Rosenberg, Williams, etc.) and reputed biologists
(e.g., Mayr, Eldredge, Willmann, and so on) have embraced the Ghiselin conjecture
as the only one compatible with the Darwinian evolution (see Mosterin, 2000 and
references therein). In our context, we could say that pedotaxa or soil types are
“vague individuals” constituted by “dispersed organisms” with distinct genetic con-
stitution (intrinsic variability). And then, what is the response of pedometricians
to this new challenge?

Yaalon (2003), using mainly empirical arguments, also reacted to the criticisms
by Grunwald (2003) against “classical” pedology. He mentioned that two of the soil
forming factors (i.e., parent material and topography) do frequently change abruptly
over small distance. His experience indicates that for most medium and large scale
maps it would be between one quarter and one half of the soil boundary lines drawn
on them. He mentions two examples (tectonically active and non-glaciated regions)
but Phillips (1999) provides more examples (e.g., biological induced discontinuities,
such as nano-podzols under certain tree types and less developed soil bodies after
that a tree fall in a given forest). Such lithologic, geomorphic and biotic spatial
discontinuities and abrupt delineations obviously confirm that there are well recog-
nized pedological individuals or soil bodies, together with others that have more
fuzzy boundaries, included in the same polygon or soil association. Pedometrics
is essentially a tool for the study of soils observed and for data analysis and need
not to be considered a challenge or in contradiction with soil taxonomies. So, the
notion of soil continuum should be carefully examined and then applied in a proper
way (Yaalon, 2003). This idea supports the patterned continuum concept in biology
(Sattler, 1986) and pedology (Ibanez and Boixadera, 2002; Ibdnez et al., 2005a).
Yaalon’s comments disprove pedometricians arguments to attack other approaches
to pedology.

It is recommendable to remember that geostatisticians started with these crit-
icisms against classical pedology. Geostatistics is just one element of pedometrics,
which also includes experts who work with other mathematical tools, such as non-
linear dynamics, fractals and multifractals, and pedodiversity measurements. Since
the latter have not participated in this debate, it is more appropriate to say that the
controversy concerns to some pedometricians and not to all of them as Grunwald
(2003), among others, claims.

Natural-artificial classifications

Many geostatisticians have the opinion that biotaxa are natural bodies while
pedotaxa are artificial (but see Sattler, 1986; Ibanez and Boixadera, 2002; Ibénez et
al., 2005a,b,c). The reason is that the pedosphere is a continuum and soil types have
to be defined according to the expert judgement of soil taxonomists. This could
cause conspicuous structural differences between both taxonomies as information
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systems (e.g., Burlando, 1990 and 1993; Minelli, 1993; Minelli et al., 1991; Odeh,
personal communication). This issue relates to the Naturalia/Artifitialia dilemma
of biological classifications going back to the 18" century (Ibdfez and Boixadera,
2002; Ibénez et al., 2005a; Mosterin, 2000).

Objective-subjective classifications

To some pedometricians, current soil classification schemes such as USDA-Soil
Taxonomy and WRB, split the soil continuum into “subjective” hard classes. They
prefer fuzzy partitions together with numerical taxonomy procedures (e.g., Odeh,
1998) as more “objective” methods. These arguments are similar to those used in
biology several decades ago. However, these approaches only allow “to break the
soil continuum” in ad hoc soil classes. In addition, the selection of the soil proper-
ties to be considered in numerical classifications is also “subjective” (i.e., purpose
oriented), as well as the choice of the algorithms utilised to such partitions (Ibanez
et al., 2005a). Therefore, this approach is not “more objective”, although it must
be acknowledged that subjectivity (i.e., a priori criteria) is easier to analyse when
it is presented in a mathematical format. Since such methods only produce “ad
hoc partitions” the results obtained in different areas, environments and biomes (or
pedomes) are not comparable. However, the comparability of results is important to
provide pedologists with useful techniques to analyse the soil cover mantle. To end
this section, it is worthy to note that “breaking the continuum” regards not only
Pedology but also live sciences because sometimes the “objective” delimitation of
species is impossible in certain taxa such as the genus Quercus (oaks) because hy-
bridisation is very frequent. Other biological organisms could be considered porous,
for example the fungi of the Armillaria genus that form vagueness-porous of mycelia
networks that spread along hectares and weight several tons (Bollock, 1992; Smith
et al., 1992), or some aspens (Eldredge, 1998).

Basic versus applied science

Most pedologists think as applied scientists rather than basic scientists. The
best to “sell” a purpose oriented product is not necessarily the best way to make a
scientific discipline to progress. There is not applied without basic science. Basic
science demands and works with theoretical structures including a clear definition
of natural resources involved, their characterisation, and a universal classification
as a consensual language among specialists. However, current soil classifications, as
well as biological ones (Mosterin, 2000; Ereshefsky, 2001; Hey, 2001) have several
biases and shortcomings and are not good for certain purposes (e.g., some environ-
mental ones). The soil, as any other natural resource, is part of the natural heritage
and should be conserved, either for human use or in as pristine state as possible to
establish networks of natural reserves (Ibanez et al., 2003). The European Commis-
sion (2002) recognises this fact in the framework of the EU Future Directive on Soil
Protection.
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The need of universal classifications

Classification is an essential part of the data reduction process, whereby complex
sets of observations are made understandable. Universal classifications are needed
in all scientific disciplines (Mosterin, 2000). Although all classifications involve a
loss of information, a good classification not only aims to reduce information loss
to a minimum, but provides a convenient means of information transfer by identi-
fying natural groups of individuals that have common properties (Burrough, 1989).
Psychological proofs have demonstrated that the human mind carries unconsciously
hierarchical classifications to understand how nature works (Hey, 2001; Rosch, 1978;
Roch et al., 1976; Houdé, 1998). Categorization is an important adaptive behaviour
that humans use to break the physical and social realities (social cognition). Its
cognitive function is to create categories (of objects, individuals, etc.) useful for
the conceptual transition from continuous entities to discrete ones (Houdé, 1998).
Even the best classification system reflects not only the order of nature but also the
classification method. It would be naive to believe that there is one methodology
that is in total harmony with nature lacking of bias and limitations (Sattler, 1986;
Mosterin, 2000; Ereshefsky, 2001).

Early soil classifications were largely based on extrinsic soil forming factors.
These were replaced by other approaches such as Soil Taxonomy, where classes
are rigidly defined in terms of measurable diagnostic soil horizons and properties
with genetic meaning. In this type of classification model, it is implicitly assumed
that all changes between classes take place at the class boundaries and that little
genetic change of importance occurs within classes. Nevertheless, most classical soil
surveyors also accept the variability of many soil properties within a single taxa
and the difficulty of considering them in classical classifications (Arnold, personal
communication).

Some pedometricians (e.g., Odeh, personal communication) wonder whether hi-
erarchical classifications are as applicable to soil systems as to biological systems. In
our opinion the main differences between biological and pedological classifications
obey to the distinct social practices and applications in both disciplines as well as
their respective bias like in the case of the classical soil maps with agronomic pur-
pose. While biotaxonomists recognise that they only have identified less that the 2%
of the world species, pedologists were forced, from the beginning, to split the whole
soil “patterned continuum” into discernible classes, using different (i.e., national)
schools. This historical contingency is of supreme importance to understand the
state of the art in both disciplines (i.e., different histories involve different scientific
traditions). Homogenisation and harmonisation of soil surveys data from different
sources and/or traditions require consensual hierarchical classification systems (na-
tional or international depending of the objective and geographical area involved)
(Krasilnikov, 2002).

(Classifications are not only scientific tools. Human mind and children appren-
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ticeship follow a cognitive process that requires hard categorization or partition
(reify), as occur in all natural languages (Mosterin, 2000, Rosch, 1978; Rosch et
al., 1976). Thus, the introduction of the fuzzy logic is not a trivial question and
requires a deep study if we prefer to use it in a user friendly way. A classification is
an iterative fragmentation of a given continuum in discernible classes (Houdé, 1998;
Ibanez et al., 2005a). Most pedologists agree that a fuzzy categorization could be,
in some aspects, a better alternative than hard ones. It is possible to think in this
way but it is very difficult to reach a consensus to put in practice this procedure in
universal classifications.

Ibanez et al. (2005b, c¢) compared the mathematical structure of biological and
pedological taxonomies (Soil Survey Staff, 1996 and 1998). Their results must be
surprising to many geostatisticians: both classifications show similar structures af-
ter the analysis of statistical distribution models, entropy analysis to assess their
respective qualities as retrieval information systems, fractal and multi-fractal analy-
sis. Both taxonomies follow the MaxEnt Principle of thermodynamics (Jaines, 1957)
and the Mayr criterion (Mayr, 1995). The MaxEnt Principle states that the least
biased and most likely probability assignment is the one which maximizes the total
entropy subject to the constraints imposed on the system. On the other hand, Mayr
argues that a low number of large taxa size and an excessive number of monotypic
taxa reduce the usefulness of taxonomy as an information retrieval system. Thus, if
each taxa of any taxonomic category is subdivided into the same number of subtaxa
along all the hierarchy, a perfect fractal is obtained (the most efficient retrieval in-
formation system). Obviously the taxonomies tested by Ibdnez et al. (2005¢) show
a higher variability of taxon sizes, as consequence of cognitive and utilitarian biases
(Rosch, 1978; Rosch et al., 1976), but the system is close to its maximum efficiency.
Thus, the results obtained by these authors are then in agreement with the above
mentioned principle and criterion respect to the efficiency in the information flow.
To provide a more detailed mathematical analysis Ibaniez et al. (2005¢) made use
of fractal and multifractal formalism. The reason is that fractal trees imply hier-
archies that optimise matter, energy, and/or information flow (Pastor-Satorras and
Wagensberg, 1998; Solé and Manrubia, 1996) and thus, they are in agreement with
the MaxEnt Principle and the Mayr criterion for systems with a finite number of
elements. This analysis showed that both classifications are multifractal efficient
information systems according to the above mentioned principles.

Therefore, it seems that in order to maximize the economy of information flow,
human mind seems to adopt the same principles: it emulates nature when it has the
same purpose. For these reasons it is very difficult to know if biological taxonomies
are something "natural”, if this term has sense in science.

Then the question is: how is it possible that “natural” and “artificial” tax-
onomies show the same structure using different mathematical tests? Ibdnez et
al., (2005a,b,c), with a strong empirical support, conjecture that: (i) the Natu-
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ralia/Artificialia dilemma is not the driving force for the detected differences; (ii)
the idiosyncratic taxonomic practices and bias produce the minor detected differ-
ences; (iii) the structure of the biological taxonomies has no biological significance
as they are products of our cognitive structure (see also Mosterin, 2000); and (iv)
all efficient (in physical and information terms) classifications are hierarchical and
try to get fractal structures, but cognitive and purpose oriented biases divert these
to multifractal structures (Ibdnez et al., 2005¢).

Another analogy between biological and pedological polemics regards the con-
cept of taxa (see also Ruellan, 2002). In a recent publication, Wilding et al. (2002)
noted that some pedons could be multi-taxa (e.g., Vertisols), while Van Valen (1976)
defended that some biotaxa, such as the genus Quercus did not consist of different
species but of single multispecies. There exist intergrades also in biological classifi-
cations in contrast to pedometricians naive perception (e.g., Van Valen, 1976; Hey,
2001; Ereshefsky, 2001). For instance, the International Code of Botanical Nomen-
clature recognises also that there are numerous interbreeding hybrid taxa in nature.
In order to formalize and classify these biological entities, biotaxonomist use spe-
cific terms, as “reticulation” and nothotaxa. Reticulation is the union of separate
lineages in a phylogenetic tree, generally through hybridization or through lateral
gene transfer (mainly common in certain land plant clades and microorganisms).
Hybridity is indicated by the use of the multiplication sign “x” or by the addition
of the prefix "notho-" (nothotaxa) to the term denoting the rank of the taxon (all
the information concerning to the International Code of Botanical Nomenclature is
available in Internet). Therefore, it is clear that biologists have similar problems
to the ones of pedologists (intergrades) and they solve them without appealing to
fuzzy logic tools.

Some possibilities of soil quantification
Geostatistics

Currently, the main stream of pedometrics is concerned with geostatistics, fuzzy
sets and some aspects of numerical classifications. The main success of geostatistics
relates to the quantification and prediction of single soil properties. In this way
geostatisticians put in evidence the shortcomings of traditional soil maps for some
purposes that require this type of information (e.g., precision farming, assessment of
soil and water quality, etc.). However soil types, soil bodies and soilscapes are very
complex natural entities. For many purposes, expert knowledge can not be replaced
with better measures and mathematical data treatment. This is true not only for
earth sciences but also for biological systematic, biological classifications, ecology,
conservation biology and so on (Ibdnez et al., 2005a,c).

According to the standards of the philosophy of science, many geostatisticians
fail to distinguish between the predictive power of theories and getting the best fit for
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single soil property of a given area using geostatistical tools. Pedometrics does not
provide us with any scientific sound alternative to the classical approach but only
with ad hoc purpose oriented maps. This is the reason why geostatisticians (e.g.,
Grunwald, 2003) consider that spatial variation of soil properties must be included
in a new generation of soil maps. Many “traditional” soil scientists certainly agree
with that, and also with the fact that there is a certain degree of arbitrariness in
classical soil taxonomies (Arnold, personal communication), as also occurs in the
biological ones (Ibanez and Boixadera, 2002; Ibénez et al., 2005a,b,c). However,
the uncritical use of geostatistics in soil survey has several drawbacks. Just to
mention three of them, (a) the large number of data required to estimate a variogram
and the assumptions regarding stationarity of the variation, necessary to measure
spatial variation from a single set of observations, restrict the application of the
variogram to small sections of landscape for particular purposes (e.g., precision
farming). At coarse and medium scales this is very time consuming and in most
cases the price is prohibitive for the decision-makers; (b) data interpolation yields
maps of single properties at one depth; (c) geostatistical tools minimise the existence
of small or rare soil singularities (but important in some aspects), in opposition
to pedodiversity tools (Pachepsky, personal communication). This has important
implications from a conceptual point of view because the idea of the soil as a complex
self-organised system disappears, and from a practical point of view because every
soil attribute should be sampled at different distances and depths. This fact hinders
soil comparison within regions and among regions for scientific and technological
knowledge transfer.

Chaos and complexity sciences, predict that although there might be chaos at
a given level, order might arise at higher levels of taxonomic hierarchy and spa-
tial organization. From this perspective, it is wrong to translate the laws and/or
regularities of a given pedological hierarchy level to higher ones. In other words,
geostatistics is concerned with the study of the spatial variation of single soil prop-
erties, while classical taxonomists work with complex systems at higher levels of
the pedological hierarchy. The latter are systems that comprise many interacting
parts with the ability to generate a new quality of macroscopic collective behaviour
through self-organization (e.g., the spontaneous formation of temporal and spatial
structures). The recognition that the collective behaviour of the whole system can-
not be simply inferred from the understanding of the behaviour of the individual
components, has led to various new concepts and sophisticated tools of complexity.
Therefore, it is surprising that Lark and Webster (2005) claim that: “we have been
led to believe that the soil at any one place was determined by five soil-forming fac-
tors and that the laws of physics must hold” when, so far, no one doubts that all
scientific laws must be reduced to the physical ones.

According to the conception of Heuvelink and Webster (2001) “soil varies at all
scales with great complexity, and there is no way that we can capture the full extent

136



of its variation in a deterministic model”. We agree with them. Exploring the
variability of a single biological species requires also sampling all the population.
There are not two identical individuals (or organisms according to the Ghiselin
proposition of species concept). In a similar way, Heuvelink and Webster (2001)
state that “a geostatistician models soil properties as if they were realizations of
random field”. The corollary of this assertion is that the pedology must disappear
as science, if we bear in mind the standards premises of the philosophy of science.
This is not a paradigm shift (the logic to the reduction to other disciplines), as
we will see in section 4. It is easy to show that if the pedosphere is considered as
random fields of single soil properties, the fuzzy logic and the numerical taxonomy
do not provide any solution to the continuum analysis. The existence of intergrades
exists also in biological classifications as already mentioned in section 2.5. Besides,
if the pedosphere is considered as a set of random fields, then, the categorization
processes using fuzzy logic and numerical procedures is at least as arbitrary as
classical approaches to soil classification. Thus, geostatisticians do not show the
way neither to solve the continuum dilemma nor to offer a novel generation of
taxonomies.

Pedodiversity

Pedodiversity is another way to quantify and understand the structure of the
soil mantle. After the seminal papers of Ibanez et al. (1990, 1995 and 1998a)
pedodiversity analysis has become a growing industry. Some pedometricians attack
typological pedodiversity analysis because there are no soil individuals (e.g., Odeh,
1998). Several authors (e.g., Phillips, 1999, 2001a, b; Guo et al., 2003; Saldana and
Ibanez, 2004; Ibanez et al., 2005d) have detected strong similarities between spatial
biological and pedological assemblages using different tests. It must be highlighted
that these studies quantified the pedotaxa composition of soil maps at very disparate
scales. Even at world wide level, the number of pedotaxa using FAO keys and
the number of biological species increase simultaneously with country areas, and
pedodiversity and biodiversity are strongly correlated between them (Ibdnez et al.,
2004). These results reveal that pedotaxa and biotaxa follow the same pattern. The
conclusion here is that fine classical soil maps represent quite well the nature and
structure of the soil mantle and that the objection related to the problem of soil
individuals does not hold (Ibanez et al., 2005a).

In fact, experts in biodiversity studies recognise the shortcomings of the intrin-
sic problems to categorization (reify), as we can see in the following definition of
diversity:

"The concept of diversity has two primary components, and two unavoidable
value judgements. The primary components are statistical properties that are com-
mon to any mizture of different objects, whether the objects are balls of different
colours, segments of DNA that code for different proteins, species or higher tazxo-
nomic levels, or sotl types or habitat patches on a landscape. Each of these groups
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of items has two fundamental properties: 1. the number of different types of objects
(e.g., species, soil types) in the mizture or sample; and 2. the relative number or
amount of each different type of object. The value judgements are 1. whether the
selected classes are different enough to be considered separate types of objects; and
2. whether the objects in a particular class are similar enough to be considered the
same type. On these distinctions hangs the quantification of biological diversity”.
(Huston, 1994, pp. 65).

Tables 9.1 and 9.2 show that pedodiversity tools have a plethora of mathematical
tools and numerous applications, such as spatial pattern analysis and soil geography
(Ibénez et al., 1998a and b, 2004), soil genesis (Phillips, 1999, 2001a. b; Saldana
and Ibénez, 2004), among others, while geostatistical analyses have not shown from
their results whether it is possible to obtain regularities and discernible repetitive
patterns in the pedosphere structure.

Table 9.1: Some mathematical analysis and procedures related with pedodoversity
analysis (synthesized from Ibédnez et al., 2003, with some additional items)
Mathematical tools
Pedorichness measurement and estimations
Pedodiversity measurement and estimation (including dominance, evenness,
etc.)
Abundance distribution models
Spatial soil pattern analysis
Pedorichness and pedodiversity-area relationships
Pedorichness and pedodiversity-time relationships
Pedorichness and pedodiversity-energy relationships
Complementarity algorithms (selecting areas to design networks of soil re-
serves)
Nestedness analysis
Species-range size distribution
Scale invariance (fractals and multifractals)
Non-equilibrium thermodynamics in soil genesis
Convergent vs. divergent pedogenesis
Diversity inventory: mathematical analysis of taxonomical structures
Comparing spatial patterns with biological resources and non-biological ones
(e.g., earth surface systems)
Learning of cognitive rules bias in scientific activities

Is a paradigm shift of pedology feasible?

Pedology has become a science after the seminal work of Dokuchaev, who recog-
nised for the first time that soil is a natural body with its laws of self-organisation. If
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Table 9.2: Summary of some of the patterns of principal concern to macroecologists
and corroboration in the field of the pedology (assuming that biotaxa and pedotaxa
could be considered in a similar way) (modified from Gaston and Blackburn, 2000
by Ibénez et al., 2005d with some corrections)

Pattern Age Scaling Ezperts Corroborated
relation | consensus in pedology
Species (taxa)-area relationships Old Yes Very high Yes
Species richness-isolation relationship Old Yes Low No
Peninsular effect Medium Yes Low ?
Local-regional richness relationships New Yes Debatable | Exist evidences
Latitudinal gradient in species richness Old No Debatable Yes
pertinent
Species richness-free energy relationship | Medium ? Debatable ?
Longitudinal gradient in species richness | Medium ? Debatable Yes
Altitudinal Gradient in species richness Old Yes Very high Yes
Species-range size relationships New Yes High Yes
Geographical range structure Old Yes Very high Yes
Range-size-niche breadth relationship New Yes Debatable | Exist evidences
Extinction-range size relationship New Yes Debatable ?
Speciation-range size relationship Medium Yes Debatable | No pertinent
Nestedness of species occurrence New Yes High Yes
Spatial turnover in species identities Old Yes High yes
Latitudinal gradient in geographical Medium ? Medium ?
range size (Rapoport’s rule)
Abundance-range size distribution New Yes Medium Yes
Abundance-niche breadth relationship | Medium Yes Yes Exist evidences
Latitudinal gradient in abundance Old No High Yes
pertinent
Species-abundance distribution Oold Yes Very high Yes
Species-body size distribution Medium Yes High ? (soil bodies
instead of
soil profiles)
Extinction-body size relationship Medium Yes Debatable | 7 (soil bodies
instead of
soil profiles)
Speciation body size relationship Medium Yes Debatable No pertinent
Range size-body size relationship New Yes Debatable ?
Latitudinal gradient Medium No Debatable No
in body size (Bergmann’ rule) pertinent
Abundance-body size relationship Medium Yes High ?
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the latter were not correct, then pedology would not be a true science, but a knowl-
edge area governed by the laws for physics, chemistry and other basic disciplines
(Ibédnez and Boixadera, 2002), against the comments of Lark and Webster (2005).

The main progress of geostatistics has to do with the spatial variability of soil
properties, while “classical” inventories and new typological pedometric approaches
(e.g., pedodiversity analysis) focus their attention on soil types or pedotaxa. As we
can see in Figure 9.1. it is frequent that the same pedosphere segment is considered
chaotic (random field) by geostatisticians but deterministic by “classical” pedolo-
gists and soil surveyors (but see also Saldafia and Ibanez, 2007) Therefore we are
dealing with different levels of the pedological hierarchy, and the conclusions are
not contradictory but probably complementary. It should be clear that “classical”
pedologists are also concerned with the spatial variation of pedotaxa and soil prop-
erties, but their approach is theoretically different. The paper by Wilding et al.
(2002) is a very interesting example of a more “qualitative” approach, which does
not exclude geostatistical tools as recognized by the authors.

According to Kuhn (1970) a paradigm shift is a dramatic change in the cosmovi-
sion of a given discipline. It is mainly conceptual and not technological in principle.
A new paradigm must explain the scientific principles inherited from the old par-
adigm and, additionally, offer novel ideas. The inclusion of new instrumental or
mathematical tools does not constitute a paradigm shift in itself.

In the last years several pedologists have proposed novel ways of classifying soils
and other innovations (e.g., Buol, 1994; Richter and Markewitz, 1995; Paton et
al., 1995; Ollier and Pain, 1996; Phillips, 1999; Tonkonogov et al., 2002; Ibanez
and Boixadera, 2002; Nachtergaele, 2003; Targulian and Goryachkin, 2004). The
convergence of opinions, according to sociology of science (Merton, 1973) is not an
unusual fact and probably occurs when a scientific community feels that something
is going to happen. In other words, these contributions may indicate that there is a
real need for a change in pedology as a scientific discipline, i.e. a paradigm shift, as
already claimed by several pedologists (Ibanez and Boixadera, 2002; Targulian and
Goryachkin, 2004). However a true paradigm shift requires gathering and merging
not only geostatistics progress but also others such as those mentioned previously.

Conclusions

Geostatistics is a growing industry. Pedologists must not have any doubt that the
mathematical tools applied or developed by geostatistics in the last decades have
been of paramount importance to the development of soil science. The scientific
rigour, novel approaches, and the progress done in the quantification of many (but
not all) soil patterns and processes (at level of single soil properties) have been
impressive, although also biased towards certain mathematical tools, overlooking
others. Other pedometric tools work well with typological units (e.g., pedotaxa) and
hard classes (Boolean) partitions (Saldana and Ibanez, 2004; Ibafiez et al. 2005d).
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Figure 9.1: Horizon thickness for three scales of observation for the Delhi forest
transects. Note that a ”geostatistical analysis” at standard depths in the transition
zone between different soil horizons could fit a nugget effect while at the same time
for classical” pedologists there is a deterministic pattern since A horizon is always
below a B horizon, and in the most of the transect C horizon is always below a B
one (after Figure 9.1 from Kachanoski, 1988)
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Thus, against Grunwald’s opinion, a conflict between doctrines should not be a
disaster but a great challenge (Prigogine and Stengers, 1988).

In the last years some geostatisticians, but not all pedometricians, -as the for-
mer claim-, have attacked hardly the classical schools concerning soil taxonomy
and soil survey activities, as well as other novel typological pedometric tools (e.g.,
pedodoversity, and some fractal and multifractal results)
when the latter work with classical pedotaxa or another type of soil hard classes
partitions. Some of the criticisms about the nature of soils and their classification
are based on comparisons with biological systems. It has been shown that problems
to classify any natural resource, breaking the continuum, are similar. In fact bio-
logical and pedological taxonomies have very comparable mathematical structures.
The latter seems the product of cognitive bias and thermodynamic principles, but
not of idiosyncratic properties of the natural body under analysis. The continuum
dilemma appears in all sciences concerning natural resources. The same is true for
the Naturalia/Artificialia dilemma. Despite the opinion of some soil scientists, nei-
ther quantification in pedology, nor the so called soil quality paradigm, represent
true changes of paradigms. Geostatisticians’ arguments against classical approaches
only offer the ending of pedology as a scientific discipline, i.e., the recognition that
the soil is a complex self-organized natural system with its own and idiosyncratic
laws.

The soil has a polystructural and polyfunctional nature, and thus, requires a
healthy epistemological pluralism. In other words, different approaches from dif-
ferent perspectives are needed (the dialectic aspects of science). In addition, as
suggested by Sattler (1986), it is not that one of the approaches is superior as far
as adequacy is concerned; they may in fact be equally adequate representing com-
plementary aspects of the patterned continuum of nature.

To end, we would like to emphasize that, according to the philosophy of science,
both perceptions of the natural world are not incompatible (see Mosterin, 2000
and references therein). The antonyms natural-artificial, objective-subjective, and
continuous-discrete, among others, are utilised uncritically as suggested by Levy-
Leblond (1996). This author shows that these antonyms, from a scientific point of
view, are relative and blurred (confused) distinctions, and it is possible to construct
a continuum with innumerable meanings among the “idealised” end points, from
“pure continuous” to and “pure discrete” or from “pure natural” to “pure artificial”.
The dilemma of the continuum is also found in Borhr’s Principle of Complementar-
ity Wave-Particle (duality) (Ibanez et al., 1998b). Following this principle, the soil
mantle can be viewed as a continuum field (pedosphere) that comprises numerous
aggregates of “artificial” or “natural” entities (pedotaxa). In fact, years ago, Frid-
land (1976) also defended the “discrete-continuous” nature of the soil mantle. At
the date, geostatisticians do not provide to us with a theory that refutes the classical
ones. They only show that with a huge number of samples and geostatistical tools
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it is possible to get good purpose oriented products. However, we think that with
the necessary funds, novel technologies of proximal soil sensing (Brown, 2005) and
sampling efforts, classical pedologists could also get fine predictions of soil distrib-
ution along the same landscape. So, they only offer a complementary, interesting
and useful perspective to mapping and predicting pedological entities at low levels
of the pedological hierarchy.

Therefore, the continuum is not conceptually incompatible with discrete units,
as geostatisticians claim. It should be the possible to analyse the soil cover using
the two approaches, as it is already done in plant ecology, where phytosociologi-
cal and gradient analyses approaches, are not considered rivals but complementary
approaches (e.g., Biondi et al., 2004).
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