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FOREWORD 

This is a book that few would have dared to write, a book that presents 
the fundamentals of an applied discipline without resorting to abstract 
concepts. There is a traditional approach to the definition of prob- 
ability and random variables-one that dwells on the clean ergodic 
properties of Gaussian, isofactorial, and factorable random processes. 
Had the authors wanted simply to add to their list of publications, they 
could have followed this safe and well-worn path, and produced yet one 
more book on random fields, novel for its terminology, traditional and 
unassailable, but not really useful. Instead, by questioning supposedly 
unquestionable dogma and by placing practicality above mathematical 
elegance, they have chosen a more difficult path-one that risks the 
scorn of the self-ordained Keepers of the Tablets. 

Geostatistics owes much to  practice. It has evolved through what 
appeared initially as inconsistent applications or ad hoc adaptations of 
well-established models. As these adaptations established their practi- 
cal utility through several successful applications, theoreticians belat- 
edly granted them respectiblity and established their theoretical pedi- 
gree. Despite having sprung from practice that was once dismissed 
as theoretically inconsistent, many of these ideas are now presented 
as clean and logical derivations from the basic principles of random 
function theory. Two most enlightening examples are: 

0 The practice introduced by Michel David of the general rela- 
tive variogram (Chapter 7 of this book) whereby the traditional 
experimental variogram Y ( h )  is divided by the squared mean 
[m(h)I2 of the data used for each lag h. Though inconsistent 
with the stationarity hypothesis, this practice proved very suc- 
cessful in cleaning up experimental variograms and in revealing 
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features of spatial continuity that were later confirmed by addi- 
tional data. It was much later understood that the theoretical 
objections to David’s proposal do not hold since all variogram 
estimators are conditional to the available data locations and are 
therefore nonstationary. Moreover, his general relative variogram 
can be shown theoretically to filter biases due to  preferential data  
clusters, a feature commonly encountered in earth science data. 

0 The practice of using a moving data  neighborhood for ordinary 
kriging (OK), with a rescaling of the kriging variance by some 
function of the local mean data  value. Though strictly inconsis- 
tent with the stationarity hypothesis underlying OK,  this prac- 
tice is the single most important reason for the practical success 
of the OK algorithm that drives geostatistics as a whole. It was 
later understood that OK with moving data  neighborhoods is in 
fact a nonstationary estimation algorithm that allows for local 
fluctuations of the mean while assuming a stationary variogram. 
Rather than being motivated by theoretical considerations of ro- 
bustness, the now common practice of OK with moving data  
neighborhoods was motivated in the 1960s by trite considera- 
tions of computer memory and CPU time. 

Geostatistics with Mo and E d ,  as this book is known a t  Stanford, 
is remarkable in the statistical literature and unique in geostatistics in 
that concepts and models are introduced from the needs of data  anal- 
ysis rather than from axioms or through formal derivations. This pre- 
sentation of geostatistics is centered around the analysis of a real data  
set with “distressing” complexity. The availability of both sparse sam- 
pling and the exhaustive reference allows assumptions and their con- 
sequences to  be checked through actual hindsight comparisons rather 
than through checking some theoretical property of the elusive random 
function generator. One may argue that the results presented could 
be too specific t o  the particular data  set used. My immediate answer 
would be that a real data  set with true complexity represents as much 
generality as a simplistic random function model, most often neatly 
stationary and Gaussian-related, on which supposedly general results 
can be established. 

Applied geostatistics, or for that  matter any applied statistics, is 
a n  a r t  in the best sense of the term and, as such, is neither completely 
automatable nor purely objective. In a recent experiment conducted 
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by the U.S. Environmental Protection Agency, 12 independent rep- 
utable geostatisticians were given the same sample da t a  set and asked 
to  perform the same straightforward block estimation. The 12 results 
were widely different due to  widely different data  analysis conclusions, 
variogram models, choices of kriging type, and search strategy. In the 
face of such a n  experiment, the illusion of objectivity can be main- 
tained only by imposing one's decisions upon others by what I liken t o  
scientific bullying in which laymen are dismissed as incapable of un- 
derstanding the theory and are therefore disqualified from questioning 
the universal expertise written into some cryptic software package that  
delivers the correct and objective answer. 

It bears repeating that there is no accepted universal algorithm 
for determining a variogram/covariance model, whether generalized or 
not, that  cross-validation is no guarantee that a n  estimation procedure 
will actually produce good estimates of unsampled values, that  kriging 
need not be the most appropriate estimation method, and that the 
most consequential decisions of any geostatistical study are taken early 
in the exploratory data  analysis phase. A n  Introduction to Applied 
Geostatistics delivers such messages in plain terms yet with a rigor 
that  would please both practitioners and mature theoreticians (i.e., 
from well-interpreted observations and comparative studies rather than 
from theoretical concepts whose practical relevance is obscure). 

This book is sown with eye-opening remarks leading t o  the most 
recent developments in geostatistical methodology. Though academics 
will be rewarded with multiple challenges and seed ideas for new re- 
search work, the main public for this book will be undergraduates and 
practitioners who want to add geostatistics t o  their own toolbox. This 
book demonstrates that  geostatistics can be learned and used properly 
without graduate-level courses in stochastic processes. Mo and Ed 
came t o  geostatistics not directly from academia but from the harsh 
reality of the practice of resource estimation within producing compa- 
nies. They returned to  university to  better understand the tools that  
they found useful and are now back solving problems, sometimes us- 
ing geostatistics. Their book puts geostatistics back where it belongs, 
in the hands of practitioners mastering both the tools and the mate- 
rial. Listen to their unassuming experience and remember: you are in 
command! 

May, 1989 Andre' G. Journel 
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INTRODUCTION 

This book presents an introduction to the set of tools that has become 
known commonly as geostatistics. Many statistical tools are useful 
in developing qualitative insights into a wide variety of natural phe- 
nomena; many others can be used to  develop quantitative answers 
to  specific questions. Unfortunately, most classical statistical meth- 
ods make no use of the spatial information in earth science data sets. 
Geostatistics offers a way of describing the spatial continuity that is an 
essential feature of many natural phenomena and provides adaptations 
of classical regression techniques to take advantage of this continuity. 

The presentation of geostatistics in this book is not heavily mathe- 
matical. Few theoretical derivations or formal proofs are given; instead, 
references are provided to more rigorous treatments of the material. 
The reader should be able to recall basic calculus and be comfortable 
with finding the minimum of a function by using the first derivative 
and representing a spatial average as an integral. Matrix notation is 
used in some of the later chapters since it offers a compact way of writ- 
ing systems of simultaneous equations. The reader should also have 
some familiarity with the statistical concepts presented in Chapters 2 
and 3. 

Though we have avoided mathematical formalism, the presentation 
is not simplistic. The book is built around a series of case studies on 
a distressingly real data set. As we soon shall see, analysis of earth 
science data can be both frustrating and fraught with difficulty. We 
intend to  trudge through the muddy spots, stumble into the pitfalls, 
and wander into some of the dead ends. Anyone who has already 
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tackled a geostatistical study will sympathize with us in our many 
dilemmas. 

Our case studies different from those that practitioners encounter 
in only one aspect; throughout our study we will have access to the 
correct answers. The data  set with which we perform the studies is in 
fact a subset of a much larger, completely known data  set. This gives 
us a yardstick by which we can measure the success of several different 
approaches. 

A warning is appropriate here. The solutions we propose in the 
various case studies are particular t o  the data  set we use. I t  is not our 
intention t o  propose these as general recipes. The hallmark of a good 
geostatistical study is customization of the approach to  the problem at 
hand. All we intend in these studies is t o  cultivate an understanding of 
what various geostatistical tools can d o  and, more importantly, what 
their limitations are. 

The Walker Lake Data Set 

The focus of this book is a data  set that was derived from a digital 
elevation model from the western United States; the Walker Lake area 
in Nevada. 

We will not be using the original elevation values as variables in 
our case studies. The variables we do use, however, are related t o  the 
elevation and, as we shall see, their maps exhibit features which are 
related to  the topographic features in Figure 1.1. For this reason, we 
will be referring t o  specific sub areas within the Walker Lake area by 
the geographic names given in Figure 1.1. 

The original digital elevation model contained elevations for about 
2 million points on a regular grid. These elevations have been trans- 
formed to  produce a data set consisting of three variables measured 
a t  each of 78,000 points on a 260 x 300 rectangular grid. The  first 
t w o  variables are continuous and their values range from zero to  sev- 
eral thousands. The third variable is discrete and its value is either 
one or two. Details on how t o  obtain the digital elevation model and 
reproduce this data  set are given in Appendix A. 

We have tried to avoid writing a book that is too specific 
t o  one field of application. For this reason the variables in the 

Walker Lake da ta  set are referred t o  anonymously as V ,  U and T. Un- 
fortunately, a bias toward mining applications will occasionally creep 
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Figure 1.1 A location map of the Walker Lake area in Nevada. The small rectangle 
on the outline of Nevada shows the relative location of the area within the state. 
The larger rectangle shows the major topographic features within the area. 

in; this reflects both the historical roots of geostatistics as well as the 
experience of the authors. The methods discussed here, however, are 
quite generally applicable to  any data set in which the values are spa- 
tially continuous. 

The continuous variables, V and U, could be thicknesses of a geo- 
logic horizon or the concentration of some pollutant; they could be soil 
strength measurements or permeabilities; they could be rainfall mea- 
surements or the diameters of trees. The discrete variable, T ,  can be 
viewed as a number that assigns each point to one of two possible cate- 
gories; it could record some important color difference or two different 
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species; it could separate different rock types or different soil litholo- 
gies; it could record some chemical difference such as the presence or 
absence of a particular element. 

For the sake of convenience and consistency we will refer to V and 
U as concentrations of some material and will give both of them units 
of parts per million (ppm). We will treat T as an indicator of two 
types that  will be referred to as type 1 and type 2. Finally, we will 
assign units of meters t o  our grid even though its original dimensions 
are much larger than 260 x 300 m2. 

The  Walker Lake data  set consists of V ,  U and T measurements a t  
each of 78,000 points on a 1 x 1 m2 grid. From this extremely dense 
da t a  set a subset of 470 sample points has been chosen to  represent a 
typical sample data  set. To distinguish between these two data  sets, 
the complete set of all information for the 78,000 points is called the 
exhaustive data  set, while the smaller subset of 470 points is called the 
sample data  set. 

Goals of the Case Studies 

Using the 470 samples in the sample data  set we will address the fol- 
lowing problems: 

1. The description of the important features of the data. 

2. The estimation of an average value over a large area. 

3. The estimation of an unknown value at a particular location. 

4. The estimation of an average value over small areas. 

5 .  The use of the available sampling to  check the performance of a n  
estimation methodology. 

6. The use of sample values of one variable to  improve the estima- 
tion of another variable. 

7. The estimation of a distribution of values over a large area. 

8. The  estimation of a distribution of values over small areas. 

9. The estimation of a distribution of block averages. 

10. The assessment of the uncertainty of our various estimates. 
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The first question, despite being largely qualitative, is very impor- 
tant. Organization and presentation is a vital step in communicating 
the essential features of a large data set. In the first part of this book 
we will look a t  descriptive tools. Univariate and bivariate description 
are covered in Chapters 2 and 3. In Chapter 4 we will look a t  various 
ways of describing the spatial features of a data set. We will then take 
all of the descriptive tools from these first chapters and apply them 
to the Walker Lake data sets. The exhaustive data set is analyzed in 
Chapter 5 and the sample data set is examined in Chapters 6 and 7. 

The remaining questions all deal with estimation, which is the topic 
of the second part of the book. Using the information in the sample 
data set we will estimate various unknown quantities and see how well 
we have done by using the exhaustive data set to check our estimates. 
Our  approach to  estimation, as discussed in Chapter 8, is first to con- 
sider what it is we are trying to  estimate and then to  adopt a method 
that is suited to that particular problem. Three important consider- 
ations form the framework for our presentation of estimation in this 
book. First, do we want an estimate over a large area or estimates for 
specific local areas? Second, are we interested only in some average 
value or in the complete distribution of values? Third, do we want our 
estimates to refer to  a volume of the same size as our sample data or 
do we prefer to  have our estimates refer to a different volume? 

In Chapter 9 we will discuss why models are necessary and intro- 
duce the probabilistic models common to geostatistics. In Chapter 
10 we will present two methods for estimating an average value over 
a large area. We then turn to  the problem of local estimation. In 
Chapter 11 we will look at some nongeostatistical methods that are 
commonly used for local estimation. This is followed in Chapter 12 
by a presentation of the geostatistical method known as ordinary point 
kriging. The adaptation of point estimation methods to  handle the 
problem of local block estimates is discussed in Chapter 13. 

Following the discussion in Chapter 14 of the important issue of 
the search strategy, we will look a t  cross validation in Chapter 15 
and show how this procedure may be used to improve an estimation 
methodology. In Chapter 16 we will address the practical problem of 
modeling variograms, an issue that arises in geostatistical approaches 
to estimation. 

In Chapter 17 we will look at  how to use related information to  
improve estimation. This is a complication that commonly arises in 
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practice when one variable is undersampled. When we analyze the 
sample data  set in Chapter 6, we will see that the measurements of the 
second variable, U ,  are missing a t  many sample locations. The  method 
of cokriging presented in Chapter 17 allows us to incorporate the more 
abundant V sample values in the estimation of U ,  taking advantage 
of the relationship between the two to  improve our estimation of the 
more sparsely sampled U variable. 

The estimation of a complete distribution is typically of more use 
in practice than is the estimation of a single average value. In many 
applications one is interested not in an overall average value but in 
the average value above some specified threshold. This threshold is 
often some extreme value and the estimation of the distribution above 
extreme values calls for different techniques than the estimation of the 
overall mean. In Chapter 18 we will explore the estimation of local 
and global distributions. We will present the indicator approach, one 
of several advanced techniques developed specifically for the estimation 
of local distributions. 

A further complication arises if we want our estimates t o  refer to 
a volume different from the volume of our samples. This is commonly 
referred to  as the support problem and frequently occurs in practical 
applications. For example, in a model of a petroleum reservoir one does 
not need estimated permeabilities for core-sized volumes but rather for 
much larger blocks. In a mine, one will be mining and processing vol- 
umes much larger than the volume of the samples that are typically 
available for a feasibility study. In Chapter 19 we will show that  the 
distribution of point values is not the same as the distribution of av- 
erage block values and present two methods for accounting for this 
discrepancy. 

In Chapter 20 we will look a t  the assessment of uncertainty, an issue 
that is typically muddied by a lack of a clear objective meaning for the 
various uncertainty measures that probabilistic models can provide. 
We will look a t  several common problems, discuss how our probabilistic 
model might provide a relevant answer, and use the exhaustive data  
set to check the performance of various methods. 

The final chapter provides a recap of the tools discussed in the 
book, recalling their strengths and their limitations. Since this book 
attempts a n  introduction to basic methods, many advanced methods 
have not been touched, however, the types of problems that require 
more advanced methods are discussed and further references are given. 
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Before we begin exploring some basic geostatisticd tools, we would 
like to emphasize that the case studies used throughout the book are 
presented for their educational value and not necessarily to provide a 
definitive case study of the Walker Lake data set. It is our hope that 
this book will enable a reader to explore new and creative combinations 
of the many available tools and to  improve on the rather simple studies 
we have presented here. 



2 
UNIVARIATE DESCRIPTION 

Data speak most clearly when they are organized. Much of statistics, 
therefore, deals with the organization, presentation, and summary of 
data. It is hoped that much of the material in these chapters will 
already be  familiar to the reader. Though some notions peculiar t o  
geostatistics will be introduced, the presentation in the following chap- 
ters is intended primarily as review. 

In this chapter we will deal with univariate description. In the 
following chapter we will look a t  ways of describing the relationships 
between pairs of variables. In Chapter 4 we incorporate the location 
of the data  and consider ways of describing the spatial features of the 
data  set. 

To  make i t  easy to  follow and check the various calculations in 
the next three chapters we will use a small 10 x 10 m2 patch of the 
exhaustive data  set in all of our examples [l]. In these examples, all of 
the U and V values have been rounded off to the nearest integer. The 
V values for these 100 points are shown in Figure 2.1. The  goal of this 
chapter will be to  describe the distribution of these 100 values. 

Frequency Tables and Histograms 

One of the most common and useful presentations of data  sets is the fre- 
quency table and its corresponding graph, the histogram. A frequency 
table records how often observed values fall within certain intervals or 
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81 77 + +  
82 61 + +  
82 74 
+ +  
88 70 + +  
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+ +  

128 130 + +  
139 145 
+ +  

136 144 + +  
134 144 
+ +  

Figure 2.1 
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Figure 2.2 Histogram of the 100 selected V data. 

classes. Table 2.1 shows a frequency table that summarizes the 100 V 
values shown in Figure 2.1. 

The information presented in Table 2.1 can also be presented graph- 
ically in a histogram, as in Figure 2.2. It is common to use a constant 
class width for the histogram so that the height of each bar is propor- 
tional to the number of values within that class [2]. 
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Table 2.1 
10 ppm. 

Frequency table of the 100 selected V values with a class width of 

Class Number Percentage 
o <  v <10 1 1 

1 0 5  v <20 1 1 
2 0 5  V <30 0 0 
3 0 5  V <40 0 0 
4 0 5  V <50 3 3 
50 5 V <60 2 2 
6 0 5  V <70 2 2 
7 0 5  V <80 13 13 
80 5 v <90 16 16 
90 5 v <loo 11 11 

100 < v <110 13 13 
110 5 v <120 17 17 
120 < V <130 13 13 
130 5 V <140 4 4 
140 5 V < 00 4 4 

Cumulative F’requency Tables and Histograms 

Most statistical texts use the convention that data are ranked in as- 
cending order to  produce cumulative frequency tables and descriptions 
of cumulative frequency distributions. For many earth science appli- 
cations, such as ore reserves and pollution studies, the cumulative fre- 
quency above a lower limit is of more interest. For such studies, cumu- 
lative frequency tables and histograms may be prepared after ranking 
the da ta  in descending order. 

In Table 2.2 we have taken the information from Table 2.1 and 
presented it in cumulative form. Rather than record the number of 
values within certain classes, we record the total number of values 
below certain cutoffs [3]. The corresponding cumulative histogram, 
shown in Figure 2.3, is a nondecreasing function between 0 and 100%. 
The percent frequency and cumulative percent frequency forms are 
used interchangeably, since one can be obtained from the other. 
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Table 2.2 
width of 10 ppm. 

Cumulative frequency table of the 100 selected V values using a class 

Class Number Percentage 
v < 10 1 1 
v < 20 2 
V < 30 2 
V < 40 2 
V < 50 5 
V < 60 7 
V < 70 9 
v < 80 22 
v < 90 38 
v < 100 49 
v < 110 62 
v < 120 79 
V < 130 92 
V < 140 96 
v < m  100 

2 
2 
2 
5 
7 
9 

22 
38 
49 
62 
79 
92 
96 

100 

Normal and Lognormal Probability Plots 

Some of the estimation tools presented in part two of the book work 
better if the distribution of data values is close to  a Gaussian or nor- 
mal distribution. The Gaussian distribution is one of many distribu- 
tions for which a concise mathematical description exists [4]; also, it 
has properties that favor its use in theoretical approaches to estima- 
tion. It is interesting, therefore, to know how close the distribution 
of one’s data values comes to  being Gaussian. A normal probabil- 
ity plot is a type of cumulative frequency plot that helps decide this 
question. 

On a normal probability plot the y-axis is scaled in such a way that 
the cumulative frequencies will plot as a straight line if the distribution 
is Gaussian. Such graph paper is readily available at  most engineering 
supply outlets. Figure 2.4 shows a normal probability plot of the 100 
V values using the cumulative frequencies given in Table 2.2. Note 
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Figure 2.3 Cumulative histogram of the 100 selected V data. 
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Figure 2.4 A normal probability plot of the 100 selected V data. The y-axis has 
been scaled in such a way that the cumulative frequencies will plot as a straight 
line if the distribution of V is Gaussian. 

that  although most of the cumulative frequencies plot in a relatively 
straight line, the smaller values of V depart from this trend. 

Many variables in earth science data sets have distributions that 
are not even close to normal. It is common t o  have many quite small 
values and a few very large ones. In Chapter 5 we will see several ex- 
amples of this type from the exhaustive Walker Lake data  set. Though 
the normal distribution is often inappropriate as a model for this type 
of asymmetric distribution, a closely related distribution, the lognor- 
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Figure 2.5 A lognormal probability plot of the 100 selected V data. The y-axis is 
scaled so that the cumulative frequencies will plot as a straight line if the distribution 
of the logarithm of V is Gaussian. 

ma1 distribution, can sometimes be a good alternative. A variable 
is distributed lognormally if the distribution of the logarithm of the 
variable is normal. 

By using a logarithmic scale on the x-axis of a normal probability 
plot, one can check for lognormality. As in the normal probability plot, 
the cumulative frequencies will plot as a straight line if the data values 
are lognormally distributed. Figure 2.5 shows a lognormal probability 
plot of the 100 V values using the same information that was used to 
plot Figure 2.4. The concave shape of the plot clearly indicates that  
the values are not distributed lognormally. 

Assumptions about the distribution of data values often have their 
greatest impact when one is estimating extreme values. If one intends 
to  use a methodology that depends on assumptions about the distri- 
bution, one should be wary of casually disregarding deviations of a 
probability plot a t  the extremes. for example, it is tempting to take 
the normal probability plot shown in Figure 2.4 as evidence of normal- 
ity, disregarding the departure from a relatively straight line for the 
smaller values of V .  Departures of a probability plot from approximate 
linearity at  the extreme values are often deceptively small and easy to  
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overlook when the rest of the plot looks relatively straight. However, 
the estimates derived using such a “close fitted” distribution model 
may be vastly different from reality. 

Probability plots are very useful for checking for the presence of 
multiple populations. Although kinks in the plots do  not necessarily 
indicate multiple populations, they represent changes in the charac- 
teristics of the cumulative frequencies over different intervals and the 
reasons for this should be explored. 

Choosing a theoretical model for the distribution of data  values is 
not always a necessary step prior t o  estimation, so one should not read 
too much into a probability plot. The straightness of a line on a proba- 
bility plot is no guarantee of a good estimate and the crookedness of a 
line should not condemn distribution-based approaches t o  estimation. 
Certain methods lean more heavily on assumptions about the distri- 
bution than do others. Some estimation tools built on an assumption 
of normality may still be useful even when the data  are  not normally 
distributed. 

Summary Statistics 

The important features of most histograms can be captured by a few 
summary statistics. The summary statistics we use here fall into three 
categories: measures of location, measures of spread and measures of 
shape. 

The statistics in the first group give us information about where 
various parts of the distribution lie. The mean, the median, and the 
mode can give us some idea where the center of the distribution lies. 
The location of other parts of the distribution are given by various 
quantiles. The second group includes the variance, the standard de- 
viation, and the interquartile range. These are used t o  describe the 
variability of the data  values. The shape of the distribution is de- 
scribed by the coefficient of skewness and the coefficient of variation; 
the coefficient of skewness provides information on the symmetry while 
the coefficient of variation provides information on the length of the 
tail for certain types of distributions. Taken together, these statis- 
tics provide a valuable summary of the information contained in the 
his togram. 
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Figure 2.6 Reading the median from a probability plot. 

Measures of Location 

Mean. The  mean, m, is the arithmetic average of the data  values [5]: 

The number of data  is n and 21,. . . ,x, are the data  values. The mean 
of our 100 V values is 97.55 ppm. 

Median. The  median, M ,  is the midpoint of the observed values if 
they are arranged in increasing order. Half of the values are below the 
median and half of the values are above the median. Once the data  
are ordered so that x1 5 22 5 . . . 5 x,, the median can be calculated 
from one of the following equations: 

""3-' if n is odd 
+ 2 if n is even M = {  (xs i- 

The median can easily be read from a probability plot. Since the 
y-axis records the cumulative frequency, the median is the value on the 
x-axis that  corresponds to  50% on the y-axis (Figure 2.6). 

Both the mean and the median are measures of the location of the 
center of the distribution. The mean is quite sensitive t o  erratic high 
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values. If the 145 ppm value in our data set had been 1450 ppm, the 
mean would change t o  110.60 ppm. The  median, however, would be 
unaffected by this change because it depends only on how many values 
are above or below it; how much above or below is not considered. 

For the 100 V values that appear in Figure 2.1 the median is 
100.50 ppm. 

Mode. The mode is the value that occurs most frequently. The class 
with the tallest bar on the histogram gives a quick idea where the mode 
is. From the histogram in Figure 2.2 we see that the 110-120 ppm class 
has the most values. Within this class, the value 111 ppm occurs more 
times than any other. 

One of the drawbacks of the mode is that  i t  changes with the pre- 
cision of the data  values. In Figure 2.1 we rounded all of the V values 
to  the nearest integer. Had we kept two decimal places on all our mea- 
surements, no two would have been exactly the same and the mode 
could then be any one of 100 equally common values. For this reason, 
the mode is not particularly useful for data  sets in which the measure- 
ments have several significant digits. In such cases, when we speak of 
the mode we usually mean some approximate value chosen by finding 
the tallest bar on a histogram. Some practitioners interpret the mode 
to  be the tallest bar itself. 

Minimum. The smallest value in the data  set is the minimum. In 
many practical situations the smallest values are recorded simply as 
being below some detection limit. In such situations, it matters little 
for descriptive purposes whether the minimum is given as 0 or as some 
arbitrarily small value. In some estimation methods, as we will discuss 
in later chapters, it is convenient to use a nonzero value (e.g., half the 
detection limit) or t o  assign slightly different values to those data  that 
were below the detection limit. For our 100 V values, the minimum 
value is 0 ppm. 

Maximum. The largest value in the data  set is the maximum. The 
maximum of our 100 V values is 145 ppm. 

Lower and Upper Quartile. In the same way that the median splits 
the data  into halves, the quartiles split the data  into quarters. If the 
da t a  values are arranged in increasing order, then a quarter of the data 
falls below the lower or first quartile, Q1, and a quarter of the data 
falls above the upper or third quartile, Q3. 
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Figure 2.7 The quartiles of a normal probability plot. 

As with the median, quartiles can easily be read from a probability 
plot. The value on the x-axis, which corresponds to  25% on the y- 
axis, is the lower quartile and the value that corresponds to 75% is the 
upper quartile (Figure 2.7). The lower quartile of our 100 V values is 
81.25 ppm and the upper quartile is 116.25 ppm. 

Deciles, Percentiles, and Quantiles. The idea of splitting the data 
into halves with the median or into quarters with the quartiles can be 
extended to  any other fraction. Deciles split the data into tenths. One 
tenth of the data fall below the first or lowest decile; two tenths fall 
below the second decile. The fifth decile corresponds to the median. In 
a similar way, percentiles split the data into hundredths. The twenty- 
fifth percentile is the same as the first quartile, the fiftieth percentile 
is the same as the median and the seventy-fifth percentile is the same 
as the third quartile. 

Quantiles are a generalization of this idea to any fraction. For ex- 
ample, if we wanted to talk about the value below which one twentieth 
of the data fall, we call it 4.05 rather than come up with a new -ile name 
for twentieths. Just as certain deciles and percentiles are equivalent to  
the median and the quartiles, so too can certain quantiles be written as 
one of these statistics. For example 4.25 is the lower quartile, 4.5 is the 
median, and 4.75 is the upper quartile. In this book we will usually use 
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quantiles rather than deciles and percentiles, keeping only the mediar, 
and the two quartiles as special measures of location. 

Measures of Spread 

Variance. The  variance, u2, is given by [6]: 

, n  
1 2 

u2 = -C(q n - m)  
kl 

It is the average squared difference of the observed values from their 
mean. Since i t  involves squared differences, the variance is sensitive t o  
erratic high values. The variance of the 100 V values is 688 ppm2. 

Standard Deviation. The standard deviation, 0, is simply the 
square root of the variance. It is often used instead of the variance 
since its units are the same as the units of the variable being described. 
For the 100 V values the standard deviation is 26.23 ppm. 

Interquartile Range. Another useful measure of the spread of the 
observed values is the interquartile range. The interquartile range or 
IQR, is the difference between the upper and lower quartiles and is 
given by 

IQR = 43 - Qi (2.4) 
Unlike the variance and the standard deviation, the interquartile range 
does not use the mean as the center of the distribution, and is therefore 
often preferred if a few erratically high values strongly influence the 
mean. The interquartile range of our  100 V values is 35.50 ppm. 

Measures of Shape 

Coefficient of Skewness. One feature of the histogram that the 
previous statistics do not capture is its symmetry. The most commonly 
used statistic for summarizing the symmetry is a quantity called the 
coefficient of skewness, which is defined as 

; c;=l(.i - 77-43 
coefficient of skewness = 

u3 

The numerator is the average cubed difference between the data  val- 
ues and their mean, and the denominator is the cube of the standard 
deviation. 
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The coefficient of skewness suffers even more than the mean and 
variance from a sensitivity t o  erratic high values. A single large value 
can heavily influence the coefficient of skewness since the difference 
between each da ta  value and the mean is cubed. 

Quite often one does not use the magnitude of the coefficient of 
skewness but rather only its sign t o  describe the symmetry. A pos- 
itively skewed histogram has a long tail of high values t o  the right, 
making the median less than the mean. In geochemical data  sets, 
positive skewness is typical when the variable being described is the 
concentration of a minor element. If there is a long tail of small values 
t o  the left and the median is greater than the mean, as is typical for 
major element concentrations, the histogram is negatively skewed. If 
the skewness is close to zero, the histogram is approximately symmetric 
and the median is close to  the mean. 

For the 100 V values we are describing in this chapter the coefficient 
of skewness is close to zero (-0.779), indicating a distribution that is 
only slightly asymmetric. 

Coefficient of Variation. The coefficient of variation, C V ,  is a statis- 
tic that  is often used as an alternative t o  skewness to  describe the shape 
of the distribution. It is used primarily for distributions whose values 
are  all positive and whose skewness is also positive; though it  can be 
calculated for other types of distributions, its usefulness as a n  index of 
shape becomes questionable. It is defined as the ratio of t,he standard 
deviation to  the mean [7]: 

U c v = -  
m 

If estimation is the final goal of a study, the coefficient of varia- 
tion can provide some warning of upcoming problems. A coefficient of 
variation greater than one indicates the presence of some erratic high 
sample values that may have a significant impact on the final estimates. 

The  coefficient of variation for our 100 V values is 0.269, which 
reflects the fact that  the histogram does not have a long tail of high 
values. 

Notes 

[l] The coordinates of the corners of the 10 x 10 m2 patch used to illus- 
trate the various descriptive tools are (11,241), (20,241), (20,250), 
and ( 11,250). 
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[2] If the class widths are variable it is important to remember that 
on a histogram it is the area (not the height) of the bar that  is 
proportional t o  the frequency. 

[3] The example in the text is designed to make i t  easy to  follow how 
Table 2.2 relates to  Table 2.1. Though the choice of classes is nec- 
essary for a frequency table and a histogram, it is not required for 
cumulative frequency tables or cumulative histograms. Indeed, in 
practice one typically chooses cutoffs for the cumulative frequencies 
that correspond to the actual data  values. 

[4] For a description of the normal distribution and its properties see: 
Johnson, R. A. and Wichern, D. W. , Applied Multivariate Statis- 
tical Analysis. Englewood Cliffs, New Jersey: Prentice-Hall, 1982. 

[5] Though the arithmetic average is appropriate for a wide variety 
of applications, there are important cases in which the averaging 
process is not arithmetic, For example, in fluid flow studies the 
effective permeability of a stratified sequence is the arithmetic mean 
of the permeabilities within the various strata if the flow is parallel 
t o  the strata. If the flow is perpendicular t o  the strata, however, 
the harmonic mean, mH, is more appropriate: 

1 1 1 " l  -= - -  k e g  mH --EK n ; = l  

where the k; are the permeabilities of the n strata. For the case 
where the flow is neither strictly parallel nor strictly perpendicular 
t o  the stratification, or where the different facies are not clearly 
stratified, some studies suggest that the effective permeability is 
close to  the geometric mean, mG: 

[6] Some readers will recall a formula for a2 from classical statistics 
that  uses instead of $. This classical formula is designed to  
give an unbiased estimate of the population variance if the data 
are uncorrelated. The formula given here is intended only t o  give 
the sample variance. In later chapters we will look at the problem 
of inferring population parameters from sample statistics. 
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[7] The coefficient of variation is occasionally given as a percentage 
rather than a ratio. 
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BIVARIATE DESCRIPTION 

The  univariate tools discussed in the last chapter can be used to de- 
scribe the distributions of individual variables. We get a very limited 
view, however, if we analyze a multivariate data  set one variable a t  a 
time. Some of the most important and interesting features of earth 
science data  sets are the relationships and dependencies between vari- 
ables. 

The Walker Lake data  set contains two continuous variables. Fig- 
ure 3.1 shows the 100 V values we saw in Figure 2.1 along with the U 
values at the same 100 locations. In this chapter we look a t  ways of 
describing the relationship between these two variables. 

Comparing Two Distributions 

In the analysis of earth science data  sets we will often want to compare 
two distributions. A presentation of their histograms along with some 
summary statistics will reveal gross differences. Unfortunately, if the 
two distributions are very similar, this method of comparison will not 
be helpful in uncovering the interesting subtle differences. 

The histograms of the V and U values shown in Figure 3.1 are 
given in Figure 3.2, and their statistics are presented in Table 3.1 
There are some rather major differences between the distributions of 
the two variables. The U distribution is positively skewed; the V 
distribution, on the other hand, is negatively skewed. Also, the V 
values are generally higher than the U values, with a mean value more 
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Figure 3.1 Relative location map of the 100 selected V and U data. V values are 
plotted above the u+" symbol and U are below. 

than five times that of U .  The V median and standard deviation are 
also greater than their U counterparts. 

The  statistical summary provided in Table 3.1 allows us t o  com- 
pare, among other things, the medians and the quartiles of the two 
distributions. A more complete comparison of the various quantiles 
is given in Table 3.2, which shows the V and U quantiles for several 
cumulative frequencies. The For example, the first entry tells us that 
that  5% of the V values are below 48.1 ppm while 5% of the U values 
fall below 3.1 ppm. The medians and quartiles we saw earlier in Ta- 
ble 3.1 are also included in Table 3.2. The  first quartile, 81.3 ppm for 
V and 14.0 ppm for U ,  corresponds to  the 0.25 quantile; the median, 
100.5 ppm for V and 18.0 ppm for U ,  corresponds to  q.5;  and the upper 
quartile, 116.8 ppm for V and 25.0 ppm for U ,  corresponds to  4.75. 

For a good visual comparison of two distributions we can use a 
graph called a q-q plot. This is commonly used when there is some 
reason to expect that the distributions are similar. A q-q plot is a 
graph on which the quantiles from two distributions are plotted versus 
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Figure 3.2 T h e  histogram of the 100 V values in (a) and of the corresponding 100 

U values in (b). 

one another. The  information contained in Table 3.2 is presented as 
a q-q plot in Figure 3.3. The quantiles of the V distribution serve 
as the x-coordinates while those of the U distribution serve as the y- 
coordinates. If the two distributions being compared have the same 
number of data,  then the calculation of the quantiles of each distribu- 
tion is not a necessary step in making a q-q plot. Instead, one can sort 
the data  values from each distribution in ascending order and plot the 
corresponding pairs of values. 

A q-q plot of two identical distributions will plot as the straight line 
x = y. For distributions that are very similar, the small departures of 
the q-q plot from the line z = y will reveal where they differ. As we 
have already noted, the distributions of the V and U values within our 
selected area are very different; therefore, their q-q plot does not come 
close to the straight line U = V .  
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Table 3.1 Statistical summary of the V and U values shown in Figure 3.1. 

V U 
n 
m 

cv 
min 

Qi 
M 
Q3 
max 

0 

100 
97.6 
26.2 
0.27 
0.0 
81.3 
100.5 
116.8 
145.0 

100 
19.1 
9.81 
0.51 
0.0 
14.0 
18.0 
25.0 
55.0 

Table 3.2 Comparison of the V and U quantiles. 

Cumulative Q uan tile Cumulative Quantile 
Frequency V U Frequency V U 

0.05 48.1 3.1 0.55 104.1 19.0 
0.10 70.2 7.0 0.60 108.6 20.0 
0.15 74.0 8.1 0.65 111.0 21.0 
0.20 77.0 11.2 0.70 112.7 22.7 
0.25 81.3 14.0 0.75 116.8 25.0 
0.30 84.0 15.0 0.80 120.0 27.0 
0.35 87.4 15.4 0.85 122.9 29.0 
0.40 91.0 16.0 0.90 127.9 33.8 
0.45 96.5 17.0 0.95 138.9 37.0 
0.50 100.5 18.0 

If a q-q plot of two distributions is some straight line other than 2 
= y, then the two distributions have the same shape but their location 
and spread may differ. We have already taken advantage of this prop- 
erty when we constructed the normal probability plots in Figure 2.4. In 
fact, this is a q-q plot on which we compare the quantiles of the V dis- 
tribution to  the quantiles of a standard normal distribution. Likewise, 
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Figure 3.3 
100 V values. Note the different scales on the axes. 

A q-q plot of the distribution of the 100 special U values versus the 

the lognormal probability plot we drew in Figure 2.5 is a comparison 
of the V quantiles t o  those of a standard lognormal distribution. The 
similarity of a n  observed distribution t o  any theoretical distribution 
model can be checked by the straightness of their q-q plot. 

Scatterplots 

The most common display of bivariate data  is the scatterplot, which 
is an x-y graph of the data  on which the x-coordinate corresponds to  
the value of one variable and the y-coordinate to  the value of the other 
variable. 

The 100 pairs of V-U values in Figure 3.1 are shown on a scatterplot 
in Figure 3.4a. Though there is some scatter in the cloud of points, 
the larger values of V tend to be associated with the larger values of 
U and the smaller values of V tend to be associated with the smaller 
values of U .  

In addition to  providing a good qualitative feel for how two vari- 
ables are related, a scatterplot is also useful for drawing our attention 
to  aberrant data. In the early stages of the study of a spatially contin- 
uous data  set it is necessary to  check and clean the data;  the success of 
any estimation method depends on reliable data. Even after the data  
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Figure 3.4 Scatterplot of 100 U versus V values. The actual 100 data pairs are 
plotted in (a). In (b) the V value indicated by the arrow has been “accidentally” 
plotted as 14 ppm rather than 143 ppm to illustrate the usefulness of the scatterplot 
in detecting errors in the data. 

have been cleaned, a few erratic values may have a major impact on 
estimation. The scatterplot can be used to  help both in the validation 
of the initial da ta  and in the understanding of later results. 

The  scatterplot shown in Figure 3.4a does not reveal any obvious 
errors in the V and U values. There is one point that  plots in the upper 
right corner of Figure 3.4a with a U value of 55 ppm and a V vaIue 
of 143 ppm. Had the V value accidentally been recorded as 14 ppm, 
this pair of values would plot in the upper left corner all by itself, 
as in Figure 3.4b, and one’s suspicion would be aroused by such an 
unusual pair. Often, further investigations of such unusual pairs will 
reveal errors that  were most likely made when the data  were collected 
or recorded. 

A powerful principle underlies this simple concept of using a scat- 
terplot for error checking. We are relying on the general relationship 
between the two variables t o  tell us if a particular pair of values is un- 
usual. In the example given in the last paragraph, we expected the V 
value associated with a U value of 55 ppm to be quite high, somewhere 
between 100 and 150 ppm. This reasonable expectation comes from 
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looking at  the rest of the points on the scatterplot in Figure 3.4b and 
extrapolating their behavior. In part two of this book we will present 
an approach to estimation that relies on this same idea. 

A n  Introduction to Applied Geostatistics 

Correlation 

In the very broadest sense, there are three patterns one can observe on 
a scatterplot: the variables are either positively correlated, negatively 
correlated, or uncorrelated. 

Two variables are positively correlated if the larger values 
of one variable tend to be associated with larger values of the other 

variable, and similarly with the smaller values of each variable. In 
porous rocks, porosity and permeability are typically positively cor- 
related. If we drew a scatterplot of porosity versus permeability, we 
would expect to see the larger porosity values associated with the larger 
permeability values. 

Two variables are negatively correlated if the larger values of one 
variable tend to be associated with the smaller values of the other. 
In geological data sets, the concentrations of two major elements are 
often negatively correlated; in a dolomitic limestone, for example, an 
increase in the amount of calcium usually results in a decrease in the 
amount magnesium. 

The final possibility is that the two variables are not related. An 
increase in one variable has no apparent effect on the other. In this 
case, the variables are said to be uncorrelated. 

Correlat ion Coefficient. The correlation coefficient, p, is the statis- 
tic that is most commonly used to summarize the relationship between 
two variables. It can be calculated from: 

The number of data is n; 21,. . . ,z, are the data values for the first vari- 
able, rn, is their mean, and a, is their standard deviation; y1,.  . . , yn 
are the data values for the second variable, my is their mean, and ay 
is their standard deviation. 

The numerator in Equation 3.1 is called the covariance, 
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and is often used itself as a summary statistic of a scatterplot. The 
covariance between two variables depends on the magnitude of the data 
values. If we took all of our V-U pairs from Figure 3.1 and multiplied 
their values by 10, our scatterplot would still look the same, with 
the axes relabeled accordingly. The covariance, however, would be 100 
times larger. Dividing the covariance by the standard deviations of the 
two variables guarantees that the correlation coefficient will always be 
between -1 and +1, and provides an index that is independent of the 
magnitude of the data values. 

The covariance of our 100 V-U pairs is 216.1 ppm2, the standard 
deviation of V is 26.2 ppm and of U is 9.81 ppm. The correlation 
coefficient between V and U therefore, is 0.84. 

The correlation coefficient and the covariance may be affected by 
a few aberrant pairs. A good alignment of a few extreme pairs can 
dramatically improve an otherwise poor correlation coefficient. Con- 
versely, an otherwise good correlation could be ruined by the poor 
alignment of a few extreme pairs. Earlier, in Figure 3.4, we showed 
two scatterplots that were identical except for one pair whose V value 
had been erroneously recorded as 14 ppm rather than 143 ppm. The 
correlation coefficient of the scatterplot shown in Figure 3.4a is the 
value we calculated in the previous paragraph, 0.84. With the change 
of only one pair, the scatterplot shown in Figure 3.4b has a correlation 
coefficient of only 0.64. 

The correlation coefficient is actually a measure of how close the 
observed values come to falling on a straight line. If p = +1, then the 
scatterplot will be a straight line with a positive slope; if p = -1, then 
the scatterplot will be a straight line with a negative slope. For lpl < 1 
the scatterplot appears as a cloud of points that becomes fatter and 
more diffuse as IpI decreases from 1 to 0. 

It is important to note that p provides a measure of the linear re- 
lationship between two variables. If the relationship between two vari- 
ables is not linear, the correlation coefficient may be a very poor sum- 
mary statistic. I t  is often useful to supplement the linear correlation 
coefficient with another measure of the strength of the relationship, 
the rank correlation coefficient [l]. To calculate the rank correlation 
coefficient, one applies Equation 3.1 to the ranks of the data values 
rather than to the original sample values: 

1 

(3.3) 
;;Cy=i(Rzi - m&)(Ryi - ~ R U )  

O&ORy 
Prank = 
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Rzi is the rank of xi among all the other z values and is usually 
calculated by sorting the z values in ascending order and seeing where 
each value falls. The lowest of the z values would appear first on a 
sorted list and would therefore receive a rank of 1; the highest z value 
would appear last on the list and would receive a rank of n. By; is 
the rank of y; among all the other y values. M R ~ :  is the mean of all 
of the ranks Rz1,. . . , Rz,  and o h  is their standard deviation. mRy 
is the mean of all of the ranks Ryl ,  . . . , Ry, and U R ~  is their standard 
deviation [2]. 

Large differences between prank and p are often quite revealing 
about the location of extreme pairs on the scatterplot. Unlike the 
traditional correlation coefficient, the rank correlation coefficient is not 
strongly influenced by extreme pairs. Large differences between the two 
may be due to  the location of extreme pairs on the scatterplot. A high 
value of prank and a low value of p may be due to  the fact that  a few 
erratic pairs have adversely affected a n  otherwise good correlation. If, 
on the other hand, i t  is p that  is quite high while prank is quite low, 
then i t  is likely that the high value of p is due largely t o  the influence 
of a few extreme pairs. 

For the scatterplot shown in Figure 3.4b, the the coefficient of lin- 
ear correlation is 0.64, while the rank correlation coefficient is 0.80. 
The single aberrant pair in the upper left corner has less of an influ- 
ence on the rank correlation than i t  does on the traditional correlation 
coefficient. 

Differences between p and prank may also reveal important fea- 
tures of the relationship between two variables. If the rank correlation 
coefficient is +1, then the ranks of the two variables are identical: the 
largest value of z corresponds to  the largest value of y,  and the smallest 
value of z corresponds t o  the smallest value of y. If the rank correla- 
tion coefficient is +1, then the relationship between 2 and y need not 
be linear. I t  is, however, monotonic; if the value of z increases, then 
the value of y also increases. Two variables whose rank correlation 
coefficient is noticeably higher than their traditional linear correlation 
coefficient may exhibit a nonlinear relationship. For example, two vari- 
ables, X and Y ,  which are related by the equation Y = X2 will have 
a value of p near 0 but a value of prank of 1. 

The value of p is often a good indicator of how successful we might 
be in trying to  predict the value of one variable from the other with a 
linear equation. If IpI is large, then for a given value of one variable, the 
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other variable is restricted to only a small range of possible values. On 
the other hand, if lpl is small, then knowing the value of one variable 
does not help us very much in predicting the value of the other. 

Linear Regression 

As we noted earlier, a strong relationship between two variables can 
help us predict one variable if the other is known. The simplest recipe 
for this type of prediction is linear regression, in which we assume that 
the dependence of one variable on the other can be described by the 
equation of a straight line: 

y = a x + b  (3.4) 

The slope, a ,  and the constant, b, are given by: 

b = my - a m, QY a = p -  
0, 

(3.5) 

The slope, a,  is the correlation coefficient multiplied by the ratio of 
the standard deviations, with oY being the standard deviation of the 
variable we are trying to predict and Q, the standard deviation of the 
variable we know. Once the slope is known, the constant, b, can be 
calculated using the means of the two variables, m, and my. 

If we use our 100 V - U  pairs to calculate a linear regression equation 
for predicting V from U ,  we get 

26.2 
9.81 

a = 0.84 - = 2.24 b = 97.6 - 2.24 * 19.1 = 54.7 (3.6) 

Our equation to predict V from a known U value is then 

v = 2.24 u + 54.7 (3.7) 

In Figure 3.5b this line is superimposed on the scatterplot. Al- 
though it looks reasonable through the middle of the cloud, this regres- 
sion line does not look very good a t  the extremes. It would definitely 
overestimate very low values of V .  The problem is our assumption 
that the dependence of V on U is linear. No other straight line would 
do better than the one we calculated earlier[3]. 

Equation 3.7 gives us a prediction for V if U is known. We might 
also be interested in predicting U if V is the variable that is known. 
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Figure 3.5 Linear regression lines superimposed on the scatterplot. The regression 
line of U given V is shown in (a) ,  and of V given U in (b).  

In Equation 3.5, y is the unknown variable and x is known, so the 
calculation of a linear regression equation that predicts U from V is: 

9.81 
a = 0.84 - = 0.314 

26.2 
b = 19.1 - 0.314 * 97.6 = -11.5 (3.8) 

The linear regression equation for predicting U from a known V value 
is then 

U = 0.314 V - 11.5 (3.9) 
This regression line is shown in Figure 3.5a. In this figure we have 
plotted U on the y-axis and V on the x-axis to  emphasize the fact that 
i t  is U that  is the unknown in this case. We will continue with this 
convention throughout the book; for scatterplots on which there is a 
known variable and an unknown variable, we will plot the unknown 
variable on the y-axis. 

A close look a t  Figure 3.5a and Figure 3.5b reveals that  the two 
regression lines are not the same; indeed Equation 3.9 is not simply a 
rearrangement of Equation 3.7. 

The regression line shown in Figure 3.5a raises a n  issue that we 
will confront when we look a t  estimation in part two. Noticing that 
the regression line hits the x-axis near a V value of 35 ppm, one might 
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Table 3.3 Mean values of V within classes defined on the U value. 

Number Mean 
Class of Pairs of V 

0 L U <  5 8 40.3 
5 I U <  10 8 72.4 

10 < U <  15 10 85.5 

20 < U <  25 15 106.9 
25 < U <  30 12 113.5 
30 < U <  35 7 125.7 
35 <u< 00 7 133.9 

15 s U <  20 33 97.5 

wonder what the predicted value of U is for a V value of about 5 ppm. 
Of course, the regression line continues into negative values for U and 
if we substitute a value of 5 ppm for V into Equation 3.9 we get a 
predicted value of -6.2 ppm for U .  This is clearly a silly prediction; U 
values are never negative. Simple linear regression does not guarantee 
positive estimates, so where common sense dictates that the data values 
are always positive, it is appropriate to set negative predictions to  0, or 
to consider other forms of regression which that respect this constraint. 

Conditional Expectation 

The formulas for calculating a linear regression equation are very sim- 
ple but the assumption of a straight line relationship may not be good. 
For example, in Figure 3.5a the regression line seems inadequate be- 
cause the cloud of points has a clear bend in it. 

An alternative to linear regression is to calculate the mean value of 
y for different ranges of 2. In Table 3.3 we have calculated the mean 
value of V for different ranges of U .  Each of our 100 U - V pairs has 
been assigned to a certain class based on its U value, and the mean 
value of V has been calculated separately for each class. 

If we wanted to predict an unknown V value from its corresponding 
U value, we could assign the new pair to the proper class based on its 
known U value then use the mean of all the other V values from that 
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Figure 3.6 A graph ‘of the mean values of V within classes defined on U values. 

same class as our predicted value. This results in a prediction curve 
that looks like the one shown in Figure 3.6. The curve is discontinuous 
because the predicted value of V jumps to  a new value whenever we 
cross a U class boundary. 

This is a type of conditional expectation curve. Within certain 
classes of U values we have calculated an expected value for V .  Though 
“expected value” has a precise probabilistic meaning, it is adequate 
for our purposes here to  allow it t o  keep its colloquial meaning, “the 
value one expects t o  get.” Our expected values are called conditional 
because they are good only for a certain range of U values; if we move 
t o  a different class, we expect a different value. The  stair step curve 
shown in Figure 3.G is obtained by moving through all the possible 
classes of U and calculating an expected value of V for each class. 

Ideally, with a huge number of data,  one would like to  make a 
conditional expectation curve with as many classes as possible. As the 
number of classes increases, the width of each particular class would get 
narrower and the discontinuities in our  conditional expectation curve 
would get smaller. In the limit, when we have a huge number of very 
narrow classes, our conditional expectation curve would be a smooth 
curve that  would give us an expected value of V conditional t o  known 
U values. When we speak of the conditional expectation curve we are 
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Figure 3.7 Conditional expectation curves superimposed on the scatterplot. The 
expected value of U given V is given in (a) and the expected value of V given U is 
shown in (b). 

usually referring to this ideal limit. This ideal limit would serve very 
well as a prediction curve, being preferable to  the linear regression line 
since it is not constrained to any assumed shape. 

Regrettably, there are many practical problems with calculating 
such an ideal limit. From Table 3.3 we can see that if the class width 
was made any narrower, we would start to run out of pairs in the 
highest and lowest classes. As the number of pairs within each class 
decreases, the mean value of V from one class to the next becomes 
more erratic. This erraticness also increases as the correlation between 
the two variables gets poorer. 

There are many methods for dealing with these practical compli- 
cations. We have adopted one particular method for use throughout 
this book [4]. Whenever we present a conditional expectation curve, 
it will have been calculated using the method that, for the curious, is 
referenced in the notes at the end of this chapter. 

We will not be relying on these conditional expectation curves for 
prediction but will be using them only as graphical summaries of the 
scatterplot. It will often be more informative to  look at the conditional 
expectation curve than at the whole scatterplot. 
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Just  as we had two regression lines, one for predicting V from 
U ,  and another one for predicting U from V ,  so too are there two 
conditional expectation curves, one that gives the expected value of V 
given a particular value of U and another that  gives the expected value 
of U given a particular value of V .  

In Figure 3.7 we show the conditional expectation curves that our 
particular method produces. It is interesting to  note that for predicting 
V from U ,  the conditional expectation curve is quite different from the 
regression line shown in Figure 3.5b, but for the prediction of U from V ,  
the regression line is quite close to  the conditional expectation curve. 
Even though the conditional expectation curve is, in some sense, the 
ideal prediction curve, linear regression offers a very simple alternative 
that  is often adequate. 

Notes 

[l] The linear coefficient of correlation given in Equation 3.1 is often 
referred to  in the statistical literature as the Pearson correlation 
coefficient while the correlation coefficient of the ranks given in 
Equation 3.3 is often referred to as the Spearman rank correlation 
coefficient. 

[2] All of the numbers from 1 to  n appear somewhere in the set of x 
ranks, Rz l , .  . . , Rx,, and also in the set of y ranks, Ryl, .  , . , Ry,. 
For this reason, the univariate statistics of the two sets are identical. 
In particular, for large values of n ,  the values of mRz and mRy are 
both close to  n/2, and the values of a;, and a i y  are both close to 
n/12. 

[3] There are many assumptions built into the theory that views this 
particular line as the best. Since a t  this point we are proposing this 
only as a tool for summarizing a scatterplot, we defer the discussion 
of these important assumptions until the second part of the book 
where we deal specifically with methods that  aim a t  minimizing 
the variance of the estimation errors. 

[4] Summarizing a scatterplot with a conditional expectation curve 
is often a useful way of defining a nonlinear relationship between 
two variables. Often the overall shape of the point cloud clearly 
reveals a relationship between two variables that can be more ac- 
curately described by a smooth curve drawn through the cloud 
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than it can by a straight line. For example, a scatterplot of y(h) 
and h (commonly called a variogram cloud), most often reveals a 
nonlinear relationship between y ( h )  and h that is best described 
by a smooth curve. There are a number of methods one can use 
for estimating the conditional expectation curves of a scatterplot; 
the algorithms are known generally as smoothers. The particular 
smoother we have chosen for use throughout this book is based on 
linear regression within a local sliding neighborhood. The algorithm 
provides an “optimal” neighborhood size as well as an option for 
curve estimation using methods resistant t o  extreme values. A com- 
plete description of the smoother with Fortran code is provided in: 
Friedman, J. H. and Stuetzle, W. , “Smoothing of Scatterplots,” 
Tech. Rep. Project Orion 003, Department of Statistics, Stanford 
University, July 1982. 
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SPATIAL DESCRIPTION 

One of the things that distinguishes earth science data  sets from most 
others is that  the data belong to some location in space. Spatial fea- 
tures of the data  set, such as the location of extreme values, the overall 
trend, or the degree of continuity, are often of considerable interest. 
None of the univariate and bivariate descriptive tools presented in the 
last two chapters capture these spatial features. In this chapter we 
will look at the spatial aspects of our 100 selected data  and incorpo- 
rate their location into our description. 

Data Postings 

As with the histogram from Chapter 2 and the scatterplot from Chap- 
ter 3, our most effective tools for spatial description are visual ones. 
The  simplest display of spatial data  is a data  posting, a map on which 
each da ta  location is plotted along with its corresponding data  value. 
Figure 2.1 was a data  posting of the V values; Figure 3.1 added the U 
values. 

Postings of the data  are an important initial step in analyzing spa- 
tial data  sets. Not only do  they reveal obvious errors in the data  loca- 
tions, but they often also draw attention to data  values that ma.y be 
erroneous. Lone high values surrounded by low values and vice versa 
are worth rechecking. With irregularly gridded data,  a da ta  posting 
often gives clues to  how the data were collected. Blank areas on the 
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Figure 4.1 Location of the lowest V values in (a), and the highest values in (b). 

map may have been inaccessible; heavily sampled areas indicate some 
initial interest. 

Locating the highest and lowest values on a posting of the data may 
reveal some trends in the data. On Figure 4.la we have highlighted the 
10 lowest values from Figure 2.1. Seven values, 19, 40, 52, 64, 48, 52, 
and 0 are located in a north-south trough that runs through the area. 
On Figure 4.lb, a similar display for the 10 highest values, no obvious 
trend is apparent, with the highest values appearing in the southeast 
corner. 

Contour Maps 

The overall trends in the data values can be revealed by a contour 
map. Contouring by hand is an excellent way to  become familiar with 
a data set. Unfortunately, the size of many data sets makes automatic 
contouring with a computer an attractive alternative. The contour 
map of the V values shown in Figure 4.2 was generated by computer. 

At this preliminary descriptive stage the details of the contouring 
algorithm need not concern us as long as the contour map provides a 
helpful visual display. There are many algorithms that provide an ad- 
equate interpolation of the data values. A good automatic contouring 



42 A n  Introduction to Applied Geostatistics 

Figure 4.2 Computer generated contour map of 100 selected V data. The contour 
lines are at intervals of 10 ppm and range from 0 to 140 ppm. 

program will also pay attention to  aesthetic details such as the use of 
downhill tick marks to  show depressions. 

Some of the features we noticed earlier on the data  posting become 
clearer when contoured. The north-south trough is readily apparent, 
as are the local maximums. Also, some features that were not obvious 
from the data  posting alone are now more prominent. The closeness 
of the contour lines in the southeastern corner indicates a steep gra- 
dient and draws our attention t o  the fact that  the highest data  value 
(145 ppm) is very close t o  the lowest data value (0 ppm). 

Automatic contouring of irregularly gridded da ta  usually requires 
the da ta  values t o  be interpolated to a regular grid. Interpolated Val- 
ues are usually less variable than the original da ta  values and make 
the contoured surface appear smoother. This is an aesthetic asset, but 
a smoother surface understates the variability and may be misleading 
from a quantitative point of view. In this book we treat our contour 
maps as we treat our conditional expectation curves: as helpful quali- 
tative displays with questionable quantitative significance. 
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Figure 4.3 Symbol map of 100 selected V data. Each symbol represents a class 
of data values as indicated by the legend on the right-hand side of the figure. 

Symbol Maps 

For many very large regularly gridded data sets, a posting of all the 
data values may not be feasible, and a contour map may mask many of 
the interesting local details. An alternative that is often used in such 
situations is a symbol map. This is similar to a data posting with each 
location replaced by a symbol that denotes the class to which the data 
value belongs. These symbols are usually chosen so that they convey 
the relative ordering of the classes by their visual density. This type of 
display is especially convenient if one has access to a line printer but 
not to a plotting device. Unfortunately, the scale on symbol maps is 
usually distorted since most line printers do not print the same number 
of characters per inch horizontally as they do vertically. 

For a data set as small as our 10 x 10 m2 grid, a symbol map is 
probably not necessary since the actual data values are easy to post. 
In order to show a simple example, however, we present a symbol map 
in Figure 4.3 that corresponds to the posting from Figure 2.1. In this 
display we have used the digits 0 through 9 to denote which of the 
ten classes the V value a t  each location belongs. An alternative to the 
symbol map is a grayscale map. In such a map the symbols have been 
replaced with a suitable shade of grey as shown in Figure 4.4. These 
maps are much more pleasing to  the eye and provide an excellent visual 
summary of the data [I]. 
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Figure 4.4 Grayscale map of 100 selected V data. The value of each V datum is 
indicated by its shade of grey as shown by the scale at the top of the figure. 

Indicator Maps 

An indicator map is a symbol map on which there are only two symbols; 
in our examples here we use a black box and a white box. With only 
two symbols one can assign each data  point t o  one of only two classes, 
so an indicator map simply records where the data  values are above 
a certain threshold and where they are below. Though this may seem 
at first t o  b e  rather restrictive, a series of indicator maps is often very 
informative. They share the advantage with all symbol maps that  they 
show more detail than a contour map and that they avoid the difficulty 
of distinguishing between symbols that exist with conventional symbol 
maps. 

In Figures 4.5a-i we show a series of nine indicator maps corre- 
sponding to the nine class boundaries from our symbol map in Fig- 
ure 4.3. Each map shows in white the data  locations a t  which the 
V value is less than the given threshold and in black the locations a t  
which V is greater than or equal t o  the threshold. This series of indica- 
tor maps records the transition from low values that tend to  be aligned 
in a north-south direction to high values that tend t o  be grouped in 
the southeast corner. Different indicator maps give good views of dif- 
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Figure 4.5 Indicator maps of the 100 selected V data. Each figure is a map of 
indicators defined using the indicated cutoff values. The pattern of indicators in the 
sequence of maps provides a detailed spatial description of the data. For example, 
the indicator map defined a t  75 ppm reveals the trough of low values seen earlier 
in the contour and symbol maps of Figures 4.2 and 4.3. 
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Figure 4.6 
moving average statistics. 

Example of overlapping moving windows for purposes of calculating 

ferent spatial features. Figure 4.5f, for example, gives the best image 
of the north-south trough we noticed earlier, while Figure 4.5g gives 
the best image of the local maximums. The usefulness of these maps 
will become more apparent in Chapter 5 where a series of indicator 
maps are used to  explore several large data  sets. 

Moving Window Statistics 

In the analysis of earth science data  sets one is often most interested in 
the anomalies (i.e., the high grade veins in a gold deposit) or the imper- 
meable layers that  condition flow in a petroleum reservoir. A contour 
map will help locate areas in which the average value is anomalous, 
but anomalies in the average value are not the only interesting ones. 

It is quite common to  find that the data values in some regions are 
more variable than in others. The statistical jargon for such anoma- 
lies in the variability is heteroscedasticity. Such anomalies may have 
serious practical implications. In a mine, very erratic ore grades often 
cause problems at the mill because most metallurgical processes bene- 
fit from low variability in the ore grade. In a petroleum reservoir, large 
fluctuations in the permeability can hamper the effectiveness of many 
secondary recovery processes. 

The calculation of a few summary statistics within moving windows 
is frequently used t o  investigate anomalies both in the average value 
and in the variability. The area is divided into several local neighbor- 
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Figure 4.7 Posting of statistics obtained from moving windows on the 100 V 
data. The mean of each moving window is plotted above the “+”, and the standard 
deviation below. 

hoods of equal size and within each local neighborhood, or window, 
summary statistics are calculated. 

Rectangular windows are commonly used, largely for reasons of 
computational efficiency. The size of the window depends on the av- 
erage spacing between data locations and on the overall dimensions of 
the area being studied [2]. We want to have enough data within each 
neighborhood to calculate reliable summary statistics. If we make our 
windows too large, however, we will not have enough of them to iden- 
tify anomalous localities. 

Needing large windows for reliable statistics and wanting small win- 
dows for local detail may leave little middle ground. A good compro- 
mise is often found in overlapping the windows, with two adjacent 
neighborhoods having some data in common. 

In Figure 4.6 we show an example of an overlapping moving window 
calculation. We have chosen to use a 4 x 4 m2 window so that we will 
have 16 data in each local neighborhood. By moving the window only 
2 m each time so that it overlaps half of the previous window, we can 
fit 16 such windows into our 10 x 10 m2 area. Had we not allowed 
the windows to overlap, we would have had only four separate local 
neighborhoods. 

For large regularly gridded data sets, overlapping windows are usu- 
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ally not necessary. For smaller data  sets or for ones in which the data  
are irregularly spaced, overlapping becomes a useful trick. With irreg- 
ularly spaced data  it is also important t o  decide how many data  will 
be required within each window for a reliable calculation of the sum- 
mary statistics. If there are too few data  within a particular window, 
i t  is often better t o  ignore that window in subsequent analysis than to  
incorporate a n  unreliable statistic. 

With enough data  in any window, one can calculate any of the 
summary statistics we have previously discussed. The  mean and the 
standard deviation are commonly used, with one providing a measure 
of the average value and the other a measure of the variability. If the 
local means are heavily influenced by a few erratic high values, one 
could use the median and interquartile range instead. 

The means and standard deviations within 4 x 4 m2 windows are 
shown in Figure 4.7. As shown in Figure 4.6 and described earlier, 
the windows overlap each other by 2 m, giving us a total of 16 local 
neighborhood means and standard deviations. We have posted these 
values in Figure 4.7, where the center of each window is marked with a 
plus sign. The mean of each window is plotted above the + sign while 
the standard deviation is plotted below. If we had a larger area and 
many more local neighborhoods, a more informative display would be 
two contour maps, with one showing the means and the other showing 
the standard deviations. 

From this posting of moving window means and standard devia- 
tions we can see that both the average value and the variability change 
locally across the area. The windows with a high average value corre- 
spond to  the highs we can see on the contour map (Figure 4.2). The 
local changes in variability, however, have not been captured by any of 
our previous tools. In the southeastern corner we see the highest local 
standard deviations, a result of the very low values in the trough being 
adjacent t o  some of the highest values in the entire area. The very 
low standard deviation on the western edge reflects the very uniform 
V values in that  region. 

It is interesting to note in this example that the standard deviations 
vary much more across the area than the means. I t  is often tempting 
t o  conclude that uniformity in the local means indicates generally well 
behaved data  values. Here we see that even though the mean values are 
quite similar, ranging from 83.9 to 106.7 ppm, the standard deviations 
can be quite different, ranging from 9.1 t o  41.3 ppm. 
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Figure 4.8 Hypothetical profiles of da ta  values illustrating common relationships 
between the local mean and local variability. In (a) the local mean, represented by 
the straight line, and the variability are  both constant. Case (b) shows a trend in 
the local mean while the variability remains constant. Case (c) exhibits a constant 
local mean while the variability contains a trend and case (d) illustrates a trend in 
both the local mean and the  variability. 

Proportional Effect 

When we look at estimation in later chapters, anomalies in the local 
variability will have an impact on the accuracy of our estimates. If 
we are in an area with very uniform values, the prospects for accurate 
estimates are quite good. On  the other hand, if the data  values fluc- 
tuate wildly our chances for accurate local estimates are poor. This 
has nothing to  do  with the estimation method we choose to use; the 
estimates from any reasonable method will benefit from low variability 
and suffer from high variability. 

In a broad sense there are four relationships one can observe be- 
tween the local average and the local variability. These are shown in 
Figures 4.8a-d, which represent hypothetical profiles of the data  val- 
ues. On each profile the line that connects the plus signs represents 
the actual da t a  values; the smoother line represents the local average. 
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In Figure 4.8a the average and the variability are both constant. 
The data  values fluctuate about the local average, but there is no 
obvious change in the variability. In Figure 4.8b, there is a trend to 
the local average; i t  rises gradually then falls. The variability, however, 
is still roughly constant. In Figure 4.8c, we see the reverse case, where 
the local average is constant while the variability changes. The  most 
common case for earth science data  is shown in Figure 4.8d, where 
the local average and variability both change together. As the local 
average increases, so, too, does the local variability. 

For estimation, the first two cases are the most favorable. If the 
local variability is roughly constant, then estimates in any particular 
area will be as good as estimates elsewhere; no area will suffer more 
than others from highly variable data  values. It is more likely, how- 
ever, that  the variability does change noticeably. In such a case, i t  is 
preferable to  be in a situation like the one shown in Figure 4Ad, where 
the local variability is related to the local average and is, therefore, 
somewhat predictable. It is useful, therefore, t o  establish in the initial 
da t a  analysis if such a predictable relationship does exist. 

A scatterplot of the local means and the local standard deviations 
from our moving window calculations is a good way to check for a 
relationship between the two. If it exists, such a relationship is gen- 
erally referred to  as a proportional eflect. One of the characteristics 
of normally distributed values is that  there is usually no proportional 
effect; in  fact, the local standard deviations are roughly constant [3]. 
For lognormally distributed values, a scatterplot of local means versus 
local standard deviations will show a linear relationship between the 
two. 

Figure 4.9 shows a scatterplot of the local means versus the local 
standard deviations from the 16 local neighborhoods shown in Fig- 
ure 4.7. The correlation, coefficient is only 0.27, which is quite low. 
There is no apparent relationship between the mean and the standard 
deviation for our 100 selected values. In the next chapter, where we 
analyze the complete exhaustive data  set, we will see that this is gen- 
erally not the case. 

S pat ial C o ii t iiiu i t y 

Spatial continuity exists in most earth science data  sets. Two data 
close to each other are more likely to have similar values t,han two 
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Figure 4.9 Plot of the standard deviation versus the mean obtained from moving 
windows on the 100 V data. 

data that are far apart. When we look at a data posting or a contour 
map, the values do not appear to  be randomly located, but rather, low 
values tend to be near other low values and high values tend to be near 
other high values. Often we are interested in zones of anomalously high 
values where the tendency of high values to be near other high values 
is very obvious. Indeed, as we remarked earlier, a single very low value 
surrounded by high ones usually raises our suspicion. 

In the last chapter we gave an example in Figure 3.4 where we 
relied on the strong observed relationship between two variables to 
detect errors in the data. When we see a solitary extreme value on a 
map, our intuition warns us that it may be in error because it shows an 
unusual relationship with the other values. This same intuition drew 
our attention to the strange point on Figure 3.4. 

The tools we used to describe the relationship between two vari- 
ables can also be used to describe the relationship between the value of 
one variable and the value of the same variable at  nearby locations. We 
will use the scatterplot to display spatial continuity and, as we shall 
see, the same statistics we used in the last chapter to summarize the 
relationship between two variables can also be used to summarize spa- 
tial continuity. We will also introduce several new tools that describe 
spatial continuity. 
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Figure 4.10 An illustration of the vector notation used in the text. 

11-Scat t erplo t s  

An h-scatterplot shows all possible pairs of data  values whose locations 
are separated by a certain distance in a particular direction. The 
notation we use t o  describe such pairs requires some explanation. This 
is frequently a stumbling block for newcomers to geostatistics so we 
have tried to limit the confusion between similar symbols for different 
concepts by taking advantage of different fonts or letter styles. 

The letters 2 and y are used to  refer t o  coordinates on a graphical 
display. For example, in the last chapter we wrote the equation of a 
regression line as y = ax + b, and we understood that y meant the 
value of the unknown variable and x meant the value of the known 
variabIe. The  letters x and y will be used to  refer t o  coordinates that 
have spatial significance. For example, the 10 x 10 m2 grid of data  
values that we have been using in these chapters t o  present descriptive 
tools includes all values from x = 11 E to x = 20 E and from y = 241 N 
t o  y = 250 N; here, the x and y are actual eastings and northings. 

The location of any point can be described by a vector, as can the 
separation between any two points. When describing pairs of values 
separated by a certain distance in a particular direction, i t  is convenient 
t o  use vector notation. In the diagram in Figure 4.10, the location of 
the point at (xi,yi) can be written as t;, with the bold font of the t 
reminding us that it is a vector. Similarly, the location of the point 
a t  (x j ,y j )  can be written as tj. The separation between point i and 
point j is t j  - t i ,  which can also be expressed as the coordinate pair 
( x j  - x;,yj - y;). Sometimes it will be important to distinguish between 
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Figure 4.11 Examples of how data can be paired to obtain an h-scatterplot. 

the vector going from point i to  j and the vector from j to i. We will 
use the symbol hij to  refer to the vector going from point i to  point j 
and hj; for the vector from point j to i. 

On our h-scatterplots, the x-axis is labeled V(t) and the y-axis is 
labeled V(t + h). The x-coordinate of a point corresponds to the V 
value at a particular location and the y-coordinate to  the V value a 
distance and direction h away. If, for example, h=(0,1) it means that 
we have taken each data location and paired it with the data location 
whose easting is the same and whose northing is 1 m larger (i.e., the 
data location 1 m to the north). Figure 4.11a shows the 90 pairs of 
data locations separated by exactly 1 m in a northerly direction for our 
10 x 10 m2 area. To take another example, if h=( l , l )  then each data 
location has been paired with the data location whose easting is 1 m 
larger and whose northing is also 1 m larger (i.e., the data location a t  
a distance of f i  m in a northeasterly direction). Figure 4.11b shows 
the 81 pairs of data locations separated by 4 m in a northeasterly 
direction for our 10 x 10 m2 area. 

The shape of the cloud of points on an h-scatterplot tells us how 
continuous the data values are over a certain distance in a particular 
direction. If the data values at locations separated by h are very similar 
then the pairs will plot close to the line 2 = y, a 45-degree line passing 
through the origin. As the data values become less similar, the cloud 
of points on the h-scatterplot becomes fatter and more diffuse. 



54 An Introduction to Applied Ceostatistics 

Q 
Y 

150 * 

100 

+ *+' - b = (0.1) 

. .  
; + + *' + + 

,' + 

+ 
I 1 I 

0 50 100 150 
V(0 

100 

Q 
Y 

+' 
+ r  

+ , '+ 
+ +  t + 

+ i.$ 
+ +@I+ &+*++ + ++ + + ?+* + 

#+++.' .I+ 
+ +#&+++ 

s Q l o o t  , *  y*+ ,' + + ' +  
,' + 

50 t I * s e ,  ' + 

' +  
,' + 

50 t I * s e ,  ' + 

Figure 4.12 h-Scatterplots for four separation distances in a northerly direction 
between pairs of the 100 V values. As the separation distance increases, the simi- 
larity between pairs of values decreases and the points on the h-scatterplot spread 
out further from the diagonal line. 

For our 100 selected V values the change in continuity in a north- 
erly direction is captured in Figures 4.12a-d, which show the four 
h-scatterplots for data values located 1 m apart to 4 m apart in a 
northerly direction. Looking at these four h-scatterplots we see that 
from h=(0,1) to h=(0,4) the cloud gets progressively fatter as the 
points spread out, away from the 45-degree line. Although the 45- 
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degree line passes through the cloud of points on each h-scatterplot, 
the cloud is not symmetric about this line. Direction is important in 
constructing an h-scatterplot; a pair of data values, u; and uj ,  appears 
on the h-scatterplot only once as the point (ui ,uj)  and not again as 
(v j ,v i )  [4]. 

On our four h-scatterplots in Figure 4.12 we notice that there are 
some points that do not plot close to the rest of the cloud. For example, 
in each of the scatterplots there is one point that plots near the bottom 
of the scatterplot. In each case this point involves the 19 ppm V value 
16cated on the northern edge of our 10 x 10 m2 area. In Figure 4.12a, 
this value is paired with the 77 ppm value immediately to the south 
accounting for the unusual point which plots far away from the 45- 
degree line. On the other h-scatterplots in Figure 4.12, the 19 ppm 
value is paired with the 91 ppm value in (b), the 64 ppm value in (c), 
and the 108 ppm value in (d). 

Whenever we summarize h-scatterplots we should be aware that our 
summary statistics may be influenced considerably by a few aberrant 
data values. It is often worth checking how the summary statistics 
change if certain data are removed. 

Correlation Functions, Covariance Functions, and 
Var iograms 

As with our other graphical displays, we often need some quantitative 
summary of the information contained on an h-scatterplot. As we 
pointed out in the last section, one of the essential features of an h- 
scatterplot is the fatness of the cloud of points. We already have a 
way of summarizing this feature-the comlation coeflcient. As the 
cloud of points gets fatter, we expect the correlation coefficient to 
decrease. The correlation coefficients for each of the four scatterplots in 
Figures 4.12a-d are given in Table 4.1. As we expected, the correlation 
coefficient steadily decreases and is therefore a useful index for our 
earlier impression that the cloud of points was getting fatter. 

The relationship between the correlation coefficient of an h-scat- 
terplot and h is called the comlation finction or comlogmm. The 
correlation coefficient depends on h which, being a vector, has both a 
magnitude and a direction. 'To graphically display the correlation func- 
tion, one could use a contour map showing the correlation coefficient 
of the h-scatterplot as a function of both magnitude and direction. 
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Table 4.1 
Figures 4.12a-d. 

Statistics summarizing the fatness of the four h-scatterplots shown in 

Moment 
Correlation Covariance of Inertia 

h Coefficient (ppm2) (ppm2) 
(0 , l )  0.742 448.8 312.8 
(0,2) 0.590 341.0 479.2 
(0,3) 0.560 323.8 521.4 
(0,4) 0.478 291.5 652.9 

Though this provides a complete and effective display of p(h), it is not 
a traditional format. Instead, we usually plot separate graphs of the 
correlation function versus the magnitude of h for various directions. 

In Figure 4.13a we use the data  from Table 4.1 t o  show how the 
correlation coefficient decreases with increasing distance in a northerly 
direction. Similar plots for other directions would give us a good im- 
pression of how the correlation coefficient varies as a function of both 
separation distance and direction. 

An alternative index for spatial continuity is the covariance. The 
covariance for each of our h-scatterplots is also given in Table 4.1. We 
can see that these also steadily decrease in a manner very similar to 
the correlation coefficient [5]. The relationship between the covari- 
ance of a n  h-scatterplot and h is called the covariance function [6 ] .  
Figure 4.13b shows the covariance function in a northerly direction. 

Another plausible index for the fatness of the cloud is the moment 
of inertia about the line z = y, which can be calculated from the 
following: 

( 4 4  
l n  2 moment of inertia = -C(zj - yj> 

2n i= l  

It is half of the average squared difference between the z and y coor- 
dinates of each pair of points on the h-scatterplot, the factor f being 
a consequence of the fact that  we are interested in the perpendicular 
distance of the points from the 45-degree line. 

This is a summary statistic we did not consider when we first looked 
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Figure 4.13 
the moment of inertia given in Table 4.1. 

Plots of (a) the correlation coefficient, (b) the covariance, and (c) 

a t  scatterplots in Chapter 3. Though the moment of inertia about the 
line z = y can be calculated for any scatterplot, i t  usually has no 
particular relevance since there is usually no special significance to  
the 45-degree line. On an  h-scatterplot, however, this line does have 
special significance because we are pairing values of the same variable 
with each other. All of the points on the h-scatterplot for h = (0,O) 
will fall exactly on the line x = y since each value will be paired with 
itself. As Ihl increases, the points will drift away from this line and 
the moment of inertia about the 45-degree line is therefore a natural 
measure of the fatness of the cloud. 

Unlike the other two indices of spatial continuity, the moment of 
inertia increases as the cloud gets fatter. In Table 4.1 we see that the 
moment of inertia increases as the correlation coefficient and covariance 
decrease. The relationship between the moment of inertia of an h- 
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Table 4.2 
coefficient. 

Effect of the points involving the 19 ppm value on the correlation 

Correlation Coefficient 
h All points 19 ppm excluded 

(071) 0.742 0.761 
(072) 0.590 0.625 
(073) 0.560 0.551 
(0.4) 0.478 0.559 

scatterplot and h is traditionally called the sernivariograrn [7]. The 
semivariogram, or simply the variogram, in a northerly direction is 
shown in Figure 4 . 1 3 ~ .  

The three statistics we have proposed for summarizing the fatness 
of the cloud of points on an h-scatterplot are all sensitive t o  aberrant 
points. It is important t o  evaluate the effect of such points on our 
summary statistics. In the last section we noted that there are some 
unusual points on all of the h-scatterplots in Figure 4.12; all of these 
points involve the 19 ppm value on the northern edge of the area. In 
Table 4.2 we compare the correlation coefficients from Table 4.1 t o  the 
correlation coefficients calculated with the 19 ppm value removed. 

Table 4.2 shows that a single erratic value can have a significant im- 
pact on the correlation coefficient of an h-scatterplot. The  covariance 
and the moment of inertia are similarly affected. The  sensitivity of 
our summary statistics t o  aberrant points requires that we pay careful 
attention to  the effect of any erratic values. In practice, the correla- 
tion function, the covariance function, and the variogram often do not 
clearly describe the spatial continuity because of a few unusual values. 
If the shape of any of these functions is not well defined it is worth 
examining the appropriate h-scatterplots t o  determine if a few points 
are having an undue effect. 

Although the h-scatterplots contain much more information than 
any of the three summary statistics we have described, it is quite com- 
mon to  bypass the actual h-scatterplots and go directly to either p(h), 
C( h) or Y( h) to  describe spatial continuity. It is convenient, therefore, 
t o  have the formulas for these functions expressed directly in terms 
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of the data values rather than in terms of x and y coordinates on an 
h-scat terplot. 

The formulas we present below are the same as the ones we pre- 
sented in Equation 3.1 and Equation 4.1. They have been rewritten 
directly in terms of the data values and rearranged to reflect the form 
in which they are usually computed. 

The covariance function, C(h), can be calculated from the following 
PI: 

The data values are v1,. . . , v,; the summation is over only the N(h) 
pairs of data whose locations are separated by h. m-h is the mean of 
all the data values whose locations are -h away from some other data 
location: 

m+h is the mean of all the data values whose 
from some other data location: 

(4.3) 

locations are +h away 

The values of m-h and m+ll are generally not equal in practice. 

ized by the appropriate standard deviations: 
The correlation function, p( h), is the covariance function standard- 

0-h is the standard deviation of all the data values whose locations 
are -h away from some other data location: 

(J+h is the standard deviation of all the data values whose locations 
are +h away from some other data location: 
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Like the means, the standard deviations, 0-h and 0+h, are usually not 
equal in practice. 

The variogram, Y( h), is half the average squared difference between 
the paired data  values: 

The  values of p(h), C(h) and Y(h) are unaffected if we switch all 
of the i and j subscripts in the preceding equations. For example, 
Equation 4.8 would become 

(4.9) 

Instead of summing over all ( j , i )  pairs that  are separated by h, we 
could sum over all ( i , j )  pairs that  are separated by -h and Equa- 
tion 4.9 would become 

(4.10) 

The right-hand side is equal to Y(-h), so we have the result that  

Y(h) = ?(-h) (4.11) 

This result entails that  the variogram calculated for any particular 
direction will be identical to the variogram calculated in the opposite 
direction. The correlation function and the covariance function share 
this property. For this reason we commonly combine opposite direc- 
tions when we are describing spatial continuity. For example, rather 
than speak of the spatial continuity in the northerly direction, as we 
have been doing so far, i t  is more common to  speak of spatial conti- 
nuity in the north-south direction, since any of our summary statistics 
will have the same values in the northerly direction as in the southerly. 

Cross h-Scatterplots 

We can extend the idea of a n  h-scatterplot t o  that of a cross h-scat- 
terplot. Instead of pairing the value of one variable with the value of 
the same variable a t  another location, we can pair values of different 
variables a t  different locations. 
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Figure 4.14 Cross h-scatterplots of the 100 V and CJ values at various separation 
distances in the north-south direction. 

In Figure 4.14 we show the cross h-scatterplot between V and U 
for various values of h. The %-coordinate of each point is the V value 
at a particular data location and the y-coordinate is the U value a t  a 
separation distance Ihl to  the north. The scatterplot of V values versus 
the U values that we saw in Figure 3.4a can be thought of as a cross h- 
scatterplot for h = (0,O). The 2-coordinate of each point corresponded 
to  the V value at  a particular location and the y-coordinate to  the U 
value a t  the same location. A comparison between the four scatterplots 
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Table 4.3 Statistics summarizing the fatness of the four cross h-scatterplots shown 
in Figures 4.14a-d. 

Cross Cross Cross 
Correlation Covariance variogram 

h Coefficient (PPm2) (PPm2) 
(070) 0.84 218.3 0.0 

(072) 0.45 94.2 80.7 

(074) 0.28 60.1 111.0 

(071) 0.60 144.0 54.2 

(073) 0.36 73.1 89.5 

in Figure 4.14 shows that the relationship between the two variables 
becomes progressively weaker as I hl increases. 

The correlation coefficient and the covariance that we used t o  de- 
scribe the spatial continuity of one variable, are also useful for de- 
scribing the spatial continuity between variables. Table 4.3 lists the 
correlation coefficient, the covariance, and variogram values of the four 
scatterplots shown in Figure 4.14. 

The cross-covariance and cross-correlation function describe the re- 
lationship between these statistics of a cross h-scatterplot and h. The 
cross-covariance function between two variables can be calculated from 
the following equation: 

The data  values of the first variable are u1,. . . , u, and the data  values 
of the second variable are v1,. . . , vn. As in Equation 4.2, the summa- 
tion is over only those pairs of data  whose locations are separated by h. 
m-uh is the mean value of the first variable over those data  locations 
which are -h away from some other v - type data  location: 

(4.13) 

mUSh is the mean value of the second variable over those locations that 
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Figure 4.15 The cross-correlation, cross-covariance, and cross-variogram functions 
for the 100 selected V and U values are shown in (a), (b), and (c), respectively. 

are +h away from some other u - type data location: 

The cross-correlation function is given by the equation 

(4.14) 

(4.15) 

is the standard deviation of the first variable at locations that 
are -h away from some other data location: 

(4.16) 
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ou+h is the standard deviation of the second variable a t  locations that 
are +h away from some other data  location: 

(4.17) 

Equation 4.8, which we used to  define the variogram, can be extended 
t o  a cross-variogram equation: 

This is no longer the moment of inertia about the line 2 = y, since the 
line z = y now has no particular significance. On  a cross h-scatterplot 
there is no reason for pairs of values to  plot on this line. 

In Figure 4.15a-c, we show the cross correlation function, the cross 
covariance function, and the cross variogram between our 100 selected 
V and U values. The cross correlation and the cross covariance func- 
tions will not be the same if we calculate them in the opposite direction. 
Reversing the z and y values on a cross h-scatterplot entails switching 
not only the direction of h but also the order of the variables. For 
example, this means that although Cuu(h) # Cuu(-h), it is true that 
C,,(h) = Cuu(-h). The cross variogram, however, is the same if we 
reverse the direction; that  is Y,,(h) = TUu(-h). 

Notes 

[l] Even without a printer capable of printing grayscale maps, i t  is 
possible to  accomplish a similar effect with a symbol map. For 
large maps, symbols whose visual densities are noticeably different, 
such as ., !, +, and #, can provide a better impression of the class 
ordering than can numerical symbols. 

[2] The size of the moving window used to  compute moving average 
statistics will also depend on the coefficient of variation of the data. 
If the coefficient of variation is very large, more sample values will 
be required to obtain reliable statistics. If the coefficient of variation 
is greater than 1, for example, perhaps as many as 20 t o  50 values 
per window may be required. 

[3] Univariate normally distributed data  can be  spatially arranged so 
that a proportional effect does exist. If the data  are multivariate 
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normal, however, then a proportional effect cannot exist since the 
local standard deviation is independent of the local mean. 

[4] Often, h-scatterplots are plotted in their symmetric form where the 
pair ( v i ,  v j )  is plotted twice, once as the point (v i ,  v j ) ,  and once as 
the point ( v j ,  v;) .  This double plotting of one pair symmetrizes the 
h-scatterplot and makes it more difficult t o  identify aberrant pairs. 

[5] The shape of the correlation function is not strictly identical to that 
of the covariance function since the standard deviations of V( t )  and 
V(t+h) change from one h-scatterplot t o  the next. 

[6] The  functions we defined in Equations 4.2 and 4.5 are often referred 
to more strictly as autocovariance and autocorrelation functions, 
signifying that the values of one variable have been compared to 
the values of the same variable. We will continue to refer t o  these 
simply as correlation and covariance functions unless there is some 
risk of ambiguity or if we wish to emphasize the difference between 
a n  autocorrelation and a cross-correlation. 

[7] The  prefix semi comes from the in Equation 4.1. It has become 
common, however, t o  refer t o  the semivariogram simply as the var- 
iogram. Throughout the text, we will continue to  use this conven- 
tional, though theoretically sloppy, jargon. 

[8] An alternative equation, perhaps more familiar t o  geostatisticians, 
for calculating the covariance is: 

where the total number of data  is n. In Equation 4.2 the centering 
term is the product of two different lag means; in this equation 
the centering term is the square of the mean of all the data. The  
twb formulas are not equivalent; the one given in Equation 4.2 is 
preferred since the alternative given above is known to  be slightly 
biased as an estimator for the underlying covariance function. 
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THE EXHAUSTIVE DATA SET 

Using the descriptive tools presented in the last three chapters we 
will now try to describe our data sets. This chapter deals with the 
description of the 78,000 data in the exhaustive data set, and the next 
two chapters will deal with the 470 data in the sample data set. 

This chapter serves two purposes. As we try to describe the ex- 
haustive data set we will encounter certain difficulties peculiar to the 
description of large, very dense data sets. For example, contour maps 
become difficult to construct. One of the aims of this chapter will be 
to look a t  some ways of overcoming the practical difficulties that such 
data sets pose. The second purpose of this chapter is the presenta- 
tion of the correct answers to  many of the estimation problems we will 
consider later. This is one of the privileges we have with the Walker 
Lake data sets. While we will be using only the data contained in the 
sample data set for our various estimation studies, we are able a t  any 
time to peek behind the curtain and see how well we are doing. 

The Distribution of V 

The distribution of the 78,000 V values is summarized in Table 5.1. 
The data values span several orders of magnitude, from 0 to 1,G31 
ppm. They are also strongly positively skewed; this makes it difficult 
to construct a single informative frequency table and its corresponding 
histogram. The frequency table for the 50 ppm class interval given in 
Table 5.1 manages to cover most of the distribution. The corresponding 
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Table 5.1 Frequency table of all 78,000 V values in the exhaustive data set using a 
class width of 50 ppm to show most of the distribution and a class width of 10 ppm 
to show detail from 0 to 250 ppm. 

50 ppm Class Width 10 pprn Class Width - -  _ -  
Class Number Percentage Class Number Percentage 
0-50 16,802 21.5 0 5,942 7.6 

50-100 
100-150 
150-200 
200-250 
250-300 
300-350 
350-400 
400-450 
450-500 
500-550 
550-600 
600-650 
650-700 
700-750 
750-800 
800-850 
850-900 
900-950 

950-1,000 
1,000-1,050 
1,050-1,100 
1,100-1,150 
1,150-1,200 
1,200-1,250 
1,250-1,300 
1,300-1,350 
1,350-1,400 
1,400-1,450 
1,450-1,500 

1,500+ 

7,466 
6,346 
5,953 
5,662 
5,131 
4,666 
4,219 
3,759 
3,331 
2,876 
2,533 
2,089 
1,713 
1,347 
1,050 

810 
601 
482 
323 
252 
172 
128 
90 
62 
53 
28 
22 
13 
6 

14 

9.6 
8.1 
7.6 
7.3 
6.6 
6 .O 
5.4 
4.8 
4.3 
3.7 
3.2 
2.7 
2.2 
1.7 
1.3 
1.0 
0.8 
0.6 
0.4 
0.3 
0.2 
0.2 
0.1 
0.1 
0.1 

<0.1 
<0.1 
<0.1 
<0.1 
<0.1 

0-10' 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 

90-100 
100-110 
110-120 
120-130 
130- 140 
140-150 
150-160 
160-170 
170-180 
180-190 
190-200 
200-210 
210-220 
220-230 
230-240 
240-250 

250+ 

3,223 
2,386 
2,078 
1,68 1 
1,492 
1,548 
1,478 
1,558 
1,526 
1,356 
1,321 
1,323 
1,256 
1,199 
1,247 
1,234 
1,202 
1,179 
1,158 
1,180 
1,195 
1,112 
1,069 
1,145 
1,141 

35,771 

* excludes 0 ppm values 

4.1 
3.1 
2.7 
2.2 
1.9 
2.0 
1.9 
2.0 
2.0 
1.7 
1.7 
1.7 
1.6 
1.5 
1.6 
1.6 
1.5 
1.5 
1.5 
1.5 
1.5 
1.4 
1.4 
1.5 
1.5 

45.9 
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Figure 5.1 Histogram and univariate statistics of the 78,000 V values using a class 
width of 50 ppm in (a) and a class width of 10 ppm in (b). 

histogram, shown in Figure 5.la, gives a good impression of the overall 
shape of the distribution. Unfortunately, nearly a quarter of the values 
fall within the 0 - 50 ppm class and our frequency table contains no 
information on how these low values are distributed. 

To shed more light on one part of a distribution it is sometimes 
necessary to  use smaller class widths. In Table 5.1 we have provided 
a second frequency table using a class width of 10 ppm to show more 
of the detail for the low V values. The number of 0 ppm values is also 
tabulated and plotted as a spike on the histogram of Figure 5.lb [l]. 
The proportion of zeros has practical implications for some estimation 
techniques, particularly those that involve some transformation of the 
original data values. 

The normal probability plot of the V values shown in Figure 5.2a 
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(a) 

Figure 5.2 The normal probability plot of the 78,000 V values is given in (a), and 
the lognormal probability plot in (b). 

is quite definitely not linear. Without drawing a normal probability 
plot, the pronounced asymmetry seen in the histograms would have 
served as sufficient reason to reject an assumption of normality. This 
asymmetry may suggest that  a lognormal distribution is a more likely 
model. The lognormal probability plot in Figure 5.2b, however, shows 
that an  assumption of lognormality is not appropriate either. 

The table that accompanies Figure 5.la presents a statistical sum- 
mary of the distribution of V values. The positive skewness evident 
on the histogram is also reflected in the difference between the median 
(221.3 ppm) and the mean (277.9 ppm). Though the coefficient of 
variation (0.9) is moderate, there are still some very high values that 
may prove to be problematic for estimation. 

The Distribution of U 

Frequency tables for the U values are given in Table 5.2; the corre- 
sponding histograms are shown in Figures 5.3a and 5.3b. We have 
again chosen to use two different class widths, one that allows us to  
capture most of the distribution and another that gives us more de- 
tailed information on the low U values. We have also separated the 
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Table 5.2 Frequency table of all 78,000 U values in the exhaustive data set using a 
class width of 50 ppm to show most of the distribution and a class width of 10 ppm 
to show details of the distribution between 0 and 250 ppm. 

50 ppm Class Width 10 ppm Class Width 
Class Number Percentage Class Number Percentage " " 
0-50 37,626 48.2 0 4,551 5.8 

50-100 
100-150 
150-200 
200-250 
250-300 
300-350 
350-400 
400-450 
450-500 
500-550 
550-GOO 
600-650 
650-700 

~ 700-750 
750-800 
800-850 
850-900 
900-950 

950-1,000 
1,000-1,050 
1,050-1,100 
1,100-1,150 
1,150-1,200 
1,200-1,250 
1,250-1,300 
1,300-1,350 
1,350-1,400 
1,400-1,450 
1,450-1,500 

1,500+ 

7,550 
4,714 
3,216 
2,537 
2,157 
1,980 
1,765 
1,568 
1,522 
1,374 
1,191 
1,014 

877 
712 
581 
618 
527 
467 
43 1 
416 
380 
356 
323 
306 
282 
249 
239 
203 
188 

2,631 

9.7 
6.0 
4.1 
3.3 
2.8 
2.5 
2.3 
2.0 
2.0 
1.8 
1.5 
1.3 
1.1 
0.9 
0.7 
0.8 
0.7 
0.6 
0.6 
0.5 
0.5 
0.5 
0.4 
0.4 
0.4 
0.3 
0.3 
0.3 
0.2 
3.4 

0- 10' 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 
90- 100 
100-110 
110-120 
120-130 
130-140 
140-150 
150- 160 
160- 170 
170- 180 
180-190 
190-200 
200-2 10 
210-220 
220-230 
230-240 
240-250 

250+ 

17,638 
5,988 
4,117 
3,018 
2,314 
1,958 
1,637 
1,441 
1,353 
1,161 
1,095 
1,036 

903 
885 
795 
755 
629 
673 
602 
557 
546 
519 
509 
47 5 
488 

22,357 

* excludes 0 ppm values 

22.6 
7.7 
5.3 
3.9 
3.0 
2.5 
2.1 
1.8 
1.7 
1.5 
1.4 
1.3 
1.2 
1.1 
1 .o 
1 .o 
0.8 
0.9 
0.8 
0.7 
0.7 
0.7 
0.7 
0.6 
0.6 

28.7 
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Figure 5.3 Histogram and univariate statistics of the 78,000 U values using a class 
width of 50 ppm in (a) and a class width of 10 ppm in (b) .  

values that are exactly 0 ppm, showing them as a spike on the his- 
togram. 

Like the V values, the U values also span several orders of mag- 
nitude, ranging from 0 ppm t o  almost 10,000 ppm. Nearly 6% of the 
values are exactly 0 ppm, a slightly lower fraction than for V .  A strong 
positive skewness is evident from the histograms and supported by the 
fact that  the mean is almost five times larger than the median. 

The cumulative probability plots shown in Figures 5.4a and 5.4b 
again show a curved line revealing that neither normality nor lognor- 
mality are appropriate assumptions for the distributions of U values. 

The statistical summary given along with Figure 5.3a provides fur- 
ther evidence that the distribution of U values is more skewed than 
the distribution of V values. The difference between the median (56.9 
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(b) 

73 

Figure 5.4 The normal probability plot of the 78,000 U values is given in (a), and 
the lognormal probability plot in (b). 

ppm) and the mean (266 ppm) is much larger than for V and the coef- 
ficient of variation is also higher. The coefficient of variation (1.84) is 
high, a warning that  erratic values may pose problems in estimation. 

The Distribution of T 
The third variable, T ,  is discrete, having only two possible values. We 
could compile a frequency table, draw a histogram and calculate sum- 
mary statistics for T ;  however, this is not necessary since the univariate 
distribution of T can be completely described by noting that  lG% of the 
T data  are type 1 and 84% are type 2. Additional summary statistics 
of a dichotomous variable provide no further information. 

Just  as important as knowing the fraction of each type is knowing 
their location. Figure 5.5 is a map of the two types. The  type 1 data, 
shown as the cross-hatched areas, cover all of Walker Lake itself and 
extend d o n g  the Soda Spring Valley to the southeast (see Figure 1.1). 
There are also four isolated patches of type 1 within the map area, 
with the largest of these being located in the northeast corner. 

From the map in Figure 5.5 it appears that  the two types can eas- 
ily be separated by a simple boundary. Such a spatial arrangement, 
however, is not always the case with discrete variables. The different 
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Figure 5.5 Location map of the third variable, 2'. The cross hatched area shows 
the location of the type 1 T values. The remaining area corresponds to type 2 values 
of T .  

types can be intermingled a t  a very small scale, making discrimination 
by a simple boundary a practical impossibility. If we wish to distin- 
guish between such spatially mixed types we will have to resort t o  some 
method other than one which establishes a simple boundary. When we 
look a t  indicator maps of the exhaustive data  set later in this chapter 
we will see this mixed type of spatial arrangement and still later we 
will present methods for handling small scale spatial inixtures. 
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Figure 5.6 
and (b) V given that T is type 2. 

Histogram and univariate statistics of, (a) V given that T is type 1 

Recognition of Two Populations 

At the beginning of this chapter, when we presented the univariate 
descriptions of V and U ,  we lumped all 78,000 data locations together 
and presented each variable as one single group or population. The 
natural separation of the T values into distinct regions raises the pos- 
sibility that we should perhaps recognize two different populations. 

The definition of meaningful populations is fundamental to any 
statistical approach. There are no rules that dictate when to  divide a 
larger group into smaller subgroups, but the following questions ma,y 
serve as useful guidelines: 

0 Is the distinction meaningful? There should be some good reason, 
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often a purely subjective one, for the distinction. For example, 
in the Walker Lake data  set one could use the east-west line a t  
200N to  separate the data  into two populations. Such a distinc- 
tion, however, is quite arbitrary. There is nothing in the data  to 
suggest that  this particular line has any special significance. 

0 Are there enough data  within each population? Each population 
has to  contain enough data  to allow reliable calculation of statis- 
tical parameters. As we shall see later, covariance functions and 
variograms calculated on only a few data  are often meaningless. 

0 What is the final goal of the study? In many situations, the 
recognition of separate populations contributes little t o  the goal 
of the study. For example in a study of fluid flow in a petroleum 
reservoir core plug measurements may be  accompanied by some 
description of the rock. While this may allow the definition of 
different populations based on the color of the rock, such a dis- 
tinction does not contribute to  the study of the flow properties. 
If the final goal is accurate local estimation, however, then a divi- 
sion of the data  into separate populations, if possible, will likely 
improve the accuracy of the estimates. 

Histograms of the V and U values for each T type are shown in 
Figures 5.6 and 5.7 along with a statistical summary. The type 1 
data  generally have much lower V and U values than the type 2 data, 
though it is interesting to note that the maximum U value, 9,499 ppm, 
is a type 1 datum. The standard deviation of the type 1 data  is also 
considerably lower for both V and U .  The coefficient of variation, 
however, is larger for the type 1 data,  indicating that although the 
type 1 values are generally lower, they also tend to  be more erratic 
with respect to the mean. 

In the exhaustive data  set there are certainly enough data  of each 
type to  make the differences recorded in Figures 5.6 and 5.7 significant 
[2]. As we proceed with the analysis of the exhaustive data  set we will 
continue to  examine the impact of treating the two types as separate 
populations. 

The V-U Relationship 

A scatterplot of the 78,000 V-U pairs at each data  location is shown 
in Figure 5.8a. (The curious bands visible in the cloud of points are an 
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and (b) U given that T is type 2. 

Histogram and univariate statistics of, (a) U given that T is type 1 

artifact of the original elevation data  and are explained in Appendix A.) 
Though the large number of points somewhat obscures the relationship, 
there is a fair positive linear correlation ( p  = 0.65) between the two 
variables. The relationship between V and U is not linear, and the 
strength of their relationship may not be well described by the linear 
correlation coefficient. 

Having noted earlier that  the T type might be useful for defining 
two populations, we can check the V - U  relationship separately for each 
type. The 78,000 points plotted in Figure 5.8a have been separated 
into two groups according to their T type. The scatterplot for the type 
1 data  is shown in Figure 5 . 8 ~  and for the type 2 data  in Figure 5.8b. 
These two scatterplots show that the T type plays an important role in 
the V-U relationship. If we wanted t o  predict V values from U values, 
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Figure 5.8 (a) Scatterplot of all 78,000 values of V and U (b) 60,384 values of V 
and U for T = 2, and ( c )  17,616 values of V and U for T = 1. 

knowing the T type would significantly improve the accuracy of our 
predictions. 

Spatial Description of V 

The huge number of data  in the exhaustive data  set causes problems 
in displaying the spatial features of the data  values. A posting of the 
78,000 values would require a very large map and would not be very 
informative. Many automated contouring programs could produce a 
contour map of the 78,000 values. Unfortunately, the skewness and 
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the short scale variability of the data  values make the resulting display 
a confusing and often illegible jumble of contour lines. An alternative 
that  we will consider later is t o  do  some local averaging before trying 
t o  construct a contour map. 

A symbol map would be an effective display of the exhaustive da t a  
set, particularly if the symbols were chosen so that their visual density 
corresponds t o  the magnitude of the values. Even this format, however, 
requires more space than we have here, so we will use indicator maps 
instead. 

Figures 5.9a-i show the nine indicator maps for the V values a t  
cutoffs equal t o  the nine deciles from q.1 t o  q.9. Each map shows in 
black the da t a  locations at which the V value is above the cutoff and 
in white those locations a t  which the value is below the cutoff. 

These nine indicator maps give us a good image of how the V 
values are spatially distributed. We can see that  most of the very 
lowest values (the white patches on Figure 5.9a) occur near Walker 
Lake itself and along the Soda Spring Valley. Most of the highest 
values (the black patches on Figure 5.9i) are located west of Walker 
Lake along the Wassuk Range. 

These regions of generally low or high values are different from the 
distinct regions we saw when we mapped the two T types in Figure 5.5. 
The  western edge of Walker Lake is the only region in which we can find 
a simple boundary between the values above cutoff and those below 
cutoff; elsewhere, the black and white are intermingled. Even in areas 
that  are predominantly black there are occasional patches of white. 
This shows tha t  although most of the values in some region may be 
above a specified threshold, there is a small but not negligible chance 
of finding values below the threshold. Similarly, even in areas where 
the V values are  generally below some threshold, erratic high values 
can often be found. 

These indicator maps also reveal certain peculiar features of the 
exhaustive data  set that  deserve some explanation. There are several 
north-south stripes that  appear unnatural. The  most prominent of 
these are  the two that  hang like icicles slightly northwest of the center 
of Figure 5.10b. There are also some sets of roughly parallel bands 
that appear in certain regions. The best example of these bands is 
seen near the top of the western edge of Figure 5 .10~ .  

Both of these features are artifacts of the procedure used to  cre- 
ate the digital elevation model from which our variables are derived. 



SO A n Introduction to Applied Geostatistics 

Appendix A contains a more detailed explanation of the origin of the 
artifacts. Though these features are artifacts whose origins we know, 
we have chosen not to correct them. Such corrections would make 
all of the estimation methods that we discuss later appear to work 
better since none of the methods will have much success with these 
peculiarities. It is not our intention, however, to mask the difficulty of 
estimation problems. 

Attempts to correct these artifacts would also be arbitrary and 
would rob the data set of its value as a reproducible standard. Inter- 
ested readers can obtain the digital elevation model that was used to 
generate the elevation data set. Were we to make several ad hoc alter- 
ations to this data, the studies we present could not be reproduced or 
extended by others. 

Spatial Description of U 
Indicator maps for the U values at  cutoffs equal to the nine deciles of 
the U distribution are shown in Figures 5.10a-i. The fair correlation 
between the U and V values that we noted earlier is evident from the 
similarity between the indicator maps for U and those for V. The same 
major features can be found on the maps of both variables. 

There is a slight but noticeable difference, however, between the 
spatial arrangements of the two variables. A comparison of the indi- 
cator maps for the highest decile (Figures 5.9i and 5.10i) shows that 
the very high U values are more widely scattered than the very high V 
values. The black dots, which represent the highest 10% of U values 
can be found over much of Figure 5.10i; on Figure 5.9i, the highest 10% 
of the V values are consolidated in fewer areas. The same is true of the 
lowest values; the white dots on Figure 5.10a appear to be scattered 
over a larger area than are those on Figure 5.9a. This tendency of the 
dots on the V indicator maps to be more clustered suggests that the V 
values are slightly more continuous over short distances. Later, we will 
see that the covariance functions quantitatively verify this observation. 



Figure 5.9a Indicator map of V for the first decile, 4.79 ppm. Figure 5.1Oa Indicator map of U for the first decile, 0.12 ppm. 
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Figure 5.9~ Indicator map of V for the third decile, 93.82 ppm. Figure 5.10~ Indicator map of U for the third decile. 11.79 ppm. 



84 
A

n
 Introduction to Applied G

eostatistics 



The Exhaustive D
ata Set 

85 

4 L
. 

8
 

s Lu 0
 

d 6
 

.a 8 
a
 a
 

2 t a 
5
 M
 



86 
A

n
 Introduction to Applied G

eostatistics 

f 



Figure 59g Indicator map of V for the seventh decile, 380.04 ppm. Figure 5.1% Indicator map of U for the seventh decile, 228.09 ppm. 
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Moving Window Statistics 

To better display the anomalies in both the average value and in the 
variability, we have calculated the mean and the standard deviation 
within 10 x 10 m2 windows. Our exhaustive da t a  set consists of 780 
such windows, each containing 100 data. This is sufficient for our 
purposes so there is no reason to  overlap the windows as we discussed 
in the previous chapter. The only reason for overlapping the windows 
is to provide a larger number of moving averages when the number of 
da t a  is small. 

The 780 moving window means for the V values have been con- 
toured i n  Figure 5.11. Though this contour map shows the main fea- 
tures we saw earlier on the indicator maps, it presents a much smoother 
version. Less of the intricate detail is visible on the contour map than 
on the indicator maps; for example, the artifacts discussed earlier can- 
not be seen on the contour map. This smoothing is due to the size of 
the moving window and t o  the automated contouring procedure, which 
strives t o  produce a n  aesthetically pleasing map. 

The standard deviations within our 780 10 x 10 m2 moving windows 
are contoured in Figure 5.12. Comparing this map to the correspond- 
ing map of the moving window means (Figure 5.11) reveals that  the 
mean and the standard deviation do  not strongly resemble one another, 
which suggests that  there is not a strong proportional effect. A scat- 
terplot of the mean versus the standard deviation for the 780 windows 
(Figure 5.13a) confirms that the relationship between the local mean 
and the local standard deviation is not very strong. 

The 780 moving window means for the U values have been con- 
toured in Figure 5.14; the corresponding standard deviations are con- 
toured in Figure 5.16. The map of U means shows the same features 
that we saw on the V map and on the indicator maps. As with the 
V values, the price of an aesthetic overall display is the loss of local 
detail. 

If we repeat the calculation of the moving window statistics for 
20 x 20 m2 windows and contour the resulting 195 window means, we 
get the map shown in Figure 5.15. The same broad features are still 
evident but their outlines are even smoother than they were for the 
10 x 10 m2 windows. By experimenting with the size of the moving 
window, one can find a contour map that balances local detail and 
overall appearance. Supplemented by a display that provides more 
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Figure 5.11 Contour map of exhaustive averages of V for 10 x 10 m2 blocks. The 
contour interval is 200 ppm with the first contour at 100 ppm. 

local detail, such as our indicator maps, a contour map of moving 
window means serves as a good display of the important spatial features 
of a very dense data set. 

The scatterplot of the 780 local U means and standard deviations 
(Figure 5.13b) shows that the mean and standard deviation are roughly 
proportional to one another. A comparison of the two scatterplots in 
this figure shows that the relationship between the moving average 
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Figure 5.12 Contour map of exhaustive standard deviations of V for 10 x 10 m2 
blocks. The contour interval is 200 ppm with the first contour at 100 ppm. 

means and standard deviations is weaker for V than for U .  The cor- 
relation coefficient for the 780 U m-a pairs is 0.921 whereas for the 
780 V m-u pairs it is 0.798. On the U scatterplot the strong linear 
relationship between small values of m and o can still be observed, 
though somewhat weaker, even for the very largest values. On the V 
scatterplot the relationship observed near the origin rapidly becomes 
weaker and above 400 ppm the m and u pairs appear to  be uncorre- 
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Figure 5.13 Scatterplot of standard deviations versus means. In (a), the standard 
deviations of V within 10 x 10 m2 blocks are plotted versus the mean of Vwithin 
the same blocks. The corresponding plot for the U values is shown in (b). 

lated. Also, the relationship between the mean and standard deviation 
for V does not appear to be linear [3]. 

Spatial Continuity 

In the last chapter we suggested three methods for describing spatial 
continuity: the correlation function, the covariance function, and the 
variogram. As descriptive tools, any one of these three serves as well 
as the other. For the purpose of estimation, however, these three 
functions are not equivalent. In the second part of this book we will 
see that the classical theory of estimation places most relevance on the 
covariance function. For this reason we will use the covariance function 
to  describe our exhaustive data set. 

As we observed when we first looked at the covariance function, 
it depends on both the magnitude of h and also on its direction. In 
Figure 5.17 we have contoured 40,000 C(h) values on a 1 x 1 meter 
grid, showing the covariance of all h-scatterplots in every direction to  
a distance of at least 100 m. The values of hx (i.e., the magnitude of 
h in the east-west direction) are recorded along the bottom edge of 
the diagram and range from -100 to +lo0 m. The values of hy (i.e., 
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Figure 5.14 Contour map of exhaustive average of U within 10 x 10 m2 blocks. 
The contour interval is 200 ppm with the first contour at 100 ppm. 

the magnitude of h in the north-south direction) are recorded along 
the left edge of the diagram, also ranging from -100 to  +lo0 m. The 
value of C(h) for h = (0,O) plots in the center of the diagram. 

As we saw in the previous chapter, the relationship between the 
paired da ta  values on an  h-scatterplot becomes stronger as the distance 
between the paired data locations decreases. If we let this distance 
shrink to 0, then each of the data  values will be paired with itself 
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0 

Figure 5.16 Contour map of exhaustive average of U within 20 x 20 m2 blocks. 
The contour interval is 200 ppm with the first contour at 100 ppm. 

and the resulting h-scatterplot would appear as a straight line. The 
covariance of this unique h-scatterplot is larger than for any other one 
we could construct. We can see on Figure 5.17 that C(h) does indeed 
reach its maximum value at the center of the diagram where h = (0,O). 

In the last chapter we also noted that C(h) = C(-h). This is 
confirmed by the symmetry of our contour map about h = (0,O). 
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Figure 5.16 Contour map of 10x10 exhaustive U block standard deviations. The 
contour interval is 200 ppm with the first contour at 100 ppm. 

For example, the local minimum near h = (30,50) can also be found 
reflected through the origin near h = (-30, -50). 

The anisotropy is the most striking feature of the contoured C(h) 
values. The decline in continuity in the north-south direction is not 
the same as that in the east-west direction. There is a n  axis of maxi- 
mum continuity, roughly N14'W, along which the covariance function 
decreases very slowly. Roughly perpendicular to this is an axis of min- 
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Figure 5.17 Contour map of the exhaustive covariance function for V. T h e  values 
contoured a re  the covariance values of all possible h-scatterplots in every direction 
to a distance of at least 100 meters. T h e  contour interval is 10,000 ppm2. T h e  
covariance value for h = (0,O) is  located at the  center of the map. T h e  two lines 
N14'W and N76'E are  the  directions of maximum and minimum continuity; the 
line N31'E lies midway between these two axes. Profiles of the covariance function 
along these directions are  shown in Figure 5.18. 

imum continuity along which the covariance function decreases very 
rapidly. 

Though the type of display we have used in Figure 5.17 provides 
an effective summary of the spatial continuity, it is not commonly used 
in practice. It is very time consuming to compute and requires a large 
number of regularly gridded data. More commonly the covariance 
function is simply plotted in one direction. This type of display can be 
seen as a cross-sectional slice of the C(h) surface shown in Figure 5.17. 
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Figure 5.18 (a), (b),  and (c) are cross sectional profiles of the exhaustive covari- 
ance function for V in three directions. All three profiles are plotted in (d). The 
vertical axis in all plots is labeled in units of thousands of ppm2. 

On the contour map of the C(h) surface in Figure 5.17 we have 
marked three directions of interest: the axes of maximum and mini- 
mum continuity and one intermediate direction. If we could slice the 
surface along these lines and view it from the side, we would see the 
t h e e  covariance functions plotted in Figures 5.18a-c. Because of the 
symmetry of C(h) we have plotted only half of each sectional view. 
The three covariance functions are superimposed on Figure 5.18d to  
make their comparison easier in the different directions. In all three di- 
rections C(h) drops rather steadily over 25 meters from its maximum 
value of 62,450 ppm2. In the N14OW direction, the value of C(h) 
does not continue t o  drop as quickly as in the other two directions. 
For pairs of data  separated by 50 m in this direction, the covariance 
between their V values is approximately 20,000 ppm2; in the other 
directions the covariance has already decreased to  0 ppm2. 
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Figure 5.19 Contour m a p  of the exhaustive covariance function for U. T h e  values 
contoured a re  the covariance values of all possible h-scatterplots in every direction 
t o  a distance of at least 100 meters. T h e  contour interval is 10,000 pprn2. T h e  lines 
N14'W and N76'E are  the  directions of maximum and minimum continuity; the 
line N31'E lies along a direction midway between these two axes. Profiles of the  
covariance function along these directions are  shown in Figure 5.20. 

The covariance function for the U values is contoured in Figure 5.19 
using the same contour interval as was used for the V map in Fig- 
ure 5.17. The greater variability of the U values that we noticed in 
the summary statistics and in the indicator maps is again apparent. 
The magnitude of the covariance function is larger than for V but its 
overall shape is similar. The nature of the anisotropy appears to  be the 
same, with N14'W remaining the direction of maximum continuity. 

The plots of the covariance function along the same three direc- 
tions we used earlier are shown in Figures 5.20a-c and superimposed 
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Figure 5.20 (a), (b), and (c) are cross sectional profiles of the exhaustive covari- 
ance function for U in three specific directions. All three profiles are plotted in (d) .  
The vertical axis on all the plots is labeled in units of thousands of ppm2. 

on Figure 5.20d. Though their overall appearance is similar t o  the V 
covariance functions, there are some important differences. In particu- 
lar, the rapid decrease in the first few meters is much more pronounced 
for U than for V .  

This difference in the behavior of the covariance function for small 
values of Ihl provides confirmation of our earlier qualitative observa- 
tion. When we looked a t  the indicator maps of V and U we noticed 
that the extreme V values seemed to  be less scattered than their U 
counterparts. As we noted at the time, this suggested that the V 
values were slightly more continuous. A very gradual change in the 
value of C(h) near the origin indicates strong spatial continuity while 
a sudden decrease points t o  a lot of short-scale variability. 

The U-V cross-covariance function is contoured in Figure 5.21. Un- 
like the autocovariances we contoured earlier, the cross-covariance is 
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h in East-West Direction 

Figure 5.21 Contour map of the exhaustive cross-covariance function between U 
and V. T h e  values contoured a re  the cross-covariance values in every direction to a 
distance of at least 100 meters, with a contour interval of 10,000 ppm2. Note that  
the cross-covariance a t  h is not equal to  the  cross-covariance at -h . Though the lines 
N14'w and N76'E are  no longer exactly the directions of maximum and minimum 
continuity, they have been retained for modeling purposes. T h e  line N31'E lies 
along a direction midway between these two axes. Profiles of the cross-covariance 
function along these directions for h and -h are shown in Figure 5.22 .  

not symmetric [4]. When we view the cross-covariance function in the 
three directions, it is no longer adequate to show only the Ihl > 0 half 
of the function. In Figures 5.22a-c we show the cross-covariance for 
lhl > 0 with the solid line and the cross-covariance for lhl < 0 with the 
dotted line. Clearly, the cross-covariance for Ihl > 0 is quite different 
from that for lhl < 0. 

The general features of the cross-covariance are similar to  the au- 
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Figure 5.22 (a), (b), and (c) are cross sectional profiles in three specific di- 
rections of the exhaustive cross-covariance function between U and V. Since the 
cross-covariance is not symmetric, each plot shows the profile of the cross-covariance 
for h and for -h. 

tocovariances of V and U .  The anisotropy still exists, though the 
direction of maximum continuity is rotated slightly from N14'W. The 
decrease in the first few meters lies somewhere between the rapid de- 
crease we saw on the U autocovariance function and the very slight 
decrease we saw for V .  

The effect of T on the spatial continuity should be considered since 
we have already seen that the T type may have an important influence 
on the statistical characteristics of our continuous variables. Earlier, 
when we were interested in the effect of the T type on the V-U scat- 
terplot, we separated the cloud of points into two groups according to  
their type. To explore the effect of the T type on spatial continuity we 
can divide our h-scatterplots into separate groups. 
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On the previous h-scatterplot, some of the paired values will both 
be type 1 data, some of the paired values will both be type 2 and the 
remainder of the paired values will have one of each type. To examine 
the possible difference in spatial continuity between type 1 data and 
type 2 data, we can extract from each h-scatterplot those paired values 
that belong to  each type and calculate the covariance separately for 
the two types. 

The contour map of the C(h) surface of V is shown for type 1 and 
type 2 data separately in Figure 5.23. Since the type 1 data cover a 
relatively thin strip that meanders southeast from Walker Lake (see 
Figure 5.5) there is a limit to  the distance over which we can compare 
data values. The two contour maps of the covariance function shown 
in Figure 5.23 show the C(h) surface for distances of up to  30 m in 
every direction; beyond this, there are not enough pairs of data for the 
type 1 h-scatterplots to be meaningful. 

When we compared the summary statistics of the V values for the 
two different types we noticed that the type 1 data generally had much 
smaller values. Unlike the correlation coefficient, which ranges from -1 
to +1 regardless of the data values, the covariance is directly influenced 
by the magnitude of the data values. It is evident from our contour 
maps of the C(h) surface that the covariance function of the type 1 
data has a smaller magnitude than the covariance function of the type 
2 data. 

More important than the difference in magnitude is the difference in 
the nature of the anisotropy. From the two maps shown in Figure 5.23, 
it is apparent that the ratio of the major axis to the minor axis is much 
more severe for the type 1 data (Figure 5.23a) than for the type 2 data 
(Figure 5.2313). Furthermore, the orientation of the anisotropy axes 
changes from one data type .to the other. For the type 1 data, the 
major axis is oriented approximately N14'W while for the type 2 data 
the axis is almost due north. 

The difference between the covariance functions for the two differ- 
ent types is even more dramatic for the U values. In Figure 5.24 the 
difference in the anisotropy of the covariance function of U for the two 
types is more severe than it was for V .  Using contour lines close to the 
origin as a guide in Figure 5.24, it appears that the anisotropy ratio is 
nearly 5:l for the type 1 data and only 2:l for the type 2 data. The 
covariance function for the type 1 data decreases very rapidly, reaching 
0 ppm2 within only 10 m in an east-west direction. The decrease is 
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Figure 5.23 Contour maps of the exhaustive covariance functions of V for each T 
type. (a) shows the contoured covariance function of V for type 1, and (b) for type 
2.  The contour labels are in thousands of ppmz. 
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Figure 5.24 Contour maps of the exhaustive covariance functions of U for each 
type of T. (a) shows the contoured covariance function of U for type 1, and (b) for 
type 2. The contour labels are in thousands of ppm2. 
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not as rapid for the type 2 data;  in a n  east-west direction C(h) has 
not reached 0 ppm’ within the 30 m shown on the map. As with the 
V variable, the orientation of the direction of maximum continuity is 
rotated more to  the west for the type 1 data  than for the type 2 data. 

Notes 

[l] Presenting the number of 0 ppm values as a spike takes a small 
liberty with the proper histogram format. Since the area of the 
bars should be proportional t o  their frequency, a class of zero width 
should have an infinite height. The  spike, however, is conventionally 
understood to  record the frequency by its height. 

[a] Statistical tests exist for determining whether or not two sample 
data  sets are significantly different. Such tests usually require sta- 
tistical independence among the data  within each sample data  set 
and thus are not very appropriate for correlated data.  

[3] Having noted earlier that  the type variable, T ,  has an important 
influence on the statistics, it would be good to check the propor- 
tional effect separately for each type. The nonlinear relationship we 
observe in Figure 5.13a may be due to a mixture of moving window 
statistics for two distinct populations. 

[4] The  cross covariance between U and V is not symmetric and pro- 
vides a n  excellent example of the Zag eflect, which is due to  an 
offset between the locations of extreme values of the two variables. 
For example in many ore deposits, for example, the direction of 
flow of hydrothermal fluids, combined with the fact that  certain 
minerals precipitate earlier than others, may cause enrichment of 
some minerals to lag behind others. In the Walker Lake da ta  sets, 
the highest V values are located slightly to the west of the high- 
est U values. The result is that  the cross-continuity between the 
two variables is not symmetric. For example, when comparing a U 
value to  nearby V values there is likely t o  be more similarity in the 
V values t o  the west than in those to  the east. This is evident in 
the contour map of Cuv(h) shown in Figure 5.21; the spatial con- 
tinuity decreases more rapidly to  the east than it does to the west. 
While the cross-covariance function and the cross-correlogram can 
capture such features, the cross-variogram cannot. 



THE SAMPLE DATA SET 

In practice we are never lucky enough to have exhaustive sampling of 
the area of interest. Instead, we have samples of only a tiny fraction of 
the total area. Our task is to infer properties of the whole area from 
this limited sample information. To duplicate this frustrating feature 
of reality we have selected a small subset of our exhaustive data set 
to serve as a sample data set. In all of the estimation problems we 
will tackle later we will pretend that this sample data set is the only 
information we have. The exhaustive data set will be used only to 
check our various estimates and to help us understand the strengths 
and weaknesses of the different methods we consider. 

In the next two chapters, we will describe the sample data set using 
the same tools that helped us analyze the exhaustive data set. This 
chapter will cover the univariate and bivariate description and will 
begin the spatial description. The description of the spatial continuity 
in the sample data set will be dealt with separately in the next chapter. 
These two chapters provide a preliminary exploratory analysis of the 
sample data. Their goal is to familiarize us with the sample data set 
and to uncover its relevant aspects. 

Familiarity with the data is an asset in any statistical study. Minor 
oversights and major conceptual flaws can plague any study. Time 
spent familiarizing oneself with the data is often rewarded by a quick 
recognition of when an error has occurred. 

The exploratory analysis should also begin the process of under- 
standing what might be important about the data set. When we look 
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a t  estimation in the second part of this book we will see that there are 
many ways of handling the data. From our analysis of the exhaustive 
data  set we already know that the T type may play an important role 
and that the data  could, therefore, be treated as two separate groups. 
Such important considerations are possible only if we have taken the 
time to explore our data. Many of the features we uncover may later 
turn out to be useless, but a few dead ends should not discourage us 
from trying to  discover the key ingredients of our data. 

Before we begin the analysis of the sample da t a  set it is important 
t o  clarify a potential source of confusion. In this chapter we will be 
summarizing distributions using the same statistical tools that  we used 
in the last chapter. For example, we will soon see that  the mean of the 
V values in the sample data  set is 436.5 ppm. In the last chapter we 
saw that  the mean of the V values was 278 ppm. The  436.5 ppm value 
is a sample statistic; the 278 ppm value is an exhaustive statistic, often 
referred to  as a population parameter. 

In most studies it is the population parameters that  are of greater 
interest. The sample statistics tell us only about the samples; what we 
really want t o  know is what the samples can tell us about the entire 
population from which they are drawn. In a study of the concentration 
of some pollutant, for example, we are not really interested in the 
average concentration of the pollutant in the samples we have collected. 
What  we actually want t o  know is the concentration of the pollutant 
over some larger region. Sample statistics are stepping stones to  the 
final goal of understanding more about the entire population. 

As we proceed with our analysis of the sample data  set we will 
casually be comparing the sample statistics with the exhaustive statis- 
tics we calculated earlier. This is not intended to  suggest that  the two 
should be the same or that one is a good estimate of the other. Indeed, 
they will often be very different. In the second part of this book we 
will examine the many reasons that the two are not the same and we 
will look at several alternatives for estimating population parameters 
from the information contained in the sample data  set. 

In this chapter, where our goal is purely descriptive, we will con- 
tinue t o  refer t o  the summary statistics by the symbols we introduced 
earlier; for example, rn will still be used to  refer t o  the mean even 
though it  is not the same mean we discussed in the previous chapter. 
Later, when we start  t o  deal with the topic of estimation, it will be 
important to maintain a clear distinction between the sample statis- 
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tics, which we know, and the population parameters, which we do not 
know. At that time we will alter our notation slightly to help maintain 
this distinction. 

Data Errors 

Information extracted from a data set or any inference made about the 
population from which the data originate can only be as good as the 
original data. One of the most tedious and time-consuming tasks in a 
geostatistical study is error checking. Though one would like to weed 
out all the errors at the outset, it seems that they often manage to 
remain hidden until the analysis is already started. 

Our sample data  set happens to  be error-free; it has not suffered the 
bumpy journey from data collection to laboratory analysis to entry on 
a computer. Beyond offering our sympathy to the readers when they 
encounter a major data-cleaning exercise, we can offer a few helpful 
suggestions. These are not guaranteed to  produce perfectly clean data 
but they will catch gross errors: 

0 Sort the data and examine the extreme values. If they appear 
excessive, investigate their origin and try to  establish their au- 
thenticity. Erratic extremes may be the result of a misplaced 
decimal point. Original sample diaries or sampling logs, if they 
still exist, are useful sources of information. 

0 Locate the extreme values on a map. Note their location with 
respect to  anomalous areas. Are they located along trends of 
similar data values or are they isolated? Be suspicious of isolated 
extremes. 

0 Check coordinate errors by sorting and examining coordinate ex- 
tremes. Are they within expected limits? 

0 Examine a posting of the data. Do the samples plot where they 
should? 

When trying to  sort out inconsistencies in the data, it often helps 
to  understand how the data set came to  be in its current form. The 
evolution of the data set should be probed with questions such as: Were 
all the samples collected in one program? If not, was the sampling 
procedure consistent from one program to the next? Were different 
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people involved in the sampling? If so, how did their methodologies 
differ? Were sample locations 
surveyed? If not, how were the sample locations determined? Is the 
data presently in the form in which it was received from the laboratory? 
If not, how does it differ? Are there missing samples? If so, how were 
these data treated? 

There are many telltale signs of procedural changes in data  col- 
lection. The numbering of the samples may reveal different sampling 
programs; changes in the recorded precision of the data values may be 
the result of switching to different methods of measuring the values. 
One should try to  recognize those events that could lead to  inconsisten- 
cies. If they exist, such inconsistencies should be checked and resolved 
before the statistical analysis proceeds. 

Are all the samples the same size? 

The Sampling History 

We begin our analysis with a complete listing of the data (Table 6.1) 
and a posting of the data values (Figures 6.1 and 6.2). Not only are 
these a necessary first step in error checking, they also act as valuable 
references throughout the exploratory analysis. 

Looking through the listing of the sample data set in Table 6.1 we 
see that there are 470 sample locations. V, U and T measurements 
exist at most of these locations. The first 195 samples, however, are 
missing the U measurement. This is our first hint that the data were 
not collected in one campaign. We get some confirmation of this when 
we look a t  the postings of the data values. 

In Figure 6.1, a posting of the V values, we notice that a grid 
of samples a t  roughly 20 x 20 m2 spacing covers the entire area, with 
additional sampling providing denser coverage of certain areas. On the 
posting of the U values in Figure 6.2 we discover that the samples that 
are missing their U measurement are those located on the preliminary 
20 x 20 m2 grid. 

Further study of the data postings leads to the observation that the 
more densely sampled areas generally have high values. This is quite 
common in practice. The areas of interest are typically those with 
the highest grades, the strongest concentrations, the greatest porosi- 
ties, etc., and additional sampling is often aimed at  delineating such 
anomalous zones. 
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Table 6.1 The Sample Data Set 

No. X Y V U T  No. X Y V U T  
1 11 8 0. N/A 2 50 69 90 0. N/A 2 
2 8  
3 9  
4 8  
5 9  
6 10 
7 9  
8 11 
9 10 

10 8 
11 9 
12 10 
13 11 
14 10 
15 8 
16 31 
17 29 
18 28 
19 31 
20 28 
21 30 
22 28 
23 28 
24 30 
25 28 
26 31 
27 28 
28 30 
29 31 
30 31 
31 49 
32 49 
33 51 
34 49 
35 50 
36 51 
37 48 
38 49 
39 51 
40 48 
41 50 
42 49 
43 51 
44 50 
45 51 
46 71 
47 71 
48 70 

30 
48 
68 
90 

110 
129 
150 
170 
188 
209 
231 
250 
269 
288 
11 
29 
51 
68 
88 

110 
130 
150 
171 
190 
209 
229 
250 
269 
289 
11 
29 
48 
68 
88 

109 
129 
151 
168 
190 
21 1 
231 
250 
268 
290 

9 
29 
51 

0. 
224.4 
434.4 
412.1 
587.2 
192.3 
31.3 

388.5 
174.6 
187.8 
82.1 
81.1 

124.3 
188.0 
28.7 
78.1 

292.1 
895.2 
702.6 
490.3 
136.1 
335.0 
277.0 
206.1 
24.5 

198.1 
60.3 

312.6 
240.9 
653.3 

96.4 
105.0 
37.8 

820.8 
450.7 
190.4 
773.3 
971.9 
762.4 
968.3 
394.7 
343.0 
863.8 
159.6 
445.8 
673.3 
252.6 

N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 1 
N/A 1 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N / A  2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 1 
N/A 2 
N/A 2 
N/A 2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

68 110 
68 128 
69 148 
69 169 
70 191 
69 208 
69 229 
68 250 
71 268 
71 288 
91 11 
91 29 
90 49 
91 68 
91 91 
91 111 
89 130 
88 149 
89 170 
89 188 
90 211 
90 230 
88 249 
88 269 
88 288 

109 11 
111 31 
108 49 
109 68 
108 88 
110 109 
109 129 
110 148 
111 169 
111 191 
110 208 
109 230 
109 249 
109 268 
111 291 
130 9 
131 31 
130 48 
128 70 
129 90 
131 109 
129 128 

329.1 
646.3 
616.2 
761.3 
918.0 
97.4 

0. 
0. 
0. 

2.4 
368.3 
91.6 

654.7 
645.5 
907.2 
826.3 
975.3 
551.1 
155.5 
10.7 

0. 
0. 
0. 

12.1 
62.2 

399.6 
176.6 
402.0 
260.6 
192.0 
237.6 
702.0 
38.5 
22.1 
2.7 

17.9 
174.2 

12.9 
187.8 
268.8 
572.5 
29.1 
75.2 

399.9 
243.1 

0. 
244.7 

N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 1 
N/A 1 
N/A 1 
N/A 1 
N/A 1 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 1 
N/A 1 
N/A 1 
N/A 1 
N/A 1 
N/A 1 
N/A 1 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N / A  2 
N/A 2 
N/A 2 
N/A 1 
N/A 1 
N/A 1 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N / A  2 
N/A 2 
N/A 2 

49 68 70 537.6 N/A 2 98 131 148 185.2 N/A 2 
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Table 6.1 The Sample Data Set (Cont.) 

No. X Y V U T  No. X Y V U T  
99 131 169 26.0 N f A  1 148 190 248 146.6 NfA 2 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
1 32 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 

129 
128 
130 
131 
128 
131 
148 
149 
150 
151 
150 
150 
150 
150 
149 
151 
148 
150 
149 
149 
148 
168 
171 
1 69 
168 
168 
171 
168 
171 
171 
169 
170 
170 
1 69 
168 
168 
190 
191 
191 
190 
190 
188 
191 
1 89 
190 
190 
188 

191 
209 
231 
248 
269 
288 

8 
29 
49 
69 
89 

109 
129 
151 
1 69 
190 
208 
228 
251 
271 
291 

8 
29 
49 
69 
91 

109 
131 
150 
171 
191 
210 
230 
249 
271 
290 

11 
28 
48 
69 
89 

111 
129 
149 
169 
189 
210 

0. 
100.3 
530.3 
107.4 
159.3 
70.7 

260.2 
326.0 
332.7 
531.3 
547.2 
482.7 
84.1 
4.7 

180.6 
0. 

342.4 
602.3 
209.1 
79.4 

104.1 
446.0 
189.9 
280.4 

0. 
499.3 
457.3 
341.2 

0. 
208.3 
99.7 

636.6 
173.1 
17.0 

283.1 
30.9 

348.5 
222.4 

59.1 
0. 

326.0 
325.1 
114.7 
481.6 
324.1 
10.9 

332.9 

N f A  1 
NfA  1 
N/A 2 
N/A 2 
N/A 2 
NfA 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N/A 2 
N f A  2 
NfA  2 
NfA  2 
N/A 2 
N/A 1 
N/A 2 
N/A 2 
N/A 2 
N f A  2 
N/A 2 
N f A  2 
N f A  2 
N/A 2 
N f A  1 
N /A  2 
NfA  2 
N /A  2 
N/A 2 
N/A 2 
N/A 1 
N/A 2 
NfA  2 
N f A  2 
NfA 2 
N/A 1 
N f A  2 
N /A  2 
N/A 2 
N /A  1 
N /A  2 
N/A 2 
N/A 2 
NfA  2 
NfA  2 
N f A  1 
N/A 2 

149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
1 60 
161 
1 62 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
3 88 
1 89 
190 
191 
192 
193 
194 
195 

189 
1 89 
211 
209 
211 
210 
209 
210 
21 1 
208 
209 
208 
210 
211 
211 
208 
208 
231 
231 
230 
230 
229 
229 
230 
228 
229 
231 
231 
229 
2 31 
231 
230 
249 
250 
249 
251 
251 
248 
249 
248 
250 
250 
251 
251 
249 
248 
250 

270 
290 
11 
30 
49 
70 
90 

111 
130 
151 
168 
191 
211 
228 
250 
268 
289 

10 
28 
50 
71 
91 

110 
131 
148 
169 
191 
208 
228 
249 
268 
291 

9 
30 
48 
69 
91 

109 
130 
150 
169 
190 
208 
229 
251 
270 
291 

92.0 
2.5 

358.1 
473.3 
308.8 
406.8 
812.1 
339.7 
223.9 
673.5 
141.0 
61.8 

258.3 
590.3 
166.9 
125.2 
29.3 

617.6 
425.9 
295.7 
224.9 
31.7 

377.4 
333.3 
351 .o 

0. 
137.6 
451.2 
639.5 
119.9 
27.2 
2.1 

167.7 
147.8 
442.7 
487.7 

0. 
28.2 

0. 
18.3 

266.3 
502.3 

0. 
240.9 
234.4 

22.4 
45.6 

N f A  1 
N f A  1 
NfA 2 
N/A 2 
N/A 2 
N /A  2 
N/A 2 
N f A  2 
N f A  2 
N/A 2 
NfA 2 
N /A  1 
N /A  2 
N/A 2 
N /A  2 
N /A  2 
N f A  1 
N/A 2 
NfA  2 
N f A  2 
NfA  2 
NfA  1 
N f A  2 
N/A 2 
NfA  2 
N /A  1 
N / A  2 
N /A  2 
N f A  2 
N / A  2 
N/A 1 
NfA 1 
NfA 2 
NfA 2 
N f A  2 
NfA  2 
N / A  1 
N / A  1 
N/A 1 
N/A 1 
N f A  2 
N f A  2 
N/A 2 
N f A  2 
N f A  2 
N f A  1 
NfA 1 

147 191 231 184.4 N /A  2 196 40 71 76.2 1.1 2 
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Table 6.1 The Sample Data Set (Cont.) 

No. X Y V U T  No. X Y V U T  
197 21 69 284.3 7.8 2 246 59 281 148.8 675.0 1 
198 28 80 
199 29 59 
200 41 81 
201 18 80 
202 39 60 
203 18 60 
204 41 90 
205 21 90 
206 31 101 
207 41 100 
208 21 100 
209 60 8 
210 40 11 
211 51 18 
212 59 20 
213 41 21 
214 59 90 
215 51 101 
216 50 81 
217 59 101 
218 60 81 
219 60 151 
220 38 148 
221 50 160 
222 50 138 
223 61 158 
224 39 160 
225 61 139 
226 38 140 
227 61 170 
228 39 170 
229 49 179 
230 58 179 
231 39 181 
232 60 191 
233 40 190 
234 51 198 
235 60 198 
236 40 200 
237 58 208 
238 38 209 
239 50 221 
240 61 220 
241 39 221 
242 59 268 
243 41 271 
244 49 278 

606.8 
772.7 
269.5 
1036.7 
783.8 
519.4 
414.9 
601.4 
579.2 
601.4 
594.6 
550.1 
99.4 
233.6 
14.4 
115.9 
506.2 
502.4 
608.0 
363.9 
385.6 
1521.1 
340.9 
879.1 
413.4 
868.9 
657.4 
477.0 
268.5 
806.4 
914.4 
811.5 
1113.6 
1008.0 
1528.1 
970.9 
1109.0 
1203.9 
641.3 
720.6 
665.3 
543.3 
101.1 
615.9 
543.1 
868.8 
583.0 

105.3 
1512.7 

9.8 
860.4 

1207.3 
177.1 
23.4 
173.1 
296.5 
300.6 
229.7 
258.3 
2.2 
14.2 
0.1 
3.1 

126.9 
73.8 
210.7 
30.4 
50.3 

3691.8 
50.0 
474.2 
83.0 
983.8 
217.8 
71.5 
26.2 
301.1 
1548.5 
234.9 
2154.7 
3637.4 
1930.9 
1391.1 
1660.8 
1813.7 
249.1 
1160.1 
547.8 
1066.6 
59.5 
420.9 
1714.2 
828.7 
1788.8 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
2 
2 
2 
2 

247 39 
248 59 
249 38 
250 78 
251 60 
252 70 
253 70 
254 78 
255 61 
256 78 
257 80 
258 58 
259 71 
260 70 
261 79 
262 80 
263 61 
264 79 
265 71 
266 78 
267 80 
268 69 
269 79 
270 80 
271 70 
272 81 
273 100 
274 80 
275 90 
276 88 
277 100 
278 80 
279 101 
280 101 
281 79 

283 100 
284 81 
285 100 
286 80 
287 91 
288 101 
289 81 
290 98 
291 81 
292 90 
293 100 

282 90 

279 
258 
260 
28 
29 
41 
21 
41 
41 
20 
131 
128 
140 
121 
138 
119 
121 
149 
160 
159 
168 
181 
181 
188 
198 
200 
48 
49 
58 
39 
60 
59 
38 
68 
70 
79 
78 
81 
91 
89 
99 
100 
98 

111 
108 
120 
118 

798.0 
194.9 
635.2 
781.6 
238.6 
472.0 
58.1 
600.3 
64.9 
505.9 
801.6 
158.8 
606.3 
30.7 
730.1 
42 1.2 
104.8 
44.1 
801.1 
742.0 
689.1 
424.6 
184.3 
245.2 
630.0 

0. 
48.7 
757.4 
739.8 
520.7 

0. 
0. 

730.5 
383.1 
508.8 
573.3 
372.4 
585.8 
397.2 
614.5 
734.9 
599.3 
181.2 
744.8 
1022.3 
899.3 
363.7 

1182.1 2 
983.3 1 
766.6 2 
565.4 2 
12.7 2 
84.9 2 
0.3 2 

124.6 2 
0.8 2 
70.0 2 
421.1 2 
4.3 2 

175.1 2 
0.0 2 

1694.5 2 
35.1 2 
1.8 2 
0.0 2 

2535.0 2 
3371.5 2 
634.6 2 
762.6 2 
241.7 2 
431.1 2 
1992.1 2 

0. 1 
0.0 2 

473.8 2 
280.2 2 
76.8 2 
0. 2 
0. 2 

464.0 2 
97.8 2 
103.9 2 
138.3 2 
70.9 2 
197.2 2 
38.9 2 
192.3 2 
159.6 2 
539.3 2 
1.3 2 

1987.0 2 
643.0 2 
1290.3 2 
20.5 2 

245 51 260 670.7 3738.9 2 294 98 130 513.2 263.9 2 
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Table 6.1 The Sample Data Set (Cont.) 

No. X Y V U T  No. X Y V U T  
295 90 140 648.8 2147.5 2 344 239 220 420.1 398.3 - 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
31 1 
312 
313 
31 4 
315 
316 
317 
31 8 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 

99 
121 
111 
108 
120 
119 
158 
140 
150 
151 
161 
141 
160 
139 
178 
159 
169 
170 
180 
178 
158 
219 
198 
211 
208 
221 
199 
220 
1 98 
220 
200 
208 
210 
221 
198 
219 
200 
2 39 
218 
229 
2 39 
218 
238 
218 
231 
230 
240 
221 

138 
131 
140 
121 
141 
118 
228 
229 
241 
218 
24 1 
240 
218 
220 
211 
209 
221 
198 
218 
201 
198 
88 
90 
100 
80 
99 
98 
81 
78 
150 
150 
159 
140 
160 
161 
139 
139 
8 
8 
19 
18 
18 
229 
228 
239 
221 
239 
241 

645.4 
13.0 
190.3 
893.0 
104.7 
150.4 
558.4 
558.0 
31 8.5 
394.3 
141.9 
112.5 
580.4 
535.9 
398.2 
517.3 
427.2 
367.6 
374.7 
144.8 
169.8 
235.1 
611.7 
746.4 
436.6 
540.9 
801 .O 
272.1 
204.1 
543.9 
606.2 
356.0 
440.9 
301.8 
369.4 
166.8 
230.9 
240.3 
737.1 
518.6 
390.7 
797.4 
602.6 
430.8 
354.1 
602.4 
172.6 
324.8 

1927.1 
0.2 
48.8 

3070.9 
14.6 
16.9 
551.6 
513.9 
129.2 
239.2 
8.6 
4.6 

1118.7 
445.7 
561.8 
1480.8 
197.2 
1429.8 
77.5 
81.3 
154.5 
136.9 
735.8 
710.6 
495.8 
586.8 
1419.0 
177.3 
86.0 
675.0 
381.1 
280.4 
330.3 
365.6 
154.5 
24.5 
42.2 
80.2 

1373.4 
147.7 
186.7 
1429.7 
1510.9 
265.2 
478.0 
538.9 
51.9 
290.9 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

34s 
346 
347 
348 
349 
350 
35 1 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 

218 
35 
24 
34 
23 
54 
46 
55 
45 
53 
46 
55 
43 
55 
44 
55 
46 
54 
43 
73 
64 
75 
64 
73 
64 
75 
63 
73 
64 
93 
86 
93 
84 
93 
86 
96 
85 
93 
86 
114 
106 
155 
145 
174 
166 
215 
205 

218 
71 
71 
88 
91 
10 
11 
89 
89 
150 
148 
168 
170 
191 
191 
211 
211 
2 69 
271 
29 
31 
129 
129 
149 
151 
171 
168 
188 
191 
48 
48 
70 
69 
90 
89 

111 
108 
131 
131 
131 
130 
229 
230 
208 
211 
89 
89 

763.5 
687.8 
735.8 
86.9 
817.0 
637.9 
512.3 
423.4 
569.6 
858.0 
234.0 
876.0 
1082.8 
1392.6 
646.6 
889.7 
509.2 
613.1 
767.8 
649.4 
235.4 
782.8 
227.3 
722.9 
974.5 
512.2 
1215.8 
687.1 
1259.9 
684.5 
471.9 
512.1 
963.9 
874.0 
582.4 
553.2 
937.3 
883.6 
879.0 
268.4 
651.5 
386.4 
333.2 
339.2 
600.3 
595.2 
809.6 

1236.7 
486.8 
463.9 
0.1 

708.8 
349.4 
392.0 
21.2 
62.8 
873.0 
7.5 

288.1 
1174.9 
1004.7 
76.8 
938.8 
429.7 
2922.4 
198.1 
231.7 
10.8 
639.3 
8.6 

696.1 
664.1 
144.8 
1446.1 
2351.5 
1257.6 
373.2 
31.8 
196.1 
1210.0 
1031.3 
117.0 
360.5 
1495.5 
1336.8 
965.3 
104.4 
1957.7 
88.2 
63.5 
335.0 
647.6 
1457.0 
955.8 

1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
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Table 6.1 The Sample Data Set (Cont.) 

394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
4 04 
405 
406 
407 
4 08 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 

236 
223 
236 
226 
35 
24 
36 
26 
16 
43 
15 
46 
36 
54 
46 
54 
43 
65 
33 
36 
53 
44 
65 
34 
33 
55 
46 
63 
34 
65 
35 
46 
36 
35 
53 
46 
45 

9 
9 

229 
230 
80 
79 
61 
58 
80 
60 
88 
99 
99 
80 
81 
161 
161 
160 
160 
170 
179 
180 
181 
180 
191 
199 
198 
201 
201 
210 
208 
220 
219 
271 
258 
260 
2 81 

515.9 
613.2 
665.3 
813.6 
174.8 
891.8 
699.6 
39.5 
915.6 
584.0 
61 0.0 
566.8 
38.1 
483.0 
542.6 
959.3 
631.9 
928.3 
431 .O 
672.3 
1003.4 
876.4 
734.1 
366.0 
296.5 
1069.2 
804.3 
731.1 
318.1 
238.6 
428.9 
737.4 
429.1 
597.4 
442.6 
7G.2 
605.5 

1593.8 
277.6 
1962.0 
2279.8 

2.0 
635.7 
1547.8 

0.3 
634.8 
97.4 
319.3 
100.2 
0.0 

105.0 
138.6 
466.7 
261.1 
2252.5 
48.6 
605.5 
425.4 
937.8 
589.3 
110.2 
79.1 
376.4 
674.6 
1363.3 
79.6 
488.3 
161.2 
1236.1 
152.3 
397.0 
1696.4 
779.8 
934.8 

L 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
" 

No. X Y V U T  No. X Y V U T  
393 204 151 697.3 444.5 432 35 259 235.0 18.9 2 

433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
45 2 
453 
454 
45 5 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 

84 
84 
75 
73 
63 
84 
76 
84 
86 
73 
76 
94 
85 
104 
93 
75 
94 
85 
104 
75 
95 
83 
94 
103 
114 
104 
196 
215 
204 
196 
195 
216 
225 
214 
2 45 
233 
226 

30 
41 
40 
141 
140 
138 
159 
161 
169 
199 
51 
61 
60 
38 
41 
90 
101 
100 
109 
110 
121 
119 
140 
139 
120 
118 
91 
101 
101 
101 
149 
11 
19 
19 
231 
220 
221 

562.0 85.3 2 
411.4 34.0 2 
696.7 356.2 2 
790.9 607.3 2 
696.5 357.8 2 
687.3 893.4 2 
597.5 997.3 2 
437.4 387.2 2 
317.4 761.7 2 
470.7 5190.1 2 
498.7 101.8 2 
778.7 1354.0 2 
523.3 117.5 2 
617.1 200.2 2 
395.3 28.4 2 
518.9 113.0 2 
383.7 12.9 2 
704.1 126.0 2 
562.3 908.6 2 
655.3 349.0 2 
823.6 548.4 2 
847.7 701.4 2 
607.5 723.2 2 
491.2 565.3 2 
319.5 154.2 2 
594.0 289.2 2 
433.5 254.1 2 
209.6 4.0 2 
533.8 127.3 2 
592.4 419.4 2 
478.7 141.9 2 
660.2 1424.8 2 
832.2 512.2 2 
242.5 15.6 2 
161.2 26.1 2 
626.0 959.7 2 
800.1 1681.5 2 

431 35 278 795.9 1588.3 L 470 213 218 482.6 476.2 2 
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The sampling of the Walker Lake area was conducted in three stages. 
In the first stage, 195 samples were located on a roughly regular grid a t  
a spacing of 20 x 20 m2. In the second stage, additional sampling was 
done near the highest V values from the first stage. Each of the original 
195 samples whose V value was greater than 500 ppm was surrounded 
by eight extra samples located approximately on a 10 x 10 m2 grid. 
This second stage added 150 samples to our data set. 

From these first two stages, the major anomalies are apparent. 
The third stage of sampling attempted to delineate these zones better 
by adding samples along existing east-west section lines. Two extra 
samples, one roughly 5 m to the east and the other roughly 5 m to 
the west, were added on either side of any of the previous 345 samples 
whose V value exceeded 500 ppm. The 125 samples added in this final 
stage bring the total number of samples in our data set to  470. 

V and T measurements exist at  the sample locations from all three 
stages; the U measurements exist only for the second and third stages. 
Like the preferential sampling in anomalous areas, this undersampling 
of some variables is common, especially when the sampling has oc- 
curred in separate programs. In our Walker Lake example, one can 
imagine that after the V results from the first stage of sampling became 
available, new information or changing economic conditions might have 
created interest in  the U values. 

Uiiivariate Description of V 

A histogram of the 470 V values in the sample data set is given in Fig- 
ure (5.3 along with its summary statistics. The strong positive skewness 
evident in the histogram is confirmed by the summary statistics; the 
coefficient of variation is high and the mean is slightly greater than the 
median. 

There are several extreme values in the data set. The maximum is 
more than three times greater than the mean. In our estimation stud- 
ies these extreme values will severely inflate estimated values in their 
vicinity. For this reason, such extreme values are often dismissed as 
“outliers” in practice and simply deleted from the data set or arbitrar- 
ily adjusted to reduce their influence. Our sample extremes, however, 
are actual data values originating from the exhaustive data set and 
we have no justification for applying these methods. We will have to 
incorporate these extremes in our analysis. 
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N 470 
rn 436.5 
o 299.9 

4.7% of data are equal to 0.0 ppm olm 0.7 
rnin 0.0 
Q, 184.3 
M 425.3 
Q3 645.4 
rnm 1528.1 

15 
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u. k 5  

0 
0 500 1 1,500 " @Pd 

Figure 6.3 Histogram and univariate statistics of the 470 V sample values. 

Comparing the sample statistics given in Figure 6.3 with the ex- 
haustive statistics we calculated in the last chapter, we can start to ap- 
preciate the difficulty of estimating population parameters. The sam- 
ple mean of 436 ppm is a very poor estimate of the exhaustive mean of 
278 ppm; the median and the standard deviation are also larger than 
their exhaustive counterparts. The sample coefficient of variation, on 
the other hand, compares reasonably well with the exhaustive coeffi- 
cient of variation. Apart from the fact that it is positively skewed with 
a minimum value of 0 ppm, there is little about the sample distribution 
that corresponds to the exhaustive distribution. 

The differences between our sample and exhaustive distributions 
are not surprising given that more than half of our samples are inten- 
tionally located in areas with anomalously high V values. Our samples 
do not fairly cover the entire area and their statistics, therefore, are 
not representative of the entire area. 

The effect of the preferential sampling is made clear in Table 6.2, 
where the summary statistics for the V distribution are calculated 
separately for each sampling program. The statistics from the first 
program, which covered the area uniformly with a 20 x 20 m2 grid, are 
quite close to the exhaustive statistics we calculated in the previous 
chapter. The sample mean is within 10% of the exhaustive mean; the 
sample standard deviation also compares very well with the exhaustive 
standard deviation. 

The statistics from the second and third programs reflect the sam- 
pling strategy. The mean value of the second program is more than 
twice that of the first, and in the third program the mean has nearly 
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Table 0.2 Comparison of v statistics by sampling program 

Exhaustive Sample Statistics 
Statistics Program 1 Program 2 Program 3 

n 78,000 195 150 125 
m 2 78 275 502 610 
U 250 250 295 247 
cv 0.90 0.91 0.59 0.41 
m i n  0 0 0 0 
Qi 68 62 269 440 
M 22 1 209 518 608 
Q3 429 426 675 78 1 

max 1.631 975 1.528 1.392 

tripled. We notice similar increases in the median and the standard de- 
viation. The coefficient of variation decreases in the second and third 
campaigns because fewer of the very low values are being encountered. 
Recall that the coefficient of variation can be viewed as a measure of 
skewness. The distribution of the V values in the last two campaigns 
is less skewed than in the first, which is a natural consequence of the 
focus on high V values. 

The effect of the sampling strategy on the distribution of the V val- 
ues can also be revealed by a series of q-q plots. Figure 6.4 shows the 
q-q plots of the V sample distribution versus the exhaustive distribu- 
tion for each of the three sampling campaigns; the dashed line on this 
figure shows the line that a q-q plot would follow if the two distribu- 
tions were identical. We can see that the exhaustive V distribution is 
much closer to the V distribution from the first sampling program than 
to  either of the sample distributions from the second and third pro- 
grams. In these final two sampling programs, the strategy of locating 
samples near high V values from the first program makes the sample 
V distribution a poor approximation of the exhaustive distribution. 

The comparisons in Table G.2 and Figure 6.4 demonstrate that ad- 
ditional sampling does not necessarily make the sample data set more 
representative of the entire area. As we mentioned earlier, the strategy 
used in the sampling of the Walker Lake area is quite a common one. 
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Figure 6.4 A comparison of the distribution of V for the three sampling campaigns 
to the exhaustive distribution of VThe quantiles of V from the first sample program 
are plotted with the * symbol, the second with the +, and the third with the 0. 

In practice, we should be aware that the sampling strategy can distort 
the sample distribution, making it bear only a superficial resemblance 
to  the exhaustive distribution. 

The fact that the samples from the second and third campaigns 
cause the sample statistics to become less representative of the ex- 
haustive statistics does not mean that the sampling strategy was a 
bad one. We have already seen that the data values become more er- 
ratic in areas where the local mean is high. Additional sampling in 
anomalously high areas makes good sense because it will improve our 
estimates in exactly those areas where the proportional effect makes 
them least accurate. Improved accuracy is also usually needed in areas 
of extreme values. We will see that there are several simple ways of 
dealing with clustered samples. As long as we are alert to  the effects 
of clustering, the additional sampling in anomalous areas is a definite 
asset. 

Univariate Description of U 
Since the 195 samples from the first sampling campaign are missing 
the U measurement, there are only 275 U measurements in the sample 
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Table 6.3 Comparison of u statistics by sampling program. 

Exhaustive Sample Statistics 
Statistics Program 1 Program 2 Program 3 

n 78,000 150 125 
m 

cv 
min 
Qi 
M 
Q3 

max 

U 
266 
489 
1.84 

0 
7 

57 
316 

9.500 

60 1 
80 1 

Not 1.33 
Available 0 

67 
254 
782 

3.739 

628 
724 
1.15 

0 
111 
397 
936 

5.190 

data set. The distribution of these 275 values is shown in Figure 6.5. 
This distribution is more skewed than the sample distribution of V 
values we saw in Figure 6.3. The sample U mean is higher than the V 
mean; however, the median is lower for U than for V ,  

It would be dangerous to  infer that these same observations hold 
for the exhaustive V and U distributions. We have already seen that 
the strategy used in the second and third sampling campaigns had a 
large effect on the distribution of the V samples. All of our U data 
come from these last two campaigns. The differences we observe when 
we compare Figures 6.3 and 6.5 could therefore be a result of the fact 
that we are comparing the 275 U values from the last two campaigns 
with the 470 V values from all three campaigns. 

A more legitimate approach to comparing the two distributions 
would be to  compare them by sampling campaigns. Table 6.3 gives a 
statistical summary of the distributions of the U samples in the last two 
sampling campaigns. When we compare these statistics to those given 
in Table 6.2 for the same campaigns we again see the differences we 
noted earlier in our more naive comparison. The U distribution seems 
to be more skewed, with a higher mean and a lower median. Though 
this comparison is certainly more reasonable than our previous one, we 
should still be cautious about inferring that these differences also hold 
for the exhaustive distributions. 
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Figure 6.5 Histogram and univariate statistics of the 275 U sample values. 
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Figure 6.6 A comparison of the distribution of U for the last two sampling cam- 
paigns to the exhaustive distribution of lJ using q-q plots. The quantiles of lJ from 
the second sample campaign are plotted with the + symbol, while those from the 
third are plotted with the 0. 

The postings of the V and U values in Figure 6.1 and 6.2 make it 
clear that the first phase of sampling was the only one of the three 
phases that evenly covered the entire area. The second and third 
phases, the only two for which we have U measurements, cover only 
those areas that indicated high V values from the first phase. The 
differences we observe between our V and U samples may not hold 
over the entire area. If we had the U measurements at  the 195 lo- 
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cations in the first sampling program, we could feel more confident 
about extending our observations from the sample data set to the ex- 
haustive distributions. Without these 195 U measurements we have to 
be cautious about such inferences. 

Checking the exhaustive V and U statistics, we can see that this 
caution is warranted. The V distribution is less skewed and does have 
a higher median. Its mean, however, is not lower than the U mean. 
The sampling strategy has distorted the V and U sample distributions 
enough that the V mean appears to  be somewhat lower. The reason 
for this can be better understood if we make q-q plots of our U sample 
distributions for each of the sampling campaigns. 

Figure 6.6 shows the two q-q plots of the sample U distributions 
versus the exhaustive U distribution for the two sample campaigns in 
which U was measured. The quantiles of U from the second sampling 
campaign are plotted using the + symbol while those from the third 
campaign are plotted using the 0. The sampling strategy clearly af- 
fects the sample distribution of U in the same way that it affected the 
V distribution. The positive correlation of the two variables causes 
sampling aimed at  locating high V values also to pick up high U val- 
ues. This correlation, however, is not so strong that it affects the two 
sample distributions equally. The sampling strategy, which was based 
on the V values, produced a larger bias in the U sample distribution 
than in the V sample distribution. Indeed, we can see that the shift 
in the q-q plots from the second campaign to the third is larger on 
the q-q plots for U in Figure 6.6 than it is on the q-q plots for V in 
Figure 6.4. 

The 195 V data from the first sampling phase gave us a reason- 
able approximation of the exhaustive V distribution. Without the U 
measurements from this initial phase we do not have a similarly good 
approximation of the U distribution. The posting of the U samples 
shows that we simply do not have adequate coverage over the whole 
area. For the remainder of this chapter we should keep in mind that 
our description of the U sample data is limited to those areas where 
we have U measurements and does not apply to those areas where U 
has not been sampled. Later, when we try to  estimate the exhaustive 
U mean, we should not expect much success. When we tackle this 
estimation problem, we will look at ways of using the V values to help 
us in those areas where U information is lacking. 
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The Effect of the T Type 
In the postings of the V and U samples given in Figure 6.1 and 6.2, the 
samples for which T is type 1 are shown with a 0 symbol while those 
for which T is type 2 are shown with a +. Forty-five of the samples in 
our sample data  set, about lo%, are type 1; the remaining 425, about 
90%, are type 2. 

As with the other variables, the sample distribution of T is affected 
by the sampling strategy. In the first phase of sampling, 79% of the 
samples are type 2. This rises to  97% in the second phase and to 100% 
in the third phase. This tendency of the last two sampling programs to  
encounter more type 2 samples indicates that high V values are more 
likely to  be associated with type 2 samples. This is easily checked by 
looking at  the posting of the V values in Figure 6.1. Most of the type 
1 samples have very low values; for about a third of them, the V value 
is 0 ppm. 

When we look at  the U posting in Figure 6.2 we notice a similar 
tendency. Unfortunately, 41 of the type 1 samples plotted on the V 
posting are from the first sampling program; the four type 1 samples 
collected in the final two programs are the only ones for which we have 
a U measurement. Without the benefit of the U measurements from 
the first sampling program, the difference in the U values of the two 
types is not as obvious as it is for V .  

As we continue our analysis of the sample data set, we will often be 
hampered by the lack of U measurements for type 1 samples. Though 
the T type seems to  be an important factor, we are unable to  describe 
its influence on U with only four samples of type 1. 

The general tendency of type 1 samples to  have lower values is 
confirmed by the statistical summary given in Table 6.4. With the 
exception of the coefficient of variation and median, every summary 
statistic is lower for type 1 samples. The higher coefficient of variation 
and median indicate that the distribution of U is more strongly skewed 
for the type 1 samples. 

The V-U Relationship 

A scatterplot showing the relationship between the V and U values at 
the same sample locations is given in Figure 6.7. There are 275 pairs 
of V-U values, one for each of the locations at which a U measurement 
exists. We have used different symbols for the type 1 and type 2 
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Table 6.4 Comparison of v and u statistics by sample type. 

Type 1 Type2 Type 1 Type2 
n 45 425 4 27 1 
m 40 479 429 616 
U 52 284 479 772 

cv 1.29 0.59 1.12 1.25 
min 0 0 0 0 
Q1 0 241 15 85 
M 18 477 367 335 
Q3 72 663 906 893 
max 195 1,528 983 5,190 

2000 

1500 

Y E 1000 
3 

500 

0 

+ 
& +  

+ 

+ 

2 

Figure 6.7 A scatterplot of the 275 U and V sample data. The type 1 points are 
shown with the symbol 1 while the type 2 points are shown with the 2. 

samples so that we can also see what influence the T type has on the 
V - U  relationship. 

The correlation coefficient of all 275 pairs is 0.55. Though there 
are only four points of type 1, these all plot to the left of the type 2 
points, suggesting that the T type separates the cloud of points into 



The Sample Data Set 129 

two portions. The T type plays a major role in the V - U  relationship. 
Were we to  predict V from the U values, knowledge of the T type may 
improve our estimates. 

If we check our exhaustive statistics from the previous chapter, we 
see that the preferential sampling, which severely affected 

the univariate statistics, has not had such a large effect on the cor- 
relation coefficient. For the 78,000 V - U  pairs in the exhaustive data 
set, we calculated a correlation coefficient of 0.65, somewhat higher 
than our sample value of 0.55. The relationship between V and U is 
not as strong for high values as it is for low ones. On the exhaus- 
tive scatterplot we saw in Figure 5.8, the cloud of points became more 
diffuse at high values. Our sampling strategy, which gives us a dis- 
proportionate number of high values, causes the sample correlation to 
appear somewhat weaker than the actual exhaustive correlation. 

Spatial Description 

We began our analysis of the sample data set with a posting (Fig- 
ure 6.2), that showed the locations of all of the V samples along with 
their values. Though this is a valuable map for detecting errors and 
checking various results, it does not effectively convey the spatial fea- 
tures of our samples. 

A contour map certainly gives us our best overall view of the im- 
portant spatial features. Unfortunately, in practice it is often used 
exclusively with no other displays to  provide the finer detail which the 
contour map masks. It bears repetition that contouring thatrgely an 
aesthetic exercise and therefore often requires that the actual fluctu- 
ations in the data values be smoothed. Many interesting features are 
not visible or are even camouflaged on a contour map. 

Another benefit of exploring other displays to complement the con- 
tour map is that  we increase our knowledge of the peculiar details of 
our samples. We start to remember, for example, the locations of ex- 
treme values, the areas that are sparsely sampled or the areas where 
the values are highly variable. We should not allow automated con- 
touring to  deprive us of this valuable familiarity with the sample data 
set. 

Figure 6.8 shows the locations of the samples with extremely high 
or extremely low V values. Like the complete posting of data values, 
this is often a useful tool for detecting errors. Also, by isolating the 
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Figure 6.8 
data. 

Posting of the extremely high and low values of the 470 V sample 

extreme values, we begin to  develop a n  appreciation of the spatial 
arrangement of the values. We notice that 12 of the highest V values 
all occur in the Wassuk Range area. The 22 samples with a V value 
of 0 ppm are scattered throughout the map area, with a small group 
located near Walker Lake itself. Later, we will look a t  how we can 
summarize this difference between the continuity of the high values 
and that of the low values. 
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Figure 6.0 

200 ppm and begins at 100 ppm. 
Contour map of the 470 V sample data. The contour interval is 

Figure 6.8 also reveals that extremely high values can be located 
very close to extreme lows. Several of the 12 highest V values are 
located only a few meters away from one of the 0 ppm values. Such 
dramatic short scale variability has a serious impact on the accuracy of 
estimates. In areas where the data values fluctuate wildly, we should 
not expect the same accuracy we get in areas where the values are not 
as erratic. 
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Figure 6.10 
data. 

Posting of the extremely high and low values of the 275 U sample 

A contour map of the V values is shown in Figure 6.9. Groups of 
samples with large V values create several anomalies over the entire 
Walker Lake map area. The most prominent of these is the large 
anomaly that covers the Wassuk Range in the northwest portion of 
the map area. The 12 highest values we plotted on Figure 6.8 all occur 
within this major anomaly. 

The existence of this large area of high V values was apparent 
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Figure 6.11 
200 ppm and begins at 100 ppm. 

Contour map of the 275 U sample data. The contour interval is 

even from our original posting. The dense coverage in the northwest- 
ern portion of Figure 6.2 pointed to a major anomaly. Even though 
the Wassuk Range covers only one tenth of the map area, it contains 
nearly one third of the samples. The other areas of dense sampling in 
Figure 6.2 also correspond to anomalies on the contour map. 

When we compare the contour map based on our sample data set to 
our spatial displays of the exhaustive data set (Figures 5.11 and 5.14), 
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we notice a few discrepancies. Our sampling strategy has succeeded 
in delineating the major high features. Several of the low features, 
however, are not well defined or are missing completely. 

The largest zone of low values is poorly represented on our sample 
contour map. The exhaustive indicator maps and the exhaustive con- 
tour map of the moving window means both show that this zone of low 
values covers all of Walker Lake itself and extends unbroken along the 
Soda Spring Valley. On our sample contour map the east-west portion 
of this zone is not apparent. An examination of the posting of V values 
shows that the trail of very low values does indeed disappear into some 
rather high ones near 250E,lGON. Ironically, had the 266 ppm value in 
this area been slightly higher, it would have caused extra samples to  be 
located nearby in the second and third sampling programs; these ad- 
ditional samples likely would have established that the very low values 
are actually continuous across this area. Regrettably, these additional 
samples are not available and we have to  accept the consequences of 
the sampling strategy, which did little to help us delineate the lowest 
values. 

When we try to  display the spatial features of our U values, we 
are limited by our sample coverage. As the posting of our U samples 
(Figure 6.1) shows, much of the map area has no U measurements. A 
further complication, one which we noticed earlier, is that the U mea- 
surements that we do have are generally high ones. The strategy used 
for the second and third sampling campaigns gave us few additional low 
V measurements, but we could still rely on those low V measurements 
we had in the 195 samples from the first campaign. Since none of these 
initial samples was measured for U the only low U measurements we 
have are the few we pick up in the second and third campaigns. 

A posting of the extreme U values (Figure 6.10) is similar to the 
corresponding display for V. The highest values again plot in the 
Wassuk Range area, but are more scattered than the highest V values. 
The 0 ppm values are also widely scattered. The fact that we see fewer 
0 ppm values on the U map than we did on the V map does not mean 
that the V variable generally reaches its minimum value more often. 
We should not forget that we are missing the U measurements from 
the first 195 samples. 

The fair correlation between V and U leads us to  expect a fair 
similarity in their major spatial features. The contour map of the U 
values (Figure 6.11) confirms this similarity, showing many of the same 
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Figure 6.13 Scatterplots of moving window standard deviations versus means for 
(a) the 470 sample V data and (b) the 275 U sample data. For moving windows 
containing less than 20 data values the standard deviation and mean were plotted 
using the “0” symbol, otherwise a “+” symbol was used. Note that the scale of the 
two plots differs. 

anomalies we saw on the V contour map. The Wassuk Range anomaly 
remains the largest and appears more pronounced further to the south 
while the location of the other major high anomalies remains roughly 
the same, with their shapes being somewhat different. 

Parts of our U contour map have been left blank. This is a good 
precaution to take when there are large unsampled areas. Automatic 
contouring packages usually manage to  fill these unsampled areas with 
contour lines. This often involves extrapolating data  values over large 
distances and the results can be quite misleading. I t  is safer to  be 
humble and admit our ignorance by leaving such areas blank. 

Proportional Effect 

The posting of the extremely high and low values alerted us to the 
possibility of very large fluctuations in the data  values over short dis- 
tances. As we noted, it is important t o  know if the local variability 
changes across the area. If it does, as is usually the case, it is useful 
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t o  know how the changes in local variability are related t o  changes in 
the local mean. 

Summary statistics have been calculated within GO x G O  m2 win- 
dows that overlap and cover the entire area. If we do not overlap 
these GO x GO m2 windows, we will be able to  calculate only 20 local 
means and standard deviations. By moving the windows 20 m, so that 
they overlap their neighboring windows by 40 m, we can get 195 local 
mean and standard deviation calculations. The overlap of our windows 
causes some of the data to  be used in the calculation of several means 
and standard deviations. This is not a major problem since our intent 
is simply t o  establish whether or not a proportional effect exists. 

The size of the moving windows guarantees that  we get a t  least 
nine V samples within each window except along the edges of the map 
area. If fewer than five samples are found, then their statistics will not 
be considered since they may be unreliable. 

Contour maps of the local means and local standard deviations are 
shown in Figure 6.12. The large windows cause considerable smooth- 
ing, leaving the Wassuk Range anomaly as the only distinct feature. 
Comparing the local means in Figure 6.12a to  the local standard de- 
viations in Figure 6.12b we see they are related. A scatterplot of the 
m-u pairs from each moving window (Figure 6.13a) not only confirms 
this relationship but also reveals that  it is approximately linear. The 
correlation coefficient is 0.81. 

The same analysis for the U values produces a similar result. The 
lack of samples in many areas causes us to reject a total of 58 of 
the GO x GO m2 moving windows. The results for the remaining 137 
windows, all of which contain a t  least five U samples, are shown in 
Figure 6.14. Where there are enough data  to  permit reasonable con- 
touring, the map of the local U means is similar t o  that of the local 
standard deviations. The scatterplot of the m-u pairs from each mov- 
ing window (Figure 6.13) confirms that a proportional effect exists. 
The  relationship is roughly linear and is well defined ( p  = 0.88). 

Further Reading 

Koch, G. and Link, R. , Statistical Analysis of Geological Data. New 
York: Wiley, 2 ed., 1986. 

Castle, B. and Davis, B. , “An overview of data  handling and data  
Rep. 308, Fluor analysis in geochemical exploration,” Tech. 
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Daniel Inc., Engineering Mining and Metals, 10 Twin Dolphin 
Drive, Redwood City, CA, 94065, March 1984. Association of 
Exploration Geochemists short course, Reno, Nevada. 



7 
THE SAMPLE DATA SET: 

SPATIAL CONTINUITY 

In this chapter we complete the exploratory analysis of the sample data  
set by describing the spatial continuity of the two continuous variables, 
V and U ,  as well as their cross-continuity. 

The analysis of spatial continuity in a sample data  set is often very 
frustrating, sometimes seemingly hopeless. There is much that can be 
learned, however, from failed attempts at describing spatial continuity. 
If a particular tool, whether a variogram, a covariance function or a 
correlogram, fails to produce a clear description, exploring the causes 
of the disappointing results often leads to  new insights into the data  
set. If these insights suggest improvements t o  the conventional tools, 
one should not hesitate t o  adapt the tools presented in Chapter 4 t o  
the peculiarities of the sample data  set. Indeed, one of the goals of 
this chapter is t o  demonstrate that  this process of customizing the 
available tools in response to disappointing results is often the key to 
a successful analysis of the spatial continuity. 

At this stage, our goal is purely descriptive and we are free t o  
choose whatever tools produce good descriptions. Later, when we try 
to  incorporate the spatial continuity into our estimation procedures, 
the way we choose to measure spatial continuity will be more restricted. 
We will defer discussion of those restrictions to later chapters and 
concentrate in this cha.pter solely on good description. 
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Sample h-Scat terplots and Their Summaries 

Before we start to look at the spatial continuity in the sample data set, 
we need to look at how h-scatterplots and their summaries are slightly 
altered in practice to  accommodate sample data sets. The problem 
we encounter when we try to construct an h-scatterplot from a sample 
data set is that for any h we choose there is enough randomness in our 
sample locations that very few pairs of samples are separated exactly 
by h. 

Despite the best plan, practical sampling campaigns rarely manage 
to  locate samples exactly a t  the desired locations. One of the awkward 
realities of earth science studies is that field conditions have a signif- 
icant impact on the final state of the sample data set. In most other 
disciplines that use statistical methods, the data are gathered in the 
safe sterility of a laboratory and are not influenced by such diverse fac- 
tors as last night’s rainfall and this morning’s bear sighting. In earth 
science studies, those responsible for actually collecting the samples 
often prefer to avoid swamps, dense undergrowth, and steep hills. It 
may simply be more expedient to sample some location other than the 
intended one. Surveying errors or the lack of a coherent sampling plan 
also introduce a certain degree of randomness to sample locations. 

In drawing our samples from the exhaustive Walker Lake data set 
we randomly shifted the intended location of our samples by a small 
amount in order to mimic the randomness inherent in the locations of 
real samples. The result, as seen on the posting in Figure 6.2, is that 
the samples are not perfectly gridded. 

To take a specific example, the third sampling campaign, which 
added 125 samples to  our data set, was intended to add samples 5 m 
on either side of existing samples with high V values. We might expect, 
therefore, to have 125 pairs of samples located 5 m apart in an east-west 
direction. Unfortunately, if we construct an h-scatterplot for h = (5,O) 
we discover that only 11 pairs of samples have exactly this spacing. 
The remaining pairs we expected to find are only approximately 5 m 
apart in an east-west direction; for example, 55 pairs are off by 1 m. 

We have to  tolerate this inevitable randomness and accept any pair 
whose separation is close to  h on our h-scatterplots. In practice, we 
specify tolerances both on the distance of h and on its direction. A 
typical example is shown in Figure 7.1 in which we use a tolerance of 
5 1 m on the distance and f 20 degrees on the direction of h. Any 
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Figure 7.1 An illustration of the tolerances on h for the selection of data pairs in 
an h-scatterplot. A tolerance of f l  is allowed on the magnitude of h and a tolerance 
of f  20 degrees is allowed on the direction. Any sample falling within the shaded 
area would be paired with the sample at (x,y). 

point that falls within the shaded area on this diagram is accepted as 
being 5 ni away in an easterly direction [l]. 

The summaries we proposed earlier for h-scatterplots remain es- 
sentially the same, but their equations should be altered to reflect the 
fact that we no longer require that pairs be separated exactly by h. 
For example, equation 4.9 would now be written 

The only difference between this and our original definition is that we 
now choose to sum over the N(h) pairs whose separation is approxi- 
mately h. The way we choose to specify “approximately” will depend 
on the sample data set. The most common approach is the one shown 
in Figure 7.1, where we allow a certain tolerance on the distance and 
another tolerance on the direction. As we analyze the spatial continu- 
ity of V in the following sections, we will look at  how these tolerances 
are chosen in practice. 
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An Outline of Spatial Continuity Analysis 

Although a series of h-scatterplots provides the most complete de- 
scription of spatial continuity, it usually contains too much informa- 
tion and requires some type of summary. In Chapter 4 we introduced 
three functions for summarizing spatial continuity: p(h), the correla- 
tion function; C( h), the covariance function; and 7( h), the variogram. 
All of these use some summary statistic of the h-scatterplots to describe 
how spatial continuity changes as a function of distance and direction. 
Any one of them is adequate for purely descriptive purposes. The vari- 
ogram, however, is the most traditional choice. Though the covariance 
and correlation functions are equally useful and, in some other disci- 
plines, more traditional, our approach in this chapter will be to  begin 
with the variogram and resort to  other summaries only when there 
appears to  be no way to  improve the sample variogram. 

It is appropriate to  introduce at this point some terminology that 
is used to  describe the important features of the variogram. 
Range. As the separation distance between pairs increases, the cor- 
responding variogram value will also generally increase. Eventually, 
however, an increase in the separation distance no longer causes a cor- 
responding increase in the average squared difference between pairs of 
values and the variogram reaches a plateau. The distance at which the 
variogram reaches this plateau is called the range. 
Sill. The plateau the the variogram reaches a t  the range is called the 
sill. 
Nugget Effect. Though the value of the variogram for h = 0 is strictly 
0, several factors, such as sampling error and short scale variability, 
may cause sample values separated by extremely small distances to  
be quite dissimilar. This causes a discontinuity a t  the origin of the 
variogram. The vertical jump from the value of 0 at the origin to  
the value of the variogram at  extremely small separation distances is 
called the nugget effect. The ratio of the nugget effect to  the sill is 
often referred to  as the relative nugget effect and is usually quoted in 
percentages. 

One typically begins the analysis of spatial continuity with an 
omnidirectional variogram for which the directional tolerance is large 
enough that the direction of any particular separation vector, hij, be- 
comes unimportant. With all possible directions combined into a single 
variogram, only the magnitude of h;j is important. An omnidirectional 
variogram can be thought of loosely as an average of the various direc- 
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tional variograms. I t  is not a strict average since the sample locations 
may cause certain directions to  be over represented. For example, in 
the omnidirectional variograms presented in the this chapter the sam- 
pling strategy of the third campaign causes more east-west pairs than 
north-south pairs. 

The calculation of an omnidirectional variogram does not imply 
a belief that  the spatial continuity is the same in all directions; it 
merely serves as a useful starting point for establishing some of the 
parameters required for sample variogram calculations. Since direction 
does not play a role in omnidirectional variogram calculations, one 
can concentrate on finding the distance parameters that  produce the 
clearest structure. An appropriate increment between successive lags 
and a distance tolerance can usually be chosen after a few trials. 

Another reason for beginning with omnidirectional calculations is 
that  they can serve as a n  early warning for erratic directional vari- 
ograms. The omnidirectional variogram contains more sample pairs 
than any directional variogram and is, therefore, more likely to  show a 
clearly interpretable structure. If the omnidirectional variogram does 
not produce a clear structure, one should not expect much success with 
directional variograms. If the omnidirectional variogram is messy, then 
one should try to  discover the reasons for the erraticness. An exam- 
ination of the h-scatterplots may reveal that  a single sample value is 
having a large influence on the calculations. A map of the locations 
of erratic pairs can also reveal unforeseen problems. If the reasons for 
the erraticness can be identified, then one should adapt the variogram 
calculation to account for the problems. This may involve entirely re- 
moving certain samples from the data set, or removing particular pairs 
of samples only from particular h-scatterplots [2]. 

If repeated attempts at improving the clarity of the sample vari- 
ograms prove fruitless, then one should consider a different measure of 
spatial continuity. In addition to  the correlation and covariance func- 
tions we used earlier, there are several relative variograms that one can 
consider using. Though these relative variograms lack the theoretical 
pedigree of the three measures we introduced in Chapter 4, experience 
has shown that they can be very useful in producing clear descriptions 
of the spatial continuity. 

Once the omnidirectional variograms are well behaved, one can 
proceed to explore the pattern of anisotropy with various directional 
variograms. In many practical studies, there is some prior information 
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about the axes of the anisotropy. In a mineral deposit, there may be 
geologic information about the ore genesis that suggests directions of 
maximum and minimum continuity. For example, in a sedimentary 
hosted mineral deposit, the direction of maximum continuity will most 
likely parallel the stratigraphy. In the study of the concentration of an 
airborne pollutant, such information might come from knowledge of the 
prevailing wind direction; for a pollutant transported by groundwater, 
hydrogeologic information about the contaminated aquifer could be 
helpful in choosing directions for variogram calculations. 

Without such prior information, a contour map of the sample values 
may offer some clues to the directions of minimum and maximum con- 
tinuity. One should be careful, however, in relying solely on a contour 
map even though they usually show the maximum and minimum con- 
tinuity directions quite well. Automated contouring typically involves 
a first step of interpolation to  a regular grid; this step can produce 
artifacts. The appearance of elongated anomalies on a contour map 
may be due to  the gridding procedure rather than to an underlying 
anisotropy. One very good approach to identifying the anisotropy if 
no prior information exists is to try to produce a picture of the entire 
variogram surface, similar to  the one shown of the exhaustive covari- 
ance function in Figure 7.6 With only a few samples, this may not 
be possible. An alternative, and perhaps the more common approach, 
is to calculate several directional variogr,ams and plot a rose diagram, 
which shows the variogram range or sldpe at the origin as a function 
of direction. 

Once the directions of maximum and minimum continuity have 
been established, one needs to  chose a directional tolerance that is 
large enough to allow sufficient pairs for a clear variogram, yet small 
enough that the character of the variograms for separate directions is 
not blurred beyond recognition. At this stage one may have to  re- 
peat the earlier process of examining h-scatterplots, trying to  unravel 
the reasons for erratic behavior and adapting the variogram accord- 
ingly. 

The analysis of spatial continuity is rarely a straightforward process 
and one should be prepared for several iterations of the steps outlined 
earlier. For readers struggling with the variogram analysis of their 
own uncooperative data sets, it may be encouraging to  know that the 
following analysis, despite its appearance of orderly progress, involved 
several false starts and retraced steps. 



146 A n In t r d u c t  ion to  Applied Geosta tist ics 

Table 7.1 Omnidirectional sample variogram for V with a 5 m lag*. 

No. of No. of 
Pairs Lag Y ( h )  Pairs Lag 7 ( h )  

22 2.1 11,294.1 3,920 55.0 94,415.1 
488 5.4 42,671.4 5,324 

1,720 10.4 51,932.4 4,442 
1,856 14.8: 71,141.8 5,478 
3,040 20.3 70,736.9 4,696 
2,412 24.9 86,745.2 5,762 
3,550 30.1 84,077.8 5,084 
2,816 34.8 99,986.6 5,666 
4,092 40.3 89,954.4 4,458 
3,758 44.9 86,155.0 2,890 
4,248 50.2 98,319.3 

*The plot is shown in Figure 7.2. 

60.2 
64.8 
70.2 
74.8 
80.2 
84.9 
90.1 
94.8 
98.8 

88,848.9 
96,309.2 
96,397.3 
90,704.6 
92,560.6 
88,104.0 
95,530.9 

101,174.8 
94,052.1 

Choosing the Distance Parameters 

There are two distance parameters that  need to  be chosen. One is the 
distance between successive h-scatterplots, usually referred t o  as the 
Zag spacing or lag increment; the other is the tolerance we will allow 
on the distance. The  sampling pattern may suggest a reasonable lag 
increment. If the samples are located on a pseudo-regular grid, the grid 
spacing is also usually a good lag spacing. If the sampling is random, 
one can use as an initial lag spacing an  estimate of the average spacing 
between neighboring samples. 

If the sampling pattern is noticeably anisotropic, with the sample 
spacing being much smaller in some directions than in others, the dis- 
tance parameters will depend on the direction. A typical example is a 
sample data  set consisting of assays from drill cores, where the sam- 
ple spacing in the vertical direction is much smaller than the sample 
spacing horizontally. In such situations, an omnidirectional variogram 
is not recommended for establishing the distance parameters. Instead, 
one should group sample pairs that  share similar spacing. For example, 
with a drill hole data  set a variogram that combined all horizontal di- 
rections would be appropriate for establishing the horizontal distance 
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Figure 7.2 Omnidirectional sample variogram for V with a 5 m lag. 

Table 7.2 Omnidirectional sample variogram for V at a 10 m lag*. 

No. of No. of 
Pairs Lag Y ( h )  Pairs Lag 7 ( h )  

178 3.6 32,544.3 9,782 60.3 91,285.2 
3,044 11.0 55,299.8 10,060 70.3 93,809.2 
5,140 20.4 75,224.6 10,628 80.3 92,357.8 
6,238 30.2 88,418.6 10,454 90.1 95,010.5 
7,388 40.5 90,544.1 4,856 97.8 97,349.3 
7,954 50.1 95,689.7 

* The plot is shown in Figure 7.3. 

parameters, while a separate variogram for the vertical direction would 
be used for establishing the vertical distance parameters. 

The most common choice for the lag tolerance is half the lag spac- 
ing. If the samples are located on a regular grid or on a pseudo-regular 
grid, one may choose a lag tolerance smaller than half the lag spacing. 
While this can result in some pairs not being used in the variogram 
calculation, it can also make the structure clearer. 

The existence of samples located very close to each other may affect 
the choice of the distance parameters. One may want to include an 
additional lag for small separation distances and use a small tolerance 
for this first lag so that any duplicate or twin samples are grouped 
together, providing a sample variogram point close to the origin. 
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Figure 7.3 Omnidirectional sample variogram for V with a 10 m lag. 

Figure 7.2 shows the omnidirectional variogram for the 470 V values 
in the sample data set. Successive lags are 5 m apart and each lag has 
a tolerance of 2.5 m. This initial choice of lag increment and tolerance 
was based on the fact that the samples from the third campaign were 
located at approximately 5 m intervals. While this omnidirectional 
variogram sliows a fairly clear structure, there is still some erraticness 
in the sample variogram values. There are several small jumps from 
one lag to  the next, creating a jagged appearance. 

The number of pairs, their average separation distance, and the 
sample variogram value for each lag is given in Table 7.1. These results 
give us an indication that the jagged appearance of our variogram 
may be due to our choice of lag increment and tolerance. From the 
fourth lag onward, the number of sample pairs increases and decreases 
regularly, with the lags centered on multiples of 10 m containing more 
sample pairs than the others. The problem is that the 5 m spacing 
from the third sampling campaign was only in an east-west direction. 
This means that while the lags centered on multiples of 10 m contain 
samples that are representative of many directions and of the entire 
area, the alternate lags are restricted predominantly to  east-west pairs 
from areas that received additional sampling. 

A better choice of lag increment might be 10 m, with a 5 m tolerance 
on the distance. The omnidirectional variogram calculated using these 
parameters is shown in Figure 7.3, with the accompanying details in 
Table 7.2. The structure in this variogram is similar to that seen in 
our initial attempt, but the jagged appearance is now gone. For the 
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Figure 7.4 An illustration of how two dimensional data can be grouped to form a 
variogram surface. For any one block all samples falling within the shaded portion 
will be paired with the sample at (x,y). The variogram values of all such pairs are 
averaged and plotted as shown in Figure 7.5. A regular grid of these variogram 
averages forms the variogram surface. 

remainder of our analysis of the spatial continuity, we will continue to  
use a lag increment of 10 m and a tolerance of 5 m. 

Finding the Anisotropy Axes 

Having found an acceptable omnidirectional variogram, we can now 
try to  study directional anisotropies in the variogram. In many data 
sets the data values along certain direction are more continuous than 
along others. A display that quickly reveals directional anisotropies 
is a contour map of the sample variogram surface. Since contouring 
programs typically require data on a rectangular grid, a contour map 
of the variogram surface is easier to construct if the tolerance on h 
is defined in a rectangular coordinate system, such as the one shown 
in Figure 7.4, rather than the conventional polar coordinate system 
shown in Figure 7.1. In calculating the variogram value for pairs of 
points separated by the vector h = (h,, h,), we group together all pairs 
whose separation in the x direction is h, f Ax and whose separation 
in the y direction is h,  f Ay. 

Figure 7.5 shows the variogram calculations for pairs whose separa- 
tion distance in the east-west direction, h,, is less than 50 ni and whose 
separation in the north-south direction, h,, is also less than 50 m. The 
data pairs have been grouped into 100 lags, with the a lag increment 
of 10 m and a lag tolerance of f5 m in both directions. These values 
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Figure 7.5 A posting of grouped sample variogram values for lag tolerances as 
shown in Figure 7.4. The variogram values have been grouped into 100 lags with a 
lag increment of 10 m and a lag tolerance o f f  5 m in both directions. 

have been contoured in Figure 7.6. There is a clear anisotropy, with 
the variogram surface rising rapidly along the N76'E direction, and 
slowly along the N14'W direction [3]. 

Despite their effectiveness, contour maps of the variogram surface 
are not commonly used in practice [4]. For very erratic data sets, the 
variogram values within the various rectangular lags may be too erratic 
to produce a useful contour map. Furthermore, many practitioners 
have neither the software nor the hardware required for displays such 
as the one shown in Figure 7.5. The conventional approach to finding 
the directions of maximum and minimum continuity consists essentially 
of trying to trace only one of the contour lines. 

Nine directional variograms are shown in Figure 7.7. For each of 
these directional variograms, an angular tolerance of f 4 5  degrees is 
large enough to give us an interpretable structure. The variogram 
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Figure 7.6 
contour values are in thousands of parts per million squared. 

A Contour map of the variogram values grouped in Figure 7.5. The 

reaches a sill above 80,000 ppm2 along each of these directions, so 
we will try to trace this particular contour line. For each of the direc- 
tions, we find the distance at  which the variogram reaches 80,000 ppm2 
by linear interpolation between the two closest points; these nine dis- 
tances are shown in Figure 7.7a-i. Plotting these distances on a rose 
diagram, as in Figure 7.8, amounts to showing the distance in several 
directions to the 80,000 ppm2 contour line. Such diagrams often show 
an anisotropy that appears elliptical; Figure 7.9 shows that the ranges 
shown in Figure 7.7 are fit quite well by an ellipse whose major axis is 
NlOOW and whose minor axis is N80"E. 

The choice of which contour line to trace is not crucial. Any value 
of ?(h) for which the distance is unique and easily interpolated is ad- 
equate. The complete contour map in Figure 7.6 shows that a similar 
result would have been reached with any contour line from 50,000 to 
80,000 ppm2. 
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Figure 7.7 
corresponding to a variogram value of 80,000 ppm'. 

Nine 'directional sample variograms each showing the lag distance 
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Figure 7.9 An ellipse fit to the rose diagram of the nine ranges shown in Figure 7.8. 

The major and minor axes of the ellipse represent the axes of a geometric anisotropy. 
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Since the attempt to contour the sample variogram surface was 
successful, we will use the results of that approach rather those from the 
more conventional rose diagram. For the remainder of our analysis of 
the spatial continuity, we will use N14'W and N76"E as the directions 
of maximum and minimum continuity. 

Choosing the Directional Tolerance 

Having discovered the directions of maximum and minimum continuity, 
the remaining parameter we need to choose is the angular or directional 
tolerance. When calculating directional variograms, we would ideally 
like to  use as small an angular tolerance as possible to limit the blur- 
ring of the anisotropy that results from combining pairs from different 
directions. Unfortunately, too small a directional tolerance often gives 
us so few pairs that the directional variogram is too erratic to serve 
as a useful description. The best approach is to try several tolerances 
and use the smallest one that still yields good results. 

Figure 7.10 shows the' N14'W and N76'E variograms with four 
different tolerances; Table 7.4 provides the details of the calculations 
for an angular tolerance of f 40 degrees. For any particular lag, the 
number of pairs contributing to the variogram calculation increases as 
the directional tolerance increase as shown in Table 7.3. In the first 
lag, for example, there are no pairs separated by less than 5 m in 
the N14'W direction when the tolerance is only f10 degrees; as the 
angular tolerance is increased to f 2 0  degrees, one pair appears in this 
first lag; and as it  is widened to f40  degrees, this first lag includes six 
pairs. 

An angular tolerance of f 4 0  degrees appears to be large enough 
to allow well-defined directional variograms while still preserving the 
evident anisotropy. 

Sample Variograms for U 
We now turn to the secondary variable, U, and try to describe its 
spatial continuity. Our first attempt, an omnidirectional variogram, is 
shown in Figure 7.11, along with the accompanying details in Table 7.5. 
This is not a very satisfying description of the spatial continuity of U; 
even though there is some visible increase of 7 ( h )  with distance, it is 
slight and somewhat erratic. Despite the contribution of 124 pairs, the 
value of 7(h)  for the first lag is very high. Furthermore, the dip that 
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Figure 7.10 Directional sample variograms of V for various angular tolerances. In 
each plot, the  variogram in the N76'E direction is shown by the solid line and in the 
N14'W direction by the dashed line. T h e  number of pairs for each angular tolerance 
is given in Table 7.4. Details of the variogram shown in (d) are in Table 7.4. 

Table 7.3 Table showing the number of pairs in the directional sample variograms 
of v for increasing angular tolerances*. 

*loo f 2 0 °  f30 '  f40 '  
N76'E N14'W N76'E N14'W N76'E N14'W N7G'E N14'W 

22 0 57 1 66 1 76 6 
168 
165 
327 
25 1 
338 
41 1 
388 
494 
457 

176 352 370 532 
28 1 710 681 87 1 
363 63 1 682 936 
445 806 966 1,099 
554 692 1,071 1,103 
709 893 1,476 1,269 
783 809 1,505 1,259 
854 923 1,658 1,416 
768 915 1,542 1,380 

543 
911 

1,051 
1,405 
1,605 
2,000 
2,178 
2,396 
2,193 

674 
1,058 
1,386 
1,453 
1,621 
1,744 
1,706 
1,879 
1,828 

714 
1,152 
1,521 
1,798 
2,071 
2,646 
2,703 
2,999 
2,804 

234 314 459 634 687 890 957 1,250 
*See Figure 7.10. 
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Table 7.4 
tolerance o f f  40 degrees as shown in Figure 7.10(d). 

Details of the directional sample variograms of V with an angular 

No. of No. of 
Pairs Lag Y ( h )  Pairs Lag Y ( h )  

Angular To1 = f 40' 
76 3.6 34,154.8 6 3.7 29,249.0 

674 10.5 62,228.4 714 11.3 48,228.6 
1,058 19.9 86,521.1 1,152 20.6 62,705.8 
1,386 29.7 97,758.3 1,521 30.5 78,342.6 
1,453 40.2 98,921.3 1,798 40.8 80,920.5 
1,521 50.0 108,078.7 2,071 50.4 86,908.9 
1,744 60.1 90,870.2 2,646 60.6 88,282.6 
1,706 70.1 91,668.4 2,703 70.4 95,068.3 
1,879 80.1 87,278.7 2,999 80.5 94,065.4 
1,828 90.0 92,427.5 2,804 90.2 95,929.5 

957 97.7 92,742.5 1,250 97.8 100,023.3 

occurs around 50-60 m presents a confusing story. This characteristic, 
often referred to as a hole effect, suggests that samples separated by 
50 m are actually more similar than those separated by only 30 m. 

There are certain natural phenomena for which a hole effect var- 
iogram is to  be expected. If there are discrete lenses of high values, 
as in many ore deposits, a hole effect may be seen on the variogram 
at roughly the average spacing between adjacent lenses. Hole effects 
also occur in data sets in which there is a natural cyclicity or repeti- 
tion. The vertical variogram of porosity or permeability from a well 
drilled through sedimentary rock often shows hole effectsthat can be 
attributed to cycles of facies changes. 

When one sees a hole effect on a sample variogram, it is useful to 
check maps of the data set to see if there is an obvious cause. In the 
case of the U variable for Walker Lake, there is no evident explanation 
for the hole effect seen on Figure 7.11, and it is reasonable to  conclude 
that this is undesirable noise in  our summary of spatial continuity. 

Before we proceed with our analysis of the spatial continuity of 
U ,  we need to investigate the reasons for the poor behavior of the 
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Table 7.5 Omnidirectional sample variogram for U*. 

No. of Lag Lag 
Pairs Lag Y(h) Mean Variance 

124 3.6 494,439.5 802.1 725,323.6 
1,986 10.8 511,155.6 678.1 652,400.0 
2,852 20.4 563,576.2 656.3 631,980.0 
2,890 30.0 615,467.1 655.8 689,183.6 
3,126 40.2 623,923.8 602.8 694,152.3 
3,352 50.2 531,279.6 537.0 565,290.7 
3,850 60.3 546,761.8 545.1 570,845.2 
4,026 70.2 588,416.7 577.3 597,686.1 
4,008 80.2 596,601.6 587.9 601,619.8 
3,728 90.2 672,284.1 647.7 (363,917.6 
1,730 97.7 673,677.4 666.0 659,787.1 

*See Figure 7.11. 

100 
Distance 

Figure 7.11 
statistics are given in Table 7.5. 

Omnidirectional sample variogram for U with a 10 m lag. The lag 
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Figure 7.12 The omnidirectional lag 1 h-scatterplot of U. 

Table 7.6 The 10 largest differences from the lag 1 h-scatterplot of U'. 

ui uj IUa - W j l  ui uj (Ui - Ujl 
' 360.4 1,987.0 1,626.5 3,371.4 997.3 2,374.1 
1,987.0 360.4 1,626.5 3,691.7 6G4.1 3,027.6 
3,738.9 1,696.3 2,042.5 664.1 3,691.7 3,027.6 
1,696.3 3,738.9 2,042.5 1,992.1 5,190.0 3,197.9 

997.3 3,371.4 2,374.1 5,190.0 1,992.1 3,197.9 
*See Figure 7.12. 

omnidirectional variogram; there is little point in trying to  calculate 
directional variograms that are likely to be even more erratic. If we can 
identify the reasons for the omnidirectional variogram's lack of clear 
structure, we may be able to  adapt the traditional variogram calcula- 
tion to  reflect our new insights. Each point on the sample variogram 
is actually a summary of a particular h-scatterplot. A good place to 
begin our investigation, therefore, is the h-scatterplots for each lag. 

Figure 7.12 shows the h-scatterplot for the first lag. For this partic- 
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Table 7.7 
values greater than 5,000 ppm removed*. 

Omnidirectional sample variogram of U with pairs containing sample 

No. of No. of 
Pairs Lag 7 ( h )  Pairs Lag 7 ( h )  

122 3.6 418,719.1 3,822 60.3 480,825.8 
1,972 10.8 453,294.6 3,986 70.2 489,074.1 
2,832 20.4 500,586.1 3,974 80.2 506,808.8 
2,858 30.0 510,753.0 3,688 90.2 572,382.5 
3,090 40.2 524,893.4 1,718 97.7 598,922.1 
3,334 50.2 479,926.6 

*See Figure 7.13. 

ular lag, we are interested iii understanding why its variogram value is 
so high. Since 7 ( h )  is the moment of inertia about the 45 degree line, 
we can focus our attention on the points that are farthest away from 
this line. The 10  pairs of values that plot farthest from this line, and 
which therefore make major contributions to the large variogram value, 
have been circled in Figure 7.12. These pairs have also been listed in 
Table 7.6. It  is important to note that the pairs that contribute most 
to the variogram value do not always correspond to the largest data 
values. For example, there are samples with U values larger than the 
1,987 ppm sample that appears in Table 7.6,  but they do not appear 
in this table since they are paired with more similar values. 

In an attempt to make the variogram a clearer description of the 
spatial continuity, we can try removing the particular samples that 
contribute most to the large variogram value in the first lag. The 
result of removing the largest of these samples, the 5,190 ppm value, 
is shown in Figure 7.13, with the accompanying details in Table 7.7. 
The removal of this particular sample reduces the number of pairs in 
the first lag by only two, but reduces the variogram value by nearly 
20%. A similar effect can be seen in the other lags. The overall effect 
of the removal of this high value from the sample data set is a small 
but noticeable improvement in the shape of the variogram. 

The removal of other erratic sample values does little to improve the 
appearance of the variogram. Figure 7.14 shows the omnidirectional 
U variogram calculated without the five samples with the largest U 
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Figure 7.13 Omnidirectional sample variogram of (I with pairs containing sample 
values greater than 5,000 ppm removed. The lag statistics are given in Table 7.7. 

Table 7.8 
values greater than 3,000 ppm removed*. 

Omnidirectional sample variogram of U with pairs containing sample 

No. of No. of 
Pairs Lag Y ( h )  Pairs Lag Y(h) 

116 3.6 276,799.6 3,680 60.3 315,242.9 
1,882 10.8 290,115.9 3,840 70.3 331,924.9 
2,704 20.4 328,055.9 3,812 80.2 336,060.6 
2,718 30.0 343,956.8 3,520 90.2 392,316.2 
2,936 40.2 337,972.1 1,628 97.7 405,636.3 
3,190 50.2 304,634.7 
' See Figure 7.14. 

values: the 5,100 ppm sample a t  (73,199), the 3,739 ppm sample at 
(51,260), the 3,692 ppm sample a t  (60,151), the 3,637 ppm sample a t  
(39,181), the 3,371 ppm sample at (78,159). While there is a small 
improvement in the appearance of the variogram for short distances, 
the overall appearance of the sample variogram is still quite close to 
that of a pure nugget effect. 

Removing samples from the data set is rarely satisfying; there are 
no rules that specify which samples need to be removed, so the pro- 
cedure may seem arbitrary. One also may worry that the removal of 
a particular sample results in the loss of all pairs which involved that 
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Figure 7.14 Omnidirectional sample variogram of U with pairs containing sample 
values greater than 3,000 ppm removed. The lag statistics are given in Table 7.8. 

Table 7.0 
differences removed*. 

Omnidirectional sample variogram of U with 10% of the largest pair 

No. of No. of 
Pairs Lag Y ( h )  Pairs Lag 7 ( h )  
112 3.6 242,609.5 3,466 60.3 201,567.9 

1,787 10.8 197,504.0 3,626 70.2 222,236.5 
2,567 20.4 235,272.9 3,607 80.2 227,732.3 
2,601 30.0 255,042.3 3,355 90.2 289,415.6 
2,813 40.2 244,652.8 1,557 97.7 315,174.8 
3,017 50.2 203,036.0 

* The plot is shown in Figure 7.15. 

sample. While some of these may have been erratic, others may have 
been truly representative of the spatial continuity. 

A less arbitrary procedure, and one that retains the useful contri- 
bution of large sample values, is to  remove only the most erratic pairs 
from each particular lag. For example, we could decide to examine 
each h-scatterplot and to remove the 10% of the sample pairs that are 
farthest from the 45 degree line. If the variogram as defined in Equa- 
tion 7.1 is seen as the mean of the distribution of squared differences 
for each h-scatterplot, the procedure previously described can be seen 
as the truncated mean of the lower 90% of this distribution. Such 
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Figure 7.15 Omnidirectional sample variogram of U with 10% of the largest pair 
differences removed. The lag statistics are given in Table 7.9. 

truncated or trimmed means are often used in statistics to reduce the 
adverse effects of erratically high values. 

Figure 7.15 shows the effect of this procedure on the omnidirec- 
tional variogram of the U samples; the details of the calculations are 
given in Table 7.9. It is clear from Figure 7.15 that this procedure does 
little to  clarify the structure of the variogram for this particular data 
set. 

Neither the removal of particular samples nor the removal of par- 
ticular pairs of samples does much to  improve the appearance of our 
omnidirectional U variogram. This should not be taken as evidence 
that these procedures are not useful; there are many data sets for 
which these procedures can significantly improve the appearance of an 
erratic sample variogram. For this particular data set, the problem 
is not with these procedures, but with the variogram itself; there are 
many data sets for which the sample variogram is simply inappropri- 
ate as a descriptive tool. The variogram works well for data sets in 
which there is no proportional effect or in which the sample locations 
are not preferentially clustered. Table 7.5 provides a good example of 
the problems that a clustered, heteroscedastic data set presents. The 
final two columns in this table give the mean and variance of all the 
sample values that contribute to each lag. We can see that there are 
considerable fluctuations in these lag means and variances. The mean 
and variance of the sample U values are highest for the pairs that con- 
tribute to  the first lag. The lags with the lowest lag mean and variance 



The Sample Data Set: Spatial Continuity 163 

are the 50 and GO m lags, the same two lags that produce the apparent 
hole effect on the sample variogram in Figure 7.11. 

The reason for the fluctuating lag means becomes apparent if we 
consider the sampling strategy. The first lag contains sample pairs that 
are less than 5 m apart; until the third sampling campaign, the closest 
samples were approximately 10 m apart. All of the sample pairs that 
appear on the h-scatterplot for the first lag must therefore contain at  
least one sample from this final campaign, causing the samples that 
contribute to this first lag to  be preferentially located in anomalously 
high areas. For the second lag, where the sample pairs are between 5 
and 10 m apart, not only are there many more pairs that  fall into this 
lag, but also these pairs are more representative of the entire area. 

This discrepancy between the sample pairs that appear on different 
h-scatterplots is a common occurrence in practice. The most closely 
spaced samples are often the result of some final sampling program 
aimed specifically a t  delineating anomalously high areas. This creates 
problems for the sample variogram if a proportional effect exists; the 
average squared difference within a given lag will be influenced by the 
statistics of the pairs that contribute to each lag. 

Relative Variograins 

The dependence of the value of Y( h) on the mean of the data values for 
each 11-scatterplot leads us in practice to consider alternatives to  Y(h) 
which take account of this changing mean. These “relative variograms” 
scale Y(h) to some local mean value [5] .  There are three types of 
relative variograms that are often used to  produce clearer descriptions 
of the spatial continuity; any one of these three could be used for purely 
descriptive purposes. 

Local Relative Variograms. The most natural way to  consider 
accounting for the effect of the local mean is to define separate regions 
and treat the data within each region as a separate population. One 
may find that the variograms for each population are similar in shape, 
with the local mean determining the actual magnitude of each separate 
variogram. In such cases, a single variogram, YLR(h),  can be used 
to  describe the overall spatial continuity with the understanding that 
the values of ’YLR(h) should be scaled by the local mean to  obtain the 
actual local variogram, Once we have sample variograms from separate 
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regions, the local relative variogram can be calculated by: 

Yl(h), . . . , 7,(h) are the local variograms from the n separate regions; 
ml, . . . , m, are the local mean values within each of the regions; and 
Nl(h),  . . . , Nn(h) are the numbers of sample pairs on the h-scatterplots 
from each region. This equation scales each local variogram by the 
square of the local mean then combines them by taking into account 
the number of sample pairs on which each local variogram is based. 

The commonly observed linear relationship between the local mean 
and the local standard deviation leads to the common assumption that 
the local variogram is proportional to the square of the local mean. If 
the relationship between the local mean and the local standard devi- 
ation is something other than linear, one should consider scaling the 
local variograms by some function other than mp. 

General Relative Variograms. One of the drawbacks of the lo- 
cal relative variogram is that  the local variograms from each separate 
region are based on smaller populations. The use of fewer data  may 
cause the local variograms t o  be as erratic as the original overall sam- 
ple variogram. Unlike the local relative variogram, the general relative 
variogram does not require the definition of smaller populations. In- 
stead, the moment of inertia for each h-scatterplot is adjusted using the 
mean of the data  values that appear on that particular h-scatterplot: 

The numerator, Y( h), is the same value that  we calculated earlier using 
Equation 7.1 and the denominator, m(h), is the mean of all the data 
values that are used t o  calculate Y(h): 

(7.4) 
m+h + m-h 

2 c vi + v j  = 
1 m(h) = - 

2N(h) (i,j)lh,,%h 

If we calculate m(h) as we are calculating ?(h), then the compu- 
tation of the general relative variogram requires little additional effort 
should Y(h) turn out t o  be erratic. 
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Figure 7.16 
relative variograms. 

The seven sample regions of Walker lake used for calculating local 

Table 7.10 Table giving the local means for the seven local regions of U*. 

Region Local mean Region Local mean 
1 579 5 428 
2 704 6 868 
3 540 7 1,263 
4 264 

*See Figure 7.16. 
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Pairwise Relative Variogram. The third relative variogram that 
often helps to  produce a clearer display of the spatial continuity is the 
pairwise relative variogram. Like the others, i t  adjusts the variogram 
calculation by a squared mean. This adjustment, however, is done 
separately for each pair of sample values, using the average of the two 
values as the local mean: 

The  difference between this and the equation for the variogram that 
we gave in Equation 7.1 is the denominator, which serves to reduce 
the influence of very large values on the calculation of the moment of 
inertia. 

If vi and v j  are both exactly 0, then the denominator in Equa- 
tion 7.5 becomes 0 and TpR(h) becomes infinite. For this reason it is 
advisable to  choose some lower bound for the denominator. Pairs of 
values whose mean is below this minimum either can be dropped from 
the calculation or can have their local mean set t o  this lower bound. 

Comparison of Relative Variograms 

A local relative variogram was calculated by separating the 275 U Sam- 
ples into seven regions as shown on Figure 7.16; the mean values within 
each of these regions are given in Table 7.10. Within each of these re- 
gions, we have separately calculated the omnidirectional variogram; 
these local variograms are shown in Figures 7.17, with the accompa- 
nying details in Table 7.11. With the exception of the largest region, 
which contains most of the samples from the Wassuk Range anomaly, 
none of the local omnidirectional variograms can be  calculated beyond 
the third lag; this is a result of the fact that  the separate regions we 
have chosen to define are isolated clusters of samples. Although we 
depend entirely on the Wassuk Range samples for the definition of the 
variogram for large distances, there is still hope that this separation 
of samples into different populations will improve the definition of the 
variogram for short distances. 

Combining the nine local variograms using the formula given in 
Equation 7.2 results in the local relative variogram shown in Fig- 
ure 7.18a. Though this is slightly better than the original sample 
variogram, the improvement is marginal and the local relative vari- 
ogram still appears quite erratic for short distances. 
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Table 7.11 Local omnidirectional sample variograms of U from the  seven regions 
of Walker lake*. 

No. of No. of 
Pairs Lag Y ( h )  Pairs Lag Y ( h )  

Region 1 Region 2 
90 3.6 51,374.1 8 3.7 553,244.1 

1,548 
2,404 
2,732 
2,966 
3,072 
3,344 
3,358 
3,120 
2,662 
1,086 

8 
74 
80 
20 

10.9 525,686.6 46 10.8 417,831.2 
20.4 575,266.6 32 19.8 492,707.3 
30.1 639,998.0 4 26.2 8,359.7 
40.2 629,798.1 
50.2 527,483.1 
60.3 549,758.8 
70.2 573,168.6 
80.2 555,525.0 
90.1 617,799.5 
97.7 652,286.8 
Region 3 

3.7 434,167.0 
10.8 218,114.9 
20.0 233,527.2 
27.3 123,746.8 

2 
50 
48 
10 

Region 4 
4.1 2,015.0 

20.2 36,953.8 
27.9 46,943.5 

10.9 43,533.3 

Region 5 
2 3.2 107,360.0 6 

80 
74 
22 

Region 6 
3.1 281,039.4 

10.5 623,550.6 
19.9 559,025.8 
28.8 303,400.8 

84 10.7 181,468.2 
108 19.6 245,486.3 
78 29.5 204,877.7 
54 40.1 178,301.7 
16 48.3 272,527.2 

8 3.0 661,691.5 
104 10.5 949,303.7 
106 20.3 1134,673.2 
22 27.9 201,530.2 

Region 7 

* The plot is shown in Figure 7.17. 
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Figure 7.17 The seven local relative omnidirectional variograms calculated from 
each of the regions shown in Figure 7.16. The lag statistics are given in Table 7.11. 
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Figure 7.18 Three omnidirectional relative variograms of the U samples. The 
composite local relative variogram is shown in (a), the general relative variogram is 
shown in (b), and the pairwise relative variogram in (c ) .  
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Table 7.12 Omnidirectional sample covariance functions of U .  Note the covariance 
is given as o Z - ~ ( h ) * .  

No. of No. of 
Pairs Lag u2 - C(h) Pairs Lag u2 - C(h) 

124 3.6 357,891.4 3,850 60.3 564,696.2 
1,986 10.8 447,532.6 4,026 70.2 579,509.6 
2,852 20.4 520,376.6 4,008 80.2 583,763.3 
2,890 30.0 515,060.4 3,728 90.2 597,143.3 
3,126 40.2 518,553.6 1,730 97.7 602,666.8 
3,352 50.2 554,765.2 

*The plot is shown in Figure 7.19. 

700.000 

22 
yo 
u 
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i 

Figure 7.10 Omni irectional sample covariance functions of U at a 10 m --g ant 
an angular tolerance of f 10 degrees. 
u Z - C ( h ) .  The lag statistics are given in Table 7.12. 

Note the covariance has been plotted as 

The general relative variogram shown in Figure 7.18b and the pair- 
wise relative variogram shown in Figure 7 .18~ both provide adequate 
displays of the spatial continuity. There are still some small fluctu- 
ations in the variogram, but we can clearly see how the continuity 
changes with increasing distance. 

The Covariance Function and the Correlogram 

The other two tools we have not yet tried are the covariance function 
and the correlogram that we introduced in Chapter 4. Like the relative 
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Table 7.13 Omnidirectional sample correlogram of U*. 

No. of No. of 
Pairs Lag 1 - A h )  Pairs Lag 1 - p(h)  

124 3.6 0.68 3,850 60.3 0.95 
1,986 10.8 0.78 4,026 70.2 0.98 
2,852 20.4 0.89 4,008 80.2 0.99 
2,890 30.0 0.89 3,728 90.2 1.01 
3,126 40.2 0.89 1,730 97.7 1.02 
3,352 50.2 0.93 

*The plot is shown in Figure 7.20. 

variograms described in the previous section, these two are likely to  be 
more resistant to  erratic values since they account for the lag means 
[in the case of C(h)] and the lag variances [in the case of p(h)] Neither 
of these is commonly used in geostatistics and our use of them here 
raises the question of how spatial continuity should conventionally be 
displayed. Time series analysts and classical statisticians would likely 
prefer to  see covariance functions, which decrease with distance, rather 
than variograms, which typically increase with distance. We will de- 
fer t o  the geostatistical convention, however, and continue to  show 
variogramlike displays which start at the origin and increase with in- 
creasing distance. In this section, and throughout the remainder of the 
book, we will plot the covariance function in the form of the variogram 
as C(0)  - C(h) and the correlogram as p ( 0 )  - p(h). For covariance 
functions, the value a t  Ihl = 0 is simply the sample variance a2; for 
correlation functions, the value at lhl = 0 is 1. 

The omnidirectional sample covariance function is shown in Fig- 
ure 7.19, with the details of the calculations given in Table 7.12. Fig- 
ure 7.20 shows the omnidirectional sample correlogram, with the de- 
tails of the calculations given in Table 7.13. Both of these produce 
a clearer picture of the spatial continuity than does the sample vari- 
ogram. 

We now have four tools that can adequately describe the spatial 
continuity of the sample U values: the general relative variogram, the 
pairwise relative variogram, the covariance function, and the corre- 
lation function. As we proceed to describe the spatial continuity in 
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2.0 r 1 - Correlogram - 100 
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Figure 7.20 Omnidirectional sample correlogram of U .  Note the correlation 
coefficient has been plotted as I - p ( h ) .  The lag statistics are given in Table 7.13. 

Figure 7.21 Directional sample covariance functions of U. Note the covariance 
function has been plotted as u 2 - C ( h ) .  The dashed line represents N14'W and the 
solid N76'E. The lag statistics are given in Table 7.14. 

different directions, we could continue with any one of these. We have 
chosen here to  use the covariance function, largely because it is the 
particular function we will require later when we tackle the problem 
of local estimation. Had we wanted only to provide a description of 
the spatial continuity, there would have been no reason to  choose C( h) 
over any of the other three tools. 
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Table 7.14 Directional sample covariance functions for U*. 

No. of No. of 
Pairs Lag u2 - C(h) Pairs Lag u2 - C(h) 

Angular To1 = f 40' 
54 3.6 385,364.2 5 3.5 441,331.0 

427 10.2 421,267.6 475 11.2 467,790.3 
578 19.9 517,143.2 635 20.7 532,065.4 
594 29.3 528,872.5 742 30.5 493,747.6 
537 39.8 553,211.2 835 40.7 479,879.6 
501 50.0 616,159.8 1,020 50.4 513,523.1 
514 60.1 630,748.3 1,242 60.6 517,122.5 
493 69.9 613,809.9 1,329 70.4 537,606.5 
486 79.8 624,710.9 1,371 80.4 535,925.6 
471 90.0 638,308.3 1,234 90.3 539,035.9 
271 97.7 576,078.8 521 97.7 553,724.9 

'The plot is shown in Figure 7.21. 

Directional Covariance Functions for U 

Having decided to  use the covariance function to describe the spatial 
continuity of U, we should now try to find the directions of maximum 
and minimum continuity. As we did for V earlier in this chapter, we 
could find these directions either through a contour map of the covari- 
ance surface or through a rose diagram of the range of the covariance 
function in different directions. For this particular data set, the di- 
rections of maximum and minimum continuity are the same for both 
variables. This is not always the case, however, and when dealing 
with several variables, one should repeat the analysis of the axes of 
anisotropy for each variable. 

Figure 7.21 shows the covariance function along the N14"W di- 
rection and the N76'E direction, using an angular tolerance of 6 4 0  
degrees for each direction; the details of the calculations are provided 
in Table 7.14. Along the N76'E direction, the structure is clear; in the 
perpendicular direction, however, there is considerable noise. Increas- 
ing the angular tolerance beyond f45 degrees is not desirable since 
there will then be some overlap between the two directional calcula- 
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Figure 7.22 h-scatterplots from the N14'W directional variogram of U shown in 
Figure 7.21. (a) is at lag 3 and (b) at lag 5.  

tions, with some of the pairs that contribute to the calculation of the 
covariance function in the direction of maximum continuity also con- 
tributing to  the calculation in the direction of minimum continuity. 
In some situations this may be necessary. Before we take this step, 
however, let us see if we can improve the appearance of the directional 
covariance functions by removing particular samples or particular pairs 
of samples. 

In Figure 7.22 we show the h-scatterplots for the third lag and the 
fifth lag of the N14'W directional covariance function of Figure 7.21 
since these are the two lags that appear most aberrant. As we noted 
when we were trying to improve the appearance of the omnidirectional 
variogram, the 5,190 ppm sample probably contributes significantly to  
the covariance estimate. The directional covariance functions calcu- 
lated without this sample are shown in Figure 7.23, with the details of 
the calculations shown in Table 7.15. The removal of this single sam- 
ple does not completely sort out the problem we have with the N14'W 
covariance function since the third lag appears too high. 

The other possibility we considered earlier was the removal of the 
10% of the pairs that  contribute most to the calculation within each 
lag. The effect of this procedure is shown in Figure 7.24, with the 
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350,000 

Table 7.15 N14'W sample covariance function of U with pairs differing more than 
5,000 ppm removed*. 

No. of No.  of 
Pairs Lag u2 - C(h) Pairs Lag u2 - C(h) 
Angular To1 = f 40' 

5 3.5 366,751.1 1,231 60.6 469,437.0 
472 11.2 404,769.8 1,312 70.4 473,866.1 
631 20.7 449,793.3 1,357 80.4 463,043.1 
735 30.5 422,736.8 1,221 90.3 482,475.1 
829 40.7 442,807.3 518 97.7 477,219.5 

1,015 50.4 453,468.3 
*The plot is shown in Figure 7.23. 

- 

I 

Figure 7.23 
fering more than 5,000 ppm removed. The lag statistics are given in Table 7.15. 

N14'W directional sample covariance function of U with pairs dif- 

accompanying details in Table 7.16. This finally produces an inter- 
pretable structure in both the principle directions. 

Cross-Variograms 

Like the variogram for spatial continuity of a single variable, the cross- 
variogram is what geostatisticians traditionally use for describing the 
cross-continuity between two variables. The omnidirectional cross- 
variogram for U and V is shown in Figure 7.25. The structure is 
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Table 7.16 Directional sample covariance functions of U with 10% of the largest 
differences between pairs removed*. 

No. of No. of 
Pairs Lag u2 - C(h) Pairs Lag u2 - C(h) 

Angular To1 = k 40' 
54 3.6 468,158.0 5 3.5 441,330.0 

427 10.2 473,501.0 475 11.2 513,677.0 
578 19.9 559,600.0 635 20.7 535,898.0 
594 29.3 575,238.0 742 30.5 523,894.0 
537 39.8 606,368.0 835 40.7 546,787.0 
501 50.0 609,570.0 1,020 50.4 551,377.0 
514 60.1 620,964.0 1,242 60.6 556,343.0 
493 69.9 613,306.0 1,329 70.4 562,268.0 
486 79.8 604,503.0 1,371 80.4 568,298.0 
471 90.0 627,283.0 1,234 90.3 576,646.0 
271 97.7 585,535.0 521 97.7 572,683.0 

'The plot is shown in Figure 7.24. 

Figure 7.24 Directional sample covariance functions of U with 10% of the largest 
differences between pairs removed. T h e  direction of the dashed line is N14'W, the 
solid N76'E. The  lag statistics are  given in Table 7.16. 
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clear enough on this cross-variogram to warrant trying to  construct 
directional cross-variograms. 

Figure 7.26 shows the cross-variograms calculated along the di- 
rections of maximum continuity (N14'W) and minimum continuity 
(N76'E) with an angular tolerance of f40 degrees. Although the 
N14'W cross-variogram is reasonably well behaved, the perpendicu- 
lar direction presents a somewhat unsatisfactory structure. The first 
lag contains only five points, so we should not pay too much attention 
to  that value. Even after ignoring the first lag, the remaining points are 
still a bit disappointing; without the point at 10 m, the cross-variogram 
would appear to  be a nugget effect. It is worth investigating the pos- 
sibility of improving the clarity of these cross-variograms through the 
same procedures that we used earlier to improve the U variogram and 
covariance functions. 

In our earlier investigations into the effect of the 5,091 ppm U 
sample we noticed that the U variogram was slightly improved if this 
sample was removed; the cross-variogram also benefits slightly from 
the the removal of this sample. Further analysis of the h-scatterplots 
reveals that the comparison of type 1 samples with type 2 samples 
produces many erratic pairs. It seems reasonable, therefore, to  include 
only those pairs for which both samples are of the same type in our 
calculations. Figure 7.27 shows the directional cross-variograms cal- 
culated without the 5,091 ppm sample and without pairs that involve 
different types. This summary of the spatial cross-continuity between 
the U values and the V values is now fairly clear. With the exception 
of the very first lag, which still contains only five points, the cross- 
variogram along the N14'W direction in Figure 7.27 is clearly defined. 
It now rises gradually rather than reaching the sill quickly and flatten- 
ing out as it did in our first attempt. 

Summary of Spatial Continuity 

With all of the different avenues we have explored in this chapter, 
using and adapting tools for each new problem, it is possible that 
the actual descriptions of the spatial continuity in the sample data set 
have become lost along the way. To conclude the chapter, let us briefly 
review the best descriptions we found. 

For the spatial continuity of V ,  we were able to use the variogram. 
Figure 7.28a shows the sample V variograms calculated along the two 
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Table 7.17 Omnidirectional sample cross-variogram* 

No. of No. of 
Pairs Lag 7uv(h)  Pairs Lag 7 u ~ ( h )  

124 3.6 80,057.5 3,850 60.3 124,551.9 
1,986 10.8 88,042.5 4,026 70.2 123,121.5 
2,852 20.4 111,262.7 4,008 80.2 120,822.8 
2,890 30.0 118,806.8 3,728 90.2 129,019.6 
3,126 40.2 124,865.1 1,730 97.7 134,559.0 
3,352 50.2 114,747.0 

*The plot is shown in Figure 7.25. 
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Figure 7.25 
statistics are given in Table 7.17. 

Omnidirectional sample cross-variogram at  a 10 m lag. The lag 

Distance 

Figure 7.26 
the dashed line is N14'W, the solid N76'E. 

Directional sample cross variograms of U and V .  The direction of 
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Table 7.18 
5,000 ppm and different types removed;. 

Directional sample cross-variograms with pairs differing more than 

N14'W N76'E 
No. of No. of 
Pairs Lag Yuv(h)  Pairs Lag Yuv(h)  

Angular To1 = f 40' 
5 3.5 110,186.8 63 3.6 68,274.6 

583 11.4 78,175.6 527 10.2 80,763.9 
776 20.7 104,249.0 708 19.9 113,423.8 

1,002 30.7 113,271.7 860 29.6 124,999.5 
1,109 40.7 112,725.0 781 39.9 145,441.8 
1,391 50.6 118,516.5 854 50.2 131,384.5 
1,573 60.5 124,032.6 770 60.0 134,935.7 
1,795 70.4 122,094.0 869 69.9 110,911.0 
1,847 80.3 125,040.5 782 79.6 117,344.8 
1,774 90.3 131,875.6 790 90.1 117,189.9 

751 97.6 149,300.6 410 97.6 117,553.4 
*The plot is shown in Figure 7.27. 

Figure 7.27 Directional sample cross variograms of U and V with pairs differing 
more than 5,000 ppm removed. Pairs of different types were also removed. Nl4'W 
is represented by the dashed line and N76'E by the solid. The lag statistics are 
given in Table 7.18. 
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Figure 7.28 A summary of the final directional sample variograms of V is shown 
in (a), of U in (b) and of the cross-variogram between V and U in (c). 
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principle directions, N14"W and N7G0E, with a f 4 0  degree angular 
tolerance on each direction. For the spatial continuity of U and for the 
spatial cross-continuity of U and V ,  we used the same two principle 
directions and the same directional tolerance. 

For the spatial continuity of U ,  the covariance produced a better 
description than did the variogram. The directional covariances were 
still somewhat erratic, so we removed the 10% of the pairs that con- 
tributed most heavily to the calculations within each lag. The resulting 
directional covariances are shown in Figure 7.28b. 

For the spatial cross-continuity between U and V ,  we found the 
cross-variogram to be adequate if we removed the largest U value and 
also removed all pairs which involved different sample types. These 
directional cross-variograms are shown in Figure 7.28~. 

Notes 

[l] For a three-dimensional data set, the direction of variogram com- 
putation is traditionally specified using two parameters. The first 
parameter defines the horizontal direction and is usually referred 
to as the horizontal angle, the second parameter is the vertical 
angle. Typically, tolerances are given for both angles: an angular 
tolerance on the horizontal angle as well as an angular tolerance 
on the vertical angle. In three dimensions the combination of these 
tolerances describes an elliptical or flattened cone. A datum at the 
apex of the cone is paired at  the lag distance (plus or minus the 
lag tolerance) with all data found within the cone. In cases where 
a three-dimensional anisotropy is suspected to be unusually ori- 
ented with reference to the coordinate system of the data, one can 
apply a coordinate transformation to  the data before computing 
the sample variogram. The axes of the new or transformed coor- 
dinated system are made to align with the suspected directions of 
the anisotropy. This enables a straightforward computation of the 
directional sample variograms along the axes of the anisotropy. 

[2] The variogram cloud can also be useful for gaining some insight 
into the reasons for a messy sample variogram. The cloud is made 
by plotting each squared difference (v; - ~ j ) ~  versus the separa- 
tion distance hjj. The cloud formed by these points may reveal 
extreme outlier points that dominate the estimation of the sample 
variogram. It may also reveal that the distribution of (v; - vj)2 for 
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any one lag is severely skewed, in which caseJhe arithmetic average 
of (vi - ~ j ) ~  may provide a poor estimate of the sample variogram 
for that  lag. Sometimes the relationship between T ( h )  and h can be 
made clearer by running a resistant smoother, of the type discussed 
in the Notes to  Chapter 3, over the variogram cloud. 

[3] The apparent rotation of the axes of anisotropy near the origin 
is an artifact of the contouring program caused by the relatively 
coarse grid of values being contoured. The 50,000 ppm2 contour 
line, which is the first one that crosses more than the central four 
lags, is the first reliable indication of anisotropy. 

[4] Several practitioners used contour maps of the covariance function 
or the correlogram in the early 1960s. The same approach to  pre- 
senting the variogram surface was used in the following article: 

Rendu, J .  , “Kriging for ore valuation and mine planning,” Engi- 
neering and Mining Journal, vol. 181, no. 1, pp. 114-120, 1980. 

[5] Though much has been written on robust or resistant variography, 
little attention has been given to  the various types of relative var- 
iograms that are often used in practice. Journel and Huijbregts 
(1978) and David (1977) discuss the local relative variogram in 
some detail. N o  mention is made, however, of the general and pair- 
wise relative variograms. Despite the fact that  the general and pair- 
wise relative variograms are not well understood theoretically, they 
are well known in practice, due largely to David, who has pioneered 
the use of these variograms and, through the success of his appli- 
cations, has succeeded in popularizing variograms of this form. 
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ESTIMATION 

The focus of the last six chapters has been purely descriptive as we 
dealt with the first of the goals we posed in Chapter 1. This second 
part of the book looks a t  the remaining goals, all of which involve 
estimation. We are no longer interested merely in describing the sample 
data set; we now want to  use the sample information to  predict values 
in areas we have not sampled. 

As the list of goals in Chapter 1 shows, there are many different 
types of estimation problems. In the remaining chapters we will look 
a t  several different estimation methods. Each of these is useful for 
a particular type of problem, so it is important to understand which 
methods are applicable to which types of problems. In the approach 
taken here, we consider the following three features of an estimation 
problem: 

0 Do we want a global or local estimate? 

0 Do we want to estimate only the mean or the complete distribu- 
tion of data values? 

0 Do we want estimates of point values or of larger block values? 

The answers to these questions will dictate what methods are appropri- 
ate. In this chapter we will elaborate on these features, giving practical 
examples of the different types of problems. We will also introduce the 
basic tools that will be needed for the various estimation methods. 
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Chapter 9 is a rather key chapter. In this chapter we elaborate 
on the use of models in estimation. Particular attention is given to 
the introduction of probability models and their applications. Chapter 
10 looks a t  global estimation, which requires only some appropriate 
declustering method. In Chapter 11 we will turn to  local point estima- 
tion, which requires us to account not only for the clustering but also 
for the distance to our sample locations. In Chapters 12 and 13 we will 
look a t  some of the practical aspects of the geostatistical estimation 
method known as kriging. Chapter 14 deals with various strategies 
for selecting data to  be used for local estimation. Chapter 15 deals 
with cross validation and Chapter 16 describes the fitting of variogram 
models to the sample variogram. In Chapter 17 we will see how the 
kriging approach can easily be adapted to include information from 
other variables. In Chapter 18 we will use several methods to estimate 
local distributions. In Chapter 19 we will look a t  ways of adjusting 
our estimates to account for the fact that average values over large 
areas tend to have less variability than average values over small areas. 
In Chapter 20 we will look at  ways of assessing the accuracy of our 
various estimates . 

Weighted Linear Combinations 

The methods we discuss all involve weighted linear combinations: 

n 

estimate = G = C w; . wi (8.1) 
i=l 

wl, . . . , wn are the n available data values and wi is a weight assigned 
to  the value a;. These weights are usually standardized so that they 
sum to one, though this is not a requirement of all estimation methods. 
Throughout the remainder of the book, we will use the small hat to 
denote an estimate. 

Different approaches to assigning the weights to the data values 
give rise to  many different methodologies. Some of these methods 
are based on common sense notions of which data values are most 
important; others are based on statistical theory. As we will see, these 
two are not incompatible; much of what makes good common sense 
also happens to  make good statistical sense. 

Weighted linear combinations are not the only way of combining 
data values to obtain estimates. There are estimation methods that 
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use more complicated functions, but many of these involve more com- 
plicated mathematics than we intend to  get into in this book. We 
will, however, look a t  some more advanced estimation methods that 
involve weighted linear combinations of transformed data  values. Later 
we will discuss the practical and theoretical reasons for working with 
transformed da ta  values. For the moment, we will simply outline the 
general form of such methods. 

If we transform our data  values and combine them with some linear 
combination, then we get some transformed estimate: 

n 

transformed estimate = i = C zoi . ~ ( v j )  
i= 1 

The only difference between this and Equation 8.1 is that  we have 
transformed the individual data  values using the function T(v). For 
example, this function could be a polynomial, such as T(w) = v2. It 
could also be a much more complicated expression; the Fourier analysis 
approach to  estimation, for example, transforms the data  values using a 
series of sines and cosines. T ( v )  need not have an analytical expression; 
it could be any consistent and repeatable procedure for mapping the 
original data  values into a different set of transformed values. It may 
be quicker t o  transform the data  values using some graphical method 
rather than to  calculate some high-order polynomial that  accomplishes 
the same thing. 

We rarely want transformed estimates, so we have t o  use a back 
transform to restore our estimate to  some meaningful value. If we had 
transformed all of our data  values by taking their logarithms, then their 
weighted linear combination would give us an estimate of a logarithm; 
we would rather have an estimate of the original value, so we use some 
back transform to  turn our transformed estimate into something more 
useful: 

estimate = i, = ~ ( i )  (8.3) 

B ( t )  is the back transform we use and is not necessarily the inverse of 
T ( v ) .  In our example with the logarithms, we would not use B ( t )  = et 
since this produces a biased result [l]. Later, when we look at some 
of the estimation methods that require transformations, we will look 
a t  this issue of the back transform in more detail. Like the original 
transformation, our back transform need not have an actual analytical 
expression; it could be a graphical procedure or any other consistent 
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and repeatable method for restoring the transformed estimate to  an 
estimate of the original value. 

Global and Local Estimation 

Estimation over a large area within which we have many samples is 
global estimation. In local estimation, we are considering a smaller 
area, one in which there are few samples; in such situations we often 
use nearby samples located outside the area being estimated. In our 
Walker Lake study, an estimate of the mean value of U over the entire 
map area would be considered a global estimate since we have a lot 
of samples within the area being estimated. On the other hand, an 
estimate of the U mean within a particular 10 x 10 m2 area would be 
considered a local estimate because there would be very few (perhaps 
even zero) samples within the 10 x 10 m2 area and we would likely 
have to  use nearby samples from outside the area to  get a reasonable 
estimate. 

In practical situations there is usually some target area over which 
samples are collected. Whether we are studying ore grades in a mineral 
deposit, pollutant concentrations in a toxic waste site, or soil strengths 
over the area of a proposed building, we have a large area that serves as 
the area of interest. Global estimation is commonly used at a very early 
stage in most studies to  obtain some characteristics of the distribution 
of data values over the whole area of interest. 

A single global estimate rarely satisfies the goals of a study and 
we usually also require a complete set of local estimates. For example, 
in planning a mine it is not sufficient to know the overall average 
grade, one also needs detailed local information on the ore grades. 
In a pollution study, an estimate of the overall concentration does 
not give us the information we need to decide which specific localities 
have unacceptably high concentrations. In many fluid flow studies, a 
global estimate of the permeability is rather meaningless since flow is 
controlled by the extremely high and the extremely low permeability 
zones; local estimates are required to reveal the presence of such zones. 

Global estimation is fairly straightforward if the samples are lo- 
cated on a regular grid or are located randomly. Unfortunately, this 
is not typical in practice and, as our description in the previous chap- 
ter showed, the statistics €rom a clustered sample data set may not 
be representative of the exhaustive data set. Global estimation meth- 
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ods should therefore account for the possibility of clustering. Groups 
of clustered samples should have their weights reduced to  account for 
the fact that they are not representative of as large an area as are 
unclustered samples. 

Local estimates need to account for the distance from the point(s) 
we are estimating to the individual sample locations. Some samples 
will be much closer than others and the values a t  these closer locations 
should be given more weight than the values that are further away. 
Local estimates, like global ones, are also affected by clustered sam- 
pling. A group of closely spaced samples with similar values contains 
redundant information; our local estimate would likely improve if we 
could locate samples uniformly over the small area we are estimating. 
The weights assigned by local estimation methods should account for 
both the distance to the samples and also for the possible redundancy 
between samples. 

Means and Complete Distributions 

Though there are many ways of summarizing a distribution, the mean 
is the statistic most commonly used. As a measure of the location of 
the center of the distribution it is particularly interesting. As we have 
seen, however, the “center” of the distribution is a slippery concept 
and measures other than the mean might be more relevant in certain 
situations. For strongly skewed distributions, such as precious metal 
grades or pollutant concentrations, an estimate of the median is a 
good supplement to  an estimate of the mean. A low median coupled 
with a high mean warns us that the distribution is quite positively 
skewed, and that the overall average is due largely to a small proportion 
of extremely high values. In such situations, estimates of the lower 
and upper quartiles will further enhance our understanding of how the 
values are distributed. 

There are some applications that call for an estimation of the vari- 
ability. Many metallurgical processes are adversely affected by large 
fluctuations in the ore grade; estimates of the variability will help us 
decide if special measures are needed to  reduce ore grade fluctuations. 
In fluid flow studies, variability is also an important factor; large fluc- 
tuations in permeability in a petroleum reservoir can make secondary 
recovery schemes very inefficient. 

In most mining applications, a single mean value is not sufficient 
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since there is typically some cutoff grade above which the rock is pro- 
cessed as ore and below which it is discarded as waste. There may 
even be several categories of ore and waste corresponding to different 
stockpiles. In such situations, we require estimates of the proportion of 
the distribution above and below certain cutoffs along with the mean 
value above and below these cutoffs. 

Despite its shortcomings in certain applications, the mean does 
have special significance for a wide variety of practical estimation prob- 
lems. If we had exhaustive sampling, our sample mean would be identi- 
cal to the spatial arithmetic average. In most studies we are interested 
in some kind of spatial average and quite often the averaging process 
is indeed arithmetic. For example, grades and concentrations aver- 
age arithmetically; the combined average grade of two truckloads of 
ore with equal weights is the arithmetic average of the two individual 
truckload grades. To many practitioners, this will seem like a rather 
obvious remark. There are a growing number of geostatistical applica- 
tions, however, for which the averaging process is not arithmetic. For 
example, in the study of fluid flow through porous media, the perme- 
ability does not average arithmetically. The effective permeability of 
two blocks in series is not the arithmetic average of the two individual 
block permeabilities. In civil engineering applications, the soil strength 
of a large area is not the average of the soil strengths calculated over 
its subareas. In ore deposits where the density varies with grade, the 
average grade of several samples is not the arithmetic average of the 
individual sample grades. 

Despite the growing number of applications for which arithmetic 
averaging is not relevant, the majority of current practical studies in- 
volve quantities that do average arithmetically and for these the mean 
remains a useful parameter to estimate. The equation we gave for 
the sample mean is a weighted linear combination in which the avail- 
able samples are all given an equal weight of $. Most methods for 
estimating an exhaustive mean, whether local or global, use weighted 
linear combinations in which some of the available values receive more 
weight than others. As the weight assigned to a particular data value 
increases, the influence of that particular value on the estimate of the 
mean also increases. Conversely, data values with small weights have 
little influence on the estimate of the mean. 

If we require other statistics of the whole distribution, such as the 
median or variance, or statistics for truncated distributions, the obvi- 
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ous solution is t o  try to  estimate the complete distribution rather than 
just its mean. If we can successfully estimate the complete distribution 
then any summary, even of a truncated portion, is easy to calculate. 

There are two different philosophies for estimating complete dis- 
tributions; the parametric approach and the nonparametric approach. 
Both of these approaches typically involve weighted linear combina- 
tions of transformed data  values. In the parametric methods, we make 
some assumptions about the type of distribution we have, then we 
estimate some parameters of the model we have assumed. In the non- 
parametric approach, we estimate some points on the cumulative his- 
togram then interpolate between these estimated points t o  get a com- 
plete distribution. The disadvantage of this nonparametric approach 
is that  i t  requires us t o  extrapolate beyond the last point we have es- 
timated on the cumulative histogram; experience has shown that our 
final results depend heavily on the way we choose to do  this extrap- 
olation. The main drawback of parametric approach is that  it causes 
us to  depend very heavily on our assumptions about the model, and 
these assumptions are typically very difficult t o  verify. The  problem of 
how we choose to  extrapolate beyond the last point on the cumulative 
histogram is replaced by what model we choose to use for the entire 
distribution. 

Point and Block Estimates 

In any earth science study, the size of each sample is a n  important 
consideration. There is a relationship between the size or “support” of 
our data  and the distribution of their values. We can imagine that if we 
used very small samples, such as rock chips, t o  sample a gold deposit, 
there could be a lot of variability between sample values. One rock chip 
might contain almost pure gold, another might contain nothing. If we 
sampled the same deposit with large truckloads, there would likely be 
much less variability. The mixing of high and low values that is to be 
expected with large samples would give us less erratic values. 

We have already seen this effect when we were looking a t  the mov- 
ing window statistics of the U values in our exhaustive data  set. In 
Figure 5.14 we drew a contour map of the moving window means 
for 10 x 10 m2 windows; in Figure 5.15 we drew a similar map for 
20 x 20 m2 windows. The larger window size produced a smoother 
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Figure 8.1 Exhaustive histograms of U for three different support volumes. The 
histogram of the 78,000 point U values is shown in (a); the histogram of the 780 
average U values within 10 x 10 m2 blocks is shown in (b); the histogram of the 195 
average U values within 20 x 20 m2 blocks is shown in (c). 

map. If we look at the histograms of the individual moving window 
means for these two maps we can better understand this effect. 

In Figure 8.lb we show the histogram of the 780 moving window 
means from our 10 x 10 m2 windows; the histogram of the 195 indi- 
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vidual means from our 20 x 20 m2 windows are shown in Figure 8 . 1 ~ .  
In Figure 8.la we have included the histogram of the 78,000 original 
point values as a reminder of what the distribution looked like for the 
smallest possible support. 

As the support of the data increases we notice that the maximum 
value decreases. The 9,500 ppni value from our exhaustive data set 
gets diluted by lesser values as we average the U values over larger 
areas. The same is true of the lowest values. In Figure 8.la, 48% of 
the values fall within the lowest class on the histogram; in Figure 8.lc, 
where we have averaged all of the values within 20 x 20 m2 squares, 
only 10% of the values fall within this lowest class. 

Averaging values together over larger areas generally has the effect 
of reducing the variance of the data and of making their distribu- 
tion more symmetric. From Figure 8.1 we can see that the standard 
deviation, the coefficient of variation and the difference between the 
mean and the median all decrease as the support of the data increases. 
Though the support of the data has an effect on the spread and the 
symmetry of the distribution, it does not affect the mean. For all three 
histograms shown in Figure 8.1 the mean value is 266 ppm. 

This relationship between the support of the data and the distri- 
bution of their values has serious implications in practice. When we 
estimate a complete distribution from some sample data set, what we 
get is an estimate of the exhaustive distribution for the same support 
as our samples. In the example we used earlier, if we used all of our 
rock chip samples to estimate a complete distribution, we would be es- 
timating the exhaustive distribution of gold grades for rock chip sized 
volumes in our deposit. On the other hand, if we used our truckload 
samples then we would be estimating the exhaustive distribution of 
gold grades for truckload sized volumes. 

In most practical applications, the support of the samples is not 
the same as the support of the estimates we are trying to  calculate. 
In feasibility studies of ore deposits, we want to know the global and 
local distributions of truckload sized volumes. In the actual operation 
of the mine, entire truckloads will be treated as either ore or waste; 
we will not be able to discriminate between ore and waste within a 
particular truckload. Our sample data set, however, is typically based 
on measurements froin drill hole cores. If we were to plan the en- 
tire mining operation based on these core sized samples, we would be 
vastly overestimating the spread of the distribution of ore grades. This 
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problem is particularly severe in deposits with strongly skewed sample 
grades. Purely on the basis of the sample values, we might conclude 
that a large enough proportion of the deposit is above our economic 
cutoff grade to  warrant developing the prospect. When we actually 
mine the deposit using trucks that are much larger than our original 
core samples, the inevitable averaging of high grades and low grades 
may result in a far lower proportion of economically viable material 
than we originally thought. 

As an example, let us treat the Walker Lake data set as a prospec- 
tive ore deposit. At the feasibility study stage we may decide that 
1,000 ppm is an economically viable cutoff grade. Material with a U 
value greater than 1,000 pprn will be processed as ore, the remainder 
will be discarded as waste. Let us pretend that we have been able to  
estimate perfectly the exhaustive distribution of the 78,000 U values. 
Using this estimate of the distribution, we would conclude that about 
7% of the area will eventually be processed as ore. If in the actual 
mining operation we are forced to  classify entire 20 x 20 m2 units as 
either or ore waste then we are in for a surprise: only 2% of the area 
will actually be rich enough to be processed as ore. 

Similar problems exist in many other applications. In forecasting 
the performance of a petroleum reservoir, estimates are needed of the 
porosity and permeability of very large blocks. The only available 
measurements, however, may be for much smaller volumes such as 
core plugs. Similarly, the standard penetration tests for soil strength 
measurements provide information for a very small support; from these 
sample strength measurements one needs estimates of the soil strength 
over much larger areas. 

It is important to  evaluate the support of the sample data set and 
the support we intend for the final estimates. If the two are different, 
some correction will have to be applied to our sample support esti- 
mates. There are a variety of mathematical methods for adjusting a 
distribution so that its variance will be reduced while its mean remains 
unchanged. Unfortunately, all of these depend on unverifiable assump- 
tions about how the distribution changes as the support increases; they 
also require knowledge of certain parameters that are very difficult to 
estimate precisely. 

This problem of the discrepancy between the support of our samples 
and the intended support of our estimates is one of the most difficult we 
face in estimation. Despite the shortcomings of all currently available 
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methods, it is better to  attempt a rough correction than to ignore the 
problem. 

A n  Introduction to  Applied Geostatistics 

Notes 

[l] Perhaps this is best explained using a small example. Consider the 
following table of three numbers and their logarithms: 

Value Logarithm 
3 1.0986 
G 1.7918 
12 2.4849 

Averages 7 1.7918 
Antilog - G 

The average of the three numbers is 7 while the average of their 
logarithms is 1.7918 and the antilog of 1.7918 is 6. This clearly 
demonstrates that one cannot take the logarithms of a set of sample 
values; compute the average logarithm, (weighted or not), and then 
compute the antilog of the logarithmic average. The result is biased! 
In fact this sequence of steps will result in a bias with not only the 
log transformation, but with all nonlinear transformations. 
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RANDOM FUNCTION 

MODELS 

Estimation requires a model of how the phenomenon behaves a t  loca- 
tions where it has not been sampled; without a model, one has only 
the sample data and no inferences can be made about the unknown 
values a t  locations that were not sampled. One of the important con- 
tributions of the geostatistical framework is the emphasis it places on a 
statement of the underlying model. Unlike many earlier methods that 
do not state the nature of their model, geostatistical estimation meth- 
ods clearly state the model on which they are based. In this chapter 
we address the issue of modeling. After a brief discussion of deter- 
ministic models, we will discuss probabilistic models. We will give a 
brief review of the essential concepts of basic probability and show an 
example of their application. 

The Necessity of Modeling 

Throughout this chapter we will be using the hypothetical example 
shown in Figure 9.1. In this example, we have measurements of some 
variable, TI, a t  seven regularly spaced locations and are interested in 
estimating the unknown values of v a t  all of the locations we have 
not sampled. Though this example is one dimensional for graphical 
convenience, the remarks made in this chapter are not limited to one- 
dimensional estimation problems. 
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Figure 9.1 An example of an estimation problem. The dots represent seven sample 
points on a profile to be estimated. 

The sample data set in Figure 9.1 consists of seven locations and 
seven v values. By itself, this sample data set tells us virtually nothing 
about the entire profile of o. All we know from our samples is the 
value of v a t  seven particular locations. Estimation of the values at 
unknown locations demands that we bring in additional information 
or make some assumptions. 

Perhaps the most desirable information that can be brought to bear 
on the problem of estimation is a description of how the phenomenon 
was generated. In certain situations, the physical or chemical processes 
that generated the data set might be known in sufficient detail so that 
an  accurate description of the entire profile can be made from only a few 
sample values. In such situations a deterministic model is appropriate. 

Unfortunately, very few earth science processes are understood well 
enough to permit the application of deterministic models. Though we 
do know the physics or chemistry of many fundamental processes, the 
variables of interest in earth science data sets are typically the end 
result of a vast number of processes whose complex interactions we 
are not yet able to  describe quantitatively. For the vast majority of 
earth science data sets, we are forced to  admit that there is some 
uncertainty about how the phenomenon behaves between the sample 
locations. The random function models that we will introduce later in 
this chapter recognize this fundamental uncertainty and give us tools 
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for estimating values a t  unknown locations once we have made some 
assumptions about the statistical characteristics of the phenomenon. 

With any estimation procedure, whether deterministic or proba- 
bilistic, we inevitably want t o  know how good our estimates are. With- 
out an exhaustive data  set against which we can check our estimates, 
the judgment of their goodness is largely qualitative and depends to 
a large extent on the appropriateness of the underlying model. As 
conceptualizations of the phenomenon that allow us to  predict what 
is happening at locations where we do not have samples, models are 
neither right nor wrong; without additional data,  no proof of their 
validity is possible. They can, however, be judged as appropriate or 
inappropriate. Such a judgment, which must take into account the 
goals of the study and whatever qualitative information is available, 
will benefit considerably from a clear statement of the model. 

In addition to making the nature of our assumptions clear, a clearly 
stated model also provides us with a constant reminder of what is real 
and what is modeled. With the sample data  set providing a very 
limited view of the complete profile, there is a strong temptation to 
replace the frustrating reality of the estimation problem with the math- 
ematical convenience of a model, and in so doing, t o  lose sight of the 
assumptions on which our estimation procedure is based. A typical 
symptom of this is the reliance on statistical hypothesis tests t o  test 
model parameters. While such tests may demonstrate that  the model 
is self-consistent, they do not prove that the model is appropriate. 

Deterministic Models 

As discussed earlier, the most desirable type of estimation problem is 
one in which there is sufficient knowledge about the phenomenon to 
allow a deterministic description of it. For example, imagine that the 
seven sample data  were measurements of the height of a bouncing ball. 
Knowledge of the physics of the problem and the horizontal velocity of 
the ball would allow us to calculate the trajectory shown in Figure 9.2. 
While this trajectory depends on certain simplifying assumptions, and 
is therefore somewhat idealized, it still captures the overall characteris- 
tics of a bouncing ball and serves as a very good estimate of the height 
at unsampled locations. In this particular example, we rely very heav- 
ily on our deterministic model; in fact, we could have calculated the 
same estimated profile with a smaller sample data  set. Our determin- 
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Figure 0.2 With the seven sample points shown in Figure 9.1 viewed as heights 
of a bouncing ball, the dashed curve shows a deterministic model of the heights a t  
unsampled locations. 
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Figure 0.3 With the seven sample points shown in Figure 9.1 viewed as interest 
rates which change only on specific days, the dashed line sliows a deterministic 
model of the interest rates at unsampled locations. 

istic model also allows reasonable extrapolation beyond the available 
sampljng. 

Using the same seven sample data, we can imagine a scenario that 
would produce a very different estimated profile. We can imagine that 



200 A n  Introduction to Applied Geostatistics 

these seven samples are interest rates a t  a bank, measured on the Tues- 
day of seven consecutive weeks. Combining this with the knowledge 
that the bank adjusts the interest rate only once a week, on Thursdays, 
we can produce the estimated profile shown in Figure 9.3. Like our 
previous example with the bouncing ball, accurate estimation is made 
possible by our knowledge of the context of the data set. Unlike the 
previous example, we depend on all of our sample data and our knowl- 
edge of the phenomenon is not good enough to  allow us to extrapolate 
very far beyond the available samples. 

From these two examples, it is clear that deterministic modeling is 
possible only if the context of the data values is well understood. The 
data values, by themselves, do not reveal what the appropriate model 
should be. 

Probabilistic Models 

For the seven sample data shown in Figure 9.1 we can imagine many 
other contexts for which a deterministic description of the complete 
profile would be possible. Unfortunately, few earth science applications 
are understood in sufficient detail to permit a deterministic approach 
to estimation. There is a lot of uncertainty about what happens a t  
unsampled locations. For this reason, the geostatistical approach to 
estimation is based on a probabilistic model that recognizes these in- 
evitable uncertainties. 

In a probabilistic model, the available sample data are viewed as 
the result of some random process. From the outset, it should be clear 
that this model conflicts with reality. The processes that actually do 
create an ore deposit, a petroleum reservoir or a hazardous waste site 
are certainly extremely complicated, and our understanding of them 
may be so poor that their complexity appears as random behavior to 
us, but this does not mean that they are random; it simply means that 
we are ignorant. 

Unfortunately, our ignorance does not excuse us from the difficult 
task of making predictions about how apparently random phenomena 
behave where we have not sampled them. Though earth science data 
are not, in fact, the result of randoin processes, this conceptualization 
does turn out to be a useful one for the problem of estimation. Though 
the word random often connotes “unpredictable,” it turns out that 
viewing our data as the outcome of some random process does help us 
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with the problem of predicting unknown values. Not only does it give 
us estimation procedures that, in practice, have sometimes proved to 
be very good, it also gives us some ability to gauge the accuracy of our 
estimates and to assign confidence intervals to them. 

To take a simple but familiar example, consider the problem of 
estimating the sum of two dice. With a single die able to show only 
the numbers from 1 to 6, the sum of two dice must be in the range 
from 2 to  12. While an estimate of “somewhere from 2 to 12” is not 
very satisfying it is at least a safe start and is certainly better than 
avoiding the problem by claiming total ignorance. We can go beyond 
this safe statement, however, since some outcomes are more likely than 
others. A probability model in which the numbers from 1 to 6 all have 
an equal probability of appearing on a single die allows us to  predict 
that 7 is the most likely outcome for the sum of two dice. Were we to  
use 7 as an estimate, the probability model could tell us that we would 
be exactly right about 17% of the time, and that we would be off by 
more than two only 33% of the time. If, for some reason, we preferred 
to  use 10 as our estimate, the probability model could tell us that we 
would be exactly correct less than 9% of the time and would be off by 
more than two nearly 60% of the time. 

In this example with the dice, we benefit considerably from our 
knowledge of the details of the random process that is generating each 
outcome; namely that we are dealing with dice and that a single die 
shows numbers only in the range from 1 to 6, each with equal proba- 
bility. In the actual practice of estimation we are handicapped by not 
knowing the details of the random process. In fact, as we have already 
noted, there is no random process that is generating our sample data: 
no dice are being thrown behind the scenes, no coins are being tossed, 
and no cards are being shuffled and dealt. Having chosen to  view our 
data as the outcome of some random process, we are responsible for 
defining the hypothetical random process that might have conceivably 
generated our data. 

It is possible in practice to define a random process that might 
have conceivably generated any sample data set. The application of 
the most commonly used geostatistical estimation procedures, however, 
does not require a complete definition of the random process; as we 
will see shortly, it  is sufficient to specify only certain parameters of the 
random process. 

In the next few sections we will make the notion of a random process 
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more precise and discuss the probabilistic tools most frequently used in 
geostatistics: the mean and variance of a linear combination of random 
variables. Though the theory of geostatistics is traditionally presented 
in terms of continuous random variables, the following presentation 
avoids this approach for the following reasons. First, for readers who 
are already familiar with these concepts, a review of the basic theory 
of continuous random variables is gratuitous and boring. Second, for 
readers who are unfamiliar with these concepts, a rapid overview of the 
theory of continuous random variables constitutes cruel and unusual 
punishment; as several of the references at the end of the chapter will 
testify, the topic is a book in itself. For the purposes of understanding 
random processes and how the mean and variance of a linear combi- 
nation of random variables can help us in the problem of estimation, 
it is sufficient to reach these concepts through the more easily under- 
stood discrete approach. Those readers who are approaching these 
concepts for the first time, and who understand the following discrete 
presentation, are encouraged to read Appendix B, which provides the 
continuous analogy. The material in this appendix is not necessary for 
understanding how geostatistical estimation works, but it may provide 
a background for understanding the traditional geostatistical jargon. 

Random Variables 

A random variable is a variable whose values are randomly generated 
according to some probabilistic mechanism. The throwing of a die, 
for example, produces values randomly from the set { 1,2,3,4,5,6}. 
Similarly, if we designate the “heads” side of a coin as 0 and the “tails” 
side as 1, then tossing a coin produces numbers randomly from the set 

Throughout the remaining chapters, it will be important to  keep 
clear the distinction between a random variable and the actual out- 
comes of a random variable. To maintain this distinction, we will use 
the following notation: upper case letters, such as V, will denote ran- 
dom variables while lower case letters, such as v ,  will denote outcomes. 
A further distinction is needed between the set of possible outcomes 
that a random variable might have, denoted { v ( ~ ) ,  . . . , v(~)}, and the 
outcomes that are actually observed, denoted 01, v2,03,. . . With a 
single die, for example, we can view the resulting throws as a random 
variable called D. The six possible outcomes of D, each having equal 

{0,1}. 
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probability, are: 

The parentheses around the subscript will serve as a reminder that 
these symbols refer to the set of n possible values that the random 
variable can take. As we throw the die and record each result, we will 
get a sequence of observed outcomes. Suppose that we observe a se- 
quence beginning with the following outcomes: 

The first observed outcome in this sequence is dl = 4, the second is 
d2 = 5, the tenth is dlo = 6, and the sixteenth is d16 = 4. Without 
the parentheses around the subscript, the lower case letters will refer 
to the outcomes actually observed through several repetitions of the 
probabilistic mechanism. 

Each possible outcome has a probability of occurrence and any 
random variable, V ,  can be completely defined by stating its set of 
possible outcomes, { v ( ~ ) ,  . . . , w(")} and the set of corresponding prob- 
abilities, {pl,. . . , p , } .  The probabilities p1,. . . , p ,  must sum to one. 

For the random variable we have defined as D, the result of throw- 
ing a single die, each of the outcomes in the set {1,2,3,4,5, S} has a 
probability of b. 

The possible outcomes of a random variable need not all have equal 
probabilities. For example, we can define a random variable that we 
will call L whose outcomes are produced by throwing two dice and 
taking the larger of the two values. Adding a second die to our previous 
sequence of throws: 

... 

... 

and choosing the larger value in each pair gives us the following out- 
comes of L: 

4,5,4,3,2,4,5,5,5,6,6,3,5,6,5,4 ,... 
L has the same set of possible outcomes as D, the result of throwing 

a single die; the possible values of L are {1,2,3,4,5,6}. While the 
outcomes of D are all equally probable, common sense tells us that 
some outcomes of L are more likely than other. For example, 1 is not 
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Table 9.1 The probability distribution of the random variable L, whose outcomes 
are generated by throwing two dice and taking the larger of the two values. 

a very likely outcome since it will occur only if both dice show 1s; 
the chances of this happening are only &. The complete probability 
distribution for the random variable L is given in Table 9.1; as we 
noted earlier, the sum of the probabilities is 1. 

Functions of Random Variables 

Since the outcomes of a random variable are numerical values, it is 
possible to define other random variables by performing mathematical 
operations on the outcomes of a random variable. For example, we 
earlier defined the random variable 0, which was the result of throwing 
a single die. Beginning with D, we can define another random variable 
called 2 0 ,  whose outcomes are generated by throwing a single die and 
doubling the results. Using the same sequence of throws of a die we 
gave earlier, the outcomes of 2 0  would be 

8,10,6,6,4,8,6,10,10,12,12,4,10,4,2,8, .  . . 
The set of possible outcomes of 2 0  is {2,4,6,8,10,12}, each of which 
has a probability of b of occurring. 

As another example, consider the random variable L2 + L. The 
outcomes of this random variable would be generated by first generat- 
ing an outcome of the random variable L that we defined earlier and 
then adding it to its own square. Beginning with the sequence of pairs 
of throws that we used earlier: 

... 

... 

we would generate outcomes of L2 + L by first generating the outcomes 
of L:  

4,5,4,3,2,4,5,5,5,6,6,3,5,6,5,4 ,... 
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then performing the prescribed mathematical operations, to  produce 
the following sequence of outcomes: 

20,30,20,12,6,20,30,30,30,42,42,12,30,42,30,20,. . . 
The six possible outcomes of L2 4- L are {2,6,12,20,30,42} and the 
corresponding set of probabilities is { &, z ,  36, E ,  z, 36}. The random 
variable L 2 + L  has the same set of probabilities as the random variables 
from which it is defined since its definition involves only monotonic 
functions. 

With random variables that are a defined as monotonic functions 
of another random variable, it is fairly straightforward to  define the 
set of possible outcomes and the corresponding probabilities. If the 
n possible outcomes of the random variable V are {oQ), . . . , yn)} and 
the corresponding probabilities are { p l ,  . . . , p n } ,  then the random vari- 
able f (V) also has n possible outcomes, {f(vp,) ,  . . . , j ( y n ) ) } ,  with the 
same set of corresponding probabilities, (p1, . . . , p n } .  

In addition to creating new random variables by performing mathe- 
matical operations on the outcomes of a single random variable, we can 
also create new random variables by performing mathematical opera- 
tions on the outcomes of several random variables. A simple example 
that we have already discussed briefly is the summing of the results of 
two dice. With the sequence of throws of two dice we used earlier: 

3 5 7 9 1 1  

... 

the outcomes of the random variable T could be determined by sum- 
ming the values on the two dice: 

5,9,7,6,3,7,8,7,8,8,9,5,9,8,6,8 ,... 
The possible outcomes of T are {2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12} .  As with 
the variable L that we discussed earlier, some of the outcomes of T 
are more likely than others. The only way of getting the dice to  sum 
to 2, for example, is to have 1s on both of them; the probability of 
this unlikely event is &. There are a total of six possible combinations 
which sum to  7, and the probability of this event is &. The com- 
plete probability distribution for the possible outcomes of T is given 
in Table 9.2. 

We should note here that the random variable T is not the same as 
the random variable 2 0  we discussed earlier. The outcomes of 2 0  are 
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Table 9.2 The probability distribution of the random variable T, whose outcomes 
are generated by throwing two dice and adding the two values. 

generated by taking a single random variable, 0, and doubling it. The 
outcomes of T are generated by taking different random variables, D1 
and D2, and summing them. Though D1 and DZ are generated by the 
same random mechanism, their outcomes are not necessarily the same. 
As a function of a single random variable, 2 0  has the same number. 
of possible outcomes as the random variable from which it is defined. 
T ,  on the other hand, has several more outcomes than either of the 
random variables from which it is defined. 

In combining different random variable t o  create new ones, we are 
not limited to addition. For example, we could define a random vari- 
able called D H ,  whose outcomes would be generated by throwing a 
die, tossing a coin (heads = 0, tails = l) ,  and multiplying the two 
results. For this particular random variable, it is not too difficult to 
specify the complete set of possible outcomes and their probabilities; 
there are seven possible outcomes, {0 ,1 ,2 ,3 ,4 ,5 ,6}  with the following 
set of probabilities: { 3, 12,  3, 3, 3, n, n}. 

For random variables defined as functions of other random vari- 
ables, it becomes difficult to define the complete set of possible out- 
comes and their corresponding probabilities, particularly if the function 
is complicated. Fortunately, for the problems we will be tackling, we 
will never have to deal with anything more Complicated than a sum of 
several random variables. 

1 r 1 1 1 1 1  

Parameters of a Random Variable 

The set of outcomes and their corresponding probabilities is sometimes 
referred to  as the probability law or probability distribution of a random 
variable. If this probability distribution is known, one can calculate 
many parameters that  describe interesting features of the random vari- 
able. Each of the descriptive sta,tistics we discussed in the first section 
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of this book has a corresponding parameter. For example, there is a 
maximum value for any random variable, as well as a minimum; i t  
will also have a mean and a standard deviation. If the set of possible 
outcomes is large enough, it will have a median and two quartiles. 

There are two important remarks t o  be made concerning the pa- 
rameters of a random variable. First, the complete distribution cannot, 
in general, be determined from the knowledge of only a few parame- 
ters. Second, the parameters cannot be calculated by observing the 
outcomes of a random variable. 

The distribution cannot generally be deduced from a few param- 
eters. In the second chapter, we discussed the use of statistics for 
summarizing a distribution. While statistics such as the mean and the 
standard deviation do describe important features of the distribution, 
they are only summaries, and do not tell us everything about the dis- 
tribution. Two distributions may have the same mean and standard 
deviation and still be quite different in other respects. The same is 
true of random variables and their parameters. While two random 
variables may have the same mean and variance, their distributions 
need not be the same. In later chapters, where we discuss the calcu- 
lation of confidence intervals, we will make use of random variables 
whose complete distributions can be determined from the knowledge 
of only a few parameters. For example, a Gaussian random variable 
can be completely defined by its mean and variance; a uniform random 
variable can be completely defined by its minimum and maximum. In 
general, however, a random variable is not fully described by a few 
parameters. 

The parameters of a random variable cannot be calculated exactly 
by observing a few outcomes of the random variable; rather, they are 
parameters of a conceptual model. From a sequence of observed out- 
comes, all we can do is calculate sample statistics based on that particu- 
lar set of data;  a different set of outcomes would produce a different set 
of sample statistics. It is true that as the number of observed outcomes 
increases, the sample statistics calculated from the set of available ob- 
servations tend to  become more similar to  their corresponding model 
parameters. This leads us in practice to  assume that the parameters 
of our random variable are the same as the sample statistics we can 
calculate. For example, having calculated the mean of our available 
samples we could choose to  conceptualize these samples as outcomes 
of a random variable whose mean is the same as our sample mean. 
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The step of assigning the same mean to  our random variable as that  
of our observed data involves an assumption. There are several other 
random variables with different means that could also have generated 
the same data. To take a specific example, the 16 throws of a die that 
we gave earlier have a sample mean of 3.75. Were these sample da ta  
from a real data  set, we would not know the details of the generating 
mechanism, and would typically assume that the random variable that 
generated these 16 sample values also has a mean of 3.75. From our 
knowledge of the underlying random mechanism, however, we know 
that in this case the mean of the random variable is, in fact, 3.5. 

The important and fundamental difference between the parameters 
of a conceptual model and the statistics which can be calculated from 
a finite number of observed outcomes calls for a certain care in our 
notation. We will be using the same symbols for the model parameters 
that  we used earlier for the descriptive statistics. To emphasize the 
difference between the two, we will use a tilde ( - )  above a symbol if it 
refers to a model parameter. The mean of a set of observed values will 
still be denoted by m, for example, and if we choose to conceptualize 
these values as outcomes of some random variable, then the mean of 
the corresponding random variable will be denoted by 6. 

The two model parameters most commonly used in probabilistic 
approaches to estimation are the mean or “expected value” of the ran- 
dom variable and its variance. For certain random variables, the mean 
and the variance provide a complete description of the distribution. 
Even for those random variables for which the mean and variance do 
not provide a complete description, these two parameters often provide 
useful information on how the random variable behaves. 
Expected Value. The expected value of a random variable is its 
mean or average outcome. It  is the weighted average of the n possi- 
ble outcomes, with each outcome being weighted by its probability of 
occurrence: 

As discussed earlier, the-above the m reminds us that m is a model 
parameter, and not a sample statistic. 

Using the information in Table 9.1, which gave the probability dis- 
tribution of the random variable L that  we defined earlier, the expected 
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value of the larger of two dice throws is 

= 4.47 

As we can see from this particular example, the expected value need 
not be one of the possible outcomes. Also, it need not be close to 
the most likely outcome, the mode, or to the median of our random 
variable. 

The expected value of the sum of two random variables is the sum 
of their expected values: 

E{U + V }  = E { U }  + E { V }  (9.2) 

The random variable that we called T ,  for example, was defined as the 
sum of two dice: T = D1 + D2. Using Equation 9.1  and the probabil- 
ities of the various outcomes that we gave in Table 9.2, the expected 
value of T is 7.0. Even if we had not known the complete probability 
distribution of T, we could have reached the same conclusion by using 
Equation 9.2. The expected value of a single throw of a die is 3.5, so 
the expected value of the sum of two dice throws is 7.0. 
Variance. The variance of a random variable is the expected squared 
difference from the mean of the random variable: 

Var{V} = 62 = E{[V  - E{V}I2}  (9.3) 

An alternate expression for the variance can be derived by expanding 
the square inside the curly brackets: 

Var{V} = E { V 2  - 2 V E { V }  -+ E { V } ' }  

and using the fact that the expected value of a sum is equal to the sum 
of the expected values: 

Var{V} = E { V 2 }  - E { 2 V E { V } }  + E { E { V } 2 }  
= E { V 2 }  - 2 E { V } E { V }  + E { V } 2  

= E { V 2 }  - E { V } 2  (9 .4 )  

If the probability law is known, the variance of a random variable can 
be expressed as 

i= 1 i= 1 
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Using this equation and the information given in Table 9.1, the variance 
of the random variable L is 1.97. 

As with other model parameters, the variance of a random variable 
need not be the same as the sample variance calculated from a sequence 
of actual observations. For example, the sequence of 16 outcomes we 
gave earlier for the random variable T ,  the sum of two dice, has a 
variance of 2.68, while the corresponding model parameter is 5.83. The 
particular outcomes we saw in our sequence were much less variable 
than the probability model would have predicted. 

Joint Random Variables 

Random variables may also be generated in pairs according t o  some 
probabilistic mechanism; the outcome of one of the variables may influ- 
ence the outcoine of the other. For example, we could create a pair of 
random variables, L and S, by throwing two dice, letting the outcome 
of L be the larger of the two values shown on the dice and the outcome 
of S be the smaller. The sequence of throws of two dice given earlier: 

... 

results in the following pairs of ( L ,  S) values: 

(4, I>,  (5 ,4) ,  (473)) (3 ,3 ) , (2 ,  I ) ,  (4,317 (5 ,3) ,  (5,217 
(5,3),  (692)) (6 ,3) ,  (3 ,2) , (5 ,  4), (V), (5,117 (4,4),  * - - 

There is some relationship between the value of L and the value of 
S. As the value of L gets smaller, the range of possible values for S 
also gets smaller. A complete definition of these two random variables 
should include a description of how they jointly vary. 

Pairs of joint discrete random variables, ( U ,  V ) ,  may be completely 
defined by stating all the possible outcomes, 

{(yl)dJ(l)) ,-  * , ( y 1 ) 7 y r n ) L * *  +?b(*)?yl )>?*  . . , ( y n ) , y r n ) ) I  

(Pll,...,Plrn,...,Pnl,..',Pnrn) 

along with the corresponding probabilities, which must sum to  1: 

where there are n possible outcomes for U and 772 possible outcomes 
for V .  
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Table 9.3 
(L, S), whose outcomes are determined by throwing two dice. 

The joint probability distribution for the pair of random variables 

Possible Outcomes of S 
1 2 3 4 5 6  

1 

Possible 2 

Outcomes 3 

of L 4 

5 

6 

?G ' 0 0 0 0 0  
- -  2 ' o o o o  
L L ' O O O  
2 2 2 1 0 0  

2 2 2 - 2 1 0  

36 36 

36 36 % 

% Z % %  

36 36 36 36 36 

2 2 2 2 2 1  

Table 9.3 completely defines the joint variables ( L ,  S) that we dis- 
cussed earlier. For any particular pair of outcomes, ( l ( i ) ,  s ( j ) ) ,  this table 
gives its probability of occurrence. 

The notion of a pair of joint random variables can be extended to  
any number of random variables. For example, we can imagine defin- 
ing a triple of random variables ( L ,  M ,  S), whose outcomes were deter- 
mined by throwing three dice, letting the outcomes of L and S be the 
largest and smallest values and letting the outcome of M be the remain- 
ing middle value. The probability law of these joint random variables 
would consist of a set of all possible triples, {. . . , ( l ( j ) ,  m(j),  s(k)), . . .}, 
and a corresponding set of probabilities, {. . . , P i j k , .  . .}. As with the 
univariate and bivariate probabilities we discussed earlier, the set of 
trivariate probabilities would sum to 1. The multivariate probability 
distribution of n joint random variables consists of a set of all possible 
n-tuples and a corresponding set of probabilities of occurrence that 
sum to one. 

Marginal Distributions 

The knowledge of the joint distribution of two random variables al- 
lows the calculation of the univariate or marginal distribution of each 
random variable. The distribution of one variable ignoring the effect 
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of the second is usually referred to as the marginal distribution. For 
discrete random variables ( U ,  V), the probability law of U by itself can 
be calculated from the joint probability law in the following manner: 

m 

P{U = U ( j , }  = p;  = c p ; j  (9.6) 
j =  1 

If the joint probability distribution is tabulated in a form similar to 
that shown in Table 9.3, Equation 9.6 corresponds to summing across 
the rows or down the columns. Using Table 9.3, we can calculate the 
marginal probability that L is 5 by summing all of the joint probabil- 
ities in the fifth row: 

6 

P { L =  51 = p 5  = C p 5 j  
j=1 

- 2 2 2 2 1  
- - + - + - + - + - + o  36 36 36 36 36 

9 
36 

- - -  

This procedure gives us a marginal probability of p5 = &, which agrees 
with the information given earlier in Table 9.1. 

Conditional Distributions 
The knowledge of the joint distribution of two random variables also 
allows us to calculate the univariate distribution of one variable given 
a particular outcome of the other random variable. For example, with 
our discrete random variables L and S, we might be interested in know- 
ing the probability that the outcome of L is 3 if we already have the 
information that the outcome of S is also 3. 

The conditional probabilities of one random variable given a par- 
ticular value of another can be calculated from the following axiom of 
conditional probability: 

P{U = u and V = v} P{U = U l V  = v} = P{V = v} (9.7) 

The numerator in this equation is given by the joint probability law; 
the denominator can be calculated using the equations given in the 
previous section on marginal distributions. The idea behind Equa- 
tion 9.7 is that the joint probability P{U = u and V = v }  needs to be 
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rescaled since our probability law no longer consists of all possible pairs 
of ( U , V )  outcomes, but only those pairs that have v as the outcome 
of the second variable. The division by P{V = v} guarantees that the 
sum of the probabilities is still 1. 

For discrete random variables, conditional probabilities can be cal- 
culated in the following manner: 

Pi j  

ckn=i P k j  
P {U = U ( i ) l V  = “ ( j ) }  = 

With the joint probabilities tabulated in the form given in Ta- 
ble 9.3, Equation 9.8 corresponds to dividing a particular entry by 
the sum of all other entries in the same row or column. For example, 
returning to the problem we posed earlier the conditional probability 
that L is 3 given that S is 3 can be calculated by dividing p33 by the 
sum of the entries in the third column: 

P33 

C;=I Pk3 
P { L  = 3 1 S =  3) = 

The conclusion is that if two dice are rolled and we somehow discover 
that the smaller of the two values is 3, then the probability of the larger 
one also being 3 is +. 

Parameters of Joint Random Variables 

Joint random variables are completely defined by their joint probability 
law, which includes the set of possible pairs and the set of correspond- 
ing probabilities of occurrence. The knowledge of the probability law 
of joint random variables allows the calculation of several parameters 
that are useful in describing how the two variables are related. As 
with the univariate parameters we discussed earlier, the knowledge of 
bivariate parameters does not generally allow the complete probability 
law to be deduced. Also, these bivariate parameters are not the same 
as the corresponding statistics that can be calculated from a finite set 
of observations. 
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Covariance. The covariance between two random variables is defined 
as follows: 

COV{UV} = C'uv = E{(U - E{U})(V - E { V } ) }  (9.9) 
= E { U V }  - E { U } E { V }  (9.10) 

If the joint probability law is known, then the covariance can be 
calculated by the following equation: 

The marginal probabilities of the n possible outcomes of U and the m 
possible outcomes of V can be calculated using Equation 9.6. Using the 
joint probability distribution for the random variables L and S given in 
Table 9.3, the first term in Equation 9.11 is 12.25, the expected value of 
L is 4.47, and the expected value of S is 2.53. The  covariance between 
the random variables L and S is 0.041. As we noted earlier, this pa- 
rameter need not be identical t o  the sample covariance calculated from 
a n  observed series of outcomes. For example, the sample covariance of 
the 16 (L, S) pairs that  we gave earlier is 0.219. If we continued throw- 
ing the pair of dice and produced many more outcomes of ( L ,  s) pairs, 
the sample covariance calculated on the observed outcomes would tend 
t o  approach the corresponding parameter. 

The covariance between a random variable and itself, cuu, is iden- 
tical t o  its variance, 86. 

The covariance of a random variable is influenced by the magnitude 
of the possible outcomes. If we defined a pair of random variables 
(lOL, lOS), whose outcomes are determined simply by multiplying the 
outcomes of ( L ,  S) by 10, the covariance of (lOL,lOS) is 941, which is 
100 times greater than the covariance of ( L ,  S). 
Correlation Coefficient. It is often desirable to  have a parameter 
that  describes how two random variables jointly vary yet is not affected 
by a simple rescaling of the values. The  cordation coeficient provides 
such a parameter, and 

The  variances 56 and 
marginal distributions 

is defined as follows: 

(9.12) 

5; can be calculated from their corresponding 
using Equation 9.5. 
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Continuing with the covariance calculation for L and S given ear- 
lier, the variance of L is 1.97, and the variance of S is also 1.97, giving 
us a correlation coefficient of 0.478. 

If the possible pairs of outcomes of two random variables all fall on 
a straight line when plotted on a scatterplot, then the two random vari- 
ables have a correlation coefficient of 4-1 or - 1 depending on the slope 
of the line. For two random variables whose outcomes are completely 
independent of one another, the correlation coefficient is 0. Though 
the correlation coefficient is a parameter that summarizes the strength 
of the linear relationship, it is often used as a parameter of the bivari- 
ate distribution of joint random variables that are not linearly related. 
The correlation coefficient of 0.478 between L and S agrees with our 
earlier intuition that these two random variables are somehow related. 
If the outcome of one of them is large, the outcome of the other one 
also tends to  be large. 

Weighted Linear Coinbinations of Random Variables 

Weighted linear combinations of random variables are particularly im- 
portant for estimation since, as we discussed in the previous chapter, 
all of the estimators we will be discussing are weighted linear combi- 
nations of the available sample data. In probabilistic approaches to 
estimation, where the available sample data are viewed as outcomes 
of random variables, the estimate is therefore an outcome of a ran- 
dom variable that is created by a weighted linear combination of other 
random variables. 

To completely describe the distribution of a random variable that is 
created by combining other random variables, we would need to  know 
the multivariate distribution of all the random variables involved in the 
linear combination. Even without the knowledge of this multivariate 
distribution, we are able to  describe certain parameters of the linear 
combination by knowing certain parameters of the random variables 
involved in the combination. 
Expected Value of a Linear Combination. Equation 9.2 can be 
generalized to include not only sums of two randoin variables but also 
weighted sums of any number of random variables. The expected value 
of a weighted linear combination of random variables is equal to the 
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weighted linear combination of the individual expected values: 

(9.13) 
i=l i= 1 

Equation 9.2 is a particular case of this in which n = 2 and w1 = w2 = 
1. 

Earlier, we gave a simple example of this equation using the random 
variable T defined as the result of throwing two dice and summing the 
results. In this particular example, the random variables involved in 
the linear combination, D1 and D2, were independent; the outcome of 
one die did not influence the outcome of the other. Even if there is some 
dependence between the variables involved in the linear combination, 
Equation 9.13 is still valid. As an  example of this, consider the two 
random variables L and S. We have already seen that there is some 
correlation between these two; larger values of L tend to  be associated 
with larger values of S .  Before we try to apply Equation 9.13, we can 
use our common sense t o  figure out what the expected value of the sum 
of L and S should be. To generate outcomes of L and S we threw two 
dice, designating the larger one as the outcome of L and the smaller 
one as the outcome of S.  When we sum the two outcomes, it really 
does not matter which one is the larger and which one is the smaller; 
the values on both dice get added together regardless of which one 
is larger. Following this argument, the random variable we create by 
summing the outcomes of L and S is the same as the random variable T 
that  we defined simply as the result of throwing two dice and summing 
the two values. The expected value of L + S should therefore b e  the 
same as the expected value of T. 

Earlier, when we calculated the covariance between L and S, we 
had t o  calculate their expected values: E { L }  = 4.47 and E { S }  = 2.53. 
Using these two values in Equation 9.13 brings us to  the result that  the 
expected value of L+S is 7.0. This result agrees with our common sense 
conclusion, and provides one example of the fact that Equation 9.13 is 
valid even if the variables being summed are correlated. 
Variance of a Weighted Linear Combination. The variance of a 
random variable that is created by a weighted linear combination of 
other random variables is given by the following equation: 
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As an example of the application of this equation, let us try to 
calculate the variance of T and also of L + S. While T is created 
by summing two independent random variables, D1 and D2, L + S is 
created by summing two dependent random variables. In the previous 
section we showed that these two random variables are, in fact, the 
same. The variance we calculate for T using Equation 9.14 should be 
the same as the variance we calculate for L + S. 

For the simple addition of two random variables, Equation 9.14 
becomes 

vQr{U + V }  = cov(uu} + c o v { u v }  + cov{vu} + cov{vv} 

For the random variable T = D1 + D2, the two random variables 
involved in the sum are independent: 

COV(D1D2) = Cov(D2D1) = 0 

As we noted earlier, the covariance between a random variable and 
itself is identical to the variance. 

Despite their outcomes being different, D1 and 0 2  are both produced 
by the same random mecha.nism, the throwing of a single die, and their 
variances are equal. Their variance, calculated using Equation 9.5 with 
the probabilities all equal to 8 ,  is 2.917. Substituting these results 
into Equation 9.14, the variance of T is 5.83. This can be checked 
by calculating the variance of T directly using Equation 9.5 and the 
probability distribution given in Table 9.2. 

For the random variables L and S, we have already calculated the 
following results: 

Cov{LS} = Cov{SL} = 0.941 
Cov{LL} = Vur{L} = 1.971 
Cov{SS} = Var{S} = 1.971 

Substituting these results into Equation 9.14, the variance of L + S is 
5.83, which agrees with our previous calculations. 
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Random Functions 

A random function is a set of random variables that have some spatial 
locations and whose dependence on each other is specified by some 
probabilistic mechanism. For example, we can take a series of points 
regularly spaced in one dimension and define a random function V(z)  
that  is generated by the following probabilistic mechanism: 

0 with probability 3 
1 with probability $ 

V(0)  = (9.15) 

(9.16) V(z - 1) 

1 - V(z - 1) 

with probability 9 
with probability a V(z)  = { 

All values of V ( z )  are either 0 or 1. The random function begins a t  
either 0 or 1 with equal probability. At each subsequent location, the 
value of the function has a 75% chance of staying the same and a 25% 
chance of switching to the other value. The decision t o  stay the same 
or switch could be decided by flipping two coins and switching only if 
both of them showed heads. 

As with random variables, which have several possible outcomes, 
random functions also have several possible outcomes or “realizations.” 
Figure 9.4 shows three of the possible realizations of the random func- 
tion V(z) that  we defined earlier. Though each of these realizations 
are different in their details, they have similar characteristics due to  
the fact that they were all generated by the procedure described by 
Equations 9.15 and 9.16. 

The random variables V(O), V(l) ,V(2) , .  . . ,V ( z ; ) , .  . . all have the 
same univariate probability law: the set of possible outcomes of V(z;) 
is { O , l } ,  with both outcomes being equally probable. This is due t o  
the fact that Equation 9.15 gives us an equal chance of getting a 0 or 
a 1 a t  the first location and that Equation 9.16 does not discriminate 
between 0s and ls-it gives us an equal chance of staying at 0 as it 
does of staying a t  1. 

The pairs of random variables a t  consecutive locations: 

all have the same joint probability law; the set of possible outcomes of 
(V(z),V(z + 1)) is {(O,O),(O,l),(l,O),(l,l)}, with the corresponding 
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Figure 9.4 Three realizations of the random function V(z). 

set of probabilities being { 8, i, i, 8}. This common joint distribution 
between consecutive pairs is a consequence of Equation 9.16, which 
makes the outcomes (0,O) and (1 , l )  three times as likely as the out- 
comes (0 , l )  and ( 1 , O ) .  

Equation 9.16 actually does a lot more than impose a common 
joint distribution between consecutive pairs; it also imposes a common 
joint distribution between pairs of values separated by any specified 
distance. For example, the pairs separated by a distance of two units, 
(V(z),V(z + 2)), have a particular joint distribution, as can be seen 
by considering the possible combinations of three consecutive values, 
(V(X),  V(Z + I), V(z + 2)): 

(O,O,O), (0,0,1>, (0,1,0), (0, 171) 
(1,0,0),(1,0,1)7(L 1,0),(1,1,1) 

Since staying at the same value is three times as likely as switching to 
the other value, some of these possible combinations of three consecu- 
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tive values are more likely than others. The two least likely ones are 
(0, 1 , O )  and ( l , O ,  1) since these both involve two switches. Three times 
as likely as these two are the combinations (O,O, l ) ,  (0,1, l ) ,  ( l , O ,  0), 
and (1,1,0), each of which involves only one switch. Three times more 
likely still are the two remaining combinations, (O,O,O) and (1,1, l ) ,  
which involve 110 switches a t  all. The probabilities associated with each 
of the combinations given above are: 

Looking a t  these eight possible outcomes of three consecutive val- 
ues, we find that two of them start with 0 and end with 0, ( O , O ,  0) 
and (0,1,0). Summing the probabilities of these two events, we reach 
the conclusion that the pair of random variables ( V ( z ) , V ( z  + 2)) has 
a probability of of being (0,O). The other possible outcomes of 
( V ( z ) ,  V ( z  + 2 ) )  have the following probabilities: 

6 

32 
P{(V(z ) ,  V ( z  + 2)) = (0 , l ) )  = - 

6 

32 
10 

32 

P { ( V ( z ) , V ( z  + 2 ) )  = ( 1 , O ) )  = - 
P{(V(z ) ,V ( z  + 2 ) )  = (1 , l ) )  = - 

These results completely define the probability law of the joint random 
variables ( V ( z ) ,  V ( z  + 2)). Even a t  a separation of two units, there is 
a greater chance that two values will be the same than be different. 

If we repeat this type of analysis for other pairs of random variables 
( V ( z ) ,  V ( z  + h) ) ,  we find that Equation 9.16 implicitly states the joint 
probability distribution for pairs of random variables separated by any 
distance. For any value of h, the outcomes (0,O) and (1 , l )  are more 
likely to occur than the outcomes (0 , l )  and (1,O). For h = 1, we saw 
that the probability of staying a t  the same value was a; at h = 2, it 
decreased slightly to  $. As h increases, the probability of staying at  
the same value decreases, asymptotically approaching k. 

For this random function V ( z )  that we have been using as an ex- 
ample, the univariate probability law does not depend on the location 
z; a t  all locations, 0 and 1 have an equal probability of occurring. 
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Similarly, the bivariate probability law of V ( z )  and V(z + h)  does not 
depend on the location z, but only on the separation h; regardless of 
their locations, all pairs of random variables separated by a particular 
distance h have the same joint probability distribution. This indepen- 
dence of the univariate and bivariate probability laws from the location 
z is referred to as stationarity. There are random functions that are 
not stationary and there are geostatistical techniques that make use of 
such random function models. The most widely used geostatistical es- 
timation procedures, however, including the ones we will be discussing 
in later chapters, use stationary random function models. 

Parameters of a Random Function 

From a complete description of its probabilistic generating mechanism, 
we can calculate several parameters that describe interesting features 
of a random function. If the random function is stationary, then the 
univariate parameters we discussed earlier, the expected value and the 
variance, can be used to summarize the univariate behavior of the set 
of random variables. For the random function V(z) that we used as an 
example in the previous section, 0 and 1 both had an equal probability 
of occurring a t  all locations. Using Equation 9.1, the expected value 
of V ( z )  is 0.5; using Equation 9.5, its variance is 0.25. 

The other parameters that are commonly used to summarize the 
bivariate behavior of a stationary random function are its covariance 
function, C(h) ,  its correlogram, P(h), and its variogram, ?'(h). For 
stationary random functions, these three parameters are related by a 
few simple expressions. As with the univariate and bivariate param- 
eters we discussed earlier, it  is important to keep in mind that the 
descriptive statistics that can be calculated from a sample data set 
are not the same as the conceptual model parameters. In the case of 
the covariance function, the correlogram and the variogram, the sim- 
ple expressions that describe the relationships between the parameters 
of a random function are not valid for the corresponding descriptive 
statistics. 

The covariance function is the covariance between random variables 
separated by a distance h: 

Cv(h) = C02){V(z) V ( z  + h)}  
= E(V(2)  * V ( z  i- h ) }  - E{V(z)}E{V(z  t h ) }  
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For stationary random functions, this can be expressed as 

G ( h )  = E { V ( z )  * V(Z + h ) }  - E{V(Z)}2  (9.17) 

The covariance between random variables a t  identical locations is the 
variance of the random function: 

E ~ ( o )  = COV{V(Z) . ~ ( 2 ) )  = Var{V(z)}  (9.18) 

The correlogram is the correlation coefficient between random vari- 
ables separated by a specified distance: 

The correlation coefficient between random variables a t  identical loca- 
tions is l: 

= 1  COV{V(Z) * V(z)} 
Var{V(x 11 /?V(O) = (9.20) 

The variogram is half the expected squared difference between ran- 
dom variables separated by a specified distance: 

(9.21) 1 
% ( h )  = f { [ V ( z )  - V(z + h)I2} 

Using the properties of the expected value that we discussed earlier, 
this can also be expressed as 

1 1 
;uv(h) = Z E { V ( s ) 2 }  + f { V ( z  + h)2} - E { V ( z )  * V(z + h ) }  

For stationary random functions, E ( V ( X ) ~ }  = E { V ( z  + h)'}, which 
allows us to  rewrite the previous equation as 

?v(h )  = E { V ( z ) 2 }  - E { V ( z )  * V(z + h ) }  

The equation is unchanged if we subtract E { V ( Z ) } ~  from the first term 
and add it to the second: 

;Yv(h) = E{V(Z)2}  - E{V(Z)}2 - E { V ( z )  * V(z + h ) }  + E{V(z ) }2  

Using Equation 9.4, the variogram can be written as 

=Vv(h) = Var{V(z)}  - [ E { v ( ~ ) .  ~ ( z  + h ) }  - E { v ( ~ ) } ~ ]  
= Ev(0) - & ( h )  (9.22) 
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Since the expected squared difference between samples at identical 
locations is 0, the value of y(0) is always 0. 

For the majority of random functions used in practical geostatis- 
tics, the pairs of widely separated random variables are independent of 
one another. The covariance function and the correlogram, therefore, 
eventually reach 0 while the variogram eventually reaches a maximum 
value, usually referred to  as the sill. This sill value of the variogram is 
also the variance of the random function, which allows Equation 0.22 
to  be expressed as 

Cv(h) = 'yv(..) - %(h) (9.23) 

For the stationary random function models most frequently used in 
the practice of geostatistics, the covariance function, the correlogram 
and the variogram provide exactly the same information in a slightly 
different form. The correlogram and the covariance have the same 
shape, with the correlogram being scaled so that its maximum value is 
1. The variogram also has the same shape as the covariance function, 
except that it is upside-down; while the covariance starts from a max- 
imum of Er2 a t  h = 0 and decreases to  0, the variogram starts a t  0 and 
increase to  a maximum of Zr2. Figure 9.5 shows these three summaries 
for the random function V(x) that we used earlier as an example. 

By summarizing the joint distribution of pairs as a function of 
distance, the variogram (or the covariance or the correlogram) provide 
a measurement of the spatial continuity of the random function. As 
we noted when we first discussed the random function V(z), it  has a 
tendency to  stay at  the same value rather than to switch values. This 
tendency is controlled by the probability values given in Equation 0.16. 
We can define a random function called U ( z )  that is similar to V(z) 

greater tendency to stay a t  the same value: but has a 

0 with probability f 
1 with probability f 

U ( 0 )  = 

U(X - 1) 

1 - U ( z  - 1) 

with probability 2 
with probability 

Figure 9.6 shows three realizations of this random function. 
this to the realizations of V(x) shown earlier in Figure 9.4, 

Comparing 
we see that 
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Figure 9.5 Three measures of the bivariate behavior of the random function V ( z ) .  
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Figure 9.6 Three realizations of the random function V ( r ) .  lzx 
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Figure 9.7 Three realizations of the random function W(z). 
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by increasing the probability that U ( s )  = U ( z  - l), we have created a 
random function that is more continuous. 

We can define another function called W(z) that is also similar to 
V ( s )  but has less of a tendency to  stay a t  the same value: 

A n  Introduction to Applied Geostatistics 

0 with probability 3 
1 with probability 4 
W ( z  - 1) 

1 - W ( z  - 1) 

with probability fr 
with probability 

W ( 0 )  = 

W ( s )  = 

Figure 9.7 shows three realizations of W ( z ) .  Comparing this t o  the 
realizations of V ( s )  and U ( z ) ,  we see that by decreasing the probability 
that W ( s )  = W ( z  - l), we have created a random function that is less 
continuous. 

Figure 9.8 shows the variograms of the three random functions 
V ( z ) ,  U ( z ) ,  and W ( z ) .  We have already observed that  these random 
functions have different spatial continuities. Figure 9.8 shows that 
these differences in the spatial continuity are captured by the vari- 
ogram. The  variogram for W ( x ) ,  the least continuous of the three, 
rises immediately, reaching the maximum value of 0.25 a t  h = 1; the 
variogram for U ( z ) ,  the most continuous of the three, rises much more 
slowly. Random functions for which closely spaced values may be quite 
different will have variograms that rise quickly from the origin; ran- 
dom functions for which closely spaced values are very similar will have 
variograms that rise much more slowly. 

The Use of Random Function Models in Practice 

We are now in a position t o  discuss how random function models are 
typically used in practice. As we noted earlier, a random function is 
purely a conceptual model that we choose t o  use because we do  not yet 
have accurate deterministic models. Having decided to use this type of 
conceptualization, we are responsible for defining the random process 
that might have created our observed sample values. 

We could try to  define the probabilistic generating mechanism such 
as the one we gave in Equation 9.15 and 9.16 for the random function 
V ( z ) .  From the probabilistic generating mechanism we could gener- 
ate many realizations, each one of which would be a possible reality 
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Figure 0.8 Variograms for the three random functions U ( a ) ,  V ( a ) ,  and W(Z). 
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that  is consistent with our available data  and with the random func- 
tion model we have chosen. In practice, however, we usually d o  not 
bother t o  completely describe the probabilistic generating mechanism 
for several reasons. First, the complete definition of the probabilis- 
tic generating mechanism is very difficult even in one dimension. The  
examples of random processes that we used earlier were sufficient t o  
convey the important concepts, but are not able to adequately model 
all of the possible data  sets we might encounter. Second, for many of 
the problems we typically encounter, we do not need t o  know the prob- 
abilistic generating mechanism. As we will see in the following section, 
i t  is possible to tackle many estimation problems with a knowledge of 
only a few parameters. 

In the practice of geostatistics we usually adopt a stationary ran- 
dom function as our model and specify only its covariance or variogram. 
Returning to  the sample data  set we showed a t  the beginning of this 
chapter in Figure 9.1, we could choose t o  view this as the outcome 
of any one of a number of random processes. Figure 9.9 shows three 
possible variogram models and Figure 9.10 shows realizations of ran- 
dom functions that have these particular variogram parameters. The 
variogram model shown in Figure 9.9a describes a random function 
that  is quite erratic over short distances, and the corresponding re- 
alization shown in Figure 9.10a does indeed show considerable short 
scale variability. Figure 9.9b describes a random function that  is less 
erratic than the first, and the corresponding realization shown in Fig- 
ure 9.10b is less erratic than the first one. Figure 9.9c, on the other 
hand, describes a random function that is extremely continuous; the 
variogram is tangential to the x-axis a t  the origin, and rises very slowly. 
The corresponding realization, shown in Figure 9.1Oc, is very smooth, 
and gently undulates through the available sample data  points. 

If we restrict ourselves to  the seven available sample values, then 
any one of the realizations shown in Figure 9.10 is a plausible version 
of the true profile; all pass through the available sample data  points. 
The key t o  successful estimation is t o  choose a variogram or a covari- 
ance that captures the pattern of spatial continuity that  we believe 
the exhaustive profile should have. If the seven available samples were 
measurements of some quantity that is known to fluctuate wildly, such 
as the concentration of some pollutant or the grade of a precious metal, 
then we would prefer the random function that generated the outcome 
shown in Figure 9.10a. 011 the other hand, if we are dealing with a 
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L h 

Figure 0.9 Three possible variogram models for the unknown profile from which 
the samples in Figure 9.1 were drawn. 
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shown in Figure 9 .9 .  
Realizations corresponding to each of the three variogram models 
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quantity that is known to be very continuous, such as the elevation of 
an oil-water contact or the thickness of a coal seam, then we would 
prefer the random function that generated the outcome shown in Fig- 
ure 9 .10~.  

The choice of a variogram or a covariance model is an important 
step in geostatistical estimation procedures. When we present the 
method of ordinary kriging in Chapter 12, we will discuss how the var- 
iogram model is typically chosen in practice and show how this choice 
affects the resulting estimates. For the moment, we will simply note 
that the choice of a particular variogram model directly implies a belief 
in a certain type of spatial continuity. Of the many characteristics of 
an earth science data set, the pattern of spatial continuity is among the 
most important for the problem of estimation. If the phenomenon is 
very continuous, then estimates based on only the closest samples may 
be quite reliable. On the other hand, if the phenomenon is erratic, then 
estimates based on only the closest available samples may be very un- 
reliable; for such an erratic phenomenon, good estimates may require 
the use of many more sample data beyond the closest ones. 

An Example of the Use of a Probabilistic Model 

Since the use of probabilistic models is likely to be unfamiliar to many 
readers, we will conclude this chapter with an example of how they 
can be used to  answer a specific estimation problem. 

For example, we may wish to  estimate the complete profile of the 
phenomenon whose samples are shown in Figure 9.1. At every point 
where we do not have a sample, we could estimate the unknown true 
value using a weighted linear combination of the seven available sample: 

7 

j =  1 

Furthermore, suppose the set of weights is allowed to change as we 
estimate unknown values at different locations. The question we will 
address in this example is how to choose the weights so that the average 
estimation error is 0. 

If we define the error, T ,  of any particular estimated value to  be 
the difference between the estimated value and the true value a t  that 
same location: 

Error of the ith estimate = r ,  = v̂ i - vi (9.24) 



232 An Introduction to Applied Geostatistics 

then the average error of a set of n estimates is 

Even though we have been able t o  define the average error with 
Equation 9.25, this does not help us very much in addressing the 
problem of how t o  weight the samples so that the average error is 
0. When we set Equation 9.25 to  0, we cannot make any progress 
since i t  it involves quantities that  we d o  not know, namely the true 
values 01, . . . , on. 

The probabilistic solution t o  this problem consists of conceptualiz- 
ing the unknown exhaustive profile as the outcome of a random process 
and solving the problem for our conceptual model. For any point at 
which we attempt to estimate the unknown value, our model is a sta- 
tionary random function that consists of eight random variables, one 
for the value a t  each of the seven sample locations, V ( z l ) ,  . . . , V ( z 7 ) ,  
and one for the unknown value at the point we are trying t o  estimate, 
V ( z 0 ) .  Each of these random variables has the same probability law; 
at all eight locations, the expected value of the random variable is 
E { V } .  Any pair of random variables has a joint distribution that de- 
pends only on the separation between the two points and not on their 
locations. The covariance between pairs of random variables separated 
by a particular distance, h, is Cv(h).  

Every value in this model is seen as the outcome, of random vari- 
ables; the seven samples are outcomes of random variables, as is the 
unknown true value. Our estimate is also a random variable since it 
is a weighted linear combination of the random variables a t  the seven 
available sample locations: 

7 

V ( 2 0 )  = c w; - V ( q )  
i=l 

Similarly, the estimation error, defined as the difference between the 
estimate and the random variable modeling the true value, is also a 
random variable: 

R(20) = P(z0) - V(Z0) 

By substituting the previous equation which expressed ~ ( z o )  in terms 
of other random variables, we can express R(s0) solely in terms of the 
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eight random variables in our random function model: 

7 
~ ( 2 0 )  = C wi . ~ ( 2 ; )  - ~ ( 2 0 )  (9.26) 

The error that we make when we estimate the unknown value at  20 is 
an outcome of the random variable R(s0). 

If we perform estimation a t  n locations, then the average of the n 
errors is itself a random variable: 

i= 1 

(9.27) 

In this equation, the random variables R1,. . . , R ,  are the errors at  
the n locations at which we are calculating estimates. We can set the 
expected value of A to 0 by using Equation (9.13) which gave us a 
formula for calculating the expected value of a linear combination of 
random variables. Applying this equation to the random variable A as 
defined in Equation 9.27 leads to the following result: 

1 ,  

i=l 
Average error = A = - R; 

One way to  guarantee that the expected value of A is zero is to  
insist that each of the random variables R1,. . . , R, have an expected 
value of 0. We can ensure that each of these errors has an expected 
value of 0 by applying the formula for the expected value of a linear 
combination to Equation 9.26: 

7 

E{R(zo ) }  = E{C wi * V ( 2 i )  - V ( ~ O ) }  
i= 1 

7 

= C wiE{V(z i ) }  - ~ { ~ ( z o ) )  
i=l 

We have a ready assumed that the random function is stationary, which 
allows us to express all of the expected values on the right hand side 
as E { V } :  

7 

 so)) = C wiE{V}  - E{V) 
i= 1 
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The expected value of the error a t  any particular location, E { R ( z o ) }  is 
often referred to  as the bias. Setting this expected value to 0 to ensure 
unbiasedness results in the following conclusion: 

E{V)Cw; = E{V} 
i= 1 
7 

c w i  = 1 (9.28) 

The  conclusion, then, is that  if we want unbiased estimates, we should 
restrict ourselves to weighted linear combinations whose weights sum 
t o  one. 

This result, often referred to as the unbiasedness condition, makes 
such obvious common sense that it is often taken for granted. For 
example, all of the estimation methods presented in Chapter 11 use 
weighted linear combinations in which the weights sum to  1. Though 
none of these methods makes clear exactly why this is being done, the 
preceding demonstration makes i t  clear that  the use of this condition 
can be justified by a conceptual model in which the values are viewed 
as outcomes of a stationary random process. 

Figure 9.11 reviews the steps in the derivation of the unbiasedness 
condition. There are two remarks that were made earlier that  should 
be emphasized again here. 

First, though the problem arose from the practical intention of 
having the actual average error of a particular set of estimates be 0, it 
has been solved in the realm of a random function model. Whether or 
not it works in reality depends on the appropriateness of the model. 

Second, even if a stationary random function is an appropriate 
model, the actual average error may not be 0. Our unbiasedness con- 
dition has been based on setting a n  expected value t o  0. A random 
variable with an expected value of 0 can still produce a set of actual 
outcomes whose sample mean is not 0. The  parameters of a random 
variable need not be identical t o  the corresponding statistics calculated 
from a set of observed outcomes. 

In the case studies we present in the following chapters, we will see 
that even though an estimation method makes use of the unbiasedness 
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Reality 

0 a sample da ta  set consisting of 
seven data: 

Conceptual Model 

0 a stationary random function 
consisting of eight random vari- 
ables: 

0 estimate is a specific value 
calculated by a weighted linear 
combination of the seven data: 

60 = c w ; .  0; 

0 estimation error is a specific 
but unknown quantity, 

Problem: How to weight sam- + 
ples so that average error is O? 

Solution: C w; = 1 e 

Figure 9.11 An outline of the use of a 

0 estimate is a random vari- 
able; some of its parameters are 
known since it is a linear com- 
bination of known random vari- 
ables: 

0 estimation error is a random 
variable; some of its parameters 
are known since it is a linear 
combination of known random 
variables: 

Problem: How to weight ran- 
dom variables V(q). . . V(57) 
so that expected value of the av- 
erage estimation error is o? 

Solution: C w; = 1 

probabilistic model. The problem of 
producing estimates whose average error is 0 is translated into a similar problem in 
the probabilistic model. The solution derived from the probabilistic model is then 
assumed to apply to reality. 
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condition given in Equation 9.28, it can still produce estimates that 
are actually quite biased. 
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10 
GLOBAL ESTIMATION 

When we calculated the sample statistics in Chapter 6 we noticed that 
the naive sample mean was a very poor estimate of the exhaustive 
mean. Further analysis revealed that the sampling strategy caused our 
samples to be preferentially located in areas with high V values. For 
example, more than 125 of the 470 samples, for example, fall within the 
Wassuk Range anomaly. While it is likely that these samples give good 
information on the exhaustive mean within this anomaly, they are not 
representative of the remaining area. Unfortunately, the remaining 
area is not as densely sampled as the Wassuk Range anomaly. To 
obtain a good estimate of the exhaustive mean, we will need to find 
some way of weighting individual samples so that the clustered ones 
do not have an undue influence on our estimate. 

We have already seen in Table 6.2 that if we use only the 195 
samples from the initial campaign, our sample mean is much closer 
to the actual exhaustive value than if we include the samples from 
the second and third campaigns. A weighted linear combination that 
gives equal weight to the first 195 sample values and no weight to the 
last 275 produces a better estimate of the global mean than one that 
weights all 470 sample equally. 

This method of giving no weight to the clustered samples has two 
drawbacks. First, it completely ignores useful information. We should 
not discard the measurements from our 275 clustered samples; instead, 
we should try to find some way to moderate their influence. Second, 
it may not always be possible to identify those samples that should 
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be kept and those that should be discarded. We are fortunate with 
the Walker Lake sample data set in being able to  identify the three 
sampling campaigns. In practice, we may not be able to find a natural 
subset of samples that completely covers the area on a pseudo regular 
grid. 

In this chapter we look at two declustering methods that are gen- 
erally applicable to  any sample data set. In both methods we use a 
weighted linear combination of all available sample values to estimate 
the exhaustive mean. By assigning different weights to  the available 
samples, we can effectively decluster the data set. The first method, 
called the polygonal method, assigns a polygon of influence to each 
sample. The areas of these polygons are then used as the declustering 
weights. The second method, called the cell declustering method, uses 
the moving window concept to  calculate how many samples fall within 
particular regions or cells. The declustering weight assigned to a sam- 
ple is inversely proportional to the number of other samples that fall 
within the same cell. Following a detailed description of how these two 
methods are implemented, we will see how both methods perform on 
the Walker Lake data set. 

P o I y g o n a1 D e c 1 us t e r i 11 g 

Each sample in our data set has a polygon of influence within which 
it is closer than any other sample. Figure 10.1 shows the locations 
of some arbitrary samples. The shaded area shows the polygon of 
influence for the 328 ppm sample located near the center of this area. 
Any point within the shaded region is closer to  the 328 ppm sample 
than to any other. 

Figure 10.2 shows how the boundaries of the polygon of influence 
are uniquely defined. The perpendicular bisector of a line segment is a 
line on which points are equidistant from either end of the line segment; 
points on either side of the perpendicular bisector have to be closer to  
one end or the other. The perpendicular bisectors between a sample 
and its neighbors form the boundaries of the polygon of influence. 

The edges of the global area require special treatment. A sample 
located near the edge of the area of interest may not be completely 
surrounded by other samples and the perpendicular bisectors with its 
neighbors may not form a closed polygon. Figure 10.3a shows an exam- 
ple where the perpendicular bisectors between the 85 ppm sample and 
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+ + 
10 30 

Figure 10.1 An example showing the polygon of influence of a sample 

its three neighboring samples do not form a closed region. One solution 
is to choose a natural limit, such as a lease boundary or a geologic con- 
tact, to serve as a boundary for the entire area; this can then be used 
to  close the border polygons. In Figure 10.3b we use the rectangular 
boundaries of the map area as the natural limit of our area of interest. 
An alternative in situations where a natural boundary is not easy to 
define is to limit the distance from a sample to  any edge of its polygon 
of influence. This has the effect of closing the polygon with the arc of 
a circle. In Figure 1 0 . 3 ~  we see how the polygon of influence is closed 
if it is not allowed to  extend more than 10 m from the 85 ppm sample. 

By using the areas of these polygons of influence as weights in our 
weighted linear combination, we accomplish the declustering we re- 
quire. Clustered samples will tend to  get small weights corresponding 
to  their small polygons of influence. On the other hand, samples with 
large polygons of influence can be thought of as being representative 
of a larger area and are therefore entitled to a larger weight. 
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Figure 10.2 Construction of a polygon of influence using the method of perpen- 
dicular bisectors. Figures (a) to (f)  show the steps in constructing a region within 
which the central sample is closer than any other sample. 
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Figure 10.3 Defining the polygon on the border of the global area. (a) shows a 
polygon that cannot be closed by the method of perpendicular bisectors between 
data points. Alternatively the polygon can be closed by a natural limit such as the 
lease boundary in (b) or by limiting the distance from a sample to the edge of a 

polygon as shown in (c). 

Cell Declustering 

In the cell declustering approach, the entire area is divided into rect- 
angular regions called cells. Each sample receives a weight inversely 
proportional to the number of samples that fall within the same cell. 
Clustered samples will generally receive lower weights with this method 
because the cells in which they are located will also contain several 
other samples. 
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Figure 10.4 An example of cell declustering. 

Figure 10.4 shows a grid of such cells superimposed on a number of 
clustered samples; the dashed lines show the boundaries of 20 x 20 m2 
cells. Each of the two northernmost cells contains only one sample, 
so both of these samples receive a weight of 1. The southwestern cell 
contains two samples, both of which receive a weight of $. The south- 
eastern cell contains eight samples, each of which receives a weight of 
8.  

Since all samples within a particular cell receive equal weights and 
all cells receive a total weight of 1, the cell declustering method can 
be viewed as a two step procedure. First, we use our samples to  calcu- 
late the mean value within moving windows, then we take these mov- 
ing window means and use them to calculate the mean of the global 
area. 

Tlie estimate we get from this cell declustering method will depend 
on the size of the cells we choose to  use. If the cells are very small, 
then each sample will fall into a cell of its own and all samples will 
therefore receive equal weights of 1. If the cells are as large as the 
entire global area, all samples will fall into the same cell and will again 

1 
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receive equal weights. Somewhere between these two extremes we must 
find an appropriate medium. 

If there is an underlying pseudo regular grid, then the spacing of 
this grid usually provides a good cell size. In our Walker Lake example, 
the sampling grid from the first program suggests that 20 x 20 m2 cells 
would adequately decluster our data. If the sampling pattern does not 
suggest a natural cell size, a common practice is to  try several cell 
sizes and to  pick the one that gives the lowest estimate of the global 
mean. This is appropriate if the clustered sampling is exclusively in 
areas with high values. In such cases, which are common in practice, 
we expect the clustering of the samples to  increase our estimate of the 
mean, so we are justified in choosing the cell size that produces the 
lowest estimate. 

Comparison of Declustering Methods 

Having discussed how the two declustering methods are implemented, 
we can now try them both on our Walker Lake sample data set. We 
will estimate the global V mean using the 470 V samples. From our 
description of the exhaustive data set in Chapter 5 we know that the 
true value is 278 ppm. Though the case study here aims only at the 
estimation of the global mean, we will see later that the declustering 
weights we calculate here can also be used for other purposes. In 
Chapter 18, we will take a look at  estimating an entire distribution 
and its various declustered statistics. 

The polygons of influence for the Walker Lake sample data set 
are shown in Figure 10.5. In this figure we have chosen to  use the 
rectangular boundaries of the map area to  close the border polygons. 

For the cell declustering method we must choose an appropriate 
cell size. Since we are using rectangular cells we can vary both the 
east-west width and the north-south height of our cells. In Figure 10.6 
we have contoured the estimated global means we obtain using cells 
of different sizes. The minimum on this map occurs for a cell whose 
east-west dimension is 20 m and north-south dimension is 23.08 m. 
We are justified in choosing this minimum over all other possibilities 
since our clustered samples are all located in areas with high V values. 
This 20 x 23 m2 cell size also nearly coincides with the spacing of the 
pseudo regular grid from the first sampling campaign. 

For the first 20 samples, Table 10.1 gives details of the calculation 
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0 

Figure 10.5 Polygon of influence map for the 470 V sample data. 

of the weights for the polygonal method and for the cell declustering 
method using a cell size of 20 x 23 m2. Our estimated global mean will 
be a weighted linear combination of the 470 sample values: 

xg; w; * vi 

c;L; w j 
Estimated Global Mean = (10.1) 

This is the same as the general equation we presented in the previous 
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Size of cells in E-W direction 

Figure 10.6 Contour map showing the relation between the global declustered 
mean and the declustering cell size. From this map it can be seen that a cell size of 
20 m east-west and approximately 23 m north-south yields the lowest global mean. 

chapter, with the denominator acting as a factor that standardizes the 
weights so that they sum to 1. For the polygonal approach, C W j  = 
78,000 since the total map area is 78,000 m2; for the cell declustering 
approach, Cwi = 169 since the global area is covered by 169 20 x 23 m2 
cells. 

Using the areas of the polygons of influence as our declustering 
weights we get an estimate of 276.8 ppm. Using the weights from 
the cell declustering method with a cell size of 20 x 23 m2 we get an 
estimate of 288 pm. 

For sample data sets that have an underlying pseudo regular grid 
and in which clustered sampling occurs only in areas with high or 
low values, the cell declustering method usually performs well. The 
estimate of 288 ppm obtained by this method is quite close to the 
actual value of 276.9 ppm. 

In this particular study, the polygonal method performs extremely 
well, We should be somewhat humble, however, about our 276.8 pprn 
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Table 10.1 Declustering weights for the first 20 samples from the sample data set 

POLYGONS CELLS 
Number of 

Area of wi Samples in wi 
No. X Y V Polygon Cwj Same Cell Cwi 

1 1 1  8 0 399 0.0051 1 0.0059 
2 8  
3 9  
4 8  
5 9  
6 10 
7 9  
8 11 
9 10 

10 8 
11 9 
12 10 
13 11 
14 10 
15 8 
16 31 
17 29 
18 28 
19 31 
20 28 

30 
48 
68 
90 

110 
129 
150 
170 
188 
209 
23 1 
250 
269 
288 
11 
29 
51 
G8 
88 

0 
224 
434 
412 
587 
192 
31 

389 
175 
188 
82 
81 

124 
188 
29 
78 

292 
895 
703 

370 
319 
249 
236 
343 
372 
398 
382 
350 
424 
390 
389 
392 
417 
279 
375 
2G4 

58 
57 

0.0047 
0.0041 
0.0032 
0.0030 
0.0044 
0.0048 
0.0051 
0.0049 
0.0045 
0.0054 
0.0050 
0.0050 
0.0050 
0.0053 
0.0036 
0.0048 
0.0034 
0.0007 
0.0007 

1 
3 
3 
4 
1 
1 
1 
1 
1 
1 
2 
2 
1 
1 
1 
1 
6 
6 
10 

0.0059 
0.0020 
0.0020 
0.0013 
0.0015 
0.0059 
0.0059 
0.0059 
0.0059 
0.0059 
0.0030 
0.0030 
0.0059 
0.0059 
0.0059 
0.0059 
0.0010 
0.0010 
0.0006 

estimate. This remarkable accuracy is a peculiarity of the Walker Lake 
data set and we should not expect similar luck in all situations. 

The polygonal method has the advantage over the cell decluster- 
ing method of producing a unique estimate. In situations where the 
sampling does not justify our choosing the minimum of our various cell 
declustered estimates, the choice of an appropriate cell size becomes 
awkward. 

An interesting case study that sheds further light on these two 
methods is the estimation of the U global mean. Using the 275 U 
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samples we can repeat the calculation of the declustering weights for 
both methods. In this case, the true value is 266 ppm. The polygonal 
estimate is 338 ppm while the minimum cell declustering estimate is 
473 ppm. In this example both methods fare poorly because there are 
large portions of the map area with preferentially low values that have 
no U samples. Neither of these methods can hope to replace actual 
samples; all they do is make intelligent use of the available samples. It 
is worth noting that in this case, where there is no underlying pseudo 
regular grid that covers the area, the cell declustering approach pro- 
duces a considerably poorer estimate than the polygonal approach. 

Declustering Three Dimensional Data 

The methods we have presented here work well with two-dimensional 
data  sets. For the declustering of three-dimensional data sets, there 
are several possible adaptations of these tools. 

If the data  are layered, then one may be able to  separate the 
data into individual layers and then use a two-dimensional decluster- 
ing methods on each layer. If the data set cannot easily be reduced 
to several two-dimensional data sets, it is possible to use the three- 
dimensional version of either of the methods discussed here. 

For the cell declustering approach, the cells become rectangular 
blocks whose width, height and depth we must choose. If the appro- 
priate dimensions of such blocks are not obvious from the available 
sampling, one can still experiment with several block dimensions in an 
attempt to  find the one that minimizes (or maximizes) the estimate of 
the global mean. In three dimensions, however, this procedure is more 
tedious and less difficult to visualize than in two. 

The three-dimensional analog of the polygonal approach consists 
of dividing the space into polyhedra within which the central sample is 
closer than any other sample. The volume of each polyhedron can then 
be used as a declustering weight for the central sample. An alternative 
approach, which is easier to implement though usually more computa- 
tionally expensive, is to  discretize the volume into many points, and to  
assign to  each sample a declustering weight that is proportional to the 
number of points which are closer to  that sample than to  any other. 

A final alternative, one whose twcldimensional version we have 
not yet discussed, is to  use the global kriging weights as declustering 
weights. In Chapter 20 we will show how these weights can be obtained 
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by accumulating local kriging weights. If a good variogram model can 
be chosen, this final alternative has the advantage of accounting for 
the pattern of spatial continuity of the phenomenon. 

Further Reading 
Hayes, W. and Koch, G. , “Constructing and analyzing area-of- 

influence polygons by computer,” Computers and Geosciences, 
V O ~ .  10, pp. 411-431, 1984. 

Journel, A. , “Non-parametric estimation of spatial distributions,” 
Mathematical Geology, vol. 15, no. 3, pp. 445-468, 1983. 



11 
POINT ESTIMATION 

In the previous chapter we looked a t  some ways of estimating a mean 
value over a large area within which there are many samples. Though 
this is necessary a t  an early stage in most studies it is rarely a final 
goal. We often also need estimates for much smaller areas; we may 
even need to estimate unknown values a t  specific locations. For such 
local estimation problems we still use weighted linear combinations, 
but our weights now need to account not only for possible clustering 
but also for the distance to the nearby samples. In this chapter we look 
a t  some methods for point estimation and check their results with the 
true values from the exhaustive data set, using some of our descrip- 
tive statistical tools to help us judge the performance of the different 
methods. Summarizing a complete set of point estimates with a single 
statistic provides an index that helps us decide which one is best. We 
will see that while some methods perform very well according to some 
criteria, they may not do as well according to other criteria. In the 
next chapter we will look a t  ordinary kriging, an estimation method 
that is designed to give the best estimates for one of the statistical 
criteria we look at in this chapter. 

For each of the point estimation methods we describe in the follow- 
ing sections, we will show the details of the estimation of the V value 
a t  65E,137N. No sweeping conclusions should be drawn from this sin- 
gle example; it is presented only to provide a familiar common thread 
through our presentation of various methods. Once we have looked at  
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Table 11.1 Distances to  sample values in the vicinity of 65E,137N 

Distance 

No. X Y V 65E,137N 
Sample from 

1 225 61 130 477 4.5 
2 437 63  140 606 3.6 
3 367 64 129 227 8.1 
4 52 68 128 646 9.5 
5 259 71 140 606 6.7 
6 436 73 141 701 8.9 
7 366 75 128 783 13.5 

the details of how each method is implemented we will compare their 
performances a t  several locations. 

The V values a t  sample locations near 65E,137N are shown in Fig- 
ure 11.1 and listed in Table 11.1. The variability of these nearby sam- 
ple values presents a challenge for estimation. We have values ranging 
from 227 t o  783 ppm; our estimated value therefore, can cover quite 
a broad range depending on how we choose t o  weight the individual 
values. 

In the following sections we will look a t  four quite different point 
estimation methods. Two of them, the polygonal method and the 
local sample mean method, are adaptations of the global declustering 
techniques we discussed in the last chapter. As we will see, these 
are both extreme versions of the family of inverse distance methods. 
The fourth method we will examine is a geometric technique known as 
triangulation. Through a comparison of these four simple methods we 
can begin to  understand the important factors in point estimation. 

Polygons 

The  polygonal method of declustering that we looked a t  in the last 
chapter can easily be applied to point estimation. We simply choose 
as an estimate the sample value that is closest t o  the point we are 
trying to  estimate. Table 11.1 shows the distances from the 65E,137N 
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Figure 11.1 The data configuration shown in this figure is used to illustrate 
several point estimation methods in the following sections. The goal is to estimate 
the value of V at the point 65E,137N, located by the arrow, from the surrounding 
seven V data values. 

to  the each of the sample locations shown in Figure 11.1. The sample 
at 63E,140N is closest, so our polygonal estimate of the V value at  
65E,137N is 696 ppm. This polygonal estimator can be viewed as a 
weighted linear combination that gives all of the weight to the closest 
sample value. 

Polygonal estimates of the V value at other points near 65E,137N 
will also be 696 ppm. As long as the points we are estimating fall 
within the same polygon of influence, the polygonal estimate remains 
unchanged. As soon as we encounter a point in a different polygon of 
influence, the estimate jumps to a different value. Figure 11.2 shows 
how the polygonal estimates near 65E,137N form a discontinuous sur- 
face of plateaus. 

Triangulat ioii 

Discontinuities in the estimated values are usually not desirable. This 
is not to  say that real values are never discontinuous; indeed, as our in- 
dicator maps (Figure 5.10) of the exhaustive data set showed, the true 
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Figure 11.2 A perspective view showing the discontinuities inherent in polygonal 
estimates. 

values can change considerably over short distances. The discontinu- 
ities that some estimation methods produce are undesirable because 
they are artifacts of the estimation procedure and have little, if any- 
thing, to  do with reality. The method of triangulation overcomes this 
problem of the polygonal method, removing possible discontinuities 
between adjacent points by fitting a plane through three samples that 
surround the point being estimated. The equation of a plane can be 
expressed generally as 

z = ax + by + c (11.1) 

In our example, where we are trying to estimate V values using co- 
ordinate information, z is the V value, x is the easting, and y is the 
northing. Given the coordinates and the V value of three nearby sam- 
ples, we can calculate the coefficients a ,  b and c by solving the following 
system of equations: 

a z 3 + b y 3 +  c = 23 

From Figure 11.1 we can find three samples that nicely surround the 
point being estimated: the 696 ppm, the 227 ppm, and the 606 ppm 
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Figure 11.3 An illustration of the estimation plane obtained by triangulation. 
This method overcomes the problem of discontinuities by fitting a plane through 
three samples that surround the point being estimated. 

samples. Using the data for these three samples, the set of equations 
we need to  solve is 

63a+  140bi -c  = 696 
64a+  129b+c = 227 (11.3) 
71a+  140b+c = 606 

The solution to these three simultaneous equations is 

u = -11.250 b = 41.614 c = -4421.159 (11.4) 

which gives us the following equation as our triangulation estimator: 

5 = - 1 1 . 2 5 0 ~  -t 4 1 . 6 1 4 ~  - 4421.159 (11.5) 

This is the equation of the plane that passes through the three 
nearby samples we have chosen; in Figure 11.3 we show the contours 
of the estimated V values that this equation produces. Using this 
equation we can now estimate the value a t  any location simply by 
substituting the appropriate easting and northing. Substituting the 
coordinates x = 65 and y = 137 into our equation gives us an estimate 
of 548.7 ppm at the location 65E,137N. 
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Figure 11.4 
data configuration given in Figure 10.1. 

(a) The polygons of influence and (b), Delaunay triangles for the 

This method of estimation clearly depends on which three nearby 
samples we use t o  define our plane. There are several ways we could 
choose t o  triangulate our sample data  set. One particular triangu- 
lation, called the Delaunay triangulution, is fairly easy to  calculate 
and has the nice property that it produces triangles that are as close 
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to  equilateral as possible. This Delaunay triangulation and our earlier 
polygons of influence are geometrically related. Figure 11.4a shows the 
polygons of influence in the vicinity of G5E,137N; we show the Delau- 
nay triangulation of the same samples in Figure 11.4b. Three sample 
locations form a Delaunay triangle if their polygons of influence share 
a common vertex [l]. For example, the polygons of influence for the 
696 ppm, 227 ppm and 60G ppm samples share a common vertex near 
the center of Figure 11.4a and therefore also form one of the Delaunay 
triangles shown in Figure 11.4b. 

Though one can use an equation like Equation 11.5 to produce 
estimates for any location, it is unwise to do so beyond the boundaries 
of the triangle that connects the three samples that were originally used 
to  calculate the coefficients of the plane. This entails that triangulation 
is typically not used for extrapolation purposes; we estimate values 
only at those locations that fall within one of our Delaunay triangles. 
Around the edges of the area of interest we are typically unable to use 
triangulation. 

Though we solved a system of linear equations to derive our trian- 
gulation estimate of 548.7 ppm, we could also express it as a weighted 
linear combination of the three sample values. For the triangulation 
procedure, the weights assigned to each value can be directly calculated 
from the geometry of the three samples and the point being estimated. 

Figure 11.5 shows the location of three samples, designated I ,  J, 
and K ;  the sample values a t  these locations are, respectively, V I ,  V J ,  

and V K .  The point 0 at  which we require an estimate is contained 
within the triangle I J K .  Instead of solving three simultaneous equa- 
tions and substituting the coordinates of 0 into our solution, we can 
directly calculate the triangulation estimate a t  0 with the following 
equation: 

(11.6) AOJK * V I  + AOIK * VJ + AOIJ * V K  

A I J K  
$0 = 

The As represent the areas of the triangles given in their subscripts. 
Our triangulation estimate, therefore, is a weighted linear combi- 

nation in which each value is weighted according to  the area of the 
opposite triangle. This weighting agrees with the common intuition 
that closer points should receive greater weights. In Figure 11.5 we 
can see that as the point 0 gets closer t o  I ,  the area of triangle O J K  
will increase, giving the value at I more influence. Dividing the indi- 
vidual weights by AIJIC has the effect of normalizing the weights so 
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J 

Figure 11.5 An example showing how three nearest data can be weighted by 
triangular areas to form a point estimate. The data are located at the corners of 
the triangle. The data value at I is weighted by the triangle area AOJK, at J by 
area AOIh-, and at K by A01 J .  

that they sum to one. Using Equation 11.6, the estimate of the V 
value at 65E,137N would be written as 

= 548.7 ppm (11.7) 
(22.5)(696) + (12.0)(227) + (9.5)(606) 

44 
c =  

Local Sample Mean 

In the polygonal method, where we use only the nearest sample, and 
in the triangulation method, where we use only three of the nearby 
samples, we ignore much of the nearby information. In Figure 11.1 we 
saw several other samples in the neighborhood of 65E,137N. There are 
a variety of estimation methods that give nonzero weights to all of the 
nearby samples, thus incorporating more of the available information 
in the estimate. A simplistic approach to  incorporating the information 
from nearby samples is to weight them all equally, using the sample 
mean as the estimate. This equal weighting of nearby samples was the 
first step in the cell declustering method we looked at  in the previous 
chapter. In practice, such simple averaging is rarely used as a point 
estimation method. We include it here because it will later serve as a 
useful reference when we explore other statistical approaches to  point 
estimation. 
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Table 11.2 Inverse distance weighting calculations for sample values in the vicinity 
of 65E, 13 7N 

Distance 
Sample from 

NO. X Y V 65E9137N l/di 
1 225 61 139 477 4.5 0.2222 0.2088 
2 437 G3 140 696 3.6 0.2778 0.2G10 
3 367 64 129 227 8.1 0.1235 0.1160 
4 52 68 128 646 9.5 0.1053 0.0989 
5 259 71 140 606 6.7 0.1403 0.1402 
6 436 73 141 791 8.9 0.1124 0.1056 
7 366 75 128 783 13.5 0.0741 0.0696 

E l / &  = 1.0644 

The mean of the seven nearby samples shown in Figure 11.1 is 
603.7 ppm. This estimate is much higher than either our polygonal 
estimate or our triangulation estimate. As we noted when we first 
discussed the sample mean in Chapter 2, it is heavily influenced by 
extreme values. The two samples with V values greater than 750 ppm 
in the eastern half of Figure 11.1 receive more than 25% of the total 
weight and therefore have a considerable influence on our estimated 
value. None of these high sample values was given any weight in our 
polygonal and triangulation estimates. 

Inverse Distance Methods 
An improvement on naively giving equal weight to all samples is to give 
more weight to  the closest samples and less to those that are farthest 
away. One obvious way to do this is to make the weight for each sample 
inversely proportional to its distance from the point being estimated: 

(11.8) 

d t ,  . . . ,d, are the distances from each of the n sample locations to  the 
point being estimated and v1,. . . , v n  are the sample values. 
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Table 11.3 The effect of the inverse distance exponent on the sample weights and 
on the V estimate. 

~~ ~ 

V p = 0.2 p = 0.5 p = l.'O p = 2.0 p =  5.0 p = 10.0 
1 477 0.1564 0.1700 0.2088 0.2555 0.2324 0.0106 
2 696 0.1635 0.1858 0.2610 0.3993 0.7093 0.9874 
3 227 0.1390 0.1343 0.1160 0.0789 0.0123 <.OW1 
4 646 0.1347 0.1260 0.0989 0.0573 0.0055 <.0001 
5 606 0.1444 0.1449 0.1402 0.1153 0.0318 0.0019 
6 791 0.1364 0.1294 0.1056 0.0653 0.0077 <.OW1 
7 783 0.1255 0.1095 0.0696 0.0284 0.0010 <.OW1 
&(in ppm) 601 598 594 5 98 637 693 

In Table 11.2 we show the weight that each of our seven samples 
near 65E,137N gets in an inverse distance method. For each sample we 
show l /d i ,  the reciprocal of its distance from 65E,137N; by dividing 
each weight by CY==,(l/di) we standardize the weights so that they 
sum t o  one. 

The nearest sample, the 696 ppm sample at  63E,140N, receives 
about 26% of the total weight, while the farthest sample, the 783 ppm 
sample at  75E,128N, receives less than 7%. A good example of the 
effect of the inverse distance weighting can be found in a co'mparison 
of the weights given to the 477 ppm sample and the 791 ppm sample. 
The 791 ppm sample a t  73E,141N is about twice as far away from the 
point we are trying t o  estimate as the 477 ppm sample at  61E,139N; 
the 791 ppm sample therefore receives about half the weight of the 
477 ppm sample. Using the weights given in Table 11.2 our inverse 
distance estimate of the V value at 65E,137N is 594 ppm. 

The inverse distance estimator we gave in Equation (11.8) can easily 
be adapted to  include a broad range of estimates. Rather than using 
weights that  are inversely proportional t o  the distance, we can make 
the weights inversely proportional to  any power of the distance: 

(11.9) 

Different choices of the exponent p will result in different estimates. 
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Table 11.3 shows the effect of p on the weights and on the resulting 
estimates. As we decrease p ,  the weights given to the samples become 
more similar. for example, with p = 0.2 the closest sample receives 
nearly 16% of the total weight and the farthest sample receives about 
13%. As we increase p ,  the individual weights become more dissimilar. 
The farthest samples suffer most, receiving a smaller proportion of 
the total weight, while the nearest samples become more influential. 
For p = 5.0, the closest sample gets 71% of the total weight while the 
farthest samples get virtually no weight. For progressively larger values 
of p the closest sample would receive a progressively larger percentage 
of the total weight. 

The general inverse distance estimator given in Equation 11.9 of- 
fers considerable flexibility. As p approaches 0 and the weights become 
more similar, our inverse distance estimate approaches the simple av- 
erage of the nearby sample values. As p approaches 00 , the inverse 
distance estimate approaches the polygonal estimate, giving all of the 
weight to  the closest sample. In Table 11.3 we can see that our es- 
timate approaches the local sample mean of GO4 ppm as p decreases; 
as p increases, our inverse distance estimate approaches our polygonal 
estimate of 696 ppm. Traditionally, the most common choice for the 
inverse distance exponent is 2. Inverse distance squared estimates are 
not necessarily better than estimates from inverse distance methods 
that use some exponent other than 2. The choice of p is arbitrary, 
and the traditional popularity of 2 is due, in part, to the fact that this 
choice involves fewer calculations and can therefore be computed very 
efficiently. 

Search Neighborhoods 

We have not yet confronted the issue of what counts as a “nearby” 
sample. In our example of the estimation of the V value at  65E,137N 
we simply accepted the samples that appeared on Figure 11.1. The 
choice of a search neighborhood that controls which samples are in- 
cluded in the estimation procedure is an important consideration in 
statistical approaches to point estimation and is discussed in detail in 
Chapter 14. 

For the case studies we perform in this chapter, we use a circular 
search neighborhood with a radius of 25 m. All samples that fall within 
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25 m of the point we are estimating will be included in the estimation 
procedure. 

Estiniation Criteria 

Before we compare the results from our different point estimation 
methods we should consider how we are going to decide which method 
is best overall. For estimates of a single value, such as our estimates 
of the global mean given in the previous chapter or the estimates at 
the single location 65E,137N that we calculated earlier in this chapter, 
it is fairly easy to decide which method worked best since one method 
will produce an estimate that is closest to  the true value [2]. When we 
are comparing sets of estimates from several locations, however, it is 
very unlikely that one method will produce the best estimate a t  all lo- 
cations. It is necessary, therefore, to have some criteria for comparing 
sets of point estimates from several locations. 

In the case studies we present here, our comparisons will be based 
on some of the univariate and bivariate descriptive tools we discussed in 
Chapters 2 and 3. The univariate distribution of our estimates will be 
important in evaluating a set of estimates since it seems reasonable to  
expect that a good estimation method will produce estimated values 
whose distribution is similar to  the distribution of true values. We 
will also look a t  the univariate distribution of our errors; as we will see 
shortly, there are several properties that we hope our error distribution 
will have. Put  simply, we would like its center, its spread, and its 
skewness all to be as close to 0 as possible. The bivariate distribution 
of our estimated values and the true values will also help us to judge 
how well our estimation method has performed. A perfect estimation 
method would give us estimates that always match the true value; for 
such ideal estimates, the scatterplot of true and estimated values would 
plot as a straight line. We can judge various estimation methods by 
how close their scatterplots come to  this ideal. 

Univariate Distribution of Estimates. If we have a set of estimates 
a t  several locations it is natural to compare their distribution to the 
distribution of the true values at the same locations. We would like the 
distribution of our estimated values to  be similar to  the distribution of 
true values. Typically, we compare their means; for some applications 
it may make more sense to compare other summary statistics. For 
example, in tlie estimation of permeabilities it may make more sense 
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Figure 11.6 Biased hypothetical distributions of error. In (a) the distribution of 
estimation errors indicates a negative bias, in (b), a positive bias, and in ( c ) ,  no 
bias. 

to compare the medians of the true and estimated distributions. In 
some studies it is important that the variability of the estimates match 
that of the true values; in such cases we should compare the standard 
deviations or the variances. We can also construct q-q plots of the 
two distributions; these often reveal subtle differences that are hard to 
detect with only a few summary statistics. 

Univariate Distribution of Errors. At every location where we 
perform point estimation we will have a true value, v, and an estimated 
value, .fr. We will define the error a t  each location to be the difference 
between the estimate and the true value: 

error = r = 0 - v 

If T is positive, then we have overestimated the true value; if r is 
negative then we have underestimated the true value. We will often 
refer to  these errors as residuals. 

In Figure 11.6 we show histograms for three hypothetical error 
distributions. The distribution shown in Figure 11.Ga has a negative 
mean, reflecting a general tendency toward underestimation. The op- 
posite case, shown in Figure ll.Gb, is a positive mean resulting from 
an abundance of overestimates. In Figure 11.Gc the overestimates and 
underestimates are balanced and the mean is 0. The mean of the error 
distribution is often referred to as the bias and a reasonable goal for 
any estimation method is to produce unbiased estimates. As we have 
noted before, the mean is not the only measure of center. Ideally, one 
would like the median and the mode of the error distribution also to 

(11.10) 

be 0, 
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Figure 11.7 Skewed distribution of estimation error. The error distribution in (a) 

is positively skewed in contrast t o  the more or less symmetric distribution shown in 
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Figure 11.8 T h e  error distribution in (a) shows a greater spread or variance about  
the mean error, than (b). 

A mean error of 0 could be the result of many small underestimates 
combined with a few very large overestimates; Figure 11.7a shows such 
a distribution. We typically prefer to have a more symmetric distribu- 
tion and an estimation method that produced the error distribution in 
Figure 11.7b would be preferable to  the one that produced the error 
distribution in Figure 11.7a. The median error serves as a good check 
on the symmetry. If both the mean and the median are close to  0, then 
not only do our overestimates and Underestimates balance, but they 
are also fairly symmetric in their magnitudes. An appreciable differ- 
ence between the mean and the median warns us that the magnitude 
of our overestimates is likely not the same as our underestimates. 

Another feature we hope to see in our error distribution is a small 
spread. In Figure 11.8 both error distributions are centered on 0 and 
are symmetric. The distribution shown in Figure 11.8a, however, has 
errors that span a greater range than those in  Figure 11.8b. The vari- 
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Figure 11.9 The unbiased error distribution in (a) shows a relatively large spread 
or variance about the mean error. The distribution in (b) shows much less variance, 
however it is slightly biased. Often an estimator can be improved by reducing the 
spread in the distribution of errors at  the cost of introducing a slight bias. 

ance or the standard deviation are both good yardsticks for assessing 
the spread of our error distribution. 

The  goals of minimum spread and a center close t o  0 are not in- 
dependent and there will be times in practice when we have to  trade 
one off against the other. Figure 11.9 shows two possible error dis- 
tributions; one has a mean of 0 but a large variance, the other has a 
low variance but a slightly positive mean. In such situations we might 
be willing to  accept a small bias in return for less variable estimates. 
Two summary statistics that incorporate both the bias and the spread 
of the error distribution are the mean absolute error and the mean 
squared error: 

l n  Mean Absolute Error = M A E  = - Irl 
i=l 

(11.11) 

(11.12) 
l n  Mean Squared Error = M S E  = - r' 

k l  

The MSE can be related to other statistics of the distribution of our 
errors: 

M S E  = variance + bias' (11.13) 

So far, we have discussed desirable properties of the entire error 
distribution. We would also like to see these properties hold for any 
range of estimated values. For example, if we separated our estimates 
into two groups, high values and low values, we would hope that the 
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Figure 11.10 In (a) the estimation error or residuals are globally unbiased, how- 
ever they are conditionally biased. For some ranges of estimates the average of the 
residuals will not be equal to 0. In (b) the estimates are globally unbiased as well 
as conditionally unbiased; for any range of estimates, the positive residuals balance 
the negative residuals. 

bias would still be close to 0 within each group. Ideally, we would like 
to be able to subdivide our estimates into many different groups and 
have an unbiased error distribution within each group. This property 
is called conditional unbiasedness and is quite difficult to achieve in 
practice. A set of estimates that is conditionally unbiased is also glob- 
ally unbiased. As we will see in our case studies, the reverse is not true; 
most estimation methods, even those that are globally unbiased, are 
guilty of overestimation or underestimation for some range of values. 

One way of checking for conditional bias is to plot the errors as 
a function of the estimated values. Figure 11.10 shows such plots for 
two sets of estimates; both are globally unbiased since the mean of all 
the errors is 0. In Figure 11.10a the estimates are conditionally biased; 
the lowest estimated values tend to be too low while the highest ones 
tend to be too high. In Figure 11.10b the estimates are conditionally 
unbiased; for any range of estimates the overestimates balance the 
underestimates and the mean error within the range is 0. 

Bivariate Distribution of Estimated and True Values. A scat- 
terplot of true versus predicted values provides additional evidence on 
how well an estimation method has performed. The best possible esti- 
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Figure 11.11 Two sets of estimates with differing spreads about the main diagonal. 
The estimates shown on the scatterplot in (b) are preferable to those shown in (a) 
since they generally fall closer to the diagonal on which perfect estimates would 
plot. 
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Figure 11.12 Conditional bias on a scatterplot of true versus estimated values. 
The estimates in (a) are preferable to those in (b) since their conditional expectation 
curve falls closer to the diagonal line. 

mates would always match the true values and would therefore plot on 
the 45-degree line on a scatterplot. In actual practice we will always 
have to  live with some error in our estimates, and our scatterplots of 
true versus estimated values will always appear as a cloud of points. 
Figure 11.11 shows two hypothetical scatterplots of true versus esti- 
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mated values. We typically want a set of estimates that comes as close 
as possible to  the line v = 6 so we would prefer the results shown in 
Figure 1 l . l l b .  The correlation coefficient is a good index for summa- 
rizing how close the points on a scatterplot come to  falling on a straight 
line, and we will often make use of it in our comparisons of different 
point estimation methods [3]. 

The scatterplot also offers us another way of checking conditional 
bias. If the mean error is 0 for any range of estimated values, then the 
conditional expectation curve of true values given estimated ones will 
plot on the 45-degree line. In Figure 11.12 we show scatterplots of true 
versus estimated values for two sets of estimates; both sets are globally 
unbiased and both clouds have the same correlation coefficient. The 
conditional expectation of true values given estimated ones is shown 
as the solid line on each scatterplot. For the estimates shown in Fig- 
ure 11.12b there is definitely some conditional bias; the true values 
for the very low estimates tend t o  be higher than their estimates, and 
the true values for the very highest estimates tend to  be lower than 
their estimates. In Figure 11.12a, the conditional expectation curve 
plots very close to  the 45-degree diagonal line for the complete range 
of estimated values. 

Even though we rarely expect t o  get completely conditionally un- 
biased estimates, comparing the conditional expectation curve t o  the 
45-degree line helps us understand how our estimation method per- 
forms. The causes of global bias, for example, are often made apparent 
by such plots. 

Case Studies 

The four point estimation methods we have discussed so far have been 
used to estimate the V value a t  points located on a regular square 
grid. The origin of this grid is 5E,5N, and the spacing between points 
is 10 m in both the north-south and the east-west directions. None of 
the 780 points on this grid coincides with a sample from our sample 
data  set. At each point we have calculated the polygonal estimate, 
the triangulation estimate using the Delaunay triangulation, the mean 
of all samples within 25 m, and the inverse distance squared estimate 
using all samples within 25 m. Table 11.4 shows the resulting estimates 
at 20 of these points near the center of the map area. 

The  univariate distributions of the estimates and of the true values 
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Table 11.4 Twenty point estimates of V from near the center of the Walker Lake 
map area are tabulated for the polygonal, Delaunay triangulation, inverse distance 
squared, and moving average methods. 

LOCAL INVERSE 
(E) (N) TRUE POLY TRIANG MEAN DIST. SQ. 

135 25 
135 35 
135 45 
135 55 
135 65 
135 75 
135 85 
135 95 
135 105 
135 115 
135 125 
135 135 
135 145 
135 155 
135 165 
135 175 
135 185 
135 195 
135 205 
135 215 

186.2 
349.4 
89.8 

122.6 
465.5 
461.9 
762.2 
491.4 
356.3 
214.8 
327.1 
195.6 
368.7 

15.3 
89.4 

146.7 
0.0 

31.3 
63.07 
383.8 

29.1 235.8 
29.1 93.8 
75.2 128.3 
75.2 214.5 

399.9 367.8 
399.9 445.6 
243.1 370.3 
243.1 254.7 

0.0 114.5 
0.0 39.2 

244.7 159.3 
244.7 183.9 
185.2 160.3 
185.2 98.9 
26.0 23.1 
26.0 18.7 

0.0 6.8 
0.0 81.9 

63.0 162.2 
383.8 351.3 

239.9 154.8 
187.9 84.7 
190.8 109.9 
273.6 199.1 
334.8 369.1 
430.4 408.5 
344.3 314.5 
318.2 264.6 
278.0 106.9 
184.9 117.7 
185.2 191.0 
138.4 156.9 
106.6 155.5 
100.2 126.8 
83.7 53.6 
45.8 42.9 
41.9 20.0 

102.5 52.2 
290.9 223.6 
390.9 408.0 

are summarized in Table 11.5. For 108 of the points along the edges 
of the map area it was not possible to  calculate the triangulation es- 
timate since the point being estimated did not fall within any of the 
triangles defined by the Delaunay triangulation. The triangulation es- 
timates should not be compared to  the true values from all 780 points 
but rather to  the true values a t  the 672 points where a triangulation 
estimate could be calculated. 

The triangulation method produce estimates whose mean is lower 
than the mean of the true values; the local sample mean and the in- 
verse distance squared estimates, on the other hand, have a higher 
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Table 11.6 Comparison of the distributions of true and estimated values for the 
four point estimation methods. 

Local Inverse 
Sample Distance 

True Polygonal Mean Squared True Triangulation 
n 780 780 780 780 672 672 
m 283 284 334 310 294 277 
u 251 246 184 199 256 211 

CV 0.89 0.87 0.55 0.64 0.87 0.76 
min 0 0 0 0 0 0 

M 219 235 338 297 237 237 
9 3  446 443 468 439 462 40 1 

max 1,323 1,393 890 1,065 1,323 1,231 
0 2 7  0.69 0.67 0.78 0.80 

Qi 70 72 186 141 75 109 

mean than the true values. These differences reflect a global bias in all 
these methods. The particular biases we observe here are peculiarities 
of the Walker Lake data  sets; in other situations we should not expect 
similar results. For example, the triangulation method does not con- 
sistently underestimate nor does the inverse distance squared method 
consistently overestimate. The difference between the mean estimate 
and the true mean will depend more on the character of the data  set 
under study and on the available sample values than on the estima- 
tion method. The excellent polygonal estimate is rather fortunate and 
again we should not expect such accuracy in other situations. 

Comparing the standard deviations of the true and estimated dis- 
tributions, we notice that the only estimates whose variability closely 
matches that  of the true values are the polygonal estimates; the other 
methods, including triangulation, produce estimates less variable than 
reality. Unlike the differences we noticed in the means of the esti- 
mates distributions, these differences in the standard deviation will be 
observed in most practical studies. This reduced variability of esti- 
mated values is often referred t o  as smoothing and is a consequence of 
combining several sample values t o  form an  estimate. The  polygonal 
estimates, which use only one sample value, are unsmoothed. The tri- 
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Figure 11.13 
tribution of point estimates provided by the four estimation methods. 

The distribution of 780 true point v values compared to the dis- 

angulation estimates, which use three sample values, are less smoothed 
than the local sample mean or the inverse distance squared estimates, 
both of which give some weight t o  all of the nearby samples. As more 
sample values are incorporated in a weighted linear combination, the 
resulting estimates generally become less variable. 

The q-q plots in Figure 11.13 help us see where the estimated distri- 
butions differ from the true one. If the true and estimated distributions 
are identical, then all of their quantiles will be the same and the q-q 
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Table 11.6 
point estimation methods. 

Summary statistics for the error distributions from each of the four 

~~~ 

Local Inverse 
Sample Distance 

Polygonal Triangulation Mean Squared 
n 780 672 780 780 
m 1.1 -16.8 51.1 26.8 
U 175.2 153.7 187.5 156.0 

min -651 -546 -618 - 630 
Qi -97 - 58 - 66 - 65 
M 0 3.9 48.9 24.4 
Q3 95 105 175 121 

max 595 524 537 473 
M A E  128 111 154 121 
M S E  30,642 23,885 37,741 25,000 

pairs will plot on the dashed line shown on each q-q plot. If the two 
distributions have the same shape but different variances, then their 
quantiles will plot on some other straight line. 

Of the four point estimation methods, the polygonal method pro- 
duces estimates whose distribution is closest to  the distribution of true 
values. Its q-q plot is roughly linear over the range from 0 to 1,300 ppm, 
showing that the polygonal estimates have a distribution whose shape 
is similar to the true one. All of the other methods produce estimated 
distributions that are noticeably different from the true distribution. 

All of the q-q plots pass through the origin, indicating that the 
minimum estimated value and the minimum true value are both 0 ppm. 
The polygonal method is the only one whose q-q plot does not deviate 
immediately to the right of the ideal dashed line. This deviation is 
evidence of the fact that there are far fewer very low values among 
the estimates than among the true values. This is another effect of the 
smoothing we remarked on earlier. The reduced variability of smoothed 
estimates causes the estimated distribution to  contain fewer extreme 
values than the true distribution. The summary statistics in Table 11.5 
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Figure 11.14 Histograms showing the distribution of the residuals for each of the  
four point estimation methods. 

confirm that the polygonal estimates are the only ones that contain 
extreme values similar t o  the extremes found in the true distribution. 

The distributions of the residuals from each of the four methods are 
shown in Figure 11.14 and are summarized with the statistics given in 
Table 11.6. The differences we noted earlier between the means of the 
estimated values and the true mean are reflected again in the means 
of the residuals. In this particular study, triangulation method has a 
tendency to  underestimate while the inverse distance and local sample 
mean methods have a tendency to  overestimate. The median error is 
closer t o  0 for the polygonal and triangulation methods than for the 
local sample mean and the inverse distance squared approaches. 

The error distributions appear quite symmetric; in all cases the 
difference between the mean and the median is quite small compared 
to the overall spread of the distribution. 
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If we use the spread of the error distribution as our yardstick, the 
triangulation estimates appear best; they have the lowest standard 
deviation and interquartile range. 

The methods that use few of the nearby samples produce more 
errors close t o  0 while the methods that give some weight t o  all nearby 
samples produce fewer large errors. This is confirmed by the statistical 
summary in Table 11.6 and by the histograms in Figure 11.14. The 
polygonal method and triangulation both have more errors in the class 
centered on 0 than either of the other methods. The polygonal method, 
however, produces the worst overestimation, 595 ppm, and the worst 
underestimation, -651 ppm. At the other end of the spectrum, the 
worst overestimation for the local sample mean method is only 537 ppm 
and its worst underestimation is only -618 ppm; its interquartile range, 
however, is larger than for any other method. 

All of these results make i t  clear that  the method which is “best” 
depends on the yardstick we choose. If we want our estimates to have 
the lowest standard deviation of errors and the smallest MAE, then the 
triangulation method works better, in this particular case, than any 
other method we have considered so far. If we prefer our estimates to  
be as unsmoothed as possible, then the polygonal approach wins out. 
The inverse distance squared method would be favored if we needed to  
minimize the largest errors. 

In the next chapter we will introduce another estimation method 
that specifically aims a t  reducing the standard deviation of our resid- 
uals. Although this is a very traditional approach in statistics, the 
results of Table 11.6 should be kept in mind: different methods may 
be better for different estimation criteria. 

The scatterplots of the true and estimated values from each of the 
four methods are given in Figure 11.15. Although the four plots look 
quite similar, a close examination reveals the cloud of points in Fig- 
ures 11.15b and 11.15d form a tighter cluster about the 45-degree line. 
This observation is confirmed by the correlation coefficients: the scat- 
terplot for the polygonal estimates (Figure 11.15a) has a correlation 
coefficient of 0.69; that  of the triangulation estimates (Figure 11.15b) 
has a correlation coefficient of 0.80; that  of the local sample mean esti- 
mates (Figure 11.15~) has a correlation coefficient of 0.67; and that of 
the inverse distance squared estimates (Figure 11.15d) has a correlation 
coefficient of 0.79. 

Through each cloud of points we show the ideal 45-degree diago- 
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Figure 11.16 Scatterplots of true and estimated point values of v from each of 
four estimation methods. The correlation coefficients for the four scatterplots are 
0.69, 0.80, 0.67, and 0.78, respectively. 

nal as the dashed line and the conditional expectation curve as the 
solid line. We can judge the conditional bias by the deviations of the 
conditional expectation curve from the dashed line. The triangulation 
estimates appear to be closest to  the 45-degree line and thus the least 
conditionally biased of all four methods, although there is some under- 
estimation of low values. The  underestimation of the low values and 
overestimation of high values is quite marked for the polygonal method. 
Both the local sample mean and inverse distance squared plots show 
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Figure 11.16 The data configuration about the point to be estimated in (a) is 
more or less unclustered; while the data configuration about the estimation point 
in (b) is clustered since the samples are not distributed uniformly around the point. 

overestimation for intermediate values and underestimation for high 
values. Though we have specifically aimed a t  global unbiasedness by 
making the weights sum to  one, this condition does not guarantee con- 
ditional unbiasedness. If we are most interested in one particular range 
of values then the conditional bias is a more important consideration 
in choosing a n  estimation procedure than the global bias revealed by 
the mean residual. 

The polygonal and triangulation methods differ from the local sam- 
ple mean and inverse distance squared methods in that they use very 
few of the nearby samples. The effect of this difference will be most 
noticeable when there are many nearby samples. To  shed more light 
on the performance of the four point estimation methods we will now 
look only a t  the estimates for those points where there are at least 10 
nearby samples. Since the local sample mean and the inverse distance 
squared methods will give some weight t o  all of the nearby samples, 
while the other two methods will use very few of them, this comparison 
will help us understand the effect of incorporating more sample values 
in the estimate. 

There are at least 10 nearby samples for 345 of the points a t  which 
we calculated estimates. In some of these cases, such as the one shown 
in Figure 11.16a, the nearby samples are relatively unclustered, cover- 
ing the local neighborhood quite evenly. In other cases, such as the one 
shown in Figure 11.16b, the available samples are clustered in one part 
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Table 11.7 Comparison of the four estimation methods for the 50 least clustered 
sample data configurations that contained at least 10 samples. 

Local Inverse 
Sample Distance 

Polygonal Triangulation Mean Squared 
n 50 50 50 50 
m -22.6 -49.5 -56.3 -30.1 

Error U 187 142 212 152 
Distribution I Q R  227 20 1 327 22 1 

M A E  151 127 178 123 
M S E  34,750 22,140 47,194 23,562 

Correlation p 0.845 0.907 0.834 0.921 

Table 11.8 Comparison of the four estimation methods for the 50 most clustered 
sample data configurations that contained at least 10 samples. 

Local Inverse 
Sample Distance 

Polygonal Triangulation Mean Squared 
n 50 43 50 50 
m 17.3 -60.5 103.7 58.0 

Error U 182 138 22 1 161 
Distribution I Q R  213 202 330 248 

M A E  138 106 198 142 
M S E  32,586 22,416 58,415 28,779 

Correlation p 0.674 0.794 0.260 0.774 

of the local neighborhood. In the comparisons that follow, we look at 
the estimates for the 50 points whose nearby samples were least clus- 
tered and for the 50 points whose nearby samples were most clustered 

Table 11.7 compares the four methods for the least clustered sam- 
ple data configurations; the same comparison for the most clustered 
sample data configurations is given in Table 11.8. These tables provide 

[41. 
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a few of the summary statistics of the error distributions along with 
the correlation coefficient of the true and estimated values. From the 
results in Table 11.7 it appears that  incorporating additional nearby 
samples does improve our estimates. The inverse distance squared esti- 
mates correlate best with the true values and they also have the lowest 
mean absolute error. Table 11.8, however, shows that if the additional 
nearby samples are clustered, the local sample mean and inverse dis- 
tance methods suffer. With either of these methods all measures of 
spread of the error distribution are larger for the clustered configura- 
tions in Table 11.8 than for the unclustered ones in Table 11.7. On 
the other hand, with the polygonal or triangulation methods, the mea- 
sures of spread change little or improve slightly from the undersampled 
configurations to  the clustered ones. 

Though our estimates can often be improved by incorporating more 
nearby samples, they can also be adversely affected if the nearby Sam- 
ples are strongly clustered. Ideally, we would like an estimation method 
that uses all of the nearby samples and also accounts for the possibility 
of clustering in the sample data  configuration. 

A n  Intrcduction to  Applied Geostatistics 

Notes 

[l] With samples located on a regular grid, there is a possibility that 
more than three polygons of influence will meet a t  some point. On 
a perfectly rectangular grid, for example, the polygons of influence 
will all be rectangles and four polygons will meet a t  each vertex. 

[2] For the curious, the true value at 65E,137N is 824.2 ppm, making 
the polygon estimate the best for this case. One meter to the south 
and east, a t  64E,136N, none of our estimates would change much, 
but here our triangulation estimate is best since the true value 
drops t o  518.5 ppm 

[3] The moment of inertia about the 45-degree diagonal line, which we 
used previously as a summary statistic of a scatterplot, could also 
be used t o  summarize the spread of the scatterplot. As it turns 
out, the moment of inertia is equal t o  half the M S E  we defined in 
Equation 11.12. 

[4] These most and least clustered sample data  configurations were 
selected by dividing the available samples into quadrants and using 
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the variance of the number of samples in the four quadrants as a n  
index of clustering. 

Further Reading 

Mueller, E. , “Comparing and validating computer models of ore bod- 
ies,” in Twelfth International Symposium of Computer Applica- 
tions in the Minerals Industry, (Johnson, T. and Gentry, D. , 
eds.), pp. H25-H39, Colorado School of Mines, 1974. 



12 
ORDINARY KRIGING 

In the previous chapter we compared several point estimation meth- 
ods and saw that different methods were “best” according to  different 
estimation criteria. In this chapter we will look at ordinary kriging, a 
method that is often associated with the acronym B.L.U.E. for “best 
linear unbiased estimator.” Ordinary kriging is “linear” because its 
estimates are weighted linear combinations of the available data; it is 
“unbiased” since it tries to have mR, the mean residual or error, equal 
t o  0; it is “best” because it aims a t  minimizing a%, the variance of the 
errors. All of the other estimation methods we have seen so far are 
also linear and, as we have already seen, are also theoretically unbi- 
ased. The  distinguishing feature of ordinary kriging, therefore, is its 
aim of minimizing the error variance. 

The goals of ordinary kriging are ambitious ones and, in a practical 
sense, unattainable since mR and a; are always unknown. In the 
previous chapter, our calculations of the mean error and the error 
variance were possible only because we had access t o  the exhaustive 
data  set. In practical situations we never know the true answers or 
the actual errors before we attempt our estimation. The importance 
of this for ordinary kriging is that  we never know mR and therefore 
cannot guarantee that it is exactly 0. Nor do we know a;; therefore, 
we cannot minimize it. The best we can do is to  build a model of 
the data  we are studying and work with the average error and the 
error variance for the model. In ordinary kriging, we use a probability 
model in which the bias and the error variance can both be calculated 
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and then choose weights for the nearby samples that ensure that the 
average error for our model, %R, is exactly 0 and that our modeled 
error variance, i?;, is minimized. We will use the same convention as 
in Chapter 9 where the symbol-is used to denote a parameter of a 
model, and distinguish it from a statistic of the data. 

We will be using a random function model since this type of model 
enables us to express the error, its mean value, and its variance. In 
this chapter we will begin by reviewing the approach we took earlier in 
Chapter 9 when we first encountered random functions and tackled the 
problem of unbiased estimates. After we have developed an expression 
for the error we will apply an earlier result, also from Chapter 9, that 
allowed us to  express the variance of a weighted linear combination of 
random variables. We will then be able to  develop the ordinary kriging 
system by using introductory calculus to minimize the error variance. 
Following a detailed example that illustrates how the ordinary kriging 
weights are calculated, we will look at  how the choice of a model of 
spatial continuity affects the ordinary kriging weights. Finally, we 
will extend the point estimation case study of the previous chapter to 
include ordinary kriging. 

The Random Function Model and Unbiasedness 

In Chapter 9, we introduced the concept of a random function model 
and showed how it could help us in deciding how to weight the nearby 
samples so that our estimates are unbiased. At every point where we 
do not have a sample, we will estimate the unknown true value using 
a weighted linear combination of the available samples: 

n 
G = c wj . V  

j=1 

The set of weights is allowed to change as we estimate unknown values 
a t  different locations. 

If we define the error, r ,  of any particular estimated value to be 
the difference between the estimated value and the true value at  that 
same location: 

Error of i-th estimate = ri = 6i - vi (12.1) 
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then the average error of a set of k estimates is 

(12.2) 
l k  k 1 

Average error = m,. = - r; = - di - vi k .  i=l r = l  

Unfortunately, we are unable to  make much use of this equation since 
it involves quantities that  we do  not know, namely the true values 
v1,. . . ,Vk. 

The probabilistic solution to this problem consists of conceptual- 
izing the unknown values as the outcome of a random process and 
solving the problem for our conceptual model. For any point at which 
we attempt to  estimate the unknown value, our model is a stationary 
random function that consists of several random variables, one for the 
value a t  each of the seven sample locations, V(z1), . . . , V(zn),  and one 
for the unknown value a t  the point we are trying to estimate, V(z0). 
Each of these random variables has the same probability law; a t  all 
locations, the expected value of the random variable is E{V} .  Any 
pair of random variables has a joint distribution that  depends only on 
the separation between the two points and not on their locations. The 
covariance between pairs of random variables separated by a particular 
distance, h ,  is cv (h ) .  

Every value in this model is seen as the outcome of a random vari- 
able; the samples are outcomes of random variables, as is the unknown 
true value. Our estimate is also a random variable since it is a weighted 
linear combination on the random variables a t  the available sample lo- 
cations: 

n 

i= I 

Similarly, the estimation error, defined as the difference between the 
estimate and the random variable modeling the true value, is also a 
random variable: 

f i ( z 0 )  = P(z0) - V(z0)  

By substituting the previous equation which expressed ~ ( Z O )  in terms 
of other random variables, we can express R(z0) solely in terms of the 
original n + 1 random variables in our random function model: 

n 

R(x0)  = c w ;  * V(X2) - V(z0) (12.3) 
i=l 
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The error that we make when we estimate the unknown value a t  xo is 
an outcome of the random variable R(a0).  

We can ensure that the error at  any particular location has an 
expected value of 0 by applying the formula for the expected value of 
a linear combination to Equation 12.3: 

n 

~ { ~ ( z o ) }  = E{C wi * V(2 i )  - ~ ( 2 0 ) )  
i=l  

n 

= C wiE{V(Xi)}  - ~ ( ~ ( 2 0 ) )  
i= l  

We have already assumed that the random function is stationary, which 
allows us to express all of the expected values on the right-hand side 
as E { V } :  

n 

~ ( ~ ( 2 0 ) )  = C wiE{V) - E { V )  
i=l 

The expected value of the error at any particular location, E{R(zO)} 
is often referred to  as the bias. Setting this expected value to 0 to 
ensure unbiasedness results in the following conclusion: 

i = l  

As we noted when we first 
mon estimation procedures 

n 
= E { V ) C W ~  - E { V }  

i= 1 

= E { V }  

= 1  

arrived a t  this conclusion, all of the com- 
we used in our case studies in the previous 

chapter all make use of this unbiasedness condition, 

The Random Function Model and Error Variance 

As an estimation methodology, ordinary kriging distinguishes itself by 
its attempt to  produce a set of estimates for which the variance of the 
errors is minimum. The error variance, a;, of a set of k estimates can 
be written as 
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k 1 1 
k .  k 

k 
= - C[8i - vj - - C(8i - .;)I2 

i= 1 r = l  

a k  . k  
1 -  = 1 C[8i - vj - - Z(8i - .;)I2 

i= 1 k .  k r = l  

vl, .  . . ,on are the true values and 81,. . . ,6 ,  are the corresponding es- 
timates. If we are willing to assume that we have a mean error of 0, 
we can simplify this equation somewhat: 

= -C[e; l k  - v;] 2 k .  
t= 1 

As with Equation 12.2, which provided an expression for the mean 
error, we cannot get very far with this equation for the error variance 
because it calls for knowledge of the true values. 

To get out of this unfortunate dead end, we will again turn to  
random function models. As in the previous section, we begin with n + l  
random variables, n of which model the behavior of the phenomenon 
a t  the nearby sample locations and one of which models its behavior 
a t  the location whose value we are trying to estimate. The available 
samples will be combined in a weighted linear combination to form our 
estimate: 

V ( Z 0 )  = ~ z u i V ( 0 j )  (12.4) 

The difference between the true value and the corresponding estimate 
will be our error or residual: 

n 

i= 1 

As we did with the unbiasedness problem, we will transfer the orig- 
inal problem into the corresponding model problem. Though we can- 
not minimize the variance of our actual errors, we can minimize the 
variance of our modeled error R(z0). This minimization will be ac- 
complished by finding an expression for the modeled error variance, 
5;, and setting to  0 the various partial derivatives of this expression. 

Our first task, then, is to find an expression for the variance of the 
error. This error is a random variable, since it is a weighted linear 
combination of other random variables. In Chapter 9, when we intro- 
duced ra.ndom function models, we gave a formula for the variance of 



Ordinary Kriging 283 

a weighted linear combination: 

Using this formula with Equation 12.5, we can express the variance of 
the error as: 

Var{ R( z 0) = co v{ P (z 0) V (z 0) } - co v{ fr (2 0) v (2 0) } 
- Cou{V(zo)P(zo)~ t C ~ ~ { V ( ~ O ) V ( ~ O ) }  

= cOv{v(zo)V(zo)}  - 2c0v{P(s0)v(z0)} 
+ ~ O ~ { V ( ~ O ) V ( ~ O ) )  

(12.7) 

The first term C o v ( ? ( z ~ ) ~ ( z ~ ) }  is the covariance of ?(so) with itself, 
which is equal to the variance of P(zo), itself a linear combination 
Cyzl wiV(z;) of other random variables: 

n n n  

~~r{ri(zo>?(~o>} = VU~(C W ;  * K}= wiwjeij 
i=l i=l j=1 

The third term in Equation 12.6, Cov{V(zo>V(z~)},  is the covariance 
of the random variable V(z0)  with itself and is equal to the variance 
of V(z0).  If we assume that all of our random variables have the same 
variance, Zr2, then this third term can be expressed as 

c O v { v ( z ~ ) v ( s ~ ) }  = Zr2 

The second term in Equation 12.G can be written as 
n 

2cOv{v(zo)v(zo)}  = 2 C o v { ( C  Wi~)VO} 
i=l 

n n 
= 2 E { C  ~ j q  * Vo} - 2 E { C  w ~ K }  * E{Vo} 

i= 1 iz 1 
n n 

= 2 C ~i * E{V;, Vo} - 2 C W ;  * E{V,} * E{&} 
i= 1 i=l 
n 

= 2x w; * COv{V,Vo> 
i=l 
n 

i= 1 
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Combining these three terms again, we now have the following ex- 
pression for the error variance: 

n n  n 

(12.8) 

Once we have chosen our random function model parameters, specif- 
ically the variance 52 and all the covariances cij, Equation 12.8 gives 
us an expression for the error variance as a function of n variables, 
namely the weights w1, . . . , wn. 

The minimization of a function of n variables is usually accom- 
plished by setting the n partial first derivatives to 0. This produces a 
system of n equations and n unknowns that can be solved by any one of 
several methods for solving systems of simultaneous linear equations. 
Unfortunately, this procedure is not quite correct for the minimization 
of 6; since we have a constraint on our solution. Earlier, we decided 
to use the unbiasedness condition; this means that  we cannot accept 
any set of n weights as a solution, but must restrict possible solutions 
to  those sets of weights that  sum to  1. Such problems of constrained 
optimization can be solved by the technique of Lagrange parameters 
described in the next section. 

The Lagrange Parameter 

The technique of Lagrange parameters is a procedure for converting a 
constrained minimization problem into an unconstrained one [l]. If we 
try to  tackle the minimization of 5&, as expressed in Equation 12.8, as 
an unconstrained problem, we run into difficulties. Setting the n partial 
first derivatives of 5; to  0 will produce n equations and n unknowns. 
The unbiasedness condition will add another equation without adding 
any more unknowns. This leaves us with a system of n + 1 equations 
and only n unknowns, the solution of which is not straightforward. 

To avoid this awkward problem, we introduce another unknown 
into our equation for 8 i .  This new variable is called p, the Lagrange 
parameter, and is introduced into Equation 12.8 in the following way: 

n n  n n 

5; = 82 + W j W j C j j  - 2 c W i E ,  + 2 p ( C  w; - 1) (12.9) 
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Adding variables to an  equation is a tricky business; we have to be 
sure we d o  not upset the equality. The way we have chosen to do i t  in 
Equation 12.9 is safe because the term we are adding a t  the end is 0 
due to the unbiasedness condition: 

2 W i  = 1 
i= 1 

2 p ( C w ; -  1) = 0 
i= 1 

The addition of this new term, which does not affect the equality, 
is all we need to  convert our constrained minimization problem into 
an  unconstrained one. The error variance for the model, as expressed 
in Equation 12.9, is now a function of n + 1 variables, the n weights 
and the one Lagrange parameter. By setting the n + 1 partial first 
derivatives to 0 with respect to  each of these variables, we will have a 
system of n + 1 equations and n + 1 unknowns. Furthermore, setting 
the partial first derivative to 0 with respect t o  p will produce our 
unbiasedness condition. The first three terms in Equation 12.9 do not 
contain p, and do not affect the partial first derivative with respect to  
II: 

w;) - =  a ( 2 c l ( C L  wi - 1)) 
aP aP 

= 2 c w p - 2  
i=l 

Setting this quantity to  0 produces the unbiasedness condition: 
n 

i= 1 

Since the unbiasedness condition is already included in the n + 1 
equations that result from the differentiation of 6;, the solution of 
those n + 1 equations will produce the set of weights that minimizes 
6; under the constraint that the weights sum to 1. This solution 
will also provide a value for p that, as we will see later, is useful for 
calculating the resulting minimized error variance. 
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Minimization of the Error Variance 
We will now minimize the error variance by calculating the n 4- 1 par- 
tial first derivatives of Equation 12.9 and setting each one to 0. The 
differentiation with respect to w1 is given in detail; the partial first 
derivatives with respect to the other weights can be calculated in a 
similar manner. 

The first term on the right-hand side of Equation 12.9 does not 
depend on wl ,  and therefore does not affect the derivative with re- 
spect to w1. Expanding the double summation in the second term and 
dropping all terms that do not include w1 gives us 

n 
= 2WlC11 t 2 C  wjc ' l j  

j = 2  
n 

j= 1 

The third term on the right-hand side of Equation 12.9 contains only 
one term that involves q: 

The last term on the right-hand side of Equation 12.9 also contains 
only one term that involves 201: 

The first derivative of 5k with respect to w1 can now be written as 

Setting this to 0 produces the following equation: 
n 

n 

(12.10) 
j= 1 
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The differentiation with respect to the other weights produces similar 
equations : 

a( 52 ) + = 2 cy=l W j E l j  - 2Z;O + 2p = o * ~ y = l  W j C l j  + p = 6 1 0  

a( 5 2  ) = 2 cy=l wjCi,j - 26no + 21.1 = o + ~ 7 = 1  W j C n j  + 1.1 = Cno 

As we noted in the last section, the setting of the partial first 
derivative to 0 with respect to p produces the unbiasedness condition. 

The set of weights that minimize the error variance under the con- 
straint that they sum to 1 therefore satisfies the following n + 1 equa- 
tions: 

n 

(12.11) 
j= 1 

(12.12) 
i= 1 

This system of equations, often referred to as the ordinary kriging 
system, can be written in matrix notation as 

C W - D - 

(n+l) x (n+l)  ( n + l )  x 1 (n+l)  x l  

To solve for the weights, we multiply Equation 12.13 on both sides by 
C-', the inverse of the left-hand side covariance matrix: 

(12.14) 
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After a considerable amount of mathematics, we have finally ar- 
rived a t  a solution. To minimize the modeled error variance, we first 
need t o  choose the ( n  + 1)2 covariances that will describe the spatial 
continuity in our random function model. In practice this is typically 
done by choosing a function C(h), and calculating all of the required 
covariances from this function. Once the ( n  + 1)2 covariances have 
been chosen, the C and D matrices can be built. The set of weights 
that  will produce unbiased estimates with the minimum error variance 
for our random function model is given by Equation 12.14. 

Having gone to  considerable trouble to  minimize the error variance, 
we may be interested in knowing this minimum value. We could sub- 
stitute the weights we have obtained into Equation 12.8 to  find the 
actual value of the minimized error variance. There is also a quicker 
way that avoids the n2 terms in the double summation. Multiplying 
each of the n equations given in Equation 12.11 by w; produces the 
following result: 

n 

w i ( C  wjCij + p )  = w;zl;o v i = 1,. . . , n 
j=1 

Summing these n equations leads to  an expression for the double sum- 
mation: 

n n n n 

i=l j=1 i= 1 i= 1 

n n n n 

i=l j=1 i=l i=l  

Since the weights sum to  1, the last term is simply p,  which gives us 

Substituting this into Equation 12.8 allows us to express the minimized 
error variance as 

(12.15) 
i= 1 
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Or, in terms of the matrices we defined earlier, 

5; = 52 - w .  D ( 12.16) 

This minimized error variance is usually referred t o  as the ordinary 
kriging variance, for which we will use the notation a i K ;  though the 
tilde has been dropped from the notation, the O K  subscript should 
serve as a reminder that this error variance was calculated from a 
model. 

Ordinary Kriging Using Y or p 

When we derived the expression for the error variance, we assumed that 
the random variables in our random function model all had the same 
mean and variance. These two assumptions also allow us t o  develop 
the following relationship between the model variogram and the model 
covariance: 

1 
Y i j  = -E{[V, - 5 1 2 )  

2 
1 1 
2 

= - E { K 2 }  + ;yE{v,Z} - E{V;: * V,} 
= 
= 
= 5 2  -Eij (12.17) 

There is also a relationship between the model correlogram and the 

E { V 2 }  - E { v  * Vj} 
E { V 2 }  - fh2 - [E{Vj - V,} - +h2] 

model covariance: 
Cij 

&j = 7 
These relationships are valid for a random function model 

we have made the assumptions that the random variables 

(12.18) 

in which 
all have 

the same mean and variance. This does not entail that the same re- 
lationships exist between the variogram, covariance, and correlation 
functions of an  actual data  set. Nevertheless, the validity of these 
relationships for our random function model allows us to express the 
ordinary kriging equations in terms of the variogram or the correlo- 
gram. 

In terms of the variogram, the ordinary kriging system can be writ- 
ten as 

j =  1 
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n 

with the modeled error variance given by 

(12.20) 
i= 1 

In terms of the correlogram, the ordinary kriging system can be 
written as 

V i  = 1, ..., n 
j=1 

n 

with the modeled error variance given by 

(12.21) 

(12.22) 

The common practice in geostatistics is to  calculate modeled vari- 
ogram values then, for reasons of computational efficiency, to  subtract 
them from some constant, usually 6'. The net result is that  although 
geostatisticians eventually resort to  solving the ordinary kriging equa- 
tions in terms of covariances, most of the initial calculations are done 
in terms of variograms [2]. 

An  Example of Ordinary Kriging 

Once the ordinary kriging method has been developed, several small 
examples will be given to demonstrate how the various model param- 
eters affect the estimates. Finally, t o  allow a comparison of ordinary 
kriging with the other point estimation methods we have seen earlier, 
the case study from the previous chapter will be extended to include 
estimates calculated by ordinary kriging. 

Let us return to  the seven sample data configuration we used earlier 
to  see a specific example of liow ordinary kriging is done. The data 
configuration is shown again in Figure 12.1; we have labeled the point 
we are estimating as location 0, and the sample locations as 1 through 
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I 

Figure 12.1 An example of a data configuration to illustrate the kriging estimator. 
This configuration was given earlier in Figure 11.1 where i t  was used to illustrate 
other estimation techniques discussed in Chapter 11. The  sample value is given 
immediately to the right of the plus sign. 

Table 12.1 Coordinates and sample values for the data shown in Figure 12.1. 

Distance 

No. X Y V 65E,137N 
Sample from 

1 225 61 139 477 4.5 
2 437 63 140 696 3.6 
3 367 64 129 227 8.1 
4 52 68 128 646 9.5 
5 259 71 140 606 6.7 
6 436 73 141 791 8.9 
7 366 75 128 783 13.5 

7. The coordinates of these eight points are given in Table 12.1, along 
with the available sample values. 

To calculate the ordinary kriging weights, we must first decide what 
pattern of spatial continuity we want our random function model to 
have. To keep this example relatively simple, we will calculate all of 



292 A n  Introductioii to Applied Geostatistics 

Figure 12.2 An example of an exponential variogram model (a) and an exponential 
covariance function (b). 

our covariances from the following function: 

co + c1 if (hi = 0 { C l e z p ( e )  if Ihl > 0 
6 ( h )  = (12.23) 

Using Equation 12.17, this covariance function corresponds to  the fol- 
lowing variogram: 

(12.24) 

Both of these functions, shown in Figure 12.2, can be described by 
the following parameters: 

0 Co, commonly called the nugget effect, which provides a discon- 
tinuity a t  the origin. 

0 a ,  commonly called the range, which provides a distance beyond 
which the variogram or covariance value remains essentially con- 
stant. 

0 CO + C1, commonly called the sill [3], which is the variogram 
value for very large distances, Y(o0). I t  is also the covariance 
value for Ihl = 0, and the variance of our random variables, 6'. 

Geostatisticians normally define the spatial continuity in their ran- 
dom function model through the variogram a.nd solve the ordinary 



0 rd in a ry Krig ing 293 

Table 12.2 
the seven data locations. 

A table of distances, from Figure 12.1, between all possible pairs of 

distance 
Location 0 1 2 3 4 5 6 7 

0 0.00 4.47 3.61 8.06 9.49 6.71 8.94 13.45 
1 4.47 0.00 2.24 10.44 13.04 10.05 12.17 17.80 
2 3.G1 2.24 0.00 11.05 13.00 8.00 10.05 16.97 
3 8.06 10.04 11.05 0.00 4.12 13.04 15.00 11.05 
4 9.49 13.04 13.00 4.12 0.00 12.37 13.93 7.00 
5 6.71 10.05 8.00 13.04 12.37 0.00 2.24 12.65 
G 8.94 12.17 10.05 15.00 13.93 2.24 0.00 13.15 
7 13.45 17.80 16.97 11.05 7.00 12.65 13.15 0.00 

kriging system using the covariance. In this example, we will use the 
covariance function throughout. 

By using the covariance function given in Equation 12.23, we have 
chosen to ignore the possibility of anisotropy for the moment; the co- 
variance between the data values a t  any two locations will depend only 
on the distance between them and not on the direction. Later, when 
we examine the effect of the various parameters, we will also study the 
important effect of anisotropy. 

To demonstrate how ordinary kriging works, we will use the follow- 
ing parameters for the function given in Equation 12.23: 

co= 0, a =  10, c1 = 10 

These are not necessarily good choices, but they will make the details 
of the ordinary kriging procedure easier to  follow since our covariance 
model now has a quite simple expression: 

c( h) = 10e-0*31hl (12.25) 

Having chosen a covariance function from which we can calculate all 
the covariances required for our random function model, we can now 
build the C and D matrices. Using Table 12.2, which provides the 
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c =  

- - 

distances between every pair of locations, and Equation 12.2.5 above, 
the C matrix is 

c 3 1  e32 c 3 3  6 3 4  

6 4 1  6 4 2  6 4 3  6 4 4  

651  c 5 2  c 5 3  6 5 4  

6 6 1  6 6 2  6 6 3  c 6 4  

671 6 7 2  6 7 3  c 7 4  

- 1  1 1  1 
10.00 5.11 0.44 
5.11 10.00 0.36 
0.44 0.36 10.00 
0.20 0.20 2.90 
0.49 0.91 0.20 
0.26 0.49 0.11 
0.05 0.06 0.36 
1.00 1.00 1.00 

c 3 5  c 3 6  c 3 7  1 
6 4 5  6 4 6  6 4 7  1 
6 5 5  c 5 6  6 5 7  1 
6 6 5  c 6 6  fi67 1 
2175 6 7 6  c 7 7  1 

1 1 1 0 ,  

D =  

The D matrix is 
- 6 1 0  - 2.61 - 

6 ; o  3.39 
c 3 0  0.89 
c 4 0  - 0.58 

1.34 
6 6 0  0.68 
6 7 0  0.18 

- 
6 5 0  

- 1 ,  1.00 

The inverse of C is 

C-'= 

0.05 1.00 
0.06 1.00 
0.36 1.00 
1.22 1.00 
0.22 1.00 
0.19 1.00 

10.00 1.00 
1.00 0.00 

0.127 -0.077 -0.013 -0.009 -0.008 -0.009 -0.012 0.136 

-0.077 0.129 -0.010 -0.008 -0.015 -0.008 -0.011 0.121 

-0.013 -0.010 0.098 -0.042 -0.010 -0.010 -0.014 0.156 

-0.009 -0.008 -0.042 0.102 -0.009 -0.009 -0.024 0.139 

-0.008 -0.015 -0.010 -0.009 0.130 -0.077 -0.012 0.118 

-0.009 -0.008 -0.010 -0.009 -0.077 0.126 -0.013 0.141 

-0.012 -0.011 -0.014 -0.024 -0.012 -0.013 0.085 0.188 

0.136 0.121 0.156 0.139 0.118 0.141 0.188 -2.180 
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Figure 12.3 The ordinary kriging weights for the seven samples using the isotropic 
exponential covariance model given in Equation 12.25. The sample value is given 
immediately to the right of the plus sign while the kriging weights are shown in 
parenthesis. 

The set of weights that will provide unbiased estimates with a minimum 
estimation variance is calculated by multiplying C-l by D: 

W =  

0.173 
0.318 
0.129 
0.086 
0.151 
0.057 
0.086 
0.907 

Figure 12.3 shows the sample values along with their corresponding 
weights. The resulting estimate is 

i= 1 
= (0.173)(477) t (0.318)(696) + (0.129)(227) + (0.086)(646) 4- 

(0.151)(606) t (0.057)(791) t (0.086)(783) 
= 592.7 ppm 
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The minimized estimation variance is 

i= 1 

= 10 - (0.173)(2.61) - (0.318)(3.39) - (0.129)(0.89) - 
(0.086)(0.58) - (0.151)( 1.34) - (0.057)(0.68) - 
(0.086)(0.18) + 0.907 

= 8.96 ppm2 

Ordinary Kriging and the Model of Spatial Continuity 

Earlier, when we tackled the problem of unbiasedness, the unbiased- 
ness condition did not require us to specify any parameters of our 
random function model. Though we had t o  assume that the mean of 
the random variables was the same, we did not have to  specify its ac- 
tual value; the condition that the weights sum t o  one does not involve 
the parameter iit. In the minimization of 5;) however, our solution 
does involve model parameters; the ordinary kriging weights and the 
resulting minimized error variance directly depend on our choice of the 
covariances for the C and D matrices. 

The choice of a covariance model (or, if one prefers, a variogram 
model or a correlogram model) is a prerequisite for ordinary kriging. 
Though this makes ordinary kriging more time consuming than the 
estimation procedures we looked a t  in the previous chapter, i t  also 
makes it more flexible. We saw earlier that  the exponent for inverse 
distance estimation gave us a n  ability to  modulate the estimation pro- 
cedure from a polygonal estimation to  a moving average estimation. 
The  covariance model in ordinary kriging provides a similar but much 
more powerful ability to customize the ordinary kriging estimation 
procedure. In addition to  allowing us to  modulate between polygo- 
nal estimates and moving average estimates, the covariance model also 
provides a vehicle for incorporating valuable qualitative insights such 
as the pattern of anisotropy. 

In practice, the pattern of spatial continuity chosen for the random 
function model is usually taken from the spatial continuity evident in 
the sample data set. Once the sample variogram has been calculated, a 
function is fit t o  it; Chapter 16 discusses this procedure in detail. There 
are two reasons why the sample variogram cannot be used directly in 
the ordinary kriging system. 
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First, the D matrix may call for variogram values for distances that 
are not available from the sample data. There are often situations in 
which the distance from the point being estimated to  a particular sam- 
ple is smaller than the distance between any pair of available samples. 
Since the sample data set cannot provide any pairs for these small 
distances, we must rely on a function that provides variogram values 
for all distances and directions, even those that are not available from 
sample data. 

Second, the use of the sample variogram does not guarantee the 
existence and uniqueness of the solution to  the ordinary kriging sys- 
tem. The system of n t 1 equations and n + 1 unknowns described by 
Equation 12.13 does not necessarily have a unique solution. Certain 
choices of the covariaiices in the C and D matrices may cause the sys- 
tem to have no solution; other choices may cause the system to have 
several solutions. To be guaranteed of having one and only one solu- 
tion, we must ensure that our system has a property known as positive 
definiteness. Even if the sample data are regularly gridded and all of 
the distances for which the D matrix requires values are available from 
sample data, the use of the sample variogram, unfortunately, does not 
guarantee positive definiteness. There are many ways of checking for 
positive definiteness [4]; in practice, however, we guarantee the exis- 
tence and uniqueness of our solution by fitting the sample variogram 
with functions that are known to be positive definite. 

Though fitting a function to  the sample variogram is the most com- 
mon approach to choosing the pattern of spatial continuity for the ran- 
dom function model, it is not the only one nor is it necessarily the best 
one. There are many situations in which it is better to base the choice 
of a pattern of spatial continuity on a more qualitative interpretation. 
Experience with similar data sets may often be a better guide than 
pattern of spatial continuity shown by too few available samples. 

Frequently, the sample data set does not show any clear pattern 
of spatial continuity. The lack of evident structure in the available 
samples does not justify using a spatially uncorrelated random function 
model. In earth science data sets there is nearly always some pattern of 
spatial continuity. It may not be evident from the available samples due 
to their insufficient number, sampling error, erratic values, or possible 
outlier values. 

Even in situations where the sample data set does exhibit a clear 
pattern of spatial continuity, the decision to use the sample spatial 
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continuity for the random function model should still be considered 
carefully. If the samples are clustered in particular areas, one should 
consider how appropriate the sample variogram is for the points that 
will be estimated. In the Walker Lake sample data set, for exam- 
ple, the preferential clustering of the samples in the Wassuk Range 
anomaly causes the sample variogram to be more representative of 
that particular region than of the entire area. If we intend to  perform 
estimation only a t  locations within this anomalous area, then the sam- 
ple variogram may be appropriate. If we intend to calculate estimates 
throughout the entire Walker Lake area, however, then the use of the 
sample variogram for our random function model is questionable. 

The decision to  use the sample spatial continuity should be care- 
fully considered even for sample data sets in which clustering is not 
a significant problem. For example, the anisotropy may not be ade- 
quately captured by an analysis of the sample data set. As we will 
see shortly, anisotropy is an important element of the pattern of spa- 
tial continuity in the random function model. The analysis of spatial 
continuity in a sample data set usually involves the calculation and 
summary of h-scatterplots for particular directions. As explained in 
Chapter 7, the use of a tolerance on the direction is necessary in prac- 
tice; unfortunately, the use of a directional tolerance may cause the 
anisotropy evident from sample variograms to be weaker than that 
which would be observed if exhaustive information was available. This 
is clear from our analysis of the spatial continuity in the exhaustive 
data set in Chapter 5 and of the sample data set in Chapter 7. The 
sample variograms and covariance functions show less anisotropy than 
do the exhaustive ones. 

In Chapter 16 we will discuss the practical details of fitting func- 
tions to  sample variograms and deriving a mathematical expression 
that provides variogram values for any separation vector h. Though 
the fitting of functions to sample variograms is certainly the most com- 
mon approach to choosing the pattern of spatial continuity for the 
random function model, it should not be viewed as the only correct 
approach. In every study that uses geostatistical estimation methods, 
the geostatistician must choose the pattern of spatial continuity. The 
use of the most common approach does not remove the responsibil- 
ity of making this choice wisely, nor does it remove the responsibility 
of understanding the effect of one’s chosen model on the estimation 
procedure. 
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.5(h/a) + 1l.5(h/a)~) if h c a 

h 

. .  1 C(h) = a2( 1 - 1.5(h/a) + 1l.5(h/a)~) if h c a 
= O  ifh2a 

L h  

Figure 12.4 The spherical model of a covariance function. 

An Intuitive Look at Ordinary Kriging 

To understand how parameters such as the nugget effect, the range 
and the sill affect our estimates, it will help to have a more intuitive 
understanding of the role of the C and D matrices used in the ordinary 
kriging system. To many practitioners, the mathematical development 
of the ordinary kriging system presented earlier is tedious and virtually 
incomprehensible. The following explanation is not rigorous and may 
provide a more intuitive feel for what the ordinary kriging procedure 
is doing. While the earlier development provided a rationale for the 
procedure, the following one probably provides a better understand- 
ing of its practical success. Understanding the role of the C and D 
matrices in intuitive terms also allows the practitioner to make ad hoc 
adjustments that, despite their lack of apparent theoretical rigor, may 
actually improve the estimation procedure. 

Taken by itself, the D matrix on the right-hand side of Equa- 
tion 12.13 provides a weighting scheme similar to that of the inverse 
distance methods. Like an inverse distance weight, the covariance be- 
tween any particular sample and the point being estimated generally 
decreases as the sample gets farther away. This can be seen in the 
example used in the previous section: sample 2 is closest to the point 
being estimated and C ~ O  is the largest covariance in D; sample 7 is 
the farthest, and 6 7 0  is the smallest covariance.in D. Unlike inverse 
distance weights, which are limited to the form Ihl-P, the covariances 
calculated for our model can come from a much larger family of func- 
tions. For example, the covariance function shown in Figure 12.4 pro- 
vides decreasing weights up to some distance, a, and provides a weight 
of 0 for distances greater than a. 
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The D matrix therefore contains a type of inverse distance weight- 
ing in which the “distance” is not the geometric distance t o  the sample 
but rather its statistical distance. What really distinguishes ordinary 
kriging from inverse distance methods, however, is not the use of statis- 
tical distance instead of geometric distance, but rather the role played 
by the C matrix. From our earlier example, it is clear that  the multipli- 
cation of D by C-’ does considerably more than rescale the covariances 
in D so that they sum to one. For example, sample 4 is farther from 
the point being estimated than is sample 6; this is recorded in the D 
matrix by the fact that 6 4 0  is smaller than 6 6 0 .  The ordinary kriging 
weight for sample 4, however, is larger than that for sample 6 .  

The C matrix records distances between each sample and every 
other sample, providing the ordinary kriging system with information 
on the clustering of the available sample data. If two samples are 
very close to each other, this will be recorded by a large value in the 
C matrix; if two samples are far apart, this will be recorded by a 
low value. The  multiplication of D by C-’ adjusts the raw inverse 
statistical distance weights in D to account for possible redundancies 
between the samples. 

In our earlier example, though sample 6 was the closer than sam- 
ple 4 to the point we were trying to estimate, its usefulness was reduced 
by its proximity t o  sample 5 .  When D is multiplied by the inverse of C, 
the net result is that  some of the weight that  was allocated to  sample 6 
because of its closeness to the point being estimated is redistributed 
to  other samples that are farther away yet less redundant. 

Like the D matrix, the C matrix records the distance in terms of 
statistical distance rather than geometric distance. The  possible redun- 
dancy between samples depends not simply on the distance between 
them but also on the spatial continuity. For example, two measure- 
ments of the elevation of the water table taken 10 m apart  are likely 
t o  be much more redundant than two measurements of the gold con- 
centration in a vein-type gold deposit also taken 10 m apart. The fact 
that  the elevation of the water table is much more spatially continuous 
than the concentration of gold would be captured by the covariance 
functions of the two data sets. It makes good sense, therefore, that  
clustering information be recorded in terms of the statistical distance, 
using some measure of spatial continuity such as the covariance or the 
variogram. 

The ordinary kriging system therefore takes into account two of the 
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Figure 12.5 
differ only by their scale. 

Two variograms and their corresponding covariance functions that 

important aspects of estimation problems, distance, and clustering: 

w =  C-' - D 
w v 

Clustering Distance 

The information on the distances to the various samples and the clus- 
tering between the samples is all recorded in terms of a statistical 
distance, thereby customizing the estimation procedure to  a particular 
pattern of spatial continuity. 

Variograni Model Parameters 

We will now look at how the various parameters of the covariance 
or variogram model affect the ordinary kriging weights. Much of the 
terminology for these parameters has evolved from the traditional use 
of the variogram, and we will refer to  variogram models throughout 
this section. The same remarks apply to  covariance functions and 
correlograms; in the following examples we will show the covariance 
functions that correspond to the variograms we discuss so that it is 
clear how the changes in various parameters manifest themselves on 
the covariance function. 

The following observations serve as additional support for the argu- 
ment that  even with regularly gridded and well-behaved sample data, 
the exercise of fitting a function to the sample variogram model involves 
important choices on the part of the practitioner. As we noted earlier, 
the sample variogram does not provide any information for distance 
shorter than the minimum spacing between the sample data. Uiiless 
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Figure 12.6 Ordinary kriging results using two different covariance functions that 
differ only in their scale. (a) shows the kriging weights for the variogram with a sill 
of 20 while (b) shows the weights for a sill of 10. The two covariance functions are 
given in Figure 12.5. 

the sampling includes duplicates at the same location, the nugget ef- 
fect and the behavior of the variogram near the origin can not be 
determined from the sample variogram. Yet the following examples 
demonstrate that these two parameters have the biggest effect on the 
ordinary kriging weights and on the resulting estimate. 
The Effect of Scale. Figure 12.5 shows two variogram models that 
differ only in their scale. 7 l (h )  is the variogram that corresponds to 
the covariance function we chose for our earlier detailed example of 
ordinary kriging; 72(h) has the same shape as Yl(h), but it is exactly 
twice as big: 

The results of using these two covariaiice models for ordinary kriging 
are shown in Figure 12.6. Rescaling the variogram values has not 
affected the ordinary kriging weights or the ordinary kriging estimate; 
however, it has affected the ordinary kriging variance. These effects will 
be observed with any rescaling; while the estimate itself is unchanged, 
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Figure 12.7 T w o  variograms and their corresponding covariance functions that 
differ only in their shape. The model that has a parabolic behavior near the origin 
is the Gaussian model, while the other is the exponential model. 

the estimation variance increases by the same factor that was used to 
scale the variogram [5] .  
The Effect of Shape. Figure 12.7 shows two variogram models that 
reach the same sill but have different shapes. 'Yl(h) is the same as the 
first variogram model from the previous example: 

71 ( h )  = lo( 1 - ezp( -3 -)) lhl 
10 

'Yz(h) has a similar expression, but the square in the exponent causes 
it to  behave more like a parabola near the origin: 

The results of using these two variogram models for ordinary kriging 
are shown in Figure 12.8. With the second model, more weight is 
given to the three values that surround the point being estimated (the 
same three that were used for the triangulation estimate in Chapter 
11); the remaining points all receive less weight, with most of them 
actually receiving a negative weight. A parabolic behavior near the 
origin is indicative of a very continuous phenomena so the estimation 
procedure makes much more use of the closest samples. 

The appearance of negative weights is a result of an effect often re- 
ferred to as the screen effect. A particular sample is said to be screened 
if another sample falls between it and the point being estimated. For 
the data configuration we are using, sample 6 is strongly screened by 
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Figure 12.8 Ordinary kriging results using two different covariance functions that 
differ only in their shape. (a) shows the kriging weights for a exponential model 
while (b) shows the weights for a Gaussian model. The two covariance functions 
are given in Figure 12.7. 

sample 5;  t o  a lesser extent, sample 1 is partially screened by sample 2. 
It makes sense to  reduce the weights of samples that  are partially or 
totally screened by others; this is part of what the multiplication by 
C-' accomplishes. The degree t o  which screened samples lose their 
influence depends on the pattern of spatial continuity. The use of 
a variogram with a parabolic behavior near the origin will cause the 
screen effect t o  be much more pronounced, often producing negative 
weights even larger than the ones we calculated in our last example. 

Even with variogram models that  are linear rather than parabolic 
near the origin, it is possible to  produce negative weights for samples 
that  are strongly screened by others. None of the other estimation 
procedures we looked a t  earlier can produce negative weights. The  ad- 
vantage of a procedure that can assign weights smaller than 0 or greater 
than 1 (but still respect the constraint that  the sum of the weights is 
1) is that  i t  can yield estimates larger than the largest sample value 
or smaller than the smallest sample value. All procedures that  restrict 
the weights t o  be between 0 and 1 can only produce estimates that are 
between the minimum and maximum sample values. It is unlikely that 
the sample data  set includes the most extreme values and it is reason- 
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able to imagine that the true values we are trying to  estimate may be 
beyond the extremes of the available sample values. The disadvantage 
of negative weights is that they also create the possibility of negative 
estimates if a particularly high sample value is associated with a neg- 
ative weight. In most earth science applications, the variable being 
estimated is necessarily positive. Ore grades and tonnages, porosities, 
permeabili ties, pollutant concentrations, densities, depths to geologic 
horizons, and thicknesses of strata are common examples of variables 
that one may be interested in estimating and that are never negative. 
For such variables, if ordinary kriging produces estimates that are neg- 
ative, one is perfectly justified in setting such estimates to 0. 

For data sets in which the variable of interest is indeed extremely 
continuous, such as the depth to a particular horizon or the thick- 
ness of a certain zone, the sample variogram often shows a definite 
parabolic behavior near the origin. Even in such situations where the 
spatial continuity of the sample data set can correctly be extended to 
the points a t  which estimates will be required, variogram models with 
parabolic behavior near the origin are avoided in practice since the 
negative weights they may produce tend to make the estimation very 
erratic. 
The Nugget Effect. Figure 12.9 shows two variogram models that 
differ only in their nugget effect. While 7l(h) has no nugget effect, 
72(h) has a nugget effect that is 50% of the sill: 

Yl(h) = lO(1 - e-319 

i f h = O  
if h > 0 5 + 5(1 - e-e3Ihl) 72(h) = 

The results of using these two variogram models for ordinary kriging 
are shown in Figure 12.10. The weights calculated using 72(h) are 
more similar to one another than are those calculated using 7l(h). 
With 72(h), the smallest weight is 0.125 and the largest weight is 0.178; 
with 7l(h), the smallest weight is 0.057 and the largest weight is 0.318. 
The more equal distribution of weight causes the estimated value to be 
somewhat higher. The other noticeable result of using a higher nugget 
effect is that the ordinary kriging variance is higher. 

Increasing the nugget effect makes the estimation procedure be- 
come more like a simple averaging of the available data. If the vari- 
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Figure 12.9 Two variograms and their corresponding covariance functions that  
differ only in their nugget effect. 

Figure 12.10 Ordinary kriging results using two different covariance functions that  
differ only in their nugget effect. (a) shows the kriging weights for no nugget effect 
while (b) shows the weights for a relative nugget of one-half. T h e  two covariance 
functions are  given in Figure 12.9. 

ogram model is a pure nugget effect: 

0 i f h = O  
CO i f h > O  Y(h) = 

there is no redundancy between any of the samples and, in terms of 
statistical distance, none of the samples is any closer to the point being 
estimated than any other. The result is that for ordinary kriging with 
a pure nugget effect model of spatial continuity, all weights are equal 
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Figure 12.11 Two variograms and their corresponding covariance functions that 
differ only in their range. 

to k .  A pure nugget effect model entails a complete lack of spatial 
correlation; the data value a t  any particular location bears no similarity 
even to very nearby data values. While this produces a simple solution 
to  the ordinary kriging system, it is not a desirable situation in terms 
of the ordinary kriging variance. The only use of additional samples 
is to reduce the uncertainty about the unknown mean of the random 
variables in our random function model. The ordinary kriging variance 
for spatially uncorrelated phenomena is the variance we have assumed 
for our random variables, plus the variance of the unknown mean: 

Variance of Variance of 
random variables unknown mean 

The Effect of the Range. Figure 12.11 show two variogram models 
that differ only in their ranges. 72(h)  has a range twice that of 7 l ( h ) :  

7 l ( h )  = 10(1 - e-51hl) 

7 * ( h )  = lO(1 - e-.15'hl = 7 i ( ; ~ h )  
1 

The change of the range has a relatively minor effect on the ordi- 
nary kriging weights; none of the weights changes by more than 0.06. 
Even so, these relatively small adjustments in the weights do cause a 
noticeable change in the estimate. The ordinary kriging variance is 
lower since the effect of doubling the range in 72(h)  is to make the 
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Figure 12.12 Ordinary kriging results using two different covariance functions 
that differ only in their range. (a) shows the kriging weights for a range of 10 while 
(b) shows the weights for a range of 20. The two covariance functions are given in 

Figure 12.11. 

samples appear to be twice as close, in terms of statistical distance, as 
they originally were with 7 l ( h ) .  If the range becomes very small, then 
all samples appear to be equally far away from the point being esti- 
mated and from each other, with the result being similar to  that of a 
pure nugget effect model: the weights all become and the estimation 
procedure becomes a simple average of the available sample data. 

The Effect of Anisotropy. In all of the examples of ordinary krig- 
ing we have looked at so far, we have used only the magnitude of 
the vector h, thus ignoring the influence of direction. All of our var- 
iogram models have been isotropic; a contour map of the variogram 
or covariance surface, such as the one shown in Figure 12.13, would 
show circular contour lines. In many data sets the data values are 
more continuous along certain directions than along others. The co- 
variance surface contoured in Figure 12.14 rises more rapidly in the 
N45"E direction than in the N45"W direction. The directional co- 
variance functions and variograms along these axes of maximum and 
minimum continuity are shown in Figure 12.15; the anisotropy ratio 
is 2:l .  In Chapter l G  we will show how two variogram models for 
perpendicular directions can be combined into a single function that 
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Figure 12.13 A contour map of an isotropic covariance surface. The contour map 
of the corresponding variogram surface appears iden tical except that the contours 
would show a hole rather than a peak. 

describes the spatial continuity for all distances and directions. For the 
moment, however, let us concentrate on the effect of anisotropy and 
not worry about the precise mathematical description of the variogram 
model shown in Figure 12.14. 

The results of using the isotropic variogram model shown in Fig- 
ure 12.13 and the anisotropic variogram model shown in Figure 12.14 
are shown in Figure 12.16. With the anisotropic model, more of the 
weight is given to samples 1 and 2, which lie in the direction of maxi- 
mum continuity and considerably less is given to sample 5 ,  which lies 
in the direction of minimum continuity. 

If we rotate the axes of the anisotropy, as shown in Figure 12.17, 
so that the N45"E direction is now the major direction of continuity, 
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Figure  12.14 A contour map of an anisotropic covariance surface whose major 
axis of continuity is oriented along N45’W. The contour map of the corresponding 
variogram surface appears identical except that the contours would show a hole 
rather than a peak. 

Figure  12.15 Directional variograms of the surface shown in Figure 12.14 along 
the axes of maximum and minimum continuity. 
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Figure 12.16 Ordinary kriging results using two different covariance functions that 
differ only in their anisotropy. (a) shows the kriging weights for the isotropic model 
shown in Figure 12.13 and (b) for the anisotropic model shown in Figure 12.14. 

the ordinary kriging weights will reflect this new choice. Figure 12.18 
shows the result of using the variogram model shown in Figure 12.17. 
The choice of a pattern of spatial continuity, which identifies N45"E 
as the direction of maximum continuity, causes sample 5 to  receive the 
largest weight despite the fact that sample 2 is much closer in terms 
of geometric distance to the point being estimated. 

Finally, the anisotropy ratio plays as important a role as the di- 
rection of anisotropy. Figure 12.19 shows a variogram surface that, 
like the one shown in Figure 12.14, has N45'W as the direction of 
maximum continuity. The variogram model shown in Figure 12.19, 
however, has a much higher anisotropy ratio of 1O:l. The ordinary 
kriging weights, which are calculated using this model, are shown in 
Figure 12.20. Nearly all of the weight is now given to three samples: 
samples 1 and 2 to the northwest of the point we are estimating and 
sample 7 far to the southeast. In terms of geometric distance, sample 
7 is the farthest from the point we are estimating, but since it lies in 
the direction of maximum continuity and since we have chosen a high 
anisotropy ratio, it becomes one of the most influential samples. 

The possibility of choosing strongly anisotropic patterns of spatial 
continuity for our random function model gives us a powerful ability 
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Figure 12.17 A contour map of an anisotropic covariance surface. T h e  direction 
of maximum continuity is N45'E. The contour map of the  corresponding variogram 
surface appears identical except that  the contours would show a hole rather than a 
peak. 

t o  customize the estimation procedure. Qualitative information such 
as a geologic interpretation for an ore deposit, a knowledge of the pre- 
vailing wind direction in a study of airborne pollution, or tracer tests 
that reveal preferred flow directions in a reservoir, can be incorporated 
through the anisotropy of the Qariogram model. In many data sets, the 
direction of maximum continuity is not the same throughout the area 
of interest; there may be considerable local fluctuations in the direction 
and the degree of the anisotropy. In such situations, the sample var- 
iograms may appear isotropic only because we are unable to sort out 
the undulating character of the anisotropy. If qualitative information 
offers a way to  identify the direction and the degree of the anisotropy, 
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Figure 12.18 Ordinary kriging results using two different covariance functions that 
differ only in their anisotropy. (a) shows the kriging weights for the anisotropic 
model shown in Figure 12.17 and (b) for the anisotropic model shown in Fig- 
ure 12.14. 

then the estimation procedure will benefit greatly from a decision to 
base the choice of the spatial continuity model on qualitative evidence 
rather than on the quantitative evidence of the sample variogram. 

Comparison of Ordinary Kriging to Other Estimation 
Methods 

To compare ordinary kriging t o  the other estimation methods we looked 
a t  in the last chapter, we have repeated the exercise of estimating the 
V value a t  points located on a regular square grid. As before, the 
origin of this grid is 5E,5N and the spacing between points is 10 m in 
both the north-south and the east-west directions. 

For the spatial continuity of our random function model, we have 
chosen the traditional method of fitting a function to  our sample vari- 
ogram. T h e  directional sample variograms calculated in Chapter 7 as 
part of the analysis of the spatial continuity in the sample da ta  set 
are shown again in Figure 12.22. These sample variograms show an  
anisotropy that is preserved in the complete variogram model shown 
in Figure 12.21. The  variogram models for the directions of maxi- 
mum and minimum continuity shown in Figure 12.22 are: Direction of 



314 An Introduction to Applied Geostatistics 

50 

40 

30 

20 .- s 
c 

e 
6 10 

5 
0' 
VI 

I D  

$ z 
.& -10 
4- 

I 
L 

-20 

-30 

-40 

-50 ' 
-40 -30 -20 -10 0 10 20 30 40 

Offset in East-West Direction 

Figure 12.19 The 
direction of maximum continuity is N4S0W and the anisotropy ratio is 10:l. The 
contour map of the corresponding variogram surface appears identical except that 
the contours would show a hole rather than a peak. 

A contour map of a severe anisotropic covariance surface. 

maximum continuity (N14'W): 

0 i f h = O  
= { 22,000 + 4O,000Sph3,(h) + 45,000SphI5,(h) if h > 0 

Direction of minimum continuity (N76'E): 
(12.26) 

(12.27) 
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Figure 12.20 Ordinary kriging results using two different covariance functions 
that differ only in their anisotropy ratio. (a) shows the kriging weights for the 
anisotropic model shown in Figure 12.14 and (b) for the anisotropic model shown 
in Figure 12.19. 

0 

Figure 12.21 A contour map of the anisotropic model fitted to the sample vari- 
ogram of V. 
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Figure 12.22 The directional sample variograms of V with their fitted model. 
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Table 12.3 Univariate statistics of ordinary kriged estimates compared to the true 
values. 

True OK 
n 780 780 
m 283 283 
u 251 202 

Q1 70 127 
M 219 251 
9 3  446 392 

max 1323 1227 

min 0 a 

Table 12.4 Summary statistics for the error distributions from OK and each of 
the previous four point estimation methods. 

Local Inverse 
Sample Distance 

Polygonal Triangulation Mean Squared OK 
n 780 672 780 780 780 
m 1.1 -16.8 51.1 26.8 -0.2 
0 175.2 153.7 187.5 156.0 144.2 

min -651 -546 -618 -630 -472 
Q i  -97 -58 - 66 -65 -86.8 
M 0 3.9 48.9 24.4 9.1 
0 3  95 105 175 121 79.9 

max 595 524 537 473 657 
M A E  128 111 154 121 108 
M S E  30,642 23,885 37,741 25,000 20,769 

P S V  0.69 0.80 0.G7 0.78 0.82 

Sph,(h) is a positive definite function that is commonly used in 
practice for fitting sample variograms and is defined as follows: 

i f h = O  

i f h L a  
- 0.5(k)3 if 0 < h < a (12.28) 

The details of how these two directional variograin models are com- 
bined to make the complete model shown in Figure 12.21 will be de- 
ferred to  Chapter 16. 

Like the case studies presented in the last chapter, the ordinary 
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Table 12.5 
50 least clustered sample data configurations that contained at least 10 samples. 

Comparison of OK to the previous four estimation methods for the 

Local Inverse 
Sample Distance 

Polygonal Triangulation Mean Squared OK 
n 50 50 50 50 50 

Error 0 187 142 212 152 126 
Distribution ZQR 227 201 327 221 203 

M A E  151 127 178 123 109 
M S E  34,750 22,140 47,194 23,562 23,562 

Correlation p 0.845 0.907 0.834 0.921 0.930 

m -22.6 -49.5 -56.3 -30.1 -31.7 

kriging exercise used all samples that fell within 25 m of the point 
being estimated. 

Table 12.3 presents a comparison of the univariate distributions of 
the estimates and the true values. The results of the estimation stud- 
ies in the previous chapter have been repeated in Tables 12.4, 12.5, 
and 12.6 so that we can compare the ordinary kriging results with the 
results of those earlier methods. The mean of the ordinary kriged esti- 
mates is the same as the true mean; this nearly exact match between 
the estimated and true means is quite fortuitous and one should not 
expect such a close agreement in all situations. The ordinary kriging 
estimates are less variable than the true values; their standard devi- 
ation and interquartile range are both lower than those of the true 
values, and the maximum estimated value is lower than the maximum 
true value. The degree of smoothing of the ordinary kriging estimates 
is more severe than that of the polygonal and triangulation estimates, 
and similar in magnitude to the degree of smoothing of the inverse 
distance squared estimates. The q-q plot of the estimated and true 
distributions shown in Figure 12.23 further reveals the effects of the 
smoothing. There are fewer extremely low estimates than there are 
extremely low true value; very high values are also more numerous in 
the true values than in the estimates. 

Table 12.4, which summarizes the error distributions for the various 
methods, shows that the standard deviation of the errors is lower for 
the ordinary kriging estimates than for any of the other techniques. 
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Figure 12.23 A q-q plot of the distribution of OK estimates and the distribution 
of their true values. 

Table 12.6 Comparison of OK to the previous four estimation methods for the 
50 most clustered sample data configurations that contained at least 10 samples. 

Local Inverse 
Sample Distance 

Polygonal Triangulation Mean Squared OK 
n 50 43 50 50 50 
m 17.3 -60.5 103.7 58.0 -29.6 

Error 0 182 138 221 161 125 
Distribution ZQR 21 3 202 330 248 177 

M A E  138 106 198 142 102 
M S E  32,586 22,416 58,415 28,779 16,099 

Correlation p 0.674 0.794 0.260 0.774 0.853 

Though the specific aim of ordinary kriging was only to minimize the 
error variance (or, equivalently, the error standard deviation), we can 
see that the ordinary kriging estimates are also very good according 
to many other criteria. They have the lowest mean absolute error and 
also the lowest mean squared error. The distribution of the errors 
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Figure 12.24 A histogram of the  780 OK estimation errors. 
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Figure 12.25 A scatterplot of the 780 OK estimates and their t rue values. The  
conditional expectation line is also included in the figure. 

shown by the histogram in Figure 12.24 is fairly symmetric and does 
not have long tails. The correlation coefficient between the true values 
and the estimates is higher for ordinary kriging than for any of the 
other method we have tried. 

The scatterplot of the 780 estimated and true values shown in Fig- 
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ure 12.25 along with the conditional expectation curve shows that there 
is very little conditional bias for the entire range of estimated values. 

In the previous chapter we saw that all of the estimation methods 
suffered from the effects of clustering. We saw that our estimates 
were generally poorer for the 50 most clustered data configurations 
than for the 50 least clustered configurations. In Tables 12.5 and 12.6 
this comparison is extended to  include the ordinary kriging exercise. 
Though the ordinary kriging estimates are definitely adversely affected 
by clustering, they do not deteriorate as much as the estimates for 
other techniques. For example, the triangulation estimates for the 
least clustered configurations correlate almost as well with the true 
values as do the ordinary kriging estimates; both have a correlation 
coefficient of about 0.9. For the most clustered configurations, however, 
the correlation coefficient for the triangulation estimates drops to 0.78 
while the correlation coefficient for the ordinary kriging estimates drops 
slightly to  0.85. 

By trying to  account for the possibility of redundancy in the sam- 
ple data  set through the covariances in the C matrix, ordinary kriging 
handles the adverse effects of clustering much better than other meth- 
ods. Though it is certainly a more time-consuming procedure, it does 
generally produce better estimates. 

The success of ordinary kriging is due to its use of a customized 
statistical distance rather than a geometric distance and to  its attempt 
to  decluster the available sample data. Its use of a spatial continuity 
model that describes the statistical distance between points gives it 
considerable flexibility and an important ability to  customize the esti- 
mation procedure to qualitative information. 

Notes 

[l] A good presentation of Lagrange multipliers and constrained 
maximization-minimization problems with theorems and proofs is 
given in: 
Edwards, C. and Penney, D. , Calculus and Analytical Geometry. 
Englewood Cliffs, N.J.: Prentice-Hall, 1982. 

[2] The covariance is used by many algorithms in solving the ordinary 
kriging matrices for the sake of convenience. By using the covari- 
ance, the largest elements of the covariance matrix will be located 
on the diagonal. Thus for a system solver based on Gaussian elim- 
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ination, for example, there is no need for a pivot search and the 
exchange of rows. 

[3] The name sill comes from the variogram, which typically reaches a 
plateau; although it makes less sense when discussing a covariance 
function, we will still refer to Co + C1 as the sill. 

[4] Each of the following tests is a necessary and sufficient condition 
for a real symmetric matrix C to be positive definite. 

wTcw > o for aU nonzero vectors w. 

All the eigenvalues of C are greater than 0. 
All the submatrices of C have positive determinants. 
All the pivots (without row exchanges) are greater than 0. 

[5] The fact that the variogram can be rescaled by any constant with- 
out changing the estimate enables one to use the relative variogram 
without fear of altering the estimate. In the case where local rela- 
tive variograms differ one from another by only a rescaling factor, 
only the kriging variance will be affected. Each one of the local 
relative variograms will provide an identical kriging estimate. 
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13 
BLOCK KRIGING 

In the last two chapters, we have concentrated on the goal of point 
estimation. Often, however, we require a block estimate or, more pre- 
cisely, an estimate of the average value of a variable within a prescribed 
local area [l]. 

One method for obtaining such an estimate is to discretize the local 
area into many points and then average the individual point estimates 
all together to  get the average over the area. Though conceptually 
simple, this procedure may be computationally expensive. For exam- 
ple, in mining applications hundreds of thousands of block estimates 
may be required. If each block is discretized into 100 points, and each 
point estimate is made by ordinary kriging, there will be several million 
kriging systems to  solve. In this chapter we will see how the number of 
computations can be significantly reduced by constructing and solving 
only one kriging system for each block estimate. 

We begin this chapter with the development of the block kriging 
system and follow with an example demonstrating the equivalence be- 
tween block kriging and the averaging of kriged point estimates within 
the block. We then use the sample V data to explore how the dis- 
cretization of the block affects the estimates. The chapter concludes 
with a case study that compares block estimates calculated by kriging 
and by inverse distance squared to the true values. 
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The Block Kriging System 

The block kriging system is similar to the point kriging system given 
in the previous chapter: 

D - C W - 

[ ‘/l ::: ‘r i] . [ :] - - [ (13.1) 
En, W n  C n O  

... 
\ . / - - 

(,+I) x (-+I) (n+l) x 1 (n+I) x 1 

The matrix C consists of the covariance values 6 i j  between the random 
variables Vj and Vj a t  the sample locations. The  vector D consists of 
the covariance values 6;0 between the random variables Q a t  the sam- 
ple locations and the random variable VO a t  the location where we need 
an  estimate. The  vector w consists of the kriging weights 201,. . . , w, 
and the Lagrange parameter p. It should be remembered that the 
random variables V;, Vj, and Vo are models of the phenomenon under 
study and the tilde above the C reminds us that these are parameters 
of a random function model. 

However, suppose we wish to estimate the mean value of some phe- 
nomenon over a local area, rather than at a point location. Within 
the framework of the random function model that  we used earlier, the 
mean value of a random function over a local area is simply the aver- 
age ( a  linear combination) of all the point random variables contained 
within the local area. Recall from Chapter 9 that a linear combination 
of random variables is also a random variable, thus the mean value 
over a local area can be described as follows: 

(13.2) 

where VA is a random variable corresponding to  the mean value over 
an  area A and Vj are random variables corresponding to  point values 
within A .  

If we examine the ordinary point kriging system given in Equa- 
tion 13.1 with a view towards modifying it for block estimation, we 
will soon see that the location of the point or block that we are es- 
timating has absolutely nothing to  do with the construction of the 
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has absolutely nothing to do with the construction of the covariance 
matrix C. This matrix is independent of the location at  which the 
estimate is required and so we can correctly conclude that the ma- 
trix C does not require any modifications for block kriging. However, 
the covariance vector D consists of covariance values between the ran- 
dom variables at  the sample locations and the random variable a t  the 
location that we are trying to estimate. For point estimation) these 
covariances are point-to-point covariances. By analogy, for block es- 
timation) the covariance values required for the covariance vector D 
are the point-to-block covariances. In fact, by making this single alter- 
ation) we can convert the ordinary point kriging system to a ordinary 
block kriging system. 

The point-teblock covariances that are required for block kriging 
can be developed as follows: 

The covariance between the random variable at the ith sample lo- 
cation and the random variable VA representing the average value of 
the phenomenon over the area A is the same as the average of the 
point-to-point covariances between Vj and the random variables a t  all 
the points within A.  The block kriging system can therefore be wrjtten 
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as 
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D - C W - [ !: ::: ![ i] . [ = [ 51 1 A ] (13.3) 

Cn1 Cnn Wn 5 n A  .. . 
\ + / - - 

(n+l)x(n+l) (n+l )x l  (n+ l )x l  

The bar above the covariances on the right-hand side reminds us that 
the covariance is no longer a point-to-point covariance, but the average 
covariance between a particular sample location and all of the points 

C C i j  (13.4) 
within A: 

Later in this chapter we will determine the number of discretizing 
points - that are needed within A to give us an adequate approximation 

- 1 
C i A  = - 

I A I  j(jcA 

of 6 j A .  
The block kriging variance is given by: 

i= 1 
- 

The value C'AA in this equation is the average covariance between pairs 
of locations within A: 

(13.6) 

In practice, this average block-to-block covariance is approximated by 
discretizing the area A into several points. It is important to  use the 
same discretization for the calculations of the point-to-block covari- 
ances in D and for the calculation of the block-to-block covariance in 
Equation 13.5 [2]. 

The advantage of using the block kriging system given in Equa- 
tion 13.3 is that it produces an estimate of the block average with 
the solution of only one kriging system. The disadvantage is that the 
calculation of the average covariances involves slightly more computa- 
tion than the calculation of the point-to-point covariances in the point 
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kriging system. However, the computational savings in requiring only 
one set of simultaneous linear equations far outweighs the additional 
cost of calculating average point- to-block covariances. 

The convenience of estimating block values directly is a feature of 
the ordinary kriging system that is not shared by other estimation 
methods. Though some methods can be adapted in a similar manner, 
the results are not consistent. For example, inverse distance meth- 
ods can be adapted so that the weight is proportional to the average 
distance between a nearby sample and the block. Unfortunately, the 
estimate calculated by this procedure is not the same as the one cal- 
culated by averaging individual point estimates within the block. 

In the next section, we will give an example that demonstrates that 
the block kriging system given in Equation 13.3 produces an estimate 
identical to that obtained by averaging the point estimates produce by 
Equation 13.1. 

Block Estimates Versus the Averaging of Point 
Estimates 

An example of block kriging is shown in Figure 13.la. Five sampled 
locations are marked by plus signs; the sample value is given imme- 
diately to the right of each sign with the corresponding block kriging 
weight enclosed in parentheses. The variogram model used to build the 
kriging matrices was the one used earlier in the case study in Chap- 
ter 12 and developed in detail in Chapter 16. The block whose average 
value we wish to estimate is shown as a shaded square. For the pur- 
poses of calculating the various average covariances, this block has 
been discretized by four points shown as black dots in Figure 13.la. 
The block estimate is QA = 337 ppm. Figures 13.lb through 13.le 
show the kriging weights and the point estimates for each one of the 
four point locations within the shaded square. As shown in Table 13.1, 
the average of the four point estimates is the same as the direct block 
estimate and the average of the point kriging weights for a particular 
sample is the same as the block kriging weight for that sample. 

Varying the Grid of Point Locations Within a Block 
When using the block kriging approach, one has to decide how to dis- 
cretize the local area or block being estimated. The grid of discretizing 
points should always be regular; the spacing between points, however, 
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Figure 13.1 In (a) the shaded block is estimated directly using block kriging, 
with the block being approximated by the four points shown as dots. T h e  nearby 
sample locations are  marked with a plus sign. T h e  value posted immediately to  the 
right of the plus sign is the sample value and the value enclosed in parentheses is 
the corresponding kriging weight. Figures (b) to (e) show the results for the point 
kriging of each one of the four points within the shaded square. T h e  average of the 
point estimates in (b) to (e) is identical to the block estimate v,4=337 in (a). 
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Table 13.1 The point estimates and weights shown in Figure 13.l(b) - (e) are tab- 
ulated and averaged, demonstrating their equivalence to the direct block estimate 
shown in Figure 13.1(a). 

Kriging weights for samples 
Figure Estimate 1 2 3 4 5 
1 3 i ( b )  336 0.17 0.11 0.09 0.60 0.03 
13.l(c) 361 0.22 0.03 0.05 0.56 0.14 
13.l(d) 313 0.07 0.12 0.17 0.61 0.03 
13.l(e) 339 0.11 0.03 0.12 0.62 0.12 

Average 337 0.14 0.07 0.11 0.60 0.08 
13.l(a) 337 0.14 0.07 0.11 0.60 0.08 

may be larger in one direction than the other if the spatial continuity 
is anisotropic. An example of such an anisotropic grid is given in Fig- 
ure 13.2. The shaded block is approximated by six points located on a 
regular 2 x 3 grid. The closer spacing of the points in the north-south 
direction reflects a belief that there is less continuity in this direction 
than in the east-west direction. Despite the differences in the east-west 
and north-south spacing, the regularity of the grid ensures that each 
discretizing point accounts for the same area, as shown by the dashed 
lines. 

If one chooses to  use fewer discretizing points, less computer mem- 
ory is required and the computations are faster. This computational 
efficiency must be weighed against the desire for accuracy, which calls 
for as many points as possible. 

Table 13.2 provides several examples of the effect of the number 
of discretizing points on the final estimate. The table shows estimates 
of the average V value within 10 x 10 m2 blocks using ordinary block 
kriging to  calculate weights for the nearby samples. In these examples, 
the search strategy included all samples within a 25 m radius of the 
center of the block; the variogram model used to calculate the various 
covariances is the same one used in earlier studies and given in Equa- 
tions 12.25-12.27. The only parameter changed from one kriging to 
the next is the number of points used to discretize a 10 x 10 m2 block. 
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Figure 13.2 An example showing the design of a regular 2 x 3 grid of point 
locations within a block. The points are located within the square 60 that each 
discretizing point accounts for the same area, as shown by the dashed lines. 

The entries in Table 13.2 show significant differences in the esti- 
mates using grids containing fewer than 16 discretizing points; with 
more than 16 points, however, the estimates are all very similar. For 
a two-dimensional block, suficient accuracy can usually be obtained 
with a 4 x 4 grid containing 16 points. For a three dimensional block, 
more points are usually required; a 4 x 4 x 4 grid containing 64 points 
is usually sufficient. 

A Case Study 

Next we present a case study that compares ordinary block kriging 
estimates of the average value of V within 10 x 10 m2 blocks to block 
estimates using the inverse distance squared method. 

For this study, we have used a very fine discretization, with each 
10 x 10 m2 block being discretized by 100 points. Ordinary block 
kriging estimates were calculated using all samples within 25 m. The 
variogram model used to calculate the various covariances required by 
Equation 13.3 was the same one that we used for the point kriging case 
study in Chapter 12. 

The inverse distance squared estimates were calculated using the 
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Table 13.2 Examples of estimates of the average value of V within 10 x 10 rn2 
blocks using ordinary block kriging and various discretizing grids within the block. 

Block center Grid size within the block 
E N 1x1 2x2 4x4 6x6 10x10 

80 80 584.67 576.41 574.30 573.98 573.81 
100 80 408.53 418.29 419.19 419.38 419.47 
80 90 538.36 519.89 520.58 520.53 520.47 

100 90 460.13 479.73 480.35 480.52 480.61 
80 100 497.66 547.87 549.40 550.13 550.51 

100 100 530.37 513.32 513.56 513.47 513.42 
80 110 781.17 737.04 732.29 731.06 730.41 

100 110 591.13 580.73 578.75 578.74 578.72 

same search strategy as that used for kriging. For each block, 100 
inverse distance point estimations were averaged together to obtain 
the block estimate. 

Summary statistics for the estimates are given in Table 13.3. The 
average of the kriged block estimates is closer to the true mean than 
the inverse distance squared estimates. The correlation of the kriged 
estimates with the true values is also larger. In this particular case, the 
kriged block estimates have a standard deviation closer to the true one 
and are therefore not as smoothed as the inverse distance estimates. 

The summary statistics of the estimation error are given in Ta- 
ble 13.4. The errors from ordinary block kriging have a mean closer to 
0 than those from inverse distance squared. Their spread, as measured 
by the standard deviation or the interquartile range, is also lower. The 
M A E  and M S E ,  which provide measures of the combination of bias 
and spread, both favor the ordinary block kriging estimates. 

Figures 13.3 and 13.4 provide a comparison of the two sets of errors 
using grayscale ma.ps. A plus symbol denotes a positive estimation 
error while a minus symbol denotes a negative estimation error. The 
relative magnitude of the error corresponds to the degree of shading 
indicated by the grey scale at  the top of the figure. 

The most striking feature of these maps is the consistency of the 
overestimations in the area of Walker Lake itself and the corresponding 
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Table 13.3 Summary statistics for the ordinary kriged block estimates, the inverse 
distance squared block estimates, and the true block values of V .  

Ordinary Inverse 
True Block Distance 

Values Kriging Squared 
n 780 780 780 
m 2 78 284 319 
0 2 16 194 186 
cv 0.77 0.68 0.58 
min 0 5 7 
Qi 103 136 178 
M 239 258 310 
Q 3  404 389 43 1 

max 1,247 1,182 1,112 
PQv 0.90 0.87 

Table 13.4 Summary statistics for the error distributions from the ordinary block 
kriging and the inverse distance squared method. 

Ordinary Inverse 
Block Distance 

Kriging Squared 
n 780 780 
m 

min 
Qi 
A4 
Q3 

max 
M A E  
M S E  

0 

6.2 
92.9 

-405.6 
-45.5 
17.6 
65.3 

286.8 
71.9 

8,674 

40.1 
105.4 

-336.5 
-21.4 
42.6 

116.8 
392.1 

90.2 
12,763 
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underestimations in the Wassuk range area. This pattern of the over- 
and underestimations illustrates the smoothing inherent in both the 
inverse distance squared method and in kriging; high values tend to be 
underestimated while low values tend to be overestimated. 

Though the pattern of over and underestimation is the same in both 
maps, it is clear that the inverse distance squared method produces 
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Figure 13.4 A plot of the inverse distance squared block estimation errors. A 
comparison of these errors to the block kriging errors in Figure 13.3 reveals that 
they are, in general, larger. 

more large errors. In particular, there are several quite large overesti- 
mations (dark plus signs) in the vicinity of (80E,l8ON). In these areas, 
the relatively sparse sampling of the low-valued areas meets the much 
denser sampling in the Wassuk range. The inverse distance squared 
method did not correctly handle the clustered samples, giving too much 
weight to the additional samples in the high-valued areas. 
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Table 13.5 Summary statistics of the distribution of point estimation errors and 
block estimation errors for V .  

Block Point 
Kriging Kriging 

n 780 780 
m 

min 
Qi 
M 
9 3  

max 
M A E  
M S E  

U 
6.2 

92.9 
-405.6 

-45.5 
17.6 
65.3 

286.8 
71.9 

8,674 

-0.2 
144.2 

-472.0 
-86.8 

9.1 
79.9 

657.0 
108. 

20,769 
Pli I f  0.90 0.82 

The map of the ordinary block kriging errors shows that it has 
fewer large overestimations but still has several quite large underes- 
timations. This is due to a combination of factors. The smoothing 
effect that we discussed earlier causes the distribution of block esti- 
mates to have a lower spread and also to be generally less skewed than 
the corresponding distribution of true block values. This, combined 
with the positive skewness of the distribution of true block values, 
creates more chances for a severe underestimation than for a severe 
overestimation. In the case of extreme smoothing, where all estimates 
are close to the global mean, there would be fewer underestimates but 
their magnitudes would generally be much greater than those for the 
more numerous overestimates. 

The results shown in Table 13.4 also allow us to make an important 
remark about the accuracy of block estimation versus point estimation. 
In Chapter 12 we presented point kriging for the same variable V 
and gave the summary statistics of the estimation error in Table 12.4. 
These statistics are given again in Table 13.5, where they are compared 
to the summary statistics of the error distribution for block estimation. 
Though the poiiit estimates have a better mean error, this is not a 
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be 13.5 A map of the V point kriging errors. The darker shading 
)Is in this figure shows that the magnitude of the point estimation errc 
than the block estimation errors shown in Figure 13.3. 

of the 
31s are 

general rule. By any other statistical criterion, the block estimates are 
better. They have a lower spread and correlate better with the true 
values. 

Figure 13.5 is a map of the errors from the point kriging case study. 
The overall pattern of estimation errors is similar to the pattern of 
block kriging errors; the point estimation errors, however, tend to be 
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larger. The symbols in Figure 13.5 tend to be darker than those in Fig- 
ure 13.3, which lends further evidence to the fact that block estimation 
is generally more accurate than point estimation. 

Notes 

[l] For the sake of convenience, we use the phrase “block estimation” 
to describe the estimation of the mean value of a spatial variable 
within a prescribed local area; in three dimensions “local area” 
should be interpreted as a local volume. 

[2] If one uses different discretizations for the two calculations, there 
is a risk of getting negative error variances from Equation 13.5. 



14 
SEARCH STRATEGY 

We have not yet confronted the issue of what counts as a “nearby” Sam- 
ple. In our earlier examples of the various point estimation methods in 
Chapter 11, we simply accepted the seven samples that  appeared on 
our diagram showing the local sample data  configuration (Figure 11.1). 
Later, when we compared the estimates for the entire Walker Lake area, 
we accepted all samples that fell within 25 m of the point being esti- 
mated. The choice of a search strategy that controls the samples that 
are included in the estimation procedure is an important consideration 
in any approach to  local estimation. 

In this chapter we will use the following four questions to  guide our 
discussion of the search strategy: 

0 Are there enough nearby samples? 

0 Are there too many samples? 

0 Are there nearby samples that are redundant? 

0 Are the nearby samples relevant? 

The first three questions are important for estimation techniques such 
as kriging and inverse distance methods that can handle any number 
of samples. For geometric techniques, such as the polygonal method 
or triangulation, the samples used in the weighted linear combination 
are  uniquely defined by the configuration of the sample da t a  set. For 
methods that can handle any number of samples, the most common 
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search strategy is t o  use all samples that fall within a certain search 
neighborhood or window. After presenting the basic idea of a search 
neighborhood in the next section, we will examine each of the first 
three questions above and see how they affect the definition of the 
search neighborhood. 

The most important of these questions, both theoretically and prac- 
tically, is the last one, which raises the issue of whether or not the 
nearby samples belong in the same group or population as the point 
being estimated. This question is important for any approach to es- 
timation, including geometric techniques such as polygons and trian- 
gulation. After discussing the importance of carefully considering the 
relevance of nearby samples, we will conclude the chapter with a dis- 
cussion of how this last question relates to the use of stationary random 
function models. 

S ear c 11 Neigh b or 110 o d s 

For estimation methods that can handle any number of nearby samples, 
the most common approach to  choosing the samples that contribute 
to  the estimation is to  define a search neighborhood within which all 
available samples will be used. The search neighborhood is usually an 
ellipse centered on the point being estimated. The orientation of this 
ellipse is dictated by the anisotropy in the pattern of spatial continuity. 
If sample values are much more continuous in one direction than in 
another, then the ellipse is oriented with its major axis parallel to 
the direction of maximum continuity. The anisotropy of the ellipse is 
usually determined from the anisotropy evident on some measure of 
the spatial continuity, typically the sample variogram. If there is no 
evident anisotropy the search ellipse becomes a circle and the question 
of orientation is no longer relevant. 

In the case studies of the various estimation methods we looked 
at in the previous chapters, we adopted a very simple search strategy, 
using all samples within a circular search neighborhood with a radius of 
25 m. Given the earlier evidence in Chapter 7 of a distinct anisotropy 
in the pattern of spatial continuity of the V values, we might prefer to  
use an anisotropic search neighborhood. The ellipse that appears in 
Figure 7.9 has a minor axis of about 18 m and a major axis of about 
30 m, with its major axis in the NlOOW direction. The effects of using 
this ellipse as a search window rather than the simple 25 m circle 
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Table 14.1 A comparison of the error distributions for the inverse distance squared 
and ordinary kriging methods with different isotropic and anisotropic search neigh- 
borhoods. 

ISOTROPIC ANISOTROPIC 
Inverse Inverse 

Distance Ordinary Distance Ordinary 
Squared Kriging Squared Kriging 

Error 
Distribution 

n 780 780 780 780 
m 26.8 -0.2 22.1 0.4 
0 156.0 144.2 153.5 143.9 

IQR 186 167 185 167 
MAE 121 108 118 108 
MSE 25,000 20,769 24,008 20,682 

Correlation 
P 0.78 0.82 0.79 0.82 

were checked by repeating the inverse distance and ordinary kriging 
estimation using this new search strategy. The results are summarized 
in Table 14.1. 

The use of an anisotropic search window in this example produces a 
small but consistent improvement for both the inverse distance and the 
ordinary kriging techniques. Pa r t  of the reason that the improvement is 
not very pronounced here is that while the N1O"W direction is the clear 
direction of maximum continuity for the large Wassuk Range anomaly, 
it may not be appropriate elsewhere in the data  set. In other parts 
of the Walker Lake area, the directions of maximum and minimum 
continuity may be quite different from this single predominant direction 
in the Wassuk Range anomaly. For example, in the region of the 
Excelsior Mountains in the southern part of the Walker Lake region, 
the axes of maximum and minimum continuity may be  reversed, with 
N70"E being the direction of greatest spatial continuity. Were we to  
take the time t o  customize the orientation and anisotropy ratio of 
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the search neighborhood for each point being estimated, we would 
expect to see larger improvements than the rather slight ones seen in 
Table 14.1. 
Are there enough nearby samples? Having chosen an orientation 
and an anisotropy ratio for our search ellipse, we still have to decide 
how big to make it. The simple answer is that it must be big enough to  
include some samples; this is determined by the geometry of the sample 
data set. If the data are on a pseudo regular grid, one can calculate 
how big the search ellipse must be in order to include at least the 
closest four samples. In practice one typically tries to have at  least 12 
samples. For irregularly gridded data, the search neighborhood should 
be slightly larger than the average spacing between the sample data, 
which can be crudely calculated with the following formula: 

Total area covered by samples 
Number of samples 

Average spacing between data x 

Are there too many nearby samples? The question of how big 
to make the search ellipse is only partially answered. We have a mini- 
mum size determined largely by the geometry of the sample data set, 
but we still have to decide how much bigger than this it should be. 
There are two factors that limit the size of the search wiodow in prac- 
tice. First, using more samples increases the amount of computation 
required. Second, as samples come from farther and farther away, the 
appropriateness of a stationary random function model becomes more 
doubtful [l]. 

The concern about computation is a major issue for ordinary krig- 
ing. The number of computations required to solve for the ordinary 
kriging weights is proportional to the cube of the number of samples 
retained; if we double the number of samples, we increase the number 
of calculations eightfold. 

The number of calculations can be reduced by combining several 
of the farthest samples into a single composite sample. An example of 
this is shown in Figure 14.1. Rather than view the 50 samples shown 
in Figure 14.la as 50 samples, we can view thein as 16 samples, with 
the 12 closest samples being treated as individual samples and the 
remaining 38 being combined into four composite samples as shown in 
Figure 14.lb. 

The ordinary kriging system is easily adapted to handle such com- 
posite samples, Earlier, when we looked a t  ordinary krigiiig of average 
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Figure 14.1 The combination of several samples into a composite sample. In 
(b) ,  the farthest samples shown in (a) have been combined into four groups to 
reduce the number of calculations required for estimation. The weight assigned to 
a composite sample will be divided evenly among the individual samples that were 
grouped toget her. 

block values, we combined several points into a single block and filled 
our right-hand side matrix, the D matrix, with average covariances 
between the points in the block and the sample data  locations. In a 
similar way, the grouping of several samples into a composite sample 
can easily be  accommodated in the ordinary kriging matrices simply 
by calculating the average covariance between any two samples. If the 
two samples are both individual point samples, then the average co- 
variance between them is the point- to-point covariance we used when 
we first developed the ordinary kriging algorithm. If one of them is 
an individual point sample and the other is a composite of R. sam- 
ples, then the average covariance between them is the average of the 
n point-to-point covariances between the individual point sample and 
the 72 samples which form the composite sample. If both are composite 
samples, one containing n samples and the other containing m sam- 
ples, then the average covariance between them is the average of the 
nrn point - t 0- point covariances . 

The weight assigned to  a composite sample is equally distributed 
among the individual samples of which it is composed. In the example 
shown in Figure 14.lb, the weight assigned to  sample lG, the composite 
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sample in the upper right corner, would be equally distributed among 
the 13 samples in that group while the weight given to sample 15, the 
composite sample in the upper left corner, would be equally distributed 
among the 6 samples in that group. 

The other concern about limiting the number of samples is related 
to  the question of whether far away samples belong in the same group 
or population as the point being estimated. This is discussed in more 
detail in the final sections of this chapter. For the moment, we will 
simply remark that the use of a stationary model does not justify 
the use of extremely large search windows. There is an unfortunate 
misperception in practice that once the assumption of stationarity is 
made, one does not go any further out on a limb by using a very large 
search neighborhood. The assumption of stationarity pertains to the 
model and has nothing to  do with the reality of the situation. From the 
perspective of the model, additional samples will always improve the 
estimation regardless of their distance from the point being estimated. 
This does not mean that the same is true from the perspective of 
reality. 

The appropriateness of conceptualizing the sample data within the 
search window as an outcome of a stationary random function model 
often becomes more questionable as the search window gets larger. 
Even as the model becomes less appropriate, the estimation algorithm 
can still be applied, but with an ever-increasing departure between the 
theoretical statistical properties predicted by the model and their real 
counterparts. As the model becomes less realistic, the actual estimates 
may not share such properties as unbiasedness and minimum estima- 
tion variance with their model counterparts. By restricting the samples 
to a much smaller neighborhood, the stationary random function con- 
ceptualization becomes more plausible and the differences between the 
actual statistical properties and those of the model are less severe. 

Another common misconception in practice is that the search ra- 
dius should not extend beyond the range of the variogram. Experience 
has shown that if there are few samples within the range, then the 
addition of samples beyond the range often improves local estimation. 
Are the nearby samples redundant? After having chosen the ori- 
entation, shape and size of our search neighborhood, the final issue 
we should consider is the possibility that some of the nearby samples 
are redundant. This is less of a concern for ordinary kriging, which 
accounts for possible redundancies through the left-hand side C ma- 
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trix. For inverse distance techniques, however, a search strategy that 
accounts for the possibility of clustering will usually yield noticeable 
improvements over the more naive approach of taking all samples that 
fall within the search window. In addition to reducing the adverse 
effects of clustering, the removal of redundant samples also has the 
advantage of reducing the number of calculations involved. There are 
several procedures for reducing possible redundancies in the samples 
that fall within the search window, the most common of these, the 
quadrant search, is discussed in the next section. 

Quadrant Search 

Figure 14.2a shows a particular sample data configuration. The dashed 
lines in this figure divide the search neighborhood into quadrants. We 
notice that the two northern quadrants each contain more samples than 
either of the two southern ones. By limiting the number of nearby sam- 
ples in each quadrant, we may reduce the adverse effects of clustering. 

When we use a quadrant search in our choice of nearby samples 
we typically specify a maximum number of samples in any particular 
quadrant. If a particular quadrant has fewer samples than the max- 
imum allowable, then we keep all the samples it contains; however, 
if a quadrant contains too many samples then we keep only the clos- 
est ones. Figure 14.2b shows the samples that would be kept from 
the original set of nearby samples shown in Figure 14.2a if we limited 
ourselves to a maximum of three samples per quadrant. Figure 14 .2~  
shows the remaining samples if we limit ourselves to two samples per 
quadrant. 

We will now use the exhaustive data set to examine the effect of a 
quadrant search. We have repeated the point estimation studies from 
Chapters 11 and 12 using the same 25 in search radius, but limiting 
ourselves to a maximum of four samples per quadrant. The effect of 
this quadrant search on the inverse distance squared and ordinary krig- 
ing estimates is presented in Table 14.2. The first two columns present 
the summary statistics of the error distributions from the studies given 
in the earlier chapters, where no quadrant search was used. The last 
two columns show how these statistics change when the search strategy 
limits the iiuniber of samples in each quadrant to a maximum of four. 

The use of a quadrant search improves the inverse distance squared 
estimates, and has virtually no influence on the ordinary kriging es- 



Search Strategy 345 

Figure 14.2 The selection of samples using the quadrant search. The samples in 
(a) are clustered in the two northern quadrants; in (b) the contents of each quadrant 
are limited to the nearest three samples, in (c), they are limited to the nearest two 
samples. 

timates. The spread of the inverse distance squared errors, whether 
measured by the standard deviation or the interquartile range, is re- 
duced slightly. The mean absolute error and the mean squared error 
also decrease while the correlation coefficient shows a small improve- 
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Table 14.2 A comparison of the error distributions for the inverse distance squared 
and ordinary kriging methods with and without a quadrant search. 

NO MAXIMUM MAXIMUM OF 4 
Inverse Inverse 

Distance Ordinary Distance Ordinary 
Squared Kriging Squared Kriging 

n 780 780 780 780 
m 26.8 -0.2 20.5 0.4 
U 156.0 144.2 151.6 144.3 

IQ 2 186 167 175 167 
M A E  121 108 117 108 
M S E  25,000 20,769 23,383 20,796 

Correlation 
P 0.78 0.82 0.80 0.82 

ment. The most significant improvement is in the global bias. For the 
inverse distance squared estimates the bias is reduced by about 25%. 

As we noted earlier, the inverse distance squared method makes 
no attempt to  account for the possibility of clustering; the ordinary 
kriging method, on the other hand, does account for this through the 
left-hand covariance matrix. A quadrant search accomplishes some 
declustering and the effect of this is more noticeable on the method 
that does not decluster by itself. 

Once we have decided t o  use a quadrant search, the advantage of 
ordinary kriging over inverse distance squared becomes slight. Though 
we would likely judge the ordinary kriging estimates better, based on 
the statistics shown in Table 14.2, their overall advantage is reduced 
once the inverse distance estimates have the benefit of the quadrant 
search. With estimation methods that  do  not account for clustering, 
relatively simple procedures such as the quadrant search may ade- 
quately compensate for the adverse effects of clustering. In fact its 
generally a good idea t o  screen all da t a  using a quadrant search for 
not only the inverse distance squared method but also before kriging. 
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Figure 14.3 An example of a sample d a t a  configuration taken from a study of 
lead concentration in the soil surrounding a smelter. The  nearby samples are  shown 
by the  dots, with the  sample value (in ppm) given beneath the dot. T h e  X marks 
the point a t  which we would like to estimate the unknown lead concentration. 

Are the Nearby Samples Relevant? 

Every estimate involves the following assumption that is easily over- 
looked or treated casually: that the sample values used in the weighted 
linear combination are somehow relevant and that they belong to  the 
same group or population as the point being estimated. Unfortunately, 
even when this assumption is carefully considered it cannot be verified; 
it is necessarily a subjective decision that benefits most from qualita- 
tive information. To further complicate matters, the validity of this 
assumption may also depend on the goals of the study. 

Figure 14.3 provides a specific example that demonstrates the im- 
portance of carefully considering the relevance of the nearby samples. 
The sample values shown in the figure are measurements of the lead 
concentration in the soil from an area surrounding a lead smelter. The 
goal of the study was to provide local estimates of the lead concentra- 
tion due to the smelter, For tlie estimation of tlie lead concentration 
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a t  the location marked X, Figure 14.3 shows the nearby samples that 
might be used. 

With the naive search strategies we used earlier, all estimation 
methods, including polygons and triangulation, would make use of the 
10,400 ppm sample value. The logs that describe the sampling cam- 
paign make it clear that this particular sample was collected near a 
local dump; rather than being related to the smelter contamination, 
the 10,400 ppm value likely reflects contamination due to leakage from 
discarded car batteries [2]. Despite the fact that it is the nearest, this 
10,400 ppm sample is not relevant for the estimation of contamination 
due to the smelter. However, if the goal of the study were to estimate 
the lead concentration in the soil from all possible sources, the use of 
this sample would be appropriate. 

Similar problems arise in most practical geostatistical studies. For 
example, in structurally complex ore deposits good estimates may not 
be obtainable with any estimation method until a sound geologic inter- 
pretation dictates which samples are relevant for the estimation a t  each 
particular location. In studies of petroleum reservoirs or groundwater 
aquifers the existence of faulting may require that samples be divided 
into separate groups since the overall pattern of spatial continuity is 
unlikely to persist across a fault. 

Deciding which samples are relevant for the estimation of a par- 
ticular point may be more important than the choice of an estimation 
method. The initial definition of a boundary within which estimation 
will occur is an appropriate first step in any estimation exercise. In 
addition to this, it is also worthwhile to examine the configuration of 
nearby samples for each point being estimated and to decide which 
samples should be used. Though it is a common practice to define a 
single search strategy for an entire area under study, this is not always 
a good approach. What works in certain areas of a particular data set 
may not work in others. For example, in  the center of a data set, it 
may be possible to choose relevant samples simply by taking all sam- 
ples within a certain radius; near the fringes of the same data set, this 
same strategy may be unwise. “Black-box” computer programs make it 
easy for one to avoid a tedious case by case determination of relevant 
samples. Rather than yield to this temptation, one should consider 
using computer programs that permit more interaction. If such pro- 
grams are not available, a cross-validation study (see Chapter 15) may 
be helpful in deciding if certain areas require special treatment. 
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Relevance of Nearby Samples and Stationary Models 

When we introduced random function models in Chapter 9, we dis- 
cussed the notion of stationarity. A random function model was said 
to be first order stationary if the mean of the probability distribution 
of each random variable is the same. Later, because we used this as- 
sumption to develop the unbiasedness condition, our conclusion that 
unbiasedness is guaranteed when the weights sum to one is limited to  
first order stationary models. 

The decision to  view a particular sample data configuration as an 
outcome of a stationary random function model is strongly linked to 
the decision that these samples can be grouped together. Both of these 
are decisions that cannot be checked quantitatively; they are neither 
right nor wrong and no proof of their validity is possible. However, they 
can be judged as appropriate or inappropriate. Such a judgment must 
take into account the goals of the study and will benefit considerably 
from qualitative information about the data set. 

The cost of choosing to  use an inappropriate model is that statisti- 
cal properties of the actual estimates may be very different from their 
model counterparts. As we have already noted, the use of weighted 
linear combinations whose weights sum to one does not guarantee that 
the actual bias is 0. The actual bias will depend on several factors, 
including the appropriateness of conceptualizing each sample data con- 
figuration as an outcome of a stationary random function. 

It should be emphasized that all of the estimation methods we 
looked a t  in Chapters 11 and 12 implicitly assume a first order sta- 
tionary model through their use of the unbiasedness condition. It is 
naive, therefore, to dismiss ordinary kriging with the argument that it 
requires first order stationarity; the same argument criticism applies to  
all of the methods we have studied. If estimation is performed blindly, 
with no thought given to the relevance of nearby samples, the meth- 
ods that make use of inore samples may produce worse results than 
the methods that make use of few nearby samples. If one does not 
have the time or curiosity required for good estimation, then the use 
of polygonal method or triangulation may limit the damage done by a 
poor search strategy. 

Notes 

[l] Some practitioners make maps of estimates in typical areas using 
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various search strategies. Estimates are first made using a large 
number of samples. Then the search strategy is changed to reduce 
the number of samples and the corresponding estimates mapped. 
The search strategy is deemed appropriate just before the mapped 
estimates begin to  show noticeable differences with less samples. 

[2] A complete case study of the Dallas data set is presented in: 
Isaaks, E. H. , Risk qualified mappings for hazardous waste sites: A 
case study in distribution free geostatistics. Master’s thesis, Stan- 
ford University, 1985. 



15 
CROSS VALIDATION 

In our case studies comparing different point estimation methods we 
relied on our access to the true values in the exhaustive data set. Such 
comparisons between true and estimated values are useful in helping us 
to understand the different approaches to estimation. In many practi- 
cal situations, we would like to check the results of different approaches 
and choose the one that works best. Unfortunately, we never have an 
exhaustive data set in practice and are unable to  conduct the kind of 
comparisons we showed in earlier chapters. 

In this chapter we will look at  cross validation, a technique that 
allows us to compare estimated and true values using only the informa- 
tion available in our sample data set. Like the comparisons based on 
the exhaustive data set that we showed earlier, a cross validation study 
may help us to  choose between different weighting procedures, between 
different search strategies, or between different variogram models. Re- 
grettably, cross validation results are most commonly used simply to 
compare the distributions of the estimation errors or residuals from 
different estimation procedures. Such a comparison, especially if sim- 
ilar techniques are being compared, typically falls far short of clearly 
indicating which alternative is best. Cross validated residuals have 
important spatial information, and a careful study of the spatial dis- 
tribution of cross validated residuals, with a specific focus on the final 
goals of the estimation exercise can provide insights into where an es- 
timation procedure may run into trouble. Since such insights may lead 



352 A n  Introduction to Applied Geostatistics 

t o  case-specific improvements in the estimation procedure, cross vali- 
dation is a useful preliminary step before final estimates are  calculated. 

Cross Validation 

In a cross validation exercise, the estimation method is tested at the 
locations of existing samples. The sample value a t  a particular location 
is temporarily discarded from the sample data  set; the value at the 
same location is then estimated using the remaining samples. This 
procedure, shown in Figure 15.1, can be seen as an experiment in which 
we miinic the estimation process by pretending that  we had never 
sampled a certain location. Once the estimate is calculated we can 
compare it t o  the true sample value that was initially removed from the 
sample data  set. This procedure is repeated for all available samples. 
The resulting true and estimated values can then be compared using 
the same statistical and visual tools we have been using in Chapters 11 
and 12 for comparing estimates to actual values from the exhaustive 
da t a  set. 

Cross Validation as a Quantitative Tool 

We will now use cross validation to  evaluate the differences between 
estimates calculated by ordinary kriging and those calculated by the 
polygonal method. This is similar to a n  earlier study in which we 
compared estimates a t  780 regularly gridded locations with the cor- 
responding true values, except we now rely only on the information 
available in the sample data  set and make no use of the information in 
the exhaustive data  set. 

At each of the 470 locations where we have a sample we discard the 
known V value, pretending that we had never sampled that  particular 
location, and we estimate the V value using the other nearby samples. 
The polygonal estimate is simply the value of the nearest sample. The 
ordinary kriging estimate was calculated using the model fit t o  the 
sample variogram in Chapter 16, Equation 16.34, Figure 16.10; the 
search strategy consisted of using a circular search neighborhood with 
a radius of 25 m and retaining only the closest four samples in each 
quadrant. This procedure gives us 470 polygonal estimates and 470 
ordinary kriging estimates that we can compare with our 470 true 
sample values. All of the statistical tools we used earlier to compare 
sets of estimates-summary statistics of estimated and true values, q-q 
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Figure 15.1 An example of the  cross validation procedure. T h e  sample a t  the 
location highlighted by the arrow in (a) is  removed, leaving us with the 17 samples 
shown in (b). Using only these 17 samples, the  value at the  location marked o is 
estimated; in (c), the  estimate is calculated using inverse distance squared weighting. 
This  estimate can now be compared with the actual value which was removed earlier, 
giving us one pair of estimated and true values. 
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Table 15.1 
and by ordinary kriging to the true sample values. 

A comparison of the estimates calculated by the polygonal method 

Ordinary 
True Polygons Kriging 

n 470 470 470 
m 43G.5 488.0 444.5 
0 300.2 201.0 229.4 
cv 0.69 0.GO 0.52 
min 0 0 5.8 
Q1 184.8 240.3 277.0 
M 425.3 515.9 433.4 
9 3  645.4 G73.4 593.? 

muz 1,528.1 1,528.1 1,170.4 

Table 15.2 
ordinary kriging. 

A comparison of the residuals from polygonal estimation and from 

Ordinary 
Polygons Kriging 

?l 470 470 
m 51.5 8.0 
U 251.4 177.8 

IQ R 310.1 243.0 
M A E  200.4 140.5 
M S E  135,729 31,G14 

plots, summary statistics of residuals, conditional expectation curves- 
we can now use again to compare these sets of estimated and true values 
that were generated by cross validation. 

The results of this cross validation study are summarized in Ta- 
bles 15.1 and 15.2 as well as in Figures 15.2 and 15.3. Table 15.1 
compares the distributions of the two sets of estimates to the distri- 
bution of the true values. This comparison agrees with many of the 
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Figure 15.2 Quantile-quantile plots of the distribution of estimates versus the 
distribution of true values. The distribution of the polygonal estimates is compared 
to the true distribution in (a); the distribution of ordinary kriging estimates is 
compared to the true distribution in (b).  

observations we were able to make earlier when we used the exhaustive 
data set. With the exception of its mean, the distribution of polygonal 
estimates is more similar to the distribution of the true values than 
is the distribution of ordinary kriging estimates. This is supported by 
the q-q plots in Figure 15.2. While the quantiles of the distribution 
of polygonal estimates are consistently larger than the correspond- 
ing quantiles of the true sample values, the slope of the solid line in 
Figure 15.2a is close to  one, which shows that the two distributions 
have very similar shapes. In Figure 15.2b, however, the q-q plot of 
the ordinary kriging estimates and the true sample values shows that 
the two are less similar. The distribution of ordinary kriging esti- 
mates has less spread than the distribution of the true sample values. 
These observations provide further evidence of the smoothing effect 
of kriging. A procedure that uses few nearby sample values, such as 
the polygonal method, will produce estimates that are less smoothed 
than one that combines many nearby values, such as ordinary krig- 
ing. 

Table 15.2 compares the distributions of the residuals (estimated 
minus true values) from the two estimation procedures. Like our earlier 
comparison using the exhaustive data set, this cross validation exercise 
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Figure 15.3 Conditional bias of the polygonal estimates and the ordinary krig- 
ing estimates. The conditional expectation curve is shown as a solid line through 
the cloud of points; the estimates are conditionally unbiased if their conditional 
expectation curve falls on the 45-degree line shown as a dashed line. 

shows that the estimates obtained using ordinary kriging are better 
according to  the various statistical criteria we adopted earlier. The 
estimation errors from ordinary kriging have a mean closer to 0 and 
have less spread. 

Figure 15.3 shows scatterplots of the estimated and true values from 
the two procedures, along with their conditional expectation curves and 
their correlation coefficients. 

In addition to having a lower overall bias, the ordinary kriging es- 
timates also have less conditional bias. For the broad range of values 
shown in Figure 15.3 the conditional expectation curve of the ordinary 
kriging estimates lies closer t o  the 45-degree line than does the condi- 
tional expectation curve of the polygonal estimates. Furthermore, the 
correlation coefficient between true and estimated values is higher for 
the ordinary kriging estimates than for the polygonal ones. 

Despite the fact that  this cross validation study agrees in many 
ways with the earlier study based on the exhaustive data  set, there are 
some troublesome discrepancies that highlight the weaknesses of cross 
validation as a purely quantitative tool. Though the cross validation 
concept is a clever trick for producing pairs of true and estimated values 
in practical situations, its results can be misleading. 
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The summary statistics of the residual distribution given in Ta- 
ble 15.2 led us to  believe that the polygonal method produces quite 
biased results. With a true mean value of 437 ppm, and an aver- 
age residual of 51.5 ppm, the cross validation study suggests that the 
polygonal method will overestimate by more than 10%. Our earlier 
comparison using the exhaustive data set in Chapter 10 showed that 
the polygonal method actually does a very good job in terms of global 
bias for our Walker Lake example. Similarly, the conditional bias as 
revealed by Figure 15.3a is much worse than the actual conditional 
bias as revealed by Figure 11.15a in Chapter 11. 

One of the factors that limits the conclusions that can legitimately 
be drawn from a cross validation exercise is the recurring problem of 
clustering. If our original sample data set is spatially clustered, then 
so, too, are our cross validated residuals. Ideally we would like to have 
residuals that adequately represent the entire area of interest and the 
complete range of values. In practice, our residuals may be more rep- 
resentative of only certain regions or particular ranges of values. The 
fact that our Walker Lake samples are preferentially located in areas 
with anomalously high V values causes our cross validated residuals to  
be more representative of these particular anomalies than of the whole 
area. Since we are interested in estimating unknown values not only 
in these high areas but throughout the Walker Lake map area, the in- 
evitable spatial clustering of our cross validated residuals reduces their 
usefulness. Some conclusions drawn from the cross validated residuals 
may be applicable to the entire map area, others may not. 

We can try to account for the effect of clustering by calculating a 
declustered mean of the residuals using one of the global declustering 
approaches we discussed in Chapter 10. Unfortunately, this does not 
help much in this particular case. Using cell declustering weights cal- 
culated with a 20 x 20 m2 cell, the declustered mean residual for the 
polygonal approach is 61.5 ppm, and for the ordinary kriging approach 
is 29.4 ppm. Even after the effect of clustering has been taken into ac- 
count, the mean cross validated residual is simply misleading in this 
particular example. 

Another approach to  accounting for the clustering is to not perform 
cross validation at every sample location, but only at a selected subset 
of locations that is representative of the entire area. In the Walker Lake 
example, the initial 195 samples on a pseudo regular 20 x 20 in2 grid 
provide a good coverage of the entire area, If we limit our attention 
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to  these, however, the mean residual for the polygonal estimation is 
53.1 ppm, still not an accurate reflection of the actual performance of 
the polygonal method. 

There are other limitations of cross validation that should be kept 
in mind when analyzing the results of a cross validation study. For 
example, it can generate pairs of true and estimated values only a t  
sample locations. Its results usually do not accurately reflect the ac- 
tual p,erformance of an estimation method because estimation a t  sam- 
ple locations is typically not representative of estimation a t  all of the 
unsampled locations. 

In our Walker Lake example, the distance to nearby samples is 
generally greater in the cross validation study than it was for the earlier 
estimation of the 780 points on a 10 x 10 m2 grid. For many of the cross 
validated locations the closest samples are 20 m away; in the actual 
estimation of any point in the Walker Lake map area, the nearest 
sample is never farther than 15 m away. The result of this is that the 
spread of the errors calculated in our cross validation study is higher 
than the spread of the actual errors. This is confirmed by comparing 
the standard deviations of the cross validated residuals to the standard 
deviations of the actual errors given in Table 12.4. The cross validated 
residuals have a standard deviation of 251.4 ppm for the polygonal 
estimates and 177.8 ppm for the ordinary krigiiig estimates; the actual 
standard deviations calculated earlier were 175.2 ppm for the polygonal 
method and 144.2 ppm for ordinary kriging. 

In other practical situations, particularly three-dimensional data 
sets where the samples are located very close to one another vertically 
but not horizontally, cross validation may produce very optimistic re- 
sults. Discarding a single sample from a drill hole and estimating the 
value using other samples from the same drill hole will produce results 
that make any estimation procedure appear to perform much better 
than it will in actual use. The idea of cross validation is to produce 
sample data configurations that mimic the conditions under which the 
estimation procedure will actually be used. If very close nearby sam- 
ples will not be available in the actual estimation, it makes little sense 
to include them in cross validation. In such situations, it is common 
to discard more than the single sample a t  the location we are trying 
to estimate; it may, for example, be wiser to discard all of the samples 
from the same drill hole. This, however, puts us back in the situa- 
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tion of producing cross validated results which are probably a bit too 
pessimistic. 

Cross Validation as a Qualitative Tool 

Cross validation also offers qualitative insights into how any estima- 
tion method performs. The spatial features of the residuals are often 
overlooked when cross validation is used as a purely quantitative tool 
for choosing between estimation procedures. The tools we presented 
for spatial description in Chapter 4 can be used to reveal problems 
with an  estimation procedure; an  analysis of the spatial arrangement 
of the residuals often suggests further improvements to  the estimation 
method. 

Just as we prefer estimates to be conditionally unbiased with re- 
spect to  any range of values, we also prefer them to be conditionally 
unbiased with respect to  their location. Within any region we hope 
that the center, the spread, and the skewness of the residuals will all 
be as close to 0 as possible. A contour map of the residuals can re- 
veal areas where the estimates are consistently biased; maps of moving 
window statistics can be used to show how the spread of the residuals 
varies throughout the entire area. 

A posting of the residuals shows all of the local detail but often con- 
tains too much detail to be an effective visual display. An alternative 
is simply to record where underestimation occurs and where overesti- 
mation occurs. Figure 15.4 shows such a map of the ordinary kriging 
residuals from the cross validation study. Rather than post the value of 
each residual, we use a + symbol to show where overestimation occurs 
and a - symbol for underestimation. The shading of the symbol is 
used to reflect the magnitude of the residual, with the darkest symbols 
corresponding to the largest errors. On this type of display we hope 
to see the + and - symbols well mixed, with no obvious regions of 
consistent overestimation or underestimation. If such regions do exist, 
the reasons for the local bias should be investigated. 

In Figure 15.4 there is a fairly large patch of positive residuals 
around 110E,180N. The sample values in this area are all quite low 
and are easily overestimated in a cross validation study due to  their 
closeness to  some of the extremely high values in the adjacent Wassuk 
Range anomaly. Most of the samples in this area are type 1 samples, 
and this observation prompts us to consider how the ordinary kriging 



360 A n  Introduction to  Applied Geostatistics 

0 50 100 150 200 250 300 350 400 450 500 

280 

260 

240 

220 

180 

160 

140 

120 

lo0 

en 

60 

40 

20 

Figure 15.4 A posting of the residuals from the cross validation of the 470 V 

sample values using ordinary kriging. The  search strategy consisted of using a cir- 
cular search neighborhood with a radius of 25 m, retaining only the the nearest four 
samples per quadrant for estimation. A "+" symbol indicates a n  overestimation, 
and a "-" symbol shows a n  underestimation. T h e  darkness of the  shading of the 
symbol is proportional t o  the magnitude of the residual. 

approach performs for the other type 1 samples. In Figure 15.5 only 
the residuals a t  the 45 type 1 locations are shown. From this map 
it is clear that  we have a major problem with the estimation a t  type 
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locations 

Cross validated residuals from ordinary kriging for type 1 sample 

1 locations. Of the 45 locations shown on Figure 15.5, 44 of them 
show positive residuals; virtually all of the type 1 sample values were 
overestimated in the cross validation exercise. The mean of the 45 type 
1 sample values is 40 ppm; the mean of the cross validated estimates 
calculated using ordinary kriging is 148 ppm -an error of more than 
250%! 

Having observed this problem, we can consider how we might im- 
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prove our estimation procedure. The problem is largely with the search 
strategy; type 2 samples should not be  combined with type 1 samples 
if the goal is the accurate estimation of type 1 values. A fairly simple 
refinement to  our search strategy is t o  separate the two types; if we 
are estimating the value a t  a type 1 location, we will use only type 
1 samples. With this change to  our search strategy, and expanding 
the circular search neighborhood t o  30 m (since one of the type 1 
samples is more than 25 m away from its nearest type 1 neighbors), 
the cross validation exercise was repeated. The residuals from this 
exercise are shown in Figure 15.6. We now have a more reassuring 
mixture of overestimates and underestimates; there is still a persis- 
tent overestimation in the area of Walker Lake itself, but the magni- 
tude of the errors is smaller than it was when type 2 samples were 
included. 

Though we have been able to  improve our cross validation re- 
sults for type 1 estimates, the improvement of our final estimates is 
a more difficult problem. In the estimation of values a t  unsampled 
locations we will face the additional problem of determining the ap- 
propriate type for each of the points we will be estimating. In the 
cross validation this was not a problem since all of our estimates 
were a t  sample locations where we knew the correct type. In the 
actual estimation at unsampled locations, the type is unknown. If 
we want t o  separate the estimation of type 1 values from the esti- 
mation of type 2 values, we will have to  find some way of figuring 
out the type before we do  the actual estimation of V .  While it pro- 
vides satisfaction for our curiosity about how our estimation method 
might perform, cross validation can also bring considerable frustra- 
tion since i t  often reveals problems that do not have straightforward 
solutions. 

There are  many other aspects of our cross validated residuals that  
we could examine with the tools presented for spatial description in 
Chapter 4. We could explore the possible correlation between errors 
a t  different locations using a correlogram of the residuals. A posting of 
the largest residuals would reveal that  the largest estimation errors are 
occurring in the areas with the highest values; we could better docu- 
ment this relationship between the magnitude of the residuals and their 
variability with a scatterplot of local nieaiis versus local standard de- 
viations. Each cross validated data  set will suggest other informative 
displays as one tries t o  understand its various peculiarities. Reduc- 
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Figure 15.6 Cross validated residuals for type 1 sample locations using ordinary 
kriging and a search strategy that uses only those nearby samples that are also type 
1. 

ing cross validated results to a few summary statistics, often only a 
global mean and variance, is a wasteful (but common) practice; there 
is much to  be learned from a thorough spatial analysis of the residu- 
als. 
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Cross Validation as a Goal-Oriented Tool 

The availability of pairs of true and estimated values allows us to use 
cross validation results to  examine issues that are specifically related 
to the goals of the estimation exercise. In most practical geostatis- 
tical studies there are economic or technical criteria that are much 
more relevant than the statistical criteria we have been using so far for 
evaluating a set of estimates. 

As an example, we can imagine for the moment that the Walker 
Lake data set is an ore deposit, with the V values representing the 
concentration of some metal. Not all of the material will be treated 
as ore; below some cutoff value, the quantity of metal contained in 
the rock will be too small to justify the cost of its extraction. Let us 
suppose that this economic cutoff is 300 ppm; material with an ore 
grade of greater than 300 ppm will be classified as ore that will be 
stockpiled and eventually processed, material less than 300 ppm will 
be classified as waste that will simply be stockpiled. In such an oper- 
ation, the decision to send a particular load of rock to the waste pile 
or to the ore pile for further pracessing will be based on its estimated 
grade rather than its true grade. For this reason, there is a possibil- 
ity that certain loads will be misclassified. As shown on Figure 15.7, 
there are two types of misclassification: material that has a true grade 
above 300 ppm but whose estimated grade is less than 300 ppm will 
be incorrectly classified as waste; material that has a true grade less 
than 300 ppm but whose estimated grade is greater than 300 ppm will 
be incorrectly classified as ore. 

Though we have discussed misclassification in terms of a mining 
example, the same problem occurs in many other applications. For 
example in the assessment of hazardous waste sites if the pollutant 
concentration in a certain region is above a specified threshold, then 
that region of the site will have to be cleaned up. The decision to 
clean up or not to clean up is based on estimates of the pollutant 
concentration and this gives rise to  the possibility of misclassification. 
In such applications, the misclassification is often referred to  as false 
positive or fulse negative error. A false positive error is the type of 
misclassification in which estimates above the critical threshold are 
assigned to locations whose true value is actually below the critical 
threshold; the other type, where estimates below the critical threshold 
ale assigned to locations whose true value is actually above the critical 



Cross Validation 365 

Classification Based on Estimates 

I + 
I 
I 

3 

> 500 

t.. 

4 
s 

+ 

I 

0 500 1 ,OOo 
OK Estimates 

Figure 15.7 Misclassification due to  selection based on estimated rather than t rue 
values. T h e  points t h a t  a re  misclassified are  those in the upper left and  lower right 
quadrants. T h e  points in  the upper left quadrant are  those for which the t rue value 
is above the  cutoff while the estimated value is below the cutoff; the points in the 
lower right quadrant  a re  those for which the  t rue value is below the cutoff while t h e  
estimated value is above cutoff. T h e  points in the other two quadrants are  correctly 
classified despite the fact tha t  the estimated value is not exactly the same as the  
true value. 

threshold, is called a false negative error. Areas in which false negative 
errors have occurred will be left uncleaned when they should, in fact, 
have been cleaned up; areas in which false positive errors occur will be 
cleaned unnecessarily. 

For applications in which the problem of misclassification has im- 
portant consequences, the minimization of the misclassification may 
be a much more relevant criterion for judging the goodness of sets of 
estimates than are the various statistical criteria we are accustomed 
to  using. The magnitude of overestimation or underestimation may 
be unimportant as long as the classification remains correct. In our 
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Figure 15.8 Cross validated residuals for samples whose ordinary kriging estimate 
would result in misclassification at the 300 ppm cutoff. 

mining example with the Walker Lake data set, most of the type 1 
locations have values much lower than 300 ppm and will be discarded 
as waste. The overestimation of these type 1 locations does not matter 
unless the overestimate is so large that waste material is incorrectly 
classified as ore, Similarly, the underestimation of some of the very 
rich areas in the Wassuk Range anomaly is not important unless the 
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underestimation is so large that material that should have been treated 
as ore is actually classified as waste. 

Unfortunately, we do not yet have estimation procedures that aim 
specifically a t  minimizing misclassification in the same way that ordi- 
nary kriging aims specifically a t  minimizing the error variance. Even 
so, we should still be interested in the misclassification problem and 
cross validation can help us address this important concern. 

From the set of ordinary kriging residuals shown earlier in Fig- 
ure 15.4, only the residuals for those samples that are incorrectly clas- 
sified at a 300 ppm cutoff are shown on Figure 15.8. Also shown on this 
figure is the approximate extent of the Wassuk Range anomaly. This 
figure provides us with several interesting insights into how we might 
run into trouble making ore/waste decisions based on our ordinary 
kriging estimates. 

In the heart of the Wassuk Range anomaly there is only one sample 
that is incorrectly classified, so despite the many large overestimates 
and underestimates in this region, ordinary kriging does not lead to 
any wrong decisions. Along the edges of the anomaly, however, there 
are several misclassified samples; all of these are waste samples that 
would be incorrectly classified as ore based on their ordinary kriging 
estimate. This forewarns us that our perception of the size of the 
Wassuk Range anomaly based on ordinary kriging estimates might be 
a bit larger than the actual extent of the economically viable anomaly. 

Figure 15.8 also shows a few other areas in which we may get waste 
where we expected to find ore. A check of Figure 5.9f, which showed 
an indicator map of the exhaustive data set for a cutoff very close to 
300 ppm, shows that one of these areas, the group of five overesti- 
mations near (210E,140N), coincides with a small zone of waste. The 
group of six overestimations near (40E,80N), however, appears t o  be 
a case of bad luck in our sampling campaign; the values in the region 
around those six overestimations is, in reality, predominantly above 
the 300 ppm cutoff, with occasional patches of waste material. Our 
sampling seems to  have hit most of these waste patches. In an ac- 
tual study, we would not have access to an exhaustive indicator map 
that tells us which of the misclassified areas from the cross validation 
study we should ignore and which ones we should worry about. The 
potential problem areas identified by the cross validation study may 
warrant additional sampling if the misclassification of waste as ore has 
major economic consequences. Since a goal-oriented cross validation 
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study focuses specifically on the errors that have the most serious prac- 
tical impact (and these may not be the largest errors), it  may prompt 
practically important changes in the estimation methodology. 



16 
MODELING THE SAMPLE 

VARIOGRAM 

In Chapter 7 we discussed the computation of sample variograms that 
describe how the spatial continuity changes with distance and direc- 
tion. Although a set of directional sample variograms provides an 
excellent descriptive summary of the spatial continuity, it most likely 
will not provide all of the variogram values needed by the the kriging 
system, When the ordinary kriging system was presented in Chap- 
ter 12, we saw that, not only is the variogram (or covariance) be- 
tween all pairs of sample locations called for, but variogram values are 
also called for between all sample locations and the locations where 
we wish to make an estimate [l]. The separation vector between the 
sample locations and the locations where we require estimates con- 
ceivably could involve a direction and distance for which we do not 
have a sample variogram value. Therefore, in order to ensure that 
we can build the ordinary kriging matrices, we require a model that 
will enable us to compute a variogram value for any possible sepa- 
ration vector. In this chapter we will see how to construct such a 
model. 

We will begin by examining the constraints that a model must 
respect. We cannot use any arbitrary function, but must choose func- 
tions that obey certain rules. After examining these constraints we will 
present several “basic” variogram models that respect all constraints 
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and that will form the building blocks for more complex models. Then 
we will show how these basic models can be combined to  build a more 
general model of the sample variogram in one direction. Then we will 
show how a geometric and zonal anisotropy in two or three dimen- 
sions can be modeled using different combinations of the basic models. 
Explicit examples will also be given showing how a mixture of the 
geometric and zonal anisotropies in two or three dimensions can be 
modeled. 

In the presence of an anisotropy, it is easiest t o  build the vari- 
ogram model with reference to the axes of the anisotropy. However, 
these anisotropy axes usually will not coincide with the axes of the 
da t a  coordinate system. Thus we may end up requiring variogram 
values between locations that are referenced in the data  coordinate 
system from a variogram model that  is referenced by a second set 
of axes that are not coincident with the first. To get around this 
problem we will provide a simple method that will enable us to  go 
from the coordinate system of one set of axes t o  the other. Finally, 
we will provide a detailed example and show how the sample vari- 
ograms of V ,  U ,  and V crossed with U given in Chapter 7 can be 
modeled. 

Restrictions on the Variogram Model 

Our need for a model comes from the fact that  we may need a vari- 
ogram value for some distance or direction for which we do  not have a 
sample variogram value. For example, the ordinary kriging system pre- 
sented earlier in Chapter 12 will undoubtedly require variogram values 
at distances and directions for which we have not calculated sample 
variogram values. 

Nai'vely we might simply consider interpolating between the known 
values of the directional sample variograms. Although this method will 
provide numbers, it will also provide a major problem: the solution of 
the ordinary kriging equations derived using these numbers may not 
exist or if it does exist, i t  may not be unique. This is because the 
kriging matrices built using such variogram values are not likely to  be 
positive definite [a] .  

If we wish the ordinary kriging equations to  have one, and only 
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Figure 10.1 The solid line in (a) is the variogram model fit to the directional 
sample variogram indicated by the "+" symbols. A complete variogram surface is 
shown in (b). The depression or hole a t  the center of the surface represents the 
variogram at zero distance. As one moves out from the hole in any direction, the 
height of the meshed surface above the base of the slab is proportional to the value 
of the variogram. 

one, stable solution, we must ensure that the left-hand matrix: 

I :  -.. : I 
(16.1) 

satisfies a mathematical condition known as positive definiteness. An 
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explanation of why this condition guarantees existence and uniqueness 
of the solution is beyond the scope of this book. For those who wish 
t o  understand positive definiteness in greater depth, we have included 
references at the end of the chapter. We will make only a brief remark 
on how one can ensure that any kriging matrix is positive definite. 

The matrix K given earlier includes not only the covariances be- 
tween the n available sample locations, but also the covariances be- 
tween the sample locations and the location a t  which we require an  
estimate. A necessary condition that guarantees that the matrix K is 
positive definite is given by 

n n  
W ~ K W  = C C W i W j C i j  > o (16.2) 

i=O j = O  

where w is any vector of weights, (WO, w1, .. - , wn), one of which must 
be nonzero [3]. 

It is interesting to note that Equation 16.2 is the same equation 
we encountered when we discussed random function models. In Chap- 
ter 9, the variance of randoin variable defined by a weighted linear 
combination of other random variables (Equation 9.14) was given as 

n n n  

i= 1 i=l j=1 

Thus the positive definite condition given in Equation 16.2, can 
also be seen as a guarantee that the variance of any random variable 
formed by a weighted linear combination of other random variables will 
be positive. One such random variable that we have already discussed 
is the difference between our estimate and the unknown value, which 
is the estimation error or residual 

I7 

R o = C w ; * &  - Vo (16.4) 

Thus by adhering t o  the positive definiteness condition, we guarantee 
that the estimation error will have a positive variance. 

i=l  

Positive Definite Variogram Models 

One way of satisfying the positive definiteness condition is to use only 
a few functions that are known to be positive definite. Although this 
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may seem restrictive a t  first, we can combine those functions that we 
know are positive definite to  form new functions that are also positive 
definite. In this section we will present some of the functions that are 
known to be positive definite. Although it is possible to concoct a new 
function and to verify its positive definiteness, it is not worth the effort. 
The functions we present in this section are varied enough to enable 
a satisfactory fit to all sample variograms likely to be encountered in 
practice. 

It should be noted that the variogram models introduced in this 
section are those that we consider to be the “basic models”. They 
are simple, isotropic models, independent of direction. The basic var- 
iogram models can be conveniently divided into two types; those that 
reach a plateau and those that do not. Variogram models of the first 
type are often referred to as transition models. The plateau they reach 
is called the sill and the distance a t  which they reach this plateau is 
called the range. Some of the transition models reach their sill asymp- 
totically. For such models, the range is arbitrarily defined to be that 
distance a t  which 95% of the sill is reached. In this section, the sill of 
all transition models has been standardized to one. 

Variogram models of the second type do not reach a plateau, but 
continue increasing as the magnitude of h increases. Such models are 
often necessary when there is a trend or drift in the data values. 

Nugget Effect Model. As was discussed in Chapter 7, many sample 
variograms have an obvious discontinuity at  the origin. While the 
variogram value for h = 0 is strictly 0, the variogram value at  very 
small separation distances may be significantly larger than 0 giving 
rise to a discontinuity. We can model such a discontinuity using a 
discontinuous positive definite transition model that is 0 when h is 
equal to 0 and 1 otherwise. This is the nugget effect model and its 
equation is given by 

0 i f h = O  
1 otherwise (16.5) 

In geostatistical literature the nugget effect is not usually given ex- 
plicitly as a basic model, but rather appears as a constant Co in the 
variogram equation, with the understanding that this “constant” is 0 
when h = 0. Our notation for the nugget effect is wo7o(h), where wo is 
the height of the discontinuity at the origin and ?‘o(h) is the standard- 
ized basic model given in Equation 16.5. This notation is consistent 
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- - - - -  exponential model 
Gaussian model 
spherical model 

---- 

range h 

Figure '10.2 

exponential, and Gaussian models-shown here with the same range and sill. 
The three most commonly used transition models-the spherical, 

with the presentation of the basic models in this section and will be- 
come convenient later when we combine the basic models. 

Spherical Model. Perhaps the most commonly used variogram model 
is the spherical model, whose standardized equation is 

1.5; h - 0.5($)3 if h 5 a 
otherwise (1G.G) 

where a is the range. This model is shown in Figure 16.2 by the solid 
line. It has a linear behavior a t  small separation distances near the 
origin but flattens out at larger distances, and reaches the sill at a. In 
fitting this model to a sample variogram it  is often helpful t o  remember 
that  the tangent a t  the origin reaches the sill at about two thirds of 
the range. 

The Exponential Model. Another commonly used transition model 
is the exponential model. Its standardized equation is 

3h ~ ( h )  = 1 - ezp(--) 
U 

(16.7) 

This model reaches its sill asymptotically, with the practical range a 
defined as that distance a t  which the variogram value is 95% of the sill. 
[4]. Like the spherical model, the exponential model is linear a t  very 
short distances near the origin, however it rises more steeply and then 
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flattens out more gradually. In Figure 16.2 it is shown by the alternat- 
ing long and short dashes. In fitting this model to a sample variogram 
its helpful to  remember that the tangent at the origin reaches the sill 
a t  about one fifth of the range. 

The Gaussian Model. The Gaussian model is a transition model 
that is often used to  model extremely continuous phenomena. Its equa- 
tion is 

3h2 
Y( h)  = 1 - ercp( - 7) (16.8) 

Like its cousin, the exponential model, the Gaussian model reaches its 
sill asymptotically, and the parameter a is defined as the practical range 
or distance at which the variogram value is 95% of the sill [4]. The 
distinguishing feature of the Gaussian model is its parabolic behavior 
near the origin; in Figure 16.2 it is shown using the long dashed line. 
It is the only transition model presented whose shape has an inflection 
point. 

The Linear Model. The linear model is not a transition model 
since it does not reach a sill, but increases linearly with h [5 ] .  In its 
standardized form it is written simply as 

Models in One Direction 

At this point we have a few basic models that we can fit to  a directional 
sample variogram. Actually, in the isotropic case the sample variogram 
depends only on the separation distance and not on direction and thus 
all the directional sample variograms will be the same. In such cases 
we can model the omnidirectional sample variogram as though it were 
a directional sample variogram and we are finished. In fact the om- 
nidirectional sample variogram is preferred since it is usually “better 
behaved” and thus easier to  model. 

Although one can sometimes model a directional sample variogram 
satisfactorily using one basic model, more often a combination of basic 
models is required to obtain a satisfactory fit. This brings us to an 
important property of positive definite variogram models: any linear 
combination of positive definite variogram models with positive coeffi- 
cients is also a positive definite model [6] .  
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This property provides us with a very large family of positive defi- 
nite models since any model of the form 

n 

~ ( h )  = C Iwilyi(h) (16.10) 

will be positive definite as long as the n individual models are all 
positive definite. 

In geostatistical jargon, a linear combination of basic variogram 
models is said to form a model of “nested structures,” where each one 
of the nested structures corresponds to  a term of the linear combination 
in Equation 16.10. 

To fit a combination of basic variogram models to a particular di- 
rectional sample variogram, we must decide which of the basic model(s) 
best describes the overall shape. If the sample variogram has a plateau, 
one of the transition models will be most appropriate; if not, perhaps 
the linear model may be more appropriate. 

Among the three transition models given in the previous section, 
the choice usually depends on the behavior of the sample variogram 
near the origin. If the underlying phenomenon is quite continuous, the 
sample variogram will likely show a parabolic behavior near the origin; 
in such situations, the Gaussian model will usually provide the best fit. 
If the sample variogram has a linear behavior near the origin, either 
the spherical or exponential model is preferable. Often one can quickly 
fit a straight line to  the first few points on the sample variogram. If 
this line intersects the sill a t  about one fifth of the range, then an  
exponential model will likely fit better than a spherical. If it intersects 
at about two thirds of the range, then the spherical model will likely 
fit better. 

In using Equation 16.10, we are not limited t o  combining models of 
the same shape. Often the sample variogram will require a combination 
of different basic models. For example, a sample variogram that does 
not reach a stable sill but has a parabolic behavior near the origin may 
require some combination of the Gaussian model and the linear model. 

Beginners at the art  of variogram modeling often have a tendency 
t o  overfit the sample variogram. Three or more basic models may 
be combined to capture each and every kink of the sample variogram 
points. Such complicated models usually d o  not lead t o  estimates more 
accurate than those provided by simpler models. If the major features 
of the sample variogram can be captured by a simple model, then 

i= 1 
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it will provide solutions that are as accurate as those found using a 
more complex model. The principle of parsimony is a good guide in 
variogram modeling. For example, if a single exponential model fits 
the sample variogram as well as two nested spherical models, then the 
simpler exponential model is preferable. 

In deciding whether or not a particular feature of the sample var- 
iogram should be modeled, it is wise to consider whether or not a 
physical explanation exists for the feature. If qualitative information 
about the genesis of the phenomenon explains or confirms a particu- 
lar feature of the sample variogram, then it is worth building a model 
which includes that feature. If there is no explanation, however, the 
feature may be spurious and not worth modeling. 

Once the basic models are chosen, modeling the sample variogram 
becomes an exercise in curve fitting in which there are several param- 
eters with which to  play. For the transition models given earlier, the 
range parameter a can usually be picked quite easily from the sam- 
ple variogram. The nugget effect can also often be picked from the 
sample variogram by extrapolating the linear behavior of the first few 
points back to the y axis. Choosing the coefficients for the basic mod- 
els (w1, . . . , wn in Equation 16.10) is a bit trickier. The most useful 
guideline for choosing these coefficients is to remember that their sum 
must equal the sill of the sample variogram. Within this guideline, 
there are many possible choices, and a satisfactory fit often requires a 
trial and error approach. A good interactive graphical program can be 
tremendously helpful. 

Models of Anisotropy 

Often, directional sample variograms will reveal major changes in the 
range or sill as the direction changes. The example in Figure 16.3a 
shows an isometric view of a variogram surface where the range changes 
with direction, while the sill remains constant. This type of anisotropy 
is known as the geometric anisotropy. In case of the zonal anisotropy, 
the sill changes with direction while the range remains constant. The 
example in Figure 16.3b shows both the range and sill changing with 
direction and is a mixture of both the geometric and zonal anisotropies. 

Given a set of sample variograms which show the range and/or 
sill obviously changing with direction, one begins by identifying the 
anisotropy axes, This is usually done by experimentally determining 
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Figure 16.3 In (a), the  isometric drawing of the  variogram surface shows a n  
example of a geometric anisotropy where the  range changes with direction while 
the sill remains constant. Another anisotropy type is the  zonal, where the  sill 
changes with direction while the  range remains constant. A mixture of the two 
anisotropy types is shown in (b). 

the directions corresponding to the minimum and maximum range or 
the maximum and minimum sill in the case of the zonal anisotropy [7]. 
Contour maps of the variogram surface, such as the one shown in 
Figure 7.6, are tremendously useful for determining these directions. 
Another alternative, also shown in Chapter 7, is to plot the experi- 
mental ranges for the different directional sample variograms on a rose 
diagram. 

# 

Qualitative information, such as the orientation of lithologic units 
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Figure 16.4 This figure shows the equivalence between a transition model with 
range a and the transition model with range 1 and equal sill values. These two 
models are equivalent providing they are evaluated using the vectors h and h/a 
respectively. 

or bedding planes, is usually very helpful in identifying the axes of 
the anisotropy. A knowledge of the genesis of the phenomenon under 
study can also be very helpful. For example, airborne pollution is 
likely to be more continuous in the prevailing wind direction than in a 
perpendicular direction. 

Having identified the axes of the anisotropy, the next step is to 
put together a model that describes how the variogram changes as the 
distance and direction change. For now we will work in the coordinate 
system defined by the axes of the anisotropy. Once we have seen how 
to  build a complete model in this coordinate system we will look at a 
method that will enable the variogram model to be used in the data 
coordinate system. 

One method for combining the various directional models into a 
model that is consistent in all directions is to define a transformation 
that reduces all directional variograms to a common model with a stan- 
dardized range of 1. The trick is to transform the separation distance 
so that the standardized model will provide us with a variogram value 
that is identical to any of the directional models for that separation 
distance. 

For example, two transitional variogram models with the same sill 
are shown in Figure 16.4. One has a range of 1 while the other has 
a range of a. Note that if we evaluate the model with range 1 a t  
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a distance of h / a  we will get the same value that we would get by 
evaluating the model with range a at  a distance of h. Thus we have 
effectively reduced the model with range a t o  an equivalent model with 
range 1 by reducing the separation distance h to  h / a .  We can express 
this equivalence as 

(16.1 1) 
h 

Y ~ ( - )  = 7 4 h )  or Yl(h) = Y,(ah)  
U 

or, if we let hi equal then, 

Thus any directional model with range a can be reduced to  a stan- 
dardized model with a range of 1 simply by replacing the separation 
distance, h, by a reduced distance k .  

The concept of an  equivalent model and reduced distance can be 
extended t o  two-dimensions. If a, is the range in the 2 direction and 
a ,  the range in the y direction, then the anisotropic variogram model 
can be expressed as 

and the reduced distance hi is given by 

( 16.14) 

where h, is the component of h along the z axis and h, is its component 
along the y axis. 

Similarly, the anisotropic variogram model in three dimensions, 
with ranges a,, a,, and a,  can be expressed as 

Y(h) = T ( b , h y , h z )  = ri(hi) (16.15) 

and the reduced distance hi is given by 

(16.16) 

The method of using equivalent models and reduced distances also 
works with models that  do not reach a sill. Equations 16.12 through 
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Transitional directional variogram models along the axes of a 
three-dimensional geometric anisotropy. 

16.16 can also be applied to linear directional models with slopes a,, 
ay, and a, .  The reduced distances would be a&, a&, and a,h and the 
equivalent isotropic model with slope 1 is given by 7 l ( a , h )  = Y,,(h) 
etc. 

In the following paragraphs we have provided several examples of 
different models that use the equivalent model and reduced distance 
trick. The equation of the final model in three dimensions is also 
provided for each example. 

Geometric Anisotropy - One Structure. Recall that the geomet- 
ric anisotropy is characterized by directional sample variograms that 
have approximately the same sill but different ranges (in the case of 
a linear variogram, the slope will vary with direction). Figure 16.5 
shows three directional variogram models along the three perpendicu- 
lar axes of the anisotropy. Each directional model consists of only one 
structure, and all three have the same sill value; however, their ranges 
are different. The equivalent three-dimensional variogram model for 
Figure 16.5 is given by 

and the reduced distance hl is 

(16.17) 

( 16.18) 
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Figure 16.6 A second example of transitional directional variogram models along 
the axes of a three-dimensional geometric anisotropy. In this example, each direc- 
tional model consists of three structures. The first is the the nugget with coefficient 
WO. The second is the transition structure with ranges al,l, a y , i ,  ar , l  and coefficient 
w l .  The third is the transition structure with ranges as,2,  ay,p,  a , , ~  and coefficient 
2u2. 

where a,, a y ,  and a ,  are the ranges of the directional variogram models 
along the axes of the anisotropy; h,,hy, and h,  are the components 
of h in the z,y, and z directions of the anisotropy axes and Yl(h1) is 
the equivalent model with a standardized range of 1. Note that for 
each nested structure, the directional models must all be the same type. 
That is, the directional models must all be either spherical, exponen- 
tial, or some other suitable model for each nested structure; however, 
the model types can differ from one nested structure to  the next. For 
example the first nested structure for each of the directionals might 
consist of a spherical model while the second nested structure could be 
an exponential model. 

Geometric Anisotropy - Nugget and Two Structures. A mod- 
eling problem that is commonly encountered in practice is shown in 
Figure 16.6. Each directional model consists of three structures, the 
nugget effect and two additional transition structures. The nugget ef- 
fect is isotropic in three directions while the remaining two structures 
are isotropic in the z, y plane but show an anisotropy between the z di- 
rection and the 2, y plane. We will build the three-dimensional model 
for this example by considering each nested structure in turn. 
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The nugget effect is isotropic and can be modeled straightforwardly. 
Its equation is given by 

7(h) = woro(h) (16.19) 

where ?,-,(h) is defined by Equation 16.5. 
The next structure is identified in Figure 16.6 by the ranges a,,l, 

uy,l, and a,,l and the coefficient w1. This structure is isotropic in the 
2, y plane but shows an anisotropy between the 2, y plane and the z 
direction. The equivalent isotropic model of this structure is given by 

7(h) = Iwll-h(hl) (16.20) 

and the reduced distance hl  is 

(16.21) 

For the last structure, the ranges along the three principal axes 
of the anisotropy are given by ax,2, ay,2, and a2,2 and the coefficient 
by w2. This structure is also isotropic in the 2, y plane and shows an 
anisotropy between the 5, y plane and the z direction. The equivalent 
isotropic model is given by 

and the reduced distance h2 is 

(16.23) 

The complete three dimensional anisotropic model is obtained by 
combining the three equivalent isotropic models of Equations 16.19 
through 16.22 to  obtain 

To summarize, the geometric anisotropy requires some foresight 
in modeling the directional sample variogranis. All the directional 
variogram models must have identical sill values. Each nested structure 
in any particular directional variogram model must a.ppear in all the 
other directional models with the same coefficient w. 
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Figure 10.7 The geometric anisotropic variogram model shown in (a) has been 
combined with the directional (zonal) component shown in (b) and the resulting 
mixture is shown in (c). 



Modeling the Sample Variogram 385 

Figure 16.8 A third example of transitional directional variogram models along 
the axes of a three-dimensional anisotropy. The directional models along the I and 
y axis show the same sill, w1, but different ranges. However, the directional model 
along the z axis shows a different range and sill and indicates a mixture of geometric 
and zonal anisotropies. 

Zonal and Geometric Anisotropy. A zonal anisotropy is one in 
which the sill value changes with direction while the range remains 
constant. In practice we rarely find a pure zonal anisotropy; it is more 
common to find a mixture of the zonal and geometric anisotropies 
together. 

Figure 16.7a shows a perspective view of the geometric variogram 
surface where the range changes with direction while the sill remains 
constant. Figure lG.7b shows a zonal variogram surface where the var- 
iogram only changes in one direction. Figure 16.7c, shows the resulting 
model obtained by combining the geometric anisotropy shown in Fig- 
ure 16.7a with the zonal model shown in Figure 16.7b. Both the sill 
and the range change with direction in the combined model. 

The example in Figure 16.8 consists of three directional variogram 
models along the axes of the anisotropy. Each directional model con- 
sists of one structure. The directional models along the z and y axes 
have the same sill, but different ranges. The directional model along 
the z axis has a shorter range and a larger sill than the directional 
models for 5 and y. The isotropic model for these anisotropies consists 
of two structures similar to the models illustrated in Figures 16.7a and 
b. The first structure is modeled as a geometric anisotropy, while the 
second is modeled as a zonal component using a directional model. 
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The equivalent model for the first structure will be an isotropic 
model with a sill of w1 and a range of 1. It is important t o  note 
that  this model is isotropic, which means it must return a value of 
w1 when evaluated for the vector (O,O,a,). Its equation is given 

-0) = IwllYl(h1) (16.25) 
by 

and the reduced distance hl is 

h 1 =  /- (”)”(”)”(-) (16.26) 

The second structure has a sill equal t o  w2 and exists only in the 
h, direction. This zonal component is modeled using an equivalent 
directional variogram in the z direction; 

Y(h) = ~ 2 Y i ( h 2 )  (16.27) 

and the reduced distance h2 is 

(16.28) h* h2 = - 
a, 

The complete model is given by 

(16.29) 

Matrix Notation 

The method for reducing directional variogram models t o  an isotropic 
model with a standardized range of 1 can be conveniently summarized 
using matrix notation. In general, for those final models that  contain 
n nested structures, one reduced distance h, will be needed for each 
structure. These reduced distances can be summarized by the vector 
h, that  is defined by 

h, = T h  (16.30) 

where the matrix T is given by 

(16.31) 
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and a,, ay ,  and a, are the ranges of the directional models (or inverse 
of the slope in the case of the linear model) along the anisotropy axes x, 
y, and z .  For example, the vector hl in Equation 16.25 can expressed 
as 

' 0 0  
h , = [ ?  $ : ] . [ " : I  h Z  (16.32) 

0 0 ,  
Similarly, the vector h2 in Equation 16.27 can be expressed by replacing 
h, and h, with zeros. We can think of the ranges a, and a, as being 
very large or infinite, making the corresponding elements of T approach 
0, so that the multiplication of any vector h by T provides only the 
zonal component 

0 0  0 
h 2 =  [0" 0" ;I.[ (16.33) 

The length of each of the vectors hl and h2 is given by Equations 16.25 
and 16.27. 

The final model should always be checked by evaluating it for key 
distances and directions. A good starting point is to ensure that the 
model reaches the sill at  the appropriate distance in each direction. For 
example, the model given in Equation 16.29 must return the variogram 
values w1, w1, and w1 + w2, respectively, when evaluated for the three 
vectors 

The model should also be evaluated for a series of distances along 
each anisotropy axis to ensure that it returns the correct directional 
variogram in each case. An additional check that is often used is to 
calculate values from the directional variogram model along some ar- 
bitrary direction in between the directions of the anisotropy axes and 
then plot these values and compare them to the directional sample var- 
iograms that have been calculated in the same direction. They should 
compare quite well if the anisotropy directions have been correctly 
identified and the modeling has been done correctly. 
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Coordinate Transformation by Rotation 

Now that we know how to model the sample variogram within the 
coordinate system coincident with the anisotropy axes, we need to  
consider the case where the anisotropy axes do not coincide with the 
axes of the data  coordinate system. 

In general, the orientation of the anisotropy is usually controlled 
by some physical feature inherent in the phenomenon represented by 
the data,  whereas the orientation of the data  coordinate system is 
often arbitrary. There is no reason why these two axial systems should 
coincide with each other. 

The procedures we have described in this chapter provide us with a 
variogram model that  can be evaluated for any distance and direction 
expressed in the coordinate system coincident with the anisotropy axes. 
Given the components (hk,  h’y, h:) of any vector h in the coordinate 
system coincident with the anisotropy axes, we can calculate a reduced 
distance and use an equivalent isotropic model with a standardized 
range of 1. However, when the anisotropy axes are not aligned with 
the axes of the data  coordinate system the components ( h z ,  h,, h,) of 
the separation vectors in the data coordinate system will have quite 
different values when referenced in the coordinate system coincident 
with the anisotropy axes. Thus before the model can be evaluated 
for any vector referenced in the data  coordinate system, references 
must be established that link that vector with the coordinate system 
coincident with the anisotropy axes. Perhaps it is easier t o  think of 
this process as a transformation. We simply transform the vector from 
the data  coordinate system to  the coordinate system coincident with 
the anisotropy axes and then evaluate the anisotropic variogram model 
using the transformed vector. 

The method presented here for making the transformation is not 
unique, but it is reasonably straightforward and easy to apply. We will 
use a matrix R t o  make the transformation as follows 

h’= Rh (16.37) 

where h is the vector in the data coordinate system and h’ is the same 
vector transformed to  the anisotropic coordinate system. Thus once 
we have defined R, we will be able to  transform any vector from the 
da t a  coordinate system to  the anisotropic system, and then evaluate 
the isotropic variogram model using the transformed vector h’. 
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Figure 16.9 The transformation of a three dimensional coordinate system can be 
defined by two angles of rotation, where the first angle a, shown in (a), is defined 
as the clockwise rotation angle about the z axis, forming the new axes I’ and 9’. 
The second rotation angle 4, shown in (b),  is the angle of clockwise rotation about 
the y 1  axis, forming the new axes d’ and 2’. 

To begin the definition of R, we define two angles of rotation, 
following the trigonometric conventions of the Cartesian coordinate 
system. The positive directions of the x,y, and z axes are shown in 
Figure 16.9a. The first rotation angle, a, is defined as the clockwise 
rotation about the z axes forming the new axes x‘ and y’. (Note 
that a clockwise direction around an axis is defined by looking in the 
positive direction of that axis). The second rotation angle, 4, shown 
in Figure 16.9b is defined as the clockwise rotation about the y‘ axes 
forming the new axes XI’ and z’, These two rotation angles enable us 
to define the transformation matrix R as follows 

c o s ( a ) c o s ( ~ )  sin(a)cos(q5) sin(4) 

-cos(a)s in(4)  -sin(a)sin((b) cos(4) 
(16.38) 

O I  
R =  [ -sin(a) cos(a) 

To summarize, given that x, y, and z are the axes of the data coor- 
dinate system and XI‘, y’, and z’ are the axes of the anisotropy system, 
we can define a transformation matrix R using Equation 16.38 which 
will transform any vector h defined in the data system of coordinates to 
h‘, defined in the anisotropic coordinate system. Then the anisotropic 
variogram model can be correctly evaluated using the vector h‘. 
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The calculation of the vector h, containing the reduced distances 
given in Equation 16.30 can be combined with the transformation of 
coordinate systems given by Equation 16.37 to  obtain the transformed 
reduced vector hk as follows 

hk = TRh (16.39) 

Note that the order of T and R cannot be reversed. The vector h 
must be defined in the anisotropic coordinate system before a reduced 
vector can be calculated. 

The Linear Model of Coregionalization 

So far in this chapter, we have discussed only the modeling of a sin- 
gle variable. The linear model of coregionalization provides a method 
for modeling the auto- and cross-variograms of two or more variables 
so that the variance of any possible linear combination of these vari- 
ables is always positive. Each variable is characterized by its own 
sample autovariogram and each pair of variables by their own sam- 
ple cross-variogram. The  model for each of these sample variograms 
may consist of one or more basic models as shown in Equation 16.10; 
however, the same basic model must appear in each auto- and cross- 
variogram. In other words, each auto- and cross-variogram model must 
be constructed using the same basic variogram models. For example, 
consider two variables, U and V .  The auto- and cross-variogram mod- 
els of U and V must be constructed using the same basic variogram 
models as follows 

Yu(h) 
Yv(h) = voYo(h) t viYi(h) + t vmYm(h) (16.40) 

where Yu(h), Yv(h), and 7uv(h) are the auto- and cross-variogram 
models for U and V ,  respectively; the basic variogram models are given 
by Yo(h), Yl(h), ... ,Ym(h); u , v  and w are coefficients, possibly neg- 
ative. We can rewrite Equation 16.40 in matrix form as combinations 
of each basic model as 

= UOYO(h) t ulYl(h) + * * *  + umYm(h) 

Yuv(h) = woYo(h) + wiYl(h) t + wmYm(h) 

0 Combinations of the first basic model, Yo(h). 



Modeling the Sample Variogram 391 

0 Combinations of the second basic model, 7’1 (h). 

0 Combinations of the mth basic model, ’Ym(h). 

To ensure the linear model given in Equation 16.40 is positive def- 
inite, it is sufficient to  ensure that all the matrices of the coefficients 
u ,v ,  and w in Equations 16.41 to 16.43 are positive definite. This 
implies that the coefficients must be chosen so that 

(16.44) u j  > 0 and v j  > 0, for all j = 0,.  - - ,  m 
u j . v j > w j . w j ,  forall j=O, . . - ,m  

The restrictions imposed by Equations 16.44 can make the modeling of 
a coregionalization somewhat difficult. Often one of the auto- or cross- 
models may not fit its sample variogram very well, while the others fit 
quite well. In such situations, one must think of each individual model 
as a small part the total model and judge the overall fit accordingly. 
Equations 16.44 suggest two points that are helpful when modeling 
a coregionalization. First, a basic model that appears in any auto 
variogram model does not necessarily have to be included in the cross- 
variogram model. Second, any basic model that is included in the 
cross-variogram model must necessarily be included in all the auto 
variogram models. 

Models for the Walker Lake Sample Variograms 

In Chapter 7 we presented sample variograms for the variables V ,  U ,  
and cross-variograms between U and V ,  In this section we will model 
these sample variograms using the linear model of coregionalization. 
The auto variogram models of V and U are required for the ordinary 
kriging of V and U in Chapter 12. The complete linear model of 
coregionalization is required for the cokriging of U in Chapter 17. 
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Table 10.1 A summary of the basic models appearing in each of the isotropic 
models for V ,  U, and U crossed with V. 

Basic Cross- Auto- 
model Range Direction variogram variograms 

Spherical 25 N76"E J J 
Spherical 50 N76"E J J 

J J 
J 

Spherical 30 N14"W 
Spherical 150 N14'W J 

The directional sample variogranis and their models for V ,  U ,  and 
U crossed with V are given in Figures 16.10, 16.11, and 16.12, respec- 
tively. Each figure contains three directional variograms. The vari- 
ograms along the minor axis, N76"E, of the anisotropy are given in (a) 
of each figure, while those along the major axis, N14"W, are shown in 
(b). An average of the directionals along the intermediate directions, 
N31"E and N59'W, is shown in (c) to verify the anisotropic model in 
these directions. 

Recall from the previous section that any basic model appearing 
in the cross-variogram of the linear model of coregionalization must 
necessarily appear in all the auto variogram models. A summary of all 
the basic models used is given in Table 16.1. 
The anisotropic auto-variogram model for V is given by 

Yv(h) = 22,000 + 40,000 Sphl(h{) + 45,000 Sphl(hL) (16.45) 

where the reduced distance vectors hh are calculated using Equa- 
tion 16.39 as follows; 

(16.46) 
1 cos( 14) sin( 14) 

= [ $: ] = [ ? 1 .  [ -sin(l4) cos(14) ] * [ tz ] 
and 

(16.47) cos( 14) sin( 14) 
h L =  [ = [ $ ; I* [  -sin(l4) C O S ( ~ ~ ) ] * [  hh;]  
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+ 
+ + + + +  

40,000 

- 
0 25 50 75 100 

Ol;) 

120,000 - 
+ + + + +  

* 

0 1 I I I 

0 25 50 75 100 
h 

Figure 16.10 The variogram model for V is shown along the minor anisotropy 
axis, N76'E, in (a), along the major axis, N14'W, in (b). The average of the 
intermediate directions, N31'E and N59'W, is shown in (c). 
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(a) yu(h‘,) = 440,000 + 70,000 SphZ(h’J + 95.000 Sph5&fx) 

I I I I 

0 25 50 75 100 
W,) 

(b) y ~ ( h ’ ~ )  = 440,000 + 70,000 Sph3001;) + 95,000 Sphlso(h’y) 

I I I I 

0 25 50 75 100 
(h’y) 

r 700,000 

.. 
0 25 50 75 100 

h 

Figure 18.11 The variogram model for U is shown along the minor anisotropy 
axis, N76’E, in (a), and along the major axis, N14’W, in (b).  The average of the 
intermediate directions, N31°E and N59’W, is shown in (c). 
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I I I I 

(a) y ~ ( h ’ , )  = 47,000 + 50,000 Sphdh’,) + 40.000 Sphs0(h’,) 

150,000 r + 

50,000 

0 ‘  I I I I 
0 25 50 75 100 

(h’,) 
(b) yw(h’y) = 47,000 + 50,000 Sph3o(h’,) + 40,000 SphlSO(h’y) 

150,000 r 

s 
50.000 

0 ’  I I I I 
0 25 50 75 100 

Wy) 
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The length of h‘, is given by 
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and that of hi by 

(16.48) 

(16.49) 

The anisotropic auto variogram model for U is given by 

where the reduced distance vectors hi, hk and their lengths are given 
by Equations 16.46, 16.47, 16.48, and 16.49, respectively. 

The  anisotropic cross-variogram model for U and V is given by 

?‘v~( h) = 47,000 + 50,000 Sphl( hi) + 40,000 Sphl( hk) (16.51) 

where the reduced distance vectors hi ,  hi  and their lengths are given 
by Equations 16.46, 16.47, 16.48, and 16.49, respectively. 

Finally the positive definiteness of the model is verified for each 
structure by applying Equations 16.44. 

0 The nugget. 

229 Oo0 477 Oo0 = 7,471,000,000 > 0 (16.52) 
47,000 440,000 det [ 1 

0 The second structure. 

[ 40’ Oo0 50’000 ] = 300,000,000 > 0 det (16.53) 50,000 70,000 

0 The third structure. 

457 Oo0 407 Oo0 = 2,675,000,000 > 0 (16.54) 40,000 95,000 det [ 1 
Since the determinants of the matrices of the coefficients are all 

positive and all the diagonal elements are positive, the linear model of 
coregionalization is positive definite. 
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Notes 

[l] The correspondence between the variogram and the covariance that 
we discussed in Chapter 9 allows us to go from one to the other. 
Throughout this chapter, we refer to the modeling of variogram 
yet show all of our matrices in terms of covariances. Once the var- 
iogram model is specified, the covariance for a particular distance 
and direction, h, can be calculated by subtracting 7(h) from the 
sill of the variogram model. 

[2] Even if the solution of the ordinary kriging equations is unique, 
it may be very sensitive to small changes in the kriging matrices. 
Some of the kriging weights may be considerably larger than 1 and 
others considerably less than 0, if the matrices are not positive 
definite. By respecting the positive definiteness condition, one not 
only guarantees that the solution exists and is unique, but also that 
the solution is stable. 

[3] Although Equation 16.2 may be true for any choice of weights, it 
does not provide a very useful way to check for positive definiteness 
of a matrix in practice. The Notes to Chapter 12 provided three 
alternative methods that are much more practical. 

[4] Elsewhere in the geostatistical literature, the exponential and 
Gaussian models are given without the factor of 3. While this may 
make the expression of the basic model more aesthetically pleasing, 
it has the disadvantage that the parameter a defined this way is not 
the practical range. We have chosen to present all of the transition 
models in such a way that a is the range or the practical range. 
If one is using charts of auxiliary functions (see Chapter 19) for 
exponential or Gaussian variograms, one should check to see how 
the chart is calibrated. It is likely that the parameter a, which ap- 
pears on the chart, is not the range, but rather is one third of the 
practical range. 

[5]  The linear variogram model is not strictly positive definite. There 
are combinations of weights that will make the expression in Equa- 
tion (16.2) negative. Fortunately, it is positive definite if we insist 
that the weights in Equation 16.2 must sum to 0. Under these con- 
ditions the linear model is a valid model for ordinary kriging arid 
for cokriging which we present in Chapter 17. 
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[6] The condition that the coefficients must be greater than 0 is suffi- 
cient to  guarantee positive definiteness, but it is not necessary. A 
linear combination of positive definite models with negative coeffi- 
cients may or may not be positive definite. For example, negative 
coefficients are required for modeling cross-variograms when the 
two variables are negatively cross-correlated. 

[7] In data sets where the structural control is strong, the data values 
might be equally continuous along two different directions that are 
not mutually perpendicular (for example, the two directions corre- 
sponding to  conjugate shears) or perhaps the direction of maximum 
continuity follows a folded stratigraphic unit and thus changes as 
the folded unit changes. The procedures described in this chapter 
are appropriate only for those situations where the directions of 
minimum and maximum continuity are perpendicular to  one an- 
other. In data sets where the structural or stratigraphic maximum 
and minimum influences are very strong and not necessarily mutu- 
ally perpendicular it may be best to model the spatial continuity 
in a coordinate system that is geologically relevant. Although the 
unfolding of structure or the calculation of stratigraphic distances 
is certainly more tedious than the straightforward use of a perpen- 
dicular data coordinate system, there are several examples in the 
literature that demonstrate the advantages of using a coordinate 
system relevant to  the reality of the data set. 
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17 
COKRIGING 

In all of the estimation methods we have previously studied, all esti- 
mates were derived using only the sample values of one variable. For 
example, estimates of V were derived using only the available V data;  
however, a data  set will often contain not only the primary variable of 
interest, but also one or more secondary variables. These secondary 
variables are usually spatially cross-correlated with the primary vari- 
able and thus contain useful information about the primary variable. 
We have already seen a n  example of such cross-correlation in Fig- 
ure 4.14. The cross h-scatterplots in this figure clearly showed that 
U values were correlated with nearby V values. In Chapter 12 we 
saw how we could exploit the spatial correlation of a variable t o  pro- 
duce good estimates. Intuitively, it seems we should also be able to 
exploit the cross-correlation between variables t o  improve these esti- 
mates. It seems reasonable that the addition of the cross-correlated 
information contained in the secondary variable should help to reduce 
the variance of the estimation error even further. In this chapter we 
present cokriging, a method for estimation that minimizes the variance 
of the estimation error by exploiting the cross-correlation between sev- 
eral variables; the estimates are derived using secondary variables as 
well as the primary variable. 

The usefulness of the secondary variable is often enhanced by the 
fact that  the primary variable of interest is undersampled. For exam- 
ple, in the mining industry all available core samples may be  assayed for 
one particular mincral while only those core samples providing a high 
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assay value for that mineral are assayed for a second mineral. Typ- 
ically, the sampling pattern of the more frequently sampled variable 
is more regular than that of the undersampled variable. A posting of 
these variables will most likely reveal large areas where only the more 
frequently sampled variable exists. In such areas the only informa- 
tion we have about the undersampled variable is the cross-correlated 
information contained by the other variable. 

We begin this chapter with the development of the cokriging sys- 
tem and then follow with an example detailing the construction of the 
cokriging matrices. The remainder of the chapter consists of a case 
study that compares estimates of U calculated by ordinary kriging to 
those calculated by cokriging. 

The Cokriging System 

In order to  simplify the notation, we have chosen to develop the cok- 
riging system in terms of two variables rather than in its full generality 
with any number of variables. 

The cokriging estimate is a linear combination of both primary and 
secondary data values and is given by: 

n m 

i= 1 j=1 

40 is the estimate of U at location 0; u1,. . . , u, are the priinsry data 
at n nearby locations; v1,. . . , v, are the secondary data a t  m nearby 
locations; a l ,  .. . , a ,  and b l ,  .. . ,bm are the cokriging weights that we 
must determine. 

The development of the cokriging system is identical to the de- 
velopment of the ordinary kriging system. For example, we begin by 
defining the estimation error as 

(17.2) 

where U1,. . . , U,, are the raildoin variables representing the U phe- 
nomenon a t  the n nearby locations where U has been sampled and 
V1,. . . , Vm are the random variables representing the V phenomenon 
a t  the m nearby locations where has been sampled. Equation 17.2 
can be expressed in matrix notation as 

R = UQ- uo 
= C";U; +- Cj" bjVj - Uo 

R = wtZ (17.3) 
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where wt = ( a l , .  . . ,a,, b l , .  . . , bm, -1)  and Zt = (U1, .  . . , Ui,  V1,. . . , 
V,, Uo). Equation 17.2 is a linear coinbination of n + m + 1 random 
variables, U1,. . . ,U,, h,. . . ,V, and Uo. In Chapter 9, we gave a n  
expression for the variance of a linear combination of random variables 
Equation 9.14 that  allows us to  express the variance of R as 

V a r { R }  = wtCzw (17.4) 

where Cz is the covariance matrix of Z. Expanding and simplifying 
Equation 17.4 we obtain an expression for the variance of the estima- 
tion error in terms of the cokriging weights and the covariances between 
the random variables: 

V a r { R }  = wtCzw 

= Cy Cy aiajCov{UiUj} + Zy  Cy bibjCov{ViVj} 

+ 2 Cy C? a;bjCov{U;V,} - 2 Cy aiCov{UiUo} 

- 2 C? bjCov{VjUo} + cov{uouo} 
(17.5) 

where Cov{UiUj} is the auto covariance between Ui and Uj ,  Cov{r/;:V,} 
is the auto covariance between I< and Vj and Cov{ U;&} is the cross- 
covariance between U; and Vj. 

The set of cokriging weights we are looking for must satisfy two 
conditions. First, the w i hts must be such that the estimate given in 
Equation 17.1 is unbiased. Second, the weights must be such that  the 
error variances given in Equation 17.5 are the smallest possible. 

The expected 
value of the estimate given in Equation 17.1 is 

Y g  

First, we will tackle the unbiasedness condition. 

E { ~ o }  = E{CY=1 aiUi + Cgl b j y }  

= EY=1 aiE{Ui}  + Cgl bjE{Vj}  (17.6) 

= iizu * C:=1 a; + f iv * czl bj 

where E(U;}  = iizu and E{V,.} = iizv. 
From this equation, it appears that  one way of guaranteeing unbi- 

asedness is t o  ensure that the weights in the first term sum t o  1 while 
those in the second sum to  0: 

n m 

(17.7) 
i= 1 j= 1 
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Though the conditions given in Equation 17.7 are certainly the 
most commonly used nonbias conditions, it should be noted that other 
nonbias conditions are possible; in the cokriging case study we present 
an alternative nonbias condition and compare the results to those ob- 
tained using the conditions given here. 

We are now faced with a classical minimization problem subject 
to two constraints. We are looking for the set of weights that min- 
imizes the error variance given in Equation 17.5 and also fulfills the 
two nonbias conditions, Cp ai = 1 and Cj” bj = 0. As in Chapter 12, 
the Lagrange multiplier method may be used to minimize a function 
with two constraints. To implement the method we simply equate each 
nonbias condition to  0, multiply by a Lagrange multiplier, and add the 
result to Equation 17.5. This gives us the following expression: 

n m 

Vur{R}  = w t C ~ w  + 2/41(xai  - 1) + 2/42(Chj) (17.8) 
i= 1 j =  1 

where and p2 are the Lagrange multipliers. Note that the two 
additional terms are both equal to 0 and do not contribute to the error 
variance V a r { R } .  

To minimize Equation 17.8 we compute the partial derivatives of 
V a r { R }  with respect to the n + m weights and the two Lagrange 
multipliers: 

-2C0v(UoUj} + 2/41 for j = 1, n 
n m 

8(Var{R}) = 2 ~ a ; C o v { U ; V j }  + 2 b;Cov{KJ;.V,} 
i= 1 i=l 8 b j  

-2Co~{UoVj} + 2/42 for j = l , m  

The cokriging system is finally obtained by equating each of these 
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n + rn + 2 equations t o  0 and rearranging the individual terms: 
n m 

C a;Cov{U;Uj} + C bjCo~(V,Uj} t 
i=l i=l  

= COV{ UoUj} for j = 1, n 

n m 

Ca;Cov{UiVj} -I- ~6iC‘ov{Klf’j} -t ~2 = Cov{UoVj} for j = 1, m 
i=l i= 1 

n 

i= 1 

m Cb;=O (17.9) 
i=l 

The corresponding minimized error variance can be calculated us- 
ing Equation 17.5 or, for this particular set of nonbias conditions, Equa- 
tion 17.5 can be simplified by making substitutions using the Lagrange 
multipliers. The simplified version is: 

i=l j=1 
(17.10) 

The cokriging system given in Equation 17.9 is valid only for point 
estimation. If an estimate of the mean is required over a local area A ,  
two options are available: 

1. Estimate a number of point values on a regular grid within A and 
average them together to obtain an estimate of the mean within 
the area. 

2. Replace all the covariance terms Cov{UoUi} and Cov{UoVj} in 
the cokriging system Equation 17.9, with average covariance val- 
ues c o v { U ~ U i }  and cov{U~V,}, where c o v { U ~ U ; }  is the aver- 
age covariance between Ui and the point U values within A and 
c o v { ( U ~ V j }  is the average cross-covariance between the V, and 
the point U values in A .  

The cokriging system can be written in terms of the semivariogram 
provided the cross-covariance is symmetric, Cov{ UiVj} = Cov{VjUi}. 
Though the cross-covariance may be nonsymmetric, it is most of- 
ten modeled in practice as a symmetric function. The  spatial con- 
tinuity is modeled using semivariograms that are then converted t o  
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v,= 56 + - 
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Figure 17.1 A small cokriging data configuration consisting of two primary and 
three secondary data values. 

covariance values for the cokriging matrices using the relationship 

In order for the solution of the cokriging equations to exist and be 
unique, the set of auto- and cross-variograms must be positive definite. 
The use of the linear model of coregioxialization (Chapter 16) with 
positive definite matrices of coefficients satisfies this condition. 

There are certain situations where cokriging will not improve an or- 
dinary kriging estimate. If the primary and secondary variables both 
exist a t  all data locations and the a u t e  and cross-variograms are pro- 
portional to the same basic model then the cokriging estimates will be 
identical to  those of ordinary kriging. Thus if all the variogram models 
are “quite siinilar” in shape and the primary variable is not noticeably 
undersampled, cokriging will not improve things very much. 

Cuv(h) = ruv(00) - 7uv(h) 

A Cokriging Example 

Our goal in this example is to illustrate the actual construction of 
a cokriging system. A cokriging data configuration is given in Fig- 
ure 17.1 and consists of two primary U and three secondary V data 
surrounding a point to be estimated. The spatial continuity is pro- 
vided by the linear model of coregioxialization obtained from the 275 
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Table 17.1 Tabulation of the covariance and cross-covariance values for the data 
configuration given in Figure 17.1 using the linear model of coregionalization given 
in Equation 17.11. 

Variable Grid Structural 

pair distance distance Cu( h) Cv( h) Cuv(h) - 
u1 Ul 0. 0. 605,000 

12.1 
0. 
0. 

12.1 
10.8 

0. 
11.2 

0. 
0. 

12.1 
10.8 
12.1 

0. 
11.2 
6.7 
9.4 
6.7 
9.4 
4.2 

9.1 
0. 
0. 

9.1 
5.0 
0. 

11.2 
0. 
0. 

9.1 
5.0 
9.1 

0. 
11.2 
2.6 
9.0 
2.6 
9.0 
2.5 

99,155 
605,000 

107,000 
49,623 
57,158 

107,000 
45,164 

107,000 
137,000 
49,715 
57,615 
49,715 

137,000 
45,554 

134,229 
102,334 

70,210 
52,697 
75,887 

U and 470 V sample data. This model is developed in the last part of 
Chapter 16 and is given again in Equation 17.11. All covariance and 
cross-covariance values for the data  configuration in Figure 17.1 have 
been computed using this model and are listed in Table 17.1. Note that 
the covariances are all symmetric; C(h) = C(-h), although Cuv(h) 
need not necessarily equal Cuv( - h). 
Using the covariance values shown in Table 17.1 the matrix form of 
the cokriging system given in Equation 17.9 is constructed as follows 
PI: 
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Table 17.2 
ure 17.1. 

Cokriging weights and the solution for the example shown in Fig- 

Cokriging Cokriging 
Variable Weight Estimate Variance 

u1 0.512 
K -0.216 
u2 0.488 
v2 -0.397 
v3 0.666 
Pl  205,963 
1.12 13,823 
UO 398 681,549 

u1 u2 

I605000 99155 
99155 605000 
137000 49715 
49715 137000 
57615 45554 

1 1 
\ o  0 

I4 
137000 
49715 
107000 
49623 
57158 
0 
1 

v2 

49715 
137000 
49623 
107000 
45164 
0 
1 

v3 

57615 1 0 
45554 1 0 
57158 0 1 
45164 0 1 

107000 0 1 
0 0 0  
1 0 0  

uo 
'134229 

102334 
70210 
52697 
75887 

1 

r O  

The weights obtained from the solution of the cokriging system 
are given in Table 17.2 along with the final estimate, 398 ppm. The 
ordinary kriging estimate of UO for this small example is 630 ppm. 

A Case Study 

This case study provides a comparison between cokriging and ordinary 
kriging. For the cokriging we estimated the undersampled variable U 
using both the 275 U and 470 V sample data; for ordinary kriging, 
we used only the 275 U data. The linear model of coregionalization 
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obtained from the sample variograms of these data  is given by: 

7u(h) = 440,000 + 70,000 Sphl(hi) + 95,000 Sphl(hi) 

?'v(h) = 22,000 + 40,000 Sphl(hi) + 45,000 Sphl(hi) 

Yvu(h) = 47,000 + 50,000 Sphl(hi) + 40,000 Sphl(hi) 
(17.11) 

where the vectors hk are calculated as follows: 

and 

1 cos( 14) sin( 14) h L =  [ = [ i]'[ -sin(14) C O S ( ~ ~ ) ] ' [  !;] (17.13) 

The lengths of hi and hi are given by: 

(17.14) 

For the ordinary kriging exercise we used the variogram model 7u(h) 
as it is given here. 

The cokriging plan calls for point estimation on a regular 10 x 10 m2 
grid. The search radius was restricted to  40 m, and a quadrant search 
was used t o  limit the total number of data in each quadrant t o  no 
more than 6. Within each quadrant, no more than the three closest U 
samples were used. The closest V samples were also retained, up to  a 

A final restriction limited the extrapolation of the primary variable. 
Figure 17.2 is a posting of the 275 sample U data  that was shown 
earlier in Chapter G with the actual sample values posted. No point 
estimations were made further than 11 m from the closest U sample 
value; only 285 of the 780 possible grid points were kriged. 

Two cokrigings were actually done, with each using a different set 
of nonbias conditions. The first cokriging was done using the familiar 
conditions Cy=l aj = 1 and I$, bj  = 0 for the primary and secondary 
weights, respectively. The second cokriging used only one nonbias 

, total of G minus the number of U samples already retained. 
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Figure 17.2 A posting of the 275 Usample data. The actual sample value corre- 
sponds to degree of shading as indicated by the gray scale a t  the top of thefigure. 

condition, which required that the sum of all the weights must equal 
1: 

n m 

C a; + C bj  = 1 (17.15) 

With this alternative uiibiasedness condition, the estimator must be 
slightly modified. The unknown U value is now estimated as a weighted 
linear combination of the nearby U values plus a weighted linear com- 

i= 1 j =  1 
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bination of the nearby V values adjusted by a constant so that their 
mean is equal to  the mean of the U values: 

n m 

ir, = C aiUi + C bj(vj - 7jzv + rizu) 

As one can see, this estimator requires additional information, namely 
an  estimate of the mean value of U and an  estimate of the mean value 
of V over the area that the estimation covers. One simple way to  
estimate the means mv and mu is to  compute the arithmetic averages 
of the 275 sample U values and the corresponding 275 V sample values. 
These are probably reasonable estimates since the sampling pattern 
for both variables within this area is more or less free from clustering. 
Assuming both these estimates are unbiased, then the expected value 
of the point estimate is: 

(17.16) 
i=l j=1 

where E{U;} = mu and E { y }  = mv. The condition 
(17.17) 

(17.18) 
i= 1 j= 1 

therefore ensures that the cokrigiiig estimates are unbiased. 
The search strategy for the ordinary kriging was similar t o  the 

cokriging plan. The same point locations were kriged, the search radius 
was 40 m and the quadrant search was employed with a maximum of 
six data per quadrant. 

The summary statistics in Table 17.3 reveal a global bias in all the 
estimates. The  reason for this bias is due largely to the extrapola- 
tion of high sample values from the Wassuk range anomaly into the 
bordering area, that contains sinall U values. Recall that  U samples 
were obtained oiily in areas of high V values, and if we refer to the 
exhaustive indicator maps in Figures 5.0a-i and 5.10a-i we see that the 
anomalous high areas of U correspond with those of V; thus, the 275 
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Table 17.3 Summary statistics for the ordinary and cokriging estimates of U as 
well as for the true values of U. 

Cokriging Cokriging 
with 1 with 2 

True Ordinary nonbias nonbias 
values kriging condition conditions 

n 285 285 285 285 
m 434 566 493 489 
U 564 357 279 392 

CV 1.30 0.63 0.57 0.80 

Qi 30 275 289 192 
M 205 502 447 468 

max 3,176 1,613 1,496 1,702 
Pow 0.48 0.57 0.52 

min 0 81 56 -156 

9 3  659 796 680 737 

sample values of U are from areas of anomalously high values. This 
is confirmed by the large difference between the sample mean of U, 
434 ppm, and the exhaustive mean value of U, 266 ppm. Note that 
the ordinary kriged estimates are the most severly biased and that the 
cokriged estimates with one nonbias condition are the most smoothed. 

Perhaps the most important thing to notice in this table is the 
large negative cokriging estimate, -156 ppm; of the 285 estimates, 17 
were negative. The reason for the negative estimates originates with 
the nonbias condition xgl b j  = 0. In order for these weights to sum 
to 0, some of them must necessarily be negative. When these negative 
weights are multiplied by large V sample values, negative estimates 
can occur. If the sum of the negative products is larger in absolute 
value than the sum of the positive weights times their sample values, 
then the estimate is negative. Note that the cokriging with one nonbias 
condition does not produce any negative estimates. 

Summary statistics for the three distributions of estimation errors 
are tabulated in Table 17.4. Of the three, the error distribution result- 
ing from the cokriging with one nonbias condition is the most accept- 
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Table 17.4 
estimation errors of U. 

Summary statistics for the distribution of ordinary and cokriging 

Cokriging Cokriging 
with 1 with 2 

Ordinary nonbias nonbias 
kriging condition conditions 

n 285 285 285 
m 133 59 55 
U 502 466 493 

min - 1,979 -2,469 -2,287 
Qi -89 -60 -121 
M 164 152 73 
Q3 427 328 362 

max 1553 941 1412 
M A E  394 346 356 
ikf SE 268,264 219,701 245,681 

able. I t  has the smallest spread of errors as measured by the standard 
deviation, interquartile range, mean absolute error, and mean squared 
error. It also has the smallest maximum error. 

Perhaps the most informative comparison of the three estimations 
can be made using three maps showing the locations of the estima- 
tion errors. Figure 17.3 is a posting of the ordinary kriging estimation 
errors. At first glance the residuals seem to be more or less evenly 
distributed; however, a closer examination shows a border of positive 
residuals around the Wassuk range anomaly. This is indicative of over- 
estimation caused by the extrapolation of the high sample values from 
the Wassuk range anomaly into the bordering areas that contain rela- 
tively lower values of both' U and V. Such overestimation is prevalent 
along the northeast border of the Wassuk anomaly, as indicated by the 
dark plus signs. 

Figure 17.4 is a posting of the cokriging estimation errors using two 
nonbias conditions. This map is quite similar to the map of the ordi- 
nary kriged residuals, although some of the overestimations bordering 
the N'assuk anomaly are smaller, indicated by the slightly lighter shad- 
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Figure 17.3 A posting of the 285 ordinary kriging estimation errors. Positive and 
negative errors are indicated by the + and - signs, respectively. The value of the 
error corresponds to the degree of shading as shown by the gray scale. 

ing of the plus signs. The reduction in the extrapolated overestimations 
is due to the influence of the smaller secondary V values bordering the 
Wassuk anomaly. 

The cokriging estimation errors using one nonbias condition are 
posted in Figure 17.5. The map contains noticeably fewer severe over- 
estimations along the border of the Wassuk anomaly than the previous 
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20 40 60 0 100 120 140 1 0  1 0  M 220 240 260 

Figure 17.4 A posting of the 285 cokriging estimation errors using 2 nonbias 
conditions. Positive and negative errors are indicated by the + and - signs, re- 
spectively. 

two maps do. Most of the symbols are lightly shaded indicating rela- 
tively small estimation errors. This is especially true along the north- 
east border of the Wassuk anomaly. Again, this improvement in the 
estimations is due to the influence of the smaller V sample values bor- 
dering the Wassuk anomaly. The stronger influence of these values in 
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Figure 17.5 A posting of the 285 cokriging estimation errors using one nonbias 
condition. Positive and negative errors are indicated by the + and - signs, respec- 
tively. Note the large overestimations along the northeast border of the Wassuk 
Range in Figure 17.3 are considerably smaller in this figure. 

this estimation is due to  the alternative nonbias condition that results 
in more weight being attributed to the secondary variable. 

To summarize, it appears that cokriging with two nonbias condi- 
tions is less than satisfactory. Consider the case where only two sec- 
ondary data values are found equidistant from the point of estimation 
and from all primary data. Since they are equidistant, they must be 
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weighted equally, and since the nonbias condition requires the weights 
to sum to 0, one weight must be negative, the other positive. Al- 
though this solution is mathematically correct i t  is difficult to imagine 
a physical process for which such a weighting scheme is appropriate. 
Cokriging with two nonbias conditions is also prone to negative esti- 
mates; 17 of the 285 estimates were negative. Though this method did 
reduce the bias, it did not reduce the spread of the errors by much. 

Using one nonbias condition, however, gave us considerable im- 
provements, not only in the bias and the spread of the errors, but also 
in the lower incidence of negative estimates. Though this approach 
required a prior estimation of the global means of U and V, it is clear 
from the case study that even with a rather simple estimate of these 
means we can substantially improve the estimation. 

An Introduction to Applied Geostatistics 

Notes 

[l] A word of caution: some algorithms designed for solving systems 
of equations may develop numerical problems with the covariance 
matrices as they are given in this example. The large differences of 
up to five orders of magnitude between matrix elements may lead to 
problems in precision and provide bad results. One way around this 
is to rescale all the covariance values. For example, we can divide all 
the covariance entries (except the 1s) by 10,000 without altering the 
correct solution. Then the elements in the covariance matrix are all 
closer to the same order of magnitude and the solution less prone 
to numerical instability. 

Further Reading 

Edwards, C. and Penney, D. , Calculus and Analytical Geometry. 
Englewood Cliffs N.J.: Prentice-Hall, 1982. 
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ESTIMATING A DISTRIBUTION 

The estimation methods we have examined in earlier chapters are ap- 
propriate for the estimation of a mean value. In Chapter 10 we looked 
a t  techniques for estimating a global mean, while in Chapter 13 we 
looked at techniques for estimating a local mean. There are many 
important problems, however, that call for estimates of other charac- 
teristics of a distribution of unknown values; in Chapter 8 we gave 
several examples of such problems. In this chapter, we will address the 
issue of estimating the complete distribution of unknown values, both 
globally and locally. 

As with the methods we discussed for estimating a mean, the global 
and local estimation of a complete distribution calls for different ap- 
proaches. If we have many sample data within an area of interest, 
we typically approach it as a global estimation problem. If there are 
few available samples within an area of interest, we view it as a local 
estimation problem. As we will see shortly, the tools we use to esti- 
mate global and local distributions are the same as those we used to 
estimate global and local means: the global problem can be addressed 
by finding appropriate declustering weights for the available samples, 
while the local problem can be addressed by finding weights that ac- 
count not only for clustering, but also for the distance from the area 
being estimated to  each nearby sample. The only difference between 
the methods discussed here and those that we proposed for estimating 
a mean value is that instead of applying them to  the actual sample 
value, we apply them to a transformed value known as an indicator. 
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Cumulative Distributions 

The estimation of a complete distribution can be accomplished either 
by estimating the proportion of values that fall within particular classes 
or by estimating the proportion of values that fall above or below cer- 
tain thresholds. In the first approach, we are estimating the frequency 
distribution; in the second we are estimating the cumulative frequency 
distribution. From an estimate of either of these, the other one can 
easily be calculated. 

In this chapter, we will be estimating the cumulative frequency 
distribution directly. We will define the cumulative distribution func- 
tion, denoted F(v,), to be the proportion of values below the value 
wc. The cumulative frequency below the minimum value is 0 and the 
cumulative frequency below the maximum value is 1: 

There are two general approaches to estimating cumulative distri- 
butions. The first, usually referred to as the nonparametric approach, 
is to calculate estimates ofF(w) at  several values ofw: P(vl) ,  . . , , P(wn). 
The second, usually referred to as the pammetric approach, is to deter- 
mine a function that completely describes the cumulative distribution 
for any value of v. While the parametric approach gives us the entire 
function p(v), it depends very heavily on the use of random func- 
tion model in which the multivariate distribution is assumed to be 
known. The nonparametric approach does not lean as heavily on the 
random function model, but does not produce a complete estimate of 
the cumulative distribution. If the cumulative distribution is needed 
a t  thresholds other than those a t  which it was actually estimated, 
some interpolation or extrapolation between the available estimates 
is required. Such interpolation or extrapolation always involves some 
assumptions about the nature of the cumulative distribution; particu- 
larly for extrapolation beyond the last threshold at  which cumulative 
distribution was actually estimated, these assumptions can have a large 
impact. 

In this chapter, we will adopt a nonparametric approach to the 
problem of estimating a complete distribution. With such an approach, 
the estimation of a complete distribution involves the estimation of the 
proportion above or below several cutoff values. The basic problem in 
estimating a complete distribution, therefore, is the estimation of the 
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Table 18.1 The number of sample V values below 500 ppm in each of the three 
sampling campaigns. 

Number 
Total Below 

Campaign Number 500 ppm Percentage 
1 195 160 82 
2 150 69 46 
3 125 39 31 

proportion of an unknown exhaustive distribution that lies above or 
below a particular threshold. 

The Inadequacy of a NaYve Distribution 

Let us begin our discussion of the problem by looking a t  the estimation 
of the proportion of the the exhaustive Walker Lake area that has a V 
value below 500 ppm. Of the 78,000 V values in the exhaustive data 
set, 63,335 (roughly 80%) are below 500 ppm. In practice, however, we 
do not have an exhaustive data set to which we can refer; our estimate 
of the proportion above 500 ppm must be based only on the available 
samples. 

A straightforward but nai've approach is to use the histogram of 
our samples. Of the 470 available samples, 268 have V values below 
500 ppm; it would clearly be a mistake to conclude from this simple 
calculation that only 57% of the Walker Lake area has V values below 
500 ppm. Even without the privilege of knowing the correct answer, 
we should be suspicious of this simple counting of the samples below 
500 ppm since we already know that our samples have been preferen- 
tially located in a r e a  with high V values. 

Table 18.1 shows the number of samples below 500 ppm for each of 
the three sampling campaigns. In the first campaign, the only one in 
which the samples were located on a pseudoregular grid, about 80% of 
the samples are below 500 ppm; in the second campaign, in which ad- 
ditional samples were located near the highest from the first campaign, 
less than 50% of the samples are below 500 ppm; in the third campaign, 
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this proportion is barely 30%. The only campaign in which a simple 
counting of the samples produces a reasonable answer is the first one. 
As subsequent samples are more likely to be located in areas with high 
values, the simple counting of samples increasingly underestimates the 
actual proportion of values below 500 ppm. 

Though the first campaign is more reliable since its samples are 
not preferentially clustered, it seems wasteful to completely ignore the 
contribution of the other two campaigns; despite their preferential clus- 
tering, they still contain useful information that we should be able to 
use. Earlier, when we looked at  the estimation of the global mean in 
Chapter 10, we ran into a similar problem. By itself, the first campaign 
gave us a more reasonable estimate for the actual exhaustive mean V 
value than either of the last two campaigns. The same tools that we 
used then to incorporate the clustered information in an estimate of the 
global mean can also be used to incorporate the clustered information 
in an estimate of the global proportion below any particular threshold. 
Before we look at  how to adapt those earlier methocls, let us first take 
a look at  why point estimates are inadequate for our purpose. 

The Inadequacy of Point Estimates 

Having noted that the clustering of the available samples makes a sim- 
ple counting of the available samples a poor estimate of the true pro- 
portion, it might seem that a global distribution could be estimated by 
first calculating point estimates on a regular grid then combining these 
point estimates into a global distribution. Unfortunately, this method 
is also inadequate since point estimates typically have less variability 
than true values. When we compared various point estimation pro- 
cedures in Chapter 11, we noticed that the standard deviation of our 
estimates was less than that of the true values. This reduction in vari- 
ability is often referred to as the smoothing eflect of estimation, and 
is a result of the fact that our estimates are weighted linear combi- 
nations of several sample values. In general, the use of more sample 
values in a weighted linear combination increases the smoothness of 
the estimates. For example, Table 11.5 showed that the triangulation 
estimates, each of that incorporated three sample values, were more 
variable (less smoothed) than the inverse distance squared estimates 
which incorporated all samples within 25 m of the point being esti- 
mated. 
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Table 18.2 The number of point estimates for which the estimated V value was 
below 500 ppm in each of three point estimation methods studied earlier. 

Number 
Total Standard Below 

Method Number Deviation 500 ppm Percentage 
True 780 251 627 80 

Polygonal 780 246 628 81 
Triangulation 672 211 580 86 

Ordinary Kriging 780 202 671 86 

Table 18.2 shows the hazards of using point estimation to  estimate 
the proportion of true values below 500 ppm. For three of our earlier 
point estimation case studies, this table shows the number of estimates 
for which the estimated V value was below 500 ppm. By virtually all 
of the criteria we discussed in Chapter 11 for evaluating sets of point 
estimates, both the triangulation estimates and the ordinary kriging 
estimates were better point estimates than the polygonal ones. As 
Table 18.2 shows, however, the reduced variability of these point es- 
timates makes them unreliable as estimates of a global distribution. 
With the actual values being more variable than their corresponding 
estimates, the proportion of estimates below a particular threshold will 
not accurately reflect the proportion of actual values below that same 
threshold. There will be a greater proportion of estimates than true 
values below high cutoffs such as the 500 ppm cutoff we were looking at 
earlier. For low cutoffs, the reverse is true; the proportion calculated 
from the distribution of point estimates will be too small. 

Cuinulative Distributions, Counting, and Indicators 

The solution to  the problem of estimating the proportion below a cer- 
tain cutoff from a sample data set lies in understanding what it is we 
do when we calculate the actual proportion from an exhaustive data 
set. With access to  the exhaustive Walker Lake data set, we calcu- 
lated the proportion of values below 500 ppm by counting the number 
of values below this cutoff and dividing by the total number of values 
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Figure 18.1 The indicator map of the exhaustive Walker Lake data set for the 
500 ppm cutoff. All values below 500 ppm have an indicator of 1 and are shown in 
white; all values above 500 ppm have an indicator of 0 and are shown in black. 

in the data set: 

--- - 637335 - 0.81 (18.1) Number of values below 500 ppm 
Total number of values 78,000 

F(500) = 

The simple notion of counting can be described mathematically by 
an indicator variable. For the 500 ppm threshold, we could transform 
each one of our 78,000 exhaustive values into an indicator as follows: 

1 i f v j  5 500 
a j  * {  = 0 i fv j  > 500 

The displays of the exhaustive data set that we presented in Fig- 
ure 5.9 were maps of this indicator variable for different thresholds. 
Figure 18.1 shows the map of the indicator variable for the 500 pprn 
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cutoff. All of the locations at which the indicator is 0 are shown in 
black and all of the locations at which the indicator is 1 are shown in 
white. The number of values below 500 ppm is the sum of all of the 
indicators: 

n 

Number of values below 500 ppm = ij 
j=1 

Equation 18.1, which gave the cumulative proportion of samples below 
500 ppm, can be written as 

Ejn=l ij = 63,335 = o.81 F(500) = n 78,000 
(18.2) 

This procedure can be repeated for any cutoff. To calculate the 
proportion of values below the cutoff w,, we can transform the values 
01,. . . , wn to a set of corresponding indicator variables il(wc), . . . , in(wc), 
with the following: 

1 if v j  5 w, 
0 if v j  > V, 

ij(vc> = { (18.3) 

The cumulative proportion of values below any cutoff can then be 
expressed as 

(18.4) 

This equation shows that like the exhaustive mean, m, which is an 
equally weighted average of the 78,000 V values, the exhaustive pro- 
portion below any threshold, F(v,), can also be expressed as an equally 
weighted average. By translating the notion of counting into the con- 
cept of an indicator, we have managed to  translate the notion of a 
proportion below a certain cutoff into the concept of an average indi- 
cator. 

In fact, the recognition that the proportion below a certain cutoff is 
an average indicator allows us to  adapt our previous estimatim tools to 
handle the problem of estimating a complete distribution. In the global 
and local procedures we described earlier, we were trying to  estimate 
a mean value. Though the true mean could be expressed as a simple 
average of the true values, our estimate was expressed as a weighted 
average of the available sample values. The weights we chose for each 



Figure 18.2 The cumulative distribution function as defined by Equation 18.4. 
At each of the values in the exhaustive data set, the cumulative proportion below 
that cutoff value increases by $. 

sample value accounted for clustering, in the case of global estimation, 
and for both clustering and distance, in the case of local estimation. 
For the estimation of the proportion below a particular cutoff vc, the 
only adaptation we have to  make to  these earlier procedures is that 
instead of dealing with the sample values 211,. . . ) vn, we will deal with 
the corresponding indicators i l (vc) ) .  . . , in(vc).  

Figure 18.2 shows how F(vc)  behaves. For values of oc less than 
the minimum ~ ( ~ 1 ,  the cumulative distribution is 0; at ~ ( ~ 1  it jumps to 
k.  n It continues in this staircase pattern, jumping by $ a t  every cutoff 
value that coincides with one of the values in the data set. Its last 
jump is at the maximum value in the data set, ~ ( ~ 1 ,  at which point the 
cumulative frequency is 1. 

Estimating a Global Cumulative Distribution 

For any cutoff wc, we can transform the continuous values of the vari- 
able V into an indicator I (vc)  using Equation 18.3. The actual propor- 
tion of true values below wc will be the average of all the true indicators. 
In practice, we do not have access to  all of the true values, but only 
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Figure 18.3 The estimated cumulative distribution function as defined by Equa- 
tion 18.5. At each of the sample values, the estimated proportion below that cutoff 
value increases by the weight assigned to that sample. 

to  a set of samples. We can apply the indicator transformation to 
our available samples and estimate the actual proportion by taking a 
weighted average of these sample indicators: 

n 

P ( V c )  = c wj * i j ( V c )  (18.5) 

As with our earlier estimates, the n weights are standardized so that 
they sum to  1. 

Figure 18.3 shows how the estimated cumulative distribution func- 
tion behaves. Like its exhaustive counterpart, k(vc) starts a t  0 and 
rises to  1 in a series of steps. The height of the steps, however, is not 
the same a t  each of the sample values v1, . . . , vn. At each sample value, 
vj, the estimated cumulative distribution function increases by wj, the 
weight assigned to  that particular sample. 

If the available samples cover the entire area of interest, with no 
clustering in anomalous areas, then the sample indicators can be equally 
weighted. The equal weighting of sample indicators is identical to the 
procedure of counting the number of sample below the chosen cutoff 
and dividing by the total number of samples. For example, earlier 

j= 1 
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we estimated the proportion of values below 500 ppm by counting the 
number of samples in the first campaign that were below 500 ppm and 
dividing by 195, the total number of samples in that campaign. This 
procedure is identical to taking those 195 samples, assigning an indi- 
cator of 1 those whose V value is below 500 ppm and an indicator of 
0 to those whose V value is above 500 ppm, and then calculating the 
simple average of the 195 indicators. For this first campaign, in which 
the sampling was on a pseudoregular grid, this equal weighting of the 
sample indicators produced a good estimate of the true proportion 
below the 500 ppm cutoff. 

If the samples are preferentially located in areas with anomalous 
values, then the weights assigned to the indicators in Equation 18.5 
should account for this clustering. For example, in the Walker Lake 
sample data set the second and third sampling campaigns located addi- 
tional samples in areas with high V values. This entails that our sam- 
ples are clustered in areas where the indicators tend to be 0. Naively 
averaging such clustered sample indicators will produce an estimate 
that is too low. Earlier, with the results of Table 18.1, we saw that the 
simple averaging of sample indicators produced very poor estimates for 
the second and third campaigns. 

When estimating a global proportion below a certain cutoff from a 
clustered sample data set, it is often difficult in practice to extract a 
subset that is regularly gridded. Even if such a subset can be deter- 
mined, it is unsatisfying to completely disregard the information con- 
tained in the additional clustered samples. Earlier, when we tackled 
the problem of estimating the global mean, we handled this dilemma 
by using a weighted linear combination that gave less weight to sample 
values in densely sampled areas. This same approach can be used with 
clustered indicators. 

To estimate the proportion of V values below 500 ppm using the 
entire sample data set, we begin by assigning indicators to each of 
the 470 available samples. Figure 18.4 shows the indicator map for 
the 500 ppm threshold. At  every sample location (represented by the 
small dot in Figure 18.4) where the value is below 500 ppm, we have 
an indicator of 1; at all the remaining locations we have an indicator 
of 0. 

The nai've estimate of F(500) that we calculated by simply counting 
the number of samples that were less than 500 pprn can be written in 
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Figure 18.4 A posting of the sample indicators for a 500 ppm cutoff. 

terms of indicators as 

268 
470 j = 1  470 

470 
p(500) = - C ij(500) = - = 0.57 

D 

As we noted earlier, the sample indicators shown in Figure 18.4 are 
preferentially clustered in the Wassuk Range area where the indicator 
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tends to be 0. The nai've estimate given earlier fails to take this into 
account and therefore considerably underestimates the true proportion 
below 500 ppm. A good estimate of the true proportion below 500 ppm 
must take this into account by giving less weight to those indicators 
that are in the densely sampled areas. 

We are already familiar with two procedures for allocating declus- 
tering weights to a sample data set, the polygonal method and the cell 
declustering method. Though we could calculate declustering weights 
for the sample indicators using either of these methods, this is not 
necessary. Both of these declustering procedures produce weights that 
depend only on the locations of the sample data. Since the 470 sample 
indicators are at exactly the same locations as the 470 V samples, their 
declustering weights will be the same as those we calculated earlier for 
the case studies on the estimation of the global mean in Chapter 10. 
Using the polygonal declustering weights in Equation 18.5, the esti- 
mated proportion of values below 500 ppm is 0.817; using the cell 
declustering weights calculated using 20 x 20 m2 cells, the estimate is 
0.785. Both of these are much closer to the true value of 0.812 than 
the nai've estimate of 0.570 that we obtained earlier. 

To estimate the complete global distribution of V values, we need 
only to repeat the estimation of F(u,) for several cutoffs. Table 18.3 
shows estimates of F(v,) for several cutoffs spanning the complete 
range of V values. All three of the estimates shown at  each cutoff 
are calculated using Equation 18.5; the only difference between the 
estimates is the choice of weights for the 470 sample indicators. The 
results from Table 18.3 are also shown graphically in Figure 18.5, in 
which the true cumulative distribution is plotted along with each of 
the estimated distributions. 

These results show that with appropriate declustering weights, the 
global distribution can be estimated very well. The cell declustering 
method and the polygonal method are both good procedures for calcu- 
lating declustering weights. In this particular example, the polygonal 
method produces slightly better results. 

An Introduction to Applied Geostatistics 

Estimating Other Parameters of the Global 
Distribution 

In the previous section we have seen how the global cumulative dis- 
tribution can be estimated. In many practical problems, an estimate 
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Table 18.3 Estimates of the proportion of V values below various cutoffs calculated 
using three different weighting procedures in Equation 18.5. 

Cutoff True Polygons* Cellst Na'ivel 
0 0.076 0.091 0.086 0.047 
50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
GOO 
650 
700 
750 
800 
850 
900 
950 
1000 
1050 
1100 
1150 
1200 
1250 
1300 
1350 
1400 
1450 

0.215 
0.311 
0.392 
0.469 
0.541 
0.607 
0.667 
0.721 
0.769 
0.812 
0.849 
0.881 
0.908 
0.930 
0.947 
0.961 
0.971 
0.979 
0.985 
0.989 
0.992 
0.995 
0.996 
0.997 
0.998 
0.999 
0.999 
1 .ooo 
1 .ooo 

0.224 
0.302 
0.374 
0.475 
0.543 
0.597 
0.669 
0.725 
0.771 
0.817 
0.862 
0.899 
0.925 
0.938 
0.950 
0.962 
0.973 
0.983 
0.987 
0.991 
0.994 
0.995 
0.996 
0.996 
0.997 
0.998 
0.998 
0.999 
0.999 

0.216 
0.288 
0.366 
0.461 
0.527 
0.572 
0.635 
0.691 
0.740 
0.785 
0.836 
0.875 
0.909 
0.927 
0.943 
0.958 
0.969 
0.981 
0.985 
0.990 
0.994 
0.995 
0.996 
0.996 
0.998 
0.998 
0.998 
0.999 
0.999 

0.1 19 
0.164 
0.209 
0.274 
0.332 
0.370 
0.423 
0.479 
0.532 
0.570 
0.630 
0.685 
0.762 
0.806 
0.843 
0.877 
0.911 
0.943 
0.955 
0.970 
0.979 
0.983 
0.987 
0.987 
0.991 
0.994 
0.994 
0.996 
0.996 

1500 1.000 0.999 0.999 0.996 
Weights proportional to the area of the polygon of influence. 

t Weights inversely proportional to the number of samples 

$All samples given equal weight. 

falling within the same 20x20 mz cell. 
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(a) Polygonal estimates 

I I 
1000 1500 

(b) Cell declustering estimates 

(c) Naive estimates from equal weighting 

0 L 500 

Cutoff (ppm) 

Figure 18.6 A comparison of each of the estimated distributions given in Ta- 
ble 18.3 with the true cumulative distribution. In each figure the true cumulative 
distribution appears as the thick line; the corresponding estimate appears as the 
thin line. 
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of the complete global distribution is not necessary; rather, all that is 
needed are estimates of a few of its summary statistics. 

Since the global variance is a simple average of the squared differ- 
ences from the mean, the expression for its estimate is similar to the 
other global estimates we have studied: 

n 

j=1 

It is estimated by taking a weighted average of the squared differences 
between the available samples, v1,. . . , vn, and an estimate of the global 
mean, m. As with our other global estimates, the weights used in 
this formula allow us to account for the possibility that the squared 
differences to  which we have access in the sample data set are not 
representative of the exhaustive data set due to clustering. The same 
weights that were used earlier for declustering the sample values for 
an estimate of the mean and declustering the sample indicators for 
an estimate of the cumulative proportion can be used again in the 
estimation of the global variance. 

An estimate of the standard deviation of the global distribution 
can be obtained from the estimate of the variance. An estimated coef- 
ficient of variation can be calculated from the estimated mean and the 
estimated standard deviation. 

The global coefficient of skewness is also expressed as a simple 
average; with clustered sampling, it is therefore estimated by the cor- 
responding weighted average: 

cy=l w j  * (v j  - jjt)3 

83 
Estimated coefficient of skewness = 

The weights applied to each of the cubed differences from the mean 
are the same as those used to estimate the mean riz and to  estimate 
the standard deviation b. 

An estimate of the cumulative distribution allows the estimation of 
any quantile. For example, the median, M, is the same as ~ 0 . 5  and its 
estimate is the value a t  which the estimated cumulative distribution 
reaches 0.5: 

P(fi) = 0.5 

This value can be calculated either by graphing the estimated cumula- 
tive distribution, as was done in Figure 18.5, or by sorting the sample 
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values in ascending order and accumulating the declustering weights 
until they reach 0.5. 

In a similar manner, the lower and upper quartiles can be estimated 
by determining where the estimated cumulative distribution reaches 
0.25 and 0.75, respectively: 

A n  Introduction to Applied Geostatistics 

P(Q1) = 0.25 Q Q 3 )  = 0.75 

Using only the information contained in the sample data set, the 
global minimum and maximum have to be estimated by the corre- 
sponding sample statistics. Though this may be an adequate solution 
for the minimum, since the variables in many earth science data sets 
are strongly positively skewed, it is often unsatisfying for the maxi- 
mum. For variables whose exhaustive distribution has a long tail of 
high values, i t  is very likely that the true maximum value is not one 
of the sample values. Unfortunately, there is little we can do unless 
we make some further assumptions or supplement our sample data set 
with physical or chemical information. 

Finally, the proportion of the distribution that falls between any 
two values, u, and Vb, can be calculated from the estimated cumulative 
distribution by subtraction: 

Estimated proportion between u, and q, = @(vb) - @(TI,) 

Using the cumulative distribution estimated by using polygonal weights 
(Table 18.3), the proportion of values falling within the interval 100 to 
300 ppm is 

F(300) - P( 100) = 0.597 - 0.302 = 0.295 

The histograms corresponding to each of the cumulative distribu- 
tions tabulated in Table 18.3 are shown in Figure 18.6; Table 18.4 
provides their univariate statistics. With the exception of the mini- 
mum and maximum, the estimates calculated using the nai've weights 
bear little resemblance to the actual exhaustive statistics. With the 
use of appropriate declustering weights, the estimates improve. The 
estimates calculated using the polygonal weights are very close to the 
corresponding exhaustive values. In practice, however, one should not 
expect the agreement to be this good; in this particular example, we 
are quite lucky to get such good global estimates. The estimates based 
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Table 18.4 A comparison of estimated exhaustive statistics of the global distri- 
bution for three different weighting procedures. 

True Polygons Cells Naive 
n 78,000 470 470 470 
m 
U 
U - 
r" man 

91 
M 
93 

max 
skewness 

277.9 
249.9 
0.90 

0 
67.8 

221.3 
429.4 

1,631.2 
1.02 

276.8 
245.3 
0.89 

0 
67.5 

224.2 
430.8 

1,528.1 
1.03 

292.0 
253.6 
0.84 

0 
77.1 

234.3 
455.8 

1,528.1 
0.90 

436.5 
299.9 
0.69 

0 
184.3 
425.3 
645.4 

1,528.1 
0.45 

on the cell declustering weights are more typical of the kinds of dis- 
crepancies one might see in other situations. 

In general, the use of declustering weights is a tremendous im- 
provement over the na'ive weighting. The exhaustive statistics that are 
usually the best estimated are the measures of the location of the cen- 
ter of the distribution. Extreme quantiles are often difficult to estimate 
accurately, as are those statistics that involve squared terms or cubed 
terms. 

Estimating Local Distributions 

Many practical problems require not only an estimate of the global 
distribution but also estimates of the distribution of the unknown val- 
ues over small areas. For example, in the exploration phase of an ore 
deposit an estimate of the global distribution provides some rough idea 
of the total tonnage of ore and quantity of metal above various cutoffs. 
In the feasibility and development phases, these global estimates are 
no longer sufficient. For long- and short-range planning one typically 
needs estimates of tonnage of ore and quantity of metal for smaller 
blocks corresponding to several weeks or months of production. Local 
distributions are also important in environmental applications. In the 
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Figure 18.6 A comparison of the histograms calculated from each of the distri- 
butions given in Table 18.3. 

estimation of the concentration of a pollutant over some area of inter- 
est, an estimate of the global distribution can tell us the proportion 
of the area in which the pollutant exceeds some specified threshold. 
If clean-up or removal of the pollutant is planned, estimates of the 
distributions of the pollutant concentration over small areas are also 
required. 

Our recognition that the cumulative proportion below a given cutoff 
can be expressed as an average indicator leads us to consider the same 
estimation tools that we used earlier for estimating the local mean. 
Rather than use weighted linear combinations of the nearby sample 
values to estimate the local mean, however, we will use weighted lin- 
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the nearby sample indicators to estimate the local proportion below a 
specified threshold. 

Figure 18.7 shows an example of estimation of a local distribution 
using indicators. The goal is to estimate the distribution of values 
within the rectangular area using nearby samples shown in the figure. 
By assigning indicators to each of the samples shown in Figure 18.7a, 
we can treat this problem as a series of estimations of the average 
indicator value at several cutoffs. For the 65 ppm cutoff shown in 
Figure 18.7b, only three of the nearby sample indicators are Is, so a 
local estimate of the average indicator at this cutoff will be quite low. 
For example, the na'ive estimation procedure, which simply averages 
the nearby values, would produce an estimate of E(65) = 0.273. For 
a threshold of 225 ppm, slightly less than half of the indicators shown 
in Figure 18 .7~  are equal to 1; naive local averaging would produce 
an estimate of p(225) = 0.455. At the 430 ppm cutoff, most of the 
sample indicators shown in Figure 18.7d are Is, and a local estimate 
of the average indicator will be quite high. At this cutoff, nai've local 
averaging would produce an estimate of p(430) = 0.818. 

As we discussed earlier in this chapter when we introduced indi- 
cator variables, an estimate of an average indicator also serves as an 
estimate of a cumulative proportion. Using the three na'ive local av- 
erages given in the previous paragraph, Figure 18.8a shows the three 
estimated points of the cumulative distribution for the example shown 
in Figure 18.7. From these three estimates of the cumulative proportion 
below the 65 ppm, 225 ppm, and 430 ppm cutoffs, we can calculate the 
proportion falling within each of the following four classes: < 65 ppm, 
65-225 ppm, 225-430 ppm and > 430 ppm. The proportion falling 
within the third class, for example, is 

Proportion between 225 ppm and 430 ppm = P(430) - P(225) 
= 0.818 - 0.455 = 0.363 

Figure 18.8b presents the estimated distribution shown in Figure 18.8a 
in the form of a histogram. 

Choosing Indicator Thresholds 

The estimated cumulative distribution and histogram shown in Fig- 
ure 18.8 are quite crude since we have performed the estimation a t  
only three thresholds. By increasing the number of thresholds at which 



436 

(a) Sample values (in ppm) 
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(b) Indicators for vc = 65 ppm 
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Figure 18.7 An illustration of how nearby samples can be transformed to indica- 
tors to estimate the distribution of unknown values over a small area. 

we estimate the cumulative proportion, we can refine the appearance 
of our estimated cumulative distribution and the corresponding his- 
togram. Our ability to  refine the estimated cumulative distribution is 
limited, however, by the number of nearby samples. If there are only 
a few available samples, then the estimated distribution will appear 
quite crude regardless of the number of cutoffs we choose. 

In actual practice, we should carefully consider the number of cut- 
offs a t  which we need estimates. Though the use of several cutoffs may 
allow us to draw visually satisfying histograms, this is rarely the real 
goal of a study. For most practical problems that require indicator 
techniques, a careful consideration of the final goal allows us to use a 
few well-chosen thresholds. For example, in mining applications there 
are typica.lly a few cutoff values that have practical and economic sig- 
nificance. The mine plan may call for the separation of material into 



Est imu ting a Distribution 437 

Cutoff @pm) Class (ppm) 

Figure 18.8 Local distribution estimated by simple averaging of the nearby in- 
dicators for the the example shown in Figure 18.7. The cumulative distribution is 
shown in (a) and the corresponding histogram is shown in (b). 

ore and waste based on a particular ore grade; the ore material may be 
separated into a few stockpiles based on other cutoff grades. In such 
cases, the cutoffs at which indicator estimation is performed should be 
the same as those that have practical relevance to the proposed mining 
operation. Many environmental applications also have thresholds that 
are significant for health or safety reasons, and indicator estimates at  
these cutoffs may be sufficient to address the goals of an environmental 
study. 

If there are no thresholds that have special significance to the prob- 
lems being addressed, the most common practice is to perform indi- 
cator estimation at  the nine cutoffs corresponding to the nine deciles 
of the global distribution. Despite being conventional, this choice is 
still arbitrary; if there is a particular part of the distribution for which 
accurate estimation is more important, then one should choose more 
cutoffs in that important range. For example, in many precious metal 
deposits most of the metal is contained in a small proportion of very 
high grade ore. In such situations, it makes sense to perform indicator 
estimation at  several high cutoffs since the accurate estimation of the 
upper tail is more important than the estimation of the lower portion 
of the distribution. 

No matter how many cutoffs one chooses with the indicator ap- 
proach, the cumulative distribution curve will be estimated at only 
a finite number of points, For an estimate of the complete curve, 

Next Page
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cutoff @p) cutoff @pm) 

Figure 18.9 Two functions which satisfy the conditions of a cumulative distribu- 
tion function and also pass through the estimated points shown in Figure 18.8a. 

there will be a need to interpolate between the estimated points and 
to extrapolate beyond the first and last of the estimated points. This 
interpolation and extrapolation necessarily involves some assumptions 
about how the distribution behaves a t  points where it has not been di- 
rectly estimated. We know that it is a nondecreasing function and that 
it cannot be less than 0 or greater than 1; however, even with these 
constraints there are many different functions that can pass through 
the estimated points. Figure 18.9 shows two different functions, both 
of which pass through the three estimated points shown in Figure 18.8a 
and also satisfy the conditions of a cumulative distribution function. 

For most applications that require an estimate of the complete 
distribution, the extrapolation beyond the first and last available esti- 
mated points is a more important issue than the interpolation between 
estimated points. A knowledge of the minimum or maximum value 
provides some constraint for this extrapolation. For example, in Fig- 
ure 18.9 we made use of the fact that the minimum value is 0 ppm. 

Case Studies 

For the case studies, we will estimate the local distributions of the V 
values within 10 x 10 m2 blocks using the indicator approach with three 
of the local estimation methods discussed earlier; In all of these case 
studies, indicator estimation is performed at the 65 ppm, 225 ppm, 
and 430 ppm cutoffs. These three values correspond roughly to the 
declustered median and the quartiles of the global distribution that 

Previous Page
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Figure 18.10 A posting of the sample indicators for a 65 ppm cutoff. 

was given earlier in Table 18.4. The 470 sample indicators for these 
three cutoffs are shown in Figure 18.10 through Figure 18:12. 

At each of the three cutoffs, the local mean of the indicators is 
estimated for each of the 780 10 x 10 m2 blocks covering the Walker 
Lake area. The estimates of the local mean indicator were calculated 
using polygons, inverse distance squared, and kriging. 
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Figure 18.11 A posting of the sample indicators for a 225 ppm cutoff. 

Polygons. In the polygonal estimation procedure, first discussed in 
Chapter 11, the estimated value a t  any point is equal to  the nearest 
sample value. This can also be seen as a weighted linear combination of 
sample values in which all of the weight is given to the nearest sample. 
The average indicator within each 10 x 10 m2 block was estimated by 
calculating the polygonal estimate a t  each of the 100 points within the 
block and averaging the resulting 100 estimates. 
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Figure 18.12 A posting of the sample indicators for a 430 ppm cutoff. 

Inverse Distance Squared. In the inverse distance squared proce- 
dure, first discussed in Chapter 11, the value at any point is estimated 
by a weighted linear combination of the nearby sample value. The 
weight assigned to each nearby sample is inversely proportional to  the 
square of its distance from the point being estimated. For the follow- 
ing case study, the same search strategy was used for all three cutoffs: 
all available samples within 25 m of the point being estimated were 
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grouped into quadrants, and the nearest 10 samples in each quadrant 
were used in the weighted linear combination. The average indicator 
within each 10 x 10 m2 block was estimated by calculating the inverse 
distance squared estimate a t  each of the 100 points within the block 
and averaging the resulting 100 estimates. 
Ordinary Kriging. In the ordinary kriging procedure, first discussed 
in Chapter 12, the value at  any point is estimated by a weighted linear 
combination of the nearby sample indicators. The weights are chosen 
so that the resulting estimate is unbiased and has a minimum esti- 
mation variance. The average indicator within each 10 x 10 m2 block 
was estimated using ordinary kriging of a block mean, as discussed in 
Chapter 13. All points within 25 m of the center of the block were 
grouped into quadrants, and the nearest 10 samples in each quadrant 
were used in the weighted linear combination. The average covariances 
between each sample point and the 10 x 10 m2 block were calculated 
by discretizing the block into a 6 x 6 grid of points and averaging the 
resulting 36 point-to-point covariances. 

Indicator Variograms 

Ordinary kriging requires a model of the variogram or the covariance 
function of the variable being estimated. The estimation of V values 
called for a model of the spatial continuity of V values. Now that 
we are estimating indicators rather than the original V values, we 
should use a variogram model of the spatial continuity of the indicators. 
When applying the ordinary kriging procedure to the estimation of 
an indicator at a particular cutoff, we should ideally use a variogram 
model that reflects the pattern of spatial continuity for that particular 
cutoff. For example, the ordinary kriging of the local mean indicator for 
the 65 ppm cutoff should be done with a variogram that captures the 
spatial continuity of the indicators for the 65 ppm cutoff; the estimation 
of the local mean indicator for the 225 ppm cutoff, on the other hand, 
should use a variogram model that describes the spatial continuity of 
the indicators for the 225 ppm cutoff. 

This ability to  use different patterns of spatial continuity for differ- 
ent thresholds distinguishes ordinary kriging from other procedures for 
estimating the local average of an indicator. With the polygonal and 
inverse distance squared procedures, the weights assigned to nearby 
samples are the same at  all cutoffs. With ordinary kriging, however, 
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the weights assigned to nearby indicators a t  a particular cutoff will 
depend on the variogram model chosen for that cutoff. 

The ability to customize the estimation procedure to the pattern 
of spatial continuity appropriate for each threshold makes ordinary 
kriging a more powerful technique for the estimation of indicators than 
the other local estimation procedures we have studied. There are many 
situations in which the pattern of spatial continuity of the high values 
is not the same as that of the low values. From the maps of the 
indicators for each of the nine deciles of the exhaustive Walker Lake 
data set shown in Chapter 5, for example, it is clear that the very 
highest values (the black portions of Figure 5.9i) are not as continuous 
as the very lowest (the white portions of Figure 5.9a). While the very 
highest values do tend to be grouped together, their clusters are neither 
as large nor as solid as the clusters of the very lowest values. 

Similar observations can be made in many real data sets. For ex- 
ample, in petroleum reservoirs the very highest permeabilities may 
correspond to fractures, while the very lowest may be due to lenses 
of shale. An indicator map at  a very high threshold would separate 
the fracture system from the remainder of the reservoir, showing the 
high permeability values in the fractures as 0s and the remainder of 
the reservoir as 1s; on such a map, the 0s would likely appear in long 
connected strings. An indicator map at  a very low threshold, on the 
other hand, would separate the shales from the remainder of the reser- 
voir, showing the low permeability values in the shales as 1s and the 
remainder of the reservoir as 0s; on such a map, the 1s would likely 
be connected in elongated lenses. The appearance of the two maps 
would be quite different. The pattern of spatial continuity for the in- 
dicator map at the high cutoff would reflect the structural character 
of the reservoir’s fracture system; the pattern of spatial continuity for 
the indicator map at  the low cutoff would reflect the depositional char- 
acter of the shale units. Estimation of the average indicators a t  the 
two cutoffs should take into account the differing patterns of spatial 
continuity. 

While making the ordinary kriging of indicators more powerful, 
weights that change from one cutoff to the next also make the tech- 
nique more demanding. To exploit the power of this technique, we 
have to develop variogram models for each cutoff at which we intend 
to do estimation. Sample variograms must be calculated and modeled 
for each cutoff. Fortunately, sample variograms calculated from indi- 
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cator data are usually fairly well behaved. Since an indicator variable 
is either 0 or 1, indicator variograms do not suffer from the adverse 
effects of erratic outlier values. In fact, even in studies where indicator 
kriging is not going to be used, indicator variograms are often used 
to  reveal the pattern of spatial continuity of the original variable. De- 
spite being more easily interpreted and modeled than variograms of the 
original variable, indicator variograms are easily affected by preferen- 
tial clustering of the sample data. The structure revealed by indicator 
variograms may not be due to the pattern of spatial continuity but 
rather to the clustering of the sample data set [l]. 

The ordinary kriging of indicators at  several cutoffs, using a sepa- 
rate variogram model for each cutoff, is usually referred to simply as 
indicator kriging. There is an approximation to  indicator kriging that, 
in many situations, produces very good results. This approximation 
consists of using the same variogram model for the estimation a t  all 
cutoffs. The variogram model chosen for all cutoffs is most commonly 
developed from the indicator data at  a cutoff close to the median. 
Practice has shown that the variogram based on indicators defined a t  
a median cutoff is often better behaved than the variogram based on 
indicators defined at  other cutoffs. Since the variogram used in this 
approximation to indicator kriging is often based on the median indi- 
cator, this procedure is usually referred to as median indicator kriging. 
One should not feel compelled, however, to use the median indicator 
variogram model. One can use whatever variogram model is felt to 
more representative, even if it is based on indicators a t  some cutoff 
other than the median. 

With one variogram model for all cutoffs, the weights assigned to 
each sample no longer depend on the cutoff. Once the weights have 
been calculated for the estimation of the indicator a t  the first cutoff, 
they can be used again for the estimation any other cutoff. This makes 
median indicator kriging computationally faster than indicator kriging, 
which requires that the weights be recalculated for every cutoff since 
the variogram model changes from one cutoff to the next. 

Before adopting the median indicator kriging approach, it is wise 
to compute indicator variograms for several thresholds to  determine 
whether they all can be adequately modeled by a common shape. 
If there are noticeable differences between the sample indicator var- 
iograms for different thresholds, one should be cautious about using 
median indicator kriging. In particular, differences in the nugget ef- 
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(a) M6"Elt45" (b) N14"W i 4 5 O  

Figure 18.13 Directional sample indicator variograms at the 430 ppm cutoff. The 
variogram in the N76"E direction, perpendicular to the axis of the Wassuk Range 
anomaly, is shown in (a); the variogram in the direction parallel to the anomaly, 
N14'W, is shown in (b). 

fects at the different thresholds will cause indicator kriging with dif- 
ferent variogram models at  different cutoffs to produce results than 
are quite different from those produced by median indicator krig- 
ing. 

For the case study presented here, the same indicator variogram 
model was used for all three cutoffs. This model was based on the 
variogram of the sample indicators for the 430 ppm cutoff. This cutoff 
is close to the nai've median for the sample data set. Using the 470 in- 
dicator data shown in Figure 18.12, sample variograms were calculated 
in the N14"W and N76'E directions. Figure 18.13 shows the sample 
variograms in each direction, and Table 18.5 provides the details of 
the calculations for each lag. The model fit to the sample variogram 
is shown in Figure 18.14. 

Like the original V values, the indicators for the 430 ppm cutoff 
are more continuous in a direction that runs parallel to the axis of the 
Wassuk Range anomaly. In the N76'E direction the variogram reaches 
its sill value of 0.25 at 30 m. The variogram climbs more slowly in 
the N14"W direction, reaching 0.25 at 100 m. The variogram models 
fit to the directional sample variograms are shown in Figure 18.14. 
In both directions, the variogram model consists of a nugget effect 
plus two spherical structures [2]. In the N76"E direction, the model 
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Table 18.5 Details of the directional sample indicator variograms at the 430 ppm 
cutoff, with an angular tolerance o f f  45 degrees as shown in Figure 18.13. 

N76'E N14'W 
Pairs h 7 4 h )  Pairs h T z ( h )  

82 3.6 0.128 0 -  - 
716 

1,242 
1,471 
1,701 
1,699 
2,009 
1,983 
2,080 
2,101 
1,093 

10.5 0.185 
20.1 0.236 
29.7 0.253 
40.2 0.278 
49.8 0.287 
60.1 0.244 
70.2 0.250 
80.2 0.258 
89.9 0.257 
97.7 0.255 

806 11.4 0.159 
1,328 20.7 0.189 
1,648 30.7 0.207 
1,993 40.8 0.217 
2,278 50.4 0.230 
2,882 60.4 0.231 
3,047 70.4 0.239 
3,234 80.4 0.236 
3,126 90.2 0.237 
1,335 97.8 0.250 

is: 
' ~ r ( h )  = 0.09 t 0.08Sph2,(h) + 0.08Sph3,(h) 

and in the N14'W direction, the model is: 

The complete two dimensional anisotropic variogram model can be 
expressed as: 

7z(h) = 0.09 + 0.08Sph1(h1) t 0.08Sph1(h:!) 

where the vectors hl and h2 are calculated as follows: 

and 
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(a) M6"E (b) N14"W 

Figure 18.14 Models for sample indicator variograms at a 430 ppm cutoff. The 
variogram model in the N76'E direction, perpendicular to the axis of the Wassuk 
Range anomaly, is shown in (a) along with the sample points; the variogram model 
and the sample variogram points in the N14'W direction is shown in (b). 

The distances h', and hb are calculated in the coordinate system aligned 
with the directions of minimum and maximum continuity: 

cos( 14') sin( 14') [ $ 1  = [ -s%'n(14') cos(14') ] [ kz ]  
where h, is the distance calculated in the east-west direction and h, 
is the distance calculated in the north-south direction. 

Order Relation Corrections 

There are several constraints on indicator estimates that we do not 
explicitly observe in the calculation of our estimates. First, the pro- 
portion below any cutoff cannot be less than 0 or greater than 1. One 
way of meeting this constraint is to use weighted linear combinations 
in which the weights are positive and sum to 1. The polygonal method 
and the inverse distance squared method always satisfy this condi- 
tion; however, kriging does not constrain the weights to be positive. 
Whether we use complete indicator kriging with different variogram 
models for different cutoffs or median indicator kriging with only one 
variogram model, there is a possibility that we will produce a negative 
estimate or an estimate above 1, In these situations, it is proper to 
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adjust these estimates to the appropriate lower or upper bound; neg- 
ative estimates should be set to 0 and estimates greater than 1 should 
be set to 1. 

There is a second constraint that must be met by our estimates of 
the proportion below various cutoffs. The estimated proportion below 
one cutoff cannot be greater than the estimated proportion below a 
higher cutoff: 

P(vj)  ,< Q v j )  ifvi 5 vj 
Since our estimated proportions below various cutoffs are calculated 
independently, there is a possibility that an estimate of the propor- 
tion below one cutoff might not be consistent with an estimate of the 
proportion below another cutoff. 

One way of satisfying this second constraint is to use only positive 
weights that sum to 1, and to use the same weights for the estimation 
at  all cutoffs. Once again, the polygonal and inverse distance proce- 
dures do observe this condition while the procedures based on kriging 
do not. Since indicator kriging uses a different weighting scheme at 
each cutoff, it is common to observe small inconsistencies in the esti- 
mated proportions below closely spaced thresholds. Even with median 
indicator kriging, in which the same weights are used at  all cutoffs, the 
possibility of negative weights gives rise to the possibility of inconsis- 
tent estimates. In both procedures, however, these inconsistencies are 
typically very small and are easily corrected by small adjustments to 
the estimated proportions. 

For indicator kriging and median indicator kriging, there are several 
ways to adjust the estimates so that they satisfy the order relations 
[S].These order relation problems are usually very small, however, and 
there is little point in using a sophisticated correction procedure if the 
largest correction is in the third decimal place. A simple approach 
is to check each pair of estimates at  successive cutoffs and to adjust 
both estimates to their average if they do not satisfy the correct order 
relation. 

Case Study Results 

For each of the 780 10 x 10 m2 blocks, estimates of the proportion of V 
values below the three cutoffs have been calculated using three different 
methods: polygonal weighting, inverse distance squared weighting, and 
median indicator kriging. For the median indicator kriging, less than 
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Table 18.6 Summary statistics for the estimates of the local distributions by 
different methods: the mean residual, mR; the standard deviation of the residuals, 
UR; and the correlation coefficient between true and estimated proportions, pF,p. 

Inverse Median 
Distance Indicator 

Polygons Squared Kriging 
65 ppm mR 0.005 -0.016 -0.007 

CTR 0.274 0.213 0.201 
p F , p  0.724 0.774 0.793 

225 ppm mR 0.002 -0.040 -0.020 
UR 0.318 0.261 0.248 

pF,fi O e 7 l 5  0.751 0.769 

430 ppm mR -0.002 -0.054 -0.029 
UR 0.259 0.212 0.199 

p F p  0.731 0.779 0.801 

3% of the estimates required order relation corrections, with the largest 
correction being 0.006. The 780 estimated proportions below cutoff are 
compared to  the corresponding true values for each of the three cutoffs 
in Figures 18.15 through 18.17. In these figures, the shading within 
each of the 10 x 10 m2 blocks records the proportion of the block that 
is below the specified cutoff; solid black records that none of the block 
is below the cutoff, whereas solid white records that all of the block is 
below the cutoff. 

Table 18.6 presents some summary statistics for the estimates for 
each cutoff. At each cutoff, the estimates calculated by median indi- 
cator kriging are slightly better than the estimates calculated by the 
other two methods. Though these statistics present a good summary of 
the overall performance of the various methods a t  each cutoff, they do 
not give us an appreciation of how well the various estimation methods 
do in terms of the original goal of the study; namely, the estimation of 
local distributions. 
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Proportion below 65 ppm cutoff 

0:O 0:l 0:2 013 0:4 0:5 

(a) True 

0:6 0:7 0:s 0:9 1:O 

(b) Polygonal 

(c) Inverse distance squared (d) Median Indicator Kriging 

Figure 18.15 A comparison of the true proportion below 65 ppm in 10 x 10 m2 
blocks to the proportion estimated by different methods. 
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Raportion below 225 ppm cutoff 

0:6 0:7 018 019 I:O 

(b) Polvnonal 

(c) Inverse distance squared (d) Median Indicator Kriging 

2 Figure 18.16 A comparison of the true proportion below 225 ppm in 10 x 10 m 
blocks to the proportion estimated by different methods. 
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Proportion below 430 ppm cutoff 

(a)  True 

-T -r 
OlO 0ll 012 04 014 0.5 0.6 017 0!8 019 1:O 

c) Inverse distance squared 

(b) Polygonal 

i) Median Indicator Kriging 

Figure 18.17 A comparison of the true proportion below 430 ppm in 10 x 10 m2 
blocks to the proportion estimated by different methods. 
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Figure 18.18 A comparison of the true local distributions to those estimated by 
applying the polygonal method of local estimation to indicators. As the legend at  
the top shows, within each 10 x 10 m2 block, the frequency of true values falling 
within each of the four classes is shown by the solid dark bars, while the frequency 
estimated by the polygonal weighting of nearby indicators is shown by the light 
stippled bars. 
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Figure 18.19 A comparison of the true local distributions to those estimated 
by applying the inverse distance squared method of local estimation to indicators. 
As the legend at  the top shows, within each 10 x 10 m2 block, the frequency of 
true values falling within each of the four classes is shown by the solid dark bars, 
while the frequency estimated by the inverse distance squared weighting of nearby 
indicators is shown by the light stippled bars. 
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Figure 18.20 A comparison of the true local distributions to those estimated by 
median indicator kriging. As the legend at the top shows, within each 10 x 10 m2 
block, the frequency of true values falling within each of the four classes is shown 
by the solid dark bars, while the frequency estimated by median indicator kriging 
is shown by the light stippled bars. 
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Figures 18.18 through 18.20 show the estimated local distributions 
versus the true local distributions for a few of the blocks near the cen- 
ter of the Walker Lake area. These figures show that for the purpose of 
estimating the local distribution, the polygonal estimation procedure 
produces erratic results. Since the polygonal estimate of the indicator 
at each point depends solely on the closest available sample, the es- 
timates in sparsely sampled areas may all be depending on the same 
sample value. The result is that the estimated distribution appears 
as a single spike, with all values falling within the same class as the 
nearest available sample. In blocks where the true values are fairly 
constant, such as the flat area of Walker Lake itself, the polygonal es- 
timation procedure will do a reasonable job. For blocks in which there 
is a broad range of values, however, the local distribution estimated by 
the polygonal approach can be quite poor. While it is a good procedure 
for estimating a global distribution of values, the polygonal approach 
is not suited for the estimation of local distributions. 

By applying the inverse distance squared method to the sample 
indicators, we produce estimated local distributions that are almost 
as good as those estimated by median indicator kriging. As we noted 
when we first compared inverse distance methods to ordinary kriging, 
the major drawback of the inverse distance weighting schemes is that 
they do not account for local clustering of the available data. If there 
is no significant clustering of the data, or if the search strategy ac- 
counts for the redundancy of closely spaced samples, inverse distance 
estimates can be very nearly as good as those calculated by ordinary 
kriging. It should be emphasized, however, that the median indicator 
approximation has been used in the case study results shown here. If 
there is a noticeable difference between the patterns of spatial con- 
tinuity a t  different cutoffs, complete indicator kriging with different 
variogram models for different cutoffs may produce significantly better 
estimates than the median indicator and the inverse distance squared 
approaches. 

Notes 

[l] For more details on how preferential clustering affects indicator 
variograms, see Appendix E of: 
Srivastava, R. , A non-ergodic framework for variograms and co- 
variance functions. Master’s thesis, Stanford University, 1987. 
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[2] The modeling of indicator variograms is often made easier by the 
fact that the sill is a function of the quantile at  which the indicator 
is defined. For an indicator variable whose mean is m, the variance 
is m(1- m). Since the sill of the variogram model is roughly equal 
to the variance in most practical studies, the sill can be determined 
simply by knowing the global proportion of ones and zeros. For a 
median cutoff, half the sample data have an indicator of 1 and half 
have an indicator of 0. The mean indicator, therefore, is 0.5 and 
the sill is roughly 0.5(1- 0.5) = 0.25. The fact that indicator vari- 
ograms have sills that depend on the proportion of values below and 
above the chosen cutoff makes it difficult to compare directly the 
indicator variograms for different cutoffs. When comparing indica- 
tor variograms for different thresholds, it is common to standardize 
them to a sill of one by dividing each by m(1 - m). 

[3] Several methods for correcting order relation problems are dis- 
cussed in: 
Sullivan, J. , “Conditional recovery estimation through probabil- 
ity kriging- theory and practice,” in Geostatistics for Natural Re- 
sources Characterization, (Verly et al., eds.), pp. 365-384, Proceed- 
ings of the NATO Advanced Study Institute, South Lake Tahoe, 
California, September 6-17, D. Reidel, Dordrecht, Holland, 1983. 

Further Reading 

Journel, A. , “Non-parametric estimation of spatial distributions,” 
Mathematical Geology, vol. 15, no. 3, pp. 445-468, 1983. 
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CHANGE OF SUPPORT 

In Chapter 8 we began the discussion of change of support with an 
example that showed the practical importance of the problem. In this 
chapter we will return to that particular example and explore two 
methods for change of support. 

It should be noted at the outset that the solutions offered here ap- 
ply only to quantities that average arithmetically, such as porosities, 
ore grades, or pollutant concentrations. For other quantities, such as 
permeability or soil strength, whose averaging process is not arith- 
metic, the techniques described here are not appropriate. A discussion 
of change of support models appropriate for such variables is beyond 
the scope of this book since these methods require an understanding 
of the differential equations that govern their behavior. The Further 
Reading section at the end of the chapter provides references to some 
of the pertinent literature. 

The Practical Importance of the Support Effect 

We begin our discussion of the support effect by continuing the example 
from Chapter 8. In this example, we imagine that the V variable in the 
Walker Lake data set is the concentration of some metal that we intend 
to  mine. Though we have cast this discussion in terms of a mining 
problem, similar considerations apply in many other applications. In 
the assessment of the concentration of some pollutant, for example, 
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Figure 19.1 The tonnage of ore, quantity of metal and ore grade as functions of 
cutoff grade for the 78,000 point V values in the exhaustive Walker Lake data set. 

the proportion of the area under study that exceeds a certain limit will 
vary with the volume of the sample considered. 

In our Walker Lake Mine, we will process all material above a 
certain grade as ore and reject the remaining material as waste. The 
profitability of our mine will depend on several factors, among them 
the tonnage of material we process as ore, the average grade of this 
ore, and the resulting quantity of metal we recover. Each of these three 
depends on the cutoff grade we choose for discriminating between ore 
and waste. 

If we use a cutoff grade of 0 ppm, then everything will be treated 
as ore. The ore tonnage at this 0 ppm cutoff will be TO, the tonnage 
of material in the entire area. The average ore grade, %ore, will be the 
same as the overall global mean of 278 ppm, and the quantity of metal 
recovered will be 

Bore Qo = To- 106 

As we increase the ore/waste cutoff, some of the material will be re- 
jected as waste and the tonnage of ore will decrease. The waste will 
contain a small amount of unrecovered metal so the quantity of re- 



A n  Introduction to Applied Geostatistics 

( b) . 1200 

\Quantity of metal 
\ 

Tonnage. \ 
\ \  

3 E 0 600 

0 500 1000 0 500 1000 

(a 
100 

A 

$- 

H so 

0 

Cutoff grade 
(d) . 1200 

, Quantity of metal 
\ 

Cutoff grade 

0 500 1000 0 500 1000 

Cutoff grade Cutoff grade 

Figure 19.2 Exhaustive recovery curves for tonnage (%), quantity of metal (%), 
and recovered grade based on block averages of V. The curves in (a) and (b) are 
for 10 x 10 m2 blocks while the curves for 20 x 20 m2 blocks are shown in (c) and 

(4. 

covered metal will also decrease slightly. Since we have rejected the 
material with the lowest grade, the average ore grade will increase. 

Figure 19.la and b show how these three quantities behave for the 
78,000 point values in the Walker Lake data set. In these figures, 
the tonnage of ore is given as a percentage of the total quantity of 
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material, To, and the quantity of recovered metal is given as a per- 
centage of the total quantity of metal. Figure 19.la, which shows the 
tonnage of ore as a function of cutoff, is in fact a cumulative distribu- 
tion curve in which we show the cumulative distribution above various 
thresholds; the cumulative distribution below various thresholds that 
we introduced in Chapter 2 would correspond to the tonnage of waste. 

The curves shown in Figure 19.la and b are based on point values, 
with the implicit assumption that we can discriminate between ore and 
waste on a very fine scale. In practice, the ore/waste classification will 
likely be made on much larger volumes. In an open pit operation, our 
selective mining unit (the minimum volume we can classify as ore or 
waste) might be the volume of a single truck load; in an underground 
operation, our selective mining unit might be the volume of an entire 
stope. 

Figure 19.2 shows how the tonnage of ore, quantity of metal, and 
ore grade for V are affected if we combine the point values into larger 
units before making the classification. As the size of the selective 
mining unit increases, the average ore grade decreases. The quantity 
of metal also generally decreases, although for very low cutoffs we may 
actually pick up a small amount of the metal that was rejected using a 
more selective operation. For cutoff grades below the mean of 278 ppm, 
an increase in the size of the selective mining unit usually results in 
an increase in the tonnage of ore; above the mean, an increase in the 
size of the selective mining unit usually results in a decrease in the ore 
tonnage. 

For the planning of a mining operation, this support effect plays 
an important role. Using the results in Figures 19.1 and 19.2, we can 
see that projections based on the point support curves will be quite 
misleading if the actual mining operation uses a 20 x 20 m2 selective 
mining unit. For example, at  a cutoff of 500 ppm the curves based 
on point support (Figure 19.1) indicate that we will recover nearly 
half of the total metal and process about 20% of the total material as 
ore. In the actual operation with 20 x 20 m2 selective mining units, 
however, we would recover only 25% of the total quantity of metal 
while processing only 10% of the total material (Figure 19.2). 

When we estimate distributions of unknown variables, we have to 
be careful how we use our estimates. Since our estimated distributions 
are typically based on point sample values [l], they may be represen- 
tative of a very different support than the one in which we are actually 
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interested. For example, the global distribution of V values that we 
estimated in Chapter 10 may produce misleading predictions about 
global truncated statistics (such as tonnage of ore, quantity of metal, 
and ore grade). Similarly, our estimates of the local distribution within 
10 x 10 m2 panels from Chapter 17 may produce misleading predic- 
tions about local truncated statistics. If later decisions will be made 
on a support different from that on which the estimated distribution 
is based, it is important to account for the effect of support in our 
estimation procedures. 

The best way to handle the support effect is to use sample data 
that have the same support as the volume we intend to estimate; un- 
fortunately, this is rarely possible. Without such data, we must make 
some correction based on assumptions about how the distribution of 
values changes as their support increases. As we will see, the correction 
is usually rather imprecise and heavily dependent on our assumptions. 
Nevertheless, it is certainly better to make a coarse correction (and 
to carefully document the assumptions) than to ignore the problem. 
In the next section we will look at how the change of support affects 
various summary statistics, notably the mean and the variance. We 
will then consider mathematical procedures that allow us to make a 
correction consistent with our observations. 

An Introduction to Applied Geostatistics 

The Effect of Support on Summary Statistics 

Figure 19.3 shows the effect of support on the distribution of U. The 
distribution of the 78,000 point values of U is shown in Figure 19.3a, 
the distribution of the 780 10 x 10 m2 block averages of U is shown in 
Figure 19.3b, and the distribution of the 195 20 x 20 m2 block averages 
is shown in Figure 19.3~. 

As the support of the data increases we notice that the maximum 
value decreases, from more than 9,000 ppm for the point values to 
less than 2,000 ppm for the 20 x 20 m2 block averages. This makes 
sense since the most extreme point values will certainly be diluted by 
smaller values when they are combined in large blocks. Similarly, one 
can expect the minimum value to increase, though in this example the 
skewness of the original point distribution and its large spike of 0 ppm 
values makes this tendency less noticeable. 

Increasing the support has the effect of reducing the spread; the 
interquartile range decreases, as does the standard deviation. As the 
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Figure 19.3 The effect of support on the distribution of U. The exhaustive 
distribution of the 78,000 point U values is shown in (a); the exhaustive distribution 
of 10 x 10 m2 block averages (b), and of 20 x20 m2 block averages in (c). 

support increases, the distribution also gradually becomes more sym- 
metric. For example, the difference between the median and the mean 
becomes smaller. The only summary statistic that is unaffected by the 
support of the data is the mean. For all three distributions shown in 
Figure 19.3, the mean is 266 ppm. 
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Figure 19.4 An example of the change of support effect on spatially uncorrelated 
data. A grey scale map of 2,500 point values is shown in (a). The variogram of 
these 2,500 values is shown in (b), the point histogram is shown in (c), and the 
histogram of 5 x 5 block averages is shown in (d). 

The tendencies seen in the three histograms in Figure 19.3 will 
persist as we group the points into even larger blocks. For the largest 
possible support, the entire Walker Lake area, the histogram will be a 
single spike a t  266 ppm, with no spread and no asymmetry. 

The rate a t  which the spread decreases and the distribution be- 
comes more symmetric depends on the spatial arrangement of the data 
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values. The two data sets shown in Figures 19.4 and 19.5 have the same 
univariate distribution but they have very different patterns of spatial 
continuity. In Figure 19.4a, there is no apparent spatial continuity; 
extremely high values may be very close to  extremely low ones. In 
Figure 19.5a, on the other hand, there is some spatial continuity; there 
is an evident zonation, with high values being located in certain areas 
and low values being located in others. These patterns of spatial con- 
tinuity are also evident in the variograms of each data set shown in 
Figures 19.4b and 19.5b. 

The histograms and summary statistics of the point values and 
5 x 5 block averages for these two data sets are given in Figures 19.4c,d 
and Figures 19.5c,d. As noted earlier, the distributions of the point 
values for the two data sets are identical; however, the distributions of 
the block averages are quite different. For homogeneous data sets in 
which the extreme values are pervasive, the reduction of spread and 
asymmetry will occur more rapidly than for heterogeneous data sets 
in which there is a strong zonation, with extreme values tending to  be 
located in a few select areas. 

The effect of the support of the volume over which we are’averaging 
will be greatest for data sets in which the data are spatially hncorre- 
lated. For such data sets, classical statistics tells us that the standard 
deviation of block averages is inversely proportional to  their area; for 
such data sets the distribution of block averages will rapidly become 
symmetric. As the data values become more continuous, the support 
effect decreases; the reduction in the spread and the symmetrization 
both occur less rapidly [2]. 

This link between spatial continuity and the support effect makes 
the variogram a useful tool in assessing the effect of change of support. 
The variograms shown in Figures 19.4b and 19.5b document the lack 
of spatial continuity in the first data set and the presence of it in the 
second. As the variogram approaches a pure nugget effect, the support 
effect will become stronger in the sense that the decrease in the spread 
of the distribution is more noticeable. Later in this chapter we will 
see that we can go beyond these qualitative observations, using the 
variogram model to estimate the reduction in variance. 

It is important to realize that the variogram alone does not capture 
all of the relevant spatial characteristics of a data set. In Figure 19.6 we 
show another data set that has the same univariate distribution and the 
same variogram as the data set in Figure 19,5; however, a comparison 
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Figure 19.5 An example of the change of support effect on spatially correlated 
data. A grey scale map of 2,500 point values is shown in (a). The variogram of 
these 2,500 values is shown in (b), the point histogram is shown in (c), and the 
histogram of 5 x 5 block averages is shown in (d). The point histogram of this 
figure is identical to those in Figures 1 9 . 4 ~  and 19 .6~ ;  however, the 5 x 5 bIock 
histograms are different in each figure. 

of Figures 19.5a and 19.6a clearly reveals a distinct pattern of spatial 
continuity for each data set. While the reduction in the variance due 
to the support effect is practically the same for both data sets, the 
increase in the symmetry is not. 
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Figure 19.6 In this example the grey scale map in (a) shows a different pattern 
of spatial correlation than that shown in Figure 19.5a, even though their respective 
vaiiograms and point histograms (c) are practically the same. Note, however, that 
the histograms of the 5 x 5 block averages shown in (d) of these two figures are quite 
different, illustrating that the variogram alone does not capture all of the relevant 
information concerning the effect of a change of support. In particular, it  tells us 
very little about the amount of symmetrization that will take place. 

The common summaries of spatial continuity-the variogram, the 
covariance function, and the correlogram-do not capture the details 
of how the extreme values are connected. This connectivity of extreme 
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values is important in determining how rapidly the distribution of val- 
ues will symmetrize as the support of the data increases. Data sets in 
which the extreme values are poorly connected, such as the one shown 
previously in Figure 19.5a, are often described as having high entropy 
or maximum disorder; data sets in which the extreme values are well 
connected are described as having low entropy. Earth science data 
tend to have low entropy; there is typically some structure to extreme 
values. Indeed, the instinct of a geologist is to delineate structure. Re- 
grettably, the most common statistical models work toward producing 
maximum entropy. 

A n  Introduction to Applied Geostatistics 

Correcting for the Support Effect 

There are several mathematical procedures for adjusting an estimated 
distribution to account for the support effect. All of these procedures 
have two features in  common: 

1. They leave the mean of the distribution unchanged [3]. 

2. They adjust the variance by some factor that we will call the 
variance adjustment factor, which will be denoted by f .  

The various procedures differ in the way that they implicitly handle 
the degree of symmetrization. The choice of a particular procedure de- 
pends largely on the degree of symmetrization we expect. As we have 
seen in the previous section, the effect of support on symmetry is re- 
lated to  the entropy-the connectedness of extreme values-and is not 
adequately described by the variogram. The degree of symmetrization 
we expect is therefore necessarily a question of informed judgment. 
Qualitative information about the spatial arrangement of values must 
be brought to  bear on the problem. If past experience in similar envi- 
ronments suggests that the extreme values are poorly connected, then 
we should choose a procedure that implicitly increases the symmetry 
of the distribution as the support increases. If the extreme values tend 
to  be well connected, then we might prefer a procedure that does not 
implicitly symmetrize the distribution. 

In the next sections we will present two of the simpler techniques of 
support effect correction, one of which does not change the symmetry 
and one that does. Both of these techniques require that we already 
have some variance adjustment factor in mind. For the moment we will 
not worry about how we choose this factor; a t  the end of this chapter 
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Figure 19.7 A graphical procedure for transforming the values of one distribu- 
tion into those of another. In this particular example the original distribution is 
transformed into a standard normal distribution. 

we will show one way of estimating this adjustment factor from the 
variogram model. 

Transforming One Distribution to Another 

Before looking at the specific details of support effect correction pro- 
cedures, it will be useful to discuss their common thread, the transfor- 
mation of one distribution to another. 

Figure 19.7 shows a graphical procedure for transforming the val- 
ues from one distribution to those of another. On the left-hand side 
of this figure, we begin with a cumulative distribution curve for the 
distribution of the original untransformed values. With this curve, we 
can calculate the cumulative proportion, Avo) ,  that corresponds to a 
particular value 00. Starting on the x axis with the value 00, we move 
up to the cumulative distribution curve and then across to the cor- 
responding cumulative proportion. If we then want to transform the 
value 00 to a corresponding value from another distribution, we can 
reverse the procedure, calculating a value v& that corresponds to p(v0). 
Instead of using the same cumulative distribution curve (which would 
simply take us back to the value from which we started) we use the 
cumulative distribution curve of the distribution to which we want to 
transform the original values. The dotted lines in Figure 19.7 show an 
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Figure 19.8 The graphical procedure of Figure 19.7 shown as a transformation of 
the quantiles of one distribution to those of another. 

example of this procedure. The 5.2 ppm value from the distribution on 
the left corresponds to a cumulative proportion of 0.803 that, in turn, 
corresponds to the value 0.85 from the distribution on the right. 

By relating values that share the same cumulative proportion, this 
graphical transformation procedure is in fact mapping the quantiles of 
one distribution to those of another. In the example from Figure 19.7, 
40.803 of the distribution on the right was transformed to q&3 of the 
distribution on the left. For any cumulative proportion, p, qp of the 
distribution on the left will be transformed to q; of the distribution on 
the right. 

Rather than show the graphical transformation as a two-step pro- 
cedure: 

original value cumulative proportion :a transformed value 

we can show it as a one-step procedure that maps quantiles of one 
distribution to those of another using their q-q plot. In Figure 19.8 we 
have shown the q-q plot of the two distributions shown earlier in Fig- 
ure 19.7. Any value from the original distribution can be mapped onto 
a corresponding value from the transformed distribution by moving up 
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from the original value, VO, on the x axis to  the q-q curve then across 
to the corresponding transformed value V& on the y axis. 

Starting with an untransformed distribution and an intended dis- 
tribution for the transformed values, one can calculate the q-q curve 
that accomplishes the transformation. Unfortunately, for the support 
effect problem we do not know the intended distribution of the block 
values, and therefore can not calculate the appropriate q-q curve. So 
rather than accomplish the transformation by calculating a q-q curve 
from two known distributions, we will accomplish it by assuming a 
particular shape for the q-q curve. The fact that we want the mean 
to remain unchanged and the variance to  be changed by a. prescribed 
amount will allow us to calculate the necessary parameters of the curve. 

Afflne Correction 

The affine correction is probably the most simple of the various sup- 
port effect correction procedures. The basic idea behind it is that the 
variance of a distribution can be reduced without changing its mean 
simply by squashing all of the values closer to  the mean. How much 
we squash will depend on how much we want to  reduce the variance. 

The affine correction transforms q, a quantile (or value) of one 
distribution, to q', a quantile (or value) of another distribution using 
the following linear formula: 

q '=  d7 * ( q - m ) + m  (19.1) 

The mean of both distributions is m; if the variance of the original 
distribution is u2, the variance of the transformed distribution will be 

Figure 19.9 shows Equation 19.1 on a q-q plot. When we first 
presented q-q plots in Chapter 3, we noted that the q-q curve of two 
distributions that have the same shape will be a straight line. By using 
a linear equation to relate the values of the point support distribution 
to those of the block support distribution, the affine correction pre- 
serves the shape of the original distribution. It implicitly assumes that 
there is no increase in symmetry with increasing support. 

Figure 19.10 shows how the affine correction alters a distribution. 
In Figure 19.10a we begin with the global distribution that we esti- 
mated in Chapter 10 using only the 470 available sample values. To 
produce this declustered estimate of the global histogram, we assigned 

f * u2. 
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Figure 19.9 The affine correction plotted on a q-q plot. 

declustering weights to each sample value and then calculated the pro- 
portion in ;particular class by accumulating the weights of the sample 
values falling with that class. Each sample value was then transformed 
using Equation 19.1 with a variance adjustment factor of 0.8; the his- 
togram of the resulting transformed values was then calculated using 
the same declustering weights that were calculated earlier. The result 
is shown in Figure 19.10b. The results of repeating this procedure with 
f = 0.6 and f = 0.4 are shown in Figure 19.10~ and d. Note that while 
the various measures of spread decrease, the mean and the skewness 
remain unchanged. 

The main advantage of the affine correction is its simplicity. Its 
main disadvantage is that it produces a minimum value that may not 
be realistic. If the variance adjustment factor is not too small [4] and if 
the cutoffs of interest are close to  the mean, then the affine correction 
procedure is often adequate. 

Indirect Lognormal Correction 

The indirect lognormal correction is a method that borrows the trans- 
formation that would have been used if both the original point support 
distribution and the transformed block support distribution were log- 
normal [5] .  The idea behind it is that while skewed distributions may 



Change of Support 473 

- 
0 

I 
0 

. r  

N 470 
m 276.8 
u 245.3 
d m  0.89 
min 0.0 k!ew max 1528.1 :;, 

500 loo0 1500 

N 470 
m 276.8 
u 190.0 
ulm 0.69 

- m'n 62.4 

(b) 
15 

10 

5 

0 

(d) 

15 

10 

5 

0 

N 470 
m 276.8 
u 219.4 
d m  0.79 
m'n 29.2 
Q~ 89.6 
M 229.8 

500 loo0 1 500 

N 470 
m 276.8 
0 155.1 
dm 0.56 
mn 101.7 

Figure 19.10 Histograms and summary statistics of three distributions obtained 
by applying the affine correction. The point histogram is given in (a) while the 
distributions resulting from the variance reduction factors of 0.8, 0.6, and 0.4 are 
shown in (b), (c), and (d), respectively. 

differ in important respects from the lognormal distribution, change of 
support may affect them in a manner similar to that described by two 
lognormal distributions with the same mean but different variances [6]. 

The q-q curve that transforms the values of one lognormal distri- 
bution to those of another with the same mean but a different variance 
has an exponential form: 

q' = aq b (19.2) 

The coefficient, a, and the exponent, b, are given by the following 
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Figure 19.11 The indirect lognormal correction as a q-q plot. 

formulas: 

m 
df. cv2 + 1 

a =  
ln(CV2 + 1) 

In these formulas, m is the mean and f is the variance adjustment 
factor as before; CV is the coefficient of variation. 

The problem with the direct application of Equation 19.2 is that 
it does not necessarily preserve the mean if it is applied to  values 
that are not exactly lognormally distributed. The unchanging mean 
is one of the few things of which we are reasonably certain in the 
support effect correction, and it is better to adjust our transformation 
so that it works as we intended it to. The indirect lognormal correction, 
therefore, rescales all of the values from the transformation given in 
Equation 19.2 so that their mean is m: 

m r  
qN = 7'  (19.4) 

where mr is the mean of the distribution after it has been transformed 
by Equation 19.2. This procedure requires two steps. First, the values 
are transformed according to  Equation 19.2. Second, they are rescaled 
to the correct mean. The magnitude of the rescaling is a reflection 
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Figure 19.12 Histograms and summary statistics of three distributions obtained 
by applying the indirect lognormal correction. The point histogram is given in (a) 
while the distributions resulting from the variance reduction factors of 0.8, 0.6, and 
0.4 are shown in (b), (c), and (d), respectively. 

of the similarity between the original distribution and a lognormal 
distribution. If the original distribution is close to lognormal, then the 
factor 3 in Equation 19.4 will be close to one. 

Figure 19.11 shows Equation 19.1 on a q-q plot. For the low quan- 
tiles of the original distribution, where the curve is steep, the trans- 
formation does not squash values together as much as it does for high 
quantiles, where the curve is flatter. The extreme values in the tail 
therefore get pushed toward the mean more than the median values in 
the hump of the distribution, with the result that the indirect lognor- 
mal correction implicitly lowers the skewness and increases the sym- 
metry. 
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Figure 19.12 shows how the indirect lognormal correction alters a 
distribution. In Figure 19.12a we begin with the same global distri- 
bution that we showed in Figure 19.10a. Each sample value was then 
transformed using Equation 19.4 with a variance adjustment factor of 
0.8; the histogram of the resulting transformed values was then calcu- 
lated using the same declustering weights that were calculated earlier. 
The result is shown in Figure 19.12b. The results of repeating this 
procedure with f = 0.6 and f = 0.4 are shown in Figures 19 .12~ and 
d. 

There are two important differences between the results of the in- 
direct lognormal correction and the affine correction: the skewness 
decreases as the variance is reduced and the minimum stays at 0. 

Though somewhat more complex than the affine correction, the 
indirect lognormal correction offers a procedure that often produces 
more sensible results if extreme cutoffs are being considered or if there 
is reason to  believe that the preservation of shape implicit in the affine 
correction is unrealistic. 

D i s p e rs i o 11 Va r ia iic e 

Both of the support correction procedures we have explored require a 
variance adjustment factor. In this section we introduce the concept 
of dispersion variance that will lead, in the next section, to a method 
that uses the variogram to estimate the variance adjustment factor. 

To introduce dispersion variance, let us return to  the original defi- 
nition of variance: 

. n  

u2 = -C(v; m - M )  2 (19.5) 
1 

I* i= 1 

It is the average squared difference between a set of values and a mean. 
Throughout the previous chapters, we have tacitly understood that 
the 2);s were point values and that m was the mean calculated over the 
entire set of all the vis. Dispersion variance allows us to generalize this 
definition. 

Before we try to give a definition of dispersion variance, let us look 
at the small example shown in Figure 19.13. In Figure 19.13a we show 
12 samples on a regular grid. The mean of these 12 samples is 35 ppm, 
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Figure 10.13 T h e  12 point 
values shown in (a) a re  grouped into 1 x 3 blocks in (b) with the average block 
values shown in parentheses beneath each sample location. 

An example for dispersion variance calculations. 

and the variance can be calculated as follows: 

Variance of = ’[ 1 2  (26 - 35)2 + (30 - 35)2 + (43 - 35)2+ 
point values (27 - 35)2 + (34 - 35)2 + (41 - 35)2+ 

(30 - 35)2 + (36 - 35)2 + (42 - 35)2+ 
(33 - 35)2 + (32 - 35)2 + (46 - 35)2 ] 

= 40.0 ppm2 

In Figure 19.13b we have grouped the samples into four 1 x 3 bloclts. 
Beneath each sample value we have shown in parentheses the corre- 
sponding block average. To describe the variability of the four block 
values, we could calculate the variance of the four block averages: 

Variance of = $[ (33 - 3 ~ ) ~  + (34 - 35)2 
block values (36 - 35)2 + (37 - 35)2 ] 

= 2.5 ppm2 

Another source of variability in which we may be interested is the 
variability of point values within their corresponding blocks: 

Variance of = ’[ 1 2  (26 - 33)2 + (30 - 33)2 t (43 - 33)2+ 
point values (27 - 34)2 + (34 - 34)2 + (41 - 34)2+ 

within blocks (30 - 36)2 + (36 - 36)2 + (42 - 3G)2+ 
(33 - 37)2 + (32 - 37)2 -f- (46 - 37)2 J 

= 37*5 ppm2 
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These three calculations are all similar in the sense that they all are 
calculations of some average squared deviation. They differ only in the 
support of the individual values (the w;s in Equation 19.5) and in the 
support of the mean that is subtracted from each individual value. 

Dispersion variance is an average squared difference that has the 
support of the individual values and the support of the mean explicitly 
stated: 

I "  
a2(a ,b )  = -C( v vi - v mi I 2  

i= l  
Support a Support b 

(19.6) 

In the calculation of the variance between the 12 values in Fig- 
ure 19.13, the support of the data  was individual points and the mean 
that was subtracted from each data  value was calculated over the en- 
tire area. The dispersion variance of point values within the entire 
area, o'( . ,A),  was 40 ppm'. In the calculation of the variance between 
the four block average values in Figure 19.13, the support of the data 
was 1 x 3 block averages and the mean value that was subtracted from 
each data  values was calculated over the entire area. The dispersion 
variance of 1 x 3 block averages within the entire area, a2(1x3, A ) ,  was 
2.5 ppm2. In the calculation of the variance of point values within 
1 x 3 blocks, the data  had point support and the means had 1 x 3 
block support. The dispersion variance of point values within 1 x 3 
blocks, d(., 1x3), was 37.5 ppm2. 

So far, we have not actually made much progress in our change of 
support problem. In fact, all we have done is come up with a name for 
some of the important parameters in the problem. When we have a 
distribution of point values, its variance will be the dispersion variance 
of point values within a particular area. If we want a distribution of 
block values instead, we recognize that this point variance is too large; 
we would like some way of adjusting this distribution of point values 
so that its variance becomes the dispersion variance of block values 
within the same area. The reason that we have introduced the concept 
of dispersion variance is that  it provides a means for estimating the 
reduction in variance due to  the support effect [S ] .  

An important relationship involving dispersion variances is the fol- 
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lowing: " 
Q 2 ( a , ~ )  = 02(a ,b)  + a2(b,c)  (19.7) - - - 

Total Variance Variance 
variance within blocks between blocks 

This relationship expresses the fact that  the variance of point values 
within a certain area can be seen as the variance of point values within 
blocks plus the variance of block values within the area. Our  12 point 
example provides a good example of this relationship: 

This numerical example gives us some insight into how we might 
estimate the variance of the block distribution. We are typically able 
to  estimate a distribution of point values. From our estimated dis- 
tribution we can calculate 0 2 ( . , A ) ,  the variance of points within the 
entire area, which is the quantity referred t o  as total variance in Equa- 
tion 19.7. We would like to reduce this variance so that i t  more accu- 
rately reflects the variance of values for blocks of some larger volume 
B. The variance of these block values is u2(B, A),  which is the quan- 
tity referred to  as variance between blocks in Equation 19.7. Using 
Equation 19.7, we have the following relationship: 

02(*, A)  = 0 2 ( - ,  B )  + 0 2 ( B ,  A )  
0 2 ( B , A )  = .'(*,A) - 0 2 ( . , B )  

The  variance adjustment factor we were discussing earlier is the 
ratio of the block variance to the point variance: 

(19.S) 

We already have an estimate of 02( . ,  A),  the variance of our point 
values; we will have a means of estimating the variance adjustment 
factor if we can find some way to estimate o ' ( . ,B) .  The practical 
value of Equation 19.7 is that it gives us a way of relating the variance 
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of the block distribution (which we don’t know) to  the variance of the 
point distribution (which we do know), using the dispersion variance 
of points within blocks as an intermediary step. Our goal now becomes 
the estimation of this dispersion variance. As we will see in the next 
section, the variogram gives us a way of estimating this quantity. 

Estimating Dispersion Variances froin a Variogram 
Model 

The dispersion variance of point values within any area can be esti- 
mated from a variogram model since there is a direct link between the 
definition we gave for dispersion variance (Equation 19.6) and the def- 
inition we gave for the variogram (Equation 7.1). As a n  example, let 
us look a t  the expression for the total variance of point values within 
a large area, 0 2 ( . , A ) .  Using Equation 19.6 this can be written as 

0 2 ( . , A )  = - c ( v i  l n  - m)  2 
i = l  

where v1 , .  . . , v n  are the n point values in the volume V ;  m is the 
arithmetic mean of these values: 

The dispersion variance of points within the entire area can therefore 
be written as: 
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. n n  

(19.9) 

This final expression is reminiscent of the definition for the variogram: 

Both are the average of some squared differences. With the variogram, 
we average the squared differences of all pairs separated by a. particular 
vector h. With the dispersion variance, we average the squared differ- 
ences of all pairs within the area A .  The dispersion variance, therefore, 
can be seen as a kind of variogram calculation in which pairs of val- 
ues are accepted in the averaging procedure as long as the separation 
vector hij is contained within A: 

Though this could be estimated from a set of sample data,  i t  is usually 
derived from a variogram model instead: 

3'(.,A) x ?'(A) 

where the right-hand side refers t o  the the variogram model ?(h) av- 
eraged over all possible vectors contained within A .  We have used the 
- in this equation to remind ourselves that these are quantities derived 
from a model and to  draw attention to  the importance of this model. 
For certain variograni models there are formulas, tables, or graphs for 
calculating ? ( A )  for rectangular blocks [7,9]. In practice, the more 
common procedure for calculating these average variogram values is t o  
discretize the volume A into n points and to  approximate the exhaus- 
tive average of the variogram within the area by an average of the n2 
variogram values between the n discretized locations: 

. n n  

(19.10) 

We now have all of the pieces we need to  estimate the variance 
adjustment factor. Equation 19.8 calls for two quantities: the disper- 
sion variance of point values within the entire area and the dispersion 
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Table 19.1 
estimated variance reduction factor. 

An example of the effect of the number of discretizing points on the 

11 is cre t i zi n g - - 
Grid ?(lo x 10) ?(260 x 300) f 
1 x 1  0 0 
2 x 2  29813 80250 0.628 
3 x 3  34655 94765 0.634 
4 x 4  36265 99456 0.635 
5 x 5  36990 101698 0.636 
6 x 6  37376 102713 0.636 
7 x 7  37607 103267 0.636 
8 x 8  37755 103622 0.636 
9 x 9  37856 103887 0.636 

10 x 10 37928 104070 0.636 

- 

variance of point values within a block. Using Equation 19.10, the de- 
nominator, 02(., n), can be estimated by discretizing tlie block B into 
several points and calculating the average variogram value between all 
possible pairs of points. Though we could take our estimate of 02( . ,  A )  
directly from our estimated distribution, it is preferable in practice to 
estimate it from the variogram model. With both the numerator and 
the denominator being estimated from the same variogram model, we 
rely only on the shape of the variogram and not on its magnitude. 

Table 19.1 shows the effect of the number of discretizing points 
on the estimation of tlie variance adjustment factor. Using the var- 
iogram model for the V variable given in Equation 16.34 this table 
shows the estimated dispersion variance for points within 10 x 10 m2, 
the estimated dispersion variance for points within the 260 x 300 m2 
global area and the resulting variance adjustment factor. While the 
numerator and the denominator of the ratio involved in Equation 19.S 
converge slowly to  their corresponding exhaustive values, the ratio it- 
self converges much more rapidly, with its estimate based on a discrete 
5 x 5 grid being virtually identical to its exhaustive value. 
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Figure 10.14 Histograms of the distributions obtained by applying a change of 
support to t h e  declustered sample histogram of V. The exhaustive histogram of 
20 x 20 m2 block averages is shown in (a) while the declustered sample histogram 
is shown in (b). The  distribution obtained by applying the affine correction to  
the declustered sample distribution is shown in (c), while the distribution obtained 
using the indirect lognormal correction is shown in (d). 

Case Study: Global Change of Support 

In many mining applications the distinction between ore and waste 
is often made by comparing the average grade of a block of ore to 
a cutoff grade. If the average grade of the block is estimated to  be 
greater than the cutoff grade, then the block is mined as ore; otherwise 
i t  is either mined as waste or left in place. Thus the estimation of 
recoverable quantities requires knowledge of the distribution of block 
grades. Typically the sample support is a great deal smaller than that 
of the block; thus, the distribution of block grades must be derived from 
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Figure 19.15 The 
heavy solid line on each graph is the recovery curve for the exhaustive distribution 
of 20 x 20 m2 block values of V .  The solid light curve shows the recoveries for the 
declustered point histogram of V ,  while the short dashed curve shows the recoveries 
obtained using the affine correction and the long dashed curve shows the recoveries 
using the indirect lognormal correction. 

Recovery curves for V based on point and block support. 

a sample distribution of quasi-point support using one of the change 
of support methods. 

For this case study discussed in this section we will be interested 
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in a change of support from points t o  blocks measuring 20 x 20 m2. 
The distribution of points is provided by the 470 sample values of V .  
Recall from Chapter 18 that this sample distribution must be declus- 
tered to  obtain a reasonable estimate of the global distribution. Using 
the polygon weights derived in Chapter 10, we obtain the declustered 
histogram (point support) shown in Figure 19.14a. The 20 x 20 m2 
block histograms shown in Figures 1 9 . 1 4 ~  and d are obtained using the 
affine and indirect lognormal change of support methods. 

To apply either one of these methods we must first determine the 
variance reduction factor f using Equation 19.8. The dispersion vari- 
ance of points within the 20 x 20 m2 block 0 2 ( . , B )  is 52,243 ppm2. 
This was obtained using Equation 19.10, and the variogram model 
for V given in Equation 16.34. The dispersion variance of points 
within the sample domain .'(.,A) is 104,070 ppm2 and is given in 
Table 19.1. Thus the variance reduction factor f i s  equal t o  0.498. Us- 
ing Equations 19.1, 19.2, 19.3, and 19.4, we then obtained the block 
distributions given by the affine and indirect lognormal corrections, 
respectively. 

The histogram of true block average values is compared in Fig- 
ure 19.14 t o  the uncorrected sample histogram and the sample distri- 
bution after correction by the affine and indirect lognormal procedures. 
Note that while the mean of the declustered sample histogram is quite 
close, its spread is definitely too large. Both of the correction proce- 
dures manage t o  reduce the spread without changing the mean. For 
the affine correction, the minimum value 83.2 ppm and the coefficient 
of skewness is unchanged. For the indirect lognormal correction, the 
minimum stays a t  0 ppm and the coefficient of skewness decreases. 

Figure 19.15 provides a further comparison of the methods by show- 
ing the tonnage of ore, its grade, and the quantity of metal predicted 
to  be recovered for each of the distributions. The four lines on each 
plot in this figure correspond to  the various distributions as follows: 

0 Heavy solid line - Exhaustive 20 x 20 m2 block distribution of 
V .  

0 Light solid line - Declustered sample distribution of V .  

0 Short dashes - Block distribution derived from the affine cor- 
rec t ion. 
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0 Long dashes - Block distribution derived from the indirect log- 

Note that for practically all cutoffs, the recoveries predicted using 
the declustered sample distribution (point support) depart the furthest 
from the exhaustive recoveries shown by the heavy solid line. Recover- 
ies predicted using the corrected or block distributions are much closer 
t o  the true or exhaustive recoveries. For example, a t  the recoveries 
for a 500 ppm cutoff on the exhaustive block histogram are 11.28% 
recovered tonnage, 26.8% recovered quantity of metal, and a recovered 
grade of 660 ppm. The corresponding figures derived from the sample 
histogram are 18.3%, 44.8%, and 677 ppm. The predictions based on 
the uncorrected sample histogram overestimate the recovered quantity 
of metal by 167%. Such severe overpredictions could prove to  be dis- 
astrous in the early stages of mine design. The predictions based on 
the corrected sample distributions, however, are sufficiently accurate 
for most mine pla.nning or design purposes. 

normal correction. 

Notes 

[l] In practice, even though the support of our samples are averages 
over some volume-a cylinder of drill core, for example-they are 
most often treated as “point” samples since the volume they repre- 
sent is very small compared to  the larger volumes whose arithmetic 
average we are trying to estimate. 

[2] The symmetrization of the distribution is a consequence of the Cen- 
tral Limit Theorem, which states that  sample means tend toward 
a Normal distribution regardless of the distribution of the samples. 
Since this convergence is faster if the samples are independent, a 
lack of spatial correlation entails a more rapid symmetrization of 
the point distribution. 

[3] The models provided for a change of support in this chapter leave 
the mean of the distribution unchanged, and are not appropriate for 
variables whose averaging process is not arithmetic. For example, 
these procedures are not appropriate for adjusting effective block 
permeabilities since the effective block permeability is not equal to 
the arithmetic average of the corresponding point permeabilities. 

[4] Experience suggests that  some symmetrization is likely to  occur for 
variance reductions greater than 30%. For this reason, the indirect 
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lognormal correction is likely t o  be more appropriate than is the 
affine correction if the variance adjustment factor is less than 0.7. 

[ 5 ]  This is not quite the same thing as the direct lognormal correction, 
a procedure that fits a lognormal model t o  the original distribution, 
and then reduces its variance while preserving its mean. 

[GI If the original distribution is not exactly lognormal, then the actual 
reduction in variance will be different from f, The second step, in 
which the values from the first step are rescaled by m/m',  will 
change the variance by the square of this factor. Since the mean of 
the block distribution is better Imown than its variance, it is felt 
t o  be  more important t o  honor the mean exactly than to try to 
honor the variance exactly. If the reduction in variance is known 
quite precisely (i.e,, from historical information) then one could 
experiment with several values o f f  to find the one that  produces 
the desired reduction in variance after the entire correction has 
been performed. 

[7] David, M. , Geostntistical Ore Reserve Estimation. Amsterdam: 
Elsevier, 1977. 

[8] Though the dispersion variance approach is more traditional in 
geostatistics, the estimation of the variance of block values could 
be accomplished by resorting once again to Equation 9.14, which 
gave us the variance of a weighted linear combination of random 
variables. If the block average, VB, is simply an equal weighting of 
all the point values within the block: 

then the variance of the random variable V, is 
n n 

The variance of block averages is the average covariance between 
all possible pairs of locations within the block. The covariance of 
point values, under the assumption of stationarity, can be taken 
directly from our model of the covariance function: 

cov{v(zz)v(5~)} = E ( 0 )  
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The  variance adjustment factor, f, is therefore 

1 
;Err ELI Ejn=l W i j )  

m> f =  

This formula, expressed in terms of the covariance model, gives 
essentially the same result as Equations 19.8 and 19.10. 

[9] Journel, A. G. and Huijbregts, C. J. , Mining Geostatistics. Lon- 
don: Academic Press, 1978, pp. 108-148. 
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20 
ASSES SING UNCERTAINTY 

In previous chapters we have concentrated on the estimation of various 
unknown quantities. In this chapter we will look at how we can supple- 
ment these estimates with some assessment of their uncertainty. We 
begin with a qualitative discussion of what we mean by “uncertainty” 
and the factors that  influence it. We follow this with a look at how 
uncertainty should be reported, a question whose answer depends on 
the goal of our study. We then propose several methods for deriving 
these various uncertainty measures and conclude with a case study. 

Error and Uncertainty 

Qualitatively, we know what we mean by “uncertainty.” The  many 
other words used to  express this notion: (‘reliability,” “confidence,” 
(‘accuracy,’’ all carry similar connotations that revolve around the 
recognition that the single value we report is, in some sense, only a 
reasonable or useful guess a t  what the unknown value might be. We 
hope that  this estimate will be close to the true value, but we recog- 
nize tha t  whatever estimation method we choose there will always be  
some error. Though it is not possible to calculate this error exactly, 
we do hope that we can assign it a n  “uncertainty,” some indication of 
its possible magnitude. 

A useful first step in assessing the uncertainty is to consider the 
factors that  influence the error. One obvious factor is the number of 
the nearby samples; additional nearby samples should help to make 
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the estimate more reliable. Another important consideration is the 
proximity of the available samples; the closer the samples to  the point 
we are trying to  estimate, the more confident we are likely to  be in our 
estimate. 

There are two other factors that  are less obvious but may be equally 
as important as the number and proximity of the samples. The first is 
the spatial arrangement of the samples. The additional confidence that 
additional samples might bring is influenced by their proximity to  ex- 
isting samples. Consider the example shown in Figure 20.1. We already 
have one nearby sample, as shown in Figure 20.la. Our confidence in 
our estimate will likely increase if we have other nearby samples. If 
those additional samples are extremely close to the existing sample (as 
in Figure 20.lb), however, our confidence will not increase as much as 
it would if the additional samples were more evenly distributed about 
the point we are trying to  estimate (as in Figure 20 .1~) .  

The second factor which complicates the question of uncertainty is 
the nature of the phenomenon under study. If we are dealing with an 
extremely smooth and well-behaved variable, our estimates are going 
t o  be more reliable than if we are dealing with a very erratic variable. 
For example, the configuration of four samples shown in Figure 2 0 . 1 ~  
may produce extremely accurate estimates of the thickness of some 
sedimentary horizon and yet not be enough to produce good estimates 
of the gold grade within that horizon. 

It is important t o  recognize that the nature of the phenomenon 
under study may vary from one locality to the next. It is common i n  
practice to use one variogram model t o  describe the pattern of spatial 
continuity for an entire region. Since the estimates are unchanged by a 
rescaling of the variogram model, the shape of a single variogram model 
may be adequate for the purposes of estimation. If there are fluctua- 
tions in the local variability, however, a single variogram model is not 
adequate for the purposes of assessing uncertainty. Since the ordinary 
kriging variance is affected by the magnitude of the variogram model, 
the possibility of fluctuations in the magnitude of the variogram must 
be taken into account when assessing uncertainty. Many earth science 
data  sets exhibit the proportional effect we described earlier, with the 
local variability being proportional t o  the local mean. In such cases, 
the uncertainty of a particular estimate is linked to  the magnitude of 
the data  values that are used in the weighted linear combination. 

These various factors interact. For example, for very smooth and 
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Figure 20.1 T h e  effect of additional sampling on uncertainty of the estimate. The  
estimate of the  unknown value a t  the  plus sign in the center of (a)  will become more 
reliable with additional sampling. T h e  clustered samples samples in (b), however, 
will not improve the reliability as  much as  the more evenly distributed samples in 

(c). 

well-behaved phenomena proximity may be  more important than num- 
ber of samples; we might prefer to have one very close sample than 
several samples slightly further away. For very erratic phenomena, the 
reverse might be true; even a t  a greater distance, several samples might 
produce a more reliable estimate than a single nearby sample. 

The continuity of the phenomenon also interacts with the effect of 
clustering. With a very smooth and well-behaved phenomenon, two 
samples very close to  each other are not much better than one sample. 
If the variable being studied fluctuates very wildly, however, two closely 
spaced samples might not be so redundant. 

As we start to explore various methods for characterizing the uncer- 
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tainty of our estimates, we should keep in mind these factors: number 
and proximity of samples, clustering of samples and continuity of the 
phenomenon. Some of the tools will account for some factors but not 
others. There has been considerable misuse of certain tools due to  the 
fact that  their limitations have not been fully understood. 

Reporting Uncertainty 

Without a clear idea about what we are trying to  report, any attempt 
a t  quantifying uncertainty will lack a clear objective meaning. One 
of the frustrating aspects of dealing with uncertainty is that  it is usu- 
ally not clear what the measurement of uncertainty actually means. 
Though there are certain formats that  have become traditional, the 
95% confidence interval, for example, it is worth considering whether 
or not they are useful or appropriate for the problem a t  hand. In this 
section, we propose several approaches to reporting uncertainty, each 
suited to  a particular type of problem. 

Common to  all the methods discussed here is the notion of the 
estimation error, which, as in earlier chapters, is defined as follows: 

error = T = estimated value - true value 
- - 6 - v  

Though this error has a clear definition, it can not be calculated since 
i t  requires that  we know the unknown true value. 
An Uncertainty Index. Figure 20.2 shows a common problem in 
earth sciences; we would like to  know which sampling pattern gives us 
more reliable estimates. In Figure 20.2a, we have our samples located 
on a square grid; in Figures 20.2b and c the samples are arranged on 
a rectangular grid with different orientations. Later in this chapter 
we will propose a specific solution for this type of question. For the 
moment, we will simply note that this type of question calls for an 
index of uncertainty, some number that permits sets of estimates to be 
ranked according to their reliability. 

The absolute value of this index is unimportant, it is intended to  be 
used only in a relative way to  enable comparisons of the possible error 
of different estimates. This index does not provide a guarantee that 
one particular estimate is better than another, it merely provides some 
indication about the possible magnitude of the errors. If we perform a 
hindsight study, we would hope that there is some obvious correlation 
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Figure 20.2 Sample configuration and uncertainty. A common problem in earth 
sciences is the ranking of sampling patterns. Different sampling configurations will 
produce estimates of differing reliability. 

between our uncertainty index and the magnitude of the actual error. 
Figure 20.3 shows hypothetical plots of some uncertainty indices versus 
actual errors. The index shown in Figure 20.3a is not very good since 
it is poorly correlated with the magnitude of the actual error. The 
uncertainty index shown in Figure 20.3b is very dangerous since it is 
completely misleading; the estimates with largest errors also have the 
lowest uncertainty index. The situation shown in Figure 2 0 . 3 ~  is the 
most preferable; the estimates with a high uncertainty index tend to  
have the larger errors. 

Confidence Intervals. Though a good uncertainty index can be 
tremendously useful in comparing the reliability of estimates, it is not 
useful for decisions that require an absolute (rather than a relative) 
indication of the magnitude of the error. 
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Figure 20.3 Hypothetical scatter plots of uncertainty indices versus the actual 
magnitude of the error. The  uncertainty index in (a) is poor due to  its lack of 
correlation with the actual magnitude of the errors. T h e  index in (b) is dangerously 
misleading due t o  i ts  pronounced negative correlation. T h e  positively correlated 
index in (c) is the  most preferable. 

Confidence intervals are perhaps the most familiar way of account- 
ing for our inability to  pin down the unknown value exactly. Rather 
than report a single value, we report an interval and a probability 
that the unknown value falls within this interval. For example, rather 
than simply report an estimate of 300 ppm, we could convey some idea 
a,bout the reliability by reporting that there is a 50% probability that 
the error is somewhere in the range 300 20 ppm. For confidence 
intervals t o  be practically useful, it must be made clear what exactly 
such a probabilistic statement means. 

Probabilistic statements are quite common in many aspects of daily 
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life. Weather reports typically provide probabilities of rain; public 
opinion polls often provide a confidence interval. For most of these 
familiar probabilistic statements, their objective meaning lies in the 
fact that  there is some repeatability in time. When meteorologists 
report a 20% chance of rain, they are saying that if we looked a t  all 
the times they made such a statement we would see that it rained on 
about 20% of those occasions. When pollsters report a 95% confidence 
interval of f3%, they are saying that  if they immediately reconducted 
their poll many times with different people, 95% of the time their 
results would be within 3% of what they have reported from their 
single sampling. 

In most earth science applications there is no repeatability in time. 
For example, in an ore deposit a particular block will be mined only 
once; in a toxic waste site, a polluted area will be cleaned only once. 
So what does a probabilistic statement mean when only one true value 
exists, when there will be no second or third repetition of the same 
exercise? 

In such situations, the meaning of a probabilistic statement, if any, 
lies in the idea that  there is some spatial repeatability. Though we 
will not mine a particular block twice, we will mine many other blocks 
from the same mine. If we are willing to  believe that the conditions 
in one area of the mine are similar t o  those in other areas, then we 
can choose t o  group these areas together. A 50% confidence interval 
of f 2 0  ppm means that if we look a t  all estimates in some group then 
the actual value will be within 20 ppm of its corresponding estimate 
in about 50% of the cases in that group. 

The idea here is that  although we cannot calculate the actual mag- 
nitude of one individual error, we can group together several estimates 
from different locations and try to  make some statements about the 
distribution of these errors. As we will discuss later in this chapter, a 
common misuse of confidence intervals stems from a misunderstanding 
of the population in question. Though confidence intervals can pro- 
vide a very useful assessment of uncertainty, we should always keep in 
mind that  they have an objective meaning only in the context of the 
grouping that  we have already decided is appropriate. 

Probability Distributions. Though confidence intervals are the 
most familiar way of reporting uncertainty, they are rarely used directly 
in decision making, Typically, they are used only in a comparative way, 
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as an index of uncertainty, wasting the effort that  went into giving them 
some absolute meaning. There are two main reasons for this. 

First, they are nearly always expressed as symmetric intervals, as 
fs. For many of the very skewed distributions encountered in earth 
sciences, the magnitude of possible underestimates may be quite differ- 
ent from the magnitude of overestimates. For example, for our Walker 
Lake data  set to report an estimate of 200 f 5 0 0  ppm is not partic- 
ularly useful. It is obvious that if 200 ppm is our estimate, then we 
have not overestimated by more than 200 ppm, but we might have 
underestimated by much more than that,  perhaps by several thousand 
parts per million. 

The second reason that confidence intervals are rarely used quanti- 
tatively is that  they provide quite limited information. Even when the 
variable under study has a symmetric distribution, a single confidence 
interval provides, a t  most, an optimistic and a pessimistic alternative 
to  the estimate. Though this is sufficient for some problems, there are 
many others that  call for a more detailed assessment of the likelihood 
of a broad range of possible values. 

The concept of confidence intervals can be extended quite natu- 
rally to the concept of a complete probability distribution. If we can 
report an interval within which there is a certain probability, then we 
should also be abIe to  report a slightly larger interval within which 
there is a slightly larger probability. Taken to  the limit, we should be 
able to  report the probability that the unknown value falls within any 
particular interval. In doing so we are describing a probability distri- 
bution, a range of possible values, each with an associated probability 
of occurrence. 

Such a probability distribution has considerably more information 
than a single confidence interval. It can be  used to  describe asym- 
metric confidence intervals or t o  describe the probability of exceeding 
certain thresholds. Combined with the concept of a “loss function,” 
that  describes the impact of errors on the profitability of an operation, 
a probability distribution can be the vehicle for truly incorporating 
the effect of uncertainty into a decision making process. Regrettably, 
this topic is well beyond the scope of this book; the Further Reading 
section at  the end of this chapter provides references to some of the 
relevant literature. 

Like confidence intervals, a probability distribution derives its ob- 
jective meaning from the concept of spatial repeatability and the belief 
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that  certain estimates can be grouped together. The appropriateness 
of a particular grouping is a choice that  we must make beforehand and, 
having made it, that  we must keep in mind as we use our probability 
distributions to  assist in the making of various decisions. 

Ranking Uncertainty 

Let us first consider the problem of producing an uncertainty index 
that permits the ranking of estimates in order of reliability. From our 
discussion at the beginning of this chapter on the factors that  influence 
uncertainty, there are several rather simple indices we could consider. 

The  first factor we discussed was the number of samples; we expect 
that  estimates that are based on many samples will be  more reliable 
than those based on just a few. One rather simple index of uncertainty, 
therefore, is n, the number of nearby data. Having already decided t o  
use a particular search neighborhood, we can easily count the number 
of samples that fall within this neighborhood. 

We also recognized that the proximity of the samples was an im- 
portant consideration, so another straightforward index is l/d, where 
d is the average distance to the available samples. As this average 
distance increases, the estimate becomes less reliable. 

Though both of these proposals, n and l / d ,  do  account for two 
of the important factors that  affect uncertainty, they do  not capture 
the interaction between these two factors. Furthermore, they do not 
account for the sample data  configuration nor for the behavior of the 
variable under study. An index of uncertainty that does account for 
these two additional factors and also for the interaction between the 
various factors is the error variance 6; that  we first encountered in 
Chapter 12: 

n n  n 
(20.1) 

i=l j=1  i=l 

This formula gave us the variance of the random variable R ,  which 
represented the error in our random function model, as a function of 
the following model parameters: 

0 6 0 0 ,  the variance of point values 

0 Cij, the covariance between the ith sample and the j th  sample 
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d ; ; ~ ,  the covariance between the ith sample and the unknown 
value being estimated 

Once we have chosen these parameters, Equation 20.1 gives us an ex- 
pression for the error variance as a function of n variables, namely the 
weights wl, . . . , w,. Let us look at the three terms in this equation and 
see how they incorporate the various factors that we discussed earlier. 

The first term represents the variance of the point values and ac- 
counts, in part, for the erraticness of the variable under study. As the 
variable becomes more erratic, this term increases in magnitude, thus 
giving us a higher uncertainty index. 

The second term is a weighted sum of all the covariances between 
the various samples pairs. As we noted when we discussed the ordinary 
kriging system, the covariance function acts like an inverse distance 
in that it decreases as the distance increases. Rather than express 
distance in a euclidean sense, however, it expresses it in a statistical 
sense. Our model of c ( h )  is customized to  the pattern of spatial 
continuity relevant to the particular data  set we are studying. If the 
samples are far apart ,  then the second term will be relatively small. As 
they get closer together, the average distance between them decreases 
and the average covariance increases. This term therefore accounts for 
the clustering by increasing the uncertainty if we use samples that  are 
too close together. 

The third term is a weighted sum of the covariances between the 
samples and the value being estimated. It accounts for the proximity 
(again in a statistical sense) of the available samples. As the average 
distance to  the samples decreases, the average covariance increases and, 
due to its negative sign, this term decreases the index of uncertainty. 

The error variance also takes into account the weighting scheme we 
have chosen for our estimate. For any estimation method that uses a 
weighted linear combination whose weights sum to  1, Equation 20.1 
provides an index of uncertainty [l]. Though not as simple as counting 
the nearby samples or calculating their average distance, this index 
does, at  the expense of choosing a covariance model, provide a measure 
of uncertainty that incorporates the relevant factors that  we discussed 
earlier. 
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Figure 20.4 T h e  alternative sample data  configurations for the  case study on 
ranking uncertainty. Additional samples are  going to  be added to the  10 x 10 rn2 
grid shown in (a). T h e  question we want to  address is whether these additional 
samples should be added on existing north-south lines, as in (b), or on existing 
east-west lines, as in (c). 

Case Study: Ranking Sample Data Configurations 

In this section we use the estimation variance to  help us decide which 
of two sample da t a  configurations will produce more reliable estimates. 
We will imagine that we already have samples on a 10 x 10 m2 grid 
throughout the Walker Lake area (as shown in Figure 20.4a) and we are 
interested in the effect of adding some more samples. In this example, 
we will look a t  the choices shown in Figures 20.4b and c. In both 
of these alternatives, additional samples are located half way between 
existing holes. In one, the additional samples are located on north- 
south lines, while in the other, they are located on east-west lines. 

We intend to do block estimation with the samples and would like t o  
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know which configuration will give us better estimates. In comparing 
the two alternatives, simple indices such as n or l /d are not helpful 
since both configurations would receive identical rankings. 

The error variance offers us a more discriminating uncertainty index 
if we are willing to take the time to choose a covariance model. In this 
case study we will use the covariance model we developed in Chapter 16 
and repeat in Equation 20.4. 

The formula we gave for the error variance in Equation 20.1 was 
for point estimates. The  corresponding formula for block estimates is 
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(20.2) 
i=l j=1 i= 1 

The first term on the right hand side is no longer 600, the variance of 
point values, but rather C A A ,  the average covariance within the block 
A that  we are estimating. The third term consists of a weighted sum of 
the average covariances between the sample data  and the block being 
estimated. 

If we use the ordinary kriging weights [2], Equation 20.2 can be 
expressed in a form that is computationally more convenient: 

(20.3) 
i=l 

- - 
where CAA and C?~A have the same meanings as before and p is the 
Lagrange parameter whose value we obtain by solving the ordinary 
kriging equations. 

In Chapter 16, we developed the following variogram model 

Y ( h )  = 22,000 + 40,000 S p h l ( h ’ , )  + 45,000 Sphz(h’,) (20.4) 

where the vectors h’, and hi are calculated as follows: 

We can turn this model upside down by subtracting i t  from its sill 
value to obtain the corresponding covariance model: 

C( h)  = 107,000 - Y( h)  (20.5) 
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Table 20.1 
data configuration shown in Figure 20.4b. 

Point-to-point and average point-to-block covariances for the sample 

C D 
1 2 3 4 5 6 A 

1 107,000 60,072 39,302 49,483 72,243 45,575 59,843 
2 60,072 107,000 49,483 46,442 72,243 49,614 62,805 
3 39,302 49,483 107,000 60,072 45,575 72,243 59,843 
4 49,483 46,442 60,072 107,000 49,614 72,243 62,805 
5 72,243 72,243 45,575 49,614 107,000 49,483 64,736 
6 45,575 49,614 72,243 72,243 49,483 107,000 64,736 

Using this covariance model, Table 20.1 gives all of the point-to- 
point covariances between the various samples and the point-to-block 
average covariances between the samples and the block being estimated 
for the sample data configuration shown in Figure 20.4b (with the 
additional samples on north-south lines). The first six columns of this 
table show the covariances for the left-hand side C matrix; the final 
column shows the covariances for the right-hand side D vector. The 
average covariances were calculated by discretizing the block into 100 
points on a 10 x 10 grid. Using - the same discretization [3] the average 
covariance within the block, CAA,  is 67,400 ppm2. 

Solving the following system of equations: 

C * W = D  

we obtain the ordinary kriging weights and the Lagrange parameter: 

W =  

0.147 
0.174 
0.147 
0.174 
0.179 
0.179 

-1,810 

which gives us an error variance of 6,600 ppm2 using Equation 20.3. 
Repeating this procedure for the sample configuration shown in 

Figure 2 0 . 4 ~  (with the additional samples on eat-west lines), we obtain 
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(a) 

0.174 

0.179 

0.147 

0.195 (b) 

0.147 0.161 0.144 

0.179 

0.174 0.144 0.161 
0.195 

Figure 20.5 
weights. 

The  two alternative data configurations along with their kriging 

a slightly lower error variance of 5,500 ppm2. This index of uncertainty 
therefore suggests that  additional sampling on east-west lines will yield 
more reliable estimates than the same number of samples on north- 
south lines. 

Before we check with our exhaustive data  set t o  see if this con- 
clusion is in fact correct, let us look a t  the kriging weights for the 
two configurations to  see if we can make sense of this conclusion. Fig- 
ure 20.5 shows the kriging weights for the two data  configurations. The 
additional samples on the north-south lines get less weight than those 
on the east-west lines. The reason for this is that  our variogram model 
is anisotropic, with N14'W being the direction of greatest continuity. 
For the purposes of estimation, samples that fall in the direction of 
maximum continuity are more useful than those that fall in the perpen- 
dicular direction. The  two additional samples shown in Figure 20.5b 
are more useful than those shown in Figure 20.5a since they fall closer 
to the direction of maximum continuity. It makes sense, therefore, that  
the additional samples on the east-west lines get more weight and that 
this configuration produces more reliable estimates. 

To check this theoretical result, we have estimated the average V 
value of the 780 10 x 10 m2 blocks using the two alternative sample data 
configurations shown in Figure 20.5. Figure 20.6 shows the histograms 
of the estimation errors for the two alternatives. Both are quite sym- 
metrical, with means and medians close to 0. While one has a mean 
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Figure 20.6 T h e  histograms of the errors of block kriging with the two sample da ta  
configurations. T h e  distribution of the errors from the north-south configuration is 
shown in (a), and the  corresponding distribution for the east-west configuration is 
shown in (b). 

slightly closer to 0, the other has the better median. Both sample data  
configurations are therefore reasonably unbiased. In terms of spread, 
however, the errors from performing estimation with the additional 
east-west samples are clearly better than those with the north-south 
samples. The  greatest underestimate and the greatest overestimate 
both have smaller magnitudes with the east-west sampling. The in- 
terquartile range and the standard deviation are also smaller for the 
east-west configuration than for the north-south configuration. 

With its error distribution having a lower spread, the east-west 
sampling can be said t o  produce more reliable estimates in average. 
The conclusion that we reached earlier is valid; in this case, the ordi- 
nary kriging variance is a good index of uncertainty. It is important 
to  note that the usefulness of the ordinary kriging variance depends 
entirely on our prior choice of a covariance model; a good model of 
the pattern of spatial continuity is crucial. Time spent exploring the 
spatial continuity through the various tools presented in the first sec- 
tion of this book will be rewarded by an improved ability to  assess 
uncertainty. 

It is also important to  emphasize that the statement that one sam- 
ple configuration produces more reliable estimates than another makes 
sense only with respect to the entire population. Despite the overall su- 
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periority of the east-west configuration, there are some particular cases 
where the north-south sampling may do a better job. Of the 780 block 
averages, the north-south configuration produced an estimate closer 
to  the true block average for 358 of them. An index of uncertainty 
does not make definitive statements about the relative magnitudes of 
specific local errors. 

Assigning Confidence Intervals 

A ranking of the reliability of estimates may not be enough for some of 
the decisions that need to  be made in earth sciences. There are many 
problems that require a measure of the uncertainty whose absolute 
magnitude is meaningful. For example, it is often important t o  be able 
t o  establish a range within which the unknown true value is likely to 
fall. For such problems, we typically supplement the estimate with a 
confidence interval. Such a confidence interval consists of a minimum 
and a maximum value and a probability that the unknown value falls 
within this range. 

The most traditional way to establish such confidence intervals in- 
volves two important assumptions. The first is that the actual errors 
follow a Normal or Gaussian distribution. The second is that  the error 
variance 8; from the random function model is an  accurate estimate 
of the variance of the actual errors. If we are willing t o  make these 
assumptions, then the estimate 6 can be combined with the error vari- 
ance, e;, to produce the 95% confidence interval: 6 f 25R. 

The first of these assumptions is largely a matter of convenience. 
The Normal distribution is the most well-known and thoroughly stud- 
ied probability distribution. As a model for error distributions, its most 
relevant features are that 68% of the values fall within one standard 
deviation of the mean and that 95% fall within two standard devia- 
tions. The 95% confidence interval is a fairly common standard for 
reporting uncertainty, though poor estimates are occasionally quoted 
with the 68% confidence interval to  make the possible error seem less 
alarming. 

Global distributions of errors, even for very skewed data, d o  tend to 
be symmetric. This does not mean, however, that  they are necessarily 
well modeled by a Normal distribution. Unfortunately, there has been 
very little work on alternative models, and the f 2 0  95% confidence 
interval will likely remain a standard for reporting uncertainty. 



Assessing Uncertainty 505 

Even if we do decide to go with the Normality assumption, i t  is 
important to  consider our second assumption- that we are able t o  
predict the error variance. Whether 6; is an accurate estimate of the 
actual error variance depends heavily on the variogram model. As we 
saw when we first looked at ordinary kriging in Chapter 12, a rescaling 
of the variogram model does not affect the kriging weights but does 
affect the error variance. If we intend to  use the error variance t o  derive 
confidence intervals, we had better be sure that we have it correctly 
scaled. 

From the results of the case study we performed in the previous 
section, it is clear that  we have some problems interpreting the error 
variance of the random function model as the variance of the actual 
errors. For both of the sample da ta  configurations that we studied, the 
actual variance of the errors was much smaller than the error variance 
predicted by our random function model. For example, for the north- 
south sampling the value of 6; was 6,600 ppm2, while the variance of 
the actual errors was 2,686 ppm2 

The  use of 6% for the definition of Normal confidence intervals 
requires, in part, that  the sill of the variogram is an  accurate estimate 
of the global variance. One of the reasons for discrepancies between the 
actual error variance and the error variance predicted by the random 
function model is that  the sill of the sample variogram may not be a 
good estimate of the global variance. We noted earlier that  preferential 
sampling in high-valued areas makes the naive arithmetic mean a poor 
estimate of the global mean. If there is a proportional effect, then 
preferential sampling also affects measures of variability such as the 
sample variance and the sample variogram. 

We can see examples of such discrepancies from our analysis of the 
exhaustive and the sample data sets in the first section of this book. We 
saw that the sample variance of 89,940 ppm2 was considerably larger 
than the exhaustive variance of 62,450 ppm2. The same is true of the 
sills of the sample and exhaustive variograms. The sample V variogram 
had a sill of 107,000 ppm*, while the exhaustive V variogram had a 
sill of about 62,000 ppm2 

Though the magnitude of our variogram model does not affect our 
estimates, it does affect our estimation variance. We should therefore 
try t o  adjust our variogram model so that its sill more accurately re- 
flects the true global variance. One way of doing this is to rescale the 
variogram so that its sill agrees with a good declustered estimate of 
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the global variance. In Chapter 18 we looked a t  the problem of declus- 
tering estimates of global parameters. Using the areas of the polygons 
of influence as declustering weights, our estimate of the global variance 
was 60,172 ppm2. For the purposes of establishing good global confi- 
dence intervals, we could rescale the variogram model we gave earlier 
in Equation 20.4 so that its sill is about 60,000. With an original sill of 
107,000, the coefficients of the original model should all be multiplied 
by 60,000/107,000 = 0.56, giving us the following model: 
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Y(h) = 12,400 + 22,400 Sph l (h i )  + 25,200 Sph2(hL) (20.6) 

Repeating our earlier study of the reliability of the ordinary krig- 
ing block estimates from the sample data  configuration shown in Fig- 
ure 20.5a, we find that the kriging weights are unchanged but that 
the ordinary kriging variance is now 3,700 ppm2. Though certainly an 
improvement over our initial value of 6,600 ppm2, this is still consid- 
erably larger than the variance of the actual errors, 2,686 ppm2. The 
reason that our ordinary kriging variance still overestimates the actual 
error variance is that  our variogram model poorly describes the short 
scale variability. 

The preferential clustering of samples in areas with high values 
affects not only the magnitude of the variogram, but also its shape. In 
the Walker Lake example, the sample variograms have higher nugget 
effects than do the corresponding exhaustive variograms. With all of 
our closely spaced samples in areas with high variability, our sample 
variogram indicates greater short scale variability than actually exists 
over the entire area. Though the effect of preferential sampling on the 
magnitude of our sample variogram can be accounted for simply by 
rescaling the sill of the variogram model t o  a good declustered estimate 
of the global variance, it is much more difficult t o  account for the effect 
of preferential sampling on the shape of the variogram. Unfortunately, 
this problem has received very little attention; the Further Reading 
section a t  the end of the chapter provides references t o  some of the 
very recent work on this important problem. 

Case Study: Confidence Intervals for An Estimate of 
The Global Mean 

In Chapter 10, we looked a t  the problem of estimating the global mean. 
In this section, we will show how this estimate can be supplemented 
by a confidence interval. 
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Before we get into the actual calculations, it is important to con- 
sider the objective meaning of such a global confidence interval. Earlier 
in this chapter, we discussed probabilistic statements and how their 
meaning lies in the concept of repeatability. We replaced repeatability 
in time with repeatability in space, arguing that probabilistic state- 
ments in earth sciences might have some meaning if the same (or al- 
most the same) estimation will be performed at  several other locations 
throughout the area of interest. Since there is only one true global 
mean and only one set of sample data from which to  estimate it, we 
will not be repeating a similar estimation anywhere else. How, then, 
should our statement of uncertainty be interpreted? 

Of the several possible interpretations commonly offered, most are 
quite tenuous; however, there are two that have some practical rele- 
vance. In one, the repeatability comes from the idea that there are 
other areas that are statistically similar; in the other, the repeatabil- 
ity comes from the idea that other sample data sets could have been 
obtained . 

If the area under study is part of a larger region, then the sense 
of repeatability may come from repeating the same exercise on other 
areas in the same region. For example, a petroleum reservoir typically 
falls within some larger basin that contains several other reservoirs. A 
probabilistic statement about the volume of oil in place may derive its 
meaning from the fact that the estimation will be repeated in several 
other reservoirs in the same basin, all producing from the same for- 
mation. The population over which we are averaging (and therefore 
assuming some statistical homogeneity) includes all other reservoirs 
whose geological characteristics are similar to the one currently under 
study. 

There are other applications in which the notion of other statisti- 
cally similar areas may apply. For example, in environmental applica- 
tions a single source may be responsible for several polluted sites. In 
mining applications, genetically similar deposits with similar geological 
settings may have similar statistical characteristics. However, the phe- 
nomenon under study is often unique and there are no other phenom- 
ena that lend sense to the idea of averaging over statistically similar 
areas. In such cases, the meaning of a probabilistic statement comes 
from the notion that the available sampling could be entirely discarded 
and another set of samples collected. The probabilistic statement can 
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be viewed as describing the possible fluctuations in the estimation error 
of the global mean from one sampling to the next. 

The error variance given by the random function model is often 
used to establish global confidence intervals. The formula given earlier 
for the error variance of block estimates: 

can be used once the weights, w1,. . . , wn, and a model for the covari- 
ance, (?(h), have been chosen. When this formula is used to  establish 
a global error variance, 4 is the entire area under study and not a par- 
ticular block within it. e ~ *  is the average covariance within the entire 
area and can be calculated by discretizing A into several points and 
averaging the covariances between all possible pairs of points; Cij is, 
as before, the covariance - between the sample value a t  the ith location 
and the j th  location; 6 . i ~  is the average covariance between the sample 
at the ith location and the entire region A .  

Though this formula can always be applied, it is important to con- 
sider the many assumptions behind it. First, the set of weights should 
sum t o  1; for the two methods we discussed in Chapter 10, polygo- 
nal weighting and cell declustering, this is indeed the case. Second, 
the statistical characteristics of the variable under study should not 
vary from one location to another. Specifically, we assume that the 
random variables that model the real data values all have the same ex- 
pected value and that the covariance between any two of these random 
variables does not depend on their specific locations, but rather only 
on the separation vector between them. In practice, these theoretical 
considerations translate into an assumption that there is no noticeable 
trend in the local means and variances. Finally, the covariance model 
c(h)  is assumed to  be correctly chosen. 

If all of these assumptions are legitimate, then the error variance 
predicted by the random function model may be a useful tool in es- 
tablishing global confidence intervals. Before it is used, however, we 
should be clear on what this modeled error variance represents and 
whether or not this has any relevance to reality. 

Recall that we invoked the random function model to help us solve 
the problem of choosing weights for local estimation. We had a real and 
important criterion-the minimization of the actual error variance- 
but we were unable to solve the resulting equations because they called 



Assessing Uncertainty 509 

for knowledge of the unknown true values. We therefore adopted the 
random function model, arguing that the real data set that we are 
studying can be viewed as one possible outcome of the random function 
model we have built. We then forgot the particular details of our one 
actual outcome and used the entire ensemble of all possible outcomes 
to help us choose appropriate weights for local estimation. 

Though 6; is not the actual error variance we had in mind when 
we began the problem, it is a convenient intermediary crutch. Experi- 
ence has shown that by minimizing the error variance over the entire 
ensemble of all possible outcomes of our conceptual random function 
model, we usually do a pretty good job of minimizing the actual error 
variance for our one real outcome. If we now want to use 6; to make 
meaningful statements about uncertainty, we should make sure that 
there is some valid interpretation in reality for the entire ensemble of 
all possible outcomes of the random function model. 

Earlier, we offered two interpretations of a global confidence inter- 
val. In one, we imagined other possible areas that were statistically 
similar to the area under study; in the other, we imagined other pos- 
sible sample data sets within the area under study. Under the first 
interpretation, the other possible outcomes of the random function 
model may correspond to the other areas we have in mind. Under 
the second interpretation, however, the other possible outcomes of the 
random function model have no real significance. 

If by a global confidence interval we intend to describe how the 
estimation error of the global mean might fluctuate if other sample 
data sets had been collected, then the error variance given by our 
random function model will likely be too large. Rather than calculate 
the error variance over all possible outcomes, we should be calculating 
it only over the one outcome that has real significance. The range 
of possible fluctuations over all outcomes is generally larger than the 
range of possible fluctuations over a single outcome. 

In the case study that follows, we have calculated the error vari- 
ance of the global mean using Equation 20.7. We then compare this 
modeled variance to the actual variance of the various estimation er- 
rors when the sample data set is changed. The point of this case study 
is to demonstrate that the variance predicted by the random function 
model is indeed too large if we intend that our global variance reflect 
fluctuations due to resampling. Unfortunately, we do not have access 
to alternative data sets with which we could check the validity of 6k 
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under the interpretation that it reflects the error variance over all sim- 
ilar areas within the same geological environment. 

We will estimate the global mean of the V variable using a weighted 
linear combination in which the weights are determined by ordinary 
kriging. With 470 samples, the solution to  this problem would require 
the solution of 471 simultaneous linear equations with 471 unknowns. 
Though there are computers that  can perform the necessary calcula- 
tions, the complete and exact solution of the ordinary kriging equations 
is usually prohibitively time consuming and expensive. 

A shortcut that  is often used in practice is t o  d o  local block kriging 
throughout the area and, for each sample, t o  accumulate the vari- 
ous kriging weights it receives in the estimation of nearby blocks. In 
Table 20.2, we show such calculations for a few of the samples. The 
results shown in this table were obtained by estimating the mean grade 
of 10 x 10 m2 blocks with each such block discretized into 100 points on 
a regular square grid. The search strategy considered all points within 
25 m of the center of the block and kept no more than six samples 
within each quadrant. The variogram model used in these calculations 
was the one given in Equation 20.6. Table 20.2 shows all the block 
estimates that made use of the first three samples in the sample data  
set. The  accumulated weights can be standardized so that they sum 
t o  one by dividing each accumulated weight by the total number of 
block estimates; in the example given here, a total of 780 blocks were 
kriged. 

In Table 20.3, we compare the weights calculated by accumulating 
local kriging weights t o  those calculated by the polygonal method. A 
glance at this table confirms that the two procedures produce very 
similar weights. There is a n  excellent correlation, p = 0.996, between 
the two sets of weights. For the Walker Lake da ta  set, i t  is clear that  for 
the problem of global estimation, ordinary kriging is not necessary; the 
polygonal alternative produces essentially the same weighting scheme 
with much less computational effort. 

We will assume that the variogram model given in Equation 20.6 
correctly describes the pattern of spatial continuity and is applica- 
ble throughout the area. Once our variogram model is chosen, Equa- 
tion 20.7 will produce a n  error variance for any weighted linear combi- 
nation whose weights sum to 1. Due t o  the strong similarity between 
the two sets of weights shown in Table 20.3, the actual estimates and 
their corresponding error variances will both be very similar. For this 
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Table 20.2 Examples of the calculation of global weights from the accumulation 
of local ordinary kriging weights. 

Sample Locations 
Block Center (11,8) (8,30) (9,48) 

1 .oo 

Accumulated 
Weight 

0.59 
0.26 
- 
- 
- 
- 

0.71 
0.43 
0.17 
- 
- 
- 
- 

0.31 
0.16 
0.07 
- 
- 
- 
- 

0.08 

3.78 

- 

0.41 
0.57 
0.59 
0.28 
- 
- 
- 

0.27 
0.40 
0.35 
0.12 
- 
- 
- 

0.11 
0.13 
0.09 
0.03 
- 
- 
- 

3.35 

- 
- 

0.09 
0.31 
0.54 
0.51 
0.23 
- 
- 

0.11 
0.30 
0.40 
0.27 
0.05 
- 
- 
- 

0.11 
0.10 
0.04 
-0.01 
- 

3.05 

Standardized 
Weight 0.00485 0.00429 0.00391 

case study, we have chosen to use the weighting scheme produced by ac- 
cumulating local ordinary kriging weights. For this weighting scheme, 
the estimated global mean is 282.7 ppm and the error variance pre- 
dicted by the random function model is 341.9 ppm2. If we are willing 
to make a further assumption that the distribution is Normal, then we 
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Table 20.3 
kriging weights and those calculated by the polygonal method. 

Comparison of weights calculated by accumulating local ordinary 

Accumulated 
Kriging Polygonal 

Easting Northing V (ppm) Weight Weight 

71 29 
70 51 
68 70 
69 90 
68 110 
68 128 
69 148 
69 169 
70 191 
69 208 
69 229 
68 250 
71 268 
71 288 
91 11 
91 29 
90 49 
91 68 
91 91 
91 111 

673.31 
252.57 
537.46 

0.00 
329.15 
646.33 
616.18 
761.27 
917.98 
97.42 
0.00 
0.00 
0.00 
2.43 

368.26 
91.60 

654.66 
645.47 
907.16 
826.33 

0.00070 
0 .OO 193 
0.00263 
0.00168 
0.00168 
O.OOOG9 
0.00060 
0.00078 
0.00055 
0 .OO 167 
0.00433 
0.00369 
0.00367 
0.00439 
0.00386 
0.00222 
0.00054 
0.00059 
0.00060 
0.00067 

0.00056 
0.002 18 
0.00300 
0.00166 
0.00171 
0.00065 
0.00058 
0.00082 
0.00055 
0.001 85 
0.00451 
0.00402 
0.00346 
0.00447 
0.00440 
0.00234 
0.00044 
0.00053 
0.00043 
0.00073 

can turn this into a 95% confidence interval by calculating the stan- 
dard deviation and doubling it. Using this traditional approach, our 
estimate of the global mean would be reported as 282.7 f 3 7  ppm. 

Using the exhaustive Walker Lake data  sets, we are able t o  check 
if this statement of uncertainty is truly representative of the actual 
fluctuations due to  resampling. We can discard our 470 samples and 
draw new sample data sets with similar configurations. For this study 
we have chosen a particularly simple approach to producing sample 
data  sets whose configuration is similar t o  that of our actual 470 
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samples: the sample data locations are simply translated slightly so 
that their locations relative to one another remain identical. With 
all of the sample locations being at  least 7 m from the borders of 
the exhaustive data set, we can produce 225 alternative sample data 
sets by moving the existing sample grid in 1 m increments from 7 m 
south to  7 m north of its actual location and from 7 m east to 7 m 
west of its actual location. For each of these 225 sample data sets, 
we have repeated the estimation of the global mean using the same 
weights that we calculated earlier when we accumulated the local or- 
dinary kriging weights. For each of these 225 estimates we can cal- 
culate the error or the difference between the estimate and the true 
exhaustive mean of 277.9 ppm and compare these to the errors we 
obtained using the modeled estimation variance. The standard devi- 
ation of these 225 estimation errors is 7.1 ppm which is considerably 
lower than the 18.5 ppm we predicted using the modeled estimation 
variance. 

The discrepancy between the actual fluctuation of the estimates 
and the predicted fluctuation is not due to the adverse effects of pref- 
erential clustering. We have rescaled the sill of our variogram model so 
that it corresponds more closely to the overall variance of the data set. 
Some of this discrepancy may be explained by the inadequacies of the 
variogram model for small separation distances. We have already noted 
that our model has a higher nugget effect than does the corresponding 
exhaustive variogram. Even if we used the exhaustive variogram, how- 
ever, our confidence intervals would still be too large. The problem, 
as we discussed earlier, is that we are using a result of our conceptual 
random function model, 5;, which is based on an averaging over all 
other possible outcomes of the random function-outcomes that have 
no counterpart in reality. The fluctuations that we see in our single 
unique outcome are less than those that our model sees in its entire 
ensemble of outcomes. 

This one case study does not discredit the other interpretation of 
global confidence intervals. If there are other areas that have similar 
statistical characteristics-other reservoirs within the same basin or 
other pollution sites from the same source-then these other areas 
may correspond to the other outcomes of our random function model 
and the global confidence interval may be an accurate reflection of the 
estimation errors averaged over all of these related areas. 
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A Dubious Use of Cross Validation 

A dubious (but  regrettably common) procedure in geostatistical esti- 
mation is t o  use the results of a cross validation study to  adjust the 
variogram model. In this section we will present the traditional proce- 
dure and show how it can often lead to  erroneous results. 

The belief that  cross validated residuals can help to  improve the 
variogram model is clearly a tempting one. After all, a cross validation 
study does provide us with observable errors. In addition t o  doing the 
estimation at locations where we have samples, if we also predict the 
error variance, then it seems that a comparison of our predicted error 
variance and our observed error variance should be useful in building 
a better variogram model. 

The traditional procedure for using cross validated residuals to im- 
proved the variogram model begins by defining a new variable T I ,  often 
called the reduced residual: 

T I  = r15.R (20.8) 

The reduced residual is the actual residual, r ,  divided by the standard 
deviation of the error predicted by the random function model. 

For any distribution of values, rescaling each value by the standard 
deviation produces a new set of values whose standard deviation is 
one. If i?i is an accurate estimate of the actual error variance, then 
the standard deviation of the variable r' should be close to  1. 

The statistics of the reduced residuals from a cross validation study 
are often used as indications of how well our variogram model is per- 
forming in practice. If the standard deviation of r' is greater than 1, 
then our errors are actually more variable than the random function 
model predicts, and the sill of the variogram model should be raised. 
On the other hand, if the standard deviation of the reduced residuals 
is less than 1, then our actual errors are less variable than our random 
function model predicts and we should lower the sill of our variogram 
model. In fact, the precise magnitude of the adjustment is given by the 
variance of the reduced residuals. If a variogram model Y(h) is used 
in a cross validation study and the variance of the resulting reduced 
residuals is ohf, then a second cross validation study with the vari- 
ogram model Y( h)  + ohf will produce reduced residuals whose standard 
deviation is exactly 1. The  temptation of this procedure lies in the 
fact that  it is automatic-a computer program can easily perform the 
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necessary calculations and readjust the user’s model accordingly. Un- 
fortunately, it often does not have the desired effect and can do more 
harm than good. 

This automatic correction of the variogram model usually ignores 
the fact that  adjustments to the variogram should include not only its 
magnitude, but also its shape. The use of cross validation to  auto- 
matically readjust the shape of the variogram has been studied and 
various procedures have been proposed. Most of these, however, sim- 
ply adjust the relative nugget effect until the reduced residuals behave 
as desired [4]. While the adjustment of the relative nugget effect will 
certainly have a big impact on the reduced residuals, the procedure is 
somewhat arbitrary. The spacing between available samples imposes 
a fundamental limitation on the improvement a cross validation study 
can make to  the definition of the short scale structure of the variogram 
model. The  simultaneous adjustment of all of the model parameters, 
including the type of function used, has not yet been proven successful 
in practice. 

Research continues on the use of cross validation to automatically 
improve a variogram model. In our opinion, such an effort misses a 
fundamental limitation of the clever idea of cross validation. Even if 
an estimation procedure can be adapted to produce cross validated 
results that  are encouraging, we still do not know if conclusions based 
on estimation a t  locations where we already have samples are applica- 
ble to the estimation that is the actual goal of the study. Conclusions 
based on cross validation should be used to  modify a n  estimation proce- 
dure only after a careful consideration of whether the conditions under 
which cross validation was performed are truly representative of the 
conditions of the final estimation. 

When we looked a t  cross validation in Chapter 15, we noticed sev- 
eral misleading conclusions. Most of the locations at which we could 
perform cross validation were in high valued areas while the estima- 
tion that really interests us covers the entire area. Though the cross 
validation may have been revealing features of the high valued areas 
we had preferentially sampled, the entire area did not have these same 
features and the results of the cross validation study were somewhat 
misleading. 

We can see a further instance of this fundamental problem if we 
try t o  use our earlier cross validation results t o  improve our global 
variogram model. In Chapter 15 we presented a cross validation study 
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Figure 20.7 
study presented in Chapter 15. 

The histogram of the reduced residuals from the cross validation 

comparing ordinary kriging estimates and polygonal estimates. We 
have repeated this study and included the calculation of the ordinary 
kriging variance. The distribution of the reduced residuals is shown in 
Figure 20.7. The standard deviation of the reduced residuals is 0.79, 
suggesting that our actual errors are less variable than our random 
function model predicts. Were we to  use this result in the automatic 
manner described earlier, we would decrease the sill of our variogram 
model by about one third. If we then use this adjusted model t o  
produce estimates over the entire area, we would discover that our as- 
sessments of uncertainty were, in fact, now too optimistic. By basing 
the adjustment on observed errors a t  locations that are preferentially 
located in high-valued areas, we do  not necessarily produce a more 
reliable variogram model for the estimation study we are actually in- 
terested in. 

It is important t o  reiterate that the rescaling of the variogram by 
some constant does not change the estimates, only the estimation vari- 
ance. So although the adjustment of the sill based on cross validated 
residuals is certainly easy to  automate, it does not change the esti- 
mates themselves. As the previous example pointed out, it may not 
even make the estimation variance a more reliable index of uncertainty. 

Realizing that the adjustment of the sill does not affect the esti- 
mates, some rather sophisticated variogram adjustment programs try 
t o  adjust other variogram model parameters. Since the nugget effect 
has a significant impact, it is often a natural target for automated 
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“improvement.” Starting with the variogram model that we fit to the 
sample variogram, we can experiment with different relative nugget 
effects (adding whatever we take away from the nugget to  the other 
structures so that the sill remains constant) until we find the magic 
one which produces the reduced residuals whose distribution is closest 
to a Normal distribution with a mean of 0 and a variance of 1. For 
the 470 V values, a model with a relative nugget effect of 4% does the 
best job. Unfortunately, if we repeat the estimation over the entire 
area and base our comparison on actual errors at unsampled locations 
on a 10 x 10 m2 grid, we discover that our original model performs 
better than the one whose nugget effect was automatically adjusted on 
the basis of cross validated residuals. The 470 preferentially located 
samples are not representative of the actual estimation we intend to  
perform, and the results of cross validation based on these samples 
should be used very cautiously. 

Local Confidence Intervals 

As we noted earlier when we first discussed various possible approaches 
to reporting uncertainty, a probabilistic statement such as a confidence 
interval has meaning only in the context of the population that we have 
chosen to group together. In the first case study in this chapter, we 
chose to  group together all 780 block estimates. The confidence in- 
tervals we discussed earlier describe the possible range of errors when 
all similar configurations over the entire area are considered. Certain 
decisions require an assessment of uncertainty that is more locally cus- 
tomized. 

Unfortunately, the most common method for reporting local un- 
certainty is the same f2a 95% confidence interval that we explored 
earlier. It is unfortunate since the conditions that may make i t  a use- 
ful global measure of uncertainty rarely hold locally. There were two 
assumptions that were required for this approach. First, we had to as- 
sume that the error distribution is Normal. Second, we had to assume 
that we could predict the variance of the actual errors. 

Though global error distributions are often symmetric, local ones 
are not. In low-valued areas, there is a high probability of overestima- 
tion and, in high-valued areas, a corresponding tendency toward under- 
estimation. Particularly in the extreme areas that have the greatest 
importance, local error distributions are often asymmetric, with the 
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sign of the skewness changing from one area to  another. At a local 
level, an assumption of Normality is very questionable. 
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There are certain applications for which an assumption of Normal- 
ity a t  the local level is acceptable. For geometric properties, such as 
the thickness of a coal seam, or the depth to some relatively flat-lying 
stratigraphic marker, the symmetry and low coefficient of variation of 
the original data  permit an assumption of Normality of the error dis- 
tributions at the local level. For most applications, however, this is 
not the case. 

Even if we are willing to  make the assumption that our errors are 
approximately Normally distributed, we still have the problem of pre- 
dicting the variance of this distribution. Earlier, when we first looked 
a t  global confidence intervals, we discussed the problem of modifying 
the variogram model so that it is truly representative of the global 
area. This same problem arises, and much more severely, a t  the local 
level. If we intend that our f2a 95% confidence intervals have local 
significance, then we have to  make sure that 'the variogram model that 
we use t o  calculate the error variance is truly representative of the lo- 
cal pattern of spatial continuity. At the global level, we had a rather 
meager ability to  adjust the sill t o  some reasonable level, but we had to  
admit that  the modification of the shape was really beyond our ability. 
There is little hope, then, that  we will be  able to do much in the way 
of local modifications to  the variogram model. 

Perhaps the simplest approach to  this problem is to assume that the 
shape of the variogram is the same everywhere but that  its magnitude 
changes from one area to  another. This assumption is based less on 
reality than it is on the convenient fact that  it permits us to use a 
single variogram model and t o  rescale the error variance according to  
our estimate of the local variance. 

We can define and model T R ( h ) ,  a relative variogram with a sill 
of 1, whose shape describes the pattern of spatial continuity. Like the 
traditional variogram, such a relative variogram can be flipped upside 
down to  provide a relative covariance that can be used in the ordinary 
kriging equations. If such a model is used to  calculate 8; using Equa- 
tion 20.1, then the result is an error variance that is relative to  the 
local variance. To predict the actual variance of the local errors, we 
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must rescale this relative value to  some estimate of the local variance: 

(20.9) 

where the Cs are the relative covariances derived by subtracting the 
relative variogram from its own sill of one and 6' is some estimate of 
the local variance. 

The method used to estimate the local variance depends largely on 
what factors affect the local variance. This is the reason that mov- 
ing neighborhood statistics are often an important part of exploratory 
spatial data  analysis. Knowledge of the factors that influence the local 
variability permits a more reliable customization of the local variance. 
If the local variability can be related to  other features, then these can 
be used later t o  help predict the appropriate rescaling of a relative 
variance. 

Typically, the local variance is related to  the local mean. A scatter 
plot of local means versus local variances will reveal if such a relation- 
ship exists and will also provide the da ta  required for developing an  
equation that predicts local variance from the local mean. 

1 n n  n 
6; = 6' C A A  >: W i W j C i j  - 2 W i C i A  [ i=l  j = 1  i= 1 

Case Study: Local Confidence Intervals from Relative 
Variograms 

To illustrate the use of relative variograms, we return to  the block krig- 
ing case study shown in Chapter 13. In that case study, we estimated 
the average V value over 10 x 10 m2 blocks. If we repeat the same esti- 
mation with a relative variogram model whose sill is one, the resulting 
error variance, 5&, will be relative to the local variance. To obtain a 
measure of uncertainty that is customized t o  the local variability, we 
will have to  multiply this relative error variance by an estimate of the 
local variance. 

For this study, we will obtain our relative variogram by rescaling 
our earlier variogram model. In practice, relative variogram models 
are usually obtained by directly modeling one of the sample relative 
variograms discussed in Chapter 7. Since the sill of our earlier vari- 
ogram model was 107,000 ppm', we can produce a model whose sill is 
1 by simply dividing each of the coefficients of the model by this sill 
value: 

Y(h) = 0,2056 + 0,3738 Sphl(h;) $. 0.4206 Sphz(h/2) (20.10) 
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Figure 20.8 A scatterplot showing the regression line of moving window standard 
deviations versus moving window means from the sample da ta  set of V. 

This variogram model will provide block estimates identical to the ones 
obtained in the study in Chapter 13 since the shape of the variogram 
model has not been changed. 

The most common way of estimating the local variance is to predict 
i t  from the estimate of the local mean. When we presented exploratory 
spatial data  analysis in Chapter 4, we introduced the idea of moving 
window statistics. In Chapter 6 we used overlapping 60 x GO m2 win- 
dows to produce the scatter plot shown in Figure 20.8. This scatter- 
plot showed a clear relationship between the local mean and the local 
variance. With a rather strong correlation coefficient, p = 0.81, this 
relationship is quite well described by the following linear regression 
line shown along with the cloud of points in Figure 20.8: 

6 = 77.1 + 0.390 m 

We can use this equation to  predict the local standard deviation if 
we already know the local mean. In fact, we do not know the local 
mean; we have to  estimate it from whatever samples are available. In 
practice, the block kriging estimate is typically used as an estimate of 
the local mean. If we are trying to assign local confidence intervals to 
a point estimate, it is not advisable to use the point estimate as an 

(20.11) 
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Figure 20.9 Scatterplots of the magnitude of the actual block kriging error of V 
versus the  kriging standard deviations using the absolute variogram in (a) and a 
relative variogram with a rescaled local variance in (b). 

estimate of the local mean. I t  is preferable to  estimate separately the 
local mean by performing block estimation over a larger area centered 
on the point being estimated. 

For each of the 780 block estimates, the local error variance will 
be estimated by multiplying the estimated local variance (obtained 
from Equation 20.11) by the relative error variance (obtained by using 
the relative variogram model in Equation 20.3). Once the local error 
variance has been obtained, the Normal 95% confidence intervals can 
be assigned by calculating the corresponding standard deviation and 
doubling it. 

This procedure will produce good local confidence intervals only if 
the local error variances are good. To check whether or not our error 
variances are indeed locally relevant, we begin with a plot of the actual 
error versus the predicted local error variance. As we discussed earlier, 
we should not expect a strong relationship between these two; however, 
we should expect that, on average, the magnitude of the actual errors 
increases as the predicted local error variance increases. 

Figure 20.9a shows the magnitude of the 780 actual errors versus 
the corresponding values of 8~ given by ordinary kriging with the vari- 
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Table 20.4 A comparison of the actual spread of the errors to  the spread predicted 
by ordinary kriging with an absolute variogram model. 

100 Lowest 100 R4iddle 100 IIighest 
CR CR CR 

Predicted 80 149 177 
Actual 73 97 92 

Table 20.5 A comparison of the actual spread of the errors to  the spread pre- 
dicted by ordinary kriging with a relative variogram model and a proportional effect 
correction. 

100 Lowest 100 Middle 100 Highest 
CR CR CR 

Predicted 43 71 112 
Actual 44 96 111 

ogram model given in Equation 20.6. Figure 20.9b shows the same plot 
with 5~ given by ordinary kriging with the relative variogram model 
given in Equation 20.10 and subsequently rescaled by the estimated 
local variance. 

It is clear that  in the presence of a proportional effect the value of 
5~ obtained by the ordinary kriging system with an absolute variogram 
model bears little relationship to the actual local errors as demon- 
strated in Figure 20.9a. The kriging standard deviations shown in 
(b), however, exhibit a more reasonable relationship with the absolute 
kriging error. Table 20.4 shows a comparison of the average predicted 
standard deviation of the errors versus the actual standard deviation 
of the errors for three groups of estimates: the 100 estimates for which 
8~ was the lowest, the 100 estimates for which 8~ was in the middle, 
and the 100 estimates for which 8~ was the highest. 

Table 20.5 shows the same comparison when the local uncertainty 
is calculated by rescaling the relative variance given by ordinary krig- 
ing with a relative variogram. The improvement over the results in 
Table 20.4 is quite remarkable. If a proportional effect exists, it must 
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be taken into account when assessing local uncertainty. Since the or- 
dinary kriging variance does not depend on the actual magnitude of 
the sample data  values but only on their locations, i t  does not take 
into account the possibility that  estimates are more uncertain simply 
because they are in areas with higher values. If exploratory data  anal- 
ysis has revealed that  the phenomenon becomes more erratic as the 
magnitude of the values increases, then the magnitude of the sample 
values is an important feature of uncertainty that the ordinary kriging 
variance does not account for. By rescaling the variogram to a sill of 
one and locally correcting the relative kriging variance, one can build 
confidence intervals that  reflect local conditions[6]. 

Notes 

[l] If we decide to  use ordinary kriging, which minimizes the error 
variance, Equation 12.14 provides a quicker way than Equation 20.1 
to calculate the error variance. 

[2] Though the formula for error variance can be applied t o  any 
weighted linear combination in which the weights sum t o  1, for 
the purposes of ranking data  configurations, it is preferable t o  use 
the ordinary kriging weights. The use of other weighting methods 
may lead to  results whose meaning is unclear since a high error 
variance may be due to a poor estimation method and not to the 
sample configuration. 

[3] It is important t o  use the same discretization to  calculate the av- 
erage point-to-block covariances and the average covariance within 
the block. If different methods are used to  calculate these, the re- 
sulting error variance may be slightly negative. 

[4] This adjustment of the relative nugget effect changes the shape of 
the entire variogram and therefore leads to different cross valida- 
tion results. There is another procedure, quite commonly used, in 
which the only part of the variogram model that  is changed is the 
short-range structure between h = 0 and the first point on the sam- 
ple variogram. The aim of this procedure is to use cross validation 
to  improve the nugget effect. Unfortunately, this procedure can- 
not work since the value of the variogram for separation distances 
greater than 0 and less than the closest sample spacing are never 
used in cross validation. 
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[5] Though we are actually interested in the relationship between the 
local mean and the local variance, the local standard deviation will 
suffice since the local variance is easily obtained by simply squaring 
the standard deviation. 

[6] Much of the wisdom regarding relative variograms and their use in 
producing better assessments of uncertainty can be found in 
David, M. , Handbook of Applied Advanced Geostatistical Ore Re- 
serve Estimation. Amsterdam: Elsevier, 1988. 
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21 
FINAL THOUGHTS 

Some 20 chapters ago, we began our presentation of geostatistics. Since 
this presentation has not been a conventional one, and since geostatis- 
tics has suffered in the past from not making clear its limitations, it is 
appropriate that  we review the tool kit we have assembled. In this final 
chapter we will discuss the correct application of the various tools and 
their limitations. We will briefly discuss some of the important topics 
that we have chosen not to include in this introductory book. Finally, 
we will discuss the important new contributions of geostatistics. 

Description and Data Analysis 

The first seven chapters were devoted to description and data  analysis. 
In many applications, this description and analysis is, by itself, the goal 
of the study. In other applications, it is an important first step toward 
the final goal of estimation. It is regrettable that in many geostatistical 
studies little attention is paid to this initial step. A good understanding 
of the data set is an  essential ingredient of good estimation, and the 
time taken to  explore, understand, and describe the data  set is amply 
rewarded by improved estimates. 

In exploratory spatial data analysis, one should not rigidly follow a 
prescribed sequence of steps but should, instead, follow one’s instinct 
for explaining anomalies. Imagination and curiosity are the keys to  
unravelling the mysteries of a data set. If one tool uncovers something 
slightly bizarre, dig deeper, perhaps with other tools, until the reasons 
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for the initial surprise are clear. This process not only leads to  the 
discovery of the errors that have inevitably crept into a data  set, but it 
also provides the necessary background for detecting errors that  creep 
in during the course of a study. Estimation is prone to  simple blunders 
particularly when computers become involved; a thorough exploratory 
da t a  analysis often fosters an intimate knowledge that later warns of 
bogus results. 

In Chapter 2, we looked a t  several ways of summarizing a univari- 
a te  distribution. While the most commonly used summary statistics, 
the mean and the variance, do provide measures of the location and 
spread of a distribution, they do not provide a complete description. 
Furthermore, their sensitivity to  extreme values makes other summary 
statistics, such as those based on quantiles, more useful for many de- 
scriptive tasks. 

In Chapter 3 we presented methods for bivariate description. The 
scatter plot and its various summaries provide not only a good de- 
scription of the relationship between two variables, but they also form 
the basis for the tools we use to analyze spatial continuity. Though 
the correlation coefficient is by far the most common summary of a 
scatter plot, it should be emphasized once again that it is a measure of 
the linear relationship between two variables and may not adequately 
capture strong nonlinear relationships. Furthermore, the correlation 
coefficient is strongly affected by extreme pairs. A pair of extreme val- 
ues can produce a strong correlation coefficient that  is not indicative 
of the generally poor correlation of the other pairs; it can also ruin an 
otherwise good correlation coefficient. The Spearman rank correlation 
coefficient is a useful supplement t o  the more common Pearson correla- 
tion coefficient. Large differences between the two often provide useful 
clues t o  the nature of the relationship between two variables. 

One of the most important aspects of earth science data  is its spatial 
location, and in Chapter 4 we presented several tools for describing the 
important features of a data  set in a spatial context. While automatic 
contouring is an indispensable part of spatial description, it should 
be used judiciously since it can make very erratic phenomena appear 
quite smooth and can mask or blur anomalies. With recent advances in 
computer graphics software and hardware, there are many alternatives 
that reveal the detail of a data  set without overloading the eye with 
too much information. 

Moving window statistics are  a good way of exploring t h e  possi- 
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ble subdivisions of a spatial data  set. All estimation methods involve 
an assumption that  the data  used in the weighted linear combination 
somehow belong in the same group; i t  is useful t o  explore the validity 
of this assumption through moving window statistics. 

The most time consuming part of the da t a  analysis and description 
is typically the description of spatial continuity. Though the variogram 
is the tool most commonly used by geostatisticians, it often suffers in 
practice from the combined effect of heteroscedasticity and the prefer- 
ential clustering of samples in areas with high values. In such cases, 
there are many alternatives that may produce clearer and more inter- 
pretable descriptions of spatial continuity. Of these alternatives, the 
relative variograms are already quite commonly used by practitioners. 
Once quite coxnmon in the early days of spatial data  analysis, the co- 
variance function and the correlogram have largely been ignored by 
the mainstream of geostatistics and are only now becoming commonly 
used once again. 

As the analysis of the Walker Lake sample data  set showed, the 
description of spatial continuity typically involves a lot of trial and 
error. The  various tools for univariate and bivariate description offer 
a broad range of innovative alternatives to the classica.1 variogram. 
Rather than take the mean of the squared differences, why not take 
the median of the squared differences? Or the interquartile range of 
the differences? Or  the mean of the absolute differences? 

For the problem of describing the spatial continuity of strongly 
skewed and erratic values, one alternative that has not been discussed 
here is the possibility of using some transform of the original vari- 
able. Rather than calculate variograms of the original data  values, one 
could choose to  calculate variograms of their logarithms, for example, 
or of their rank. By reducing the skewness of the distribution, such 
transforms reduce the adverse effects of extreme values. 

Even with robust alternatives to  the variogram or with transformed 
variables, there may still be problems with describing the spatial con- 
tinuity from the available samples. One tool that  should be used more 
in exploratory spatial data  analysis is the h-scatterplot. The erratic 
behavior of sample variograms ma.y be  revealed by a careful study of 
the paired values within each lag, 
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Estimation 

In Chapter 8 we turned our attention to  estimation and discussed three 
important variations of estimation problems: 

estimation of global parameters versus estimation of local param- 
eters 

estimation of a single mean value versus estimation of an entire 
distribution of values 

estimation of unknown values whose support is the same as that 
of the available sample data  versus estimation of unknown values 
whose support differs from that of the available samples 

Before beginning an estimation exercise, one should consider which of 
these variations apply, and then choose an appropriate combination of 
the various estimation tools. 

Global Estimation 

If global estimates are required, then the important consideration is 
declustering. The presence of additional sampling in areas with ex- 
treme values can produce severely biased estimates if all samples are 
weighted equally. The polygonal and cell declustering methods pre- 
sented in Chapter 10 are both quite simple and easily implemented 
methods that attempt to  account for the effects of preferential sam- 
pling. In addition t o  these, one might also consider the method pre- 
sented in Chapter 20 in which local kriging weights were accumulated 
to  produce a declustering weight for each sample. 

Local Estimation 

For local estimation, the distance to  nearby samples becomes an im- 
portant consideration. The various methods presented in Chapters 11 
and 12 all have certain advantages and drawbacks. 

The polygonal method is the easiest t o  understand and does han- 
dle the clustering problems posed by irregular data  configurations quite 
well. It is also easy t o  implement without a computer. By assigning 
all of the weight t o  a single nearby sample, however, it does not take 
advantage of the useful information contained in other nearby sam- 
ples. In comparison to  other methods, local estimates derived from 
polygonal weighting tend to have larger extreme errors. 
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While slightly more complex than polygonal weighting, triangula- 
tion is still relatively simple and has the advantage of using more of 
the nearby sample data. It is not easily adapted to the problem of 
extrapolation beyond the available sampling. 

While polygons and triangulation are easy to  implement manually, 
this is not a realistic possibility with data sets containing hundreds 
or thousands of samples. With such data sets, computers become 
necessary and computationally intensive methods then also become 
interesting. Inverse distance methods work well with regularly gridded 
data. The smoothness of estimates derived by inverse distance methods 
is desirable if contouring is the final goal of estimation. The biggest 
drawback of the inverse distance methods is their inability to  account 
directly for clustering. If they are being used with irregularly gridded 
data or, worse, preferentially clustered data, it is advisable to  use a 
search strategy, such as quadrant or octant search, that accomplishes 
some declustering of the nearby samples. 

Though ordinary kriging is certainly the most computationally in- 
tensive and mathematically tedious of the point estimation methods 
discussed in this book, it does combine many of the desirable features 
of the other methods. It accounts both for the clustering of nearby 
samples and for their distance to the point being estimated. Fur- 
thermore, by considering statistical distance, through the variogram 
model, rather than euclidean distance, it offers tremendous possibili- 
ties for customizing the estimation method to the particular problem 
at hand. If the pattern of spatial continuity can be described and ad- 
equately captured in a variogram model, it is hard to  improve on the 
estimates produced by ordinary kriging. 

Ordinary kriging is not a panacea. The quality of estimates pro- 
duced by ordinary kriging depends on the time taken to choose an 
appropriate model of the spatial continuity. Ordinary kriging with 
a poor model may produce worse estimates than the other simpler 
methods. Ordinary kriging is most successful when the anisotropy is 
properly described and when the variogram is locally customized. The 
description of anisotropy and local customization both depend heavily 
on good qualitative input and a good understanding of the genesis of 
the data set. 

In addition to its other advantages, the ordinary kriging system 
shown in Chapter 12 can easily be extended from point estimation 
to block estimation. As was shown in Chapter 13, the replacement 
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of the point-to-point covariances in the right-hand side D vector by 
average point-to-block covariances is all that  is required to  estimate 
block averages. 

Accomniodating Different Sample Support 

A trick similar t o  that used for block kriging can be used t o  adapt 
the ordinary kriging system so that it can handle samples of different 
support. In many applications, the available sample data are represen- 
tative of differing volumes. For example, in a petroleum application 
the porosity measured from a core plug is representative of a smaller 
volume than is the porosity inferred from a well log. If some samples 
have a support large enough that they cannot be adequately treated 
as point samples, then it is possible to  incorporate them into the or- 
dinary kriging equations and account for their support. As with the 
block estimation problem, the only adaptation that is needed is the 
replacement of point- to-poin t covariances with average point-to-bloc k 
covariances. 

In the left-hand side C matrix, the covariance between any two 
samples is replaced by the average covariance between the two sam- 
ple volumes; in the right-hand side D matrix, the covariance between 
the sample and the point being estimated is replaced by the average 
covariance between the sample and the point being estimated. 

A more general form for the ordinary kriging system, one that 
accounts for the possibility of samples with differing supports and for 
the possibility of yet another support for the arithmetic average value 
being estimated is given below: 

b - C W - 

1 1 ... 1 

(21.1) 

The minimized error variance from the solution of this system is given 

- n -  
by 

- s;fc = c A A  - C w;C~A - p (21.2) 
i=l 
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Search Strategy 

In Chapter 14 we discussed the search strategy, an area that often 
receives inadequate attention. A well-conceived search strategy will 
improve any estimation procedure. In practice, the pattern of spatial 
continuity of the data  set may fluctuate so wildly from one locality 
to  the next that  one is unable to  build meaningful variogram models. 
In such cases, a customized search strategy may be the only hope for 
good estimates. 

An important point that  has been previously camouflaged in the 
geostatistical literature is that  inverse distance methods will perform 
almost as well as ordinary kriging if the search strategy incorporates a 
good declustering procedure. The quadrant search that we discussed 
here is only one of several commonly used procedures. Rather than 
divide the neighborhood into quadrants, one could divide it into any 
number of sectors. These sectors need not be identical; if there is a 
strong anisotropy, one might prefer t o  have narrower sectors along the 
direction of major continuity. The criterion used to keep or to  reject the 
samples within a particular sector need not be based on the euclidean 
distance. Some practitioners prefer t o  use the statistical distance, as 
measured by the variogram, t o  determine which samples should stay 
and which should go. 

Incorporating a Trend 

One of the considerations we posed in the choice of a search strategy 
was the question, “Are the nearby samples relevant?,” which led to  
a discussion of stationarity. Many practitioners are rightly troubled 
by the assumption of stationarity. Their intuition is that  their ore 
deposit or their petroleum reservoir is not well modeled by a stationary 
random function model. This good intuition does not mean that the 
geostatistical approach is inappropriate. 

First, i t  should be emphasized that other procedures implicitly 
make the same assumption. The  inappropriateness of the stationar- 
ity assumption is no justification for abandoning ordinary kriging in 
favor of, say, an inverse distance method. It is, however, a justification 
for attempting t o  subdivide the data  set into separate populations. If 
there is sufficient information t o  support the intuition that stationarity 
is inappropriate, then this information can be helpful in subdividing 
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the data  set into smaller regions within which stationarity is more ap- 
propriate. 

Second, the stationarity assumption applies not to the entire data  
set but only to the search neighborhood. While a large earth science 
data  set nearly always contains interesting anomalies that  seem to  con- 
tradict the assumption of stationarity, it may still appear reasonably 
homogeneous within smaller regions the size of the search neighbor- 
hood. The local stationarity assumed by all of the estimation methods 
we have discussed is often a viable assumption even in da t a  sets for 
which global stationarity is clearly inappropriate. 

There are data  sets in which the uncomfortableness with the sta- 
tionarity assumption does not come from the belief that  there are dis- 
tinct subpopulations, but rather from the belief that  there is a grad- 
ual trend in the data  values. There is an adaptation of the ordinary 
kriging system that allows one to  accommodate a trend. This pro- 
cedure, known as universal kriging can be used to  produce good lo- 
cal estimates in the presence of a trend especially in situations where 
the estimate is extrapolated rather than interpolated from the local 
sample values. Universal kriging can also be used to  estimate the un- 
derlying trend itself, and is therefore interesting not only as a local 
estimation procedure, but also as a gridding procedure prior t o  con- 
touring. 

Though universal kriging can calculate a trend automatically, one 
should resist the temptation t o  use it as a black box, particularly when 
it is being used to extrapolate beyond the available data. It is always 
important to check the trend that an automatic method produces to 
see if it makes sense. If there is a trend, then it is likely that there is 
some qualitative understanding of why it exists and how it can best 
be described. Though automatic methods exist for finding the trend 
that is best in a statistical sense, this trend may not have the support 
of common sense and good judgement. 

In many situations in which a trend exists, it is wiser t o  choose 
a trend based on a n  understanding of the genesis of the phenomenon, 
subtract this trend from the observed sample values to  obtain residuals, 
do the estimation on the residuals, and add the trend back a t  the end. 
This procedure has the advantage of making the trend an explicit and 
conscious choice thereby avoiding the pitfall of bizarre behavior beyond 
the available sampling. 

A n Introduction to  Applied Geos ta tis t ics 
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Cross Validation 

In Chapter 15 we discussed the method of cross validation, a useful 
trick that gives us some ability to check the impact of our many choices 
about the estimation methodology. The results of a cross validation 
study give us a kind of dress rehearsal for our final production run. 
Though the success of a dress rehearsal does not guarantee the suc- 
cess of the final performance, its failure certainly raises serious doubts 
about the success of the final performance. The real benefit of a cross 
validation study is the warning bells that it sets off. In studying cross 
validation results, one should concentrate on the negative aspects such 
as the worst errors, the areas with consistent bias, or the areas where 
misclassification occurs. 

It is dangerous to dwell on the positive aspects of set of cross val- 
idation residuals. Our ability to produce good estimates a t  sample 
locations may have little relevance to  the final estimation study we 
intend to do. In particular, it is foolish, in our opinion, to  use cross 
validated residuals for automatic improvement of the variogram model. 
As we showed in Chapter 20, this procedure can lead to  an “improved” 
model that actually produces worse results. We are not saying that 
the models fit to sample variograms should never be adjusted. Indeed, 
there are many cases in which the model fit to  a sample variogram is 
definitely flawed for the purpose of estimation. If the variogram model 
is flawed, it should be corrected and such corrections should be sup- 
ported by qualitative information. For example, in the Walker Lake 
case studies it is reasonable and correct to argue that the sill of the 
sample variogram is too high due to the preferential sampling in ar- 
eas with higher variability. A good declustered estimate of the global 
variance provides a more suitable sill. 

In many fields of application, good variogram models depend on 
access to similar data sets that have been more densely sampled. For 
example, in petroleum applications the practice of inferring the shape 
of the horizontal variogram from the sample variogram of a related out- 
crop is becoming more common. Often, the anisotropy is difficult to  
determine from sample variograms due to the fact that well-behaved 
sample variograms often need large angular tolerances. If there is a 
similar data set that contains more data and permits a sharper def- 
inition of the directional variograms, it is reasonable to  import the 
anisotropy evident from this related data set. 

There are certainly situations in which the variogram model fit to  
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the sample variogram is not appropriate for estimation, but adjust- 
ment through the use of qualitative information and variograms from 
related data  sets is preferable t o  automatic adjustment through cross 
validation. 

Modeling Sample Variogranis 

In Chapter 16 we looked a t  the practical detail of fitting a positive 
definite model to directional sample variograms. To the newcomer, 
the fitting of variogram models often seems difficult, a bit of a black 
art .  Through practice, however, it loses its mystery and becomes more 
manageable. Initially, there is usually a tendency to  overfit the sample 
variogram, using several structures to capture each and every kink in 
the sample points. Such complicated models do not usually do better 
than simpler models with fewer structures that capture the major fea- 
tures of the sample variogram. Simplicity is a good guiding principle 
in variogram modeling. For example, if a single exponential model fits 
as well as a combination of two spherical structures, then the simpler 
exponential model is preferable. 

In deciding whether or not t o  honor the kinks in a sample vari- 
ogram, i t  is wise to  consider whether or not there is a physical expla- 
nation for them. If there is qualitative information about the genesis 
of the phenomenon that explains a particular feature, then it is worth 
trying to  build a model that  respects that  feature. If there is no ex- 
planation, however, then the feature may be spurious and not worth 
modeling. 

The fitting of a model to a particular direction is simply an exercise 
in curve fitting in which there are several parameters with which to 
play. A good interactive modeling program will make this step quite 
easy. 

The simultaneous fitting of several directions calls for a little more 
care. By making sure that each direction incorporates the same type 
of basic model, with the same sills but different ranges, it is always 
possible to  combine the various direction models into a single model 
that  describes the pattern of spatial continuity in any direction. 

Fitting models t o  auto- and cross-variograms for several variables 
requires even more care. Again, the use of the same type of basic 
model for all auto- and cross-variograms permits the linear model of 
c,oregionalization to be used and allows the positive definiteness of the  
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entire set to  be checked through the use of the determinants, as was 
shown in Chapter 16. 

Using Other Variibles 

There are many applications in which estimates can be improved if 
the correlation between different variables is exploited. In Chapter 17 
we discussed cokriging and showed how the ordinary kriging system 
could be adapted to  include information contained in other variables. 
The case study in Chapter 17 showed how the information in the V 
variable could be used t o  improve the estimation of U .  Cokriging 
need not be limited t o  only two variables; any number of additional 
variables can be incorporated into the estimation. The  addition of 
a new variable calls for more variogram analysis and modeling. For 
each new variable included one needs its variogram model and also 
cross-variogram models between it and all of the other variables in the 
system. For example, with 10 variables one needs 10 autovariogram 
models and 45 cross-variogram models. 

The improvement of cokriging over ordinary kriging with the pri- 
mary variable alone is greatest when the primary variable is undersam- 
pled. With sample da ta  sets in which the primary and all secondary 
variables are sampled a t  all locations, the improvement of cokriging 
over ordinary kriging is less dramatic. In practice, there are two reasons 
why the cokriging system is often unable t o  realize its full potential. 
The first is the requirement that the set of auto- and cross-variogram 
models be positive definite. The second is the unbiasedness condition. 

The  need for positive definiteness imposes many constraints on the 
models that  can be chosen for the set of auto- and cross-variograms. 
In practice, the linear model of coregionalization provides a relatively 
simple way of checking whether large sets of auto- and cross-variogram 
models are indeed positive definite. Unfortunately, the use of this 
linear model of coregionalization also probably deprives the cokriging 
system of some of its potential improvement. A problem that has not 
yet received much attention is that of building less restrictive models 
of the spatial continuity and cross-continuity. 

The unbiasedness condition that is most commonly used is that  
shown in Equation 17.8 in which the primary weights are made to  sum 
to 1 and the secondary weights are made to  sum to 0. This condi- 
tion may be unnecessarily restrictive. As was shown in Chapter 17, 
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the use of other unbiasedness conditions may improve the estimation 
procedure, 

Estimating Distributions 

The declustering procedures used for estimating the global mean are 
also appropriate for estimating a declustered global distribution. By 
applying the declustering weights to an indicator variable, which sim- 
ply counts the da t a  that are below a particular threshold, one can con- 
struct a cumulative probability distribution from which other declus- 
tered global statistics can be extracted. 

The concept of an indicator variable also offers a clever way of 
adapting the ordinary kriging procedure so that  it can be  used to 
estimate a cumulative probability distribution. In using the indicator 
method, however, one does not obtain a complete description of the 
distribution, but obtains instead a estimation of particular points on 
the cumulative distribution curve. The implication of this is that  once 
the indicator kriging procedure has done its job, there is still work 
t o  be done interpolating the behavior of the distribution between the 
estimated points. 

The parametric approaches avoid this drawback, at the cost of not 
permitting as much detail about the pattern of spatial continuity to  
be injected into the estimation procedure. Parametric methods make 
rather sweeping assumptions about the nature of the indicator vari- 
ograms a t  various cutoffs. For example, the multi-gaussian method 
implicitly assumes that the indicator variograms for the most extreme 
values show the least structure; in some applications, this assumption 
is not appropriate. For example, in petroleum reservoirs it is the most 
extreme permeabilities-the highs in the fractures and the lows in the 
shale barriers-that are the most continuous. 

Other Uses of Indicators 

Another common use of indicators is t o  separate populations. Ear- 
lier, we drew attention to the fact that  some populations may not be 
separated by a sharp geometric boundary, but may be intermingled 
instead. In such situations, indicator kriging can be used to estimate 
the proportion of different populations within a certain block or local 
area. 
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For example, this is typically done in mining applications when 
there is a large spike of barren or completely unmineralized samples in 
a data set. Including these essentially constant values in the estimation 
is often undesirable. Their presence will make the spatial continuity 
appear t o  be greater than it is and this, in turn, may lead t o  severe 
misclassification problems around the edges of the anomalies. If the 
barren values are treated as one population and the positive values as 
another, one can perform separate estimations for the two populations. 
To solve the problem of what proportion of each population is present 
in a particular block or locality, indicator kriging can be used. 

Indicators can also be used t o  directly estimate a conditional prob- 
ability distribution. In Chapter 20, we discussed the desirability of 
estimating such a distribution and saw that the traditional approach 
of combining the kriging variance with an  assumption of normality may 
not be appropriate in all situations. If one interprets the indicator as 
a probability, with a value of 1 revealing that a t  a particular location 
the value is certainly below the cutoff and the value 0 revealing that 
i t  certainly is not below the cutoff, then the ordinary point kriging of 
these indicators will produce estimates of the conditional probability 
distribution for particular cutoffs. 
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A 
THE WALKER LAKE 

DATA SETS 

This appendix provides detailed information on origin of the Walker 
Lake data  sets. Should one wish to  repeat some of the case studies pre- 
sented in the text or experiment with new ideas, the Walker Lake data  
sets can easily be reproduced using publicly available digital elevation 
data. 

The Digital Elevation Model 

The Walker Lake data set is derived from digital elevation data  from 
the Walker Lake area near the California-Nevada border. These eleva- 
tion data  were obtained from a digital elevation model (DEM) of the 
National Cartographic Information Center (NCIC)'. The NCIC pro- 
vides DEMs in three formats; the data  used throughout this book were 
obtained from a DEM that was in the Defense Mapping Agency digital 
or planar format. This format consists of digital elevation data  for an 
area covering 1 degree of latitude by 1 degree of longitude; two contigu- 
ous blocks correspond to the area covered by one standard 1 : 250,000 
topographic map sheet. The ground distance between adjacent points 
is approximately 200 feet, so each 1' x 1" quadrangle contains about 
2.5 million elevation points. The eastern half of the Walker Lake topo- 

'NCIC, US. Geological Survey, 507 National Center, Reston VA 22092, U.S.A. 
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o = Elevation point in 

0 = Elevation point 
= First point along profile 

0 = Corner of DEM polygon 

adjacent quadrangle 

I 

Easting 

Figure A . l  Typical structure of a digital elevation model. The  Defense Mapping 
Agency format consists of elevation points on a regular grid with A x and A y 
equal to 0.01 inches on a 1 : 250,000 map sheet. 

graphic map sheet forms the basis for the exhaustive data  set discussed 
in Chapter 5.  

Figure A . l  illustrates a typical layout of digital terrain data; note 
that the profiles of elevation data are not necessarily all the same length 
nor do they necessarily begin a t  the same latitude. The first point 
on each profile is identified with map X and Y coordinates in one- 
hundredths of an inch. A perfectly rectangular subset was obtained 
from the DEM corresponding to the eastern half of the Walker Lake 
topographic map sheet. The coordinates of the corners of this rectangle 
are (in map units of 0.01”): 
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Block Block 
Column Column 

- 
11 Easting (in 0.01 inches) 1310 

Figure A.2 
data. 

The blocking pattern superimposed on the grid of digital elevation 

southwest corner (11,250) 
northwest corner (11,1749) 
southeast corner (1310,250) 
northwest corner (1310,1749) 

This rectangle consists of 1,300 north-south profiles, each of which con- 
tains 1,500 elevation points. These 1.95 million data  were grouped into 
5 x 5 blocks (see Figure A.2) providing a regular grid, 260 blocks east- 
west by 300 blocks north-south. The original elevations were rescaled 
by subtracting 4,000 from each elevation and dividing each result by 
3.28. The subtraction shifts the minimum elevation from 4,000 to 0 
feet while the division by 3.28 converts the measurements from feet to 
meters. 
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The Exhaustive Data Set 

The variable referred to as U in the Walker lake data set is the variance 
(in meters squared) of the 25 values within each block: 

where q , ~ ,  . . . , 5 2 5  are the elevation values (in meters) of the 25 
points within a block. In flat terrain, the elevation values will be very 
similar and U will be quite low; in very rugged terrain, the elevation 
values will be much more variable and U will be quite high. U can be 
seen, therefore, as an index of roughness of the topography. 

The variable referred to as V is a function of the mean and variance 
of the 25 values in each block: 

v = [% * In(U + l)] /10 

The type variable T records whether the average elevation within 
a block is above or below 5,000 feet: 

t ype  = 1 
type = 2 otherwise 

if a: < 5,000' 

Artifacts 

The 1.95 million original elevation data contain some peculiarities that 
are most likely artifacts of the digitizing process. The DEM was created 
by digitizing contour lines and using a bicubic spline to  interpolate 
these irregularly spaced values to a regular grid. One of the appeals 
of a bicubic spline as an interpolating function is that it produces a 
smooth and eye-pleasing interpolation. Unfortunately, if the original 
data points are quite widely spaced, many of the interpolated values 
are identical to the nearest available digitized elevation. The result of 
this is that in  flat lying areas the elevations of the digitized contour 
lines tend to  dominate the grid of interpolated values. 

With a class size of 1 foot, a histogram of the original 1.95 million 
elevation data contains many little spikes a t  elevations corresponding 
to  the contour lines of the original 1:250,000 topographic map. Since 
the contour interval is 200 feet, the spikes occur a t  elevations that 
are evenly divisible by 200. These spikes of similar values form small 
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plateaus along the north-south profiles of the DEM model a t  elevations 
corresponding to  the original contour line and are most noticeable in 
relatively flat lying areas. 

The plateaus of similar elevation values along the DEM profiles 
are responsible for the curious features of the V and U values. Since 
secondary variable U is an index of the roughness of the topography, 
i t  is very low (often 0) near these plateaus. In relatively flat lying 
areas, where the 200-foot contour lines are quite far apart ,  the U data  
set shows bands of low values that track the original contour lines. 
The northwest corner of Figure 5 . 1 0 ~  provides a good example of this 
banding. 

The primary variable V is also related t o  the roughness, though 
less directly than U ;  it also shows a banding in flat-lying areas. The 
northwest corner of Figure 5 . 9 ~  shows a good example of this banding; 
the southwest corner of the Walker Lake data  set, which covers Mono 
Lake and its shoreline, provides another good example in Figure 5.9b. 

The interpolation of the elevations digitized from contour lines t o  a 
regular grid involves a search strategy that selects nearby values within 
a prescribed neighborhood. In relatively flat lying areas, with the orig- 
inal digitized elevations quite far apart, the interpolated values show 
small discontinuities as particular elevation values are included or ex- 
cluded by the search strategy. Though not very visible on a contour 
map of the interpolated elevations, these discontinuities become very 
noticeable when an index of roughness is contoured. These discon- 
tinuities are most pronounced when there are few available digitized 
elevations; these are the flat lying areas that tend to  produce very con- 
stant interpolated values. In such areas, an index of roughness, such as 
the secondary variable U ,  is usually very low but becomes abnormally 
high above a discontinuity. 

On the indicator maps in Figure 5.9 and 5.10, the prominent fea- 
tures that dangle like icicles in the area southeast of Walker Lake itself 
are due to  these discontinuties in the grid of interpolated elevation 
values. 

The spikes in the histogram of the original elevation values are 
responsible for the banding that is visible on the scatterplot of V versus 
U (Figure 5.8).  From its definition given earlier in this appendix, 
i t  is clear that  for a particular value of U ,  the variable V is simply 
the average elevation multiplied by some constant. The conditional 
distribution of V given a particular value of U is therefore a rescaling 



The Walker Lake Data Sets 547 

of the distribution of the average elevation. With the histogram of 
the original elevation values having spikes at multiples of 200 feet, the 
histogram of average elevation will also contain spikes. Due to  the 
fact that  averaging has been performed over 5 x 5 blocks, the spikes 
on the histogram of original elevation values will be somewhat blurred 
and will appear as modes on the histogram of average elevation. The  
banding of the exhaustive scatterplot is a result of these many small 
modes in the histogram of average elevation. 



B 
CONTINUOUS R A N D O M  

VARIABLES 

This appendix provides the continuous analogy of the presentation 
of discrete random variables given in Chapter 9. Though the use of 
random function models can be understood through discrete random 
variables, most of the geostatistical literature uses continuous random 
variables. 

The use of continuous random variables requires a few changes to  
the discrete approach. Rather than a set of possible outcomes and 
a n  associated set of probabilities, a continuous random variable has a 
probability distribution function that describes the relative probability 
of occurrence for a range of possible values. Rather than expressing 
the parameters of a random variable with summation signs, the con- 
tinuous version uses integrals. Despite these conceptual and notational 
differences, continuous random variables behave very much like discrete 
ones. 

T 11 e P rob ability D is t r i b u t i o n Fu 11 c ti o n 

Random variables need not be limited to  a set of discrete values; in 
the earth sciences we usually deal with random variables that  have a 
continuous range of possible outcomes. For example, we could choose 
t o  view the depth to  a particular stratigraphic horizon as a random 
variable D that  can take on any positive value. Some outcomes of D 
are more probable than others, and some are extremely improbable. 
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It is not feasible to define a continuous random variable by listing 
all of its possible outcomes and their associated probabilities; not only 
are there an infinite number of possible outcomes, but any particular 
outcome has a probability of 0. It is easier to  define continuous random 
variables with a function that gives the cumulative probability of all 
outcomes below a certain value: 

F ( v )  = P{V 5 v} 

It is certain that the outcomes of a random variable are between -m 
and +m, which gives us the following limiting values of F(v ) :  

F ( - m ) = O  and F ( + m ) = l  

This function F ( v ) ,  usually referred to as the cumulative density 
function or cdf, allows us to calculate the probability that the random 
variable will take on values within any interval: 

P{a < V 5 b }  = P { V  5 b }  - P { V  5 a }  
= F(b)  - F ( a )  

The first derivative of the cdf is called the probability density func- 
tion or p d f ,  and is usually denoted by f ( v ) :  

The pdf is similar to the set of probabilities {PI,. . . , p n }  that we used 
in Chapter 9 to  define a discrete random variable in the sense that 
it provides relative probabilities of occurrence of particular outcomes. 
These relative probabilities are scaled in such a way that the total 
probability of all outcomes is 1: 

f ( v ) d v  = 1 

Parameters of a Continuous Random Variable 

As with a discrete random variable, which is completely defined by its 
set of outcomes and the set of corresponding probabilities, a continuous 
random variable is completely defined by its cdf or its pdf. From 
the complete definition of a random variable, one can calculate many 
parameters that describe interesting features of the random variable, 
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Expected Value. The  expected value of a continuous random vari- 
able is given by either of the following equations: 

t o o  

E { V } = h  = 1, v . f ( v ) d v  (B.5) 
t m  

(B.6) - - 1, W v )  

The use of either of these equations usually requires an analytical ex- 
pression for f(w) or F(w). There are many well-studied distributions 
whose probability distribution functions can be written analytically. 
Even without an analytical expression for f(v), it is always possible 
to  tabulate the cumulative probability distribution F ( v )  for several 
possible values ~ ( ~ 1 ) .  . . ) yn)  and to approximate the expected value by 
replacing the integral in Equation B.6 by a discrete sum: 

This approximation will improve as n, the number of values for which 
F(v) is tabulated, increases. In this approximate form, the expected 
value of a continuous random variable appears very much like that of 
a discrete random variable, as given in Equation 9.1. 

As with discrete random variables, the expected value of a contin- 
uous random variable need not be a possible outcome; for continuous 
random variables with more than one mode, the expected value may 
fall between modes. 

The mean value of a finite number of outcomes of a continuous 
random variable need not be identical to the expected value. As the 
number of outcomes increases, however, the sample mean usually con- 
verges to  the expected value. 
Variance. Equations 9.3 and 9.4, which defined the variance solely 
in terms of expected values, are applicable to both discrete and con- 
tinuous random variables. If the pdf is known and has an analytical 
expression, the variance of a continuous random variable can be ex- 
pressed as: 

+m 
Vur{V} = c7 - 2  - - 1, ?I2 *f(v)d?J - h2 

Vur{V} = u - 2  - - l, v 2  d F ( v )  - fi2 

(B.8) 

or, if the cdf is known, as 
+m 

(13.9) 
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As with the expected value, i iz, the calculation of the variance of a 
continuous random variable ideally requires an  analytical expression 
for f ( v )  or F ( v ) ,  but can be approximated using the form given in 
Equation B.9 with the increment d F ( v )  taken from a tabulation of 
cumulative probabilities. 

Joint Random Variables 

Joint random variables may also be continuous. Returning to our 
earlier example of the depth to a particular stratigraphic horizon, we 
can add a second random variable, T ,  the thickness of the horizon. 
There may be some statistical relationship between the depth to  the 
horizon, D, and the thickness of the horizon, T ;  a complete definition 
of these two random variables should include a statement of how they 
jointly vary. 

A pair of continuous random variables (U ,V) ,  can be completely 
defined by their joint cumulative density function: 

Fuv(u,v) = P(U 5 u and V 5 v} (B.lO) 

Like a univariate cdf, the bivariate cdf gives a probability that some- 
thing might occur. While the univariate cdf, Fv(v), reported the prob- 
ability that the outcome of a single random variable was less than a 
particular cutoff, v, the bivariate cdf, Fuv(u, v),  reports the probabil- 
ity that  the outcomes of two random variables are both less than two 
particular cutoffs, u and v. 

We can also define a bivariate probability density function, fuv(u, v),  
which, as before, is the derivative of the corresponding cdf: 

~uv(u0, VO) = J U O  J U O  fuv(u, v) dv du 
--oo --oo 

Like its univariate counterpart, the bivariate pdf gives the relative 
probability of occurrence of any particular pair of outcomes (u,  o), and 
is scaled so that the total volume beneath its surface is 1: 

F U V ( + W  +m) = 

Marginal Distributions 

The knowledge of the joint cdf of two random variables allows the 
calculation of the univariate or marginal distribution of each random 
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variable. Given the joint cdf of U and V ,  Fuv(u,v), the cdf of U by 
itself, Fu(u), is calculated by simply accepting all possible values of V :  

Conditional Distributions 

The knowledge of the joint distribution of two continuous random vari- 
ables also allows us to calculate the univariate distribution of one vari- 
able given a particular outcome of the other random variable. The cdf 
of U given a particular range of values of V ,  is given by the following 
equation: 

F v v ( u , v o )  - - F v v ( u , v o )  
F u I v ~ v o ( u )  = Fv(v0) F ~ V ( + O o , V ~ )  

The  denominator is the marginal probability that V is below a given 
cutoff and serves to rescale the probability given in the numerator so 
that  it serves as a proper cdf (i.e., so that F ~ ~ ~ < v , ( + c o )  is 1). 

Parameters of Joint Random Variables 

Equations 9.9 and 9.10, which gave the definition of the covariance 
solely in terms of expected values, are applicable for either discrete or 
continuous random variables. The continuous form of Equation 9.11 is 

+w +m 
C O V u J V )  = J_, 1, uv ~ U V ( U ,  V )  d U  dv - iizu * iizv (B . l l )  

where iizu and iizv are the expected values of the two marginal distri- 
bu tions. 

With these definitions, the remainder of the presentation of proba- 
bilistic models in Chapter 9 and the development of ordinary kriging in 
Chapter 12 can be applied either t o  discrete or t o  continuous random 
variables. 
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