Санин Владимир Николаевич

ЗОЛОТОНОСНОСТЬ СКАРНОВО-МАГНЕТИТОВЫХ РУДНЫХ ПОЛЕЙ ГОРНОЙ ШОРИИ

Специальность 25.00.11 – «Геология, поиски и разведка твёрдых полезных ископаемых, минерагения»

Автореферат диссертации на соискание учёной степени кандидата геолого-минералогических наук

Работа выполнена в ГОУ ВПО «Национальный исследовательский Томский политехнический университет»

Научный руководитель: доктор геолого-минералогических наук **Ворошилов Валерий Гаврилович**

Официальные оппоненты:

доктор геолого-минералогических наук

Мазуров Михаил Петрович

кандидат геолого-минералогических наук

Домаренко Виктор Алексеевич

Ведущая организация: Сибирский федеральный университет

Защита диссертации состоится « 23 » <u>декабря</u> 2010 года в <u>15</u> час <u>00</u> мин на заседании совета по защите докторских и кандидатских диссертаций Д 212.269.07 при Национальном исследовательском Томском политехническом университете по адресу:

634034, Томск, просп. Ленина, 2, строение 5 (учебный корпус № 20), ауд. 504.

С диссертацией можно ознакомиться в научно-технической библиотеке Национального исследовательского Томского политехнического университета.

Автореферат разослан « 19 » ноября 2010 г.

Учёный секретарь совета по защите докторских и кандидатских диссертаций д. г.-м.н., профессор

С.И. Арбузов

Общая характеристика работы

Актуальность исследований. В России и в мире давно известна золотоносность многих скарново-магнетитовых месторождений. В ряде месторождений мира она имеет важное практическое значение. В скарново-магнетитовых месторождениях Алтае-Саянского региона также многократно отмечались повышенные содержания золота, серебра и платиноидов. Различных аспектов золотоносности в рудах этих месторождений многократно касались многие исследователи.

Однако, несмотря на то, что ряд скарново-магнетитовых месторождений Горной Шории активно эксплуатируется на железо уже многие годы, всесторонних исследований масштабов, промышленной значимости, закономерностей локализации и геолого-генетических особенностей формирования концентраций благородных металлов, в этих месторождениях до недавнего времени не проводилось.

Изучение благородных металлов в скарново-магнетитовых месторождениях Горной Шории имеет важное практическое значение. Проведённые исследования позволяют существенно повысить промышленную ценность эксплуатирующихся месторождений железа за счёт попутного извлечения золота и серебра и выявить новые золоторудные объекты.

Результаты исследований важны также для решения широкого круга геологогенетических вопросов, актуальных при прогнозировании, поисках и оценке новых месторождений благородных, цветных и чёрных металлов.

Цель работы: выявить закономерности формирования золотого оруденения в скарново-магнетитовых рудных полях Горной Шории и определить промышленную ценность благородных металлов в этих месторождениях.

В процессе достижения названной цели решались следующие задачи:

- 1) Уточнение геологического строения и условий локализации оруденения в исследованных рудных полях.
- 2) Определение концентраций Au, Ag и элементов-спутников в железных рудах и зонах кварцево-сульфидной минерализации Казского, Сухаринского, Шерегешевского и Майско-Лебедского рудных полей.
 - 3) Изучение минералого-геохимических особенностей золотосодержащих руд.
 - 4) Изучение особенностей самородного золота исследованных территорий.
 - 5) Разработка геолого-генетической модели формирования комплексных руд.
 - 6) Разработка геолого-поисковой модели золотого и комплексного оруденения.
- 7) Предварительная оценка рентабельности переработки золотых и комплексных серебро-золото-железных руд.
 - 8) Прогнозирование, поиски и оценка масштабов золотого оруденения.

Основные защищаемые положения.

1. Комплексное золотосодержащее и золотое оруденение скарново-магнетитовых рудных полей Горной Шории сформировано в результате закономерного развития рудно-магматических систем габбро-гранитоидных магматических комплексов, продуцирующих магнетитовое, полиметаллическое и золото-серебряное оруденение,

образование которого происходит в результате последовательного отложения минерально-геохимических ассоциаций: скарново-магнетитовой \rightarrow халькопирит-пирротиновой \rightarrow халькопирит-пиритовой (полиметальной) \rightarrow серебро-полиметаллической.

- 2. Геолого-поисковая модель комплексного золотосодержащего и золотого оруденения скарново-магнетитовых рудных полей Горной Шории характеризуется специфическим комплексом вещественных, структурных, геофизических и минералого-геохимических поисковых критериев и признаков, отражающих полиминеральный состав и многостадийность оруденения, его приуроченность к трещинным системам в пределах очаговых структур разного ранга.
- 3. Комплексное золотосодержащее и золотое оруденение скарново-магнетитовых рудных полей Горной Шории имеет значительные масштабы. Установленные содержания и технологические свойства комплексных и золотых руд позволяют вести рентабельную эксплуатацию выявленного оруденения.

Научная новизна работы. Впервые для ряда скарново-магнетитовых рудных полей Горной Шории комплексно изучены особенности золотоносности скарново-магнетитовых руд, получены новые геологические, минералогические, геохимические характеристики золотого оруденения.

В частности, выявлены золотоносные минеральные ассоциации, их взаимоотношения с магнетитовыми рудами; охарактеризованы геохимические особенности распределения золота и элементов-спутников в скарново-рудных полях.

Дополнительно исследованы минералогические и геохимические особенности самородного золота Сухаринского и Майско-Лебедского рудных полей.

Предложена модель формирования скарново-магнетитовых золотосодержащих руд и самостоятельного золотого оруденения, установленного в пределах скарново-магнетитовых рудных полей Горной Шории.

Практическая значимость работы. В результате выполненных работ была установлена промышленная ценность благородных металлов в исследованных рудных полях. Доказано, что магнетитовые руды в значительной части являются комплексными золото-серебросодержащими. Предложены схемы рентабельного извлечения золота, серебра и железа из комплексных руд.

Разработана геолого-поисковая модель золотого и комплексного оруденения скарново-магнетитовых рудных полей Горной Шории. Выявлены самостоятельные золоторудные объекты, имеющие промышленную ценность.

Даны оценки прогнозных ресурсов исследованных рудных полей и рекомендации по дальнейшему изучению других скарновых месторождений.

Исходные фактические материалы и методы исследований. В основу работы легли материалы полевых, камеральных и лабораторных исследований золотоносности скарново-магнетитовых рудных полей Горной Шории, выполненные коллективом НПО «Тэтис» в период с 1995 по 2007 год под руководством автора, а также личные наблюдения и исследования автора. Это, прежде всего, материалы ревизионных и

детальных поисковых работ масштабов от 1:10 000 до 1: 2 000 в Майско-Лебедском и Сухаринском рудных полях, а также данные по прогнозным, оценочным и тематическим работам в Казском рудном поле, ревизионных работ на Сухаринском и Шерегешевском месторождениях.

За эти годы в пределах исследуемых территорий были проведены значительные объемы маршрутных, геохимических, геолого-геофизических и горно-буровых работ, отобраны и проанализированы десятки тысяч проб, проведены исследования в подземных выработках Казского и Шерегешевского рудников. Кроме этого, были собраны и проанализированы материалы предшественников по целому ряду месторождений региона.

Геохимические, петрографические, минералогические и технологические исследования проводились на современном оборудовании, в лабораториях следующих организаций: НПО «Тэтис» (г. Новокузнецк), «Западносибирский испытательный центр» (г. Новокузнецк), ЦНИГРИ (г. Москва), «Механобр инжиниринг» (г. Санкт-Петербург), «Иргиредмет» (г. Иркутск), «Барзасская экспедиция» (г. Кемерово), ОИГГиМ СО РАН (г. Новосибирск), СНИИГГиМС (г. Новосибирск), НГПЭ (г. Новосибирск), ГАЦ «Золото-платина» (ТПУ г. Томск), ИНХ СО РАН (г. Новосибирск).

На основании комплексного анализа широкого спектра геологических данных, базирующегося на современных представлениях о рудогенезе и строении рудных полей, осуществлялось моделирование геологического строения и особенностей формирования месторождений. При этом рудные объекты рассматривались как элемент единой системы, возникшей в ходе эволюции определённого участка земной коры в результате корпоративного влияния седиментационных, магматических, тектонических и физико-химических процессов.

Обработка материалов проводилась с использованием современных компьютерных программ ArcGIS, Statistica, Surfer, Corel Draw, Microsoft Office и др.

Апробация работ. По результатам работ составлено 7 производственных отчётов, защищённых на научно-технических советах Территориальных Управлений Природных Ресурсов по Кемеровской области и Республике Алтай. Четыре отчёта прошли апробацию в ЦНИГРИ (г. Москва). Результаты исследований докладывались на международном симпозиуме "Минерально-сырьевые ресурсы стран СНГ" (Санкт-Петербург, 1996), на научной конференции «Поиски и разведка месторождений полезных ископаемых Сибири» (г. Томск, 2000), на научно-практической конференции «Проблемы золотоносности Южной Сибири» (г. Новокузнецк, 2001), на 2-м Международном Симпозиуме «Золото Сибири» (Красноярск, 2001).

По теме диссертации опубликовано 16 печатных работ, в том числе 5 – в журналах, рекомендованных ВАК.

Объём работы. Диссертационная работа объёмом 233 страницы машинописного текста состоит из введения, 5-ти глав и заключения, списка литературы, включающего 124 названия. Диссертация иллюстрирована 66 рисунками и 21 таблицей.

Благодарности. Автор выражает благодарность научному руководителю профессору, д.г.-м.н. В. Г. Ворошилову за руководство и непосредственное участие в работе. Особую благодарность автор выражает профессору, д.г.-м.н. А. Ф. Коробейникову, который явился идейным вдохновителем данной работы, и оказал неоценимую помощь в ее реализации. Автор благодарит весь коллектив НПО «Тэтис» за участие в работе, особенно ведущих специалистов А. Н. Платонова, К. В. Тараканова, Н. А. Бакшеева, В. Г. Огнева, И. В. Демидова, И. В. Дергачёва и др.

Автор благодарит за помощь в работе директора по НИР «Механобр инжиниринг» (г. Санкт-Петербург) А. В. Богдановича, директора геологической службы ЗСГУ М. И. Котельникова, сотрудников ЦНИГРИ (г. Москва) Т. П. Зубову, О. А. Агибалова, ведущего специалиста «Запсибгеолсъёмка» А. Н. Уварова.

Отдельную благодарность автор выражает руководителям и ведущим специалистам КПР по Кемеровской области и Республике Алтай С. М. Борисову, А. В. Зябкину, А. Н. Мамлину, С. С. Кураеву, А. Ю. Никифорову, З. Ю. Галееву, И. Н. Чеброву, а также руководителям и специалистам ЦНИГРИ С. С. Вартаняну, Ю. М. Щепотьеву, без постоянной помощи и поддержки которых реализация данной работы была бы невозможна.

Содержание работы

Первое защищаемое положение:

Комплексное золотосодержащее и золотое оруденение скарновомагнетитовых рудных полей Горной Шории сформировано в результате закономерного развития рудно-магматических систем габбро-гранитоидных магматических комплексов, продуцирующих магнетитовое, полиметаллическое и золото-серебряное оруденение, образование которого происходит в результате последовательного отложения минерально-геохимических ассоциаций: скарновомагнетитовой \rightarrow халькопирит-пирротиновой \rightarrow арсенопирит-пиритовой \rightarrow халькопирит-пиритовой (полиметальной) \rightarrow серебро-полиметаллической.

Исследованные рудные поля обнаруживают явное сходство геологического строения по всем основным характеристикам. Основу стратифицированных образований составляют вулканогенно-осадочные отложения карбонатного и андезитобазальтового состава. Эти породы прорваны рудогенерирующими интрузиями дифференцированных габбро-гранитоидных комплексов мантийной природы (Хомичев, 1997; Гусев, 2003; Коробейников, 2002, 2006).

Установлено, что оруденение рассмотренных рудных полей характеризуется комплексным составом. Наряду со скарново-магнетитовым оруденением, промышленных концентраций достигают медь, молибден, золото, серебро, реже свинец, цинк, которые образуют как совмещённые, так и самостоятельные рудные объекты. Широким развитием пользуются россыпные концентрации золота.

Оруденение локализуется в приконтактовых частях интрузивных массивов, преимущественно во вмещающих породах, тяготея к надинтрузивным частям. Рудная

минерализация, как правило, приурочена к штокам и гребневидным выступам интрузий, палеовулканическим аппаратам, субвулканическим телам и локализуется в трещинных системах. При этом наблюдается зональность расположения рудных образований: ближе к интрузиям локализуется магнетитовое оруденение, затем медномолибденовое, далее золотое и золото-серебряное.

Исследования минералого-геохимических особенностей рудной минерализации показали, что во всех рассмотренных объектах комплексные руды формировались в несколько стадий. А основные концентрации золота связаны с сульфидными парагенезисами, наложенными на магнетитовые руды, которые в свою очередь наложены на предрудные скарны.

В пределах всех изученных рудных полей отмечается аналогичный ряд последовательно сменяющих друг друга околорудных изменений, основу которого составляют скарнирование — пропилитизация — аргиллизация. Кроме этого, типичными проявлениями наложенных изменений являются калишпатизация, окварцевание, турмалинизация.

В *Сухаринском* рудном поле последовательно формировалась рудная минерализация магнетитовой, халькопирит-пирротиновой, арсенопирит-пиритовой, халькопирит-пиритовой (полиметальной) и золото-полиметаллической стадий.

Все сульфидные стадии золотоносны и наложены на магнетитовое оруденение. Так, зафиксировано, что халькопирит-пирротиновая минерализация, образующая массивные зернистые агрегаты, содержит высокопробное самородное золото (I) овально-изометричной формы, микронного размера. Арсенопирит-пиритовая стадия представлена блочными средне-крупно-кристаллическими агрегатами сложного гибитуса пирита, толстопризматическими и ромбовидными кристаллами арсенопирита, а также агрегатами марказита-пирита, шестоватыми кристаллами магнетитамушкетовита. Самородное золото (II) в этой ассоциации – средней пробности каплевидное, интерстициальное в кристаллах пирита. Самородное золото (III) халькопирит-пиритовой (полиметальной) стадии низкопробное, микронного размера, локализуется в пределах кристаллов пирита, на границах его агрегатов и в микротрещинах, и находится в тесной ассоциации с халькопиритом, сфалеритом и галенитом. Для поздней серебро-полиметаллической стадии характерны повышенные содержания серебра и минеральные ассоциации халькопирита со сфалеритом и поздним пирротином, и галенита с клейофаном (+ блеклая руда и джемсонит). Самородное золото (IV) низкопробное, микропрожилковое, интерстициальное в сростках сульфидов цветных металлов.

Детально рассмотренные сульфидные стадии имеют четкую геохимическую специализацию: халькопирит-пирротиновая стадия характеризуется повышенными содержаниями меди; для арсенопирит-пиритовой стадии характерны аномальные содержания Au, As, Bi, Co; минерализация халькопирит-пиритовой (полиметальной) стадии сопровождается ореолами высоких содержаний Au, Ag, Cu, Sn, Bi; для золото-полиметаллической стадии характерны Ag, Pb, Zn, Cd, Mn. Между химическими

элементами, составляющими вышеприведенные геохимические ассоциации, существуют значимые корреляционные связи.

Наиболее интенсивно вместе с золотом привносятся Ag, As, Cu, Pb, Zn, в восточной части рудного поля – бор. Менее масштабный, но устойчивый привнос в процессе золотого оруденения отмечается для Co, Bi, W, Cd, в незначительной степени – для Sn и Mo. Привнос железа и марганца начинается еще на этапе скарнообразования, высокие концентрации этих элементов сохраняются и в более поздних золотоносных образованиях.

Установлено, минерализация вышеперечисленных стадий что нередко контролируется одними и теми же тектоническими зонами. Это обусловило широкое развитие телескопирования, причем минеральные образования магнетитовой халькопирит-пирротиновой, арсенопирит-пиритовой И халькопирит-пиритовой (полиметальной) стадий практически всегда залегают согласно между собой; в то же время, минерализация серебро-полиметаллической стадии часто занимает секущее положение по отношению к образованиям предшествующих стадий.

Формирование *оруденения Казского рудного поля* также шло в несколько стадий. Первым формировался магнетит, преимущественно в зонах дробления среди известковых скарнов, путем метасоматического замещения скарновых минералов. Установлено коррозионное (в виде периферических кайм и секущих прожилков) замещение изометричных кристаллов граната магнетитом и сульфидными минералами. В рудных телах магнетит представлен несколькими генерациями, крупные агрегаты магнетита, как правило, содержат реликты нерудных минералов и ранних сульфидов.

В самостоятельную рудную стадию отлагались пирит и пирротин, подчиненно халькопирит. Отложение происходило в зальбандах отдельных магнетитовых тел, или в местах их выклинивания, что привело к образованию сульфидно-магнетитовых руд. Кроме того, в мраморах и силикатных породах встречаются мелкие линзы существенно пирит-пирротиновых руд, которые имеют примесь магнетита, а отдельные их части сложены преобладающим магнетитом. Колчеданные руды и обрамляющие их породы, как правило, в той или иной мере золотоносны.

Микроскопические исследования показывают, что в начале сульфидного этапа формируется пирит, образующий в рудах несколько генераций, затем пирротин, сфалерит, халькопирит, галенит, ассоциирующие с выделениями магнетита и нерудными минералами (карбонатов и силикатов). Формирование сульфидного оруденение происходило в несколько стадий.

Одной из наиболее поздних стадий оруденения является золото-серебряная минерализация с полиметаллами. Золото-серебряное оруденение, изученное в пределах IV и VI магнетитовых рудных тел, характеризуется существенным преобладанием в рудах серебра над золотом. Среднее отношение Ag/Au составляет 20,3, а содержания достигают: серебра - 274,6 г/т, золота - 98,8 г/т. Золото в исследованных пробах представлено, в основном, кюстелитом (микрозондовый анализ показал состав –

 $Au_{0.33}Ag_{0.67}$). Микротвердость кюстелита составляет HV = 72.5 ± 8.1 кгс/мм². Кюстелит обычно ассоциирует с сульфидами – галенитом, сфалеритом, пиритом и пирротином.

Геохимические исследования показывают, что в этих комплексных рудах наиболее тесные корреляционные связи с золотом имеют Fe, Ag, Cu, Pb, Zn.

В золото-колчеданно-магнетитовых рудах взаимосвязь химических элементов имеет существенно иную картину. Здесь наиболее тесную корреляционную связь с золотом имеют медь, серебро, олово и молибден.

В золото-сульфидно-кварцевых рудах, образующих самостоятельные жильные тела, наиболее тесную корреляционную связь с золотом имеют Ag, As, Bi.

Минералого-геохимические особенности золотого оруденения *Шерегешевского рудного поля* также свидетельствуют о многостадийности рудного процесса.

Основная золоторудная минерализация относится к постмагнетитовому этапу развития месторождения. Так, гидротермокарстовые руды участка Главный образованы в результате переотложения вещества скарново-железорудной зоны поздними порциями гидротермальных растворов. Гидротермокарстовые образования представляют собой секреционные и цементационные минеральные агрегаты, отложившиеся в раскрытых трещинах и кавернах. Состав образований изменчивый, наряду с перекристаллизованными скарновыми минералами (гранат, магнетит, пироксен, эпидот) присутствуют новообразованные минералы кальцит, кварц и сульфиды.

Исследования содержаний золота в пиритовых концентратах свидетельствуют о более высоких концентрациях золота в сульфидах новых генераций (до 9-15 г/т) по сравнению с содержаниями золота в сульфидах фронтальных частей скарновожелезорудных тел (до 2,0 г/т). Отмечается также существенный привнос Мо и W.

Анализ корреляционных связей элементов в золотосодержащих образованиях рудного поля показал, что несмотря на некоторое отличие в разных участках, все они характеризуется высокой степенью корреляции Au c Ag, Cu, Co, Mo, As, Sb, W.

Для *Майско-Лебедского рудного поля*, по результатам анализа геохимических данных, выделяются 4 группы химических элементов, отвечающие последовательным стадиям формирования оруденения Cu-Ca-Au-Fe \rightarrow Fe-Cu-Mo-Au-Ag \rightarrow Au-Cu-Mo-Pb-Ag-Te-Bi-As-Zn-Fe \rightarrow Au-Ag-Pb-(Fe). В метасоматических породах отмечается закономерное увеличение средних содержаний золота от ранних образований к поздним и от площадных к более локальным.

Наиболее масштабный привнос золота происходит на завершающих стадиях рудообразования. Золотое оруденение сопровождается низкотемпературной пропилитизацией эпидот-альбит-хлорит-кальцитового состава и сульфидной минерализацией (накопление в коэффициентах концентрации (КК): Au-350; Bi-198; As-104; Sb-74; Cu-65; Ag-52; Zn-3,4). На заключительной стадии золотое оруденение сопровождается метасоматитами серицит-кальцит-хлорит-кварцевого состава с кварцанкерит-серицитовыми прожилками, содержащими самородное золото, сульфиды,

теллуриды и сульфосоли (КК: Bi-1043; As-1059; Au-683; Ag-171; Sb-141; Pb-55; Mo-52; Zn-14; Cu-28; Co-11).

По данным минералогических исследований, в составе рудной минерализации участка Семёновского преобладает пирит, который часто замещается и цементируется арсенопиритом. В участках максимальной интенсивности проявления гидротермального процесса широко развиты также минералы более позднего полиметаллического парагенезиса: галенит, сфалерит, халькопирит, блеклая руда, теллуриды и сульфосоли. Галенит, сфалерит, халькопирит, тетраэдрит развиваются в виде прожилков, секущих пирит и арсенопирит, иногда цементируют раздробленные зерна последних, либо нарастают на их грани и ребра. Последовательность выделения минералов в этой ступени: сфалерит – халькопирит – галенит – тетраэдрит.

Из теллуридов наиболее распространен теллуровисмутит Bi_2Te_3 , реже встречается цумоит Bi_2Te_2 , тетрадимит Bi_2Te_2S . Из сульфосолей Ag-Bi встречен бенжаминит состава – $(Ag_{1.3} Cu_{1.7})(Bi_5Pb_2)S_{12}$. Отмечены гессит, самородное серебро.

O многостадийном рудообразовании Майско-Лебедского рудного поля анализ особенностей свидетельствует И самородного золота территории, показывающий, что всё золото принадлежит нескольким генерациям. Выделяются: достаточно высокопробное золото с повышенным содержанием меди и пробностью в интервале 981–941 % (Cu_{cp} – 0,054 %, Hg_{cp} – 0,427 %); золото средней пробности с 940-812 c пробностью В интервале примесями меди И ртути, $(Cu_{cp} - 0.014 \%, Hg_{cp} - 0.798 \%)$ и низкопробное золото с высоким содержанием ртути и низкими содержаниями меди, с пробностью в интервале 797-505 ‰ (Cu_{cp} - 0,004 %, Ндср – 1,624). Обособленно выделяется золото с аномально высокими содержаниями ртути от 18,96 % до 21,34 %, и с содержанием серебра 4,47-4,98 %, меди 0,006-0,039 %, вероятно, принадлежащее третьей совокупности.

В пределах Сухаринского рудного поля в зоне окисления преобладает золото низкой и средней пробности 700–750 ‰, 800–840 ‰. Часто на поверхности золота средней пробности образуется сульфид серебра, понижающий пробность золота в поверхностном слое до 350–450 ‰. Золото преимущественно мелкое, пылевидное 0,05–0,1 мм, в подчиненном количестве присутствует золото размером 0,2–0,3 мм. Преобладают трещинно-прожилковые формы выделений золота, комковидные частицы, часто с губчатой поверхностью, в срастании с глинистыми минералами и гидроксидами железа. Реже встречаются кристаллы, сростки кристаллов, удлиненные кристаллы с высокопробной коррозионной каймой. В подчиненном количестве присутствует плоское, чешуйчатое пленочное золото, часто нарастающее на гидроксиды железа (вторичное, высокопробное золото).

Полученная информация подтверждает выводы о многостадийном процессе формировании золотого оруденения, очевидно протекающего в широком температурном диапазоне.

В результате выполненных исследований достаточно чётко устанавливается, что комплексные руды разного состава, с преобладанием разных полезных компонентов, во

всех рудных полях формировались в результате последовательного наложения минерализаций однотипных стадий: магнетитовой \rightarrow халькопирит-пирротиновой \rightarrow арсенопирит-пиритовой \rightarrow халькопирит-пиритовой (полиметальной) \rightarrow сереброполиметаллической. При этом золотоносны в той или иной степени все сульфидные парагенезисы. А разнообразие оруденения зависит от масштаба проявления той или иной стадии и преобладания в ней тех или иных полезных элементов (минералов).

Выявленная последовательность формирования рудных стадий характерна и для других месторождений золота (табл. 1).

Данная последовательность соответствует вертикальному ряду геохимической зональности и миграционной способности элементов. Формирование выявленных ассоциаций происходит в результате пульсационного развития магматического очага. В магматической камере внедрившийся, исходно базитовый, мантийный расплав дифференцируется, образуя последовательный ряд габбро-гранитоидных интрузий. На завершающих этапах становления интрузий из остаточного расплава, богатого рудными элементами и флюидной составляющей, выделяются рудные элементы. В первую очередь во флюид отделяются труднорастворимые в расплаве газы и рудные элементы Сг, V, Ni, Co, Fe (Хомичев, Шепель, 2003). В результате этого формируется скарново-магнетитовое оруденение, которое локализуется как в эксплозивных аппаратах, так и в трещинных системах. Далее, по мере снижения температур, в активном тектоническом режиме идет последовательное формирование минеральных ассоциаций содержащих всё более растворимые, подвижные элементы.

Более поздние минеральные ассоциации, благодаря высокой подвижности флюидов, мигрируют дальше от очага и отлагаются выше по разрезу, охватывая большие объёмы, что и приводит к закономерному наложению золото-сульфидных минеральных комплексов на магнетитовые руды. Формирование оруденения происходит вблизи и внутри вулканических аппаратов, тел эруптивных брекчий, штоков и выступов интрузий, являющихся проводниками глубинных флюидов и источниками тепловой энергии.

Формирование исследованного комплексного оруденения соответствует меднопорфировой модели. Об этом свидетельствует характерный для порфировых моделей набор геолого-структурных и минералого-геохимических особенностей, в частности: тесная связь с порфировыми интрузиями, конформный характер оруденения и минералого-геохимической зональности относительно выступов и штоков интрузий, характер и зональность метасоматитов, прожилково-вкрапленный тип оруденения, минеральный состав руд, тесная связь золота с медью и молибденом.

Сказанное подтверждается наличием в пределах изученных рудных полей типично порфировых и золото-серебряных рудных объектов с тем же набором минерально-геохимических ассоциаций (Андобинское золото-медно-молибденжелезорудное месторождение, молибденитовый штокверк уч. Медвежий, кварцтурмалиновые брекчии уч. Малиновского, Каурчакское месторождение и др.).

Таблица 1

Сравнительная характеристика стадий минералообразования различных месторождений

	~P#21111411	вная характернетика 			<u> </u>	1
Стадия	Сухаринское рудное поле	Майское месторождение (по Н.Ф. Столбовой)	Ампалыкское месторождение (по И.А. Бергману)	Коммунаровское месторождение (по А.Ф. Коробейникову)	Обобщённый ряд вертикальной минеральной зональности месторождений Акбакай, Васильковское, Бакырчикское (по М.С. Рафайловичу и др.)	Каларское месторождение (по А.М. Козлову)
	Минеральные ассоциации					
Скарново- магнетитовый этап	Магнетит + пироксен + гранат	Магнетит, гранат и пр. (делится на 3 стадии + стадия перекристализации)	Магнетит, вюстит	Скарново-магнетитовые тела	Магнетит пирротин, марказит, пиритI, никелин	Гранат, турмалин, актинолит, альбит, эпидот, магнетит, пирит, молибденит
Халькопирит- пирротиновая	ПирротинІ + халькопиритІ + золотоІ (высокопробное)			Пирротин-кварцевая		
Арсенопирит- пиритовая	Марказит-пиритІІ + кварцІІ + мушкетовит-магнетитІІ + хлоритІІ? АрсенопиритІІ + кобальтин-герсдорфитІІ + золотоІІ (проба 800-840‰)	ГранатIII, магнетитIII, актинолит, эпидот, кварц, молибденит, пирит арсенопирит	Арсенопирит, глаукопирит, кобольтин, никилин	Золото-пирит-кварцевая	ПиритІІ, арсенопиритІ,	Золото-пирит-арсенопирит-
Халькопирит- пиритовая (полиметальная)	Марказит-пирит + пиритІІІ. КварцІІІ + кальцитІІІ + халькопиритІІІ + мушкетовит-магнетитІІІ + сфалеритІІІ + пирротинІІІ + галенитІІІ + теллуриды Рb, Ag, Bi + золотоІІІ (средненизкопробное)	Золото (ср.проба 885‰), теллурвисмутин, тетрадимит, вейсит, галеновисмутин, висмутин, флюорит, кварц, хлоритП, анкерит	Самородные Au, Bi, Cu, Pb, Zn, мальдонит, теллуриды висмута, висмутин. ХалькопиритІ, пирротин вторич. по пирротину: марказит, мельниковит, пирит ХалькопиритІІ, марказит, пирит	Золото-теллур-висмут- халькопирит-кварцевая	золотоІ, халькопирит, висмутин, сфалерит, тенантит, самородный висмут	тенантит-самородное серебро, пирротин- халькопирит-сфалерит, эпидот
Серебро- полиметал- лическая	АрсенопиритIV. Кальцит + галенитIV + клейофанIV + блеклая рудаIV + джемсонит + стильпномелан + халькопиритIV + золотоIV (проба 700-750‰)	МагнетитIV, кварцIV, халькопирит, сфалерит, хлорит, кальцит	Сфалерит, галенит, марказит, халькопиритШ, блёклая руда, самородное серебро, карбонаты	Золото-халькопирит- сфалерит-галенит (полиметаллическая)- кварцевая	ПиритIII, золотоII, галенит, тетраэдрит, сульфосоли	Самородное серебро, галенит, сфалерит, пирит, леллингит, ратит, золото, электрум, висмутин, гессит, калаверит, алтаит, тетраэдрит, аргентит, буланжерит, барит
Кальцит- кварцевая	КварцV + флюоритV. КальцитV	Кальцит, анкерит, гематит		Кварц-кальцитовая	Антимонит, золотоIII, киноварь, барит	Реальгар, флюорит, золото, серебро, электрум, гессит, акантит, борнит, киноварь, марказит, алунит, барит

Таким образом, золотоносность скарново-магнетитовых месторождений и набор руд, установленных в исследованных рудных полях, являются закономерными формирования подобных рудно-магматических систем. аналогичными продуктами являются и другие скарново-золоторудные, скарновополиметаллические и другие месторождения скарнового типа. Промышленную ценность месторождения определяет преобладание той или иной из выше отмеченных минерально-геохимических ассоциаций. Согласно предложенной модели, источник рудного вешества комбинированный мантийно-коровый. Промышленную специализацию месторождений, наряду с особенностями дифференциации вещества в магматическом очаге и физико-химическими условиями рудоотложения, определяет наличие повышенных концентраций элементов в доинтрузивном субстрате. Эти элементы, с одной стороны, ассимилируются интрузиями, а с другой, выщелачиваются циркулирующими растворами из рудовмещающих пород. Это подтверждается прямыми наблюдениями повышенных концентраций железа в вулканогенно-осадочных рудовмещающих толщах Сухаринского рудного поля, определивших специализацию рудно-магматической системы на железо.

Второе защищаемое положение:

Геолого-поисковая модель комплексного золотосодержащего и золотого оруденения скарново-магнетитовых рудных полей Горной Шории характеризуется специфическим комплексом вещественных, структурных, геофизических и минералого-геохимических поисковых критериев и признаков, отражающих полиминеральный состав и многостадийность оруденения, его приуроченность к трещинным системам в пределах очаговых структур разного ранга.

Региональные особенности локализации рудных полей характеризуются их приуроченностью к зонам крупных глубинных разломов и крупным очаговым структурам диаметром до 90 км. Очаговые структуры дешифрируются на космических снимках, отражаются в элементах рельефа и геологического строения, проявляются концентрическим строением гравитационного и магнитного полей.

Рудные поля приурочены к центральным или периферическим частям очаговых структур второго порядка, локализованных в узлах пересечения (сочленения) глубинных разломов более высоких порядков, отвечающих инрузивно-купольным поднятиям и палеокальдерам (табл. 2). Данные структуры отражаются в геологическом строении территории концентрическими и дуговыми элементами, что проявляется и в строении магнитного поля. Центральные части этих структур фиксируются отрицательными гравитационными аномалиями.

Стратифицированные образования исследованных рудных полей составляют островодужные вулканогенно-осадочные отложения карбонатного и андезито-

базальтового состава. Эти породы прорваны интрузиями габбро, диоритов, монцонитов, сиенитов, гранитов и их переходными разностями, интрузии часто имеют порфировую структуру и представлены небольшими телами. Все рудные поля имеют мелкоблоковое строение, породы интенсивно дислоцированы и раздроблены.

В пределах рудных полей широкое развитие имеют локальные очаговые структуры, отражающие палеовулканические аппараты, трубки взрыва, штоки и выступы интрузивных тел, контролирующие оруденение. Положение отмеченных структур, в свою очередь, контролируется узлами пересечения разнонаправленных разломов. Локальные очаговые структуры фиксируются концентрическими элементами рельефа, геологического строения, кольцевыми аномалиями магнитного поля (нередко неправильной формы).

Рудные зоны и тела, как правило, локализуется в трещинных системах вблизи и внутри локальных очаговых структур. Наиболее благоприятными структурами локализации оруденения являются места пересечения (сочленения) разнонаправленных разломов, тектонизированные контакты субвулканических и интрузивных тел, надапикальные части штоков и выступов интрузивных тел. Данные структуры фиксируются характерным рисунком магнитного поля, отражающим контакты и разрывные нарушения, а также более магнитные субвулканические и интрузивные тела.

Комплекс поисковых признаков включает также наличие ореолов развития пропилитов, скарнов, кварц-серицитовых метасоматитов (ot серицитолитов), окварцевания, турмалинизации, аргиллизитов. Особенно благоприятно сочетание в пределах рудного поля отмеченных метасоматитов. Характерно зональное распространение отмеченных метасоматитов – в интрузивных телах и прилегающих территориях наиболее интенсивно проявлены калишпатизация, окварцевание, турмалинизация, в приконтактовых частях – скарнирование; далее более широкие ореолы образует пропилитизация, в пределах которой рудные зоны сопровождаются кварц-альбит-серицит-карбонатными, кварц-серицит-хлоритовыми метасоматитами. Наиболее кварц-серицитовыми низкотемпературные стадии оруденения сопровождаются аргиллизацией.

Зоны метасоматитов фиксируются относительным понижением магнитности пород. Электроразведка методом срединного градиента (СГ) выделяет участки ороговикованных, окварцованных и пропилитизированных пород, характеризующиеся высокими сопротивлениями (рк более 3 000–9 000 ом/м). При наличии сульфидов до 2–5 %, золотоносные зоны выделяются участками повышенной (3–5 %) поляризуемости пород и пониженными кажущимися сопротивлениями (рк). Магнетитовое оруденение фиксируется контрастными магнитными аномалиями.

Таблица 2 Основные элементы прогнозно-поисковой модели золотого и комплексного золотосодержащего оруденения скарново-порфирового (порфирового) типа

Элементы модели	Характеристика			
1	2			
Региональные геологические структуры	Области развития вулканно-плутонических поясов; зоны влияния крупных глубинных разломов			
Структуры, контролирующие положение рудного узла	Очаговые структуры внешним диаметром до 90 км, пространственно приуроченные к зонам пересечения (сочленения) глубинных разломов дешифрируются на космических снимках, проявляются в элементах рельефа и геологического строения, гравитационных и магнитных полях.			
Геофизический аналог рудного района или рудного узла	Отрицательные гравитационные аномалии изометричной формы, отвечающие крупным магматическим очагам.			
Элементы строения рудного узла, определяющие позицию рудного поля	Центральные или краевые части очаговых структур второго порядка, соответствующие палеокальдерам или вулканокупольным поднятиям; краевые части интрузивных массивов; интенсивно дислоцированные блоки «особого развития».			
Размещение месторождения в структуре рудного поля	Узлы пересечения разнонаправленных разломов; локальные очаговые структуры, соответствующие интрузивным штокам, трубкам взрыва, субвулканическим телам; приконтактовые части интрузий.			
Положение оруденения в геофизических полях	Характерный рисунок магнитного поля, отражающий контакты, разрывные нарушения и очаговые структуры. Положительные магнитные аномалии. Сочетание магнитных аномалий с линейными зонами поляризуемости. Аномалии кажущегося электрического сопротивления.			
Рудовмещающий комплекс, возраст, контроль оруденения	Островодужные вулканогенно-осадочные толщи, прорванные коллизионными (C_2 - S_1) и рифтогенными (S_2 - D_1) дифференцированными габбро-гранитоидными интрузивными комплексами; андезиты, андезибазальты, риодациты и дацитоандезиты, их туфы, эксплозивно-брекчиевые породы, известняки; приконтактовые части диоритовых, монцонитовых интрузий.			
Формации околорудных метасоматитов	Скарны; пропилиты; зоны окварцевания; аргиллизиты; линейные кварц-серицит-хлоритовые, кварц-альбит-серицит-карбонатные, кварцтурмалиновые метасоматиты.			
Рудовмещающие структуры	Сопряженные системы крутопадающих сближенных субпараллельных и пересекающихся трещин; зоны брекчирования; локальные очаговые структуры – палеовулканические аппараты, трубки взрыва; тектонизированные контакты субвулканических и интрузивных тел.			
Морфологические типы рудных тел и зон	Минерализованные зоны дробления; штокверки; трубчатые тела, залежи, конформные интрузивным штокам, выступам интрузивных тел			
Возраст оруденения,	От среднего кембрия до девона			
Этапность формирования	Полиэтапное: I – скарно-магнетитовый, II – сульфидный III – гипергенный			

1	2			
Минеральные типы руд	Скарново-сульфидно-магнетитовый, золото-халькопирит-пиритовый, золото-арсенопирит-пиритовый, золото-халькопирит-теллуридный, золото-полисульфидный, золото-серебряно-теллуридный, золото-кварцтурмалиновый и др.			
Отношения Au : Ag	От 3:1 до 1:10 (среднее 1:5)			
Сульфидность руд, %	1—5, реже до 95			
Продуктивные минеральные комплексы	Золото-(серебро)-кварцевый с сульфидами, сульфосолями, теллуридами и висмутидами			
Минеральные формы золота, его проба	Самородное золото свободное тонкое, видимое; в сульфидах, сульфосолях, теллуридах. Проба золота от 680 до 990			
Размерность выделений золота, мм	0,05-0,4			
Содержания полезного компонента (средние по объектам), г/т	Au: 3–5; Ag: 2,0–80.			
Специфические особенности минерального состава	Минералы висмута, теллура, турмалин, марганцевая минерализация, самородные металлы — золото, серебро, висмут. По пробности и содержанию примесей выделяется несколько разновидностей золото содержит значительные примеси серебра, меди, ртути.			
Морфология выделений самородного золота, серебра	Трещинные, жилковидные, реже кристаллы преимущественно октаэдрические, мелкие, имеют сглаженную до округлой поверхность.			
Температурный режим	Широкий, от высокотемпературного на ранних стадиях до низкотемпературного на завершающих.			
Геохимические особенности	Элементы-спутники: Fe, Cu, Mo, As, Pb, Zn, Sb, Bi, Te, Hg. Тесная связь золота с Ag, Fe, Cu, Mo. Оруденение приурочено к ядерным частям аномальных геохимических полей, характеризующихся привносом элементов-спутников и выносом петрогенных элементов			
Специфические особенности рудообразования	Многостадийный процесс. Наличие высокотемпературных, среднетемпературных и низкотемпературных минеральных ассоциаций. Широкий спектр рудных минералов, сопутствующих золотооруденению, от молибденита до теллуридов и киновари. Наличие сопутствующей магнетитовой, медно-молибденовой, полиметаллической минерализации, золотоносных кор выветривания, россыпей золота.			
Глубина формирования оруденения, км	Переходная от умеренноглубинной (2,0—1,0 км) к близповерхностной (0,5—0,2 км)			
Генетическая модель рудообразования	Вулкано-плутоническая модель: оруденение связано с становлением дифференцированных габбро-гранитоидных магматических комплексов. Золотое оруденение многостадийное, связано с пульсационным становлением рудно-магматических систем мантийного происхождения, с комбинированными источниками рудного вещества и флюидов. К палеожерлам и экзоконтактам интрузий приурочено высокотемпературное скарново-магнетитовое оруденение, к надапикальным частям интрузий — медно-молибден-золото-порфировое оруденение, на удалении от этих образований в трещинных системах над локальными очагами формируется более низкотемпературное золото-серебряное оруденение. Телескопирование отмеченных минерально-геохимических ассоциаций приводит к образованию комплексных руд			

Зоны золотоносных метасоматитов, как правило, характеризуются интенсивными аномалиями калия (до -8 % на фоне 0.8-1% во вмещающих безрудных вулканогенных породах).

Золоторудные зоны характеризуются проявлением нескольких минеральных стадий и нескольких генераций самородного золота. Благоприятны зоны совмещения скарново-магнетитовой и сульфидной минерализации (пирит, халькопирит, арсенопирит, молибденит, галенит, сфалерит и др.), особенно в сочетании с сульфосолями, теллуридами и самородными металлами (золото, серебро, висмут).

Оруденение фиксируется накоплением в первичных и вторичных ореолах рассеяния золота, серебра, элементов-спутников Cu, Mo, Fe, As, Pb, Zn, Sb, Bi, Te, Hg и выносом петрогенных элементов Al, Zr, Ti, V, Ba, Cr, Sr. Зоны околорудных пропилитов характеризуются повышенными содержаниями Cr, Ni, V.

Положительными признаками оруденения являются: наличие корреляционных связей между Au, Ag, Cu, Mo и Fe; аномальные содержания Bi, Te; наличие геохимической зональности, конформной очаговым структурам.

Оруденение сопровождается россыпями и шлиховыми ореолами золота и рудных минералов. Характерен широкий разброс пробности самородного золота, наличие в золоте примесей Cu, Hg, Te, Bi, As, часто значительных примесей Ag.

Как правило, рудные зоны сопровождаются локальными (линейно-трещинными, карстовыми) корами выветривания, содержащими вторичные минералы железа, меди, марганца. Над рудными телами формируются железистые коры выветривания, вплоть до образования «железных шляп».

Третье защищаемое положение:

Комплексное золотосодержащее и золотое оруденение скарново-магнетитовых рудных полей Горной Шории имеет значительные масштабы. Установленные содержания золота и технологические свойства комплексных и золотых руд позволяют вести рентабельную эксплуатацию выявленного оруденения.

В ходе выполнения исследований были выявлены значительные ресурсы комплексных и золотых руд на каждом из исследованных рудных полей и обоснована их промышленная ценность. Для этой цели были разработаны несколько промышленных схем переработки комплексных серебро-золото-магнетитовых руд Казского месторождения, предложена схема переработки окисленных и первичных золотых руд Сухаринского рудного поля. Выполнена экономическая оценка переработки руд по предложенным схемам, на основании чего определены минимальные содержания золота в рудах, рентабельных для переработки.

В пределах *Сухаринского рудного поля*, на основе проведенных нами горнобуровых работ, локализовано **51,43** т прогнозных ресурсов золота, из них по категории $P_1 - 17,84$, по категории $P_2 - 33,59$ т. Важно отметить, что большую часть локализованных ресурсов составляют окисленные руды «железных шляп» и остаточных кор выветривания, развитых на отдельных участках до глубин более 100 м, что позволяет вести их отработку открытым способом, а извлечение золота — методом кучного выщелачивания.

В ряде случаев локализованные ресурсы золота в окисленных рудах золото-кварц-сульфидного типа характеризуются высокими содержаниями при значительных технологичных мощностях (от 3,94 г/т на 14,9 м до 106,63 г/т на 2,4 м).

По результатам проведенных технологических исследований, для переработки золотых руды Малинового участка рекомендуются две схемы — цианистая и, более экономичная, технология кучного выщелачивания. Извлечение золота и серебра по цианистой схеме составляют 97,6-98,0 % и 61-75 % соответственно, по схеме кучного выщелачивания — 88,0 % золота и 45,4 % серебра.

В процессе проведения работ выполнена геолого-экономическая оценка локализованных ресурсов. Она проведена по 4-м вариантам для бортового содержания 0,2; 0,3; 0,5 и 1,0 г/т. При этом оптимальными вариантами являются бортовые содержания 0,5 г/т (уч. Сухаринка Западная, Дегтярный) и 0,3 г/т (уч. Малиновый, уч. Романовско-Кедровский). Для указанных параметров инвестиционнопривлекательные технико-экономические показатели отмечаются для всех участков с уровнем эффективности инвестиций порядка 0,2 доллара на 1 доллар затрат.

Достаточно высокие технико-экономические показатели обусловлены высокой технологичностью окисленных руд. Проведённые исследования позволили классифицировать их как весьма благоприятные для кучного выщелачивания. С учетом возможности применения данной схемы обогащения, рассчитанные минимальные средние содержания золота в выявленных объектах составляют 0,73-0,88 г/т.

Для выяснения возможности промышленной переработки комплексных золото-, серебросодержащих магнетитовых руд, совместно с АОЗТ «Механобр инжиниринг», были проведены исследования 3-х крупнообъёмных проб руды *Казского месторождения* (весом по 500 кг). В результате было предложено несколько вариантов рентабельной переработки комплексных руд. Проведённые экономические расчеты показали, что рентабельным является извлечение золота из комплексных руд при его содержаниях 0,6 г/т и выше.

Ресурсы благородных металлов Казского железорудного месторождения, оцененные нами на базе весьма представительных материалов опробования горных выработок и керна скважин, составляют только в наиболее изученной части месторождения **48,54** т золота и 192,84 т серебра по категории P_1 ; и **26,46** т золота по категории P_2 , при средних содержаниях – 2,09 г/т золота и 8,88 г/т серебра.

Расчёты показали, что в ряде эксплутационных блоков на долю золота и серебра приходится до 60 % от общей стоимостной оценки полезных компонентов комплексной золото-серебро-магнетитовой руды.

Кроме этого, в пределах Казского рудного поля установлено золотооруденение, не связанное со скарново-железорудными телами, образующее самостоятельные объекты (кварцевожильные и штокверковые). Общий потенциал объектов такого типа составляет 47,3 т. Общие ресурсы Казского рудного поля по геохимическим данным оцениваются нами в 457 т золота и 4 040 т серебра.

В пределах *Шерегешевского рудного поля* проведена оценка прогнозных ресурсов рудного и корового золота. Выделены перспективные на золото техногенные образования – отвалы хвостов сухой магнитной сепарации и породы вскрыши карьеров Главный и ІІ-Рудный. Прогнозные ресурсы Шерегешевского рудного поля (P_1+P_2) оцениваются: рудного золота, – **50,5** т, серебра, – 126 т; свободного тонкого золота в корах выветривания - 1048,8 кг.

В пределах *Майско-Лебедского рудного поля* прогнозируется выявление крупного золоторудного месторождения. На сегодняшний день прогнозные ресурсы только участка Правобережный Каурчакского месторождения оценены до глубины 210 м в 27 т золота и 50 т серебра по категории P_1 и 26 т золота и 34 т серебра по категории P_2 . Площадь участка около 1 км². Выделенные рудные тела имеют мощность 0,5-9,5 м, протяженность от 160 до 500 м при средних содержаниях золота 5,2 г/т, серебра от 2,0 до 40,0 г/т. Системы сближенных рудных тел пригодны для открытой отработки. При этом оруденение не оконтурено на глубину, а также продолжается за пределы участка, как на север, так и на юг. В настоящее время участок Правобережный выставлен на аукцион для дальнейшей разведки и промышленного освоения. Общий потенциал Каурчакского месторождения оценивается в 550 т золота и 750 т серебра.

Кроме этого, прогнозируются значительные ресурсы золота в пределах *Тазского рудного поля*. Даны рекомендации по переоценке перспектив *Ампалыкского* и *Ольгинского месторождений* на золото. На рудных площадях, содержащих золотоносные скарны, рекомендовано проведение дополнительных поисковых работ за пределами скарновых тел, на удалении от интрузий.

ЗАКЛЮЧЕНИЕ

В результате выполненных исследований были разносторонне освещены различные аспекты золотоносности скарново-магнетитовых месторождений Горной Шории. Разработана модель формирования комплексных руд, содержащих, наряду с железом, золото, серебро и другие полезные компоненты, которая в целом соответствует модели формирования месторождений порфирового семейства. Особенностью исследованных скарново-магнетитовых месторождений является резкое преобладание магнетитовой минерализации над другими минеральными ассоциациями.

Такая особенность связывается нами с обогащённостью доинтрузивного субстрата минералами железа.

На основании предложенной модели формирования оруденения и накопленных наблюдений была разработана геолого-поисковая модель, включающая комплекс прогнозно-поисковых критериев и признаков, который послужил основой для прогноза и локализации золотого и комплексного оруденения, как в пределах исследованных рудных полей, так и на других перспективных площадях региона.

В ходе выполнения исследований были выявлены значительные ресурсы комплексных и золотых руд на каждом из исследованных рудных полей. Обоснована их промышленная ценность, на базе предложенных схем переработки руд определены минимальные содержания золота в рудах, рентабельных для переработки.

На основе полученных данных локализованы прогнозные ресурсы золота и серебра по категориям P_1 и P_2 ; даны рекомендации по дальнейшему развитию геологоразведочных работ на золото в пределах скарновых рудных полей региона.

Список опубликованных работ по теме диссертации I. Статьи в изданиях, включенных в перечень ВАК

- 1. Платонов А.Н., **Санин В.Н.** Золотоносность скарново-магнетитовых месторождений Алтае-Саянской складчатой области // Руды и металлы. 1998. № 2. С. 57—66.
- 2. Платонов А.Н., **Санин В.Н.**, Аввакумов А.Е. Геологическое строение и золотоносность Кельбес-Золотокитатского района // Руды и металлы. -1998. -№ 2. C. 36-46.
- 3. Коробейников А.Ф., **Санин В.Н.** Благородные металлы в скарново-магнетитовых месторождениях Казского и Сухаринского рудных полей Горной Шории // Геохимия. 2004. № 4. C.419–431.
- 4. Ворошилов В.Г., **Санин В.Н.,** Тимкин Т.В. Аномальные геохимические поля зон сульфидной минерализации Майско-Лебедского золоторудного узла // Известия Томского политехнического университета. -2006. Т. 309. № 3. С. 26–31.
- 5. **Санин В.Н**. Модель золоторудных проявлений в структурах Майско-Лебедской площади, Республика Алтай // Руды и металлы. 2009. № 4. С. 42–54.

II. Материалы симпозиумов и конференций

- 6. **Санин В.Н.**, Аввакумов А.Е. Пути наращивания сырьевой базы региона по золоту // Геологическое строение и полезные ископаемые западной части Алтае-Саянской складчатой области. Новокузнецк, 1995. С. 268–270.
- 7. Шаров Г.Н., Трибунский Е.Н., **Санин В.Н**., Аввакумов А.Е. Перспективы расширения золотодобычи западной части Алтае-Саянского региона. Тез. докл. Симпозиум "Минерально-сырьевые ресурсы стран СНГ". Санкт-Петербург, 1996. С. 26-27.

- 8. Шаров Г.Н., Трибунский Е.Н., Бутвиловский В.В., Аввакумов А.Е., **Санин В.Н.** Новые перспективные типы россыпных месторождений западной части Алтае-Саянской провинции // Важнейшие промышленные типы россыпей и месторождений кор выветривания, технология оценки и освоения. Тез. докл. XI международного совещания по геологии россыпей и месторождений кор выветривания. М.: ЦНИГРИ, 1997. С. 256.
- 9. Ворошилов В.Г., **Санин В.Н.** О механизме формирования аномальных геохимических структур в Казском рудном поле // Поиски и разведка месторождений полезных ископаемых Сибири. Материалы научной конференции. Томск: ТПУ, 2000. С. 101–104.
- 10. **Санин В.Н.**, Платонов А.Н., Демидов И.В. Скарново-магнетитовые месторождения Горной Шории высокоперспективный резерв цветных и благородных металлов. // Золото Кузбасса. Кемерово, 2000. С. 348–365.
- 11. Кудачин В.В., Галеев З.Ю., **Санин В.Н.** Минерально-сырьевая база золота как важный фактор развития экономики Республики Алтай // III века горно-геологической службы России. Материалы региональной конференции. Томск, 2000. С. 43–45.
- 12. Платонов А.Н., **Санин В.Н**., Шаров Г.Н. Тонковкрапленное золото Кузбасса. В кн.: Золото Сибири: геология, геохимия, технология, экономика. Труды Второго Международного Симпозиума Красноярск: КНИИГГиМС, 2001. С. 225–227.
- 13. **Санин В.Н.**, Платонов А.Н., Демидов И.В. Благороднометальное оруденение скарново-магнетитовых месторождений Тельбесской группы (Горная Шория) // Проблемы золотоносности Южной Сибири. Материалы научно-практической конференции. Новокузнецк: НПО «Тэтис», 2001. С. 120–124.
- 14. Платонов А.Н., **Санин В.Н**. Кундусуюльский рудно-россыпной узел история изучения и перспективы // Проблемы золотоносности Южной Сибири. Материалы научно-практической конференции. Новокузнецк: НПО «Тэтис», 2001. С. 124–133.
- 15. Коробейников А.Ф., **Санин В.Н**. Распределение платины и палладия в скарновомагнетитовых рудах Казского месторождения // Проблемы золотоносности Южной Сибири. Материалы научно-практической конференции. Новокузнецк: НПО «Тэтис», 2001. С. 73–80.
- 16. Чурилин М.А., **Санин В.Н.**, Платонов А.Н., Аввакумов А.Е. Методика соразмерного структурно-метрического анализа томографических карт аномалий осредненного магнитного поля для прогноза золоторудных месторождений в пределах Майско-Лебедского рудного узла // Проблемы золотоносности Южной Сибири. Материалы научно-практической конференции. Новокузнецк: НПО «Тэтис», 2001. С. 144–150.