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students and researchers across the Earth and environmental sciences who
until now have struggled with statistics. Using simple and clear explan-
ations for both introductory and advanced material, it demystifies com-
plex concepts and makes formulas and statistical tests easy to understand
and apply.
The book begins with a discussion and critical evaluation of experimental

and sampling design before moving on to explain essential concepts of
probability, statistical significance and Type 1 and Type 2 error. Tests for one
and two samples are presented, followed by an accessible graphical explan-
ation of analysis of variance (ANOVA). More advanced ANOVA designs,
correlation and regression, and non-parametric tests including chi-square,
are then considered. Finally, it introduces the essentials of multivariate
techniques such as principal components analysis, multidimensional
scaling and cluster analysis, analysis of sequences (especially autocorrelation
and simple regression models) and concepts of spatial analysis, including
the semivariogram and its application in Kriging.
Illustrated with wide-ranging and interesting examples from topics

across the Earth and environmental sciences, Geostatistics Explained
provides a solid grounding in the basic methods, as well as serving as a
bridge to more specialized and advanced analytical techniques. It can be
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Preface

This book presents an introduction to statistical methods that is specifically
written for “earth science” students who do not have a strong background in
mathematics.
The earth sciences are increasingly (and appropriately) recognized as

environmental sciences that overlap and integrate with other disciplines,
especially geography, hydrology, soil science, oceanography, environmental
management, environmental impact assessment, bioremediation, remote
sensing and conservation. As a result, the skills required of earth scientists
have become far more diverse, as have the interests and backgrounds of
students who enroll in these programs. Today’s earth scientists need to be
able to critically evaluate sampling designs, to understand the concept of
statistical analysis, and be able to evaluate and interpret the results of
statistical tests applied in a wide range of fields.
A sound grounding in statistical concepts and methods is especially

important, but an increasing proportion of earth science students do not
have this. Some have told us that math avoidance is the reason why they
have pursued earth sciences instead of chemistry, biology and physics.
Many such students are afraid of mathematics (often because they did
badly in such subjects at high school) and dread doing an introductory
statistics course.
This book has been developed for university and college courses in

introductory geostatistics and as a guide for new users to learn statistics
on their own. We assume very little prior knowledge of mathematics and
start from first principles to develop an understanding of significance test-
ing that can be applied to all statistical tests and related to experimental
design. We use a carefully structured conceptual approach to introduce and
explain what statistical tests actually do, using a minimum of terminology.
Concepts that other introductory texts present as a daunting series of
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formulae are explained in a way that even the “math-phobic” student will
find refreshing. The examples we have given are deliberately simple to help
the reader understand the statistical concepts being explained. In cases
where we have not given a reference for an example, the data have been
deliberately contrived (or simplified from actual data) for clarity. Perhaps
most importantly, this text develops a strong conceptual understanding that
can be applied to the range of statistical methods used in the geosciences.

If you only take an introductory course, then this book will provide the
background and understanding you need to interpret and critically evaluate
results and summary reports produced by statisticians. If you go on further
in geostatistics, this introduction will serve as a bridge to more advanced
courses that use texts such as Borradaile (2003) Statistics of Earth Science
Data, and Davis (1986, 2002) Statistics and Data Analysis in Geology.

We have many people to thank. Erick Bestland introduced us by email.
Comments by reviewers improved the text. We thank our editors, Susan
Francis and Jon Billam, for their considerable help and their good humor.
Both our families provided enormous support and tolerated a great deal of
absent-mindedness.

For Steve, Ruth McKillup provided constant encouragement and read,
commented on, and reread several drafts. Lynn Stewart’s constructive help
was particularly appreciated, as were HayleeWeaver’s insightful comments.

For Darby, thanks are due to Harold Andrews, who introduced her to
statistics as an undergraduate in a course that has proven useful in many
ways over the years. Tekla Harms humored many thoughtful geologic
discussions at 6 a.m. Peter, Duncan and Lindy Crowley provided necessary
distractions from this project and a constant reminder of what is really
important. At her feet, dogs waited patiently for walks that were postponed
by “one last change” to various chapters; they are glad to know that they will
now have their day!
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1 Introduction

1.1 Why do earth scientists need to understand experimental
design and statistics?

Earth scientists face special challenges because the things they study – the
rock formations, ore bodies, deposits of minerals and fossil species – are
often very large, widely dispersed and/or difficult to access. Therefore, it is
usually impossible for an earth scientist to study more than a small fraction
of any geological phenomenon. For example, imagine trying to measure the
length of every brachiopod in the northern hemisphere, the H2O content of
every basalt flow in the USA, the diameter of every volcanic bomb on the
island of Hawaii, or the orientation of every single fault plane in an entire
formation. You would have to take a sample – a small subset of each – and
hope that the results you obtained were representative of the larger group.
Because they are often forced to work with samples, earth scientists need

to know how to sample, and they need to know how confident they can be
about making generalizations from these samples.
The total number of occurrences of a particular thing (e.g. mineral

species, fossil type, rock type) present in a defined area is often called the
population. But because a researcher usually cannot measure every part of
the population (unless they are studying a very restricted location, like the
inside of a volcanic caldera), they have to work with a carefully selected
subset of several sampling units that they hope is a representative sample,
which can be used to infer the characteristics of the population. For exam-
ple, they might measure the size (usually in terms of diagonal length) of a
sample of fifty megalodon teeth from a population of several hundred, or
assess the quality of a consignment of several thousand agates by breaking
open a randomly chosen sample of twenty. You can also think of the
population as the total number of artificial sampling units possible (e.g. all
the quadrangles in the United States) and your sample being the subset
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(e.g. 20 quadrangles) you have chosen to work with as an indication of
conditions across the whole country. The concept of a representative
subset also applies to experiments where you might take two (or more)
samples and expose them to two (or more) different treatments. Here the
replicates within each sample are often called experimental units to empha-
size that they have been artificially manipulated. We will usually refer to
replicates as sampling units in this book.

The best way to get a representative sample is usually to choose a
proportion of the population at random – without bias, with every possible
sampling unit having an equal chance of being selected.

Unfortunately it is often very difficult for earth scientists to take a random
sample, because they cannot easily access the whole population. For exam-
ple, it may only be possible to sample rocks that are exposed in outcrops, but
these may not be the same as the rest of the formation – the outcrops may
only have remained because they have a slightly different composition that
makes them more resistant to weathering. A group of rocks sampled at
random from float may not represent the variability present in all rocks
from that outcrop/formation. Therefore, earth scientists need to know how
to take the best possible sample from the part of the population they can
access, and be aware of the risk of assuming that the sample is characteristic
of the population.

Next, even a random sample may not be a good representative of the
population from which it has been taken. There are often great differences
among sampling units from the same population. This is not restricted to
the earth sciences. Think of the people you have seen today – unless youmet
some identical twins (or triplets etc.), no two would have been the same. But
even rock types that seem to be made up of similar-looking minerals show
great variability. This leads to several problems.

First, two samples taken at random from the same population may,
simply by chance, be very different to each other and not very represen-
tative of the population (Figure 1.1).

Therefore, if you take a random sample from each of two similar
populations, the samples may be different from each other simply by
chance. On the basis of your samples, you might mistakenly conclude that
the two populations are very different. You need some way of knowing if the
difference between samples is what you would expect by chance, or whether
the populations really do seem to be different.
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Second, even if two populations are very different, samples from each
may be similar simply by chance, and therefore give the misleading
impression the populations are also similar (Figure 1.2).
Finally, variation within samples may make it difficult to interpret any

effect of differences in location. There is often so much variation within a
sample (and a population) that differences in location may be difficult to
interpret. For example, imagine you are an environmental geologist work-
ing to assess a landfill contaminated with lead. The lead content in a sample

Population

Sample 1

Sample 2

Figure 1.1 Even a random sample may not necessarily be a good
representative of the population. Two samples have been taken at random
from a Devonian oil field in Ghawar. By chance, sample 1 contains a group of
relatively large fossils, while those in sample 2 are relatively small, and the
types of fossils in the two samples are also different.
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of ten cores from the oldest part of the landfill is 1000mg/kg Pb on average,
and ranges from 100–9000mg/kg. In contrast, a sample of ten cores from
the youngest part of the landfill contains 2000mg/kg Pb on average but
ranges from 100–7000mg/kg. Which of these two areas would you consider
to be most contaminated?

Variability within samples can also obscure the effect of experimental
treatments. For example, opaque brown topaz crystals may change to

Population 1

Population 2

Sample 1

Sample 2

Figure 1.2 Samples selected at random from very different populations may
not necessarily be different. Simply by chance the samples from populations
1 and 2 are similar in size and composition.
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transparent blue (which people find attractive and pay high prices for) if
they are heat-treated. Gamma irradiation also alters the color of topaz. A
mineralogist found that 60–80% of brown topaz crystals treated by heating
turned various shades of blue. In contrast, when crystals were irradiated and
then heated, a few turned bright blue, but others remained quite brown
(Figure 1.3). From the extremely variable results for the 12 crystals in
Figure 1.3, can you really conclude that irradiation had a significant effect?

Control group (before the experiment)

Treatment group  (before the experiment)

Control group (only heated)

Treatment group (heat-treated and irradiated)

Figure 1.3 Two samples of topaz crystals were taken from the samemine and
deliberately matched so that six equally brown individuals were initially
present in each group. Those in the treatment group were treated with 60Co
radiation followed by heating to 450 °C, while those in the control group were
only heated. This caused all crystals to became more translucent and change
color to shades of brown, pink and blue. Slightly more of the crystals in the
treatment group became translucent gemmy and blue, but this difference is
small compared to the variation in color among individuals, which may
obscure any effect of treatment.

1.1 Experimental design and statistics 5



These sorts of problems are usually unavoidable when you work with
samples and mean that a researcher has to take every possible precaution to
try and ensure that their samples are likely to be representative and thus
give a good estimate of conditions in the population. So earth scientists need
to know how to sample. They also need a good understanding of exper-
imental design, because a good sampling design will take natural variation
into account and also minimize additional unwanted variability introduced
by the sampling procedure itself. They also need to take accurate and precise
measurements to minimize other sources of error.

Finally, considering the variability within samples described above, the
results of an experiment may not be clear-cut. So it is often difficult to make
a decision about differences between samples from different populations or
different experimental treatments. Is it the sort of difference you would
expect by chance, or are the populations really different? Is the exper-
imental treatment having an effect? You need something to help you
decide, and that is what statistical tests do, by calculating the probability
of a particular difference among samples. Once you have the probability, the
decision is up to you. So you need to understand how statistical tests work!

1.2 What is this book designed to do?

A good understanding of experimental design and statistics is important,
whether you are a meteorologist, paleontologist, geochemist, seismolo-
gist or geographer, so many earth science students are made to take a
general introductory statistics course. A lot of these take a detailed
mathematical approach that students often find uninspiring. This book
is an introduction that does not assume a strong mathematical back-
ground. Instead, it develops a conceptual understanding of how statistical
tests actually work, using pictorial explanations where possible and a
minimum of formulae.

If you have read other texts, or already done an introductory course, you
may find that the way this material is presented is unusual, but we have
found that non-statisticians find this approach very easy to understand and
sometimes even entertaining. If you have a background in statistics youmay
find some sections a little too explanatory, but at the same time they are
likely to make sense. This book most certainly will not teach you everything
about the subject areas, but it will help you decide what sort of statistical test
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to use and what the results mean. It will also help you understand and
criticize the sampling and experimental designs of others. Most impor-
tantly, it will help you design and analyze your own sampling programs
and experiments, understand more complex sampling designs and move on
to more advanced statistical courses

1.2 What is this book designed to do? 7



2 “Doing science”: hypotheses,
experiments and disproof

2.1 Introduction

Before starting on experimental design and statistics, it is important to be
familiar with how science is done. This is a summary of a very conventional
view of scientific method.

2.2 Basic scientific method

The essential features of the “hypothetico-deductive” view of scientific
method (see Popper, 1968) are that a person observes or samples the natural
world and uses all the information available to make an intuitive logical
guess, called a hypothesis, about it or how it functions. The person has no
way of knowing if their hypothesis is correct – it may or may not apply.
Predictionsmade from the hypothesis are tested, either by further sampling
or by doing experiments. If the results are consistent with the predictions
then the hypothesis is retained. If they are not, it is rejected, and a new
hypothesis formulated (Figure 2.1). The initial hypothesis may come about
as a result of observations, sampling and/or reading the scientific literature.

Here is an example. Lead contamination is an enormous environmental
problem because in the past many manufacturers discarded wastes contain-
ing lead and other heavy metals into pits and landfills. These heavy metals
are water soluble so they can leach into aquifers, be transported by ground-
water and contaminate water supplies. In the early days, clean-up of these
sites involved digging up the contaminated soil and removing it to special
disposal facilities where water run-off could be contained and treated. More
recently, it has been found that themineral group apatite has a structure that
easily binds to heavy metals, effectively immobilizing them. Luckily, apatite
is easy to get because it is readily available in fish and mammal bones, where
it is the primary constituent along with collagen.
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For your first remediation job as an environmental geologist, you decide
to contain the lead in a contaminated landfill by mixing the soil with several
tons of apatite. Your client balks at the cost, and asks you to demonstrate
that it really works. The hypothesis that needs testing is simple: “Apatite will
bind lead in contaminated soil.”
From this hypothesis it is straightforward to predict, “Lower concentra-

tions of lead will be present in water that has circulated through soils mixed
with apatite, compared to soils without apatite.”
This prediction can be convincingly tested by doing a simple and inex-

pensive manipulative field experiment with two treatments: (a) a 90/10
mixture of soil and apatite and (b) a 90/10 mixture of soil and an inert filler
(e.g. glass beads) as a control to take into account the dilution that will occur
when soil is mixed with anything else.
Because differences in the concentration of lead in the leachate might also

result from heterogeneity in lead concentration across the landfill, the
treatments need to be replicated several times. You could do this by
mapping out three locations that are well spaced apart across the landfill.
At each you could excavate ~20 cubic meters of soil and divide this into two

Observations, previous work, “intuition”

Hypothesis

Prediction from hypothesis

Test of prediction

Result consistent
with prediction

Result not
consistent with

prediction

Hypothesis
survives and is

retained

Hypothesis
is rejected

Figure 2.1 The process of hypothesis formulation and testing.
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equal-sized heaps (Figure 2.2). One (and here you could toss a coin to decide
which) of each pair of heaps could be mixed with apatite, the other mixed
with the inert glass beads, and the two heaps isolated and monitored so you
could sample the water that drained from them. This arrangement would
ensure that replicates of both the treatment and control were dispersed
across the landfill, and the coin-tossing is a way of assigning each pair of
heaps to the treatment and control at random.

You run the experiment for two weeks. Each day, you sample the water
runoff from each of the six heaps, and analyze its lead content. For this
manipulative experiment the three locations within each treatment are
experimental units (Chapter 1).

From this experiment there are at least four possible outcomes:

(1) Run-off from the apatite-treated soil contains far lower concentrations
of lead than run-off from the control. This result is consistent with the
hypothesis, which has survived this initial test and can be retained.

(2) Run-off from both the apatite-treated and control soil has high con-
centrations of dissolved lead. This is not consistent with the hypothesis,
which can probably be rejected because it seems that the apatite treat-
ment has no effect.

(3) There is little or no dissolved lead in the run-off from either treatment.
It is difficult to know if this has any bearing on the hypothesis – there
may be a fault with the experiment (e.g. the 10m3 was not enough soil,
there was torrential rain during the two weeks, or maybe you did not
run the experiment long enough for the rain to percolate through the
heaps). The hypothesis is neither rejected nor retained.

(4) Run-off from the apatite-treated soil contains higher concentrations of
lead than from the control. This is a most unexpected outcome that is

Location 1 2 3

Figure 2.2 Arrangement of a 2 × 3 grid of treated and untreated areas in a
landfill. Black squares indicate areas where the soil was mixed with apatite, and
open squares where the soil was mixed with the same volume of glass beads.
The treatment and its control are replicated at three locations.
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not consistent with the hypothesis, which is extremely likely to be
rejected.

These are the four simplest outcomes. A more complicated and much
more likely one is that you find considerable variation in lead content within
both treatments. This sort of outcome is a problem, because you really want
to keep your job! You need to figure out whether the apatite is reducing the
amount of lead leached from the soil, or whether any difference between the
two treatments is simply happening by chance. Here statistical testing is
extremely useful and necessary because it helps you decide whether a
difference between treatments is meaningful.

2.3 Making a decision about a hypothesis

Once you have the result of the experimental test of a hypothesis, two things
can happen:

Either the results of the experiment are consistent with the hypothesis,
which is retained.
Or the results are inconsistent with the hypothesis, which may be rejected.

If the hypothesis is rejected it is likely to be wrong and another will need
to be proposed. If the hypothesis is retained, withstands further testing and
has some very widespread generality, it may progress to become a theory.
But a theory is only ever a very general hypothesis that has withstood
repeated testing. There is always a possibility it may be disproven in the
future.

2.4 Why can’t a hypothesis or theory ever be proven?

No hypothesis or theory can ever be proven – one day there may be evidence
that rejects it and leads to a different explanation (which can include all the
successful predictions of the previous hypothesis). Consequently we can only
falsify or disprove hypotheses and theories – we can never ever prove them.
Cases of disproof and a subsequent change in thinking are common. The

most infamous of these in the earth sciences was the pre-twentieth-century
belief that the surface of the Earth was generally similar since it was formed,
with only minor changes caused by heating (expansion) and cooling
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(contraction) of land masses. This idea was quickly abandoned when the
theory of plate tectonics, which neatly explained variations in the direction
of the Earth’s magnetic field as recorded in the rock record as well as fossil
distributions across continents, was developed.

Another important historical example is the publication of Copernicus’
famous book in 1543, which presented evidence that the stars and planets
revolve around the Sun rather than the Earth. It took several decades of
discussion and the invention of the telescope to make the observations that
provided further support for this heliocentric perspective.

2.5 “Negative” outcomes

People are often quite disappointed if the outcome of an experiment is not
what they expected and their hypothesis is rejected. But there is nothing
wrong with this – rejection of a hypothesis is still progress in the process
of understanding how a system functions. Therefore, a “negative” outcome
that causes you to reject a cherished hypothesis is just as important as a
“positive” one that causes you to retain it.

Unfortunately researchers tend to be very possessive and protective of
their hypotheses, and there have been cases where results have been falsified
in order to allow a hypothesis to survive. This does not advance our under-
standing of the world and is likely to be detected when other scientists repeat
the experiments or do further experiments based on these false conclusions.
There will be more about this in a later chapter on ethics, which includes
discussion about doing science responsibly and ethically.

2.6 Null and alternate hypotheses

It is scientific convention that when you test a hypothesis you state it as two
hypotheses which are essentially alternates. For example, the hypothesis:

“Apatite treatment reduces the amount of lead leached from soil”

is usually stated in combination with:

“Apatite treatment does not reduce the amount of lead leached from soil.”

The latter includes all cases not covered by the first hypothesis (e.g. no
difference, or more lead in leachate from the apatite treatment).

12 “Doing science”: hypotheses, experiments and disproof



These hypotheses are called the alternate and null hypotheses respec-
tively. Importantly, the null hypothesis is always stated as the hypothesis of
“no difference” or “no effect.” So, looking at the two hypotheses above, the
second “does not” hypothesis is the null hypothesis and the first is the
alternate hypothesis. This is a tedious but very important convention
(because it clearly states the hypothesis and its alternative) and there will
be several reminders in this book.

2.7 Conclusion

There are five components to an experiment – (1) formulating a hypothesis,
(2) making a prediction from the hypothesis, (3) doing an experiment or
sampling to test the prediction, (4) analyzing the data, and (5) deciding
whether to retain or reject the hypothesis.
The description of scientific method given here is extremely simple and

basic and there has been an enormous amount of philosophical debate
about how science is done (see Box 2.1). For example, more than one
hypothesis might explain a set of observations and it may be difficult to
test these by progressively considering each one against its null. For further
reading, Chalmers (1999) gives a very clearly explained discussion of the
process and philosophy of scientific discovery.

Box 2.1 Two other views about scientific method

Popper’s hypothetico-deductive philosophy of scientific method, where
hypotheses are sequentially tested and always at risk of being rejected, is
widely accepted. In reality, however, scientists may do things a little
differently.

Kuhn (1970) argues that scientific enquiry does not necessarily pro-
ceed with the steady testing and survival or rejection of hypotheses.
Instead, hypotheses with some generality and which have survived initial
testing become well-established theories or “paradigms” which are rela-
tively immune to rejection even if subsequent testing may find evidence
against them. A few negative results are used to refine the paradigm to
make it continue to fit all available evidence. It is only when the negative
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2.8 Questions

(1) Describe the “hypothetico-deductive” model of how science is done,
including the null and alternate hypotheses, the concepts of disproof
and the importance of a negative outcome.

(2) Why is it important to collect data frommore than one sampling unit or
experimental unit when testing a hypothesis?

evidence becomes overwhelming that the paradigm is rejected and
replaced by a new one.

Lakatos (1978) also argues that a strict hypothetico-deductive process
of scientific enquiry does not necessarily occur. Instead, fields of enquiry,
called “research programmes” are based on a set of “core” theories that
are rarely questioned or tested. The core is surrounded by a protective
“belt” of theories and hypotheses that are tested. A successful research
program is one that accumulates more and more theories that have
survived testing within the belt, which provides increasing protection
for the core. If, however, many of the belt theories are rejected, doubt will
eventually be cast on the veracity of the core and of the research program
itself, which will be replaced by a more successful one.

These two views and the hypothetico-deductive view are not irrecon-
cilable. In all cases observations and experiments provide evidence either
for or against a hypothesis or theory. In the hypothetico-deductive view
science proceeds by the orderly testing and survival or rejection of
individual hypotheses, while the other two views reflect the complexity
of theories required to describe a research area and emphasize that it
would be foolish to reject a theory outright on the basis of limited
negative evidence.
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3 Collecting and displaying data

3.1 Introduction

One way of generating hypotheses is to collect data and look for patterns.
Often, however, it is difficult to see any pattern from a set of data, whichmay
just be a list of numbers. Graphs and descriptive statistics are very useful for
summarizing and displaying data in ways that may reveal patterns. This
chapter describes the different types of data you are likely to encounter and
discusses ways of displaying them.

3.2 Variables, sampling units and types of data

In earth science applications, we usually consider three different types of data:

(1) Data organized in a sequence along a continuum of distance or time.
These data can be thought of as occurring in one dimension. For example,
you might be analyzing the composition or mineralogy of a drill core and
need to interpret spatial variation up and down the section.

(2) Data where sampling is done relative to some geographic or other type
of spatial context. These are usually two-dimensional data. Geologic
maps, contour diagrams, trend surface analyses and studies of spatial
relationships in thin sections all present opportunities to relate data to a
2-D system.

(3) Multivariate data in which the 1- or 2-D locations of the sampled data
are not relevant. Most types of chemical data fall into this category.

The particular attributes you measure when you collect data are called
variables (e.g. a chemical analysis, observations of humidity and air temper-
ature, the thickness of some geological strata). These data are collected from
each sampling unit, which may be an individual (e.g. a single piece of rock)
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or a defined item (e.g. a square meter of the outcrop, a specific stratigraphic
unit, or a particular locality).

If you only measure one variable per sampling unit the data set is uni-
variate. Data for two variables per unit are bivariate, while data for three or
more variables measured on the same sampling unit are multivariate.

Variables can be measured on four scales – ratio, interval, ordinal or
nominal.

A ratio scale describes a variable whose numerical values truly indicate
the quantity being measured.

* There is a true zero point below which you cannot have any data
(for example, if you are measuring the length of feldspar crystals in a
thin section, you cannot have a crystal of negative length).

* An increase of the same numerical amount indicates the same quantity
across the range of measurements (for example, a 0.2mm and a 2mm
feldspar will have grown by the same amount if they both increase in
length by 10mm).

* A particular ratio holds across the range of the variable (for example,
a 200 μm feldspar grain is twenty times longer than a 10 μm grain and a
100 μm grain is also twenty times longer than a 5 μm one).

An interval scale describes a variable that can be less than zero.

* The zero point is arbitrary (for example, temperature measured in
degrees Celsius has a zero point at which water freezes), so negative
values are possible. The true zero point for temperature, where there is
a complete absence of heat, is zero kelvin (about –273 °C), so (unlike
Celsius) the kelvin is a ratio scale.

* An increase of the same numerical amount indicates the same quantity
across the range of measurements (for example, a 2 °C increase indicates
the same increase in heat whatever the starting temperature).

* Because the zero point is arbitrary, a particular ratio does not hold across
the range of the variable. For example, the ratio of 6 °C compared to 1 °C
is not the same as 60 °C to 10 °C. The two ratios in terms of the kelvin
scale are 279:274K and 333:283K.

An ordinal scale applies to data where values are ranked – which means
they are given a value that simply indicates their relative order. For
example, five mountains with elevations of 10 000m, 4500m, 4300m,
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4000m and 3984m have beenmeasured on a ratio scale. If you rank these in
order, from highest to lowest, as 5, 4, 3, 2 and 1, the data have been reduced
to an ordinal scale, but this is not very informative and does not mean that
the highest mountain is five times the elevation of the lowest. For ordinal
data, an increase in the same numerical amount of ranks does not necessa-
rily hold across the range of the variable.
A nominal scale applies to data where the values are classified according

to an attribute. For example, the breakdown of rocks at the Earth’s surface
can be classified as either chemical or mechanical weathering, so a sample of
different sediments can be subdivided into the numbers within each of these
two categories. You might have a sample of ten, of which three fall in the
“chemical” category and the remaining seven in the “mechanical” one.
The first three types of data described above can include either contin-

uous or discrete data. Nominal scale data (since they are attributes) can
only be discrete.
Continuous data can have any value within a range. For example, any

value of temperature is possible within the range from 10 °C to 20 °C, such
as 15.3 °C or 17.82 °C.
Discrete data are very different from continuous data because they can

only have fixed numerical values within a range. For example, the number of
electrons in an atom increases from one fixed whole number to the next,
because you cannot have a fraction of an electron.
It is important that you know what type of data you are dealing with

because this will be one of the factors that determines your choice of
statistical test.

3.3 Displaying data

A list of data may reveal very little, but a pictorial summary is a way of
exploring the data that might help you notice a pattern, which can help
generate or test hypotheses.

3.3.1 Histograms

Here is a list of the number of visits made to their lecturer’s office by a sample
of 60 students chosen at random from 320 students in the course
Introductory Geoscience. These data are univariate, ratio scaled and discrete.
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1, 1, 6, 1, 12, 1, 2, 6, 2, 7, 2, 2, 5, 2, 1, 2, 1, 9, 1, 8, 1, 1, 2, 5, 1, 6, 1, 1, 1, 5, 1, 1,
1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 4, 1, 1, 9, 10, 1, 4, 10, 11, 1, 2, 3

It is difficult to see any pattern from this list of numbers, but you could
summarize and display these data by drawing a histogram. To do this you
separately count the number (the frequency) of cases for students who
visited never, once, twice, three times, through to the maximum number of
visits and plot these as a series of rectangles on a graph with the X axis
showing the number of visits and the Y axis the number of students in each
of these cases. Figure 3.1 shows a histogram of these data.

This visual summary shows that the distribution is skewed to the right –
most students made few visits for help, but there is a long upper “tail” who
have made five or more visits. Incidentally, looking at the graph you
may be a little suspicious because every student made at least one visit.
This was because each of them had to visit the lecturer’s office to pick up
an assignment during the first three weeks of class to ensure they knew
where to go if they did ever need help, so these data are somewhat
misleading in terms of indicating the neediness of the group. You may
be tempted to draw a line joining the midpoints of the tops of each bar to
indicate the shape of the distribution, but this implies that the data on the
X axis are continuous, which is not the case because visits are discrete
whole numbers.
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Figure 3.1 The number of visits made to their lecturer’s office by a sample of
60 students chosen at random from 320 students in the course Introductory
Geoscience.
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3.3.2 Frequency polygons or line graphs

If the data are continuous, it is appropriate to draw a line linking the
midpoint of the tops of each bar in the histogram. Here is a geological
example for some continuous data that can be summarized as a histogram
or as a frequency polygon (often called a line graph). Carbon isotope data
are very useful for understanding the global distribution of carbon between
the Earth’s atmosphere, seawater and carbonate minerals. The δ13C of
carbonate minerals can provide information about variations of δ13C in
ocean water, which can be related to the global carbon cycle and palae-
oceanographic circulation patterns.
A sample of 28 “muddy” limestones (wackestones) was collected from an

extended outcrop, and isotopic analyses for δ13C‰were obtained. Nothing
is very obvious from this list of results:
1.01, 0.59, 2.32, 0.19, −2.39, −3.76, −0.8, 1.6, 0.28, −1.62, −0.33, −1.26,

−0.01, 1.36, 0.99, 1.12, −0.45, 0.71, 1.12, −0.72, 1.36, 1.59, 2.27, 2.25, 3.05,
2.58, 1.94, 3.28
Because the data are continuous, they are not as easy to summarize as the

discrete data in Figure 3.1. To display a histogram for continuous data you
need to subdivide the data into the frequency of cases within a series of
intervals of equal width. First you need to look at the range of the data (here
δ13C ‰ varies from a minimum of −3.76 through to a maximum of 3.28)
and decide on an interval width that will give you an informative display of
the data. Here the chosen width is 1.0‰. Therefore, starting from −4.0‰,
this will give 8 intervals, the first of which is −4 to −3.01 ‰. The chosen
interval width needs to be one that shows the shape of the distribution: there
would be no point in choosing a width that included all the data in just two
intervals because you would only have two bars on the histogram. Nor
would there be any point in choosing more than 20 intervals because this
would give a lot of bars with each containing only a few data.
Once you have decided on an appropriate interval size, you need to count

the number of cases with δ13C values that fall within each interval
(Table 3.1) and plot these frequencies on the Y axis against the intervals
(indicated by the midpoint of each interval) on the X axis. This has been
done in Figure 3.2(a). Finally, the midpoints of the tops of each rectangle
have been joined by a line to give a frequency polygon, or line graph
(Figure 3.2(b)).
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3.3.3 Cumulative graphs

Often it is useful to display data as a histogram of cumulative frequencies.
This is a graph that displays the progressive total (starting at zero, or zero
percent and finishing at the sample size or 100%) on the Y axis against the
increasing value of the variable on the X axis. Figure 3.3 gives an example,
using the data from Table 3.1.

A cumulative frequency graph can never decrease. Figure 3.3 displays the
data in Table 3.1 as a cumulative frequency histogram.

Table 3.1 Summary of δ13C ‰ data for limestones listed as frequencies
and cumulative frequencies.

Cumulative Frequency
Interval range
δ13C ‰ Cases Total Percent

−4 to −3.01 1 1 3.6
−3 to −2.01 1 2 7.1
−2 to −1.01 2 4 14.3
−1 to −0.01 5 9 32.1
0 to 0.99 5 14 50.0
1 to 1.99 8 22 78.6
2 to 2.99 4 26 92.9
3 to 3.99 2 28 100.0
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Figure 3.2 Carbon isotope data for 21 sampling units of limestone from the
same outcrop, displayed as (a) a histogram and (b) a frequency polygon or line
graph. The points on the frequency polygon (b) correspond to the midpoints
of the bars on (a).
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Although we have given the rather tedious manual procedures for con-
structing histograms, you will find that most statistical software packages
(and spreadsheets) have excellent graphics programs for displaying your
data. These will automatically select an interval width, summarize the data
and plot the graph of your choice.

3.4 Displaying ordinal or nominal scale data

When you display data for ordinal or nominal scale variables, you need to
modify the form of the graph slightly because the categories are unlikely to
be continuous, so the bars need to be separated to clearly indicate the lack of
continuity. Here is an example for some nominal scale data. Table 3.2 gives
the locations of 594 tornadoes during the period from 1998–2007 in the
southeastern states of the US.
These can be displayed on a bar graphwith the categories in any order along

the X axis and the number of cases on the Y axis (Figure 3.4(a)). It often helps
to rank the data in order of magnitude to aid interpretation (Figure 3.4(b)).

3.5 Bivariate data

Data where two variables have been measured on each sampling unit can
often reveal patterns that may suggest hypotheses, or be useful for testing
them. Here is another case where themineral apatite affects public health (in
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Figure 3.3 A cumulative frequency histogram for δ13C data for limestones.
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Chapter 2 there was an example where apatite was used to clean up lead
waste – this is about hydroxylapatite in your teeth). Table 3.3 gives two lists
of bivariate data for the number of dental caries (these are the holes that
develop in decaying teeth) and age for 20 children between the ages of one
and nine years from each of the cities of Hale and Yarvard.

Looking at these data, there is not anything that stands out, apart from an
increase in the number of caries with age. If you calculate descriptive
statistics such as the average age and average number of dental caries for
each of the two groups (Table 3.4) they are not very informative either. (You
probably know how to calculate the average for a set of data and this
procedure will be described in Chapter 7, but the average is the sum of all
the values divided by the sample size.)

Table 3.4 shows that the sample from Yarvard had slightly more caries on
average than the one from Hale, but this is not surprising because the
Yarvard sample was an average of one year older. If, however, you graph
these data, patterns emerge. One way of displaying bivariate data is a two-
dimensional plot with increasing values of one variable on the horizontal
(or X axis) and increasing values of the second variable on the vertical
(or Y axis). Figure 3.5 shows both sets of data with the number of caries
(Y axis) plotted against child age (X axis) for each city.

Table 3.2 Preliminary data on tornado occurrence in
southeastern US states from 1998–2007, according to the
NOAA National Weather Service Storm Prediction Center
(www.spc.noaa.gov/wcm/).

Location
Number of tornadoes
1998–2007

Texas 95
Oklahoma 68
Louisiana 38
Arkansas 68
Mississippi 68
Alabama 64
Georgia 48
Tennessee 44
North Carolina 36
South Carolina 48
Florida 17
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These graphs show that tooth decay increases with age, but the pattern
differs between cities – in Hale the increase is fairly steady, but in Yarvard it
remains low in children up to age seven but then suddenly increases. This
led to several hypotheses including that there might have been a child dental
care program, or water fluoridation, in place in Yarvard for the past eight
years compared to no action on decay in Hale.
Of course, there is always the possibility that the samples are different due

to chance, so perhaps the first step in any further investigation would be to
repeat the sampling using much larger numbers of children from each city.
Subsequent investigation found that the Yarvard municipal drinking

water had been fluoridated for the past eight years, but this treatment had
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Figure 3.4 (a) Preliminary data on tornado occurrence in southeastern US
states (listed alphabetically) from 1998–2007. (b) The same data but with the
number of cases ranked in order from most to least.
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not been introduced in Hale. The fluoride program works because your
teeth are made of the mineral hydroxyapatite (the same mineral that binds
to heavy metals). In this case the apatite in your teeth binds fluorine ions
which substitute for hydroxyls in the apatite structure, making the enamel
of your teeth less soluble and therefore less prone to decay. This seems a very

Table 3.3 The number of dental caries and age of 20 children
chosen at random from each of the two cities of Hale and Yarvard.

Hale Yarvard

Caries Age Caries Age

1 3 10 9
1 2 1 5
4 4 12 9
4 3 1 2
5 6 1 2
6 5 11 9
2 3 2 3
9 9 14 9
4 5 2 6
2 1 8 9
7 8 1 1
3 4 4 7
9 8 1 1
11 9 1 5
1 2 7 8
1 4 1 7
3 7 1 6
1 1 1 4
1 1 2 6
6 5 1 2

Table 3.4 The average number of dental caries and
age of 20 children chosen at random from each of the
two cities of Hale and Yarvard.

Hale Yarvard

Caries Age Caries Age

4.05 4.5 years 4.10 5.5 years
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plausible reason, but bear in mind that these data are only correlative and
there may be other reason(s) for the difference between the two cities.

3.6 Data expressed as proportions of a total

Data for the relative frequencies in two or more categories that sum to a
total of 1.0, or 100%, can be displayed as a pie diagram – a circle in which
each of the categories is displayed as a “slice,” the size of which is propor-
tional to its value. For example, a sample containing four different min-
erals that are equally abundant would be shown as a circle subdivided into
four equal 90o slices. Pie diagrams are easily interpreted when there are 10
or fewer categories and each contains at least 10% of the data (Figure 3.6).
When there are more than 10 categories the display will appear cluttered,
especially when slices are distinguished by their color, but it will be even
harder to differentiate among a lot of categories shown only as black, white
and shades of grey. Categories representing a relatively small number or
proportion of total cases will appear very narrow and may be overlooked.
The procedure for drawing a pie diagram showing either the relative

proportion of cases in several categories, or the values of two or more
variables (e.g. the concentrations of six different ions) is straightforward.
First, the data for each category are listed, summed to give a total, and then
expressed as proportions of this total. Each proportion is then multiplied by
360 to give the width of the slice in degrees, which is used to draw the
appropriate divisions on the pie diagram.
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Figure 3.5 The number of dental caries plotted against the age of 20 children
chosen at random from each of the two cities of (a) Hale and (b) Yarvard.
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3.7 Display of geographic direction or orientation

Rose diagrams are used to show a summary of the direction or orientation
of a sample of objects such as crystals or fractures in rock, or the geographic
orientation of paleocurrent directions in ancient river systems. For example,
a unimodal paleocurrent implies a river with steep slopes, but a bimodal one
suggests a meandering river with a low slope. Rose diagrams are also
commonly used by meteorologists to report the direction and magnitude
of winds. The procedures for drawing rose diagrams and analyzing data for
direction and orientation are described in Chapter 22.

3.8 Multivariate data

Often earth scientists have data for three or more variables measured on the
same sampling unit. For example, a geologist might have data for mineralogy,
chemical composition, geological age andmetamorphic grade for 20 outcrops
across a zone of contact metamorphism, or a paleontologist might have data
for the numbers of several species of brachiopods from a specific formation.

Results for three variables could be shown as three-dimensional graphs,
but direct display is difficult for more than this number of variables. Some
relatively new statistical techniques have made it possible to condense and
summarize multivariate data in a two-dimensional display, and these are
introduced in Chapter 20.
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Figure 3.6 Pie diagrams comparing the mineralogy of two different granites.
From this type of comparison it is clear that the rock in (a) has far less K-
feldspar and much more hornblende compared to the rock in (b).
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3.9 Conclusion

Graphs may reveal patterns in data sets that are not obvious from looking at
lists or calculating descriptive statistics. Graphs can also provide an easily
understood visual summary of a set of results. In later chapters there will be
discussion of data displays such as boxplots and probability plots, which can
be used to decide whether the data set is suitable for a particular analysis.
Most modern statistical software packages have easy to use graphics options
that produce high-quality graphs and figures. These packages are very useful
for writing assignments, reports or scientific publications.
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4 Introductory concepts
of experimental design

4.1 Introduction

To generate hypotheses, you often sample different groups or locations
(which is sometimes called a mensurative experiment because you usually
measure something, such as air density, chemical composition or temper-
ature, on each sampling unit) and explore these data for patterns or
associations. To test hypotheses you may do mensurative experiments, or
manipulative ones where you change a condition and observe the effect of
that change upon each experimental unit (like the experiment with apatite
and lead described in Chapter 2). Often you may do several experiments of
both types to test a particular hypothesis. The quality of your sampling and
the design of your experiment can have an effect on the outcome and
determine whether or not your hypothesis is rejected, so it is important to
have an appropriate and properly designed experiment.

First, you should attempt to make your measurements as accurate and
precise as possible so they are the best estimates of actual values.

Accuracy is the closeness of a measured value to the true value.
Precision is the “spread” or variability of repeated measures of the same

value.

For example, a thermometer that consistently gives a reading corre-
sponding to a true temperature (e.g. 20 °C) is both accurate and precise.
Another that gives a reading consistently higher (e.g. +10 °C) than a true
temperature is not accurate, but it is very precise. In contrast, a ther-
mometer that gives a fluctuating reading within a wide range of values
around a true temperature is not precise and will usually be inaccurate
except when the reading occasionally happens to correspond to the true
temperature.
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The distinction between accuracy and precision is particularly important
(and sometimes quite vexing) in geochemical studies. Most types of analytical
instruments are calibrated relative to standards (usually glasses or minerals),
but even many “true” or “standard” values for the compositions of naturally
occurring glasses or minerals have themselves been obtained using analytical
techniques that are subject to error. So an important (though rather prosaic)
part of geochemistry is the characterization of standards. This is usually done
by analyzing a standard in several different ways, repeating these in different
laboratories and using the combined results to determine an accepted “true”
value for it (that is usually an average). Because geoscientists deal with
naturally occurring materials such approximations are often unavoidable
and the errors they contribute to analytical work are an underlying source
of inaccuracy in most types of geochemical data.
Inaccurate and imprecise measurements or a poor or unrealistic sampling

design can result in the generation of inappropriate hypotheses. Measurement
errors or a poor experimental design can give a false or misleading outcome
that may result in the incorrect retention or rejection of an hypothesis.
The following is a discussion of some important essentials of sampling

and experimental design.

4.2 Sampling: mensurative experiments

Mensurative experiments are often a good way of generating or testing
predictions from hypotheses. (An example of the latter is “I think apatite
binds heavy metals. So if I sample groundwater at 500 sites with high
concentrations of naturally occurring apatite and 500 where apatite concen-
trations are low or zero, the groundwater in the first group should, on average,
contain less dissolved heavy metals.”) You have to be careful when interpret-
ing the results of mensurative experiments because you are sampling an
existing condition, rather than manipulating conditions experimentally.
There may be some other difference between your groups (e.g. the “high
apatite” sites may have negligible amounts of heavy metals present anyway).

4.2.1 Confusing a correlation with causality

A correlation between two variables means they vary together. A positive
correlation means that high values of one variable are associated with high
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values of the other, while a negative correlation means that high values of
one variable are associated with low values of the other. For example, the
graph in Figure 4.1 shows a positive correlation between the increasing tilt
of the summit of a volcano and the number of earthquakes measured there.
A volcano with a flat summit has zero tilt.

Unfortunately a correlation is often mistakenly interpreted as indicating
causality. In this example it seems very plausible that the tilt of the summit
could be caused by settling that occurs as a result of the earthquakes, so
volcanoes with more frequent earthquakes are more likely to have tilted
summits. However, even if there is a very obvious correlation between any
two variables, it does not necessarily show that one is responsible for the
other. The correlation may have occurred by chance, or a third unmeasured
factor might determine the values of the two variables studied. In this case,
tilting actually occurs because of increased pressure from fresh magma
moving into the chamber beneath the summit, which inflates the ground
beneath the summit, both increasing the tilt and causing rock fracturing that
is manifested as earthquakes. There is no causal relationship between earth-
quakes and tilt: they are both caused by the volume of magma injected into
the chamber (Figure 4.2).

Another complication in the interpretation of correlation arises often in
geological analyses involving closed data sets, where the variables sum to a
fixed total, percentage or proportion such as 100% or 1.0. This type of
error is particularly common in reports of chemical analyses of rocks and
minerals. For example, summary data for mineral formulae are routinely

Tilt of summit
surface (µ radians)

Number of earthquakes

Figure 4.1 Example of a positive correlation between the tilt of the summit of
a volcano and the number of earthquakes observed there.
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summed to the appropriate number of cations. The two olivine minerals
fayalite (Fe2SiO4) and forsterite (Mg2SiO4) rarely occur in these two “pure”
forms. Instead, most specimens contain a mixture of iron and magnesium,
each of which can fit in the two available octahedral sites in the structure,
which is why you might see the formula for olivine written as
Fe0.6Mg1.4 SiO4. The cations Fe and Mg must sum to two, so they will always
be inversely correlated with each other. An increase in Fe will inevitably
be accompanied by a decrease in the percentage of Mg, but this does not
mean one has an effect on the other. Rather, the formula probably reflects
the amounts of Mg and Fe in the original melt when the mineral crystallized.
Care must be taken to avoid being misled by such spurious negative correla-
tions in closed systems.

4.2.2 The inadvertent inclusion of a third variable: sampling
confounded in time

Occasionally researchers have no choice but to sample different sites at
different times. These results should be interpreted with great caution,
because changes occurring over time may contribute to differences (or the
lack of them) among samples or sampling units. The sampling is said to be
confounded in that more than one variable may be having an effect on the
results. Here is an example.
An oceanographer measured the sodium content of carbonate shelf sedi-

ments that are being formed in the Holyoke estuary, by taking 100 cores
running in a line down the length of the estuary. Coring is time-consuming
and the oceanographer only had access to a boat for one day per week and

Size of magma chamber

Tilt of summit Number of earthquakes

Figure 4.2 The involvement of a third variable “size of magma chamber” that
determines the tilt of the volcano’s summit and the number of earthquakes
that occur. Even though there is no causal relationship between tilt and the
number of earthquakes, these two variables are positively correlated.
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could only take five cores per day. Therefore the most upstream part of the
estuary was sampled in May, the middle in June and the most downstream
sites in August. The sampling showed a positive correlation between the
sodium content of newly laid down sediment and increasing distance
downstream. Unfortunately, however, the change in sodium content was
actually caused by seasonal variation in salinity that was low throughout the
entire estuary in spring due to groundwater run-off and increased as the
year progressed (and the scientist did not know this). Subsequent work
where the entire estuary was sampled on the same day found no difference
in the sodium content of the sediments, so the correlation between distance
downstream and sodium content was an artifact of the sampling of different
places being confounded in time. This is an example of a common problem,
and you are likely to find similar cases in many published scientific papers
and reports.

4.2.3 The need for independent samples in mensurative
experiments

Frequently researchers have to accurately describe relatively large areas or
objects as part of a mensurative experiment. For example, annual sedimen-
tation rates in glacier-fed lakes are used to reconstruct up-valley glacier
activity and thereby model environmental change. Sediment traps are
deployed at various locations in these lakes, and the mean particle size,
quantity and sediment flux are calculated. There is an obvious need to
replicate the sampling – that is, to independently measure sedimentation
rate in more than one place.

If you only sampled sediment in one trap at one place (Figure 4.3(a)) the
results would not be a good indication of the sediment accreting across the
whole lake. The sampling needs to be replicated, but there is little value in
repeatedly sampling one small area (e.g. by taking several samples under
“*****” in Figure 4.3(b)) because this still will not give an accurate indication
of variation in sediment rate and composition across the whole lake
(although it may give a very accurate indication of conditions in that
particular part of the lake sampled). This sort of sampling is one aspect of
what Hurlbert (1984) called pseudoreplication, which is still a very com-
mon flaw in a lot of scientific research. The replicates are “pseudo” – sham
or unreal – because they are unlikely to truly describe what is occurring
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across the entire area being discussed (in this case the lake). A better design
would be to sample at several places chosen at random within the lake, as
shown in Figure 4.3(c).
Here is another example. A researcher sampled a peatland ecosystem by

dropping a 10m2 square frame, subdivided into a grid of 100 equal sized
squares, at random in one place only and then took one sample from each of
these smaller squares. Although these 100 replicates may very accurately
describe conditionswithin the sampling frame, they donot necessarily describe
the remaining 9990m2 of the wetland environment and would be pseudo-
replicates if the results were interpreted in this way. Amore appropriate design
would be to sample 100 replicates chosen at random across the entire area.

4.2.4 The need to repeat the sampling on several occasions
and elsewhere

The results of sampling systems which are in considerable flux (e.g. the
Holyoke estuary or the lake described above) can only confidently be
discussed in relation to the area at the time of sampling. Therefore, you
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Figure 4.3 Aerial view of a glacial lake showing mean sediment grain size (in
μm). (a) An unreplicated sample taken at only one place (*) would give a very
misleading indication of grain size within the entire lake. (b) Several replicates
taken close to one another (*****) would still give a very misleading indication.
(c) Several replicates taken at random across the lake would give a better
indication.
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need to be cautious when interpreting results. Sampling the same area over
several different years will strengthen the findings, and may be sufficient if
you are only interested in that area. Sampling more than one area
(e.g. estuary, lake or outcrop) will make the results more able to be general-
ized. Inappropriate generalization is another example of pseudoreplication
since data from one location (whether it is relatively unchanging or in a state
of flux) may not hold in the more general case. At the same time, however,
even if your study is limited, you can still make more general predictions
from your findings provided these are clearly identified as predictions.

4.3 Manipulative experiments

4.3.1 Independent replicates

It is essential to have several independent replicates of any treatment used in
a manipulative experiment. We mentioned this briefly when describing the
lead remediation experiment in Chapter 2 and said that for only one treated
and one untreated sample, any difference between them could have simply
been due to chance or some other unknown factor(s). As the number of
randomly chosen independent replicates increases, so does the likelihood
that any difference between the experimental group and the control group is
a result of the experimental treatment.

Here is an example of the need for replicates. Streams that drain from
catchments where gold is present often contain particles of alluvial gold
among the gravel on the stream bed. This gold can be recovered by “pan-
ning” – placing a few handfuls of stream gravel and sediment in the base of a
shallow pan, part-filling the pan with water and then gently swirling the
contents to wash away any fine sediment, after which the gravel is spread
out within the pan and the gold grains picked out. A lot of experience is
needed before a person is skilled at doing this, and amateurs miss a lot of
gold. The standard gold pan is a wide and shallow metal bowl. One day you
notice that an older gold pan which has rusted and pitted on the inside
seems to give a more even spread of gravel, making it much easier to see the
gold. To test the hypothesis that a pitted pan gives better recovery you buy
two new standard gold pans, hammer 1000 pits into one and take both to a
gold bearing stream where you pan 16 ounces of gravel with the pitted one
while a friend pans another 16 ounces with the standard. To your delight
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you recover 0.025 ounces of gold, compared to 0.007 ounces for the stand-
ard one. The result is obvious – the pitted pan is better.
This result is consistent with the hypothesis but there is an obvious flaw

in the experiment – with only one pan in each treatment, any difference
between them may be due to differences between the pans, the amount of
gold initially present in the gravel sample, the skill of the operators (includ-
ing that you might have concentrated more carefully on the contents of the
pitted pan because you hoped to recover more gold, or your friend did a
poor job out of disinterest), or all three. There is a need to replicate this
experiment and the replicates need to be truly independent – it is not
sufficient for you to use the pitted pan ten times while your friend does
the same with the standard pan, because any differences between treatments
may still be caused by operator skill. There will be more about this shortly.

4.3.2 Control treatments

Control treatments are needed because they allow the experimenter to
isolate the reason why something is occurring in an experiment by compar-
ing two treatments that differ by only one factor. Frequently the need for a
rigorous experimental design makes it necessary to have several different
treatments, more than one of which can be considered controls.
Here is an example. Ultramafic rocks, and the soils produced from their

weathering, naturally contain high concentrations of metals such as chro-
mium, cobalt, manganese and nickel (that are toxic to plants) and low
concentrations of elements needed for plant growth. Therefore, very few
plant species grow in ultramafic soils and the ones that do are sometimes so
distinctive that they can be mapped by remote sensing and used to identify
sites with particularly high concentrations of valuable metals, especially
nickel, for mining.
Some of these plant species also accumulate extremely high concentra-

tions of nickel in their leaves and stems, and it has recently been suggested
that these accumulators could be grown on contaminated land and the
mature plants later harvested and removed (and perhaps even smelted), to
reduce soil contamination. There is great interest in such bioremediation
and a environmental scientist did an experiment to trial it on a nickel-
contaminated mine tailing. The soil was plowed and planted with 10 000
seedlings of a nickel accumulator and the plants were left to grow for six
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months. At the end of the experiment the result was clear – less nickel was
present in the soil at the treatment site.

Unfortunately this experiment is not controlled. By plowing the site and
planting a nickel accumulator, more than one treatment has been applied.
Furthermore, six months have elapsed between measurements. So if you do
find the nickel content of the soil has decreased, it may have been the result
of any of these factors and you cannot confidently attribute it to the
presence of the nickel accumulator.

One essential improvement would be to have a control for the presence of
the plant, where a site was plowed but not planted, and then left for the same
amount of time. Another might simply be a control for time, where nothing
was done to the site. At this stage, by incorporating these two improve-
ments, you would have three treatments. Table 4.1 lists what these treat-
ments are doing to the tailings site.

For this design, if there is a reduction in nickel in the treatment with the
plants and no reduction in the other two, youmight feel confident in claiming
the nickel accumulator had an effect. Nevertheless, some mine site rehabil-
itators might say the design is still inadequate because the treatment in the
left-hand column of Table 4.1 is the only one in which any plant has been
grown. For example, the roots of the plants may simply have made the soil
more permeable to rainwater which leached some of the nickel, and the same
result might have been obtained by planting 10 000 seedlings of an inexpen-
sive non-accumulating species. This improvement has been listed in Table 4.2.

At this point you may be thinking that the above design is far too
complex, but experiments do have to have appropriate controls so that
the effects of each potentially contributing factor can be isolated. For this
example, it would be extremely embarrassing to spend several thousand
dollars on expensive seedlings only to find that any plant has the same effect.

Table 4.1 Breakdown of three treatments in terms of their
effect upon a nickel-rich site.

Planted nickel accumulator
Control for
disturbance

Control for
time

Nickel accumulator
Plowing Plowing
Time Time Time
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It is often difficult to work out what control treatments you need for an
experiment. One way to clarify these is to list all of the things that are
actually happening in an experimental treatment and make sure you have
appropriate controls for each. Finally, the experimental treatments need to
be appropriately replicated – you cannot just have one replicate of each of
the four treatments in Table 4.2.
Here you may be wondering about the applicability of these concepts of

experimental design to geological systems, where you yourself do not (and
cannot) manipulate the experiment per se, because the “treatment”might be
some process or event that happened millions of years ago. Often earth
scientists can only do mensurative experiments, but a knowledge of the
essentials (and pitfalls) of doing these is becoming increasingly necessary if
you work in areas such as mine and hazardous waste site remediation.

4.3.3 Pseudoreplication

One of the nastiest pitfalls is appearing to have a replicated manipulative
experimental design that really is not replicated. This is another aspect of
“pseudoreplication” described by Hurlbert (1984) who invented the word –
before then it was just called “bad design.” Here is an example that relates
back to the use of bioaccumulators to rehabilitate mine sites.
A remediation geoscientist hypothesized that simply plowing the soil

would help decontaminate a mine site. They were aware of the need to
have appropriate treatments and replicates, so they chose two separate
tailing sites each 1000m2 in area. A toss of a coin decided which of these
was plowed, and the other site was left undisturbed. One hundred replicate
experimental units were taken at random within each site and analyzed for
nickel, which was high and similar at both. After six months the nickel

Table 4.2 Breakdown of three treatments in terms of their effect
upon a nickel-rich site.

Planted nickel
accumulator

Control for
plant

Control for
disturbance

Control for
time

Nickel accumulator Non accumulator
Plowing Plowing Plowing
Time Time Time Time
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content in the soil was resampled and found to be much lower at the plowed
site. The scientist was delighted – an inexpensive experiment with 100
replicates of each treatment had produced a result consistent with the
hypothesis.

Unfortunately, there are not 100 truly independent replicates in each area
because the treated site is in a different place to the control. All replicates of
the plowed treatment were in one tailing and all those from the undisturbed
one were in another. Therefore, any difference in nickel may, or may not,
have been due to the plowing – it could equally well have been due to some
other (perhaps unknown) difference between the sites. The number of
replicates is the sites, not the number of experimental units within each,
so the experiment has no effective replication at all and is essentially the
same as the (unreplicated) manipulative experiment on gold panning
described earlier in this chapter.

An improvement to the design would be to run each of the two treat-
ments at several tailing sites, but here too, it is still be necessary to have truly
independent replicates. If you do not, the experiment may still suffer from
apparent replication, and here are four examples.

(1) Treatments separate but clumped. Even if you have several separate
replicates of each treatment, the arrangement of these can lead to a lack
of independence. For example, you may have your treatments all
clumped together at one end of the mining lease and the controls at the
other, but this is no better than an unreplicated example (Figure 4.4(a)).

(2) Replicates placed alternately. If you decided to get around the clustering
problem by placing treatments and controls alternately (i.e. by placing,
from east to west, treatment #1, control #1, treatment #2, control #2,
treatment #3 etc.) there can still be problems. Just by chance all the
treatment sites (or all the controls) might be in line with an underlying
feature of the area (e.g. a regular alternation of grain size or soil
composition), or subject to some other regular feature you are not
even aware of (Figure 4.4(b)).

(3) Unavoidable segregation of replicates. Often, due to practical consid-
erations, you have to have all of your replicates of one treatment in only
one place, and all replicates of the control group in another.
Unfortunately, if there is something peculiar to one location, in addi-
tion to the variable you are intentionally manipulating, then either the
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experimental or control treatment may be affected. For example, if you
were doing an experiment comparing crystallization at two high tem-
peratures youmight have access to only two ovens, one set at 300 °C and
the other at 400 °C. Unfortunately these ovens may differ in more ways
than their set temperature. One may vary in temperature by +/− 10 °C,
while the other might be more accurate and only vary by only +/− 1 °C.
This pattern is called “isolative segregation” (Figure 4.4(c)).

(4) The final example is more subtle. Imagine you are an aqueous geo-
chemist interested in the hypothesis that “pH affects the minerals that
crystallize from sulfate-rich water.” You set up five control beakers and
five experimental beakers and place them on the bench in a completely
randomized pattern to get around problems in (a), (b) and (c) above.
All the beakers have water constantly flowing through them, so you set
up two storage tanks, one with water of pH 3.0 and the other with a
higher pH of 7.0. Water from each storage tank is piped into five
beakers as shown in Figure 4.5.

This looks fine, but unfortunately all five beakers within each treatment
are sharing the same water. All in the “pH 7” treatment receive water from
Tank A and all beakers in the “pH 3” treatment receive water from Tank B,

(c)
Drying oven 1 Drying oven 2

300  °C 400  °C
+/– 10  °C +/– 1  °C

(b)

(a)
T1 T2 T3 T4 T5 C1 C2 C3 C4 C5

C5T5C4T4C3T3C2T2C1T1

Figure 4.4 Three cases of apparent pseudoreplication. (a) Clustering of
replicates means that there is no independence among controls or treatments.
(b) A regular arrangement of treatments and controls may, by chance,
correspond to some feature of the environment that might affect the results.
(c) Segregation of treatments within particular ovens, where perhaps the
variance in temperature might be different.
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so any difference in precipitated minerals between treatments may be due
either to the pH or some other feature of the supply tanks and circulation
system. Really, therefore, this design is little better than the case of isolative
segregation (example (c) above). Ideally, each beaker should have its own
separate and independent supply. Finally, the allocation of replicate beakers
to treatments should be done using amethod that removes any possibility of
unintentional bias by the experimenter. (For example, the toss of a coin was
used to allocate paired heaps of soil to treated and untreated areas in the
experiment with lead and apatite described in Section 2.2.)

4.4 Sometimes you can only do an unreplicated experiment

Although replication is desirable in any experiment, there are some cases
where it is not possible. For example, when doing large-scale mensurative or
manipulative experiments on systems such as lakes or rivers, there may be
only one polluted lake or river available to study. Although you cannot
attribute the reason for any difference, or the lack of it, to the treatment
(e.g. a polluted versus a relatively unpolluted river) because you only have
one replicate of each, the results are still useful. First, they are still evidence
for or against your hypothesis and can be cautiously discussed in the light
of the lack of replication. Second, it may be possible to achieve replication by
analyzing your results in conjunction with those from similar studies
done elsewhere by other researchers. This is called a meta-analysis.
Finally, the results of a large-scale but unreplicated experiment may suggest

T1 C1 C2 T2 T3 C3 T4 C4 C5 T5

Tank A – pH 7.0

Tank B – pH 3.0

Figure 4.5 The positions of the treatment beakers are randomized, but all
tanks within a treatment share water from one supply tank.
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smaller-scale experiments that can be done with replication so that you can
continue to test the hypothesis.

4.5 Realism

Even an apparently well-designed mensurative or manipulative experiment
may still suffer from a lack of realism. Here are two examples.
The first is a mensurative experiment on the occurrence of impact craters

on the Earth. It was once thought that meteor impacts on Earth were fairly
rare, and the contrast between the appearance of the Moon (which is pock-
marked with craters), and the Earth’s surface (which is almost lacking in
visible craters), supported the hypothesis “Impacts rarely occur on the
surface of the Earth compared to the Moon.” The null hypothesis (that
few people even considered to be a possibility) was that impacts occur at
about the same frequency on the surface of the Earth and the Moon.
All this changed with two big events during the 1960s. First, the return of

samples from manned lunar exploration revealed the relative ages of differ-
ent sizes of lunar craters and supported the idea that impacts are occurring
continuously, although with a decreasing frequency, in our solar system.
Second, the theory of plate tectonics was introduced, which said that new
crust is constantly being created and subducted all over the Earth’s surface.
Suddenly it was apparent that the huge impact basins on the lunar surface
were created more than four billion years ago, and if comparable craters
existed on the Earth we would have no record of them. In the following
decades, studies of what is now known as Shoemaker Crater in Arizona
identified the characteristics of terrestrial impact craters (shocked minerals,
enrichment of trace elements only found in meteorites, etc.). Now, numer-
ous examples of impact craters have been found, particularly in older
terrains like the Canadian shield. So the naive assumption that impacts
never occur on the surface of the Earth turned out to be quite uninformed
and the comparison was unrealistic because surfaces of vastly different ages
on the Moon and Earth were being compared.
Second, a geoscientist did an experiment to test the hypothesis that the

amount of olivine (Mg2SiO4) produced when MgO and SiO2 react together
is dependent on temperature. They used equilibration temperatures of 700,
800, 900 and 1000 °C, and heated the mixtures for one week, after which the
treatment samples were removed from the furnaces and inspected for
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olivine growth. The conclusion was that there was no effect of temperature
on olivine production. Later, it was realized that these temperatures were
unrealistically low compared to those occurring within the Earth’s crust and
a subsequent experiment that included replicates at 1300, 1400 and 1500 °C
showed more olivine grew at the higher temperatures.

4.6 A bit of common sense

By now, you may be quite daunted by the challenge of being able to design a
good experiment. Provided, however, that you have appropriate controls,
replicates and have also thought about any obvious problems of pseudo-
replication and realism, you are well on the way to a good design.
Furthermore, the desire for a near-perfect design has to be balanced against
financial constraints as well as space and time available to do the experi-
ment, so often it is not possible to have as many replicates as you would like.
It also depends on the type of science you do. For example, if you were doing
a precisely controlled standardization using several different methods you
would be unlikely to set up different replicates of each treatment in a
random pattern within the laboratory and to do this might grossly increase
the risk of making a procedural error (not to mention the cost of the
experiment!). Similarly, most experimental petrologists working with gas-
mixing furnaces are very careful to calibrate thermostats, identify temper-
ature gradients and locate furnace hotspots accurately, so that conditions
can be strictly controlled. They would never be concerned about clustering
of replicates or isolative segregation because they were confident that con-
ditions did not vary among furnaces or in different parts of the same one.
Most of the time they may be right, but considerations about experimental
design need to be borne in mind by all scientists, especially if you are
working in areas where conditions cannot be strictly maintained.

Sometimes you may not have the resources to do a large manipulative
field experiment at more than one site. Certainly, in many geological
studies, there may well be only one accessible road-cut or outcrop suitable
for study. Although, strictly speaking, the individual results cannot be
generalized to other sites, they may nevertheless apply and with careful
interpretation and discussion of results you can make more general pre-
dictions. For example, the “apatite remediation” experiment described in
Chapter 2 was initially conceived in the laboratory, and repeated at
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numerous test sites before being approved by the US Environmental
Protection Agency. All the results were consistent with the hypothesis, so
the general consensus at present is that “Apatite treatment reduced the
amount of lead available for leaching.”Nevertheless, the hypothesis may not
be correct or apply to all lead remediation sites, but, to date, there has been
no evidence to the contrary. Furthermore, the hypothesis is also supported
by sound scientific arguments for why the treatment works: the lead has a
divalent charge (Pb2+) and it substitutes readily for Ca2+ in the apatite
(~Ca5(PO4)3(F,Cl,OH)) structure because it has a similar size and the
same charge.

4.7 Designing a “good” experiment

Designing a well-controlled, appropriately replicated and realistic experi-
ment has been described by some researchers as an “art.” It is not, but there
are often several different ways to test the same hypothesis, hence several
different experiments that could be done. Consequently, it is difficult to set a
guide to designing experiments beyond an awareness of the general princi-
ples discussed in this chapter.

Cost
of the
experiment

Very poor

Cost

Ability

Ability
to do the 
experiment

Excellent

Quality of the experimental design

Figure 4.6 An example of the trade-off between the cost and ability to do an
experiment. As the quality of the experimental design increases, so does the
cost of the experiment (solid line), while the ability to do the experiment
decreases (dashed line). Your design usually has to be a compromise between
one that is practicable, affordable and of sufficient rigor. Its quality can be
anywhere along the X axis.
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4.7.1 Good design versus the ability to do the experiment

It has often been said “There is no such thing as a perfect experiment.” One
inherent problem is that as a design gets better and better, the cost in time
and equipment also increases, but the ability to actually do the experiment
decreases (Figure 4.6). An absolutely perfect design may be impossible to
carry out. Therefore, every researcher must choose a design that is “good
enough” but still practical. This trade-off is illustrated in Figure 4.6. The
quality of an experiment can be any point along the X axis and the “best”
compromise is not necessarily where the two lines cross – instead the
decision on design quality is in the hands of the researcher, and will be
eventually judged by their colleagues who examine any report from the work.

4.8 Conclusion

The above discussion only superficially covers some important aspects of
experimental design. Considering how easy it is to make a mistake, you
probably will not be surprised that a lot of published scientific papers have
serious flaws in design or interpretation that could have been avoided.Work
with major problems in the design of experiments is still being done and,
quite alarmingly, many researchers are not aware of these. As an example,
after teaching thematerial in this chapter, we often ask our students to find a
published paper, review and criticize the experimental design, and then offer
constructive suggestions for improvement. Many have later reported that it
was far easier to find a flawed paper than they expected.

4.9 Questions

(1) Give an example of confusing a correlation with causality.
(2) Name and give examples of two types of “apparent replication.”
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5 Doing science responsibly
and ethically

5.1 Introduction

By now you are likely to have a very clear idea about how science is done.
Science is the process of rational enquiry, which seeks explanations for
natural phenomena. Scientific method was discussed in a very prescriptive
way in Chapter 2 as the proposal of a hypothesis from which predictions are
made and tested by doing experiments. Depending on the results, which
may have to be analyzed statistically, the decision is made to either retain or
reject the hypothesis. This process of knowledge by disproof advances our
understanding of the natural world and seems impartial and hard to fault.
Unfortunately, this is not necessarily the case because science is done by

human beings who sometimes do not behave responsibly or ethically.
For example, some scientists fail to give credit to those who have helped
propose a new hypothesis. Others make up, change or delete results so their
hypothesis is not rejected, omit details to prevent the detection of poor
experimental design, and deal unfairly with the work of others. Most
scientists are not taught about responsible behavior and are supposed to
learn a code of conduct by example. Considering the number of cases of
scientific irresponsibility that have been exposed, this does not seem to be a
very good strategy. Thus, this chapter is about the importance of behaving
responsibly and ethically when doing science.

5.2 Dealing fairly with other people’s work

5.2.1 Plagiarism

Plagiarism is the theft and use of techniques, data, words or ideas without
appropriate acknowledgment. If you are using an experimental technique or
procedure devised by someone else, or data owned by another person, you
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must acknowledge this. If you have been reading another person’s work, it is
easy to inadvertently use some of their phrases, but plagiarism is the repeated
and excessive use of text without acknowledgment. Once your work is pub-
lished, any detected plagiarism can affect your credibility and career. Quite
remarkably, we have detected plagiarism inmanuscripts we have been asked to
review, including cases where material from the same journal has been copied.

5.2.2 Acknowledging previous work

Previous studies can be extremely valuable because they can add weight to a
hypothesis and even suggest other hypotheses to test. There is a surprising
tendency for scientists to fail to acknowledge previous published work by
others in the same area, sometimes to the extent that experiments done two or
three decades ago are repeated and presented as new findings. This can be an
honestmistake in that the researcher is unaware of previous work, but it is now
far easier to search the scientific literature than it used to be.When you submit
your work to a scientific journal for publication, it may be embarrassing to be
told that something similar has been done before. Even if a reviewer or the
editor of a journal does not notice, others may and are likely to say so in print.

5.2.3 Fair dealing

Some researchers cite the work done by others in the same field but down-
play or even distort it. Although it appears that previous work in the field
has been acknowledged because the publication is listed in the citations at
the back of the paper or report, the researcher has nevertheless been some-
what dishonest. We have found this in about five percent of the papers we
have reviewed, but it may be more common because it is quite hard to detect
unless you are very familiar with the work. Often the problem seems to arise
because the writer has only read the abstract of a paper, which can be
misleading. It is important to carefully read and critically evaluate previous
work in your field because it will improve the quality of your own research.

5.2.4 Acknowledging the input of others

Often hypotheses may arise from discussions with colleagues or with your
supervisor. This is an accepted aspect of how science is done. If, however,
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the discussion has been relatively one-sided in that someone has suggested a
useful and novel hypothesis to you, then you should seriously think about
acknowledgment. A colleague once said bitterly “My suggestions become
someone else’s original thoughts in a matter of seconds.” Acknowledgment
can be a mention (in a section headed “Acknowledgments”) at the end of a
report or paper, or youmay even consider including the person as an author.
If you are ever in doubt as to which of these is appropriate, remember that
being generous and including someone as a coauthor (with his/her permis-
sion, of course) costs you very little, compared with the risk of alienating
them if they are omitted. Often asking the person what they think is appro-
priate will solve this problem.
It is not surprising that disputes often arise between supervisors and their

postgraduate students about authorship of papers. Some supervisors argue
that they have facilitated all of the student’s work by being the supervisor and
therefore expect their name to be included on all papers from the research.
Others recognize that single-authored papers may be important to the
student’s future, and thus do not insist on this. The decision depends on
the amount and type of input and rests with the principal author of the paper,
but it is often helpful to clarify thematter of authorship and acknowledgment
with your supervisor(s) at the start of a postgraduate program or new job.

5.3 Doing the sampling or the experiment

5.3.1 Approval

In some cases, you will need prior permission to undertake an experiment,
including submitting a risk assessment for an experimental procedure or field-
work thatmay expose you, or others, to potential hazards. If you are sampling in
a national park or reserve, youwill need a permit. In both cases, youwill have to
give a well-reasoned argument for doing the work, including its likely advan-
tages and disadvantages. In many countries and institutions, there are severe
penalties for breaches of permits or doing research without prior permission.

5.3.2 Ethics

Ethics are moral judgments where you have to decide if something is right or
wrong, so different scientists can have different ethical views. Ethical issues
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include honesty and fair dealing, but they also extend to whether experimen-
tal procedures can be justified. For example, some scientists think it is right to
test cosmetic products on animals such as rabbits or rats because it will reduce
the likelihood of harming or causing pain to humans, while others think it is
wrong because it may cause pain and suffering to the animals. Both groups of
scientists would probably be puzzled if someone said it was unethical to do
experiments on insects or plants. Similarly, some scientists believe it is wrong
to extract minerals or oil from areas of wilderness because of the potential for
damaging these ecosystems, while others believe the need to obtain these
resources is sufficient justification for extraction. Importantly, however, none
of these views can be considered the best or most appropriate, because ethical
standards are not absolute. Provided a person honestly believes, for any
reason, that it is right to do what he is doing, then he is behaving ethically
(Singer, 1992) and it is up to you to decide what is right. The remainder of this
section is about the ethical conduct of research, rather thanwhether a research
topic or procedure is considered ethical.

5.4 Evaluating and reporting results

Once you have the results of an experiment, then you need to analyze them
and discuss the results in terms of rejection or retention of your hypothesis.
Unfortunately, some scientists have been known to change the results of
experiments to make them consistent with their hypothesis, which is grossly
dishonest. We suspect this practice is more common than reported; it may
even be encouraged by assessment procedures in universities and colleges
where grades are given for the correct outcomes of practical experiments.
When we ask undergraduate students in our statistics classes if they have
ever altered their data to fit the expectations of their assignments, we tend to
get a lot of very guilty looks. We have also known researchers who were
dishonest. One had a regression line that was not statistically significant, so
they changed the data until it was. The second made up entire sets of data
for sampling on field trips that never occurred, and a third made up large
quantities of data for the results of laboratory analyses that were queried by
their supervisor because the data were “too good.” All were found out and
are no longer doing science.

It has been suggested that part of the problem stems from people becom-
ing attached to their hypotheses and believing they are true, which goes
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completely against science proceeding by disproof! Some researchers are
quite downcast when their results are inconsistent with their hypothesis.
However, you need to be impartial about the results of any experiment and
remember that a negative result is just as important as a positive one because
the understanding of the world has progressed in both cases.
Another cause of dishonesty is that scientists are often under extraordi-

nary pressure to provide evidence for a particular hypothesis. There are often
career (and financial) rewards for finding solutions to problems or suggest-
ing new models of natural processes. Competition among scientists for jobs,
promotion and recognition is intense and can also foster dishonesty.
The problemwith scientific dishonesty is that the person has not reported

what is really occurring. Science aims to describe the real world, so if you fail
to reject a hypothesis when a result suggests you should, you will report a
false andmisleading view of the process under investigation. Future hypoth-
eses and research based on these findings are likely to produce results
inconsistent with your findings. There have been some spectacular cases
where scientific dishonesty has been revealed, which have only served to
undermine the credibility of the scientific process.

5.4.1 Pressure from peers or superiors

Sometimes inexperienced, young or contract researchers have been pres-
sured by their superiors to falsify or give a misleading interpretation of their
results. It is far better to be honest than risk being associated with work that
may subsequently be shown to be flawed. One strategy for avoiding such
pressure is to keep good written records.

5.4.2 Record keeping

Some research groups, especially in industry, are so concerned about hon-
esty that they have a code of conduct: all researchers have to keep records of
their ideas, hypotheses, methods and results in a hard-bound laboratory
book with numbered pages that are signed and dated on a daily or weekly
basis by the researcher and supervisor. Not only can this be scrutinized if
there is any doubt about the work (including who thought of something
first), but it also encourages good data management and sequential record
keeping. Results kept on pieces of loose paper with no reference to the
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methods used can be quite hard to interpret when the work is written up for
publication.

5.5 Quality control in science

Publication in refereed journals ensures your work is scrutinized by at least
one referee who is a specialist in the research field. Nevertheless, this process
is more likely to detect obvious and inadvertent mistakes than deliberate
dishonesty and many journal editors have admitted that work they publish
is likely to be flawed (LaFollette, 1992). Institutional strategies for quality
control of the scientific process are becoming more common and many
have rules about the storage and scrutiny of data. At the same time,
however, there is a need in many institutions for explicit guidelines about
the penalties for misconduct, together with mechanisms for handling
alleged cases of misconduct reported by others. The responsibility for
doing good science is often left to the researcher. It applies to every aspect
of the scientific process, including devising logical hypotheses, doing well-
designed experiments and using and interpreting statistics appropriately,
together with honesty, responsible and ethical behavior, and fair dealing.

5.6 Questions

(1) A college lecturer said “For the course ‘Geostatistical Methods,’ the
grade a student gets for the exam has always been fairly similar to the
one they get for the assignment, give or take about 15%. I am a busy
person, so I will simply copy the assignment grades into the column
marked ‘exam’ on the spreadsheet and not bother to grade the exams at
all. It’s really fair of me, because students get stressed during the exam
anyway and may not perform as well as they should.” Please discuss.

(2) An environmental scientist said “I did a small pilot experiment with two
replicates in each treatment and got the result we hoped for. I didn’t
have time to do a bigger experiment but that didn’t matter – if you get
the result you want with a small experiment, the same thing will happen
if you run it with many more replicates. So when I published the result,
I said I used twelve replicates in each treatment.” Please comment
thoroughly and carefully on all aspects of this statement.
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6 Probability helps you make a
decision about your results

6.1 Introduction

Most science is comparative. Earth scientists often need to know if a
particular phenomenon has had an effect, or if there are differences in a
particular variablemeasured at several different locations. For example, what
is the permeability of sandstone with and without carbonate impurities?
How does turbidity vary across a glacial lake? Howwell does the distribution
of dew point temperature predict rainfall? But when you make these sorts of
comparisons, any differences among areas sampled or manipulative exper-
imental treatments may be real or they may simply be the sort of variation
that occurs by chance among samples from the same population.
Here is an example of commercial importance. Most diamonds aremined

from kimberlite deposits, which are volcanoes that have risen from great
depths in the Earth’s mantle at high speed. Sometimes, the kimberlite brings
along diamonds that have formed at high pressures and temperatures. But
not all kimberlites contain diamonds, and finding themwithin these rocks is
quite difficult.
Fortunately, many kimberlites contain large amounts of the mineral

garnet. A prospector noted that the garnets present in diamond-rich kim-
berlites were slightly darker than those in kimberlites lacking diamonds, and
subsequent research suggested that the change in color was caused by the
presence of small amounts of oxidized Fe, or Fe3+. To test if oxidized garnets
could be used to predict the presence of diamonds, the prospector collected
14 garnet samples: seven from diamond-bearing deposits of kimberlite, and
seven from kimberlite without diamonds (Table 6.1), and measured their
Fe3+ content.
On average the %Fe3+ content of garnets from diamond-bearing deposits

is 2.8% higher than those from diamond-free deposits, but by looking at the
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data you can see that there is a lot of variation within both groups and even
some overlap between them.

Even so, the prospector might conclude that diamonds are associated
with oxidized (Fe3+-bearing) garnets. But there is a problem. How do you
know that this difference between groups is meaningful or significant?
Perhaps it simply occurred by chance and the oxidation state of the garnet is
not a good predictor? Somehow you need a way of helping you make a
decision about your results.

Even when there may seem to be a sound scientific explanation for
the phenomenon you observe, statistics can be very useful inmaking a decision
about your results. The need to make such decisions led to the development
of tests that provide a commonly agreed-upon level of statistical significance.

6.2 Statistical tests and significance levels

Statistical tests are just a way of working out the probability of obtaining
the observed, or an even more extreme, difference among samples (or
between an observed and expected value) if a specific hypothesis (usually
the null of no difference) is true. Once the probability is known, the
experimenter can make a decision about the difference, using criteria that
are uniformly used and understood. Here is a very easy example where the
probability of every possible outcome can be calculated.

Imagine you visit the beach after a big storm, and notice that the usually
white sand has now turned gray. What has happened is that many of the

Table 6.1 The %Fe3+ content of garnets with and without
coexisting diamonds.

Sample Without diamond With diamond

1 1.0 1.5
2 0.5 3.3
3 0.7 5.8
4 2.3 3.2
5 1.1 6.7
6 0.8 4.2
7 1.4 2.5
Average 1.1 3.9
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lighter-colored minerals (feldspar and quartz) have washed out to sea,
leaving behind a larger than usual percentage of black grains (the amphibole
group mineral hornblende). You do not know this, but the proportions of
white and black grains in this population on the beach are exactly 1 : 1. The
grains are well mixed and all have exactly the same, well-rounded, shape.
They are a population of many billion grains of sand.
You take one grain at random from the beach. Because there are equal

numbers of black and white, your probability of getting a black one is
50%, or 1/2, which is also your chance of getting a white one. The chance
of getting either a black or white grain is the sum of these probabilities:
(1/2 + 1/2) which is 1.0 (or 100%) since there are no other colors. (If you are
unsure about probability, there is a short explanation of the concepts you
will need for this book in Box 6.1.)
Now consider what happens if you take a sample of six grains from the

beach in sequence, one after the other, without looking. (The population is
so large that removing only six will have a negligible effect on the remainder,
so these are independent events: see Box 6.1.)

Box 6.1 Essential concepts of probability

The probability of any event can only vary between 0 and 1 (which
correspond to 0 and 100%). If an event is certain to occur it has a
probability of 1, while if an event is certain not to occur it has a
probability of 0.

The probability of a particular event is the number of outcomes giving
that event, divided by the total number of possible outcomes. For
example, when you toss a coin, there are only two possible outcomes –
a head or a tail. These two events are mutually exclusive – you cannot get
both. Consequently, the probability of a head is 1 divided by 2 = 1/2 (and
thus the probability of a tail is also 1/2).

Probability is usually symbolized as P, so the sentence above could be
written as P (head) = 1/2 and P (tail) = 1/2.

The addition rule
The probability of getting either a head or a tail is the sum of the two
probabilities, which is 1/2 + 1/2 = 1, or P (head) + P (tail) = 1. This is an
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example of the addition rule: when several outcomes are mutually
exclusive (meaning they cannot occur simultaneously), the probability
of getting any of these is the sum of their separate probabilities.
(Therefore, the probability of getting a 1, 2, 3 or 4 when rolling a six-
sided die is 4/6.)

The multiplication rule
Independent events.When the occurrence of one event has no effect on
the occurrence of the second, the events are independent. For example, if
you tossed two coins simultaneously, the outcome (H or T) for the first
coin would have no influence on the outcome for the second (and vice
versa). To calculate the joint probability of two or more independent
events such as two heads occurring when two coins are tossed simulta-
neously, which would be written as P (head, head), you simply multiply
the independent probabilities together. Therefore, the probability
of getting two heads with two coins is P (head) × P (head) which is
1/2 × 1/2 = 1/4. The chance of a head or a tail with two coins is 1/2
because there are two ways of obtaining this out of the four possible
outcomes: coin 1 = H, coin 2 = T or vice versa.

Related events. If the events are not independent (for example, for a
single roll of a six-sided die, the first event being a number in the range
of 1–3 inclusive, and the second event being that this is an even
number) the multiplication rule also applies, but you have to multiply
the probability of one event by the conditional probability of the
second.

When rolling a die the independent probability of a number from 1–3
is 3/6 = 1/2, and the independent probability of any even number is also
1/2 (the even numbers are 2, 4 or 6 divided by the six possible outcomes).

If, however, you have already rolled a number from 1–3, the prob-
ability of that restricted set of outcomes being an even number is 1/3
(because “2” is the only even number possible in this set of three out-
comes). Therefore, the probability of both related events is 1/2 × 1/3 = 1/6.
You can work out this probability the other way – the chance of an
even number when rolling a die is 1/2 (you would get numbers 2, 4 or 6)
and the probability of one of these numbers being in the range from 1–3
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Here are all of the possible outcomes. You may get six black grains or six
white ones (both outcomes are very unlikely); five black and one white, or one
black and five white (which are more likely); four black and two white, or two
black and four white (which are even more likely), or three black and three
white (which is very likely because the proportion of grains on the beach is 1:1).
The probability of getting six black grains in sequence is the probability

of getting one black one (1/2) multiplied by itself six times, which is
1/2 × 1/2 × 1/2 × 1/2 × 1/2 × 1/2 = 1/64.
The probability of getting six white grains is also 1/64.
The probability of five black and one white is greater because there are six

ways of getting this combination (WBBBBB or BWBBBB or BBWBBB or
BBBWBB or BBBBWB or BBBBBW) giving 6/64.
There is the same probability (6/64) of getting five white and one black.
The probability of four black and two white is even greater because there

are 15 ways of getting this combination (WWBBBB, BWWBBB, BBWWBB,
BBBWWB, BBBBWW, WBWBBB, WBBWBB, WBBBWB, WBBBBW,
BWBWBB, BWBBWB, BWBBBW, BBWBWB, BBWBBW, BBBWBW)
giving 15/64.
There is the same probability (15/64) of getting four white and two black.

is 1/3 (the number 2 out of these three outcomes). Therefore the prob-
ability of both is again is 1/2 × 1/3 = 1/6.

First event Second event Product

(a) Even number Number from 1–3, provided first event is an
even number

P= 1/2 P= 1/3 1/6
(b) Number

from 1–3
Even number, provided first event is a
number from 1–3

P= 1/2 P= 1/3 1/6

The conditional probability of an event (e.g. an even number provided a
number from 1–3 has already been rolled) occurring is written as
P (A|B) which means “the probability of event A provided event B has
occurred.” For the example with the die, the probability of an even number,
provided a number from 1–3 has been rolled, is written as P (even|1–3).
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Finally, the probability of three black and three white (there are 20 ways
of getting this combination) is 20/64.

You can summarize all of these outcomes as a table of probabilities
(Table 6.2). These probabilities are shown as a histogram in Figure 6.1.
Note that the distribution is symmetrical with a peak corresponding to the
cases where half the grains will be black and half white. (Incidentally, this is an
example of the binomial distribution,which will be discussed in Chapter 7.)

Number of black hornblende grains in a sample of 6

E
xp

ec
te

d 
nu

m
be

r 
of

 e
ac

h
in

 a
 s

am
pl

e 
of

 6
4

20

10

0
0 1 2 3 4 5 6

Figure 6.1 The expected numbers of each possible mixture of colors when
sampling six grains independently with replacement on 64 different occasions from
a large population containing 50% black hornblende and 50% white quartz grains.

Table 6.2 The probabilities of obtaining all possible combinations of black and
white grains in samples of six from a large population where there are equal
numbers of black and white grains.

Number of
black

Number of
white

Probability of this
outcome

Percentage of cases likely to give
this result

6 0 1/64 1.56
5 1 6/64 9.38
4 2 15/64 23.44
3 3 20/64 31.25
2 4 15/64 23.44
1 5 6/64 9.38
0 6 1/64 1.56

Total: 64/64 100%

56 Probability helps you make a decision about your results



Therefore, if you were given an extremely large population containing
50% black hornblende and 50% white quartz grains, from which you drew
six, you would have a very high probability of drawing a sample that
contains grains of both minerals. It is very unlikely you would get only six
black or six white (the probability of each is 1/64, so the probability of either
six black or six white is the sum of these which is only 2/64, or 0.0313
or 3.13%).

6.3 What has this got to do with making a decision
or statistical testing?

The statistician Sir Ronald Fisher proposed that if the probability of
getting the observed difference, plus any more extreme than this, between
the expected outcome (the null hypothesis discussed in Chapter 2) and the
actual outcome is less than 5%, then it is appropriate to conclude that
the difference is statistically significant (Fisher, 1954).
There is no scientific reason for the choice of 5% (which is the same as

1/20 or 0.05). It is the probability that many researchers use as a standard
“statistically significant level.”
Using the example of the grains on the beach, if your null hypothesis

specified that there were equal numbers of hornblende and quartz grains in
the population, then you could do an experiment to test it by taking a
random sample of six grains as described above. If the six grains were all
black (hornblende), then the probability of this result under the null
hypothesis would be only 1.56%. Similarly, if all six grains were white, the
probability under the null hypothesis would also be 1.56%. Therefore, for
either outcome, the difference between the experimental outcome and the
expected result has such a low probability that it would be considered
statistically significant. A researcher would reject the null hypothesis and
conclude that the sample did not come from a population containing equal
numbers of hornblende and quartz grains.

6.4 Making the wrong decision

If the proportions of black and white grains on the beach really were equal,
then most of the time a sample of six grains would contain both minerals.
But if the grains in the sample were all only black hornblende or all only
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white quartz, a researcher would decide the population did not contain 50%
hornblende and 50% quartz. Here they would have made the wrong deci-
sion but this would not happen very often (the probability of either of these
outcomes is 2/64).

The unavoidable problem with using probability to help you make a
decision is that there is always a chance of making a wrong decision and you
have no way of telling when you have done this.

As described above, if a researcher got a sample of six of one mineral,
they would decide that the population on the beach was not 50% horn-
blende and 50% quartz when really it was. This mistake, where the null
hypothesis of equal numbers is inappropriately rejected, is called a Type 1
error.

There is another problem. Sometimes an unknown population is differ-
ent to what is expected (e.g. it may contain 90% white grains and 10% black
ones) but the sample taken (e.g. 4 white and 2 black) is not significantly
different to the expected outcome predicted by the hypothesis of 50:50. In
this case the researcher would decide the composition of the population was
the one expected under the null hypothesis (50:50), even though it was not.
This mistake, when the alternate hypothesis holds but is inappropriately
rejected, is called a Type 2 error.

Every time you do a statistical test you run the risk of a Type 1 or Type 2
error. There will be more discussion of these errors in Chapter 9, but they
are unavoidably associated with using probability to help you make a
decision.

6.5 Other probability levels

Sometimes, depending on the hypothesis being tested, a researcher may
decide that the “less than 5%” significance level (with its 5% chance of
inappropriately rejecting the null hypothesis) is too risky.

Here is an example from medical mineralogy. Mesothelioma is a cancer
of the pleural mesothelium (the lining of the lung cavity), and it is mainly
caused by exposure to asbestos fibers. Asbestiform minerals take the shape
of fibers with longitudinal parting, and the ends then fray into individual
fibers. If inhaled, the fibers are either coughed up or remain in the lung
where they become covered with white blood cells called macrophages that
engulf foreign particles. Unfortunately, asbestos fibers are difficult to
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dislodge by coughing, and their large surface area makes it difficult for
macrophages to engulf them. The resultant inflammation and scarring of
lung tissue leads to a high incidence of cancer.
A mineralogist helped a drug company develop and test a new and

extremely expensive drug that was hoped to reduce mortality in people
suffering from mesothelioma. A large experiment was done where half of
mesothelioma cases chosen at random received the new drug and the other
half did not. The survival of both groups over the next month was com-
pared. The alternate hypothesis was “There will be increased survival of the
drug-treated group compared to the control.”
Here, the prohibitive cost of the drug meant that the manufacturer had to

be very confident that it was of real use before recommending and market-
ing it. Therefore, the risk of a Type 1 error (significantly greater survival in
the experimental group compared to the control simply by chance) when
using the 5% significance level might be considered too risky. Instead, the
researcher might decide to reduce the risk of Type 1 error by using the 1%
level and only recommend the drug if the reduction in mortality was so
marked that it was significant at this level.
Here is an example of the opposite case. A company developed a new and

extremely economical method for measuring the concentration of arsenic in
groundwater. Here, the company had to be extremely confident that their
new method gave readings that did not differ significantly from the estab-
lished method, so two thousand samples were analyzed using both. The null
hypothesis was that “The estimated concentration of arsenic does not differ
between methods.” Here a real difference that went undetected in the trial
could be disastrous for public health, so the company statistician used a 30%
significance level to reduce the risk of getting a non-significant difference
due to chance.
The most commonly used significance level is 5%, which is 0.05. If you

decide to use a different level in an analysis, the decision needs to be made,
justified and clearly specified before the sampling or the experiment
is done.
For a significant result, the actual probability is also important. For

example, a probability of 0.04 is not very much less than 0.05. In contrast,
a probability of 0.002 is very much less than 0.05. Therefore, even though
both are significant, the result with the lowest probability gives much
stronger evidence for rejecting the null hypothesis.
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6.6 How are probability values reported?

The symbol used for the chosen significance level (e.g. 0.05) is the Greek α

(alpha). Often you will see the probability reported as P < 0.05 or P < 0.01 or
P < 0.001. These mean respectively “The probability is less than 0.05” or
“The probability is less than 0.01” or “The probability is less than 0.001.”
N.S. means “not significant,” which is when the probability is 0.05 or more
(P ≥ 0.05). Of course, as noted above, if you have specified a significance
level of 0.05 and get a result with a probability of less than 0.001, this is far
stronger evidence for your alternate hypothesis than a result with a prob-
ability of 0.04.

6.7 All statistical tests do the same basic thing

In the “grains of sand” example all of the possible outcomes were listed and
the probability of each was calculated directly. Some statistical tests do this.
Most, however, use a formula to produce a number called a statistic. The
probability of getting each possible value of the statistic has been previously
calculated so you can use the formula to get the numerical value of the
statistic, look up the probability of that value in a published set of statistical
tables and make your decision to retain the null hypothesis if it has a
probability of ≥ 0.05, or reject it if it has a probability of < 0.05. Most
statistical software packages now available will generate the probability as
well as the statistic, so you do not even need a set of tables.

6.8 A very simple example: the chi-square test
for goodness of fit

Here is an example to illustrate the concepts discussed above, using one of
the simplest statistical tests.

The chi-square test for goodness of fit compares observed ratios to
expected ratios for nominal scale data. Imagine you have developed a new
method for treating zircons to turn them from brown into colorless, gemmy
ones. After doing many experiments, you predict that the success rate of
your technique should be 3:1 brown:colorless. Therefore, when you irradi-
ate 100 brown zircons from a newly discovered locality you would expect
the brown:colorless ratio in the samples to be 75:25. (Your null hypothesis is
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Box 6.2 Bayes’ theorem

The calculation of the probability of two events by multiplying the
probability of the first by the conditional probability of the second in
Box 6.1 is an example of Bayes’ theorem. Put formally, the probability of
events A and B occurring, is the probability of event B multiplied by the
probability A will occur provided event B has already occurred:

P ðA;BÞ ¼ P ðBÞ � P ðAjBÞ
As described in Box 6.1, the probability of an even number and a number
from 1–3 in a single roll of a die: P (even, 1–3) = P (1–3) × P (even|1–3).
Here is an example of the use of Bayes’ theorem. In central Queensland

many rural property owners have a well drilled in the hope of accessing
underground water, but there is a risk of not striking sufficient water
(i.e. a maximum flow rate of less than 100 gallons per hour is considered
insufficient) and there is also a risk that the water is unsuitable for human
consumption (i.e. it is not potable). It would be very helpful to know the
probability of the combination of events of striking sufficient water that
is also potable: P (sufficient, potable).

Obtaining P (sufficient) is easy, because drilling companies keep data
for the numbers of sufficient and insufficient wells they have drilled.
Unfortunately they do not have records of whether the water is potable,
because that is established later by a laboratory analysis paid for by the
property owner. Furthermore, laboratory analyses of samples from new
wells are usually only done on those that yield sufficient water – there
would be little point of assessing the water quality of an insufficient well.
Therefore, data from laboratory analyses for potability only gives the
conditional probability P (potable|sufficient). Nevertheless, from the two
known probabilities, the chance of striking sufficient and portable water
can be calculated:

Pðsufficient; potableÞ ¼ PðsufficientÞ � PðpotablejsufficientÞ:
From drilling company records the likelihood of striking sufficient

water in central Queensland (P sufficient) is 0.95 (so it is not surprising
that one company charges 5%more than its competitors but guarantees to
refund the drilling fee for any well that does not strike sufficient water).

Laboratory records for water sample analyses show that only 0.3 of
sufficient wells yield potable water (P potable|sufficient).
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that “The ratio of brown to colorless is no different from 3:1.”) When the
treatment was applied it produced 86:14 brown:colorless, which is some-
what less successful than your prediction. This might be due to chance, it
may be because your null hypothesis is incorrect, or a combination of both.
You need to decide whether this result is significantly different from the one
expected under the null hypothesis.

This is the same as the concept developed in Section 6.2 when we
discussed sampling sand grains on a beach, except that the chi-square test
for goodness of fit generates a statistic (a number) that allows you to easily
estimate the probability of the observed (or any greater) deviation from the
expected outcome. It is so simple you can do it on a calculator.

To calculate the value of chi-square, which is symbolized by the Greek χ2,
you take each expected value away from its equivalent observed value,
square the difference and divide this by the expected value. These separate
values (two in the case above) are added together to give the chi-square
statistic.

First, here is the chi-square statistic for an expected ratio that is the same
as the observed (observed numbers 75 brown : 25 colorless; expected 75

Therefore, the probability of the two events sufficient and potable
water is only 0.285, which means that the chance of this occurring is
slightly more than 1/4. If you were a central Queensland property owner
with a choice of two equally expensive alternatives of (a) installing
additional rainwater tanks, or (b) having a well drilled, what would
you decide on the basis of this probability?

The outcome of two events A and B occurring together, P (A,B), can
be obtained in two ways:

P ðA;BÞ ¼ P ðBÞ � P ðAjBÞ ¼ P ðAÞ � P ðBjAÞ
Here too, this formula can be used to obtain probabilities that cannot

be obtained directly. For example, by rearrangement the conditional
probability of P (A|B) is:

P ðAjBÞ ¼ P ðAÞ � P ðBjAÞ
P ðBÞ

This has widespread applications that are covered in more advanced
texts.
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brown : 25 colorless). Therefore the two categories of data are “brown” and
“colorless.”

�2 ¼ ð75� 75Þ2
75

þ ð25� 25Þ2
25

¼ 0þ 0 ¼ 0

The value of chi-square is zero when there is no difference between the
observed and expected values.
As the difference between the observed and expected values increases, so

does the value of chi-square. Here the observed ratio is 74 and 26. The value
of chi-square can only be a positive number because you always square the
difference between the observed and expected values.

�2 ¼ ð74� 75Þ2
75

þ ð26� 25Þ2
25

¼ 0:0533

For an observed ratio of 70:30, the chi-square statistic is:

�2 ¼ ð70� 75Þ2
75

þ ð30� 25Þ2
25

¼ 1:333

When you take samples from a population in a “category” experiment you
are, by chance, unlikely to always get perfect agreement to the ratio in the
population. For example, evenwhen the ratio in the population is 75:25, some
samples will have that ratio, but you are also likely to get 76:24, 74:26, 77:23,
73:27 etc. The range of possible outcomes among 100 samples goes all the way
from 0:100 to 100:0. So the distribution of the chi-square statistic generated
by taking samples in two categories from a population in which there really is
a ratio of 75:25will look like the one in Figure 6.2, and themost unlikely 5% of
outcomes will generate values of the statistic that will be greater than a critical
value determined by the number of independent categories in the analysis.
Going back to the result of the gemstone treatment experiment given

above, the expected numbers are 75 and 25 and the observed numbers are
86 brown and 14 colorless.
To get the value of chi-square value, you calculate:

�2 ¼ ð86� 75Þ2
75

þ ð14� 25Þ2
25

¼ 6:453

The critical 5% value of chi-square for an analysis of two independent
categories is 3.841. This means that only the most extreme 5% of departures
from the expected ratio will generate a chi-square statistic greater than this
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value. There will be more about the chi-square test in Chapter 18, including
reference to a table of critical values in Appendix A.

Because the actual value of chi-square is 6.453, the observed result is
significantly different to the result expected under the null hypothesis. The
researcher would conclude that the ratio in the population sampled is not
3:1 and therefore reject the null hypothesis. It sounds like your new gem-
stone treatment is not as good as predicted (because only 14% were trans-
formed compared to the expected 25%), so you might have to revise your
estimated success rate of converting brown zircons into colorless ones.

6.9 What if you get a statistic with a probability
of exactly 0.05?

Many statistics texts do not mention this and students often ask “What if
you get a probability of exactly 0.05?” Here the result would be considered
not significant since significance has been defined as a probability of less
than 0.05 (< 0.05). Some texts define a significant result as one where the
probability is less than or equal to 0.05 (≤ 0.05). In practice this will make
very little difference, but since Fisher proposed the “less than 0.05” defini-
tion, which is also used by most scientific publications, it will be used here.

Increasingly positive value of chi-square

Frequency
of these

outcomes
under the

null
hypothesis

95% of the values of the statistic
will be between zero and the 5%
         critical value of chi-square

5% of the values
of the statistic will
exceed the
5% critical value

Figure 6.2 The distribution of the chi-square statistic generated by taking
samples from a population containing only two categories in a known ratio.
Many of the samples will have the same ratio as the expected and thus generate
a chi-square statistic of zero, but the remainder will differ from this by chance,
thus giving positive values of chi-square. The most extreme 5% departures
from the expected ratio will generate statistics greater than the critical value of
chi-square.
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More importantly, many researchers would be uneasy about any result
with a probability close to 0.05 and would be likely to repeat the experiment
because it is so close to the critical value. If the null hypothesis applies then
there is a 0.95 probability of a non-significant result on any trial, so you
would be unlikely to get a similarly marginal result when you repeated the
experiment.

6.10 Conclusion

All statistical tests are a way of obtaining the probability of a particular
outcome. This probability is either generated directly as shown in the
“grains from a beach” example, or a test that generates a statistic (e.g. the
chi-square test) is applied to the data. A test statistic is just a number that
usually increases as the difference between an observed and expected value
(or between samples) also increases. As the value of the statistic becomes
larger and larger, the probability of an event generating that statistic gets
smaller and smaller. Once the probability of that event or one more extreme
is less than 5%, it is concluded that the outcome is statistically significant.
A range of tests will be covered in the rest of this book, but most of them

are really just methods for obtaining the probability of an outcome that
helps you make a decision about your hypothesis. Nevertheless, it is impor-
tant to realize that the probability of the result does not make a decision for
you, and that even a statistically significant result may not necessarily have
any geological significance – the result has to be considered in relation to the
system you are investigating.

6.11 Questions

(1) Why wouldmany scientists be uneasy about a probability of 0.06 for the
result of a statistical test?

(2) Define a Type 1 error and a Type 2 error.
(3) Discuss the use of the 0.05 significance level in terms of assessing the

outcome of hypothesis testing. When might you use the 0.01 signifi-
cance level instead?
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7 Working from samples: data,
populations and statistics

7.1 Using a sample to infer the characteristics of a
population

Usually you cannot study the whole population, so every time you gather
data from a sample you are “working in the dark” because the sample may
not be very representative of that population. You have to take every possible
precaution, including having a good sampling design, to try to ensure a
representative sample. Unfortunately you still do not know whether it is
representative! Although it is dangerous to extrapolate to the more general
case from measurements on a subset of individuals, that is what researchers
have to do whenever they cannot work on the entire population.

This chapter discusses statistical methods for estimating the character-
istics of a population from a sample and explains how these estimates can be
used for significance testing.

7.2 Statistical tests

Statistical tests can be divided into two groups, called parametric and non-
parametric tests. Parametric tests make certain assumptions, including that
the data fit a known distribution. In most cases this is a normal distribution
(see below). These tests are used for ratio, interval or ordinal scale variables.
Non-parametric tests do not make so many assumptions. There is a wide
range of non-parametric tests available for ratio, interval, ordinal or nom-
inal scale variables.

7.3 The normal distribution

A lot of variables, including “geological” ones, tend to be normally distrib-
uted. For example, if you measure the slopes of the sides of 100 cinder cones
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chosen at random and plot the frequency of these on the Y axis and angle on
the X axis, the distribution will look like a symmetrical bell, which has been
called the normal distribution (Figure 7.1).
The normal distribution has been found to apply to many types of

variables in natural phenomena (e.g. grain size distributions in rocks, the
shell length of many species of marine snails, stellar masses, the distribution
of minerals on beaches, etc.).
The very useful thing about normally distributed variables is that two

descriptive statistics – themean and the standard deviation – can describe
this distribution. From these, you can predict the proportion of data that will
be less than or greater than a particular value. Consequently, tests that use the
properties of the normal distribution are straightforward, powerful and easy
to apply. To use them you have to be sure your data are reasonably “normal.”
(There are methods to assess normality and these will be described later.)
To understand parametric tests you need to be familiar with some

statistics used to describe the normal distribution and some of its properties.

7.3.1 The mean of a normally distributed population

First, the mean (the average) symbolized by the Greek μ describes the
location of the center of the normal distribution. It is the sum of all the

0 70average
Cinder cone angle (°)

Frequency
of each
angle

Figure 7.1 An example of a normally distributed population. The shape of
the distribution is symmetrical about the average and the majority of values
are close to the average, with an upper and lower “tail” of steeply and gently
sloping cinder cones, respectively.
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values (X1, X2 etc) divided by the population size (N). The formula for the
mean is:

� ¼
PN

i¼1
Xi

N
(7:1)

This formula needs some explanation. It contains some common standard
abbreviations and symbols. First, the symbol Σmeans “the sum of” and the
symbol Xi means “All the X values specified by the restrictions listed below
and above the Σ symbol.” The lowest value of i is specified underneath Σ

(here it is 1, meaning the first value in the data set for the population) and
the highest is specified above Σ (here it is N, which is the last value in the
data set for the population). The horizontal line means that the quantity
above this line is divided by the quantity below. Therefore, you add up all
the values (X1 to XN) and then divide this number by the size of the
population (N).

(Some textbooks use Y instead of X. From Chapter 3 you will recall that
some data can be expressed as two-dimensional graphs with an X and Y
axis. Here we will use X and show distributions with a mean on the X axis,
but later in this book you will meet cases of data that can be thought of as
values of Y with distributions on the Y axis.)

As a quick example of the calculation of a mean, here is a population of
only four fossil snails (N= 4). The shell lengths in mm of these four individ-
uals (X1 through to X4) are 6, 7, 9 and 10, so the mean, μ, is 32 ÷ 4 = 8mm.

7.3.2 The variance of a population

Themean describes the location of the center of the normal distribution, but
two populations can have the same mean but very different dispersions
around their means. For example, a population of four snail fossils with shell
lengths of 1, 2, 9 and 10mmwill have the samemean, but greater dispersion,
than another population of four with shell lengths of 5, 5, 6 and 6mm.

There are several ways of indicating dispersion. The range, which is just
the difference between the lowest and highest value in the population, is
sometimes used. However, the variance, symbolized by the Greek σ2,
provides a lot of information about the normal distribution that can be
used in statistical tests.
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To calculate the variance, you first calculate μ. Then, by subtraction, you
calculate the difference between each value (X1…XN) and μ, square these
differences (to convert each to a positive quantity) and add them together to
get the sum of the squares, which is then divided by the sample size. This is
similar to the way the average is calculated, but here you have an average
value for the dispersion.
This procedure is shown pictorially in Figure 7.2 for the population of

only four snail fossils, with shell lengths of 6, 7, 9 and 10 cm.
The formula for the above procedure is straightforward:

�2 ¼
PN

i¼1

ðXi��Þ2

N
(7:2)

If there is no dispersion at all, the variance will be zero (every value of X will
be the same and equal to μ, so the top line in the equation above will be
zero). The variance will increase as the dispersion of the values about the
mean increases.

(–1)

(–2) (+2)

6 7 9 10µ = 8

(+1)

Differences squared:      4    1               1     4  

Sum of the squared differences = 10

Population size = 4
Population variance  =  (10   ÷  4) = 2.5 

Figure 7.2 Calculation of the variance of a population consisting of only four
fossil snails with shell lengths of 6, 7, 9 and 10mm, each indicated by the
symbol ■. The vertical line shows the mean μ. Horizontal arrows show the
difference between each value and the mean. The numbers in brackets are the
magnitude of each difference, and the contents of the box show these
differences squared, their sum and the variance obtained by dividing the sum
of the squared differences by the population size.

7.3 The normal distribution 69



7.3.3 The standard deviation of a population

The importance of the variance is apparent when you obtain the standard
deviation, which is symbolized for a population by σ and is just the square root
of the variance. For example, if the variance is 64, the standard deviation is 8.

The standard deviation is important because the mean of a normally
distributed population, plus or minus one standard deviation, includes
68.27% of the values within that population.

Evenmore importantly, 95% of the values in the population will be within
±1.96 standard deviations of the mean. This is especially useful because
the remaining 5% of values will be outside this range and therefore further
away from the mean (Figure 7.3). Remember from Chapter 6 that 5% is the
commonly used significance level.

These two statistics are all you need to describe the location and shape of
a normal distribution and can also be used to determine the proportion
of the population that is less than or more than a particular value (Box 7.1).

7.3.4 The Z statistic

The proportions of the normal distribution described in the previous
section can be expressed in a different andmore workable way. For a normal
distribution, the difference between any value and the mean, divided by the
standard deviation, gives a ratio called the Z statistic that is also normally

Frequency

(a)

µ

Frequency

(b)

µ

Figure 7.3 Illustration of the proportions of the values in a normally
distributed population. (a) 68.27% of values are within ±1 standard deviation
from the mean and (b) 95% of values are within ±1.96 standard deviations
from the mean. These percentages correspond to the area of the distribution
enclosed by the two vertical lines.
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distributed, with a mean of zero and a standard deviation of 1.00. This
is called the standard normal distribution:

Z ¼ Xi � �

�
(7:3)

Consequently, the value of the Z statistic specifies the number of standard
deviations it is from the mean. In the example in Box 7.1, a value of
189.6 μm is 189�6� 170

10 ¼ 1:96 standard deviations away from the mean.
In contrast, a value of 175 μm is 175� 170

10 ¼ 0:5 standard deviations away
from the mean.
When this ratio is greater than +1.96 or less than −1.96, the probability of

obtaining that value of X is less than 5%. The Z statistic will be discussed
again later in this chapter.

7.4 Samples and populations

The equations for the mean, variance and standard deviation given above
apply to a population – the case where you have obtained data for every
case or individual that is present. For a population the values of μ, σ2 and σ

are called parameters or population statistics and are true values (assum-
ing no mistakes in measurement or calculation). Of course in geological
situations we rarely have a true population, so μ and σ are not known and
must be estimated.
When you take a sample from a population and calculate the sample

mean, sample variance and sample standard deviation, these are true values
for that sample but are only estimates of μ, σ2 and σ. Consequently, they are
given different symbols (the Roman X, s2 and s respectively) and are called
sample statistics. But remember – because these statistics are only esti-
mates, they may not be accurate measures of the true population statistics.

Box 7.1 Use of the standard normal distribution

For a normally distributed population of plagioclase phenocrysts with a
mean length of 170 μm and a standard deviation of 10 μm, 95% of these
crystals will have lengths in the range from 170 ± (1.96 × 10) μm (which
is 150.4 to 189.6 μm). You only have a 5% chance of finding a phenocryst
that is either longer than 189.6 μm or shorter than 150.4 μm.

7.4 Samples and populations 71



7.4.1 The sample mean

First, the procedure for calculating a sample mean is the same as for the
population mean, except (as mentioned above) the sample mean is sym-
bolized by X because it is only an estimate of μ.

The sample mean is:

X ¼
Pn

i¼1
Xi

n
(7:4)

(Note that the lower case n is used to indicate the sample size, compared to
the capital N used to indicate the population size in Equation (7.1).)

7.4.2 The sample variance

When you calculate the sample variance, this estimate of σ2 is also likely to
be subject to error. Small sample sizes introduce a consistent bias, but this
can be compensated for by a modification to Equation (7.2). For a popula-
tion, the variance is:

�2 ¼
PN

i¼1
ðXi � �Þ2

N
(7:5 copied from 7:2)

In contrast, the sample variance is estimated using the following formula:

s2 ¼
Pn

i¼1
ðXi � XÞ2

n� 1
(7:6)

Note that the sum of squares is divided by n – 1, but you would expect it
to be divided by n. This is to reduce a bias caused by the small sample size,
and it is easily explained by an example. Imagine you wanted to estimate the
population variance of the height of all adult Stegosaurus fossils from
the sample of the 80 that have been found. This small sample is unlikely
to include a sufficient proportion of animals that are in either the upper or
lower extremes of height within that population (the really short and really
tall animals), because there are relatively few of them. They will, never-
theless, make a big contribution to the population variance because they are
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so far from themean (the value of ðXi � �Þ2 will be a large quantity for every
one of those individuals). So the sample variance will tend to underestimate
the population variance and needs to be corrected.
To illustrate this, we ask our students to look around the lecture room

and ask themselves “Are there any extremely tall or short people present?”
(The answer so far has been “No.” One day, depending on who shows up
to our classes, we may have to choose a different variable.) To make s2 the
best possible estimate of σ2, you need to divide the sum of squares by n – 1,
not n. This correction will make the sample variance (and sample standard
deviation) larger.
Note that this correction will have a considerable effect when n is small

(imagine dividing by 3 instead of 4) but less effect as sample size increases
(imagine dividing by 999 instead of 1000). Smaller corrections are needed as
sample size increases because larger samples are more likely to include
individuals from the extremes of the population you are sampling.
Here you may be thinking “Why don’t I have to correct the mean in this

way as well?” You do not because you are equally likely to miss out on
sampling both the positive and negative extremes in the population.

7.5 Your sample mean may not be an accurate estimate
of the population mean

A sample mean X
� �

may, or may not, be an accurate estimation of the true
population mean μ. Estimates from small samples are especially likely to be
inaccurate, simply by chance.
To illustrate this, if you take a lot of samples of a certain size (n) at

random from a population and calculate themean of each sample, they are
unlikely to all be the same. Instead the sample means will be dispersed
around the population mean μ.
Statisticians have shown that the distribution of these sample means is

also normal with its own mean (which is also a good estimate of μ),
variance and standard deviation.
The standard deviation of the distribution of sample means is an

extremely important statistic. It is called the standard error of the mean,
or the standard error, often abbreviated as SEM (not to be confused with
a scanning electron microscope with the same acronym) or SE, and given
the symbol �X to distinguish it from the sample standard deviation (s) and
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the population standard deviation (σ). Importantly, as sample size
increases the standard error of the mean decreases and therefore the
accuracy of any single estimate of the population mean is likely to improve.
This is shown in Figure 7.4.

It is useful to know how precise your estimate ðXÞ of μ is likely to be for a
certain sample size. When you take a lot of samples, each of size n, from a
population whose parametric statistics are known (as illustrated in Figure 7.4)
the standard error of the mean can be estimated by dividing the standard
deviation of the population by the square root of the sample size (n):

SEM ¼ �X ¼ �
ffiffiffi
n

p (7:7)

A numerical example is given in Table 7.1, which clearly illustrates that the
means of larger samples are likely to be relatively close to the population
mean.

The standard error of the mean is important because it can be used to
calculate the range within which a particular percentage of the sample means

Frequency

(a)

n = 2

µ

Frequency

(b)
n = 20

µ

Frequency

(c)
n = 200

µ

Figure 7.4 The effect of sample size on the precision and accuracy of values
of X as estimates of μ. The heavy line shows the distribution of a population
with parametric mean μ. The lighter line shows the distribution of the means
of 200 independent samples, each of which has a sample size of (a) 2, (b) 20
and (c) 200. Note that the distribution of the means is normal with a mean of μ
and that the expected range of the sample means decreases as sample size
increases. The double-headed arrow shows the range within which 95% of the
sample means are expected to occur.
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will occur. Because the sample means are normally distributed with a mean
of μ, then μ± 1 SEM will include 68.27% of the sample means and μ± 1.96
SEM will include 95% of the sample means.
This can also be expressed as a ratio. The difference between any sample

meanX and the populationmean μ, divided by the standard error of themean:

X � �

�X

(7:8)

will give the Z statistic already discussed in Section 7.3.4, with amean of zero
and a standard deviation of 1.00. As the difference between X and μ

increases the value of Z will become increasingly positive (if X is greater
than μ) or increasingly negative (if X is less than μ). Once Z is less than
−1.96, or greater than +1.96, the probability of getting that difference
between the sample mean and the known population mean � is less than
5% (Figure 7.5).
This formula can be used to test hypotheses about the means of samples

when population parameters are known. Box 7.2 gives a worked example.

7.6 What do you do when you only have data from
one sample?

As shown above, the standard error of the mean is very important for
hypothesis testing because it can be used to predict the range around μ

within which 95% of means of a certain sample size will occur.

Table 7.1 A numerical example of the effect of sample size on the accuracy and
precision of values of X obtained by taking random samples of size 2, 20 and 200
from a population with a known variance of 600. As sample size increases the values
of the sample means become much closer to the population mean. Precision
improves and therefore the sample means will tend to be more accurate estimates
of μ.

Population parameters

Variance σ2 σ Sample size (n)
ffiffiffi
n

p
Standard error of the mean ð �ffiffi

n
p Þ

600 24.49 2 1.41 17.32
600 24.49 20 4.47 5.48
600 24.49 200 14.14 1.73
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Unfortunately, a researcher usually does not know the true values of the
population parameters μ and σ because they only have a sample, and
statistical decisions have to be made from the limited information provided
by that sample. Here too, knowing the standard error of the mean would be
extremely helpful!

If you only have data from a single sample, you can calculate the sample
mean ðXÞ, the sample variance (s2) and sample standard deviation (s). These
are your best estimates of the population statistics μ, σ2 and σ. Therefore,
you can use s to estimate the standard error of the mean by substituting s for

Frequency

–1.96 +1.960

Figure 7.5 Distribution of the Z statistic (the ratio of X��
SEM obtained by taking

the means of a large number of small samples from a normal distribution). By
chance 95% of the sample means will be within the range −1.96 to + 1.96 (the
unshaded area), with the remaining 5% outside this range (the two
symmetrical shaded areas).

Box 7.2 Use of the Z statistic

The known population value of μ is 100 and σ is 36. You take a sample of
16 individuals and obtain a sample mean of 81. What is the probability
that this sample is from the population?
μ= 100, σ= 36, n= 16, so the

ffiffiffi
n

p ¼ 4, and the SEM= �=
ffiffiffi
n

p
= 36=4 = 9

Therefore the value of:

X � �

SEM
is

81� 100
9

¼ �2:11

The ratio is outside the range of ±1.96, so the probability that the sample
mean has come from a population with a mean of μ is less than 0.05.
Thus, the sample mean is significantly different to the population mean.
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σ in Equation (7.7). This is also called the standard error of the mean and is
abbreviated as “SEM” as noted earlier:

SEM ¼ sX ¼ s
ffiffiffi
n

p (7:9)

where s is the sample standard deviation and n is the sample size. Note
from Equation (7.9) that the sample SEM estimated in this way has a
different symbol to the SEM estimated from the population statistics (sX
instead of �X).
What does this give you? The estimate of the standard error of the mean,

made from your sample, can be used to predict the range around any
hypothetical value of μ within which 95% of the means of all samples of
size n taken from that population will occur. This is shown in Figure 7.6.
Therefore, in terms of making a decision about whether your sample

mean differs significantly from an expected value of μ, the formula:

X � �expected

SEM
(7:10)

corresponds to Equation (7.8), but with sX used instead of sX as the SEM.
Here it seems logical that when this ratio is < −1.96 or > + 1.96, the differ-
ence between the sample mean and the expected value would be considered
statistically significant at the 5% level.

µ

Figure 7.6 If you only have one sample, you can calculate the standard
deviation, s, which is your only estimate of the population standard deviation
σ. You can estimate the standard error of the mean of the population by
dividing the sample standard deviation by the square root of the sample size
(Equation (7.9)). The lower, shorter double-headed arrow shows the range
within which 95% of themeans of all samples of size n taken from a population
with a hypothetical mean of μ would be expected to occur.
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This is an appropriate procedure, but a correction is needed, especially
for samples of less than 100, which are very prone to sampling error and
therefore likely to give poor estimates of the population mean, standard
deviation and standard error of the mean. For small samples, the distribu-
tion of the ratio in Equation (7.10) is wider and flatter than the distribution
obtained by calculating the standard error of the mean from the (known)
population standard deviation. As sample size increases, the distribution
gets closer and closer to the one shown in Figure 7.5 (see Figure 7.7).
Therefore Equation (7.10) is appropriate, but for small samples the range
within which 95% of the values of all means will occur is wider (e.g. for a
sample size of 4 the adjusted range within which 95% of values would be
expected is from −3.182 to + 3.182). Using this correction, you can test
hypotheses about your sample mean X without knowing the population
statistics.

The shape of this wider and flatter distribution of the expected ratio
for small samples was established by W. S. Gossett who published his work
under the pseudonym of “Student” (see Student, 1908). Consequently
the distribution is often called the “Student” distribution or “Student’s t”
distribution. Two examples of the distribution of t are shown in Figure 7.7
and Table 7.2. As sample size increases, the t statistic for an α of 0.05
decreases and becomes closer and closer to 1.96, which is the value for a
sample of infinite size and also for the Z statistic.

7.7 Why are the statistics that describe the normal
distribution so important?

Sample statistics like the mean, variance, standard deviation, and especially
the standard error of the mean are estimates of population statistics that can
be used to predict the range within which 95% of the means of a particular
sample size will occur. Knowing this, you can use a parametric test to
estimate the probability that a sample mean is the same as an expected
value, or the probability that the means of two samples are from the same
population. These tests will be described in Chapter 8.

Here you might be thinking “These statistical methods have the potential
to be very prone to error! My sample meanmay be an inaccurate estimate of
μ and then I’m using the sample standard deviation (s) to infer the standard
error of the mean.” This is true and unavoidable when you extrapolate from
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n = 4

–3.18 +3.18–1.96 +1.960

(a)

n = 60

–3.18 +3.18+1.96–1.96 0

(b)

n = ∞  

–3.18 +3.18–1.96 +1.960

(c)

Figure 7.7 Illustration of the distribution of the t statistic obtained when the
sample statistic s is used as an estimate of σ (a) for n= 4, (b) for n= 60 and (c)
n=∞.

Table 7.2 The range of the 95% confidence interval for the t statistic in relation to
sample size. (a) n= 4, (b) n= 60, (c) n= 200 (d) n= 1000 and (e) n=∞. Note that the
95% confidence interval decreases as the sample size increases, and the value of t for
a sample of infinite size is the same as the Z statistic. Values of t for finite degrees of
freedom were calculated using the equations given by Zelen and Severo (1964).

Formula Statistic Sample size
95% confidence
interval

(a) X��
s
X

t 4 �3:182

(b) X��
s
X

t 60 �2:001

(c) X��
s
X

t 200 �1:972

(d) X��
s
X

t 1000 �1:962

(e) X��
s
X

t 1 �1:96
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only one sample, but the corrections described in this chapter and knowl-
edge of how the sample mean is likely to become amore accurate estimate of
μ as sample size increases, help ensure that the best possible estimates are
obtained.

7.8 Distributions that are not normal

Some variables do not have a normal distribution. Nevertheless, statisticians
have shown that even when a population does not have a normal distri-
bution, if you take repeated samples of size 25 or more, the distribution
of the means of these samples will have an approximately normal dis-
tribution with a mean μ and standard error of the mean �=

ffiffiffi
n

p
(that can

be estimated by s=
ffiffiffi
n

p
), just as they do when the population is normal

(Figure 7.8).
Furthermore, for populations that are approximately normal, this even

holds for sample sizes as small as five. This property, which is called the
central limit theorem, makes it possible to use some parametric tests on data
for non-normal populations, provided you have a reasonable-sized sample.

For data that are grossly non-normal, and for nominal scale data, non-
parametric tests have been developed. These can be used with a wide range
of data, including normally distributed data, and will be discussed later in
this book. You have alreadymet a non-parametric test for categorical data in
Chapter 6 when the chi-square test was used to compare the observed and
expected proportions in two categories.

7.9 Other distributions

Not all data are normally distributed. Sometimes a frequency distribution
may resemble a normal distribution and be symmetrical but much flatter
(Figure 7.9(b)). This type of distribution is platykurtic. In contrast, a
distribution that resembles a normal distribution but has too many values
around the mean and in the tails is leptokurtic (Figure 7.9(c))

If a distribution is similar to a normal one but not symmetrical in that one
of its tails extends further than the other, it is skewed. If the upper tail is
longer the distribution has a positive skew (Figure 7.9(d)) and if the lower
tail is longer it has a negative skew. Other distributions include the binomial
distribution and the Poisson distribution.
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The binomial distribution has already been mentioned in Chapter 6. If a
population can be partitioned into two categories (e.g. white quartz and
black hornblende grains in beach sand) then the probability of sampling
either category is 1.0 and the probability of sampling a particular category
will be its proportion in the population (e.g. 0.5 for a population where half
the grains are black and half are white). The proportions of each of the two

Frequency

(a)

0 µ
X

5 10

Frequency

(b)

0 µ
X

5 10

Figure 7.8 An example of the central limit theorem. Even if a population
does not have a normal distribution, samples of size 25 (or greater) from that
population will have an approximately normal distribution with mean μ and
standard error of �=

ffiffiffi
n

p
(that can be estimated from a sample by s=

ffiffiffi
n

p
).

(a) Distribution of a population that is not normal, with mean μ and standard
deviation σ. (b) The distribution of 200 samples, each of n= 25 taken at
random from the population shown in (a), is approximately normal with
a mean of μ and standard error of �=

ffiffiffi
n

p
.

(a)

(c) (d)

(b)

Figure 7.9 Distributions that are similar to the normal distribution. (a) a
normal distribution, (b) a platykurtic distribution, (c) a leptokurtic
distribution, (d) positive skew.
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categories in samples containing two or more individuals will follow a
pattern called the binomial distribution. Table 6.2 gave the expected dis-
tribution of the proportions of two colors in samples where n = 6 from a
population containing 50% white quartz and 50% black hornblende grains.

The Poisson distribution applies when you sample something by exam-
ining randomly chosen patches of a certain size, within which there is a very
low probability of finding what you are looking for, so most of your data will
be the value of zero. Here is an example. One of the most ubiquitous
geological processes is volcanism which is why basalts are one of the most
common rock types on the Earth’s surface. Despite this, active volcanoes are
quite rare. Therefore, if you were to subdivide the surface of the Earth into a
large number of squares, each of 10 000 km2 in area, most will not contain
any active volcanoes. Occasionally, however, a square will contain one, two
or even more rarely three or more. This will generate a Poisson distribution
where most values are zero, a few are “1” and even fewer are “2” and “3” etc.

7.10 Other statistics that describe a distribution

Although the mean and standard deviation are the most commonly used
descriptive statistics, there are others that describe a distribution.

7.10.1 The median

The median is the middle value of a set of data listed in order of magnitude.
For example, a sample with the values 1, 6, 3, 9, 4, 16 and 11 is ranked in
order as 1, 3, 4, 6, 9, 11, 16 and the middle value is 6. You can calculate the
location of the value of the median using the formula:

M ¼ Xðnþ1Þ=2 (7:11)

This means “The median is the value of X whose numbered position in an
ordered sequence corresponds to the sample size plus one, and then divided
by two.” For the sample of seven listed above, the median is the fourth value,
X4, which is 6. For even-sized samples, the median will lie between two
values (e.g. X5.5), in which case it is the average of the values below (X5) and
above it (X6). The procedure becomes more complex when there are tied
values, but most statistical packages will readily calculate the median of a set
of data.
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7.10.2 The mode

The mode is defined as the most frequently occurring value in a set of data,
so a normal distribution has only one mode. Sometimes, however, a dis-
tribution may have two or more clearly separated peaks in which case it is
bimodal or multimodal respectively (Figure 7.10).

7.10.3 The range

The range is the difference between the largest and smallest value in a
sample or population. The range of the set of data in Section 7.10.1 is
16–1 = 15.

7.11 Conclusion

The mean and the standard deviation are the only statistics needed to
describe the shape of a normal distribution. The sample statistics X and s
provide estimates of the population statistics μ and σ. Importantly, the
distribution of the means of samples from a normal population is also
normal, with a mean of μ and a standard error of �=

ffiffiffi
n

p
that can be

estimated from a sample of two or more by s=
ffiffiffi
n

p
. This allows you to use

the properties of the normal distribution to predict the range aroundX (your
best and only estimate of μ) within which 95% (or 99% or 99.9% if required)
of the means of all samples of size n taken from that population will occur.
Even more importantly, when the population of the variable you have

measured is not normally distributed, the distribution of the means of
samples of about 25 or more will be approximately normal, with a mean
of μ and a standard error of �=

ffiffiffi
n

p
. This also provides a way of predicting

the range of values within which there is a 95% probability that any sample

(a) (b)

Figure 7.10 (a) A unimodal distribution. (b) A bimodal distribution.
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mean of size n will occur. In the next chapter, some very straightforward
tests that use this property of the normal distribution of sample means will
be described.

7.12 Questions

(1) It is known that a population of the fossil snail Calcarus porosis in
Bentley County, South Dakota, has a mean shell length of 100mm and
a standard deviation of 10mm. A paleontologist measured one fossil
snail from this population and found it had a shell length of 78mm. The
paleontologist said “This is an impossible result.” Please comment on
what they said, including whether you agree or disagree, and why.

(2) Why does the variance calculated from a sample have to be corrected to
give a realistic indication of the variance of the population from which
it has been taken?
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8 Normal distributions: tests for
comparing the means of one and
two samples

8.1 Introduction

Although sample statistics such as X and s are only estimates of population
statistics, it is still possible to use these to make statistical decisions. First, as
sample size increases, sample statistics are likely to become increasingly
accurate estimates of population statistics. Second, as described in
Chapter 7, the distribution of the means of samples of a particular size (n)
taken from a normal population with population statistics of μ and σ will
also be normal, with a mean of μ and a standard error of the mean of �=

ffiffiffi
n

p
that can be estimated from a sample by s=

ffiffiffi
n

p
. Even more usefully, provided

you have a sample size of about 25 or more, these properties of the
distribution of sample means apply, even when the population they have
been taken from is not normal, provided it is not grossly so (e.g. a bimodal
distribution). Therefore, you can often use a parametric test to make
decisions about sample means even when the population you have sampled
is not normally distributed.
In this chapter, these concepts are used to describe how some parametric

tests for comparing the means of one and two samples actually work. The
first test is for comparing a single-sample mean to a known population
mean. The second is for comparing a single-sample mean to a hypothesized
value. These are followed by tests for comparing the means of two samples.

8.2 The 95% confidence interval and 95% confidence limits

In Chapter 7, we discussed how 95% of the means of a sample size n, taken
from a population with known μ and σ, would be expected to occur within
the range of μ ± 1.96 × SEM. This range is called the 95% confidence
interval, and the actual numbers that show the limits of that range
(μ ± 1.96 × SEM) are called the 95% confidence limits.
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If you only have data for one sample of size n, then the sample standard
deviation s is your best estimate of σ, and it can be used with the appropriate
t statistic to calculate the 95% confidence interval for an expected or
hypothesized value of μ. You have to use the formula μexpected ± t × SEM
because the population statistics are not known. This formula will give a
wider confidence interval than if population statistics are known because
the value of t for a finite sample size is always greater than 1.96, especially for
small samples (Chapter 7).

8.3 Using the Z statistic to compare a sample mean and
population mean when population statistics are known

This test uses the Z statistic to give the probability that a sample mean has
been taken from a population with a known mean and standard deviation.
From the population statistics μ and σ, you can calculate the expected
standard error of the mean ð�= ffiffiffi

n
p Þ for a sample of size of n and therefore

the 95% confidence interval (Figure 8.1), which is the range within μ ± 1.96
× SEM. If your sample mean, X, occurs within this range, then the proba-
bility that it has come from the population with a mean of μ is 0.05 or
greater. So, the mean of the population from which the sample has been
taken is not significantly different to the known population mean. If,
however, your sample mean occurs outside the confidence interval, the
probability that it has been taken from the population of mean μ is less
than 0.05. So, themean of the population fromwhich the sample has been
taken is significantly different to the known population mean μ.

This is a very straightforward test (Figure 8.1). If you decide on a
probability level other than 0.05, you simply need to use a different value
than 1.96 (e.g. for the 99% confidence interval you would use 2.576).

Although you could calculate the 95% confidence limits every time you
made this type of comparison, it is far easier to calculate the ratio Z ¼ X��

SEM as
described in Section 7.3.4. All this formula does is divide the distance
between the sample mean and the known population mean by the standard
error. If the value of Z is < –1.96 or > +1.96, the mean of the population from
which the sample has been taken is considered significantly different to the
known population mean, assuming an α= 0.05.

Here you may be wondering if a population mean could ever be known,
apart from small populations where every individual has been considered.
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Sometimes, however, researchers have so many data for a particular variable
that they consider the sample statistics indicate the true values of population
statistics. For example, many important physical parameters such as seismic
velocities of key rock types, rare earth element abundances in chondrites (a
primitive type of meteorite), and the isotopic composition of Vienna Standard
Mean Ocean Water (VSMOW) have been measured repeatedly, hundreds of
thousands of times. These sample sizes are so large that they can be considered
to give extremely accurate estimates of the population statistics. Remember
that as sample size increases, X becomes closer and closer to the true popula-
tion mean and the correction of n− 1 used to calculate the standard deviation
also becomes less and less important. There is an example of the comparison
between a sample mean and a “known” population mean in Box 8.1.

8.4 Comparing a sample mean to an expected value
when population statistics are not known

The single-sample t test compares a single-sample mean to an expected
value of the population mean. When population statistics are not known,
the sample standard deviation s is your best and only estimate of σ for
the population from which it has been taken. You can still use the 95%

Frequency

(–1.96 × SEM)   (+1.96 × SEM)

µ

Figure 8.1 The 95% confidence interval, obtained by taking the means of a
large number of small samples from a normally distributed population with
known statistics is indicated by the horizontal distance enclosed within μ ±
1.96 SEM. The remaining 5% of sample means are expected to be further away
from μ. Therefore, a sample mean that lies inside the 95% confidence interval
will be considered to have come from the population with a mean of μ, while a
sample mean that lies outside the 95% confidence interval will be considered
to have come from a population with a mean significantly different to μ,
assuming an α= 0.05.
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Box 8.1 Comparison between a sample mean and a known
population mean where population parameters are known

Vienna Standard Mean Ocean Water (VSMOW) is the standard
against which measurements of oxygen isotopes in most other oxygen-
bearing substances are compared, usually as ratios. It contains no
dissolved salts and is pure water that has been distilled from deep
ocean water, including small amounts collected in the Pacific Ocean
in July 1967 at latitude 0° and longitude 180°, and is distributed by
the US National Institute of Standards and Technology on behalf of
the International Atomic Energy Agency, Vienna, Austria (thus the
name). The population mean for the ratio of 18O/16O in VSMOW is
2005.20 × 106, with a standard deviation of 0.45 × 106. (There are no
units given here because it is a ratio.) These statistics are from a very
large sample of measurements and are therefore considered to be the
population statistics μ and σ.
On a recent traverse of the same area of the Pacific, also in the month

of July, you have collected 10 water samples. The data are shown below.
What is the probability that your sample mean X is the same as that of
the VSMOW population?
Yourmeasured 18O/16O ratios are: 2005.23, 2006.13, 2007.66, 2006.98,

2003.24, 2004.45, 2005.57, 2003.34, 2005.6 and 2005.01 (all × 106).
The population statistics for VSMOW are μ= 2005.20 × 106 and

σ= 0.45 × 106 . Because all values are to the power of 106 this has been
left out of the following calculation to make it easier to follow.
The sample size n= 10
The sample mean X ¼ 2005:32
The standard error of the mean = �ffiffi

n
p ¼ 0:45ffiffiffiffi

10
p ¼ 0:142

Therefore, 1.96 × SEM=1.96 × (0.142) = 0.28, so the 95% confidence
interval for the means of samples of n= 10 is 2005.20 ± 0.28, which is
from 2004.92 up to 2005.48. Because the mean 18O/16O ratio of your ten
replicates (2005.32) lies within the range in which 95% of means with
n= 10 would be expected to occur, the mean of the population from
which the samples have been taken does not differ significantly from the
VSMOW population.
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confidence interval of the mean, estimated from the sample standard
deviation, and the t statistic described in Chapter 7 to predict the range
around an expected value of μ within which 95% of the means of samples
of size n taken from that population will occur. Here too, once the
sample mean lies outside the 95% confidence interval, the probability
of it being from a population with a mean of μexpected is less than 0.05
(Figure 8.2).
Expressed as a formula, as soon as the ratio of t ¼ X��expected

SEM is less than
the critical 5% value of −t or greater than +t, then the sample mean is
considered to have come from a population with a mean significantly
different to μexpected.

Frequency

( – t  ×  SEM )    ( + t   ×  SEM )

µexpected

Figure 8.2 The 95% confidence interval, estimated from one sample of size n
by using the t statistic, is indicated by the horizontal distance enclosed within
μexpected ± t × SEM. Therefore, 5% of the means of sample size n from the
population would be expected to lie outside this range, and if X lies inside the
confidence interval, it will be considered to have come from a population with
a mean the same as μexpected. If it lies outside the confidence interval it will be
considered to have come from a population with a significantly different
mean, assuming an α= 0.05.

Expressed as a formula:

Z ¼ X � �

SEM
¼ 2005:32� 2005:20

0:142
¼ 0:12

0:142
¼ 0:86

Here too, because the Z value lies within the range of ±1.96, the mean of
the population from which the sample has been taken does not differ
significantly from the mean of the VSMOW population.
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8.4.1 Degrees of freedom and looking up the appropriate
critical value of t

The appropriate critical value of t for a sample is easily found in tables of this
statistic that are found in most statistical texts. Table 8.1 gives a selection of
values as an example. First, you need to look for the chosen probability level
along the top line labelled as α(2). (There will shortly be an explanation for
the column heading α(1).) Here, we are using α= 0.05 and the column
giving these critical values is shown in bold.

The column on the left gives the number of degrees of freedom, which
needs explanation. If you have a sample of size n and the mean of this
sample is a specified value, then all of the data within the sample except

Table 8.1 Critical values of the distribution of t. The column on the far left gives the
number of degrees of freedom (ν). The remaining columns give the critical value of t.
For example, the third column, shown in bold and headed α(2) = 0.05, gives the 5%
critical values. Note that the 5% probability value of t for a sample of infinite size (the
last row) is 1.96 and thus equal to the 5% probability value for the Z distribution.
Finite critical values were calculated using the methods given by Zelen and Severo
(1964). A more extensive table is given in Appendix A.

Degrees of
freedom ν

α(2) = 0.10 or
α(1) = 0.05

α(2) = 0.05 or
α(1) = 0.025

α(2) = 0.025 or
α(1) = 0.01

α(2) = 0.01 or
α(1) = 0.005

1 6.314 12.706 31.821 63.657
2 2.920 4.303 6.965 9.925
3 2.353 3.182 4.541 5.841
4 2.132 2.776 3.747 4.604
5 2.015 2.571 3.365 4.032
6 1.934 2.447 3.143 3.707
7 1.895 2.365 2.998 3.499
8 1.860 2.306 2.896 3.355
9 1.833 2.262 2.821 3.250
10 1.812 2.228 2.764 3.169
15 1.753 2.131 2.602 2.947
30 1.697 2.042 2.457 2.750
50 1.676 2.009 2.403 2.678
100 1.660 1.984 2.364 2.626
1000 1.646 1.962 2.330 2.581

∞ 1.645 1.960 2.326 2.576
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one are free to be any number at all, but the final one is fixed because the
sum of the data in the sample, divided by n, must equal the mean.
Here is an example. If you have a specified sample mean of 4.25 and n= 2,

then the first value in the sample is free to be any value at all, but the second
must be one that gives a mean of 4.25, so it is a fixed number. Thus, the
number of degrees of freedom for a sample of n= 2 is 1. For n= 100 and a
specifiedmean (e.g. 4.25), 99 of the values are free to vary, but the final value
is also determined by the requirement for the mean to be 4.25, so the
number of degrees of freedom is 99.
The number of degrees of freedom determines the critical value of the t

statistic. For a single-sample t test, if your sample size is n, then you need to
use the t value that has n− 1 degrees of freedom. Therefore, for a sample size
of 10, the degrees of freedom are 9 and the critical value of the t statistic for
an α= 0.05 is 2.262 (Table 8.1). If your calculated value of t is less than
− 2.262 or more than +2.262, then the expected probability of that outcome
is < 0.05. From now on, the appropriate t value will have a subscript to show
the degrees of freedom (e.g. t7 indicates 7 degrees of freedom).

8.4.2 One-tailed and two-tailed tests

All of the alternate hypotheses dealt with so far in this chapter do not specify
anything other than “The mean of the population from which the sample
has been drawn is different to an expected value” or “The two samples are
from populations with different means.” Therefore, these are two-tailed
hypotheses because nothing is specified about the direction of the differ-
ence. The null hypothesis could be rejected by a difference in either a
positive or negative direction.
Sometimes, however, you may have an alternate hypothesis that specifies

a direction. For example, “The mean of the population from which the
sample has been taken is greater than an expected value” or “The mean of
the population from which sample A has been taken is less than the mean
of the population from which sample B has been taken.” These are called
one-tailed hypotheses.
If you have an alternate hypothesis that is directional, the null hypothesis

will not just be one of no difference. For example, if the alternate hypothesis
states that the mean of the population from which the sample has been
taken will be less than an expected value, then the null should state, “The
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mean of the population from which the sample has been taken will be no
different to, or more, than the expected value.”

You need to be cautious, however, because a directional hypothesis will
affect the location of the region where the most extreme 5% of outcomes
will occur. Here is an example using a single-sample test where the true
population mean is known. For any two-tailed hypothesis the 5% rejection
region is split equally into two areas of 2.5% on the negative and positive
side of μ (Figure 8.3(a)).

If, however, the hypothesis specifies that your sample is from a popula-
tion with a mean that is expected to be only greater (or only less) than the
true value, then in each case the most extreme 5% of possible outcomes that
you would be interested in are restricted to one side or one tail of the
distribution (Figure 8.3(b)).

Therefore, if you have a one-tailed hypothesis you need to do two things
to make sure you make an appropriate decision.

First, you need to examine your results to see if the difference is in the
direction expected under the alternate hypothesis. If it is not then the value
of the t statistic is irrelevant – the null hypothesis will stand and the
alternate hypothesis will be rejected (Figure 8.4).

Second, if the difference is in the appropriate direction, then you need to
choose an appropriate critical value to ensure that 5% of outcomes are
concentrated in one tail of the expected distribution. This is easy. For the
Z or t statistics, the critical probability of 5% is not appropriate for a one-
tailed test because it only specifies the region where 2.5% of the values will

Frequency

(a)

2.5% of outcomes
will be each side
of the mean

µ

Frequency

(b)

5% of outcomes
will be on the positive
side of the mean

µ

Figure 8.3 The distribution of the 5% of most extreme outcomes under a
two-tailed hypothesis and a one-tailed hypothesis specifying that the expected
value of the mean is larger than μ. (a) The rejection regions for a two-tailed
hypothesis are on both the positive and negative sides of the true population
mean. (b) The rejection region for a one-tailed hypothesis occurs only on one
side of the true population mean. Here it is on the right side because the
hypothesis specifies that the sample mean is taken from a population with a
larger mean than μ.
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occur in each tail. So to get the critical 5% value for a one-tailed test, you
would need to use the 10% critical value for a two-tailed test. This is why the
column headed α(2) = 0.10 in Table 8.1 also includes the heading
α(1) = 0.05, and you would need to use the critical values in this column if
you were doing a one-tailed test.
It is important to specify your null and alternate hypotheses, and there-

fore decide whether a one- or two-tailed test is appropriate, before you do
an experiment, because the critical values are different. For example, for an
α= 0.05, the two-tailed critical value for t10 is ±2.228 (Table 8.1), but if the
test were one-tailed, the critical value would be either +1.812 or –1.812. So a

Frequency

(a)

µ

Frequency

(b)

µ

Figure 8.5 (a) A two-tailed test using the 5% probability level will have a
rejection region of 2.5% on both the positive and negative sides of the known
population mean. The positive and negative of the critical value will define the
region where the null hypothesis is rejected. (b) A one-tailed test using the 5%
probability level will have a rejection region of 5% on only one side of the
populationmean. Therefore the 5% critical value will correspond to the value for
a 10% two-tailed test, except that it will only be either the positive or negative of
the critical value, depending on the direction of the alternate hypothesis.

Frequency

Sample
mean

µ

Only reject the null if the sample
mean falls in this region X

Figure 8.4 An example of the rejection region for a one-tailed test. If the
alternate hypothesis states that the sample mean will be more than μ, then the
null hypothesis is retained unless the sample mean lies in the region to the
right where the most extreme 5% of values would be expected to occur.
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t value of 2.0 in the correct direction would be significant for a one-tailed
test but not for a two-tailed test.

Many statistical packages only give the calculated value of t (not the
critical value) and its probability for a two-tailed test. In this case, however,
it is even easier to obtain the one-tailed probability and you do not even
need a table of critical values such as Table 8.1. All you have to do is halve
the two-tailed probability to get the appropriate one-tailed probability
(e.g. a two-tailed probability of P= 0.08 is equivalent to P= 0.04, provided
the difference is in the right direction).

There has been considerable discussion about the appropriateness of one-
tailed tests, because the decision to propose a directional hypothesis implies
that an outcome in the opposite direction is of absolutely no interest to
either the researcher or science, but often this is not true. For example, a
geoscientist hypothesized that 60Co irradiation would increase the opacity
of amethyst crystals. They measured the opacity of 10 crystals, irradiated
them and then remeasured their opacity. Here, however, if opacity
decreased markedly, this outcome (which would be ignored by a one-tailed
test only applied in the direction of increased opacity) might be of consid-
erable scientific interest and have industrial application. Therefore, it has
been suggested that two-tailed tests should only be applied in the rare
circumstances where a one-tailed hypothesis is truly appropriate because
there is no interest in the opposite outcome (e.g. evaluation of a new type of
fine particle filter in relation to existing products, where you would only be
looking for an improvement in performance).

Finally, if your hypothesis is truly one-tailed, it is appropriate to do a one-
tailed test. There have, however, been cases of unscrupulous researchers
who have obtained a result with a non-significant two-tailed probability
(e.g. P= 0.065) but have then realized this would be significant if a one-tailed
test were applied (P= 0.0325) and have subsequently modified their initial
hypothesis. This is neither appropriate nor ethical as discussed in Chapter 5.

8.4.3 The application of a single-sample t test

Here is an example where youmight use a single-sample t test. The minerals
in the vermiculite and smectite groups are the so-called “swelling clays,” in
which some fraction of the sites between the layers in the structure is filled
with cations, leaving the remainder available to be occupied by H2O
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molecules. When vermiculite is heated to about 870 °C the H2O in the
crystal structure expands and is eventually released as steam. The pressure
generated by this change of state pushes the layers apart in a process called
exfoliation, and can expand the volume by 8–30 times. Vermiculite treated
in this way is light and slightly compressible and has long been used for
packing insulation and a soil additive.
If you are processing vermiculite you need to monitor the water content

(and impurity) of the material very carefully before heating, in order to
produce small light pieces. If too little water is present, the vermiculite will
only exfoliate slightly, giving dense lumps, but too much water will produce
fragments that are very small and powdery. Suppose you know from
experience that the desired mean water content for optimal expansion at
exfoliation is 7.0 wt% H2O. A new mine has just opened, and the operators
have brought you a sample of nine replicates, collected from widely dis-
persed parts of their deposit, and offered to sell their product to you for a
very reasonable price. You measure the water content of these nine sam-
pling units, and the data are given in Box 8.2.

Box 8.2 Comparison between a sample mean and an expected
value when population statistics are not known

The water content of a sample of nine vermiculites taken at random from
within the new deposit is 6.1, 5.5, 5.3, 6.8, 7.6, 5.3, 6.9, 6.1 and 5.7 wt%
H2O.

The null hypothesis is that this sample is from a population with a
mean water content of 7.0 wt% H2O.

The alternate hypothesis is that this sample is from a population with a
mean water content that is not 7.0 wt% H2O.

The mean of this sample is: 6.14
The standard deviation s= 0.803
The standard error of the mean is sffiffi

n
p ¼ 0:803

3 ¼ 0:268

Therefore t8 ¼ X � �expected

SEM
¼ 6:14� 7:0

0:268
¼ �3:20:

Although the mean of the sample (6.14) is close to the desired mean
value of 7.0 wt% H2O, is the difference significant? The calculated value
of t8 is –3.20. The critical value of t8 for an α of 0.05 is ± 2.306 (Table 8.1).
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Is the sample likely to have come from a population where μ= 7.0 wt%
H2O? The calculations are in Box 8.2 and are straightforward. If you analyze
these data using a statistical package, the results will usually include the
value of the t statistic and the probability, making it unnecessary to use a
table of critical values.

8.5 Comparing the means of two related samples

The paired-sample t test is designed for cases where you have measured the
same variable twice on each sampling unit under two different conditions.
Here is an example. Coarse-grained rocks such as granites are difficult to
analyze chemically because their composition is very heterogeneous. The
standard method is to crush a sample to pea-size fragments and pulverize
these in a mill (called a shatterbox) to produce a fine homogeneous powder
of < 25 μm. You quickly discover that running the shatterbox for more than
60 seconds creates < 25 μm powders, but these are difficult to handle,
intractable to sieve, and messy to clean up. By accident you find that 30
seconds in the shatterbox will give you coarser powders (< 125 μm) that can
be sieved without difficulty and clean up easily. If the two grain sizes give the
same result when chemically analyzed, you would only have to prepare the
coarser one and thereby save a lot of time and effort. Therefore you measure
the iron (Fe) content of the same 10 granites processed by eachmethod. The
results are shown in Table 8.2.

Here the two groups are not independent because the same granites are in
each. Nevertheless, you can generate a single independent value for each
individual by taking their “< 25 μm” reading away from the “< 125 μm”

reading. This will give a single column of differences for the 10 units,
which will have its own mean and standard deviation (Table 8.2).

The null hypothesis is that there is no difference between the FeO content
of the two grain sizes. Therefore, if the null hypothesis were true, you would

Therefore, the probability that the sample mean has been taken from a
population with a mean water content of 7.0 wt% H2O is < 0.05. The
vermiculite processor concluded that the mean moisture content of the
samples from the newmine was significantly less than that of a population
with amean of 7.0 wt%H2O and refused the offer of the cheap vermiculite.
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expect the population of values for the difference for each granite to have a
mean of zero, and a standard error that can be estimated from the sample
of differences by s=

ffiffiffi
n

p
. This is just another case of a single-sample t test

(Section 8.4), but here the expected population mean is zero.
Consequently, all you need to do is calculate the ratio of X�0

SEM and see if
this statistic lies within or outside the region where 95% of the means of this
sample size would be expected to occur around an expected population
mean of zero. This has been done in Box 8.3.
Unfortunately, the result in Box 8.3 tells you that you get a different result

with the coarse powder compared to the finer one specified by the standard
method. The extra effort needed to create the finer-grained, messy powder
appears to be necessary. Although there may be other aspects of experi-
mental design (including the distribution of grain sizes in each pellet, the
starting grain size in each split, and the presumption that the starting splits
of each granite were identical) that have confounded the results, this result is
consistent with the alternate hypothesis.

Table 8.2 The Wt% FeO content of ten granites ground to two different grain
sizes. The column headed “Difference” gives the Fe content of the < 125 μm fraction
minus that of the < 25 μm fraction for each, and the sample statistics are for this
column of data.

Wt% FeO content of granites

Granite Number < 25 μm <125 μm Difference

1 13.5 13.6 +0.1
2 14.6 14.6 0.0
3 12.7 12.6 − 0.1
4 15.5 15.7 +0.2
5 11.1 11.1 0.0
6 16.4 16.6 +0.2
7 13.2 13.2 0.0
8 19.3 19.5 +0.2
9 16.7 16.8 +0.1
10 18.4 18.7 +0.3

X ¼ 0:100
s = 0.1247
n= 10
SEM= 0.0394
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8.6 Comparing the means of two independent samples

Often you will need to compare the means of two independent samples. This
type of comparison is particularly common when you have two randomly
chosen independent samples such as a control and an experimental group,
each containing different experimental units. Here the question is “Have the
two sample means been drawn from populations with the same mean μ?”
which can be tested with an independent sample t test.

It is easy to visualize this pictorially. Under the null hypothesis, each
sample is from the same population, so 95% of the time you would expect
the two sample means to lie within the 95% confidence interval surrounding
μ. Here, however, you are interested in the range of possible differences
between two values of X, which will be much wider than the confidence
interval for each sample, because there will be cases where onemean is at the
lower end of the expected range and the other at the higher end and vice
versa (Figure 8.6).

To obtain a t statistic for the difference between two independent sample
means you simply need to divide XA � XB by the standard error of the
distribution of differences shown in Figure 8.6(b). The latter is easy to
estimate because the variance of the difference between the means of two
independent samples is the sum of the variances of these samples:

Box 8.3 A worked example of a paired-sample t test using the
data from Table 8.2

X ¼ 0:100
s= 0.12472
n= 10
SEM=0.03944
Therefore t9 ¼ 0�10� 0

0�03944 ¼ 2 � 5355
From Table 8.1 the critical value of t9 is 2.262. Therefore the value of t
lies outside the range within which you would expect 95% of t statistics
generated by samples of n= 10 from a population where μ = zero, so it
was concluded that the mean of the population of the differences in FeO
contents was significantly different (P < 0.05) from an expected mean of
zero.
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S2A�B ¼ SA
2 þ SB

2 (8:1)

This is consistent with the much greater variance in Figure 8.6(b) com-
pared to Figure 8.6(a). Because the SEM from a sample is

ffiffiffiffiffiffiffiffiffi
s2=n

p
, you need

the best estimate of the standard error of XA � XB. So you use the follow-
ing formula, which is just the square root, of the variance of sample A
divided by the sample size of A plus the variance of sample B divided by
the sample size of B:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA2

nA
þ sB2

nB

s

(8:2)

Finally, to obtain the t statistic for the differences between the two means,
you divide XA � XB by this estimate of the SEM:

t ¼ XA � XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA2
nA

þ sB2
nB

q (8:3)

Frequency

(a)

XA

XB

XB – XB

µ

Frequency

(b)

0

Figure 8.6 Illustration of the comparison made by an independent sample t
test. (a) The graph shows the range, indicated by the double-headed arrows,
within which 95% of the values of means of samples size n, from a population
with a mean of μ, are expected to occur. (b) This graph shows the expected
distribution of the differences ðXA � XBÞ between any two sample means of
size n from that population. The distribution of differences will have a mean of
zero (when both XA and XB are equal) and a much greater dispersion than in
(a) because there will be cases where XA is at the low end of the range andXB is
at the high end of the range (giving large negative values) and vice versa
(giving large positive values). The double-headed arrow shows the 95%
confidence interval for XA � XB. Note that it is much wider than the 95%
confidence interval for the sample means shown in (a).
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Here the number of degrees of freedom is (n(A) – 1) + (n(B) – 1), which is
usually put as (n(A) + n(B) – 2). This is because you have calculated the
standard error using two independent samples, both of which have n− 1
degrees of freedom, so one degree of freedom is lost from each sample.
A worked example is given in Box 8.4.

You may never have to manually calculate a t statistic because statistical
packages have excellent programs for doing them. But the simple worked
examples in this chapter will help you understand how t tests work and will
be very helpful as you continue through this book.

8.7 Are your data appropriate for a t test?

The use of a t test makes three assumptions. The first is that the data are
normally distributed. The second is that each sample has been taken at
random from its respective population and the third is that for an inde-
pendent sample test, the variances are the same. Of course, in geological
applications, you can rarely make these assumptions with impunity. In
many cases, distributions and variances are not well-known, and physical
constraints such as rock exposure generally make it difficult to take samples
from truly random locations.

Box 8.4 A worked example of a t test for two independent
samples

A paleontologist sampled the shell length (in mm) of 15 Devonian-age
Paracyclas clams in each of two outcrops to see if these two samples were
likely to have come from a population with the same mean. The data are
shown below:
Outcrop A: 25, 40, 34, 37, 38, 35, 29, 32, 35, 44, 27, 33, 37, 38, 36
Outcrop B: 45, 37, 36, 38, 49, 47, 32, 41, 38, 45, 33, 39, 46, 47, 40
nA= 15, nB= 15, XA ¼ 34:67, XB ¼ 40:87, S2A ¼ 24:67, S2B ¼ 28:69
therefore t28 ¼ 34:67�40:87ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24:67
15 þ28:69

15

p ¼ �6:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:648þ1:913

p ¼ �3:287

Note that the value of t is negative because the mean for outcrop B is
greater than that of outcrop A.
The critical value of t28 for α= 0.05 is 2.048, so the two samples have

less than 5% probability of being from the same population.
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Fortunately, it has been shown that t tests are actually very “robust” – that
is, they will still generate statistics that approximate the t distribution and
give realistic probabilities even when the data show considerable departure
from normality and when sample variances are dissimilar.

8.7.1 Assessing normality

First, if you already know that the population from which your sample has
been taken is normally distributed (perhaps you have data for a variable that
has been studied before) you can assume the distribution of sample means
from this population will also be normally distributed.
Second, the central limit theorem discussed in Chapter 7 states that

the distribution of the means of samples of about 25 or more taken from
any population will be approximately normal, provided the population is not
grossly non-normal (e.g. a population that is bimodal). Therefore, provided
your sample size is sufficiently large you can usually do a parametric test.
Finally, you can examine your sample. Although there are statistical tests

for normality, many (see Koch and Link, 2002) have cautioned that these
tests often indicate the sample is significantly non-normal even when a t test
will still give reliable results.
Some authors (e.g. Stanley, 2006) suggest plotting the cumulative fre-

quency distribution of the sample. The easiest way to do this is to use a
statistics package to give you a probability plot (often called a P-P plot). This
graphs the actual cumulative frequency against the expected cumulative
frequency assuming the data are normally distributed. If they are, the P-P
plot will be a straight line. Any gross departures from this should be
analyzed cautiously and perhaps a non-parametric test used. Most statistical
packages will draw a P-P plot for a sample.

8.7.2 Have the sample(s) been taken at random?

This is really just a case of having an appropriate experimental design. For a
single-sample test, the sample needs to have been selected at random in
order to appropriately represent the population from which it has been
taken. For an independent sample test, both samples need to have been
selected at random. One potential pitfall associated with this assumption
deals with accessibility: it may be tempting to assume that an apparently
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random outcrop of some geological formation is representative of the unit
as a whole. But do not forget that there may be a reason why that particular
outcrop is exposed – and that reason may mean that it is unrepresentative.
For example, perhaps the outcrop is the remnant of a small basaltic dike
more resistant to erosion than the surrounding sandstone, which has now
been eroded completely away.

8.7.3 Are the sample variances equal?

One easy test of whether sample variances are equal is to divide the largest
by the smallest. If the samples have equal variances, this ratio will be 1.00. As
the variances become more and more unequal, the value of this statistic,
which is called the F statistic or F ratio after the statistician Sir Ronald
A. Fisher, will increase. There will be discussion of F and tests for equality of
variances in Chapters 10 and 12. Even if the variances of two samples are
significantly different, you can often still apply a t test.

8.8 Distinguishing between data that should be analyzed by
a paired-sample test and a test for two independent
samples

As a researcher, or reviewer of another person’s work, you may have to
decide if an experimental outcome should be analyzed as a paired-sample
test or a test for two independent samples. The way to do this is to ask “Are
the experimental or sampling units in the two samples related or are they
independent?” Here are some examples.

First, Table 8.3 shows two samples that are related. Measurements of
wt% FeO have been made on two different size fractions made from each
of four units of granite.

Each experimental unit (granite) in Table 8.3 has been ground and sieved
to separate the powders into two size fractions (< 125 μm and 125–250 μm),
so you would do a paired-sample test. Here you would be testing whether or
not the two size fractions have the same bulk chemistry.

An independent example is the measurement of wt% FeO on four units
of granite ground to 45–125 μm (granites 1–4) and four more ground to
125–250 μm (granites 5–8) shown in Table 8.4. The samples are obviously
independent. You would do an independent sample t test.
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8.9 Conclusion

This chapter explains how the Z test and t tests for one and two samples
actually work. The concepts will help you make decisions about which test
to use for a particular set of data and also be very useful when you work
through the material in later chapters. They will also help you understand
the results given by statistical packages.

8.10 Questions

(1) A geoscientist hypothesized that 60Co irradiation would affect the
opacity of amethyst crystals. They measured the opacity of 10 crystals,
irradiated them and then remeasured their opacity. The data are shown
below, as opacity before and after the irradiation. (a) What sort of

Table 8.4 Data for the wt% FeO measured on
eight granites, ground to different size fractions.

Granite 45–125 μm 125–250 μm

1 1.20
2 0.50
3 3.30
4 1.30
5 1.35
6 2.60
7 1.20
8 0.40

Table 8.3 Data for the wt% FeO measured on
four granites, ground and separated into two
different size fractions.

Granite < 125 μm 125–250 μm

1 0.10 0.13
2 1.50 1.40
3 0.70 0.50
4 1.10 1.20
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Crystal
number

Opacity
before

Opacity
after

1 3.5 3.7
2 4.6 4.6
3 2.7 2.9
4 5.5 5.7
5 1.1 1.1
6 6.4 6.6
7 3.2 3.1
8 9.3 9.5
9 6.7 6.8
10 8.4 8.5

statistical analysis is appropriate for this hypothesis? Is the hypothesis
one or two tailed? Is the result of the analysis significant?

(2) The geoscientist who did the irradiation experiment described in the
previous question decided (incorrectly) to analyze their data as a two-
sample t test. (a) Analyze the data as two independent samples. What is
the result of the analysis? Is it significant? Please comment.

(3) This is a valuable exercise that will help you understand how statistical
tests actually work. It can be done by hand using the instructions in Box
8.2, but you can do it very easily indeed if you have access to a statistical
package. The water content of a sample of nine vermiculites is 6.2, 5.6,
5.3, 6.8, 6.9, 5.3, 6.3, 6.2 and 5.4 wt% H2O. The mean of this sample is
exactly 6.0. Use a statistical package to run a one-sample t test where the
expected mean is set at 6.0. This will give no difference between the
observed and expected mean. (a) What would you expect the value of
the t statistic to be? Run the analysis to check on this. (b) Now, modify
the expected value. Make it 5.90 and run the analysis again. Then make
it 5.80, 5.75, 5.50, etc. What happens to the value of t as the difference
between the observed and expected values increases? What happens to
the probability?
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9 Type 1 and Type 2 error, power
and sample size

9.1 Introduction

Every time you make a decision based on the probability of a particular
result, there is a risk that your decision is wrong. There are two sorts of
mistakes you can make and these are called Type 1 error and Type 2
error.

9.2 Type 1 error

A Type 1 error or false positive occurs when you decide the null hypothesis
is false when in reality it is not. Imagine you have taken a sample of size n
from a population with known statistics of μ and σ and subjected this sample
to a particular experimental treatment. Because the population statistics are
known you could test whether this sample mean was significantly different
to the population mean by doing a Z test (Section 8.3).
If the treatment had no effect the null hypothesis would apply and your

sample would simply be equivalent to one drawn at random from the
population. Nevertheless, 5% of the sample means of size n will lie outside
the 95% confidence interval of μ ± 1.96 SEM. Therefore, 5% of the time you
would incorrectly reject the null hypothesis of no difference between your
sample mean and the population mean (Figure 9.1) and accept the alternate
hypothesis. This is a Type 1 error.
It is important to realize that Type 1 error can only occur when the

null hypothesis applies. There is absolutely no risk if the null hypothesis
is false.Unfortunately, you are most unlikely to know if the null hypothesis
applies or not – if you did you would not be doing an experiment to test it!
If the null hypothesis applies the risk of Type 1 error is the same as the
probability level you have chosen.
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Here, therefore, you may be thinking “Then why do we usually set α at
0.05? Surely an α of 0.01 or 0.001 would reduce the risk of Type 1 error?” It
will, but it will affect the likelihood of Type 2 error.

9.3 Type 2 error

A Type 2 error or false negative occurs when you do not reject the null
hypothesis even though it is false. For the example above, this would occur
when the treatment had a real effect but your experiment and analysis did
not detect it. Here is an example, using a single-sample, two-tailed Z test
where the population statistics are known.

9.3.1 A worked example showing Type 2 error

The weight percent of Al2O3 in lower crustal granulite xenoliths (rocks from
deep within the Earth’s crust that have become encased in magma and
brought to the surface by volcanic activity) has a population mean of 12.16
and a standard deviation of 2.43. These statistics are for a sample size of

12.16
µ

Figure 9.1 Illustration of Type 1 error. The known population mean is 12.16
and the 95% confidence interval for the mean is shown as the double-headed
horizontal arrow. There is no effect of treatment, so the distribution of sample
means from the experimental population will be the same as those from the
untreated population. Nevertheless, 5% of your sample means will, by chance,
lie in the shaded areas outside the 95% confidence interval. Whenever a
sample mean occurs in either of these areas you will incorrectly reject the null
hypothesis and make a Type 1 error. This risk is unavoidable when the null
hypothesis applies, but can be controlled by the chosen value of α. An α= 0.05
will have a 5% probability of Type 1 error, but an α of 0.01 will only have a 1%
probability of Type 1 error.
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more than a thousand xenoliths, so they can be considered to be the
population statistics μ and σ.
You have a sample of seven lower crustal granulite xenoliths that appear

to have experienced metasomatism (that is, they have been affected by
hydrothermal or other fluids) and wish to determine if this “treatment”
has changed their Al2O3 content.
Here you need to imagine the case where the metasomatism has caused

an average increase in Al2O3, so the mean of the metasomatized population
is 1.0 wt% more than the mean of the known “untreated” population, but
you do not know this. This change is often called the effect size of a
treatment. To test if this effect is significant, you measure the Al2O3 of
your seven metasomatized xenoliths and then compare the mean of this
sample to that of the untreated population (Figure 9.2).
First, consider the case where you take a sample of n= 7 from each

population. The expected standard error of each mean will be
�=

ffiffiffi
n

p ¼ 2:43=
ffiffiffi
7

p ¼ 0:92. Therefore, the range around μ within which
you would expect 95% of sample means from the untreated population
to occur would be μ ± 1·96 × SEM, which is 12.16 ± (1.96 × 0.92) and thus
12.16 ± 1.8, giving a wide range from 10.36 to 13.96.
With an effect size of 1.0, the range around μ (metasomatized) within

which you would expect 95% of sample means from the treated population
is 13.16 ± 1.8 which is from 11.36 to 14.96.
These two ranges are shown in Figure 9.3(a). Importantly, they overlap

considerably, with most of the means of samples from the treated
population falling within the expected range of the means of samples
from the untreated one. Therefore, if you were to measure seven meta-
somatized xenoliths, there is a very high probability that their sample mean
will fall within the 95% confidence interval of the untreated population and
thus would not be considered significantly different to μ. Even though there

Effect size = 1.0

12.16

µ µ  (metasomatized)

13.16

Figure 9.2 The concept of effect size displacing the population mean. The
populationmean, μ, is 12.16 wt%Al2O3 but metasomatism appears to increase
the overall Al2O3 by 1.0 wt%.
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n = 7

12.16

(a)

µ µ  (metasomatized)
13.16

n = 80

12.16

(c)

µ µ  (metasomatized)
13.16

n = 12

12.16

(b)

µ µ  (metasomatized)
13.16

Figure 9.3 Sample size has an effect on the range within which 95% of the
means of samples from a population will occur. The expected distributions of
the means of samples taken from two populations with the same variance, one
of which has a μ of 12.16 and the other which has a μ (metasomatized) of
13.16, are shown. (a) When n= 7 the sample means are expected to occur
within a relatively wide range around each mean. (b) When n= 12 the sample
means are expected to occur within a narrower range. (c) When n= 80 the
sample means are expected to occur within a much narrower range.
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is a real effect of metasomatism, your sample size is too small to detect it
very often, so you will frequently make a Type 2 error.
Now, consider the case where you have a sample of n= 12metasomatized

xenoliths. As sample size increases, the standard error of the mean, and
therefore the 95% confidence interval of the mean, will reduce.
For a sample size of 12, the standard error of the mean is

�=
ffiffiffi
n

p ¼ 2:43=
ffiffiffiffiffi
12

p ¼ 0:701. (Note that this value is smaller than the
SEM for the sample of seven given above.) Therefore, the 95% confidence
interval for the distribution of values of the mean around μ is 12.16 ± 1.375
(which is from 10.79 to 13.53) and the distribution around μ (metasomat-
ized) is 13.16 ± 1.375 (which is from 11.79 to 14.53). These two ranges are
shown in Figure 9.3(b). The confidence intervals have been reduced, but the
majority of the sample means from the treated population still lie within the
range expected from the untreated one, so the risk of Type 2 error is still
very high.
Finally, for a sample size of 80, the standard error will be greatly reduced

at 2:43=
ffiffiffiffiffi
80

p ¼ 0:272. Therefore, the 95% confidence interval for the
mean of a sample of 80 will be μ ± 0.532, which is from 11.63 to 12.69 for
the untreated population, and from 12.63 to 13.69 for the treated one
(Figure 9.3(c)). There is little overlap between the 95% confidence inter-
vals of both groups, so you are much less likely to make a Type 2 error.
When the sample size is 80, there is only a small risk of failing to reject
the null hypothesis that μ= 12.16 wt% Al2O3 because only about 5% of
the possible values of the sample mean from the treated population
are still within the region expected if the mean of 12.16 is correct
(Figure 9.4).
The probability of Type 2 error is symbolized by β and is the probability

of failing to reject the null hypothesis when it is false. Therefore, as shown
in Figure 9.4, the value of β is the shaded area of the treated distribution
lying to the left of the upper confidence limit for μ.

9.4 The power of a test

The power of a test is the probability of making the correct decision and
rejecting the null hypothesis when it is false. Therefore power is the area of
the treated distribution to the right of the vertical line in Figure 9.4. If you
know β, you can calculate power as 1− β.
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An 80% power is considered desirable. That is, there is only a 20% chance
of a Type 2 error and an 80% chance of notmaking a Type 2 error when the
null hypothesis is false.

9.4.1 What determines the power of a test?

The power of a test depends on several things, only some of which can be
controlled by the researcher.

The uncontrollable factors are effect size and the variance of the
population. As effect size increases, power will increase and will eventually
be 100% as the two distributions get further and further apart (Figure 9.5
(a)). Samples from populations with a relatively small variance will have a
smaller standard error of the mean, so overlap between the untreated and
treated distributions will be less than for samples from populations with a
larger variance (Figure 9.5(b)).

The controllable factors are the sample size and your chosen value of α.
As sample size increases, your risk of Type 2 error decreases and power
therefore increases because the standard error of the mean decreases (this
has already been described in Figure 9.3).

As the chosen value of α decreases (e.g. from 0.10 to 0.05 to 0.01 to 0.001),
the risk of Type 1 error decreases, but the risk of a Type 2 error increases.
This is shown in Figure 9.6. There is a trade-off between the risks of Type 1
and Type 2 error.

n = 80

12.16

Null hypothesis applies Null hypothesis false (there
is an effect of treatment)

µ µ  (metasomatized)
13.16

Figure 9.4 The probability of a Type 2 error is the shaded area to the left of
the vertical line marking the upper confidence limit (12.69) of μ. The risk of
Type 2 error is low, but it will be greater if the sample size is smaller.
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9.5 What sample size do you need to ensure the risk
of Type 2 error is not too high?

Without compromising the risk of Type 1 error, the only way a researcher
can reduce the risk of Type 2 error to an acceptable level and therefore
ensure sufficient power, is to increase the sample size. Every researcher has
to ask themselves the question “What sample size do I need to ensure the
risk of Type 2 error is low and therefore power is high?”This is an important
question because samples may be difficult to collect and the characterization
may be expensive, so there is no point in increasing sample size past the
point where power reaches an acceptable level. For example, if a sample size
of 35 gave 100% power, there is no point in taking any more than this
number of replicates.
Unfortunately, the only way to estimate the appropriate minimum

sample size needed in an experiment is to know, or have good estimates,
of the effect size and standard deviation of the population(s) – and
this is often impractical, or subject to interpretation, in geological sit-
uations. Often the only way to estimate these is to do a pilot experiment
with a sample. For most tests there are formulae that use these (sample)

(a)

(b)

Frequency

Frequency

µ µmetasomatism

µ µmetasomatism µmetasomatismµmetas

µ µmetasomatism

Figure 9.5 Uncontrollable factors affecting power. (a) Effect size will
determine power and if the effect size is large enough, power will be 100%. The
arrows show effect size. (b) With a fixed effect size, a test comparing the
distribution of sample means from a population with a relatively small
variance (the pair of graphs on the left) will have greater power than if the
population variance is large (the pair of graphs on the right).
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statistics to give the appropriate sized sample for a desired power.
Some statistical packages will calculate the power of a test as part of the
analysis.

α set at 10%

12.16

(a)

Null hypothesis 
applies

Null hypothesis false 

µ µ  (metasomatized)

13.16

α set at 5%

12.16

(b)

Null hypothesis 
applies

Null hypothesis false 

µ µ  (metasomatized)
13.16

α set at 1%

12.16

(c)

Null hypothesis 
applies

Null hypothesis false 

µ µ  (metasomatized)

13.16

Figure 9.6 The trade-off between Type 1 and Type 2 error. (a) α set at 10%.
(b) Decreasing α to 0.05 will reduce the risk of Type 1 error, but will increase
the risk of Type 2 error. (c) Decreasing α to 0.01 will further decrease the risk
of Type 1 error, but greatly increase the risk of Type 2 error.
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9.6 Type 1 error, Type 2 error and the concept of risk

The commonly used α of 0.05 sets the risk of Type 1 error at 5%, while 20%
is considered an acceptable risk of Type 2 error. Nevertheless, these risks
have to be considered in relation to the consequences of an incorrect
decision about the null or alternate hypotheses. There was a discussion
about the appropriate level risk of Type 1 error depending on the conse-
quences in Chapter 6 and the same considerations apply to the risk of Type
2 error.
For example, a test that has a 20% chance of incorrectly retaining the null

hypothesis of no effect may be considered inappropriate if you are testing
for the undesirable side effects of a new sample preparation, or evaluating
whether the release of lead from a landfill into a river is affecting the
concentration of lead in a lake downstream. Every time you run a statistical
test you have to consider not only the risk of Type 1 and Type 2 error, but
also the consequences of these risks.

9.7 Conclusion

Whenever you make a decision based on the probability of a result, there is a
risk of either a Type 1 or a Type 2 error. There is only a risk of Type 1 error
when the null hypothesis applies, and the risk is the chosen probability level α.
There is only a risk of Type 2 error when the null hypothesis is false. Here the
risk of Type 2 error, β, is affected by several factors, but the most controllable
is sample size. As sample size increases, the risk of Type 2 error decreases.
Power is the converse of Type 2 error. Power is 1− β and is the ability of

the test to reject the null hypothesis when it is false.
There are formulae for calculating the appropriate sample size to ensure

that the risk of Type 2 error is acceptable (e.g. 20%) and therefore a test has
acceptable power, but these calculations rely on an estimate of effect size and
the standard deviation of the sample or population.
The risks of Type 1 and Type 2 error also need to be considered in terms

of geoscientific risk. Depending on the consequences of making each type
of error, you may find an α of 5%, or a β of 20%, unacceptable.
Finally, the example of xenoliths used in this chapter deliberately used

only one variable and therefore a very specific hypothesis about the effect of
metasomatism onAl3O2. Often, however, youmay be able tomeasure several
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variables (i.e. several chemical constituents including Al3O2). Therefore, if
you are testing the more general hypothesis that “Metasomatism affects the
chemical composition of xenoliths” then a multivariate data set will provide
more information andmay give a more reliable result.Methods for analyzing
multivariate data are discussed in Chapter 20.

9.8 Questions

(1) Comment on the following: “Depending on sample size, a non-
significant result in a statistical test may not necessarily be correct.”

(2) Explain the following: “I did an experiment with only 10% power
(therefore β was 90%) but the null hypothesis was rejected so the low
power does not matter and I can trust the result.”
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10 Single-factor analysis of variance

10.1 Introduction

So far, this book has only covered tests for one and two samples. Often,
however, you are likely to have univariate data from three or more samples,
from different localities (or experimental groups), and wish to test the
hypothesis that “The means of the populations from which these samples
have come from are not significantly different to each other,” or
“�1 ¼ �2 ¼ �3 ¼ �4 ¼ �5 etc . . .”

For example, you might have data for the percentage of tourmaline in
granitic rocks from five different outcrops, and wish to test the hypothesis
that these have come from populations with the same mean percentage of
tourmaline, or perhaps even the same pluton.
Here you could test this hypothesis by doing a lot of two-sample t tests

that compare all of the possible pairs of means (e.g. mean 1 compared to
mean 2, mean 1 compared tomean 3, mean 2 compared to mean 3 etc.). The
problem with this approach is that every time you do a two-sample test and
the null hypothesis applies you run a 5% risk of a Type 1 error. So as you do
more and more tests on the same set of data, the risk of a Type 1 error rises
rapidly.
Put simply, if you do two or more two-sample tests on the same data set it

is like having more than one ticket in a lottery where the chances of winning
are 5% – the more tickets you have, the more likely you are to win. Here,
however, to “win” could be tomake the wrong decision about your results. If
you have five groups, there are ten possible pairwise comparisons among
them and the risk of a getting a Type 1 error when using an α of 0.05 is 40%,
which is extremely high (Box 10.1).
Obviously there is a need for a test that compares three or more sample

means simultaneously but only has a risk of Type 1 error the same as your
chosen value of α. This is where analysis of variance (ANOVA) can often
be used.
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A lot of earth scientists make decisions on the results of ANOVA without
knowing how it works. But it is very important to understand how ANOVA
does work so that you can appreciate its uses and limitations!

Analysis of variance was developed by the statistician Sir Ronald A.
Fisher from 1918 onwards. It is a very elegant technique and can be applied
to numerous and very complex experimental designs. This book introduces
the simpler ANOVA models because an understanding of these makes the
more complex ones easier. The following is a pictorial explanation, like the
ones developed to explain t tests in Chapter 8. This approach is remarkably
simple and does represent what happens. By contrast, a look at the equa-
tions in many statistics texts makes ANOVA seem very confusing indeed.

10.2 Single-factor analysis of variance

Imagine you are interested in understanding the occurrence of tourmaline
in the pegmatites scattered throughout western Maine. This area was the
source of the first gem tourmaline mined in the US, which was discovered at
Mount Mica (just outside of Paris, Maine) in 1820. Subsequent exploration

Box 10.1 The probability of a Type 1 error increases when you
make several pairwise comparisons

Every time you do a statistical test where the null hypothesis applies, the
risk of a Type 1 error is your chosen value of α. If α is 0.05 then the
probability of not making a Type 1 error is (1-α) or 0.95.
If you have three means and therefore make three pairwise compar-

isons (1 versus 2, 2 versus 3 and 1 versus 3) the probability of no Type 1
errors is (0.95)3 = 0.86. The probability of at least one Type 1 error is 0.14
or 14%.
For fourmeans there are six possible comparisons so the probability of

no Type 1 errors is (0.95)6 = 0.74. The probability of at least one Type 1
error is 0.26 or 26%.
For five means there are ten possible comparisons so the probability of

no Type 1 error is (0.95)10 = 0.60. The probability of at least one Type 1
error is 0.40 or 40%.
These risks are unacceptably high. You need a test that comparesmore

than two means with a Type 1 error the same as α.
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has found several other pegmatites, some of which have been mined for
industrial minerals, including gemstone varieties of the tourmaline group.
However, not all pegmatites are the same, apparently because the parent

magmas have different chemistries. Some contain valuable green, pink and
two-tone (“watermelon”) gemmy tourmalines, but others have only the
glossy black elongated crystals of the schorl species.
Prospecting to discover new gem-containing pegmatites in the region

would be greatly simplified if the genetic relationships among the existing
ones could be clarified. One way of distinguishing among pegmatites is
to measure the ratio between the stable isotopes of oxygen, 18O and 16O in
tourmalines. The results are reported in “delta” notation as δ18O per mil
(‰) units relative to δ18O in Vienna Standard Mean Ocean Water
(VSMOW: previously discussed in Chapter 8).
You have obtained isotopic data on samples of tourmaline from three

different localities. In statistical terms, these three localities represent, and
are often called, different treatments. At each location four tourmalines
were collected. In statistical terms these are called replicates and correspond
to the sampling units described in Chapter 1. The total number of replicates
from each location comprises a sample.
A sample of four tourmalines was collected from the Sebago Batholith,

the largest pluton in Maine and the possible “parent” magma body for
smaller occurrences.
Another sample of four was collected from the Mount Mica pegmatite,

which is a shallowly dipping sill of undetermined thickness located ~4 km to
the northeast of the Sebago Batholith.
The final sample of four specimens was from the Black Mountain peg-

matite in Rumford, ~15 km north of the Sebago Batholith.
Your null hypothesis is that “There is no difference in isotopic composi-

tion among the populations from which these three samples have been
taken.” The alternative hypothesis is “There is a difference in isotopic
composition among the populations from which these samples have been
taken.”
The results of this sampling have been displayed pictorially in

Figure 10.1, with δ18O increasing on the Y axis and the three treatment
categories on the X axis. The sample means of each group of four are
shown, together with the grand mean, which is the mean δ18O of all 12
tourmalines.

10.2 Single-factor analysis of variance 117



Now, think about the data for each tourmaline. There are two possible
sources of variation that will contribute to its displacement from the grand
mean.

First, there is the effect of the locality (i.e. the treatment) it is from
(the Sebago Batholith, Mount Mica or Black Mountain).

Second, there is likely to be variationwithin each of these three deposits that
cannot be controlled, such as slight differences in cooling history, heterogeneity
of the magma, and interactions with groundwater, plus errors associated with
the isotopic measurements. This uncontrollable variation is called “error.”

Therefore, the displacement of each point on the Y axis from the grand
mean will be determined by the following formula:

d18O of tourmaline ¼ treatmentþ error (10:1)

In Figure 10.1, tourmalines from the Sebago Batholith and Black
Mountain appear to be similar (so perhaps they are co-genetic), while
Mount Mica seems to have a distinctly higher δ18O value, but is this
significant, or is it just the sort of difference that might occur by chance
among samples taken from populations with the same mean? A single
factor ANOVA calculates this probability in a very straightforward way.
The key to understanding how the ANOVA does this is to consider the
reasons why the values for each replicate and the treatmentmeans are where
they are.

δ18O of
tourmaline Grand mean

Mount Mica Sebago Batholith Black Mountain

Figure 10.1 Pictorial representation of the oxygen stable isotope ratio for
tourmalines from three localities in Maine. The value of δ18O for tourmaline
increases up the page. The heavy horizontal line shows the grand mean, while
the shorter lighter lines show the means for each location. The value for each
replicate tourmaline analysis is shown as a filled square ■.
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First, the isotope results for the four individual tourmalines from each
location will be displaced from the treatment mean by error only. This is
called error or within group variation (Figure 10.2).
Second, each treatment mean will be displaced from the grand mean by

any effect of that treatment plus error. Here, because we are dealing with
treatment means, the distance between a particular treatment mean and
the grand mean is the average effect of all of the replicates within that
treatment. To get the total effect you have to think of this displacement
occurring for each of the replicates. This is called among group variation
(Figure 10.3).
Third, the stable isotope ratio for each of the 12 tourmalines will be

displaced from the grand mean by both sources of variation – the within
group variation (Figure 10.2) plus the among group variation (Figure 10.3)
described above. This is called the total variation. In Figure 10.4 the
distance displaced is shown for the four tourmalines in each treatment.
Figures 10.2 to 10.4 show the dispersion of points around means.

Therefore it is possible to calculate separate variances from each figure.

(a) The within group variance, which is due to error only (Figure 10.2)
can be calculated from the dispersion of the replicates around each of
their respective treatment means.

(b) The among group variance, which is due to treatment and error
(Figure 10.3) can be calculated from the dispersion of the treatment
means around the grand mean. The distance between each treatment

Figure 10.2 Arrows show the displacement of each replicate from its
respective treatment mean. This is the variation due to error only.
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mean and the grand mean will represent the average effect for the
number of replicates in that treatment.

(c) The total variance (Figure 10.4) is the combined effects of the within
group variance and the among group variance (quantities “a” and “b”
above). This can be calculated from the dispersion of all the points
around the grand mean.

These estimates give you a very useful way of assessing whether the three
treatment means have come from populations with the same mean μ.

First, if there is no effect of any treatment (in this case each pegmatite),
the among group variance (due to treatment plus error) will be a small

δ18O of
tourmaline Grand mean

treatment
+ error

treatment
+ error

treatment
+ error

Mount Mica Sebago Batholith Black Mountain

Figure 10.3 The arrows show the displacement of each treatment mean from
the grand mean and represent the average effect of the treatment plus error for
the replicates in that treatment.

δ18O of
tourmaline Grand mean

Mount Mica Sebago Batholith Black Mountain

Figure 10.4 Arrows show the displacement of each replicate from the grand
mean. The length of each arrow represents the total variation affecting each
replicate.
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number because all the treatment means will only be displaced from the
grand mean by any effect of error (Figure 10.5(a)).
Second, if there is a relatively large treatment effect, some or all of the

treatment means will be very different to each other and further away from
the grand mean. Therefore the among group variance (due to treatment
plus error) will be large compared to the within group variance (due to error
only) (Figure 10.5(b)). As the differences among treatments get larger and
larger so will the among group variance.
Therefore, to get a statistic that shows the relative effect of the treat-

ments compared to error, all you have to do is calculate the among group

δ18O of
tourmaline

Grand mean

Mount Mica Sebago Batholith

(a)

Black Mountain

δ18O of
tourmaline Grand mean

Mount Mica

(b)

Sebago Batholith Black Mountain

Figure 10.5 Pictorial representation of (a) No effect of treatment. The
three treatment means are only displaced from the grand mean because of
error, so the “among group” variance will be relatively small. (b) An effect of
treatment. There are relatively large differences among the treatment means,
so they are further from the grand mean causing the among group variance to
be relatively large.
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variance (due to the treatments plus error) and divide this by the within
group variance (due to error):

Among group variance ðtreatmentþ errorÞ
Within group variance ðerrorÞ (10:2)

If there is no treatment effect then both the numerator and denominator
of Equation (10.2) will only estimate error so the value of this statistic will be
approximately 1 (Figure 10.5(a)). But as the treatment effect increases
(Figure 10.5(b)), the numerator of Equation (10.2) will get larger and larger,
so the value of the statistic will also increase. As it increases, the probability
that the treatments have been taken from populations with the same mean
will decrease and will eventually be less than 0.05.

The statistic obtained by dividing one variance by another is called the F
statistic or F ratio, in honor of Sir Ronald A. Fisher. Once an F ratio is
calculated, its significance can be assessed by looking up the expected
distribution of F under the null hypothesis of no difference among the
treatment means. Just like the example of the chi-square statistic discussed
in Chapter 2 and the Z and t statistics in Chapter 8, even when the treatment
groups are drawn from populations with the same mean (that is, there is no
effect of any of the treatments) the value of the statistic will, just by chance,
be larger than a particular value in 5% of cases and can be considered
statistically significant.

10.3 An arithmetic/pictorial example

Doing a single-factor analysis of variance is straightforward and the follow-
ing example will also help you interpret the results provided by statistics
programs. Here we will return to the example of the Maine pegmatites,
but will use a different variable to assess the possible differences among
localities: the amount of magnesium in the tourmaline, expressed in terms
of weight % MgO. We are using a simplified set of data for tourmalines
sampled at three localities (treatments), with each of these three samples
containing four replicates (Table 10.1).

To do a single-factor ANOVA, all you have to do is calculate the
among group (treatment) variance and divide this by the within group
(error) variance to get the F ratio. The procedure is shown pictorially
below.
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10.3.1 Preliminary steps

First, you calculate the grand mean, by taking the sum of all the values, and
dividing this by n (which is 12). The value of the grandmean is shown in the
large box to the right of the line indicating the position of the grand mean in
Figure 10.6.
Second, you calculate each treatment mean, by taking the sum of the

values in each treatment and dividing by the appropriate sample size (here,
in each case it is 4). These values are shown in the boxes to the right of the
lines indicating each treatment mean.
These are all the values you need to calculate the three different variances.
Figures 10.7, 10.8 and 10.9 show the calculation of the total, error and

treatment variances. The general formula for any sample variance is:

Table 10.1 The weight percent of MgO present in
tourmalines from (a) Mount Mica, (b) the Sebago
Batholith, and (c) Black Mountain.

Mount Mica Sebago Batholith Black Mountain

7 4 1
8 5 2
10 7 4
11 8 5

Mount Mica

Wt% MgO

11
10

8
7

8
7

5
4

5
4

2
1

9

6
6

3

Sebago Batholith Black Mountain

Figure 10.6 Pictorial representation of theMgO content of tourmalines from
three localities in western Maine, expressed in terms of weight percent MgO
content which increases with distance up the page. The heavy horizontal line
shows the grand mean, while the shorter lighter lines show treatment means.
The wt% MgO content of each replicate is shown as ■. Boxes show the values
of the three treatment means and the grand mean.
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X ðXi � �XÞ2
n� 1

(10:3)

and the variances have been calculated in two steps. First the sum of each
value minus the appropriate mean and then squared (the numerator of the
equation above which is called the sum of squares) has been calculated.
Second this value has been divided by the appropriate degrees of freedom
(the denominator of the equation above) to give the variance, which is often
called the mean square.

10.3.2 Calculation of within group variation (error)

This has been done in two steps in Figure 10.7. First, you calculate the sum
of squares for error. The distance between each replicate and its treatment
mean is the error associated with that replicate. You square each of these
values and add them together to get the sum of squares.

Mount Mica

Step 1: The within group (error) sum of squares is:

Step 2: The within group (error) variance is 30 ÷ 9 = 3.33  

Sebago Batholith Black Mountain

Mount Mica

4 1 1 11 1 14 4 4 30=++ 44

Sebago Batholith Black Mountain Sum of squares
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3

Figure 10.7 Calculation of the within group (error) sum of squares and
variance. This has been done in two stages. First, the displacement of each
point from its treatment mean has been squared and these values added
together to get the sum of squares. Second, this value has been divided by the
number of degrees of freedom to give the mean square value, which is the
within group (error) variance.
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Second, you calculate the error variance (often called the error mean
square) by dividing the total by the degrees of freedom. To obtain the
appropriate number of degrees of freedom you need to take one away
from the number within each treatment and sum the degrees of freedom
remaining. Because each treatment contains four replicates the number of
degrees of freedom is 3 + 3 + 3 = 9.

10.3.3 Calculation of among group variation (treatment)

This has been done in two steps in Figure 10.8. First, you calculate the sum of
squares for treatment. The distance between any of the three treatmentmeans

Mount Mica

Step 1: The total among group (treatment) sum of squares is the sum of the average
displacement of each treatment, squared and multiplied by the sample size of each treatment:

Step 2: The among group (treatment) variance is 72 ÷ 2 = 36  

Sebago Batholith Black Mountain

Mount Mica Sebago Black Mtn. Sum of squares
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49 9+ 0 4 4 72× × =×+

Figure 10.8 Calculation of the among group (treatment) sum of squares and
variance. This has been done in two steps. First, the displacement of each
treatment mean from the grand mean has been squared. This value has to be
multiplied by the sample size within each treatment to get the total effect for
the replicates within that treatment because the displacement is the average for
the treatment. These three values are then added together to give the sum of
squares. Second, this value has been divided by the number of degrees of
freedom to give the mean square value, which is the among group (treatment)
variance. Note that one of the treatment means happens to be the same as the
grand mean, but this will not always occur.
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and the grand mean is the average effect of that treatment. Therefore, to get
the total effect for all the replicates within each treatment, this value has to be
squared and then multiplied by the number of replicates in that treatment
and these values added together to give the sum of squares for treatment.

Second, you calculate the variance (often called the mean square) by
dividing the sum of squares by the degrees of freedom, which is n – 1 where
n is the number of treatments. Here, because there are three treatments,
there are only two degrees of freedom.

10.3.4 Calculation of the total variation

First you calculate the sum of squares for the total variation by taking the
displacement of each point from the grand mean, squaring it and adding
these together for all replicates. This gives the total sum of squares. Dividing
by the number of degrees of freedom (because this is a sample of 12, there
are n – 1 degrees of freedom which in this case is 11) gives the mean square.
This has been done in two steps in Figure 10.9.

Mount Mica

Step 1: The total sum of squares is:

Step 2: There are 11 degrees of freedom, so the total variance is: 102 ÷ 11 = 9.273  

25 2516 164 1 4 4 41 1 1 102=++

Sebago Batholith Black Mountain

Mount Mica Sebago Batholith Black Mountain Sum of squares
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Figure 10.9 Calculation of the total sum of squares and total variation. This
has been done in two steps. First, the displacement of each point from the
grand mean has been squared and these values added together to give the sum
of squares. Second, this value has been divided by the number of degrees of
freedom to give the mean square, which is the total variance.
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Finally, to obtain the F ratio, which compares the effect of treatment
to the effect of error, you simply divide the among group (treatment)
variance by the within group (error) variance.
Because the treatment variance is 36 (Figure 10.8) and the error variance

is 3.33 (Figure 10.7), the F ratio of treatment variance/error variance is
36/3.33 = 10.8. Table 10.2 gives the results of this analysis in a similar format
to the one provided by many statistical software packages.
Here you may be wondering why the total sum of squares and total

variance in the experiment have been calculated because they are not
needed for the F ratio given above. The calculation has been included to
illustrate the additivity of the sums of squares and degrees of freedom. Note
from Table 10.2 that the total sum of squares (102) is the sum of the
treatment (72) plus the error (30) sums of squares. Note also that the total
degrees of freedom (11) is the sum of the treatment (2) plus the error (9)
degrees of freedom. This additivity of sums of squares and degrees of
freedom will be used when discussing more complex ANOVA models.
Now, all you need is the critical value of the F ratio. This used to be a tedious

procedure because there are two values of the degrees of freedom to consider –
the one associatedwith the treatmentmean square and the one associated with
the error mean square – and you had to look up the critical value in a large set
of tables. Here, however, you can use a statistics program to run this analysis,
generate the F ratio and obtain the probability. There is a significant difference
among the three treatments because the probability (0.004) given in the
column on the far right of Table 10.2 is less than 0.05.
The F ratio is always written with the number of degrees of freedom for

the numerator and denominator given in order as a subscript. Therefore the
F ratio for the among group mean square divided by the within group mean

Table 10.2 Summary of the results of the calculations from Figures 10.7 to 10.9. The
results have been formatted as a typical single-factor ANOVA summary table
provided by most statistical software packages. Note the significant probability of
0.004.

Source of variation Sum of squares df Mean square F ratio Probability

Among groups (treatment) 72 2 36.0 10.8 0.004
Within groups (error) 30 9 3.3
Total 102 11
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square from Table 10.2 would be written as F2,9 because there are two
degrees of freedom for the among group variance and nine degrees of
freedom for the within group variance.

10.4 Unequal sample sizes (unbalanced designs)

The examples in this chapter have used a sampling design with equal
numbers in each treatment. If they are not equal, the method for calculating
the F ratio will still work, but the means and variance within each group will
not be estimated with the same precision (Chapter 7). For example, the
mean of a relatively small sample is likely to be less precise than that of a
larger one, so the conclusion from a comparison of means may be mislead-
ing. You should, wherever possible, aim to have equal numbers in each
treatment especially when sample sizes are relatively small.

10.5 An ANOVA does not tell you which particular
treatments appear to be from different populations

Although a significant result of a single-factor ANOVA indicates that the
treatments are unlikely to come from populations with the same mean, it
has not shownwhere the differences actually lie. In the example given above,
a significant effect might be caused by all three pegmatites having different
percentages of MgO; or by one having a significantly higher percentage than
the other two which were lower and similar, or by one having a significantly
lower percentage than the other two which were higher and similar. You will
almost certainly want to know at least which pegmatite has the highest, and
which one the lowest percentage of MgO. To do this, you will need to make
multiple comparisons among the treatment means. This procedure is
described in Chapter 11.

10.6 Fixed or random effects

This is an important concept. There are two types of single-factor ANOVA,
which are called Model I and Model II. An understanding of the difference
between them is necessary, particularly when you meet two-factor
ANOVAs later in this book.
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AModel I or fixed effects ANOVA applies when the treatments (e.g. the
three localities) have been specifically chosen. You are only interested in
comparing three pegmatites and the null hypothesis reflects this – “There is
no difference in MgO content of pegmatites from Mount Mica, Sebago
Batholith and Black Mountain.”
AModel II or random effects ANOVA applies to more general hypoth-

eses. Instead of only comparing these specific localities the hypothesis
might be “There is no difference in MgO content among pegmatites in
Maine.” Therefore the three localities chosen and used in the experiment
are merely random representatives of all the pegmatites that occur in
Maine.
For a single-factor ANOVA the actual computations for both models are

the same. But if you have done a Model II ANOVA you would not normally
go any further and make multiple comparisons among treatments because
you would not be interested in knowing which of the randomly chosen
treatments were different. This is discussed in more detail in Chapter 11.
When you do two-factor ANOVAs, which are discussed in Chapter 12,
it also matters whether the effects are fixed or random.

10.7 Questions

(1) The following simple set of data is for three “treatment” groups, each of
which contains four replicates: Treatment A: 1, 2, 3, 4; Treatment B: 1,
2, 3, 4; Treatment C: 1, 2, 3, 4. The mean of each group is the same. The
data give some within group (error) variance around each treatment
mean, but because the treatment means are identical there is no varia-
tion among groups. (a) Do you expect the within group (error) sum of
squares and mean square values to be zero? (b) Do you expect the
among group sum of squares and mean square values to be zero? Use a
statistical package to run a single-factor ANOVA on these data. (c) Are
the results consistent with what you expected? Finally change the values
for one treatment group to 21, 22, 23 and 24, run the analysis again and
look at the mean square values and F ratio. (d) Is there a significant
difference among groups? (e) Have the within group (error) sum of
squares and mean square changed from the analysis in (c)? Can you
explain this?
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(2) Which of the following experimental designs may be suitable for
analysis as a Model I ANOVA? (a) A geoscientist was interested in
testing the general hypothesis that the mean grain size of sediment
varies among alpine lakes. They selected three lakes (Lake Veronica,
Lake Michael and Lake Monica) at random from a total of 21 lakes, and
took a sample of 10 replicates from within each. (b) A geoscientist was
interested in testing the specific hypothesis that the mean grain size of
sediment varied among three alpine lakes (Lake Veronica, LakeMichael
and Lake Monica), so they took a sample of 10 replicates from within
each. (c) A petroleum geologist was asked to analyze whether the mean
daily yield of oil differed significantly among the only six offshore wells
owned and operated by the Sando Oil Company in the Gulf of Mexico
and identify whether any well(s) gave significantly higher yields.

(3) An eminent geographer recently said “The concept of Model I and
Model II is irrelevant to single-factor ANOVA, because the calculations
are the same in each case.” Do you agree or disagree? Why?

(4) An earth scientist did a single-factor ANOVA and obtained a treatment
F ratio of 0.99. They said “That F ratio isn’t significant. There isn’t even
a need to look up a table of probability values.” One of their colleagues
was very worried by that and said “I think you had better look up the
probability! You can’t be so sure!” Who was right? Why?
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11 Multiple comparisons after ANOVA

11.1 Introduction

When you use a single-factor ANOVA to examine the results of a mensur-
ative or manipulative experiment with three or more samples or treatments,
a significant result only indicates that one or more appear to come from
populations with different means. It does not identify which particular
treatment means appear to be from the same or different populations.
A significant difference among the means of the three treatments A, B and

C can occur in several ways. Mean A may be greater (or less) than B and C;
mean Bmay be greater (or less) thanA andC;mean Cmay be greater (or less)
than A and B, and finally means A, B and Cmay all be different to each other.
For example, in Chapter 10 we discussed data for the δ18O of pegmatites from
three locations in Maine. A single-factor ANOVA will only tell you whether
(or not) there is a significant difference in δ18O among these three locations.
If the treatments have been chosen as random representatives of all the

possible treatments available (i.e. the factor is random so you have done a
Model II ANOVA), then you will not be interested in knowing which
particular treatment means appear to be from the same or different popula-
tions because your hypothesis is more general. A significant result will reject
the null hypothesis and show a difference, but that is all you will want to know.
In contrast, if the treatments have been specifically chosen (i.e. the factor is

fixed so you have done a Model I ANOVA) you will be interested in knowing
which treatment means appear to be from the same or different populations.
There are several multiple comparison tests designed to do this.

11.2 Multiple comparison tests after a Model I ANOVA

Multiple comparison tests are used to make comparisons among a set of
means and assign them to groups that appear to be from the same population.
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These tests are usually done after a Model I ANOVA has shown a significant
difference among treatments. They are called a posteriori or post hoc tests,
both of which mean “after the event,” where the “event” is a significant result
of the ANOVA.

A lot of multiple comparison tests have been developed but all of them
work in essentially the same way. Here is an example using the Tukey test,
which works in an analogous way to the two-sample t test described in
Chapter 8. The t statistic is calculated by dividing the difference between two
means by the standard error of that difference. In contrast, the Tukey
statistic, q, is calculated by dividing the difference between two means by
the standard error of the mean. The smaller mean is always taken away from
the larger, therefore giving a positive number:

q ¼
�XA � �XB

SEM
(11:1)

This procedure is first used to compare the largest mean to the smallest. If
the difference is significant, testing continues by comparing the largest with
the next smallest and so on. If a non-significant difference is found, all the
means included within the range between that pair are assigned to the same
population. Then the procedure is repeated, starting with the second largest
and the smallest mean; repeated again starting with the third largest and the
smallest mean, and so on. Eventually the means will be assigned to one or
more groups, each containing those which appear to be from the same
population (Figure 11.1).

From the example in Figure 11.1, means A, B and C appear to be from the
same population and D and E from a second population. The analysis has
revealed two distinct groups.

For the Tukey statistic, you need the SEM and the best way to obtain this
is from the error mean square of the ANOVA which is an estimate of the
population variance, �2, calculated from the displacement of all the repli-
cates in the experiment from their respective treatment means. Therefore,
because the standard error of a mean is:

SEM ¼ �
ffiffiffi
n

p or

ffiffiffiffiffi
�2

n

r

(11:2)

132 Multiple comparisons after ANOVA



(a)

(b)

(c)

(d)

A
B
C

(A–E and A–D are significant)
   (A–C is not significant)

(B–E and B–D are significant)

(C–E and C–D are significant)

(D–E is not significant)

E
D

A
B
C

E
D

A
B
C

E
D

A
B
C

E
D

Figure 11.1 General procedure for a Tukey a posteriori test. The treatment
means (A to E) are displayed in order of magnitude from the smallest (E) to
the largest (A). (a) First the largest mean is compared to the smallest (A–E).
If the difference is significant, the largest is then compared to the second
smallest (A–D) and so on, until a non-significant difference (here, as an
example, A–C) is found or there are no more pairs of means left to compare.
All means included within the range between A–C (A, B and C) are assigned to
the same population. (b) Testing continues using the same procedure but
starting with the second largest mean and comparing it to the smallest (B–E).
(c) The third largest mean (C) is compared to D and E. (d) The fourth largest
(D) is compared to E. This difference is not significant so D and E appear to be
from the same population, which has a different mean to the one from which
A, B and C have been taken.
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then the standard error of the mean estimated from an ANOVA is:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r

(11:3)

where n is the sample size of each treatment. If the treatment sample sizes
are different, you use the formula:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

2
� 1

nA
þ 1
nB

� �s

(11:4)

where nA and nB are the numbers in each of the two treatments being
compared.

Then you calculate the Tukey statistic q for each pair of means by using
Equation (11.1) and the procedure in Figure 11.1. The value of qwill be zero
when there is no difference among the two sample means and will increase
as the difference between the means increases. If q exceeds the critical value,
the hypothesis that the means are from the same population is rejected.

The critical value of q depends on your chosen value of α, the number of
degrees of freedom for the MS error and the number of means being tested.
Here we deliberately have not given a table of q values because most
statistical packages will do multiple comparisons and even generate a dis-
play assigning the sample means to groups that appear to be from the same
population. Section 11.3 gives three examples and also illustrates that
ambiguous results are possible.

11.3 An a posteriori Tukey comparison following a significant
result for a single-factor Model I ANOVA

11.3.1 Trace elements in New England granites

Trace elements (especially the rare earth elements, Zr, Hf, Ta, Sc and Th) are
very useful for understanding crystallization histories and origins of granitic
magmas. The relative abundances of these elements are often used as
“fingerprints” to determine if geographically separated granite outcrops
have come from the same parent magma. Table 11.1 gives data for the
hafnium (Hf) contents of four different granitic bodies in New England.
This is a Model I ANOVA, because the researcher is only interested in the
granite at these four locations.
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If you run a single-factor ANOVA on the data in Table 11.1 you will
obtain an F ratio (F3,16) of 74.01, which has a probability of less than 0.001.
Therefore, at least some of the treatment means appear to be from different
populations. If you then run an a posteriori Tukey test you will find that all
four means appears to be from four distinctly different populations.

11.3.2 Stable isotope data from tourmalines in Maine

Table 11.2 gives data for the δ18O values for tourmalines from three local-
ities in western Maine: the Sebago Batholith, Black Mountain and Mount
Mica. Here too the mean δ18O values can be used to help decide whether
the tourmalines have originated from the same or different parent magmas.
A single-factor ANOVA will give an F ratio (F2,9) of 12.06, which has a
probability of 0.003. At least two treatment means do not appear to be from
the same population.

Table 11.1 Hf contents in (μg/g) of four different New England granites.

Cape Dan Seabody Wincy Easterly

16 19 25 12
14 20 30 10
16 22 26 12
17 20 27 13
18 24 28 9

�X 16.2 21.0 27.2 11.2

Table 11.2 δ18O values for tourmalines from three localities in western
Maine: the Sebago Batholith, Black Mountain and Mount Mica.

Sebago Batholith Black Mountain Mount Mica

12.2 12.4 14.8
13.1 12.6 13.2
12.7 12.1 13.5
12.6 11.9 14.6

�X 12.65 12.25 14.03
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If you run an a posteriori Tukey test it will show that means for the Sebago
Batholith and Black Mountain appear to be from the same population, while
the mean for Mount Mica appears to be from another with a significantly
greater δ18O value (Figure 11.2).

11.3.3 Apatite in sandstone

The percentage of apatite in sandstone shows considerable variation and
can be used to determine the source areas for these sediments. Table 11.3
gives data for the modal abundance of apatite at three different locations.
A single-factor ANOVA analysis gives an F ratio (F2,9) of 10.8, which has a
probability of 0.004. The three treatment means do not appear to be from
the same population.

If, however, you run an a posteriori Tukey test it will show that means for
Darcy and Runcan appear to be from the same population, while the means
for Runcan and Alinda appear to be from another.

This result (Figure 11.3) is obviously ambiguous. The a posteriori analysis
has separated the data into two subsets, but the mean of the Runcan sand-
stone cannot be distinguished from the means of either the Darcy or the
Alinda sandstone. At the same time, the mean of the Darcy can be distin-
guished from the mean for Alinda. Therefore, it seems at least one Type 2
error has been committed somewhere because the mean of the Runcan
sandstone has been assigned to two different populations. This is a common
problem and is discussed in more detail in the following two sections.

11.3.4 Power and a posteriori testing

Chapter 10 began with a discussion about the danger of an increased
probability of Type 1 error when making numerous pairwise comparisons

14.03

12.65

12.25

δ18O
(%0)

Mount Mica

Sebago

Black Mountain

Figure 11.2 Summary of the results of an a posteriori Tukey test comparing
among the means of the three samples in Table 11.2. Treatment means
connected by vertical lines are not significantly different.
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among three or more means. Here, however, the a posteriori method for
identifying which treatment means appear to be from the same population
uses numerous pairwise comparisons. Therefore, you may be thinking that
this procedure will also have an increased risk of Type 1 error.
First, however, unplanned a posteriori comparisons are usually only

made across all groups if the ANOVA has detected a significant difference
among the treatment means. Second, a posteriori tests are specifically
designed to take into account the number of means being compared and
have a much lower risk of Type 1 error than the same number of t tests.
Unfortunately this makes multiple comparison tests relatively low in power,
which is why they can give ambiguous results such as the one in
Section 11.3.3. In more extreme cases it sometimes happens that an
ANOVA detects a significant difference, but subsequent a posteriori testing
fails to detect a significant difference among any means. One solution is
to increase the sample size of each group or treatment (Chapter 8).

Darcy

Runcan

Alinda

% Apatite

9.0

6.0

3.0

0

Figure 11.3 Summary of the results of an a posteriori Tukey test comparing
among the means of the three samples in Table 11.3. Treatment means
connected by vertical lines are not significantly different. The test has assigned
the mean for Runcan into two groups (Darcy/Runcan) and (Runcan/Alinda)
so at least one Type 2 error has occurred.

Table 11.3 The modal percentage of apatite in sandstones from
three different basins.

Darcy Runcan Alinda

7 4 1
8 5 2
10 7 4
11 8 5

�X 9.0 6.0 3.0
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11.4 Other a posteriori multiple comparison tests

There are many other multiple comparison tests. These include the LSD,
Bonferroni, Scheffe and Student–Newman–Keuls. The most commonly
used are the Tukey and Student–Newman–Keuls (Zar, 1996). Most statis-
tical packages offer you a wide choice of these tests, the relative merits of
which are discussed in more advanced texts.

11.5 Planned comparisons

Instead of making a large number of indiscriminate unplanned a poste-
riori comparisons, a better approach can be to make a small number of
more careful (a priori meaning “before the event”) comparisons. For
example, in Section 11.3.2 you may have a good reason based on outcrop
appearance or geographical proximity to propose the following two a
priori hypotheses: “Oxygen isotopic ratios of tourmalines at Black
Mountain are significantly different than those at Mount Mica” and
“Oxygen isotopic ratios of tourmalines at Black Mountain are signifi-
cantly different than those at the Sebago Batholith.” An ANOVA will test
for differences among treatments with an α of 0.05 and also give a good
estimate of the sample variance from the MS error, since this has been
calculated from all the individuals used for this overall comparison. Next,
however, instead of making a large number of unplanned comparisons,
you could carry out two t tests comparing the mean oxygen isotopic ratio
at Black Mountain and Mount Mica, and Black Mountain and the Sebago
Batholith.

If you make only one planned comparison the probability of Type 1 error
is an acceptable 0.05. If you make several a priori comparisons that really
have been planned for particular reasons before the experiment (e.g. the
two listed above), then each is a distinct and different hypothesis, so the risk
of a Type 1 error is still an acceptable 0.05. It is only when you make
indiscriminate comparisons that the risk of Type 1 error increases and
you should consider using one of the a posteriori tests described previously,
which maintains an α of 0.05.

To make a planned comparison after a single factor ANOVA you use the
formula for a t test from Chapter 8 except that you use the mean square
error as the best estimate of s2:
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tnAþnB�2 ¼
�XA � �XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MS error
1 � 1

nA
þ 1

nB

� �r (11:5)

which reduces to Equation (11.6) when there are equal numbers in both
treatment groups:

tnAþnB�2 ¼
�XA � �XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MS error

n

q (11:6)

Here is an example, using the data from Example 2 in Section 11.3.2.
From the ANOVA, the mean square for error is 0.288. The mean of the

Black Mountain tourmaline δ18O is 12.25 ‰ and Mount Mica is 14.03 ‰.
Therefore:

t6 ¼ 12:25� 14:03
ffiffiffiffiffiffiffiffiffiffiffiffi
2�0:288

4

q ¼ �4:69

From Table 8.1 the critical two-tailed 5% value for t is ± 2.447. The two
means appear to be from different populations. This supports the idea that
these two pegmatites crystallized from unrelated magmas.
The planned comparison to test the Sebago Batholith tourmaline com-

pared to Black Mountain is:

t6 ¼ 12:65� 12:25
ffiffiffiffiffiffiffiffiffiffiffiffi
2�0:288

4

q ¼ 1:05

The critical two-tailed 5% value for t is ± 2.447, so these two means do not
appear to be from different populations.
Although you are likely to examine other different types of chemical data

to further test this conclusion, it appears plausible that the Black Mountain
and Mount Mica pegmatites do not share parent magmas, but the Sebago
Batholith and the Black Mountain pegmatite do originate from the same
parent. Note that this result is consistent with the Tukey test of these data in
Section 11.3.2.
Finally, here are two planned comparisons applied to the data for apatite

content of sandstones in Table 11.3. Your a priori hypotheses are: “The
percentage of apatite in Runcan sandstone is different from that in Darcy”
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and “The percentage of apatite in Runcan sandstone is different from that
in Alinda.” Again, the MS error from an initial ANOVA will give a good
estimate of the variance.

For the comparison between Runcan and Darcy:

t6 ¼ 6:00� 9:00
ffiffiffiffiffiffiffiffiffiffi
2�3:33

4

q ¼ �2:5

Since the critical two-tailed 5% value for t is ± 2.447, these twomeans appear
to be from different populations. Note that this result is different from the
one from the (ambiguous) Tukey test of the same data in Section 11.3.3,
which did not separate Runcan and Darcy.

For the comparison between Runcan and Alinda:

t6 ¼ 6:00� 3:00
ffiffiffiffiffiffiffiffiffiffi
2�3:33

4

q ¼ �2:5

Here too, since the critical two-tailed 5% value for t is ± 2.447, these twomeans
also appear to be from different populations. Again, note that this result is
different from the one from the Tukey test of the same data in Section 11.3.3,
which did not separate Runcan and Alinda. The a priori test has more power.

This example particularly illustrates the value of planned comparisons.
Both the Darcy and Alinda sandstones appear to be distinct from the
Runcan, at least on the basis of their apatite content. This conclusion is
different from the one made on the basis of the less powerful Tukey test
(Section 11.3.3) which could not separate the intermediate percentage for
Runcan from the higher percentage of Darcy or the lower one of Alinda
(and thus included a Type 2 error).

Importantly, you should only make a planned comparison if you really do
have a plausible hypothesis to justify this procedure. It is not appropriate or
ethical to examine the results of a Tukey test and say, in hindsight, “These
two means are almost significantly different, so I will run a t test on them
because it is likely to be more powerful.”

11.6 Questions

(1) A petroleum scientist was given the following data for the flow rate (in
barrels per day on eight days) for three specifically chosen oil wells in
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the Timor Sea, and was asked to identify the one which was producing
significantly more oil. (a) Does a single-factor ANOVA give a signifi-
cant result? (b) Is a posteriori testing needed? If so, which well is
yielding the most oil and is it significantly different to the other two?

RVB1 RVB2 RVB3

157 183 149
184 174 193
143 182 129
135 199 146
163 183 126
103 168 132
152 193 143
129 162 154

(2) In relation to the data in Question 1, wells RVB1 and RVB3 are only
1 km apart and the oil company was particularly interested in whether
the two wells were yielding different amounts. Use a t test to make a
planned comparison between wells RVB1 and RVB3 only. Is the result
significant?
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12 Two-factor analysis of variance

12.1 Introduction

A single-factor ANOVA gives the probability that two or more sample
means have come from populations with the same mean (Chapter 10),
but can only be used to analyze univariate data from samples exposed to
different levels or aspects of only one factor. For example, it could be used to
compare the diffusivity of hydrogen through olivine (the variable) at two or
more temperatures (the factor), the percentage of feldspar crystals (the
variable) in successive layers of an intrusive complex (the factor), or the
salinity of seawater (the variable) from several different depths (the factor).

Often, however, scientists obtain univariate data in relation tomore than one
factor. Examples of two-factor experiments are the phase equilibrium of alumi-
nosilicates (Al2SiO5) at several combinations of temperature and pressure, the
growth of crystals as a function of magmatic H2O and cooling rate, or the
likelihood of snow as a function of varying humidity levels and temperatures.

It would be very useful to have an analysis that gave separate F ratios (and the
probability that the treatmentmeans had come frompopulations with the same
mean) for each of the two factors. That is what two-factor ANOVA does.

12.1.1 Why do an experiment with more than one factor?

Experiments that simultaneously include the effects of more than one factor
on a particular variable may be far more revealing than looking at each
factor separately because you may detect certain combinations of factors
that have a synergistic effect. Also, by examining several factors at once,
there may be significant savings in time and resources compared to doing a
series of separate experiments and separate analyses.

Here is an example of the advantage of a two-factor experiment. It also
illustrates a synergistic effect – what statisticians call interaction – which
occurs when the effect of one factor varies across the levels of the other.
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Research on establishing the importance of the many possible causes of
global warming relies on understanding the evolution of greenhouse gasses
in the Earth’s atmosphere. These originate largely from volcanic eruptions,
which release gasses such as CO2, H2SO4, HCl and HF from the interior of
the planet. If these build up in the atmosphere, they can increase the amount
of solar radiation being absorbed, causing temperatures to increase. We are
fortunate that on Earth these gasses react with liquid water to form minerals
such as CaCO4 (calcite, or limestone in rock form) and apatite (CaSO4), so
end up getting stored in geological deposits, mostly in the ocean, instead of
heating up our atmosphere. Incidentally, the planet Venus was not so lucky –
it was too close to the Sun for liquid water to be stable on the surface, so all its
greenhouse gasses ended up in its atmosphere, and the surface temperature
there is an inhospitable 460 °C.
A climatologist investigating paleoclimates on Earth decided to examine

the effects of temperature and humidity on the rate of calcite formation, in
an attempt to help predict the storage of carbon dioxide in calcite in
response to global warming at sub-tropical latitudes. They designed an
experiment to examine the amount of calcite precipitation from seawater
as a function of both temperature and humidity (see Ufnar et al., 2008, for a
related example). Identical beakers of carbonate-rich seawater solutions
were placed in six combinations of three temperatures (20, 30 and 40 °C)
and two humidity levels (33 and 66%). There were four beakers in each
treatment, so 24 were used altogether.
This type of design, where there is a treatment for every combination of

the levels of each factor used, is called a “fully orthogonal” design or an
“orthogonal” design (Table 12.1). If one of the treatments was not included

Table 12.1 Example of an orthogonal two-factor design. There are
three levels of Factor A (temperature) and two levels of Factor B
(humidity) with four experimental units (beakers) in each of the six
possible combinations of the 3 × 2 treatment levels.

Temperature (oC)

Humidity (%) 20 30 40

33 4 beakers 4 beakers 4 beakers
66 4 beakers 4 beakers 4 beakers
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(for example the combination of 33% humidity with 20 °C), then the design
would not be orthogonal.

The results of the experiment can be displayed as a graph of the
means for each of the six combinations (which are often called cell
means), with temperature on the X axis, the weight of calcite precipitate
on the Y axis, and lines joining the three means within each of the two
levels of humidity. (If you wanted you could show humidity on the
X axis and have lines joining each of the three temperatures, but it is
easier to visualize when the greatest number of treatment levels are on
the X axis.)

Figure 12.1(a) shows a set of cell means where there is no interaction –

the change in humidity from 33 to 66% (or from 66 to 33%) has the same
effect on calcite precipitation at each temperature (in all cases an increase in
humidity increases calcite by about the same amount). Similarly, the effect
of an increase in temperature from 20 °C through to 40 °C (or vice versa) is
the same at each humidity.

In contrast, Figure 12.1(b) shows interaction.A change in humidity from
33 to 66% does not have the same effect on calcite precipitation at each of
the three temperatures, and a change in temperature from 20 °C through to
40 °C does not have has the same effect on calcite precipitation at each
humidity.

That is all interaction is. When there is a complete lack of interaction
(e.g. Figure 12.1(a)) the lines joining the treatment means always
run exactly parallel to each other (even though both lines move up,
they move up in parallel). In contrast, when there is interaction
(e.g. Figure 12.1(b)) the lines are not always parallel. As the amount of
interaction increases, the lines become less and less parallel and even-
tually the amount of interaction may reach a point where it is considered
significant.

Interaction between two or more factors is often of great interest to
earth scientists. It may be very helpful to know that a response to one
factor is not uniform across the range of a second factor, or that it is
uniform! For example, if you found that the rate of calcite precipitation is
unexpectedly high only when temperature is high and humidity is low
(Figure 12.1(b)), this synergistic effect would be an important component
of models predicting carbon dioxide storage in relation to global
warming.
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12.2 What does a two-factor ANOVA do?

Here you need to remember that a single-factor ANOVA partitions the total
variation into two components – the variation among groups (treatment
+ error) and the variation within groups (error), and examines whether there

Temperature (°C)     

(a)

Wt. of calcite
precipitates

33% humidity

66% humidity

20 30 40

Temperature (°C)

(b)

Wt. of calcite
precipitates

33% humidity

66% humidity

20 30 40

Figure 12.1 Interaction in a two-factor experiment. (a) No interaction
between the two factors temperature and humidity on calcite precipitation.
A change in humidity from 33 to 66% has the same effect on the amount of
calcite precipitation at each of the three temperatures, and a change in
temperature from 20 °C through to 40 °C has the same effect at each humidity.
(b) An interaction between temperature and humidity on calcite precipitation.
A change in humidity from 33 to 66% does not have the same effect on calcite
precipitation at each of the three temperatures, and a change in temperature
from 20 °C through to 40 °C does not have the same effect on calcite
precipitation at each humidity.
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is a significant effect of treatment by dividing the among groups mean square
by the within groups mean square. This gives an F ratio and probability
that all the treatment means have come from populations with the same
mean.

A two-factor ANOVA works in a similar way, but partitions the total
variation within a set of data into four components: the among group
variation due to (a) Factor A + error, (b) Factor B + error, (c) interaction
+ error and (d) error.

The way the analysis works is a straightforward extension of the concept
developed to explain single-factor ANOVA, and can also be explained
pictorially. For this we will use the simplest case of a two-factor design
with two levels only of each factor, both of which are fixed.

First, here are some examples of the types of outcomes you might get
from a two-factor experiment. We mentioned in Chapter 1 that colored
gemstones are often treated with some combination of 60Co irradiation
and heat to improve their appearance and commercial value. To better
understand the effects of these variables, a gemologist undertook an
experiment using four different combinations of heat and irradiation,
with four crystals in each treatment. Each of the 16 experimental units
was cut from a large amethyst crystal, so the starting composition and
appearance of each crystal were exactly the same. The crystals were kept at
four combinations of two temperatures and two different 60Co doses: after
two months the samples were removed and their opacity (degree of trans-
parency) was examined.

Several different outcomes are shown in Figure 12.2. The opacity within
each treatment combination with the 10 kGy radiation dose is indicated by
●, while the treatments exposed to the 100 kGy radiation dose are indicated
by ■.

12.3 How does a two-factor ANOVA analyze these data?

This explanation assumes you are familiar with the one already given for a
single-factor ANOVA in Chapter 10. We are using a two-factor experiment
with two levels of each factor, giving four treatment combinations, each of
which contains four replicates. The design is summarized in Table 12.2.
Both factors are fixed – the researcher is only interested in these specific
temperatures and radiation doses.
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Figure 12.2 Some of the possible outcomes of an orthogonal two-factor
experiment. Only the means for each treatment combination are shown.
(a) No effect of temperature or radiation dose and no interaction. All
treatment means are the same and the lines joining the means within each
radiation dose are also the same. (b) An effect of radiation dose, but no effect of
temperature and no interaction. The two treatment means for 100 kGy
radiation dose are consistently higher than the two for 10 kGy radiation dose.
(c) An effect of temperature but no effect of radiation dose and no interaction.
The two treatment means for 50 °C are consistently greater than the two for
200 °C. (d) An effect of temperature and radiation dose but no interaction.
All treatment means are different, but the change in opacity in relation to a
change in radiation dose from 10 to 100 kGy is the same at each temperature
and vice versa. (e) An effect of temperature and radiation dose and some
interaction. The change in opacity between 10 and 100 kGy dose is not the
same at each temperature and vice versa. Note that all lines joining the
treatments within the same radiation dose are parallel except in example
(e), where there is some interaction between temperature and radiation dose.
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To start, think about the opacity of the amethyst crystals that will result
from these treatments. It will be displaced from the grand mean by four
sources of variation – that associated with Factor A plus Factor B plus
interaction plus error. This is called the total variation in the experiment.
Put formally, the position on the Y axis of each replicate in relation to the
grand mean will be determined by the following formula:

Crystal opacity ¼ Factor Aþ Factor Bþ interactionþ error

(12:1)

Here you may wish to contrast this with the much simpler equation for the
total variation within a single-factor experiment from Chapter 10:

d18O of tourmaline ¼ treatmentþ error (12:2 copied from 10:1)

Just as in the single-factor ANOVA, the variation within a two-factor
experiment can be partitioned into several additive components. These
are shown in Figures 12.3 to 12.6.

First, the final opacity of each crystal will be displaced from its respective
cell mean by error only. This is estimated in just the same way as for a single-
factor ANOVA and also called the within group variation or error
(Figure 12.3). The distances between each replicate and its cell mean
are squared and added together to give the within group (error) sum of
squares. The sum of squares is divided by the appropriate degrees of freedom
(here there are 3+ 3+3+3= 12) to give the within group (error) mean square.

Second, each replicate will be displaced from the grand mean by all
sources of variation in the experiment – the effect of Factor A plus
Factor B plus interaction plus error. This is called the total variation in

Table 12.2 The orthogonal design used to explain how two-factor
ANOVA works in Figures 12.3 to 12.6. There are four combinations of
the two temperatures and two radiation doses, with four
experimental units (in this example, amethyst crystals) in each.

Temperature (oC)

60Co dose (kGy) 50 200

10 4 crystals 4 crystals
100 4 crystals 4 crystals
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the experiment. In Figure 12.4 the distance displaced is shown for all
replicates. These distances can be squared and added together to give the
total sum of squares for the experiment. (Again, this is the same as the
procedure for a single factor ANOVA.)
So far, this is the same procedure used to calculate the within group

(error) variance and total variance for a single-factor ANOVA.

(a) The within group variance (Figure 12.3) which is due to error only can
be calculated from the dispersion of the points around each of their
respective cell means.

(b) The total variance (Figure 12.4) will estimate the total variation in the
experiment (the within group (error) variance plus Factor A, Factor B,
plus interaction) and can be calculated from the dispersion of all the
points around the grand mean.

At this stage you still need separate effects for Factor A (temperature
+ error), Factor B (dose + error) and A × B (interaction + error).

Opacity
Grand mean

50  °C 200  °C

Figure 12.3 The estimation of within group (error) variation in the
experiment on gemstone opacity when amethyst crystals are exposed to four
different combinations of temperature and radiation dose. Each crystal is
shown as a symbol: ● = crystals at 10 kGy 60Co dose, ■ = crystals at 100 kGy
60Co dose. Horizontal lines indicate the grand mean and each cell mean. The
displacement of each replicate from its cell mean (arrows) will be caused by
error only.
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12.4 How does a two-factor ANOVA separate out the effects
of each factor and interaction?

Two-factor ANOVA separates out the effects of each factor and interaction
in a very elegant way. After having done the preliminary calculations in
Figures 12.3 to 12.4, the data are only considered in relation to each of the
two factors. This is done by first ignoring the different levels within Factor B
and considering the data only in relation to Factor A (temperature), after
which the same is done for Factor B (radiation dose). These procedures are
shown in Figures 12.5 and 12.6 and allow you to calculate separate sums of
squares for temperature + error and also dose + error. They are called the
simple main effects because they examine each factor in isolation from the
other.

First, the levels of radiation dose are ignored and the data treated as though
they are for a single-factor experiment on temperature only. Here, therefore,
you will have eight replicates within each of the two levels of temperature and
you can calculate a mean for each group. These new means, calculated from
all eight replicates within each treatment, will only be displaced from the

Opacity

50  °C 200  °C

Grand mean

Figure 12.4 The total variation within the experiment on gemstone opacity.
Each crystal is shown as a symbol:● = crystals at 10 kGy 60Co dose,■ = crystals
at 100 kGy 60Co dose. The heavy horizontal line indicates the grand mean. The
four shorter horizontal lines indicate each cell mean. The displacement of each
replicate from the grand mean (arrows) will be caused by the total variation
within the experiment.
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grand mean by the average effect of temperature plus error. Therefore, the
displacement of the treatment means from the grand mean can be used to
calculate the sum of squares and mean square for Factor A (temperature +
error) only (Figure 12.5) just as in a single-factor ANOVA.
Second, the levels of temperature are ignored and the data are treated as

though they are for a single-factor experiment on radiation dose only.
Here too, you will have eight replicates within each of the two levels of
radiation dose and you can calculate a mean for each of the two groups.
These new means, calculated from all eight replicates within each treat-
ment, will only be displaced from the grand mean by the average effect
of dose plus error (Figure 12.6). Therefore, the displacement of the
treatment means from the grand mean can be used to calculate the sum
of squares and mean square for Factor B (radiation dose + error) only just
as in a single-factor ANOVA.
At this stage you have sums of squares for the following:

Opacity
Grand mean

50  °C 200  °C

Figure 12.5 The effect of Factor A (temperature + error) only on the opacity
of amethyst crystals. Each crystal is represented as a symbol: ● = crystals at
10 kGy 60Co dose, ■ = crystals at 100 kGy 60Co dose. These data have been
pooled for each temperature, ignoring radiation dose, thereby generating two
new treatment means, shown by the horizontal lines. The displacement of
each treatment mean from the grand mean is an estimate of the average effect
of temperature plus error. The sum of squares is the sum of the square of each
displacement, which is then multiplied by the number of replicates in that
treatment. The mean square is the sum of squares divided by n− 1 degrees of
freedom where n is the number of temperature treatments (here n= 2).
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(a) The total variation in the experiment (the combined effects of Factor
A, Factor B, A × B and error) (Figure 12.4)

(b) The effect of Factor A (temperature + error) (Figure 12.5)
(c) The effect of Factor B (dose + error) (Figure 12.6)
(d) error (Figure 12.3)

From this list, the only separate sum of squares you still need is the one
for interaction plus error. Because the sums of squares are additive and the
total variation is the combined effects of all the factors in the ANOVA
(Section 10.3.4), you can calculate the sum of squares for interaction by
subtraction. This is done by taking away the sums of squares for Factor A,
Factor B, and error from the total sum of squares ((a) above minus (b) and
(c) and (d)). Now you have the following sums of squares:

* The total variation in the experiment (the combined effects of Factor A,
Factor B, A × B and error) (Figure 12.4)

* The effect of Factor A (temperature + error) (Figure 12.5)

Opacity
Grand mean

10 kGy 60Co 100 kGy 60Co 

Figure 12.6 The effect of Factor B (radiation dose + error) only on the
opacity of amethyst crystals, represented here as symbols: ● = crystals at
10 kGy 60Co dose, ■ = crystals at 100 kGy 60Co dose. These data have been
pooled for each radiation dose, ignoring temperature, thereby generating two
different treatment means, shown by the horizontal lines. The displacement of
each treatment mean from the grand mean is the average effect of dosage for
the number of replicates in that treatment. The sum of squares for the effect of
radiation dose is the sum of the square of each displacement, which is then
multiplied by the number of replicates in that treatment. The mean square is
the sum of squares divided by n− 1 degrees of freedom where n is the number
of radiation treatments (here n= 2).
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* The effect of Factor B (radiation dose + error) (Figure 12.6)
* The effect of interaction (interaction + error) (by subtraction)
* Error (Figure 12.3)

Once you have these, dividing by the appropriate degrees of freedom will
give you mean square values, just as for a single factor ANOVA. The effect
of each factor can be estimated by dividing the factor mean square by the
error mean square to get an F ratio. If the F ratio is significant, the factor is
considered to have an effect. The F ratios for the effects of interaction, Factor
A and Factor B are summarized in Table 12.3. Most statistical packages will
give an analysis of variance summary table that has all of these sums of
squares, degrees of freedom, mean square values and F ratios.

12.5 An example of a two-factor analysis of variance

Gemologists sometimes characterize the appearance of treated gemstones
on the basis of their thermoluminesence, which is easily measured in a
spectrometer. Quartz crystals may be treated with high doses of radiation to
induce defects (color centers) that turn colorless quartz into more valuable
smoky quartz (brown). The data in Table 12.4 are for the intensity (measured
in counts ×105) of the 380nm thermoluminescence peak in quartz crystals
treated at three temperatures and three levels of 60Co radiation dose.
As an initial step, you might plot the cell means on a graph similar to

Figure 12.2 to see what they look like. Which factors might you expect to be
significant? Would you expect a significant interaction? Why?
Next, if you use a statistical package to run a two-factor ANOVA on these

data your results will include something similar to Table 12.5 which gives
the F ratio and probability for each of the two factors and their interaction.

Table 12.3 Variation estimated by each mean square term and the appropriate
division to estimate the effect of each factorwhen Factor A and Factor B are both fixed.

Source of variation Calculation of F ratio

Factor A Mean square for Factor A
Error

Factor B Mean square for Factor B
Error

Interaction (A × B) Mean square for interaction
Error
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The interaction term is symbolized by Temperature*Radiation. Note that
the F ratios for temperature and radiation dose are significant at P < 0.001,
but there is no significant interaction (P= 0.852). It seems the samples have
come from different populations in relation to the levels of temperature and
also radiation dose, but there is no interaction between these factors. This
result should not be a surprise if you have plotted the six treatment means
before doing the analysis.

12.6 Some essential cautions and important complications

There are some essential cautions and important complications associated
with two-factor and more complex ANOVAs that you must be aware of.

Table 12.4 Thermoluminesence (measured in counts ×105) of
27 quartz crystals kept in nine different combinations of
temperature and 60Co radiation dose.

Temperature (oC)

60Co dose (kGy)
50
(level 1)

200
(level 2)

400
(level 3)

10 (level 1) 1 5 9
2 6 10
3 7 11

100 (level 2) 9 13 17
10 14 18
11 15 19

1000 (level 3) 17 21 25
18 22 26
19 23 27

Table 12.5 An example of the type of output given by a statistical package
for a two-factor ANOVA.

Source of variation Sum of squares df Mean square F ratio Significance

Temperature 312.66 2 156.33 156.33 0.000
Radiation 1200.66 2 600.33 600.33 0.000
Temperature* Radiation 1.33 4 0.33 0.33 0.852
Error 18.00 18 1.00
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(1) A significant effect of a factor does not reveal where differences occur if
you have examined more than two levels of that factor.

(2) A significant interaction can make the F ratios for Factor A or Factor B
misleading.

(3) If one or both of the factors are random, you need to use a different
procedure for calculating the F ratios for one or both of Factors A and B.

These three complications are explained below.

12.6.1 A posteriori testing is still needed when there is a significant
effect of a fixed factor

First, just as for a single-factor ANOVA, a significant effect does not reveal
where differences occur among the levels of that factor. For example, if you
did a two-factor ANOVAwith four levels of Factor A and six of Factor B, and
found a significant effect of Factor A, it will not identify which levels of Factor
A appear to come from populations with the same, or different, means. Here,
just as for a single-factor analysis, you need to carry out a posteriori testing.
This is straightforward if there is no significant interaction.
If the interaction is not significant a posteriori testing can be done for

each factor that has a significant effect. This compares the mean values for
the pooled data (e.g. Figures 12.5 and 12.6) in just the same way as a single-
factor ANOVA (Chapter 11). For example, if you were to use a Tukey test,
the formula is the same as the one given in Chapter 11:

q ¼ XA � XB

SEM
(12:3)

To calculate the standard error of the mean from the ANOVA statistics you
use:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r

(12:4)

where n is the sample size of each pooled group. If the sample sizes are
different, you need to use a slight modification of the formula (which
reduces to the one above when nA is the same size as nB).

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

2
� 1

nA
þ 1
nB

� �s

(12:5)
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Figure 12.7 An illustration of how interaction can obscure main effects in a
two-factor ANOVA. (a) As temperature increases, thermoluminescence
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Then you simply calculate the Tukey q statistic for each pair of means and
look up the critical value, using the degrees of freedom from the MS within
groups (error). If the calculated value is greater than the critical value of q,
the hypothesis that the means are from the same population is rejected. The
value of q will range from zero when the two sample means are the same to
high values as the means become increasingly different. Once again, many
statistical packages will do Tukey tests and assign the means to groups that
are significantly different to each other.
Just as with a one-factor experiment, a priori planned comparisons can

also be made between particular cell means but only if these have been
specified beforehand (see Section 11.5).

12.6.2 An interaction can obscure a main effect

The two-factor analysis described in Section 12.5 gave mean squares for the
main effects of Factor A (temperature) and Factor B (radiation dose),
interaction and also error. The effect of each factor is estimated by dividing
the factor mean square by the error mean square.
This is appropriate, but there is a complication. A significant interaction

means that the effect of one factor (e.g. radiation dose) is not constant
across the levels of the second factor (e.g. temperature). Therefore, if
there is a significant interaction, the conclusion of a non-significant
main effect (because of a non-significant F ratio for that factor) may not
be correct.
Here is a rather extreme example which clearly illustrates the problem.

Imagine an experiment designed to investigate the effects of two treat-
ments, with three levels of Factor A and two of Factor B. Figure 12.7
shows the results of this experiment. Although there is obviously an
effect of temperature and also of radiation dose on thermoluminescence,
the response to temperature at 100 kGy 60Co is the opposite of that at
10 kGy 60Co.

Caption for Figure 12.7 (cont.) decreases at 10 kGy dosage, but increases at
100 kGy dosage. (b) When radiation dose is ignored, the cell means for the
three levels of temperature only, ignoring dosage, are shown as three short
horizontal lines. Note they all lie on the grand mean. The sum of squares for
temperature will be zero. (c) When temperature is ignored, the cell means for
the two levels of radiation dose only, ignoring temperature, are shown as two
short horizontal lines. Note they both lie on the grand mean. The sum of
squares for radiation dose will be zero.
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When these results are analyzed by a two-factor ANOVA, the total sum
of squares will be large because most replicates will be well dispersed from
the grand mean (Figure 12.7(a)). There will also be some error because the
replicates are dispersed from their cell means (Figure 12.7(a)). But when the
ANOVA partitions the sums of squares among the separate factors of
temperature and radiation dose, the results are extremely misleading.

First, consider the pooled analysis to assess the effect of temperature. The
new cell means for each of the three levels of temperature (ignoring radia-
tion dose) will all lie on the grand mean. Consequently there will be no
overall effect of temperature and the sum of squares for temperature will
be zero (Figure 12.7(b)), even though there is obviously an effect of temper-
ature within each level of radiation dose.

Second, consider the pooled analysis to assess the effect of radiation dose.
The new cell means for each of the two levels of dosage (ignoring temperature)
will also lie on the grandmean, so the sumof squares for radiation dosewill also
be zero (Figure 12.7(c)) even though there is an effect of dosage within each
temperature. The sum of squares for interaction will be realistic and very large.

Therefore, when there is a significant interaction, it is not appropriate
to trust the F ratios for the effects of Factors A and B. This caution is
particularly important because most statistical packages calculate F ratios
for main effects regardless of whether the interaction is significant or not.

The solution to this problem is straightforward. A graph of the cell means
such as Figure 12.7(a) is a useful first step, because it will give you a visual
indication of the positions of each cell mean. The next step is statistical –
you need to look at the effects of each factor across all levels of the second
factor using an a posteriori test. This procedure is a little fiddly, but quite
easy to do. Here, shown pictorially, is how you can analyze the thermolu-
minescence example.

First, you compare the two cell means within each of the three levels of
temperature (Figure 12.8(a)).

Second, you compare the three cell means within each of the two levels of
radiation dose (Figure 12.8(b)).

Here too, for a Tukey test, you simply use the formulae:

q ¼ XA � XB

SEM
(12.6 copied from 12.3)
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and

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r

(12.7 copied from 12.4)

where n is the sample size within each cell. Again, the modification to the
formula shown in Equation (12.5) applies if there are different numbers in
each cell.

Thermoluminescence

100 kGy 60Co dose

10 kGy 60Co dose

grand mean

Temperature (°C)

50 200 400

(a)

Thermoluminescence grand mean

10 100
60Co dose (kGy)

(b)

Figure 12.8 Illustration of the comparisons required for full a posteriori
testing of a two-factor ANOVA when there is a significant interaction. (a)
Double-headed arrows show the means for the two levels of Factor B
(radiation dose) within each level of Factor A (temperature) compared as part
of full a posteriori testing. (b) Double-headed arrows show the means for the
three levels of Factor A (temperature) within each level of Factor B (radiation
dose) compared as part of full a posteriori testing.
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This rather long but extremely important example emphasizes that when
there is a significant interaction you need to examine all possible combina-
tions of treatments, and that conclusions from F ratios for main effects may
not be realistic.

Most statistical programs will not calculate a posteriori tests for all
possible combinations of cell means given above, so it may be necessary
for you to do these calculations using a spreadsheet or a calculator. This
procedure, and the statistical tables necessary to decide whether each differ-
ence is significant, are covered in more advanced texts.

12.6.3 Fixed and random factors

The final complication applies to two-factor and more complex analyses of
variance that include random factors. The concept of fixed and random
factors was discussed in Section 10.6, but here is a reminder.

A fixed factor is one where the treatments (e.g. levels of temperature)
have been specifically chosen. You are only interested in those particular
treatments and the null hypothesis reflects this – for example “There is no
difference in crystal opacity after treatment at 50 °C and 200 °C.”

A random factor is one where the treatments are used as random
representatives of the full set of possible treatments within that factor.
Therefore, the null hypothesis is more general. Instead of comparing spe-
cific temperatures the hypothesis is “There is no difference in crystal opacity
at different temperatures.” The levels of temperature chosen and used in the
experiment are merely random representatives of the wider range of
temperatures at which opacity or color changes might occur.

For a two-factor ANOVA both factors could be fixed, one could be
random and the other fixed, or both could be random.

If a two-factor experiment contains two fixed factors, the method for
calculating the F ratios for the main effects (Factor A and Factor B) are those
given in Table 12.3 and repeated in Table 12.6. The mean square for each
factor estimates the effect of that factor plus error, and an F ratio is obtained
by dividing the mean square for that factor by the within groups (error)
mean square.

If, however, the analysis contains two random factors, the sum of squares
andmean square for each of the two factors will be inflated by the inclusion
of any additional variation caused by interaction. Therefore, the variation
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estimated by the mean square for each main effect will be the effect of that
factor, plus interaction plus error. This is explained pictorially below. Most
importantly, to realistically estimate the F ratios for each random factor you
need to divide the factor mean squares by the interaction MS (which
estimates interaction plus error) rather than the error MS (Table 12.6).
Finally, if the ANOVA has one fixed and one random factor it is even

more complicated. Most statisticians recommend that if Factor A is fixed and
Factor B is random, the F ratio for Factor A is obtained by dividing the Factor
A MS by the interaction MS, but the F ratio for Factor B is obtained by
dividing the Factor B MS by the error MS (Table 12.6). In all cases the F ratio
for interaction is obtained by dividing the interaction MS by the error MS.
Importantly, many statistical packages do not give appropriate F ratios

when random factors are included in an analysis, so you have to do these
calculations yourself by dividing by the appropriate mean squares.
Here is a conceptual pictorial explanation for the different ways of estimat-

ing main effects in a two-factor ANOVA depending on whether the other
factor is fixed or random. In all cases the fixed factor of interest is Factor A.
Imagine the hypothetical case where the only levels of Factor A and B that

exist in the world are A1 and A2, and B1, B2, B3 and B4. As an example, A1
and A2 may be 1wt% and 2wt% H2O in a magma, where there are four
different mineral species crystallizing (B1 to B4). You are interested in the
effects of H2O on the modal abundances of these four minerals.
Figure 12.9(a) shows crystal abundance (by mode, which is a percentage

of the total) for all eight possible combinations of Factors A and B. Note that

Table 12.6 Sources of variation contributing to the mean squares for Factor A,
Factor B and interaction when both A and B are fixed, A is fixed and B is random,
and both A and B are random.

Source of
variation

Both factors
fixed

Factor A fixed, Factor B
random Both factors random

Factor A Factor A
+ error

Factor A + interaction
+ error

Factor A + interaction
+ error

Factor B Factor B
+ error

Factor B + error Factor B + interaction
+ error

Interaction Interaction
+ error

Interaction + error Interaction + error
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B4

B2

A1 A2
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Abundance

A1 A2
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(c)
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B4
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Figure 12.9 A pictorial explanation for the reason why the F ratio for a main
effect is calculated differently, depending on whether the other factor is fixed
or random. Cell means are indicated by symbols and pooled treatment means
are indicated by the two heavy horizontal lines. (a) All the possible levels of
Factor A and Factor B, together with all possible combinations of these, are
shown. Note that there is considerable interaction but overall there is no effect
of Factor A (when Factor B is ignored, the pooled treatment means for A1 and
A2 are identical). (b) When Factor B is fixed and only a subset of B is
considered (B2 and B4), the interaction will contribute to the difference
between the pooled means of A1 and A2, but this variation is a relevant
addition within the deliberately restricted levels of each factor being
compared. (c) When Factor B is random, the interaction will contribute
unrealistic additional variation to the difference between the pooled means of
A1 and A2. It will not indicate the true lack of change fromA1 to A2 across the
entire set of the levels of B and therefore needs to be excluded.

162 Two-factor analysis of variance



there is no effect of Factor A when averaged over all possible levels of Factor
B because the means for each of the levels A1 and A2, ignoring the separate
levels of Factor B, are all the same. Nevertheless, there is considerable
interaction between the two factors.

Both factors fixed and an interaction
First, consider the case where both factors are fixed, and you are only
interested in the four combinations of A1 and A2 with B2 and B4.
Because both factors are fixed, you are not interested in whether any differ-
ences in modal abundance between A1 and A2 within this very restricted
comparison also reflect those averaged over all possible levels of Factor B.
The comparisons between A1, A2 and B2, B4 are shown in Figure 12.9(b).

Cell means have been copied from the appropriate part of Figure 12.9(a).
Although the means of treatments A1 and A2 (ignoring B) are affected by
the interaction, you are only interested in treatment A1 compared to A2
within the two fixed levels of B2 and B4. Therefore, to get a realistic effect of
Factor A within this limited and fixed comparison, the variation due to the
interaction is a necessary additional component of Factor A and you calculate
the F ratio for Factor A by dividing its treatment mean square by error only.

Factor A fixed, Factor B random and an interaction
Second, consider the case where Factor A is fixed and Factor B is random.
You are interested in the comparison between A1 and A2 across all possible
levels of B, from which B2 and B4 have been chosen as random representa-
tives. The results of the experiment on the combinations of A1, A2 and B2, B4
are shown in Figure 12.9(c). Here too, the pooledmeans of treatments A1 and
A2 (ignoring B) are affected by the interaction, but the difference within the
experiment does not reflect the lack of change betweenA1 andA2 averaged
over all possible levels of Factor B in Figure 12.9(a). Therefore, because the
interaction has contributed additional variation to the sum of squares and
mean square for Factor A it is appropriate to exclude it by dividing the Factor
A mean square by the interaction + error mean square to get a more realistic
effect of Factor A averaged over all four possible levels of B.
For any two-factor ANOVA, the effect of a particular factor

(e.g. Factor A) is estimated by dividing by the mean square for error only
if the other factor is fixed, but by the mean square for interaction (i.e.
interaction + error) if the other factor is random. Therefore, if both factors
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are random, you divide the mean squares of both by the interaction mean
square.

Finally, although we have specified the procedure for obtaining realistic F
ratios when one or both factors are random, there is still some disagreement
about this. Some authors recommend dividing themean square for Factor A
and also Factor B by the mean square for interaction + error when either or
both is random. Most importantly, if you have an analysis involving one or
more random factors it is important to clearly specify how you calculated
the F ratios for each factor.

12.7 Unbalanced designs

The cautions about unbalanced designs (when the sample size is not the
same in each treatment) in relation to one-factor ANOVA also apply to
more complex models. Whenever possible, you should try to ensure that
samples sizes are equal in each treatment combination, especially when
sample sizes are relatively small, because they may not give good estimates
of cell means and result in misleading conclusions.

12.8 More complex designs

Once you understand the concept of single-factor and two-factor analyses of
variance, extension to three ormore factors and other designs is relatively easy.

A two-factor ANOVA breaks the analysis down into two main factors
(which are each analyzed like a single-factor ANOVA) and generates an
interaction term by subtraction.

A three-factor ANOVA does the same thing, but the analysis and
ANOVA table are more complex because there are three main factors
(Factors A, B and C), plus interaction among all three (A ×B, A×C,
B ×C, A ×B×C), and error. More advanced texts give rules for obtaining
the appropriate F ratios with more complex designs, where there can be
several combinations of fixed and random factors as well.

If you continue on to use ANOVA a lot you will realize that this chapter is
very introductory. There are nested ANOVAs, two-factor ANOVAs with-
out replication, ANOVAs for split plot designs, unbalanced designs and
many more. This book does not attempt to cover all of these. Instead, it
provides you with a general conceptual view that will help you work with
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more complex designs. If you have to do complex experiments requiring
complicated ANOVA, you will need a good advanced textbook (e.g. Koch
and Link, 2002; Davis, 2002; Borradaile, 2003; Gamst, et al., 2008). It may
help to talk to a statistician before you design the experiment.

12.9 Questions

(1) Constructing your own data set will help you understand how a two-
factor ANOVA works and what the F ratios and probability values for
each term mean. Use a simple design with three levels of Factor A and
two of Factor B. Assume the ANOVA isModel I. First, make all the cells
means identical by using the following data:

Factor A A1 A2 A3

Factor B B1 B2 B1 B2 B1 B2

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

(a) Analyze these data with a two-factor, Model 1 ANOVA.What are the
F ratios and probabilities for each factor and the interaction? (b) Now,
deliberately change the data so you would expect a significant effect of
Factor B, no effect of Factor A and no interaction. Rerun the two-factor
analysis. What are the F ratios and probabilities for each factor and the
interaction? (c) Finally, deliberately change the data so you would expect
a significant effect of Factors A and B, but no interaction, and rerun the
analysis. What are the F ratios and probabilities for each factor and the
interaction? It will help if you start this problem by drawing a rough
graph of the cell means like the one in Figure 12.7(a).

(2) In the previous question you examined a simple design with three levels
of Factor A and two of Factor B. Change the data in the table given in
Question 1 so you would expect a significant effect of Factor A and
Factor B as well as a significant interaction. Run the two-factor analysis.
(a) What are the F ratios and probabilities for each factor and the
interaction? Here too it will help if you draw a rough graph of the cell
means like the one in Figure 12.7(a) to visualize the data.
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13 Important assumptions of analysis
of variance, transformations and
a test for equality of variances

13.1 Introduction

Parametric analysis of variance assumes the data are from normally dis-
tributed populations with the same variance and there is independence,
both within and among treatments. If these assumptions are not met, an
ANOVA may give you an unrealistic F statistic and therefore an unrealistic
probability that several sample means are from the same population.
Therefore it is important to know how robust ANOVA is to violations of
these assumptions and what to do if they are not met, because in some cases
it may be possible to transform the data to make variances more homoge-
neous or give distributions that are better approximations to the normal
curve.

This chapter discusses the assumptions of ANOVA, followed by three
frequently used transformations. Finally, there are descriptions of two tests
for the homogeneity of variances.

13.2 Homogeneity of variances

The first and most important assumption is that the data for each treatment
(or treatment combination in the case of two-factor and more complex
ANOVA designs) are assumed to have come from populations that have the
same variance. Equality of variances is called homogeneity of variances or
homoscedasticity, while unequal variances show heterogeneity of varian-
ces or heteroscedasticity. Nevertheless, statisticians have found that
ANOVA is relatively robust in terms of departures from homoscedasticity,
and there has been considerable discussion about whether it is necessary to
apply tests which assess this before doing an ANOVA, especially because
these may be too sensitive when sample sizes are large, or too insensitive
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when sample sizes are small (e.g. Koch and Link, 2002). Many authors
suggest preliminary testing for homoscedasticity is not necessary, providing
as a very general rule that the ratio of largest variance to the smallest
variance does not exceed 4 : 1.
Some cases of heteroscedasticity can be reduced by transforming the data

(Section 13.5). Consequently, it is often useful to plot the data or calculate
the variance within each treatment, or treatment combination, to see if there
is a trend. For example, geological data often show an increase in variance as
the mean increases, in which case transforming the data by taking the
square root of each value may reduce heteroscedasticity (Section 13.5).
There are several tests designed to assess heteroscedasticity and these

have more uses than just checking whether data are suitable for parametric
analysis. Sometimes you may be interested in a hypothesis about the
variances rather than the means of different treatments. For example, you
might hypothesize that cooling rate affects the variance of quartz abundance
in granite, so you would need to analyze your data with a test that compares
variances among different localities. The Levene test for heteroscedasticity is
described in Section 13.7.

13.3 Normally distributed data

The second assumption is that the data are from normally distributed
populations. Nevertheless, it has been shown that ANOVA is quite robust
in terms of minor departures from normality. As previously described in
Section 8.7.1, drawing P-P plots can assess normality. You should only be
cautious about proceeding with a parametric analysis if a P-P plot shows
gross departures from linearity such as sharp kinks.

13.3.1 Skew and outliers

A box-and-whiskers plot (Tukey, 1977) is a way of visually summarizing the
distribution of a sample (Figure 13.1) so it can be assessed for skew and
whether there are values in the data set which are unusually distant (either
greater or less) from the mean. These are called outliers. Construction of a
box-and-whiskers plot is straightforward.
For a sample containing an odd number of values you need to find the

median, which is the middle value of the set of data.
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Next, divide the data into two sets, the first of which contains all the
values less than the median and the second of which contains all the values
more than the median. Include the median in each set.

Then, find the median of each of the lower and upper set. These new
medians are called the lower quartile and upper quartile, which are used to
draw the upper and lower limits (which are also called the hinges) of the
box. The distance between these quartiles or hinges is the interquartile
range. Twenty-five percent of the values in the sample will be larger than the
upper quartile, fifty percent will lie between the two quartiles and twenty-
five percent will be smaller than the lower quartile.

Finally, you need to add the whiskers to the box. Each whisker can extend
outwards for a maximum distance of 1.5 times the interquartile range from
each end of the box, but is only drawn to the maximum value within that
range.

This will give you a plot with a box running from the lower to upper
quartiles and whiskers extending out from each end of the rectangular box
(Figure 13.1).

For a data set with an even number of values the procedure is almost the
same except that after finding the median you divide the data into two sets,
the first of which contains all the values less than the median and the second
of which contains all the values more than the median.

Interquartile
range
(50% of
values)

upper whisker

lower whisker

upper quartile or upper hinge

lower quartile or lower hinge

median

Figure 13.1 The features of a box-and-whiskers plot.
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13.3.2 A worked example of a box-and-whiskers plot

This example uses a sample with an odd number of values (n = 9): 1, 3, 4, 6,
7, 9, 10, 12, 25. The median of this sample is 7, so it is divided into two
groups where the lower group contains 1, 3, 4, 6 and 7, while the upper
group contains 7, 9, 10, 12 and 25. Themedian of the lower group is 4, which
becomes the lower quartile. The median of the upper group is 10, which
becomes the upper quartile. These are the limits of the ends of the box
(called the hinges).
The interquartile range is 10− 4 = 6 units. From this you can draw the

rectangular box in Figure 13.2(a). The maximum potential length of each
whisker is 1.5 times the interquartile range and thus 1.5 × 6 = 9. This is
shown in Figure 13.2(b). Each whisker can extend out a maximum of 9 units
from its hinge. Because each whisker is only drawn to the most extreme
value within its potential range, the lower whisker will only extend
down to 1, while the upper will only extend up to 12. The outlier of 25,
indicated by an asterisk, lies outside the range of the box and its whiskers
(Figure 13.2(c)).
The shape of the box-and-whiskers plot indicates whether the distri-

bution is skewed. If the distribution of the data is symmetrical about the
mean the box-and-whiskers plot will have a median equidistant from
the hinges, and whiskers that are of similar length. As the distribution
becomes increasingly skewed the median will become less equidistant
from the hinges and the whiskers will have different lengths
(Figure 13.3).
Any values outside the range of the whiskers are called outliers

and should be scrutinized carefully. In some cases outliers are obvious
mistakes caused by incorrect data entry or recording, faulty equipment
or inappropriate methodology (e.g. a daily temperature of −80 oC or a
negative radiometric age date) in which case they can justifiably be
deleted. When outliers appear to be real, they are of great interest
because they may indicate that something unusual is occurring, espe-
cially if they are present in some samples or treatments and not others.
Importantly, however, when there are outliers you should be cautious
about using a parametric test. One or two extreme values can greatly
affect the variance of a sample because the formula for the variance uses
the square of the difference between each value and the mean, so the
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(a) The box (b) The maximum potential
range of each whisker

(c) The actual range of 
each whisker

12

10
9

7
6

4
3

1

12

10
9

7
6

4
3

1

25 25 *

Figure 13.2 The three steps in drawing a box-and-whiskers plot, using the
data in Section 13.3.2. (a) Drawing the box. (b) Establishing the maximum
potential length of each whisker. (c) Drawing the actual length of each whisker.

(a) (b)

*

*
*

Figure 13.3 Examples of box-and-whiskers plots for (a) normally distributed
data and (b) data with a gross positive skew. Outliers are shown as asterisks.
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assumption of equal variances among treatments or samples can be
easily violated.

13.4 Independence

Finally, the data must be independent of each other, both within and among
groups. This important assumption needs very little explanation because it
is really just a matter of good experimental design. For example, you need to
ensure each sampling or experimental unit within each treatment, or
combination of treatments for more complex designs, is chosen independ-
ently and all possible units within the population have an equal likelihood of
being selected.

13.5 Transformations

Transformations are a way of reducing heteroscedasticity or making data
more closely resemble a normal distribution. There are many transforma-
tions available, and three commonly used ones are described below.
Most spreadsheet and statistical packages include a large choice of
transformations.

13.5.1 The square root transformation

If the variance of the data increases as the mean increases, a square root
transformation will make these data more homosecdastic. There is an
example in Table 13.1.

13.5.2 The logarithmic transformation

If the data show a gross positive skew, a logarithmic transformation will give
a distribution that better approximates one that is normal. Many types of
naturally occurring phenomena have logarithmic distributions, such as
crystal size populations in magmatic rocks, river basin sizes, island sizes
and star brightnesses.
In cases where the data set includes any values of zero you need to use the

logarithm of X + 1 because the logarithm of zero is −∞. Many types
of geological data, especially those based on biological processes
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(e.g. dimension of fossils) show a positive skew, and Figure 13.4
shows the effect of a logarithmic transformation on a positively skewed
distribution.

13.5.3 The arc-sine transformation

The arc-sine transformation can be useful for data that are percentages.
Because percentage data have an absolute minimum of 0% and an absolute
maximum of 100%, any distribution with a mean close to either of these
extremes is unlikely to have a normal distribution because it will cease at
these values (Figure 13.5). An arc-sine transformation will give the distri-
bution a far more normal shape.

13.6 Are transformations legitimate?

Here you may be thinking that transforming data to make them more
suitable for parametric statistical analysis sounds like cheating or altering
the data to get the result you want.

First, however, transformations are applied to the entire data set, so each
value is treated in the same way.

Second, there is no scientific necessity to use the linear base ten scale that
we are so familiar with.Many geological relationships between two variables

Table 13.1 An example of the effect of a square root transformation on data where
the variance increases as the mean increases. Data are given for the porosity of
sandstones at three different drill sites with oil potential. The original data show
gross heteroscedasticity among groups in that the largest variance is 10.92 and the
smallest is 0.67, giving a ratio of largest to smallest of 16.38 : 1. A square root
transformation reduces this ratio to 2.05 : 1.

Clear Lake Webster Seabrook

Original Square root Original Square root Original Square root

19 4.36 7 2.65 3 1.73
15 3.87 5 2.24 2 1.41
14 3.74 4 2.00 2 1.41
11 3.32 3 1.73 1 1.00

s210.92 0.18 2.92 0.15 0.67 0.09
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Figure 13.4 The effect of logarithmic transformation on data for the
number of bubbles measured on 1 cm2 thin sections of volcanic rock. The
X axis shows the number of bubbles per section and the Y axis shows the
number of thin sections measured that contained each number of bubbles.
(a) The data show a pronounced positive skew before transformation. (b)
After transformation to the log10. Note that the distribution in (b) is far
more symmetrical than (a).

Frequency

0 50 100
Percentage

Figure 13.5 Restriction of the normal distribution for percentage data when
the mean is close to zero or 100%.
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(e.g. earthquake magnitude on the Richter scale vs. energy released, crystal
population density vs. crystal size) are logarithms, squares or cubes. The
apparently linear pH scale is actually logarithmic – a pH of 4 indicates a ten-
fold difference from pH 5 and a 100-fold difference from pH 6. Therefore, in
many cases it is actually more appropriate to transform the data so they
reflect the underlying relationship.

Importantly, if you transform a set of data, you also need to transform
your null and alternate hypotheses. For example, if you were to hypothesize
that “the steepness of river banks is not related to river basin size” but
carried out a logarithmic transformation on your data before analysis, your
original hypothesis would also have to be transformed to “the steepness of
river banks is not related to the logarithm of river basin size”.

13.7 Tests for heteroscedasticity

There are several tests designed to examine whether two or more samples
appear to have come from populations with the same variance. As men-
tioned earlier, if you are only interested in whether the data are suitable for a
parametric analysis, the general rule that the ratio of the largest variance to
the smallest should not exceed 4 : 1 can be used. If this ratio is greater, it may
be useful to examine the data and see where the differences occur because it
may be possible to transform the data so that a parametric analysis can
be done.

If, instead, you are interested in testing an hypothesis about the variance
of two or more samples, you can use the Levene test, which also gives an F
ratio. Remember, however, that a significant result for the Levene test may
not mean the data are unsuitable for analysis by ANOVA, which is quite
robust to heteroscedasticity.

Levene’s original test calculates the absolute difference between each
replicate and its treatment mean and then does a one-factor ANOVA on
these differences. The absolute difference is the difference between any two
numbers expressed as a positive value. (For example, the difference between
6 and 3 is –3, while the difference between 3 and 6 is +3, but the absolute
difference in both cases is +3.)

Figures 13.6 and 13.7 are a pictorial explanation of the Levene test. Two
cases are shown, using the data on apatite abundance in sandstones that
were first described in Section 11.3.3.
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First, if the variances within all treatments are similar, then the set of
absolute differences between the replicates and their sample means will
also be similar for each treatment. For example, Figure 13.6 shows the
absolute differences for three samples that all have the same variance.
Note that the means of the absolute differences in 13.6(b) are the same,
even though the treatment means in 13.6(a) are not. A one-factor
ANOVA comparing the means of the absolute differences will not be
significant.
Second, if the variances differ among treatments (Figure 13.7(a)) then

so will the values of the absolute differences (Figure 13.7(b)). Note that
the set of absolute differences for Darcy has a mean that is much larger
than the other two. A single-factor ANOVA comparing these means is

(b)

Darcy Runcan Alinda

Darcy Runcan Alinda
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1

3

9

6
6

(a)

Figure 13.6 The Levene test examines whether two or more variances are
likely to have come from the same population by doing a single-factor
ANOVA on the absolute differences between the replicates and their
treatment means or cell means. (a) Arrows show the difference between
each replicate and its treatment mean. Note that some differences are
positive and some are negative. (b) The absolute differences are listed
under each treatment. Every value of the absolute difference between each
replicate and its sample mean will be positive. In this case the means of
the absolute differences are the same for each treatment and a single-factor
ANOVA comparing these will not be significant, thereby indicating the
variances are homoscedastic.
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likely to be significant. The Levene test is available in most statistical
packages.

13.8 Questions

(1) Why can a transformation be useful when analyzing data with para-
metric tests, especially ANOVA?

(2) You have been given the following set of data for apatite abundance in
sandstones at four outcrops. (a) Do the data require transformation
before running a single-factor ANOVA comparing the four locations?
What transformation would you recommend?

(b)

Darcy Runcan Alinda

Darcy Runcan Alinda
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(a)

Figure 13.7 An example of the Levene test where there is heteroscedasticity.
(a) Arrows show the difference between each replicate and its sample mean.
(b) The absolute differences between each replicate and its sample mean are
listed under each treatment. Because the absolute differences for Darcy are
much greater than the other two treatments, a single-factor ANOVA
comparing the means of the values in (b) will show the variances are
significantly heteroscedastic.
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Darlinghurst Glebe Newtown Kiama

15 4 2 7
9 2 4 9
12 3 3 6
18 1 5 10
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14 Two-factor analysis of variance
without replication, and nested
analysis of variance

14.1 Introduction

This chapter describes two slightly more complex ANOVA models often
used by earth scientists, but an understanding of these is not essential if you
are reading this book as an introduction to geostatistics. If, however, you
need to use more complex analyses then the explanations given here for
two-factor ANOVA without replication and nested ANOVA are straight-
forward extensions of the pictorial descriptions in Chapters 10 and 12 and
will help with many of the ANOVA models used to analyze more complex
designs.

14.2 Two-factor ANOVA without replication

This is a special case of the two-factor ANOVA described in Chapter 12.
Sometimes an orthogonal experiment with two independent factors has to
be done without replication because there is a shortage of sampling units or
the experimental treatments are very expensive. The simplest case of
ANOVA without replication is a two-factor design. You cannot do a single-
factor ANOVA without replication.

Here is an example of a two-factor design without replication. Oil
geologists often drill cores to determine the extent of an oil-rich shale
deposit. Time and financial constraints usually mean only one core is
taken every kilometer or so away from the suspected location of the deposit.
Often oil content also varies with depth, and these data are extremely
important for evaluation of the oil field, but you can only afford to log a
few sections (at specific depths) of each core. Therefore, a design where only
one core is taken every kilometer is orthogonal but unreplicated
(Figure 14.1) and care must be taken to avoid confusing variation within
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each core with any variation among drill holes at different locations.
An analogous situation is also frequently encountered in environmental
geochemistry, where cores are often drilled at different distances from a
hazardous waste site to assess the extent (and depth) of contamination.
Another example is given in Table 14.1, which shows data for an experi-

ment to test the effects of pressure and temperature on the growth of
feldspar crystals. Pressures of 50 and 100 MPa were being evaluated,
together with a control treatment (0.1 MPa, which is ambient room pres-
sure), for their effect in combination with three different temperatures. The
experiments are difficult and time-consuming, so only one replicate at each
of these nine combinations of temperature and pressure could be run, giving
a two-factor orthogonal design without replication.
This causes a problem. There is no way to directly estimate error from the

dispersion of replicates around their respective cell means (as was done for a
single-factor ANOVA in Chapter 10 and a two-factor ANOVA with

Table 14.1 The length of feldspar phenocrysts (in μm) for a crystallization
experiment with nine different combinations of pressure and temperature.
All replicates were initially identical compositions. Only one replicate is
available for each combination of the two treatments.

Pressure (MPa)

Temperature (oC) 100 50 0.1

700 81 76 79
800 45 46 45
900 28 27 27

Depth 1

Depth 2

Depth 3

Depth 4

Hole 1 Hole 2 Hole 3 Hole 4

Figure 14.1 When only one core is taken at each location and only one log
(sampling unit) is available at each depth (dark squares) the sampling design is
orthogonal but unreplicated because only one datum is available for each
combination of drill hole and depth.
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replication in Chapter 12) because there is only one value in each treatment
combination, which will always be the same as the cell mean. A two-factor
ANOVA without replication uses a different way of estimating error, which
has to assume there is no interaction between the factors. Figures 14.2 to
14.5 give a pictorial explanation of how a two-factor ANOVA without
replication estimates three sources of variation and uses these to isolate
the effects of the two factors. The data in Table 14.1 are graphed in
Figure 14.2.

First, the total variation within the experiment is estimated. Each point
will be displaced from the grand mean by the effects of Factor A, Factor B,
any interaction and error. These distances can be squared and summed to
give the sum of squares for the total variation in the experiment, with
degrees of freedom that are one less than the number of experimental
subjects.

Second, the effect of Factor A is estimated by ignoring Factor B and
calculating a new mean for each of the levels within Factor A. The displace-
ment of each treatment mean from the grand mean will be caused by the
average effect of Factor A plus error (Figure 14.4). Each of these displace-
ments is squared, multiplied by the number of replicates within each treat-
ment and added together to give the sum of squares for Factor A. The
number of degrees of freedom is one less than the number of treatments,

Length
(µm)

100 MPa 50 MPa Control (0.1 MPa)

Grand mean

Figure 14.2 Feldspar phenocryst size in crystallization experiments for nine
combinations of three different pressures and temperatures. There is only one
replicate within each treatment combination. The length of each crystal is
shown as a symbol: ♦= 700 °C, ●= 800 °C and ■= 900 °C. The heavy
horizontal line shows the grand mean and the nine shorter horizontal lines
show each mean.
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and dividing the sum of squares by this value will give the mean square for
Factor A.
Finally, the effect of Factor B is estimated by ignoring Factor A and

calculating a new mean for each treatment level of Factor B. The displace-
ment of each treatment mean from the grand mean will be caused by the
effect of Factor B plus error (Figure 14.5). Here too, the displacements are
squared, multiplied by the number of replicates within each treatment, and
added together to give the sum of squares for Factor B. The number of
degrees of freedom is one less than the number of treatments, and dividing
by this value will give the mean square for Factor B.

Length
(µm)

Grand mean

100 MPa 50 MPa Control (0.1 MPa)

Figure 14.3 The total variation within the feldspar crystallization
experiment. The heavy horizontal line indicates the grand mean and the nine
shorter horizontal lines indicate each cell mean. The displacement of each
point from the grand mean (arrows) will be caused by the total variation
within the experiment.

Length
(µm)

Grand mean

100 MPa 50 MPa Control (0.1 MPa)

Figure 14.4 Estimation of the effect of Factor A. The displacement of each
treatment mean from the grand mean (arrows) will be caused by the effect of
Factor A (here pressure) plus error.
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At this stage you have estimates for the following sources of variation:

(a) The total variation in the experiment (the combined effects of Factor
A, Factor B, A × B and error) (Figure 14.3)

(b) The effects of Factor A (pressure + error) (Figure 14.4)
(c) The effects of Factor B (temperature + error) (Figure 14.5)

Because there is only one replicate within each treatment combination,
there is no way to separately estimate error. Therefore, unlike a two-factor
ANOVA with replication, it is not possible to estimate the sum of squares
for the effect of any interaction by subtracting the sums of squares for Factor
A, Factor B and error from the total variation.

Two-factor ANOVA without replication does the next best thing. The
sums of squares and degrees of freedom in an ANOVA are additive (e.g. in
Chapter 10 it was explained how the total sum of squares and total degrees
of freedom in a single-factor ANOVA were the sums of those for the sums
of squares for Factor A and for error). Therefore, by subtracting the
sums of squares for Factor A plus Factor B from the total variation, you
are left with the sum of squares for the remaining variation in the experi-
ment, which will include error and any effect of interaction. This sum of
squares, which is the only possible estimate of error, is divided by the
remaining degrees of freedom to give the best available estimate of the
mean square for error. If there is an interaction the mean square will be
inflated, but this is unavoidable and undetectable if you do a two-factor
ANOVA without replication.

Length
(µm)

Grand mean

700 °C 800 °C 900 °C

Figure 14.5 Estimation of the effect of Factor B. The displacement of each
treatment mean from the grand mean (arrows) will be caused by the effect of
Factor B (here temperature) plus error.
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The results of a two-factor ANOVA without replication will include the
sums of squares and mean squares for Factor A, Factor B, and error,
together with the F ratios and probabilities for Factors A and B. For the
example given above the results of the analysis are in Table 14.2.

14.3 A posteriori comparison of means after a two-factor
ANOVA without replication

If a two-factor ANOVA without replication shows a significant effect of a
fixed treatment factor (e.g. the three temperatures that are specifically
compared in Section 14.2), then you are likely to want to know which
treatments appear to be from the same or different populations.
The procedure for a posteriori testing is a modification of the formula for

a single-factor ANOVA, except that because there is no directly estimated
value for error, the MS error for interaction plus error (estimated by
subtraction) is used as the best estimate of this. For a Tukey test, each factor
is examined separately using the formula:

q ¼ XA

� �XB

�

SEM
(14:1 copied from 11:1)

with the standard error of the mean estimated from:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

n

r

(14:2 copied from 11:3)

where theMS error is the one calculated by subtraction in the ANOVA table
(see Table 14.2) and n is the number of data within each group (for example,
there are three values within each of the three pressures when temperature is
ignored and vice versa).

Table 14.2 Results of a two-factor ANOVA without replication on the data in
Table 14.1. There is a significant effect of temperature but no significant effect of
pressure on the growth of feldspar phenocrysts.

Source of Variation Sum of Squares df Mean square F P

P (MPa) 4.222 2 2.111 0.864 0.488
T (°C) 4070.222 2 2035.111 835.545 0.000
Error 9.778 4 2.444
Total 4084.222 8
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14.4 Randomized blocks

Experiments done in environments where there is considerable spatial
variation (e.g. a 20-acre mining lease) have to be replicated, but often
spatial variation is so great that it may obscure any effect of treatment if
replicates were simply assigned at random within that area. One solution is
to distribute replicates of each treatment fairly evenly across a landscape.
This is often done by setting out a two-dimensional array, with the area
subdivided into a series of strips, called blocks, with every treatment
represented in each. Often only one replicate is available in each block but
these data can be analyzed as a two-factor ANOVA without replication,
with blocks as a random factor and treatments as a fixed or random factor.
This is called a randomized block design and gives a way of separating the
effects of location and treatment.

Here is an example. Pearls (which mainly consist of calcium carbonate)
are usually grown by placing oysters in fine-mesh catch bags attached to
chains hanging down at regular intervals from a series of taut horizontal
subsurface longlines running parallel to each other (Figure 14.6(a)). An
aquacultural scientist hypothesized that removal of marine parasites from
the oysters would increase the proportion that produced marketable pearls.
Unfortunately, factors including water depth and temperature, wind expo-
sure, light levels, turbidity and tidal currents may vary from chain to chain
and longline to longline. If you simply used an experimental design with
replicates of each anti-parasite treatment allocated at random to the array
you are likely to get a lot of variation among replicates of the same
treatment.

For a randomized block design, a set of five parallel longlines (called
blocks 1–5) was established. Four bags, each containing 100 oysters, were
suspended at regular intervals from every longline and one replicate of the
four treatments was assigned at random within each. After six months the
number of oysters with pearls was counted in every bag, thus giving only a
single value at each point in the array (Figure 14.6(b)).

The results from this design can be analyzed as a two-factor
ANOVA without replication, using treatments as the first factor and
blocks as the second, thereby subdividing the variation into two
components in order to isolate the effect of treatment from any spatial
variation.
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14.5 Nested ANOVA as a special case of a single-factor ANOVA

An experimental design that compares the means of two or more levels of
the same factor (e.g. different levels of salinity or different compositions)
can be analyzed by a single-factor ANOVA, as described in Chapter 10.
Sometimes, however, researchers do an experiment with two or more levels
of a particular factor, but also have two or more subgroups nested within
each level. Here is an example from the contaminated landfill first men-
tioned in Chapter 2. The idea is that mixing the heavy-metal-contaminated
soils with apatite group minerals will make the metals bind with the apatite
instead of the soil, thereby preventing them from leaching into
groundwater.

Line 1

Line 2

Line 3

Line 4

Line 5

(a)

1

2

3

4
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Block
number

A

A

A

A

D

D

D

D

D

C

(b)

C

C

C

C

A

B

B

B
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Figure 14.6 A randomized block design. (a) Aerial view of a typical
rectangular array used to grow pearl oysters. Five horizontal longlines are run
parallel to each other and bags of 100 oysters (filled symbols) are suspended
from four chains attached at regular intervals to the longlines. (b) Representation
of the array shown in (a) as a 5 block × 4 column grid. One replicate of each
treatment (A–D) is assigned at random to a bag within each (longline) block.
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Large-scale experiments in hazardous waste remediation are often con-
strained by the number of test sites available to the researcher. For example,
only nine large test plots at different sites within a municipality were
available for an investigation of the effects of chlorapatite vs. fluorapatite
treatments on the lead content of groundwater run-off from each site. Three
plots were allocated at random to each of these two mineral treatments and
the remaining three plots were used as a control. After six months a sample
containing twelve replicates of groundwater run-off from each area was
analyzed for lead content.

This is called a nested or hierarchical design. Three plots are nested
within each treatment (Figure 14.7).

This design is not appropriate for analysis using a single-factor ANOVA
with type of treatment (the apatites) as the factor and the response within
each treatment as the number of replicates, because this ignores the pres-
ence of the plots that may contribute to the variation within the experiment.
You may also be thinking that the design appears pseudoreplicated in that
the real level of replication within each treatment is the number of plots
rather than the twelve water replicates taken from within each plot. This is
true and the nested analysis described below takes this into account.

This design is also unsuitable for analysis as a two-factor ANOVA with
mineral treatment as the first factor and plots as the second, because the
three plots are simply random subgroups nested within each treatment,
which do not intentionally contain different treatment levels of a second
factor. For example, the first plot in treatment 1 does not share an exclusive
property with the first plot in treatments 2 and 3 (Table 14.3).

Plot A Plot B Plot C Plot D

Plot E Plot F Plot G Plot H Plot I

Figure 14.7 Example of a nested or hierarchical design. There are three
different treatments, and three plots are nested within each treatment. Open
boxes indicate the control (no apatite treatment), grey boxes treatment 1
(chlorapatite) and black boxes treatment 2 (fluorapatite).
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When one factor (e.g. Factor B) is nested within another (e.g. Factor A) it
is often written as Factor B(Factor A). For the nested design above, where
Factor A is the type of apatite used for the treatment and Factor B is the
plots, the following will contribute to the lead content of the groundwater:

Lead in groundwater ¼ Factor Aþ Factor BðFactor AÞ þ error

This is the same as Equation (10.1) for a single-factor ANOVA apart from an
additional source of variation from the plots nested within each type of apatite
treatment. There is no interaction term because the design is not orthogonal.
A nested ANOVA isolates the effects of treatments and subgroups within

these treatments and gives an F ratio for both factors.

14.6 A pictorial explanation of a nested ANOVA

For simplicity the following example has two treatments and two plots nested
within each treatment, with only four groundwater replicates measured in

Table 14.3 A hierarchical design should not be analyzed as an independent factor
design. (a) Correct hierarchical plan for the nested experimental design described in
Figure 14.7, and (b) incorrect orthogonal two-factor plan because the plots do not
contain different levels of a second factor.

(a) A hierarchical design has one factor nested within the other. The plots have been
chosen at random and are nested within each treatment.

No treatment (control) Chlorapatite Fluorapatite

Plot C Plot E Plot I Plot B Plot F Plot G Plot A Plot D Plot H

(b) Incorrect format of the nested design shown above in (a) as a fully orthogonal
design. There is nothing exclusively shared within any of the rows of plots across
treatments so it is incorrect to treat the three rows as three different levels of the
factor “plot.”

Treatment

Plot None (control) Chlorapatite Fluorapatite

First within each treatment 12 replicates 12 replicates 12 replicates
(Plot C) (Plot B) (Plot A)

Second within each treatment 12 replicates 12 replicates 12 replicates
(Plot E) (Plot F) (Plot D)

Third within each treatment 12 replicates 12 replicates 12 replicates
(Plot I) (Plot G) (Plot H)
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each plot. The data are in Table 14.4. The type of treatment (chlorapatite vs.
fluorapatite) is Factor A and the plots are Factor B(A). Figure 14.8 shows the
data for each of the four groups in Table 14.4 graphed as four separate cells,
including each cell mean and the grand mean.

Lead content (ppm)

70

40

chlorapatite fluorapatite

120

90

80

Figure 14.8 Arrows show the displacement of each replicate from its cell
mean, which is the variation due to error only. The number of degrees of
freedom is the sum of one less than the number within each of the cells. In this
example there are 12 degrees of freedom.

Table 14.4 Data for the lead content (in ppm) of groundwater
tested three months after treatment with (a) chlorapatite and
(b) fluorapatite. Two plots are nested within each treatment.

Treatment

chlorapatite fluorapatite

Plot 1 Plot 2 Plot 3 Plot 4

30 60 80 110
35 65 85 115
45 75 95 125
50 80 100 130
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First, error is estimated. The value for each replicate is displaced from its
cell mean by error only (Figure 14.8). The sum of squares for error is
obtained by squaring each displacement and adding these together. This
quantity is divided by the appropriate degrees of freedom (the sum of one
less than the number of replicates within each of the cells) to give the mean
square for error.
Second, the subgroups (in this case the plots) are ignored and new means

are calculated by combining all of the replicates within each treatment (in
this case the type of apatite used) (Figure 14.9). This will give the effect of
treatment, but for a nested ANOVA each treatment mean will be displaced
from the grandmean because of the effect of treatment plus the subgroups
nested within each treatment, plus error.
This seems inconsistent with the explanation given for an orthogonal

two-factor ANOVA where ignoring a factor (e.g. Factor B) removed it as a
source of variation, allowing the effect of the other (e.g. Factor A) to be
estimated. For a two-factor orthogonal design, all levels of Factor A are

Lead content (ppm)

chlorapatite fluorapatite

70

55

40

120

105

90

Figure 14.9 Estimation of the effects of Factor A (treatment). The
displacement of each combined treatment mean for Factor A from the grand
mean shown by the arrows is caused by the average effects of that treatment,
plus plots nested within each treatment, plus error. The number of degrees of
freedom will be one less than the number of treatments, so in this example
with two treatments there is one degree of freedom.
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present within every level of Factor B and vice versa, so each of the two
factors can be ignored in turn and the effect of each factor separately
estimated. For a nested design, however, the effects of Factor B (the sub-
groups) cannot be excluded in this way because different subgroups (here
different plots) are present and may contribute very different amounts of
variation within each of the levels of Factor A.

The displacements of each treatment mean from the grand mean are
squared, multiplied by the number of replicates within their respective
treatment and added together to give the sum of squares for Factor A,
which will include treatment plus subgroups(treatment) plus error. The
number of degrees of freedom is one less than the number of treatments and
dividing the sum of squares by this number will give the mean square for
Factor A (i.e. treatment plus subgroups(treatment) plus error).

Third, a mean is also calculated for Factor B(A) which is the variation
contributed by each subgroup (in this case each plot) (Figure 14.10). Each
subgroupmean will only be displaced from its respective treatment mean by
the effect of the subgroups plus error. The displacements are squared,
multiplied by the number of replicates within their respective subgroups

Lead content (ppm)

chlorapatite fluorapatite

70

55

40

120

105

90

Figure 14.10 Estimation of the effect of Factor B(A). The displacement of
each cell mean from its treatment mean is shown by each arrow and is caused
by the average effect of that subgroup (each plot) plus error. The number of
degrees of freedom will be the sum of one less than the number of plots within
each treatment. In this example there are two degrees of freedom.
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and added together to give the Factor B(A) sum of squares. The number of
degrees of freedomwill be the sum of one less than the number of subgroups
within each treatment. Dividing the sum of squares by this number will give
the mean square for Factor B(A) (i.e. subgroups + error).
The procedures shown in Figures 14.8 to 14.10 give three separate sums

of squares and mean squares:

(a) Factor A: treatment + subgroups(treatment) + error (Figure 14.9)
(b) Factor B(A): subgroups(treatment) + error (Figure 14.10)
(c) error (Figure 14.8)

and no other mean squares are needed to isolate the effects of the treatments
from the subgroups nested within each treatment.
First, to isolate the effect of treatment only, the MS for treatment +

subgroups(treatment) + error is divided by the MS for subgroups(treat-
ment) + error. Second, to isolate the variation due to subgroups(treatment),
the MS for subgroups(treatment) + error is divided by the MS error
(Table 14.5).
In the example shown in Figures 14.8 to 14.10, the F ratio for the effect of

Factor A will only have one and two degrees of freedom, despite the fact that
the experiment used 16 measurements of lead in groundwater. This is
appropriate because the level of replication for this comparison is the
plots rather than the groundwater replicates taken from within each plot.
Most statistical packages will do a nested ANOVA and the results will be

in a similar format to Table 14.6, which gives the results for the data in
Table 14.4. If the treatment factor is fixed and significant you are likely to
want to carry out a posteriori testing to examine which treatment means are
significantly different. The Tukey test ( Equation (14.1)) can be used, but

Table 14.5 The appropriate division and components of each mean square term
used to estimate the effect of each factor when Factor B is nested within Factor A.

Source of variation Calculation of F ratio Components of each mean square

Factor A (treatment) Mean square for Factor A
Means square for B(A)

Factor AþFactor B(A) + error
Factor B(A) + error

Factor B(A) Mean square for B(A)
Mean square error

Factor B(A) + error
Mean square error
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when comparing among treatments the appropriate “MS error” to use in
Equation (14.3) is the MS for subgroups (treatments) instead of the error.
We suggest you use a more advanced text (e.g. Sokal and Rohlf, 1995 or Zar,
1996) if you need to do a posteriori testing after a nested ANOVA.

This example is the simplest case of a nested or hierarchical design. More
complex designs can include several levels of nesting, and nested factors in
combination with two- and higher-factor ANOVAs. If you need to usemore
complex designs it is important to read an advanced text or talk to a
statistician before doing the experiment.

14.7 A final comment on ANOVA: this book is only an
introduction

Even though this book has five chapters about analysis of variance, it is only
an introduction to an enormous and diverse topic. There are far more
complex ANOVAmodels, including those for analyzing repeated measures
on the same experimental or sampling unit over time, several variables
measured on the same unit, and designs with several factors that include
nesting. Hopefully the introduction developed here will make it easier for
you to understand more complex designs described in advanced texts!

14.8 Questions

(1) The table below gives the concentration of total polycyclic aromatic
hydrocarbons (PAHs) in three benthic sediment cores taken 3 km, 2 km
and 1 km from an oil refinery situated on the edge of an estuary. (a)
Analyze the data as a two-factor ANOVA without replication, using

Table 14.6 Results of a nested ANOVA on the data in Table 14.4. Note that the
F ratio for the treatment (type of apatite) has been obtained by dividing the MS for
type of apatite by the MS for plot.

Source of variation Sum of squares df Mean square F P

Apatite type 10000.0 1 10000.0 5.556 0.143
Plot(Apatite) 3600.0 2 1800.0 21.600 0.000
Error 1000.0 12 83.3
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depth and distance as factors. Is there a significant effect of distance? Is
there a significant effect of depth in the sediment? (b) The marine
geoscientist who collected these data mistakenly analyzed them using
a single-factor ANOVA comparing the three different cores but ignor-
ing depth (i.e. the table below was simply taken as three columns giving
independent data). Repeat this incorrect analysis. Is the result signifi-
cant?What might be the implications, in terms of the conclusion drawn
about the concentrations of PAHs and distance from the refinery, if this
were done?

Distance

Depth (m) 3 km 2 km 1 km

1 1.11 1.25 1.28
2 0.84 0.94 0.95
3 2.64 2.72 2.84
4 0.34 0.38 0.39
5 4.21 4.20 4.23

(2) A glaciologist who wanted to compare the weight of sediment deposited
per square meter in two glacial lakes chose three locations at random
within each lake and deployed four sediment traps at each, using a total
of 24 traps. This design is summarized below.

Location Number of traps

First location in lake 1 4 traps
Second location in lake 1 4 traps
Third location in lake 1 4 traps
First location in lake 2 4 traps
Second location in lake 2 4 traps
Third location in lake 2 4 traps

The glaciologist said “I have a two-factor design, where the lakes are one
factor and the trap grouping is the second, so I will use a two-factor
ANOVA with replication.” (a) Is this appropriate? What analysis would
you use for this design?
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15 Relationships between variables:
linear correlation and linear
regression

15.1 Introduction

Often earth scientists obtain data for a sample where two or more variables
have been measured on each sampling or experimental unit, because they
are interested in whether these variables are related and, if so, the type of
functional relationship between them.

If two variables are related they vary together – as the value of one
variable increases or decreases, the other also changes in a consistent way.

If two variables are functionally related, they vary together and the value
of one variable can be predicted from the value of the other.

To detect a relationship between two variables, both are measured on
each of several subjects or experimental units and these bivariate data
examined to see if there is any pattern. One way to do this, by drawing a
scatter plot with one variable on the X axis and the other on the Y axis, was
described in Chapter 3. Although this can reveal patterns, it does not show
whether two variables are significantly related, or have a significant func-
tional relationship. This is another case where you have to use a statistical
test, because an apparent relationship between two variables may only have
occurred by chance in a sample from a population where there is no
relationship. A statistic will indicate the strength of the relationship,
together with the probability of getting that particular result, or an outcome
even more extreme, in a sample from a population where there is no
relationship between the two variables.

Two parametric methods for statistically analyzing relationships between
variables are linear correlation and linear regression, both of which can be
used on data measured on a ratio, interval or ordinal scale. Correlation and
regression have very different uses, and there have been many cases where
correlation has been inappropriately used instead of regression and vice
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versa. After contrasting correlation and regression, this chapter explains
correlation analysis. Regression analysis is explained in Chapter 16.

15.2 Correlation contrasted with regression

Correlation is an exploratory technique used to examine whether the values
of two variables are significantly related, meaning whether the values of
both variables change together in a consistent way. (For example, an
increase in one may be accompanied by a decrease in the other.) There is
no expectation that the value of one variable can be predicted from the
other, or that there is any causal relationship between them.
In contrast, regression analysis is used to describe the functional rela-

tionship between two variables so that the value of one can be predicted
from the other. A functional relationship means that the value of one
variable (called the dependent variable, Y) has some relationship to the
other (called the independent variable, X) in that it is reasonable to
hypothesize the value of Y might be affected by an increase or decrease in
X, but the reverse is not true. For example, the amount of pitting on
limestone buildings is caused by dissolution resulting from acid rain and
is likely to be affected by the age of the building because older stones have
been exposed to the elements for longer. The opposite is not true – the age of
the building is not affected by weathering! Nevertheless, although the
amount of weathering is dependent on the age of the building it is not
caused by age – it is actually caused by acid rain. This is an important point.
Regression analysis can be used provided there is a good reason to hypothe-
size that the value of one variable (the dependent one) is likely to be affected
by another (the independent one), but it does not necessarily have to be
caused by it.
Regression analysis provides an equation that describes the functional

relationship between two variables and which can be used to predict values
of the dependent variable from the independent one. The very different uses
of correlation and regression are summarized in Table 15.1.

15.3 Linear correlation

The Pearson correlation coefficient, symbolized by ρ (the Greek letter rho) for
a population and by r for a sample, is a statistic that indicates the extent to
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which two variables are linearly related, and can be any value from –1 to +1.
Usually the population statistic ρ is not known, so it is estimated by the sample
statistic r.

An r of +1, which shows a perfect positive linear correlation, will only be
obtained when the values of both variables increase together and lie along a
straight line (Figure 15.1(a)). Similarly, an r of –1, which shows a perfect
negative linear correlation, will only be obtained when the value of one
variable decreases as the other increases and the points also lie along a
straight line (Figure 15.1(b)). In contrast, an r of zero shows the lack of a
relationship between two variables and Figure 15.1(c) gives one example
where the points lie along a straight line parallel to the X axis. When the
points are more scattered but both variables tend to increase together, the
values of rwill be between zero and +1 (Figure 15.1(d)), while if one variable
tends to decrease as the other increases, the value of r will be between zero
and −1 (Figure 15.1(e)). If there is no relationship and considerable scatter
(Figure 15.1(f)) the value of r will be close to zero. Finally, it is important to
remember that linear correlation will only detect a linear relationship
between variables – even though the two variables shown in Figure 15.1(g)
are obviously related the value of r will be close to zero.

15.4 Calculation of the Pearson r statistic

A statistic for correlation needs to reliably describe the strength of a linear
relationship for any bivariate data set, even when the two variables have

Table 15.1 A contrast between the uses of correlation and regression.

Correlation Regression

Exploratory – are two variables
significantly related?

Definitive –what is the functional relationship
between variable Y and variable X and is it
significant?
Predictive – what is the value of Y given a
particular value of X?

Neither Y nor X has to be dependent
upon the other variable. Neither
variable has to be determined by
the other.

Variable Y is dependent upon X. It must be
plausible that Y is determined by X, but Y does
not necessarily have to be caused by X.
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been measured on very different scales. For example, the values of one
variable might range from zero to 10, while the other might range from
zero to 1000. To obtain a statistic that always has a value between 1 and −1,
with these maximum and minimum values indicating a perfect positive and
negative linear relationship respectively, you need a way of standardizing
the data. This is straightforward and is done by transforming the values of
both variables to their Z scores, as described in Chapter 7.

(a)

Y

Y

Y

X X X

X

X

X X

(b) (c)

(d)

(g)

(e) (f)

Figure 15.1 Some examples of the value of the correlation coefficient r.
(a) A perfect linear relationship where r= 1, (b) a perfect linear relationship
where r=−1, (c) no relationship (r= 0), (d) a positive linear relationship with
0 < r < 1, (e) a negative linear relationship where –1 < r < 0, (f) no linear
relationship (r is close to zero) and (g) an obvious relationship but one that will
not be detected by linear correlation (r will be close to zero).
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To transform a set of data to Z scores, the mean is subtracted from each
value and the result divided by the standard deviation. This will give a
distribution that always has a mean of zero and a standard deviation (and
variance) of 1. For a population the equation for Z is:

Z ¼ Xi � �

�
(15:1 copied from 7:3)

and for a sample it is:

Z ¼ Xi � X
s

(15:2)

Figure 15.2 shows the effect of transforming bivariate data measured on
different scales to their Z scores.

(a)

Y

Y

X

X

Zy  0

Zx

(c)

(b)

0

Figure 15.2 For any set of data, dividing the distance between each value and
the mean by the standard deviation will give a mean of zero and a standard
deviation (and variance) of 1.0. The scales on which X and Y have been
measured are very different for cases (a) and (b) above, but transformation of
both variables gives the distribution shown in (c) where both Zx and Zy have a
mean of zero and a standard deviation of 1.0.
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Once the data for both variables have been converted to their Z scores, it
is easy to calculate a statistic that indicates the strength of the relationship
between them.
If the two increase together, large positive values of Zx will always be

associated with large positive values of Zy and large negative values of Zxwill
also be associated with large negative values of Zy (Figure 15.3(a)).
If there is no relationship between the variables all of the values of Zy will

be zero (Figure 15.3(b)).
Finally, if one variable decreases as the other increases, large positive

values of Zx will be consistently associated with large negative values of Zy
and vice versa (Figure 15.3(c)).
This gives a way of calculating a comparative statistic that indicates the

extent to which the two variables are related. If the Zx and Zy scores for
each of the units are multiplied together and summed (Equation (15.3)),
data with a positive correlation will give a total with a positive value, while
data with a negative correlation will give a total with a negative one. In
contrast, data for two variables that are not related will give a total close to
zero:

Xn

i¼1

ðZxi � ZyiÞ (15:3)

Importantly, the largest possible positive value of
Pn

i¼1
ðZxi � ZyiÞ will

be obtained when each pair of data has exactly the same Z scores for
both variables (Figure 15.3(a)) and the largest possible negative value
will be obtained when the Z scores for each pair of data are the same
number but opposite in sign (Figure 15.3(c)). If the pairs of scores do
not vary together completely in either a positive or negative way the
total will be a smaller positive (Figure 15.3(d) or negative number
(Figure 15.3(f)).
This total will increase as the size of the sample increases, so

dividing by the degrees of freedom (N for a population and n – 1
for a sample) will give a statistic that has been “averaged,” just as the
equations for the standard deviation and variance of a sample are
averaged and corrected for sample size by dividing by n – 1. The
statistic given by Equation (15.4) is the Pearson correlation coeffi-
cient r.
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Figure 15.3 Examples of raw scores and Z scores for data with (a) a perfect
positive linear relationship (all points lie along a straight line), (b) no
relationship, (c) a perfect negative linear relationship (all points lie along a
straight line), (d) a positive relationship, (e) no relationship, and (f) a negative
relationship. Note that the largest positive and negative values for the sum of
the products of the two Z scores for each point occur when there is a perfect
positive or negative relationship, and that these values (+3 and –3) are
equivalent to n – 1 and – (n – 1) respectively.
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r ¼
Pn

i¼1
ðZxi � ZyiÞ
n� 1

(15:4)

More importantly, Equation (15.4) gives a statistic that will only ever be
between –1 and +1. This is easy to show. In Chapter 7 it was described how
the Z distribution always has a mean of zero and a standard deviation (and
variance) of 1.0. If you were to calculate the variance of the Z scores for only
one variable you would use the equation:

s2 ¼
Pn

i¼1
ðZi � ZÞ2

n� 1
(15:5)

but because �Z is zero, this equation becomes:

s2 ¼
Pn

i¼1
Z2
i

n� 1
(15:6)

and because s2 is always 1 for the Z distribution, the numerator of
Equation (15.6) is always equal to n − 1.
Therefore, for a set of bivariate data where the two Z scores within each

experimental unit are exactly the same in magnitude and sign, the equa-
tion for the correlation between the two variables:

r ¼
Pn

i¼1
ðZxi � ZyiÞ
n� 1

(15:7)

will be equivalent to:

r ¼
Pn

i¼1
Z2
xi

n� 1
or

n� 1
n� 1

¼ 1:0 (15:8)

Consequently, when there is perfect agreement between Zx and Zy for each
point, the value of rwill be 1.0. If the Z scores generally increase together but
not all the points lie along a straight line, the value of rwill between zero and
1 because the numerator of Equation (15.8) will be less than n− 1.
Similarly, if every Z score for the first variable is the exact negative

equivalent of the other, the numerator of Equation (15.8) will be the
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negative equivalent of n− 1 so the value of r will be –1.0. If one variable
decreases while the other increases but not all the points lie along a straight
line, the value of r will be between –1.0 and zero.

Finally, for a set of points along any line parallel to the X axis, all of the Z
scores for the Y variable will be zero, so the value of the numerator of
Equation (15.6) and r will also be zero.

15.5 Is the value of r statistically significant?

Once you have calculated the value of r, you need to establish whether it is
significantly different from zero. Statisticians have calculated the distribution
of r for random samples of different sizes taken from a population where there
is no correlation between two variables. When ρ= 0, the distribution of values
of r formany samples taken from that population will be normally distributed
with a mean of zero. Both positive and negative values of r will be generated
by chance and 5% of these will be greater than a positive critical value or less
than its negative equivalent. The critical value will depend on the size of the
sample, and as sample size increases the value of r is likely to become closer to
the value of ρ. Statistical packages will calculate r and give the probability the
sample has been taken from a population where ρ= 0.

15.6 Assumptions of linear correlation

Linear correlation analysis assumes that the data are random representa-
tives taken from the larger population of values for each variable, which are
normally distributed and have been measured on ratio, interval or ordinal
scales. A scatter plot of these variables will have what is called a bivariate
normal distribution. If the data are not normally distributed, have been
measured on a nominal scale only or the relationship does not appear to be
linear, they may be able to be analyzed by a non-parametric test for
correlation, which is described in Chapter 19.

15.7 Conclusion

Correlation is an exploratory technique used to test whether two variables
are related. It is often useful to draw a scatter plot of the data to see if there is
any pattern before calculating the correlation coefficient, since the variables
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may be related together in a non-linear way. The Pearson correlation
coefficient is a statistic that shows the extent to which two variables are
linearly related, and can have a value between –1.0 and 1.0, with these
extremes showing a perfect negative linear relationship and perfect positive
linear relationship respectively, while zero shows no relationship. The value
of r indicates the way in which the variables are related, but the probability
of getting a particular r value is needed to decide whether the correlation is
statistically significant.

15.8 Questions

(1) (a) Add appropriate words to the following sentence to specify a
regression analysis. “I am interested in finding out whether the shell
weight of the fossil snail Littoraria articulata...................... shell length.”
(b) Add appropriate words to the following sentence to specify a
correlation analysis. “I am interested in finding out whether the shell
weight of the fossil snail Littoraria articulata.........................shell length.”

(2) Run a correlation analysis on the following set of 10 bivariate data,
given as the values of (X,Y) for each unit: (1,5) (2,6) (3,4) (4,5) (5,5)
(6,4) (7,6) (8,5) (9,6) (10,4). (a) What is the value of the correlation
coefficient? (You might draw a scatter plot of the data to help visualize
the relationship.) (b) Next, modify some of the Y values only to give a
highly significant positive correlation between X and Y. Here a scatter
plot might help you decide how to do this. (c) Finally, modify some of
the Y values only to give a highly significant negative correlation
between X and Y.
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16 Linear regression

16.1 Introduction

This chapter explains simple linear regression analysis. The different uses of
correlation and regression were contrasted in Chapter 15. Correlation
examines if two variables are related. Regression describes the functional
relationship between a dependent and an independent variable.

16.2 Linear regression

Linear regression analysis is often used by earth scientists. For example, the
equation for the regression of one variable on another may suggest hyp-
otheses about why the two variables are related. More practically, regression
can be used in situations where the dependent variable is difficult, expensive
or impossible to measure, but its values can be predicted from another easily
measured variable to which it is functionally related. Here is an example.

It can be quite difficult to measure the temperature of an erupting magma.
In situmeasurements can be made if you can safely get close enough to lower
a sheathed thermocouple into the hot lava, but this is a dangerous under-
taking. Optical pyrometers can be used to estimatemagma temperatures from
any distant position with a direct line of sight, but corrections for distance,
elevation and air temperatures must be applied.

Fortunately, it has been shown that the SiO2 content of the magma varies
inversely with eruption temperature: basaltic magmas tend to erupt at
hotter temperatures (~1200–1300 °C) and more silicic ones at cooler tem-
peratures (~700–800 °C). So eruption temperature can be predicted from
the SiO2 content of the cooled magma, which can be accurately (and safely)
measured in the laboratory after the eruption. Temperature is therefore
dependent upon (but not caused by) the SiO2 content and can be predicted
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from it by using a regression line (Figure 16.1). This is another deliberate
example where the dependent variable is not caused by the independent
variable but is plausibly dependent on it.
A linear regression analysis gives an equation for a line that describes the

functional relationship between two variables and tests whether the statis-
tics that describe this line are significantly different from zero.
The simplest functional relationship between a dependent and independ-

ent variable is a straight line. Only two statistics, the intercept a (which is the
value of Y when X is zero) and the slope of the line b, are needed to uniquely
describe where that line occurs on a graph.
The position of any point on a straight line can be described by the equation:

Yi ¼ aþ bXi (16:1)

where a is the value of Y when X = 0, and b is the slope of the line. For
example, the equation Y = 6 + 0.5X means “The Y value is 6 units plus half
the value ofX.” Therefore, for this line, when Xi = 0, Yi = 6, and whenXi = 10,
Yi = 11.
Simple linear regression analysis gives an equation for a straight line that

is the “best fit” through a set of data points. It is very easy to obtain a and b if
all the points lie on a straight line. When the points are scattered, the
method for obtaining these statistics is also straightforward.

16.3 Calculation of the slope of the regression line

The slope of the regression line is the amount by which the value of Y
increases in relation to an increase in the value of X. For example, if an

Wt.% SiO2
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Figure 16.1 An example of the use of regression. The eruption temperature
of a magma (the dependent variable) can be predicted by measuring its SiO2

content (the independent variable). Thus the temperature is determined by
and easy to predict from the independent variable, but is not caused by it.
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increase in the value of X by one unit is also accompanied by a one unit
increase in the value ofY, the slope of the line is 1.0. If, however, the value ofY
decreases by three units for every one unit increase in X then the slope is −3.0.

If all points lie along a straight line, you can calculate the slope by taking
any two points and using the equation:

b ¼ Y2 � Y1

X2 � X1
(16:2)

that divides the relative change in Y by the relative change in X.
Equation (16.2) will not work for a set of points that are scattered. To

calculate the slope of the line of best fit running through a set of scattered
points, a procedure is needed that gives the average slope, taking into
account the values for all of the points. The equation for calculating b, the
slope of the regression line, is:

b ¼
Pn

i¼1
ðXi � �XÞðYi � �YÞ

Pn

i¼1
ðXi � �XÞðXi � �XÞ

(16:3)

This is an extension of Equation (16.2). Instead of calculating the change in
X and Y from any two data points, Equation (16.3) calculates an average
slope using every point in the data set.

Y4

Y3

Y2

Y1

Y

X1

X2 X1

X2 X3 X4

Y2 Y1
_

X

–

Figure 16.2 Calculation of the slope when all points lie along a straight line.
The vertical arrow shows the relative change in Y from Y1 to Y2 that occurs
with an increase in X from X1 to X2 shown by the horizontal arrow. For any
two points, Y2 − Y1 divided by X2 − X1 will give the slope, which in this case is
positive because Y increases as X increases and vice versa.
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First, the means of X and Y are separately calculated. Next, for each data
point, the value of Xminus its mean is multiplied by the value of Yminus its
mean, and these products are summed. This is the numerator of Equation
(16.3), which is then divided by the sum of each value of X minus its mean
and squared. It is easy to see how Equation (16.3) will give an appropriate
average value for the slope. The first examples are for points that lie on
straight lines.
For a line with a slope of +1, as X increases by one unit from its mean,

the value of Y will also increase by one unit from its mean (and vice versa if
X decreases). The difference between any value ofX and its mean will always
be the same as the difference between any value of Y and its mean, so the
numerator and denominator of Equation (16.3) will be the same thus giving
a b value of 1.0 (Figure 16.3(a)).
For a line with a slope of +3, as X increases by one unit from its mean,

the value of Y will increase by three units from its mean (and vice versa if X
decreases). Therefore, the value of the numerator of Equation (16.3) will
always be three times the size of the denominator, no matter how many
points are included, thus giving a b value of 3.0 (Figure 16.3(b)).
For a line with a slope of − 1, as X increases by one unit from its mean,

the value of Y will decrease by one unit from its mean (and vice versa if X
decreases). Therefore the numerator of Equation (16.3) will give a total that
is the same magnitude but the negative of the denominator, thus giving a b
value of –1.0 (Figure 16.3(c)).
For a line with a slope of − 3, as X increases by one unit from its mean,

the value of Y will decrease by three units from its mean (and vice versa if X
decreases), so the numerator of Equation (16.3) will always have a negative
sign and be three times the value of the denominator, thus giving a b value
of –3.0.
Finally, for a line running parallel to the X axis, every value of Yi � �Y

will be zero, so the total of the numerator of Equation (16.3) will also be
zero, thus giving a b value of zero (Figure 16.3(d)).
When the data are scattered, Equation (16.3) will also give the average

change in Y in relation to the increase in X. Figure 16.4 gives an example.
First, cases 16.4 (a), (b) and (c) show three lines, each of which has been
drawn through two data points. These lines have slopes of 3.0, 2.0 and 1.0
respectively, and the calculation of each b value is given in the box under the
graph. In Figure 16.4 (d) the six data points have been combined. Intuitively,
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this group of six scattered points should have a slope of 2.0, because this is
the average of the slopes of the three lines shown in (a), (b) and (c). Equation
(16.3) gives this value.

16.4 Calculation of the intercept with the Y axis

The intercept of the regression line with the Y axis when X = 0 is easy to
calculate, using an extension of the formula for the regression line.

(a) (b)

(c) (d)

_
Y

_
Y

_
Y

_
Y

XX

X X

Figure 16.3 Examples of the use of Equation (16.3) to obtain the slope of
the regression line. Vertical arrows show Yi � �Y and horizontal arrows show
Xi � �X. (a) For every point along a line with a slope of 1.0, Yi � �Y will be
the same magnitude and sign as Xi � �X so Equation (16.3) will give a value of
1.0. (b) For every point along a line with a slope of 3.0, Yi � �Y will be the
same sign but three times greater than Xi � �X so Equation (16.3) will give a
value of 3.0. (c) For every point along a line with a slope of –1.0, Yi � �Y will be
the same magnitude but the opposite sign to Xi � �X so Equation (16.3) will
give a value of –1.0. (d) For a slope of zero, each value of Yi � �Y will be zero, so
Equation (16.3) will give a value of zero.
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Box 16.1 Using regression to date geological samples

An important use of regression is the age dating of geological samples
using the radiometric decay of a parent isotope (P) to form a stable
daughter isotope (D). This relationship uses D as the dependent variable
(equivalent to Y in Equation (16.1)) and P as the independent one
(equivalent to X in Equation (16.1)):

D ¼ D0 þ ðelt � 1ÞP (16:4)

where D is the amount of daughter isotope present in the rock today, D0

is the expected amount present when the rock cooled in the past, e is the
exponential, λ is the decay constant of the parent isotope, t is the age of
the sample and P is the amount of parent isotope present today. Parent–
daughter pairs with different half-lives are useful in a range of geological
applications:

Decay reaction Half-life (years) Decay constant (/year)

14C !14 N t1=2 ¼ 5:73� 103 l ¼ 1:2� 10�4

40K !40 Ar t1=2 ¼ 1:3� 109 l ¼ 5:81� 10�11

87Rb ! 87Sr t1=2 ¼ 4:86� 1010 l ¼ 1:42� 10�11

147Sm ! 143Nd t1=2 ¼ 1:06� 1011 l ¼ 6:54� 10�12

238U ! 206Pb t1=2 ¼ 4:4� 109 l ¼ 1:55125� 10�10

For example, the half-life of 14C is only 5730 years, so after ~40 000
years there is not enough left to measure, therefore 14C dating is most
useful for young rocks and biological remains. Conversely, ancient mete-
orites that date back billions of years to the beginning of the solar system
are usually dated using 238U→ 206Pb.
If D is plotted against P for several crystals of a mineral from the same

rock, then the slope of the line of best fit (termed an isochron) is equal to
eλt − 1, and the age of the rock, t, can be estimated.
One of the most useful systems in isotope geochemistry is the decay of

40K (the parent isotope) to 40Ar (the daughter). The isotope 40Ar is quite
volatile when rocks are molten, so it can easily escape from a magma into
the atmosphere.When a rock crystallizes, however, the 40Ar can no longer
escape and gets locked up in the crystal structures of the minerals, where it
accumulates as the 40K in the rock continues to decay. This makes for a
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Because

Yi ¼ aþ bXi (16:5 copied from 16:1)

then:
�Y ¼ aþ b�X (16:6)

and this can be rearranged to give the value of a from:

a ¼ �Y � b�X (16:7)

Statistical packages will do this as part of a regression analysis.

16.5 Testing the significance of the slope and the intercept
of the regression line

Although the equation for a regression line describes the functional rela-
tionship between X and Y, it does not showwhether the slope of the line and
the intercept are significantly different from zero.

very useful geochronometer to tell us the crystallization age, because any
subsequent heating back to the liquid state will release all the 40Ar. Thus, if
we measure the amounts of 40K and 40Ar in a few feldspar crystals from a
rock, we can use the equations above to calculate the crystallization age of
the rock and the amount of 40Ar in the original magma (Figure 16.5).

40Arnow

40Arstart

Iso
chron

Slope =(eλt–1)

40Know

Figure 16.5 A radiometric decay line for 40K → 40Ar as measured in four
feldspars from the same outcrop. The slope of this line can tell you the age, t, of
the rock because λ is known to be 0.581 × 10–10/yr as measured for this decay
reaction. The intercept estimates how much 40K was present in the feldspars
when the rock first cooled.
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For a population, the equation of the line of best fit is:

Yi ¼ �þ �Xi (16:8)

but because earth scientists usually only have data for a sample, the pop-
ulation statistics α and β are only estimated by the sample statistics a and b,
so you need to test the null hypotheses that a and b are from a population
where α and β are zero. Please note that you will find different symbols for
the intercept and slope in some texts. Introductory texts generally use a and
b (and for a population, α and β) for the intercept and slope, but more
advanced texts use b0 and b1 for these two sample statistics and β0 and β1 for
the equivalent population statistics. Here we have used the same symbols as
most introductory texts for clarity.

16.5.1 Testing the hypothesis that the slope is significantly
different from zero

Onemethod for testing whether the slope of a regression line is significantly
different from a slope of zero is very similar to the single-factor ANOVA
described in Chapter 10. A pictorial explanation is given in Figures 16.6
and 16.7.

Graphs of four regression lines are shown in Figure 16.6 together with a
horizontal line showing �Y , the average value of Y, which the regression line
will always cross. If there is no increase or decrease in the value of Y as X
increases, the regression line will have a slope of zero and be indistinguish-
able from the line showing �Y (Figure 16.6(a)). Nevertheless, samples taken
from a population where β is zero will, by chance, have values of b dis-
tributed around zero, often giving regression lines that are slightly tilted
upwards or downwards (Figure 16.6(b) and (c)). Finally, if there is a marked
increase or decrease in Y as X increases, the regression line will be strongly
tilted (e.g. a negative slope is shown in Figure 16.6(d)).

The amount by which the regression line is tilted from the horizontal can
be detected in the same way a single-factor ANOVA detects whether several
treatment means are all similar to the grand mean, or whether any are
significantly displaced from it.

In Chapter 10 we described how a single-factor ANOVA calculates an F
ratio by dividing the mean square for treatment (i.e. treatment + error) by
the mean square for error only. If treatment has no effect, the treatment
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means will be the same or close to the grandmean, so the F ratio will be close
to 1.0. The test for whether the slope of a regression line is significantly
different to the horizontal line showing �Y is done in a similar way.
First, the regression line will be tilted from the line showing �Y because of

the variation explained by the regression equation (regression plus
error).
Second, each of the points in the scatter plot will be displaced upwards or

downwards from the regression line because of the remaining variation
(error only).
It is easy to calculate the sums of squares and mean squares for these two

separate sources of variation. Figure 16.7 shows scatter plots for two sets of
data. The first regression line (16.7(a)) has a large positive slope and the
second (16.7(b)) has a slope much closer to zero. The horizontal line on
each graph shows �Y . Here you need to think about the vertical displacement

(a) (b)

X

X X

X

Y

Y Y

Y

(c) (d)

Figure 16.6 A regression line always crosses the line showing �Y . (a) If the
slope is exactly zero the regression line will be indistinguishable from the
horizontal line showing �Y . Samples from a population where the slope β is
zero will nevertheless be expected to include cases with small (b) positive and
(c) negative slopes. (d) If Y increases or decreases markedly as X increases,
then the regression line will be strongly tilted from the line showing �Y . A
negative slope is shown as an example.
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of each point from the line showing �Y . To illustrate this, the point at the top
far right of each scatter plot in Figure 16.7 has been identified by a circle
instead of a square. The vertical arrow running up from �Y to each of the
circled points ðY � �YÞ indicates the total variation or displacement of that

X, Y

X, Y

X, Y

X

(a)

Y

Y

X,Y

X

(b)

Figure 16.7 (a) The diagonal solid line shows the regression through a
scatter plot of six points, and the dashed horizontal line shows �Y . The vertical
arrow shows the displacement of one point, symbolized by a circle instead of a
square, from �Y . The distance between the point and the Y average Y � �Yð Þ is
the total variation, which can be partitioned into variation explained by the
regression line and unexplained variation or error. The heavy part of the
vertical line Ŷ � �Y

� �
shows the displacement explained by the regression line

(regression plus error) and the remainder Y � Ŷ
� �

is unexplained variation
(error). Note that (a) when the slope is large, the explained component is also
large; and (b) when the slope is close to zero, then the explained component is
very small.
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point from �Y . This distance can be partitioned into the two sources of
variation mentioned above.
The first is the amount of displacement explained by the regression line

(which is affected by both the regression plus error) and is the distance
ðŶ � �YÞ shown by the heavy part of the vertical arrow in Figure 16.7.
The second is the distance ðY � ŶÞ shown by the lighter vertical part of the

arrow in Figure 16.7. This is unexplained variation or error and often called
the residual variation because it is the amount of variation remaining
between the data points and Ŷ that cannot be explained by the regression line.
This gives a way of calculating an F ratio that indicates how much of the

variation can be accounted for by the regression.
First, you can calculate the sum of squares for the variation explained by

the regression line by squaring the vertical distance between the regression
line and �Y for each point ðŶ � �YÞ and adding these together. Dividing this
sum of squares by the appropriate number of degrees of freedom will give
the mean square due to explained variation (regression plus error).
Second, you can calculate the sum of squares for the unexplained varia-

tion by squaring the vertical distance between each point and the regression
line ðY � ŶÞ and adding these together. Dividing this sum of squares by the
appropriate number of degrees of freedom will give the mean square due to
unexplained variation or “error.”
At this stage, you have sums of squares and mean squares for two sources

of variation that will be very familiar to you from the explanation of one-
factor ANOVA in Chapter 10:

(a) The variation explained by the regression line (regression plus
error).

(b) The unexplained residual variation (error only).

Therefore, to get an F ratio that shows the proportion of the variation
explained by the regression line compared to the unexplained variation
due to error, you divide the mean square for (a) by the mean square
for (b).

F1;n�2 ¼ MS regression

MS residual
(16:9)

If the regression line has a slope close to zero (Figure 16.6(a)) both the
numerator and denominator of Equation (16.9) will be similar, so the
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value of the F statistic will be approximately 1.0. As the slope of the line
increases (Figure 16.6(b), (c) and (d)), the numerator of Equation (16.9) will
become larger, so the value of F will also increase. As F increases, the
probability that the data have been taken from a population where the
slope of the regression line, β, is zero will decrease and will eventually be
less than 0.05. Most statistical packages will calculate the F statistic and give
the probability. There is an explanation for the number of degrees of free-
dom for the F ratio in Box 16.2.

Box 16.2 A note on the number of degrees of freedom in an
ANOVA of the slope of the regression line

The example in Section 16.6 includes an ANOVA table with an F statistic
and probability for the significance of the slope of the regression line.
Note that the “regression” mean square, which is equivalent to the
“treatment”mean square in a single-factor ANOVA, has only one degree
of freedom. This is the case for any regression analysis, despite the
sample size used for the analysis. In contrast, for a single-factor
ANOVA the number of degrees of freedom is one less than the number
of treatments. This difference needs explaining.
For a single-factor ANOVA, all but one of the treatment means are free

to vary, but the value of the “final” one is constrained because the grand
mean is a set value. Therefore, the number of degrees of freedom for the
treatment mean square is always one less than the number of treatments. In
contrast, for any regression line every value of Ŷ must (by definition) lie on
the line. For a regression line of known slope, once the first value of Ŷ has
been plotted the remainder are no longer free to vary because they must lie
on the line, so the regression mean square has only one degree of freedom.
The degrees of freedom for error in a single-factor ANOVA are the

sum of one less than the number within each of the treatments. Because a
degree of freedom is lost for every treatment, if there are a total of n
replicates (the sum of the replicates in all treatments) and k treatments,
the error degrees of freedom are n− k. In contrast, the degrees of freedom
for the residual (error) variation in a regression analysis are always n− 2.
This is because a regression line, which only ever has one degree of
freedom, is always only equivalent to an experiment with two treatments.
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16.5.2 Testing whether the intercept of the regression line
is significantly different to zero

The value for the intercept a calculated from a sample is only an estimate of
the population statistic α. Consequently, a positive or negative value of a
might be obtained in a sample from a population where α is zero. The
standard deviation of the points scattered around the regression line can be
used to calculate the 95% confidence interval for a, and a single-sample t test
can be used to compare the value of a to zero or any other expected value.
Once again, most statistical packages include a test to determine if a differs
significantly from zero.

16.5.3 The coefficient of determination r2

The coefficient of determination, symbolized by r2, is a statistic that shows
the proportion of the total variation of the values ofY from the average �Y
that is explained by the regression line. It is the regression sum of squares
divided by the total sum of squares:

r2 ¼ Sum of squares explained by the regressionððaÞ aboveÞ
Total sum of squaresððaÞ þ ðbÞ aboveÞ (16:10)

whichwill only ever be a number from zero to 1.0. If the points all lie along the
regression line and it has a slope that is different from zero, the unexplained
component (quantity (b)) will be zero and r2 will be 1. If the explained sum of
squares is small in relation to the unexplained, r2 will be a small number.

16.6 An example: school cancellations and snow

In places at high latitudes, heavy snowfalls are the dream of every young
student, because they bring the possibility of school closures (called “snow
days”), not to mention sledding, hot chocolate and additional sleep! A school
administrator looking for away to predict the number of school closures on any
day in the city of St Paul, Minnesota hypothesized that it would be related to
the amount of snow that had fallen during the previous 24 hours. To test this,
they examined data from 10 snowfalls. These bivariate data for snowfall
(in cm) and the number of school closures on the following day are given in
Table 16.1.
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From a regression analysis of these data a statistical package will give
values for the equation for the regression line, plus a test of the hypotheses
that the intercept, a, and slope, b are from a population where α and β are
zero. The output will be similar in format to Table 16.2.

From the results in Table 16.2 the equation for the regression line is
school closures = 5.773 + 0.853 × snowfall. The slope is significantly differ-
ent to zero (in this case it is positive) and the intercept is also significantly
different to zero. You could use the regression equation to predict the
number of school closures based on any snowfall between 3 and 30 cm.

Table 16.1 Data for 24-hour snowfall and the number
of school closure days for each of 10 snowfalls.

Snowfall (cm) School closures

3 5
6 13
9 16
12 14
15 18
18 23
21 20
24 32
27 29
30 28

Table 16.2 An example of the table of results from a regression analysis. The value
of the intercept a (5.733) is given in the first row, labeled “(Constant)” under the
heading “Value”. The slope b (0.853) is given in the second row (labeled as the
independent variable “Snowfall”) under the heading “Value.” The final two columns
give the results of t tests comparing a and b to zero. These show the intercept, a, is
significantly different to zero (P = 0.035) and the slope b is also significantly different
to zero (P< 0.001). The significant value of the intercept suggests that there may be
other reasons for school closures (e.g. ice storms, frozen pipes), or perhaps the
regression model is not very accurate.

Model Value Std error t Significance

Constant 5.733 2.265 2.531 0.035
Snowfall 0.853 0.122 7.006 0.001
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Most statistical packages will give an ANOVA of the slope. For the data in
Table 16.1 there is a significant relationship between school closures and
snowfall (Table 16.3).
Finally, the value of r2 is also given. Sometimes there are two values: r2,

which is the statistic for the sample and a value called “Adjusted” r2, which is
an estimate for the population fromwhich the sample has been taken. The r2

value is usually the one reported in the results of the regression. For the
example above you would get the following values:

r ¼ 0:927; r2 ¼ 0:860; adjusted r2 ¼ 0:842

This shows that 86% of the variation in school closures with snowfall can be
predicted by the regression line.

16.7 Predicting a value of Y from a value of X

Because the regression line has the average slope through a set of scattered
points, the predicted value of Y is only the average expected for a given value
of X. If the r2 value is 1.0, the value of Y will be predicted without error,
because all the data points will lie on the regression line. Usually, however,
the points will be scattered around the line. More advanced texts describe
how you can calculate the 95% confidence interval for a value of Y and thus
predict its likely range.

16.8 Predicting a value of X from a value of Y

Often you might want to estimate a value of the independent variable X
from the dependent variable Y. Here is an example. Many elements absorb
energy of a very specific wavelength because the movement of electrons or

Table 16.3 An example of the results of an analysis of the slope of a regression. The
significant F ratio shows the slope is significantly different to zero.

Sum of squares df Mean square F Significance

Regression 539.648 1 539.648 49.086 0.000
Residual 87.952 8 10.994
Total 627.600 9
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neutrons from one energy level to another within atoms is related to the
vibrational modes of crystal lattices. Therefore, the amount of energy
absorbed at that wavelength is dependent on the concentration of the
element present in a sample. Here it is tempting to designate the concen-
tration of the element as the dependent variable and absorption at the
independent one and use regression in order to estimate the concentration
of the element present. This is inappropriate because concentration of an
element does not depend on the amount of energy absorbed or given off, so
one of the assumptions of regression would be violated.

Predicting X from Y can be done by rearranging the regression equation
for any point from:

Yi ¼ aþ bXi (16:11)

to:

Xi ¼ Yi � a
b

(16:12)

but here too the 95% confidence interval around the estimated value of X
must also be calculated because the measurement of Y is likely to include
some error. Methods for doing this are given in more advanced texts.

16.9 The danger of extrapolating beyond the range
of data available

Although regression analysis draws a line of best fit through a set of data,
it is dangerous to make predictions beyond the measured range of X.
Figure 16.8 illustrates that a predicted regression line may not be a correct
estimation of the value of Y outside this range.

16.10 Assumptions of linear regression analysis

The procedure for linear regression analysis described in this chapter is
often described as a Model I regression, and makes several assumptions.

First, the values of Y are assumed to be from a population of values that
are normally and evenly distributed about the regression line, with no
gross heteroscedasticity. One easy way to check for this is to plot a graph
showing the residuals. For each data point its vertical displacement on the Y
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axis either above or below the fitted regression line is the amount of residual
variation that cannot be explained by the regression line, as described in
Section 16.5.1. The residuals are calculated by subtraction (Table 16.4) and
plotted on the Y axis, against the values of X for each point and will always
give a plot where the regression line is re-expressed as horizontal line with
an intercept of zero.
If the original data points are uniformly scattered about the original

regression line, the scatter plot of the residuals will be evenly dispersed in
a band above and below zero (Figure 16.9). If there is heteroscedasticity the
band will vary in width as X increases or decreases. Most statistical packages
will give a plot of the residuals for a set of bivariate data.

Y

0 2 4

(a)

6 8 10
X

Y

0 2 4 6 8 10
X

(b)

Figure 16.8 It is risky to use a regression line to extrapolate values of Y
beyond the measured range of X. The regression line (a) based on the data for
values ofX ranging from 1 to 5 does not necessarily give an accurate prediction
(b) of the values of Y beyond that range. A classic example of such behavior is
found in plots of the geothermal gradient of the Earth’s interior. At shallow
depths, there is generally a linear increase in temperature of ~20 K/km depth,
depending on location, but the rate increases as you go deeper into the mantle.
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Second, it is assumed the independent variable X is measured without
error. This is often difficult and many texts note that X should be measured
with little error. For example, levels of an independent variable determined
by the experimenter, such as the relative % humidity, are usually
measured with very little error indeed. In contrast, variables such as the
depth of snowfall from a windy blizzard, or the in situ temperature of a
violently erupting magma, are likely to be measured with a great deal of
error. When the dependent variable is subject to error, a different analysis
called Model II regression is appropriate. Again, this is described in more
advanced texts.

Third, it is assumed that the dependent variable is determined by the
independent variable. This was discussed in Section 16.2.

Fourth, the relationship between X and Y is assumed to be linear and it is
important to be confident of this before carrying out the analysis. A scatter
plot of the data should be drawn to look for any obvious departures from
linearity. In some cases it may be possible to transform the Y variable

Table 16.4 Original data and fitted regression line of Y = 10.8 + 0.9X. The residual for
each point is its vertical displacement from the regression line. Each residual is
plotted on the Y axis against the original value of X for that point to give a graph
showing the spread of the points about a line of zero slope and intercept.

Original data
Calculated value
of Ŷ from
regression equation

Data for the plot of residuals

X Y
Value of X (from
original data)

Value of Y
ðY � ŶÞ

1 13 11.7 1 1.3
3 12 13.5 3 − 1.5
4 14 14.4 4 − 0.4
5 17 15.3 5 1.7
6 17 16.2 6 0.8
7 15 17.1 7 − 2.1
8 17 18.0 8 − 1.0
9 21 18.9 9 2.1
10 20 19.8 10 0.2
11 19 20.7 11 − 1.7
12 21 21.6 12 − 0.6
14 25 23.4 14 1.6
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(see Chapter 13) to give a linear relationship and proceed with a regression
analysis on the transformed data.

16.11 Multiple linear regression

Multiple linear regression is a straightforward extension of simple linear
regression. The simple linear regression equation:

Yi ¼ aþ bXi (16:13 copied from 16:1)

examines the relationship between the value of a variable Y and another
variable X. Often, however, the value of Y might depend upon more than
one variable. For example, the sediment yield of a river may be dependent
on its drainage area plus other factors such as topographic relief, precip-
itation and flow rate.
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Figure 16.9 (a) Plot of original data in Table 16.4, with fitted regression line
Y = 10.8 + 0.9X. (b) The plot of the residual Y � Ŷ

� �
against the value of X for

each data point shows a relatively even scatter about the horizontal line.
(c) General form of residual plot for data that are homoscedastic. (d) Residual
plot showing one example of heteroscedasticity, where the variance of the
residuals decreases with X.
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Therefore, the regression equation could be extended:

Yi ¼ aþ b1X1i þ b2X2i (16:14)

which is just Equation (16.13) plus a second independent variable with its
own coefficient of b2 and values (X2i). You will notice that there is now a
double subscript after the two values of X, in order to specify the first variable
(e.g. drainage area) as X1 and the second (e.g. topographic relief) as X2.

Equation (16.14) can be further extended to include additional variables
such as precipitation and flow rate:

Yi ¼ aþ b1X1i þ b2X2i þ b3X3i þ b4X4i::: etc (16:15)

Themathematics of multiple linear regression is complex, but a statistical
package will give the overall significance of the regression and, more
importantly, the value for the slope (and its significance) for each of the
independent variables.

If the initial analysis shows that an independent variable has no signifi-
cant effect on Y, the variable can be removed from the equation and the
analysis rerun. This process of refining themodel can be repeated until only
significant independent variables remain, thereby giving the best possible
model for predicting Y. There are several procedures for refining, but the
one most frequently recommended is to initially include all independent
variables, run the analysis and examine the results for the ones that do not
appear to affect the value of Y (i.e. variables with non-significant values
of b). The least significant is removed and the analysis rerun. This process,
called backward elimination, is repeated until only significant variables
remain.

16.12 Further topics in regression

This chapter is an introduction to linear regression analysis. More advanced
analyses include procedures for comparing the slopes and intercepts of two
or more regression lines. Non-linear regression models can be fitted to data
where the relationship between X and Y is exponential, logarithmic or even
more complex. The understanding of simple linear regression developed
here is an essential introduction to these methods, which will be discussed
further in relation to sequence analysis (Chapter 21).
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16.13 Questions

(1) An easy way to help understand regression is to work through a simple
contrived example. The set of data below will give a regression with
a slope of 0 and an intercept of 10, so the line will have the equation
Y = 10 + 0X:

X Y

0 10
0 9
0 11
1 10
1 9
1 11
2 10
2 9
2 11

(a)Use a statistical package to run the regression.What is the value of r2 for
this relationship? Is the slope of the regression significant? (b)Next,modify
the data to give an intercept of 20, but with a slope that is still zero. (c)
Finally, modify the data to give a negative slope that is significant.

(2) The table below gives data for the weight of alluvial gold recovered from
different volumes of stream gravel.

Volume of gravel
processed (m3)

Weight of gold
recovered (grams)

1 0.025
2 0.042
3 0.071
4 0.103
5 0.111
6 0.142
7 0.164
8 0.191
9 0.220
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(a) Run a regression analysis, where the volume of gravel is the inde-
pendent variable. What is the value of r2? Is the relationship significant?
What is the equation for the relationship between the weight of gold
recovered and the volume of gravel processed? Does the intercept of the
regression line differ significantly from zero? Would you expect it to?
Why?
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17 Non-parametric statistics

17.1 Introduction

Parametric tests are designed for analyzing data from normally distributed
populations. Although these tests are quite robust to departures from
normality, and major ones can often be reduced by transformation, there
are some cases where the population is so grossly non-normal that para-
metric testing is unwise. In these cases a powerful analysis can often still be
done by using a non-parametric test.
Non-parametric tests are not just alternatives to the parametric pro-

cedures for analyzing ratio, interval and ordinal data described in
Chapters 8 to 16. Often geoscientists obtain data that have been measured
on a nominal scale. For example, Table 3.2 gave data for the locations
of 594 tornadoes during the period from 1998–2007 in the southeastern
states of the US. This is a sample containing frequencies in several
discrete and mutually exclusive categories and there are non-parametric
tests for analyzing these types of data (Chapter 18).

17.2 The danger of assuming normality when a population
is grossly non-normal

Parametric tests have been specifically designed for analyzing data from
populations with distributions shaped like a bell that is symmetrical about
the mean with 66.26% of values occurring within μ± 1 standard deviation
and 95% within μ± 1.96 standard deviations (Chapter 7). This distribution
is used to determine the range within which 95% of the values of the sample
mean, X, will occur when samples of a particular size are taken from a
population. If X occurs outside the range of μ± 1.96 SEM, the probability
the sample has come from that population is less than 5%. If the population
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is not normally distributed the range occupied by 95% of the values of the
mean may be either wider or narrower than assumed, in which case judg-
ments about statistical significance made on the basis of the normal dis-
tribution will be misleading.

An example is shown in Figure 17.1. The population is bimodal and the
range within which 95% of the values of the means of samples of size n= 30

Frequency

(a)

µ

Frequency

(b)

Frequency

(c)

Figure 17.1 Illustration of how the range in which the means of samples
from a grossly non-normal population does not correspond to the expected
range assuming the population is normally distributed. (a) Distribution of a
bimodal population. (b) Actual shape of the distribution of means of sample
size n= 30 from the population shown in (a). (c) Shape of the distribution of
means calculated from the standard error when n= 30 assuming the
population is normally distributed. Horizontal arrows show the range within
which 95% of means would be expected to occur. Note that the expected range
in (c) is much wider than the true range in (b).
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from this population actually occur is narrower than the range predicted
if the population is assumed to be normally distributed.

17.3 The value of making a preliminary inspection
of the data

It has already been emphasized that parametric tests for comparing means
can often be applied to data from populations that are not normally
distributed, because the distribution of the means of samples from most
populations will usually be relatively normal (Chapter 6). Once again,
however, the example in Section 17.2 emphasizes the value of graphing
the data to inspect it for normality and homoscedasticity before attempting
a statistical analysis.
The next two chapters describe tests for analyzing nominal scale data,

followed by some non-parametric alternatives to the parametric tests for
independent and related samples described in Chapters 8 to 12, as well as
a non-parametric test for correlation.
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18 Non-parametric tests for
nominal scale data

18.1 Introduction

Earth scientists sometimes collect data for which the sampling or exper-
imental units can be assigned to two or more discrete and mutually exclu-
sive categories that are contingent on each other. Consider a paleomagnetic
study of the orientation of Earth’s magnetic field using cores collected from
the sea floor on a traverse perpendicular to the mid-ocean ridge. Roughly
55% of the core samples show the magnetic field pointing north and the
remaining 45% show the magnetic field pointing south. These directions are
discrete and mutually exclusive categories: a rock may be magnetized to
point to the north or the south, but it cannot ever be both (the case of an in-
between magnetization recorded during a reversal is so rare that it can be
considered negligible). These two possibilities, north vs. south, also make
up the entire set of possible outcomes and are therefore contingent upon
each other: for a sample of 100 cores, a decrease in the number in one
category (e.g. north-polarized rocks) must be accompanied by an increase
in the number in the other (south-polarized rocks) and vice versa.

These are nominal scale data (Chapter 3). The questions researchers ask
about these data are the sort asked about any sample(s) from a population.

First, you may want to know the probability that a sample has been taken
from a population with a known or expected proportion within each of
two or more categories. For example, the field of forensics depends heavily
on these types of analyses to build cases based on geological evidence and
there are several documented cases where crimes committed on beaches
have been solved using knowledge of sand mineralogy (Murray and
Tedrow, 1992). Suppose you were hired to examine whether beach sand
found in a murder suspect’s shoes matched that of the beaches on the south
sea island where the victim’s body was found. Scientific publications
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describing that locality give the sand mineralogy at all of the beaches on
the island to be 75% coral fragments and 25% basalt grains, and so your null
hypothesis is that the sand from the suspect’s shoes will also have these
proportions.When you examine the sample of 100 grains from the suspect’s
shoes, you find that it contains 86 coral fragments and 14 basalt grains.
Before you go and testify in court, you will need to know the probability
that this difference between the observed frequencies in the sample and
those expected from the composition of the beach is due to chance.
Second, you may want to know the probability that two or more samples

have come from the same population. As an example, consider the handed-
ness of quartz crystals, which is important because of its effect on optical
properties. The handedness arises because there are chains of SiO4 tetrahedra
that form a helical spiral around the vertical axis, but the spiral can turn in
either a clockwise or counter-clockwise direction. A manufacturer noticed
that quartz crystals grown using a new type of alloy in the autoclave tended
to be predominantly right-handed. Consequently, 100 quartz crystals grown
with the new alloy method and 100 samples grown using the original one
were compared. For the new method 67 crystals were right-handed and
33 left-handed, while the original method produced 53 right-handed and
47 left-handed. Here too, the difference between the two samples might be
due to chance, or also be affected by the new procedure.
For both of these examples a method is needed that gives the probability

of obtaining the observed outcome under the null hypothesis. This chapter
describes some tests for analyzing samples of categorical data.

18.2 Comparing observed and expected frequencies:
the chi-square test for goodness of fit

The chi-square test for goodness of fit compares the observed frequencies in
a sample to those expected in a population. The chi-square statistic is the
sum, of each observed frequency minus its expected frequency, squared and
then divided by the expected frequency (and was first discussed in Chapter 6):

�2 ¼
Xn

i¼1

ðoi � eiÞ2
ei

(18:1)
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This is sometimes written as:

�2 ¼
Xn

i¼1

ðfi � f̂ iÞ2
f̂ i

(18:2)

where fi is the observed frequency and f̂ i is the expected frequency.
It does not matter whether the difference between the observed and

expected frequencies is positive or negative because the square of any
difference will be positive.

If there is perfect agreement between every observed and expected fre-
quency, the value of chi-square will be zero. Nevertheless, even if the null
hypothesis applies, samples are unlikely to always contain the exact propor-
tions present in the population. By chance, small departures are likely and
larger departures will also occur, all of which will generate positive values of
chi-square. The most extreme 5% of departures from the expected ratio are
considered statistically significant andwill exceed a critical value of chi-square.

For example, forams can be coiled either counter-clockwise (to the left) or
clockwise (to the right). The proportion of forams that coil to the left is close
to 0.1 (10%), which can be considered the proportion in the population
because it is from a sample of several thousand specimens. A paleontologist,
who knew that the proportion of left- and right-coiled forams shows some
variation among outcrops, chose 20 forams at random from the same
locality and found that four were left-coiled and 16 right-coiled. The ques-
tion is whether the proportions in the sample were significantly different
from the expected proportions of 0.1 and 0.9 respectively. The difference
between the population and the sample might be only due to chance, but it
might also reflect something about the environment in which the forams
lived, such as the water temperature. Table 18.1 gives a worked example of a
chi-square test for this sample of left- and right-coiled forams.

The value of chi-square in Table 18.1 has one degree of freedom because
the sample size is fixed, so as soon as the frequency of one of the two
categories is set the other is no longer free to vary. The 5% critical value of
chi-square with one degree of freedom is 3.84 (Appendix A), so the pro-
portions of left- and right-coiled forams in the sample are not significantly
different to the expected proportions of 0.1 to 0.9. The chi-square test for
goodness of fit can be extended to any number of categories and the degrees
of freedom will be k− 1 (where k is the number of categories). Statistical
packages will calculate the value of chi-square and its probability.
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18.2.1 Small sample sizes

When expected frequencies are small, the calculated chi-square statistic is
inaccurate and tends to be too large, therefore indicating a lower than
appropriate probability which increases the risk of Type 1 error. It used to
be recommended that no expected frequency in a chi-square goodness of
fit test should be less than five, but this has been relaxed somewhat in the
light of more recent research, and it is now recommended that no more
than 20% of expected frequencies should be less than five.
An entirely different method, which is not subject to bias when sample

size is small, can be used to analyze these data. It is an example of a group of
procedures called randomization tests that will be discussed further in
Chapter 19. Instead of calculating a statistic that is used to estimate the
probability of an outcome, a randomization test uses a computer program
to simulate the repeated random sampling of a hypothetical population
containing the expected proportions in each category. These samples will
often contain the same proportions as the population, but departures will
occur by chance. The simulated sampling is iterated,meaning it is repeated,
several thousand times and the resultant distribution of the statistic used
to identify the most extreme 5% of departures from the expected propor-
tions. Finally, the actual proportions in the real sample are compared to this
distribution. If the sample statistic falls within the region where the most

Table 18.1 A worked example using chi-square to compare the
observed frequencies in a foram sample to those expected from the
known proportions in the population. The observed frequencies in a
sample of 20 are 4:16 and the expected frequencies are 2:18.

Coil direction Left Right

Observed 4 16
Expected 2 18
Obs – Exp 2 −2
(Obs – Exp)2 4 4
ðObs� ExpÞ2

Exp
2 0.22

�2 ¼
Xn

I¼1

ðoi � eiÞ2
ei

¼ 2:22

18.2 Observed and expected frequencies 233



extreme 5% of departures from the expected occur, the sample is considered
significantly different from the population.

Repeated random sampling of a hypothetical population is an example
of a more general procedure called the Monte Carlo method that uses
the properties of the sample, or the expected properties of a population, and
takes a large number of simulated random samples to create a distribution
that would apply under the null hypothesis.

For the data in Table 18.1, where the sample size is 20 and the expected
proportions are 0.1 left-coiled to 0.9 right-coiled, a randomization test
works by taking several thousand random samples, each of size 20, from a
hypothetical population containing these proportions. This will generate a
distribution of outcomes similar to the one shown in Figure 18.1, which is
for 10 000 samples. If the procedure is repeated another 10 000 times, then
the outcome is unlikely to be exactly the same, but nevertheless will be very
similar to Figure 18.1 because so many samples have been taken. It is clear
from Figure 18.1 that the likelihood of a sample containing four or more
forams with tails coiling to the left is greater than 0.05.

18.3 Comparing proportions among two or more
independent samples

Earth scientists often need to compare the proportions in categories among
two or more samples to test the null hypothesis that these have come from
the same population. Unlike the previous example, there are no expected
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Figure 18.1 An example of the distribution of outcomes from aMonte Carlo
simulation where 10 000 samples of size 20 are taken at random from a
population containing 0.1 left-coiled and 0.9 right-coiled forams. Note that the
probability of obtaining four or more left-coiled forams in a sample of 20 is
greater than 0.05.
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proportions – instead these tests examine whether the proportions in each
category are heterogeneous among samples.

18.3.1 The chi-square test for heterogeneity

Here is an example for three samples, each containing two mutually exclu-
sive categories. Hydrologists managing water aquifers are often concerned
about contamination from agricultural fertilizers containing nitrate (NO3

−),
which is a very soluble form of nitrogen that can be absorbed by plant roots.
Unfortunately nitrate can leach into groundwater and make it unsafe for
drinking. A hydrologist hired to evaluate aquifers in three adjacent rural
areas sampled 20 wells in each for the presence/absence of detectable levels
of nitrate. The researcher did not have a preconceived hypothesis about the
expected proportions of contaminated and uncontaminated aquifers – they
simply wanted to compare the three locations. The data are shown in
Table 18.2. This format is often called a contingency table.
These data are used to calculate an expected frequency for each of the

six cells. This is done by first calculating the row and column totals
(Table 18.3(a)) which are often called themarginal totals. The proportions
of contaminated and uncontaminated aquifers in the marginal totals
shown in the right-hand column of Figure 18.3 are the overall proportions
within the sample. Therefore, under the null hypothesis of no difference in
nitrate among locations, each will have the same proportion of contami-
nated wells. To obtain the expected frequency for any cell under the null
hypothesis, the column total and the row total corresponding to that cell
are multiplied together and divided by the grand total. For example, in
Table 18.3(b) the expected frequency of contaminated wells in a sample
of 20 from Townsville is (20 × 33) ÷ 60 = 11 and the expected frequency
of uncontaminated wells from Mackay is (20 × 27) ÷ 60 = 9.

Table 18.2 Data for 20 water samples taken at each of three
locations to characterize the presence or absence of nitrate
contamination.

Townsville Bowen Mackay

Contaminated 12 7 14
Uncontaminated 8 13 6
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After the expected frequencies have been calculated for all cells,
Equation (18.1) is used to calculate the chi-square statistic. The number
of degrees of freedom for this analysis is one less than the number of
columns, multiplied by one less than the number of rows, because all
but one of the values within each column and each row are free to vary,
but the final one is not because of the fixed marginal total. Here, therefore,
the number of degrees of freedom is 2 × 1 = 2. The smallest contingency
table possible has two rows and two columns (this is called a 2 × 2 table),
which will give a chi-square statistic with only one degree of freedom.

18.3.2 The G test or log-likelihood ratio

The G test or log-likelihood ratio is another way of estimating the chi-
square statistic. The formula for the G statistic is:

G ¼ 2
Xn

i¼1

fi ln
fi

f̂ i

 !

(18:3)

Table 18.3 (a) The marginal totals for the data in Table 18.2. To obtain the expected
frequency for any cell, its row and column total are multiplied together and divided
by the grand total. (b) Note that the expected frequencies at each location (11:9)
are the same and also correspond to the proportions of the marginal totals (33:27).

(a) Observed frequencies and marginal totals.

Townsville Bowen Mackay Row totals

Contaminated 12 7 14 33
Uncontaminated 8 13 6 27
Column totals 20 20 20 Grand total = 60

(b) Expected frequencies calculated from the marginal totals.

Townsville Bowen Mackay Row totals

Contaminated 11 11 11 33
Uncontaminated 9 9 9 27
Column totals 20 20 20 Grand total = 60
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This means, “The G statistic is twice the sum of the frequency of each cell
multiplied by the natural logarithm of each observed frequency divided by
the expected frequency.” The formula will give a statistic of zero when each
expected frequency is equal to its observed frequency, but any discrepancy
will give a positive value of G. Some statisticians recommend the G test and
others recommend the chi-square test. There is a summary of tests recom-
mended for categorical data near the end of this chapter.

18.3.3 Randomization tests for contingency tables

A randomization test procedure similar to the one discussed in
Section 18.2.1 for goodness-of-fit tests can be used for any contingency
table. First, the marginal totals of the table are calculated and give the
expected proportions when there is no difference among samples. Then,
the Monte Carlo method is used to repeatedly “sample” a hypothetical
population containing these proportions, with the constraint that both
the column and row totals are fixed. Randomization tests are available in
some statistical packages.

18.4 Bias when there is one degree of freedom

When there is only one degree of freedom and the total sample size is less
than 200, the calculated value of chi-square has been shown to be inaccurate
because it is too large. Consequently it gives a probability that is smaller
than appropriate, thus increasing the risk of Type 1 error. This bias
increases as sample size decreases, so the following formula, called Yates’
correction or the continuity correction, was designed to improve the
accuracy of the chi-square statistic for small samples with one degree of
freedom.
Yates’ correction removes 0.5 from the absolute difference between

each observed and expected frequency. (The absolute difference is used
because it converts all differences to positive numbers, which will be
reduced by subtracting 0.5. Otherwise, any negative values of oi – ei would
have to be increased by 0.5 to make their absolute size and the square of
that smaller.) The absolute value is the positive of any number and is
indicated by enclosing the number or its symbol by two vertical bars
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(e.g. j � 6j ¼ 6). The subscript “adj” after the value of chi-square means it
has been adjusted by Yates’ correction.

�2
adj ¼

Xn

i¼1

ðjoi � eij � 0:5Þ2
ei

(18:4)

From Equation (18.4) it is clear that the compensatory effect of Yates’
correction will become less and less as sample size increases. Some authors
(e.g. Zar, 1996) recommend that Yates’ correction is applied to all chi-
square tests having only one degree of freedom, but others suggest it is
unnecessary for large samples and recommend the use of the Fisher Exact
Test (see Section 18.4.1 below) for smaller ones.

18.4.1 The Fisher Exact Test for 2 × 2 tables

The Fisher Exact Test accurately calculates the probability that two samples,
each containing two categories, are from the same population. This test is
not subject to bias and is recommended when sample sizes are small or
more than 20% of expected frequencies are less than five, but it can be used
for any 2 × 2 contingency table.

The Fisher Exact Test is unusual in that it does not calculate a statistic
that is used to estimate the probability of a departure from the null hypo-
thesis. Instead, the probability is calculated directly.

The easiest way to explain the Fisher Exact Test is with an example.
Table 18.4 gives data for the presence or absence of mollusc species with
anti-predator adaptations on either side of the Cretaceous/Tertiary (K/T)
extinction boundary. A typical adaptation might include development of a
thicker, stronger shell, or perhaps a decrease in the size of the aperture
(opening) of the shell to discourage shell-peeling by predatory crabs
(e.g. Vermeij, 1978). However, during an environmental event causing
mass extinction, such adaptations might require more food or reduce
mobility, either of which may diminish the species’ ability to survive. To
test this hypothesis, a paleontologist examined ten outcrops, five below the
K/T boundary and five above it. The results for the presence or lack of
detection of thick-shelled molluscs are in Table 18.4. These frequencies are
too small for accurate analysis using a chi-square test.
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If there were no effect of mass extinction, then you would expect, under
the null hypothesis, that the proportion of samples containing molluscs
with thicker shells (representing anti-predatory adaptations) in each locality
(above and below the K/T boundary) would be the same as the marginal
totals (Table 18.5) with any departures being due to chance. The Fisher
Exact Test uses the following procedure to calculate the probability of an
outcome equal to ormore extreme than the one observed, which can be used
to decide whether it is statistically significant.
First, the four marginal totals are calculated, as shown in Table 18.5.
Second, all of the possible ways in which the data can be arranged within

the four cells of the 2 × 2 table are listed, subject to the constraint that the
marginal totals must remain unchanged. This is the total set of possible
outcomes for the sample. For these marginal totals, the most likely out-
come under the null hypothesis of no difference between the samples is
shown in Table 18.5 and identified as (c) in Table 18.6.

Table 18.4 Data for the presence/absence of mollusc species with thick shells in ten
samples above and below the mass extinction boundary between the Cretaceous
and Tertiary periods. The sample deliberately included five samples above the
boundary layer and five below it. The marginal totals show that four samples contain
species with thick shells and six do not.

Above K/T boundary Below K/T boundary

Thick-shelled molluscs present 0 4 4
Thick-shelled molluscs not found 5 1 6
Totals 5 5 10

Table 18.5 Under the null hypothesis that there is no effect of mass extinction on
the presence of molluscs with thick shells, the expected proportions of rocks with
and without thick-shelled molluscs in each sample (2:3 and 2:3) will correspond to
the marginal totals for the two rows (4:6). The proportions of samples from above
and below the K/T boundary (2:2) and (3:3) will also correspond to themarginal totals
for the two columns (5:5).

Above K/T boundary Below K/T boundary

Thick-shelled molluscs present 2 2 4
Thick-shelled molluscs not found 3 3 6
Totals 5 5 10
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For a sample of ten outcrops, five of which are above the K/T boundary
and five below, together with the constraint that four outcrops must have
thick-shelled molluscs and six must lack them, there are five possible out-
comes (Table 18.6). To obtain these, you start with the outcome expected
under the null hypothesis (c), choose one of the four cells (it does not matter
which) and add one to that cell. Next, adjust the values in the other three
cells so the marginal totals do not change. Continue with this procedure
until the number within the cell you have chosen cannot be increased any
further without affecting the marginal totals. Then go back to the expected
outcome and repeat the procedure by subtracting one from the same cell
until the number in it cannot decrease any further without affecting the
marginal totals (Table 18.6).
Third, the actual outcome is identified within the total set of possible

outcomes. For this example, it is case (e) in Table 18.6. The probability of
this outcome, together with any more extreme departures in the same
direction from the one expected under the null hypothesis (here there are
none more extreme than (e)) can be calculated from the probability of
getting this particular arrangement within the four cells by sampling a set
of ten outcrops, four of which contain thick-shelled molluscs and six of
which do not, with the outcrops sampled from above and below the K/T
boundary. This is similar to the example used to introduce hypothesis
testing in Chapter 6, where you had to imagine a sample of hornblende
vs. quartz grains in a beach sand. Here, however, a very small group is
sampled without replacement, so the initial probability of selecting an out-
crop with thick-shelled molluscs present is 4/10, but if one is drawn, the
probability of next drawing an outcrop with thick-shelled molluscs is now
3/9 (and 6/9 without). We deliberately have not given this calculation
because it is long and tedious, and most statistical packages do it as part
of the Fisher Exact Test.
The calculation gives the exact probability of getting the observed out-

come or a more extreme departure in the same direction from that expected
under the null hypothesis. This is a one-tailed probability, because the
outcomes in the opposite direction (e.g. on the left of (c) in Table 18.6)
have been ignored. For a two-tailed hypothesis you need to double the
probability. When the probability is less than 0.05, the outcome is consid-
ered statistically significant.
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18.5 Three-dimensional contingency tables

The contingency tables described in this chapter are two-dimensional,
but three-dimensional tables can also be analyzed. For example, if you
had two or more samples within which two categorical variables have
been measured on each unit (e.g. presence/absence of nitrate and alumi-
num above and below the legal limit), these would give a contingency table
consisting of a three-dimensional block of cells with one column and two
rows. Three-dimensional chi-square analyses are described in more
advanced texts.

18.6 Inappropriate use of tests for goodness of fit
and heterogeneity

Tests for goodness of fit and contingency tables assume that the data are
mutually exclusive and contingent upon one another. It is also assumed that
the categories are the entire set possible within each sample. Occasionally,
however, these tests are misused. The most common misuse occurs when
samples are incorrectly considered as categories, as shown in the following
example.

A group of paleontologists interested in the study of fossilized tracks and
traces (paleoichnology) examined fossil footprint collections from 200
million year old rock slabs. To evaluate possible dinosaur migration habits,
they selected one square meter on five slabs with different rock types, and
counted the number of footprints in each one (Table 18.7). Overall, 50
footprints were found.

The data were analyzed using a chi-square test for goodness of fit, with
the null hypothesis that equal numbers of footprints (in this case 10, because

Table 18.7 Data for the number of dinosaur footprints found within a
1m2 area on five rock slabs, each of a different rock type. The numbers
counted on each slab are not mutually exclusive or contingent upon the
numbers within any other, so the data are unsuitable for analysis by a
goodness-of-fit test.

shale mudstone siltstone graywacke sandstone

Number of footprints 14 1 16 17 2
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50 were found in total and there were 5 slabs) would be expected on each
slab. Unfortunately, these data are not suitable for a goodness-of-fit test
because the five conditions are neither mutually exclusive nor contingent
categories within a sample. This is clear if you consider that any dinosaur
could have walked on multiple types of sediments, or that it could have
chosen to walk on only one. The numbers in each slab are actually single
replicates of ratio scale data.
To avoid the pitfall of confusing categories and samples, you need to ask

yourself “Do I have data for categories that are mutually exclusive and
contingent within each sample, or are my ‘categories’ really separate inde-
pendent samples?”

18.7 Recommended tests for categorical data

Several tests have been developed for data that are frequencies in
mutually exclusive and contingent categories. The following are broad
recommendations.
When comparing the frequencies in two or more categories within a

single sample to their expected proportions, Yates’ corrected chi-square
can be used where no more than 20% of expected frequencies are less
than five. A randomization test can be used for any sized sample.
For 2 × 2 contingency tables the Fisher Exact Test will give an unbiased

probability and is available in most statistical packages.
For contingency tables with more than two rows and columns, the chi-

squareG test or can be used if nomore than 20% of expected frequencies are
less than five. A randomization test will give an unbiased probability for any
sized sample.

18.8 Comparing proportions among two or more related
samples of nominal scale data

If you have measured the same variable more than once on each sampling
or experimental unit, then the samples are not independent and need to
be analyzed using a test for related samples. Table 18.8 gives data for the
accretion and growth of 12 beaches on a glacial spit off the coast of
Massachusetts. Surveys and photographs were used to document the size
of beaches in two consecutive years. In the first year, 11 of the 12 beaches

18.8 Two or more related samples 243



were accreting sand, adding hundreds of yards of sand to the coastline each
year. Over the intervening winter several new jetties were constructed to
control and funnel the flow of water and sand, in an attempt to maintain the
course of the nearby river channel and improve its navigability for shipping.
By the following spring, deposition patterns had dramatically changed: only
five beaches continued to accrete sand and the remaining seven were
eroding. The null hypothesis was that the proportion of accreting/eroding
beaches would be unaffected by the jetties, while the alternate hypothesis
was that the proportion of accreting/eroding beaches would be affected.
These are two related samples so it is not appropriate to analyze them with
a test that compares two independent ones.

TheMcNemar test for the significance of changes compares two related
samples of nominal scale data in two categories. The data in Table 18.8 are
summarized in a 2 × 2 table giving the number of individuals in all four
possible combinations of categories and samples. These are (a) accreting
before and after the jetty construction, (b) accreting before and eroding
after, (c) eroding before and accreting after and (d) eroding before and
eroding after (Table 18.9).

Table 18.8 The status of 12 ocean beaches, as measured in August
of two successive years, preceding and following construction of
jetties at the mouth of a nearby river. These two samples are not
independent because they contain the same 12 beaches.

Beach Year 1 Year 2

1 Accreting Accreting
2 Accreting Accreting
3 Accreting Eroding
4 Accreting Accreting
5 Accreting Eroding
6 Eroding Eroding
7 Accreting Accreting
8 Accreting Eroding
9 Accreting Accreting

10 Accreting Eroding
11 Accreting Eroding
12 Accreting Eroding
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The null hypothesis predicts that there will be no difference in the
proportions of eroding beaches between the two samples, while the alternate
predicts there will be a difference. Therefore, under the null hypothesis, the
beaches that did change status (combinations (b) and (c)) would be
expected to include equal numbers that changed from eroding to accreting
and from accreting to eroding, so you would expect cells (b) and (c) of
Table 18.9 to contain equal frequencies. If, however, the proportion of
eroding beaches differed before and after construction of the jetties, then
the frequencies in these two cells would be expected to be unequal.
In this example, six beaches changed status, so three would be expected to

change from eroding to accreting and vice versa. TheMcNemar test ignores
categories (a) and (d) where no change has occurred and compares the
observed and expected frequencies in cells (b) and (c) using a goodness-of-
fit test (e.g. the chi-square, exact or randomization tests for two mutually
exclusive categories discussed earlier in this chapter, or the exact probability
calculated from the binomial distribution discussed in Chapter 6). If there is
a statistically significant difference between the proportions in these two
categories it indicates a change between the two samples.
For three or more related samples of nominal scale data in two categories,

theCochran Q test is an extension of theMcNemar test. These tests are also
included in most statistical packages.

18.9 Questions

(1) The ratio of left-handed to right-handed people in the human pop-
ulation is about 1 : 9. When one of us (SM) was in first year of

Table 18.9 The status of 12 beaches tested before and after
construction of jetties at the mouth of a nearby river. Two cells
show the beaches that changed; these are (b) from accreting to
eroding and (c) from eroding to accreting. Note that in this
example there are no beaches in the second category.

After

Before Accreting Eroding

Accreting (a) 5 (b) 6
Eroding (c) 0 (d) 1
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university, he was in a tutorial group of 14 that contained 13 left-handers
and one right-hander. Students had been assigned to tutorial groups at
random. Is this departure from the expected proportion of left-handers
significant? What could you conclude about this occurrence?

(2) To help understand how the chi-square statistic is related to depar-
tures from expected proportions, it is useful to use a statistical package
to compare a sample of contrived data to the expected proportions
for a population. Use expected proportions of 1:1 (e.g. left- and right-
hand forams) and a sample size of 100. (a) Initially set the sample
numbers at 50:50 left to right and run a single-sample chi-square test.
What would you expect the value of chi-square to be? (b) Now, change
the sample proportions to 45 and 55 and rerun the test. Repeat this
for increasing departures from the expected ratio (e.g. 40 and 60,
35 and 65, 30 and 70). What happens to the value of chi-square?
What happens to the probability?

(3) A team of paleontologists searched two sandstone outcrops for three
hours each and found 8 trilobites in one outcrop and 22 in the other.
They compared the numbers using a chi-square test and an expected
ratio of 15:15. Was this test appropriate? Please discuss.

(4) Do you think the sampling described in Section 18.8 was well designed?
Might there be other possible reasons for the change in status of
the 12 beaches from Year 1 to Year 2? How might you improve the
experimental design to take other possible influences into account?
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19 Non-parametric tests for ratio,
interval or ordinal scale data

19.1 Introduction

This chapter describes some non-parametric tests for ratio, interval and
ordinal scale univariate data. These tests do not use the predictable distribution
of sample means, which is the basis of most parametric tests, to infer whether
samples are from the same population. Consequently non-parametric tests are
generally not as powerful as their parametric equivalents, but if the data are
grossly non-normal and cannot be satisfactorily improved by transformation,
it is necessary to use one of these tests.
Non-parametric tests are often called “distribution free tests” but most

nevertheless assume that the samples being analyzed are from populations
with the same distribution. Therefore, most non-parametric tests should
not be used where there are gross differences in distribution (including
the variance) among samples. The general rule that the ratio of the largest
to smallest sample variance should not exceed 4 : 1 discussed in Chapter 13
also applies to non-parametric tests.
Many non-parametric tests for ratio, interval or ordinal data calculate a

statistic from a comparison of two or more samples and work in the
following way.
First, the raw data are converted to ranks. For example, the lowest value is

assigned the rank of “1”, the next highest “2” etc. This transforms the data to
an ordinal scale (see Chapter 3) with the ranks indicating only their relative
order. Under the null hypothesis that the samples are from the same
population you would expect a similar range of ranks within each, with
differences among samples occurring only by chance.
Second, a statistic that reflects any differences in the ranks among

samples is calculated and its value compared to the expected distribution
of this statistic when samples have been taken from the same population. If
the calculated value falls within the range generated by the most extreme 5%
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of departures from the null hypothesis the result is considered statistically
significant. Most statistical packages give the value of the test statistic,
together with the probability of that outcome. Randomization and exact
tests can also be used to compare two or more samples of ratio, interval or
ordinal scale data and are described in this chapter.

19.2 A non-parametric comparison between one sample
and an expected distribution

The Kolmogorov–Smirnov one-sample test can be used to compare the
distribution of a single sample of continuous data to an expected or known
distribution. Here is an example. Limestone is relatively soft, easily worked,
and has an attractive appearance, so it is often cut into blocks and used as
building stone and tombstones. Unfortunately, it is composed mostly of
calcium carbonate (calcite, or CaCO3) and therefore vulnerable to dissolu-
tion by rainwater, which is naturally slightly acidic but can be extremely so
(hence the term “acid rain”) in polluted areas.

Tombstones in a graveyard east of Detroit, Michigan have a bimodal
distribution of the amount of weathering: some stones start to show signs of
partial dissolution after only 10 years, while others take much longer. All of
these tombstones come from a nearby quarry that has been worked for more
than 200 years. The amount of weathering in the tombstones can be quantified
by examining the lead that was initially inserted into the carved lettering and
then polished flush with the surface of the stone: acid rain will slowly dissolve
the limestone but not the lead. Thus, a “lead lettering index” (LLI) that is the
absolute difference in height between the lead letters and the eroded surface of
the stone around them was created to quantify the weathering of a tombstone.

Generations of geology students have visited the town’s graveyards and
amassed LLI data along with age of the limestone tombstones. These data
have been obtained from such a large number of stones over several decades
that they can be assumed to be the distribution for the population.

The owner of the local quarry where all the tombstones originated noticed
that some areas of the quarry walls, containing large quantities of fossils,
showed very little weathering. The owner wondered if stone from these areas
might produce more lasting tombstones, so they commissioned a geologist to
test the hypothesis that tombstones containing the most fossils were more
resistant to dissolution. The geologist visited a local graveyard and measured
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the LLIs of 36 tombstones, each of which was 100 years old and contained
prominent fossils. This distribution was compared to the known distribution
of LLIs for the (much larger) population of 100 year old tombstonesmeasured
by generations of students. Both sets of data are summarized in Table 19.1.
If youmake a preliminary inspection of these data by drawing a histogram

you will find the LLI distribution is bimodal and clearly not appropriate for
analysis using a parametric test such as a single-sample t test. A non-
parametric test is needed.
For a Kolmogorov–Smirnov one-sample test you need to subdivide the

range (here the LLI for the tombstones) into several intervals of equal width,
and count the number of cases within each. This is the same procedure used
for drawing a frequency histogram described in Section 3.3.2 and you
should follow those guidelines.

Table 19.1 A worked example of a Kolmogorov–Smirnov one-sample test. The LLIs
of 36 fossil-rich gravestones that are 100 years old are summarized as frequencies
that are converted to proportions of the sample. These are expressed as cumulative
proportions. First each expected cumulative proportion (from the known or
expected distribution of the population) is subtracted from the observed cumulative
proportion and expressed as the absolute difference D. The greatest value of the
statistic is identified. In this case, it is 0.1217 (shown in bold in the far right-hand
column). If the probability of obtaining this or a more extreme value of the D statistic
is less than 5%, then the two distributions are considered significantly different.

LLI (lead
lettering
index) in
mm

Observed
numbers
in each
category

Observed
relative
frequency
in each
category

Observed
cumulative
proportions
in each
category

Expected
cumulative
proportions
(from the
population)

Absolute
difference D
(observed
Fi minus
expected F̂)

fi Fi F̂i D ¼ Fi � F̂i

<2.0 5 0.1389 0.1389 0.1045 0.0344
2.0–2.49 10 0.2778 0.4167 0.3943 0.0224
2.5–2.99 4 0.1111 0.5278 0.5623 0.0345
3.0–3.49 2 0.0556 0.5833 0.6236 0.0403
3.5–3.99 8 0.2222 0.8056 0.6839 0.1217
4.0–4.49 5 0.1389 0.9444 0.9325 0.0119
≥4.50 2 0.0556 1.0000 1.0000 0.0000
Total 36 1.0000
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A worked example is given in Table 19.1. First, the number of cases in
each interval is converted to relative frequencies (and thus their proportions
of the sample). Second, the relative frequencies are progressively added
together to give the cumulative relative frequency (i.e. the cumulative
proportion). Here too, this procedure is the same as drawing a cumulative
frequency graph (Section 3.3.3).

The cumulative proportions for the sample have to be compared to the
cumulative proportions of the known distribution for the population. To do
this you calculate the absolute value of the difference between the cumu-
lative observed relative frequency (Fi) and cumulative expected relative
frequency (F̂i) for each interval, which will always be positive:

D ¼ jFi � F̂ij (19:1)

If the observed and expected proportions in each interval are the same the
value of Dwill always be zero. As the discrepancy between the observed and
expected proportions increases, the value of D will increase.

The largest value is found and called the D statistic. For the worked
example in Table 19.1 the D statistic is 0.1217. Statistical packages generate
the cumulative frequency distributions, calculate the D statistic and give the
probability.

Themost common use of the Kolmogorov–Smirnov one-sample test is to
compare the distribution of one sample with an expected distribution such
as the normal curve, and most statistical packages include this option.

19.3 Non-parametric comparisons between two
independent samples

19.3.1 The Mann–Whitney test

The Mann–Whitney test is used to compare two independent samples.
Table 19.2 gives data for the length, in cm, of Devonian-age Paracyclas
clams in each of two outcrops. The null hypothesis is that the two samples
have come from the same population.

First, the values are ranked over both samples as shown in Table 19.2. The
smallest value is given the rank of 1, the next largest the rank of 2 etc., so the
largest will have the rank of n1 + n2 (which is the sum of the number of cases
in each sample). For the data in Table 19.2, the largest possible rank is 9.
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If two or more values are the same (that is, they are tied), each is given the
average of the ranks assigned to that many values. For example, if the data in
Table 19.2 contained two 4 cm long clams and these were the smallest, each
would be given the average of ranks 1 and 2, which is 1.5.
If most of the clams were longer in one outcrop than the other, the ranks

would differ between these two samples. In contrast, if the clams were of a
similar length in both outcrops the ranks within each sample would also be
similar.
The ranks are summed separately for each sample (these are R1 and R2 in

Table 19.2) and the two Mann–Whitney statistics U and U′ calculated:

U ¼ n1 � n2 þ n1ðn1 þ 1Þ
2

� R1 (19:2)

and

U 0 ¼ n1 � n2 þ n1ðn2 þ 1Þ
2

� R2 (19:3)

where n1 and n2 are the size of each sample.
These equations may appear complex, but are easily explained by sepa-

rating them into three components as shown for U in Equation (19.2).

U ¼ n1 � n2 þ n1ðn1 þ 1Þ
2

� R1

ðcomponent AÞ ðcomponent BÞ ðcomponent CÞ (19:4)

Table 19.2 The length, in centimeters, of Devonian-age Paracyclas clams
in each of two outcrops. Ranks are shown in the two right-hand columns,
together with the rank sums (R1 and R2) for each treatment.

Length in
outcrop A

Length in
outcrop B

Rank for
outcrop A

Rank for
outcrop B

24 22 7 6
41 6 9 2
17 11 5 3
38 15 8 4

4 1
n1 = 4 n2 = 5 R1 = 29 R2 = 16
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Component A will increase with the size of both samples. Component B
will only increase as the size of sample 1 increases. In contrast, component C
will be affected by the way the ranks are distributed between the two samples.
A lot of low ranks in sample 1 will give a relatively small value of R1 and vice
versa. Therefore, since U is calculated by taking component C away from the
sum of components A and B, it will be large compared to U′ when sample 1
contains mainly low ranks. In contrast, if sample 1 contains mainly high
ranks, the value of U will be small compared to U′. Finally, if both samples
contain similar ranks then neither U nor U′ will be relatively large or small.

When both samples are from the same population, most values of U and
U′ will be similar but differences between them will occur by chance and the
most extreme 5% of discrepancies will give values ofU orU′ that will exceed
a critical value. For a two-tailed test, if either of the U statistics exceeds the
critical value then the probability the samples are from the same population
is less than 5%.

19.3.2 Randomization tests for two independent samples

Another way of comparing two independent samples, without assuming they
are from a normal distribution, is to use a randomization test. These tests were
first discussed in relation to samples of categorical data in Chapter 18.

If two independent samples are taken from the same population, then the
values within each should differ only by chance. A randomization test takes the
combined set of ranks from both samples (a group of size n1 + n2), repeatedly
samples it at random and assigns the ranks to two groups of size n1 and n2.

The simulated sampling is iterated several thousand times and used to
generate the expected distribution of U and U′ from the data set and
therefore identify the most extreme 5% of departures from the outcome
expected under the null hypothesis. Finally, the U statistics for the actual
outcome are compared to these distributions and if the probability is less
than 5% it is statistically significant (Figure 19.1).

19.3.3 Exact tests for two independent samples

Data for two samples can also be analyzed by tests that calculate the exact
probability, and work in a very similar way to the Fisher Exact Probability
Test described in Chapter 18.
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(a)

(b)

(c)

6

1 4 3 6 2 8 7 5

4 2

6 7 2 8 5 4 1 3

1 7 8 5 3

Group 1 Group 2

(d)

R1 = 23 R2 = 13

R1 = 14 R2 = 22

(e)

Frequency

×    10 000

Value of U
0 0

Value of U´

Figure 19.1 Illustration of a randomization procedure that gives
distributions of the two Mann–Whitney statistics U and U′ from simulated
sampling, which can be used to decide whether an observed outcome is
statistically significant. (a) The actual outcome of the experiment. (b) The
ranks from both groups are combined. (c) The combined set of ranks is
resampled at random to give two more groups of size n1 and n2 and thereby
generate two new values of R1 and R2. (d) Steps (b) and (c) are repeated several
thousand times. Each time, two more values of R1 and R2 are generated.
(e) The simulated sampling gives the distributions of U and U′ for two
samples taken at random from the same group. By chance there will often be
differences between samples, and as they increase so will U or U′. The largest
5% of the values of U and U′ are shown as the filled areas on the right of each
graph. Finally, the U statistics from the actual outcome (a) are compared to
these distributions. If the probability of getting either U or U′ is less than 5%
(i.e. either statistic falls within the filled area), the null hypothesis that the
samples in (a) are from the same population is rejected.



An exact test for two independent samples calculates the probability of
the actual difference (or values of statistics such as U and U′) between the
ranks of the samples, together with any more extreme differences from the
outcome expected under the null hypothesis. This gives the one-tailed
probability of the outcome.

Here is an example for two independent samples with three data in each.
The values range from 1 to 6, and the total set of ways in which they can be
distributed between two samples is shown in Table 19.3. We have deliber-
ately made the values the same as their ranks, and used a simple comparison
between the rank sums of the samples.

For this example there are only two combinations that will give the
greatest difference between the rank sums. These are when the first sample
contains the three lowest (1, 2 and 3) and the second the three highest (4, 5
and 6) ranks and vice versa, giving an absolute difference of nine. Less
extreme differences can be obtained from several combinations and are
therefore more likely (Table 19.3).

For example, you may wish to calculate the probability of the observed
outcome and any more extreme departures from the one expected under the
null hypothesis when one sample contains the ranks 1, 2 and 5 (and the other
contains ranks 3, 4 and 6). The observed difference between the sums of the
ranks is –5. You will find this outcome in the third line from the top of
Table 19.3. There are two more extreme differences (–7 and –9) in the same
direction (that is, with increasingly negative values) from the outcome expected
under the null hypothesis. The probability of each outcome is calculated directly
from sampling a set of six values without replacement (e.g. the chance of rank 1
is 1/6, but the chance of then selecting rank 2 is 1/5 etc.). Once calculated these
probabilities are summed, thus giving the one-tailed probability of the observed
outcome and any more extreme departures from the null hypothesis. It is
one-tailed because differences in the same absolute size between the samples
(i.e. the last three lines showing differences of 5, 7 and 9) in Table 19.3 have
been ignored, and has to be doubled to get the two-tailed probability.

19.3.4 Recommended non-parametric tests for two
independent samples

Most statistical packages include the Mann–Whitney test, but if you
have one that includes an exact test or randomization test for two
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Table 19.3 The set of ways in which six ranks can be distributed between two
samples of three. Note that the most extreme differences (of –9 and 9) between the
sums of the ranks of two samples can only be obtained when one contains ranks 1, 2
and 3 and the other 4, 5 and 6, so these outcomes have a relatively low probability
compared to less extreme differences (e.g. 1 and –1), which can be obtained in
several different ways.

Sample 1 Sample 2

(a) (b) (c) Rank sums and their differences (c) (b) (a)

1 4
2 R1 = 6 R1–R2 = –9 R2 = 15 5
3 6

1 3
2 R1 = 7 R1−R2 =−7 R2 = 14 5
4 6

1 1 2 3
2 3 R1 = 8 R1−R2 =−5 R2 = 13 5 4
5 4 6 6

2 1 1 3 2 1
3 3 2 R1 = 9 R1–R2 = –3 R2 = 12 4 4 5
4 5 6 5 6 6

2 1 1 2 2 1
3 3 4 R1 = 10 R1–R2 = –1 R2 = 11 3 4 4
5 6 5 6 5 6

1 2 2 1 1 2
4 4 3 R1 = 11 R1–R2 = 1 R2 = 10 2 3 3
6 5 6 5 6 5

1 2 3 1 1 2
5 4 4 R1 = 12 R1–R2 = 3 R2 = 9 2 3 3
6 6 5 6 5 4

3 2 1 1
4 5 R1 = 13 R1–R2 = 5 R2 = 8 3 2
6 6 4 5

3 1
5 R1 = 14 R1–R2 = 7 R2 = 7 2
6 4

4 1
5 R1 = 15 R1–R2 = 9 R2 = 6 2
6 3
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independent samples, they are recommended in preference to the Mann–
Whitney test.

19.4 Non-parametric comparisons among more than two
independent samples

The most frequently used non-parametric test for more than two independ-
ent samples is the Kruskal–Wallis test. It is also called the Kruskal–Wallis
single-factor analysis of variance by ranks, but this is misleading because it
does not use analysis of variance to compare samples. Instead, the Kruskal–
Wallis test is an extension of the Mann–Whitney test that can be applied to
three or more samples.

19.4.1 The Kruskal–Wallis test

For a Kruskal–Wallis test the data are ranked in the same way as for a
Mann–Whitney test, starting by assigning the lowest rank to the smallest
value. Here is an example that also uses the length of Devonian-age
Paracyclas clams discussed in Section 19.3.1, except that here the clams
are being compared among three outcrops. The null hypothesis is, “There is
no difference in the length of clams from the three outcrops.” It is clear that
a marked difference in the length of clams among outcrops will also result in
a difference in the ranks and rank sums.

Table 19.4 The length in centimeters, of Devonian-age Paracyclas clams from three
outcrops. The totals are the rank sums within each group.

Length of clams (centimeters)
Length of clams ranked from the smallest
to the largest

Outcrop J Outcrop K Outcrop L Outcrop J Outcrop K Outcrop L

25 31 22 9 13 8
14 20 4 4 7 1
35 29 11 14 11 3
41 15 18 16 5 6
28 40 8 10 15 2

30 12
Total R1 = 53 R2 = 63 R3 = 20
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The rank sums for each group are used in the following formula for the
Kruskal–Wallis statistic H:

H ¼ 12
NðN þ 1Þ

Xk

i¼1

R2
i � 3ðN þ 1Þ (19:5)

where N is the total sample size and k is the number of groups or samples.
Although this formula looks complex, it is straightforward when considered
as three components:

H ¼ 12
NðN þ 1Þ �

Xk

i¼1

R2
i � 3ðN þ 1Þ

ðcomponent AÞ ðcomponent BÞ ðcomponent CÞ (19:6)

Components A and C will increase as sample size increases. Component
B is the sum of all the squared rank totals. If all Ri values are relatively
similar then component B (and thereforeH) will be smaller than when some
are large and others small because of the effect of squaring relatively large
numbers (Box 19.1).
The distribution of H for samples taken at random from the same

population has been established and used to identify the 5% most extreme
departures from the null hypothesis of no difference. For large samples, or
where the number of groups or treatments is more than five, the value of
H is a close approximation to the chi-square statistic with (k− 1) degrees
of freedom, and many statistical packages only give this statistic (and its
probability) for the result of a Kruskal–Wallis test.

19.4.2 Exact tests and randomization tests for three or more
independent samples

Randomization and exact tests on the ranks of three or more independent
samples are extensions of the methods described for two independent
samples and it is not necessary to explain these further.

19.4.3 A posteriori comparisons after a non-parametric
comparison

A non-parametric comparison can detect a significant difference among
three or more groups, but it cannot show which groups appear to be from
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the same, or different, populations. This problem was discussed in
Chapter 10 in relation to a single-factor parametric ANOVA. If the effect
of the variable you are examining is considered fixed you need to use non-
parametric a posteriori tests to compare among groups. These are described
in more advanced texts (e.g. Sprent, 1993).

19.4.4 Rank transformation followed by single-factor ANOVA

Another way of analyzing data that are grossly non-normal is to run a
parametric single-factor ANOVA on the ranks. This is not a true

Box 19.1 The effect of an unequal allocation of ranks on the total
of the squared rank sums

This example uses three groups with two values in each. Only the
ranks of the values are shown. First, the rank sums are identical among
groups.

Group A Group B Group C

1 2 3
6 5 4
R1 = 7 R2 = 7 R3 = 7

Pk

i¼1
R2
i ¼ 3� 49 ¼ 147

Second, the rank sums are different among groups and this gives a
larger sum of the squared rank sums.

Group A Group B Group C

1 3 5
2 4 6
R1 = 3 R2 = 7 R3 = 11

Pk

i¼1
R2
i ¼ 32 þ 72 þ 112 ¼ 179

258 Further non-parametric tests



non-parametric test, but has the advantage of easy a posteriori comparisons
when an effect is fixed and the initial analysis shows a significant difference
among samples. It is as powerful as applying a Kruskal–Wallis test.

19.4.5 Recommended non-parametric tests for three or more
independent samples

Most statistical packages include the Kruskal–Wallis test, which is up to 95%
as powerful as the equivalent parametric single-factor ANOVA described in
Chapter 10. If you have a package that includes an exact test or randomization
test, these are recommended in preference to the Kruskal–Wallis test. Several
texts recommend using a parametric ANOVA after rank transformation but
it is important to note that this is not a true non-parametric comparison.

19.5 Non-parametric comparisons of two related samples

Related samples were first discussed in Chapter 8. Some examples are when
a variable is measured twice (and usually under different conditions) on the
same sampling or experimental unit, or when the units within one sample or
treatment are somehow related to those in a second (e.g. an experiment
where several specimens of the same mineral are split into two, with one
piece of each specimen assigned to treatment A while the other is assigned
to treatment B). There are several non-parametric tests for determining the
probability that two related samples have been taken from the same pop-
ulation and these include the Wilcoxon paired-sample test, as well as
randomization and exact tests for this statistic.

19.5.1 The Wilcoxon paired-sample test

The Wilcoxon paired-sample test is the non-parametric equivalent of the
paired-sample t test. The following example is from medical mineralogy. In
Chapter 6 we mentioned that asbestos fibers show longitudinal parting and
have ends that fray into individual fibers. If inhaled, these fibers often
remain in the lung where they cause inflammation and scarring of lung
tissue (which leads to a high incidence of cancer). In humans the trachea
(the windpipe) branches into two bronchi, which lead to different lungs.
The bronchus leading to the right lung is wider, shorter and angled more
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closely to the vertical than the one leading to the left lung. Not surprisingly,
it has been found that inhaled objects are more likely to lodge in the right
bronchus, so a pathologist hypothesized the right lung may also receive a
greater proportion of inhaled asbestos particles and therefore show a higher
incidence of lesions.

To test this, the pathologist counted the number of lesions found during
post mortem examination of the left and right lungs of 10 male asbestos
workers who had died of natural causes. The data are in Table 19.5.

For the Wilcoxon test the difference between each pair of related sam-
pling units is first calculated. Each is also given as the absolute difference
and these values are ranked (Table 19.5). Finally, the ranks associated with
negative and positive differences are summed separately to give the
Wilcoxon statistics T+ and T–. For the data in Table 19.5, the ranks of the
positive differences sum to 25 (cases 1, 2, 4, 5, 6 and 9) while the ranks of
the negative differences sum to 30 (cases 3, 7, 8 and 10).

Under the null hypothesis of no effect of bronchial structure on the
number of lesions in each lung, any differences between each pair of related
samples (and therefore T+ and T–) would only be expected by chance. If,
however, there were an effect of bronchial structure it would contribute to
differences between these two statistics.

The values of T+ and T– can be compared to their expected distributions
from taking related samples at random from a population. For a two-tailed
test the null hypothesis is rejected if either T+ or T– is less than a critical
value, but for a one-tailed test the null hypothesis is only rejected if the
appropriate T statistic is less than a critical value. For example, if it were
hypothesized there were more lesions in the right lung than the left, a
reduction in the number of negative ranks would be expected so the null
hypothesis would only be rejected if T– were less than the critical value.

For large samples the distributions of both T statistics approximate the
normal curve, so statistical packages often give the value of the Z statistic
and probability for the result of the Wilcoxon test.

19.5.2 Exact tests and randomization tests for two
related samples

The procedures for randomization and exact tests on the ranks of two
related samples are conceptually similar to the analyses for two independent
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samples described in Section 19.3 and it is not necessary to explain them any
further.

19.6 Non-parametric comparisons among three or more
related samples

Tests for three or more related samples include the Friedman test, together
with randomization and exact tests for this statistic.

19.6.1 The Friedman test

The Friedman test is often called the Friedman two-way analysis of variance
by ranks, but this is misleading because it is not equivalent to the two-factor
ANOVA discussed in Chapter 12. The Friedman test cannot detect inter-
action and only examines differences among the levels of one factor, so is
really analogous to the two-factor ANOVA without replication applied to
the randomized block experimental design described in Chapter 14.

Table 19.6 gives the results of a randomized block experiment designed
to compare the effects of the addition of vermiculite (Section 8.4.3) upon
the amount of water retained by topsoil in a large field. There is consid-
erable natural spatial variation in water retention, so the experimental
field was subdivided into six strips and one replicate of every treatment

Table 19.6 The number of grams of water per 100 grams of topsoil three weeks
after one replicate of two vermiculite treatments and a control were applied to each
of six blocks in a large field.

Block

Treatment A:
10 g/kg
vermiculite

Treatment B:
50 g/kg
vermiculite

Control
(plowed
only)

Rank of
Treatment A

Rank of
Treatment B

Rank of
control

1 2.5 2.7 2.1 2 3 1
2 1.8 1.9 2.0 1 2 3
3 4.4 4.7 4.1 2 3 1
4 2.4 2.6 2.3 2 3 1
5 5.1 5.3 5.2 1 3 2
6 1.7 1.9 1.6 2 3 1

Totals R1 = 10 R2 = 17 R3 = 9
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assigned to each strip, in a randomized block design with three treatments
and six blocks. Soil in the control treatment was plowed, while soil in the
other two treatments was (a) plowed and mixed with 10 g/kg vermiculite
and (b) 50 g/kg vermiculite. Data for the number of grams of water per
100 grams of topsoil three weeks after the treatments were applied are in
Table 19.6.
For a Friedman test the data are first transformed to ranks. These are

assigned within each block and therefore within each row of Table 19.6.
The lowest value in each row is given the rank of “1”, the next highest “2”
etc., and the highest rank cannot exceed the number of treatments.
If the treatments are from the same population, the range of ranks (and the

rank sums) for each should also be similar, with any variation due to chance.
If, however, there is any effect of either treatment, the ranks and their sums
will also differ. For the example in Table 19.6, the control contains all but two
of the lowest ranks, while treatment B (50 g/kg vermiculite) contains all but
one of the highest.
Next, the total of the squared rank sums is calculated. The size of this total

will depend on the relative size of the rank sums (Box 19.1) with a set of
similar ones giving a smaller total than a set of dissimilar ones.
Finally the following formula is used to calculate the Friedman statistic �2

r :

�2
r ¼

12
baðaþ 1Þ

Xa

i¼1

R2
i � 3bðaþ 1Þ (19:7)

where a is the number of treatments or groups and b is the number of blocks.
This appears complex, but can be split into three components as shown in
equation (19.8) below. The Friedman statistic is obtained by multiplying
components A and B together and then subtracting component C.

�2
r ¼

12
baðaþ 1Þ �

Xa

i¼1

R2
i � 3bðaþ 1Þ

ðcomponent AÞ ðcomponent BÞ ðcomponent CÞ (19:8)

Components A and C will increase as sample sizes and the number of
samples increase. If the rank sums are very similar among treatments,
component B will be relatively small so the value of the Friedman statistic
will also be small. As the differences among the rank sums increase,
component B will increase, thus giving an increasingly larger value of the
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Friedman statistic. Once this exceeds the critical value above which less than
5% of the most extreme departures from the null hypothesis occur when
samples are taken from the same population, the outcome is considered
statistically significant.

This analysis can be up to 95% as powerful as the equivalent two-factor
ANOVA without replication for randomized blocks.

19.6.2 Exact tests and randomization tests for three or more
related samples

The procedures for randomization and exact tests on the ranks of three or
more related samples are extensions of the methods for two independent
samples and do not need to be explained any further.

19.6.3 A posteriori comparisons for three or more related samples

If the Friedman test shows a significant difference among treatments and
the effect is considered fixed, you are likely to want to know which treatments
are significantly different (see 19.4.3). A posteriori testing can be done and
instructions are given in more advanced texts such as Zar (1996).

19.7 Analyzing ratio, interval or ordinal data that show
gross differences in variance among treatments and
cannot be satisfactorily transformed

Some data show gross differences in variance among treatments that
cannot be improved by transformation and are therefore unsuitable for
parametric or non-parametric analysis. An exploration geologist in Canada
was evaluating the economic potential of a circular depression thought to
be an impact crater. They knew that the large-scale impact structure at
nearby Sudbury was associated with valuable copper and nickel deposits,
and that other impact structures are excellent reservoirs for oil and gas.
So they set out to determine if the new locality might also be an impact
structure.

One of the key properties of impacted rocks is their high concentration of
platinum group elements. Perhaps the most diagnostic of these is iridium,
which is famously found all over the world in an ash layer that corresponds
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to the end of the Cretaceous Period and the extinction of the dinosaurs.
Iridium is not normally present in crustal rocks on the Earth’s surface – it is
usually found only in the metallic cores of differentiated planets and in iron
from meteorites. So when an impact from an iron-rich object occurs on
Earth, the iridium vaporizes and is distributed among the impact ejecta in
unusually high concentrations (up to 100 parts per billion). Thus iridium
concentration can be used as a geochemical tracer to indicate that rocks
have experienced an impact event.
The exploration geologist collected 15 core samples from his suspected

new impact site, along with 15 from the Sudbury impact structure. The
concentration of iridium in the two samples of 15 is given in Table 19.7.
It is clear there are gross differences in the distributions between the two

samples, with one showing bimodality. A solution is to transform the data to
a nominal scale and reclassify both samples into two mutually exclusive
categories of “with iridium” and “no iridium” (Table 19.8) which can be
compared using a test for two or more independent samples of categorical
data (Chapter 18).

Table 19.7 The Ir contents (in parts per billion)
of 15 rocks sampled at Sudbury crater (a classic
impact site) and 15 at a new site with a circular
feature suspected to be an impact crater.

Sudbury New site

4 2
7 0
4 2
10 0
2 0
7 0
1 0
9 0
1 1
9 0
12 1
1 0
5 0
4 1
5 0

19.7 Gross differences in variance 265



19.8 Non-parametric correlation analysis

Correlation analysis was introduced in Chapter 15 as an exploratory tech-
nique used to examine whether two variables are related or vary together.
Importantly, there is no expectation that the numerical value of one variable
can be predicted from the other, nor is it necessary that either variable is
determined by the other.

The parametric test for correlation gives a statistic that varies between
+1.00 and –1.00, with both of these extremes indicating a perfect positive
and negative straight line relationship respectively, while values around
zero show no relationship. Although parametric correlation analysis is
powerful, it can only detect linear relationships and also assumes that both
the X and Y variables are normally distributed. When normality of both
variables cannot be assumed, or the relationship between the two variables
does not appear to be linear and cannot be remedied by transformation,
it is not appropriate to use a parametric test for correlation. The most
commonly used non-parametric test for correlation is Spearman’s rank
correlation.

19.8.1 Spearman’s rank correlation

This test is extremely straightforward. The two variables are ranked
separately, from lowest to highest, and the (parametric) Pearson correla-
tion coefficient calculated for the ranked values. This gives a statistic called
Spearman’s rho, which for a population is symbolized by ρs and by rs for a
sample.

Spearman’s rs and Pearson’s rwill not always be the same for the same set
of data. For Pearson’s r the correlation coefficients of 1.00 or –1.00 were

Table 19.8 Transformation of the ratio data in Table 19.7 to a nominal
scale showing the number of replicates in each sample as the two
mutually exclusive categories of with and without detectable iridium.

Sudbury New site

Number without iridium 0 10
Number with iridium 15 5
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Figure 19.2 Examples of raw scores, ranks and the Spearman rank
correlation coefficient for data with: (a) a perfect positive relationship
(all points lie along a straight line); (b) no relationship; (c) a perfect negative
relationship (all points lie along a straight line); (d) a positive relationship
which is not a straight line but all pairs of bivariate data have the same ranks;
(e) a positive relationship with only half the pairs of bivariate data having
equal ranks; (f) a positive relationship with no pairs of bivariate data having
equal ranks. Note that the value of rs is 1.00 for case (d) even though the raw
data do not show a straight-line relationship.

19.8 Non-parametric correlation analysis 267



only obtained when there was a perfect positive or negative straight-line
relationship between the two variables. In contrast, Spearman’s rs will give a
value of 1.00 or –1.00 whenever the ranks for the two variables are in perfect
agreement or disagreement (Figure 19.2), which occurs in more cases than a
straight-line relationship.

The probability of the value of rs can be obtained by comparing it to the
expected distribution of this statistic and most statistical packages will give
rs together with its probability.

19.9 Other non-parametric tests

This chapter is only an introduction to some non-parametric tests for two or
more samples of independent and related data. Other non-parametric tests
are described in more specialized but nevertheless extremely well-explained
texts such as Siegel and Castallan (1988).

19.10 Questions

(1) The table below gives summary data for the depth of the water table, in
feet, for a population of 1000 wells. (a) What are the relative frequencies
and cumulative relative frequencies for each depth? (b) For a sample of
100 wells, give a distribution of water table depths that would not be
significantly different from the population. (c) For another sample of
100 give a distribution of water table depths you would expect to be
significantly deeper than the population. (d) What test would be appro-
priate to compare these samples to the known population?

Depth (feet) Number of wells

20–29 150

30–39 300

40–49 140

50–59 110

60–69 30

70–79 110

80–89 140

90–99 20
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(2) An easy way to understand the process of ranking, and the tests that use
this procedure, is to use a contrived data set. The following two inde-
pendent samples have very similar rank sums. (a) Rank the data across
both samples and calculate the rank sums. (b) Use a statistical package
to run aMann–Whitney test on the data. Is there a significant difference
between the samples? (c) Now change the data so you would expect a
significant difference between groups. Run the Mann–Whitney test
again. Was the difference significant?

Group 1 Group 2

4 5
7 6
8 9
11 10
12 13
15 14
16 17
19 18
20 21

(3) The following set of data for the percentage of sandstone porosity shows
a gross difference in distribution between two samples. (a) How might
you compare these two samples? (b) Use your suggested method to test
the hypothesis that the two samples have different porosities. Is there a
significant difference?

Sample 1: 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 5, 2
Sample 2: 1, 1, 1, 1, 1, 1, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15,

17, 18, 18, 19
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20 Introductory concepts of
multivariate analysis

20.1 Introduction

So far, all the analyses discussed in this book have been for either univariate
or bivariate data. Often, however, earth scientists need to analyze samples of
multivariate data – wheremore than two variables are measured on each
sampling or experimental unit – because univariate or bivariate data do
not give enough detail to realistically describe the material or the environ-
ment being investigated.

For example, a large ore body may contain several different metals, and
the concentrations of each of these may vary considerably within it. It would
be useful to have a good estimate of this variation because some parts of the
deposit may be particularly worth mining, others may not be worth mining
at all, or certain parts may have to be mined and processed in different ways.
Data for only one or two metals (e.g. copper and silver) are unlikely to be
sufficient to estimate the full variation in composition and value within a
deposit that also includes lead and zinc.

Samples on which multivariate data have been measured are often diffi-
cult to compare with one another because there are so many variables. In
contrast, samples where only univariate data are available can easily be
visualized and compared (e.g. by summary statistics such as the mean and
standard error). Bivariate data can be displayed on a two-dimensional
graph, with one axis for each variable. Even data for three variables can be
displayed in a three-dimensional graph. But as soon as you have four or
more variables, the visualization of these in a multidimensional space and
comparison among samples becomes increasingly difficult. For example,
Table 20.1 gives data for the concentrations of five metals at four sites.
Although this is only a small data set, it is difficult to assess which sites are
most similar or dissimilar. (Incidentally, you may be thinking this is a
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very poor sampling design, because data are only given for one sampling
unit at each site. This is true, but here we are presenting a simplified data set
for clarity.)
Earth scientists need ways of simplifying and summarizing multivari-

ate data to compare samples. Because univariate data are so easy to visual-
ize, the comparison among the four sites in Table 20.1 would be greatly
simplified if the data for the five metals could somehow be reduced to a
single statistic or measure. Multivariate methods do this by reducing the
complexity of the data sets while retaining as much information as possible
about each sample. The following explanations are simplified and concep-
tual, but they do describe how these methods work.

20.2 Simplifying and summarizing multivariate data

The methods for simplifying and comparing samples of multivariate data
can be divided into two groups.

(a) The first group of analyses works on the variables themselves. They
reduce the number of variables by identifying the ones that have the
most influence upon the observed differences among sampling units
so that relationships among the units can be summarized and visual-
ized more easily. These “variable-oriented” methods are often called
R- mode analyses.

(b) The second group of analyses works on the sampling units. They often
summarize the multivariate data by calculating a single measure, or
statistic, that helps to quantify differences among sampling units.
These “sample-oriented” methods are often called Q-mode analyses.

Table 20.1 The concentrations of five metals at four sites (A–D). From these raw
data, it is difficult to evaluate which sites are most similar or dissimilar.

Metal Site A Site B Site C Site D

Copper 12 43 26 21
Silver 11 40 28 19
Lead 46 63 26 21
Gold 32 5 19 7
Zinc 6 40 21 38
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This chapter will describe an example of an R-mode analysis, followed by
two Q-mode ones.

20.3 An R-mode analysis: principal components analysis

Principal components analysis (PCA) (which is called “principal compo-
nent analysis” in some texts) is one of the oldest multivariate techniques.
The mathematical procedure of PCA is complex and uses matrix algebra,
but the concept of how PCAworks is very easy to understand. The following
explanation only assumes an understanding of the correlation between two
variables (Chapter 15).

If you have a set of data where you have measured several variables on a
set of sampling units (e.g. a number of sites or cores), which for PCA are
often called objects, it is very difficult to compare them when you have data
for more than three variables (e.g. the data in Table 20.1).

Quite often, however, a set of multivariate data shows a lot of redun-
dancy – that is, two or more variables are highly correlatedwith each other.
For example, if you look at the data in Table 20.1, it is apparent that the
concentrations of copper, silver and zinc are positively correlated (when
there are relatively high concentrations of copper there are also relatively
high concentrations of silver and zinc and vice versa). Furthermore, the
concentrations of copper, silver and zinc are also correlated with gold, but
we have deliberately made these correlations negative (when there are
relatively high concentrations of gold, there are relatively low concentra-
tions of copper, silver and zinc and vice versa) because negative correlations
are just as important as positive ones.

These correlations are an example of redundancy within the data set –
because four of the five variables are well-correlated, and knowing which
correlations are negative and which are positive, you really only need the
data for one of these variables to describe differences among the sites.
Therefore, you could reduce the data for these four metals down to only one
(copper, silver, gold or zinc) plus lead in Table 20.2 with little loss of
information about the sites.

A principal components analysis uses such cases of redundancy to reduce
the number of variables in a data set, although it does not exclude variables.
Instead, PCA identifies variables that are highly correlated with each other
and combines these to construct a reduced set of new variables that still
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describes the differences among samples. These new variables are called
principal components and are listed in decreasing order of importance
(beginning with the one that explains the most variation among sampling
units, followed by the next greatest, etc.).With a reduced number of variables,
any differences among sampling units are likely to be easier to visualize.

20.4 How does a PCA combine two or more variables
into one?

This is a straightforward example where data for two variables are combined
into one new variable, and we are using a simplified version of the conceptual
explanation presented by Davis (2002). Imagine you need to assess variation
within a large ore body for which you have data for the concentration of silver
and gold at ten sites. It would be helpful to know which sites were most
similar (and dissimilar) and how the concentrations of silver and gold varied
among them.
The data for the ten sites have been plotted in Figure 20.1, which shows

a negative correlation between the concentrations of silver and gold. This
strong relationship between two variables can be used to construct a
single, combined variable to help make comparisons among the ten
sites. Note that you are not interested in whether the variables are
positively or negatively correlated – you only want to compare the sites.
The bivariate distribution of points for these two highly correlated

variables could be enclosed by a boundary. This is analogous to the way a
set of univariate data has a 95% confidence interval (Chapter 8). For this
bivariate data set the boundary will be two dimensional, and because the
variables are correlated it will be elliptical as shown in Figure 20.2.
An ellipse is symmetrical and its relative length and width can be

described by the length of the longest line that can be drawn through it

Table 20.2 Because the concentrations of copper, silver, gold and zinc are
correlated, you only need data for one of these (e.g. silver), plus the concentration
of lead, to describe the differences among the sites.

Metal Site A Site B Site C Site D

Silver 11 40 28 19
Lead 46 63 26 21
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(which is called themajor axis), and the length of a line drawn halfway down
and perpendicular to the major axis (which is called the minor axis)
(Figure 20.3).

The relative lengths of the two axes describing the ellipsewill depend upon
the strength of the correlation between the two variables. Highly correlated
data like those in Figure 20.3 will be enclosed by a long and narrow ellipse, but
for weakly correlated data the ellipse will be far more circular.

At present the ten sites are described by two variables – the concentrations
of silver and gold. But because these two variables are highly correlated, all the
sites are quite close to the major axis of the ellipse, so most of the variation
among them can be described by just that axis (Figure 20.3). Therefore, you
can think of themajor axis as a new single variable that is a good indication of

Gold

Silver
A F

I D
B

HC
G
J E

Figure 20.2 An ellipse drawn around the set of data for the concentration of
silver versus the concentration of gold in ore at ten sites. The elliptical
boundary can be thought of as analogous to the 95% confidence interval for
this bivariate distribution.
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Figure 20.1 The concentration of silver versus the concentration of gold at
ten sites.
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most of the variation among sites. So instead of using two variables to
describe the ten sites, the information can be combined into just one.
The two axes are called eigenvectors and the relative length of each that

falls within the ellipse is its eigenvalue. Once the longest eigenvector of the
ellipse has been drawn, it is rotated (in the case of Figure 20.3 this will
simply be anticlockwise by about 45o) so that it becomes the new X axis
(Figure 20.4). This new, artificially constructed principal component
explains most of the variation among the ten sites. It has no name except
principal component number 1 (PC1). It is important to remember that
PC1 is a new variable – in this case it is a combination of the two variables
“concentration of silver” and “concentration of gold.” The plot of the points
in relation to PC1 in Figure 20.4 only shows the sites in terms of this new
variable – there is nothing about silver or gold in the graph.
The new X axis, PC1, is rescaled to assign the midpoint of the axis the

value of zero. This makes the axis symmetrical about zero, so the objects will
have both positive and negative coordinates for PC1 (Figure 20.5).
In this example, the points are all close to the major axis, so principal

component 1 explains the majority of the variation among the sites, and can
be used to easily assess similarities among them. From Figures 20.4 and 20.5
it is clear that sites A, I and F are more similar to each other than A is to E
because the distance between the former three is much shorter.
Because there are two variables in the initial data set, principal components

analysis also constructs a second component that is completely independent
and uncorrelated with principal component 1. The second axis is called
principal component 2 (PC2) and is simply the minor axis of the ellipse
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I D
B
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G
J E

Figure 20.3 The long major axis and shorter minor axis give the dimensions
of the ellipse that encloses the set of data.
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shown in Figure 20.3, which after the rotation described above will be a line
perpendicular to PC1. Here too, the eigenvalue for PC2 corresponds to its
relative length and its midpoint is given the value of zero. It is clear that PC2
does not explain very much of the variation among the sites – the objects are
quite widely dispersed around it, so it is a relatively short eigenvector
(Figure 20.6). Therefore, most of the variation is described by PC1, and the
analysis has effectively reduced the number of variables from two to one.

20.5 What happens if the variables are not highly correlated?

As described above, if the two variables are highly correlated the ellipse
enclosing the data will be very long and narrow. Therefore the first
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Figure 20.5 The values for PC1 are expressed in relation to the midpoint of
the principal eigenvector, which is assigned the value of zero.
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Figure 20.4 The long axis of the ellipse has been drawn through the set of
highly correlated data for the concentration of silver and the concentration of
gold (Figure 20.3), and then rotated to give a new X axis (which is the major
axis of the ellipse) for the artificial variable called principal component
number 1. This new variable explains most of the variation among sites.
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Figure 20.6 Principal component 2 is the short axis of the ellipse shown in
Figure 20.5 and constructed by drawing a line perpendicular to the line
showing PC1. Note that PC2 explains very little of the variation among sites.
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eigenvector will be relatively long with a large eigenvalue, and the second
will be relatively short with a small eigenvalue. In this case, by itself the new
combined variable of the first eigenvector is a good indicator of the
differences among sites.
In contrast, if the two variables are not correlated the ellipse will be more

circular and the first and second eigenvectors will both have similar eigen-
values (Figure 20.7). Therefore, neither can be used by themselves as a
good indication of the differences among sites.

20.6 PCA for more than two variables

Principal components analysis becomes particularly useful when you have
data for three or more variables.
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Figure 20.7 (a) Highly correlated data. The long axis is a good indication of
variation among sites. (b) Uncorrelated data. The major and minor axes of the
ellipse surrounding the data points are both similar in length. Therefore
neither axis is a good single summary of the variation among sites.
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If you have n variables a PCA will calculate n eigenvectors (with
n eigenvalues) that give the dimensions of an n-dimensional object in an
n-dimensional space. This may sound daunting but it is easy to visualize for
only three variables, where the three eigenvectors will give the dimensions
for a three-dimensional object in three-dimensional space. The object will
be close to spherical for a data set with no correlations and therefore little
redundancy, but a very elongated three-dimensional hyperellipsoid for a set
of two or three highly correlated variables. The same applies to however
many additional dimensions there are.

For three or more variables the PCA procedure is an extension of the
explanation given for two variables in Section 20.4.

The longest axis of the object is found and rotated so that it becomes the
X axis lying horizontally to the viewer on a two-dimensional plane with its
flat surface facing the viewer (like the page you are reading at the moment).
If there are many variables and therefore many dimensions, the rotation is
likely to be complex – for example, an eigenvector in three dimensions may
have to be rotated in both the transverse and the horizontal. The eigenvector
for the longest axis then becomes principal component 1.

After this the other eigenvectors are drawn. For example, if you have
measured three variables, then the three-dimensional boundary enclosing
the data points will have three eigenvectors describing its length, breadth
and depth, all at 90° to each other.

In many cases several variables may be highly correlated with each other,
so the hyperellipsoid may be relatively simple and may even describe most
of the variation among sites in just one or two dimensions.

Here is an example. An environmental geochemist sampled sediments
along a 100 mile section of coastline, including five estuaries (A–E) that
received storm water runoff from urban areas and five control estuaries
(F–J) that did not. At each site, they obtained data for the concentration of
copper, lead, chromium, nickel, cadmium, aluminum, mercury, zinc, total
polycyclic aromatic hydrocarbons (ΣPAHs) and total polychlorinated
biphenyls (ΣPCBs). These ten variables were subject to principal compo-
nents analysis and re-expressed as ten principal components giving the
shape of a ten-dimensional hyperellipsoid. Because several of the initial
variables were highly correlated, the first principal component (PC1)
explained 70% of the variation among estuaries. The second, PC2,
explained 15% more of the variation and the third, PC3, only 5% of the
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variation. Therefore, in this case 85% of the variation among site could be
described by a two-dimensional ellipse with axes of PC1 and PC2, and 90%
could be described by a three-dimensional ellipse with axes of PC1, PC2 and
PC3. So the three-dimensional hyperellipsoid will approximate a very
elongate, not very wide, and even less thick object suspended in three-
dimensional space (Figure 20.8) and the remaining seven dimensions will
make little contribution to its shape.
Therefore, you could take only PC1 and PC2 and plot a two-dimensional

ellipse from which you can easily visualize the relationships among the sites.
The two principal components explain 85% of the variation, so the closeness
of the objects in two dimensions will give a realistic indication of their
similarities (Figure 20.9). The analysis shows two relatively distinct clusters
corresponding to the five urban and five control estuaries, consistent with
urban storm water runoff having a relatively consistent effect (although you
need to bear in mind that this is only a mensurative experiment).

20.7 The contribution of each variable to the principal
components

Although the analysis described above has reduced the ten variables to two
principal components, it is often useful to know which specific variables
contribute to each of these components. For example, most of the variation
(i.e. PC1) might only be related to ΣPAHs and ΣPCBs; such an outcome
might suggest ways of reducing the effects of urban development upon

PC2

PC1

PC3

Figure 20.8 Because several variables are highly correlated they can be re-
expressed as a hyperellipsoid with one very long axis (PC1), a shorter one
(PC2) and a very short one (PC3). Most of the variation can be explained by
PC1 and PC2. The third component, PC3, accounts for very little variation
and could be ignored.
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estuaries. To address questions such as these, PCA also gives the relative
contribution of each variable to each component.

The output from a PCA usually includes a plot such as Figure 20.9 and a
table of eigenvalues. As described above, an eigenvalue gives the relative
length of each eigenvector for the dimensions of the hyperellipsoid. As an
example, a list of eigenvalues is given in Table 20.3, which also gives the
percentage of variation explained by each principal component. Here too
the hyperellipsoid is non-spherical, so you know the variables show redun-
dancy and the PCA procedure has usefully reduced the number of variables.

Importantly, as well as reducing the number of variables to help visualize
the relationships among objects, PCA also gives the relative contribution of
the original variables to each eigenvalue. The output table from a PCA will
contain a list of the original variables and their correlations with each of the
principal components. Table 20.4 gives an example for the ten variables in the

Table 20.3 Typical output table for only the first three
components of a PCA. PC1 explains most (70%) of the
variation in the data set and thus has the largest eigenvalue.

Principal component Eigenvalue Percentage variation

1 3.54 70
2 1.32 15
3 0.64 5
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Figure 20.9 A plot of only PC1 and PC2 can still explain most of the
variation among sites A–J. Note that the five urban estuaries are clustered to
the right of the plot and the five control estuaries are clustered to the left.
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estuarine study described above. It is clear that principal component 1 is
mainly composed of variables 3 and 6, which are chromium and aluminum
(the two highest positive and negative correlations). In contrast, principal
component 2 is largely composed of variables 1, 2 and 10, which are copper,
lead and ΣPCBs. Which two variables make the major contribution to
principal component 3? You need to look for the highest correlations,
irrespective of their signs. (They are nickel and cadmium.)
The signs of the correlations are also useful. For example, for principal

component 1 (Table 20.4), the correlation coefficient for variable 3 (chro-
mium) is positive, and the one for variable 6 (aluminum) is negative. This
means that as PC1 increases, chromium concentration also increases, but
aluminum decreases.
In summary, a PCA has the potential to express multivariate data in a

form that we can more easily understand, by reducing the number of
dimensions so the data can be plotted on a two- or three-dimensional
graph. It also gives a good indication of which variables contribute most
to the differences among sampling units.

Table 20.4 Typical output table from a PCA. The far left-hand column lists the
original variables (in this case, variables 1–10) and the elements they represent. The
next three columns represent the first three principal components and the values in
these columns are the correlations between the new components and the original
variables. Note that PC1 is primarily composed of the concentrations of variables 3
and 6 (the two largest values for the correlation coefficients and shown in bold) while
PC2 is primarily composed of the concentrations of variables 1, 2 and 10 (also bold).
The variables that contribute most to PC3 are 4 and 5.

Original variable Component 1 Component 2 Component 3

1 Copper 0.01 0.60 0.22
2 Lead 0.24 0.61 0.37
3 Chromium 0.91 0.26 −0.06
4 Nickel −0.18 0.32 0.57
5 Cadmium 0.15 0.05 0.52
6 Aluminum −0.87 −0.22 0.44
7 Mercury 0.42 0.19 0.37
8 Zinc 0.30 −0.02 −0.22
9 ΣPAHs −0.17 0.21 −0.06
10 ΣPCBs 0.05 −0.71 0.32
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20.8 An example of the practical use of principal
components analysis

A marine geochemist was interested in comparing the hydrocarbons
in sediments at six sampling sites, each one mile apart, running south
along the shore and increasingly distant from a petrochemical plant to
(a) see if there were differences in hydrocarbon levels among the sites, and
(b) if so, to find out which compounds might be the best indicators of
pollution.

The geochemist sampled ten hydrocarbons at each of six sites (A–F). A
principal components analysis showed that only two hydrocarbons, 1 and 6
(combined as PC1), contributed to most of the variation among sites and
were negatively correlated with PC1, followed by 5 and 9 (combined as
PC2). When plotted on a graph of PC1 and PC2 there was a clear pattern
(Figure 20.10) in that the rank order of the sites, running from left to right,
corresponded to their distance from the petrochemical plant. Thus they
concluded that the concentrations of only two hydrocarbons can explain
most of the variation among sites.

20.9 How many principal components should you plot?

There are several ways of deciding upon how many components to use in a
plot. If you are lucky, you might be in the situation where only one or two
are needed, but this will only occur if they account for almost all the
percentage variation among sampling units. Generally, however, you
should not use components with eigenvalues of 1.0 or less, because this
is the level of variation that you would expect by chance when there are no
strong correlations among variables and therefore all original variables
contribute equally to a component.

PC2

(A)
(B)

(C)
(D)

(E)

(F)
PC1

Figure 20.10 A plot of PC1 and PC2 for six sites increasingly distant (site
A = closest, site F = most distant) from a petrochemical plant. The analysis
shows a clear gradation through sites A to F.
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20.10 How much variation must a PCA explain
before it is useful?

Very generally, if the first two or three components describe more than 70%
of the variation among sampling units, then the analysis will produce a plot
in two or three dimensions that is reasonably realistic.
Sometimes, however, it may be useful to know that none of the variables

within a multivariate data set can explain very much of the variation among
sampling units. For example, PCA of a multivariate data set for indicators of
air pollution (nitrogen dioxide, sulfur dioxide, ozone, ammonia and the
concentration of fine particles per cubic meter of air) at sites throughout a
city, including the center and the fringes of the outer suburbs, showed no
component with an eigenvalue greater than 0.9; none explained more than
16% of the variation among sites. The two-dimensional plot of the data was
almost circular, and the three-dimensional plot was spheroidal. It was
concluded that there was no obvious difference in air quality (in relation
to these five indicators) across the city.

20.11 Summary and some cautions and restrictions
on use of PCA

PCA is a way of reducing the complexity of a multivariate data set, but it can
only do this if some variables are highly correlated. Any highly correlated
variables are combined to form principal components, which may allow
sampling units on whichmultivariate data have beenmeasured to be plotted
in two or three dimensions. The contribution of each original variable to the
principal components is also given.
PCA is best suited to data where there are few zero values (e.g. grain size or

concentration). It is not well suited for data such as counts, where many cells
in the table of sites versus variables have a count of zero (e.g. the number of
diamonds in each of several 1 m3 sampling units of kimberlite). This restric-
tion can be thought of in terms of the PCA constructing new axes from highly
correlated variables. If the data contain a lot of zero values for each variable
with only some larger numbers, the PCA is likely to overestimate redundancy,
just as a group of points close to zero and a few points within a bivariate plot
are likely to overestimate the strength of a correlation.
The plot provided by a PCA is also sensitive to the scale on which each

variable is measured. For example, data for the concentrations of ten metals
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might include rare ones measured in ng/g of sediment and more abundant
ones in g/kg of sediment. This will affect the shape of the hyperellipsoid, and
if the data are rescaled (e.g. all expressed as ng/g) the PCA plot will stretch or
shrink to reflect this. One solution, which is often automatically applied by
many PCA programs, is to normalize the data. This is done by converting
each datum to a standard Z score, as described in Chapter 8. For each
variable, every datum is subtracted from the mean and the difference
divided by the standard deviation. This always gives a distribution with a
mean of zero and a standard deviation of 1.0, which provides a way of
standardizing the data, in just the same way that a data set was standardized
for a correlation analysis in Chapter 15, Equation (15.2).

20.12 Q-mode analyses: multidimensional scaling

Q-mode analyses are similar to R-mode ones in that they also reduce the
effective number of variables in a data set, but they do it in a different way.

The previous sections describe how PCA combines highly correlated
variables in order to create fewer new ones. In contrast, multidimensional
scaling (MDS) examines the similarities among sampling units. For
example, you might have data for ten variables (e.g. the concentrations of
ten different hydrocarbons) measured at each of three polluted and three
unpolluted sites. As discussed in relation to principal components analysis,
if you were to graph all ten variables, you would need a ten-dimensional
graph that would be impossibly difficult to interpret.

Multidimensional scaling is another way of condensing multivariate infor-
mation so that samples can usually be displayed on a graph with fewer
dimensions than the number of variables in the original data set. This method
takes the data for the original set of samples and calculates a single measure of
the dissimilarity between each of the possible pairs of these. These dissim-
ilarity data, which are univariate, are then used to draw a plot of the samples in
two- (or three-) dimensional space. Here is a very straightforward example.

Imagine that you are interested in the spatial relationships among peg-
matites within a specific magmatic system. If you were to take four different
pegmatites (for now we will call them A, B, C and D) within a few adjacent
counties or quadrangles and measure the distances between every possible
pair of these (A–B, A–C, A–D, B–C, B–D,C–D), then you could construct the
matrix shown in Table 20.5. These data indicate the dissimilarity between
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pegmatites in terms of their distance apart: pegmatites that are very close
together have a low score, while those further apart have a higher one.
Knowing the dissimilarity values from the matrix you could draw at least

onemap showing the position of the pegmatites in two dimensions. Not all of
the maps would match the actual position of the pegmatites on a real geologic
map, but they would be a convenient way of visualizing the relationships
among the pegmatites. Two examples are shown in Figure 20.11.
This is what multidimensional scaling does. The example using pegma-

tites is very simple, but if you have a matrix of dissimilarities among
sampling units you can use these univariate data to position the units in
only two dimensions and easily visualize how closely they are related. Those
close to each other will be more similar than those further apart.

20.13 How is a univariate measure of dissimilarity among
sampling units extracted from multivariate data?

Univariate measures such as the Euclidian distance can be used to indicate
dissimilarity between sampling units for which multivariate data are avail-
able. The Euclidian distance is just the distance between any two sampling
units in two-, three-, four- or higher-dimensional space.
Here is an example for only two dimensions. The length of the hypo-

tenuse of a triangle is the square root of the sum of the squared lengths of the
two other sides of the triangle (Figure 20.12). For example, for two points
(A and B) in two-dimensional space, with axes of Y1 and Y2 and coordinates
for point A of (Y1 = 6, Y2 = 11) and for point B of (Y1 = 9, Y2 = 13) the

Table 20.5 The dissimilarities, expressed as distance apart in kilometers, for four
pegmatites. Those close together will have a low dissimilarity score, while for those
further apart the score will be higher. Note that each pegmatite is no distance from
itself. The values are duplicated (i.e. the distance between Newry and Phillips is the
same as that between Phillips and Newry) and the matrix is symmetrical: you only
need the similarities either above or below the diagonal showing values of zero.

Streaked Mtn. Mount Mica Newry Phillips

Streaked Mtn. 0 7 58 84
Mount Mica 7 0 50 80
Newry 58 50 0 76
Phillips 84 80 76 0
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distance between them will be the hypotenuse of a triangle which has sides
3 units long (9− 6) on axis Y1, by 2 units (13− 11) high on axis Y2. Therefore
the length of the hypotenuse is the square root of (9 + 4) which is 3.61 units.

So the general formula for the Euclidian distance between any points
whose coordinates are known in p dimensions is:

de ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

i¼1

ðYiA � YiBÞ2
vuut (20:1)

where Y1, Y2,Y3 … Yp are the number of dimensions. For example, for only
two dimensions Y1 and Y2 are the X and Y axes of a typical two-dimensional

(b)

(a)

(c)

Phillips

Phillips

Newry

Newry

Mount Mica

Mount Mica

Streaked Mountain

Streaked Mountain

71 °W

44° N

44°30´ N

70 °W
Generalized Geologic Map

Phillips

Black
Mtn.

Newry Rumford

Mount Mica
Streaked
Mtn.

South Paris

Auburn
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Figure 20.11 (a) The true geologic map and (b) and (c) two equally plausible
multidimensional scaling plots showing the relationships between four
pegmatites in terms of their distances apart. Both maps correctly show all the
dissimilarities among the four pegmatites and are therefore equally applicable,
even though only one (in this case (b)) corresponds to the actual position of
these pegmatites on the geologic map.
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scatter plot. The ‘Y’ terminology is used because the number of dimensions
(and therefore the number of axes) can be two or more.
Equation (20.1) gives a single value for the dissimilarity between the two

points, just like the distances between pegmatites previously described. If the
values for each variable measured on each point are identical, the Euclidian
distance (and dissimilarity) will be zero. Table 20.6 gives an example for
three variables.

20.14 An example

The data in Table 20.7 are for six different trace elements measured on acid-
sulfate waters extracted from four geothermal wells (A–D). By inspection of
these raw data, it is hard to see which wells are most similar and which are

13

11

6 9

A (6,11)

B (9,13)
3.61 units

3 units

2 units

Y2

Y1

Figure 20.12 The Euclidian distance between two points, A and B, plotted in
two dimensions.

Table 20.6 Calculation of the Euclidian distance between two samples A and B, on
which three variables have been measured. The samples can be positioned in a
three-dimensional space in relation to their values for each variable. The Euclidian
distance is the square root of the sum of the squared differences between samples
for each of the three variables (in this case, three trace elements).

Variable Sample A Sample B (YA –YB) (YA –YB)
2

Sm (axis Y1) 24 12 12 144
Eu (axis Y2) 33 31 2 4
Gd (axis Y3) 121 95 26 676Pp

i¼1
ðYiA � YiBÞ2 824

Single univariate value for the Euclidian distance between samples A and B 28.71
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most dissimilar. In Table 20.8, the Euclidian distance has been calculated for
each pairwise comparison of sites, using Equation (20.1), and expressed in a
matrix.

The calculated matrix of dissimilarities can be used to position the sites in
only two-dimensional space, as has been done in Figure 20.13. The process
becomes difficult to do by hand as soon as you have more than three objects,
but statistical packages are available to do this. Some of these simply start by
placing the sampling units entirely at random in two dimensions. (At this
stage the distances among them are extremely unlikely to correspond to the
actual Euclidian distances.) Next, all of the sampling units are moved
slightly at random. If this improves the correspondence between the posi-
tions of the sites within the two-dimensional space and their known
Euclidian distances apart, then the change is retained. If it does not improve
the fit, then the change is discarded and another change chosen at random.

This is done iteratively, which means it is repeated many (thousands or
tens of thousands) times, and will result in a gradually improvingmap of the
relationships among the sites. Eventually the fit cannot be improved any

Table 20.7 Raw data for the concentrations of six different
trace elements (in parts per million) at four geothermal wells.

Element Site A Site B Site C Site D

Ce 12 16 22 14
Nd 43 54 6 39
Eu 32 34 54 28
Tb 61 23 32 71
Ho 2 7 10 8
Tm 31 65 4 29

Table 20.8 The matrix of results for the Euclidian
distances between all six possible paired combinations
of sites shown in Table 20.7.

Site A Site B Site C Site D

Site A 0
Site B 52.6 0
Site C 59.9 80.9 0
Site D 13.3 62.2 63.1 0
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further and the process stops. At this stage, there will be a final map showing
the best relationship among the sites.
Importantly, there may be several possible final maps, so most MDS

programs repeat the process several times to establish the most common
solution.

20.15 Stress

Ideally, the display of dissimilarities will be two dimensional because this is
easiest to interpret. Sometimes, however, the sites will not fit well into a flat
two-dimensional plane, which will have to be rippled in certain places to
place a site (or sites) so that they are the appropriate Euclidian distances
from all the others. This lack of conformity to a two-dimensional display is
called stress and will give a misleading picture of the relationships among
sites. For example, a site forced up on a ripple will seem closer to two
neighboring sites than it really is when the relationships are viewed as a two-
dimensional display (Figure 20.14).
Stress can be reduced by increasing the number of dimensions and there

will be no stress at all when the number of dimensions is equal to the
number of original variables, but that is unlikely to be useful to you because
a multidimensional display is usually impossibly complex to interpret.
Hopefully you will get a display with little stress, in only two or three
dimensions. Statistical packages that do MDS usually give a value for stress:
as a general guide, it should be less than 0.2 and ideally less than 0.1.

B

A D

C

Figure 20.13 Example of the arrangement of the four sites (for which data
are given in Table 20.7) in two dimensions on the basis of the Euclidian
distance between each pair of sites.
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20.16 Summary and cautions on the use of
multidimensional scaling

Multidimensional scaling is a way of displaying sampling units, for which
multivariate data are available, in a reduced number of dimensions. The
distance between the sampling units is an indication of their dissimilarity.
Unlike PCA, it does not identify which variables contribute to the positions
of the sampling units.

Many different dissimilarity indices have been developed. For continuous
data, where there are few values of zero, Euclidian distance is appropriate.
MDS is frequently used by biologists and environmental scientists to ana-
lyze data for the numbers of several different species. Often these data sets

(a)

(b)

B A,C D

B

F

F

E

A

C D

E

Figure 20.14 Sometimes sites will not fit into a two-dimensional plane.
(a) Sites B, C, D and F are on the flat “floor” of the figure. Site A can only be
accommodated accurately in relation to all others by positioning it in space
above (or below) C. (b) Seen from above, as a two-dimensional map, A is
misleadingly close to C.
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include large numbers of zero values, so dissimilarity indices (e.g. the Bray–
Curtis coefficient) which are not biased by the inclusion of zeros have been
developed for these and should be used for any data set that contains a large
proportion of zeros.
Although MDS is a simple technique for displaying sampling units in as

few as two dimensions, the amount of stress (Section 20.15) required to do
this needs to be considered, because the two-dimensional projection is likely
to be misleading when stress is high.

20.17 Q-mode analyses: cluster analysis

Cluster analysis is a method for classifying sampling units into groups
(called clusters) where those within a particular cluster are more similar
to each other than they are to sampling units in other clusters. This is much
simpler than it sounds. For example, the a posteriori Tukey test
(Chapter 11) for assigning several means to groups, based upon the criterion
of no significant difference among means within each group, is a simple
univariate clustering method.
The following explanation of cluster analysis relies on an understanding

of how univariate data for the dissimilarity between sampling units are
derived from multivariate data, which was explained in Sections 20.13
and 20.14.
Just like MDS, cluster analysis uses a matrix of univariate dissimilarities

between pairs of sampling units. For example, the data for the concentra-
tions of six metals at four sites in Table 20.7 were used to construct the
matrix in Table 20.8, which has been copied to Table 20.9. It gives the
Euclidian distance between all possible pairs of four sites.

Table 20.9 (copied from Table 20.8). The matrix of
results for the Euclidian distances between all six
possible paired combinations of sites shown in
Table 20.7.

Site A Site B Site C Site D

Site A 0
Site B 52.6 0
Site C 59.9 80.9 0
Site D 13.3 62.2 63.1 0
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There are several types of cluster analysis, but one most commonly used
is hierarchical clustering which can be used to construct a dendogram – a
tree-like diagram – showing clusters based on the amount of similarity
within a cluster. Here is an example.

First, to start with, the four sites in Table 20.9 can be considered as being
in four separate groups or clusters, because none of the dissimilarities
between any of them are zero.

Second, the dissimilarities in Table 20.9 are examined to find the two sites
that are most similar. These are sites A and D, with a dissimilarity between
them of only 13.3 units. These two sites are assigned to form the first cluster,
with an internal dissimilarity of only 13.3 units (Figure 20.15).

At this stage the sites have been assigned to three clusters – one with
A&D, plus B and C. The cluster of sites A and D, symbolized as (A&D), is
then considered as a single sampling unit and the matrix of dissimilarities
recalculated. This will not affect the dissimilarity between sites B and C, but
the dissimilarity between site B and the “new” sampling unit of cluster
(A&D), as well as that between site C and cluster (A&D) will change.

There are several methods for calculating dissimilarity after sites have
started to be assigned to clusters. The group average linkage method simply
takes the average of the dissimilarity measures between an outside sampling
unit (e.g. site B) and those within the cluster (e.g. (A&D)). Therefore, using the
initial dissimilarities given in Table 20.7, the new dissimilarity between site B
and the cluster (A&D) is the average of the dissimilarity between B andA, and
between B and D. This is (52.6 + 62.2) /2 = 57.4. In the same way, the new
dissimilarity between site C and cluster (A&D) is the average of the dissim-
ilarity between C and A, and between C and D. This is (59.9+ 63.1)/2 = 61.5.
(Note that the dissimilarity between B and C remains the same at 80.9.)

These dissimilarities will give the reduced matrix in Table 20.10. By
inspection the two most similar sampling units are now cluster (A&D)
and site B (because the dissimilarity is the lowest at 57.4). Therefore, these

A D B C

13.3

Figure 20.15 Fusion of the two most similar sites (A and D) to give three
clusters on the basis of a maximum of 13.3 units of dissimilarity within
clusters.
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two are now assigned to the same cluster, with an internal dissimilarity of
57.4. This gives two clusters: (A&B&D) and site C (Figure 20.16).
Next, the matrix of dissimilarities is reduced to the one in Table 20.11.

Here, because there are only two sampling units left to compare, the only
dissimilarity necessary to calculate is between (A&B&D) and site C. Here too,
the dissimilarities in the very first matrix (Table 20.9) are averaged. The
calculation is slightly more complex because you need to take the average of
three dissimilarities A–C, B–C and D–C. This is (59.9 + 80.9 + 63.1)/3= 68.0.
These values for increasing dissimilarity can be used to construct the final

dendogram showing the sites grouped into fewer and few clusters (Figure 20.17).
The dendogram shows a three-cluster solution at 13.3 internal dissimilarity, a
two-category solution at 57.4 internal dissimilarity, and a single-category sol-
ution at 68.0 internal dissimilarity. This result is consistent with the results of the
MDS analysis of the same data in Figure 20.13, which is not surprising.
The advantage of a cluster analysis is that it gives you a quantitative way of

assigning sampling units to groups. For example, from the dendogram in
Figure 20.17 you could suggest that A&D are “in the same group” which is
different from group B and group C. Importantly, however, the groupings
produced by a cluster analysis are unlikely to correspond to “true” categorical
attributes (such as black or white sand grains) given as examples of nominal

A D B C

13.3

57.4

Figure 20.16 Fusion of the first cluster (A&D) and the next most similar (site
B) to give two clusters, (A&D&B) and site C, on the basis of a maximum of
57.4 units of dissimilarity within clusters.

Table 20.10 The reduced matrix of results for the Euclidian
distances between the clusters shown in Figure 20.16.

Sites (A&D) Site B Site C

Sites (A&D) 0
Site B 57.4 0
Site C 61.5 80.9 0
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scale data in Chapter 6. Instead, the categories are based on decisions made
about dissimilarity (or its converse, similarity) which is a continuous and
ratio scale variable. This is an important point. Cluster analysis was primarily
developed for taxonomists – biologists who describe and define animal and
plant species – as a way of helping them make a decision as to whether
individuals should be categorized as the same or different species. Here too,
however, even though the analysis can be used to define clusters it does not
mean these have identified real discontinuities or discrete categories.

In geological applications, cluster analysis has become a commonly used
technique to distinguish and help characterize groups on the basis of many
types of geological data: major, minor, and isotope geochemistries, sediment
particle sizes, drainage basin morphologies, or fossil contents. Cluster
analysis has even been used to group different boulder morphologies and
differentiate geochemical units on Mars. In these applications, results of
cluster analysis are often highly dependent on normalization of the data for
the respective variables, particularly because geological data may lack nor-
mal or log-normal distributions and be strongly skewed or have multiple
modes.

Table 20.11 The matrix of results for the Euclidian distance
between the only possible pair (A&D&B) and site C.

Sites A&D&B Site C

Sites A&D&B 0
Site C 68.0 0

A D B C

13.3

57.4
68.0

Figure 20.17 Dendogram showing sites A, B, C and D hierarchically
arranged in fewer clusters as the amount of dissimilarity allowed within
clusters increases. At 13.3 units of dissimilarity there are three clusters: (A&D),
B and C. These reduce to two clusters: (A&D&B) and C at 57.4 units. Fusion
into only one cluster occurs at 68.0 units of maximum dissimilarity within a
cluster.
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20.18 Which multivariate analysis should you use?

The three analyses described in this chapter are all ways of summarizing and
simplifying a multivariate data set so that relationships among sampling
units can be more easily visualized, but they have different applications.
Principal components analysis is useful for data sets where there are few

zero values and you need to know which variables contribute most to
differences among sampling units.
Multidimensional scaling can be used with data sets that contain a lot of

zero values. MostMDS programs do not give an indication of which original
variables contribute to differences among sampling units.
Cluster analysis assigns objects to groups, based on dissimilarity or

similarity, which may help you categorize the sampling units.
This chapter has only described three commonly used multivariate

methods. This is deliberate. First, many earth scientists may never use
multivariate analyses themselves, but will need a conceptual grasp of how
they actually work, so they can evaluate reports that include summary
statistics and conclusions from multivariate data. Second, more powerful
methods of analyzing multivariate data are being developed, but most of
these are derivations of these three “core” methods.

20.19 Questions

(1) Discuss the statement “If there are no correlations within a
multivariate data set then principal components analysis really
is not very much use at all.”

(2) An earth scientist carried out a principal components analysis
and obtained the following eigenvalues for components 1 to 5.
Which components would you use for a graphical display of the
data? Why?

Principal component Eigenvalue Percentage variation

1 3.54 54
2 2.82 23
3 2.64 22
4 0.89 6
5 0.42 5
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(3) What is “stress” in the context of a two-dimensional summary
of the results from a multidimensional scaling analysis?

(4) Why are the “groups” produced by cluster analysis often not
equivalent to true cases of categorical data (such as black versus
white sand grains)?
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21 Introductory concepts of
sequence analysis

21.1 Introduction

Geoscientists often have to interpret data that are in the form of a
sequence – an ordered series of observations – that has been measured
over time or space. For example, on a temporal scale you might have data
for sea level that has been repeatedly sampled at the same location over
several months, years, or decades and need to know if the mean has
changed, whether there is a consistent trend, or even repetition of the
same pattern. The analysis of temporal scale data is often called time series
analysis. On a spatial scale, sequential data might be obtained as a core from
a bore hole drilled down through a sedimentary sequence or a stack of lava
flows. Although such sequences are spatial, they could also be thought of as
temporal because deeper rocks are likely to be older, but depth and age are
unlikely to be equivalent because the thickness deposited may vary among
years. Nevertheless, the same statistical methods can often be used for both
temporal and spatial sequences.
Data for a sequence can be measured on a ratio, interval scale or ordinal

scale (e.g. the conductivity of well water over several months) or a nominal
scale (e.g. chemical or porosity changes with depth in a stratigraphic
sequence).
Analysis of a sequence might detect a trend (or a lack of it), or reveal

features that may lead to hypotheses about temporal or spatial processes.
Patterns of occurrence within a sequence may also be used as predictors of
conditions of interest. For example, deposits of someminerals (e.g. uranium)
are accompanied by very characteristic modifications of the geochemistry
of surrounding rocks. The resultant alteration haloes are especially charac-
teristic of minerals formed by migrating uranium-rich fluids. It would be
very useful to know that areas of uranium mineralization had a 40%
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probability of occurring below a particular type of rock showing an alter-
ation halo (e.g. bleaching of initially hematite-rich sandstone).

All of the techniques for sequence analysis described here use statistical
methods explained earlier in this book.We will assume an understanding of
correlation (Chapter 15), regression (Chapter 16) and contingency tables
(Chapter 18) to introduce the essential concepts, terminology and techni-
ques of sequence analysis and interpretation.

21.2 Sequences of ratio, interval or ordinal scale data

A sequence of ratio, interval or ordinal scale data measured temporally or
spatially is a bivariate data set with ameasured variable (e.g. sea level) and a
sequence variable (e.g. time or distance) giving position within the sequence.

Several things may affect the measured variable. First, there is likely to be
a random component (the “error” discussed in Chapters 10 and 16).
Second, there may be a longer-term upward or downward trend. Third,
there may be a regular repetitive pattern such as the annual summer/winter
fluctuation in temperature, or a longer-term repetition (e.g. climate change)
that is not annual or seasonal. Fourth, part(s) of the sequence may be
consistently higher or lower than the mean. Finally, the value of the
measured variable may be somewhat dependent on the value(s) in previous
parts of the same sequence. A sequence analysis is used in an attempt to
explain as much of this variation as possible in order to characterize a
sequence, test for significant variation over time and perhaps even make
some very cautious predictions.

21.3 Preliminary inspection by graphing

As a first step, it is very helpful to graph the measured variable on the Y axis
and the sequence variable (e.g. time) on the X axis. For example, Figure 21.1
gives the strength of the magnetic field of the Earth during the past
100 years. Many scientists interpret this decrease in the dipole moment to
be a precursor to a reversal of the Earth’s magnetic poles.

By inspection, the decrease in field strength is approximately linear.
Both variables have been measured on a ratio scale, so the first (and
simplest) model applied to the data could be a linear regression with field
strength (Y) as the dependent variable and time (X) as the independent one
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(Chapter 16). If the regression line appears to be a good fit to the data and
the assumptions of regression are met, it may be all you need to describe the
sequence and test for a significant change in the measured variable over
time.
Most sequences are more complex than the one in Figure 21.1. Often the

relationship between the measured variable and the sequence variable is not
linear, and there may be similarity or dissimilarity between different parts
of the sequence.

21.4 Detection of within-sequence similarity
and dissimilarity

As a second exploratory step to help establish the features of a sequence, it
is often examined for within-sequence similarity and dissimilarity. As an
example, consider an ice core from a glacier, where the percentage of impur-
ities has been measured at regular intervals down the length of the core. Any
repetition of the same or similar values, or pattern (e.g. a regular cyclic change)
along the length of the coremay help understand the processes responsible for
changes within a sequence and can even be used to tentatively predict what
might happen in the future.
One way of detecting repetition is to copy the data from the core, thus

giving two identical sequences. If these two sequences are laid parallel to
each other and side by side, with the beginning of the “top” sequence
aligned with the beginning of the “bottom” one, then each of the
adjacent values in the two sequences will be the same (Figure 21.2(a)).

9
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M

Figure 21.1 Strength of the Earth’s magnetic field expressed as the virtual
axis dipole moment (VADM as 1022 Am2) during the past century.
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Next, the top sequence is successively shifted to the right, by one
observation at a time. After each shift the overlapping parts of the two
cores are compared to each other to see if they are similar or dissimilar
(Figure 21.2(b–g)). As the two cores are progressively moved past each
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Figure 21.2 Examination of a sequence, running from left to right with the
most recently recorded value on the right, for internal similarity and
dissimilarity. (a) The sequence of data on percent impurity is copied and placed
alongside itself to give two identical sequences. (b) The top sequence is shifted
by one interval to the right, thereby putting every value in the lower sequence
adjacent to that for the previous interval in the top one, and the overlapping
sections compared. (c)–(g). The process described in (b) is repeated. For the
shift shown at (g), the two sets of four cells in the overlapping section have
similar values, thus indicating a pattern of similarity between different parts of
the sequence. Note also that for the shift in (d), high values in one sequence are
aligned with low values in the other, indicating sections where the pattern in one
is the opposite (and therefore markedly dissimilar) to the other.
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other, the most recent parts of the bottom core will occur adjacent to
older and older parts of the top one, so if a pattern occurs within a
sequence then the similar or dissimilar sections will, at some stage, lie
side by side (Figure 21.2(g)).
This method is straightforward, but an essential assumption is that

samples have been taken at regular intervals throughout the sequence
(e.g. usually an equal length increment in geological settings). If the intervals
are unequal, then it may be possible to obtain a regular sequence by excluding
some data.
It would be very time consuming to visually inspect the two sequences

every time they were shifted. Furthermore, you need some way of deciding
whether any similarity or dissimilarity is significant or whether it might
only be occurring by chance within a sequence of random numbers. This
can be done by using autocorrelation (which is sometimes called serial
correlation) to test for a relationship, without assuming dependence or
causality. As described above, a sequence is copied to give two identical
ones which are then placed side by side (Figure 21.2(a)). The values
adjacent to each other will be the same, so at this stage the correlation
(Chapter 15) between the variables “sequence 1” and “sequence 2” will
always be 1.0.
Next, sequence 1 is shifted only one interval to the right (Figure 21.2(b)).

This shift is called a lag interval of one (or just a lag of one), and it places
every value within sequence 2 adjacent to the value recorded at the previous
interval in sequence 1. The correlation is recalculated. The process is
repeated several times: the sequence is shifted another interval in the same
direction (therefore giving lag intervals of two, three, four etc.) and the
correlation recalculated each time (Figure 21.2(c)–(g)). The number of lags
that can be used will be limited by the length of a finite sequence, because
every successive shift will reduce the length of the overlapping section
by one.
If there is marked similarity within the sequence then the correlation at

some lag intervals will be strongly positive (e.g. Figure 21.2(g)).
If there is no marked similarity or dissimilarity and only random

variation, the correlation will show some variation but have a mean of zero.
If the pattern at a particular lag in one sequence is the opposite of the

other and therefore markedly dissimilar, the correlation will be strongly
negative (e.g. Figure 21.2(d)).
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To obtain Pearson’s correlation coefficient for a set of bivariate data
(Chapter 15), the means of each variable are separately calculated and used
to convert the two sets of data to their Z scores using the following formulae.

For a population:

Z ¼ Xi � �

�
(21:1 copied from 15:1)

and for a sample:

Z ¼ Xi � �X
s

(21:2 copied from 15:2)

Importantly, a sequence assessed for autocorrelation is usually treated as a
population because it contains all of the data for that sequence. Therefore,
when calculating Z scores the mean and variance of the entire sequence are
used, not just the sample means and variances for the overlapping sections.

Using Z scores, the Pearson correlation coefficient for a population is:

r ¼
PN

i¼1
ðZxi � ZyiÞ

N
(21:3)

For autocorrelation (that compares the measured variable to itself) the
use of Zx is inappropriate and Zy is used instead:

r ¼
PN

i¼1
ðZyi � ZyiÞ

N
(21:4)

Equation (21.4) gives the autocorrelation for a lag of zero, but this will
always be 1.00. As the lag interval increases the number of overlapping
values will decrease so the actual number of values being correlated will be
fewer (Figure 21.2).

To calculate the autocorrelation between different lags of the same
sequence, two modifications to Equation (21.4) are needed.

First, to specify the actual parts of the sequences being compared, the
numerator of Equation (21.4) is changed to that shown in Equation (21.5),
where k is the lag number. This may look complex, but working through the
equation using an example will help. For a lag k= 10 and i= 1, then Zyi
(which is Zy(1) and the first value in the sequence), will be paired with Zy(i+ k)

(which is Zy(11) and the 11th value in the sequence). For the same lag of 10,
when i= 2 the numerator will pair Zyi (which is Zy(2)) with Zy(i+ k) (which is

302 Introductory concepts of sequence analysis



Zy(12)) etc. This ensures that the appropriate Z scores are multiplied
together.
Second, because the number of values being correlated is the total within

the sequence minus the lag number (e.g. at lag 0, for a sequence of length 50,
all 50 values will be used, but a lag of 5 will use only 45), the denominator of
the equation becomes N – k where k is the lag number. Note also that the
value above the symbol Σ is alsoN – kwhich restricts the Z scores being used
to those for the overlapping sections of the two cores (Figure 21.2).

r ¼
PN�k

i¼1
Zyi � ZyðiþkÞ

N � k
(21:5)

Once the values for the correlation coefficient at each lag interval have been
calculated, they are plotted as a line graph with r on the Y axis and the lag
number on the X axis. This graph is called a correlogram and several
examples are given in Figure 21.3. The correlation coefficient at lag zero will
always have an r of 1.0, which is why correlograms produced by statistical
packages often only plot lag intervals of one and more.

21.4.1 Interpreting the correlogram

The shape of the relationship between the Pearson correlation coefficient r
plotted against lag is a very good indication of the characteristics of the
sequence.
A sequence that shows no overall trend and only random variation with

no marked internal similarity or dissimilarity will have a value of r that
starts at 1.0 for lag zero, but will very rapidly decrease and has an expected
average correlation of r= 0.0 at all higher lags (Figure 21.3(a)). This is an
example of a stationary sequence because the original sequence variable
shows no overall upward or downward trend.
If the value of the variable has some dependence on the value in

the previous interval or intervals (i.e. the value for Yt is related to that
for Yt−1 or even Yt−2 and Yt−3) then r will show strong positive or strong
negative autocorrelation at low lags but an average of zero for higher ones
(Figure 21.3(b)).
A trend over time, whether it is decreasing or increasing, will give a value

of r that starts at 1.0 but then slowly decreases to a marked negative

21.4 Within-sequence similarity/dissimilarity 303



(a)

Observation number Lag

1

0

0 50 100
–1

r

Lag
0 50 100

1

0

–1

r

(b)

Observation number

Lag
0 50 100

1

0

–1

r

Observation number

(c)

Lag
0 50 100

1

0

–1

r

Observation number

(d)

Lag
0 50 100

1

0

–1

r

Observation number

(e)

Figure 21.3 Examples of sequences (left-hand figure) of a variable versus
time and the resultant correlogram (right-hand figure) where Pearson’s r is
plotted against increasing lag. (a) A random stationary sequence with no trend
will give a correlogram where r rapidly declines to a mean of zero.
(b) Dependence on previous values but no trend will give positive or negative
autocorrelation at low lags: only positive autocorrelation is shown here.
(c), (d) An increasing or decreasing linear trend will show marked positive
autocorrelation at low lags, but marked negative autocorrelation at high lags,
the latter because as lag increases the similarity between the Z scores in the
overlapping sections decreases to the point where they are markedly
dissimilar. (e) Decreasing trend, with random variation superimposed.
(f) A regular cyclic component will give a regular pattern in the correlogram.
(g) When there is a trend plus within-sequence repetition, the correlogram
will show a gradual decrease as well as fluctuations caused by the repetition.
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correlation as lag increases (Figure 21.3(c) and (d)). These are non-stationary
sequences because the original variable shows an overall trend.
If there is a consistent positive or negative trend, plus random varia-

tion (Figure 21.3(e)) then r will fluctuate but will be markedly positive at
low lags, steadily decrease as lag increases and eventually become markedly
negative. Here too, the sequence is non-stationary.
If there is no overall trend but regular repetition of similar or dissim-

ilar sections within a sequence, then the correlogram will show autocorre-
lation at regular lag intervals (Figure 21.3(f)). In this example, even though
there is fluctuation, there is no overall long-term positive or negative trend,
so the series is stationary.
Finally, if there is a long-term positive or negative trend, plus repeti-

tion within the sequence (Figure 21.3(g)), then the correlogram will show
marked positive autocorrelation at low lag intervals and markedly nega-
tive autocorrelation at high ones, but will also fluctuate because of the
repetition. This is a good example of how two sources of variation can
affect the value of r.
In summary, the amount of autocorrelation will be affected by (a) random

variation, (b) the strength of any long-term trend in non-stationary sequences
and (c) whether there is similarity among different parts of a sequence.
Therefore, when both (b) and (c) are present the values of r in some parts
of the correlogram can be misleading (e.g. Figure 21.3(g)) and it is necessary
to remove the long-term trend in order to assess the extent of repetition. This
is discussed later in the chapter.
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Figure 21.3 (cont.)
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The correlogram can also be used to test if the amount of autocorrelation
is significant. If the original sequence consists of only random variation
(case (a) in Figure 21.3) then for lags of one or more the value of r would
only be expected to vary at random around a mean of zero.

The expected variance of the correlation coefficient r for a random
sequence of length N at a particular lag time k is:

�2
r ¼

1
ðN � kþ 3Þ (21:6)

For example, if you have a sequence containing 40 values and you
calculate the autocorrelation at lag 4, then the expected variance at that
lag is: 1/(40 – 4 +3), which is �2

r ¼ 0:0256. From Equation (21.6) it is clear
that the variance is affected by the sequence length (for a short sequence the
expected variance will be large, but will decrease as N increases), and the
amount of lag (as k increases the variance will increase).

The expected standard deviation of r is just the square root of Equation
(21.6). For a population, 95% of the values of the correlation coefficient are
expected to fall within 1.96 standard deviations of r= 0:

0� 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � kþ 3Þ

s

(21:7)

so if the value of r is outside this range it shows significant autocorrelation at
P < 0.05.

The 95% confidence limits can be drawn on the correlogram as two curved
lines, with significant autocorrelation occurring whenever r is outside this
range. Importantly, any test of the significance of rwill only give a realistic
result when the sequence is relatively long (e.g. at least 40–50 observa-
tions) and the number of lags for which r is calculated are relatively few.
This is because the length of the overlapping sections will get smaller and
smaller as lag is increased, so the correlation will be between shorter and
shorter parts of the sequence, as shown in Figure 21.2. Therefore, it is
recommended that values of r are only calculated for lags up to one
quarter of the full sequence length. Despite this, statistical packages often
give autocorrelations for every possible lag of even short sequences, so you
need to be extremely cautious about the reliability of statistics for lag
numbers more than about one quarter of any sequence length.
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The formula for the autocorrelation given here is probably the easiest to
understand but there are several variations, including ones that treat the
sequence as a sample and not a population. All will give similar results as
long as the test is limited to the first quarter of a relatively long sequence.
Most statistical packages will give a graph of r and its 95% confidence limits,
and there are examples in the following section.
Some statistical packages also include a table showing the Box–Ljung

statistic (that some texts and web pages call the Ljung–Box statistic), which
indicates the extent of autocorrelation for the combined set of lags up to and
including the one for which the Box–Ljung statistic is given. For example, the
Box–Ljung statistic at lag 10 gives the extent of autocorrelation within lags
1–10 inclusive, and you still need to examine the correlogram to identify
which ones are significant. The formula for the Box–Ljung statistic is:

Q ¼ NðN þ 2Þ
Xh

k¼1

r2k
N � h

(21:8)

where N is the number of values in the original sequence, k is the lag
number, h is the maximum lag number for the range being tested and rk
is the autocorrelation at each lag. The size of Q is affected by the cumulative
amount of autocorrelation within the sequence up to the point at which it is
calculated.

21.5 Cross-correlation

Cross-correlation is very similar to autocorrelation, but is used to compare
two different sequences, which may even be for different variables.
Therefore, the two series are unlikely to show perfect correlation at lag 0.
For example, you might want to compare data for the flow discharge of water
in a streamwith the water use patterns at a nearby golf course for the same (or
a longer) time period to see if there is any relationship (and if so, what the lag
is) between these, in order to know how long it takes for irrigation to affect
discharge.
For cross-correlation, the method for obtaining the correlation coefficient

at different lags is similar to the one described above, but because two differ-
ent sequences are being compared and the comparison is usually restricted to
parts of each sequence, the overlapping sections are treated as samples.

21.5 Cross-correlation 307



21.6 Regression analysis

A sequence of ratio, interval or ordinal scale data can often be analyzed by
regression, provided the assumptions of this procedure are met (Chapter 16).

First, the characteristics of the sequence are determined by exploratory
testing, including autocorrelation, as described above. A regression model
is chosen, fitted to the sequence and assessed to see if it is appropriate. If
necessary, the model is refined. The assessment and refinement steps may
have to be repeated several times to develop amodel to the stage where it is a
good description. Finally, the model is used to draw conclusions about the
sequence. These steps are summarized in Figure 21.4.

Establish the characteristics of the sequence by inspection (e.g.
graphing) and exploratory testing (e.g. a test for autocorrelation)

Decide on a regression model and fit it to the data

Assess whether the model is a good
description of the sequence

Model is a poor
description Model is a good

description

Refine model

Use the model to summarize the
characteristics of the sequence and
perhaps make cautious predictions

Figure 21.4 The general steps for using regression to analyze a univariate
sequence.
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The coefficient of determination, r2, shows how much of the variation is
explained by the regression. A plot of the residuals will help indicate if the
regression model is an appropriate analysis for the data (Chapter 16).
The residuals ðyi � ŷÞ have another use in sequence analysis. By plotting

them against the independent variable X, the regression line of best fit ðŷÞ is
converted to a horizontal line where all values of ŷ are equal to zero, with
the residuals dispersed about it. This effectively removes the variation
explained by the line of best fit from the sequence, and has two advantages.
First, if the regression line is a good fit to the data, the plot of the residuals
will now be independent of any long-term trend. This is one way of
detrending a sequence, and the detrended data can be used to investigate
autocorrelation caused by repetition within the sequence without the
confounding effect of any general trend upon the value of r.
Second, if the residuals are not evenly distributed about zero it suggests

there is still variation present that is not accounted for by the line of best fit.
The pattern of the residuals about the line may indicate the characteristics of
this variation, from which you could make a choice of additional terms to
incorporate into the regression equation in an attempt to improve the fit of
the model.
A further step often used in sequence analysis is to draw a correlogram of

the residuals. If the regression is a good description of the data, the values of
r at lags of one or more in this correlogram should only show random
fluctuation around a mean of zero. Significant values of r will indicate any
remaining autocorrelation.
Choosing an appropriate model requires a good understanding of com-

plex regression. Statistical packages can do extremely complex autoregres-
sion analyses, but these models have quite stringent assumptions and are
often misapplied and misinterpreted. Therefore, if the sequence appears
complex it is important to seek expert advice. Here we give straightforward
examples of the use of some regression models.

21.7 Simple linear regression

For a sequence that shows an apparently linear trend over time, as in
Figure 21.1, the correlogram should be similar to Figure 21.3 (c) or (d),
but you might not even draw one for such an obvious relationship. The
sequence could be analyzed using simple linear regression:
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Yi ¼ aþ bXi (21:9 copied from 16:1)

where Y is themeasured variable, a is the intercept, b is the slope andX is the
sequence variable (e.g. time). A test of the slope of the line will show if there
is a significant change in Y over the sequence. You then need to check that
the data satisfy the assumptions of regression, including whether the resid-
uals, ðyi � ŷiÞ, show a relatively even spread around zero when plotted
against X (Chapter 16).

Here is an example using turbidity – the opacity of a fluid caused by the
presence of small particles in suspension – which can be estimated with a
nephelometer that measures the amount of scattering when a beam of
light is shone through fluid. The units of turbidity are called
Nephelometric Turbidity Units (NTU). Figure 21.5(a) gives the turbidity
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Figure 21.5 (a) Regression line, (b) unstandardized residuals and
(c) correlogram of the unstandardized residuals, including 95% confidence
limits, for the turbidity of water, measured in NTU, from well TGM006 in
central Queensland at monthly intervals from January 2000 to December 2003.
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of water in well TGM006 for four years after it was drilled in central
Queensland in January 2000. By inspection, a straight line with a negative
slope is likely to be a good description of the relationship (and this was so
obvious that a correlogram was not drawn). The regression line Y= 407 –

5.02X shown in Figure 21.5(a) has a highly significant negative slope
(F1,46 = 36984.8, P < 0.001) and explains almost all of the variation, because
r2 = 0.999.
The unstandardized residuals plotted against time in Figure 21.5(b) show

a fairly even distribution about zero. Finally, a correlogram of these resid-
uals (Figure 21.5(c)) does not show any remaining autocorrelation and thus
no significant additional variation. In summary, simple linear regression
appears to be a goodmodel of the data and shows a significant decrease over
time. From this you could even cautiously forecast turbidity in future years,
although your prediction may not be correct.

21.8 More complex regression

Often the relationship between the measured variable and the sequence
variable is not linear. One way of modeling a more complex relationship is
to expand the simple linear regression Equation (21.9) by adding additional
constants and powers of X. These equations are called polynomials of
increasing degrees.
The simple linear regression equation is a first-degree polynomial that

gives a straight line relationship:

Y ¼ aþ b1X (21:10 modified from 21:9)

that can be expanded to a second-degree (quadratic) polynomial which
gives a line with one change of direction, by adding a second constant that is
multiplied by the square of X:

Y ¼ aþ b1X þ b2X
2 (21:11)

and a third-degree (cubic) polynomial that gives a line with two changes of
direction, by adding a third constant multiplied by the cube of X:

Y ¼ aþ b1X þ b2X
2 þ b3X

3 (21:12)

and a fourth-degree (quartic) polynomial that gives three changes in direction:

Y ¼ aþ b1X þ b2X
2 þ b3X

3 þ b4X
4 (21:13)

and so on, for additional constants (b) and increasing powers of X.

21.8 More complex regression 311



As the number of constants and powers of X increases, the regression line
will become a better and better fit to the data. Eventually, when the number
of terms in the polynomial is one less than the number of data points within
the sequence, the equation will run through all the points (and thus be a
perfect fit), but this is unlikely to be useful for anything except a very short
sequence because the equation will be extremely long and complex. Often,
however, a good approximation of a long-term trend can be achieved by
using only a second- or third-degree polynomial, which may also detrend
the sequence. The regression can be tested for significance, easily visualized
and used for interpolation and prediction.

To illustrate the successively better fit of increasingly complex regression
models, Figure 21.6 shows turbidity of water from a second well (TGM013),
where the relationship is clearly not linear. First, a linearmodel using Equation
(21.10) does not show a significant relationship between turbidity and time
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Figure 21.6 Turbidity of water from well TGM013 in central Queensland
from early 2000 to late 2003. (a) A simple linear regression (heavy line) is
clearly not a good fit to the points. (b) Unstandardized residuals.
(c) Correlogram of the residuals for a linear model fitted to the data. The
residuals are not evenly distributed and there is extreme autocorrelation.
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(F1,46 = 2.008, NS) and the regression line (Y=295.26 – 1.56X) is an extremely
poor fit (Figure 21.6(a)) with an r2 of only 0.042. A plot of the unstandardized
residuals (Figure 21.6(b)) confirms the use of linear regression is inappropriate
because the data do not occur in a band around the horizontal line for zero
residual variation. Nor has the regression detrended the data; the plot of
residuals is similar to the original sequence with a pronounced long-term
non-linear trend. Finally, the correlogram of the residuals in Figure 21.6(c)
also shows highly significant correlation at low and high lags, which confirms
that there is remaining variation not explained by the regression.
Second, a quadraticmodel (Equation (21.11): Y= 50.28+ 27.8X – 0.60X2)

fitted to the data is highly significant (F2,45 = 2122.84, P < 0.001), and a far
better fit than the linear model, with an r2 of 0.989 (Figure 21.7(a)). A graph
of the residuals (Figure 21.7(b)) shows that the regression appears to be a
very good fit to the data, and the correlogram of the residuals (Figure 21.7(c))
confirms this, with no significant autocorrelation at any lag.
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Figure 21.7 Turbidity of water from well TGM013 in central Queensland
from early 2000 to late 2003. (a) A quadratic regression (heavy line) is a good fit
to the points. (b) Unstandardized residuals. (c) Correlogram of the residuals for
a quadratic model fitted to the data does not show significant autocorrelation.
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Finally, a cubic model (Equation (21.12): Y=53.63+27.06 X – 0.56 X2 –

0.001 X3) is also significant (F3,44 = 1392.67, P<0.001) with an r2 of 0.990,
indicating a slight improvement over the quadratic and a very good fit to the
data. The residuals and their correlogram are consistent with this (Figure 21.8).

In summary, both the quadratic and cubic polynomials are very good fits
to the data and can account for almost all the change in the measured
variable over the sequence. There is a significant non-linear relationship
between turbidity and time, with high turbidity during the middle part of
the sequence.

Even though the regression fits the data, it cannot be used to predict
turbidity in the future because the values will be negative and negative
turbidity does not exist. We have deliberately chosen this example to
illustrate the danger of predicting beyond the measured limits of a
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Figure 21.8 Turbidity of water from well TGM013 in central Queensland
from early 2000 to late 2003. (a) A cubic regression (heavy line) is a good fit to
the points, but appears little better than the quadratic in Figure 21.7.
(b) Unstandardized residuals. (c) The correlogram of the residuals does not
show significant autocorrelation.
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sequence, but the same caution applies even when the predicted values
seem realistic.
From the value of r2, the linear model is a very poor fit to the data. In

contrast, the quadratic is a good fit and the cubic model is a slight improve-
ment over the quadratic. There is no point in using a more complex higher-
order polynomial if it does not give a significantly improved fit over a simpler
one, and this can be tested for significance by a straightforward extension of
the ANOVAused to assess the significance of a regression (Chapter 16). Most
statistical packages give a table of results for the ANOVA that tests for
departure from a line with zero slope (Chapter 16), which includes the sum
of squares, degrees of freedom and mean squares for the regression.
Table 21.1(a) gives these for the linear, quadratic and cubic models fitted to
the data in Figures 21.6 to 21.8.
Each expansion of the polynomial is additive (e.g. Equations (21.10) to

(21.13)) and so are their sums of squares. Therefore, the sum of squares for
the improvement (if any) of the quadratic compared to the linear regression
can be obtained by subtracting the sumof squares for the linearmodel from the
sum of squares for the quadratic, giving the sum of squares for the difference
(SS difference). The number of degrees of freedom for the difference (df differ-
ence) is also calculated by subtraction (Table 21.1(b)). The mean square for the
difference is (SS difference/df difference), and the F statistic is calculated by
dividing this quantity by the error of the higher polynomial (Table 21.1).
The same method is used to assess whether the cubic model is an

improvement compared to the quadratic. In the example in Table 21.1 the
additional variation explained by the quadratic over the linear model is
highly significant, but the cubic model is not a significant improvement over
the quadratic, so the latter is used to describe the relationship.

21.8.1 Polynomial modeling of a spatial sequence: hydrogen
diffusion in a single crystal of pyroxene

There are many common geological phenomena where polynomial approx-
imations are appropriate, particularly spatial data such as gravity models,
porosity, and other fundamental rock properties that vary with depth, shoreline
changes, as well as distortion and translation corrections in image analysis.
For example, different types of diffusion processes are often described with
polynomials. Figure 21.9 shows data from an experiment to measure hydrogen
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diffusion in a single crystal of pyroxene. A water-rich crystal was cooked in a
furnace so that hydrogen could diffuse out. After the experiment, the crystal
was sliced open, and the concentration of hydrogen measured from edge to
edge. The relationship between hydrogen concentration and location in the
crystal is best described by a third-order polynomial (Figure 21.9).

Table 21.1 The amount of additional variation explained by progressive polynomial
expansions can be assessed by subtracting the sum of squares for the lower
polynomial from the next higher one to give the sum of squares for the difference (SS
difference). The number of degrees of freedom for the difference (df difference) is also
obtained by subtraction. The mean square for the difference is (SS difference/df
difference), and the F statistic is calculated by dividing the resultant MS difference by
the error of the higher polynomial. (a) ANOVA statistics for each of the three
regression models. (b) ANOVA table for the relative importance of each additional
expansion of the regression equation. In this example the additional variation
explained by the quadratic model is a highly significant improvement over the linear
one, but there is no significant improvement of the cubic model over the quadratic.

(a)

Model Sum of squares df Mean square

Linear (a) 5568.2 1 5568.2
Error 375 390.5 46 8160.7

Quadratic (b) 530 847.9 2 265 423.9
Error 5653.1 45 125.6

Cubic (c) 530 907.8 3 176 969.3
Error 5593.2 44 127.1

(b)

Model
Sum of squares
for the difference df

Mean square
of difference Error df F ratio

Quadratic
minus

(b) 530 847.9 2 Quadratic F1,45 = 4182.2

linear (a) 5 568.2 1 P < 0.001
Difference 525 279.7 1 525 279.7 125.6 45

Cubic
minus

(c) 530 907.8 3 Cubic F1,44 = 0.47

quadratic (b) 530 847.9 2 NS
Difference 59.9 1 59.9 127.1 44
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21.9 Simple autoregression

Often a correlogram will show significant autocorrelation at low lags. This
may be because the series is non-stationary (e.g. Figure 21.3(d)), but for a
stationary series, or one that has been detrended, low lag autocorrelation
means there is a consistent relationship between successive values. For
example, a sequence might show a significant dependence for the value of
the measured variable at time (t) on time (t− 1) (where t can be any point
within the sequence). This dependence can be modeled by autoregression
(meaning that the data set is regressed upon itself) and is of particular
interest in fields such as finance and meteorology, where sequence analysis
is used (with somewhat mixed success) in attempts to predict future
values.
Here is an example. In some parts of the world annual rainfall has been

found to be significantly related to annual rainfall during the previous year,
or years (e.g. the value of the measured variable at time (t) is related to that
at (t− 1) or even (t− 2) or (t− 3)). Knowledge of this relationship, and its
reliability, might help predict future rainfall: Figure 21.10(a) shows annual
rainfall at the Neostrata 4 open cut coal mine in Western Australia from
1961–2008. During years when annual rainfall exceeds 350mm the output
of the mine has to be reduced because of the accumulation of storm water
runoff in the floor of the cut, so some indication of the rain expected
during the next year would help in planning extractive operations.
Figure 21.10(a) shows fluctuation but no obvious longer-term trend, and
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Figure 21.9 Hydrogen concentration (in ppm) measured from edge to edge
across a single olivine crystal, after a dehydration experiment to characterize
the diffusivity of hydrogen. A cubic regression (heavy line) is a good fit to the
points. The data and figure have been simplified from Woods et al. (2000).
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therefore a stationary series, which was confirmed by the linear regression
having a slope close to zero (Y= 352.26 – 0.072 X : F1,46 = 0.059, NS). The
regression is an extremely poor fit (r2 = 0.001). A correlogram of the
original data shows significant positive autocorrelation at lag 1 and an
almost significant negative autocorrelation at lag 2 (Figure 21.10(b)). A
scatter plot of the residuals against time is relatively evenly spread, but
nevertheless shows a pattern where the values for successive years are often
similar (Figure 21.10(c)). This was confirmed by the correlogram of the
residuals, which is almost the same as the one for the original data
(Figure 21.10(d)).

First, considering the autocorrelation at lag 1, a regression equation
which only included autoregression on the previous year’s rainfall was fitted
to the data:
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Figure 21.10 (a) Annual rainfall (in mm) for the Neostrata 4 mine, Western
Australia, from 1961–2008 inclusive. (b) Correlogram, of original data.
(c) Residuals from a linear regression. (d) Correlogram of the residuals. Note
that (b) and (d) are extremely similar, thus showing that the linear regression
accounts for little variation in the data.
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Yt ¼ aþ B1Yt�1 (21:14)

which was significant (Yt= 237.08 + 0.323Y t−1: F1,45 = 5.26, P < 0.05),
although the amount of variation explained by the regression was still low
(r2 = 0.105). A graph of the residuals is more evenly distributed, but still
shows some similarity between successive values. A correlogram of the
residuals now shows no autocorrelation at lag 1, but significant autocorre-
lation at lag 2 (Figure 21.11). The analysis was rerun, with the inclusion of a
second term to include the annual rainfall from two years before:

Yt ¼ aþ B1Yt�1 þ B2Yt�2 (21:15)

This too was significant (Yt= 334.9 + 0.456Y t−1 – 0.412Yt−2: F2,43 = 7.43,
P < 0.01) and explains more than a quarter of the variation (r2 = 0.257). Note
that for this example the constant for the first lag is positive, but the one for
the second lag is negative, showing a positive relationship with the previous
year’s rainfall, but a negative one for the year before that.
A graph of the residuals (Figure 21.12(a)) has a more even spread of

points and the correlogram of these residuals (Figure 21.12(b)) shows no
low lag autocorrelation (but two significant values at higher lags). Finally,
although the rainfall predicted from Equation (21.15) is not identical to
actual rainfall, it is a surprisingly good predictor of years in the category
“rainfall exceeds 350mm” and is therefore useful in planning extractive
operations at Neostrata 4 during the coming year (Figure 21.12(c)). This is
another example of how a complex sequence can be modeled by adding
additional terms to a regression equation.
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Figure 21.11 Autoregression analysis at t− 1 for the rainfall data at
Neostrata 4. (a) Residuals after autoregression at t− 1. (b) Correlogram of the
residuals. There is significant negative autocorrelation remaining at lag 2.
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21.10 More complex series with a cyclic component

Even a relatively complex time series can often be modeled, detrended and
interpreted using autocorrelation and regression. Figure 21.13 shows sea
level, measured in mm relative to a set reference point, at Port Magmago in
the Western Pacific every December from 1960 to 2009. This relationship is
more complex than the previous examples. The sequence does not appear to
be stationary because sea level is generally lower during the middle, and
higher at the beginning and end of the sequence. There is also a marked
component of peaks and troughs.

A linear regression is clearly inappropriate for this non-stationary series,
so quadratic and cubic polynomials were fitted in an attempt to model the
general trend. Both were significant (Table 21.2) and explained about half
the variation despite the superimposed cyclic component.
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Figure 21.12 Autoregression analysis at t− 1 and t− 2 for the rainfall data at
Neostrata 4. (a) Residuals from an autoregression at t− 1 and t− 2.
(b) Correlogram of the residuals. The autoregression model has accounted for
the autocorrelation at low lags. (c) Actual rainfall (solid line), and predicted
rainfall (dashed line) from Equation (21.15).
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Figure 21.13 Data for sea level, in relation to a set reference point, at Port
Magmago from 1960 to 2009. There appears to be a cyclic component
superimposed over a trend that is not linear. (a) The quadratic line of best fit
(heavy line) appears to approximate the overall trend, but not the strong cyclic
component. (b) Residuals are fairly evenly distributed about the line, showing
that the quadratic model has detrended the data, but there is still a cyclic
pattern with time. (c) A correlogram of residuals confirms the strong cyclic
pattern remaining in the detrended data.

Table 21.2 Regression statistics for the linear, quadratic and cubic relationship fitted
to the data for sea level shown in Figure 21.13. The value of r2 is extremely low for the
linear relationship and the slope of the line is not significant. In contrast, both the
quadratic and cubic relationships are significant (P<0.001 in each case) and both have
detected a significant long-term change over time despite the cyclic component.

Equation r2 F Probability a b1 b2 b3

Linear 0.015 F1,46 = 0.682 0.413 236.1 0.777 NA NA
Quadratic 0.499 F2,45 = 22.453 < 0.001 382.8 −16.94 0.362 NA
Cubic 0.513 F3,44 = 15.477 < 0.001 352.2 −9.59 −0.01 0.005
NA = not applicable because this term does not occur in the particular regression equation
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The sums of squares for any improvement of the cubic over the quadratic,
and of the quadratic over the linear model, were calculated by subtraction
using the method in Table 21.1. This showed the cubic was not significantly
better than the quadratic (F1,44 = 1.26, NS), which was a highly significant
improvement over the linear model (F1,45 = 43.59, P < 0.001), so the quad-
ratic was used.

The quadratic line of best fit in Figure 21.13(a) appears to follow the
general trend. The residuals are shown in Figure 21.13(b). A regression of
the residuals does not differ significantly from zero, which shows that the
quadratic has detrended the data to produce a stationary plot. Nevertheless,
the residuals still show a cyclic pattern and a correlogram of the residuals
still shows gross apparently cyclic autocorrelation (Figure 21.13(c)).

At this stage, you might decide the analysis is sufficient and conclude
that the sequence shows a significant overall trend and a fairly regular
repetitive component. A more detailed regression model could include a
component based on a regular pattern such as a sine wave. These models are
described in more advanced texts and can be easily applied using statistical
software.

Finally, although the quadratic appears to be a good fit to the overall trend
in the sequence, it may not be a reliable predictor of future sea level
(Figure 21.13(a)). Here too, we have deliberately used an example to
emphasize the risk of extrapolating outside themeasured range of a variable.

21.11 Statistical packages and time series analysis

If you are working with a relatively simple time series, the methods given
here may be all you need. The availability of statistical software hasmade the
analysis of time series easy, especially when drawing correlograms and
applying complex regression models, but care is needed when interpreting
the results.

21.12 Some very important limitations and cautions

A correlogram gives the correlation coefficient at numerous lags of the same
sequence. Therefore, even if the data in a sequence only vary at random, for
a significance level of α you would expect this proportion of values of r to fall
outside the confidence interval simply by chance. For example, with a
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random sequence and the significance level set at 5%, you would expect 5%
of values of r to be outside the 95% confidence interval and therefore be
considered “significant.” This is Type 1 error, as discussed in Chapter 9, and
because of it the occasional isolated significant value of r in the correlo-
gram may mean very little. In contrast significance at low lags, several
successive significant lags, or a repeated pattern of significant positive and
negative values (e.g. Figure 21.13(c)) suggests autocorrelation that is “real.”
Equation (21.5) for autocorrelation given earlier in this chapter is for a

relatively long sequence where the mean and the standard deviation can be
treated as parameters of the population. For shorter sequences this equation
needs to be modified because it may be more appropriate to treat the
sequence, or the overlapping sections, as samples (Davis, 2002). For long
series, the slightly different equations give very similar results.
It is extremely important to remember that the conclusions drawn are only

as reliable as the data. A very short part of a sequence (e.g. years 1963–8 of
Figure 21.13(a)) may show an extremely significant increase or decrease over
time but may not be representative of the entire sequence. Therefore, as a
general rule, the reliability of the conclusions increases with sequence length.
When assessing autocorrelation, provided the sequence is long (e.g. at

least 40–50 observations) and the number of calculated lags are few (e.g. up
to no more than one quarter of the sequence length), the correlogram
should give a realistic estimate. For shorter sequences, or very high lag
numbers relative to the length of the sequence, the estimate may be unreal-
istic. This is whymost statistical programs for calculating autocorrelation stop
when the lag interval exceeds a certain proportion of the sequence length.
Most software packages now include methods for time series analysis

including seasonal or repeated effects and autoregressive functions. These
methods need to be used and interpreted with care and you should seek
expert advice if a sequence is complex.

21.13 Sequences of nominal scale data

Often a sequence consists of data measured on a nominal scale (Chapter 3),
where the variable consists of numbers in discrete and mutually exclusive
categories (such as different rock types). For example, youmight have data for
a core in which the type of rock has been recorded at regular intervals, or
whenever it changed. For both sets of data, you are likely to be interested in
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whether each type of rock occurs at random, or if there is significant depend-
ence, such as type A beingmore likely to occur after type B. A sequence can be
classified as: (a) random, where no state shows any dependence on the one
occurring before it, (b) partially dependent where a particular state is more
likely to occur after another but will not always do so and (c) fully determin-
istic where a particular state always occurs after another. Partially dependent
sequences are examples of Markov chains, where the occurrence of succes-
sive states is neither entirely random, nor absolutely deterministic.

21.13.1 Sequences that have been sampled at regular intervals

Nominal scale data that have been recorded at regular intervals can be
analyzed for association using the chi-square test described in Chapter 18.
For example, petroleum geologists log well cores of shallow water strati-
graphic sequences in terms of whether they represent sedimentary deposits
from constant (C), rising (R) or falling (F) sea level, based on sedimentation
rates and whether the sediments coarsen or fine upwards and downwards.
In the following example, sequence stratigraphy is given at 124 successive
depth increments of one meter each.

Top of sequence: C, R, R, C, F, C, R, R, R, R, F, F, C, F, R, C, R, R, C, C, C, C,
R, F, R, R, C, R, F, C, R, R, F, R, C, F, F, F, R, R, C, C, R, R, C, R, R, R, R, C, F,
R, F, R, R, C, R, F, C, R, R, F, R, C, F, F, F, R, R, C, C, R, R, C, R, R, R, R, R, R,
F, F, C, F, R, C, R, R, C, C, C, C, R, F, R, R, C, R, F, C, R, R, F, R, C, F, F, F, R,
R, C, C, R, R, C, R, R, R, R, C, F, R, F, R: Bottom of sequence.

First, to establish the relative proportions of C, R and F, the number of
occurrences of each are divided by the grand total. For the 124 sampling units
above, there are 35 cases (0.282) of C, 61 (0.492) of R and 28 (0.226) of
F. Therefore, if you were to take one sampling unit at random fromwithin the
sequence, the values in brackets are the probabilities of it being each tract type.

Although it is useful to know the probability any sampling unit chosen at
random will contain a particular tract, questions such as “If I drill down into
this deposit and find tract type C, what are the probabilities that the tract in
the next increment downwill be C or R or F?” are likely to be of more interest.

To find the conditional probabilities that each of type C, R or F is followed
by C, R or F, you need to work downwards through the sequence and, for
each increment, count the number of times C is followed by each of C, R and
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F; when R is followed by each of C, R and F, and when F is followed by each
of C, R and F. These data are often called transitions, even when several
successive sampling units contain the same tract type so there is no change
from increment to increment. The total number of transitions will usually
be one less than the number of sampling units in a sequence, because there
may not be anything recorded above the top one. For the 124 sampling units
in the sequence above, there are 123 transitions.
The numbers of cases where tracts C, R and F transition to C, R and F are

in Table 21.3. Each row gives the data where a particular tract type is
followed by another (C, R or F), and each column gives the data for cases
where each tract type is preceded by another. Therefore, for the 35 cases of
“fromC”, the next increment within the sequence is C in 9/35 cases, R in 18/
35 cases and F in 8/35 cases. Dividing the numbers in each of these three
categories by their row total gives the probabilities that tract type C will be
followed in the next increment by type C, type R or type F. The same
procedure applies to tract R and tract F, and has been done in Table 21.3.
These conditional probabilities can be used to test whether the like-

lihoods of finding tract types C, R and F differ from their actual proportions
within the sequence. This comparison is shown in Table 21.4. The expected
numbers of each transition, if the three tract types occur at random, are the
number of cases of the “from” tract type multiplied by the proportion of
tract type C or R or F within the entire sequence. For example, there are 35
cases of transitions “from”C, so the expected number of these followed by R
is: 35 × (the proportion of R in the entire sequence) = (35 × 0.492) = 17.2.
The expected values are in Table 21.4.

Table 21.3 Data for the number of transitions from tract types C, R and F
to types C, R and F. The probability that each tract type will be succeeded in
the next increment by type C, R or F is obtained by dividing the number of
transitions in each category by the row total, and is shown in brackets.

To tract type

From tract type C R F Row total

C 9 (0.257) 18 (0.514) 8 (0.229) 35
R 19 (0.317) 29 (0.483) 12 (0.200) 60
F 6 (0.214) 14 (0.500) 8 (0.286) 28
Column total 34 61 28 123
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The data are in the form of a 3 × 3 contingency table (Chapter 18), from
which expected values can be calculated and compared to those observed
with a chi-square test, provided no more than 20% of expected frequencies
are less than five (Section 18.3.1):

�2 ¼
Xn

i¼1

ðoi � eiÞ2
ei

(21:16 copied from 18:1)

with the number of degrees of freedom being the product of (from states −1)
×(to states −1) which in this case is 4.

If this assumption cannot be met, a randomization test can be used
(Section 18.3.3).

By inspection there is not a great deal of difference between any observed
and expected value in Table 21.4 so you are unlikely to be surprised that the
value of chi-square is not significant ð�2

4 ¼ 1:47Þ. The probability of striking
a particular tract type one meter lower in the sequence is not conditional
upon the type present in the preceding sample. The sequence shows only
randomness, and therefore does not have Markovian properties.

21.13.2 Sequences for which only true transitions
have been recorded

For sequence data where only transitions that are a true change of state
(i.e. from one rock type to another) have been recorded, a more complex

Table 21.4 Data for the number of cases where tract types C, R and F
transition to types C, R and F, together with the expected numbers of each
transition calculated using the proportions of each tract type in the sequence.

To tract type

From tract type C R F Row total

C obs 9
exp 9.9

obs 18
exp 17.2

obs 8
exp 7.9

35

R obs 19
exp 16.9

obs 29
exp 29.5

obs 12
exp 13.5

60

F obs 6
exp 7.9

obs 14
exp 13.8

obs 8
exp 6.3

28
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analysis is needed. Table 21.5 gives data for the true transitions in the
sequence used above. For this type of data the cells along the diagonal of
the matrix are always vacant: a state cannot change to itself. These are called
embedded sequences. Importantly, and unlike the previous example, it is
not appropriate to treat the matrix (Table 21.5) as a contingency table
(where perhaps the three vacant cells are each incorrectly given the value of
zero) and there has been a great deal of debate about how to analyze such
data. The recommended solution is to create a set of expected values using
matrix algebra, and Davis (2002) gives a fully worked example.
An embedded sequence can also be classified as (a) random, (b) partially

dependent where a particular state is more likely to occur after another but
will not always do so and (c) fully deterministic where a particular state
always occurs after another. Embedded sequences with significant partial
dependence have Markovian properties.

21.14 Records of the repeated occurrence of an event

Another type of sequence often analyzed by earth scientists is the repeated
occurrence of the same type of event over time or distance. For example,
you might have historical data for the dates of all floods that exceeded a
stream rise of 2.0 meters recorded from 1850–2009 for the Santo Mindelo
River (Table 21.6) and need to know if the frequency of occurrence of flood
events of this severity is changing over time.
Data for the frequency of an event can be extracted from temporal

records by subdividing the list of dates of occurrence (here years) into
several time intervals of equal duration and then counting the numbers of

Table 21.5 The number of true transitions from state C to R or F,
state R to C or F, and state F to C or R. The matrix has vacant cells
along the diagonal because a state cannot transition to itself.

To state

From state C R F Row total

C 18 8 26
R 19 12 31
F 6 14 20
Column total 25 32 20 77
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the event within each. This is the same as the procedure used to construct a
histogram (Section 3.3.2) and has been done for an interval length of 10
years in Table 21.7. If there is no overall change in frequency over the
sequence the numbers within each interval will be similar, and a regression
line of the number of events against time will be expected to have a slope
of zero. The same method can be used where the data are records of
distance.

Importantly, the quality of the data extracted in this way from temporal
or spatial records will depend on the length of the chosen interval, just as the

Table 21.7 The numbers of all floods >2.0 meters within each
10-year period from 1850–2009 for the Santo Mindelo River.

Interval Number of floods Interval Number of floods

1850–59 11 1930–39 6
1860–69 5 1940–49 4
1870–79 6 1950–59 6
1880–89 5 1960–69 7
1890–99 6 1970–79 9
1900–09 8 1980–89 9
1910–19 4 1990–99 8
1920–29 5 2000–09 5

Table 21.6 The dates of all floods > 2.0 meters, recorded from
1850–2009 for the Santo Mindelo River. Note that there was more
than one flood in some years, and none in the final year 2009.

1850 1866 1887 1908 1934 1959 1977 1990
1851 1866 1890 1908 1934 1960 1978 1991
1852 1867 1892 1911 1938 1961 1978 1991
1852 1870 1894 1911 1939 1962 1979 1992
1853 1873 1895 1912 1942 1962 1980 1993
1854 1874 1895 1914 1943 1963 1983 1994
1854 1874 1896 1921 1944 1966 1983 1995
1854 1874 1900 1923 1946 1969 1984 1997
1856 1875 1903 1924 1950 1972 1984 2000
1857 1880 1904 1924 1952 1972 1986 2000
1859 1881 1904 1924 1953 1973 1987 2001
1860 1882 1905 1931 1955 1974 1987 2007
1861 1886 1907 1933 1956 1974 1988 2008
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interval width of a histogram will affect a graphical summary of data
(Section 3.3.2). Here, however, interval width is particularly important. If
it is too short there may be many cases where the extracted data are zero,
which will bias the regression analysis, but as it increases there will be fewer
and fewer intervals, which will reduce the number of data (and degrees of
freedom). You need to compromise and choose a width that preferably
results in at least 80% of intervals containing one or more cases, and, if
possible, have at least six intervals.
A linear regression analysis showed the sequence in Table 21.7 did not

differ in slope from a line of zero (Y= 1.071 + 0.002X : F1,14 = 0.044, NS), so
there is no evidence of a change in the frequency of > 2.0 meter floods of the
SantoMindelo River from 1850 to 2009 (Figure 21.14(a)). Depending on the
pattern shown by the data you might also want to consider fitting a more
complex regression (e.g. a quadratic). For the relationship shown in
Figure 21.14(a) this does not appear necessary.
Raw data for the repeated occurrence of an event within a sequence

(e.g. Table 21.6) can also be used to test whether the event is occurring at
random, whether cases are clustered together, or are more evenly spaced
than expected by chance. Data for the length of the interval elapsing
between successive events can be extracted by working through a sequence
such as Table 21.6. For example, the second flood in the sequence (which
was recorded in 1851) occurred one year after the first record in 1850, giving
an interval of one year. The third flood (1852) also occurred one year after
the previous one (1851), but the fourth (also in 1852) occurred zero years
after the previous. The full set of extracted data is given in Table 21.8.
The shortest interval between floods is zero years, and the longest is seven,
with the most frequent between-flood interval being one year (41.1% of
cases).
Table 21.8 also includes the percentage of cases remaining (or surviving)

with intervals longer than the one specified. For example, 76.7% of intervals
between floods are longer than zero years, but only 8.9% are longer than
three years.
These summary data can be used to produce a survival graph (often

called an empirical survival graph because it has been derived from a set of
empirical or “real” rather than “theoretical” data), where the X axis gives
interval length from zero up to the longest (here seven years), and the Y axis
gives the percentage of cases with intervals of longer duration than the one
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specified by the value of X (Figure 21.14(b)). The graph will always have a
negative slope, and if the event occurs at random it should be a declining
exponential. This is difficult to assess, so the logarithm of the percentage
survival against interval length is usually plotted instead (Figure 21.14(c))
and should be a straight line of negative slope. For events that show
pronounced clustering the empirical survival graph will initially drop
steeply and then become flatter, while a more regular than expected series
will give an empirical survival graph with a gentle negative slope followed by
a steeper decrease at longer intervals (Figure 21.15). Incidentally, survival
graphs are used in many fields, including studies of human longevity, where
the use of “survivors” is particularly appropriate.
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Figure 21.14 The number of floods > 2.0 meters occurring within every
10 year interval from 1850–2009 for the Santo Mindelo River. (a) The heavy
line shows the line of best fit for linear regression. (b) The empirical survival
function for the intervals between floods of > 2.0 meters from 1850–2009
showing the percentage of intervals longer than the duration shown on the X
axis. (c) Logarithm of the percentage survivors. A line drawn through the
points in (c) would be relatively straight, so the event of a flood > 2 meters
appears to occur at random in time.
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21.15 Conclusion

The methods given here are a broad, conceptual introduction to the essen-
tials of sequence analysis. For ratio, interval or ordinal scale sequences
regression analysis is becoming increasingly popular, especially because
statistical software that can run extremely complex models is now readily
available. Autocorrelation is a useful method for determining the character-
istics of a sequence and for subsequently testing whether a regression model
is a good fit. The examples in this chapter illustrate how sequences can be

Table 21.8 The number of years elapsing between successive floods of > 2.0 meters
from 1850–2009 for the Santo Mindelo River. Column 1 gives the interval elapsing
between successive floods, column 2 the number of cases for each, column 3 the
percentage of total cases and column 4 the percentage of cases remaining (the
“survivors”) having longer intervals.

Number of years elapsing between
successive floods (years)

Number
of cases

Percentage of
total cases

Percentage of cases
with longer intervals

0 21 23.3 76.7
1 37 41.1 35.6
2 12 13.3 22.2
3 12 13.3 8.9
4 4 4.4 4.4
5 2 2.2 2.2
6 0 0.0 2.2
7 2 2.2 0.0

(a)

Logarithm
of the
percentage
of survivors

Duration of interval between events

(b) (c)

Figure 21.15 The pattern expected for the logarithmic empirical survival
function for a sequence when an event within a sequence occurs (a) at random,
(b) relatively regularly and (c) in clusters.
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modeled by iteratively refining and testing increasingly complex regression
equations. We have given examples, but it is difficult to give more prescrip-
tive methods because the regression analysis chosen will be determined by
the characteristics of the sequence being investigated.

Sequences of nominal scale data can often be analyzed by extensions of
the non-parametric tests described in Chapter 18, although care needs to be
taken when analyzing data for true transitions. Records of repeated occur-
rence can be used to extract summary data from which analyses such as
regression can be used to test for changes in the frequency of occurrence,
and whether the event is occurring at random.

Considering the numerous pitfalls and the complexity of some methods,
it is important to seek expert advice when analyzing and interpreting
complex sequences. Finally, it is most important to realize that extrapola-
tion beyond the range of a sequence may be unreliable, however good the fit
of any model to the data within it.

21.16 Questions

(1) The table of data below gives the turbidity of water in a tailings dam for 48
consecutive months from January 2005 to December 2008. Use a stat-
istical package to graph turbidity against month and then run an auto-
correlation analysis. Are there any obvious seasonal trends? Are there any
significant autocorrelations? What can you conclude from the results?

Month Turbidity Month Turbidity Month Turbidity Month Turbidity

1 303 13 392 25 396 37 364
2 326 14 337 26 313 38 362
3 317 15 316 27 399 39 388
4 370 16 366 28 390 40 315
5 372 17 345 29 321 41 327
6 325 18 300 30 345 42 340
7 354 19 319 31 393 43 374
8 392 20 337 32 320 44 343
9 379 21 338 33 300 45 372
10 346 22 376 34 385 46 315
11 361 23 307 35 371 47 300
12 382 24 300 36 343 48 328
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(2) Explain why a statistician said “Autocorrelation is very useful for
relatively long sequences, but for a sequence of 20 the significance of
any autocorrelation means little, especially at high lags.”

(3) The data in the table below are for summers when heatwaves occurred
(with a heatwave defined as a continuous sequence of five or more days
on which the maximum temperature exceeded 40 °C), at Port Nundy in
southern Australia from 1850 to 2009. You have been asked to test the
hypothesis “The frequency of heatwaves has not changed from 1850–
2009 at Port Nundy.” (a) What analysis would you use? (b) What can
you conclude from this analysis? (c) Do heatwaves appear to occur at
random during this temporal sequence?

1850 1881 1912 1948 1974
1851 1884 1914 1950 1978
1852 1885 1919 1951 1980
1853 1890 1921 1953 1981
1854 1892 1924 1957 1982
1856 1893 1925 1958 1984
1859 1895 1926 1960 1986
1864 1899 1934 1961 1988
1865 1900 1935 1962 1990
1870 1903 1939 1964 1992
1877 1904 1944 1968 1995
1878 1907 1945 1971 2004
1880 1910 1947 1973 2009
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22 Introductory concepts of
spatial analysis

22.1 Introduction

Earth scientists often rely on different types of maps where the spatial
location of each sampling unit is one of the variables of interest. For
example, a geoscientist might have data for the presence or absence of
copper-bearing ore at 54 test cores drilled within the sampling space of a
10 000 square mile mining lease. The effectiveness of any further prospec-
ting would be improved if you knewwhether the spatial distribution of cores
showing copper-bearing ores occurred at random or in some sort of pattern
within the sampling space. The methods for summarizing and analyzing
such data are called spatial analyses.

Even though the Earth is three-dimensional, most summary spatial infor-
mation is presented as two-dimensional maps representing the Earth’s sur-
face, often with an overlay to indicate other variables. For example, maps
showing landforms are printed on two-dimensional sheets, with contour
lines and numbers to show the third dimension of elevation. Similarly, a map
of the location and flow per minute of test wells for oil might indicate flow
with numbers (e.g. the average number of barrels per day from each well) or
display this as the proportional height of a single bar at each well.

The location of any point on a two-dimensional surface can be accurately
and precisely defined by its X and Y coordinates, which are the distances in
two directions at 90° to each other from a set reference point, in just the same
way as a graph is used to display a two-dimensional scatter plot of bivariate
data. Interpretation of a flat, two-dimensional display is so easy that even
though the Earth is approximately spherical and any location on the surface
of this sphere can be defined by the degrees, minutes and seconds of its
latitude and longitude, cartographers have developed several transformations
for projecting this sphere on a two-dimensional surface for use as a map.
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This chapter is an introduction to some of the essential concepts of two-
dimensional spatial analysis.

22.2 Testing whether a spatial distribution occurs
at random

The distribution of points within a two- (or higher) dimensional sampling
space can occur (a) at random, (b) more regularly than expected by chance and
(c) less regularly than expected by chance. Figure 22.1 gives three examples.
One procedure used to test for randomness within two dimensions is to

subdivide a sampling space into several smaller replicate blocks of equal size
that are often called quadrats (Figure 22.2). The number of points within
each quadrat is counted and used to produce a summary table of frequencies

(a) Random (b) Regular (c) Clustered

Figure 22.1 Examples of the distribution of points in two-dimensional
space. (a) A random pattern. (b) A regular pattern is more uniform. (c) A
clustered pattern is less uniform than random.

(a) Random (b) Regular (c) Clustered

Figure 22.2 When a sampling space is subdivided into quadrats of equal size,
the variation among quadrats will be (a) intermediate for a random
distribution, (b) smaller for a regular one and (c) larger for a clustered one.
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(Chapter 3) showing the number of quadrats containing zero, 1, 2 ,3…. etc.
points that can be used to assess the spatial distribution of the variable.

If the distribution is random, then the frequency of cases per quadrat
would be expected to have a distribution and variance that would be
characteristic of a random variable.

If the points are more evenly distributed than expected by chance, the
variation among quadrats will be relatively small (because each quadrat will
contain very similar numbers).

If the points are less evenly distributed than expected by chance (and
therefore clustered), the variation among quadrats will be relatively large
(because some will contain no or very few points, but others will contain
a lot).

You can assess whether any departure from randomness is statistically
significant by comparing the observed frequencies to those expected for a
random variable. One of the most straightforward ways of doing this is to
calculate the frequencies expected for a Poisson distribution (Chapter 7).

The mean number of points per quadrat is the total number of points (m)
within the sampling space, divided by the number of quadrats (n):

X ¼ m
n

(22:1)

This sample mean is used as an estimate of the population mean μ in the
following formula, which gives the expected proportion of quadrats con-
taining each number of points expected under the Poisson distribution:

PðXÞ ¼ e���X

X!
(22:2)

Equation (22.2) appears complicated, but it can be explained by separat-
ing it into its components.

First, P(X) is the expected probability that a quadrat will contain X
number of points (e.g. P(3) is the probability that a quadrat will contain
three points).

Second, e−μ specifies the exponential, e, (which is the base of the natural
logarithm and a constant equal to 2.718281728) raised to the power of −μ,
where μ is the population mean. For example, if the population mean is 2.0,
then e−μ = (2.718281728)−2, which is the square root of 2.718281728.

Third, μX is the population mean raised to the power of X, where X is the
expected number of points per quadrat. For example, for a populationmean
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of 2.0 and the expected category of three points per quadrat, μX= 23,
which is 8.
Finally, X! is the symbol for the factorial of X and specifies “All of the

positive integers up to and including Xmultiplied together and then multi-
plied by 1.0.” For example:

3! ¼ ð1� 2� 3Þ � 1 ¼ 6

5! ¼ ð1� 2� 3� 4� 5Þ � 1 ¼ 120

Importantly:

1! ¼ ð1Þ � 1 ¼ 1

and

0! ¼ ðno numerical valueÞ � 1 which also equals 1:

Note here that “no numerical value” does not mean zero. It means that no
number is present (because there are no positive integers less than zero).
Using Equation (22.2) for a population mean of 3.0, the expected Poisson

probability of a quadrat containing five points is:

Pð5Þ ¼ ð2:71828Þ�3 � ð3:0Þ5
5!

which is 0.01. So if the distribution of points is random, 1% of the total
number of quadrats would be expected to contain five points. The same
formula can be used to calculate the expected proportions of quadrats
containing any number of points.
Equation (22.2) is tedious to calculate, but Box 22.1 gives all the functions

you need to write aMicrosoft Excel® spreadsheet that will automatically give
the expected Poisson probabilities for any number per quadrat, provided the
mean is known.
One analysis for non-randomness uses the chi-square test (Chapter 18) to

compare the observed and expected frequencies. There is a worked example
in Section 22.2.1.

22.2.1 A worked example

If you ever want to find a meteorite, go to Antarctica! The combination of
the lack of ground cover (making meteorites easy to spot) and flow of ice
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Box 22.1 A spreadsheet Poisson calculator

The following table can be written into a Microsoft Excel® spreadsheet to
give a calculator for the expectedPoisson probability for quadrats containing
zero, 1, 2 3… etc. points, provided the mean is known. It uses the formula:

PðXÞ ¼ e���X

X!
(22:3 copied from 22:2)

Open a new blank Microsoft Excel® spreadsheet. Start at cell A1 (the top
left hand cell in the spreadsheet) and write in the following descriptions and
formulae exactly as they are given below. Youmust start at cell A1, in which
you should write the word ‘Mean’. The calculator must only occupy the
block of cells from A1 to B6. Make sure you include the minus sign in the
worksheet function given in cell B3, which must be written as: =EXP(-B1).

A B

1 Mean

2 Expected number per quadrat

3 =EXP(-B1)

4 =POWER(B1,B2)

5 =FACT(B2)

6 Probability =(B3*B4)/B5

Once you have entered all the functions given above, type the numerical
value of themean into cell B1 and the number per quadrat (here youmight
start with zero) in cell B2 immediately below this. Do not type numbers
into any other cells. The spreadsheet will automatically give you the
probability for each number per quadrat if the Poisson distribution
applies. This probability is displayed to the right of “Probability,” in cell
B6 where you had specified the worksheet function =(B3*B4)/B5.
As a quick check, if you put in a mean of 3.805 in cell B1 and an

expected number per quadrat of 4.0 in cell B2, the probability should be
0.19440924. Your spreadsheet should look the same, or similar to the one
here (depending on the number of decimal places you specify for the cells):

A B

1 Mean 3.805

2 Expected number per quadrat 4

3 0.0222592

4 209.613208

5 24

6 Probability 0.19440924



against mountains (which brings old ice to the surface, where it is deflated
by winds that expose meteorites) makes Antarctica a premier hunting
ground for meteorite recovery. Every year since 1976, at least one team of
scientists has spent several weeks during the southern hemisphere summer
searching for meteorites from stranding surfaces along the Transantarctic
Mountains of Antarctica. Their job would be made easier if the distribution
of meteorites could be better understood.
Table 22.1 gives summary data for the number of quadrats containing

zero, 1, 2, etc. meteorites within 200 km2 that has been subdivided into 200
quadrats of equal area. Note that the expected frequencies have been
combined for more than 7 meteorites per quadrat. In total, there were 761
meteorites distributed within the 200 quadrats.
The expected proportions of quadrats containing each number of mete-

orites were calculated using Equation (22.2) and multiplied by 200 to give
the expected frequencies. Finally the observed and expected frequencies
were used in Equation (22.4) to obtain the chi-square statistic for the nine
(0 – 8+ meteorites per quadrat) categories:

w2 ¼
Xn

i¼1

ðoi � eiÞ2
ei

(22:4 copied from 18:1)

Table 22.1 The frequencies of quadrats containing zero, 1, 2, etc. meteorites,
and the expected frequencies if the spatial distribution of meteorites is random.

Number of meteorites
per quadrat

Observed
frequency of cases

Expected proportion
if random

Expected frequency
if random

0 10 0.022592 4.4
1 14 0.084696 16.9
2 9 0.161135 32.2
3 23 0.204372 40.9
4 65 0.194409 38.9
5 74 0.147945 29.6
6 5 0.093822 18.8
7 0 0.050999 10.2
8 and more 0 0.040621 8.1
Total n= 200 1.000000
Mean 3.805
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which is: w27 ¼ 144:82, P < 0.001. The distribution of meteorites is signifi-
cantly non-random.

If a chi-square analysis shows the distribution is non-random, you are
very likely to want to know whether it is more even, or more clustered. For a
Poisson distribution, the variance and the mean are numerically the same.
For a regular distribution, the variance will be smaller than themean and for
a clustered distribution it will be larger.

Box 22.2 The number of degrees of freedom for a chi-square
comparison when the formula for the expected frequencies
includes a sample statistic

The value of chi-square for the comparison of k observed and expected
frequencies derived from the Poisson distribution has k – 2 degrees of
freedom. In Chapter 18 and elsewhere, however, it was explained that the
number of degrees of freedom for a goodness-of-fit test is k – 1. For a
fixed total of observations, the numbers within k – 1 categories are free to
vary, but those in the “final” category to be filled can only be one number,
which is therefore a fixed quantity.
When expected frequencies are derived externally (e.g. an expectation

of 3 : 1 on the basis of some hypothesized property of the system, or 1 : 1 :
1 on the basis of an expectation of equal frequencies, as discussed in
Chapter 18), the degrees of freedom are one less than the number of
categories (Section 18.2).
In example 22.2.1, the expected proportions per category have been

calculated using the Poisson formula (22.2), which used the sample
mean as the best estimate of the populationmean. The use of a statistic
taken from the sample being tested will result in the loss of one more
degree of freedom, because for a set sample mean, all but one of the
values of the sampling units contributing to that mean are free to vary.
Therefore, the degrees of freedom for the chi-square test in this example
must be k− 2.
If instead you have an independent estimate of the population mean

(perhaps from a more extensive study), the number of degrees of free-
dom for the chi-square test is k − 1.
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The mean number per quadrat is the total number of points (here the 761
meteorites) divided by the number of quadrats (here 200), giving a mean of
3.805:

X ¼ m
n

(22:5 copied from 22:1)

The variance is calculated using the formula for the sample variance:

s2 ¼
Pn

i¼1
ðXi � XÞ2

n� 1
(22:6 copied from 7:6)

where n is the number of quadrats and Xi is the number of meteorites in the
first, through to the final quadrat (here the 200th).
The variance to mean ratio is the variance divided by the mean:

s2

X
(22:7)

and should be about 1.0 for a random distribution.
The value of s2=X can be compared to an expected value of 1.0 by using a

single-sample t test, although a modification has to be made to the formula
for that test given in Chapter 8. The variance to mean ratio is derived from
the sample variance, but the formula for the t test includes the standard
error of the mean, which is also calculated from the sample variance. To use
both in the same formula will result in bias. Instead, an independent (and
conservatively large) estimate of the standard error of the mean is made
only from n, the number of quadrats:

SEMðestÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

n� 1

r

(22:8)

Therefore the equation for the single-sample t test is:

tn�1 ¼
s2

X
� 1:00

SEMðestÞ (22:9)

where n is the number of quadrats. If s2=X is 1.0, the numerator will be zero
and so will the value of t. A significant value means that the distribution is
either even or clustered: when the variance divided by the mean is smaller
than 1.0, the distribution is more even and when it is greater than 1.0, the
distribution is more clustered. Sometimes this statistic is given as the mean
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divided by the variance, so you need to make sure which version has been
used when interpreting results in reports and publications.

For the example in Table 22.1, the sample variance is 2.17 and themean is
3.805. Therefore the variance to mean ratio is 0.57. The independent
estimate of the SEM is:

ffiffiffiffiffiffiffiffiffiffiffi
2

n� 1

r

¼
ffiffiffiffiffiffiffi
2
199

r

¼ 0:100251:

When these values are put into Equation (22.9):

t199 ¼ 0:57� 1:00
0:100251

¼ �4:29

which is highly significant (Appendix A). The distribution of meteorites is
relatively even among the 200 quadrats. The significant result is consistent
with the procedure for comparing the distribution to the Poisson described
earlier in this section, but because the variance to mean test is relatively
conservative you may find in some cases that the “Poisson” method is just
significant at P < 0.05 and the less powerful variance to mean ratio test is
not. In these cases the variance to mean ratio still indicates the direction
(e.g. even or clustered) of the departure from a random distribution.

22.2.2 The problem of scale

The procedure for assessing randomness described above is sensitive to
quadrat size. For example, a distribution may show extreme clustering on a
relatively small scale that may not be detected on a larger scale (Figure 22.3).
This is another example of the usefulness of making a preliminary inspec-
tion of a set of data, which could be done by plotting the distribution of
points on a two-dimensional map and examining it for any obvious pattern
(Figure 22.3).

22.2.3 Nearest neighbor analysis

Another test for a pattern in spatial data that is not sensitive to the problem
of scale described above, is nearest neighbor analysis. This is used in
many areas of science, including studies of the spatial distributions of
plants and animals. As the number of points within a sampling space
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Box 22.3 A Monte Carlo approach to assessing randomness: the
spatial distribution of impact craters on Venus

Another way of assessing a spatial pattern for randomness is to use the
Monte Carlo method (Chapter 18) to take a large number of simulated
random samples and create a distribution that would apply under the
null hypothesis.

Photographs from the Magellan mission show that the planet Venus
has relatively few impact craters and these appear to be randomly
distributed. The low number of craters suggests the surface is relatively
young, because craters accumulate over time: for example the Moon has
older terrain that is heavily cratered (like the light-colored highlands)
and younger terrain with significantly fewer craters (like the basaltic
maria). The random distribution of craters suggests there is little or no
recent tectonic activity, because this will continually create patches of
new crust where there will initially be no craters, thereby giving a spatial
distribution of craters that is clustered rather than random. The hypoth-
esis that the surface of Venus is relatively young with little or no recent
tectonic activity was highly controversial. Strom et al. (1994) compared
the observed spatial distribution of impact craters on Venus with that
expected for a random distribution, using aMonte Carlo simulation, and
concluded that the distribution of craters was random. The implied lack
of recent tectonic activity on Venus is now widely accepted.

Figure 22.3 A relatively large quadrat size may not detect clustering on a
smaller scale. The number of points within each of the four quadrats is very
similar (thus suggesting an even distribution) despite extreme clustering.
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increases, the average distance between each point and the one closest to it
(its nearest neighbor) will decrease. Here too, a formula derived from the
Poisson is used to predict the expected average distance between nearest
neighbors when the pattern is random:

d ¼ 1
2

ffiffiffiffi
A
n

r

(22:10)

where A is the area of the sampling space and n is the total number of points
within it.

This expected value can be compared to the observed mean distance
between nearest neighbors, �d, from the sample. The standard error of the
mean (SEM) of the nearest neighbor distances is:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� pÞA
4pn2

r

(22:11)

using the constant p (3.147) and A and n as in the previous equation.
The Z test is used to compare d and d:

Z ¼ d � d
SEM

(22:12)

Once Z is outside the range of ±1.96, the mean distance between nearest
neighbors is significantly different than that expected if the points are
distributed at random.

Although nearest neighbor analysis is not affected by scale, it is sensitive
to edge effects that occur because points close to the edge of the sampling
space can only have neighbors within it. If the space were larger, the points
might have closer nearest neighbors (Figure 22.4).

One solution to this bias is to designate a strip around the outer edge of
the sampling space as a guard region and only measure the nearest neigh-
bor distances from each of the points within the remaining (reduced) area
in the middle (Figure 22.5). Some of the nearest neighbors of these points
may be in the guard region, and the distances measured out to them will be
realistic if the guard region is wide enough. Unfortunately, however, using
part of the sample space as a guard region reduces the sample size.

Another method is to create an artificial guard region by making eight
copies of the sampling space and placing these around the original, as shown
in Figure 22.6. Here too, the nearest neighbor distances are only measured
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from points within the original sampling space. This method does not
reduce the sample size.

22.2.4 A worked example

Table 22.2 gives the nearest neighbor distances for the 17 points within the
35 × 43 km central region shown in Figure 22.5. Points have been numbered
in order, running across and down from the top left-hand corner. It is

Figure 22.5 Use of a guard region to reduce edge effects. Nearest neighbor
distances are only measured from points within the central (and therefore
reduced) sampling space. Some nearest neighbors to these points may be
within the guard region, and the distances to them will be representative
provided the guard region is wide enough.

Figure 22.4 Nearest neighbor analysis can be subject to edge effects. Some of
the points within the sampling space have “true” nearest neighbors that are
outside the boundary, but their nearest neighbors within the sampling space
are further away. Restricting the measurements to nearest neighbors within
the sampling space will overestimate the mean nearest neighbor distance.
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important to note that the nearest neighbor distance is measured from every
pointwithin the sampling space. Therefore, for two points designated as “a”
and “b” that are each other’s nearest neighbors within the central region
(e.g. points 1 and 2 just inside the top left-hand corner of the central region
of Figure 22.7), the distance from point a to its nearest neighbor point b is
2.7 km, but so is the distance from point b to its nearest neighbor, which in
this case is point a. For n points there have to be n distances, so the same
distance is recorded for each of these two points.

The area of the central region is 35 × 43 = 1505 km2. There are 17 points,
so the expected average distance between nearest neighbors (Equation
(22.10)) is 4.705 km, with an SEM of 0.596 (Equation (22.11)). The observed
mean distance, d, from Table 22.2 is 4.662.

The Z score (Equation (22.12)) is: 4:662�4:705
0:596 ¼ �0:072. This is within the

range of ±1.96, so the mean nearest neighbor distance is no different to that
expected if the distribution is random.

22.3 Data for the direction of objects

An object with a recognizable direction that has a “head and a tail” (i.e. it
represents an arrow rather than a line) within a two-dimensional (or
higher) sampling space will face in a particular direction. For two dimen-
sions, this can be quantified by a single number in relation to a reference
(e.g. true North, the true vertical or some defined direction) in degrees of a
circle from 1° to 360°. Summary statistics for directional data have many

Figure 22.6 Use of an artificial guard region for nearest neighbor analysis.
The original sample space (center square) has been copied eight times, and the
copies placed in the same orientation around it. Nearest neighbor distances are
only measured from points within the central sampling space.
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applications. For example, the directions of streams in a floodplain can be
used to model the effects of rainfall upon a catchment and historical data
for the directions moved by cyclones and hurricanes can be used to predict
their paths.

Table 22.2 The distances, in kilometers, to their nearest neighbor, for the
17 numbered points within the central area of Figure 22.7.

Point number Distance Point number Distance

1 1.65 10 2.70
2 1.65 11 2.70
3 3.40 12 3.95
4 3.40 13 4.75
5 5.90 14 4.25
6 8.30 15 3.90
7 8.30 16 3.90
8 8.30 17 3.90
9 8.30 Average: 4.662

1,2

3 4 5

76

8
12

13
14 15

1716

9 10 11

Figure 22.7 For the 17 points (numbered in order running across and down
from the top left-hand corner within the central region of the sampling space),
the nearest neighbor distances for points 1 and 2 are the same, because each is
the other’s nearest neighbor. The same applies to points 3 and 4; 10 and 11; 15
and 17. The nearest neighbors of points 5, 12 and 13 are in the guard region.
The central area is 35 × 43 km.
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22.3.1 Summarizing and displaying directional data

If you have data for the wind or water flow directions at several different
locations, they can be summarized and displayed by an extension of the
method used to generate a histogram (Chapter 3 and Section 22.2). For each
location, the direction is recorded in degrees, from one to 360°. Next the
circle is subdivided into several equal arcs (e.g. 1–90°, 91–180°, 181–270°
and 271–360°), and the number of cases within each is counted to give a
table of frequencies. These divisions are often called bins. The summary
data could be displayed as a conventional histogram (Chapter 3), but to
show the actual or relative directions of the objects they are usually plotted
in a circular histogram, which is a circle divided into several equal arcs,
equivalent to the bars of a conventional histogram, with the radius of the
filled area indicating the frequency within each bin. This is called a rose
diagram because a circle subdivided into filled arcs of different radii some-
what resembles a flower. Two examples are shown in Figure 22.8. Here, just
as for a conventional histogram, the number of bins and their ‘width’ in
degrees must be chosen to give a meaningful display (Chapter 3).

Rose diagrams can be visually misleading, because the width and area of
an arc increase with distance from the origin. Therefore, if only the petal
length is proportional to the frequency of cases within each arc, the
perceived importance of relatively low counts will be reduced and that of
relatively high ones increased (Figure 22.8(a)). For this reason, rose dia-
grams are usually plotted with the area of each petal being proportional to
the frequency of cases (Figure 22.8(b)).

22.3.2 Drawing a rose diagram

The following method gives a rose diagram where the largest frequency
always extends to the maximum radius of the rose. For example, for a rose
diagram of radius 24mm, the angular division containing the largest count
will have this petal length.

To draw a rose diagram where the length of each petal is proportional
to its frequency, the number of cases within each bin is counted from the
raw data. Petal lengths are calculated using the formula:

petal length ¼ rmax � Freqpet

Freqmax
(22:13)
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where rmax is the maximum radius of the rose diagram, Freqpet is the
frequency for a particular petal and Freqmax is the highest frequency within
the set of petals. Therefore, for the highest frequency, Freqpetwill be equal to
Freqmax so its petal length will be rmax. There is worked example in
Section 22.3.3.
To draw a rose diagram where the area of each petal is proportional to

its frequency, the procedure described above is followed, except that petal

(a)

(b)

Figure 22.8 Rose diagrams from the data in Table 22.3. (a) Petal length is
directly proportional to the frequency within each angular division. (b) Petal
length when petal area is directly proportional to the frequency within each
division. Note that (a) gives the visual impression of a far less symmetrical
distribution.
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length is calculated using the formula:

petal length ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2max � Freqpet

Freqmax

s

(22:14)

where r2max is the square of the maximum radius of the rose diagram. Here
too, when Freqpet is equal to Freqmax, the petal length will be rmax. There is a
worked example below.

22.3.3 Worked examples of rose diagrams

Data for the directions of 250 streams in the Channel country of western
Queensland, as summarized for six equal angular divisions of 60°, are given in
Table 22.3. These have been used to calculate petal length when it is directly
proportional to frequency (Equation (22.13)), and petal length when the petal
area is directly proportional to frequency (Equation (22.14)). The two rose
diagrams are shown in Figure 22.8. By inspection, the diagram where petal
length is proportional to frequency gives the misleading perception that a
greater proportion of the objects face towards the upper part of the rose than
does the one where petal area is proportional to frequency.When interpreting
rose diagrams, it is important to know which scale has been used! It is not

Table 22.3 Summary data for the direction, in degrees, of 250 streams in the
Channel country of western Queensland. The maximum observed frequency is 73
and the maximum radius of the rose diagram has been chosen as 24mm. (a) Petal
lengths that are directly proportional to frequency. (b) Petal lengths, when petal area
is directly proportional to frequency.

Direction
Observed
frequency

(a) Petal length (mm) when
proportional to frequency

(b) Petal length (mm) when
petal area is proportional to
frequency

1–60 63 20.7 22.3
61–120 31 10.2 15.6
121–180 20 6.6 12.6
181–240 22 7.2 13.2
241–300 41 13.5 18.0
301–360 73 24.0 24.0
Total 250
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unknown formining companies to produce prospectuses containingmislead-
ing rose diagrams. The use of the “area proportional” type is recommended.

22.3.4 Testing whether directional data show a pattern

There are numerous tests for whether the directions faced by a sample of
objects shows a relatively even angular distribution or some pattern. If all
directions are equally likely, then the expected number of observations
within each equal subdivision should, on average, be the same, and the
rose diagram will be symmetrical. This hypothesis can be tested by a chi-
square goodness of fit between the observed and expected frequencies:

�2 ¼
Xn

i¼1

ðoi � eiÞ2
ei

(22:15 copied from 18:1)

The number of degrees of freedom is one less than the number of bins
(see Box 22.2).

22.3.5 A worked example

Table 22.4 gives summary data for the direction, in degrees, for the sample
of 250 streams in Table 22.3, together with the expected frequency when
there are equal numbers in every bin. The chi-square goodness of fit test is
significant: �2

5 ¼ 57:77, so P < 0.001, indicating that the orientation of the
valleys is not equally likely in all directions. By inspection, it appears that
most are facing from the north-west through to the north-east (301°
through 0° to 60°).

22.3.6 Data for the orientation of objects

Objects without a definable “head or tail” (e.g. where the object beingmapped
is a line or a plane) cannot be assigned a specific direction in a two-
dimensional space. They face in two directions, which for a straight object
(such as the strike of contacts between overlying formations) will be 180°
apart (e.g. 24° and 204°). Instead, data for the orientations of these objects are
often given as two directions and both are recorded in the table of frequencies
used to draw a rose diagram (Section 22.3.2). For straight objects, the rose
diagram showing orientation will always be perfectly symmetrical, with petals
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of identical length occurring opposite to each other. Caution is needed when
using these data to test hypotheses about whether objects are orientated at
random because the table of frequencies will contain 2n data from n objects
and therefore inflate the value of a statistic such as chi-square. One solution
for straight objects is simply to double all the angles (Krumbein, 1939). For a
circle subdivided into 360°, this always gives the same angle for both direc-
tions (e.g. an object orientated at 30° and 210° will have doubled angles of 60°
and 420°, the latter of which is 360° + 60° and thus equal to 60°). So you need
to record the value of the doubled angle only once in a table of frequencies
used for a chi-square test for randomness (Section 22.3.5).

22.4 Prediction and interpolation in two dimensions

Often data are obtained for a ratio or interval scale variable that is measured
at several locations, but there is a need to predict its value elsewhere within
the same sampling space. For example, you might have data for the per-
centage of nickel at ten locations within a mining lease and want to predict
the areas where additional exploration is likely to discover high yielding
deposits within that lease.

One very important property of spatial data can be used to make such
predictions. Often a variable such as the depth of a water table or the
thickness of a coal deposit shows regional dependence, which means that
its value at two or more locations close to each other is relatively similar.
For example, the percentage yield of a deposit of gold-bearing rock might be
1.1 g/ton and 1.2 g/ton at two sites only 100 meters apart, but 1.1 and
5.6 g/ton at sites 1200 meters apart. This is just the same as positive

Table 22.4 Summary data, for the direction, in degrees, of the 250 streams
in Table 22.3 with the expected number within each bin if the objects
sampled are equally likely to face in any direction.

Direction Observed frequencies Expected

1–60 63 41.66
61–120 31 41.66
121–180 20 41.66
181–240 22 41.66
241–300 41 41.66
301–360 73 41.66
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autocorrelation at low lags (Chapter 21), where values for points close to
each other within a sequence are more similar than those further apart. In
two dimensions, the space within which regional dependence occurs can be
visualized as a circle, with the amount of dependence decreasing with
distance outwards from the central point (Figure 22.9). This can be
extremely helpful in estimating the value of a variable at sites relatively
close to those where it is known.

22.4.1 The semivariance and semivariogram

A statistic that quantifies the amount of regional dependence between two
points is the semivariance:

� ¼ ðXi � XjÞ2
2

(22:16)

where X is the value of the variable at points Xi and Xj. For two identical
values the semivariance will be zero. As the difference between them
increases, so will the semivariance, which can only ever be zero or greater.
The semivariance is the same as the variance for a sample containing

only two points. For any sample from a population the variance is:

s2 ¼
Pn

i¼1
ðXi � XÞ2

n� 1
(22:17 copied from 7:6)

For a sample of only two (X1 and X2), the denominator (n− 1) is always
1.0, so Equation (22.17) for the variance becomes:

ðX1 � XÞ2 þ ðX2 � XÞ2 (22:18)

X2 X3X1

Figure 22.9 Illustration of regional dependence. The depth of shading
indicates the similarity between the value of a variable at the central point (X1)
decreasing with distance away from it (X2), until there is no dependence (X3).
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where X is the mean of the two values. This is the same as the semi-
variance (22.16), because the sum of the two squared differences
ðX1 � XÞ2 þ ðX2 � XÞ2 is mathematically equal to the difference between
the points squared and divided by two: ðX1 � X2Þ2=2. A graphical explan-
ation of this equation is shown in Figure 22.10. If you were to take only two
points at random from a population, Equations (22.16) and (22.17) will
each estimate the population variance (but neither is likely to give an
accurate estimate because the sample size is only two).

The importance of the semivariance is its use as an accurate and precise
statistic to quantify the dissimilarity of a variable between a specifically
chosen central point (X1) and each of several other points (X2, X3, etc.)
increasingly distant from it. For each pair of points ((X1X2), (X1X3), etc.),
the value of the semivariance is plotted on the Y axis against the distance
between them on the X axis, to give a scatter plot called the experimental
(or sometimes the empirical) semivariogram. The relationship between the
semivariance and distance from the central point will depend on the
amount of regional dependence.

If there is no regional dependence, then the value of the variable at the
central point will be unrelated to its value elsewhere. So the scatter plot of the
semivariance will simply display a range of values, each of which is an estimate
of the population variance from a sample where n=2 (Figure 22.11(a)).

(a) Variance from a sample of two points only = (32 + 32) ÷ 1 = 18

(distance a = 3)

(distance a + distance b = 6)

(distance b = 3)

(b) Semivariance = (62) ÷ 2 = 18

X1 = 7 X2 = 13

X2 = 13X1 = 7

(X1 – X)

(X1 – X2)

(X2 – X)

X =10

Figure 22.10 Graphical explanation of why the variance for a sample of two
points is the same as the semivariance. (a) Each value is equidistant from the
mean and the variance is therefore (distance a)2 + (distance b)2. (b) This is the
same as the semivariance (distance a + distance b)2 ÷ 2 because
mathematically, if a ¼ b; a2 þ b2 ¼ ðaþbÞ2

2 .
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If there is some regional dependence, then the values of the variable at
the central point and those nearby will be similar, thereby giving relatively
small semivariances. As the distance from the central point increases, the
amount of dependence reduces, so the semivariances will tend to increase
but also become more scattered (Figure 22.11(b)). At this distance (and
beyond), the two points are equivalent to having been chosen at random
from the population, so each of the widely scattered semivariances will
estimate the population variance for samples of n= 2.
Once the experimental semivariogram has been plotted, a smoothed line

of best fit called the theoretical semivariogram is fitted through the points
with the restriction that it must start from a relatively low value at the
central point, subsequently increase, but eventually plateau out. Theoretical
semivariograms have been fitted to the two scatter plots in Figure 22.12.
When there is no regional dependence, the theoretical semivariogram

will rise extremely rapidly to a plateau that is equal to the population

0

(a)

0
Distance between sampling points

Semivariance

0

(b)

0
Distance between sampling points

Semivariance

Figure 22.11 The experimental semivariogram is a scatter plot of the
semivariance against distance between sampling points, where X= 0 is the
central location. (a) No regional dependence. (b) Strong regional dependence,
shown by the small semivariances between the central location and those
nearby.
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variance (Figure 22.12(a)). It will be a relatively good estimate of this para-
meter because it is the average of several semivariances scattered around it.

When there is regional dependence, the theoretical semivariogram will
initially have a low value near the central point, subsequently increase, but
eventually plateau out when the central point and those more distant from it
are no longer related. Here too, the averaged value at the plateau gives a
relatively good estimate of the population variance.

It may seem logical that the semivariance for two replicates taken at the
central location (and therefore “no distance” apart) should be zero
(e.g. Figure 22.12). However, this does not necessarily occur because there
may be within-site variation (which is the same as the “error” discussed in
Chapter 10) on an extremely small spatial scale that will give a relatively
small minimum semivariance (Figure 22.13).

The features of the theoretical semivariogram are shown in Figure 22.14.
The semivariance at X ¼ 0 is called the nugget or nugget effect. When the

0

(a)

0
Distance between sampling points

Semivariance

0

(b)

0
Distance between sampling points

Semivariance

Figure 22.12 The theoretical semivariogram is a smoothed line fitted to the
scatter plot of the semivariances against distance between sampling points,
where X= 0 is the central location. (a) No regional dependence. (b) Strong
regional dependence.
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semivariance reaches its maximum height at the plateau, its value is called the
sill. The outer limit of the region of influence surrounding the central point
is defined as the value of X when the semivariance has reached 95% of the
difference between the sill and the nugget. For example, the distance
between a nugget of 40 and a sill of 200 is 160, so the value of the semivariance
at the outer limit of the region of influence is 40 + (0.95 × 160) = 192. The
region of influence can be estimated graphically by reverse prediction as
shown in Figure 22.14 and represents the distance outwards from the central
location within which the variable shows some regional dependence.
The theoretical semivariogram used to be fitted by eye, but there are

several equations available to estimate it. One of the most commonly used is
the exponential:

Y ¼ cþ ðS� cÞ � ð1� e�
3h
a Þ (22:19)

0
0

Distance between sampling points

Semivariance

Figure 22.13 Variation among replicates taken at the same location will give
a semivariance of more than zero at the central point.

Sill 200

Nugget 40

0
0

Distance between sampling points

   Region
           of
influence

Semivariance

Figure 22.14 Features of the theoretical semiovariogram. When X= 0 the
value of the semivariance is called the nugget. The maximum value (at the
plateau) is the sill. The region of influence is the value of X (estimated
graphically by reverse prediction) for which the theoretical semivariance is
95% of the distance between the sill and the nugget.
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where Y is the semivariance, c is the nugget, S is the sill, e is the natural
logarithm, h is the distance from the central point and a is the range of
influence. This will always give a relationship that increases but eventually
plateaus out.

22.4.2 A worked example

Table 22.5 gives data for the depth, inmeters, of aWest Virginia coal deposit
at a central location and for 15 pits increasingly distant from it.

The semivariances were calculated using Equation (22.16). The experi-
mental semivariogram is shown in Figure 22.15 and suggests some regional
dependence because the semivariances between Pit 1 and each of Pits 2, 3 and
4 are relatively small. Simply by inspection, the theoretical semivariogram
has a nugget of zero, a sill of about 220 km, and a region of influence of about
25 km, with the last obtained by graphical reverse prediction from a semi-
variance of 0 + 0.95 × (220 – 0) (see above).

Table 22.5 Depth of a coal deposit, in meters, at a central point and 15
other pits at various distances from it. This is a case where the nugget is
zero.

Pit number
Depth of coal
bed (m) Semivariance

Distance from Pit
1 (km)

1 (central point) 11 0.0 0
2 12 0.5 1
3 11 0.0 3
4 14 4.5 4
5 34 264.5 14
6 4 24.5 20
7 42 480.0 28
8 32 220.5 32
9 17 18.0 40

10 28 144.5 54
11 34 265.5 67
12 25 98.0 70
13 37 338.0 76
14 41 450.0 79
15 7 8.0 100
16 29 162.0 125
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22.4.3 Application of the theoretical semivariogram

One important application of the theoretical semivariogram is to predict the
value of a variable at sites where it has not been measured. The width of the
95% confidence interval around the line of the theoretical semivariogram
will depend on the amount of regional dependence. When there is no
regional dependence, the line will rise rapidly and the 95% confidence
interval around it will be relatively wide, because it is the smoothed average
of many estimates made when n= 2. When there is regional dependence,

0 50
Distance in km from pit 1

(a)
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(b)
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Figure 22.15 (a) Experimental semivariogram showing the semivariance
plotted against the distance in kilometers from the central point of Pit number
1. (b) Theoretical semivariogram for an exponential function fitted to the same
data. The horizontal dashed line shows the sill. The vertical dashed line shows
the region of influence of about 25 km, estimated graphically from a
semivariance of 209 that was calculated as 95% of the difference between the
sill and the nugget.

22.4 Prediction and interpolation in two dimensions 359



the line will rise more slowly. Its 95% confidence interval will initially be
very narrow because the regional dependence surrounding the central point
will constrain the estimates of the semivariance to within a relatively small
range (Figure 22.16).

If a variable shows regional dependence and the point(s) at which you
want to predict it lie within the regions of influence of known locations, it is
possible to make quite precise estimates of its value. This is the basis of the
method of interpolation called Kriging (named after D. G. Krige who
developed the technique).

This is an extreme simplification, but essentially Kriging gives the solution to
a set of simultaneous equations so that the value at an unknown site is the best

0
0

Distance between sampling points

(a)

Semivariance

0
0

Distance between sampling points

(b)

Semivariance

Figure 22.16 The 95% confidence limits (lighter lines) surrounding the line
for the theoretical semivariance (heavy line) will depend on the extent of
regional dependence. (a) No regional dependence will give a uniform
confidence interval (and thus a very imprecise semivariance) for any point
outside the central one. (b)When there is regional dependence, the confidence
interval will initially be narrow but will increase (thus initially showing high
precision, which will decrease with distance from the central point).
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possible overall fit to the appropriate points on the theoretical semivariograms
that overlap it. A graphical example to illustrate the concept is given in
Figure 22.17. The value of the variable is not known for point D, but D lies
within the regions of influence of points A, B and C where the variable is
known.Note thatD is closest to the central region of C and therefore positioned
on the left-hand side of the theoretical semivariogram for C, where the semi-
variance is relatively low (Figure 22.17(c)). Consequently, C has the greatest
influence upon the estimate of the value of D, whichmust be close to the actual
value of C at the central point in order to fit within the 95% confidence interval
of the theoretical semivariogram. In contrast, B has less influence (Figure 22.17
(b)) and A has the least influence on D (Figure 22.17(a)).
An enormous amount has been written (including many advanced text-

books) on Kriging, together with computer programs for carrying out the

A
B

C

A B C

D
(a) (b) (c)

D D

D

Figure 22.17 The value of a variable is known for sites A, B and C, and needs
to be estimated for site D. The region of influence is shown as a circle around
each known site. Note that point D is near the edge of the region of influence
for A, closer to the central point of B, and very close to the central point of
C. The value of the variable estimated for D must be one that gives the best
possible fit to its position on the three theoretical semivariograms (darker
lines), taking into account the 95% confidence intervals (lighter lines), for A, B
and C.
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complex calculations required. The detailed methods used for Kriging are
beyond the scope of this introductory text, but an excellent explanation is
given by Davis (2002).

22.5 Conclusion

This chapter is an introduction to some essential concepts of spatial analysis
that underpin many of the methods used by earth scientists. It is designed to
give an understanding of random and non-random spatial distributions,
and an introduction to the analysis of directional data and the concept of
estimation and interpolation using regional dependence. It will be partic-
ularly helpful in evaluating the conclusions in reports and from research
that uses these methods.

22.6 Questions

(1) The table below gives the observed number of silver mines in 200
quadrat samples, each 1 km2 in area, in northern Idaho. The total
number of mines was 276 and the mean number per quadrat is 1.38.

Number of mines per quadrat Observed frequency of cases

0 44
1 87
2 31
3 27
4 9
5 2
6 0
7 0
8 and more 0
Total n= 200
Mean 1.38

(a) Calculate the expected proportion, and the expected frequency, of
quadrats containing zero, 1, 2, etc. mines if the distribution is random
and test the hypothesis that the observed distribution is random using the
methods in Section 22.2.1. Is the value of chi-square significant? (b) What
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is the variance and the variance to mean ratio of the number of mines per
quadrat? (c) Is this ratio significantly different from 1.0? (d) Is the distri-
bution of silver mines per quadrat more or less uniform than random?

(2) Behavior patterns of dinosaurs may be recorded in the geologic record in
serendipitous circumstances, such as the many sets of tracks exposed in
what is now the Connecticut River Valley in the eastern US. A paleon-
tologist wanted to test the idea that an exposure of 32 different dinosaur
footprints in a large slab of sandstone show the movements of a herd,
pack, or flock of dinosaurs all moving in the same direction. The follow-
ing data are for the direction, in degrees, of 32 fossil footprints: 101°, 134°,
205°, 95°, 164°, 199°, 223°, 144°, 173°, 243°, 105°, 164°, 266°, 119°, 146°,
169°, 94°, 155°, 250°, 144°, 170°, 201°, 215°, 99°, 134°, 219°, 232°, 140°,
178°, 232°, 107° and 161°. (a) Use these data to plot a rose diagram, where
petal area is proportional to frequency, showing the direction of the
footprints. (b) By inspection of this diagram, do the directions of the
footprints appear to be evenly distributed? (c) Test this hypothesis.

(3) A homeowner decided to plant a line of trees along the edge of her lot to
give some shelter from winds and storms. She needed to know the most
frequent direction (if any) of the wind in order to maximize the
protection provided by the wind break. The following data are for the
direction, in degrees, of weekly average wind directions recorded over
the course of a year at a nearby airport: 2°, 164°, 272°, 82°, 330°, 200°,
30°, 164°,123°,180°, 224°, 302°, 44°, 12°, 294°, 316°, 205°, 164°,150°,
242°, 107°, 64°, 33°, 348°, 12°, 124°, 242°, 182°, 350°, 241°, 50°,
134°,163°, 70°, 204°, 332°, 144°, 112°, 94°, 16°, 305°, 264°, 50°, 142°,
127°, 164°, 233°, 48°, 154°, 293°, 210° and 48°. (a) Use these data to plot
a rose diagram, where petal area is proportional to frequency, showing
the direction of the winds. (b) By inspection of this diagram do the wind
directions appear to be evenly distributed? (c) Test this hypothesis.

(4) What is the difference between the theoretical and the empirical
semivariogram?

(5) Comment on the statement “If there is no regional dependence the
semivariogram has little or no use in interpolation such as Kriging.”
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23 Choosing a test

23.1 Introduction

Statisticians and earth scientists who teach statistics are often visited in their
offices by a researcher or student they may never even have met before, who
is clutching a dauntingly thick pile of paper and perhaps a couple of flash
drives or CDs with labels like “Experiment 1” or “Trial 2”. The visitor sits
down, drops everything heavily on the desk and says, “Here are my results.
What stats do I need?”

This is not a good thing to do. First, the person whose advice you are
asking may not have the time to work out exactly what you have done, so
they may give you bad advice. Second, the answer can be a very nasty
surprise like “There are problems with your experimental design.”

The decision about the appropriate statistical analysis needs to be made
by considering the hypothesis being tested, the experimental design and the
type of data. It can save a lot of time, trouble and disappointment if you
think about possible ways of analyzing the data before the sampling is done
or the experiment designed, rather than only after the data have been
collected.

Tables 23.1–23.12 are a guide to choosing an appropriate analysis from
the ones discussed in this book. You need to start at Table 23.1, which
initially gives five columns that are mutually exclusive alternatives. Once
you have decided among these, work downwards within the column you
have chosen. There may be more choices and again you need to select the
appropriate column and continue downwards. Eventually you will be
referred to another table with more choices that lead to suggested analyses.
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Table 23.3 Tests for one sample of ratio, interval or ordinal scale data.

Is the sample from a 
population that appears 

normal, or not grossly non-
normal?

Z test if the population mean 
and variance are known
(Chapter 8) but single-sample t
test if there is only an expected 
value for the population mean
(Chapter 8)  

Is the sample from a
population that is grossly

non-normal (e.g. bimodal?)

Kolmogorov–Smirnov one-
sample test (Chapter 19) 
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Table 23.6 Tests for two or more independent samples of ratio, interval or ordinal
scale data that are not normally distributed.

To test whether two or more independent samples of ratio, interval or ordinal
scale data, that are grossly non-normal, are from the same population

Are the data for two levels or samples
of one factor (e.g. garnet in rocks from
two different metamorphic grades, or
zircon content from two outcrops)?

Are the data for three or more levels or
samples of one factor (e.g. quartz content of
sediments of three sizes, or trace fossils at
three or more outcrops)?

Outcrop 1 Outcrop 2 boulders cobbles pebbles

6 13 6 13 28
3 17 3 17 26
1 20 1 20 23
4 16 4 16 26

Sample
distributions
similar

Sample
distributions
grossly different

Sample distributions
similar

Sample
distributions
grossly different

Mann–
WhitneyU test,
randomization
test or exact test
(Chapter 19)

Transform to a
nominal scale
and analyze as
categorical
data (Chapter 19)

Kruskal–Wallis test,
randomization test, or
exact test (Chapter 19)

Transform to a
nominal scale
and analyze as
categorical data
(Chapter 19)
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Table 23.7 Tests for two or more related samples of normally distributed ratio,
interval or ordinal scale data.

To test whether two or more related samples of normally distributed data are
from the same population

Two related samples Three or more related samples
Case Sample 1 Sample 2 Case Sample 1 Sample 2 Sample 3
1 12 15 1 12 15 23
2 16 12 2 16 12 18
3 21 17 3 21 17 26
4 18 10 4 18 10 21
5 19 14 5 19 14 29
6 12 18 6 12 18 24
Paired-sample t test (Chapter 8) or
two-factor ANOVA without
replication (Chapter 14)

Two-factor ANOVA without replication
(Chapter 14)

Table 23.8 Tests for two or more related samples of ratio, interval or ordinal scale
data that are not normally distributed.

To test whether two ormore related samples of data, that are grossly non-normal,
are from the same population

Two related samples Three or more related samples
Case Sample 1 Sample 2 Case Sample 1 Sample 2 Sample 3
1 12 15 1 12 15 23
2 16 12 2 16 12 18
3 21 17 3 21 17 26
4 18 10 4 18 10 21
5 19 14 5 19 14 29
6 12 18 6 12 18 24
Wilcoxon paired-sample test,
randomization test or exact test
(Chapter 19)

Friedman test, randomization test or exact
test (Chapter 19)

23.1 Introduction 371



Table 23.9 Tests for whether two variables are related.

To test whether two variables are related
Do X and Y vary together?

Y

X

Do the data fit the
bivariate normal
distribution and does the
relationship appear linear? 
Linear correlation
analysis (Chapter 15) 

Are the data grossly non-
normal or is the relationship
non-linear? 

Non-parametric 
correlation analysis
(Chapter 19) 

What is the functional relationship between X
and Y ?

Y

Y = a + bX  

X

Linear regression analysis (Chapter 16)  

Cautions: Data must be normally distributed and 
the relationship must be linear. Transformation 
of the Y variable may be needed  

Table 23.10 Methods for comparing two or more samples for which multivariate
data are available.

To isolate variables or combinations
of variables that can help explain any
pattern of similarity or dissimilarity
among a group of multivariate
samples

To display multivariate samples in a
reduced two-dimensional space in
order to give an easily interpreted
summary of their similarities and
dissimilarities

Principal components analysis
(Chapter 20)

Display as points in
two-dimensional space

Multidimensional
scaling (Chapter 20)

Display as a
dendogram

Cluster
analysis
(Chapter 20)
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Table 23.11 Methods for analyzing and modeling a temporal sequence.

Ratio, interval or ordinal scale data Nominal scale data

Testing whether
there is
repetition or
relatedness
among different
parts of a
sequence

Modeling a
sequence to explain
within sequence
variability

Testing whether
there is repetition
or relatedness
among different
parts of a
sequence

Testing whether
there is a
pattern in the
repeated
occurrences of
an event

Autocorrelation
(Chapter 21)

Regression
modeling of
sequences
(Chapter 21)

Methods for
analyzing
transitions
(Chapter 21)

Regression
analysis and
survival
functions
(Chapter 21)

Table 23.12 Analyzing data for a pattern related to the spatial location of sampling
units occurring in a two dimensional landscape.

Testing for departures
from a random pattern
in two-dimensional space

Testing hypotheses about
the direction or orientation
of a sample of objects

Interpolation and
prediction in two
dimensions

Assessing whether the
distribution is
consistent with a
random spatial pattern,
using data for counts
within quadrats
(Chapter 22)

Assessing whether the
distribution is
consistent with a
random spatial pattern
using nearest neighbor
analysis (Chapter 22)

Tests for the direction or
orientation of a sample of
objects (Chapter 22)

Calculation of the
semivariance for use
in Kriging (the latter is
only conceptually
introduced in this text)
(Chapter 22)
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Appendix A: Critical values
of chi-square, t and F

Table A1 Critical values of chi-square when α=0.05, for 1–120 degrees of freedom. If
the calculated value of chi-square is larger than the critical value for the appropriate
number of degrees of freedom then the probability of the result is < 0.05 (and is
therefore considered significant with an α of 0.05). For example, for three degrees of
freedom the critical value is 7.815, so a chi-square larger than this indicates P<0.05.
Values were calculated using the method given by Zelen and Severo (1964).
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Table A1

Degrees of
freedom α= 0.05

Degrees of
freedom α= 0.05

Degrees of
freedom α= 0.05

1 3.841 41 56.942 81 103.010
2 5.991 42 58.124 82 104.139
3 7.815 43 59.304 83 105.267
4 9.488 44 60.481 84 106.395
5 11.070 45 61.656 85 107.522
6 12.592 46 62.830 86 108.648
7 14.067 47 64.001 87 109.773
8 15.507 48 65.171 88 110.898
9 16.919 49 66.339 89 112.022
10 18.307 50 67.505 90 113.145
11 19.675 51 68.669 91 114.268
12 21.026 52 69.832 92 115.390
13 22.362 53 70.993 93 116.511
14 23.685 54 72.153 94 117.632
15 24.996 55 73.311 95 118.752
16 26.296 56 74.468 96 119.871
17 27.587 57 75.624 97 120.990
18 28.869 58 76.778 98 122.108
19 30.114 59 77.931 99 123.225
20 31.401 60 79.082 100 124.342
21 32.671 61 80.232 101 125.458
22 33.924 62 81.381 102 126.574
23 35.172 63 82.529 103 127.689
24 36.415 64 83.675 104 128.804
25 37.652 65 84.821 105 129.918
26 38.885 66 85.965 106 131.031
27 40.113 67 87.108 107 132.144
28 41.337 68 88.250 108 133.257
29 42.557 69 89.391 109 134.369
30 43.773 70 90.531 110 135.480
31 44.985 71 91.670 111 136.591
32 46.914 72 92.808 112 137.701
33 47.400 73 93.945 113 138.811
34 48.602 74 95.081 114 139.921
35 49.802 75 96.217 115 141.030
36 50.998 76 97.351 116 142.138
37 52.192 77 98.484 117 143.246
38 53.384 78 99.617 118 144.354
39 54.572 79 100.749 119 145.461
40 55.758 80 101.879 120 146.567
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Table A2 Critical two- and one-tailed values of Student’s t statistic when α= 0.05,
calculated using the method given by Zelen and Severo (1964). A t test is used for
comparison between two samples or a sample and a population, so both non-
directional and directional alternate hypotheses are possible (e.g. for the latter the
alternate hypothesis might be “Themean of Sample A is expected to be greater than
the population mean μ”).
For non-directional and therefore two-tailed alternate hypotheses, if the calculated
value of t is outside the range of zero ± the critical value then the probability of that
result is < 0.05 (and therefore considered significant with an α of 0.05). For example,
for six degrees of freedom the value of t must be outside the range of zero ± 2.447.

For directional and therefore one-tailed alternate hypotheses you first need to check
whether the difference between two means is in the direction specified by the
alternate hypothesis (e.g. if the hypothesis specifies mean A is greater than mean B,
there is no point in looking up the critical value if mean B is greater than mean A,
because the null hypothesis will stand whatever the value of t).

If the difference is in the direction specified by the alternate hypothesis then the
absolute value of t (that is, the value of t written as a positive number irrespective of
whether the calculated value is positive or negative) is significant for α= 0.05 if it is
larger than the one-tailed critical value for the appropriate number of degrees of
freedom in Table A2. For example, for 20 degrees of freedom the absolute value of t
must exceed 1.725 for P < 0.05.
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Table A2

Degrees of
freedom α (2) = 0.05 α (1) = 0.05

Degrees of
freedom α (2) = 0.05 α (1) = 0.05

1 12.706 6.314 42 2.018 1.682
2 4.303 2.920 44 2.015 1.680
3 3.182 2.353 46 2.013 1.679
4 2.776 2.132 48 2.011 1.677
5 2.571 2.015 50 2.009 1.676
6 2.447 1.934 52 2.007 1.675
7 2.365 1.895 54 2.005 1.674
8 2.306 1.860 56 2.003 1.673
9 2.262 1.833 58 2.002 1.672
10 2.228 1.812 60 2.000 1.671
11 2.201 1.796 62 1.999 1.670
12 2.179 1.782 64 1.998 1.669
13 2.160 1.771 66 1.997 1.668
14 2.145 1.761 68 1.995 1.668
15 2.131 1.753 70 1.994 1.667
16 2.120 1.746 72 1.993 1.666
17 2.110 1.740 74 1.993 1.666
18 2.101 1.734 76 1.992 1.665
19 2.093 1.729 78 1.991 1.665
20 2.086 1.725 80 1.990 1.664
21 2.080 1.721 82 1.989 1.664
22 2.074 1.717 84 1.989 1.663
23 2.069 1.714 86 1.988 1.663
24 2.064 1.711 88 1.987 1.662
25 2.060 1.708 90 1.987 1.662
26 2.056 1.706 92 1.986 1.662
27 2.052 1.703 94 1.986 1.661
28 2.048 1.701 96 1.985 1.661
29 2.045 1.699 98 1.984 1.661
30 2.042 1.697 100 1.984 1.660
31 2.040 1.696 200 1.972 1.653
32 2.037 1.694 300 1.968 1.650
33 2.035 1.692 400 1.966 1.649
34 2.032 1.691 500 1.965 1.648
35 2.030 1.690 600 1.964 1.647
36 2.028 1.688 700 1.963 1.647
37 2.026 1.687 800 1.963 1.647
38 2.024 1.686 900 1.963 1.647
39 2.023 1.685 1000 1.962 1.646
40 2.021 1.684 ∞ 1.960 1.6455
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Appendix B: Answers to questions

2.8 (1) The “hypothetico-deductive” model is that science is done by
proposing a hypothesis, which is an idea about a phenomenon or
process that may or may not be true. The hypothesis is used to
generate predictions that can be tested by doing a mensurative or a
manipulative experiment. If the results of the experiment are con-
sistent with the predictions the hypothesis is retained. If they are
not (for an experiment that appears to be a good test of the
predictions) the hypothesis is rejected. By convention, a hypothesis
is stated as two alternatives: the null hypothesis of no effect or no
difference, and the alternate hypothesis which states an effect. For
example, “Apatite treatment affects the amount of lead leached
from soil” is an alternate hypothesis, and the null is “Apatite treat-
ment does not affect the amount of lead leached from soil.”
Importantly a hypothesis can never be proven because there is
always the possibility that new evidence may be found to disprove
it. A “negative” outcome, where the alternate hypothesis is rejected,
is still progress in our understanding of the natural world and
therefore just as important as a “positive” outcome where the null
hypothesis is rejected.

2.8 (2) The value recorded from only one sampling or experimental unit
may not be very representative of the remainder of the population.

4.9 (1) An example of confusing a correlation with causality is when two
variables are related (that is, they vary together) but neither causes
the other to change. For example, as depth in the ocean increases,
light intensity decreases and pressure increases, but the decrease in
light intensity does not cause the increased pressure or vice versa.

4.9 (2) “Apparent replication” is when an experiment (either mensurative
or manipulative) contains replicates, but the placement or collective
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treatment of the replicates reduces the true amount of replication.
For example, if you had two different treatments replicated several
times within only two furnaces set at different temperatures the
level of replication is actually the furnace in each treatment (and
therefore one). Another example could be two different heavy
metal rehabilitation treatments applied to each of 10 plots, but
all 10 plots of one treatment were clustered together in one place
on a mining lease and all 10 of the other treatment were clustered
in another.

5.6 (1) Copying the mark for an assignment and using it to represent an
examination mark is grossly dishonest. First, the two types of
assessment are different. Second, the lecturer admitted the varia-
tion between the assignment and exam mark was “give or take
15%” so the relationship between the two marks is not very precise
and may severely disadvantage some students. Third, there is no
reason why the relationship between the assignment and exam
mark observed in past classes will necessarily apply in the future.
Fourth, the students are being misled: their performance in the
exam is being ignored.

5.6 (2) It is not necessarily true that a result with a small number of
replicates will be the same if the number of replicates is increased,
because a small number is often not representative of the popula-
tion. Furthermore, to claim that a larger number was used is
dishonest.

6.11 (1) Many scientists would be uneasy about a probability of 0.06 for the
result of a statistical test because this non-significant outcome is
very close to the generally accepted significance level of 0.05. It
would be helpful to repeat the experiment.

6.11 (2) Type 1 error is the probability of rejecting the null hypothesis when
it is true. Type 2 error is the probability of rejecting the alternate
hypothesis when it is true.

6.11 (3) The 0.05 level is the commonly agreed upon probability used for
significance testing: if the outcome of an experiment has a prob-
ability of less than 0.05 the null hypothesis is rejected. The 0.01
probability level is sometimes used when the risk of a Type 1 error
(i.e. rejecting the null hypothesis when it is true) has very impor-
tant consequences. For example, you might use the 0.01 level when
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assessing a new filter material for reducing the airborne concen-
tration of hazardous particles. You would need to be reasonably
confident that a new material was better than existing ones before
recommending it as a replacement.

7.12 (1) For a population of fossil shells with a mean length of 100mm and a
standard deviation of 10mm, the finding of a 78mm shell is unlikely
(because it is more than 1.96 standard deviations away from the
mean) but not impossible: 5% of individuals in the population
would be expected to have shells either ≥ 119.6mm or ≤ 80.4mm.

7.12 (2) The variance calculated from a sample is corrected by dividing by
n− 1 and not n in an attempt to give a realistic indication of the
variance of the population from which it has been taken, because a
small sample is unlikely to include sampling units from the most
extreme upper and lower tails of the population that will never-
theless make a large contribution to the population variance.

8.10 (1) These data are suitable for analysis with a paired-sample t test
because the two samples are related (the same 10 crystals are in
each). The test would be two-tailed because the alternate hypoth-
esis is non-directional (it specifies that opacity may change). The
test gives a significant result (t9 = 3.161, P < 0.05).

8.10 (2) The t statistic obtained for this inappropriate independent sample t
test is −0.094 and is not significant at the two-tailed 5% level. The
lack of significance for this test is because the variation within each
of the two samples is considerable and has obscured the small but
relatively consistent increase in opacity resulting from the treat-
ment. This result emphasizes the importance of choosing an
appropriate test for the experimental design.

8.10 (3) This exercise will initially give a t statistic of zero and a probability
of 1.0, meaning that the likelihood of this difference or greater
between the sample mean and the expected value is 100%. As the
sample mean becomes increasingly different to the expected mean
the value of t will increase and the probability of the difference will
decrease and eventually be less than 5%.

9.8 (1) A non-significant result in a statistical test may not necessarily be
correct because there is always a risk of either Type 1 error or Type
2 error. Small sample size will particularly increase the risk of Type
2 error – rejecting the alternate hypothesis when it is correct.
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9.8 (2) A significant result and therefore rejection of the null hypothesis
following an experiment with only 10% power may still occur,
even though the probability of Type 1 error is relatively low.

10.7 (1) (a) The within group (error) sum of squares will not be zero,
because there is variation within each treatment. (b) The among
group sum of squares and mean square values will be zero,
because the three cell means are the same. (c) A single-factor
ANOVA should give F2,9 (for treatment) of 0.00. (d) When the
data for one treatment group are changed to 21, 22, 23 and 24 the
ANOVA should give F2,9 (treatment) of 320.0 which is highly
significant (P < 0.001). (e) The within group (error) mean squares
will be the same (1.667 in both cases) because there is still the same
amount of variation within each treatment (the variance for the
treatment group containing 21, 22, 23 and 24 is the same as the
variance within the groups containing 1, 2, 3 and 4).

10.7 (2) (a) Model II – three lakes are selected as random representatives of
the total of 21. (b) Model I – the three lakes are specifically being
compared. (c) Model I – the six wells are being examined to see
whether any give significantly higher yields.

10.7 (3) Disagree. Although the calculations for the ANOVA are the same, a
significant Model I ANOVA is usually followed by a posteriori test-
ing to identify which treatments differ significantly from each other.
In contrast, aModel II ANOVA is not followed by a posteriori testing
because the question being asked is more general and the treatments
are randomly chosen as representatives of all possible ones.

10.7 (4) This is true. An F ratio of 0.99 can never be significant because it is
slightly less than 1.00 which is the value expected if there is no
effect of treatment. For ANOVA, critical values of F are numbers
greater than 1.00, with the actual significant value dependent on
the number of degrees of freedom.

11.6 (1) (a) Yes, F2,21 = 7.894, P < 0.05. (b) Yes, a posteriori testing is
needed. A Tukey test shows that well RVB2 is yielding signifi-
cantly more oil than the other two, which do not differ signifi-
cantly from each other.

11.6 (2) An a priori comparison between wells RVB1 and RVB3 using a
t test showed no significant difference: t14 =−0.066, NS. This result
is consistent with the Tukey test in 11.6(1).
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12.9 (1) (a) For this contrived example where all cell means are the same,
Factor A: F2,18 = 0.0, NS; Factor B: F1,18 = 0.0, NS; Interaction
F2,18 = 0.0, NS. (b) This is quite difficult and drawing a rough
graph showing the cell means for each treatment combination is
likely to help. One solution is to increase every value within the
three B2 treatments by 10 units, thereby making each cell with B2:
11, 12, 13, 14. This will give Factor A: F2,18 = 0.0, Factor B:
F1,18 = 360.0, P < 0.001, Interaction: F2,18 = 0.0, NS. (c) Here too a
graph of cells mean will help. One solution is to change the data to
the following, which, when graphed (with Factor A on the X axis,
the value for the means on the Y axis and the two levels of Factor B
indicated as separate lines as in Figure 12.1) show why there is no
interaction:

Factor A A1 A2 A3

Factor B B1 B2 B1 B2 B1 B2

1 11 11 21 21 31
2 12 12 22 22 32
3 13 13 23 23 33
4 14 14 24 24 34

12.9 (2) Here you need a significant effect of Factor A and Factor B as well
as a significant interaction. One easy solution is to grossly increase
the values for one cell only (e.g. by making cell A3/B2 (the one on
the far right on the table above) 61, 62, 63 and 64.

13.8 (1) Transformations can reduce heteroscadasticity, make a skewed
distribution more symmetrical and reduce the truncation of dis-
tributions at the lower and upper ends of fixed ranges such as
percentages.

13.8 (2) (a) Yes, the variance is very different among treatments and the
ratio of the largest to smallest is 9 : 1 (15.0 : 1.67), which is more
than the maximum recommended ratio of 4 : 1. A square root
transformation reduces the ratio to 2.7 : 1 (0.286 : 0.106).

14.8 (1) (a) There is a significant effect of distance: F2,8 = 8.267, P < 0.05;
and of depth: F4,8 = 3935.1, P < 0.001. (b)When analyzed by single-
factor ANOVA, ignoring depth, there is no significant difference
among the three cores: F2,12 = 0.016, NS. The variation among
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depths within each core has obscured the difference among the
three cores, so the researcher would mistakenly conclude there
was no significant difference in the concentrations of PAHs and
distance from the refinery.

14.8 (2) The glaciologist is using the wrong analysis because the design has
locations nested within lakes, so a nested ANOVA is appropriate.

15.8 (1) (a) “….can be predicted from……”. (b) “…varies with…..”
15.8 (2) (a) The value of r is −0.045, NS. (b) You need to do this by having

Y increasing as X increases. (c) You need to do this by having Y
decreasing as X increases.

16.13 (1) (a) For this contrived case r2 = 0.000. The slope of the regression is
not significant: the ANOVA for the slope gives F1,7 = 0.0. The
intercept is significantly different from zero: t7 = 20.49, P < 0.001.
(b) The data can be modified to give an intercept of 20 and a zero
slope by increasing each value of Y by 10. (c) Data with a
significant negative slope need to have the value of Y decreasing
as X increases.

16.13 (2) (a) r2 = 0.995. The relationship is significant (ANOVA of slope:
F1,7 = 13000.35, P < 0.001) and the regression equation is: weight
of gold recovered = −0.002 + 0.024 × volume of gravel processed.
The intercept does not differ significantly from zero (and would
not be expected to because if no gravel is processed no gold will be
recovered).

18.9 (1) This is highly significant (χ21 = 106.8, P < 0.001). Because students
were assigned to groups at random it seems this high proportion
of left-handers occurred by chance, so the significant result
appears to be an example of Type 1 error.

18.9 (2) (a) The value of chi-square will be zero. (b) The value of chi-
square will increase, and the probability will decrease.

18.9 (3) This is not appropriate because the numbers of trilobites in the
two outcrops are independent of each other. The numbers are not
mutually exclusive or contingent between outcrops.

18.9 (4) No. The experiment of adding jetties lacked a control for time:
the accretion pattern may have changed from the first to the
second year simply by chance or as a result of some other factor.
It would be helpful to have a control for time where a similar but
unmodified coastline was monitored. Often this is not possible,
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so another approach is to analyze data for the sites over several
years prior to the change (i.e. jetty construction) and see if the
year(s) after differ significantly from this longer-term data set.

19.10 (1) (a) The relative frequencies are 0.15, 0.30, 0.14, 0.11, 0.03, 0.11,
0.14 and 0.020 respectively. The cumulative frequencies are: 0.15,
0.45, 0.59, 0.7, 0.73, 0.84, 0.98 and 1.0 respectively. (b) For a
sample of 100 wells, one distribution of water table depths that
would (definitely) not be significantly different to the population
would be the numbers in each size frequency division of the
population of 1000 wells divided by 10. (c) For a sample of 100
that you would expect to be significantly deeper than the pop-
ulation, you would need to have a much greater proportion in the
lower depths. (d) You could use a Kolmogorov–Smirnov test to
compare the distributions of the two samples to the population.

19.10 (2) The rank sums are; Group 1: 85, Group 2: 86. (b) There is no
significant difference between the two samples: Mann–Whitney
U= 40.0, NS. (c) One possible change to the data that gives a
significant result is to increase the value of every datum in Group
2 by 20.

19.10 (3) One sample appears to be bimodal and there is a gross difference
in variance between the two samples. One solution is to transform
the data to a nominal scale by expressing them as the number of
observations within the two mutually exclusive categories of
≤ 2mm and > 2mm. This will give a 2 × 2 table (Sample 1: 20
individuals are ≤ 2mm, and 2 are > 2mm; Sample 2: 6 are ≤ 2mm
and 17 are > 2mm) that can be analyzed using chi-square
(χ21 = 19.37, P < 0.001; Yates’ corrected χ21 = 16.80, P < 0.001).

20.19 (1) If there are no correlations within a multivariate data set then
principal components analysis will show that for the variables
measured there appears to be little separation among objects.
This finding can be useful in the same way that a “negative” result
of hypothesis testing still improves our understanding of the
natural world.

20.19 (2) Eigenvalues that explain more than 10% of variation are usually
used in a graphical display, so components 1–3 would be used.

20.19 (3) “Stress” in the context of a two-dimensional summary of the
results from a multidimensional scaling analysis indicates how
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objects from a multidimensional space equal to the number of
variables will actually fit into a two-dimensional plane and still be
appropriate distances apart. As stress increases it means the two-
dimensional plane has to be distorted more and more to accom-
modate the objects at their “true” distances from each other.

20.19 (4) The “groups” produced by cluster analysis are artificial divisions
of continuous data into categories based upon percentage sim-
ilarity and therefore may not correspond to true nominal cate-
gories or states.

21.16 (1) There is no significant long-term linear trend (regression analysis:
F1,46 = 0.89, NS) and a graph shows no obvious repetition. The
only significant autocorrelation is an isolated case at lag 10, which
suggests little within-sequence repetition or similarity.

21.16 (2) For a relatively short sequence autocorrelations are unreliable
because sample size is small. As lag increases the effective sample
size is reduced (as less and less of the sequence overlaps with
itself), so significant autocorrelations at high lags may be artifacts
of having a small number of values in the overlapping section.

21.16 (3) (a) The data could be summarized as the number of heatwaves
every 10 years (e.g. 1850–9 etc.) giving 7, 2, 3, 4, 5, 4, 4, 4, 3, 5, 4, 5,
4, 6, 3 and 2 heatwaves for each 10-year interval. The slope of the
regression line of the number of summers with heatwaves versus
time shows no significant temporal change in the frequency of
heatwaves (F1,14 = 0.28, NS). (c) The frequency distribution of the
number of years elapsing between successive heatwaves is: 1yr
(23), 2yr (19), 3yr (8), 4yr (5), 5yr (6), 6yr (0), 7yr (1), 8yr (1), 9yr
(1). To assess whether years with heatwaves occur at random you
need to graph the logarithm of the percentage of “survivors”,
versus intervals between heatwaves in years (see Table 21.8 for an
example). The graph is almost a straight line, so the occurrence of
heatwave years appears to be random.

22.6 (1) (a) The expected numbers (in brackets) of quadrats with silvermines
is: zero mines (50), 1 mine (69), 2 (48), 3 (22), 4 (8), 5 and more
mines (2). χ24 = 12.58 which is just significant at P < 0.05. (b) The
variance of the number of outcrops per quadrat is 1.34232, so the
variance tomean ratio is 0.9726895. (c) This ratio is not significantly
different to 1.0: t199 = (0.9726895 – 1)/ 0.08528 = 0.32, NS. (d) In
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summary, the result of the chi-square test is consistent with the
distribution of silver mines being non-random, but this is only just
significant at P<0.05. The t test for uniformity or clustering is not
significant although the variance to mean ratio suggests there is a
tendency towards uniformity. This example was deliberately chosen
to illustrate that these two tests will often give different results when
the departure from randomness is slight.

22.6 (2) (a) For a rose diagram divided into six segments of 60° (1–60° etc.)
the numbers per segment are zero, 6, 15, 8, 3 and zero. (b) By
inspection the directions of the footprints do not appear to occur
equally often. (c) This was confirmed by a chi-square test (expected
numbers per segment were 5.33), χ25 = 30.64, P < 0.01.

22.6 (3) (a) For a rose diagram divided into six segments of 60° (1–60° etc.)
the numbers of weekly wind direction averages per segment are:
11, 6, 14, 7, 8, and 6. (b) By inspection of these data there is not a
great deal of difference in the number of weeks within each seg-
ment. (c) A chi-square test (with expected numbers per segment of
8.66) gives χ25 = 5.93, NS. The distribution does not differ signifi-
cantly among segments, so no advice can be given about the best
location of a wind break.

22.6 (4) The theoretical semivariogram shows the distribution of sampling
points and the empirical semivariogram shows a smoothed curve
fitted through these.

22.6 (5) If there is no regional dependence the limits of the semivariance
will be the same at any distance from each known point. Therefore,
Kriging will only indicate that the value for any predicted point
will lie within the expected range of the population. In contrast, if
there is regional dependence the relatively narrow limits of the
semivariance close to known points will constrain the predicted
value.
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Index

a posteriori test, 131–8, 183
after analysis of variance, 131
after non-parametric analysis, 257
ambiguous result, 136
power of, 137
Tukey test, 132

a priori test, 138–40
accuracy, 28
alpha (α), 60

of 0.05, 57, 60
other values of, 58–9

analysis of variance (ANOVA)
a posteriori testing, 128
assumptions
homoscedasticity, 166
independence, 171
normality, 167

fixed and random effects, 128
Model I, 129
Model II, 129
multiple comparisons, 131
nested, 185–92
risk of Type 1 error, 116
single-factor, 115–29
a posteriori testing, 128
unbalanced design, 128

three or more factors, 164
two-factor, 142–64
a posteriori testing, 155
cautions and complications,

154–64
fixed and random factors, 160
interaction, 144
interaction obscuring main effects, 157
no interaction, 144
simple main effects, 150
unbalanced designs, 164

two-factor without replication, 178–84
randomized blocks, 184

ANOVA, see analysis of variance
autocorrelation, 301–7
autoregression, 317–19
average, see mean

Bayes’ theorem, 61–2
beta (ß), see Type 2 error
binomial distribution, 56, 81, 245
box-and-whiskers plot, 167–71
Box–Ljung statistic, 307

central limit theorem, 80
chi-square
statistic (χ2), 62

table of critical values, 374
test, 60–4, 131–8, 231–3

bias with one degree of freedom, 237
example to illustrate statistical testing, 60
for heterogeneity, 235
for one sample, 231
worked example, 62
Yates’ correction, 237

cluster analysis, 291–4
Cochran Q test, 245
confidence interval, 85
confidence limits, 85
contingency table, 235
control treatments, 35
for disturbance, 36
for time, 36

correlation, 29, 194–203
artifact of closed data sets, 30
confused with causality, 30
contrasted with regression, 195
in sequence analysis, 302
linear, 195–202

assumptions, 202
non-parametric, 266
Pearson correlation coefficient (r),

195–202
correlogram, 303

D statistic, see Kolmogorov–Smirnov
one-sample test

data
bivariate, 16, 194
continuous, 17
discrete, 17
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data (cont.)
displaying, 15–27
bivariate, 21
circular histogram, 348
cumulative graph, 20
directional, 348
histograms, 17
line graphs, 19
multivariate, 26
nominal scale, 21
ordinal scale, 21
pie diagrams, 25
rose diagrams, 26, 348
univariate, 17

interval scale, 16
multivariate, 16, 270
nominal scale, 16, 230
ordinal scale, 16
ratio scale, 16
univariate, 16

degrees of freedom, 90
additivity in ANOVA, 127
for chi-square test, 232
for contingency tables, 236
for F statistic, 127
in regression analysis, 216

directional data, 346–52
dissimilarity, 284

effect size, 107
eigenvalue, 275, 280
eigenvector, 275
empirical survival graph, 329
error

Type 1, 58, 105
Type 2, 58, 106
uncontrollable, 118

ethical behavior, 45–50
acknowledging previous work, 46
approvals and permits, 47
fair dealing, 46
input of others, 46
moral judgements, 47
plagiarism, 45
pressure from peers or superiors, 49
quality control, 50
record keeping, 49
reporting results, 48

Euclidian distance, 285
for cluster analysis, 291

exact tests
Fisher Exact Test, 238
for two independent samples, 252–4

examples
air pollution in a city, 283
aluminum oxide in lower crustal

xenoliths, 106

apatite
and lead contamination, 8
chlorapatite and fluorapatite binding

lead, 186
in human teeth, 24
in sandstone, 136

asbestos and mesothelioma, 58, 259
beach erosion/accretion inMassachusetts, 243
coal depth in West Virginia, 358
Copernicus’ model of the solar system, 12
Cretaceous/Tertiary boundary, 238
dental caries in Hale and Yarvard, 22
earthquakes and tilt of volcanoes, 30
estuary sediments, 278
flood frequency over time, 327
forams and their coiling, 232
fossil clams in outcrops, 100, 250
gold pan performance, 34
grain size of granites, 96
greenhouse gasses forming minerals, 143
groundwater
arsenic contamination, 59
nitrate contamination, 235

hafnium in New England granites, 134
hydrogen diffusion in pyroxene, 315
impact craters
iridium concentration, 264
on the Earth and Moon, 41
on Venus, 343

irradiation
of amethyst, 94, 146
of quartz, 153
of topaz, 5
of zircons, 60

kimberlite and diamonds, 51
limestone
and acid rain, 195
isotopic analysis of, 19
weathering of tombstones, 248

magma temperature estimated from SiO2

content, 204
magnetic field strength of the Earth, 298
meteorites in Antarctica, 337
mine site bioremediation, 35
oil shale test cores, 178
olivine production and temperature, 41
pearl growth, 184
potable water from wells, 61
quartz crystals and handedness, 231
radiometric decay and age of rock, 210–11
rainfall prediction at Neostrata coal mine, 317
sand mineralogy and location, 230
sea level
at Port Magmamo, 320
from sedimentary deposits, 324

sediments
heavy metal content of, 278, 283
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hydrocarbons in, 282
in a glacial lake, 32
in the Holyoke estuary, 31

snow and school cancellations, 217–19
stream directions in western

Queensland, 350
student visits to a lecturer’s office, 17
temperature and pressure on feldspar

growth, 179
topaz crystals, heat-treated, 4
tornadoes in the USA, 21
tourmalines
in Maine pegmatites, 117
magnesium content, 122
stable isotopes in, 135

turbidity of well water (NTU), 310
vermiculite
and soil improvement, 262
water content of, 94

Vienna Standard Mean Ocean Water, 88
examples, worked

a posteriori Tukey test, 131–8
chi-square test
for goodness of fit, 62, 232
for heterogeneity, 235
of directional data, 351

Fisher Exact Test, 238
multidimensional scaling, 287–9
nearest neighbor analysis, 345
regression
linear, 217–19
non-linear, 320–2
of a sequence, 310–11
of event frequency over time, 327

rose diagram, 350–1
semivariogram, 358
single-factor analysis of variance, 122–8
spatial distribution of meteorites, 337–40
t test
independent samples, 100
paired-sample, 98
single-sample, 95–6

two-factor analysis of variance, 153–4
Type 2 error, 106–9
Z test, 88–9

experiment
advantage of repeating, 34
common sense, 42
good design versus cost, 44
manipulative, 28, 34–40
apparent replication, 38
control treatments, 35
need for independent replicates, 34
pseudoreplication, 37

mensurative, 28, 29–34
confounded, 31
need for independent samples, 32

need for replicates, 32
pseudoreplication, 32

negative outcome, 12
realism, 41
unreplicated, 40

experimental design, 28–44
orthogonal, 143

experimental unit, 2

F statistic, 102, 122
degrees of freedom for, 127
in regression testing, 215
table of critical values, 378

factorial (X!), 337
false negative, see Type 2 error
false positive, see Type 1 error
Fisher Exact Test, 238
Fisher, R., 57, 116
Friedman test, 262–4

G test, 236

H statistic, see Kruskall–Wallis test
heteroscedasticity, 166
Levene test for, 167, 174

homoscedasticity, 166
Hurlbert, S, 32, 37
hypothesis, 8
alternate, 12
becoming a theory, 11
cannot be proven, 11
null, 12
predictions, 8
rejection of, 8
retained or rejected, 11
two-tailed contrasted with one-tailed, 91

interaction, 142

Kolmogorov–Smirnov one-sample test, 248–50
Kriging, 360
Kruskall–Wallis test, 256–7

lag, 301
leptokurtic, 80
Levene test, 167
line graph, 19
log-likelihood ratio, see G test

Mann–Whitney U test, 250–2
Markov chains, 324
McNemar test, 244
mean, 67
grand mean, 117
population, 67, 86
sample, 72
standard error of (SEM), 73
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median, 82, 167
meta-analysis, 40
mode, 83
Monte Carlo method, 234, 237
multidimensional scaling, 284–91
multivariate analyses, 270–95

choice of, 295
cluster analysis, 291–4
dendogram, 292
group average linkage method, 292
hierarchical, 292

multidimensional scaling, 284–91
cautions, 290
Euclidian distance, 285
stress, 289

principal components analysis (PCA),
272–84

cautions in use of, 283
eigenvalues, 275
number of components to plot, 282
practical use of, 282
principal components, 272
redundancy, 272

Q-mode, 271, 291
R-mode, 271

non-parametric tests, 66, 227–9
correlation, 266
independent samples of nominal

scale data
chi-square test, 131–8, 231–3
Fisher Exact Test, 238
G test, 236
inappropriate use of, 242
randomization test, 233–4

independent samples of ratio, interval or
ordinal data, 248–59

analysis of variance on ranks, 257
exact test, 252–4
Kolmogorov–Smirnov one-sample test,

248–50
Kruskall–Wallis test, 256–7
Mann–Whitney U test, 250–2
randomization test, 252, 257

related samples of nominal scale data,
243–5

Cochran Q test, 245
McNemar test, 243

related samples of ratio, interval or ordinal
data, 259–64

Friedman test, 262–4
Wilcoxon test, 259–62

when transformation cannot remedy
heteroscedasticity, 264

normal distribution, 66
bivariate, 202
leptokurtic, 80

platykurtic, 80
skew, 80

nugget (effect), 356

one-tailed
hypotheses, 91
appropriateness, 94
cautions, 92

tests and critical value, 93
orthogonal, 143
outliers, 167, 169

parametric tests, 66
Pearson correlation coefficient (r), 195–202
planned comparisons, see a priori test
platykurtic, 80, 81
Poisson distribution, 82, 336
Popper, K., 8, 13
population, 1

statistics (parameters), 71
post hoc test, see a posteriori test
power of a test, 109

and sample size, 111
controllable factors, 110
desirable, 110
uncontrollable factors, 110

precision, 28
principal components analysis (PCA), 272–84
probability

and statistical testing, 51–65
essential concepts, 53–5
reported value
< 0.001, 60
< 0.01, 60
< 0.05, 60
≥ 0.05 not significant (N.S.), 60
close to 0.05, 65
of exactly 0.05, 64

statistically significant, 57
Type 1 error, 58
Type 2 error, 58

probability plot (P-P), 101, 167
pseudoreplication, 37

inappropriate generalization, 34
replicates
clumped, 38
placed alternately, 38
segregated, 38
sharing a condition, 39

Q-mode, 284
quadrat, 335

r statistic, 195
r2 statistic, 217
randomization test

concept of, 233
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for contingency tables, 237
for nominal scale data, 233
for three or more independent

samples, 257
randomized blocks, 184
range, 68, 83
ranks, 247

tied, 251
redundancy, 272
regional dependence, 352
regression

contrasted with correlation, 195
linear, 204–23
assumptions, 220
coefficient of determination (r2), 217
danger of extrapolation, 220
equation, 205
intercept, 208
predicting X from Y, 219
predicting Y from X, 219
significance testing, 211–17
slope, 205–8

multiple linear, 223–4
polynomial, 311–15

replicates, 9
residuals, 220

use in sequence analysis, 309
R-mode, 271
rose diagram, 348

sample, 117
mean, 72
random, 2
representative, 1, 6, 66
standard deviation (s), 71
statistics, 71
as estimates of population

statistics, 76
variance (s2), 72

sampling unit, 1
replicates, 117

scientific method, 8, 45
core theories, 14
hypothesis, 8
hypothetico-deductive, 8, 13
paradigms, 13

semivariance, 353
compared to variance, 353

semivariogram
application of, 359
experimental (empirical), 354
nugget effect, 356
region of influence, 357
sill, 357
theoretical, 355

sequence analysis, 297–332
nominal scale data, 323–30

changes of state, 323–7
randomness over time, 329
regression modeling of frequency, 329
repeated occurrence of an event, 327–30
sampled at regular intervals, 324
transitions, 325, 326

ratio, interval or ordinal data, 298–323
autocorrelation, 301–7
autoregression, 317–19
Box–Ljung statistic, 307
cautions in use of, 323–30
correlogram, 303–7
correlogram of residuals, 309
cross-correlation, 307
cyclic pattern, 320–2
detrending with regression, 309
lag, 301
polynomial regression analysis of,

311–15
preliminary inspection, 298
regression modeling of, 308–23
simple linear regression, 309, 310–11

similarity within a sequence, 307
serial correlation, see autocorrelation
significance level
of 0.01, 59
of 0.05, 57
of 0.3, 59

skew, 80, 167
negative, 80
positive, 80

spatial analysis, 334–62
direction of objects, 346–52

testing for an even distribution, 351
distribution of objects, 335–46

edge effects, 344
guard region, 344
Monte Carlo simulation, 343
nearest neighbor analysis, 342–6
scale and sensitivity, 342
testing for randomness, 335–46

orientation of objects, 351
prediction and interpolation in two

dimensions, 352–62
Kriging, 360
regional dependence, 352
semivariance, 353
semivariogram, 354
theoretical semivariogram, 355

Spearman’s rank correlation, 266
standard deviation, 67
population, 70
sample, 71

standard error of the mean (SEM), 73
calculated from ANOVA mean square

(error), 132
estimated from one sample, 75

Index 395



standard error of the mean (SEM) (cont.)
for a population, 74
samples from non-normal distributions, 80

standard normal distribution, 71
statistic, 60
statistical significance, 52
stress, 289
Student (W. S. Gossett), 78
Student’s t, see t statistic
survival graph, 329

t statistic, 86
distribution of, 78
table of critical values, 376

t test
assumptions, 100
equal variances, 102
normality, 101

critical values, table of, 90, 376
degrees of freedom, 90–1
for planned comparison after

ANOVA, 138
independent samples, 98
paired sample, 96
single sample, 87

theory, 11
time series analysis, see sequence analysis
transformations, 171

arc-sine, 172
legitimacy, 172
logarithmic, 171
square root, 171

Tukey test, see a posteriori test
two-tailed hypotheses, 91
Type 1 error, 58, 105–6

a posteriori testing, 137
concept of risk, 113
multiple comparisons, 116
trade-off with Type 2 error, 110

Type 2 error, 58, 106–9
concept of risk, 113
trade-off with Type 1 error, 110

variable, 15
dependent, 195
independent, 195
measured, 298
sequence, 298

variance
among group, 119
for a population, 68
for a sample, 72
tests for heteroscedasticity, 174
total, 119
within group (error), 119

variation
among group, 125
total, 126, 148
within group (error), 124, 148

Wilcoxon test, 259–62

X axis, 18

Y axis, 18
Yates’ correction, see chi-square test

Z statistic, 70, 75, 76, 86, 284
test using, 86
use in correlation, 198
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