Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
In the past few decades, the petroleum industry has seen great exploration successes in petroliferous sedimentary basins worldwide; however, the net volume of hydrocarbons discovered each year has been declining since the late 1970s, and the number of new field discoveries per year has dropped since the early 1990s. We are finding hydrocarbons in more difficult places and in more subtle traps. Although geophysical and engineering technologies are crucial to much of the exploration success, fundamentally, the success is dependent on innovative play concepts associated with spatial and temporal relationships among deformation, deposition, and hydrocarbon accumulation. <...>
Tectonics and structural geology of Indian terrain is of great interest to the Government and a number of private exploration agencies that are working presently. This edited volume aims to meet this requirement. In addition, B.Sc. and M. Sc. geoscience students undergoing geohistory and/or tectonic courses would benefit using this book. This edited volume brings 16 research papers (Chaps. 2–17) from both academia and industry. Mukherjee et al. (2019) in Chap. 2 present an exhaustive review on the geology and the geochronology and of the Chotanagpur Granite Gneissic Complex (CGGC). They classify the CGGC into three domains, and also comment on the India-Antarctica reconstruction. <...>
The Arctic is a geologically unique region where the North American, Eurasian and Pacific lithospheric plates come together, and a new Arctic Ocean is born on the continuation of the North Atlantic. The northern geographical and magnetic poles are located in the Arctic. Large ore deposits have been discovered in the Arctic regions, and the shelves contain large hydrocarbon resources.
TRELOAR, P. J., SEARLE, M. P., KHAN, M. A. & JAN, M. Q. Tectonics of the Nanga Parbat syntaxis and the western Himalaya: an introduction CAPORALI, A. The gravity field of the Karakoram Mountain Range and surrounding areas
TRELOAR, P. J., GEORGE M. T. & WHITTINGTON, A. G. Mafic sheets from Indian plate gneisses in the Nanga Parbat syntaxis: their significance in dating crustal growth and metamorphic and deformation events BUTLER, R. W. H. Structural evolution of the western margin of the Nanga Parbat massif, Pakistan Himalaya: insights from the Raikhot-Liachar area EDWARDS, M. A., KIDD, W. S. R, KHAN, M. A. & SCHNEIDER, D. A. Tectonics of the SW margin of the Nanga Parbat-Haramosh massif
When the major mineral deposits of Africa are studied in relation to the structure of the continent, two tectono-metallogenic units emerge, as follows: (a) younger orogens consisting of zones which have suffered orogenesis from time to time during the past ca. 1200 m.y. - characterised by major deposits of Cu, Pb, Zn, Co. Sn, W, Be and Nb-Ta; and (b) older cratons, with a record of older orogenesis but which have remained stable throughout the younger periods of tectonism - characterised by important deposits of Au, Fe, Cr, asbestos and diamond. The more localised metallogenic provinces of ore concentration within these major units are briefly discussed.
Evolution of the Appalachian orogen spanned the Paleozoic and Mesozoic Eras. Within the confines of the northern Appalachians of the United States (the New England States - Maine, New Hampshire, Vermont, Massachusetts, Connecticut and Rhode Island - and New York), the sequence of known major Appalachian tectonic events is late Proterozoic rifting of the protoNorth American craton; Ordovician subduction accompanied by destruction of the Iapetus Ocean and by obduction of tectonostratigraphic sequences; Devonian deformation, accretion, plutonism, and metamorphism, of uncertain plate tectonic context but likely related to a continent continentcollision; formation of late Carboniferous transtensive (oblique strikeslip) basins in which coal formed; and late Carboniferous to Permian thermal, plutonic, and metamorphic events. During the Mesozoic, the New England Appalachians underwent crustal extension associated with both alkalic and tholeiitic magmatism. These extensional processes (11-7, V-l)~/ reflect the opening of the North Atlantic Ocean and the creation of a passive margin, which remains today.<...>
The term terrain evaluation has been adopted following the precedent of previous research carried out under the auspices of the Military Engineering Experimental Establishment (Beckett and Webster, 1969). It has developed in response to the need for an understanding of terrain by an increasing variety of disciplines concerned with its practical uses. These are both scientific, such as geology, hydrology, geography, botany, zoology, ecology, pedology and meteorology; and applied, such as agriculture, forestry, civil and military engineering, and urban and recreational landscape design. This range of interest makes it important to be especially careful about the terms employed. <...>
The process of terrane accretion is vital to the understanding of the formation of continental crust. Accretionary orogens affect over half of the globe and have a distinctively different evolution to Wilson-type orogens. It is increasingly evident that accretionary orogenesis has played a significant role in the formation of the continents.