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PREFACE

 
Volume 3 of Advanced Petrophysics
presents the solutions to the 150 end-of-
chapter exercises and projects in
Volumes 1 and 2. I recommend that you
attempt the problem first before you
consult my solution to check your
progress and mastery of the subject. The
solutions for the projects in Appendix B
that involve log analysis require some
professional judgment and experience to
accomplish. Therefore, I do not expect
your solutions for these projects to be
identical to mine but they should be
close.

Ekwere J. Peters, PhD, PE



Austin, Texas, 2012



CHAPTER 1 SOLUTIONS

 



PROBLEM 1.1

 
The solution to this problem depends on
your background in geology, chemistry,
physics, and your familiarity with
various laboratory instruments. Here are
some possibilities.

Acid Test:
Cut a fresh piece of each sample. Drop
cold HCL on the freshly cut surface and
observe. The limestone (Core A) will
react vigorously with the cold HCL,
releasing CO2 in the process. The
sandstone (Core B) and dolomite (Core
C) will not react with the cold acid. This



simple test identifies the limestone
conclusively.

Next, heat the HCL almost to its
boiling point and repeat the test with the
hot HCL on the two remaining samples
(Cores B and C). The dolomite will
react with the hot acid but the sandstone
will not. This test distinguishes the
dolomite from the sandstone.

Grain Density/Specific Gravity
Measurements:
Cut a piece of each sample and grind
into a powder. Weigh the powder in air
(W). Determine the volume of the
powder by fluid displacement (V).
Compute the grain density in g/cc (W/V)



and compare with the standard grain
densities for quartz (2.65 g/cc),
limestone (2.71 g/cc), and dolomite
(2.85 g/cc) to identify the samples.

More Sophisticated Measurements:
X-ray diffraction spectroscopy can be
used to identify the mineral constituents
of each sample conclusively.

Infrared spectroscopy can be used to
identify the mineral constituents of each
sample conclusively.

Photoelectric effect measurements can
be used to identify each sample
conclusively. Here are the typical
values:



Sandstone: 1.81 barns/electron
Dolomite: 3.14 barns/electron
Limestone: 5.08 barns/electron

 
By the way, the photoelectric log is used
to distinguish dolomite and limestone in
well logging.



CHAPTER 2 SOLUTIONS

 



PROBLEM 2.1

 
2.1a

 

 

 

2.1b



 

2.1c
From Carman-Kozeny equation for
granular particles,

 
where S is the surface area per unit bulk
volume and is given by

 



 
Substituting for S in Eq.(2.1.4) gives

 



PROBLEM 2.2

 
2.2a
FIGURE 2.2.1 shows a sketch of the
problem.

Re = external radius of the ping
pong balls
Ri = internal radius of the ping pong
balls

 



 
The total porosity is given by



 

 

 
Substituting Eqs.(2.2.2) and (2.2.3) into
(2.2.1) gives

 
Assume values of Re= 2 cm and
thickness of the ping pong ball of 0.025
cm. Ri= Re-thickness = 2 cm – 0.025 cm



= 1.975 cm. Substituting these values in
the equation (2.2.4) gives

 



2.2b

 
We know that the effective porosity of
the cubic pack is 47.6%. If we filled the
interconnected pores with solid
spherical grains, we have the following
new arrangement.

 



 



 
The diagonal of the base (h) can be

determined as follows (see plan view):

 
The diagonal H, can be determined as
follows:

 
Then, the diameter of the quartz grain



located in the middle of the cube can be
determined as:

 

 
The change in effective porosity with
respect to the original effective porosity
can be computed as:



 
The poor sorting has reduced the
effective porosity by 43.07%, a
significant reduction in porosity.

2.2c
Without the holes in the ping-pong balls,
the Boyle’s Law porosimeter will
measure the volume of the ping-pong
balls as solid volume. Once the holes
are drilled, the gas can penetrate inside
the ping-pong balls and the porosimeter
will measure the solid volume of the
skin of the ping-pong balls. Hence, the
volumes measured in both cases will be
quite different. Let’s consider 8 ping-
pong balls in the porosimeter as case 1.
The volume measured by the



porosimeter, based on the ping-pong ball
dimensions assumed in part (b), will be
8 × 4/3 × π × Re3

e = 268.08 cc (the
volume of the entire balls). Then, let’s
consider case 2, when the holes are
drilled in the ping-pong balls. The
volume of solids that will be measured
will be as follows: 8 × 4/3 × π × (Re3

e –
Re3

t) = 9.92 cc. The volumes measured
are significantly different. In this case,
the volume measured in case 1 is 27
times greater than that measured in case
2.



PROBLEM 2.3

 
Let the mass of the dry sample be M.

 

 

 
Weigh the dry sample in air. Determine
the bulk volume using any of the methods
described in the text. Calculate the bulk



density using Eq.(2.3.1). Pulverize the
sample into a powder. Determine the
grain volume of the powder by fluid
displacement. Calculate the grain density
using Eq.(2.3.2). Substitute for the bulk
density and grain density in Eq.(2.3.3) to
determine the total porosity. Pulverizing
the sample into a powder destroys any
isolated pores that may be present.
Therefore, the porosity determined
above is the total porosity.



PROBLEM 2.4

 
2.4a

 
2.4b
No. What has been calculated is the total
porosity because the pore volume



determined by subtracting the mineral
grain volume from the bulk volume is the
total pore volume, which includes the
isolated pores if present.



PROBLEM 2.5

 
Mass of dry sample = md
Mass of saturated sample = msat
Mass of kerosene saturating the sample
(mk) = msat – md
mk = 27.575 g – 26.725 g = 0.85 g

 

 
Substituting the numerical values for md
and ρk into Eq.(2.5.1) gives



 
Mass of dry sample = md
Mass of saturated sample immersed in
kerosene = mimm

 

 



PROBLEM 2.6

 

 



PROBLEM 2.7

 
2.7a

 
where A is the cross-sectional area of
the core.

 

 



 

 



2.7b

 
Method 1
Apply the integrated form of Darcy’s
Law to the core before it was cut.

 
Apply Darcy’s Law to each piece after
the core has been cut into N equal
pieces.

 
Because the core was cut into equal
pieces,



 
Substituting Eq.(2.7.8) into (2.7.7) gives

 
But

 
Substituting Eqs.(2.7.6) and (2.7.9) into
Eq.(2.7.10) and cancelling common
terms gives

 



Solving Eq.(2.7.11) for kT gives

 
2.7b
Method 2
The total permeability of the core is the
harmonic average of the permeabilities
of the pieces in series. Eq.(3.159) in the
textbook gives the harmonic average for
beds in series as

 



Substituting Eq.(2.7.8) into (2.7.13)
gives

 



PROBLEM 2.8

 
2.8a
Ideal gas law:

 
At initial conditions,

 

 
At final conditions, the total amount of
moles is:



 
From mass balance,

 
Substituting Eqs.(2.8.2), (2.8.3), and
(2.8.4) into Eq.(2.8.5) gives

 
Therefore,



 
2.8b
To generate the calibration curve, use
the given data to plot a graph of Vs vs
P1/P2. This should be a straight line. It is
always advantageous to plot a linear
calibration curve if possible. FIGURE
2.8.1 shows the calibration curve.



 
2.8c
From the calibration curve,



 
2.8d
L – 3.4 in – 8.636 cm
d = 1.5 in = 3.81 cm
Vb= 98.46 cm3

P1g=48 psig
P2g=100 psig
P2g/P1g 100/48 = 2.08
Vr = 25.90 cm3

Vc = 114.11 cm3

From the calibration curve,



 
2.8e
Only the gas in the connected pores
participates in this gas expansion
experiment. Therefore, the porosity from
this gas expansion experiment is the
effective porosity.



PROBLEM 2.9

 
2.9a

 
2.9b
For resistors in parallel,

 



 

 
where

A = cross-sectional area of the
conductor

L = length of conductor
R = resistivity of the conductor

 

 



 
Substituting Eqs.(2.9.3), (2.9.4), and
(2.9.5) into Eq.(2.9.1) gives

 

 

 



 

 

 
For this case, Rt = R0.

2.9c



 
2.9d

 
2.9e
Hagen-Poiseulle’s Law:

 



 
A comparison of Eqs.(2.9.10) and

(2.9.11) gives

 

 

 

 



Substituting Eqs.(2.9.14) and (2.9.15)
into (2.9.13) gives

 



PROBLEM 2.10

 
Archie’s equation:

 
The given data are used to determine the
best values for a and m. FIGURE 2.10.1
shows the log-log plot of F versus f.
From the regression line, a = 0.7981 and
m = 1.5131.



 

 



PROBLEM 2.11

 
Matrix densities:
Sandstone: 2.65 g/cm3

Limestone: 2.71 g/cm3

Dolomite: 2.87 g/cm3

Pf = 1 g/cm3

 
Eq.(2.11.1) was used to calculate the
entries in TABLE 2.11.1.



 



PROBLEM 2.12

 
a = 1
m = 2
n = 2
Sw=0.25
Rw= 0.025 ohm-m

 

 
Archie’s Equation:



 

 
The entries in TABLE 2.12.1  were
calculated using Eqs.(2.12.1), (2.12.2),
and (2.12.4).



 



PROBLEM 2.13

 
2.13a
Wyllie’s average equation:

 

 
From the log,

 
Substituting the numerical values into



Eq.(2.13.1) gives

 
Archie’s saturation equation:

 
where

Sw = water saturation
Rw = formation water resistivity (in
this case equal to 0.06 Ωm)
Rt= Formation resistivity (obtained
from the resistivity log)
Rt =2Ωm, a = 1, m = 1.5 and n = 2.

 



 

 
Hence, the hydrocarbon saturation is
0.602.
2.13b
Humble formula for formation resistivity
factor:

 
Eq.(2.13.2) can be rewritten as

 



The water saturation is given by

 
The hydrocarbon saturation from the
Humble formula is 0.551.

 
Humble formula gives a hydrocarbon
saturation that is 8.5% less than Archie’s
equation in this case.



PROBLEM 2.14

 
Porosity is given by

 

 
The bulk density (ρb) is read from the

density log in each zone. The results for
all the zones are shown in TABLE
2.14.1.



 



PROBLEM 2.15

 
The datum from core 3 did not fit the
trend of the other data, so it was treated
as an outlier and left out. FIGURE
2.15.1 shows the resistivity factor
versus porosity for the remaining data.

From the regression line,

 
The new and improved Humble formula
is



 

 



PROBLEM 2.16

 
2.16a and b
ØA > ØB because B has closer packing
than A.
ØA = Øc because A and C have the same
cubic packing.
ØA > Ød because D has smaller pores
than A due to poor sorting.
ØA > ØF because E has smaller pores
than A due to poor sorting.
ØA > ØF because F has smaller pores
than A due to compaction and
deformation of grains.



CHAPTER 3 SOLUTIONS

 



PROBLEM 3.1

 
L = 2.54 cm
d = 2.54 cm
A = 5.067 cm2

µ = 0.018 cp
1 atm = 760 mm Hg
Psc = 1 atm

The uncorrected gas permeability in
Darcy units is given by

 
The Klinkenberg correction shown in



FIGURE 3.1.1 gives the absolute
permeability of the core as 2.94 mD.

 



PROBLEM 3.2

 
L = 5.0 cm
d = 2.523 cm
A = 4.9995 cm2

µ = 0.0175 cp
Psc = 1 atm
The Klinkenberg correction shown in
FIGURE 3.2.1 gives the absolute
permeability of the core as 2.10 mD.



 



PROBLEM 3.3

 
Applying the integrated form of Darcy’s
law in Darcy units, the pressure drop
across the core is given by

 
Everything on the right side of Eq.(3.3.1)
is known except the permeability of the
sandpack. We can estimate the
permeability of the sandpack using the
Carman-Kozeny equation. The surface
area per unit bulk volume is given by



 
Carman-Kozeny equation gives

 
Given: D = 18µm, Ø = 0.28
Substituting the numerical values into
Eq.(3.3.3) gives the permeability as



 
Substituting these values into Eq.(3.3.1)
gives

 



PROBLEM 3.4

 
3.4a
Darcy’s law:

 

 

 
where



 
Substituting Eqs.(3.4.2) and (3.4.3) into
(3.4.1) gives

 
Separating variables gives

 
Performing the integrations in Eq.(3.4.6)
gives

 



Thus,

 
3.4b
A graph of Δp versus q is linear with the
slope given by

 
The permeability of the core is
calculated as

 
FIGURE 3.4.1 shows the graph of Δp



versus q.

 
Substituting numerical values into Eq.
(3.4.10) gives the permeability as

 



 



PROBLEM 3.5

 
Darcy’s law for inclined flow takes the
form:

 
Required to show that in oilfield units,
the law is of the form:

 
To show that (3.5.1) is Eq.(3.5.2) in
field units, it is pertinent to state the
units of measurement for the various



parameters in both equations.
In Darcy units

q [cm3/s]
k [D]
A [cm2]
µ [cp]
P [atm]
z [cm]
s [cm]

 
In oilfield units

q [STB/day]
k [mD]
A [ft2]
µ [cp]
P [psi]



z [ft]
s [ft]

 
Convert all the variables in field units

into Darcy units and substitute into Eq.
(3.5.1).



 



 
Substituting into Eq.(3.5.1) and
rearranging gives

 
Simplifying gives

 



PROBLEM 3.6

 
q = 70 cm3 / hr = (70/3600)cm3/s
h = 100 cm
L = 10 cm
r1 = 2 cm
r2 = 1 cm
ρ = 1.05 g/cm3

µ = 1 cp
g = 981 cm/s2

1 atm = 1.0133 × 106 dynes/cm2

1 atm = 14.696 psia

FIGURE 3.6.1 shows the flow
configuration.



 



Apply Darcy’s Law in terms of
hydraulic head and hydraulic
conductivity to obtain

 
where H is the hydraulic head and K is
the hydraulic conductivity. But A = f(×).
Let the radius along the cone be given by

 
where

 
and b is given by



 
Now

 
Substituting Eq.(3.6.5) into Eq.(3.6.1)
gives

 
Separating variables gives

 

 



 

 
Eq.(3.6.10) can be simplified and
rearranged as

 
From the FIGURE,

 
Substituting Eqs.(3.6.3), (3.6.4), and
(3.6.12) into Eq.(3.6.11) and simplifying



gives

 
The hydraulic conductivity can be
written in Darcy units as

 
Substituting Eq.(3.6.14) into Eq.(3.6.13)
and solving for the permeability gives

 
Substituting numerical values into Eq.
(3.6.15) gives



 



PROBLEM 3.7

 
k = 2 D
A = 100 cm2

ρ = 1.024 g/cm3

µ = 1.5 cp
g = 981 cm/s2

3.7a
To determine if there is flow, we look at
the hydraulic heads (or the flow
potentials) at the ends of the porous
medium.

hA=+100cm
 



hB=-25cm
 
Since hA < hB, there is flow from A to B.
3.7b

 
3.7c

 



3.7d

 
Since Re 1, the flow is Darcy flow.



PROBLEM 3.8

 

 

3.8a
The performance equation for the falling
head permeameter is given in Darcy
units by Eq.(3.192) as



 
The graph of ln(h/ho) versus t is linear
with the slope given by

 

 
FIGURE 3.8.1 shows the graph of
ln(h/ho) versus t. From the regression
l i n e , m = –0.0004. Substituting
numerical values into Eq.(3.8.3) gives
the permeability as



 

 
3.8b



The volumetric flow rate is given by Eq.
(3.188) in Darcy units as

 
FIGURE 3.8.2 shows the graph of q
versus t. The equation for the rate in
cm3/s is

 



 



PROBLEM 3.9

 
3.9a
FIGURE 3.9.1 shows the hydraulic
heads for the flow.



 



Darcy’s law:

 
Volumetric balance gives

 
Thus,

 

 
3.9b



Separating variables gives

 
Integration and application of the initial
condition gives

 
3.9c
L = 2 cm
ρ = 1.02, g/cm3

µ = 1 cp
g = 981 cm/s2

1 atm = 1.0133×106 dynes/cm2



The graph of In(h/ho) versus t is linear
with the slope given by

 

 
FIGURE 3.9.2 shows the graph of
In(h/ho) versus t. From the regression
l i n e , m = –0.0004. Substituting
numerical values into Eq.(3.9.7) gives
the permeability as



 

 
3.9d
FIGURE 3.9.3 shows the graph of the
flow rate versus time. The flow rate
decays exponentially toward zero with



time.

 



PROBLEM 3.10

 
3.10a
FIGURE 3.10.1 shows the flow
configurations. Flow is vertical
downward.

Subscripts: inlet = 1, outlet = 2.
Choose a datum at the outlet and
compute the hydraulic heads as follows:

 

 
Darcy’s law:



 

 





 
3.10b

 

 
Darcy’s law:

 

 



PROBLEM 3.11

 
FIGURE 3.11.1 shows the hydraulic
heads for the flow. Darcy’s law gives

 

 

L = 2 cm
d – 1 cm
L = 1.02 g/cm3

µ = 1 cp



q = 0.012 cm3/s
 
Substituting numerical values into Eq.
(3.11.2) gives the permeability as

 



 



PROBLEM 3.12

 
3.12a, b
FIGURE 3.12.1 defines the hydraulic
head at a point in the porous medium.

 



 
This problem can easily be solved by

inspection as follows as shown in
TABLE 3.12.1.



 
FIGURE 3.12.2 shows the graphs of
gauge pressure and hydraulic head.



 
3.12c



Darcy’s law:

 

 
Integration of Eq.(3.12.3) from z =0 to z
= 3ft gives

 

 



 

 
Substituting numerical values into Eq.
(3.12.6) gives

 



PROBLEM 3.13

 
3.13a
FIGURE 3.13.1 shows the hydraulic
heads for the flow.



 



Darcy’s law:

 
Volumetric balance gives

 

 
Adding Eqs.(3.13.2) and (3.13.3) gives

 



 
Substituting Eq.(3.13.5) into (3.13.1)
gives

 
The differential equation is

 
3.13b
Separation of variables gives

 



Integration and substitution of the initial
condition gives

 
3.13c
The graph of ln(h/ho) versus t is linear
with the slope given by

 

 
FIGURE 3.13.2 shows the graph of



ln(h/ho) versus t. From the regression
l i n e , m = –0.0004. Substituting
numerical values into Eq.(3.13.11) gives
the permeability as

 



 
3.13d
Eq.(3.13.9) can be written as



 
Substituting Eq.(3.13.12) into (3.13.1)
gives the flow rate as

 

L = 10 cm
D = 2 cm
ho=100 cm
ρ = 1.02 g/cm3

µ = 1 cp
g = 981 cm/s2

 
Substituting numerical values into Eq.
(3.13.13) gives the rate as



 
FIGURE 3.13.3 shows the graph of q
versus t.



 



PROBLEM 3.14

 
3.14a
Darcy’s law:

 
The graph of q versus Δh is linear with
slope given by

 

 
FIGURE 3.14.1 shows the graph of q



versus Δh. From the regression line, m =
0.0061. Substituting numerical values
i n t o Eq.(3.14.3) gives the hydraulic
conductivity as

 



 
3.14b
In Darcy units



 
Therefore,

 
Substituting numerical values into Eq.
(3.14.5) gives the permeability as

 



PROBLEM 3.15

 
This is an inclined flow problem that
can be solved in a variety of ways.

Method 1.
Apply Darcy’s law for inclined flow.
Using the coordinate system shown in
FIGURE 3.15.1. Darcy’s law for
inclined flow in oilfield units is given by
Eq.(3.166) in the text as

 
Differentiation gives



 
P1=Pa+ 0.433y(250) = 14.7+(0.433)
(1.038)(250)=127.06 psia

z1 = 0
P2 = 1450 psia
z2=5000 ft S2-s1 10×5280 ft
k = 850 mD
µ = 1 cp
A = 3000×65 ft2

 



 
Substituting the numerical values into
Eq.(3.16.2) gives



 
Method 2.
The problem also can be solved in terms
of hydraulic or piezometric head and
hydraulic conductivity (see FIGURE
3.15.2).



 
The components of the hydraulic head
are shown in Figure 3.42 in the text. The
hydraulic head at any point in the porous
medium is given by



 
where

h = hydraulic head
ψ = pressure head
z = elevation of the point above the
datum

 
The hydraulic heads in ft are computed
as follows.

 

 
The hydraulic conductivity in ft/day is
given by



 
Darcy’s law in terms of hydraulic head
and hydraulic conductivity is given by
Eq.(3.181) in the text as

 
Substituting Eqs.(3.16.2), (3.16.5),

and (3.16.6) into Eq.(3.16.7) gives

 

k = 850 mD
γ = 1.038



z2-Z1= –5000 ft
s2-s1 = 10×5280 ft
µ = 1 cp
A = 3000×65 ft2

 
Substituting the numerical values into
Eq.(3.16.8) gives

 
Method 3.
Compute the velocity potentials for the
inlet and the outlet of the porous medium
at any convenient datum and apply the
oilfield version of Eq.(3.167) in the text



to calculate the flow rate. FIGURE
3.15.3 shows the reference datum used
in this computation. The oilfield version
of Eq.(3.167) is given by

 



 
Differentiation gives

 
Eq.(3.169) gives the velocity potential



in oilfield units as

 
where z¡ is the elevation of point i
above or below the reference datum. If
point i is above the reference datum,
then

 
If point i is below the reference datum,
then

 
For this problem,



 
Substituting the numerical values into
Eq.(3.16.10) gives

 



PROBLEM 3.16

 
q = 600 STB/D
Pi=5000 psia
A = 200 acres
rw = 0.28 ft
h = 80ft
Ø = 0.20
k = 200 mD
ct=30×10–6 psi-1

B
o = 1.20 RB/STB

µ = 1.5 cp

3.16a



 

 

 
Let

 
For × ≤ 0.01, the Ei function is given by



 
For x > 0.01, the Ei function is read from
the Ei function TABLE.

FIGURE 3.16.1 shows the calculated
pressure profiles.



 
3.16b



 
The calculated wellbore pressures are

shown in TABLE 3.16.1.

 
3.17c
FIGURE 3.16.2 shows the semilog plot
of the flowing wellbore pressures of



TABLE 3.16.1. The slope is given by

 

 
Substituting numerical values into Eq.
(3.16.6) gives the permeability as

 



 
3.17d
At logt = 0, the wellbore pressure is
given by



 

 
Substituting numerical values into Eq.
(3.16.8) gives the initial pressure as

 



PROBLEM 3.17

 
q = 2500 STB/D
h = 23 ft
µ = 0.92 cp
B = 1.21 RB/STB
rw = 0.401 ft
Ø = 0.21
ct=8.72 × 10–6 psi-1

Pi= 6009 psia

3.17a
FIGURE 3.17.1 shows the diagnostic
plots. The test is affected by wellbore
storage. However, the late time data can



be subjected to a semilog analysis.



 



3.17b
FIGURE 3.17.2 shows the semilog plot.
The slope of the semilog line is given by

 

 





 
From the regression line, m = –
110.83ln10 = –255.196psi/log cycle.

Substituting numerical values into Eq.
(3.17.2) gives the permeability as

 
The skin factor is given by

 
Substituting numerical values into Eq.



(3.17.3) gives the skin factor as

 



PROBLEM 3.18

 
q = 519 STB/D
h = 13.0 ft
µ = 0.92 cp
B = 1.06 RB/STB
rw = 0.27 ft
Ø = 0.223
Swi=0.32
ct = 13.0×10–6 psi-1

3.18a
FIGURE 3.18.1 shows the overview
plot of the test.



 
3.18b
FIGURE 3.18.2 shows the diagnostic
plots for the drawdown test. The



wellbore storage coefficient is
calculated from the unit slope line as

 



 
Substituting numerical values into Eq.
(3.18.1) gives the wellbore storage
coefficient as



 
The dimensionless wellbore storage
coefficient is given by

 
Substituting numerical values into Eq.
(3.18.2) gives the dimensionless
wellbore storage coefficient as

 
FIGURE 3.18.3 shows the diagnostic

plots for the buildup test.



 
The wellbore storage coefficient is

calculated from the unit slope line as



 
Substituting numerical values into Eq.
(3.18.2) gives the dimensionless
wellbore storage coefficient as

 
3.18c
The slope of the semilog line for
drawdown and buildup is given by

 



 
FIGURE 3.18.4 shows the semilog

plot for the drawdown. From the
regression line, m = –6.9085ln10 = –
15.91 psi/log cycle.



 
Substituting numerical values into Eq.
(3.18.4) gives the permeability as



 
For the drawdown, the skin factor is
given by

 

 
Substituting numerical values into Eq.
(3.18.5) gives the skin factor as



 
FIGURE 3.18.5 shows the Horner

plot for the buildup. From the regression
line, m = –6.6916ln10 = –15.41 psi/log
cycle.



 
Substituting numerical values into Eq.
(3.18.4) gives the permeability as



 
For the buildup, the skin factor is given
by

 

 
Substituting numerical values into Eq.
(3.18.6) gives the skin factor as



 
3.19d
The positive skin factor indicates that
the well is damaged.



PROBLEM 3.19

 
3.19a
The initial-boundary value problem to
be solved consists of the following
equations. The partial differential
equation is

 
The initial condition is

 
The internal boundary condition is



 
The external no flow boundary condition
is

 
3.19b
We can recast the initial-boundary value
problem in dimensionless form as
follows. Let

 

 



 
Substituting Eqs.(3.19.5), (3.19.6), and
(3.19.7) into Eqs. (3.19.1), (3.19.2),
(3.19.3), and (3.19.4) gives

 

 

 



 
3.19b
The initial-boundary value problem can
be solved by the separation of variables.
Let

 
Substituting Eq.(3.19.13) into (3.19.8)
and separating variables gives

 
The left side of Eq.(3.19.13) is a
function of xD only and the right side is a
function of tD only. Both sides will be
equal only if each is separately equal to



some constant. Thus,

 

 
The solution of Eq.(3.19.14) gives

 
The solution of Eq.(3.19.15) gives

 
Thus, for λ ≠ 0, the solution is



 
which can be written as

 
For λ = 0, the solution of Eq.(3.20.14)
gives

 
For λ = 0, the solution of Eq.(3.20.15)
gives

 
Thus, for λ = 0,



 
The general solution to the initial-
boundary value problem is

 
The solution contains five constants
(A,B,C,E,λ) to be determined from the
three initial and boundary conditions. It
appears some of these constants can be
chosen arbitrarily. Application of Eq.
(3.19.11) gives

 
To satisfy Eq.(3.19.24), A must be zero
and



 
Since λ≠0. By choosing E= 0, then

 
Since C≠O, then

 
The solution of Eq.(3.19.27) gives

 
Eq.(3.19.23) can now be written as



 
Substituting Eq.(3.19.29) into (3.19.10)
gives B =1. Eq.(3.19.29) becomes

 
Substituting Eq.(3.19.30) into (3.19.9)
gives

 
Thus, we need an infinite sine series that
converges to –1 for 0D 1. The required
series is the half interval Fourier sine
series. Taking advantage of the
orthogonal property of the trigonometric
function gives



 

 
Substituting Eq.(3.19.32) into (3.19.30)
gives the general solution to the initial-
boundary value problem as

 
3.19c
FIGURE 3.19.1 shows a sketch of the
pressure profiles.



 
3.19d
The cumulative water influx is given by



 
Darcy’s law in modified oilfield units
w i th q in reservoir barrels per hour
gives

 
Substituting Eqs.(3.19.5) and (3.19.6)
into (3.19.36) gives

 
Substituting Eq.(3.19.37) into (3.19.35)
gives



 
The dimensionless time in oilfield units
is given by

 
Differentiation of Eq.(3.19.39) gives

 
Substituting Eq.(3.19.40) into (3.19.38)
gives



 
Differentiation of Eq.(3.19.34) at xD =0
gives

 
Substituting Eq.(3.19.42) into (3.19.38)
and performing the integration gives

 



Eq.(3.19.43) can be simplified by noting
that

 
Substituting Eq.(3.19.44) into (3.19.43)
gives

 
3.19e
Pi=5000 psia
Pw = 4800 psia
cf = 4×10–6 psi-1



CW=4×10–6 psi-1

w = 5000 ft
L = 10 miles = 10×5280 = 52800 ft
h = 100 ft
k = 800 mD
µ = 1 cp
Ø = 0.35
t = 3 years = 3 × 365 × 24 = 26280 hrs

 
Substituting numerical values into Eq.
(3.19.43) gives



 



PROBLEM 3.20

 
3.20a
The initial-boundary value problem to
be solved consists of the following
equations. The partial differential
equation is

 
The initial condition is

 
The internal boundary condition is



 
The external no flow boundary condition
is

 
3.20b
It is convenient to define a new
dependent variable as

 
Let

 
Substituting Eqs.(3.20.5) and (3.20.6)
into Eqs(3.20.1), (3.20.2), (3.20.3), and



(3.20.4) gives

 

 

 

 
The initial-boundary value problem can
be solved by Laplace transform. Taking
the Laplace transform of Eq.(3.20.7)
gives



 
Substituting Eq.(3.20.8) into (3.20.11)
and rearranging gives

 
The solution of Eq.(3.20.12) is

 
To satisfy Eq.(3.20.10) requires that B =
0. Eq.(3.20.13) becomes

 



Taking the Laplace transform of Eq.
(3.20.15) gives

 
Substi tuting Eq.(3.20.15) into Eq.
(3.20.14) gives

 
Substituting Eq.(3.20.16) into (3.20.14)
gives the solution as

 
Taking the inverse Laplace transform of
Eq.(3.20.17) gives



 
Substituting Eq.(3.20.5) into (3.20.18)
gives the solution as

 
Substituting Eq.(3.20.6) into (3.20.19)
gives the solution as

 
Eq.(3.20.20) can be written in oilfield
units as



 
3.20c
FIGURE 3.20.1 shows a sketch of the
pressure profiles.



 
3.20d



The cumulative water influx is given by

 
Darcy’s law in Darcy units gives

 
Differentiation of Eq.(3.20.19) gives

 
Substituting x = 0 into Eq.(3.20.24)
gives



 
Substituting Eq.(3.20.25) into (3.20.23)
gives

 
Substituting Eq.(3.20.26) into (3.20.22)
and performing the integration gives

 
Subs ti tuti ng Eq.(3.20.6) into Eq.
(3.20.27) gives the cumulative water
influx in Darcy units as



 
Eq.(3.20.28) can be written in oilfield
units with t in hours as

 
3.20e
Pi=5000 psia
Pw = 4800 psia
cf = 4×10–6 psi-1

cw=4×10–6 psi-1

w = 5000 ft
h = 100 ft
k = 800 mD
µ = 1 cp
Ø = 0.35



t = 3 years = 3 × 365 × 24 = 26280 hrs
Ct=4×l0–6+5×10–6=9×10–6 psi-1

Substituting numerical values into Eq.
(3.20.29) gives

 



PROBLEM 3.21

 
The Navier-Stokes equation in Cartesian
coordinates is given by

 
For 1D flow in the x direction and
negligible gravity effect, Eq.(3.21.1)
simplifies to

 
The no-slip boundary conditions at the
walls are



 

 
Integration of Eq.(3.21.2) gives

 
Application of the boundary conditions
gives

 
Substituting Eq.(3.21.6) into (3.21.5)
gives



 
The volumetric flow rate is given by

 
Substituting Eq.(3.21.7) into (3.21.8)
gives

 
Integration of Eq.(2.21.9) gives

 



Eq.(3.21.10) can be written as

 
where A is the area normal to flow.
Darcy’s law is

 
A comparison of Eqs.(3.21.11) and
(3.21.12) gives the permeability as

 



PROBLEM 3.22

 
3.22a
FIGURE 3.22.1 shows the fractured
medium. For flow in the x direction, we
have linear systems in parallel. The
average permeability in the x direction
is given by

 



 
For the matrix,



 
For the fracture,



 
Substituting numerical values into Eq.
(3.22.1) gives



 
From symmetry, ky = kz. Examination of
the FIGURE shows that in the y
direction, we have linear media in series
and in parallel. The media above and
below the fracture are in series. These
series media are then in parallel with the
horizontal fracture. Thus, we will
calculate ky in two steps. First, we
calculate the segments in series and then
combine them in parallel with the
horizontal fracture to calculate ky. The
average permeability of the linear media



in series above and below the horizontal
fracture is given by

 
Substituting numerical values into Eq.
(3.22.2) gives

 
The series media above and below the
horizontal fracture can be combined in
parallel with the horizontal fracture to
obtain ky as



 
Substituting numerical values into Eq.
(3.22.3) gives

 
3.22b
Before fracturing, the porous medium
was homogeneous and isotropic with
respect to permeability. After fracturing,
porous has become heterogeneous.
Because there are more fractures in the x



direction than in the y and z directions,
the porous medium also is anisotropic
with respect to permeability.



PROBLEM 3.23

 
3.23a

 
Examine the permeability tensor in the

principal axes of the anisotropy.



 



When viewed in the axes of the
permeability anisotropy, the
permeability tensor is given by

 
No. The reservoir is not isotropic

with respect to permeability. It is
anisotropic because kx’x≠ ky‘y’.
FIGURE 3.23.1 shows the porous
medium in the principal axes of the
anisotropy.



 
3.23b
The permeability along the bedding
plane is kx.x= 200 mD.



PROBLEM 3.24

 

 
The directional permeability along the

direction of flow can be determined
graphically with the equation

 
or

 



Eq.(3.24.2) is the equation of a circle of
radius 10 units. FIGURE 3.24.1 shows
the permeability ellipse which in this
case is a circle.



 
The reservoir is isotropic with

respect to permeability. All orthogonal
axes are principal axes of the
permeability tensor. The permeability
ellipse degenerates into a circle for an
isotropic reservoir.



PROBLEM 3.25

 
3.25a
The hydraulic conductivity tensor for the
aquifer is given by

 
Darcy’s law is

 

 



 
Substituting Eqs.(3.25.1) and (3.25.3)
into (3.25.2) gives

 
The Darcy velocity vector lies in the
second quadrant and makes an angle α
with negative x-axis given by

 
It makes an angle θ with positive x-axis



given by

 
3.25b
The hydraulic gradient vector lies in the
fourth quadrant and makes an angle θ
with the positive x-axis given by

 
The directional hydraulic conductivity in
the direction of flow is given by

 
3.25c



Let one of the principal axes make an
angle θ with the positive x-axis given by

 
The other axis is 90° away.

3.26d



 



PROBLEM 3.26

 
3.26a

 
Darcy’s law:

 
Substituting numerical values into Eq.
(3.26.1) gives



 
3.26b
The angle between the flow direction
and the positive x-axis is given by

 
3.26c
The angle between the flow direction
and the direction of the potential
gradient is given by



 
3.26d
The angle θ that one of the principal
axes (u) makes with the positive x-axis
is given by

 
The other principal axis (v) is 90° away
and makes an angle of 67.5° with the
positive x-axis.



3.26e
The principal values of the permeability
anisotropy are given by

 
Parts (e) and (d) also can be solved by



linear algebra as follows:

 
The eigenvalues are given by



 
The principal axes of the permeability
anisotropy are given by the eigenvectors
of the permeability tensor.

 
For λ1 = 79.29 mD

 
The eigenvector is given by



 
This eigenvector makes an angle θu with
the positive x-axis given by,

 
For λ2 = 220.71 mD

 
The eigenvector is given by



 
This eigenvector makes an angle θv with
the positive x-axis given by,

 
3.26f

 
The directional permeability in the flow
direction is given by



 
The directional permeability in the
direction of potential gradient is given
by

 
The directional permeabilities also can
be calculated as follows. The
directional permeability in the flow
direction is also given by



 
The directional permeability in the
direction of the potential gradient is
given by

 
The permeability ellipse in the flow
direction is given by



 

 
The permeability ellipse in the flow
direction is shown in FIGURE 3.26.1.



 
The permeability ellipse in the direction



of potential gradient is given by

 
The permeability ellipse in the direction
of the potential gradient is shown in
FIGURE 3.26.2.



 



PROBLEM 3.27

 
Method 1.
Based on Darcy’s Law for
Homogeneous and Anisotropic Porous
Media.

Given:

 
3.27a
One of the principal axes of the
permeability anisotropy makes an angle
? with the positive x-axis, where ? is
given by Eq.(3.257) in the text as



 
The other principal axis makes an angle
? with the positive x-axis given by

 
3.27b
One of the principal values of the
permeability anisotropy is given by Eq.
(3.249) in the textbook as

 
Substituting the numerical values into
Eq.(3.27.3) gives



 
The other principal value is given by Eq.
(3.253) in the text as

 
Substituting the numerical values into
Eq.(3.27.4) gives

 
The permeability tensor when viewed in
the principal axes of the anisotropy is



given by

 
3.27c
The flow direction makes an angle of
+45° with the positive x-axis where
anticlockwise rotation is positive and
clockwise rotation is negative. The flow
direction makes an angle of 45° –21.23°
= 23.77° with the positive u-axis. The
directional permeability in the direction
of flow is given by Eq.(3.272) in the text
as



 
Method 2.
Based on Linear Algebra.

 
3.27b
The principal values of the permeability
tensor are given by the eigenvalues of
the tensor. The characteristic equation is



 

 
3.27a
The principal axes of the permeability
anisotropy are given by the eigenvectors
of the permeability tensor. For λ1=
199.98 mD, the homogeneous equation
to be solved for the eigenvector is

 



This gives the eigenvector associated
with λ1 =199.98 mDas

 
For λ2 = 40.02 mD, the homogeneous
equation to be solved for the eigenvector
is

 
This gives the eigenvector associated



with λ2= 40.02 mD as

 
where α is the angle the second principal
axis makes with the positive x-axis. It
can be shown that both eigenvectors are
orthogonal as they should be.

3.27c
The square root of the directional
permeability in the direction of flow is
is given by the intersection of the line in



the direction of flow with the
permeability ellipse. The equation of the
line along the direction of flow is

 
The equation of the permeability ellipse
is

 
S o l v i ng Eqs.(3.27.7) and (3.27.8)
simultaneously gives



 



PROBLEM 3.28

 
3.28a
Given:

 

 
Apply Darcy’s law to obtain



 
Substituting the numerical values into
Eq.(3.28.3) gives

 



 
The permeability tensor is given by

 
3.28b
The Darcy velocity vector makes and
angle a with the positive x-axis given by



 
3.28c
The directional permeability in the flow
direction is given by

 
The pressure gradient vector lies in the
third quadrant and makes an angle  with
the negative x-axis given by

 
The directional permeability in the
direction of the pressure gradient is



given by

 
3.28d





 
The permeability tensor in the new
coordinate system is given by

 



PROBLEM 3.29

 
3.29a
Darcy’s law gives

 
Substituting the numerical values into
Eq.(3.29.1) gives



 
3.29b
The angles that V makes with the x, y,
and z axes are



 
3.29c
The principal values of the permeability
tensor are given by the eigenvalues of
the tensor. The characteristic equation is



 
The solution of Eq.(3.29.2) gives

 
3.29d
The principal axes of the permeability
anisotropy are given by the eigenvectors
of the permeability tensor. For ?1
=82.7117 mD, the homogeneous
equation to be solved for the eigenvector



is

 
This gives the eigenvector associated
with λ1= 82.7117 mD as

 
For λ2 =119.5800 mD, the homogeneous
equation to be solved for the eigenvector
is



 
This gives the eigenvector associated
with λ2 =119.5800 mD as

 
For λ3 = 247.7083 mD, the homogeneous
equation to be solved for the eigenvector
is



 
This gives the eigenvector associated
with λ3= 247.7083 mD as

 
3.29e
The directional permeability in the
direction of flow is given by



 





 



PROBLEM 3.30

 
3.30a
The porosity of the porous medium is
given by

 
where Ac is cross sectional area of the
porous medium occupied by all the
capillary tubes and At is the total cross-
sectional area of the porous medium.
The cross-sectional area of a typical
capillary tube is given by



 
There are five capillary tubes with
diameters δ1, δ2, δ3, δ4, and δ5. From the
given data, δ2= δ3 = δ4= δ5. Thus the
cross-sectional areas of the capillary
tubes are given by

 

 
The cross-sectional area occupied by the
all the capillary tubes is given by



 
The total cross-sectional area of the
porous medium is given by

 
where ?T is the diameter of the porous
medium. Substituting Eqs.(3.30.5) and
(3.30.6) into (3.30.1) gives

 
Substituting numerical values into Eq.
(3.30.7) gives



 
3.30b
Darcy’s law applied to the porous
medium gives

 
Eq.(3.30.8) can be solved for the
permeability as

 
Hagen-Poiseuillie’s law for a typical
capillary tube is



 
The contribution to flow by each
capillary tube is given by

 

 
The total flow rate is given by

 
Substituting Eqs.(3.30.6) and (3.30.13)



into (3.30.9) gives the permeability of
the porous medium as

 
Substituting numerical values for the
capillary tube diameters in cm into Eq.
(3.30.14) gives the permeability as

 
3.30c
The specific surface area is given by



 
where As is the surface area of all the
capillary tubes and Vb is the bulk
volume of the porous medium. The
surface area of a typical capillary tube is
given by

 
where L is the length of the porous
medium. The surface area of each
capillary tube is given by

 

 
The total surface area of all the capillary



tubes is given by

 
The bulk volume of the porous medium
is given by

 
Substituting Eqs.(3.30.19) and (3.30.20)
into (3.30.15) gives the specific surface
area as

 
Substituting numerical values into Eq.
(3.30.21) gives the specific surface area



as

 



PROBLEM 3.31

 
3.31a
The porosity of the porous medium is
given by

 
3.31b
Eq.(3.153) in the textbook gives the
equation for calculating the permeability
of a porous medium from the probability
density function of the pore throat size
distribution as



 
For the triangular probability density
function,

 
Now



 



 
Substituting Eqs.(3.32.3) and (3.31.4)
into (3.31.1) gives

 



PROBLEM 3.32

 
Eq.(3.153) in the textbook gives the
equation for calculating the absolute
permeability of a porous medium from
the probability density function of the
pore throat size distribution as

 
Eq.(3.154) in Example 3.4 in the
textbook shows how this equation can be
used to calculate the permeability in the
case of a triangular probability density
function. This worked example can
easily be adapted to solve the problem



at hand. For the right triangular
probability density function,

 

 
Substituting Eq.(3.32.2) into (3.32.1)
and simplifying gives the permeability
as

 
Performing the integrations in Eq.



(3.32.3) and simplifying gives

 
For this problem,

Ø = 0.05
τ = l because the capillary tubes are
straight.
δ2 = 8×10–6m

 
Substituting the numerical values into
Eq.(3.32.4) gives the permeability as



 
The function f1(?) also can be derived as
follows.

 
where m is the slope of the line.

 
where h is the height of the right triangle
a t δ = δ2. Because the area of the
triangle is 1.0 since f(δ) is a probability
density function,



 

 

 

 



PROBLEM 3.33

 
3.33a
Given

 

 
The dimensional matrix can be derived
by inspection and shown in TABLE
3.33.1.



 
3.33b
The determinant of the following 3×3
submatrix is

 
Thus, the rank of the dimensional matrix
is 3. The number of independent
dimensionless groups is 7–3 = 4.



3.33c
The homogeneous linear equations can
be solved by row operations as follows.

 
The solution is



 
Eq.(3.33.3) can be written as

 



3.33d
The dimensionless groups can be
derived from Eq.(3.33.4) by inspection
to obtain

 

 

 

 



3.33e
From Darcy’s law,

 
Eq.(3.33.9) can be derived from the
dimensional analysis as

 



PROBLEM 3.34

 
Let Vb be the bulk volume.

Before acidization,

 
The volume of the solid is distributed
among the minerals as follows:

Calcium carbonate = (0.05)
(0.74Vb) = 0.0370Vb
Orthoclase feldspar = (0.04)
(0.74Vb) = 0.0296b
Kaolinite (clay) = (0.09)(0.74Vb) =



0.0666Vb
Quartz = (0.82)(0.74Vb) =
0.6068Vb
After acidization, the new solid
volume is distributed among the
minerals as follows:
Calcium carbonate=0
Orthoclase feldspar = (1 – 0.45)
(0.0296Vb) = 0.0163Vb
Kaolinite (clay) = (1 – 0.78)
(0.0666Vb) = 0.0147Vb
Quartz = (1 – 0.07)(0.6068Vb) =
0.5643Vb
Vs = (0+0.0163 +
0.0147+0.5643)Vb = 0.5953Vb =(l–
0.4047) Vb
? = 0.4047



 

 



PROBLEM 3.35

 
3.35a
FIGURE 3.35.1 shows a sketch of the
flow arrangement.

 
3.35b



Darcy’s law gives

 

 
Integration of Eq.(3.35.2) for the 10 mD
core gives

 
w here C1 is an integration constant.
Application of the boundary condition at
the end of the 10 mD core gives



 

 
Substituting Eq.(3.35.5) into (3.35.3)
gives

 
Given:

 



Substituting numerical values into Eq.
(3.35.6) gives

 
At x = 7.5 cm,

 
At x = 0, the pressure at the junction of
the two cores is given by

 
Application of Darcy’s law to the 1 mD



core and integration gives

 
w here C2 is an integration constant.
Application of the boundary condition at
the end of the 1 mD core gives

 

 
Substituting Eq.(3.36.9) into (3.35.7)
gives (3.35.10)



 

 
Substituting numerical values into Eq.
(3.35.10) gives

 
At x = 7.5 cm,

 



PROBLEM 3.36

 
3.36a
The transformation equations are as
follows:

 



 
3.36b
The transformed 5-spot pattern is shown
in FIGURE 3.36.1.



 
3.36c
The circular wells are transformed into
ellipses as



 
Substituting numerical values into Eq.
(3.36.1) gives

 



PROBLEM 3.37

 
3.37 a and b
In general, pereability is proportional to
the square of the pore size.

kA >kB because B has smaller pore
size than A due to tighter packing.

kA >kc because C has smaller pore
size than A due to smaller grain size.

kA >kD because D has smaller pore
size than A due to poor sorting.

kA >kE because E has smaller pore
size than A due to very poor sorting.

kA >kp because F has smaller pore
size than A due to compaction.



CHAPTER 4 SOLUTIONS

 



PROBLEM 4.1

 
4.1a
FIGURE 4.1.1 shows the graphs of
permeability, porosity, and water
saturation plotted as logs. The increase
in water saturation with a decrease in
permeability can easily be observed.

4.1b
FIGURES 4.1.2 and 4.1.3 show the
histograms of permeability and porosity.
The permeability distribution is highly
skewed with most of the data
concentrated at low values of
permeability. This observation is



consistent with the fact that permeability
tends to be log-normally distributed. The
porosity data are more evenly
distributed than the permeability data
although there is a tendency toward high
porosities in this case.

4.1c
FIGURE 4.1.4 shows the histogram of
natural log of permeability. The
distribution is more symmetric than that
of permeability confirming the log-
normal nature of the permeability
distribution.





 

 



 



 
4.1d
Figure 4.1.5 shows the scatter plot of the
natural log of permeability versus
porosity. The correlation coefficient for



the scatter plot can be calculated as
follows.





 

 
The correlation coefficient of 0.6917
indicates a strong linear relationship



between the natural log of permeability
and the porosity.

4.1e
FIGURE 4.1.6 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

 



 



4.1f
FIGURE 4.1.7 shows the graph for
determining the Lorenz coefficient of
variation. The area under the curve can
be obtained by integrating the
polynomial curve fit to the data to obtain

 
Both the Dykstra-Parson’s coefficient of
variation and the Lorenz coefficient
indicate a high degree of heterogeneity.
However, there is no numerical
relationship between the two measures
of heterogeneity.



 



4.1g
FIGURE 4.1.8 shows the scatter plot
for determining the variogram for
nonuniformly distributed data obtained
using the algorithm outlined in the
textbook. The experimental variogram
shown in the FIGURE was obtained with
a bin size of 10 meters.





 

4.1h
FIGURE 4.1.9 shows a satisfactory fit
of the following exponential model to
the experimental variogram:

 



 

4.1i
FIGURE 4.1.10 shows the scatter plot
for determining the covariance function
for nonuniformly distributed data



obtained using the algorithm outlined in
the textbook. The experimental
covariance function shown in the
FIGURE was obtained with a bin size of
10 meters.



 



4.1j
FIGURE 4.1.11 shows the correlation
coefficient function, which is a
dimensionless version of the covariance
function.



 



problem 4.2

 
4.2a
FIGURE 4.2.1 shows the graphs of
permeability, porosity, and water
saturation plotted as logs. The
permeability, porosity, and water
saturation are fairly uniform except at
the bottom. It may expected that the
various indicators of heterogeneity
(Dykstra-Parsons coefficient, Lorenz
coefficient, the magnitude of the sill of
the variogram) for this reservoir show
be lower than for the reservoir of
Problem 4.1.





 

4.2b
figures 4.2.2 and 4.2.3 show the
histograms of permeability and porosity.
The permeability distribution is highly
skewed with most of the data
concentrated at low values of
permeability. This observation is
consistent with the fact that permeability
tends to be log-normally distributed. The
porosity data are more evenly
distributed than the permeability data
although there is a tendency toward high
porosities in this case.



 



 

4.2c
FIGURE 4.2.4 shows the histogram of
natural log of permeability. The



distribution is more symmetric than that
of permeability confirming the log-
normal nature of the permeability
distribution.

 
4.2d



FIGURE 4.2.5 shows the scatter plot of
the natural log of permeability versus
porosity. The correlation coefficient for
the scatter plot can be calculated as
follows.





 

 
The correlation coefficient of 0.4614
indicates a strong linear relationship
between the natural log of permeability



and the porosity.
4.2e
FIGURE 4.2.6 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

 



 

4.2f



FIGURE 4.2.7 shows the graph for
determining the Lorenz coefficient of
variation. The area under the curve can
be obtained by integrating the
polynomial curve fit to the data to obtain

 



 
Both the Dykstra-Parson’s coefficient of
variation and the Lorenz coefficient



indicated a low degree of heterogeneity.
However, there is no numerical
relationship between the two measures
of heterogeneity.

4.2g
FIGURE 4.2.8 shows the scatter plot
for determining the variogram for
nonuniformly distributed data obtained
using the algorithm outlined in the
textbook. The experimental variogram
shown in the FIGURE was obtained with
a bin size of 10 meters.



 



4.2h
FIGURE 4.2.9 shows a satisfactory fit
of the following exponential model to
the experimental variogram:

 



 

4.2i
FIGURE 4.2.10 shows the scatter plot



for determining the covariance function
for nonuniformly distributed data
obtained using the algorithm outlined in
the textbook. The experimental
experimental covariance function shown
in the FIGURE was obtained with a bin
size of 10 meters.



 



4.2j
FIGURE 4.2.11 shows the correlation
coefficient function, which is a
dimensionless version of the covariance
function.



 



PROBLEM 4.3

 
4.3a
One version of the Carman-Kozeny
equation is

 
where S in the surface area per unit bulk
volume of the sample. Assuming
spherical grains,

 
w h e r e Dp is the grain diameter.



Substituting Eq.(4.3.2) into (4.3.1) and
rearranging gives the grain diameter as

 
For Sample 10,

 
Substituting the numerical values into
Eq.(4.3.3) gives the grain diameter as

 



4.3b
FIGURE 4.3.1 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

 



 

4.3c



TABLE 4.3.1  shows the data used to
calculate the semivariance at a lag
distance of 3 ft.

 
TABLE 4.3.1  Data for Calculating
Semivariance at a Lag Distance of 3ft.

k(x) k(x+3)
75 62
20 31
142 98
62 231



31 111
98 82
231 30
111 258
82 191
30 339
258 263
191 193
339 91
263 173
193 30
91 175



PROBLEM 4.4

 
4.4a
FIGURE 4.4.1 shows the graph for
determining the Dykstra-Parsons
coefficient of permeability variation.
From the regression line,

 



 



4.4b
The numerical coefficient that indicates
the strength of the linear relationship is
the correlation coefficient.

 



 
Yes. There is a strong linear relation

between the natural log of the formation
resistivity factor and the porosity.



PROBLEM 4.5

 
TABLE 4.5.1  shows the data for
calculating the semivariance at a lag
distance of 5 meters.

 
TABLE 4.5.1 Data for h = 5 m

Z(x) Z(x+5) [Z(x+5)-Z(x)]2

8 6 4



6 4 4
4 3 1
3 6 9
6 5 1
5 7 4
7 2 25
2 8 36
5 6 1
6 3 9

Total  94

TABLE 4.5.2  shows the data for
calculating the semivariance at a lag
distance of 15 meters.



 
TABLE 4.5.2 Data for h = 15 m

Z(x) Z(x+15) [Z(x+15)-Z(x)]2

8 3 25
6 6 0
4 5 1
3 7 16
6 2 16
5 8 9
2 5 9
8 6 4



Total  80



PROBLEM 4.6

 
4.6a
TABLE 4.6.1  and FIGURE 4.6.1 show
the computed variograms in the E-W, N-
S, NE-SW, and NW-SE directions.

 



 



4.6b
The variogram is anisotropic.
4.6c
Yes. The conclusion would have been
different. The variograms in the E-W
and N-S are essentially the same and
would have led to a conclusion of
isotropy. However, the variograms in
the NE-SW and NW-SE directions
clearly show anisotropy.



PROBLEM 4.7

 
4.7a
TABLE 4.7.1  and FIGURE 4.7.1 show
the computed semivariograms in the E-
W, N-S, NE-SW, and NW-SE
directions.



 



 

4.7b
Yes. There is evidence of anisotropy in
the semivariograms in the different
directions. The semivariograms in the E-
W and N-S directions are essentially the
same. The semivariograms in the NE-
SW and NW-SE directions are higher
than in the other two directions at lag
distances greater than 2.
4.7c
FIGURE 4.7.2 shows the average
semivariograms and their model fits.
Again, anisotropy is evident. The
theoretical model used to fit the data
from the E-W/N-S combination is the
exponential model given by



 
The theoretical model used to fit the data
from the NE-SW/NW-SE combination is
the spherical model given by

 



 



PROBLEM 4.8

 
4.8a
TABLE 4.8.1  shows the data used to
calculate the semivariance at a lag
distance of c in the NE-SW direction.

 
TABLE 4.8.1  Data for Calculation of
Semivariance.



k(x) k(x+h)
47 137

906 1261
1261 1141
415 782
782 1385

1385 917
1365 369
369 484
484 251
413 789
789 482
91 529

4.8b



The strength of the linear relationship
between natural log of permeability and
the porosity for Wells 1 through 5 can be
tested with correlation coefficient.





 
The correlation between Ink and δ is
weak. The young engineer’s claim is not
supported by the data.
4.8c
FIGURE 4.8.1 shows the graph for
calculating the Dykstra-Parsons
coefficient of variation for the
permeability of Wells 1 through 5.

 



 



PROBLEM 4.9

 
4.9a
In terms of the variogram, the kriging
equations are given in matrix form as

 



 
Eq.(4.9.1) becomes



 
The solution to Eq.(4.9.2) is

 
The estimate at location 2 is given by

 
4.9b
The estimation error variance is given
by



 



PROBLEM 4.10

 
4.10a
The ordinary kriging equation to be
solved is

 
From the variogram,

 
Eq.(4.10.1) becomes



 
The solution to Eq.(4.10.2) is

 
The kriged estimate at A is given by

 
It should be observed that because there
is no correlation between the locations,
each location is assigned the same
weight and the estimated value becomes
the arithmetic mean of the measured



values.

4.10b
The minimum error variance is given by

 
4.10c
The simulated value at A is given by

 
Alternatively, this problem can be
solved with the covariance function. In
this case, the matrix equation to be



solved is

 
The solution to Eq.(4.10.3) is

 
The kriged estimate at A is given by

 
The minimum error variance is given by



 
The simulated value at A is given by

 



PROBLEM 4.11

 
4.11a
The kriging equation to be solved is

 



 
Eq(4.11.1) becomes

 



The solution to Eq.(4.11.2) is
 

 
The kriged estimate at A is given by

 

4.11b
The minimum error variance is given by



 



PROBLEM 4.12

 

 

 
The variogram is given by the spherical
model

 
From the variogram,



 
For a stationary random function,

 

 
For a pure nugget effect variogram, there
is no correlation between Z(×1) and
Z(x2) and as a result, C(100) is zero.



 
If the range of influence is 25 m, there is
no correlation between Z(x1) and Z(x2)
beyond 25 m and as a result, C(100) is
zero. The variance of Z* is given by

 
which is the same as for the pure nugget
effect variogram.



PROBLEM 4.13

 
The covariance function is given by

 
Kriging and simulation at Location 5.
The matrix equation is given by



 
The solution is given by

 
The kriged value is

 
The minimum error variance is



 
The 95% confidence interval is

 
The simulated value is

 
Kriging and simulation at Location 2.
The matrix equation is given by



 
The solution is



 
The kriged value is

 
The minimum error variance is



 
The 95% confidence interval is

 
The simulated value is

 
Kriging and simulation at Location 6.
The matrix equation is given by



 
The solution is



 
The kriged value is

 
The minimum error variance is



 
The 95% confidence interval is

 
The simulated value is

 



 



PROBLEM 4.14

 

 



 



 



 

 

 



 

 
Kriging and simulation at Location 4.
The matrix equation is given by

 



 
The solution is

 
The kriged value is



 
The minimum error variance is

 
The 95% confidence interval is

 
The simulated value is

 
Kriging and simulation at Location 2.
The matrix equation is given by



 

 
The solution is



 
The kriged value is

 
The minimum error variance is



 
The 95% confidence interval is

 
The simulated value is

 



 



CHAPTER 5 SOLUTIONS

 



PROBLEM 5.1

 
This problem can be solved using either
of the following two equations:

 

 
Here the problem is solved using both

equations. Let .
The graph of CD versus J on a
probability-linear scale is a straight line



as shown in FIGURE 5.1.1. In this
FIGURE, CD has been converted into a
standard normal variate z using Excel’s
NORMSINV function and plotted against
J instead of using a normal probability
graph paper. The regression line is

 
On the standard normal scale, CD=0.10
corresponds to Z = –1.2816 and
CD=0.90 corresponds to Z = 1.2816.
From the regression line,

 





 
Also,

 
Substituting the numerical values into
Eq.(5.1.1) gives



 
On the standard normal scale, CD=0.16
corresponds to Z = –1.0 and CD=0.84
corresponds to Z = 1.0. From the
regression line,

 
Substituting the numerical values into



Eq.(5.1.2) gives

 



PROBLEM 5.2

 
This problem can be solved using either
of the following two equations:

 

 
Here, the problem is solved using both
equations. FIGURE 5.2.1 shows the
graph of z versus J. The regression line
is



 
From the regression line,

 
Substituting the numerical values into
Eq.(5.2.1) gives

 
Substituting the numerical values into
Eq.(5.2.2) gives



 



 



PROBLEM 5.3

 
5.3a

FIGURE 5.3.1 shows the solvent
concentration profile at the instant of the
measurement. C/Co=50% travels at the
average speed u. At the instant of
measurement,

 



 
5.3b



The mixing zone length is given by

 

 
From FIGURE 5.3.1,

 
Substituting the numerical values into
Eq.(5.3.2) gives the longitudinal
dispersion coefficient as



 

 



PROBLEM 5.4

 
L e t CD=C/C0. The initial-boundary
value problem for diffusion is

 

 

 

 
The initial-boundary value problem can



be solved by Laplace transformation as
was done in Problem 3.21 to obtain

 

 
Substituting the numerical values into
Eq.(5.4.5) gives



 
After 100 years of diffusion, the relative
solvent concentration 5 meters away is
only 0.005. It can be concluded that
molecular diffusion is not a very
effective mass transport mechanism in
porous media.



PROBLEM 5.5

 

 



 
5.5a

 



 
Substituting the numerical values into
Eq.(5.5.1) gives



 
From linear interpolation,



 

 
Also,



 
5.5b
From Darcy’s law,

 
Substituting numerical values into Eq.
(5.5.3) gives

 



PROBLEM 5.6

 
5.6a

 

 

 
Substituting the numerical values into
Eq.(5.6.2) gives



 
5.6b
No. The core is heterogeneous. Since the
fluid densities and viscosities are equal,
the distortion in the concentration
contours is caused by permeability
heterogeneity of the core and not by
gravity segregation. The lower half of
the core is more permeable than the
upper half.



5.6c
The dispersivity from the breakthrough
curve will be larger than that computed
in part (a) because the distortion in the
concentration contours will cause the
breakthrough curve to be more stretched
out. This stretching out will result in a
higher dispersivity from the
breakthrough curve than from the mixing
zone length in the core.



PROBLEM 5.7

 
5.7a
FIGURE 5.7.1 shows the expected
solvent concentration profile at tD =
0.50 pore volume injected. Note that CD
= 0.50 is located at x = L/2.



 
5.7b
FIGURE 5.7.2 shows the expected



solvent concentrations versus time at the
inlet and outlet ends of the core.



 
5.7c



Longitudinal dispersion coefficient and
longitudinal dispersivity of the core can
be determined from the experiment.
4.7d

 



 

 
Substituting numerical values into Eq.
(5.7.1) gives

 



PROBLEM 5.8

 

 



 
Substituting the numerical values into
Eq.(5.8.1) gives



 



PROBLEM 5.9

 
This problem can be solved using either
of the following two equations:

 

 
Here, the problem is solved using both
equations. FIGURE 5.9.1 shows the
graph of z versus J. The regression line
is



 





 
From the regression line,

 
Substituting the numerical values into
Eq.(5.9.1) gives

 
Substituting the numerical values into
Eq.(5.9.2) gives



 



CHAPTER 6 SOLUTIONS

 



PROBLEM 6.1

 

 

 
Substituting numerical values into Eq.
(6.1.1) gives



 
Experimental value from TABLE 6.3 =
21.8 dynes/cm

 



PROBLEM 6.2

 
The parachor for n-octane (C8H18) is
given by

 
Value from TABLE 6.2 = 351.5

 



PROBLEM 6.3

 
For one drop, m = 2.2/100 = 0.022 g.

 
From linear interpolation,



 
Note that without the correction for the
dynamics of the drop, the estimated
surface tension would have been 17.17
dynes/cm, which is too low. Tabulated
value in a TABLE of physical constants
= 27.1 dynes/cm.

 



PROBLEM 6.4

 
For horizontal equilibrium before the
addition of Super XX,

 
Let the addition of x ppm of Super XX
be required to cause the changes
indicated. At equilibrium,

 

 



 
Substituting Eqs.(6.4.3) and (6.4.4) into
(6.4.2) and rearranging gives

 
Substituting the numerical values into
Eq.(6.4.5) gives

 



PROBLEM 6.5

 
The Amott wettability indices for water
and oil are given by

 

 



 
Substituting the numerical values into
Eqs.(6.5.1) and (6.5.2) gives

 



Therefore, the porous medium is water
wet.



PROBLEM 6.6

 
6.6a
Let the radius of the circular cross-
section be r, the length of each side of
the square cross-section be l and the
length of the shorter side of the 2×1
rectangular cross-section be x. Since the
cross-sectional areas are equal,

 
The perimeters for the circle, square and
rectangle are 2πr, 41 , and 6x. We
perform a force balance to determine the
equilibrium capillary rise for each
shape. For the circular cross-section,



For the circular cross-section,

 

 
where

 
For the square cross-section,

 

 



From Eq.(6.6.1),

 
Substituting Eq.(6.6.7) into (6.6.6) gives

 
For the rectangular cross-section,

 

 
From Eq.(6.6.1),



 
Substituting Eq.(6.6.11) into (6.6.10)
gives

 
A comparison of Eqs.(6.6.3), (6.6.8),
and (6.6.12) shows that the highest
capillary rise will occur in the tube with
the rectangular cross-section.
6.6b



 



PROBLEM 6.7

 
L = 60 cm
r = 50 μm = 50 × 10–4 cm
? = 72 dynes/cm
λ = 0°
pw =1.0 g/cm3

 
6.7a

 
6.7b



Let α be the angle of inclination of the
capillary tube with the vertical.

 
6.7c
Let

Pnw = pressure of the trapped gas at
equilibrium
Pw = pressure in the water just



below the gas water interface
Pa = atmospheric pressure

 
From Boyle’s law,

 

 

 
At equilibrium,

 
Substituting Eqs.(6.7.3) and (6.7.4) into



(6.7.5) and rearranging gives

 
Substituting the numerical values into
Eq.(6.7.6) gives

 

 



Eq.(6.7.8) can be solved as

 
h = 1.5717 cm or 1120.7116 cm, which
is non-physical.

The impact of the trapped air in the
equilibrium capillary rise is surprisingly
high. The trapped gas has reduced the
equilibrium height from 29.3578 cm to
1.5717 cm. This is a significant impact.



PROBLEM 6.8

 

 

 
At equilibrium, force up equals force
down.

 

 



The problem also can be solved by
application of the Young-Laplace
equation.

 

 

 
Substituting Eqs.(6.8.6) and (6.8.7) into
(6.8.5) gives



 

 



PROBLEM 6.9

 
When the experiment is repeated with
the shorter capillary tube, the liquid will
rise to the top and stop. It will not flow
out of the top of the tube as one would
intuitively expect.

Before the cut, application of Young-
Laplace equation gives

 
After the cut, application of Young-
Laplace equation gives



 
Dividing Eq.(6.9.2) by (6.9.1) and
rearranging gives

 
In the limit, as h2 →0, λ2 →90°. The
liquid will never overflow no matter
how small h2 is.



PROBLEM 6.10

 

 

 

 
where the factor of 2 accounts for the
fact that the soap bubble has two air-
liquid interfaces. Substituting Eq.
(6.10.2) into (6.10.1) gives



 
Substituting the numerical values into
Eq.(6.10.3) gives

 
The negative sign indicates that work is
done on the system.



PROBLEM 6.11

 
pw=1 g/cm3

pair ≈ 0g/cm3

σ = 72 dynes/cm
Ө = 0°
g = 981 cm/s2

r = 50 × 10–6m = 50 × 10–4cm

6.11a
In order for the water to drain from the
overhanging portion of the capillary tube
into container B, the gravity driving
force must exceed the capillary retention
force preventing drainage. In other



words, the hydrostatic pressure exerted
by the column of water must exceed the
capillary pressure at the end of the tube.
This condition can be expressed
mathematically based on our knowledge
of capillarity as

 
or

 
Substituting the numerical values into
Eq.(6.11.2) gives the requirement for
successful siphoning of the water as



 
In the current design, h = 20 cm, which
is not sufficient for the gravity driving
force to exceed the capillary retention
force. Therefore, as currently designed,
the experiment will not be successful in
siphoning water spontaneously from
container A to container B. The water
will imbibe and then stop at the end of
the capillary tube. We can calculate the
equilibrium contact angle from the
equation:

 
Or



 
6.11b
Make the length of the overhanging
portion of the capillary tube (h) greater
than 29.36 cm.



CHAPTER 7 SOLUTIONS

 



PROBLEM 7.1

 
The total work done by the pressure and
capillary forces is given by

 
Before displacement,

 
After displacement,

 



If the terms (dR)2 and (dR)3 are
neglected in comparison to the other
terms, Eq.(7.1.3) becomes

 

 

 
Before displacement,

 
After displacement,



 
If the term (dR)2 is neglected in
comparison to the other terms, Eq.
(7.1.8) becomes

 

 
Substituting Eqs.(7.1.5), (7.1.6), and
(7.1.10) into Eq.(7.1.1) gives

 
At equilibrium, δW = 0 and Eq.(7.1.11)
becomes upon rearrangement



 
Eq.(7.1.12) is the special form of the
Young-Laplace equation for a spherical
liquid drop.



PROBLEM 7.2

 
7.2a
Young-Laplace equation gives

 
For the meniscus,

 

 
Substituting Eqs.(7.2.2) and (7.2.3) into
(7.2.1) gives



 
7.2b
The pressure in the film is obtained from
Eq.(7.2.4) as

 
Given:



 
 
Notice that the pressure in the film is
less than the atmospheric pressure. The
adhesive force is caused by the pressure
difference between the film and the
outside air. This is an attractive force
that glues the plates together. The force
is given by



 

 
The negative sign indicates an attractive
force.



PROBLEM 7.3

 
FIGURE 7.3.1 shows the pressure
profile in the capillary tube.





 



PROBLEM 7.4

 
7.4a
Young-Laplace equation applied to
bubble A gives

 

 
For bubble B,

 



 
7.4b
It is apparent that PbPa. Therefore, when
valve 1 is opened, air will flow from B
to A until pressure equilibrium is
achieved. Bubble B will “shrink” while
bubble A will be enlarged.

7.4c
FIGURE 7.4.1 shows the sketch of the
final equilibrium configurations of the
two bubbles.



 
7.4d
At equilibrium, to satisfy the Young-



Laplace equation, the radii of the two
bubbles must be equal. However, only a
small piece of B remains and lies on an
imaginary sphere with the same radius
as A.



PROBLEM 7.5

 
7.5a
From Pythagoras Theorem,

 
Expansion of the terms in Eq.(7.5.1)
gives

 
Simplification of Eq.(7.5.2) gives

 
Solving Eq.(7.5.3) for r1 gives



 
Eq.(7.5.3) also can be solved for r2 in
terms of r1 to obtain

 
Although it may not be obvious, r1r2.

7.5b
Application of the Young-Laplace
equation gives



 
Substituting the numerical values into
Eq.(7.5.6) gives



 
7.5c
The force of adhesion binding the grains
together is given by

 
The negative sign indicates an attractive
force.



PROBLEM 7.6

 
7.6a
FIGURE 7.6.1 shows the pressure
profiles in the capillary tubes.

7.6b
Application of Hagen-Possueille’s
equation to capillary tube i gives

 
For the forced imbibition,



 
At the water-air interface,

 





 
Substituting Eq.(7.6.3) into (7.6.2) gives

 
Substituting Eq.(7.6.4) into (7.6.1) and
rearranging gives

 
Integration of Eq.(7.6.5) gives

 
where C is the integration constant.



Applying the initial condition xi = 0 at t
= 0 gives C = 0. Rearranging Eq.(7.6.6)
gives

 



PROBLEM 7.7

 
7.7a
FIGURE 7.7.1 shows the pressure
profiles in the capillary tubes.

7.7b
Application of Hagen-Possueille’s
equation to capillary tube i gives

 
For the spontaneous imbibition,



 
At the water-air interface,

 





 
Substituting Eq.(7.7.3) into (7.7.2) gives

 
Substituting Eq.(7.7.4) into (7.7.1) and
rearranging gives

 
Integration of Eq.(7.7.5) gives

 
w her e C is the integration constant.
Applying the initial condition xi = 0 at t



= 0 gives C = 0. Rearranging Eq.(7.7.6)
gives

 



PROBLEM 7.8

 
7.8a
FIGURE 7.8.1 shows the pressure
profiles in the capillary tubes.

7.8b
The distance L traveled by the meniscus
in capillary tube 2 is given by

 
The time at which air is trapped in
capillarity tube 1 is obtained from Eq.
(7.8.1) as



 





 



PROBLEM 7.9

 
7.9a
Before imbibition,

 
FIGURE 7.9.1 shows a sketch of the
capillary pressure profile before
imbibition.

7.9b
Before imbibition,



 
This positive capillary pressure gradient
causes spontaneous imbibition of water
into the core.

 
This negative capillary pressure gradient
causes capillary end effect at the outlet
of the core and prevents water



production from the outlet end of the
core.

 
FIGURE 7.9.1 shows a sketch of the
capillary pressure gradient before
imbibition.





 
7.9c
Figure 7.9.1 shows a sketch of the water
saturation profiles during imbibition.
Note the presence of capillary end
effect.

7.9d
No. Water will not be produced from the
core because of capillary end effect. The
displacement is capillary driven with a
very low flow rate that is not high
enough to overcome the capillary end
effect. After the water saturation at the
outlet builds up to 0.80, the imbibition
will stop. Note that capillary driven
displacement will not have a Buckley-
Leverett displacement front. The front is



smeared by capillarity.



PROBLEM 7.10

 
7.10a
FIGURE 7.10.1 shows the pressure
profile in the capillary tube.





 
7.10b
Dip the dry capillary tube into the water
and suck the water to the top of the
capillary tube. Allow the water in the
capillary tube to drain to the equilibrium
height h1.



PROBLEM 7.11

 
7.11a
FIGURE 7.11.1 shows the air and water
pressures in Core #1 for the spontaneous
imbibition experiment. Because the core
is long, water is imbibed to a maximum
height lower than point C. The water
pressure terminates at this height. The
air pressure extends from A to C
because there is air in the entire column
in the imbibition experiment.





 
FIGURE 7.11.2 shows the air and water
pressures in Core #2 for the drainage
experiment. In this case, the water
pressure extends from A to C because
there is water in the entire column.
There is a water-air contact (WAC)
above the free water level (FWL). The
air pressure terminates at the water-air
contact because there is no air below
this level. The capillary pressure at the
water-air contact is equal to the
displacement pressure of the core.





 
7.11b
In general,

 
where z is the height above or below the
free water level. For the imbibition
experiment (Core #1),



 
For the drainage experiment (Core #2),

 
7.11c
FIGURE 7.11.3 shows the water
saturation distributions in Core #1 and
Core #2. In Core #1, the water saturation
below the free water level is less than
1.0 because some air is trapped below
this level. It could be argued that over a



long period, this trapped air will
dissolve in the water as water has some
solubility for air. However, the sketch in
Fi gur e 7.11.3 does not reflect this
possibility. In Core #2, the water
saturation is 1.0 from A to the water=air
contact. There is also irreducible water
saturation at the top.





 



PROBLEM 7.12

 
7.12a
In general,

 
where z is the height above or below the
free water level.

 



 
7.12 b
FIGURE 7.12.1 shows the sketch of the
permeability profile of the core.

7.12c



We need to relate permeability to height
along the core. Assume the core has the
same pore structure from the bottom to
the top. Therefore, it will have the same
Leverett J-funtion.

 

 
Substituting Eq.(7.12.3) into (7.12.2)
and solving for k gives

 



where C1 is a constant. Permeability
decreases with height along the core in
the manner indicated by Eq.(7.12.4).
This is the justification for the sketch in
Figure 7.12.1.





 
7.12c
Permeability is proportional to the
square of the grain size.

 
where C2 is a constant of proportionality
and Dp is the grain size. Substituting Eq.
(7.12.5) into (7.12.4) and solving for Dp
gives

 
Grain size decreases with height from
the bottom to the top.



7.12d
FIGURE 7.12.2 shows the drainage
capillary pressure curves for Samples
A, B, and C. Based on the variation of
permeability and grain size with height
along the core, Sample A is the best
quality rock and C is the least quality
rock. The sketches in Figure 7.12.2
reflect these facts.





 



PROBLEM 7.13

 
7.13a
FIGURE 7.13.1 shows the mercury
capillary pressure curve.



 
7.13b
The Leverett J-function in consistent



units is given by

 
Applying the required unit conversions
to make / dimensionless leads to



 
FIGURE 7.13.2 shows the Leverett J-
function.



 
7.13c
At reservoir conditions,



 
FIGURE 7.13.3 shows a comparison of
the mercury and reservoir conditions’
capillary pressure curves.



 
7.13d
The pore throat radius is given by



 
Substituting the numerical values into
Eq.(7.13.4) and applying the unit
conversions gives the pore throat radius
in microns as



 
7.13e
FIGURE 7.13.4 shows the graph of the
incremental pore volume as a function of
the pore throat size accessing the pores.
The pore volume has a multi-modal
distribution.



 
FIGURE 7.13.4 Incremental pore volume

distribution.
 



PROBLEM 7.14

 
7.14a
FIGURE 7.14.1 shows the graphs of Sw
and Snw versus pore throat size.



 
7.14b
The pore volume distribution is given by



 
FIGURE 7.14.2 shows the pore volume
distribution. The pore volume has a bi-
modal distribution.



 
7.14c
The pore throat size distribution is given



by

 
FIGURE 7.14.3 shows a comparison of
the pore volume distribution and the
pore throat size distribution. The pore
volume distribution is bi-modal whereas
the pore throat size distribution is uni-
modal and skewed to the right.



 
7.14d
The permeability of the core is given by



 
Using Purcell’s average lithology factor
of 0.216 gives the permeability as

 
Alternatively, a better lithology factor

can be estimated for the core using the



following correlation between tortuosity
and porosity:

 
This method gives a better estimate of



permeability than Purcell’s method.



PROBLEM 7.15

 
Sw=0.32
S0 = 0.60
Sg=0.08
Let

f (x) = the probability density
function for the pore diameter
distribution
N = the total number of pores
L = the length of the porous medium

 
Water, which is the wetting phase,

will occupy the smallest pores. Gas,
which is the most nonwetting phase, will
occupy the largest pores. The balance of



the pores will be occupied by oil.

 

 

 
For the triangular probability
distribution,



 

 

 



 
Performing the integrations in Eq.
(7.15.6) gives

 
The fraction of the pore volume
occupied by pores with diameter less
than 60 μm is 2.521 × 106/(2.521 × 106

+ 7.521 × 106) = 0.2511. This is less



than the water saturation. Therefore, xw
>60 μm and f2(x) is needed in the
integration for water saturation.

 
Eq.(7.15.7) can be solved to obtain xw =
63.76 µm.

Proceeding in a similar manner, the
gas saturation is given by

 
Eq.(7.15.8) can be solved to obtain x0 =
97.54 µm. The water, oil, and gas will



occupy the following pore size ranges:

Water: 10 μm ≤ x ≤ 63.76 μm
Oil: 63.76 μm ≤ x ≤ 97.54 μm
Gas: 97.54 μm ≤ x ≤ 110 μm

 



PROBLEM 7.16

 





 

 

 
Applying the unit conversions to Eq.
(7.16.2) gives the capillary pressure in
psi as

 



 

 

 
FIGURE 7.16.1 shows the graph of
(Pc1Swav) versus Pc1. The regression
equation is

 
In the first method, Sw1 is calculated by



substituting Eq.(7.16.7) into (7.16.5).

 
FIGURE 7.16.2 shows the graph of Swav
versus Pc1. The regression equation is



 
In the second method, Sw1 is calculated
by substituting Eq.(7.16.8) into (7.16.6).



 
FIGURE 7.16.3 shows the capillary
pressure curves from the two methods.
The first method gives a smoother curve



than the second method.

 



PROBLEM 7.17

 
7.17a

 

 
FIGURE 7.17.1 shows the capillary



pressure curve from the porous plate
experiment.

 



7.17b

Pd = 0.387 psi
 
7.17c

Swirr=0.299
 
7.17d
FIGURE 7.17.2 shows the Brooks-
Corey model for the capillary pressure
curve. The model equation is

 
From the model equation,



 



 
FIGURE 7.17.3 shows a comparison

of the Brooks-Corey model and the



experimental capillary pressure data.
The fit is good.



 
7.17e



The van Genuchten model equation is

 
FIGURE 7.17.4 shows a comparison of
the van Genuchten model and the
experimental capillary pressure data.
The fit is very good.



 



PROBLEM 7.18

 
7.18a

 
At the sample point,



 
The expected water saturation is
computed by linear interpolation as

 
7.18b
Assuming a constant porosity, the
average water saturation is given by

 
The integration can be performed using
the trapezoidal rule as shown in TABLE



7.18.1.
TABLE 7.18.1  Calculation of Average
Water Saturation.

 



 



PROBLEM 7.19

 

 
Height of sample above the water-oil
contact is given by

 



 

Substituting the numerical values into
Eq.(7.19.2) gives

 
Substituting the numerical values into
Eq.(7.19.1) gives

 



PROBLEM 7.20

 

 

 

 
Substituting Eqs.(7.20.2) and (7.20.3)
into (7.20.1) gives



 



PROBLEM 7.21

 
7.21a
The Leverett J-function in consistent
units is given by

 
Applying the required unit conversions
to make J dimensionless leads to



 
In the laboratory,

k = 150 mD
k = 0.22
σcosθ = 72 dynes/cm

 
FIGURE 7.21.1 shows the Leverett J-
function.



 
7.21b
At reservoir conditions,



 
FIGURE 7.21.2 shows a comparison of
the lab and reservoir conditions
capillary pressure curves.



 



7.21c
At reservoir conditions, the capillary
pressure at the top of the transition zone
is

 
The height of the top of the transition
zone above the free water level is given
by

 
The displacement pressure is

 
The height of the top of the transition
zone above the water oil contact is given



by

 



PROBLEM 7.22

 
If Cores A and B have the same pore
structure, then they must have the same
Leverett J-function. The Leverett J-
function in consistent units is given by

 
Applying the required unit conversions
to make J-dimensionless leads to



 

 



FIGURE 7.22.1 shows the capillary
pressure curves for Cores A and B.
FIGURE 7.22.2 compares their Leverett
J-functions. They are practically
identical. Therefore, the two cores have
the same pore structure and are likely to
have come from the same reservoir.



 



 



PROBLEM 7.23

 
7.23a
FIGURE 7.23.1 shows the three
capillary pressure curves. It is evident
tha t PcA belongs to the bottom layer,
Layer 3, with k = 900 mD; PcB belongs
to the middle layer, Layer 2, with k = 50
mD; and PcC belongs to the top layer,
Layer 1, with k = 10 mD.



 
7.23b
This problem can be solved by two
methods. In the first method, the Pc



curves are converted into heights above
the free water level and plotted together.
The layers are then imposed on this plot
as shown in FIGURE 7.23.2. The water
saturation in Layer 1 is given by PcC,
that of Layer 2 by PcB,





 
FIGURE 7.23.2 Initial water saturation
distribution for the layered reservoir.
and that of Layer 3 by PcA. The height
above the free water level is given by

 
In the second method, each Pc is fitted

to the Brooks-Corey model and the
model equation is used to calculate the
water saturation for each layer. The
Brooks-Corey models are shown in
FIGURES 7.23.3 through 7.23.5. In
these figures, S* is an adjustable curve
fitting parameter. The model equations
for Layers 1, 2, and 3 are as follows:



 

 

 
The resulting initial water saturation

distribution is shown in FIGURE
7.23.6.



 



 



 





 
7.23c

 

 
FIGURE 7.23.7 shows the water and oil
pressures resulting from Eqs.(7.23.5)
and (7.23.6).



 



PROBLEM 7.24

 

 
7.24a

 
7.24b
At Sw = 0.22, Pcdrainage = 26 psi.



 
The maximum depth of water-free
production is given by

 
7.24c

 
The minimum depth above which only
water will be produced is given by



 
7.24d

 



PROBLEM 7.25

 

 
7.25a
The critical capillary number for
displacing the oil from the larger tube
(and trapping some oil in the smaller
tube) is given by



 
Substituting the numerical values into
Eq.(7.25.1) gives

 
The actual capillary number for the
displacement is given by

 
Substituting the numerical values into
Eq.(7.25.2) gives



 
S i nc e Ncactualceritical, oil will be
trapped in the larger tube.

 
Substituting the numerical values into
Eq.(7.25.3) gives



 
Since v2/v1 is less than 1.0, the smaller
tube will flood out first and oil will be
trapped in the larger tube as predicted.

7.25b
The condition for displacing the oil from
the larger tube and trapping some oil in
the smaller tube is

 

 
Solving Eq.(7.25.5) for q gives



 
Substituting the numerical values into
Eq.(7.25.6) gives

 
7.25c

 



 
Substituting the numerical values into
Eq.(7.25.8) gives

 
Substituting the numerical values into
Eq.(7.25.7) gives



 
There should be no concern about the
negative pressure change because the
flow is dominated by capillarity which
can proceed against a higher pressure
because of the curvature of the meniscus.





 





 
FIGURE 7.25.1 shows the pressure
profiles in the two tubes and visualizes
the origin of the negative pressure
change from A to B.



 
7.25d



 
From our knowledge of capillarity, there
should be no surprise that the capillary
force tends to dominate the viscous force
for displacements at the pore scale.

7.25e
FIGURE 7.25.2 shows the variation of
the critical capillary number with r1/r2.
It is clear from the FIGURE that as r1
approaches r2, it becomes easier to
displace the nonwetting phase from the



larger tube as the critical capillary
number decreases toward the limiting
value of 0.25 for tubes of the same size.



 



PROBLEM 7.26

 
7.26a
The pressure gradient required to
mobilize the oil blob is given by

 

 



r1 = 50 μm = 50 × 10-4 cm for
medium sand.
r2 = 10 μm = 10 × 10-4 cm for very
fine sand.

 
For the ordinary waterflood in the
medium sand, the mobilization
requirement is

 
For very fine sand,



 
Yes. I am surprised by the extremely

high pressure gradient requirements for
mobilization of trapped residual oil in
an ordinary waterflood.

7.26b
The pressure gradient generated in the
normal waterflood is obtained from
Darcy’s law as



 

 
These pressure gradients are not
sufficient to mobilize residual oil in
these sands.



7.26c
σ = 0.01 dyne/cm
θ = 0°

For the enhanced waterflood in the
medium sand, the mobilization
requirement is

 
The pressure gradient requirement is
only 0.057 psi/ft. The waterflood can
generate 0.079 psi/ft. This is sufficient



to mobilize residual oil in the medium
sand.
For very fine sand,

 
The pressure gradient requirement is
1.415 psi/ft. The waterflood can
generate 0.316 psi/ft. This is not
sufficient to mobilize residual oil in the
very fine sand. Therefore, the
“enhanced” waterflood in this case will
be unsuccessful.



7.26d
The requirement for mobilization is
given by

 
The critical capillary number is deduced
from Eq.(7.26.3) as

 
The actual capillary number for the
flood is

 



 
For medium sand,

 
The actual capillary number in this case



is greater than the critical capillary
number. The conclusion from these
numbers is that residual oil will be
mobilized in the medium sand in the
enhanced waterflood.

For very fine sand,

 



The actual capillary number in this case
is less than the critical capillary number.
The conclusion from these numbers is
that residual oil will not be mobilized in
the very fine sand in the “enhanced”
waterflood.



PROBLEM 7.27

 
7.27a
Capillary number is used to characterize
the ability to mobilize residual oil.
Capillary number is given by

 

 
For the ordinary waterflood,



 
From the capillary desaturation curve,
Sor=0.35, which is consistent with the
given residual oil saturation for the
waterflood. For the enhanced waterflood
using the chemical,

 
From the capillary desaturation curve,

 



Therefore, the chemical will mobilize
residual oil, reducing the residual oil
saturation from 35% to 14.5%.

7.27b
The additional oil recovery to be
expected is given by

 



 



PROBLEM 7.28

 
FIGURE 7.28.1 shows the sketches for
the capillary pressure curves for Cases
B through F compared to Case A. The
magnitude of the capillary pressure
curve for a porous medium is inversely
proportional to the pore size. The
smaller the pore size, the larger is the
capillary pressure. The shape of the
capillary pressure depends on the
sorting and pore size distribution. The
sketches in Figure 2.28.1 were made to
reflect these factors.





 

Case B:
PcB > PcA because B has smaller pore
size than A as a result of the tighter
packing. The shape of PcB is the same as
because A and B are well sorted.

Case C:
PcC > PcA because C has smaller grain
size than A. The shape of PcC is the
same as PcC because A and C are well
sorted.

Case D:



PcC PcA because D has smaller pore size
than A as a result of poor sorting. The
shape of PcD is more S-shaped than PcA
because D is poorly sorted whereas A is
well sorted.

Case E:
PcE > PcA because E has smaller pore
size than A as a result of cementation.
The shape of PcE is more S-shaped than
PcA because the cementation in E can
result in a wider pore size distribution
than in A, which has a uniform pore size
distribution.

Case F:



PcF > PcA because F has smaller pore
size than A as a result of compaction.
The shape of PcD is more S-shaped than
PcA because the compaction in F can
result in a wider pore size distribution
than in A, which has a uniform pore size
distribution.



CHAPTER 8 SOLUTIONS

 



PROBLEM 8.1

 

 
8.1a
FIGURE 8.1.1 shows the relative
permeability curves.



 

8.1b
FIGURE 8.1.2 shows the approximate
fractional flow curve and its derivative,



together with the Welge tangent
construction.

 



8.1c
From the Welge tangent construction,

Swf=0.527
 

Swov= 0.597
 

8.1d
FIGURE 8.1.3 shows the true

fractional flow curve and its derivative.



 

8.1e
The end-point mobility ratio is given by



 

8.1f
From the tangent line,

 
Before breakthrough, the distance

traveled by the front is given by



 
FIGURE 8.1.4 shows the water

saturation profiles at tD = 0.20, 0.30,
and 1.0.



 
8.1g
At breakthrough, xD = 1 and Eq.(8.1.1)
gives



 
8.1h
The breakthrough oil recovery as a
fraction of the initial oil in place is
given by

 

8.1i
After breakthrough,



 

 

 
For example, for Sw2= 0.580,

 



 
FIGURE 8.1.5 shows the oil recovery
curve.



 
8.1j
After breakthrough, the oil water ratio is
given by



 
For example, for Sw2 = 0.580,

 
FIGURE 8.1.6 shows the graph of the
water-oil ratio versus oil recovery.
There is a dramatic increase in the
water-oil ratio soon after breakthrogh.



 



PROBLEM 8.2

 

 
Before breakthrough, the distance
traveled by the front is given by

 



 
The waterflood performance indices at
the higher mobility ratio of 60 are worse
than at the lower mobility ratio of 3. The
frontal saturation is lower, the water
breakthrough is sooner, the breakthrough
oil recovery is lower as is the oil
recovery after breakthrough. These
differences are apparent in the
comparative plots in FIGURES 8.2.1,
8.2.2, and 8.2.3.



8.2a
Figure 8.2.1 shows a comparison of

the approximate fractional flow curves
at the two mobility ratios. Note the shift
in the curve to the left as the mobility
ratio is increased from 3 to 60. The
result of this shift is a lower Swf and a
lower Swav from the tangent construction.



 

8.2b



Figure 8.2.2 compares the water
saturation profiles at tD = 0.20. Note the
lower Swf at the mobility ratio of 60 than
at the mobility ratio of 3 and the
tendency toward earlier water
breakthrough.



 
8.2c
Figure 8.2.3 compares the oil recovery
curves for the two waterfloods. The



superiority of the waterflood
performance at the lower mobility ratio
is evident.



 
The oil viscosity in this waterflood is

only 100 cp and there is a marked
deterioration in the waterflood
performance. The viscosities of heavy
oils are considerably higher than 100 cp,
say 500 to 1000 cp. At such high oil
viscosities, the waterflood will be
essentially doomed to failure.



PROBLEM 8.3

 

 
Before breakthrough, the distance
traveled by the front is given by

 



 
The waterflood performance indices

at this favorable mobility ratio of 0.03
are superior to those at the unfavorable
mobility ratios of 3 and 60. The frontal
saturation is higher, the water
breakthrough is delayed, the
breakthrough oil recovery is higher, and
the waterflood is over at water
breakthrough, with considerable savings
in time and money. These differences are
apparent in the comparative plots in



figures 8.3.1, 8.3.2, and 8.3.3.
8.3a
Figure 8.3.1 shows a comparison of

the approximate fractional flow curves
at the three mobility ratios. Note the shift
in the curve to the right as the mobility
ratio is reduced from 3 to 0.03. The
result of this shift is a higher Swf and a
h i g h e r Swav from the tangent
construction.



 



8.3b
Figure 8.3.2 compares the water
saturation profiles at tD = 0.20 for the
three waterfloods. Note the higwer Swf
at the mobility ratio of 0.03 than at the
other two mobility ratios. At this
mobility ratio, Swf is essentially equal to
(1-Sor) and the displacement is piston-
like, albeit with a leaky piston since
residual oil is left behind.



 



8.3c
Figure 8.2.3 compares the oil recovery
curves for the three waterfloods. The
superiority of the waterflood
performance at the favorable mobility
ratio of 0.03 is evident. The water
breakthrough is delayed and the
waterflood is over at water breakthrough
as all the oil that can be recovered has
been recovered with considerable
savings in project time. Of course, you
know that time is money.



 
The performance of this waterflood at

the favorable mobility ratio of 0.03



clearly demonstrates why mobility
control is highly desirable in any
displacement. The reason for the use of
polymers to increase the viscosity of the
injected fluid is to achieve a favorable
mobility ratio for the displacement and
thereby improve the oil recovery and
shorten the project life.



PROBLEM 8.4

 

 



8.4a
FIGURE 8.4.1 shows the curve fit of

analytical models to the sparse
experimental relative permeability
curves. The model fits are good. The
analytical equations are

 
Where

 



 
These analytical models are used in
subsequent calculations.

FIGURE 8.4.2 shows the



approximate fractional flow curve with
the Welge tangent construction.

 



 
Before breakthrough, the distance
traveled by the front is given by



 
FIGURE 8.4.3 shows the water
saturation profile at 150 days of
injection.



 
8.4b



 
8.4c

 
Alternatively,

 
8.4d



 

 
8.4e



 
8.4f

 



PROBLEM 8.5

 
Swirr=0.20
Sor=0.70
Swf=0.40

8.5a

 

For 0.20 Sw 0.40
 



 

For 0.40 Sw 0.70
 

 
FIGURE 8.5.1 shows the saturation
distribution at tD = 0.20.



 
8.5b

 



8.5c

 
8.5d
The time when the second front arrives
at the outlet is given by

 
FIGURE 8.5.2 shows the recovery
curve.



 

8.5e
The physical system is a favorable
mobility ratio displacement in a two-



layer heterogeneous reservoir in which
the permeability of the bottom layer is
greater than that of the top layer.

8.5f
If we neglect the effect of capillary
pressure,

 
For 0xD 0.20, Darcy’s law gives

 
For 0.20 D 0.70, Darcy’s law gives



 
For 0.70D1, Darcy’s law gives

 

 
where C1, C2, and C3 are constants. Eq.
(8.5.5) can be integrated to obtain the
pressure profile in the third segment,
using the boundary condition of Eq.
(8.5.6). This profile is used to determine
the boundary condition for the second
segment. Using this boundary condition,
Eq.(8.5.4) is then integrated to obtain the



pressure profile in the second segment.
This profile is used to calculate the
boundary condition for the first segment.
Eq.(8.5.3) can be integrated to obtain the
pressure profile in the first segment.
Because the mobility ratio is favorable,
C1C2C3. FIGURE 8.5.3 shows a
qualitative sketch of the pressure profile
for C1 = 5, C2= 3, C3= 1.



 



PROBLEM 8.6

 
L = 5.0 cm
d = 3.0 cm
φ = 0.15
ρs = 2.666 g/cm3

k = 150 mD
μo= 10 cp
ρo=0.85 g/cm3

μ1 = 1 cp
ρw=1.05 g/cm3

δP = 48.13 psi



 

 
Application of unit conversions to Eq.
(8.6.1) gives

 

 



For example,



 
Figure 8.6.1 shows the relative
permeability curves from the steady state
experiment.



 



PROBLEM 8.7

 
q = 30 cm3/hr
L = 54.6 cm
d = 4.8 cm
A = 18.0956 cm2

φ = 0.3034
K = 3.37 D
μ0 = 108.37 cp
μw =1.01 cp
p0 = 0.959 g/cm3

pw = 0.996 g/cm3

σ = 26.7 dynes/cm



 
8.7a
FIGURE 8.7.1 shows the raw
experimental data.



 

8.7b
FIGURES 8.7.2 and 8.7.3 show the



curve fits of NpD versus 

 



 
8.7c
The curve fit equations are



 
These equations can be differentiated
analytically to obtain



 
FIGURE 8.7.4 shows the calculated
relative permeability curves.



 
8.7d
FIGURE 8.7.5 shows the experimental
data fitted to analytical relative
permeability models. The fit is good.



The analytical models are

 
where

 



 

8.7e
The true fractional flow curve measured



in the experiment is shown in FIGURE
8.7.6.

 
8.7f



The unsteady state experiment lasted
84.65 hours.



PROBLEM 8.8

 
qw = 200 cm3/hr
qo = 50 cm3/hr
μw = 1 cp
μo = 10 cp

 
Core 1



 
Core 2

 



8.8a
At fw = 0.80
Sw1 = 0.31
Kro1 = 0.26
Sw2 = 0.558
Kro2 = 0.27

8.8b
Darcy’s law for multiphase flow gives

 
Application of unit conversions to Eq.
(8.8.1) gives



 

 



 
The gauge pressures are



 
8.8c
To enable the pressure gauges to sense
the oil pressure and not the water
pressure, the pressure taps should be
instrumented with oil-wet semi-
permeable membranes that are saturated
with oil and are in contact with the core.
The stems of the pressure gauges also
should be filled with oil.



8.8d
Core 1 is oil wet for the following
reasons:

• The end-point relative
permeability to oil is less than
the end-point relative
permeability to water. This is an
indication that the core is
preferentially oil wet. See
Section 8.5.3 for explanation.

• The intersection of the oil and
water relative permeability
curves occurs at Sw = 0.37 0.50
(Craig’s rule of thumb).

• Swjrr =0.15 is low and falls within
Craig’s rule of thumb for oil-wet
reservoirs.

Core 2 is water wet for the following



reasons:
• The end-point relative

permeability to water is less than
the-end point relative
permeability to oil. This is an
indication that the core is
preferentially water wet. See
Section 8.5.3 for explanation.

• The intersection of the oil and
water relative permeability
curves occurs at Sw = 0.51> 0.50
(Craig’s rule of thumb).

•Swirr = 0.35 is high and falls
within Craig’s rule-of-thumb for
water-wet reservoirs.



PROBLEM 8.9

 
8.9a
TABLE 8.9.1  shows the dimensional
matrix.

 
8.9b
The rank of the dimensional matrix is 3
because the determinant of the following
3×3 submatrix is not zero.



 
Number of independent dimensionless
group = N – r = 5.

8.9c
The dimensional matrix can be reduced
to the following row echelon form by
row operations:



 
The solution to the dimensional analysis
problem is

 
The solution in matrix form is



 
The initial set of independent
dimensionless groups is



 
We need to transform the initial set of
dimensionless groups into more
meaningful and familiar dimensionless
groups.
Choose x4 = 1



 
Choose x5 = 1, x7 = –1

 
Choose x6 = 1

 
Choose x4 = 1, x7 =1

 
Choose x8 =1



 
Thus,

 
Similarly,

 



PROBLEM 8.10

 
Γ: Pore structure or the morphology of
the porous medium. Does it affect the
relative permeability curves obtained by
the steady state method? Yes. How? See
Section 8.5.7.

θ: Wettability.
Does it affect the relative permeability
curves obtained by the steady state
method? Yes. How? See Section 8.5.3.

: Capillary number.



Does it affect the relative permeability
curves obtained by the steady state
method? Yes, depending on its
magnitude. How? Capillary number is a
measure of the ability to mobilize
residual phases in a porous medium. If
the capillary number is high enough,
residual phases will be reduced thereby
increasing the range of wetting and
nonwetting phase saturations for which
the relative permeability curves are
nonzero. However, if the capillary
number is low, as in a normal
waterflood, it will have no effect on the
relative permeability curves.



: Ratio of inertia forces in the
nonwetting and wetting phases.
Does it affect the relative permeability
curves obtained by the steady state
method? No. Why? For the slow flow in
porous media, the inertia force is usually
negligible. This is the underlying
premise for Darcy’s law normally used
to describe flow in porous media.

: Ratio of viscous forces in the
nonwetting and wetting phases.
Does it affect the relative permeability
curves obtained by the steady state
method? No. Why? In the steady state



experiment, there is no displacement of
one fluid by another as the two fluids are
mixed and co-injected. The instability
normally caused by adverse viscosity
ratio in a displacement is absent. See
Section 8.5.5. It should be noted that this
dimensionless group will affect the
relative permeability curves obtained by
the unsteady state method.

: Reynolds number in the wetting
phase. Ratio of inertia to viscous forces
in the wetting phase.

Does it affect the relative
permeability curves obtained by the
steady state method? No. Why? For the



slow flow in porous media, the inertia
force is usually negligible.

: Eötvös number. Ratio of gravity
and interfacial or capillary forces at the
pore scale.

Does it affect the relative
permeability curves obtained by the
steady state method? No. Why? For the
slow flow in porous media, the inertia
force is usually negligible. Because of
the small pore dimension, the capillary
force far exceeds the gravity force.
Therefore, this number is negligibly
small and will have no effect on the
relative permeability curves. To see
how small this number can be, let us
calculate it for a typical steady state



relative permeability experiment.

 



PROBLEM 8.11

 
8.11a
FIGURE 8.11.1 shows the polymer
saturation profiles to be expected before
breakthrough.



 
8.11b
FIGURE 8.11.2 shows the expected oil



recovery curve.

 
8.11c



The colleague’s suggestion is a bad idea
because the data from a favorable
mobility ratio displacement are not
suitable for calculating the relative
permeability curves by the JBN method.
There are two reasons for this problem.

1. The saturation window for the
unsteady state method is 

. For the polymerflood, 

.
Therefore, the saturation window
is lost.

2. Two of the key equations for the
unsteady state method are



 

 
For the polymerflood, after
breakthrough,

 
There are no data available to calculate
the ratio of the relative permeability
curves after breakthrough, which is the
basis for the unsteady state method.



PROBLEM 8.12

 
8.12a
If the core is oriented horizontally, the
injected gas could migrate to the top due
to gravity segregation. If that happens,
the result of the measurement will be
wrong.

8.12b
To overcome the problem of gravity
segregation, the core should be oriented
vertically with the gas injected at the top
and the produced fluids drained from the
bottom.



8.12c
See Figure 8.2 in Volume 2 for typical
drainage relative permeability curves.



PROBLEM 8.13

 
8.13a

USBM Wettability Index = log(A1/
A2)

 
where

A1 = the area under the capillary
pressure curve for oil displacing
water

A2 = the area under the capillary
pressure curve for water
displacing oil

From the given centrifuge data, A2»A1.
Therefore, log(A1/A2)0. This indicates



that the medium is preferentially oil wet.
One can estimate a numerical value for
the USBM wettability index as follows.
From the centrifuge data, A2≈ 1.5 A1.
Therefore, log(A1 / A2) ≈ log(1 / 2) = –
0.18.

8.13b
The relative permeability curves for a
preferentially oil wet medium typically
shows a high-end point value for water
which is comparable to or even higher
than the end-point value for oil. Also,
based on Craig’s rule of thumb, the
relative permeability curves for an oil-
wet medium usually intersect at a water
saturation less than 0.50. These



considerations are the basis for the
sketch of the relative permeability
curves shown in FIGURE 8.13.1.





 



PROBLEM 8.14

 
8.14a
Darcy’s law gives

 

 
where P is the pressure at the front.
Also,

 
Substituting Eqs.(8.14.1) and (8.14.2)



into (8.14.3) gives

 
From Eq.(8.14.4)

 
The interstitial velocity of the front is
given by

 
Eq.(8.14.6) can be rearranged as



 
where

 
In Darcy units,

 

 
Substituting Eqs.(8.14.9) and (8.14.10)
into (8.14.7) gives



 
Eq.(8.14.11) is of the form

 
where

 
8.14b
Separate variables and integrate Eq.
(8.14.12) to obtain



 
Application of the initial condition, x =
0 at t = 0 gives C = 0. Eq.(8.14.14)
becomes

 
When the water arrives at the oil tank, x
= L, and Eq.(8.14.15) becomes

 
The time the front arrives at the oil tank
is obtained from Eq.(8.14.16) as



 





 



PROBLEM 8.15

 
8.15a
Darcy’s law gives

 

 
Capillary pressure constraint is

 
For incompressible fluids, for
countercurrent flow,



 

 
Eqs.(8.15.1) through (8.15.5) can be
combined to obtain the required partial
differential equation as

 
where

 
8.15b



The initial condition is

 
The boundary conditions are

 
At x = L, qw = 0. This condition leads to

 
8.15c
Let

 



 

 
Subs ti tut i ng Eqs.(8.15.11) through
(8.15.13) into (8.15.6) gives

 
Let the dimensionless time for capillary
imbibition be defined as



 
Substituting Eq.(8.15.15) into (8.15.14)
gives

 
The initial condition becomes

 
The boundary conditions become

 



 
8.15d
FIGURE 8.15.1 shows the sketch of the
expected saturation profiles.

 



PROBLEM 8.16

 
8.16a
Water will be spontaneously imbibed
into the core and oil will be expelled
from the core in a countercurrent fashion
as time passes. Eventually, the
imbibition will stop and some residual
oil saturation will be left in the core.

8.16b
Darcy’s law gives

 



 
Capillary pressure constraint is

 
For incompressible fluids, for
countercurrent flow,

 

 
Eqs.(8.16.1) through (8.16.5) can be
combined to obtain the required partial
differential equation as



 
where

 
8.16c
The initial condition is

 
The boundary conditions are

 



At x = L, qw = 0. This condition leads to

 
8.16d
Let

 

 

 
Subs ti tut i ng Eqs.(8.16.11) through



(8.16.13) into (8.16.6) gives

 
Let the dimensionless time for capillary
imbibition be defined as

 
Substituting Eq.(8.16.15) into (8.16.14)
gives



 
Let

 
Substituting Eq.(8.16.17) into (8.16.17)
gives

 
The initial condition becomes



 
The boundary conditions become

 

 
8.16e
FIGURE 8.16.1 shows a sketch of the
expected water saturation profiles.



 
8.16f



FIGURE 8.16.2 shows a sketch of the
expected oil recovery curve.

 



PROBLEM 8.17

 
8.17a
TABLE 8.17.1  shows the dimensional
matrix.

 
8.17b
The rank of the dimensional matrix is 3
because the determinant of the following
3×3 submatrix is not zero.



 
Number of independent dimensionless
group = N – r = 3.

8.17c
The dimensional matrix can be reduced
to the following row echelon form by
row operations:



 
The solution to the dimensional analysis
problem is

 
The solution in matrix form is



 
8.17d
The initial set of independent
dimensionless groups is



 
8.17e
The proposed dimensionless time for
capillary imbibition is

 
Substituting the numerical value for
scosθ into Eq.(8.17.1) along with the
appropriate unit conversions gives



 
We need to replot the recovery data
versus the proposed dimensionless time.
If the hypothesis is correct, the recovery
data from the three experiments will plot
as one curve.





 

 
FIGURE 8.17.1 shows the recovery
data for the three experiments plotted
versus the proposed dimensionless time
for capillary imbibition. They plot as
one curve. The hypothesis is verified.



 



PROBLEM 8.18

 
L = 1 ft = 30.48 cm
d = 2 in = (2/12)x30.48 = 5.08 cm
A = π(d/2)2 = πp(5.08/2)2= 20.2683 cm2

k = 1 D
Ø = 0.20
σ = 30 dynes/cm
ρw =1 g/cm3

ρo =0.9 g/cm3

μw = 1 cp
μo = 10 cp
Swirr=0–25
SOr=0.15
Kwr = 0.05



Kor=0.90
8.18a

 

 
Substituting the numerical values into
Eq.(8.18.1) gives

 
8.18b

 



 

 

 
Eq.(8.18.4) can be solved iteratively to
obtain Sw = 0.7076.
8.18c
The partial differential equation for the
wetting phase is given by



 
The boundary condition is

 
We consider the steady state condition
after injecting oil for a long time such
that no more water is produced. Only oil
is flowing in the core. Thus at steady
state, qw = 0, and the partial differential
equation becomes the following ordinary
differential equation:



 
After substituting the expressions for kro,
Pc, and the numerical values for the
various parameters, Eq.(8.18.6)
becomes

 
After separating variables and
r ea r r angi ng, Eq.(8.18.8) can be
integrated to give



 
w her e x0 is an integration constant.
Application of the boundary condition
gives

 
The water saturation profile is then
given by

 
The integral on the right side of Eq.



(8.18.11) can be performed numerically
for various values of Sw to calculate the
steady state water saturation profile
shown in FIGURE 8.18.1, plotted in
dimensionless form.



 



PROBLEM 8.19

 
8.19a
FIGURE 8.19.1 shows the water
saturation profiles together with the
porosity along the sandpack. Clearly, the
variation of the porosity along the
sandpack is an indication that the
sandpack is not homogeneous.

It should be observed that the
sandpack has its lowest porosity and by
inference its lowest permeability in the
vicinity of xD = 0.45. From our
knowledge of capillarity, it is not
surprising that this section of the
sandpack has retained more water as the
flood progresses than the neighboring



sections, resulting in the anomalously
high water saturation at late times.

 
8.19b



FIGURE 8.19.2 shows the similarity
transformation in the spirit of Figure
8.11. All the data essentially plot as one
curve thereby providing the
experimental verification of the theory of
immiscible displacement in porous
media.



 
8.19c
The true fractional flow curve is given
by



 

 
w he r e C is an integration constant.
FIGURE 8.19.3 shows the true
fractional flow curve computed for this
flood and tabulated in TABLE 8.19.1. It
should be observed that the true
fractional flow curve at low water
saturations does not have the S shape of
the approximate fractional flow curve. It
is also nonlinear. The Welge tangent line
is only an approximation of this curve,
which is satisfactory in many cases. For
this flood, Sor = 0.21.



 



 





 
8.4d
FIGURE 8.19.4 compares the simulated
and experimental water saturation
profiles. The agreement is good. The
numerical simulator is a finite difference
model for incompressible fluids
developed by the author and coded in
Excel/VBA. The model assumes a
homogeneous porous medium.
Therefore, it cannot capture the wiggles
in the experimental saturation profiles
caused by heterogeneity of the sandpack.
The numerical model does capture the
experimental inlet boundary condition in
which the water saturation is observed
to buildup toward (1–Sor) in contrast to
Buckley-Leverett model in with the inlet



water saturation is fixed at (1–Sor).



 
FIGURE 8.19.5 shows a comparison

of the simulated and the experimental
oil-recovery curves. The agreement is
good.



 
FIGURE 8.19.6 shows the relative
permeability curves that gave the best



match. The relative permeability models
are

 

 
where Se is given by

 



 
FIGURE 8.19.7 shows the oil

pressure profiles at various
dimensionless times. The profiles are in



good agreement with those typically
observed in corefloods in which the
core holder is instrumented with
pressure transducers to measure the
pressures along the core. FIGURE
8.19.8, from the author’s archives,
shows such experimental pressure
profiles. In this experiment, the sandpack
was 216.8 cm long and the core holder
was instrumented with 12 pressure
transducers spaced equally from the inlet
to the outlet. The simulated pressure
profiles of Figure 8.19.7 are in good
qualitative agreement with experimental
profiles of Figure 8.19.8.



 



 
FIGURE 8.19.9 shows the true and

approximate fractional flow curves
along with the Welge tangent line. In this
case, the Welge tangent line is a
reasonable approximation of the true



fractional flow curve at low water
saturations.



 



PROBLEM 8.20

 
8.20a
FIGURE 8.20.1 shows the water
saturation profiles together with the
porosity along the sandpack for the
waterflood in the oil-wet sandpack.
Again, the variation of the porosity along
the sandpack is an indication that the
sandpack is not homogeneous.



 
8.20b
FIGURE 8.20.2 shows a comparison of
the similarity transformations for the



waterflood in the water-wet and oil-wet
sandpacks. It can be clearly seen that the
waterflood efficiency in the water-wet
sandpack is higher than that in the oil-
wet sandpack. At low values of xD/tD,
which corresponds to large values of tD,
each waterflood tends toward a residual
oil saturation, with the residual oil
saturation in the water-wet system being
lower than that in the oil-wet system.



 
8.20c
FIGURE 8.20.3 compares the true



fractional flow curves for the two
waterfloods. Clearly, the waterflood in
the water-wet sandpack is more efficient
than in the oil-wet sandpack. The
residual oil saturation in the oil-wet
system is 40% compared to 21% in the
water-wet system.



 



8.20d
FIGURE 8.20.4 compares the simulated
and experimental water saturation
profiles. The agreement is good.



 
FIGURE 8.20.5 shows a comparison

of the simulated and the experimental oil



recovery curves. The agreement is good.

 



FIGURE 8.20.6 compares the
relative permeability curves that gave
the best match for each waterflood. The
relative permeability models for the oil-
wet is system are

 

 
where Se is given by

 
As expected the relative permeability
curves for the oil-wet sandpack are
shifted to the left of the curves for the



water-wet sandpack. The end-point
relative permeability to water is higher
in the oil-wet system than in the water-
wet system. The relative permeability
curves for the oil-wet system intersect at
Swn less than 50%, an indication that the
relative permeability curves are
consistent with Craig’s rule of thumb.



 
FIGURE 8.20.7 shows the true and

approximate fractional flow curves
along with the Welge tangent line. In this
case, the true fractional flow curve, the



approximate fractional flow curve, and
the Welge tangent line are essentially the
same. This is generally the case in
inefficient immiscible displacements.



 



PROBLEM 8.21

 
8.21a
FIGURE 8.21.1 shows the oil saturation
profiles together with the porosity along
the sandpack for the favorable mobility
immiscible displacement. The
displacement is essentially piston-like
with an average irreducible water
saturation of 15% left behind.



 
8.21b
FIGURE 8.21.2 shows the water-
recovery curve. The water recovery is
complete at oil breakthrough.



 
8.21c
FIGURE 8.21.3 shows the similarity



transformation for the favorable mobility
ratio displacement. All the data plot as
one curve that is characteristic of the
displacement.



 
8.21d



FIGURE 8.21.4 shows the true
fractional flow curve for the favorable
mobility ratio displacement.



 



8.21e
The relative permeability curves are

 

 
where Se is given by

 
FIGURE 8.21.5 shows the following
graphs: (1) the relative permeability
curves versus oil saturation, (2) the
approximate fractional flow curve for
oil versus oil saturation, (3) the true
fractional flow curve for oil versus oil



saturation, and (4) the Welge tangent
line. In this case, the Welge tangent line
is essentially the same as the true
fractional flow curve. This is generally
true for favorable mobility ratio
displacements.



 



APPENDIX B SOLUTIONS

 



PROJECT 1

 
1a, b, c
FIGURE B1.1 shows the GR and
caliper logs in the first track, the
shallow and deep resistivity logs in the
second track, and the neutron and density
logs in the third track.





 
A pattern is clearly visible in the third
track in which the density log swings to
the left of the neutron in sands and
swings to the right of the neutron in
shales. This pattern is helpful in
distinguishing sands from shales.
1d
The shale volume is calculated from the
GR as

 
with GRsa = 60 API units and GRsh =
110 API units. FIGURE b1.2 shows the
log of Vsh in the third track. The low
values of Vsh correspond to sands and



the high values correspond to shales.
The pattern of Vsh indicates that the
sands can best be described as shaly
sands.





 
1e
The density porosity is calculated from
the bulk density as

 
with ρm = 2.66 g/cc and ρf = 0.80 g/cc.
FIGURE b1.3 shows a comparison of
the density and neutron porosities in the
third track. A clear pattern is visible.
The density and neutron porosities agree
in sands but differ in shales with the
neutron porosity being higher in shales
than in sands as expected.





 
1f
The water saturation was calculated
using Archie’s equations assuming clean
sands:

 

 
with a = 1, m = 2, n = 2, and Rw = 0.04
o hm- m. FIGURE B1.4 shows the
calculated water saturation in track 3.
This water saturation estimate is
pessimistic for shaly sands and will be



refined in a future project.
1g
The logs were analyzed using the
combinations of the GR, deep resistivity,
and density and neutron porosity patterns
to identify the 7 sands and their fluid
contents shown in TABLE B1.1.





 

 



PROJECT 2

 
2a
The results of the Monte Carlo sampling
are summarized in TABLE B2.1 .
Because of the stochastic nature of the
simulation, your numbers will not be
identical to those in the TABLE.
However, if your simulation is correct,
the statistical averages should be similar
to those in the TABLE. These include
the mean, standard deviation, P90, P50,
and P10. The minimum and maximum
values can be significantly different from
those in the TABLE because they are not
statistical averages.



 
2b
The histograms and expectation curves
are shown in FIGURES B2.1 through
B2.13.



 



 



 





 





 





 

 



 



 



 



 



 



 
2c
The Monte Carlo sampling method is
inefficient. This is apparent from the fact



that the triangular distributions are not
truly triangular. In particular, the uniform
distribution of the recovery factor is
anything but uniform. It is likely that
1000 iterations may not be sufficient to
converge to the solution for this
sampling method. This can be verified
by increasing the number of iterations to
5000 and comparing the results to those
for 1000 iterations.



PROJECT 3

 
3a
The results of the Latin Hypercube
sampling are summarized in TABLE
b3.1. Because of the stochastic nature of
the simulation, your numbers will not be
identical to those in the TABLE.
However, if your simulation is correct,
the statistical averages should be similar
to those in the TABLE. These include
the mean, standard deviation, P90, P50,
and P10. The minimum and maximum
values can be significantly different from
those in the TABLE because they are not
statistical averages.



 
3b
The histograms and expectation curves
are shown in FIGURE B3.1 through
B3.13.



 



 



 



 





 





 

 



 



 



 



 



 



 
3c
The Latin Hypercube sampling method is



very efficient. This is apparent from the
fact that the triangular distributions are
truly triangular. In particular, the uniform
distribution of the recovery factor is
truly uniform. For this sampling method,
1000 iterations are sufficient for the
simulation to converge to the solution.
This can be verified by increasing the
number of iterations beyond 1000 and
comparing the results to those for 1000
iterations. It will be found that the
results are essentially the same as for
1000 iterations.



PROJECT 4

 
4a
The measured depth is different from the
true vertical depth because of well
deviations. The measured depth is
always longer than the true vertical
depth. Normally, the true vertical depth
is calculated from the measured depth
using deviation surveys. In the absence
of deviation surveys for this project, a
simple linear regression is used to relate
the two depths as shown in FIGURE
B4.1. The regression equation is

 



 



4b
FIGURE B4.2 shows the static pressure
log along with the GR and resistivity
logs. It can be seen that pressure data
were acquired in six of the seven sands
encountered in the well. No pressure
data were acquired in Sand 6.





 
4c
FIGURE B4.3 shows the detailed static
pressure analysis. The pressure
equations for the sands are as follows.

Sand 1—Gas Cap:

 
Sand 1—Oil Rim:

 
Sand 2:

 
Sands 3, 4, and 5:

 



Sand 7:

 
It should be observed that Sands 3, 4,
and 5 lie along the same pressure line.
This is evidence that the three sands are
in hydraulic communication.

The fluid gradients and densities can
be calculated from the pressure
equations. For example, for the gas cap,
solving Eq.(B4.2) for pressure gives

 
The fluid gradient is given by

 
The fluid specific gravity is related to



the fluid gradient by

 
The fluid specific gravity is given by

 
The fluid density is given by

 
The gas-oil contact is assumed to occur
at the intersection of the pressure lines
for the gas cap and the oil rim. This
assumes a zero displacement pressure
for the gas-oil capillary pressure curve.
S o l v i n g Eqs.(B4.2) and (B4.3)
simultaneously gives the gas-oil contact
as



 
From log analysis,

 
The agreement between the estimates of
the gas-oil contact from pressure
analysis and log analysis is good.





 
4d
TABLE B4.1  shows the fluid types in
the seven sands. The fluid types were
inferred from the fluid gradients and
densities obtained from the pressure
analysis except in Sand 6 for which no
pressure data were available. The fluid
type for Sand 6 was inferred from the
density-neutron porosity crossover
shown in FIGURE B4.4. See Figure
2.24 in Volume 1 for examples of
density-neutron porosity crossovers in
gas zones.



 





 



PROJECT 5

 
5a
The core data were posted in the
spreadsheet containing the log data as
requested.



 
5b
figures B5.1, B5.2, and B5.3 show the



core porosity histogram, permeability
histogram, and the grain density
histogram. The mean grain density is
2.663 g/cc with a standard deviation of
0.024 g/cc. This mean grain density was
used to calibrate the density porosity for
all subsequent log analyses.



 



 
FIGURE B5.4 shows the poro-perm

plot for Sand 1. The linear relationship



is moderately strong with R2 = 0.54.
FIGURE b5.5 shows the poro-perm
plots for the gas cap and the oil rim. It is
clear that the quality of the reservoir
rock in the oil rim is higher than in the
gas cap. The permeability equations for
the gas cap and the oil rim are

 

 
FIGURE B5.6 shows a comparison

of the water saturation from Archie’s
equation and from core analysis.



 



 





 
5c
FIGURE B5.7 shows a comparison of
the density porosity and the core
porosity after the density porosity
calibration with ρm = 2.663 g/cc and ρf
= 0.80 g/cc. The agreement is good.

5d
FIGURE B5.8 shows the final density
porosity log for Sands 1 and 2 along
with the neutron porosity. It should be
observed that the density porosity and
the neutron porosity agree in sands but
disagree in shales. This is as it should
be. There is no evidence of a water-oil
contact in Sand 1. The nearest water



zone is in Sand 2, which is separated
from Sand 1 by 129.26 ft TVD of shale.





 





 
5e
FIGURE B5.9 shows the permeability
log computed with Eq.(B5.1) for the gas
cap and (B5.2) for the oil rim along with
the core data. The agreement is good.





 



PROJECT 6

 
6a
FIGURE B6.1 shows the Pickett plot
for Sand 2. The equation is

 



 
From Eq.(B6.1), for Sand 2,



 
The water resistivity from this sand is
used in the log analysis for Sand 1.
6b
FIGURE B6.2 through B6.5 show the
resistivity index plots for Cores 18, 63,
105, and 121. The average water
saturation exponent is n = 1.7662.
FIGURE B6.6 shows the formation
resistivity factor plot from the core data,
which gives a = 1.0113 and m = 1.7704.



 



 



 



 



 
6c
The water saturation equation for the



Indonesia shaly sand model is

 
Eq.(B6.2) was used to calculate the
water saturation in Sand 1 using the
following parameters:

n = 1.7662
m = 1.7704
Rsh = 1.0227 ohm-m (average
resistivity of the shale above Sand
1)
Rw = 0.0419 ohm-m
A = 1.0 (worst case scenario)



Vsh from gamma ray log
 
FIGURE B6.7 shows a comparison of
the water saturation from the Indonesia
model and Archie’s equation with a = 1,
m = 1.7704, and n = 1.7662. Both
estimates agree in the oil rim but differ
in the gas cap which is more shaly than
the oil rim. If a clean sand was assumed,
the hydrocarbon pore volume in the gas
cap would be underestimated by

 





 
The hydrocarbon pore volume in the oil
rim would be underestimated by

 



PROJECT 7

 
7a
FIGURE B7.1 shows a comparison of
the shale volume estimates from gamma
ray and particle size analysis. The
agreement between the two is
reasonable given that these are two
independent estimates of the shale
volume.





 
7b
FIGURE B7.2 shows a comparison of
the mean grain size and the median grain
size from core analysis. Both agree
indicating a normal distribution for the
grain size distribution.





 
7c
FIGURE B7.3 shows the specific
surface area from core analysis based on
the mean grain size. The equation is

 
It can be observed that the specific
surface area of the grains is higher in the
gas cap than in the oil rim. This is
further evidence of the poorer quality of
the reservoir rock in the gas cap than in
the oil rim.





 
7d
FIGURE B7.4 shows a comparison of
the permeability from core analysis and
from the Carman-Kozeny equation. The
Carman-Kozeny equation is

 
where C is the Carman-Kozeny constant.
For this shaly sand, C = 30 compared to
5 typically used to estimate the
permeability for clean sand. The
agreement between the core
permeability and the estimates from the
Carman-Kozeny equation is good.





 
7e
FIGURE B7.5 shows a comparison of
the specific surface area for the gas cap
and the oil rim. The equations for the gas
cap and oil rim are

 

 
Eqs. (B7.3) and (B7.4) were used to
calculate the permeability in the gas cap
and the oil rim. FIGURE B7.6 shows
the permeability log for Sand 1 from the
poro-perm method and from the Carman-
Kozeny equation. The agreement
between the two is very good.



 





 



PROJECT 8

 
8a
FIGURE b8.1 shows the air-water
capillary pressure curves for Cores 18,
63, 105, and 121. All the curves show a
zero displacement pressure.





 
8b
FIGURE B8.2 shows the Leverett J-
functions for Cores 18, 63, 105, and
121. They do not plot as one curve.
Therefore, the cores have different pore
structures.





 
8c
FIGURE B8.3 through B8.6 show the
curve fits for the Leverett J-functions for
Cores 18, 63, 105, and 121, where S* is
an adjustable parameter to obtain the
best fit. The saturation equations for the
curve fits are as follows:

Core 18:

 
Core 63:

 
Core 105:



 
Core 121:

 



 



 



 



 



PROJECT 9

 
9a
FIGURE b9.1 shows the pressure-depth
lines for the water, oil, and gas in Sand
1.





 
9b
FIGURE B9.2 shows the gas-water and
the oil-water capillary pressure lines for
Sand 1. The two capillary pressure lines
are separated at the oil-water contact by
the oil-gas capillary pressure since there
are three phases at this depth.





 
9c
FIGURE B9.3 shows the Leverett J-
function for Sand 1 for σgw = 50
dynes/cm, σow = 15 dynes/cm, and cosθ
= 1.





 
9d
Eqs.(B8.1) through (B8.4) were used in
conjunction with the Leverett J-function
of Figure B9.3 to map the water
saturation in Sand 1. The equation from
each core was used to map the water
saturation in a different segment of Sand
1 as follows:

Eq.(B8.1) from Core 18: 11888.00
– 11931.00 ft MD
Eq.(B8.2) from Core 63: 11931.50
– 11955.50 ft MD
Eq.(B8.3) from Core 105:
11956.00 – 11968.00 ft MD
Eq.(B8.4) from Core 121:
11968.50 – 12008.50 ft MD



 
9e
FIGURE B9.4 shows a comparison of
the water saturation distributions from
the Indonesia shaly sand model,
Archie’s equation, and capillary
pressure data. It can be observed that the
capillary pressure data give water
saturation distribution in the oil rim that
is much lower than those of the other
two methods. It also gives the water
saturation distribution at the top of the
gas cap that is essentially the same as
Archie’s equation. It should be noted
that there was no water zone in Sand 1
but one was created to demonstrate the
method of water saturation estimation by
the capillary pressure method. Under



favorable conditions with an underlying
water zone, the capillary pressure
method can give a very reliable initial
water saturation distribution in a
petroleum reservoir.





 



PROJECT 10

 
FIGURE B10.1 shows a picture of the
fluid distributions in Sand 1. Such a
picture often is used in conjunction with
log analysis to give an overview of fluid
distributions in the sands penetrated by
the well.





 



PROJECT 11

 
11a
For the gas cap,



 

 
11b



For the oil rim,

 
11c
The amount of gas in solution is given by



 



PROJECT 12

 
12a
FIGURE B12.1 shows the correlation
for the water saturation from the
Indonesia shaly sand model with
porosity. The equation is

 
TABLE b12.1  shows a summary of the
Monte Carlo simulation using Latin
Hypercube Sampling (Project 4).



 



 
12b
FIGURE B12.2 through B12.4 show the
expectation curves for the STOIIP,
recoverable oil reserve, and
undiscounted net cash flow.



 



 



 



12c
Based on the expectation curve for the
STOIPP, there is 27% probability that
the initial oil in place is at least 550 ×
106 STB.



PROJECT 13

 
µnw =µo = 10 cp
µw = 1 cp
Bo = 1.45 RB/STB
Bw = 1.0 RB/ STB
Rs = 1065 scf/STB

13a
Swirr= 0.161
SOr = 0.200

FIGURE B13.1 shows the relative
permeability curves obtained from the



service company. Note that the base
permeability used to define relative
permeability is the effective
permeability to oil at the irreducible
water saturation.



 
13b,c
FIGURE b13.2 shows the relative
permeability curves rescaled with the
base permeability equal to the absolute
permeability of Core 125 along with the
Corey curve fits. The Corey equations
are

 

 
where Se is defined as

 



 
13d,e
FIGURE B13.3 shows the approximate
fractional flow curve along with the



Welge line. Note that the Welge line is
pivoted at Swi = 0.2438, which is higher
than Swirr = 0.161.

 



 
13f
The end-point mobility ratio for the



waterflood = 3.70.

13g
FIGURE B13.4 shows the water
saturation profiles along with the initial
and irreducible water saturations.



 
13h
tDBT = 0.3378
13i
RBT = 0.4276
13j



FIGURE B13.5 shows the oil recovery
curves.

 



13k
A = 8,000 acres
L= 37,335 ft
W= 9,334 ft
h= 52.94 ft
Vp =5,921,978,515 ft3 = 1,054,671,151
RB
B0 = 1.45 RB/STB
Bw = 1.0 RB/STB
Ax = 494,132 ft2

u = 1.215 ft/D
q=106,923 STB/D
QwBT = 391,978,986 RB
WpBT = 16,822,470 RB
NpBT = 258,728,632 STB
tBT = 3,332.39 days = 9.13 years



FIGURE B13.6 shows the oil, gas, and
water production rates. FIGURE B13.7
shows the water cut along with the oil
production rate. The water cut is over
90% after 20 years of production.
FIGURE B13.8 shows the cumulative
oil, gas, and water productions along
with the cumulative water injection
volume.



 



 



 
13l
Oil recovery factor after 20 years of



production = 52%
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