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PREFACE

Volume 3 of Advanced Petrophysics
presents the solutions to the 150 end-of-
chapter exercises and projects in
Volumes 1 and 2. I recommend that you
attempt the problem first before you
consult my solution to check your
progress and mastery of the subject. The
solutions for the projects in Appendix B
that involve log analysis require some
professional judgment and experience to
accomplish. Therefore, I do not expect
your solutions for these projects to be
identical to mine but they should be
close.

Ekwere J. Peters, PhD, PE



Austin, Texas, 2012



CHAPTER 1 SOLUTIONS



PROBLEM 1.1

The solution to this problem depends on
your background in geology, chemistry,
physics, and your familiarity with
various laboratory instruments. Here are
some possibilities.

Acid Test:

Cut a fresh piece of each sample. Drop
cold HCL on the freshly cut surface and
observe. The limestone (Core A) will
react vigorously with the cold HCL,
releasing CO, in the process. The

sandstone (Core B) and dolomite (Core
C) will not react with the cold acid. This



simple test identifies the limestone
conclusively.

Next, heat the HCL almost to its
boiling point and repeat the test with the
hot HCL on the two remaining samples
(Cores B and C). The dolomite will
react with the hot acid but the sandstone
will not. This test distinguishes the
dolomite from the sandstone.

Grain  Density/Specific Gravity
Measurements:

Cut a piece of each sample and grind
into a powder. Weigh the powder in air
(W). Determine the volume of the
powder by fluid displacement (V).
Compute the grain density in g/cc (W/V)



and compare with the standard grain
densities for quartz (2.65 g/cc),
limestone (2.71 g/cc), and dolomite
(2.85 g/cc) to identify the samples.

More Sophisticated Measurements:
X-ray diffraction spectroscopy can be
used to identify the mineral constituents
of each sample conclusively.

Infrared spectroscopy can be used to
identify the mineral constituents of each
sample conclusively.

Photoelectric effect measurements can
be used to identify each sample
conclusively. Here are the typical
values:



Sandstone: 1.81 barns/electron
Dolomite: 3.14 barns/electron
Limestone: 5.08 barns/electron

By the way, the photoelectric log is used
to distinguish dolomite and limestone in
well logging.



CHAPTER 2 SOLUTIONS



PROBLEM 2.1

2.1a
V,=nr’h,
V,=nr*(h,~h,)
Voo Ve mhh)
¢_Vb_l %_1 wh =2

2.1b

2.1.1)

(2.1.2)

b
h (21.3)



8
9=2--2=2-_-=040

2.1c
From Carman-Kozeny equation for
granular particles,

3
k=2

@ (2.1.4)

where S is the surface area per unit bulk
volume and is given by

;_301-9)

S {2.1.5)
r



=3
”-%Z% m=75%10"cm

Substituting for S in Eq.(2.1.4) gives

04) 1 D
[ )2 em’ =2222x107 em’ X —x—=125D
5(240) 9869%107 om




PROBLEM 2.2

2.2a
FIGURE 2.2.1 shows a sketch of the
problem.

R, = external radius of the ping

pong balls
R; = internal radius of the ping pong

balls



a

¢é

V= CPntmI Volume

b

FIGURE2.2.1 Schematic of packing. (a) 3D packing; (b) 2D

plan view.

The total porosity is given by



T
_ VPWE _ mei'k _‘I"su.‘.!'d
Vﬁlui‘k Vbui‘k

Or (2.2.1)

Vig =28, =88] (2.2.2)

lﬂoﬂdzggﬂf—gnﬂf=§}:[}€3—}{?) (2.23)

Substituting Egs.(2.2.2) and (2.2.3) into
(2.2.1) gives

8k’ —EE(RE -k

k]
3 n m| R
= :]___+_ it
¢T s8R’ 6 6[}2] Y

€ E

Assume values ofR,= 2 cm and

thickness of the ping pong ball of 0.025
cm. R= R,-thickness =2 cm — 0.025 cm



= 1.975 cm. Substituting these values in
the equation (2.2.4) gives

T n[1.9?5

3
= ] =0.98 or 98%



2.2b

We know that the effective porosity of
the cubic pack is 47.6%. If we filled the
interconnected  pores  with  solid
spherical grains, we have the following
new arrangement.

O
o V%

FIGURE 2.2.2 3D view.




FIGURE 2.2.3 Plan view.

D



H. diagonal trom one corner to another in
adifferent plane, not perpendicular

. diagonal from ane comer fo anather in 1

3
the same plane

FIGURE2.2.4 3D Schematic with diagonals.

The diagonal of the base (%) can be
determined as follows (see plan view):

h=+\D*+D*=D\2 (2.2.5)

The diagonal H, can be determined as
follows:

H=VK +D'=2D*+D*=D\3 (226

Then, the diameter of the quartz grain



located in the middle of the cube can be
determined as:

Dg=H-2[%)=H-D=DJ§-D=D[J§-1) 21

T
iy D’f 1)’
Vtid-paits + Viotid-quars _ 16 (V3-

Vi H3

=1—[§(1+(J5 —1)’)}=-3.271

b=1-

The change in effective porosity with
respect to the original effective porosity
can be computed as:

|04?6—{].2F1|

| 01 |

%,W, O |

x100= x100=43.07%

8y (%)=

.mgrmzf |



The poor sorting has reduced the
effective  porosity by 43.07%, a
significant reduction in porosity.

2.2¢

Without the holes in the ping-pong balls,
the Boyle’s Law porosimeter will
measure the volume of the ping-pong
balls as solid volume. Once the holes
are drilled, the gas can penetrate inside
the ping-pong balls and the porosimeter
will measure the solid volume of the
skin of the ping-pong balls. Hence, the
volumes measured in both cases will be
quite different. Let’s consider 8 ping-
pong balls in the porosimeter as case 1.
The volume measured by the



porosimeter, based on the ping-pong ball
dimensions assumed in part (b), will be
8 x 4/3 x 1 x Re?, = 268.08 cc (the
volume of the entire balls). Then, let’s
consider case 2, when the holes are
drilled in the ping-pong balls. The
volume of solids that will be measured
will be as follows: 8 x 4/3 x 1t x (Re3, —

Re3) = 9.92 cc. The volumes measured

are significantly different. In this case,
the volume measured in case 1 is 27

times greater than that measured in case
2.



PROBLEM 2.3

Let the mass of the dry sample be M.

V,=— (231)
Py

V., ... (2.3.2)
P,

=Y, V. _,_Mlip, Py

— =]1-=

Vi Vi M/ p, P

o=

Weigh the dry sample in air. Determine
the bulk volume using any of the methods
described in the text. Calculate the bulk



density using Eq.(2.3.1). Pulverize the
sample into a powder. Determine the
grain volume of the powder by fluid
displacement. Calculate the grain density
using Eq.(2.3.2). Substitute for the bulk
density and grain density in Eq.(2.3.3) to
determine the total porosity. Pulverizing
the sample into a powder destroys any
isolated pores that may be present.
Therefore, the porosity determined
above is the total porosity.



PROBLEM 2.4

2.4a

2
V, :ﬂ(%) (10)=196.35 cm?

V.= 3t —=132.08 cm?
2.65

5

V,=V, -V, =196.35-132.08=64.27 cm®

V. 642
b, =-2=2427 _43973-3273%
V, 19635

2.4b
No. What has been calculated is the total
porosity because the pore volume



determined by subtracting the mineral
grain volume from the bulk volume is the
total pore volume, which includes the
isolated pores if present.



PROBLEM 2.5

Mass of dry sample = m

Mass of saturated sample = m,,,

Mass of kerosene saturating the sample
(mk) = Mgy — My

my, =27.575g-26.725g=0.85¢g

m
V,=—%£ (2.5.1)
Pk
141.5 1415
Pe= = =0.806 g/cc
1315+ API 131.5+44

Substituting the numerical values for m,
and p, into Eq.(2.5.1) gives



_ 27.575-16.385
. 0.806

=13.88 cc

Mass of dry sample = m

Mass of saturated sample immersed in
kerosene = m,

mm
V, = Lot~ Timm (25.2)
P
27.575-16.385
b= & =13.88cc
0.806
V.
- . L0546 =0.076

"V, 13.88



PROBLEM 2.6

V,=23.60cc

V,=51.05/2.65=19.264 cc
V,=V,—V,=23.60-19.264=4.336 cc
¢=V,/V,=4336/23.60=0.1837
m,=p,V, =(1)15)=150¢g
m,,.=5350-51.05=245¢g
m,=245-150=095¢g
V,=m,/p,=095/085=1.118cc

8¢ =V, 1V,=1.50/4.336=0.3459
5,=V,/V,=1.118/4336=0.2578

S, =1-§,—-8§,=1-0.3459-0.2578=0.3963



PROBLEM 2.7

2.7a

AL
V,=— (2.7.1)
N
where 4 1s the cross-sectional area of
the core.

AL
NAL,  AL=N
Vo= 2.13
T E N ¢ §¢| [ )

Vip=AL (2.7.4)



ALi:EN =N
:VPT = A I=1¢[ L Eiﬂ
Vir AL N

{2.1.5)



2.7b

Method 1
Apply the integrated form of Darcy’s
Law to the core before 1t was cut.

AP, = ?:—j (2.1.6)

Apply Darcy’s Law to each piece after
the core has been cut into N equal
pieces.

AP =1‘"—j (2.1.7)

Because the core was cut into equal
pieces,



L
L,=—= aconstant (2.1.8)
N

Substituting Eq.(2.7.8) into (2.7.7) gives

g:ﬂi (2.7.9)
Nk, A
But
=N
AP. = ¥ AP, (2.710)
=1

Substituting Egs.(2.7.6) and (2.7.9) into
Eq.(2.7.10) and cancelling common
terms gives

1 1&=N]
—=—3 - (2.7.11)
kp Niak



Solving Eq.(2.7.11) for kp gives

N
kr=pxy (2.7.12)
=%
2.7b
Method 2

The total permeability of the core is the
harmonic average of the permeabilities
of the pieces in series. Eq.(3.159) in the
textbook gives the harmonic average for
beds in series as

i=N
2L

kr =35 =5 (2.7.13)
2o e

1=l k‘ =1 k‘



Substituting Eq.(2.7.8) into (2.7.13)
gives

L N
kr = Li=N] =N

N i=1 k'- =] E

(2.1.14)



PROBLEM 2.8

2.8a
Ideal gas law:

PV =nRT (2.8.1)

At initial conditions,

_(B+R), .
RT
P(V.-V,)
M, =T (2.8.3)

At final conditions, the total amount of
moles is:



(B +RIV,+V,-V,)
= 2.8.4
& RT G

From mass balance,
n,=n,+n, (2.8.5)

Substituting Egs.(2.8.2), (2.8.3), and
(2.8.4) into Eq.(2.8.5) gives
B +P)V.+V.-V;) B +P
(23 u)( i S}: 1y “V,+£(E{;Vs)
RT R " RT
BV + RV, + BV A+ BV =P Vi-BVs =RV, + BV, + BV, - BV
BV, +V-V)=R,V;

P
V4V ~Ve=—Lv,
Pig

Therefore,



ut
V=V +V, ——V (2.8.6)
2g

2.8b

To generate the calibration curve, use
the given data to plot a graph of V vs

P,/P,. This should be a straight line. It is
always advantageous to plot a linear

calibration curve if possible. FIGURE
2.8.1 shows the calibration curve.



160

140 -
120 1

y =-25.903x + 140.01
Rz

e (Ccm 3}
=

0 1 2 3
PyfPay

FIGURE2.8.1 Calibration curve for the porosimeter.

2.8¢
From the calibration curve,



V. =25.90 cm?
V. +V,=140.010 cm?
V,=140.01-2590=114.11 cm?

2.8d

L—-34in—8.636cm
d=15in=3.81cm
V,=98.46 cm’

P,~48 psig

P,,~100 psig
Py,/P1,100/48 = 2.08
V.=25.90 cm’
V.=114.11 cm?®

From the calibration curve,



V, =86.05 cm’

b V, _V,—V, _9846-86.05
Vv, A 98.46

=0.126

2.8¢

Only the gas in the connected pores
participates in this gas expansion
experiment. Therefore, the porosity from
this gas expansion experiment is the
effective porosity.



PROBLEM 2.9

2.9a
2 3
Vp=ﬂrzL=x(£) reft
4 16
p‘ 3
PR LT B
V, L
2.9b
For resistors in parallel,
1_1.1 (2.94)
£t F

L m



roc—
A
r=£ (2.9.2)
A
where
A = cross-sectional area of the
conductor

L = length of conductor
R = resistivity of the conductor

T, ik (2.9.3)
A
L
r, =Rl (2.9.4)



. _RuL,

TA,
Substituting Egs.(2.9.3), (2.9.4), and
(2.9.5) into Eq.(2.9.1) gives

{2.9.5)

R‘j;.: = szw +Ri’£m {2.9.6)
LY po.fLY

3 “%LJ s &,(,:) 28
S R0

%ngf)f RE) 2s



{2.9.9)

1 1
R " =5.093

R, (m/16) =

For this case, R, = R,.

2.9¢



2.9d

2.9¢
Hagen-Poiseulle’s Law:

_mrt AP

= 8n L {2.9.10)

q



g=—L= (2.9.11)

A comparison of Egs.(2.9.10) and
(2.9.11) gives

4
%=?;—L (2.9.12)
art
k=——m (2.9.13)
8Ar
f:% (2.9.14)

Ay £ (2.9.15)



Substituting Eqs.(2.9.14) and (2.9.15)
into (2.9.13) gives

L 4
E(Z) xl? nl*
8L 2048 2




PROBLEM 2.10

Archie’s equation:

The given data are used to determine the
best values for @ and m. FIGURE 2.10.1
shows the log-log plot of F' versus f.
From the regression line, a = 0.7981 and
m=1.5131.

129 0.7981
u 056 ¢l_'i|.31

1
0.056 \ Jrs01
¢=[ﬂ.?931(mﬂ " 20.1084 or 10.84%



100

F 10

y=0.7881x"""
R*=0.9976

0.01

T

01
0

FIGURE 2101 Log-log plot of Fversus ¢.




PROBLEM 2.11

Matrix densities:
Sandstone: 2.65 g/cm’
Limestone: 2.71 g/cm’
Dolomite: 2.87 g/cm’
Pf=1 g/lem’

Py =ps0+(1-9)p,, (2.111)

Eq.(2.11.1) was used to calculate the
entries in TABLE 2.11.1.




TABLE 2.11.1 Bulk Density Variation with Porosity.

Ph Po Py
b (glem’)  (glem’) (glem)

Sandstone Limestone Dolomite

005 2571 265 217
o0 2489 2539 2683

0.15 2406 2.454 2.590
020 2323 2,368 2.496
025 2241 2.283 2.403
030 2.158 2.197 2.309




PROBLEM 2.12

25
R,,= 0.025 ohm-m

R,=FXR,
Archie’s Equation:

R_1
R, S

(2.12.1}

(2.12.2)

(212.3)



= F’;"R* (2.13.9)

W

R =

A=

The entries inTABLE 2.12.1 were
calculated using Eqgs.(2.12.1), (2.12.2),
and (2.12.4).




TABLE 2.12.1 Variation of F, R,, and R,, with Porosity.

) F R R
(ohm-m) (ohm-m)
0.05 40000 1000  160.00
0.10 10000  2.50 40.00
0.15 44.44 111 17.78
0.20 25.00 0.63 10.00
0.25 16.00 0.40 6.40
0.30 [1.11 0.28 4.44




PROBLEM 2.13

2.13a
Wyllie’s average equation:

_ At-At,

¢_—

(2.13.1)

At =55.5 usec/ft
At =189 psec/ft
From the log,
At =100 psec/ft

Substituting the numerical values into



Eq.(2.13.1) gives

_100-555 _

¢_139—55.5_ '

Archie’s saturation equation:

S"aR’"

Y OO"R,

2.13.2)

where

S, = water saturation
R,, = formation water resistivity (in

this case equal to 0.06 Qm)
R,= Formation resistivity (obtained

from the resistivity log)
R,=20m,a=1,m=1.5and n=2.



S =1-8§ (2.13.3)

Hence, the hydrocarbon saturation is
0.602.

2.13b

Humble formula for formation resistivity
factor:

0.62
E= F (2.13.4)

Eq.(2.13.2) can be rewritten as

;¢ _O62R,

o (213.5)
¢2,l SRf



The water saturation is given by

’ﬂ.ﬁZxﬂ.ﬂﬁ
S = |————=0449
* N33t a2
S, =1-8, =1-0.449=0.551

The hydrocarbon saturation from the
Humble formula is 0.551.

Sy driie = 602-0.551
%Difference=—24% °-”""‘“’xmo=mu 60255 x100=8.5%

o, Archie

Humble formula gives a hydrocarbon
saturation that 1s 8.5% less than Archie’s
equation in this case.



PROBLEM 2.14

Porosity is given by

¢=Lr " Pm (2.14.1)

P =P
p,, =2.67glem’
pf=1gf£m3

The bulk density (p,) 1s read from the

density log in each zone. The results for
all the zones are shown in TABLE
2.14.1.



TABLE 2.14.1 Porosity Value in Each Zone.

Py ¢
Zone (g/em’) (%)
A 2.4 16.168
B 232 20958
& 236 18.563
D 235 19.162
E 235 19.162
F 2.37 17.964
G 24 16.168
H 2.37 17.964
I 22T 23952
J 24 16.168




PROBLEM 2.15

The datum from core 3 did not fit the

trend of the other data, so it was treated

as an outlier and left out. FIGURE

2.15.1 shows the resistivity factor

versus porosity for the remaining data.
From the regression line,

a=0.674
m=2.0625

The new and improved Humble formula
is



100

y=0674x" %
R = 08971

F 10- %

01
0

FIGURE215.1 Log-log plot of resistivity factor versus
DOrositV.



PROBLEM 2.16

2.16a and b
A, > Oy because B has closer packing

than A.
@, = 0. because A and C have the same

cubic packing.
g, > @I, because D has smaller pores

than A due to poor sorting.
J, > O because E has smaller pores

than A due to poor sorting.
d, > O because F has smaller pores

than A due to compaction and
deformation of grains.



CHAPTER 3 SOLUTIONS



PROBLEM 3.1

L =254 cm
d=2.54cm

A =5.067 cr?
nu=0.018 cp

1 atm = 760 mm Hg
P,. =1 atm

The uncorrected gas permeability in
Darcy units is given by

k = zqtcau“LP;ﬁ

. A(HE—P;] (3.1.1)

The Klinkenberg correction shown in



FIGURE 3.1.1 gves the absolute
permeability of the core as 2.94 mD.

8
7 y= 411020+ 2.9367
6 1 Ri=1

0 02 0.4 06 08 1
1P (atm™)

FIGURE 3.1.1 Klinkenberg correction.



PROBLEM 3.2

L=5.0cm

d=2.523 cm

A=4.9995 cm?

w=0.0175cp

P,.=1atm

The Klinkenberg correction shown in
FIGURE 3.2.1 gives the absolute
permeability of the core as 2.10 mD.




34

(mD)

y=1,0501x +2.1002

R'=1
kg EJr,///

0.1 0z 03 04 05
1P e (8t")

08

0.7

FIGURE 3.21 Klinkenberg corraction.




PROBLEM 3.3

Applying the integrated form of Darcy’s
law in Darcy units, the pressure drop
across the core is given by

Ap= ML (3.3.4)
kA

Everything on the right side of Eq.(3.3.1)
is known except the permeability of the
sandpack. We can estimate the
permeability of the sandpack using the
Carman-Kozeny equation. The surface
area per unit bulk volume is given by

3(1-9) _6(1-9)
r D

5=

(3.3.2)



Carman-Kozeny equation gives

k] 3_[]2
_9¢ P ‘f; e (3.3.3)
58 5x6°(1—¢)

Given: D= 18um, @ =0.28
Substituting the numerical values into
Eq.(3.3.3) gives the permeability as



(028 (187)
~ 5x64(1-0.28)

_0.0762x107

 9.869%107"
=0.0772D

=00762 pm” =0.0762x10™* m*

A=1D"/4=251 /4 cm?
L=30cm
q=(100/3600)cm?/s
Substituting these values into Eq.(3.3.1)
gives

M’:w:lm% aim=1.0995x14.696=16.16 psl

(0.0772)(25m [ 4)



PROBLEM 3.4

3.4a
Darcy’s law:

kA dP

==

u dx

{3.4.1)

(3.4.2)

{3.4.3)

{(3.4.4)



Substituting Egs.(3.4.2) and (3.4.3) into
(3.4.1) gives

k(r,+Bx) dP

—_—— {3.4.5)
q I T

Separating variables gives

Ao Gl dx
—[Bgp=1 - (3.4.6)
AP (ot )

Performing the integrations in Eq.(3.4.6)
gives

_gH) 1 _qu L
P-P= {3.4.7)
[(rl“'ﬁx]ﬁ] kn nr,



Thus,

ap=_HL q (3.4.8)
wknr,

3.4b
A graph of Ap versus ¢ is linear with the
slope given by

m= e (3.4.9)
knr,

The permeability of the core is
calculated as

. uL
minn

(3.4.10)

FIGURE 3.4.1 shows the graph of Ap




Versus (.

t
m=16 a

cm’ /s
r=1cm
r,=2cm
L=10 cm
u=1cp

Substituting numerical values into Eq.
(3.4.10) gives the permeability as

pL_ _ (1)(10)

Tmann Q6@




AP (atm)

T T T T T T

005 01 015 02 025 03 035

q (cm's)

FIGURE3.4.1 Graph of APversus q.




PROBLEM 3.5

Darcy’s law for inclined flow takes the
form:

e I

Required to show that in oilfield units,
the law is of the form:

qzu{).m}uz?ﬂ[f’iaﬂ.myiii] (35.2)
UB\ ds ds

To show that (3.5.1) is Eq.(3.5.2) in
field units, it is pertinent to state the
units of measurement for the various




parameters in both equations.
In Darcy units



z [fi]
s [ft]

Convert all the variables in field units
into Darcy units and substitute into Eq.

3.5.1).



BBL

D

{

dp

ds

BBL
=gB
]qln

K[mD]= k[mD][

st

dp
ds

] 5615 | 30,
BBL |

_[5.615)(30.483

86400

D

atm

HeaP
1000 mD | \ 1000

30.48* cm*

A[ﬁz]zA[ﬂz][ £

]: 3048° A cm’

i
fr ][ 14696 psi

)

:[14.696><30.48

=

]
ds| cm



[&]_ [1])"4536g fi
PIEE |7 |58 b || 30.48° em?

‘:y{ﬁz.ass}( 453 6 ) gj]

30.48° /)|

Substituting into Eq.(3.5.1) and
rearranging gives

_ kA( 86400 ] 30.48° [ 1 ]
~ uB\5615x3048° J{ 1000 J\14696x30.48
x[@—(m.ﬁgﬁx30.48)[62'368x‘§53'6]( & G)TE]
ds 048" N\L0133x10° ) ds
Simplifying gives

kA (dp dz) ;
=-0.001127—| ==~-0.433y— | as required.



PROBLEM 3.6

g =70 c® / hr = (70/3600)cm’/s
h =100 cm

L=10cm

ry=2cm

?=1cm

p =1.05 g/en’

u=1lcp

g =981 cnv/s?

1 atm=1.0133 x 10° dynes/cm?
1 atm = 14.696 psia

FIGURE 3.6.1 shows the
configuration.

flow



q=T0 ceour

160
Liguid . =
|
| H1
e ——
Conical Core
Sample [0 em
———— |
X |14
q="T0ec/hour 7 H
) 2
Datum

FIGURE3.6.1 Constant head liquid permeamater.



Apply Darcy’s Law in terms of
hydraulic head and hydraulic
conductivity to obtain

q:_m%" (3.6.1)

where H is the hydraulic head and K 1is
the hydraulic conductivity. But 4 = f{ X).
Let the radius along the cone be given by

r=a—bx (3.6.2)
where
a=n (3.6.3)
and b is given by
p=1""2 (3.6.4)

L



Now
A(x)=7nr* =m(a—bx)’ (3.6.5)

Substituting Eq.(3.6.5) into Eq.(3.6.1)

gives
q=—K;rr[a-bx)2%I (3.6.6)

Separating variables gives

dc« _ Km
(a-bx)"  q

dH (3.6.7)

y jH"dH (3.6.8)

(a- ax)_ q



L
KnlH,-H
Ll = s -H,) (3.6.9)
b| (a=bx) |, q
1 ] 1| Krn(H -H
T s =(—11]. (3.6.10)
bl (a-bL) a q

Eq.(3.6.10) can be simplified and
rearranged as

_a(a-bL)Kn(H, -H,)

= (3.6.11)
1 L
From the FIGURE,
H,—H,=h+L (3.6.12)

Substituting Egs.(3.6.3), (3.6.4), and
(3.6.12) into Eq.(3.6.11) and simplifying



gives

B nr,Km(h+L)
L

(3.6.13)

The hydraulic conductivity can be
written in Darcy units as

Ke__kPg
&
1.0133%10%

Substituting Eq.(3.6.14) into Eq.(3.6.13)

and solving for the permeability gives

(3.6.14)

- 1.0133x10°quL
nrpgr(h+L)

{3.6.15)

Substituting numerical values into Eq.

(3.6.15) gives



_ 1.0133x10°(70/3600)(1)(10) _
QM08 m)00+10) 2D




PROBLEM 3.7

k=2D
A=100 cm?
p=1.024 g/cm’®
u=1.5cp

g =981 cnv/s?

3.7a

To determine if there 1s flow, we look at
the hydraulic heads (or the flow
potentials) at the ends of the porous
medium.

h,~+100cm



hg=-25cm

Since /4 < hp, there is flow from 4 to B.
3.7b
Ah kpg Aﬁh

q=KA—= ol
L 10133x10°u L

(2)(1.024)(981)
(1{1133x10 ](1 5

1[1[})( 125] 0.1652 cm?/s
) 100

3.7¢

_ (1.024)(981)(100)

T A

_(1.024)(981)(50)

=0.0496 atm
Bouge ™ 1 0133%10°




3.7d

Re= pvD,  (1.024)(0.1652/100)(1/160)
1 0015

=7.05%x107

Since Re 1, the flow is Darcy flow.



PROBLEM 3.8

E.=
d=5cm
dfﬁl:f-l'tﬂﬂtﬂfﬂr 1 cm

p =102 g/fcm?

u=1lcp

g =981 cm/s?

1 atm = 1.0133x10¢ dynes/cm?

3.8a
The performance equation for the falling

head permeameter is given in Darcy
units by Eq.(3.192) as



in[ﬁ_]:_( kpgAE Jt (3.81)
h, ) (1.0133x10°paL

The graph of In(A/h,) versus ¢ is linear

with the slope given by
= kp 3Aﬁ (3.8.2)
1.0133%10° ual.
1.0133x10°
TS xiat (3.8.3)

pgA

FIGURE 3.8.1 shows the graph of
In(h/h,) versus t. From the regression

line,m = —0.0004. Substituting
numerical values into Eq.(3.8.3) gives
the permeability as




(~0.004)(1.0133x10°)(1)(0.7854)(10)

(1.02)(981)(19.6350)

0.162 D

In(h/hy)

0.00

-0.50 -

-2.00 -

250

-1.00 4

y =-0,0004x + 0.001
Ri=1
0 1000 2000 3000 4000 5000 6000

ts)

3.8b

FIGURE 3.8.1 Graph of In(h/h,) versus t.



The volumetric flow rate is given by Eq.
(3.188) in Darcy units as

q:[ kpgA ]Aﬁ (3.8.4)
1.0133x10°pal ) L

FIGURE 3.8.2 shows the graph ofg
versus . The equation for the rate in

cm’/s is

q=0.3145¢ % (3.8.5)



0.3
0.30

S y = 031456 %%

— ¥
2020 R=1
E
2015
o

0.10 -

0.05

0.00 T T T
0 1000 2000 3000 4000 5000  6OCO

t(s)

T T

FIGURE 3.8.2 Graph of g versus t.




PROBLEM 3.9

3.9a
FIGURE 3.9.1 shows the hydraulic
heads for the flow.




Datum

FIGURE3.9.1 Hydraulic heads.




Darcy’s law:

q= _mﬁ — KAE
I L (3.9.1)

Volumetric balance gives

d _ d(h-h)_ dh
e IR L | PN 392
1 dt dt dt 392
Thus,
AP R (2.9.3)
dt L
EL_Kﬁ:_(_kP_Hﬁ_]E (3.9.3)
dt L (10133x10°%u )L

3.9b



Separating variables gives

ﬁ:_[ kpg i ]dr (3.9.4)
1.0133%10° L

Integration and application of the initial
condition gives

= kpgﬁ " (3.95)
h 1.0133x10" uL

a

3.9¢

L=2cm

p=1.02, g/lem’

pn=1lcp

g =981 cnv/s?

1 atm=1.0133x10° dynes/cm?



The graph of In(A/h,) versus ¢ is linear
with the slope given by

kpg
m=- 3.9.6
[Lﬂ:ﬁxmf’m] 398l

mx1.0133x10° uL
P8

fes (3.9.7)

FIGURE 3.9.2 shows the graph of
In(h/h,) versus t. From the regression

line,m = —0.0004. Substituting

numerical values into Eq.(3.9.7) gives
the permeability as

kz_(-ﬂﬂm)(:.m33><mﬁ)(1}(2)=nlm .
(1.02)(981)




0.00

0,50 4
y =-0.0004x + 0.001
-1.00 4 R =1

Inthfhg)

-1.50 4

2.00 4

‘2.50 T T T T T
0 1000 2000 3000 4000 5000 6000

t(s)

FIGURE3.9.2 Graph of In{h/h,) versus t.

3.9d

FIGURE 3.9.3 shows the graph of the
flow rate versus time. The flow rate
decays exponentially toward zero with




time.

-

4

Q
=

7 0560 -

1.80 1
160
1.40 -
1.20
1.00
0.80 -

0.40 4
0.20 4
0.00

¥ = 1.5798e 270
Rl=1

0

1000 2000 3000 4000 5000 6000
tis)

FIGURE 3.9.3 Graph of q versus t.




PROBLEM 3.10

3.10a
FIGURE 3.10.1 shows the flow
configurations.  Flow is  vertical
downward.

Subscripts: inlet = 1, outlet = 2.
Choose a datum at the outlet and
compute the hydraulic heads as follows:

hy=z,+y,=L+0=L (3.10.1)

hy=z,+y,=0 (310.2)

Darcy’s law:



q:mﬁ:mﬂ:m kpg
1

=—"—4 (3103
L 1.0133x10°

_ 1.0133x10°qu
PgA

k

{3.10.4)



(a) (b)

Flow under
head A
Free flow l

o f
s SRt ¥
S (ENCRETTE I §
L L
¥ t ..:‘_‘." 1

FIGURE 3.10.1 Vertical flow.




3.10b

h=z,+y, =L+h {3.10.5)

Darcy’s law:

-h L+h k h
gkatth gy Bk
L L 1L0133x10 L

1.0133x10°
o a (310.8)

h
A 1+—



PROBLEM 3.11

FIGURE 3.11.1 shows the hydraulic
heads for the flow. Darcy’s law gives

hy~h \___kpg - FLET
1.0133x10°u L

= s =
! [51‘-‘1

~ 1.0133x10°quL
pgAh

k (3.11.2)

L=2cm
d—1cm
L=1.02 g/lecm’
pu=1lcp



g =0.012 cm’/s

Substituting numerical values into Eq.
(3.11.2) gives the permeability as

_ (1.0133x10°)(0.01)(1)(2)

(Lo2)(os1\m/a)52) D



CONSTANT LEVELING BOTTLE
CONTANING  TEST LIQUID

52 cm h
I
5 ‘

¥

; h

SAMPLE—[_ ! E

GRADUATED |- — ,
CYLINDER

FIGURE3.11.1 Hydraulic heads.




PROBLEM 3.12

3.12a, b
FIGURE 3.12.1 defines the hydraulic
head at a point in the porous medium.

h=z+y (3.12.1)



il

h

Datum:z:=0

FIGURE 3.12.1 Hydraulic head at a point in the porous
medium.

This problem can easily be solved by
inspection as follows as shown in
TABLE 3.12.1.



TABLE 3.12.1

z V¥ h
ft fi fit

0 0 0

3 ] 4

6 0 6

2 1 W)

FIGURE 3.12.2 shows the graphs of
gauge pressure and hydraulic head.




Atmaspheric Pressure

Z (ft)

1

L
/ ik
\

17

\

/

L

b H:dmlmﬂmm 0 12

FIGURE 3.12.2 Variation of gauge pressure and hydraulic

head.

3.12c¢




Darcy’s law:

dh dh
=—KA—=KA— (3.12.2)
1 dx dz
¥ S s (312.3)
KA

Integration of Eq.(3.12.3) fromz =0 to z
=3t gives

i dn=— j“dz (312.4)

hy—h,=——(z,—2z,) (3.12.5)

= ot
KAS



ff — h3-h4:l

(3.12.6)

@

z,=0,2z,=3,h =0, h,=4

Substituting numerical values into Eq.

(3.12.6) gives
q -0 4

KA3 3_ 3



PROBLEM 3.13

3.13a
FIGURE 3.13.1 shows the hydraulic
heads for the flow.




Datum

FIGURE 3.13.1 Hydraulic heads for flow.




Darcy’s law:

q:KA-E {3.13.1)

Volumetric balance gives

dh,
=—A— 3.13.2
q it { )
qg= Aﬂ’- (3.13.3)
dt

Adding Egs.(3.13.2) and (3.13.3) gives

dt dt dt



q= s (3.13.5)

2 dt

Substituting Eq.(3.13.5) into (3.13.1)
gives

—ﬁﬁ“mé— {3.13.6)

2dt L
The differential equation is

dh 2K

—=—" 3.13.7

dt L [ ]
3.13b

Separation of variables gives

EI—F{:—Eﬂ'i (3.13.8)

h L



Integration and substitution of the initial
condition gives

h{ﬂ}h%; :ﬁ[ki} (312.9)

h, L\ 1.0133x10°
3.13c
The graph of In(A/h,) versus ¢ is linear
with the slope given by
_ 2 kpg
"= L(l.ﬂlSleﬂ‘sluLJ s
1.0133x10° uI’?
I e il (342.11)

2pg
FIGURE 3.13.2 shows the graph of




In(h/h,) versus t. From the regression
line,m = —0.0004. Substituting
numerical values into Eq.(3.13.11) gives
the permeability as

Hm{“ﬂ-ﬂﬂfi}(l.{max1(}5)(1)[22]

(2)(1.02)(981) =2.028D




0.00
-0.50
y = -4.006E-0dx - 3 287E-04
2.
5 i R? = 1.000E+00
=
I3
£ 150 4
-2.00 4
250 , ' ' . :
0 1000 2000 3000 4000 5000  GOOO
t(s)
FIGURE 3.13.2 Graph of In(h/h,) versus t.
3.13d

Eq.(3.13.9) can be written as

Hze
L &
h=he "HERNTL (3.13.12)



Substituting Eq.(3.13.12) into (3.13.1)
gives the flow rate as

3 keg

qﬂ[ o \i(ﬁhge_"[l-“‘“’““ﬂ*} 3131

10133x10°y )

L=10cm

D =2cm
h,=100 cm
p=1.02 g/cm’
u=1cp

2 =981 cn/s?

Substituting numerical values into Eq.
(3.13.13) gives the rate as



q=0.062961¢ "™ (3.13.14)

FIGURE 3.13.3 shows the graph ofg
Versus .

@ 0044 y = 6.293E-02¢ 4 5
e R? = 1.000E+00
&)
o

T T T —

0 2000 4000 8000 8000 10000
{(s)

FIGURE 3.13.3 Graph of qversus t.






PROBLEM 3.14

3.14a
Darcy’s law:

q= KA% (3.14.)

The graph of g versus 44 is linear with
slope given by

m=—- (3.14.2)

_ mL
A

K (3.14.3)

FIGURE 3.14.1 shows the graph of ¢




versus Ah. From the regression line, m =
0.0061. Substituting numerical values

into Eq.(3.14.3) gives the hydraulic
conductivity as

0.0061)(15.2
! X . ) — 0005124 cru/s
n(4.8/2)




012
0.10 4
y=0.0061x
- aR R'=09728
o Y
E 0.08
#
% 004 -
002 4
0.00 : : .
0 5 10 15
Ah (cm)

20

FIGURE 3.14.1 Graph of g versus Ah.

3.14b
In Darcy units




kpg

K=———=2—— (3.14.4)
1.0133x10" 1
Therefore,
6
k=1.6133><1{) UK (314.5)

Pg

Substituting numerical values into Eq.
(3.14.5) gives the permeability as

~ (1.0133x10°)(1)(0.005124)

(1)(981) Gt




PROBLEM 3.15

This is an inclined flow problem that
can be solved in a variety of ways.

Method 1.

Apply Darcy’s law for inclined flow.
Using the coordinate system shown in
FIGURE 3.15.1. Darcy’s law for
inclined flow in oilfield units is given by
Eq.(3.166) in the text as

kA( dP dz
B=-0001127—| —-0433y— 3.15.1
1 ﬁ(& y&) { !

Differentiation gives



qB=-0.001127— : n433}' 2741 a1y
H\5=4 i

RA[P p z, )

P=P,+ 0.433y(250) = 14.7+(0.433)
(1.038)(250)=127.06 psia

z;=0

P, =1450 psia

2,=5000 ft S,-s; 10x5280 ft
k=850 mD

p=1cp

A=3000x65 ft2



) __Sea Level

]
7

¥
250t

1
| E Sea Floor

|

z
P

-
/’ 5000 t
// "j

f o
f’;’ff

FIGURE 3.15.1 Coordinate system for inclined flow. Figure
not fo scale.

Substituting the numerical values into

Eq.(3.16.2) gives



gB=-0001127EU00X5)
' 1

LT o) b s
105280 105280
Method 2.

The problem also can be solved in terms
of hydraulic or piezometric head and
hydraulic conductivity (see FIGURE
3.15.2).



Sea Level
AN — *
2 N5 }25011
Gl A
¥ /| Sea Floor
74 /’C.F
i
- i e
e o
o
4 ~
3 4 P ,/'/
z‘f f/ I"J
; S H .
I Il|’ /i/ {
2]+
|/‘
¢ i
Datum; z=10

FIGURE 3.15.2 Hydraulic heads for inclined flow. Not to
scale.

The components of the hydraulic head
are shown in Figure 3.42 in the text. The
hydraulic head at any point in the porous
medium is given by



h=w+z (3.15.3)
where

h = hydraulic head

w = pressure head

z = elevation of the point above the
datum

The hydraulic heads in ft are computed
as follows.

h, =250+z, (3.15.4)

P 1450-14.7
=L 4z = +2,=319343+z, (3155
0433y ° (0433)(1.038)

2

The hydraulic conductivity in ft/day is
given by



0.433y)

K =0.001127 k( (3.15.6)
U

Darcy’s law in terms of hydraulic head
and hydraulic conductivity is given by
Eq.(3.181) in the text as

gB= ~Ka(ﬂ] (3.16.7)

53— 5

Substituting Egs.(3.16.2), (3.16.5),
and (3.16.6) into Eq.(3.16.7) gives

k(0.433}']ﬁ[3193.43+z,_—250-51] a158

7%

gB=-0001127

k=850 mD
y=1.038



Z2-le —5000 ﬁ
$>-§1 = 10x5280 ft

u=1lcp
A =3000x65 f?

Substituting the numerical values into

Eq.(3.16.8) gives

(850)(0.433x1.038)(3000% 65)
1

gB=-0.001127

[3193.43—25(]— 5000

j: 3270 RB/D
10x 5280

Method 3.

Compute the velocity potentials for the
inlet and the outlet of the porous medium
at any convenient datum and apply the
oilfield version of Eq.(3.167) in the text



to calculate the flow rate. FIGURE
3.15.3 shows the reference datum used
in this computation. The oilfield version
of Eq.(3.167) is given by

qﬂmun.uﬂuz?ﬁd—‘? (3.16.9)

uods



Sea Level
# r? 250t
# | 1
S‘/ i H Sea Floor
2 A
& 2500 f
~
. il Datum_
¥ i
Tl o
v 4 2500 ft
F | -/,.-"
2| -5~
2] 12
A

FIGURE 3.15.3 Reference datum for inclined flow. Not to
scale.

Differentiation gives

qB=—ﬂ.ﬂﬂllZ?E{MJ (3.16.10)
HA $=%

Eq.(3.169) gives the velocity potential



in oilfield units as
®, = P £0.433yz (3.16.11)

wherez; is the elevation of pointi
above or below the reference datum. If
pointi is above the reference datum,
then

®, =P +0.433yz, (3.16.12)

If pointi is below the reference datum,
then

®, =P —0433yz (3.16.13)

For this problem,



®, =P, +0.433y(250)=127.06+(0.433)(1.038)(2500)
=1250.70 psia

®, = P, -0.433y(2500)=1450—(0.433)(1.038)(2500)
=326.37 psia

Substituting the numerical values into

Eq.(3.16.10) gives

(350)(30mx65){326.37—125{1.?0)
10X 5280

qB=-0.001127

=3270 RB/D



PROBLEM 3.16

q =600 STB/D
P=5000 psia

A =200 acres

ry =028 ft

h = 80ft

J=0.20

k=200 mD
c=30x1076 psi!
B =1.20 RB/STB
u=1.5cp

3.16a



FJE: [200x 43560 ——
T T

" i}
rzrwe{h I{r‘”] forn=0,1,2,.,N(N=9) (3.161)
1
P[r,r]=ﬁ—%[—éﬁi[—m¢%ﬂ (3.16.2)
Let

4 = 48ouc

: 3.16.3
: kt { ]

For x <0.01, the Ei function is given by

Ei(—x)=Inx+0.5772 (3.16.)



For x > 0.01, the Ei function is read from
the Ei function TABLE.

FIGURE 3.16.1 shows the calculated
pressure profiles.
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4550

4980 -

t) {(psia)
I
(<] [£m]
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& o

= 4950
e ——t= 10 hrs
4940 —a=i= 5[ hrs
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4920 : . .
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r(ft)

FIGURE 3.16.1 Pressure profiles at t= 10 and 50 hours.

3.16b



6qu k
P (t)=P- logt+lo: -323 3164
“ﬁr( ) : kh g g‘pﬂcfrw ( )

The calculated wellbore pressures are
shown in TABLE 3.16.1.

TABLE 3.16.1 Calculated Wellbore Pressures.

L P.¢
(hr) (psia)
0.25 494920

1 4942.68

10 4931.71

30 4926.47
50 492403
60 4923,16

3.17¢
FIGURE 3.16.2 shows the semilog plot
of the flowing wellbore pressures of




TABLE 3.16.1. The slope 1s given by

162.6q1B

m=—-—- (3.16.5)
kh

k=- M (3.16.6)
mh

Substituting numerical values into Eq.
(3.16.6) gives the permeability as

_ (162.6)(600)(1.5)(1.2)
= (—4.7655x1n10)(80) e




4955
4950 -
4945 -
4940 -
4935 1

P.AL) {psia)

49301 -4 765In() + 49427
2
4925 k=1

4920 | T
0.1 1 10 100

t (hrs)

FIGURE 3.16.2 Semilog plot of wellbore pressures.

3.17d
At logt = 0, the wellbore pressure is

given by



1626qu[ [k
19427=P- | -323 37
— [ og(wc 7 (317.7)

w

2

p=aony 2B\l K sl g
k‘h ¢mrrw

Substituting numerical values into Eq.
(3.16.8) gives the initial pressure as

P.=4942.7+10.987(8.45—3.23)=5000 psia



PROBLEM 3.17

q = 2500 STB/D
h=23ft
u=0.92cp
B=1.21RB/STB
ry =0.401 ft
0=0.21

c=8.72 x 1076 psi-!
P= 6009 psia

3.17a

FIGURE 3.17.1 shows the diagnostic
plots. The test is affected by wellbore
storage. However, the late time data can




be subjected to a semilog analysis.
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FIGURE 3171 Log-log diagnostic plots.




3.17b
FIGURE 3.17.2 shows the semilog plot.
The slope of the semilog line is given by

m=-— M {3.17.1)
kh
k=-— M (3.17.2)

mh



P (psia)

6500

6000

5500 7

5000

4500 1

4000 +

3500 4

3000 4

2500 1

2000

y=-110.8In(x) + 3325.6
R*=099755

0.01

0.1 1
t (hrs)

10

100

FIGURE 3.17.2 Semilog plot.




From the regression line, m = -

110.83In10 =-255.196psi/log cycle.
Substituting numerical values into Eq.

(3.17.2) gives the permeability as

k= _{! 62.6)(2500)(0.92)(1.21)

=77.10 mD
(-255.196)(23)

P, (1 hr)=3325.60 psia

The skin factor is given by

$=11513 ll)‘*f(w)"ﬂl k1| ama
L _(1_63‘5@!“?}"}3 o e B
ki

Substituting numerical values into Eq.



(3.17.3) gives the skin factor as

3325.60-6009

§=1.1513
—255.196

77.10
—log = 3323
0.21x0.92x8.72x107 x(0.401)

=1.1513(10.52—8.45-3.23)
=6.09



PROBLEM 3.18

g =519 STB/D
h=13.0ft
u=0.92cp
B=1.06 RB/STB
ro =027 ft
J=0.223
S,,~0.32

c,=13.0x1076 psi’!

3.18a
FIGURE 3.18.1 shows the overview
plot of the test.
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()
w
£ 3700
o
7 3650 -
8
[
3600 4
3550 4
3500 : | |
0 50 100 150 200
Time (hrs)
FIGURE 3.18.1 Pressure versus time.
3.18b

FIGURE 3.18.2 shows the diagnostic

plots

for the drawdown test.

The




wellbore  storage  coefficient is
calculated from the unit slope line as

5 93]( t J
L_[_ L (3.18.1)
24 ‘ﬁP unil slope Ime



1000

AP, AP (psi)

1(hrs)

FIGURE 3.18.2 Diagnostic plots for drawdown.

Substituting numerical values into Eq.

(3.18.1) gives the wellbore storage
coefficient as



c=(519><1‘%)[ 1 J:El.li%dSRprsi
34 \140

The dimensionless wellbore storage
coefficient is given by

5.61
C;= b13C (3.18.2)

© 2mpe hr

Substituting numerical values into Eq.
(3.18.2) gves the dimensionless
wellbore storage coefficient as

(5.615)(0.1545) e
21(0.223)(13.0x10°° )(13.0)(0.27) =!

D:

FIGURE 3.18.3 shows the diagnostic
plots for the buildup test.
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FIGURE 3.18.3 Diagnostic plots for buildup.

The wellbore storage coefficient is
calculated from the unit slope line as



5191,
c=( 12 IHEJ( ! ):0.1523113;;:51
34 142

Substituting numerical values into Eq.
(3.18.2) gves the dimensionless
wellbore storage coefficient as

(5.615)(0.1523)

= —=49536
2(0.223)(13.0x10°* (13.0)(027)°

D

3.18c¢c
The slope of the semilog line for
drawdown and buildup is given by

__162.6quB (318.3)
kh
o OB (2.18.4)

mh



FIGURE 3.18.4 shows the semilog
plot for the drawdown. From the
regression line, m = —6.9085In10 = —
15.91 psi/log cycle.
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FIGURE 3.18.4 Semilog plot for drawdown.

Substituting numerical values into Eq.
(3.18.4) gives the permeability as




__(162:6)(519)(0.92)(1.06)

k (-15.91)(13)

=397.96 mD

For the drawdown, the skin factor is
given by

§=11513

1

B,(1h)- [
ey,

_[ mzf.q;.rB]_IOg
kh

]—323 (3.18.5)

P, (1 hr)=3568.9 psia

Substituting numerical values into Eq.
(3.18.5) gives the skin factor as



3568.9-3793

§=1.1513
-15.91

397.96
~log - 1323
0.223%0.92x13.0x107°x(0.27)

=1.1513(14.09-9.31-3.23)
=922

FIGURE 3.18.5 shows the Horner
plot for the buildup. From the regression
line, m = —6.6916In10 = —15.41 psi/log
cycle.
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FIGURE 3.18.5 Horner plot.

Substituting numerical values into Eq.
(3.18.4) gives the permeability as



__(162.6)(519)(0.92)(1.06)

=410.86 mD
(~15.41)(13)

For the buildup, the skin factor is given

] 323 (3.18.6)

P, (1 hr)=3762.39 psia

P (rﬁ)z 3537 psia

Substituting numerical values into Eq.
(3.18.6) gives the skin factor as



3537-3762.39

§=11513
-15.41

410.86
~log = = |—-3.23
0.223x0.92x13.0x10™ x(0.27)

=1.1513(14.63-9.32-3.23)
=9.82

3.19d
The positive skin factor indicates that
the well is damaged.



PROBLEM 3.19

3.19a

The initial-boundary value problem to
be solved consists of the following
equations. The partial differential
equation is

)
Jd P ww’ dP (3.19.1)
x> k ot
The initial condition is
P(x,0)=P (3.19.2)

The internal boundary condition is

P(0,t)=P, (3.19.3)



The external no flow boundary condition
is

dP(x,t)
ox

=0, x=L {(3.19.4)

3.19b

We can recast the initial-boundary value
problem in dimensionless form as
follows. Let

P- P[x t)

P (3.19.5)

.h:l
"'t:l

{3.19.6)



Lkt
7 gue I’
Substituting Egs.(3.19.5), (3.19.6), and

(3.19.7) into Egs. (3.19.1), (3.19.2),
(3.19.3), and (3.19.4) gives

{(3.19.7)

a—sz'i:?-fﬂ- (3.19.8)
dx;, ot

Py(xp,0)=0 (3.19.9)
P,(0,t5)=1 (3.19.10)
2l =0, xj;=1 (3.19.11)




3.19b

The initial-boundary value problem can
be solved by the separation of variables.
Let

B (x5t )= X{x; )T (15) (3.19.12)

Substituting Eq.(3.19.13) into (3.19.8)
and separating variables gives

14X _14dT
X dxh Tt

(3.19.13)

The left side ofEq.(3.19.13) is a
function of x, only and the right side is a

function of¢, only. Both sides will be
equal only if each is separately equal to




some constant. Thus,

2
%f{j =—2%, 1#0 (3.19.14)
ol
%%}A}, A£0 (.19.15)
I

The solution of Eq.(3.19.14) gives

X =C sin(Ax)+E cos(Ax;) (3.19.16)

The solution of Eq.(3.19.15) gives

2
T=Fe*'D (3.19.17)

Thus, for 4 # 0, the solution is



By(xpitp)= [LFsm[lx,}HEFcus(lxpﬂ a9
which can be written as
By(xptp)= [Csm(lxﬂ}+ Ecns(lxu]}e"‘iz'ﬂ (319.19)

For A = 0, the solution of Eq.(3.20.14)
gives

X=Ax,+B (3.19.20)

For A = 0, the solution of Eq.(3.20.15)
gives

T=D (3.20.21)
Thus, for A =0,

P,(xptp)=DAx,+DB =Ax,+B  (3.19.22)



The general solution to the initial-
boundary value problem is

By(xpatp)= AxD+B+[Csin[lxD]+ Hcos(},xnﬂe..jzm
{3.19.23)

The solution contains five constants
(4,B,C.E,\) to be determined from the
three initial and boundary conditions. It
appears some of these constants can be
chosen arbitrarily. Application of Eq.

(3.19.11) gives

P ]
;LQ- = A+[1Ccs}sl— },Esinl]e']”?rﬂ =0,x,=1 (319.24)
p

To satisfy Eq.(3.19.24), A must be zero
and




CcosA—EsinA=0 (3.19.25)

Since A#0. By choosing E= 0, then

CcosA=0 (3.19.26)
Since C#£0, then
cosA=0 (3.19.27)

The solution of Eq.(3.19.27) gives

n+l
S—I,S—,....( é )ﬂ,for n=0,1,2,.,0  (31928)
2 2 2

Je:
2

Eq.(3.19.23) can now be written as

1
w] i

PD(xD,rD)=B+W§Cnsin{(%]mﬂ e{ 4
= (31929)



Substituting Eq.(3.19.29) into (3.19.10)
gives B =1. Eq.(3.19.29) becomes

()5,
PD(xD,!D] 1+ L C sm[[z ;l]ﬂxnl i ] D(.‘1.151.'.10]

Substituting Eq.(3.19.30) into (3.19.9)

gives
=Y sin[( s, ];rxﬂ} (319.31)
n=0

Thus, we need an infinite sine series that
converges to —1 for 0D 1. The required
series is the half interval Fourier sine
series. Taking advantage of the
orthogonal property of the trigonometric
function gives




1

(2141 4 [ (41
C==2 1sm(--—--—ﬂ:x ]dx = cns[ mx )
=2 2 )P an)n L 2 P

4

:-[2n+l}i’r (3.19.32)

Substituting Eq.(3.19.32) into (3.19.30)
gives the general solution to the initial-
boundary value problem as

- {m) 2
Pn(xn-fn]zl_iﬂz (L)Sm(¥ﬂp)e ( | ] N

T a=0\ 2n+1

(319.34)

3.19¢
FIGURE 3.19.1 shows a sketch of the
pressure profiles.
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FIGURE 3.19.1 Sketch of pressure profiles.

3.19d

The cumulative water influx is given by




W, =, qdt (3.19.35)

Darcy’s law in modified oilfield units
withg in reservoir barrels per hour
gives

_0.001127 kA P

——, x=0 3.19.36
24 4 dx s { }

q(t)

Substituting Eqs.(3.19.5) and (3.19.6)
into (3.19.36) gives

. kA(R-P
q[!}z_ﬂ{l{}l]z? (P ”)apﬂ,x[,:{) —
24 BL - dxp

Substituting Eq.(3.19.37) into (3.19.35)
gives



Wz_n.mnum(ﬂmpw) o ap,

T ™

dt, x,=0  (319.38)
The dimensionless time in oilfield units
is given by

; _ﬂ.ﬂﬂﬂiﬂ?kf
P uc I’

Differentiation of Eq.(3.19.39) gives

{3.19.39)

_ 00002637k
e, I

Substituting Eq.(3.19.40) into (3.19.38)
gives

dt;, dt (3.19.40)




- 0001127 KA(R=R)(_ guc o
T ul | 00002637k |0 dx,

—=itp, x,=0
(3.19.41)

Differentiation of Eq.(3.19.34) atx, =0
gives

apﬂ_ EE 2r1:+l]

31942
axD n=0 { ]

Substituting Eq.(3.19.42) into (3.19.38)
and performing the integration gives

2
{ZTI} Iltp
-£

BT

W, =0.1781whoc,L(P - P o +1)

(3.19.43)



Eq.(3.19.43) can be simplified by noting
that

T
5 -8_ (3.19.44)

Substituting Eq.(3.19.44) into (3.19.43)
gives

o {28
W, =0.1781hy, LB~ P. )1-32 ¥ ]W}

] n+1)

(3.19.43)
3.19¢
P=5000 psia
P,, =4800 psia
¢p=4x10"%psi’!



Cy=4x107° psi-!

w=15000 ft

L =10 miles = 10x5280 = 52800 ft
h=100 ft

k=800 mD

u=1lcp

0 =0.35

t =3 years =3 x 365 x 24 =26280 hrs

=4x107°+5%107° =9%107° psi-!

(0.0002637)(800)(26280)
27 0. 3:)(1)(%1{1“‘5)(525{111}

Substituting numerical values into Eq.

(3.19.43) gives



W, =(0.781)(5000)(100)(0.35){ 9107 (52800)(5000 - 4800)

8
x [1——2(0.21[}618+9.l}6x 104]]:2.456x105 reservoir barrels
n



PROBLEM 3.20

3.20a

The initial-boundary value problem to
be solved consists of the following
equations. The partial differential
equation is

d*P  quc, OP

—= 3.20.1

dx’ k ot l[ }
The 1nitial condition 1s

P(x,0)=P (3.20.2)

The internal boundary condition is

P(0,t)=P, (3.20.3)



The external no flow boundary condition
is

lim P(x,t)=P (3.20.4)

x—3on

3.20b
It is convenient to define a new
dependent variable as

p(x,t)=B—P(x,t) (3.20.5)
Let

k
o=— {3.20.6)

duc,

Substituting Eqgs.(3.20.5) and (3.20.6)
into Egs(3.20.1), (3.20.2), (3.20.3), and




(3.20.4) gives

-g;%: ﬁ*%ﬁi (3.20.7)
p(x,0)=0 (3.20.8)
p(0,t)=P—-P, (3.20.9)
lim p(x,t)=0 (3.20.10)

X=Foo

The initial-boundary value problem can
be solved by Laplace transform. Taking

the Laplace transform ofEq.(3.20.7)
gives



L (x,[‘l]+*§ﬁ (3.20.11)

Substituting Eq.(3.20.8) into (3.20.11)
and rearranging gives

———p=0 3.20.12
HP ( )

The solution of Eq.(3.20.12) 1s

?(xss}=Ae-xE+BeI‘E (3.20.13)

To satisfy Eq.(3.20.10) requires that B =
0. Eq.(3.20.13) becomes

(x;5)= Ae-IJ; (3.20.18)



Taking the Laplace transform of Eq.
(3.20.15) gives

P-P
¥ (3.20.15)
5

p(0;5)=

Substituting Eq.(3.20.15) into Eq.
(3.20.14) gives
B=P

A=—— (3.20.16)
s

Substituting Eq.(3.20.16) into (3.20.14)
gives the solution as

_ 1 =
p(x;s)=(R—P,)-e Y@ (3.2017)
5
Taking the inverse Laplace transform of
Eq.(3.20.17) gives




p(x.t)=(P-P, )mfc(ﬁ] (3.2018)

Substituting Eq.(3.20.5) into (3.20.18)
gives the solution as

P(x,t)=P-(P —Pw]eﬁc(ﬁJ (3.20.19)

Substituting Eq.(3.20.6) into (3.20.19)
gives the solution as

P(x,t)=P-(P- ]eg{c[,ﬂm fr ] (3.20.20)

Eq.(3.20.20) can be written in oilfield
units as




P(x,t)=P —(H—Pw]eg’c[,'%] (3.20.21)

3.20c¢
FIGURE 3.20.1 shows a sketch of the
pressure profiles.
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FIGURE 3.20.1 Sketch of pressure profiles.

3.20d




The cumulative water influx is given by
W, =] qdt (3.20.22)

Darcy’s law in Darcy units gives

q(t)=——, x=0 (3.20.23)

Differentiation of Eq.(3.20.19) gives

2
aP 2 df x )=
—lpap e dat (3.20.24)
dx (7 ”}xﬁdx[h@}e

Substitutingx = 0 into Eq.(3.20.24)
gives

' 3.20.25
0x Nm Jai R



Substituting Eq.(3.20.25) into (3.20.23)
gives
t)= el (3.20.26)
e

Substituting Eq.(3.20.26) into (3.20.22)
and performing the integration gives

kwh t

W,=2—(B-P,),|— (3.20.27)
T o,
Substituting Eq.(3.20.6) into Eq.

(3.20.27) gives the cumulative water
influx in Darcy units as

1/2
W, =2wh(R;‘" )[%*k) Jt (3.20.28)



Eq.(3.20.28) can be written in oilfield
units with 7 in hours as

112
W, =3.263x10"wh(P, -Pw][ff‘—ﬁf] Jt (3.2029)
i

3.20e

P=5000 psia
P,,=4800 psia
cp=4x 1076 psi-!
c,,=4x1075 psi!
w = 15000 ft

h =100 ft
k=800 mD

pn=1lcp
g=0.35



t =3 years =3 x 365 x 24 = 26280 hrs
C=4x1070+5%1070=9%10° psi-!
Substituting numerical values into Eq.

(3.20.29) gives

35 -4 11
Hi:(3_263><m-s)(suonj{mn)(smo-won}[i__"j’_illﬂ_ﬁ@J "

V3% 365% 24 =2.655%10° reservoir barrels



PROBLEM 3.21

The Navier-Stokes equation in Cartesian
coordinates 1s given by

av&ww s oy }?y).”ag_:_ 3P+ 'y, +dlv dz
oy T R e T

(3.21.1)

For 1D flow in the x direction and

negligible gravity effect, Eq.(3.21.1)
simplifies to

dP v,
wd;- = U 7 = constant (3.21.2)

The no-slip boundary conditions at the
walls are



v, =0,atx=0 (3.21.3)

v, =0,atx=w {(3.21.4)
Integration of Eq.(3.21.2) gives

v, = [dP]z +¢z+c, (3.21.5)
2u\ dx

Application of the boundary conditions
gives

dP
c;=0and ¢ = 0 {3.21.6)

20 dx

Substituting Eq.(3.21.6) into (3.21.5)
gives



1 dP
v, =——I|2 —wz]

3.21.7
T (3.21.7)

The volumetric flow rate is given by

q=B[jv.dz (3.21.8)

Substituting Eq.(3.21.7) into (3.21.8)
gives

B (dP\.w 2
qzﬂ(ﬁ)j” (22 ~wz)dz (3.21.9)
Integration of Eq.(2.21.9) gives

(dP) 2w B[dp] W ow ] B
qz,udx Zuzudx 2| 1pdx

(3.21.10)




Eq.(3.21.10) can be written as

_wAdp
121 dx

=

3.21.11)

where 4 1s the area normal to flow.
Darcy’s law is

kA dP
g=——— (3.21.12)

U odx

A comparison of Egs.(3.21.11) and
(3.21.12) gives the permeability as

2
W

12

k= (3.21.13)



PROBLEM 3.22

3.22a

FIGURE 3.22.1 shows the fractured
medium. For flow in the x direction, we
have linear systems in parallel. The
average permeability in the x direction
is given by

SkA  Tk,A,+Ik A
ks = (3.221)
Zﬂ Am+AJ-




FIGURE 3.22.1 Fractured dolomite (not to scale).

For the matrix,



k,=20x107 x9.869x10° =1974x10™ cm?

100-0.20

2
PR AV I =( ) =2490x10° cm?
A =A+A+A+A,=4x2490%10° =9.960x10° cm?
Sk,A, =(1974x107")(9.96x10”*}=1966x10" et

For the fracture,



w=2 mm

- w? _(020)°

= =3.333%107 cm?
' 12

A, =(100)(0.20)=20 cm?

100-0.20
2

A=A, =( )(n.zu}: 9.980 cm?
Ay =As+ A+ A =20+9.98+9.98=39.96 cm?
kA, =(3333%107)(39.96)=0.1332 cm*

Substituting numerical values into Eq.

(3.22.1) gives



-
o 1.96x10 3+I[].lf,'n32 ~1332%10°° cm?
9.96x10° +39.96

 1.332x10°°

- 9.869%107° SARaD

From symmetry, k, = k,. Examination of

the FIGURE shows that in they
direction, we have linear media in series
and in parallel. The media above and
below the fracture are in series. These
series media are then in parallel with the
horizontal fracture. Thus, we will
calculate k, in two steps. First, we

calculate the segments in series and then
combine them in parallel with the
horizontal fracture to calculate k. The

average permeability of the linear media



in series above and below the horizontal
fracture is given by

ks L = k {3.22.2)
S L L, PP
k" krrtl k_f kmz

Substituting numerical values into Eq.

(3.22.2) gives

100
k = =1978x10™" cm?
a7 4990 0.20 4990

1.974x10™  3333x107 1974107

The series media above and below the
horizontal fracture can be combined in
parallel with the horizontal fracture to
obtain ky as



kA, +kAs+k A,
7T A+A A,

(3.22.3)

Substituting numerical values into Eq.

(3.22.3) gives

(1978107 )(4990)+ (33333107 ) 20) +{1.978 x10™ | 4990)

4 4990+ 20+ 4990
6.666%10°
=6666X10 cm'= —=6755D
6910
k, :k:, =6755D
3.22b

Before fracturing, the porous medium
was homogeneous and isotropic with
respect to permeability. After fracturing,
porous has become heterogeneous.
Because there are more fractures in the x



direction than in the y and z directions,
the porous medium also is anisotropic
with respect to permeability.



PROBLEM 3.23

3.23a

= 100 100
k 5 — D
(x.9) {ma 100 }m

Examine the permeability tensor in the
principal axes of the anisotropy.



Xy T My
1 2k 1 2X100 ) 1
f=—tan| —2 =—tan'1[ = ]=‘(90°]=45”
2 kamky ) 2 100-100) 2
:kn+k” ko —k

yy ;
i : + : c0326+kxysm?.ﬂ

1004100 100-100 2 g
= t 3 ¢0s90° +1005in90

2
=100+0+100
=200 mD
k.+k, k.-k
vy = il St W:osZH—kxysinZB
2 2
1004100 100-100 : 5
= : c0s90" =100sin90
=100-0-100

=0mD



When viewed in the axes of the
permeability anisotropy, the
permeability tensor is given by

e

No. The reservoir is not isotropic
with respect to permeability. It is
anisotropic because k.7 k. .
FIGURE 3.23.1 shows the porous
medium in the principal axes of the

anisotropy.




/

/

A
/

e
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\

FIGURE 3.23.1 Porous medium in the axes of anisotropy.

3.23b

The permeability along the bedding

plane 1s k.., = 200 mD.




PROBLEM 3.24

= 100 0
k(x’y):[ 0 mﬂ}mb

The directional permeability along the
direction of flow can be determined
graphically with the equation

oI S (3.24.)

or

2 +y2=10° (3.25.2)



Eq.(3.24.2) is the equation of a circle of
radius 10 units. FIGURE 3.24.1 shows
the permeability ellipse which in this
case 1s a circle.

y
|10

FIGURE 3.24.1 Permeability ellipse.



The reservoir 1is isotropic with
respect to permeability. All orthogonal
axes are principal axes of the
permeability tensor. The permeability
ellipse degenerates into a circle for an
isotropic reservoir.



PROBLEM 3.25

3.25a
The hydraulic conductivity tensor for the
aquifer is given by

K(x, y):[ 2;] 1?1 jmetersfday (3.25.1)

Darcy’s law is

v==K-Vh (3.25.2)
11.5-10)/(300-0

| ( )/(300-0) _| 0005 -
(84-10)/(200-0) -0.008




[VH=+/(0.005) +(-0.008f =00094 m  (3:254)

Substituting Egs.(3.25.1) and (3.25.3)
into (3.25.2) gives

2 foos | 20| 6
6 10 | -0008 6 10
| -0052

m/da 3.255
0.050 Y —

The Darcy velocity vector lies in the
second quadrant and makes an angle o
with negative x-axis given by

0.050
o=tan"’ {m]=mn“(n5ms]= 43.88°

It makes an angle 6 with positive x-axis



given by
f=180-43.88=136.12"

3.25b

The hydraulic gradient vector lies in the
fourth quadrant and makes an angle
with the positive x-axis given by

B=tan™ (-g%]=tan'l(l.ﬁﬂ}=5?.99°

The directional hydraulic conductivity in
the direction of flow is given by

Ky= M_____ 00l
|Vh|cos(B—cr) (0.00943)cos14.11

3.25¢



Let one of the principal axes make an
angle 0 with the positive x-axis given by

1 4 2K 1 2x6) 1 ; .
f=—tan” ¥ l=—tan '(—]=~[5{}.19 ]=25.10
2 K'M—KU 2 20-10/ 2

The other axis is 90° away.

3.26d



K_+K K_-K
= Hz L Hl }Tc0523+K@sin23

20410 20-10 . =
= = + 5 c0550.19" +65in50.19

=1543.20+4.61
=22.81 m/d

K

HE T

K, = Katlpy XaRy cos26- K., sin26
2 2
20410 20-10
- &
=15-3.20—4.61

=7.19 m/d

¢0s50.19° —6s5in50.19°




PROBLEM 3.26

3.26a

E(x.,ﬂ{

Darcy’s law:

100
50 200

50

20
o
20
dy

oo

-

{3.26.1)

Substituting numerical values into Eq.

(3.26.1) gives



-0.154
0.005

e | 1] o1 00
v, | 15| 065 02

\ﬂ:\."ﬁ—%:tj'{l.moxm* V' +{4467%10* ) 11043107 ens

1010107
B cm/s
4467x10°

3.26b
The angle between the flow direction
and the positive x-axis is given by

-3
a:mn"’{fl]=tan“l{4'46?)(1° ]:tan"l(OMZZ}:ZJ.Sé’

v 1010x107

x

3.26¢

The angle between the flow direction
and the direction of the potential
gradient is given by



7.V0  (1010x107%i+4467x107 j)-(-0.1541+0.005 )

COSﬁz\ﬂl'f"l’l ) (1104102 (0.1541)
=-09010
p=15428
3.26d

The angle & that one of the principal
axes (u#) makes with the positive x-axis
is given by

2k
R o 8 :lzm"[ﬂ]izml{-&mﬁ)
2 \kek, | 2 \100-200) 2
=-205

The other principal axis (v) is 90° away
and makes an angle of 67.5° with the
positive x-axis.



3.26e
The principal values of the permeability
anisotropy are given by

k., +k, k. -k
. p TNy .
K > + > c0s26 + K, sin26

1004200 " 100-200

2
=150-35.36-35.55

=7929mD
_katky ko=k

2
100+200 100-200
= = o

2 2
=150+35.36435.55

=22071mD

cos(~45° ) +50sin(~45°

Y 0526 —KU sin26

Ui

s(~45° )} -50sin(~45°)

Parts (e) and (d) also can be solved by



linear algebra as follows:

e 100 50
50 200
The eigenvalues are given by

det 100-A4 S0 =
50 200-A

(A—100)(A—200)-50* =0

A2 =300A+17500=0

4300 +4/300% - (4)(1)(17500)

2

A, =k, =79.29mD
A, =k,, =220.71 mD



The principal axes of the permeability
anisotropy are given by the eigenvectors
of the permeability tensor.

[t a5 H]

For A =79.29 mD

2071 50 x || o0
30 12071 y 0
20.71x+ 50y =0
50x + 12071y =0

The eigenvector is given by



E_[ ~50/20.71 }_[ ~2.4143 ]
1 I

This eigenvector makes an angle fu with
the positive x-axis given by,

tanf = =-0.4142

-2.4143
0=-225°

For A, =220.71 mD

-12071 50 x | [ o
50 -20.71 y || o

-120.71x+50y =0
50x—20.71y=0

The eigenvector is given by



.ﬁ_[ 50/120.71 ]_[ 0.4142 ]
1 1

This eigenvector makes an angle v with
the positive x-axis given by,

tanf= 1
0.4142

=2.4142
6, =67.5°
3.26f
Y =180—-a=180-154.28=25.72

The directional permeability in the flow
direction is given by

L (15)(1.104x10°%)
Y |Vg|cosy _[0.1541)c05(25.?2")

=0.1193 D



The directional permeability in the
direction of potential gradient is given
by

=0.0969 D

|  pfloosB (15)[1104x107 cos( 25,72
7 0.1541

The directional permeabilities also can
be calculated as follows. The
directional permeability in the flow
direction is also given by



1 _cos’f sin’f
ky ko k
_ cos’(23.86'+22.5") _ sin’(23.86"+22.5")

= + =0.00838
79.29 220.71

ky=1/0.00838=119.33 mD

The directional permeability in the
direction of the potential gradient is
given by

kdp =k cos’@+k sin’d
= 79.29c05(46.36° +15428°)4.220 715in’ (4636" +154.28°)
=96.86 mD

The permeability ellipse in the flow
direction is given by



k, = 79.29 mD; k, = 220.71 mD

2 F
i ¥

+ =1
79.29 220.71

(3.26.2)

The permeability ellipse in the flow
direction is shown in FIGURE 3.26.1.




-0 - '

FIGURE 3.26.1 Permeability ellipse in the flow direction.

The permeability ellipse in the direction



of potential gradient is given by

2
u’ v

+ =1
1/7929 1/220.71

(3.26.3)

The permeability ellipse in the direction
of the potential gradient is shown in
FIGURE 3.26.2.




.15 -

FIGURE 3.26.2 Permeability ellipse in the direction of the
potential gradient.



PROBLEM 3.27

Method 1.

Based on Darcy’s Law  for
Homogeneous and Anisotropic Porous
Media.

Given:
— 179 54
klx,v)l= D 3.2711
(I}’)[M EI}H (3.211)
3.27a

One of the principal axes of the
permeability anisotropy makes an angle
? with the positive x-axis, where 7 is
given by Eq.(3.257) in the text as



2k
0=tan”'| —2— :tan"’( i ):tan"l{{l.9153l
h=ky 179-61

(3.21.2)

The other principal axis makes an angle
? with the positive x-axis given by
20=4247"
8=212%
3.27b
One of the principal values of the

permeability anisotropy is given by Eq.
(3.249) in the textbook as

f=2123+90=1112%"

Substituting the numerical values into

Eq.(3.27.3) gives



-k
k=22, HZ 2c0s20+k,,sin26  (3:213)

The other principal value is given by Eq.
(3.253) in the text as

_179+61 i 179-61

k, - cos42.47" +54sin42.47°
=120+43.5217 +36.4596
=199.98 mD

Substituting the numerical values into

Eq.(3.27.4) gives

ktk, [ke=k; ‘
k= = 5 cos20-k,,sin20 (3214)

The permeability tensor when viewed in
the principal axes of the anisotropy is



given by

79+
ku:“g 6l
2
=120-435217-36.4596
=40.02 mD

( ! 7’92‘ il )cos 4247 -545in4247"

3.27¢

The flow direction makes an angle of
+45° with the positive x-axis where
anticlockwise rotation is positive and
clockwise rotation is negative. The flow
direction makes an angle of 45° —21.23°
= 23.77° with the positive u-axis. The
directional permeability in the direction
of flow is given by Eq.(3.272) in the text
as



= { 19998 0

k(u,v)= o ki ]mD (3.21.5)

Method 2.
Based on Linear Algebra.

1 cos’2377° . sin”23.77°

—= =0.004240.0041=0.0082
ky 19998 40.02

1

ky =——=12127 mD
00082

3.27b

The principal values of the permeability
tensor are given by the eigenvalues of
the tensor. The characteristic equation is

-

179-4 54 |_ 11-2401+8003=0  (3.276)

det
54 61-1 |



240+ /2407 —(4)(1)(8003)

A=
2
A, =199.98 mD
A, =40.02 mD

3.27a

The principal axes of the permeability
anisotropy are given by the eigenvectors
of the permeability tensor. For A=
199.98 mD, the homogeneous equation
to be solved for the eigenvector is

—20.98 24 ¥ 1 0
54 —138.98 y 0



This gives the eigenvector associated
with A; =199.98 mDas

) [ 25739 ]
= 1

tan@= = 0.3885
2.5739

0=21.2%

For A, = 40.02 mD, the homogeneous
equation to be solved for the eigenvector

1S
13898 54 X . 0
54 20.98 ¥y 0

This gives the eigenvector associated



with A,=40.02 mD as

_( -03885 )
Y=
1)
1 ;
tano = =-2.5739
~0.3885
0 =—68.77°

where a is the angle the second principal
axis makes with the positive x-axis. It
can be shown that both eigenvectors are
orthogonal as they should be.

3.27¢

The square root of the directional
permeability in the direction of flow is
is given by the intersection of the line in



the direction of flow with the
permeability ellipse. The equation of the
line along the direction of flow 1s

v=tan21.23'u (3.27.7)

The equation of the permeability ellipse
1s

2 2
{1 v

+ =1
199.98  40.02

{(3.27.8)

SolvingEqgs.(3.27.7) and (3.27.8)
simultaneously gives




u’=101.57
v =19.69

Jki =i +v? ={10157+19.69 = 12126

kdf =121.26 mD




PROBLEM 3.28

3.28a
Given:
1#_1__ T
u| S s (3.28.1)
vy 1.0x10™
_ a -
dx ~0.001
B_P —! 0,002 ]atm!u.m (3.28.2)
dy

Apply Darcy’s law to obtain



v, 1| ke 0 || 3x
e T (3.28.3)

Substituting the numerical values into

Eq.(3.28.3) gives

20x107 |_ 1| ke O
1| 0 k,

-0.001
1.0x107 {

] (3.29.4)
-0.002




1.0x107° =0.002k,
k. =20x107/0.001=0.020D =20 mD

2.0%107° =0.001k,,

k,, =1.0x 107° /0.002 =0.005D =5 mD

The permeability tensor 1s given by

= 20 0
k[x,y)=[ 0 5 ]mD
3.28b

The Darcy velocity vector makes and
angle a with the positive x-axis given by

v 1%107
a=tan!| 2 =t X1 | (050)= 26,565
v 2x10

X



3.28¢
The directional permeability in the flow
direction is given by

| cos’(26565') sin’(26565)
= 1-0.04+004=008
) 5

ky=1/008=125mD
The pressure gradient vector lies in the

third quadrant and makes an angle #with
the negative x-axis given by

—0.002
¥= tan"(_ﬂﬂm ]z tan'(2.0)=63.435"

The directional permeability in the
direction of the pressure gradient is



given by

ki, =20cos*(63.435° +180° )+ 5sin’(63.435" +180°)
=40+40=8mD

3.28d



x'x’

_hnthy  kak

»

+
2

cos20 + ny sin260

2045 20-5
= +
2
=12.50-3.75

=16.25mD

305(6[)" ) +0

2045 20-5

i3 .
cos280—-K 4y SiN 28

c05(6D° ) -0

2
=1250-3.75

=8.75mD

k
2 )sm 20+k,, cos26
2 1

=—(E)m(ﬁu")+n



The permeability tensor in the new
coordinate system is given by

E(x1y|}= 16125 "‘6.5{} ]’]_'[D
—6.50 8.75



PROBLEM 3.29

3.29a
Darcy’s law gives

Vx XX Xy xz
1

V)‘ :'""u* kyr W kyz

V. k k

(3.29.1)

Substituting the numerical values into

Eq.(3.29.1) gives



020 005 004 | -015
Y = 005 015 003 | 005
v, “| 004 003 010 | 040

7667x107
=| -8000x10” |cm/s
~2367x107

V= ViV +V]

=J[7.667x1(}'3)z +{-8000x10° )" +(-2367x107)
=2613x107 em/s

3.29b
The angles that V' makes with the x, y,
and z axes are



v 667x10°
0, =cos" ‘—‘l =cos”' 1087 ]0_2 =729
V] 2613x10

V _ -4
WHH[M]M

Vi 2613x10”
oY L =2367x107 ;
P, =180 ~cos™| =2 =180 ~cos” | ———— [=154
v 2613x10

3.29¢

The principal values of the permeability
tensor are given by the eigenvalues of
the tensor. The characteristic equation is



200-4 50 40
detf 50 150-1 30
40 30 100-4

=23 -4504% +60,0004-2,450,000=0  (3.29.2)
The solution of Eq.(3.29.2) gives

A, =827117 mD
A, =119.5800 mD
A, =247.7083 mD

3.29d

The principal axes of the permeability
anisotropy are given by the eigenvectors
of the permeability tensor. For ?;

=82.7117 mD, the homogeneous
equation to be solved for the eigenvector



1S

1172883 50 0 | x 0
50 672883 30 y |=| 0
40 30 172883 | » 0

This gives the eigenvector associated
with A= 82.7117 mD as

—0.2210
i=| —0.2816
1

li1=(~0.2210)? +(-02816)’ +12 =1.0621

For A, =119.5800 mD, the homogeneous

equation to be solved for the eigenvector
is



80,4200 50 40
50 304200 30

0
=0
40 30  -19.5800 0

L B ]

This gives the eigenvector associated
with A, =119.5800 mD as

—5.2811
[¥l=] 7.6942
1

|| =J(—ﬂ.221{1)2 +(—0.2816)" +17 =1.0621

[71=/(~52811) +(7.6942)" +1* =9.3857

For A3 = 247.7083 mD, the homogeneous

equation to be solved for the eigenvector
is



—47.7083 30 40 X 0
50  -97.7083 30 Y I=| 0
40 30  -1477083 || z 0

This gives the eigenvector associated
with A;=247.7083 mD as

25021
|wl=| 1.5874
1

|| =/(2.5021)% +(1.5874) +1> =3.1274

3.29¢
The directional permeability in the
direction of flow 1s given by



1 cos’a cos’f cos’y

— + +
ky ko ko kK

(2.29.1)



Cosl = V_ﬁ
7l
(7.667 %107 )(~0.2210)+(~8.000x 107" )(~0.2816)+{~2.367 ¥1072 )(1)
(2613x107)(1.0621)

= —0.8325

|‘71|ﬂ
(7.667 107 )(~5.2811)+(-8.000x10™ )(7.6942)+(-2.367 107 )(1)
(2613x107 )(9.3857)

cosfi =

=-0.5125

cosy =—ﬁ
7

(7.667x107)(2.5021)+(-8.000x107 )(1.5874)+(~2.367x107)(1)
- (2613%107 )(3.1274) :

=-0.2103

chosza cos’ B cos’y
ky Kk, k, k,

_ (-0.8325)° _|_(—(L51:a5)z . (-0.2103)
827117 1197083  247.7083

=0.0108

ky =1/0.0108=93 mD






PROBLEM 3.30

3.30a
The porosity of the porous medium is
given by

A
=—= {3.30.)
¢ A
where 4. 1s cross sectional area of the
porous medium occupied by all the
capillary tubes and At is the total cross-
sectional area of the porous medium.

The cross-sectional area of a typical
capillary tube is given by



2
w0

; (3.30.2)
4

There are five capillary tubes with
diameters J;, d,, 03, 94, and J5. From the
given data, 6,= d;3 = J,= J5. Thus the
cross-sectional areas of the capillary
tubes are given by

8!
Aﬁij (3.30.3)
52.
%:%=m=%=:i (3.30.4)

The cross-sectional area occupied by the
all the capillary tubes is given by



1 2
A=A+A+A+A A, —%w{’f ] (3305)

The total cross-sectional area of the
porous medium is given by

no;
—— (3.30.6)
4

where 77 1s the diameter of the porous

medium. Substituting Egs.(3.30.5) and
(3.30.6) into (3.30.1) gives

{3.30.7)

Substituting numerical values into Eq.

(3.30.7) gives



24457 6 +(4x3’
gLty (45) o oo
o7 50°

3.30b
Darcy’s law applied to the porous
medium gives

Gr = hi[ ,g};{-’ (3.30.8)

Eq.(3.30.8) can be solved for the
permeability as

k — QTJ'-IL
A AP

{3.30.9)

Hagen-Poiseuillie’s law for a typical
capillary tube is



5! AP

| = (3.30.10)
% 128u L
The contribution to flow by each
capillary tube is given by
1
q, = 8 AL (3.30.11)
1284 L
nd, AP
o 3.3012
h=0:=94=9= 1284 L ( )
The total flow rate is given by
?1'(5?-!-45;)3}'
=g t9tq: 19,145 = Tt (3.30.13)

128u L

Substituting Egs.(3.30.6) and (3.30.13)



into (3.30.9) gives the permeability of
the porous medium as

1 (6%+48? J
kz—[ i & (3.30.14)
32\ &7

Substituting numerical values for the
capillary tube diameters in cm into Eq.

(3.30.14) gives the permeability as
] (0.6)* +4%(0.3)*
R 5
=2025x107 em® =2.025%107* /9.869 %10 =2.052x10* D

3.30c
The specific surface area is given by

5=k (3.30.15)
V!ﬁ



where 4, 1s the surface area of all the

capillary tubes and Vb is the bulk
volume of the porous medium. The
surface area of a typical capillary tube is
given by

A,=nd.L (3.30.16)

where L is the length of the porous
medium. The surface area of each
capillary tube is given by

A, =mb,L (3.30.17)

A,=A,=A,=A.=nr,L (3.31.18)

The total surface area of all the capillary



tubes is given by
A=AgtA A tA +Ag=n(6+46,)L  B30)

The bulk volume of the porous medium
is given by

V.= (3.30.20)

Substituting Eqs.(3.30.19) and (3.30.20)
into (3.30.15) gives the specific surface
area as

9_4(51+452)

3.30.1
5 (3.30.21)

Substituting numerical values into Eq.
(3.30.21) gives the specific surface area



as

\)

_ 4(0.60+4x0.30)
= =

=0.288 cm?/fcm?



PROBLEM 3.31

3.31a

The porosity of the porous medium is
given by

A
=—==0.20
¢ A

3.31b

Eq.(3.153) in the textbook gives the
equation for calculating the permeability
of a porous medium from the probability
density function of the pore throat size
distribution as



=2 {j{f{ﬁ)é"dﬁ} (3.31.1)
32t | f(8)8°dé

For the triangular probability density
function,

S,  oEb<iopm
f6)=4" (3.312)
30-28
—=, 1086515 m

Now



i) f(Op*do=] (5 do+];

0
b 75

- 10

1|8%] 30/8°
=—|—]| $—|—
756, 755

f(0)3*dd

6]5 i [15(30 20 s

75

15 15
10 75 6 10

=2222.22+52750-46180.56

=8791.66 im’

I f(o)%ds =]y f(6)%ds+],;
U 0
75

_54 75| 3

10

Slda “'15(
75

167" 30[53

" f(5)%dd
x )y

15 s
ol

=33.33+316.67-270.833

=79.167 pm’

(3.31.3)

(3.31.4)



Substituting Eqs.(3.32.3) and (3.31.4)
into (3.31.1) gives

_(020)(8791.66)
~ (32)(76.167)

=0.694 um’ =6.94x10™ m* =6.94% 107" /9.869 %107 -
=07032D



PROBLEM 3.32

Eq.(3.153) in the textbook gives the
equation for calculating the absolute
permeability of a porous medium from
the probability density function of the
pore throat size distribution as

__¢ | f(8)8"ds
327| | f(8)6%dS

{3.32.1)

Eq.(3.154) in Example 3.4 in the
textbook shows how this equation can be
used to calculate the permeability in the
case of a triangular probability density
function. This worked example can
easily be adapted to solve the problem



at hand. For the right triangular
probability density function,

53:52
0,=0

f(é) =fl(5)=§—fu (3.32.2)

Substituting Eq.(3.32.2) into (3.32.1)
and simplifying gives the permeability
as

da 25 g2
k=2 f,_;,j el (3.32.3)
32t| |26°dé

Performing the integrations inEq.



(3.32.3) and simplifying gives

] o

321‘[ TE 48T

0

(3.32.4)

For this problem,

g=0.05

7 =1 because the capillary tubes are
straight.

5, =8x10""m

Substituting the numerical values into
Eq.(3.32.4) gives the permeability as



(0.05)(8x10° 6667107
_{—}_666 7X10 m =————— =0.0676 D
(48)(1) 0.869%107™

The function f{(?) also can be derived as
follows.

f,(8)=md (3.32.5)

where m is the slope of the line.

m=— (3.32.6)

where /4 is the height of the right triangle
ato = 0, Because the area of the
triangle is 1.0 since f{0) is a probability
density function,



{(3.32.7)

(3.32.8)

{3.32.9)

(3.32.10)



PROBLEM 3.33

3.33a
Given
AP= f(m,p,r,5.1,L. k) (3.33.1)
G =n (3.33.2)

The dimensional matrix can be derived
by inspection and shown in TABLE
3.33.1.



TABLE 3.33.1 Dimensional Matrix

B q rp r;p L. k AP
X X3 X3 Xy X5 Xg X7

M| I 0 0 0 0 0 1
L|-1 3 1 1 [ 2 =]
T|-1 -1 0 0 0 0 -2

3.33b
The determinant of the following 3x3
submatrix is

1 0 0
det| -1 3 1 [=1#0
-1 -1 0

Thus, the rank of the dimensional matrix
is 3. The number of independent
dimensionless groups is 7-3 = 4.



3.33c¢
The homogeneous linear equations can
be solved by row operations as follows.

rowl [ 1 0 0000 1 |
e Lol 3 103 1 2l
owd | =1 <1 0000 -2
10000O0 1|

rowl+row2 [ 0 3 1 1 1 2 0
. —— 0 4111 21 |

1 00000 1

row3 —row2 01 000O0O 1
drow2 - 3row3 001112 -3 i

The solution is



Xy ==X
.753=—;v::4—.:'55—2:'554—3:#:T (3.32.3)
Xs=Xs
Xg=Xg
X =Xq
Eq.(3.33.3) can be written as
X

K xl 0 0 -1

q 1 0 0 0 -1

r1 Xy wl -1 g 3

5 0 l=] 1 A 0 e 0 [ 0 g
L 1, 0 1 0 0

e || 0 1 0
i . 0 0 0 1

(3.33.4)



3.33d
The dimensionless groups can be

derived from Eq.(3.33.4) by inspection
to obtain

Gz —-E (3.33.5)
f
L

G,== (3.32.6)
h
k

G,=— (3.33.7)
h

_RAP

(3.33.8)



3.33e
From Darcy’s law,

Ap=IHL (3.33.9)
knr,

Eq.(3.33.9) can be derived from the
dimensional analysis as

G, = ‘ (3.33.10)



PROBLEM 3.34

Let Vb be the bulk volume.
Before acidization,

¢, =0.26
k,=100 mD
V,=(1-¢)V, =(1-0.26)V, =0.74V,

The volume of the solid is distributed
among the minerals as follows:

Calcium carbonate = (0.05)
(0.74Vy) = 0.0370V,,
Orthoclase feldspar = (0.04)

(0.74Vy) = 0.0296,,
Kaolinite (clay) = (0.09)(0.74V,) =



0.0666V,

Quartz = (0.82)(0.74V,) =
0.60687V,

After acidization, the new solid
volume 1s distributed among the
minerals as follows:

Calcium carbonate=0

Orthoclase feldspar = (1 — 0.45)
(0.0296V,) = 0.0163V,

Kaolinite (clay) = (1 — 0.78)
(0.0666V,) =0.0147V,,

Quartz = (1 — 0.07)(0.6068V}) =

0.5643Vy,
v, = (0+0.0163 +
0.0147+0.5643)V, = 0.5953V,, =(I—
0.4047) V,,

? =0.4047



| k (u.mq?

100 \ 026
k=377 mD

3
| —37m24



PROBLEM 3.35

3.35a
FIGURE 3.35.1 shows a sketch of the
flow arrangement.

(2 (N P=1am
i Cm\( ‘[?5 cm
q—{ 1mD ‘ 10mD q
15¢m - 15cm

FIGURE 3.35.1 Single-phase steady state flow experiment
in a composite core.

3.35b



Darcy’s law gives

—_Ed_P (3.35.1)
EEz—gE (3.35.2)
dx kA

Integration of Eq.(3.35.2) for the 10 mD
core gives

P=- l"ir'[lt:lc‘+ii, (3.35.3)
kA

where C; 1s an integration constant.

Application of the boundary condition at
the end of the 10 mD core gives



U
1=—%{15]+{:1 (3.35.4)

qu
C =1+-(15 (3.35.5)
: kA( )

Substituting Eq.(3.35.5) into (3.35.3)
gives

P{x]=l+%[15—x) (3.35.6)
Given:

k=10mD =0.010D
A=20cm?

=5 3h=(
g=5cm’ /hr T

5
) cm’ /s
00

u=1lcp



Substituting numerical values into Eq.

(3.35.6) gives

P[x]=l+(5 "360“}[1](15-x)=1+6.944)<10"3(15-x)L

(0.010)(20)

(3.35.6)
Atx=7.5cm,

P(75)=1+6.944x107(15-7.5)=1.0521 atm
P(7.5) 4y =0.0521 atm

Atx = 0, the pressure at the junction of
the two cores is given by

P(0)=1+6.944x107(15-0)=1.1042 atm

Application of Darcy’s law to the 1 mD



core and integration gives

p=-£,.c, (3.35.7)

where C, 1s an integration constant.

Application of the boundary condition at
the end of the 1 mD core gives

u :
1.1{:+-=,tz=-ii'k-ﬂ-;{l5)4-{,2 (3.35.8)

& _.11ﬂ42+q”( 5) (3.35.9)
kA

Substituting Eq.(3.36.9) into (3.35.7)
gives (3.35.10)

P(x}:l.lﬂﬂiz-i-g(ﬁ—x] (3.35.10)



k=1mD=0.001D

Substituting numerical values into Eq.

(3.35.10) gives

P(x)=1+Wﬂ)(m-x):l+5.944x10‘1[15-x}
(0.001)(20)
3.351)
Atx=7.5cm,

P(75)=1.1042+6944 X107 (15-7.5)=1.6250 atm

P(7.5) e = 06250 atm



PROBLEM 3.36

3.36a
The transformation equations are as
follows:

k =, Jkk, =+/20x5=10 mD

X=x E—xJE—i
k, 20 2

. 2000 .
L =—t=""=14142 fi

L—
J2 42



Ly 100

L,=—F=—==707f
R

kK 10
1": — — 2
.v../kx :ﬁ/ : y

L, =L 2 =20002=2828.4 ft

3.36b
The transformed 5-spot pattern is shown
in FIGURE 3.36.1.
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FIGURE 3.36.1 Plan view of transformed 5-spot waterflood
pattern,

3.36¢
The circular wells are transformed into
ellipses as



Xl Yl

- 2+ — 2
"Wk, | ™k,
Substituting numerical values into Eq.

(3.36.1) gives

b i Y?
+ =1
(0.18)*  (0.35)°

=1 (3.36.1)




PROBLEM 3.37

3.37aandb
In general, pereability is proportional to
the square of the pore size.

k, >kp because B has smaller pore
size than A due to tighter packing,

k, >k. because C has smaller pore
size than A due to smaller grain size.

k, >kp because D has smaller pore
size than A due to poor sorting.

k, >kg because E has smaller pore
size than A due to very poor sorting.

k4 >k, because F has smaller pore

size than A due to compaction.



CHAPTER 4 SOLUTIONS



PROBLEM 4.1

4.1a

FIGURE 4.1.1 shows the graphs of
permeability, porosity, and water
saturation plotted as logs. The increase
in water saturation with a decrease in
permeability can easily be observed.

4.1b

FIGURES 4.1.2 and 4.1.3 show the
histograms of permeability and porosity.
The permeability distribution is highly
skewed with most of the data
concentrated at low values of
permeability. This observation is




consistent with the fact that permeability
tends to be log-normally distributed. The
porosity data are more evenly
distributed than the permeability data
although there is a tendency toward high
porosities in this case.

4.1c

FIGURE 4.1.4 shows the histogram of
natural log of permeability. The
distribution is more symmetric than that
of permeability confirming the log-
normal nature of the permeability
distribution.
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FIGURE 4.1.1 Graphs of permeability, porosity, and water
saturation versus depth.
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FIGURE 4.1.2 Permeability histogram.
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4.1d

Figure 4.1.5 shows the scatter plot of the
natural log of permeability versus
porosity. The correlation coefficient for



the scatter plot can be calculated as
follows.



_ =e
o=—

=0.1905

>(#,—¢)" =0.0101

>(¢,—0)
$¢ = ﬁ =0.0219

Ink=——=5.5275

¥ (Ink, —Ink )’ =55.8443

‘jz(lnk,.—lnE]z
Sink = ~ 1 =1.6307

3 (¢, —¢ )(Ink, —Ink )=0.5194

5 (¢, —¢ )(Ink, —Ink)

Cllnk,p)= =0.0247
(Ink.¢) e
p(lnk,¢)=7c{1nk’¢] =0.6917
54Sink

R? = p? =0.4785
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FIGURE 4.1.5 Scatter plot of permeability versus porosity.

The correlation coefficient of 0.6917
indicates a strong linear relationship



between the natural log of permeability
and the porosity.

4.1e

FIGURE 4.1.6 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

k=251.52mD
kyy, =251.52¢777% =41.88 mD

i k—ky, 25152-41.88
k 251.52

0.83
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FIGURE 4.1.6 Graph for determination of Dykstra-Parsons
coefficient of permeability variation.



4.1f

FIGURE 4.1.7 shows the graph for
determining the Lorenz coefficient of
variation. The area under the curve can
be obtained by integrating the
polynomial curve fit to the data to obtain

Area=0.8382

Area—050 _ 0.8382-0.50
Area 0.50

=068

Lorenz Coefficient =

Both the Dykstra-Parson’s coefficient of
variation and the Lorenz coefficient
indicate a high degree of heterogeneity.
However, there 1s no numerical
relationship between the two measures
of heterogeneity.
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FIGURE 4.1.7 Graph for determination of Lorenz coefficient
of variation.



4.1g

FIGURE 4.1.8 shows the scatter plot
for determining the variogram for
nonuniformly distributed data obtained
using the algorithm outlined in the
textbook. The experimental variogram
shown in the FIGURE was obtained with
a bin size of 10 meters.
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FIGURE4.1.8 Scatter plot for determination of experimen-
tal variogram for nonuniformly distributed data.



4.1h

FIGURE 4.1.9 shows a satisfactory fit
of the following exponential model to
the experimental variogram:

}f[h}:j[l—e_:]




40

3.8 *

30 . : - :

254,

1(h) 2.0 1 .

154

1.0 + Experimental Variogram == Exponential Model

0.5 1

0.0 T T T T v T o
0 10 20 40 50 g0 70 80

h (m)

FIGURE 4.1.9 Theoretical variogram fit.

4.1i

FIGURE 4.1.10 shows the scatter plot
for determining the covariance function
for nonuniformly distributed data




obtained using the algorithm outlined in
the  textbook.  The  experimental
covariance function shown 1in the
FIGURE was obtained with a bin size of
10 meters.
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FIGURE 4.1.10 Scatter plot for determination of experimen-
tal covariance function for nonuniformly distributed data.



4.1j
FIGURE 4.1.11 shows the correlation
coefficient function, which 1is a

dimensionless version of the covariance
function.
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FIGURE 4.1.11 Experimental correlation coefficient
function.



problem 4.2

4.2a

FIGURE 4.2.1 shows the graphs of
permeability, porosity, and water
saturation plotted as logs. The
permeability, porosity, and water
saturation are fairly uniform except at
the bottom. It may expected that the
various indicators of heterogeneity
(Dykstra-Parsons coefficient, Lorenz
coefficient, the magnitude of the sill of
the variogram) for this reservoir show

be lower than for the reservoir of
Problem4.1.
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FIGURE 4.2.1 Graphs of permeability, porosity, and water
saturation versus depth.



4.2b

figures 4.2.2 and 4.2.3 show the
histograms of permeability and porosity.
The permeability distribution is highly
skewed with most of the data
concentrated at low  values of
permeability. This observation is
consistent with the fact that permeability
tends to be log-normally distributed. The
porosity data are more evenly
distributed than the permeability data
although there is a tendency toward high
porosities in this case.
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FIGURE4.2.2 Permeability histogram.
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FIGURE4.2.3 Porosity histogram.

4.2¢
FIGURE 4.2.4 shows the histogram of
natural log of permeability. The




distribution is more symmetric than that
of permeability confirming the log-
normal nature of the permeability
distribution.
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FIGURE 4.2.4 Histogram of natural log of permeability.

4.2d



FIGURE 4.2.5 shows the scatter plot of
the natural log of permeability versus
porosity. The correlation coefficient for
the scatter plot can be calculated as
follows.




_ e
&=—

=0.2365

(¢, —¢)° =0.0436

E{¢: _5]2
$¢ — ﬁ =0.0363

> (Ink, —In E)z =175.0354

Stnk = JEilﬂkﬁ s}

N—1

=2.3031

(¢ —@)(Ink, —Ink)=1.8760
3(¢:—¢)(Ink, —Ink)

Ink.¢)= =0.05
C(Ink.¢) — 0.0568
p(mk’¢}=M=n_ﬁjg3

e nk

R?>=p? =0.4614



10

. *
6 y=43.062x - 2 8793
R?=04614

T 44
£ : ’

2 4

D 5 T

0.10 0.15 0.20 0.25 0 F'D

2

FIGURE4.2.5 Scatter plot of permeability versus porosity.

The correlation coefficient of 0.4614
indicates a strong linear relationship
between the natural log of permeability



and the porosity.

4.2¢

FIGURE 4.2.6 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

k =3230.25 mD

ks, =3230.2¢"°°" =1839.62 mD

k—ky,, 323025-1839.62
k 3230.25

V= 0.43
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FIGURE4.2.6 Graph for determination of Dykstra-Parsons
coefficient of permeability variation.

4.2f



FIGURE 4.2.7 shows the graph for
determining the Lorenz coefficient of
variation. The area under the curve can
be obtained by integrating the
polynomial curve fit to the data to obtain

Area=0.8382

Area—0.50 0.5921-0.50
Area 0.50

=018

Lorenz Coefficient =



y = 07866 + 14430 - 12430 + 1 57350 + 00133
R* = 09998

Fraction of Tatal Flow Capacity (kh)
e = =T = e — = T~ S

=

=

02 04 06 0.8 1
Fraction of Total Volume (gh)

L= ]

FIGURE4.2.7 Graph for determination of Lorenz coeffi-
cient of variation.

Both the Dykstra-Parson’s coefficient of
variation and the Lorenz coefficient



indicated a low degree of heterogeneity.
However, there 1s no numerical
relationship between the two measures
of heterogeneity.

4.2¢g

FIGURE 4.2.8 shows the scatter plot
for determining the variogram for
nonuniformly distributed data obtained
using the algorithm outlined in the
textbook. The experimental variogram
shown in the FIGURE was obtained with
a bin size of 10 meters.
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FIGURE4.2.8 Scatter plot for determination of experimen-
tal variogram for nonuniformly distributed data.



4.2h

FIGURE 4.2.9 shows a satisfactory fit
of the following exponential model to
the experimental variogram:

u1|:-

'}’{h}=3[1—£
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FIGURE4.29 Theoretical variogram fit.

FIGURE 4.2.10 shows the scatter plot




for determining the covariance function
for nonuniformly distributed data
obtained using the algorithm outlined in
the  textbook.  The  experimental
experimental covariance function shown
in the FIGURE was obtained with a bin
size of 10 meters.
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FIGURE 4.2.10 Scatter plot for determination of experi-
mental covariance function for nonuniformly distributed
data.



4.2j
FIGURE 4.2.11 shows the correlation
coefficient function, which 1i1s a

dimensionless version of the covariance
function.
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FIGURE 4.2.11 Experimental correlation coefficient
function.



PROBLEM 4.3

4.3a
One version of the Carman-Kozeny
equation is

k=-—— {4.3.1)

where S in the surface area per unit bulk
volume of the sample. Assuming
spherical grains,

3(1-¢) _6(1-¢)

¥

S= em?/em’ (4.3.2)

F

whereD, is the grain diameter.



Substituting Eq.(4.3.2) into (4.3.1) and
rearranging gives the grain diameter as

2

DP=J5><35><(31—¢) k %
@

For Sample 10,

$=0.233
k=30mD=0.030%9.869 %10 cm?

Substituting the numerical values into
Eq.(4.3.3) gives the grain diameter as

B 5% 36x(1-0.233)' x0.030x9.869x 10~
! (0.233)°

=15.74x10"* cm=15.74 pm



4.3b

FIGURE 4.3.1 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

k=104.79 mD

kgey =104.79¢ " = 42,52 mD

k—kyy 104794252

V=—=
k 104.79
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FIGURE 4.3.1 Graph for determination of Dykstra-Parsons
coefficient of permeability variation.

43¢



TABLE 4.3.1 shows the data used to
calculate the semivariance at a lag
distance of 3 ft.

¥ [k(x)-k(x+3)]’ =311117
N, =16

311117
= 5 =9722.41

7(3)

TABLE 4.3.1 Data for Calculating
Semivariance at a Lag Distance of 3ft.

k(x) k(x+3)
75 62
20 31
142 98

62 231



31
98
231
111
82
30
258
191
339
263
193
91

111
82
30
258
191
339
263
193
91
173
30
175



PROBLEM 4.4

4.4a

FIGURE 4.4.1 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

k=12295mD

-2.2816

kyy, =122.95¢>%'° =12.56 mD

e k—ky,, 12295-12.56
k 122,95

0.90




y = 122,956 2818

100 R = 0,980
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FIGURE 4.4.1 Graph for determination of Dykstra-Parsons
coefficient of permeability variation.



4.4b

The numerical coefficient that indicates
the strength of the linear relationship is
the correlation coefficient.

2.9

$ =——=0.2081
¢ N

(¢,~¢)" =0.0964

z‘{¢r x E]E
s, =4 —— =0.0587
¢ N-1

YInF

I

InF=———=2.8993
N

¥(Ink,~Ink)’ =9.6534



Z[ln k,—In E)z
S = o =05872

%(¢,~¢)(Ink, ~Ink)=-09030

E(ﬁf’; _E](lnk, ~In E)

C(Ink,p)= =—0.0323
(ink)=————
Ink,
p(lnk,n;v):c(“ ¢)=—{}.9356
S¢SInk
R*=p>=08754

Yes. There is a strong linear relation
between the natural log of the formation
resistivity factor and the porosity.



PROBLEM 4.5

TABLE 4.5.1 shows the data for
calculating the semivariance at a lag
distance of 5 meters.

Y[ Z(x+5)-Z(x)]' =94
N, =10

94

5)]=——=4.7
76) 2x10

TABLE 4.5.1 Datafor h=5m

Z(x) Z(x+5) [ZUx+5)-Z(x)]?
g8 6 4



6 4 4
4 3 1
3 6 9
6 5 1
5 7 4
7 2 25
2 8 36
5 6 1
6 3 9
Total 94

TABLE 4.5.2 shows the data for
calculating the semivariance at a lag
distance of 15 meters.



¥[Z(x+15)-Z(x)]" =80
N,=8

80
15 -=5.0
y(15)= EXS

TABLE 4.5.2 Data for =15 m

Z(x) Z(x+15) [Z(x+15)-Z(x)]*
3 25

0 N U &N W B~ ON X
AN D 0 N 3 L &
[E—
(@)



Total

80



PROBLEM 4.6

4.6a

TABLE 4.6.1 and FIGURE 4.6.1 show

the computed variograms in the E-W, N-
S, NE-SW, and NW-SE directions.

TABLE 4.6.1 Variograms in the Various Directions.

hyh) y(h) h y(h)
(m) (m)

E-W N-§ NE-SW NW-SE

Y (h)

0.0 0.000 0.000 00 0.000
100.0 0.587 0.533 1414 0.892
200.0 0.705 0.738 282.8 0.529
300.0 0.925 0.740 4243 0.632

0.000
0.794
0.782
0.824
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FIGURE 4.6.1 Variograms in the various directions.




4.6b

The variogram is anisotropic.

4.6¢

Yes. The conclusion would have been
different. The variograms in the E-W
and N-S are essentially the same and
would have led to a conclusion of
isotropy. However, the variograms in
the NE-SW and NW-SE directions
clearly show anisotropy.



PROBLEM 4.7

4.7a

TABLE 4.7.1 and FIGURE 4.7.1 show
the computed semivariograms in the E-
W, N-S, NE-SW, and NW-SE
directions.

TABLE 411 Semivariograms in the Different Directions.

EW N NE-SW NW-SE
h N, yh) yh) b N, y(h) y(h
0 0000 0.000 0000  0.000 0.000
| 56 6411 4982 1414 49 7459 7.806
2 48 9490 8750 2.828 36 13.194 13431
340 10.575 10,675 4.243 25 19.280 10,680
4 32 10.547 12.953 5.657 16 18406 12.625




25

FIGURE 4.7.1 Variograms in the various directions.




4.7b

Yes. There is evidence of anisotropy in
the semivariograms in the different
directions. The semivariograms in the E-
W and N-S directions are essentially the
same. The semivariograms in the NE-
SW and NW-SE directions are higher
than in the other two directions at lag
distances greater than 2.

4.7¢

FIGURE 4.7.2 shows the average
semivariograms and their model (fits.
Again, anisotropy 1is evident. The
theoretical model used to fit the data
from the E-W/N-S combination is the
exponential model given by




y(h)=155(1-¢™"*) (4.21)
The theoretical model used to fit the data

from the NE-SW/NW-SE combination 1s
the spherical model given by

}’[h}: 15[5";* *j:ﬁ'] forh<4

=15forh=4 {4.1.2)
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FIGURE4.7.2 Average semivariograms.




PROBLEM 4.8

4.8a

TABLE 4.8.1 shows the data used to
calculate the semivariance at a lag
distance of ¢ in the NE-SW direction.

5[ k(x++2)- k{x}]z = 2352846

N, =12

( 5]3352345
T 2x12

=98035.25

TABLE 4.8.1 Data for Calculation of
Semivariance.



k(x) k(x+h)
47 137
906 1261
1261 1141
415 782
782 1385
1385 917
1365 369
369 484
484 251
413 789
780 482
91 529

4.8b



The strength of the linear relationship
between natural log of permeability and
the porosity for Wells 1 through 5 can be
tested with correlation coefficient.



29,
=21.8000

o=

S(¢—@)" =614.8000

E{*ﬁ‘.—-'ﬁ]z
S¢ = ? =12.3976

S(Ink,—Ink)’ = 4.4761

>(Ink,—Ink)’
Spop = = =1.0578

>(¢,—@ )(Ink, —Ink ) =—9.9043
%(¢.—¢)(Ink,~Ink)

C(lnk,¢)= ~ 1 =—2.4761
p(lnk,¢)= Clinied) —0.1888
So¥nik

R* = p*=0.0356



The correlation between Ink and 6 is
weak. The young engineer’s claim is not
supported by the data.

4.8¢

FIGURE 4.8.1 shows the graph for
calculating the Dykstra-Parsons

coefficient of wvariation for the
permeability of Wells 1 through 5.

k=3134mD

k,, =313.4e 7 =793192 mD

_k—kyy, 3134-79.3192
k 313.4

Vv =0.75



L Walalalsl

5 il 31340
£ 1 R=0946
-.; \
3 100 4 :
E
e 10
1 05 0 05 1

Equivalent Probability

FIGURE 4.8.1. Graph for determination of Dykstra-Parsons
coefficient of permeability variation.



PROBLEM 4.9

4.9a
In terms of the variogram, the kriging
equations are given in matrix form as

Tu To Yo -1 || A Tio
Yu Yo Yo -1 A'l = T (4.9.1)
Yu Yo Tn 1| A £
11 1 0 | B 1]




by =l =k = 0¥ =Y =V =0
hy=hy =Ly, =7, =2+1=3
hs=hy=3;Y3=Y5=2+3=5
hyy=hy,=2,Y, =Y, =2+2=4

by =2:Y,=2+2=4

Ry =1y =2+1=3

hy =1Y3=2+1=3

Eq.(4.9.1) becomes



(035 -1 | 4 4
304 1[4 | |3 —
540 -1 | A 3
1 1 4 ﬂ:“,'l'
The solution to Eq.(4.9.2) is
4 5 7
M= '12 11 "_11"6_'11

The estimate at location 2 is given by

2 4 5

g =
T T

4.9b
The estimation error variance is given
by



42

R T T IO

11" 11



PROBLEM 4.10

4.10a
The ordinary kriging equation to be
solved 1s

Yoo Yac =1 [ s Y54
Ye Y -1 || 4% 7| Ya (4.10.1)
1 1 0 B 1

From the variogram,

Yes=Ycc=0
Yoc=Ycs=Vps =Yca=60

Eqg.(4.10.1) becomes



0 60 -1 | % | [ 60
60 0 -1 | A |[=| 60 (4.10.2)
1 1 0 g || !

=

The solution to Eq.(4.10.2) 1s

The kriged estimate at 4 is given by
@, =A,0, + A0 = - zn}r—{sn]

It should be observed that because there
1s no correlation between the locations,
each location is assigned the same
weight and the estimated value becomes
the arithmetic mean of the measured



values.

4.10b
The minimum error variance is given by

oh =B S AY, = —{—30]+%{60)+%(6D]=90
=]

0, =90 =9.4868

4.10c
The simulated value at 4 is given by

O, =D, +2,0,, =35+(~1.1679)(9.4868)=23.92

Alternatively, this problem can be
solved with the covariance function. In
this case, the matrix equation to be



solved is

Ay

60 0 0
A: |=| 0 (4.10.3)
B 1

1
0 60 1
1 1 0

The solution to Eq.(4.10.3) is
A==, B=-30
The kriged estimate at A4 is given by
@, =A,0; + AP, :%(20}+%(5El)=35

The minimum error variance is given by



=2
o2, =07~ B-¥ AC, =60—(-30)-0-0=90

i=]

0,... =90 =9.4868

emin

The simulated value at 4 is given by

®, =0, +2,0,, =35+(~1.1679)(9.4868)=23.92



PROBLEM 4.11

4.11a

The kriging equation to be solved is
Cuu Cuc 1 Ay i G
Ca Coc 1| A |7 Co (ana
1 1 0| B J 1



h,,=0,C,, =0

hye =hey = 1007 +200°

=2236068; G, = Coj= 200 R0 =9 1576
By =0, G =20
b,y =200, C,, =206 "% =3 7067
hey =100 ft, Cpp =20 ™% =7 3576

Eq(4.11.1) becomes

0 21376 1| A | [ 27067
21376 20 1 || A |=| 73576 (411.2)
1 1 0] B 1



The solution to Eq.(4.11.2) is

A, =0.3698, A.=0.6302, B=—6.0366
The kriged estimate at 4 is given by

ky = Ay +Ack, =(0.3698)(500)+(0.6302)(80)=235.32mD

4.11b
The minimum error variance is given by



=2
Opnn =0 —P- Elicm

=20~(-6.0366)~((0.3698)(2.7067)+(0.6302)(7.3576)]
=203990

0, =1/203990 = 45165



PROBLEM 4.12

Z =Z(x)+2(x,) (4.12.1)

Var [z] Cov] Z{x,)2(x,) |+ Cov] 2(, )2 (x,) |+ Cov] 23, ) 2(x, )
=C(0)+C(100)+€(0)
(412.2)

The variogram is given by the spherical
model

'}’[h)_ 3['5%—'52563] for h< 250 (4.12.3)

=3 for h=2250

From the variogram,



C(0)=0?=3
For a stationary random function,

C(h)=C(0)-y(h) (4.12.4)

100)=3| ~—--—
i00)= (2250 2250° )

C(100)=3-1.704=1.296
Var[ Z']=C(0)+C(100)+C(0)=3+1296+3=7.296

For a pure nugget effect variogram, there
1s no correlation between Z(%;) and

Z(x,) and as a result, C(100) is zero.

Var[z‘]=3+n+3=ﬁ



If the range of influence is 25 m, there is
no correlation between Z(x;) and Z(x,)

beyond 25 m and as a result, C(100) is
zero. The variance of Z* is given by

Var[z’]=3+u+3=5

which is the same as for the pure nugget
effect variogram.



PROBLEM 4.13

The covariance function is given by

C(h)=100e"*"

(4.13.1)

Kriging and simulation at Location S.

The matrix equation is given by

100 438
438 100
568 639
361 278
210 361
1 1

36.8

639

100

428

368
1

36.1 210
278 361
28 368
100 296
296 100
1 1

h

- R = -
' oS (%7

— N

36.78\

67.03
63.94
3406
5313
1

(413.2)



The solution is given by

(%) (—0.0333)
A, | | 03964
A, | | 02964
2, | | 0.0490 i)
A | | 02915
(B ) \-19754)

The kriged value is

. N
Z,.=YAZ =3816

i=1

The minimum error variance is



“min

0, = V40521 = 6.306

The 95% confidence interval is

N
o2 =¢*-B-YAC_ =40.521
i=1

Z, =40.52+12.36
2, =—-0.1411

The simulated value is

Zs=Zy+ 250, i =39.63

Kriging and simulation at Location 2.
The matrix equation is given by



100 4384 568 368 361 2097 1 h) (7536
B3 10 6% 60 279 %607 1 | 72| |48
568 6394 100 6394 4280 3679 1 | M| [7536
368 6703 6394 100 3406 5313 1 | A, |=| 4862
361 2779 4280 3406 100 2962 1 |3 | |4088
097 3607 3679 513 W& 10 1) | |7
1 1 1 1 1 10
gl
(4.13.4)

The solution 1s



(0.4689 )
0.0692
0.4480
-0.0269 (4.13.5)
0.0444
—0.0037

| —0.5444

T R
I

L

The kriged value is

N
Z=SAZ =4114
=1

The minimum error variance is



N
2 ol —
o =0 —ﬁ—gl,.ﬂ,.ﬂ_z:nzq

G, . =V27.24=522
The 95% confidence interval is

Z,=41.14+10.23
z,=1.6092

The simulated value is

Z.,=2,+2,0, ., =49.54

Kriging and simulation at Location 6.
The matrix equation is given by



A (4088
00 753 384 568 367 3607 W97 1Y, |
7536 100 5488 7536 4862 4088 2779 1 ;
B84 5188 100 6394 6203 2779 3607 1 |4 | |4862
568 7536 6394 100 6394 428 %79 1 | M _| 785
3679 4862 6703 6394 100 3406 5313 1 | A | | 6394
%07 4088 279 498 306 100 282 1 4| |51
09 279 60 679 513 B 10 1|, | g
1 1 1 1 1 1 10 1
i
(4.13.6)

The solution 1s



-

(~0.0057 )
0.0236
~0.0597
0.3553
0.2810 (4.13.7)
0.2526
0.1530
(B ) \-05395)

B

The kriged value is

. N
Z,s=2NZ,=3843

i=1

The minimum error variance is



N
ol =06’-B-YAC, =39.783
=1l

Cmin

O, =V39.783=6.307
The 95% confidence interval is

Z,=3843+1236
2,=02029

The simulated value is

Zo=Z 4z o =3971



TABLE 4131 Kriged and Simulated Values.

Location Coordinates Measured Kriged Estimation Standard ~ Simulated

(ty)  Value Vale Variance Deviation  Value

VI
1 Wonss s e
%W
T V|
Y W60 6 Ne
Y N O/ ]
(R TR




PROBLEM 4.14

TABLE4.14.1 h,

{an]




TABLE4.142 h,

|




TABLE4143

1 1

—% O e e e B e

0.0000

41231 0.0000
§.0623  4.0000
104403 63246
36056 28284
5.6569 30000
13,0000 8.9443

0.0000
28284
63246
5.0000
5.6569

0.0000

§.00000.0000

60828 22361 0.0000
28284 10.1980 §.0623 0.0000




TABLE4144 1,

I 12 3 4 5 6 71
1| 00000
1 422m 00000
31600000 412500 00000
4600000 563281 304%40 00000
5| 37.8160 304940 56,3281 600000 00000
6 |$30330 32,1680 489258 552438 245007 0.0000
7600000 60.0000 60,0000 304940 60.0000 60.0000 0.0000
y(h)=7,.(h) (4.14.1)

2
h=,|h +(EJ h (4.14.2)



3h 14
}‘x{h]—ﬁﬂ(ig—ig] forh<§ (3.14.3)

=60forh=8

Kriging and simulation at Location 4.
The matrix equation is given by

0.0 600 378160 530330 600 -1.0
60.0 00 563281 489258 600 -10
378160 563281 00 245007 600 -10
530330 489258 245007 00 600 -10
600 600 600 600 00 -10
1.0 1.0 1.0 10 10 00 |

= TR R T




30.4940

55.2438
30.4940

60.0

60.0

1.0

The solution is

LR gl gl i a

0.0217
0.5001
—0.03%96
0.0169
0.5008

—0.5433

The kriged value is

{4.14.4)

(4.14.5)



0, =X A0, =29.6690
The minimum error variance is
ol . =—B+3 Ay, =309289

i

G, =/309289 =55614

The 95% confidence interval is

¢, =29.67£10.90
z,=09333

The simulated value 1s
0., =0, +2,0, . =348595

Kriging and simulation at Location 2.
The matrix equation is given by



0.0 60.0 60,0000
60.0 00 304940
600 304940 00
378160 563281 600
330330 489258 552438
600 600 304940
10 10 10

422779
41.2500
56.3281
30.4940
32.1680
60.0
1.0

- Sl ol s o
[

The solution is

378160 53.0330

56.3281
60.0
00
24,5007
60.0
10

600 -10 |

489258 600 -10
552438 304940 -10
245007 600 -10
00 60 -0

60.0 00 -10

10 10 00 |

(4.14.6)



j; [ 01857 |
0.3482
2 ~0.1568
As |=| 02761 (4.14.7)
A 0.2484
0.0984
% _12775
— ﬂ - ) )
The kriged value is

¢, =3 A9, =20.3500

The minimum error variance 1s
o2 =—B+3AY, =369734

O, min = 36.9734 = 6.0806



The 95% confidence interval is

¢, =20.35+11.92
z,=0.7598

The simulated value is

0, =0r +2,0,,.. =24.9698



TABLE 4145 Kriged and Simulated Resuls,

95% Confdence
Measured Kriged Estimation Standard ~ Interval - Simulated

Coordnates Porosty Value Varance Deviation Low  High Ve

Loaon vy (%) (W) (o) (o) (o) ()
[ ‘

) 1) KNI 1 S 4
I |

I PTG N ' B VA
A S A
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T




CHAPTER 5 SOLUTIONS



PROBLEM 5.1

This problem can be solved using either
of the following two equations:

2
DL=uL[ Iﬂ.gﬂ Jﬂ.lﬂ) 1511}
3.625
ul
DL =?(}-ﬂ|m_!ﬂdlﬁ]z 1512}

Here the problem is solved using both

C;=CJ/C,and j= by,
equations. Let JQ :
The graph ofCp versusJ on a

probability-linear scale is a straight line



as shown 1InFIGURE 5.1.1. In this
FIGURE, Cj, has been converted into a

standard normal variate z using Excel’s
NORMSINYV function and plotted against
J instead of using a normal probability
graph paper. The regression line is

z=-11.645]-0.0077 (5.1.3)

On the standard normal scale, Cp=0.10

corresponds toZ = -1.2816 and
Cp=0.90 corresponds to Z = 1.2816.

From the regression line,

Jy10 =0.1094

Jos0 =—0.1107



Equivalent Probability, CIC,

y=-11645¢ - 0.0077
Ried

n
[

20 0.10 0.00

0.10

20

(-t} 15

FIGURE 5.1.1 Graph of zverus J for Problem 5.1,




Also,

q=1000 cm® /hr =0.2778 cm’ /s

d=6cm

4\
A:?’E(E) =28.2743 cm?

$=035

q —2
u=——=2807x10" cm/s
PA

L=40cm

Substituting the numerical values into

Eq.(5.1.1) gives



D, =(2807x10*(40) =4139x107cm’/s

(—0.110?—0.1094 T
D, _4139x10°

AT

) R

ul _ 2807%107x40

PTD 4139107

On the standard normal scale, Cp=0.16
corresponds to Z = —1.0 and Cp=0.84

corresponds to Z = 1.0. From the
regression line,

Jo16 =0.0852
Josa =—0.0865

Substituting the numerical values into



Eq.(5.1.2) gives

(2807x107)(40) : .
D, :T(-o.oss_s-u.ossz) =4140x107cm’ s

D, _ 4140107
u 2807X10°

o =—L 0475 cm

_ul 2807x107 x40

TR



PROBLEM 5.2

This problem can be solved using either
of the following two equations:

2
N[ﬂ) i)
Iﬂ.ﬂﬂ _-'ruli}
o)
Ny, = 5 (5.2.2)
(III.H '10.15)

Here, the problem is solved using both
equations. FIGURE 5.2.1 shows the
graph of z versus J. The regression line
1s




z=-5.1312]-0.0362 (5.2.3)

From the regression line,

Jo10 =0.2427
Joso =—0.2568
Jo1s =0.1878

Jossa =—02019

Substituting the numerical values into

Eq.(5.2.1) gives

( 3,625 J’
Np, = =
—0.2568—0.2427

Substituting the numerical values into

Eq.(5.2.2) gives



3
Np, = =53
P (-0.2019-0.1878)°




Equivalent Probability, Cg

_(1;)
8

2.00 1

y=<5.1312x - 0.0362
R =0.9804

00N 020 040 O

50

FIGURE5.2.1 Graph of zverus J for Problem 5.2.




PROBLEM 5.3

5.3a

FIGURE 5.3.1 shows the solvent
concentration profile at the instant of the
measurement. C/C,=50% travels at the
average speed u. At the instant of
measurement,

Xop =27.1CIM
u=1.6 cm/hr = 2.667 x10">cm/s

Hsom _ 571
u 16

P =135.7 minutes or 2141.3 seconds.



100
90 +-
80 -
70 -
60 -
50 -
40 -
30 -
20 -

CIC, (%)

45 50 55 60 85 70
X (cm)

75

5.3b

FIGURE5.3.1 Graph of C/C, verus x for Problem 5.3.




The mixing zone length is given by

Ax’® ("m _xm)l

j b A =
L3625t 3.625%t

(6.3.2)

From FIGURE 5.3.1,

Xgos =61.8cm

X100 =93.6 cm

Substituting the numerical values into

Eq.(5.3.2) gives the longitudinal
dispersion coefficient as

_ (61.8-53.8)

= =2.390x10cm’ /s
3.625% x2141.3

L



D, =a,u (5.33)



PROBLEM 5.4

Le tCph=C/Cy. The i1nitial-boundary
value problem for diffusion is

a;::' -D, a;f; =9 (5.4.1)
Cp(x,0)=0 (5.4.2)
Cp(0,2)=1 (5.4.3)
J];i_lﬂcﬂ(x,f}={] (5.4.4)

The initial-boundary value problem can



be solved by Laplace transformation as
was done in Problem 3.21 to obtain

X
Oy= 5.4.5
D ‘-”.'f‘:[m] ( )

=i

D, =5x10""m?/s

D s
r=IDD}rr5><365—><864ﬂﬂ—=3.154><1[}95
yr D

Substituting the numerical values into

Eq.(5.4.5) gives

5
Jax5%10™ %3 154x10°

sz.gpfc[ ]=erfc(1.99091)=(}.004869



After 100 years of diffusion, the relative
solvent concentration 5 meters away is
only 0.005. It can be concluded that
molecular diffusion is not a very
effective mass transport mechanism in
porous media.



PROBLEM 5.5

L=30cm
d=10cm
2 2
A "_'-j'[(%J = _ﬂ{%) =78.5398 cm?

g=1000 cm’ /hr=0.2778 cm® /s

4 __ 02778
Ap  78.5398x0.35

=1.011x10"2cm/s

$=035



Vh=0.1

u=10cp
p=1.0 g/cm’

g =981 cm/s’

1 Xp—tp
(s =5e’ﬁlm [m)l (5.5.1)



t=0.90 hr=3.240%10°s

_ gt _02778x3.240x10° _

e = =1.0914
D7 ApL 78.5398x0.35%30
xD=lﬂ
C,=075
~t, 1-10914
*p—tp 112 0438

2.Jt,  2J1.0914

Substituting the numerical values into

Eq.(5.5.1) gives



{}.75=%erfc(—{].0438 Ne.)
erfe(-0.0438[N,, ) =150
erfe(~0.0438 /N, ) =1+ erf (0.0438 [N, )=1.50

erf (0.0438/N,, ) =050

From linear interpolation,



0.520500-0475482

0.0438,/N,, =0.45+( )({}.5{}-0.475482]

=04721

Np, [04?21] =116.3843
0.0438

qL
N, =—— (55.2)
" AD,

gl 02778x30
AGN,,  78.5398X035X116.3843

D,= =2.605x10% cm’ s

D, 2605x10°
u LO1IXI07

0y =— =(2578 cm

Also,



L 30

o, = = =0.2578 cm
N, 116.3843
5.5b
From Darcy’s law,
1.0133x10°
k= Shegoc gk (5.5.3)

pgAVh

Substituting numerical values into Eq.

(5.5.3) gives

_ (1.0133x10°)(02778)(1)

~ (1)(981)(78.5398)(0.1) =%230)




PROBLEM 5.6

5.6a
Ax=3.625, fDLt (5.6.1)
ﬁxz
D,=——0 5.6.2
L 3625% s
Ax=8cm

t =50 minutes =50x60=3000 s

Substituting the numerical values into

Eq.(5.6.2) gives



82

D, =—————=1623x10"cm’/s
3.625" x3000

u=1.6 cm/minute =1.6/60=2.667 %107 cm/s

D, _1623x10°°

T T s

o

5.6b

No. The core is heterogeneous. Since the
fluid densities and viscosities are equal,
the distortion in the concentration
contours is caused by permeability
heterogeneity of the core and not by
gravity segregation. The lower half of
the core is more permeable than the
upper half.



S.6¢

The dispersivity from the breakthrough
curve will be larger than that computed
in part (a) because the distortion in the
concentration contours will cause the
breakthrough curve to be more stretched
out. This stretching out will result in a
higher dispersivity from the
breakthrough curve than from the mixing
zone length in the core.



PROBLEM 5.7

S.7a
FIGURE 5.7.1 shows the expected
solvent concentration profile atz, =

0.50 pore volume injected. Note that Cj,
=0.50 is located at x = L/2.



1.50
100 i
B b Outlet Probe
Breakthrough Time
000 l ;
0.00 050 1,00 150 200
to

FIGURE5.7.1 Solvent concentration profile at t = 0.50.

5.7b
FIGURE 5.7.2 shows the expected




solvent concentrations versus time at the
inlet and outlet ends of the core.



1.00

0.00 -

0.00 1.00

FIGURE5.7.2 Solvent concentration versus time at the
inlet and outlet of the core.

5.7¢



Longitudinal dispersion coefficient and
longitudinal dispersivity of the core can
be determined from the experiment.

4.7d

L=30cm
A =20cm?
q=50cm’/hr=1.389x10cm’ /s
¢=0.15

q _1389x107
Ap  20%0.15

=4.630%102cm/s

D, =400x107cm? [ s



Ciliits)= %ﬁf{m [;7_%]] (5.11)

t =108 minutes =108 X 60=6480 s

qt _1.389><10"2><6480_1 2

PTAPL T 20x0.15%30

_ gL 1389x107x30
% APD, 20%0.15%400x107°

=34.7250

Substituting numerical values into Eq.

(5.7.1) gives

G (1,tD]=%erfc[JM(;—‘};H=%erfc(n)=om



PROBLEM 5.8

L=30cm

u=0.01 cm/s

I =46.6 minutes =46.6 X60=2796 s

by HE: M={}‘9320
L 30

x,=10

C, =042



Cp= %erﬁ[m [ *p—fp H (5.8.1)

20t

W 30 9320

Substituting the numerical values into

Eq.(5.8.1) gives



0.42= "]-'Z—egfc({}.DBSZ.. /N>, )

erfc(0.0352,/Ny, )=0.84

0.0352,/N,, =0.14276

_ [{}.142?6

2
— =16.4313
Pe™| 0.0352 J

L 30

o, = = =1.8258 cm
Np 164313




PROBLEM 5.9

This problem can be solved using either
of the following two equations:

2
o, :&:L(M] (5.9.1)
u 3.625
. L 2
' =:L = E(I“'““ —ju_ls) (5.9.2)

Here, the problem is solved using both
equations. FIGURE 5.9.1 shows the
graph of z versus J. The regression line
1s

z=-3.8643] - 0.0006 (5.9.3)






Equivalent Probability, CfC,_

020 -0.10 0
20

¥ = 38643k + 0.0006
Riz1

080

00

-0.60 -

0.10

0.

0

(Hn)fﬁ

FIGURE5.9.1 Graph of zverus J for Problem 5.9.




From the regression line,

Jo10=0.3318
Joso=—03315
Jo16 =0.2589

Joss =—0.2586

Substituting the numerical values into

Eq.(5.9.1) gives

D, [-3.3315—0.3313

X, =—==
g 3,625

2
J =1.0044 cm

Substituting the numerical values into

Eq.(5.9.2) gives



D, 30

a, =—L="-(-0.2586-0.2589)* =1.0043 cm
Ly 8



CHAPTER 6 SOLUTIONS



PROBLEM 6.1

cr:[;x(p‘*"p’f H (6.1.1)

p, =0.70 g/cm’
p, =0.0 g/cm’
M =114.231 g/g—mol

Substituting numerical values into Eq.

(6.1.1) gives



4
o= [351.5( U'm_ﬂ‘”)] =21.52 dynes/cm
114.231

Experimental value from TABLE 6.3 =
21.8 dynes/cm

(21.8—21.52)

Error%= x100=1.28%



PROBLEM 6.2

The parachor for n-octane (CgHig) 1s
given by

A=8x48+18x17.1=346.2
Value from TABLE 6.2 =351.5

(351.5—346.3)
351.5

Error% = x100=1.48%



PROBLEM 6.3

For one drop, m =2.2/100 = 0.022 g.
p=0.773 g/cm?

0.022 £
P =——"=2846x10"% cm?
p 0773

r=0.20cm

ro_ 020
V" (2846x107%)

==0.6551

From linear interpolation,



f:0.61?1+(WJ(&&093-9.5171).—9.5153

s 0.022x981
2nrf  2X7x0.20x0.6163

=27.87 dynes/cm

Note that without the correction for the
dynamics of the drop, the estimated
surface tension would have been 17.17
dynes/cm, which is too low. Tabulated
value in a TABLE of physical constants
=27.1 dynes/cm.

(27.1-27.87) x100=—2.84%

Error% =



PROBLEM 6.4

For horizontal equilibrium before the
addition of Super XX,

o,=0,,+0,, cos6 (6.4.1)

Let the addition of x ppm of Super XX
be required to cause the changes
indicated. At equilibrium,

0,=0.,+0,,cos0’ (6.4.2)
0., =0, —2x (6.4.3)
G =0, —4x (6.4.4)



Substituting Egs.(6.4.3) and (6.4.4) into
(6.4.2) and rearranging gives

(6.4.5)

o GJ‘W +ET{‘I1-'I-' _ﬂ-.iﬂ
6
0,, =45 dynes/cm

0., =30 dynes/cm
0,, =30 dynes/cm

Substituting the numerical values into

Eq.(6.4.5) gives

30+30-45
x=———=250 ppm



PROBLEM 6.5

The Amott wettability indices for water
and oil are given by

V.
WI,=—2%— (6.5.1)
V,+V,
V..
Wl =—*%— (6.5.2)

VLAV



V., =10 cm?

V=18 cm?

V,.=02cm?
V.,.=195cm?

Substituting the numerical values into

Eqgs.(6.5.1) and (6.5.2) gives

WL, =—2 03571
1.0+1.8

D=L=l}.{]93l}
0.2+1.95

Wi, -WI,=0.3571-0.0930=0.2641>0.0



Therefore, the porous medium is water
wet.



PROBLEM 6.6

6.6a
Let the radius of the circular cross-
section be r, the length of each side of
the square cross-section be/ and the
length of the shorter side of the 2x1
rectangular cross-section be x. Since the
cross-sectional areas are equal,

2 !2

art =P =2x" (6.6.1)

The perimeters for the circle, square and
rectangle are 2zr, 41, and 6x. We
perform a force balance to determine the
equilibrium capillary rise for each
shape. For the circular cross-section,



For the circular cross-section,

2110 cos0=(p, - P,y ) gh, ot (6.6.2)

_2mrocosf 20 cosf

hy Ao 7hhg (6.6.3)
where
Ap=p; =P (6.6.4)
For the square cross-section,
4lo cosl =(p1 —,r:!m.r)ghﬂi2 (6.6.5)
e 4lo cosf 40 cosl (6.6.6)

 Apglt o IApg



From Eq.(6.6.1),

I=rdn (6.6.7)
Substituting Eq.(6.6.7) into (6.6.6) gives

_ 4locosh _ 2.25680 cost

hg = = (6.6.8)
" dpgrim rhpg
For the rectangular cross-section,
6x0 cosl z{pL - pm.r)ghclxz (6.6.9)
_bxocosf 3o cosb (6.6.10)

C

 Apg2x’  xApg
From Eq.(6.6.1),



x—f\}E {6.6.11)
> 6.

Substituting Eq.(6.6.11) into (6.6.10)
gives

s 6rym /20 cosd 239370 cost
¥ &ngrZIIE rApg

A comparison of Egs.(6.6.3), (6.6.8),
and (6.6.12) shows that the highest
capillary rise will occur in the tube with
the rectangular cross-section.

6.6b

(6.6.12)




h

B

=

-

=
I |ok

_ 2.2568

2.3937

=1.1284

=1.1969



PROBLEM 6.7

L=60cm
=50 um=50x 10*cm
? =72 dynes/cm

A=0°

p,, =1.0 g/cm®
Py = 0.0 glcm?
Ap=p,—p,.=1-0=1g/cm?
£=981cm/s?

6.7a

20c0s80  2x72%cos0’
h= = S =293578 cm

rApg  50x107* x1x981

6.7b



Let a be the angle of inclination of the
capillary tube with the vertical.

20 cosf

hsin(90-c)= v
rapg

(6.7.1)

0=45

_ ocosf 2x72xcos(’
rApgsin(90-) 50x10™x1x981xsin(90'~45")

=4]1.5182 cm

6.7¢c
Let

P, ., = pressure of the trapped gas at
equilibrium
P, = pressure in the water just



below the gas water interface
P, = atmospheric pressure

From Boyle’s law,

PL=P (L-h) (6.7.2)
PL
P, =— (6.7.3)
W L—h
P,=P —pgh (6.7.4)
At equilibrium,
P=p _P = 20 cost (6.75)

r

Substituting Egs.(6.7.3) and (6.7.4) into



(6.7.5) and rearranging gives

hz_{g+ng+26cus3/ r]h+2crLcnsB=ﬁ 1)
pg P8
P =10133x10° dynes/cm?

Substituting the numerical values into

Eq.(6.7.6) gives

hz_[1.0133><ll)f'+lx981x60+2x?2x1f5[lx10'4 Jh

1x981

n 2><7%4><60><1 =0 677)
50x107 x1x981

h*-1122.2834h+1761.4679=0 (6.7.8)



Eq.(6.7.8) can be solved as

11222834 +1/1122.2834> —(4)(1)(1761.4679)
- 2

1122.2834£1119.1399
Z

h=1.5717 cmor 1120.7116 cm, which
is non-physical.

The impact of the trapped air in the
equilibrium capillary rise is surprisingly
high. The trapped gas has reduced the
equilibrium height from 29.3578 cm to
1.5717 cm. This is a significant impact.

h




PROBLEM 6.8

Force up =27Ra cos+ 2nrarcosf= 2 (Rer)orcos  (68.1)

Force down :z‘r(P.'.2 —rz)ﬂpgh (6.8.2)

At equilibrium, force up equals force
down.

2n(Rer)ocosd=n(R'~r*)Apgh ~ (683)

_2(R+r)ocos®  20cosf
(R*-*)Apg  (R-r)Apg

(6.8.4)



The problem also can be solved by
application of the Young-Laplace
equation.

&chr[Lrl]:.ﬁpgh (6.8.5)

non

(R-r)/2 (R-7)
cos@  2cosf

(6.8.6)

r, = oo (6.8.7)

Substituting Egs.(6.8.6) and (6.8.7) into
(6.8.5) gives

2cosf
R-r

.ﬁP:G{ +U]=ﬂpgﬁ (6.8.8)



20 cosB

= (6.8.9)
(R—7)Apg



PROBLEM 6.9

When the experiment is repeated with
the shorter capillary tube, the liquid will
rise to the top and stop. It will not flow
out of the top of the tube as one would
intuitively expect.

Before the cut, application of Young-
Laplace equation gives

AP= 20 cosB,

= Apgh, (6.9.1)

After the cut, application of Young-
Laplace equation gives

o250, Apgh, (6.9.2)

r




Dividing Eq.(6.9.2) by (6.9.1) and
rearranging gives

cosb,

hy=—2h (6.9.3)

cos6,
In the limit, as A, —0,4, —90°. The

liquid will never overflow no matter
how small 7, is.



PROBLEM 6.10

rp=1cm
r,=2cm

o =25 dynes/cm

W=-0o(dA) (6.10.1)

dA=2x4n(r} 1) (6.10.2)

where the factor of 2 accounts for the
fact that the soap bubble has two air-
liquid  interfaces. Substituting Eq.
(6.10.2) into (6.10.1) gives



W=-ox2x4x(r; -1 ) (6.10.3)

Substituting the numerical values into

Eq.(6.10.3) gives

W =-25x2x 47 (2" ~1*)=—672,427 ergs

The negative sign indicates that work is
done on the system.



PROBLEM 6.11

p,,=1 g/cm3

Pair ~ Og/CIl’l3

o =72 dynes/cm

0=0°

g =981 cnv/s?

r =150 x10°m=50 x 10 *cm

6.11a

In order for the water to drain from the
overhanging portion of the capillary tube
into container B, the gravity driving
force must exceed the capillary retention
force preventing drainage. In other



words, the hydrostatic pressure exerted
by the column of water must exceed the
capillary pressure at the end of the tube.
This condition can be expressed
mathematically based on our knowledge
of capillarity as

20 cosB
r

(P —Pur)gh> 6.11.1)

or

26 co:
o 2O €080 (6.11.2)

(P, —Puir ) 8T

Substituting the numerical values into
Eq.(6.11.2) gives the requirement for
successful siphoning of the water as



(2)(72)(1) =29.36 cm
(1-9)(981)(50x107*)

In the current design, # = 20 cm, which
is not sufficient for the gravity driving
force to exceed the capillary retention
force. Therefore, as currently designed,
the experiment will not be successful in
siphoning water spontaneously from
container A to container B. The water
will imbibe and then stop at the end of
the capillary tube. We can calculate the
equilibrium contact angle from the
equation:

20 cosf I
r

Py~ Pair ) 8h

Or



g PemPuir_(1-0)SBO0J05107)
% o)

0=47

6.11b

Make the length of the overhanging
portion of the capillary tube (%) greater
than 29.36 cm.



CHAPTER 7 SOLUTIONS



PROBLEM 7.1

The total work done by the pressure and
capillary forces is given by

OW=-PAV —-P AV +0, AA (111)

Before displacement,

1
V= E”RS (71.2)

After displacement,

v, zzgn{de)%gn[ﬁ+3R’dR+3R(dR)2+(dR]3]
(113)



If the terms (dR)*> and (dR)® are
neglected in comparison to the other
terms, Eq.(7.1.3) becomes

Vi= ;;-E(R+dR)3 = %I(R“HRHR) (11.4)

A‘fn:Vaz—Vﬂ=§E[R3+3deR—R3]:4ﬁRZdR (115

AV, =-AV, =—-4xR*dR (1.1.6)
Before displacement,
A =4nR’ (11.)

After displacement,



A, =4n(R+dR)’ :4?1:[1-13 +2RdR+(dR}I] (7.18)

If the term (dR)*> is neglected in
comparison to the other terms, Eq.

(7.1.8) becomes

Ay=4n(R+dR) =4n(R*+2RdR)  (119)

A=Ay~ A =47{R" +2RdR|-47R* =87RAR (1110

Substituting Egs.(7.1.5), (7.1.6), and
(7.1.10) into Eq.(7.1.1) gives

W =-B,(4nR'dR)+D, (4R'R) +0,,(8nRdR) (1110

At equilibrium, 6 = 0 and Eq.(7.1.11)
becomes upon rearrangement



p_p =2%m (1112)

@ W R
Eq.(7.1.12) is the special form of the
Young-Laplace equation for a spherical
liquid drop.



PROBLEM 7.2

7.2a
Young-Laplace equation gives

1 1
ﬂP=0‘('—+—J (7.2.1)
nn

For the meniscus,

_H/2_ _H e
cos@  2cosH o
r,=R (7.2.3)

Substituting Egs.(7.2.2) and (7.2.3) into
(7.2.1) gives



2c0s8 1 1 2cos6
AP P 0| ———
film ™ Be= ( H R} [ R H J (1.2.4)

7.2b
The pressure in the film is obtained from
Eq.(7.2.4) as

1 2cos0
P, =P. +0|—— 12.5
Jilm dir (R H J { :'

Given:



¢ =72 dynes/cm
0=0’
R=1cm
H=5pm=5x10"°=5x10"*cm
72[1_ Zcosii }
~ L 5x10%) 287,928

P, =1+
fim 1.0133x10° 1.0133x10°
=1-02841=07159 atm

Notice that the pressure in the film is
less than the atmospheric pressure. The
adhesive force is caused by the pressure
difference between the film and the
outside air. This is an attractive force
that glues the plates together. The force
is given by



F=APx Area= APx TR (7.2.6)

dynes
F=-287,928——x (1)} cm’ = 904,552 dynes
cm

=-0.046 Newtons

The negative sign indicates an attractive
force.



PROBLEM 7.3

FIGURE 7.3.1 shows the pressure
profile in the capillary tube.




e I 0/ E R A

—> x

Pa

Pressure

FIGURE 7.3.1 Pressure profile in the capillary tube.






PROBLEM 7.4

7.4a
Young-Laplace equation applied to
bubble A gives

40 400

P,-P = — (7.4.1)
RN R R
(¢
Py=B+o (7.4.2)
For bubble B,
g 30 (1.43)

“rnR



4
P,=P.+—— (7.4.9)

“ R
7.4b
It 1s apparent that P, P,. Therefore, when

valve 1 is opened, air will flow from B
to A until pressure equilibrium is
achieved. Bubble B will “shrink” while
bubble A will be enlarged.

7.4c¢

FIGURE 7.4.1 shows the sketch of the
final equilibrium configurations of the
two bubbles.




.,!"-'kl"\

V, (open) [f B \

L\
A

Iy=Tg

FIGURE 7.4.1 Sketch of final equilibrium configurations of
AandB.

7.4d
At equilibrium, to satisfy the Young-



Laplace equation, the radii of the two
bubbles must be equal. However, only a
small piece of B remains and lies on an
imaginary sphere with the same radius
as A.



PROBLEM 7.5

7.5a
From Pythagoras Theorem,

R +(r+1,) =(R+1)’ (15.1)

Expansion of the terms in Eq.(7.5.1)
gives

R*+1l+2np,+1 =R*+2Rr, +1 (15.2)
Simplification of Eq.(7.5.2) gives
ry +2nr,—2Rr, =0 (1.5.3)

Solving Eq.(7.5.3) for | gives



r A (7.5.4)
' 2(R-1,) o

Eq.(7.5.3) also can be solved for r, in
terms of r; to obtain

1/2
£ [[1 +§—R-] —-1] (1.5.5)
h

Although it may not be obvious, 77».

7.5b
Application of the Young-Laplace
equation gives



M:Pw—ﬂw:—ﬂza{l—l] 156
h

r,=10um=10x10"cm
R=80um=80x10""cm
0 =72 dynes/cm

r (10){1{]”4 ]2

r‘_2(R-rz}_2(80x10*‘-10><10*)

=(.71429%107* cm

Substituting the numerical values into

Eq.(7.5.6) gives



! 1
AP=P ~P =-P=72 =
v [mxlo*‘ 0.71429xm“‘)

=-935,993.9520 dynes/cm’
935,993.9520 |
= - X 14.696=-13.57 psi
1013310

P=P, -P, =1357 psi

7.5¢
The force of adhesion binding the grains
together is given by

P= APz =-935,993.9520xm(10x10)' =-2.9405 dynes
=-29405%10"° Newton

The negative sign indicates an attractive
force.



PROBLEM 7.6

7.6a
FIGURE 7.6.1 shows the pressure
profiles in the capillary tubes.

7.6b
Application of  Hagen-Possueille’s
equation to capillary tube i gives

_dx,. AL (7.6.1)

i3, =—"t=—t—
dt 8u x.
For the forced imbibition,

AP=P +pgh-P, (76.2)



At the water-air interface,

_ 2pcosB
t.

I

P-P

d w

(7.6.3)



,\ 20 cost

FIGURE 7.6.1 Pressure profiles in the capillary tubes for forced imbition.



Substituting Eq.(7.6.3) into (7.6.2) gives

AP= 20 cosB

+pgh (7.6.4)

Substituting Eq.(7.6.4) into (7.6.1) and
rearranging gives

dx. 1’ [ 20cos6
etk J O + peoh 1.6.5
* dt Eu( r, P8 ) S

Integration of Eq.(7.6.5) gives

1, ﬁz[lﬁcmﬂ'

— +pgh |t+C (7.6.6)
L= pg}

where C is the integration constant.



Applying the initial conditionx; = 0 at¢

= (0 gives C = 0. Rearranging Eq.(7.6.6)
gives

2
= JL(M“’SS + pgh]t (1.6.7)
4\




PROBLEM 7.7

7. 7a
FIGURE 7.7.1 shows the pressure
profiles in the capillary tubes.

7.7b
Application of  Hagen-Possueille’s
equation to capillary tube i gives

2
dx; _ 1~ AP (7.7.1)

iy =—=——
"odt 8u x,
For the spontaneous imbibition,

AP=P -P, (11.2)



At the water-air interface,

_ 2pcosB
t,

R

a4 w

(7.7.3)



X—r

FIGURE 7.7.1 Pressure profiles in the capillary tubes for sponta-

neous imbibition.



Substituting Eq.(7.7.3) into (7.7.2) gives

_ 20 cosf

AP (1.7.4)

T

Substituting Eq.(7.7.4) into (7.7.1) and
rearranging gives

dx; 10 cosf
X, = (7.1.5)
Cdt 41
Integration of Eq.(7.7.5) gives
ix? o SRR o (7.7.6)
2 4u

where C is the integration constant.
Applying the initial conditionx; = 0 at¢



= (0 gives C = 0. Rearranging Eq.(7.7.6)
gives

X = ,r"ﬁmsgr (2.2.7)
2u




PROBLEM 7.8

7.8a
FIGURE 7.8.1 shows the pressure
profiles in the capillary tubes.

7.8b
The distance L traveled by the meniscus
in capillary tube 2 is given by

r,o cost

24

L=

t (1.8.1)

The time at which air is trapped in
capillarity tube 1 is obtained from Eq.
7.8.1) as



2
- 2uL

= (7.8.2)
1,0 cos@



Trapped air

X =

FIGURE 7.8.1 Pressure profiles in the capillary tubes for spontaneous
imbibition with trapping.






PROBLEM 7.9

7.9a
Before imbibition,

S, =S, =20%

L

P.=20psi

FIGURE 7.9.1 shows a sketch of the
capillary pressure profile before
imbibition.

7.9b
Before imbibition,



—~=0for0<x<x,,
ox

aP.

—~t=+oforx=x,,,

dx

This positive capillary pressure gradient
causes spontaneous imbibition of water
into the core.

o
ax ={ for X inlet <x< xuu!fu!
dP.
—~fL=—ofOorx=x_,,.,
0x

This negative capillary pressure gradient
causes capillary end effect at the outlet
of the core and prevents water



production from the outlet end of the
core.

f_:'}—I-J'f-z-ﬂ for x
X

outlet <xsL

FIGURE 7.9.1 shows a sketch of the
capillary pressure gradient before
imbibition.




. —‘ Core
air

[t

o o [NNKRANAY e

20 psi

FIGURE 7.9.1 Spontaneous imbibition experiment.




7.9¢
Figure 7.9.1 shows a sketch of the water
saturation profiles during imbibition.
Note the presence of capillary end
effect.

7.9d

No. Water will not be produced from the
core because of capillary end effect. The
displacement is capillary driven with a
very low flow rate that is not high
enough to overcome the capillary end
effect. After the water saturation at the
outlet builds up to 0.80, the imbibition
will stop. Note that capillary driven
displacement will not have a Buckley-
Leverett displacement front. The front is



smeared by capillarity.



PROBLEM 7.10

7.10a
FIGURE 7.10.1 shows the pressure
profile in the capillary tube.




Pressure

Pa _d
20c0s6
r
hy
hz

FIGURE 7.10.1 Pressure profile in the capillary tube with an
enlargement,



7.10b

Dip the dry capillary tube into the water
and suck the water to the top of the
capillary tube. Allow the water in the
capillary tube to drain to the equilibrium
height /.



PROBLEM 7.11

7.11a

FIGURE 7.11.1 shows the air and water
pressures in Core #1 for the spontaneous
imbibition experiment. Because the core
is long, water is imbibed to a maximum
height lower than point C. The water
pressure terminates at this height. The
air pressure extends from A to C
because there is air in the entire column
in the imbibition experiment.




Cora
#

Long Core

Long Core

o0

- 4

oo

\ « Core #1

Pressure

FIGURE 7.11.1 Water and air pressures in Core #1 (imbibition).




FIGURE 7.11.2 shows the air and water
pressures in Core #2 for the drainage
experiment. In this case, the water
pressure extends from A to C because
there is water in the entire column.
There is a water-air contact (WAC)
above the free water level (FWL). The
air pressure terminates at the water-air
contact because there is no air below
this level. The capillary pressure at the
water-air contact is equal to the
displacement pressure of the core.




Cors
# Coge \ P,
#
: « Core#2
|
TR E A
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: o eI T
L \I\p
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ol e ——o \
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FIGURE 7.11.2 Water and air pressures in Core #2 (drainage).




7.11b
In general,

P =P -P, =+Apgz (7.11.1)

where z 1s the height above or below the
free water level. For the imbibition
experiment (Core #1),

2, =—hz=-100 cm

P,, =1.02x981x(~100)=~100,062 dynes/cm>

(¥

-100,062

= mz—ﬂ.[}ﬁ-’ﬂ? atm

P, =0 because B is at the free water level.

P, =0 because there is only single phase air at C.

4



For the drainage experiment (Core #2),

P, =0 because there is only single phase water at A.

Py, =0 because B is at the free water level.

Zo =hg =350 cm

P, =1.02x981x350=350,217 dynes/cm?

350,217
=——""_=(3456 atm
1013310

7.11c

FIGURE 7.11.3 shows the water
saturation distributions in Core #1 and
Core #2. In Core #1, the water saturation
below the free water level is less than
1.0 because some air is trapped below
this level. It could be argued that over a




long period, this trapped air will
dissolve in the water as water has some
solubility for air. However, the sketch in
Figure7.11.3 does not reflect this
possibility. In Core #2, the water
saturation is 1.0 from A to the water=air
contact. There is also irreducible water
saturation at the top.




g C
Coe ff 11
#1 Core
.
1l
Ul m s
30
|B ! B. .
kR

FIGURE 7113 Water saturation distributions for the imbibition and

drainage experiments.







PROBLEM 7.12

7.12a
In general,

P=P —-P, =4Apgz (1.12.)

where z 1s the height above or below the
free water level.

z, =—h;=-100cm cm



P, =1.02x981x(-100)=-100,062 dynes/cm?

-100,062
- 2 00987 atm

1013310
P, =0 because B is at the free water level.
2o =hye =200 cm
P, =1.02x981X200=200,124 dynes/cm?

- 2201975 atm

T 1.0133%10°

712 b
FIGURE 7.12.1 shows the sketch of the
permeability profile of the core.

T7.12¢



We need to relate permeability to height
along the core. Assume the core has the
same pore structure from the bottom to
the top. Therefore, it will have the same
Leverett J-funtion.

J(S, =0.50)= E_IE (112.2)
ocosf\ ¢

P.=Apgh (7.12.3)

Substituting Eq.(7.12.3) into (7.12.2)
and solving for k gives

——=—= (112.4)
Apg

k:[ J(s, =ﬂ.5ﬂ]0’-cnaﬁT o C
oW



where C; is a constant. Permeability

decreases with height along the core in
the manner indicated by Eq.(7.12.4).
This is the justification for the sketch in

Figure 7.12.1.



Permeability (?)

c =
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o | i)
i ."‘ i @
‘8. 7
N
§ o F 30cm
1 s
o i — W
0 @ Constant
Water 4 K
1 Level
100 cm
i
( 0.5 10
Water Saturation

FIGURE 7.12.1 Sketch of permeability versus height along the core,




7.12¢
Permeability is proportional to the
square of the grain size.

k=C,D, (7.12.5)

where C, is a constant of proportionality
and D, is the grain size. Substituting Eq.
(7.12.5) into (7.12.4) and solving for D,
gives

3
2
0

D.= =23 (7.12.6)

Grain size decreases with height from
the bottom to the top.



7.12d

FIGURE 7.12.2 shows the drainage
capillary pressure curves for Samples
A, B, and C. Based on the variation of
permeability and grain size with height
along the core, Sample A is the best
quality rock and C is the least quality
rock. The sketches inFigure 7.12.2
reflect these facts.
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FIGURE 7.12.2 Drainage capillary pressure curves for Samples A, B, and C.







PROBLEM 7.13

7.13a
FIGURE 7.13.1 shows the mercury
capillary pressure curve.
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FIGURE 713.1 Mercury capillary pressure curve.

7.13b
The LeverettJ-function in consistent



units is given by

k. ~k {1.13.1)

ﬁ--'J' cnsﬂé {
Applying the required unit conversions
to make / dimensionless leads to



]_(11114.696)x1.0133x106 (k/1000)x9.869x10°”
B G cosd ¢

=0.2166—R"-— £ (1132)
ocosf ¢

k=3.86 mD
0=0.132
0 =480 dynes/cm
6=140°

FIGURE 7.13.2 shows the Leverett J-
function.
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0.00
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FIGURE 713.2 Leverett J-function.

At reservoir conditions,




N ] X o cosB

e (113.3)
©0.21664k/ ¢

k =500 mD
¢=0.25
o =35 dynes/cm
6=0

FIGURE 7.13.3 shows a comparison of
the mercury and reservoir conditions’
capillary pressure curves.
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FIGURE713.3 A comparison of the mercury and reservoir
conditions’ capillary pressure curves.

7.13d
The pore throat radius is given by



_ 20|cos6|
P

c

R (1.13.4)

Substituting the numerical values into

Eq.(7.13.4) and applying the unit
conversions gives the pore throat radius

1n microns as

_20]cosd] 2x48[}‘c05140"| X104_1.067xm*
P (P/14696)x10133x10° P

c

R

(1134)
R, isreadat§,, =10.
R, =2424x10” um

R, =2670 um



7.13e

FIGURE 7.13.4 shows the graph of the
incremental pore volume as a function of
the pore throat size accessing the pores.
The pore volume has a multi-modal
distribution.
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FIGURE 713.4 Incremental pore volume distribution.

FIGURE 7.13.4 Incremental pore volume
distribution.




PROBLEM 7.14

7.14a
FIGURE 7.14.1 shows the graphs of S,,

and §,,,, versus pore throat size.
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FIGURE 7.14.1 Graph of S, and S, versus A.

7.14b

The pore volume distribution is given by



: dS
R)=—=x (7.14.1)
f(R)= 2

FIGURE 7.14.2 shows the pore volume
distribution. The pore volume has a bi-
modal distribution.
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FIGURE 7.14.2 Pore volume distribution.

7.14¢
The pore throat size distribution is given



. R* dS
O(R)=——"2x 7.14.2
R*=0.012029

FIGURE 7.14.3 shows a comparison of
the pore volume distribution and the
pore throat size distribution. The pore
volume distribution is bi-modal whereas
the pore throat size distribution is uni-
modal and skewed to the right.
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FIGURE 7.14.3 A comparison of the pore volume distribu-
tion and the pore throat size distribution.

7.14d
The permeability of the core is given by



as,
P?.

L

k=1.441x10°E¢}, (114.3)

o]

j;%gcl.-iﬁi}xm" psi”*

[

Using Purcell’s average lithology factor
0f 0.216 gives the permeability as

5
k=1441x10° Eqﬁj&i—;’

C

=1441x10°x0216%0.132x1.460%10™ =6.00 mD

3.86-6.00

Ermr%z( )Xlﬂ[}:-:")ﬁ,?t?%

Alternatively, a better lithology factor
can be estimated for the core using the



following correlation between tortuosity
and porosity:

7=-27350+10987 (1144
$=0132
7=-27.35X0.132+10987=7.3768

F=1/1=1/73768=0.135
k=1,441x10“ﬁ¢j;%

4

=1441x10°x0.1356x0.132x1.460x10™" =3.76 mD

3.86-3.76

Ermr%:( )x 100=249%

This method gives a better estimate of



permeability than Purcell’s method.



PROBLEM 7.15

S,=0.32
Sy =0.60
5,=0.08
Let

f (x) = the probability density
function for the pore diameter
distribution

N = the total number of pores

L = the length of the porous medium

Water, which is the wetting phase,
will occupy the smallest pores. Gas,
which is the most nonwetting phase, will
occupy the largest pores. The balance of



the pores will be occupied by oil.

VP=ELN
4

Joo %" f (x)x

V, =T o s

S =M=[}.3z

R f(x)x

For the triangular
distribution,

(7.15.1)

(7.15.2)

{1.15.3)

probability



x, =10 pm

x, =60 um

X, =110 pm
o Ax-xm) 0 2Ax-10) x-10
filx)= (-‘Cg,'xl](xz_xl)_ (110-10](6{1-10)_ 2500
(115.49)
) o) o
ﬁ{x)-(m_xl](xj_xz}'(110_10)(110-60]' 2500

(7.15.5)



by =T ek [0 o]

(18002 (e=10)d+ [0} (110~ |

(1.15.6)

_ LN
4x2500

Performing the integrations inEq.
(7.15.6) gives

110
v __TIN [1 ) mx]ﬂ“{yxg_lx,]
42500 3 dsl3” 47 .y

o N (2521x10° +7.521x10¢)

4 %2500

The fraction of the pore volume
occupied by pores with diameter less

than 60 um is 2.521 x 10%/(2.521 x 10°
+ 7.521 x 10 = 0.2511. This is less



than the water saturation. Therefore, x,,
>60 pum andf5(x) 1s needed in the
integration for water saturation.

252110 +110x) /3~ x5 /4-110x60°/3+60° /4

Sw f f
2521x10°+7.521x10

=032

(115.7)

Eq.(7.15.7) can be solved to obtainx,, =

63.76 pm.
Proceeding in a similar manner, the
gas saturation is given by

: _110x110°/3-110° /4110, /3+x, /4
¢ 2521x10° +7.521%10°

Eq.(7.15.8) can be solved to obtain xy =
97.54 um. The water, oil, and gas will

=008 (1158



occupy the following pore size ranges:

Water: 10 yum<x < 63.76 um
Oil: 63.76 pm<x <97.54 um
Gas: 97.54 pm<x <110 pm



PROBLEM 7.16



d=2.5cm
L=71cm
k=513mD
¢=123.4%
V,=83cc
p,, =1.036 g/cm?
p,=0822 g/cm?
Ap=p,—p,=1036-0.822=0.214 g/cm?
o, =40 dynes/cm
o=0
rn==8.5cm

r, =156 cm



_2nN

(7.16.1)
60
P = a’:;m (-1 (716.2)

Applying the unit conversions to Eq.
(7.16.2) gives the capillary pressure in
psi as

Ap® 14,69
P=L{ )
) 101331

-?SZSXIO“"'Apm (7 -1!)

(116.3)



S, =—1— (7.16.4)
VP
S5 A(EsSvm) (1.16.5)
dF,
ds
S.=8 Py =1 (7.16.6)
= B

FIGURE 7.16.1 shows the graph of
(P.1S,,4v) versus P.;. The regression

equation is

P,S

way

=0.8951P3> (7.16.7)

In the first method, S, 1s calculated by



substituting Eq.(7.16.7) into (7.16.5).

400
350
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, 250

UE 200

2 159
1,00
050
000

R'=0.9822

Pe (psi)

FIGURE 7.16.1 Graph of P,4S,,,, versus Py.

FIGURE 7.16.2 shows the graph of S,

versus P

|- The regression equation is




B,S,., =0.8951P; 4% (1.16.8)

Wy

In the second method, S, 1s calculated
by substituting Eq.(7.16.8) into (7.16.6).



1.00 =,
080
080

070 y= 08951 My
; 060 R*=09783
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040
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FIGURE7.16.2 Graph of S,,,,, versus P,,.

FIGURE 7.16.3 shows the capillary
pressure curves from the two methods.
The first method gives a smoother curve




than the second method.

12.00

10,00

8.00 =+=Mathod 1; Eq.(7.16.5)
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400

000 020 040 060 080 100

FIGURE7.16.3 Capillary pressure curves from the two
methods.



PROBLEM 7.17

7.17a

1 atm =760 mm Hg
Wy, =5620¢
W, =6490g
P .
P =—x14.696=0.0193P psi (1.17.1)
760

g (Wwﬂ:fr _de}r J’l Py [ler W;iry ] (117.2)

(W Wdﬂ) (W drf]

FIGURE 7.17.1 shows the capillary

e




pressure curve from the porous plate
experiment.

P (psi)

0.00 0.20 040 060 0.80 1.00




7.17b

P, =0.387 psi

T717¢

S

wirr

=0.299

7.17d

FIGURE 7.17.2 shows the Brooks-
Corey model for the capillary pressure
curve. The model equation is

I(S‘ -0.255

A ):—~1.3198[ﬂﬂ+lﬂ(0.548$) (1471)

From the model equation,



A=13198
P, =0.6347 psi



10

1 + —

g y=0.5488¢" "%
R=0.9842 |

0.
1 | ‘\'.

0.01 "
0.1 1 10

Pe (psi)

FIGURE7.17.2 Brooks-Corey model for the capillary pres-
sure curve from the porous plate method.

FIGURE 7.17.3 shows a comparison
of the Brooks-Corey model and the




experimental capillary pressure data.
The fit is good.
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FIGURE717.3 A comparison of the Brooks-Corey model
and the experimental capillary pressure data.

T.17e




The van Genuchten model equation is

=18

S,—0310 1
1-0.310 1+-(u.1811)2'1j

(1.12.2)

FIGURE 7.17.4 shows a comparison of
the van Genuchten model and the
experimental capillary pressure data.
The fit is very good.
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FIGURE 7.17.4 van Genuchten model for the capillary pres-
sure curve from the porous plate method.



PROBLEM 7.18

7.18a
P; =44 psi
p,, =64 Ib mass/ft’

p, =45 Ib mass/ft’
Ap=p, —p, =64—45=19 Ib mass/ft’

d = 144 P, _ 144 x4.4

: =33.35 ft
Ap

At the sample point,



2=3335+100=13335ft

_Apz 19x133.35
‘144 144

=17.59 psi

The expected water saturation is
computed by linear interpolation as

17.59-15.7
S, = 32.2{—-)(29.3—32.2]:31.95%
1350-157

7.18b
Assuming a constant porosity, the
average water saturation is given by

s [8edh

5, === (1.18.1)
Y h

The integration can be performed using
the trapezoidal rule as shown in TABLE



7.18.1.

TABLE 7.18.1 Calculation of Average
Water Saturation.

D 2 P 5 ]
M @) (s (%) 2(5 +8,0) M

0 20835 2749 3073

25 18335 24.19 3114 77338
50 15835 20.89 3155 783.63
75 13335 17.59 3196 793.88
100 10835 14.30 35.30 840.75
125 8335 11.00 4259 973.63
150 5835 770 6581 1355.00

175 3335 440 100,00 207263
Z:'fsaz_oo




h=175 ft
Ah=25ft
1
EE[S“"' +8,:11 ) AR =7592.90

1
3 Zi(sm' +8,i41 )ﬂ‘h 7592.90)
v h 175

=43.49%



PROBLEM 7.19

(F; )i'.ub = 20 psi
(Pi),,=2psi

o, =72 dynes/cm
T, orvoir = 24 dynes/cm
0 =0

B sservoir =0

p,, =68 Ib mass/ft*
p., =53 Ib mass/ft*

Height of sample above the water-oil
contact is given by

144{ P —-P
h= ol Y (7.19.)
Pw = Po



(ocosB)

P =P TEEETVWOIT 19,
(UcUSE reservoir
(PE _Ri)mm,-, = (H_Pd)hb—w_m“—s)ﬁ)rr (7.19.2)

Substituting the numerical values into

Eq.(7.19.2) gives

(B-B).... =(2t}—2)m(2£1 il

TERErVOIr

=6.0 psi
72cos0’ )M}

Substituting the numerical values into

Eq.(7.19.1) gives

hzm‘l(ﬁ“ﬂf ) e

I

_ 144X6.0

=56.7
Po=0s 6853 *



PROBLEM 7.20

P |k
=—= - (7.20.1)
/ o cosf \/;

k=— {7.20.2)

¢=1 (7.20.3)

Substituting Eqs.(7.20.2) and (7.20.3)
into (7.20.1) gives

'Eﬂ’cosﬂ' 1 it i 2 1

r xacnsﬁws}(l]:\/ﬁ W2 |2







PROBLEM 7.21

7.21a
The LeverettJ-function in consistent
units is given by

p [k

= - (1.21.1)
J ocosf\ ¢

Applying the required unit conversions
to make J dimensionless leads to

}_(}1114.695}x1.0133x10* (k/1000)x9.869x10”
o cost ¢

=(.2166 £ JE (121.2)
ocosf |0




In the laboratory,

k=150 mD
k=022
ocos =72 dynes/cm

FIGURE 7.21.1 shows the Leverett J-
function.
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FIGURE7.21.1 Leverett J-function.

7.21b
At reservoir conditions,



_ Jxocos@

= (1.21.3)
02166,k /9

k =500 mD
$=0.25

o cosf =26 dynes/cm

FIGURE 7.21.2 shows a comparison of
the lab and reservoir conditions
capillary pressure curves.
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FIGURE7.21.2 A comparison of the lab and reservoir
conditions capillary pressure curves.




7.21¢

At reservoir conditions, the capillary
pressure at the top of the transition zone
is

P.=4.850 psi

The height of the top of the transition
zone above the free water level is given
by

o 4P _ 144 4,850

= =46.44 ft
p,—p, 1026%624-0.785%624

The displacement pressure is
P,=0.211 psi

The height of the top of the transition
zone above the water oil contact is given



by

X0,
14 14x0211 s
p,—p, 1026X624-0785x624



PROBLEM 7.22

If Cores A and B have the same pore
structure, then they must have the same
Leverett J-function. The LeverettJ-
function in consistent units is given by

= 5 E (7.22.1)
acosf\ ¢

Applying the required unit conversions
to make J-dimensionless leads to



(P /14:696)x1.0133x10° |(k/1000)x9.869x10”
o cosfl 0

Pk
=02166—— |- 1211
ocosf\ ¢ 1

k, =250 mD
¢, =021
ky= 50mD
¢,=0.18

0 =72 dynes/cm
f=0



FIGURE 7.22.1 shows the capillary
pressure curves for Cores A and B.
FIGURE 7.22.2 compares their Leverett
J-functions. They are practically
1dentical. Therefore, the two cores have
the same pore structure and are likely to
have come from the same reservoir.
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FIGURE7.22.1 Capillary pressure curves for Cores A and B.
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FIGURE 7.22.2 Leverett J-functions for Cores A and B.




PROBLEM 7.23

7.23a

FIGURE 7.23.1 shows the three
capillary pressure curves. It is evident
that P., belongs to the bottom layer,
Layer 3, withk = 900 mD; P_.5 belongs
to the middle layer, Layer 2, with £ = 50
mD; and P~ belongs to the top layer,

Layer 1, with £ =10 mD.
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FIGURE7.23.1 Capillary pressure curves for Problem 7.23.

7.23b
This problem can be solved by two
methods. In the first method, the P,



curves are converted into heights above
the free water level and plotted together.
The layers are then imposed on this plot
as shown in FIGURE 7.23.2. The water
saturation in Layer 1 is given by P,

that of Layer 2 by P,.p,
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FIGURE 7.23.2 Initial water saturation distribution for the
layerad reservoir.



FIGURE 7.23.2 Initial water saturation
distribution for the layered reservoir.
and that of Layer 3 by P_.,. The height

above the free water level is given by

o lup _p
p,-p, 624-0871x624

=17.8891P, (1231)

In the second method, each P, is fitted

to the Brooks-Corey model and the
model equation is used to calculate the
water saturation for each layer. The
Brooks-Corey models are shown in
FIGURES 7.23.3 through7.23.5. In
these figures, S* is an adjustable curve
fitting parameter. The model equations
for Layers 1, 2, and 3 are as follows:




S,,, =0.60+2.9018z """ (1.23.2)
S,,,=046+13,555z"% (7.23.3)

S,,=0.16+15.636z """ (7.23.4)

The resulting initial water saturation
distribution 1s shown in FIGURE
7.23.6.
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FIGURE7.23.3 Brooks-Corey model for P,4 (Layer 3).
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FIGURE 7.23.4 Brooks-Corey model for P, (Layer 2).
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FIGURE7.23.5 Brooks-Corey model for P (Layer 1).
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FIGURE 7.23.6 Initial water saturation distribution for
layered reservoir.



7.23¢

624
P =P +Eu(11385-5)=147+2==(11395-2)
u 144

atm

=14.7+0433(113.95-z) (1.235)

W

144
=P +0.0559z (12356)

- 24-0871%624
Pozpw-}-[-etfiaﬂl}z:}) +{M]x

FIGURE 7.23.7 shows the water and oil
pressures resulting from Egs.(7.23.5)
and (7.23.6).
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FIGURE7.23.7 Water and oil pressure profiles.




PROBLEM 7.24

Ap=12.11b mass/ft*
Py=42psi

S, =030

8, =022

i=2

7.24a

g _144P, 144x42

{, 50 ft
Ap 12.1

7.24b
AtS, =022, P

cdrainage

= 26 psi.

_ 144P:J.rrzimxu . 144x 26
Ap

z =309.42 ft



The maximum depth of water-free
production is given by

D, =1050-309.42=741 ft
7.24¢
f,=10for§, 2070,

0.70-0.22
1-022

-1
At §, =070, Pmimge:vil( ] = 5.35 psi,

[¥

VAR, gy 144X5.35
T= =
Ap

=63.72 ft

The minimum depth above which only
water will be produced is given by

D, =1050—63.72= 986 ft



7.24d

Apz, 12.1x1050 _
e i O i B Y
dmin T 44 144 5



PROBLEM 7.25

g=10 cm®/hr :iﬂ:l??'ﬁ X107 cm’ s

L=500 um=500%10"" cm
n =40 um=40x10"" cm
r, =50 um =50%10"" cm
B=r,/1r=50/40=1250
iy = [y =1 cp =0.01 Poise
O =30 dynes/cm

8=0

7.25a

The critical capillary number for
displacing the oil from the larger tube
(and trapping some oil in the smaller
tube) is given by



B(B*+1)

N . =—— {7.25.1)
ceritical 4(}34"1)

Substituting the numerical values into

Eq.(7.25.1) gives

N _B(B*+1) 125(125°+1)
el T g(B+1)  4(1.25+1)

rud n

The actual capillary number for the
displacement is given by

Nm.rtuaf ZLFLL {Tzsz}
Tty O cost

Substituting the numerical values into

Eq.(7.25.2) gives



qul 277810 x0.01x500x10°*

- =(.230
aRocost gy (40x 10" )3 %30cos0°

Nm‘:uu! =

Since N, .pqceritical, oil will be
trapped in the larger tube.

1
4N +| —+1
ﬁ_ cactual (;‘3 J

e

Substituting the numerical values into

Eq.(7.25.3) gives

| 1
AN i T =11 4><0230+(—+1]
y_ ™ {ﬁ ] 125

4x0230 1
v AN [__ ] —-125 [__1)
ﬁ B 1.25 1.25

{7.25.3)

=079




Since v,/v; 1s less than 1.0, the smaller

tube will flood out first and oil will be
trapped in the larger tube as predicted.

7.25b

The condition for displacing the oil from
the larger tube and trapping some oil in
the smaller tube is

'Nlru-:!uul' :—’ ‘h"rfmfr'u:e:ri' “254}

2
1
quL (ﬁ +) (7.25.5)
nr, Ucnsﬁ' 4(,8+I}

Solving Eq.(7.25.5) for g gives



ﬁ(ﬁz +1] o cosf
qgl 4“}-{-1) ] = {7.25.6)

Substituting the numerical values into

Eq.(7.25.6) gives

mx(40x10%) x30xcost®

W =4294x107cm’fs
: A

920356%

=494 %107 x3600=15.457 cm’ /hr
7.25¢

8 UL 20 cosB

4

P P =
R n

(7.25.7)




{ELqu-Zﬂcﬁsﬁ[l—l]
B hh (7.25.8)

4= suL) (8uL
b | 1| ¥
h in

Substituting the numerical values into

Eq.(7.25.8) gives

80.01x500% 107"
50x107™ 40x107*

1 1
: - ><2.?:!s><1{}'3-.1><30.mu°(—ﬂ1 _]
c -
mx(50x107)

8x001x500%107 | | 8x0.01x500x107
mx(toxi0) | mx(soxt0™)

=1235%107 em’ 5=1.235 %107 % 3600=4.446 am’” fhr

Substituting the numerical values into

Eq.(7.25.7) gives



8%4.446X0.01%500x10~  2X30c0s0°
4 - 4
er(niﬂxm_i] 40x10

=6142.766—15,000=-8857.234 c:l'i/nlesh:mE

pA_pB:

There should be no concern about the
negative pressure change because the
flow is dominated by capillarity which
can proceed against a higher pressure
because of the curvature of the meniscus.



t=1.0x10"s

=3
v=-2_— PRSI >=24.5711 cm/s
1
Ty T x(40x 10 )

X, =wf=24571x1.0x107° =2.4571x107" cm

_ Bquux; 83123531077 X0.01x 245711077
. 4 — 4
e < (40x107")

Py — P

=3018.69 dynes/cm?
=3018.69/1.0133x10°
=2.979% 107> atm

P,=P,—2979%x107° =1—2.979x10" =0.9970 atm

wil

20 cos@ 2 30cos0° 2
Boai—P,= = =15,000 dynes/cm
nwl Wil n 2010 > et

=15,000/1.0133x10°%
=1.480>%1072 atm

Py =P, +1480x1077 =0.9970+1.480x 107 =1.011824 atm
- 8qu(L—x)

rd
8% 1.235% 107 %x0.01x (50010~ —2.4571x107%)

Fawi — e

mx(40x107* )‘1
=3018.69 dynes/cm”
=3124.08/1.0133x10°
=3.083x10" atm

Py=P,,, —3.083x107° =1.011824— 3.083>10~ =1.008741 atm

-3
iy LSASIHIO g gana gy
7y mx(50x107%)

X, =1,t =19.6423%1.0x10 > =1.964x%102 cm






_ 8q,lix, 8x%1.543x107° x0.01%1.964 X107

PA_PWZ & 1
o mx(50x107*)

=1234.62 dynes/cm”
=1234.62/1.0133x10°
=1218x10"° atm

P,,=P, —1218x107° =1-1.218x10"° =0.9988 atm

P _p _20c0s8 2x30cos0°
ooy 50%107*

=12,000/1.0133x10°

=12,000 dynes/cm?

=1.184%1072 atm

P,,=P,,+1.184x107 =0.9988+1.184x107 =1.010624 atm
:S‘IZP(L— %)

-P
B
xr

nwl

8x1.543%107° x0.01x(500x10'4 —1.964% 10‘3]

ﬂ:x(soxlcrl )4

=1908.1436 dynes/cm’
=1908.1436/1.0133 x 10°
=1.883x107" atm

P,=P,,,~1.883x107 =1.010624 —1.883 %107 =1.008741 atm



FIGURE 7.25.1 shows the pressure
profiles in the two tubes and visualizes
the origin of the negative pressure
change from A to B.
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FIGURE 7.25.1 Pressure profiles for the pore doublet
model at t= 10~ second.

7.25d




6142.766

% Viscous Force = %x100=29%
6142.766+15,000
15,000
%Capillary Force =- 9 X100=71%
6142.766+15,000

From our knowledge of capillarity, there
should be no surprise that the capillary
force tends to dominate the viscous force
for displacements at the pore scale.

7.25¢
FIGURE 7.25.2 shows the variation of
the critical capillary number with r;/r,.

It is clear from the FIGURE that as 1,
approaches r,, it becomes easier to

displace the nonwetting phase from the



larger tube as the critical capillary
number decreases toward the limiting
value of 0.25 for tubes of the same size.

1000000
100000
10000

cap

1000
100

Critical N,

10
1
0.1

0.01 0.1 1
e,

FIGURE7.25.2 Variation of the critical capillary number
with n/r,.






PROBLEM 7.26

7.26a
The pressure gradient required to
mobilize the oil blob is given by

AP ZGCBSH[I IJ
= ——— (7.26.1)
L L r R
R=5F
L=R=5r

0 = 30 dynes/cm

o=0



71 = 50 um = 50 x 10 cm for
medium sand.

7, =10 pm= 10 x 10 cm for very
fine sand.

For the ordinary waterflood in the
medium  sand, the  mobilization
requirement 1s

L™ L \r R) sxsoxi0® Lsox10™® 5xs0x10™
=384,000 dynes/cm’ /cm
 384,000X14696 3048

1.0133x10°
=169.749 psi/ft

gz?.ccosf}(l 1)_2x3[}xcos{]°( l 1

For very fine sand,



E}Eccosf}[l_l]_2x3{]><cos{]°( L1
L™ L \r B) sxioxiw™ Liox10™ s5x10x10™
=960,000 dynes/cm’ /cm

960,000 % 14.696 % 30.48
BTN

= 4243726 psift

Yes. I am surprised by the extremely
high pressure gradient requirements for
mobilization of trapped residual oil in
an ordinary waterflood.

7.26b

The pressure gradient generated in the
normal waterflood is obtained from
Darcy’s law as



BE_ Ui, (7.26.2)
L 0.001127%5.615xk,
u = 1 ft/day
k,=2000 mD
AP 1x1
it D . : =0.079 psif
L 0001127x 5.615ka 0.001127 % 5.615x2000
For very fine sand,
k, =500 mD
AP u, 1x1

=0316 psif

L 000L27x5605xk,  0001127X5615%500

These pressure gradients are not
sufficient to mobilize residual oil in
these sands.



7.26¢
o =0.01 dyne/cm
0=0°

For the enhanced waterflood in the
medium  sand, the  mobilization
requirement 1s

ﬁPHEGwsﬁll 1) 2x001%cos0°[ 1 ]

L L \r R) 5x50x10° \50x10° 5x50x10°

=128 dynes/em’ fcm
 128%14.696x3048

1.0133x10°
=0.057 psi/ft

The pressure gradient requirement is
only 0.057 psi/ft. The waterflood can
generate 0.079 psi/ft. This is sufficient



to mobilize residual oil in the medium
sand.
For very fine sand,

AP 25 cosf( ] 1]:3><0.01><coso°[ 1 1 )
L~ L \r R) sxioxi0* \loxi0™ sxi0x10™
=3200 dynes/cm’ fcm
_ 3200X14696 3048

1.0133x10°
=1415 psi/ft

The pressure gradient requirement is
1.415 psi/ft. The waterflood can
generate 0.316 psi/ft. This is not
sufficient to mobilize residual oil in the
very fine sand. Therefore, the
“enhanced” waterflood in this case will
be unsuccessful.



7.26d
The requirement for mobilization is
given by

W—WE%(E_l] {?_25_3}
ocos@ L \r R

The critical capillary number is deduced
from Eq.(7.26.3) as

Nc:rirlcar = "l_k'w"[i - l] {?253}
- B ke R

The actual capillary number for the
flood 1s

Uy,
o cosf

(1.26.4)

cactual =



1x30.48
u=1 ft/day = e300 =3.528%107" cm/s

i, =1cp=0.01Poise

For medium sand,

k,= 2000 mD
%k (11
Nc.r.rihm{ :_kw[___J
L\r R
_ 2x(2000/1000)x9.689x10” (1 1 )
5x50x10™ \50x10™ 5x50x10°*
=2526x10™

up,  3528x107 x0.01
ocosd  0.01xcos0’

N s = =3528x10"

The actual capillary number in this case



is greater than the critical capillary
number. The conclusion from these
numbers 1s that residual oil will be
mobilized in the medium sand in the
enhanced waterflood.

For very fine sand,

k, =500 mD

N -2_“:,[1-_‘,]
coritical — L r R

_2x[500/1000}x9.689x10“9( 1 I ]
5%50%10™ 50x107  5%50%107

=1579x10"

ul,  3.528x107 %001

= =3528x10™
o cosf 0.01% cos0’

N cactual —



The actual capillary number in this case
is less than the critical capillary number.
The conclusion from these numbers is
that residual oil will not be mobilized in
the very fine sand in the “enhanced”
waterflood.



PROBLEM 7.27

7.27a

Capillary number is used to characterize
the ability to mobilize residual oil.
Capillary number is given by

N, = My (7.27.1)
O
u=1ft/day=——=3.528x10"" cm/s

3

u,, =0.01 Poise

For the ordinary waterflood,



o =35 dynes/cm

N oLk, 3528 x107 x0.01

: =1.008x107
o 35

From the capillary desaturation curve,
S,,=0.35, which is consistent with the

given residual oil saturation for the
waterflood. For the enhanced waterflood
using the chemical,

o = 0.01 dyne/cm

N M, _ 3528x107 X001

: . —3528x107"
a 0.01

From the capillary desaturation curve,

5, =0.145



Therefore, the chemical will mobilize
residual oil, reducing the residual oil
saturation from 35% to 14.5%.

7.27b
The additional o1l recovery to be
expected is given by

 ARGAS,,
P B

[

AN

(7.27.2)



A=2 square miles =2x5280" 2
h=200ft
$=020
B,=120RB/STB

W AhgAS,  2x5280" x200%0.20%(0.35-0.145)
P B 5615%1.20

0

=6785%10"STB



PROBLEM 7.28

FIGURE 7.28.1 shows the sketches for
the capillary pressure curves for Cases
B through F compared to Case A. The
magnitude of the capillary pressure
curve for a porous medium is inversely
proportional to the pore size. The
smaller the pore size, the larger is the
capillary pressure. The shape of the
capillary pressure depends on the
sorting and pore size distribution. The
sketches in Figure 2.28.1 were made to
reflect these factors.
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FIGURE 7.28.1 Drainage capillary pressure curves for vari-
ous porous media.



Case B:

P.p >P,., because B has smaller pore

size than A as a result of the tighter
packing. The shape of P, 1s the same as

because A and B are well sorted.

Case C:
P.0 > P,  because C has smaller grain

size than A. The shape of P.- is the
same as P.- because A and C are well
sorted.

Case D:



P.c P4 because D has smaller pore size

than A as a result of poor sorting. The
shape of P.p, 1s more S-shaped than P, 4

because D is poorly sorted whereas A is
well sorted.

Case E:
P.p > P_, because E has smaller pore

size than A as a result of cementation.
The shape of P, 1s more S-shaped than

P, because the cementation in E can

result in a wider pore size distribution
than in A, which has a uniform pore size
distribution.

Case F:



P.r > P,  because F has smaller pore
size than A as a result of compaction.
The shape of P, 1s more S-shaped than
P., because the compaction in F can
result in a wider pore size distribution

than in A, which has a uniform pore size
distribution.



CHAPTER 8 SOLUTIONS



PROBLEM 8.1

k., =(S,=Suin)’
k,=2(1-5,-S,)
S,_mzﬂ'.IS

S =025

“ﬁw =#{l = ]'{} cp
H,=1cp

B, =1.20 RB/STB
B, =10 RB/STB

8.1a
FIGURE 8.1.1 shows the relative
permeability curves.
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FIGURE 8.1.1 Relative permeability curves.

8.1b
FIGURE 8.1.2 shows the approximate
fractional flow curve and its derivative,




together with the Welge tangent
construction.

1.00 450
0.90 4 400
0.0 150
;';: ' 300

i z

F, 050 i g}

040 1 w0y
i 150
020 L
0.10 - 050
0.00 . : : : 0.00

000 020 040 060 0B 100
S

FIGURE8.1.2 Approximate fractional flow curve and its
derivative and tangent construction.



8.1¢
From the Welge tangent construction,

S,,/=0.527

w,

S,,=0.597

8.1d
FIGURE 8.1.3 shows the true
fractional flow curve and its derivative.
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0.90
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FIGURE 8.1.3 True fractional flow curve and its derivative.

8.1e

The end-point mobility ratio is given by




_ko/m, 021671 .
k., /u, 0720/10

E

8.1f
From the tangent line,

do | —2237
ds, ).

Wy

Before breakthrough, the distance
traveled by the front is given by



df,

Xp ﬂ”[ﬁ) =2237t, (814)
Sw‘,r

W

ty =020, x;, = 2.237x0.20=0.447
t, =030, x;, =2.237x0.30=0.671

FIGURE 8.1.4 shows the water
saturation profiles at?p = 0.20, 0.30,

and 1.0.
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FIGURE 8.1.4 Water saturation profiles.

8.1¢g
At breakthrough, x, = 1 and Eq.(8.1.1)

gives



1
tpay =——— = 0447
S aday

8.1h

The breakthrough oil recovery as a
fraction of the initial oil in place is
given by

- 447
Ryv= foor_ 0447 _ o6
1-§,,, 1-0.15
8.1i
After breakthrough,
W, = L (8.1.2)

dfy
s, ),



Npﬂzswl _Swirr'!-‘ﬂ[l_fw [Swi)] (81.3)

R=P2 (8.1.4)
For example, for S, ,= 0.580,

[%J =1.184
Sy L)

1 1

{%_] T 1184
dS
st

10

W, = =0.845

£,(8,,)=0932



Nyp =818, W[ 1- 1, (5,) |=0580-0.15+0845(1-0932)
=0487

Np 0487
1-8, 1-015

wirr

=0.573

FIGURE 8.1.5 shows the oil recovery
curve.
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FIGURE8.1.5 Oil recovery curve.

8.1j
After breakthrough, the oil water ratio is
given by



WOR=—> { f‘}i( “l)} (8.1.5)

For example, for S,,, = 0.580,

WOR= [ S8 “’”))] E[ﬂwzm

~£,(8,2)| 111-0932.

FIGURE 8.1.6 shows the graph of the
water-oil ratio versus oil recovery.
There 1s a dramatic increase in the
water-oil ratio soon after breakthrogh.
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FIGURE 8.1.6 Water-oil ratio versus ol recovery.




PROBLEM 8.2

‘HE =6

u, =100 cp

f{l}r—w =4.275
as, ),

W

Before breakthrough, the distance
traveled by the front is given by

ds

W

d ;
xp=tp [ﬁ] =4.275¢,, (8.21)
.ﬁ'wf



tp, =020, x, =4.275x0.20=0.855
frini= s =(.234
DRT 4275 3

fogr 0234
1-§,, 1-0.15

T

i =0.275

The waterflood performance indices at
the higher mobility ratio of 60 are worse
than at the lower mobility ratio of 3. The
frontal saturation is lower, the water
breakthrough is sooner, the breakthrough
oil recovery is lower as is the oil
recovery after breakthrough. These
differences are apparent in the
comparative plots in FIGURES 8.2.1,
8.2.2, and 8.2.3.




8.2a

Figure 8.2.1 shows a comparison of
the approximate fractional flow curves
at the two mobility ratios. Note the shift
in the curve to the left as the mobility
ratio 1s increased from 3 to 60. The
result of this shift is a lower §,,, and a

lower §,,,, from the tangent construction.
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FIGURE8.2.1 A comparison of the approximate fractional
flow curves.

8.2b



Figure 8.2.2 compares the water
saturation profiles at z;, = 0.20. Note the

lower S, at the mobility ratio of 60 than

at the mobility ratio of 3 and the

tendency  toward  earlier = water
breakthrough.



1.00
0.90 4 t;=0.20
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FIGURES.2.2 A comparison of water saturation profiles at
tp=0.20.

8.2¢
Figure 8.2.3 compares the oil recovery
curves for the two waterfloods. The



superiority of  the waterflood
performance at the lower mobility ratio
is evident.

1.00
£ 0901
0 080+
S 070+
=
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5 0604
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£ 040 1
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& 020
0 0104

ﬁ[m T T T T
0 1 2 3 B 5

Pore Yolume Injected

FIGURES.2.3 A comparison of oil recovery curves.



The oil viscosity in this waterflood is
only 100 cp and there is a marked
deterioration in the  waterflood
performance. The viscosities of heavy
oils are considerably higher than 100 cp,
say 500 to 1000 cp. At such high oil
viscosities, the waterflood will be
essentially doomed to failure.



PROBLEM 8.3

M, =0.03

u., =100cp

ds, ).
Swf

Before breakthrough, the distance
traveled by the front is given by

x5 =fp[-:£”-] =1.675t;, (8.3.1)
S

W



tp =020, x;, =1.675%0.20=0.335

1
t}_,mr- = m’ =(.597
_ topr _ 0.597
MUI-8,.. 1-015

Fr

=0.702

The waterflood performance indices
at this favorable mobility ratio of 0.03
are superior to those at the unfavorable
mobility ratios of 3 and 60. The frontal
saturation is  higher, the water
breakthrough 1S delayed, the
breakthrough oil recovery is higher, and
the waterflood 1s over at water
breakthrough, with considerable savings
in time and money. These differences are
apparent in the comparative plots in



figures 8.3.1, 8.3.2, and 8.3.3.

8.3a

Figure 8.3.1 shows a comparison of
the approximate fractional flow curves
at the three mobility ratios. Note the shift
in the curve to the right as the mobility
ratio 1s reduced from 3 to 0.03. The
result of this shift is a higher S, and a

highers,,, from the tangent
construction.
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FIGURE8.3.1 Acomparison of the approximate fractional
flow curves for Mg=0.03, 3, and 60.



8.3b

Figure 8.3.2 compares the water
saturation profiles at¢, = 0.20 for the

three waterfloods. Note the higwer S,

at the mobility ratio of 0.03 than at the
other two mobility ratios. At this
mobility ratio, S,,¢1s essentially equal to

(1-S,,) and the displacement is piston-

like, albeit with a leaky piston since
residual oil is left behind.
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FIGURE8.3.2 A comparison of water saturation profiles at
tp=0.20 for Mg =0.03, 3, and 60.



8.3c

Figure 8.2.3 compares the oil recovery
curves for the three waterfloods. The
superiority of  the waterflood
performance at the favorable mobility
ratio of 0.03 is evident. The water
breakthrough is delayed and the
waterflood is over at water breakthrough
as all the oil that can be recovered has
been recovered with considerable
savings in project time. Of course, you
know that time is money.
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FIGURE8.3.3 A comparison of the oil recovery curves for
Mg=10.03, 3, and 60.

The performance of this waterflood at
the favorable mobility ratio of 0.03



clearly demonstrates why mobility
control 1is highly desirable in any
displacement. The reason for the use of
polymers to increase the viscosity of the
injected fluid 1s to achieve a favorable
mobility ratio for the displacement and
thereby improve the oil recovery and
shorten the project life.



PROBLEM 8.4

q=500 STB/D

L=2,000 ft

A=2,800 ft’

=025

8, =020

5, =015

Hy=2cp

#,=1cp

PV = ALj=2800%2000X0.25=1,400,000 ft’ = 249,332 RB
HCPV =PV(1-5,,,)=1,400 {}00[1—{}.2{]]:1,120,0{}0 ﬁJ:IQQ,dﬁﬁRB

IOIP-@—¥_1H 977 STB

0



8.4a

FIGURE 8.4.1 shows the curve fit of
analytical models to the sparse
experimental  relative  permeability
curves. The model fits are good. The
analytical equations are

k., =0608"
k,=0.70(1-S)*
Where
S, —S

(;? W WITT

T Yyirr -~ Yor
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FIGURE8.4.1 Curve fit of relative permeability curves.

These analytical models are used in
subsequent calculations.
FIGURE 8.4.2 shows the




approximate fractional flow curve with
the Welge tangent construction.

df,
Ze | =20
)
wf

S, =0.60

8,0, =0.70
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FIGURE8.4.2 Tangent construction.

Before breakthrough, the distance
traveled by the front is given by



d
xﬂ:’”[%} =2k (8.4.)
W ‘s'lh_f

t =150 days

| _56154B,1 _5615X500x1x150

! =0.301
PV 1,400,000

tp=0301, x, =2x0.301=0,602
x=1,L =0602x2,000=1,204 ft

FIGURE 8.4.3 shows the water
saturation profile at 150 days of
injection.
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FIGURE 8.4.3 Water saturation profile at 150 days of

injection.

8.4b




1
tppr =—=0.50
DET =50

_tpgr XPV  0.50%249,332
qB 500X 1

W

A =249.33 days

8.4c

Spar =Sy 0.70—0.20
RBT - way WIF — _— D'EES
1-S,,,  1-020

Alternatively,

_ tpgr 050

- = =0625
-8, 1-020

NP =Ry XI0IP=10.625X132,977 =83,111 S5TB

8.4d



B A8a) |15 _AlSa) | 30
WOR_Bw|:1_fw(Sw2)]_ 1 {1— fw(swz]]_ [

0B,  30xI _
B +30B, 15+30x1

2 (Swz)z

§,,=0.704
W =119

Ny =8,= 8,0 W[ 1= £, (5,,2) |=0704-020+1.192(1-0952)
=0561

N, 056
D =(.701
-5, 1-020

WIrT

NP =RXI0IP=0.701x132,977=93,217 STB

8.4e



~ W;xPV  1.192x249,332
B, ]

W

Q =297,204 STB

8.4f

Q, 297,204

q 500

=594.41 days



PROBLEM 8.5

For 0.20 §,, 0.40

{8.5.1)



4, | _070-000_,,
ds, )~ 0.40-020 '

=020, x, =020x3.5=0.70

For 0.40 S, 0.70

d, | __1-070 _ .
ds, ). 070-040

W

t;=0.20, x, =0.20x1.0=0.20

FIGURE 8.5.1 shows the saturation
distribution at ¢, = 0.20.
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FIGURE 8.5.1 Wetting phase saturation profile at tp=0.20.

8.5b

1
tppr =—=0.286
DBT =375



8.5¢

t 0.286
Ryp=—D2L =

= = =0.358
1-S,.,, 1-020

8.5d
The time when the second front arrives
at the outlet is given by

%=ﬂf[5&J =1/1=10
as,, $,, =070

S,,,=0.70

 Suar=Sus 070030
1-5 1-0.20

=0.625

wirr

FIGURE 8.5.2 shows the recovery
curve.
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FIGURE8.5.2 Recovery curve.

8.5¢
The physical system is a favorable
mobility ratio displacement in a two-




layer heterogeneous reservoir in which
the permeability of the bottom layer is
greater than that of the top layer.

8.5f
If we neglect the effect of capillary
pressure,

P,(x,,020)=P, (x,,0.20)=P(x,,020) (852

For Oxp, 0.20, Darcy’s law gives

dP :_ﬁ'ﬂw.fw( L ):—{jl (8.5.3)
axn kker

For 0.20 D 0.70, Darcy’s law gives



aP s i quwfw [Sw = ﬂ4n]

=-C, (8.5.4)

For 0.70D1, Darcy’s law gives

dP
_ Gt _ £ (8.5.5)

dx,  kk,, A

P(1,0.20)=1 (8.5.6)

where C;, C,, and C; are constants. Eq.

(8.5.5) can be integrated to obtain the
pressure profile in the third segment,
using the boundary condition of Eq.
(8.5.6). This profile is used to determine
the boundary condition for the second
segment. Using this boundary condition,
Eq.(8.5.4) is then integrated to obtain the



pressure profile in the second segment.
This profile is used to calculate the
boundary condition for the first segment.
Eq.(8.5.3) can be integrated to obtain the
pressure profile in the first segment.
Because the mobility ratio is favorable,
C,C,C;. FIGURE 8.5.3 shows a

qualitative sketch of the pressure profile
for Cl 5 C2 3 C3— I.




0.20)
(]

P(xp,
N

Xn

FIGURE8.5.3 Qualitative sketch of the pressure profile at
tp=0.20.



PROBLEM 8.6

L=5.0cm
d=3.0cm

0 =0.15

p, = 2.666 g/cm’
k=150 mD

u,= 10 cp
p,=0.85 g/cn’®
uy=1cp
p,,=1.05 g/cm’
oP =48.13 psi



2 2
A:n[i) :x(i] =7.069 cm®
3 2

V, = AXL="7.069%5=35.343 cm?
VF =PxV, =0.15x35.343=5.301 cm?

& k kAAP

Application of unit conversions to Eq.

(8.6.1) gives

LT L)
k- (k/000)A(AP/146%)  kAAP

e Wi~ psvb (1 _¢}_ pavp
! Vp(Pw_Pu)

(8.6.3)



For example,

q,=98.82 cm¥/hr

q, =14063 cm/hr

mi 98.82X10%5
k, =4,0322% = 40822 X — 23953

1507.069% 4813

140.63%1x5

il
k=088 _gpgax——"0 g
KAAP 1507.069x48.13

W=851270g

_ W-pV;(1-9)- AS
V(p-p.)
85.1270- 2.666% 35.343(1-0.15)-0.85x5.301
5301,(1.05-0.85)

§

W

=(.5000



Figure 8.6.1 shows the relative
permeability curves from the steady state
experiment.
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FIGURE8.6.1 Steady state relative permeability curves.




PROBLEM 8.7

g =30 cm’/hr
L=54.6 cm
d=4.8 cm

A=18.0956 cm?
0 =0.3034
K=337D

uy = 108.37 cp

u, =1.01 cp
py=0.959 g/cm’
p,, = 0.996 g/cm’
0 =26.7 dynes/cm



Ry =0.4214
Rﬁnuf - 056?
S, =0.1221
k =3.09D

0@ Sy
k_=309/337=0917
S =038

k, =0.180

(q/AP), =0.010306 cm®/(sec.atm)

8.7a
FIGURE 8.7.1 shows the raw
experimental data.
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FIGURES.7.1 Raw experimental data for unsteady state
relative permeability measurements.

8.7b
FIGURES 8.7.2 and 8.7.3 show the




curve fits

of N,p  versus

InW, and ln(LJ versus ln[L].
Wi, W,

O.R0

050 1
”%_""‘T‘
S y=-0.0118¢ + 0.052x + 0.4383
L 0304 R=09976
e
z
0201
010 1
2 1 1 2 3
In(W)

FIGURE 8.7.2 Curve fit for Njyp versus InWy.




0 —

A1 y=01018¢ + 1.6262¢-2.2315
R’ =0999%

2
5
£

4

5

-6 T T T

-3 2 -1 0 1 2

In(1MW)

FIGURE8.7.3 Curve fit of In(1/Wil,) versus In(1/W}).

8.7¢c
The curve fit equations are



- 2
N,,=04383+00532lnW, +00118(In ;)

o3

These equations can be differentiated
analytically to obtain

1 1
Inj — |=-2.2315+16282In| — |+0.1018
WI W

iy i



deD 0.052-(2)(0.0118)ln W,
aw, W

f nwl

smnssnf a2

k, ku*{—-l}
HCI fo?
FIGURE 8.7.4 shows the calculated
relative permeability curves.
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FIGURE 8.74 Computed relative permeability curves.

8.7d

FIGURE 8.7.5 shows the experimental
data fitted to analytical relative
permeability models. The fit is good.




The analytical models are

k,, =0.1808*

k,=0917(1-8")

where

§,—95

W WIFF

1-§ \)

wirr  “or



100 100
090 1 1080
0.80 1 1080
070 1070
0,60 1 + 060

ko 0.50 - + 050 Ky
040 4 {040
0.30 { 4030
0204 +020
0.0 1040
S\ 0.00

000 020 040 060 080 100
Sy

FIGURE8.7.5 A comparison of the analytical model and
the experimental relative permeability curves.

8.7¢
The true fractional flow curve measured



in the experiment 1s shown in FIGURE
8.7.6.

1.00
0.90 /
0.80 -
0.70 4
0.60 -
f, 050 -
0.40 -
0.30 4
0.20 -
0.10 -

000 ——— T

000 020 040 060 080 100

FIGURE8.7.6 True fractional flow curve measured in the
unsteady state experiment.

8.7f



The unsteady state experiment lasted
84.65 hours.



PROBLEM 8.8

¢y, = 200 cm’/hr

g, =50 cmd/hr

u,=1cp

u,=10cp
= q, 200
Y g,+q, 200450
P;=1 atm

Core 1

0.80



L=20cm

d=5cm

2 2
A:E(E) :x(i) =19.635 cm’
2 2

k=100 mD
Core 2
L=20cm

d=5cm

N 5}
A:Jr(—) :n:(—) =19.635 cm®
2 2

k=50mD



8.8a
Atf,,=0.80

S, =031
K., =0.26
S, =0.558
K., =027

8.8b
Darcy’s law for multiphase flow gives

Ap, = Tobtel (8.8)
kk_A

Application of unit conversions to Eq.

(8.8.1) gives



13600) 1. L
_{a./3600)uL _ —02778 %Kl gp)

° (k/1000)k A kk A
B,-2, 02??8%”"[%;] 02778% w =5.240 atm
kk A 50%0.27x19.635

P, =P, +5240=145240=6.240 atm absolute

L 50%10%20
Bollos_ 0 2778 x 10479 atm

P, -P, =02778=L
kk LA 50X 027 x19.635



P, =P, +10479=1+10479=11479 atm absolute

/2
WAL g 00D
kk, A 100%0.26x19.635

By-By=02778
P, =P +2721=11479+2.721=14.200 atm absolute

50x10%20
p,-p,=027pdbel gy SOXIOXH i

kk A 100x026X19.635

P, =P, +5441=11479+5441=16.921 atm absolute

The gauge pressures are



P, =15.921 atm guage
PLZ =13.200 atm guage

B ,=10479 atm guage

o

P ,=5.240 atm guage

P . =0 atm guage

8.8¢

To enable the pressure gauges to sense
the oil pressure and not the water
pressure, the pressure taps should be
instrumented  with  oil-wet  semi-
permeable membranes that are saturated
with oil and are in contact with the core.

The stems of the pressure gauges also
should be filled with oil.



8.8d
Core

1 is oil wet for the following

reasons:

The end-point  relative
permeability to oil is less than
the end-point relative
permeability to water. This is an
indication that the core is
preferentially o1l wet. See
Section 8.5.3 for explanation.
The intersection of the oil and
water  relative  permeability
curves occurs atS,, = 0.37 0.50

(Craig’s rule of thumb).

*S... =0.15 1s low and falls within

witr
Craig’s rule of thumb for oil-wet
reservoirs.

Core 2 1s water wet for the following



reasons:

. The end-point  relative
permeability to water is less than
the-end point relative
permeability to oil. This is an
indication that the core 1s
preferentially water wet. See
Section 8.5.3 for explanation.

* The intersection of the oil and
water  relative  permeability
curves occurs at .S, = 0.51> 0.50

(Craig’s rule of thumb).
*Sirr = 035 1s high and falls

within Craig’s rule-of-thumb for
water-wet reservoirs.



PROBLEM 8.9

8.9a

TABLE 8.9.1

matrix.

shows the dimensional

TABLE8.9.1 Dimensional Matrix.

b Dy o o p, po opy Apg !
NN X35 X XX X7 Xy |
M| 1 o[1 1 1 1|
Ll-1|1 0 1|3 -1 -3 -2
T(-1]10 -2 110 -1 0 2]

8.9b

The rank of the dimensional matrix is 3
because the determinant of the following
3x3 submatrix is not zero.



Number of independent dimensionless
group =N—r=3.

8.9¢

The dimensional matrix can be reduced
to the following row echelon form by
row operations:



The solution to the dimensional analysis
problem is

X =X,—2x:—x,— 2%,
Xy =%;+x,+2x,

Xy =%y

Xg =Xy

The solution in matrix form is



omPToooo -
1 i
+
v
T 1
R R — I — N — Y
1 i
¥
W
T 1
= = = T — T — A}
+
-
bt
L e - =~
+
-
w
o T oo oo
1 )
1l
g
e T T " S S S
HoOoW O H OH W MW W OH
1 '
=)
a o =
Lo b = d £ dF

inittal set of independent

The

dimensionless groups is



p,0D,
Ly

_ApgD;
a

s

We need to transform the initial set of
dimensionless  groups into  more
meaningful and familiar dimensionless
groups.

Choose x4 =1



Choose x5 =1, x;=-1

pur mi
Choose xg =1
1—]'3 — Ju'cl =E3
Hy
Choose x4, =1, x7 =1
uD
n,,:p““ L=m xm,
Hy

Choose xg =1



Thus,

k :Jﬁ[s r.o, Hyt pu .Iuo pqu ﬁpgD
" c'p, M, K, O

Similarly,

b =f| s, rokk Lo Ko POy bosD)
"’ c'p, B, M, ©




PROBLEM 8.10

I': Pore structure or the morphology of
the porous medium. Does it affect the
relative permeability curves obtained by
the steady state method? Yes. How? See
Section 8.5.7.

0: Wettability.

Does it affect the relative permeability
curves obtained by the steady state
method? Yes. How? See Section 8.5.3.

U u

W

O : Capillary number.



Does it affect the relative permeability
curves obtained by the steady state
method? Yes, depending on its
magnitude. How? Capillary number is a
measure of the ability to mobilize
residual phases in a porous medium. If
the capillary number is high enough,
residual phases will be reduced thereby
increasing the range of wetting and
nonwetting phase saturations for which
the relative permeability curves are
nonzero. However, if the capillary
number i1s low, as in a normal
waterflood, it will have no effect on the
relative permeability curves.



Po

Pw: Ratio of inertia forces in the
nonwetting and wetting phases.

Does it affect the relative permeability
curves obtained by the steady state
method? No. Why? For the slow flow in
porous media, the inertia force 1s usually
negligible. This is the underlying
premise for Darcy’s law normally used
to describe flow in porous media.

.Iul'r_'l

My : Ratio of viscous forces in the
nonwetting and wetting phases.

Does it affect the relative permeability
curves obtained by the steady state
method? No. Why? In the steady state



experiment, there is no displacement of
one fluid by another as the two fluids are
mixed and co-injected. The instability
normally caused by adverse viscosity
ratio in a displacement is absent. See
Section 8.5.5. It should be noted that this
dimensionless group will affect the
relative permeability curves obtained by
the unsteady state method.

pwunr_r

H, . Reynolds number in the wetting
phase. Ratio of inertia to viscous forces
in the wetting phase.

Does it affect the relative
permeability curves obtained by the
steady state method? No. Why? For the




slow flow in porous media, the inertia
force is usually negligible.
&pgD;

o : Eotvos number. Ratio of gravity
and interfacial or capillary forces at the
pore scale.

Does it affect the relative
permeability curves obtained by the
steady state method? No. Why? For the
slow flow in porous media, the inertia
force is usually negligible. Because of
the small pore dimension, the capillary
force far exceeds the gravity force.
Therefore, this number is negligibly
small and will have no effect on the
relative permeability curves. To see
how small this number can be, let us
calculate it for a typical steady state



relative permeability experiment.
p, =1glem?
p,=08 glem®
0 = 35 dynes/cm
g=981 cm/s?
D,=5m=5x10""em

ApgD; (1—1:!.8):@:»31>r:[5:n:1-::u“‘)1
c 35

=1.401x107°




PROBLEM 8.11

8.11a

FIGURE 8.11.1 shows the polymer
saturation profiles to be expected before
breakthrough.




0.00 +4 - 1 . .

0.00 0.20 (.40 0.60 0.80 1.00
X

FIGURE 8.11.1 Polymer saturation profiles before
breakthrough.

8.11b
FIGURE 8.11.2 shows the expected oil




recovery curve.

1.00
(.90 4
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0.70 1
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040 -
0.30 1
020 1
040 -
0.00

FIGURE 8.11.2 Oil recovery curve.

8.11c



The colleague’s suggestion is a bad idea
because the data from a favorable
mobility ratio displacement are not
suitable for calculating the relative
permeability curves by the JBN method.
There are two reasons for this problem.
1. The saturation window for the
unsteady  state  method s

kﬂﬂ Ju'ofuz
e Y T T {8.11.1)
IiI‘:rw -Iuw (] = Jlru:ll }

For the polymerflood,
f,,= N o (8.11.2)
Jok T dI"‘r’T s '
Therefore, the saturation window
1s lost.

2. Two of the key equations for the
unsteady state method are



=0 8.11.3

T (8.11.3)
dN

= 8.11.2

foz aw (8.11.2)

For the polymerflood, after
breakthrough,

dN ,p
dW.,

=0 {8.11.3)

There are no data available to calculate
the ratio of the relative permeability
curves after breakthrough, which is the
basis for the unsteady state method.



PROBLEM 8.12

8.12a
If the core is oriented horizontally, the
injected gas could migrate to the top due
to gravity segregation. If that happens,
the result of the measurement will be
wrong.

8.12b

To overcome the problem of gravity
segregation, the core should be oriented
vertically with the gas injected at the top
and the produced fluids drained from the
bottom.



8.12¢
See Figure 8.2 in Volume 2 for typical
drainage relative permeability curves.



PROBLEM 8.13

8.13a

USBM Wettability Index = log(4,/
4))

where
A; = the area under the capillary

pressure curve for oil displacing
water
A, = the area under the capillary
pressure curve for  water
displacing oil
From the given centrifuge data, A,»A;.
Therefore, log(A;/A,)0. This indicates



that the medium is preferentially oil wet.
One can estimate a numerical value for
the USBM wettability index as follows.
From the centrifuge data, 4,5~ 1.5 A;.

Therefore, log(4, / 4;) = log(1 / 2) = -
0.18.

8.13b

The relative permeability curves for a
preferentially oil wet medium typically
shows a high-end point value for water
which is comparable to or even higher
than the end-point value for oil. Also,
based on Craig’s rule of thumb, the
relative permeability curves for an oil-
wet medium usually intersect at a water
saturation less than 0.50. These



considerations are the basis for the
sketch of the relative permeability
curves shown in FIGURE 8.13.1.
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FIGURE 8.13.1 Relative permeability curves for oil-wet

medium.







PROBLEM 8.14

8.14a
Darcy’s law gives
kwA[P; —P]
g=—2— (8.14.1)
Hy \ X
= Eﬁ-[ iml ] 8.14.2
1 H, L-x e

where P is the pressure at the front.
Also,

(B-P)+(P-R)=(B-B)  @m3

Substituting Egs.(8.14.1) and (8.14.2)




into (8.14.3) gives

fl'.uwx qu,(L-x) (P P]

(8.14.4)
k, A k,A
From Eq.(8.14.4
i= H"Pz
A pxlk,+u(L-—x)/k, (8.14.5)

The interstitial velocity of the front is
given by

ﬁ_ q . P-P,
dt OA(1=8,,=S, ) O(1=8, =S, {1 1Kk, + it (L=5)1K,]
(8.14.6)

Eq.(8.14.6) can be rearranged as



dx [k, (B-R)/w, JI[001-8,in =54 )]

o [+ M(L—2)] (8.14.7)
where
M=y Ho (8.14.8)
My, K,
In Darcy units,
P =p,gh, /1.0133x10° (8.14.9)
P,=p,gh, /1.0133x10° (8.14.10)

Substituting Egs.(8.14.9) and (8.14.10)
into (8.14.7) gives




de_[k,(p.h,-p ) 110133310, /[ 6(1-5,,, -5, )]

& [x+M(L-3)
(8.14.11)
Eq.(8.14.11) 1s of the form
dx constant
= (8.14.12)

dt [x+M(L—x)]
where

constant=[k,(p,h, - p.1,)/10133x10°, J1[(1-S,., S, )]
(81413

8.14b
Separate variables and integrate Eq.

(8.14.12) to obtain



1 1
Ex;" +MlLx —Esz +C=constantx{  (8.14.14)

Application of the initial condition, x =
0 atr = 0 gives C = 0. Eq.(8.14.14)
becomes

I
E{]—M}xz-?-MLx = constant X f (8.14.15)

When the water arrives at the oil tank, x
=L, and Eq.(8.14.15) becomes

(l M)+ ML = (H—M}f =constantxt  (8J416)

The time the front arrives at the o1l tank
is obtained from Eq.(8.14.16) as




. _(1+M)I? /2

arrival

(8.14.17)
constant



L=100cm
$=025
k=500mD =0.50D
Sy =0.20
S, =0.15
k,. =070
k. =0.60

P, = 1.0 gfem?

p,= 0.85 gfcm?

M, =1.0cp

Moo= 0.50cp

h,, = 300 cm

h,=20cm

£ =981 cm/s?

kk 0.50)(0.60 0.50
M:_“'Lx.p_":( )0 )>< =0.4286
u,  kk, 1 (0.50)(0.70)
0.50)(0.60 1.0x300—0.85x20
constant =( X )[981)( = )
1 1.0133<10

X -0.5058
0.25(1—0.20—0.15)

1+M)I2 /2 (1+0.4286)100% /2
fmma:( ML :( ) £ =14,121.95=3.92 hrs
constant 0.5058







PROBLEM 8.15

8.15a
Darcy’s law gives
_ Kk, AP, k)
T —:Uw 3% 15.
_ kk,A dP, (815.2)
=" o 15,
Capillary pressure constraint is
P-P,=P(S,) (8.15.3)
For  incompressible  fluids, for

countercurrent flow,



q,+q,=0 (8.15.4)

0S, dq
A —2 W
P T o

=:{) {8.15.5)

Eqgs.(8.15.1) through (8.15.5) can be

combined to obtain the required partial
differential equation as

as dP. dS,
e 0 B.15.6
¢a: uoax[k"'"ds 0x ] s
where
Bi= : (8.15.7)
L -
Kool

8.15b



The initial condition is

5. [%0)=8,; (8.15.8)
The boundary conditions are
S, (0,t)=1-8_ (8.15.9)

Atx =1L, g, = 0. This condition leads to

ﬁasw—ﬂ atx=1L (8.15.10)
ds,, ox o
8.15¢
Let
X
Xp= 'E (8.15.11)



O cosl

B(S,)= N I(S,) (8.15.12)
s =% (8.15.13)

Substituting Egs.(8.15.11)  through
(8.15.13) into (8.15.6) gives

dS .  kocos® o d oS
-5 -§ WD | F it ) 0
@( wirr :’r) B ‘U[.szf_ E}xn[kﬁ' wdSwD ox, ]

(8.15.14)

Let the dimensionless time for capillary
imbibition be defined as



- ko cosd a k
P 0(1-8 =S, LI | (18,5, )L {6
(8.15.15)

ko cos kJ

Substituting Eq.(8.15.15) into (8.15.14)
gives

3, d s
wi? k F wl)
a, +axﬂ[ AT axD]

0 (8.15.16)

The 1nitial condition becomes
5, sl 0)=0 (8.15.17)
The boundary conditions become

8,5(0:45) =1 (8.15.18)



iM=ﬂ at xﬂzl {8.15.19)
ds,p 9xp

8.15d
FIGURE 8.15.1 shows the sketch of the
expected saturation profiles.

FIGURE8.15.1 Expected saturation profiles.



PROBLEM 8.16

8.16a

Water will be spontaneously imbibed
into the core and oil will be expelled
from the core in a countercurrent fashion
as time passes. Eventually, the
imbibition will stop and some residual
oil saturation will be left in the core.

8.16b
Darcy’s law gives
——kkmﬁ[a—}j‘h ] 8.16.1
G u, \ ox Pwg (8.16.1)



kk, A( dP.
=——1 ~ (8.16.2)
4o m ( I Pa.&*)

Capillary pressure constraint is
P-P,=P(S,) (8.16.3)

For  incompressible  fluids,  for
countercurrent flow,

q,+q,=0 (8.16.4)
PA aai:+%= 0 (8.16.5)

Eqgs.(8.16.1) through (8.16.5) can be
combined to obtain the required partial
differential equation as




k F
¢§s_ kakMF dp 3, ) Kp,-p.)dlk, )as,,0
ot poxl "Vds, 0x ) g dS, ox
(8.16.6)
where
E.= : (8.16.7)
K 1+kF-|:I.I'J'H"
kml""'ﬂ
8.16¢
The 1nitial condition 1s
S.(%.0)=8. (8.16.8)

The boundary conditions are

S, (0,t)=1-5,, (8.16.9)



Atx =L, g, =0. This condition leads to

dP. 0§,

tx=L 816.10
) =(p,—p.)g atx (8.16.10)
8.16d
Let
X
=7 (816.11)
R(s,)= j‘:“_‘“ﬁ 1(s,) (8.16.12)
8 =8is
S, p = vt (8.16.13)
" 1_Swr'r'r_scrr

Substituting Egs.(8.16.11)  through




(8.16.13) into (8.16.6) gives

di-s,, -5, | _Hocst a[ 4 9,y ]

ot Lz:,"kf i "

k(pw _pu)g d(kme) aSwJ_J =0
hL  dS,p dx

(8.16.14)

Let the dimensionless time for capillary
imbibition be defined as

i} ko cos6 [ ko cos \/E]t
2 ¢(]-Swi ur)anz\/_ ( wirr ar] LZ ‘I’

(8.16.15)

Substituting Eq.(8.16.15) into (8.16.14)
gives




35, d 3,
oty axn{km " dS,p 0x ]

[k, - PD}SL( d(kyF, )38, _
ocos® \o) dS,, ox,

{8.16.16)

Let

(pw_Pa)gL k
N, =" Polo |2 16.
g o cosO p (8.16.17)

Substituting Eq.(8.16.17) into (8.16.17)
gives

By, 0 E d 95, Nd(k,,,F,,)as
o, au VS Ox, ) dS, O,
(8.16.18)

The 1nitial condition becomes



S,p(xp,0)=0 (8.16.19)
The boundary conditions become

Sop(0itp)=1 (8.16.20)

-p.)el
dJ BSH,D:{.OW p(,)g .k.:N it %y =1 (8.16.21)
&S, 0x, ocosd \9 ¢

8.16¢
FIGURE 8.16.1 shows a sketch of the
expected water saturation profiles.
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FIGURE 8.16.1 Water saturation profiles.

8.16f



FIGURE 8.16.2 shows a sketch of the
expected oil recovery curve.

100%

0 g

FIGURE8.16.2 Oil-recovery curve.



PROBLEM 8.17

8.17a

TABLE 8.17.1 shows the dimensional

matrix.

TABLE 8.17.1 Dimensional Matrix.

Hw

X
(M| 1 ¢
L |-l
=

L T
X3 X3 Xy
0 0 1]
I 0 =]
0 1 -1

acos® ki
Xs X |
10
0 2
2 0

8.17b

The rank of the dimensional matrix is 3
because the determinant of the following
3x3 submatrix is not zero.



Number of independent dimensionless
group=N—r=3.

8.17¢

The dimensional matrix can be reduced
to the following row echelon form by
row operations:

1 0 01 1 0
01 00 1 2
0 01 0 -1 0



The solution to the dimensional analysis
problem is

X = Xg

The solution in matrix formis



i X - T T 10T .
.Hw 1 _l _1 0

L] % 0 i 3

f X

= . X+ : X+ g X
U, - 9 1 0 0
ocosf | X; 0 1 0
k¢ % | L 0 J L 0 J b 1 |
8.17d

The initial set of independent
dimensionless groups is



=
1 Juw
to cos@
T, =
L
7, = kig
L

8.17e
The proposed dimensionless time for
capillary imbibition is

ocost |k ]
(8.171)

Ip =1, XTI, :(—#wﬁ 5 S
Substituting the numerical value for
scosf into Eq.(8.17.1) along with the
appropriate unit conversions gives



)

5 .
o 3L kx9.869x10” —— 1 k),
B0y g D

(8.17.2)

We need to replot the recovery data
versus the proposed dimensionless time.
If the hypothesis is correct, the recovery
data from the three experiments will plot
as one curve.



u,=09cp

L, =508 cm
k,=1475D

¢, =0.291

1 1.475
tpy =20.8620 =, / t=2.0223t
0.9%5.08% Y 0.291

L,=11.05cm

k,=1545D

¢,=0289

tm=20.8620[ - 21’1‘545 ]t=0,43891‘
0.9x11.05* Y 0.289

L,=775cm

k, =0.075 D

¢, =0.223



1 0.075
0.9x7.75° Y0223

£y 21}.352{{ Ja =0.2238

FIGURE 8.17.1 shows the recovery
data for the three experiments plotted
versus the proposed dimensionless time
for capillary imbibition. They plot as
one curve. The hypothesis 1s verified.
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FIGURE8.17.1 Qil-recovery curves for the three
experiments.




PROBLEM 8.18

L=11=3048 cm

d =2 in=(2/12)x30.48 = 5.08 cm

A = n(d/2)* = p(5.08/2)?= 20.2683 cm?
k=1D

@ =0.20

o =30 dynes/cm

p, =1 glen?

p, =0.9 g/em’

u, =1cp

u, =10 cp

Swz'rr:o_25
Sp,=0.15
K, =0.05



K,,=0.90
8.18a

AP, =2 W _ 8.18.1
" kk,, A L
q, =1 cm® /min=(1/60) cm’/s

Substituting the numerical values into

Eq.(8.18.1) gives

g, L (1/60)x1x3048
¥k, A 1X005x202683

=0.5013 atm =7.37 psi

8.18b

q, =4q,=1 cm’ /min



F = ==
b= TR (8.18.2)
K i,
EI?—XP-‘I:I (8.18.3)
kﬂh‘ !'IJ'EI

0.85-8, J”

0,99[
Koo o H _ 060 ) 1 1 g

k. 095(5“’ —o.zs)“ 10
' 0.60

Eq.(8.18.4) can be solved iteratively to
obtain §,, = 0.7076.

8.18c¢
The partial differential equation for the
wetting phase is given by



q'rlr'][ll'l-'l-' _q-l'.lullll'l.’?

dS,, kK, k., (8.18.5)
dx ” dP,
ds,

The boundary condition is

S,=085 atx=L {8.18.6)

We consider the steady state condition
after injecting oil for a long time such
that no more water is produced. Only oil
is flowing in the core. Thus at steady
state, ¢,, = 0, and the partial differential

equation becomes the following ordinary
differential equation:



qﬂ#ﬂ
dS k

W o

2 (8.18.7)
& k,{ﬂ}
ds,

After substituting the expressions for &

ro’
P., and the numerical values for the

various parameters, Eq.(8.18.6)
becomes
ds S, —025)"
¥ =().1596] L—— (8.18.8)
dx ({}.35~Sw ]

After  separating  variables  and

rearranging, Eq.(8.18.8) can be
integrated to give



s 0.85-$
* 6.2649 v S, =x+x,  (8189)
Jﬂ_IS (Sw —{].Eﬁ}ﬂ

wherex, is an integration constant.

Application of the boundary condition
gives

85-
J"-“ﬁ.zﬁaw[gs S‘;]djw=27.(}451=30.48+xu (8.18.10)

035 ¥

W

x,=27.0451-30.4800=-3.4349

The water saturation profile is then
given by

x=34349+ j['f_'::ﬁz&@[g‘gs _i*; }!Sw (818.11)

w

The integral on the right side ofEq.



(8.18.11) can be performed numerically
for various values of §,, to calculate the

steady state water saturation profile
shown in FIGURE 8.18.1, plotted in
dimensionless form.
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FIGURE8.18.1 Steady state water saturation profile show-
ing capillary end effect.



PROBLEM 8.19

8.19a

FIGURE 8.19.1 shows the water
saturation profiles together with the
porosity along the sandpack. Clearly, the
variation of the porosity along the
sandpack is an indication that the
sandpack is not homogeneous.

It should be observed that the
sandpack has its lowest porosity and by
inference its lowest permeability in the
vicinity ofxp = 0.45. From our

knowledge of capillarity, it is not
surprising that this section of the
sandpack has retained more water as the
flood progresses than the neighboring



sections, resulting in the anomalously
high water saturation at late times.
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FIGURE 8.19.1 Water saturation and porosity profiles for
the waterflood in the water-wet sandpack.

8.19b



FIGURE 8.19.2 shows the similarity
transformation in the spirit of Figure
8.11. All the data essentially plot as one
curve thereby providing the
experimental verification of the theory of
immiscible displacement in porous
media.




1,00
i 1D =005
0.80 =010
0.70 tD=025
=10
e 050 aD=20
Cl'm 1 ¥ ID B 3 0
0.30 4
020 -
0.0+ 3
000 — A ey
0 2 4 6 8 10
Xl
FIGURE8.19.2 Similarity transformation for the waterflood
in the water-wet sandpack.
8.19¢

The true fractional flow curve is given
by



f,=] s, +C (8.19.1)
4

LD

f.=1ats, =1-§,, (8.19.2)

where C is an integration constant.
FIGURE 8.19.3 shows the true
fractional flow curve computed for this
flood and tabulated in TABLE 8.19.1. It
should be observed that the true
fractional flow curve at low water
saturations does not have the S shape of
the approximate fractional flow curve. It
is also nonlinear. The Welge tangent line
is only an approximation of this curve,
which is satisfactory in many cases. For
this flood, S, = 0.21.

> ~or
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FIGURE 8.19.3 True fractional flow curve for the waterflood

in the water-wet sandpack.




TABLE 891 Computad True Fractional Flow Curve,

Lob % Bl LG LIE Elg
D150 0000|0411 047|011 0848|0487 0999 {0345 0970|0613 0987
D153 00070411 08| 0412 0849|0487 0399 {0345 0970|0615 0987
0155 0016|0412 09| 0414 0852|0489 041 0346 0970|0519 0988
0159 0030414 0852|0416 0855|0450 0420347 0970|004 0988
0168 0075|0416 0855|0415 0855|0450 0992{0347 0971|0425 0988
0171 0089|0416 0855|0421 0865|0491 0992{0347 0971 026 0988
0174 01050421 0865|0421 0865|0491 048 {0349 0971026 0389
D82 0.135 0421 0863|0423 0869|0492 099 {0351 0972|027 0389
DI85 048|042 0869 (0424 0869|0452 094 |0351 0972|0628 099
0193 0184|0424 0869|0424 080|453 0940|0559 0974|0631 0989
0195 01850404 0870] 0425 0871|0455 0450361 0975|062 0389

continues on next page
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8.4d

FIGURE 8.19.4 compares the simulated
and experimental water saturation
profiles. The agreement is good. The
numerical simulator is a finite difference
model for incompressible  fluids
developed by the author and coded in
Excel/VBA. The model assumes a
homogeneous porous medium.
Therefore, it cannot capture the wiggles
in the experimental saturation profiles
caused by heterogeneity of the sandpack.
The numerical model does capture the
experimental inlet boundary condition in
which the water saturation is observed
to buildup toward (1-S,,) in contrast to

Buckley-Leverett model in with the inlet




water saturation is fixed at (1-S,,).

(.00 0.20 0.40 0.60 0.80 1.00
n

FIGURE8.19.4 Comparison of the simulated and experi-
mental water saturation profiles for the waterflood in the
water-wet sandpack.



FIGURE 8.19.5 shows a comparison
of the simulated and the experimental
oil-recovery curves. The agreement is
good.




= Simulation
- - - Experiment

FIGURE8.19.5 Comparison of the simulated and experi-
mental oil-recovery curves for the waterflood in the
water-wet sandpack.

FIGURE 8.19.6 shows the relative
permeability curves that gave the best




match. The relative permeability models
are

k, =0.358 (8.19.3)

k,=098(1-8, )1'2 (8.19.4)

where S, 1s given by

S, = Su =S (8.19.5)
1-8 )

wirr ~ Sor
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FIGURE8.19.6 Relative permeability curves that gave the
best history match for the waterflood in the water-wet
sandpack.

FIGURE 8.19.7 shows the oil
pressure profiles at various
dimensionless times. The profiles are in




good agreement with those typically
observed in corefloods in which the
core holder is instrumented with
pressure transducers to measure the
pressures along the core. FIGURE
8.19.8, from the author’s archives,
shows such experimental pressure
profiles. In this experiment, the sandpack
was 216.8 cm long and the core holder
was instrumented with 12 pressure
transducers spaced equally from the inlet
to the outlet. The simulated pressure
profiles of Figure 8.19.7 are in good
qualitative agreement with experimental

profiles of Figure 8.19.8.
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FIGURE8.19.7 Pressure profiles in the oil phase for the
waterflood in the water-wet sandpack.
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FIGURE8.19.8 Experimental pressure profiles for a
coreflood.

FIGURE 8.19.9 shows the true and
approximate fractional flow curves
along with the Welge tangent line. In this
case, the Welge tangent line is a
reasonable approximation of the true




fractional flow curve at low water
saturations.
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FIGURE8.19.9 Comparison of the true and approximate
fractional flow curves for the waterflood in the water-wet
sandpack.






PROBLEM 8.20

8.20a

FIGURE 8.20.1 shows the water
saturation profiles together with the
porosity along the sandpack for the
waterflood in the oil-wet sandpack.
Again, the variation of the porosity along
the sandpack is an indication that the
sandpack is not homogeneous.
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FIGURE 8.20.1 Water saturation and porosity profiles for
the waterflood in the oil-wet sandpack.

8.20b
FIGURE 8.20.2 shows a comparison of
the similarity transformations for the




waterflood in the water-wet and oil-wet
sandpacks. It can be clearly seen that the
waterflood efficiency in the water-wet
sandpack is higher than that in the oil-
wet sandpack. At low values of xp/tp,

which corresponds to large values of p,

each waterflood tends toward a residual
oil saturation, with the residual oil
saturation in the water-wet system being
lower than that in the oil-wet system.
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FIGURE8.20.2 Comparison of the similarity transforma-
tions for the waterfloods in the water-wet and oil-wat

sandpacks.

8.20c
FIGURE 8.20.3 compares the true




fractional flow curves for the two
waterfloods. Clearly, the waterflood in
the water-wet sandpack is more efficient
than in the oil-wet sandpack. The
residual oil saturation in the oil-wet
system is 40% compared to 21% in the
water-wet system.



1.00
0.90 4
0.80 A
0.70 1
0.60 4
T, 0.50 1

0404 |

0304 '
0204+
0.10 1

* = = Oil Wet Sandpack

—Water Wet Sandpack

0.00
0.00

0.20

040

I T

060 080 100
Sun

FIGURE8.20.3 Comparison of the true fractional flow
curves for the waterfloods in the water-wet and oil-wet

sandpacks.




8.20d

FIGURE 8.20.4 compares the simulated
and experimental water saturation
profiles. The agreement is good.




FIGURE8.20.4 Comparison of the simulated and experi-
mental water saturation profiles for the waterflood in the
oil-wet sandpack.

FIGURE 8.20.5 shows a comparison
of the simulated and the experimental oil




recovery curves. The agreement is good.
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FIGURE8.20.5 Comparison of the simulated and experi-
mental oil-recovery curves for the waterflood in the
oil-wet sandpack.



FIGURE 8.20.6 compares the
relative permeability curves that gave
the best match for each waterflood. The
relative permeability models for the oil-
wet 1s system are

k., =0558 (8.21.1)

k,=098(1-8, )]'5 (8.21.2)
where S, 1s given by

S -8
§, = ——win__ 8.21.3
1-S__ -5, { )

As expected the relative permeability
curves for the oil-wet sandpack are
shifted to the left of the curves for the



water-wet sandpack. The end-point
relative permeability to water is higher
in the oil-wet system than in the water-
wet system. The relative permeability
curves for the oil-wet system intersect at
S, less than 50%, an indication that the

relative  permeability curves are
consistent with Craig’s rule of thumb.
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FIGURE8.20.6 Comparison of the relative permeability
curves for the water-wet and oil-wet sandpacks.

FIGURE 8.20.7 shows the true and
approximate fractional flow curves
along with the Welge tangent line. In this
case, the true fractional flow curve, the



approximate fractional flow curve, and
the Welge tangent line are essentially the
same. This is generally the case in
inefficient immiscible displacements.
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FIGURE8.20.7 Comparison of the true and approximate
fractional flow curves for the waterflood in the oil-wet
sandpack.



PROBLEM 8.21

8.21a

FIGURE 8.21.1 shows the oil saturation
profiles together with the porosity along
the sandpack for the favorable mobility
immiscible displacement. The
displacement is essentially piston-like
with an average irreducible water
saturation of 15% left behind.
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FIGURE8.21.1 Water saturation and porosity profiles for
the favorable mobility ration displacement.

8.21b

FIGURE 8.21.2 shows the water-
recovery curve. The water recovery is
complete at o1l breakthrough.
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FIGURE8.21.2 Recovery curve for the favorable mobility
ration displacement.

8.21c
FIGURE 8.21.3 shows the similarity




transformation for the favorable mobility
ratio displacement. All the data plot as
one curve that is characteristic of the
displacement.
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FIGURE8.21.3 Similarity transformation for the favorable
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8.21d



FIGURE 8.21.4 shows the true
fractional flow curve for the favorable
mobility ratio displacement.
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8.21e
The relative permeability curves are

k=055 (8.21.4)

1.5

k,, =(1-5,) (8.21.5)

where S, is given by

S, = . {8.21.6)

FIGURE 8.21.5 shows the following
graphs: (1) the relative permeability
curves versus oil saturation, (2) the
approximate fractional flow curve for
oil versus oil saturation, (3) the true
fractional flow curve for oil versus oil




saturation, and (4) the Welge tangent
line. In this case, the Welge tangent line
is essentially the same as the true
fractional flow curve. This is generally
true for favorable mobility ratio
displacements.
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APPENDIX B SOLUTIONS



PROJECT 1

1a, b, c

FIGURE B1.1 shows the GR and
caliper logs in the first track, the
shallow and deep resistivity logs in the
second track, and the neutron and density
logs in the third track.
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FIGURE B1.1 GR, Caliper, AHT10, AHTS0, Neutron, and Density plots.




A pattern is clearly visible in the third
track in which the density log swings to
the left of the neutron in sands and
swings to the right of the neutron in
shales. This pattern is helpful in
distinguishing sands from shales.

1d

The shale volume is calculated from the
GR as

],';;’:% (B1.1)
with GR,, = 60 API units and GR;, =

110 APT units. FIGURE b1.2 shows the
log of V;, in the third track. The low

values of ¥, correspond to sands and




the high values correspond to shales.
The pattern of ¥, indicates that the

sands can best be described as shaly
sands.
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FIGURE B1.2 GA, Caliper, AHT10, AHTS0, V,, plots.




le
The density porosity is calculated from
the bulk density as

1'“':;. =M (B1.2)
ﬂl-r1-1: _p_f

withp, = 2.66 g/cc and pf = 0.80 g/cc.

FIGURE bl.3 shows a comparison of
the density and neutron porosities in the
third track. A clear pattern is visible.
The density and neutron porosities agree
in sands but differ in shales with the
neutron porosity being higher in shales
than in sands as expected.
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FIGURE B1.3 GR, Caliper, AHT10, AHT0, neutron, and density porosity plots.




1f

The water saturation was calculated
using Archie’s equations assuming clean
sands:

a
F=— (B1.3)
¢
1
%o ={&J" (B1.4)
R

witha=1,m=2,n=2,and R,, = 0.04

ohm-m. FIGURE B1.4 shows the
calculated water saturation in track 3.
This water saturation estimate 1S
pessimistic for shaly sands and will be




refined in a future project.

Ig

The logs were analyzed using the
combinations of the GR, deep resistivity,
and density and neutron porosity patterns
to identify the 7 sands and their fluid
contents shown in TABLE B1.1.
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TABLE B.1 Summary of Preliminary Log Analyses.

Sand #

Fluid

Content

Top
(1t MD)

Bottom ~ Thickness

(tMD)  (ft MD)

Gross

j

W

Hydrocarbon
Water
Hydrocarban
Hydrocarbon
Hydrocarbon
Hydrocarbon
Water

118880
121385
12370
(23330
113980
125235
126320

120083
121533
122643
113413
124640
125280
12746,

110
133
40
70
6.5
5l
950

03033
0.29%
03114
03140
0.285%
03055
02860

04771
10
0318
0.35%
03872
0.5801
10




PROJECT 2

2a

The results of the Monte Carlo sampling
are summarized inTABLE B2.1.
Because of the stochastic nature of the
simulation, your numbers will not be
identical to those in the TABLE.
However, if your simulation is correct,
the statistical averages should be similar
to those in the TABLE. These include
the mean, standard deviation, P90, P50,
and P10. The minimum and maximum
values can be significantly different from
those in the TABLE because they are not
statistical averages.



TABLEB2.1 Summary of Results for Monte Carlo Sampling.

N N, NCF

. (MMSTB) (MMSTB)  (MMS)
' Minimum 610 148 1336
Maximum 5945 1838 18359
Standard Deviation 872 293 2836
PO0 1293 366 3391

P50 2285 663 06272

P10 3559 1098 10349

2b

The histograms and expectation curves
are shown in FIGURES B2.1 through
B2.13.
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FIGURE B2.1 STOIIP histogram (Monte Carlo sampling).
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tation curve for STOIIP (Monte Carlo sampling).
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2c
The Monte Carlo sampling method is
inefficient. This is apparent from the fact



that the triangular distributions are not
truly triangular. In particular, the uniform
distribution of the recovery factor is
anything but uniform. It is likely that
1000 iterations may not be sufficient to
converge to the solution for this
sampling method. This can be verified
by increasing the number of iterations to
5000 and comparing the results to those
for 1000 iterations.



PROJECT 3

3a

The results of the Latin Hypercube
sampling are summarized in TABLE
b3.1. Because of the stochastic nature of
the simulation, your numbers will not be
identical to those in the TABLE.
However, if your simulation is correct,
the statistical averages should be similar
to those in the TABLE. These include
the mean, standard deviation, P90, P50,
and P10. The minimum and maximum
values can be significantly different from
those in the TABLE because they are not
statistical averages.



TABLE B3.1 Summary of Results for Monte Carlo Sampling.

N N, NCF

(MMSTB) (MMSTB)  (MM$)
Minimum 667 136 1349

| Maximum 3396 1996 19327
Standard Deviation 872 208 2862
P90 1367 3 3302

P30 2260 668 6170

P10 3570 1108 10520

3b
The histograms and expectation curves
are shown in FIGURE B3.1 through

B3.13.




140

120 4
100 4
= d
£ &0
5
o 60+
TR
40
2[}- I I.'.I.'-I.'.I.'.I_I.r-.r-
D' T r o
=] -
3 8§ ¢85 323
o - [(¢] i [(s] = {in] = V] — %]
L - o 1] ] M bl ¥ Iy} %]

Stock Tank Oil Initially In Place (MMSTB)

FIGURE B3.1 STOIIP histogram (Latin Hypercube
sampling).



1680 —

140 4
120 4
& 100 4
§
3 80-
8
i B0+
40 4
20
L{4] 3} [:¢] b ) '] T o Li2]
T 8 8 B ﬂ 8 & %

Recoverable Reserve (MMSTR)

FIGURE B3.2 Recoverable reserve histogram (Latin Hyper-
cube sampling).



Undiscounted Net Cash Flow (MMS)

FIGURE B3.3 Undiscounted net cash flow histogram (Latin
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3c
The Latin Hypercube sampling method is



very efficient. This is apparent from the
fact that the triangular distributions are
truly triangular. In particular, the uniform
distribution of the recovery factor is
truly uniform. For this sampling method,
1000 iterations are sufficient for the
simulation to converge to the solution.
This can be verified by increasing the
number of iterations beyond 1000 and
comparing the results to those for 1000
iterations. It will be found that the
results are essentially the same as for
1000 iterations.



PROJECT 4

4a

The measured depth is different from the
true vertical depth because of well
deviations. The measured depth is
always longer than the true vertical
depth. Normally, the true vertical depth
is calculated from the measured depth
using deviation surveys. In the absence
of deviation surveys for this project, a
simple linear regression is used to relate
the two depths as shown in FIGURE
B4.1. The regression equation is

TVD=0.9933MD-19.1799 (B4.1)
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FIGURE B4.1 Graph of true vertical depth versus measured
depth.



4b

FIGURE B4.2 shows the static pressure
log along with the GR and resistivity
logs. It can be seen that pressure data
were acquired in six of the seven sands
encountered in the well. No pressure
data were acquired in Sand 6.
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FIGURE B4.2 Overview of pressure data.




Ty
FIGURE B4.3 shows the detailed static
pressure  analysis. The  pressure

equations for the sands are as follows.
Sand 1—Gas Cap:

TVD =6.4676P—34417.3455 (B4.2)
Sand 1—Oil Rim:

TVD=33129P—-11840.5454 (B4.3)
Sand 2:
TVD=2.2936P—-4546.8600 (B4.4)

Sands 3, 4, and 5:
TVD=29904P-9534.1153 (B4.5)



Sand 7:
TVD=2.1367P-3412.3661 (B4.6)

It should be observed that Sands 3, 4,
and 5 lie along the same pressure line.
This is evidence that the three sands are
in hydraulic communication.

The fluid gradients and densities can
be calculated from the pressure
equations. For example, for the gas cap,
solving Eq.(B4.2) for pressure gives

P=0.1546TVD+34417.3455 (B4.7)
The fluid gradient is given by
Gradient =0.1546 psi/ft TVD

The fluid specific gravity is related to



the fluid gradient by
0.433y = Gradient =0.1546 (B4.8)
The fluid specific gravity is given by
¥ =0.1546/0.433=0.357

The fluid density is given by

p;=7%p, =0357%x1=0357 gfcc

The gas-oil contact 1s assumed to occur
at the intersection of the pressure lines
for the gas cap and the oil rim. This
assumes a zero displacement pressure
for the gas-oil capillary pressure curve.
SolvingEgs.(B4.2) and (B4.3)
simultaneously gives the gas-oil contact
as



GOC=11868.42 ft TVD
GOC=(1186842+19.1799)/0.9943=11955.75 ft MD
From log analysis,
GOC =11950.00 ft MD

GOC=0.9943%11950.00=11862.71 ft TVD

The agreement between the estimates of
the gas-oil contact from pressure
analysis and log analysis 1s good.
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4d

TABLE B4.1 shows the fluid types in
the seven sands. The fluid types were
inferred from the fluid gradients and
densities obtained from the pressure
analysis except in Sand 6 for which no
pressure data were available. The fluid
type for Sand 6 was inferred from the
density-neutron  porosity  crossover
shown in FIGURE B4.4. See Figure
2.24 in Volume 1 for examples of
density-neutron porosity crossovers in
gas zones.
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FIGURE B4.4 Density-nautron porosity crossover in Sand 6.






PROJECT 5

Sa

The core data were posted in the
spreadsheet containing the log data as
requested.
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FIGURE B5.1 Core porosity histogram.

5b
figures B5.1, B5.2, and B5.3 show the



core porosity histogram, permeability
histogram, and the grain density
histogram. The mean grain density is
2.663 g/cc with a standard deviation of
0.024 g/cc. This mean grain density was
used to calibrate the density porosity for
all subsequent log analyses.
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FIGURE B5.2 Core permeability histogram.
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FIGURE B5.3 Core grain density histogram.

FIGURE B5.4 shows the poro-perm
plot for Sand 1. The linear relationship




is moderately strong with R> = 0.54.
FIGURE b5.5 shows the poro-perm
plots for the gas cap and the oil rim. It is
clear that the quality of the reservoir
rock in the oil rim is higher than in the
gas cap. The permeability equations for
the gas cap and the oil rim are

k=5.8621x10"¢" (B5.1)

k=1.5709x10"¢"*"* (B5.2)

FIGURE B5.6 shows a comparison
of the water saturation from Archie’s
equation and from core analysis.
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FIGURE B5.4 Core poro-perm plot for Sand 1.
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FIGURE B5.5 Core poro-perm plot for gas cap and oil rim.
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FIGURE B5.6 A comparison of water saturation from
Archie's equation and core analysis.




Sc

FIGURE BS5.7 shows a comparison of
the density porosity and the core
porosity after the density porosity
calibration with p,, = 2.663 g/cc and pf

= 0.80 g/cc. The agreement is good.

5d

FIGURE BS5.8 shows the final density
porosity log for Sands 1 and 2 along
with the neutron porosity. It should be
observed that the density porosity and
the neutron porosity agree in sands but
disagree in shales. This is as it should
be. There is no evidence of a water-oil
contact in Sand 1. The nearest water




zone is in Sand 2, which is separated
from Sand 1 by 129.26 ft TVD of shale.
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FIGURE B5.7 A comparison of density porosity and core
porosity for Sand 1.
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Se

FIGURE BS5.9 shows the permeability
log computed with Eq.(B5.1) for the gas
cap and (B5.2) for the oil rim along with
the core data. The agreement is good.
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FIGURE B5.9 Permeability log for for Sand 1.







PROJECT 6

6a
FIGURE B6.1 shows the Pickett plot
for Sand 2. The equation is

_axR, 1x0.0419
- ¢m - ¢l.7643

(B6.1)

R,



y=0.0419¢ 74
R*=07429

R, (ohm-m&/m)
—

0.01 +—
0.1 1

0

FIGURE B6.1 Pickett plot for Sand 2.

From Eq.(B6.1), for Sand 2,



R, =0.0419 ohm-m
m = 1.7648

The water resistivity from this sand is
used in the log analysis for Sand 1.

6b

FIGURE B6.2 through B6.5 show the
resistivity index plots for Cores 18, 63,
105, and 121. The average water
saturation exponent isn = 1.7662.
FIGURE B6.6 shows the formation
resistivity factor plot from the core data,
which gives @ =1.0113 and m = 1.7704.
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FIGURE B6.2 Resistivity index versus water saturation for
Core 18.
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FIGURE B6.3 Resistivity index versus water saturation for
Core 63.
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FIGURE B6.4 Resistivity index versus water saturation for
Core 105.
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FIGUREB6.5 Resistivity index versus water saturation for

Core 121.
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FIGUREB6.6 Formation resistivity factor versus porosity
for core data.

6¢
The water saturation equation for the



Indonesia shaly sand model is

i1 %)

_p n| Y
Sw _R: m—+m (B6.2)

Eq.(B6.2) was used to calculate the
water saturation in Sand 1 using the

following parameters:
n=1.7662
m=1.7704

R, = 1.0227 ohm-m (average
resistivity of the shale above Sand

1)
R, =0.0419 ohm-m

A=1.0 (worst case scenario)



V;, from gamma ray log

FIGURE B6.7 shows a comparison of
the water saturation from the Indonesia
model and Archie’s equation with a = 1,
m = 17704, andn = 1.7662. Both
estimates agree in the oil rim but differ
in the gas cap which is more shaly than
the oil rim. If a clean sand was assumed,
the hydrocarbon pore volume in the gas
cap would be underestimated by

Ermr%—s'” Su x100= WXI{)U:—MG%
1-§ 1-0.2997

Wl
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FIGURE B6.7 A comparison of the water saturation logs

from the Indonesian model and Archie's equation.




The hydrocarbon pore volume in the oil
rim would be underestimated by

Sut=Sun g 12438-02704
1-§ 1-0.2438

wl

Error%= X100=-3.52%



PROJECT 7

7a

FIGURE B7.1 shows a comparison of
the shale volume estimates from gamma
ray and particle size analysis. The
agreement between the two is
reasonable given that these are two
independent estimates of the shale
volume.
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FIGUREB.1 A comparison of V,; from gamma ray and
particle size analysis.



7b

FIGURE B7.2 shows a comparison of
the mean grain size and the median grain
size from core analysis. Both agree
indicating a normal distribution for the
grain size distribution.
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FIGURE B7.2 A comparison of the mean grain size and
median grain size for core data.



Tc

FIGURE B7.3 shows the specific
surface area from core analysis based on
the mean grain size. The equation is

S= 3(1-9) cm?/em® (B11)
D, x(0.0001/2)

It can be observed that the specific
surface area of the grains is higher in the
gas cap than in the oil rim. This is
further evidence of the poorer quality of
the reservoir rock in the gas cap than in
the oil rim.
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FIGURE B7.3 Specific surface area log for Sand 1.




7d

FIGURE B7.4 shows a comparison of
the permeability from core analysis and
from the Carman-Kozeny equation. The
Carman-Kozeny equation is

¢’ 1000
e, o M
CS™ 9.689x10

(B7.2)

where C is the Carman-Kozeny constant.
For this shaly sand, C = 30 compared to
5 typically used to estimate the
permeability for clean sand. The
agreement between the core
permeability and the estimates from the
Carman-Kozeny equation is good.
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FIGURE B7.4 A comparison of the permeability from core
data and the Carman-Kozeny equation.



Te

FIGURE B7.5 shows a comparison of
the specific surface area for the gas cap
and the oil rim. The equations for the gas
cap and oil rim are

$=7.5032¢ "% (B7.3)

§=73.608¢ "% (B7.4)

Egs. (B7.3) and (B7.4) were used to
calculate the permeability in the gas cap
and the oil rim. FIGURE B7.6 shows
the permeability log for Sand 1 from the
poro-perm method and from the Carman-
Kozeny equation. The agreement
between the two is very good.
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FIGUREB7.5 A comparison of the specific surface area for
the gas cap and the oil rim in Sand 1.
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FIGURE B1.6 A comparison of the permeability for Sand
1 from the poro-perm method and the Carman-Kozeny
equation.






PROJECT 8

8a

FIGURE b8.1 shows the air-water
capillary pressure curves for Cores 18,
63, 105, and 121. All the curves show a
zero displacement pressure.
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FIGUREB8.1 Air-water capillary pressure curves for Cores
18, 63, 105, and 121,



8b

FIGURE B8.2 shows the Leverett.J-
functions for Cores 18, 63, 105, and
121. They do not plot as one curve.
Therefore, the cores have different pore
structures.
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FIGURE B8.2 Leveratt J-functions for Cores 18, 63, 105,

and 121.




8c

FIGURE B8.3 through B8.6 show the
curve fits for the Leverett J-functions for
Cores 18, 63, 105, and 121, where S* 1s
an adjustable parameter to obtain the
best fit. The saturation equations for the
curve fits are as follows:

Core 18:

S, —0.15=0.8873¢ 4%/ (B8.1)
Core 63:

S, —0.04=0.2760] 25" (B8.2)
Core 105:

S, —0.07 =0.3596] 07+ (B8.3)



Core 121:

S, —0.00=0.4128] %' (B8.4)
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FIGURE B8.3 S,, versus J curve fit for Core 18.
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FIGURE B8.4 S, versus Jcurve fit for Core 63,
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FIGURE B85 S, versus J curve fit for Core 105.
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FIGUREB8.6 S,, versus J curve fit for Core 121.




PROJECT 9

9a
FIGURE b9.1 shows the pressure-depth

lines for the water, oil, and gas in Sand
1.
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FIGURE B9.1 Pressure lines for water, oil, and gas in

Sand 1.




9b

FIGURE B9.2 shows the gas-water and
the oil-water capillary pressure lines for
Sand 1. The two capillary pressure lines
are separated at the oil-water contact by
the oil-gas capillary pressure since there
are three phases at this depth.
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FIGURE B9.2 Gas-water and oil-water capillary pressure
lines for Sand 1.



9¢

FIGURE B9.3 shows the LeverettJ-
function for Sand 1 for o,, = 50
dynes/cm, 6,,, = 15 dynes/cm, and cos0

= 1.
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FIGURE B9.3 Leverett J-function for Sand 1.




9d

Eqgs.(B8.1) through (B8.4) were used in
conjunction with the Leverett /J-function
of Figure B9.3 to map the water
saturation in Sand 1. The equation from
each core was used to map the water
saturation in a different segment of Sand
1 as follows:

Eq.(B8.1) from Core 18: 11888.00
—11931.00 ft MD

Eq.(B8.2) from Core 63: 11931.50
—11955.50 ft MD

Eq.(B8.3) from Core 105:
11956.00 — 11968.00 ft MD
Eq.(B8.4) from Core 121:
11968.50 — 12008.50 ft MD



9¢

FIGURE B9.4 shows a comparison of
the water saturation distributions from
the Indonesia shaly sand model,
Archie’s  equation, and capillary
pressure data. It can be observed that the
capillary pressure data give water
saturation distribution in the oil rim that
is much lower than those of the other
two methods. It also gives the water
saturation distribution at the top of the
gas cap that is essentially the same as
Archie’s equation. It should be noted
that there was no water zone in Sand 1
but one was created to demonstrate the
method of water saturation estimation by
the capillary pressure method. Under




favorable conditions with an underlying
water zone, the capillary pressure
method can give a very reliable initial
water saturation distribution in a
petroleum reservoir.
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FIGURE B9.4 A comparison of the water saturation esti-
mates from the Indonesian model, Archie's equation, and
capillary pressure data.






PROJECT 10

FIGURE B10.1 shows a picture of the
fluid distributions in Sand 1. Such a
picture often 1s used in conjunction with
log analysis to give an overview of fluid
distributions in the sands penetrated by
the well.
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FIGURE B10.1 Fluid distribution in Sand 1.







PROJECT 11

11a
For the gas cap,

A = 8000 acres

h =66.88 ft
¢ =0.2997

S, =0.3332

I'=133.5F = 133.5+460 = 593.5°R
P =7260 psia
7, =0.80

Tpc = 444°R



Tpf =5935/444=134
P, =650 psia

P, =7260/650=11.17

Z=125
B, =0*0282?£=[{).0282?](1 25)(593.5) L cuft
R 7260
A (1-5,)

G=43560

g
=(4356{1](8000]{66.88]{02997)[1*0.3332)

280X 10 =1612x10 scf

11b



For the o1l rim,

A = 8000 acres

h=5294ft

B, =145 RB/STB

Ap(1-5, )
B,

N=S8TOIIP=7758

(7753}{3000)(52-9;4?:50-3210)(1“0'2433):550><10‘ STB

11¢
The amount of gas in solution 1s given by



G o = R, X N=1065% 550 10°=586 x10” scf



PROJECT 12

12a

FIGURE B12.1 shows the correlation
for the water saturation from the
Indonesia shaly sand model with
porosity. The equation is

5, =0.8246-1.7059¢ (B12.1)

TABLE b12.1 shows a summary of the
Monte Carlo simulation using Latin

Hypercube Sampling (Project 4).
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FIGURE B12.1 Water saturation versus porosity correlation
from the Indonesian model.



TABLE B12.1 Summary of Monte Carlo Simulation.

N N NCF

(MMSTB) (MMSTB) (MMS)
Minimum 158 38 756
Maximum 866 320 7987
Standard Deviation 140 51 1229
P90 274 76 1671
P50 433 132 2949
P10 652 209 4699

12b

FIGURE B12.2 through B12.4 show the
expectation curves for the STOIIP,
recoverable oil reserve, and
undiscounted net cash flow.




=

0.50

— Expectation Curve - - - Cum. Distribution Function

W
="

100 200 300 400 500 600 YOO 8OO
Stock Tank Ol Initially In Place (MMSTB)

FIGURE B12.2 Expectation curve for STOIIP.
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FIGURE B12.3 Expectation curve for recoverable oil
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FIGURE B12.4 Expectation curve for undiscounted net
cash flow.



12¢

Based on the expectation curve for the
STOIPP, there is 27% probability that
the initial oil in place is at least 550 x

10° STB.



PROJECT 13

'unw :uo =10 cp

u"=1cp

B° =1.45 RB/STB

BY=1.0 RB/ STB
¥ =1065 scf/STB

13a

S, .= 0.161

S, = 0.200

FIGURE B13.1 shows the relative
permeability curves obtained from the




service company. Note that the base
permeability used to define relative
permeability 1s the effective
permeability to oil at the irreducible
water saturation.
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13b,c

FIGURE bl13.2 shows the relative
permeability curves rescaled with the
base permeability equal to the absolute
permeability of Core 125 along with the
Corey curve fits. The Corey equations
are

k. =0.2245> (B13.1)

k,=0.606(1-S,)"” (B13.2)
where S, 1s defined as

=ﬂ (B13.3)
: l_Sw:'T'r_Sﬂr



FIGURE B13.2 Rescaled relative permeability curves for
Core 125 based on the absolute permeability of the core.

13d,e
FIGURE B13.3 shows the approximate
fractional flow curve along with the




Welge line. Note that the Welge line is
pivoted at S, ; = 0.2438, which is higher

than S, ... =0.161.
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FIGURE B13.3 Approximate fractional flow curve with the
Welge tangent line.

13f
The end-point mobility ratio for the



waterflood = 3.70.

13g

FIGURE B13.4 shows the water
saturation profiles along with the initial
and irreducible water saturations.




n

FIGURE B13.4 Water saturation profiles at tp= 0.10, 0.25,
and 1.0.

13h
tpgr=0.3378
13i

Rpp=0.4276

13



FIGURE B13.5 shows the oil recovery
curves.
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FIGURE B13.5 Qil-recovery curves.



13k

A = 8,000 acres

L=37,335ft

W=9,334 ft

h=5294 fi

V, =5,921,978,515 3 = 1,054,671,151
RB

B,=1.45 RB/STB

B, = 1.0 RB/STB
A, = 494,132 fi?
u=1215f/D

¢=106,923 STB/D
0,57 = 391,978,986 RB

WpBT = 16,822,470 RB

N,pr = 258,728,632 STB

tgr=3,332.39 days = 9.13 years



FIGURE B13.6 shows the oil, gas, and
water production rates. FIGURE B13.7
shows the water cut along with the oil
production rate. The water cut is over
90% after 20 years of production.
FIGURE B13.8 shows the cumulative
oil, gas, and water productions along
with the cumulative water injection
volume.
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