2014

»

«

(

»)

«

• •

1.	
1.1.	
1.2.	
13	_
1.5.	22
1 /	
1.4.	-
1 5	
1.5.	
2.	
2.1.	
2.2.	
2.3.	-
2.4.	-
	48
25	58
2.5.	
3.	
0.1	
3.1.	-

3.2.	
3.3.	

•••••	••••••	••••••	 75
3.4.			
3.5.			
		•••••	
3.6.			

3.7.	
4.	<u>-</u>

4.1.	
4.2.	
4.3.	

4.4.	-	
4.5.		
5		
J.		142
F 1		
5.1.		

	5.2.
	NVSK
	ELTS
	5.4.
	5.5
	••••••
	1.
GPS- ,	2.
	3.
	Τ,
	4.
	5.

(, , , .) « **»** ≫. ~ • [1], «... _ . [2] ». • «… [3] ». , , • , , , () , (, , , , . .) [4,

5].

,

~

,

_

;

»,

,

,

,

.),

,

,

•

7

(

,

,

•

,

,

XXI . ,

,

,

,

, [9] « ,

••• , ()

8

:

,

,

· ,

, , , , , ...». ,

,

1.

).

•

•

•

•

(

. .

:

. [31, 32]

60 %

,

-40 %.

,

,

,

,

[19, 38].

- «

,

,

,

-

» [39].

,

...»

,

•

« , , ».

,

•

[40–48].

[49, 17].

[42, 54–57].

GPS-

[58–70]. [62]

(.1).

		()					
IGS,			GPS/		,			
(-)						,	(), DORIS,
+	,	-1,	GPS/		,			
				,				1-
	()		,		Ι		
-1,			GPS/		,			
					Ι		II	,
								,

			(
8)				,
0,5″,	1-2 ppm.			
GPS-		,		

.

[67–70],

15

,

1991–2001 . [70]

GPS,

10⁻¹⁰. 1,5 25 ,

35 -16.05.1970 . (= 7,0), - 14.06.1990 . (= 6,9), - 27.12.1991 . (= 6,5) - 27.09.2003 . = 7,5). (

[17].

45-60

12

GPS-

[17, 74–79]. .

•

,

1992

,

[68]. 1992–2001 ••

16

GPS-

800 , -4. () -, , 7/ 20.

[80].

GPS-

,

1992–2000 .

,

[31].

[69].

GPS-

GPS-

2

-

5

,

[81].

[82]

,

,

,

,

[83],

-

[88–95],

[84].

(

,

[84–87],

,

,

,

,

,

[98]. [99–101]

,

,

: 10 (0,01 50) 2– • 3,5 . (3) - 0,015 $(5 \cdot 10^{-6});$ (2-3,5) - 0,018 ; $(1) - 7 \cdot 10^{-6}.$ [102] , , 12 . $\pm 0,29 \cdot 10^{-2}$ ±0,2 ±1,0 , • -2. Theo 010 3 2 ±0,7 -±1,6 . . , [103]

),

,

15-20

,

,

	[104].	[105]
	10	17
•	4	- -
	, (GPS)
,	,	
[107] –	[94] – . [95]	
_	20	_
- 20 .	7.	3
,	7	(3 IGS-
ITI	RF.	
		[104]. 10 (GPS) (GPS) $(107) - [94] - [95]$ $- 20$ 7 7 $1TRF.$

() * **»**

[108, 109],

,

,

[141, 142].

,

,

FG5-108,

[143, 144]

,

«Micro-g Solutions» () (). 100–150 , 10 20 , 7 13

•

[110, 126, 140]

,

•

,

≫.

,

,

,

22

[145]

•

,

•

,

,

•

,

•

,

24

[147–153].

,

,

,

,

,

-

• •

•

1.3.

[154, 155].

23

• •

[7,

•

-

()

-

•

. 1.

 $\psi(X, t) -$

 $X_{R}(X,t) = F(X,t) \{ X_{R}^{T}(X,t-1), \ \sum_{\Sigma}^{T}(X,t), I^{T}(X,t), \Theta^{T}(X,t) \}^{T} + \Psi(X,t) \Psi(X,t). \ (1)$

(1) F(X, t) -; $\Sigma(X, t) -$ (); I(X, t) -(

); $\Theta(X, t)$

,

,

,

); $B_{\psi}(X, t)$ –

•

:

(

$$\begin{split} \left\{ X_{R}^{T}(X,t), C_{\Sigma}^{T}(X,t) \right\}^{T} &= X_{\Sigma}(X,t); \ \Theta(X,t) \in \Theta_{\Sigma}, \qquad \Theta_{\Sigma} \qquad - \\ (\qquad) \\ & a \qquad , \qquad (\qquad , \qquad), \\ & Y. \\ (1) \\ & X_{R}(X,t) = \left[X_{i}^{T} \{P_{i}(t)\}, W_{i}^{T} \{P_{i}(X,t)\}, X_{D}^{T}(X,t) \right]^{T} \in X_{\Sigma}, \qquad , \\ & U_{i} \{P_{i}(X,t)\}, - \\ & X_{R}(X,t) = \left[X_{i}^{T} \{P_{i}(t)\}, T_{i}^{T} \{P_{i}(X,t)\}, X_{D}^{T}(X,t) \right]^{T}, \qquad W - \\ & , \qquad T = W - U - \\ & X_{D}(X,t) = \left\{ X_{D(-)}^{T}(X,t), X_{D(-)}^{T}(X,t) \right\}^{T}, \qquad X_{D(-)}(X,t) - \\ & (\qquad), \\ & X_{D}(X,t) = \left\{ X_{D(-)}^{T}(X,t), X_{D(-)}^{T}(X,t) \right\}^{T}, \qquad X_{D(-)}(X,t) - \\ & (\qquad), \\ & W, \qquad : \\ & (\qquad), \\ W, \qquad : \\ & Y(X,W,t) = f(X,t) \{X_{R}^{T}(X,t), C_{Y}^{T}(X,t), \Theta_{Y}^{T}(X,t)\}^{T} + \delta_{Y}(X,W,t), \qquad (2) \\ & \Theta_{Y}(X,t) - \\ & ; \qquad \delta_{Y}(X,W,t) - \\ & K_{\delta}(X,t) = K_{Y}(X,t). \qquad X = X(x,y,z) \end{split}$$

 $K_{X_R}(X,t),$

_

•

,

,

,

,

•

,

,

$$K_{\Delta Y}(t^{-}),$$

 $K_{X_{R}}(t^{-}) = K_{X_{R}}(t^{+}) -$

•

 $\left\{ \hat{\mu}(\ast)\right\} ^{2}$

,

$$\{\mu_{\Sigma}(t)\}^{2} = \frac{\{\mu_{\Sigma}(t)\}^{2} v_{\Sigma}(t-1) + \{\hat{V}(t/t-1)\}^{T} \{Q_{X_{R}}(t/t-1)\}^{-1} \hat{V}(t/t-1)}{v_{\Sigma}(t)}, \quad (6)$$

$$v_{\Sigma}(t) = v_{\Sigma}(t-1) + v(t), \quad v_{\Sigma}(t) \quad v_{\Sigma}(t-1) - , \quad t = t - 1$$

:

$$; \in (t) - t.$$

[180–183].

[188]

[192],	, [19]	3].		,) : DATA	MINE,
VULKAN,	MINESCAPE, GEMCOM,	TECH	BASE,	SURP	AC –	,
				,	,	-
_	-					
			().		
	-	GITS.				
	Autodesk: RastrArts –					
Vtahaniaal	; Softdesk –					•,
vtchanicai	Desktop –				Arc Vi	lew 3.0
	«					
	[194]				».	
		,				
	. 2003–2	.005				
	[19	95].				
[196, 197].						

,

,

[96]

,

•

•

±0,17

±0,4

,

•

[198, 199]

,

1.5.

GPS-

,

,

,

,

,

,

,

(

8)

,

.

,

),

,

(

,

,

,

,

,

1-2 ppm.

(

,

)

,

,

,

,

),

(

,

.

,

,

,

() ,

,

37

 u_x, u_y, u_z

).

•

,

,

, *Z*

•

•

х,

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x}; \quad \varepsilon_{yy} = \frac{\partial u_y}{\partial y}; \quad \varepsilon_{zz} = \frac{\partial u_z}{\partial z};$$

$$2\varepsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}; \quad 2\varepsilon_{yz} = \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y}; \quad 2\varepsilon_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x},$$
(9)

$$S_1$$
(,),
, $F_x, F_y, F_z,$
, S_2
:

$$\sigma_{xx} \cos(n, x) + \sigma_{xy} \cos(n, y) + \sigma_{xz} \cos(n, z) = F_x;$$

$$\sigma_{yx} \cos(n, x) + \sigma_{yy} \cos(n, y) + \sigma_{yz} \cos(n, z) = F_y;$$

$$\sigma_{zx} \cos(n, x) + \sigma_{zy} \cos(n, y) + \sigma_{zz} \cos(n, z) = F_z,$$
(10)

 S_1 .

38
$$u_{x} = \varphi_{x}; \quad u_{y} = \varphi_{y}; \quad u_{z} = \varphi_{z}.$$
(11)
(10) $\cos(n, x), \ \cos(n, y), \ \cos(n, z) - n$
,
 S_{1}
(10), - S_{2}
(11).
 $\varphi_{x} = \varphi_{y} = \varphi_{z} = 0$ (S_{2}).
,
 S_{1}
,
 S_{2}
,
 S_{2}
,
 S_{1}
,
 S_{2}
,
 S_{2}
,
 S_{1}
,
 S_{2}
,
 S_{3}
,
 $S = S_{3}$

, (8) ,

$$: \rho \frac{\partial^2 u_x}{\partial t^2} ,$$

$$\rho \frac{\partial^2 u_x}{\partial t^2} ,$$
[200]. (8)

•

,

,

,

, ,

x, *y*, *z*.

•

$$-u_{x} = u_{x} (x, y), u_{y} = u_{y} (x, y), u_{z} = 0.$$
(7)-(11)

,

,

,

,

2.2.

,

,

,

(7)–(11)

[203].

40

,

,

41

•

.6. (), (), ()

:

)

r

i u_{x_i} u_{y_i} (. 6,) R_{ix} R_{iy} (. 6,),

$$R_{ix} = k_{11}u_{x_i} + k_{12}u_{y_i} + k_{13}u_{x_j} + k_{14}u_{y_j} + k_{15}u_{x_k} + k_{16}u_{y_k} + k_{17}u_{x_l} + k_{18}u_{y_l}$$

$$R_{iy} = k_{21}u_{x_i} + k_{22}u_{y_i} + k_{23}u_{x_j} + k_{24}u_{y_j} + k_{25}u_{x_k} + k_{26}u_{y_k} + k_{27}u_{x_l} + k_{28}u_{y_l}$$
(12)

k_{ij} _

i,

[204].

:

j,

j, *k*, *l* (12).

i, j, k, l (

42

$$R_r = K_r U_r, \tag{13}$$

$$() r$$

$$R_{r} = \begin{pmatrix} R_{ix} \\ R_{iy} \\ \dots \\ R_{ly} \end{pmatrix}, \qquad (14)$$

$$K_{r} = \begin{pmatrix} k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} & k_{17} & k_{18} \\ k_{21} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} & k_{27} & k_{28} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ k_{81} & k_{82} & k_{83} & k_{84} & k_{85} & k_{86} & k_{87} & k_{88} \end{pmatrix},$$
(15)

r

r

$$U_{r} = \begin{pmatrix} u_{x_{i}} \\ u_{y_{i}} \\ \dots \\ u_{y_{l}} \end{pmatrix}.$$
 (16)

(15)

:

,

$$u_x(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 xy;$$

$$u_y(x, y) = \alpha_5 + \alpha_6 x + \alpha_7 y + \alpha_8 xy.$$
(17)

•

i, j, k, l

$$\begin{array}{c} x_{i}, \, y_{i}, \, x_{j}, \, y_{j}, \, x_{k}, \, y_{k}, \, x_{l}, \, y_{l} \\ u_{x_{i}}, \, u_{y_{i}}, \, u_{x_{j}}, \, u_{y_{j}}, \, u_{x_{k}}, \, u_{y_{k}}, \, u_{x_{l}}, \, u_{y_{l}} \\ (17). \end{array}$$

 $\alpha_1, \alpha_2, ..., \alpha_8.$ $u_x (x, y), u_y (x, y)$

(17).

$$\varepsilon_i = LU_i, \tag{18}$$

:

$$L = \begin{pmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{pmatrix}.$$
 (19)

:

$$\sigma_i = D\varepsilon_i, \tag{20}$$
$$D \quad -$$

$$D = \frac{E}{1 - v^2} \begin{pmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{pmatrix}.$$
 (21)

$$k_{ij} = h \int_{0}^{a} \int_{0}^{b} (D\varepsilon_i)^T \varepsilon_j dx dy, \qquad (22)$$

:

•

,

•

D

(

),

$$u_{x}(x, y) = \alpha_{1} + \alpha_{2}x + \alpha_{3}y;$$

$$u_{y}(x, y) = \alpha_{4} + \alpha_{5}x + \alpha_{6}y.$$

•

:

:

(24)

(23)

6 × 6.

,

[205].

$$K_{\Omega} = \sum_{r=1}^{n_r} T_r^T K_r T_r,$$

,

$$T_{r} = \begin{pmatrix} 0 \dots & 0 & 1 & 0 \dots & 0 & 0 & 0 \dots & 0 \\ 0 \dots & 0 & 0 & 1 \dots & 0 & 0 & 0 \dots & 0 \\ 0 \dots & 0 & 0 & 0 \dots & 0 & 0 & 0 \dots & 0 \\ \dots & \dots \\ 0 \dots & 0 & 0 & 0 \dots & 1 & 0 & 0 \dots & 0 \\ 0 \dots & 0 & 0 & 0 \dots & 0 & 1 & 0 \dots & 0 \end{pmatrix}.$$
(25)

(24), (25): $n_r =$; $T_r =$, r $8 \times 2n$

•

; n – . T_r $6 \times 2n$

,

j

•

Ω

 T_r –

45

$(2i-1, 2n_i-1)$ $(2i, 2n_i)$	$n_i (i = 1, 2, 3, 4).$	
n_i $(i = 1, 2, 3, 4)$,	
$n_i (i = 1, 2, 3)$		
,		Ω
$(, 5)$ T_r	$8 \times 28,$	
6 × 28.	K_{Ω}	
$28 \times 28.$	10	
4		•
	F	h
<i>U</i> :		
$F = K_{\Omega}U$	(26)	
22	()	
(26) <i>F</i> – –	,	
,	Ω	

$$F = \begin{pmatrix} F_{x_1} \\ F_{y_1} \\ \dots \\ F_{y_n} \end{pmatrix};$$
(27)

Ω

$$K_{\Omega} = \begin{pmatrix} k(u_{x_{1}}, u_{x_{1}}) & k(u_{x_{1}}, u_{y_{1}}), & \dots & k(u_{x_{1}}, u_{y_{n}}) \\ k(u_{y_{1}}, u_{x_{1}}) & k(u_{y_{1}}, u_{y_{1}}), & \dots & k(u_{y_{1}}, u_{y_{n}}) \\ & & & \\ \dots & \dots & \dots & \dots \\ k(u_{y_{n}}, u_{x_{1}}) & k(u_{y_{n}}, u_{y_{1}}), & \dots & k(u_{y_{n}}, u_{y_{n}}) \end{pmatrix};$$
(28)

U –

 K_{Ω} –

n

Ω

 $U = \begin{pmatrix} u_{x_1} \\ u_{y_1} \\ \dots \\ u_{y_n} \end{pmatrix}.$ (29)

 K_{Ω}^{-1}

(30)

(26):

-

 $U = K_{\Omega}^{-1} F \; .$

2.3.

(. 7).

. 7.

-i, j, k

•

:

$$r = x_i, y_i, x_j, y_j, x_k, y_k.$$

 $U = (30).$

.

$$u_{x_{i}} = e_{10} + e_{11}x_{i} + e_{12}y_{i},$$

$$u_{y_{i}} = e_{20} + e_{21}x_{i} + e_{22}y_{i},$$

$$u_{x_{j}} = e_{10} + e_{11}x_{j} + e_{12}y_{j},$$

$$u_{y_{j}} = e_{20} + e_{21}x_{j} + e_{22}y_{j},$$

$$u_{x_{k}} = e_{10} + e_{11}x_{k} + e_{12}y_{k},$$

$$u_{y_{k}} = e_{20} + e_{21}x_{k} + e_{22}y_{k}.$$

(31)

.

(31)

—

$$e = \begin{bmatrix} e_{10} & e_{11} & e_{12} & e_{20} & e_{21} & e_{22} \end{bmatrix}^{T}.$$
(32)
(31)

$$e_{11} = \frac{1}{2S_{r}} ((u_{x_{i}} - u_{x_{j}})(y_{i} - y_{k}) - (u_{x_{i}} - u_{x_{k}})(y_{i} - y_{j}));$$

$$e_{12} = -\frac{1}{2S_{r}} ((u_{x_{i}} - u_{x_{j}})(x_{i} - x_{k}) - (u_{x_{i}} - u_{x_{k}})(x_{i} - x_{j}));$$

$$e_{21} = \frac{1}{2S_{r}} ((u_{y_{i}} - u_{y_{j}})(y_{i} - y_{k}) - (u_{y_{i}} - u_{y_{k}})(y_{i} - y_{j}));$$

$$e_{12} = -\frac{1}{2S_{r}} ((u_{y_{i}} - u_{y_{j}})(x_{i} - x_{k}) - (u_{y_{i}} - u_{y_{k}})(x_{i} - x_{j}));$$
(33)

$$e_{10} = u_{x_i} - e_{11}x_i - e_{12}y_i; e_{20} = u_{y_i} - e_{21}x_i - e_{22}y_i,$$
 (34)

 S_r – r:

$$S_r = \frac{1}{2}((x_1 - x_2)(y_1 - y_3) - (x_1 - x_3)(y_1 - y_2)).$$
(35)

,

 $e_{10}, e_{20},$

:

(40)

$$\varepsilon_{xx} = e_{11}, \varepsilon_{yy} = e_{22}, \varepsilon_{xy} = \frac{e_{12} + e_{21}}{2}.$$
 (41)

90
$$= 0,3067$$
, $F_6 = 0.64$, $F_{10} = 1.28$.

 $F_3 = 0,3067$, $F_6 = 0,64$, $F_{10} = 1,28$

25 %.

$$E = 0.2 \cdot 10^{11} \qquad \qquad v = 0.293.$$

. 8 ()

. 8.

(22), (24).

 K_{Ω} (. 1)

(. . 8),

(30). (2) (. 9).

,

•

 $m_{S} = 0, 2$

•

[206].

•

,

. 9.

,

_

_

$$\min tr K_{XR}(X, t) = \mu^2 Q_{XR}(X, t), \qquad \mu^2 -$$

$$\hat{X}(t=0)$$

$$\hat{X}(t=0) = \left[\hat{x}_1(t=0), \, \hat{y}_1(t=0), \, \dots, \, \hat{x}_{14}(t=0), \, \hat{y}_{14}(t=0)\right]^T$$
(43)

$$K_{\hat{X}}(t=0) \qquad 28$$
1- $y_1(t=1) = s_1, (1=1, 2, ..., 28), \qquad 1 t=1; T \hat{X}(t=1)$
1- $(1 = 29, 30, ..., 38).$
 $(t, t-1),$

$$(t=1, t=0) = , - 28 \times 28.$$

1-
$$\hat{X}(t=1)$$
$$K_{\hat{X}}(t=1).$$

2	

$$t = 1 t = 2.$$

$$1, 2, ..., 14$$

$$x_i(t = 2) = x_i(t = 1) + u_{xi}(t = 2);$$

$$y_i(t = 2) = y_i(t = 1) + u_{yi}(t = 2).$$

$$(44)$$

$$u_{x_i}, u_{y_i} - ;$$

$$= 1, 2, ..., 14. (44)$$

$$(t, t-1) (1):$$

i

,

(t, t-1) = .

$$X_{R}(t=2) = [X(t=2)^{T}, U(t=2)^{T}]^{T}, \qquad (45)$$
$$U(t=2) = [u_{x1}(t=2), u_{y1}(t=2), \cdots, u_{x14}(t=2), u_{y14}(t=2)]^{T}. \qquad (46)$$

,
$$U(t = 2)$$
 (46)
 $K_U(t=1) = \mu^2 10^7 E$, ,

$$\hat{X}_{R}(t=1) = \begin{bmatrix} \hat{X}(t=1) \\ 0 \end{bmatrix}, \quad K_{\hat{X}_{R}}(t=1) = \begin{bmatrix} K_{\hat{X}}(t=1) & 0 \\ 0 & \mu^{2} 10^{7} E \end{bmatrix}.$$
(47)

$$\hat{X}_{R}(t=2).$$

$$K_{\hat{X}_{R}}(t=2) = \begin{bmatrix} K_{\hat{X}}(t=2) & K_{\hat{X}\hat{U}}(t=2) \\ K_{\hat{X}\hat{U}}(t=2) & K_{\hat{U}}(t=2) \end{bmatrix}.$$
(48)

) $\hat{\mu}(t=2) = 0,232$. 20

,

. 10.

 $\hat{X}_R(t=2)\,,$

:

,

 $\hat{\mathbf{e}}(r) = \left[\hat{\mathbf{e}}_{10}(r), \, \hat{\mathbf{e}}_{11}(r), \, \hat{\mathbf{e}}_{12}(r), \, \hat{\mathbf{e}}_{20}(r), \, \hat{\mathbf{e}}_{21}(r), \, \hat{\mathbf{e}}_{22}(r)\right]^{T}, \ (r = 1, 2, ..., 24).$

,

 $\hat{\boldsymbol{\varepsilon}}(r) = [\hat{\boldsymbol{\varepsilon}}_{xx}(r), \hat{\boldsymbol{\varepsilon}}_{yy}(r), \hat{\boldsymbol{\varepsilon}}_{xy}(r)]^T;$ (49)

$$\hat{\varepsilon}_{xx}(r) = \hat{e}_{11}(r); \ \hat{\varepsilon}_{yy}(r) = \hat{e}_{22}(r); \ \hat{\varepsilon}_{xy}(r) = \frac{\hat{e}_{12}(r) + \hat{e}_{21}(r)}{2},$$

$$, \qquad 1929 \quad .$$

$$[202]$$

$$. \qquad , \qquad [162]$$

[162]. ε̂(*r*)

•

,

i, *j*, *k*:

,

,

$$\hat{\varepsilon}(r) = F_{\varepsilon(r)}(\hat{U}_r(t=2)).$$

$$K_{\hat{\varepsilon}(r)}(t=2)$$

,

_

,

$$K_{\hat{\varepsilon}(r)}(t=2) = f_{\varepsilon(r)} K_{\hat{U}_r}(t=2) f_{\varepsilon(r)}^T,$$
(50)

r

$$\begin{split} K_{\hat{U}_{r}}(t=2) &- \\ & - \hat{U}_{r}(t=2), \\ (48). & f_{\varepsilon(r)} \\ \hat{\varepsilon}(r) &= F_{\varepsilon_{(r)}}(\hat{U}_{r}(t=2)) & \hat{U}_{r}(t=2). \\ & , \\ \end{split}$$

 $\hat{\sigma}(r) = [\hat{\sigma}_{xx}(r), \hat{\sigma}_{yy}(r), \hat{\sigma}_{xy}(r)]^T \qquad r$

 $\hat{\epsilon}(r)$

 $2 \cdot 10^5$

.

(42).

 $\hat{\sigma}(r)$. 1,84 · 10⁻⁴ 2,42 · 10⁻⁴ $\hat{\sigma}(r)$

 $9 \cdot 10^{-6}$. 5,18 $\cdot 10^{7}$

F,

(30)

. 11.

 $-1,25 \cdot 10^{7}$

. 11.
$$(- \sigma_{xx}, \sigma_{yy}, \sigma_{xy})$$

 $(- \sigma_{xx}, \sigma_{yy}, \sigma_{xy}).$

,

•

t=3 t=2 $\hat{X}_{R}(X, t=3/t=2)$

•

,

,

,

,

 $K_{\hat{X}_{R}}(X, t=3/t=2)$

,

,

2-	3-	25 %.
		$(t=3, t=2) = \begin{bmatrix} E & 0.25E \\ 0 & 0.25E \end{bmatrix}.$
	(49)–(51	1)
		$\hat{\varepsilon}(r, t=3/t=2),$
		$\hat{\sigma}(r, t = 3/t = 2)$
r		2
		3-
	<i>r</i> = 13	8, 12 13 (10)
	25 %.	
		3-
	min	$trK_{XR}(X, t=3)$
		()
,		2- 3-
_	25 %,	, 20 % (. 3).
. 2		(5)
	r =	=13 8, 12 13 (10).

2

3-

	ε̂ _{xx}	ε̂ _{yy}	$\hat{\mathbf{\epsilon}}_{xy}$	$\hat{\sigma}_{xx}$ ()	σ̂ _{yy} ()	$\hat{\sigma}_{xy}$ ()
(25 %)	$3,80 \cdot 10^{-4}$	$3,57 \cdot 10^{-5}$	$2,93 \cdot 10^{-4}$	$1,30 \cdot 10^{7}$	$4,36 \cdot 10^{6}$	$3,66 \cdot 10^{6}$
	$1,21 \cdot 10^{-5}$	$8,39 \cdot 10^{-6}$	$1,16 \cdot 10^{-5}$	$4,15 \cdot 10^{5}$	$3,04 \cdot 10^{5}$	$1,46 \cdot 10^5$
(20 %)	$3,66 \cdot 10^{-4}$	$3,58 \cdot 10^{-5}$	$2,81 \cdot 10^{-4}$	$1,25 \cdot 10^{7}$	$4,25 \cdot 10^{6}$	$3,51 \cdot 10^{6}$
	$9,70 \cdot 10^{-6}$	$6,71 \cdot 10^{-6}$	9,31 · 10 ⁻⁶	$3,32 \cdot 10^{5}$	$2,43 \cdot 10^5$	$1,16 \cdot 10^{5}$
	$3,64 \cdot 10^{-4}$	$3,33 \cdot 10^{-5}$	$2,79 \cdot 10^{-4}$	$1,24 \cdot 10^{7}$	$4,14 \cdot 10^{6}$	$3,49 \cdot 10^{6}$
	$7,08 \cdot 10^{-6}$	$5,22 \cdot 10^{-6}$	$6,83 \cdot 10^{-6}$	$2,43 \cdot 10^5$	$1,88 \cdot 10^{5}$	$8,54 \cdot 10^4$

3

 $\hat{\mu}$ trK_{XR}

	10 %	12,5 %	15 %	17,5 %	20 %	22,5 %	25 %
$\hat{\mu}(t=3) ()$	0,264	0,232	0,207	0,190	0,184	0,188	0,203
$trK_{XR}(X, t=3) (2)$	2,205	1,795	1,497	1,326	1,298	1,432	1,745
		25					-

,

,

_

(). ,

,

,

3.

3.1.

[7]

;

concentration) -

•

•

() [207–210]

_

(mass

_

-

,

•

-

(. 13) [211, 212].

. 13.

	(),
$X_i\{P_i(t)\}$ –			$P_i(t)$
		() <i>t</i> = 1, 2,, <i>i</i> = 1, 2,,
<i>N</i> ;			
$W_i\{P_i(X,t)\}$ –			
,			$U_i\{P_i(X,t)\},$
	$T_i\{P_i(X,t)\};$		
$X_D(X,t)$ –			(
,).

$$X_{R}(X,t) = [X_{i}^{T} \{P_{i}(t)\}, W_{i}^{T} \{P_{i}(X,t)\}, X_{D}^{T}(X,t)]^{T} \in X_{\Sigma}$$

$$, \qquad \qquad U_{i} \{P_{i}(X,t)\}, -$$

$$X_{R}(X,t) = [X_{i}^{T} \{P_{i}(t)\}, T_{i}^{T} \{P_{i}(X,t)\}, X_{D}^{T}(X,t)]^{T}, \qquad (53)$$

 $q_i\{P_i(X,t)\} = [\Delta g_i^T\{P_i(X,t)\}, \xi_i^T\{P_i(X,t)\}, \eta_i^T\{P_i(X,t)\}, \zeta_i^T\{P_i(X,t)\}]^T, \quad (55)$ $\Delta g, \xi, \eta, \zeta -$, ,

:

•

 $T_i\{P_i(X,t)\}$

,

 $T\{P(X,t)\}.$

[7]:

$$h_{ij}(X, W, t) = H_j(X, t) - H_i(X, t) + [\xi_{ij}^m(X, t) + \Delta \xi_{ij}^m(X, t)] \Delta x_{ij}(X, t) + [\eta_{ij}^m(X, t) + \Delta \eta_{ij}^m(X, t)] \Delta y_{ij}(X, t) + \varepsilon_h(X, W, t), i, j = 1, 2, ...,$$
(56)

_

;

,

,

$$\varepsilon_h(X, W, t) - \Delta x_{ij}(X, t) = x_j(t) - x_i(t); \ \Delta y_{ij}(X, t) = y_j(t) - y_i(t) - y_i(t$$

$$g_i \{P_i(X_i, W_i, t)\}$$

 $P_i(X_i, W_i, t), \qquad X = (x, y, H), i = 1, 2, ..., N, t = 1, 2, ...$

-

$$g_{i}\{P_{i}(X,W,t)\} = \hat{g}_{i}^{F}\{P_{i}^{F}(\hat{X}_{i}^{F},\hat{W}_{i}^{F},t^{-})\} - \frac{\partial \gamma_{i}}{\partial H}\{P_{i}^{F}(\hat{X}_{i}^{F},\hat{U}_{i}^{F},t^{-})\} + \delta g_{i}^{B}\{P_{i}^{F}(\hat{X}_{i}^{F},\hat{W}_{i}^{F},t^{-})\}_{\delta W} + \varepsilon_{g}(X,W,t).$$

$$(57) \quad \hat{g}_{i}^{F}\{P_{i}^{F}(\hat{X}_{i}^{F},\hat{W}_{i}^{F},t^{-})\} -$$

:

$$t \quad t$$

$$t \quad -1 \quad ; \quad \frac{\partial \gamma_i^F}{\partial H} \{ P_i^F(\hat{X}_i^F, \hat{U}_i^F, t^-) \} \quad -$$

$$; \quad \varepsilon_g(X, W, t) \quad -$$

,

,

 $T\{P(X,t)\}$

 $q\{P(X,W,t)\} =$

•

,

,

:

$$X_{R}(X,t) = [X_{i}^{T} \{P_{i}(t)\}, M_{k}^{T} \{O_{k}(X,t)\}, X_{D}^{T}(X,t)]^{T}.$$
(58)

,

,

,

$$M_k, \ k=1,$$

•

,

•

2, ..., *S*

,

$$q_i, i = 1, 2, ..., N,$$

,

$$X_{R}(t) = (t, t-1)X_{R}(t-1),$$

$$X_{R}(t) - ,$$
(59)

$$u_{1}, u_{2}, u_{3}, MK$$

:

,

()	,		<i>MK</i> ,		
	,	,		, (t, t)	-1) -
, t-1 (61)	<i>t</i> .	Δt	,	$\Delta t = 2$	
(01).					[114]
		7.		- 8	_
	•	, 7	,6 (1-	6 4-)
1, 2, 3. 0.95	(), 0.50	2- 3	1	
		0,50		= 1,95	· 10 ⁻⁵
/ .	1, 2,	3			$u_{M_1} =$
$-48,70$ $u_{M_2} = 92,53$, $u_{M_3} = 92,53$. 4.				,

1, 2 3

	(t = 1) ()	(t=2)()	(t = 3) ()	(t = 4) ()
<i>M</i> 1	1 151 060,00	1 151 044,00	1 151 028,00	1 151 011,00
<i>M</i> 2	1 365 190,00	1 365 221,00	1 365 252,00	1 365 283,00
М3	1 280 610,00	1 280 641,00	1 280 672,00	1 280 703,00

(),

=2,63 / ³.

•

•

,

,

•

•

$$W(t) = W_0 e^{-W_0 t / \Delta B}, \qquad (62)$$

$$W_0 - ; \Delta B - ; t -$$

$$M_{-}(t=2) = 1,12 \cdot 10^{7} \cdot (1 - e^{-1\,000 \cdot 60 \cdot 24 \cdot 60 \cdot 60/1,16 \cdot 10^{7}}) = 4,28 \cdot 10^{9} ;$$

$$M_{-}(t=3) = 1,12 \cdot 10^{7} \cdot (1 - e^{-1\,000 \cdot 121 \cdot 24 \cdot 60 \cdot 60/1,16 \cdot 10^{7}}) = 6,96 \cdot 10^{9} ;$$

$$M_{-}(t=4) = 1,12 \cdot 10^{7} \cdot (1 - e^{-1\,000 \cdot 182 \cdot 24 \cdot 60 \cdot 60/1,16 \cdot 10^{7}}) = 8,61 \cdot 10^{9} .$$

$$\delta = 2,63 / ^{3}$$
2,

:

2, 3

,

•

4-

.

,

,

,

RO(t = 2) = 724; RO(t = 3) = 855; RO(t = 4) = 921.

70 %
2- 3- 90 % - 4-
2, 3 4- :

$$MK(t=2) = MK(t=1) + M$$
 $(t=2) \cdot 0,7 = 4,305 \cdot 10^{9}$;
 $MK(t=3) = MK(t=1) + M$ $(t=3) \cdot 0,7 = 6,200 \cdot 10^{9}$;
 $MK(t=4) = MK(t=1) + M$ $(t=4) \cdot 0,9 = 7,746 \cdot 10^{9}$.

2, 3 4- :

RK(t=2) = 731; RK(t=3) = 826; RK(t=4) = 889.

,

ξ, η

•

,

,

g

3.2.

 H_i

,

,

3.1

-

-

•

[213, 214].

ξ, η Δg

 $Y(t) = A(t) X_R(t) + \delta(t),$ (63) A(t) – ; Y(t) -; $X_R(t)$ _ :

; $\delta(t)$ –

,

,

•

72

$$X_{R} = (H_{M1}, H_{M2}, H_{M3}, u_{M1}, u_{M2}, u_{M3}, MK, \delta MK)^{T},$$
(65)

 $u_{M_1}, u_{M_2}, u_{M_3}$ –

,

•

F
-
$\boldsymbol{\cdot}$

•

$\begin{pmatrix} & - \\ & \end{pmatrix} \begin{pmatrix} & & \\ & & \end{pmatrix} h_{ij}(t=1) \begin{pmatrix} & & \\ & & \end{pmatrix} h_{ij}(t=2) \begin{pmatrix} & & \\ & & \end{pmatrix} h_{ij}(t=3) \begin{pmatrix} & & \\ & & \end{pmatrix} h_{ij}(t=4) \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} h_{ij}(t=4) \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} h_{ij}(t=4) \begin{pmatrix} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ $
--

1- 2	4,2	-180 170,0	-180 200,8	-180 231,7	-180 262,5
1- 1	3,2	33 960,0	33 976,2	33 992,5	34 008,7
2- 1	2,0	214 130,0	214 177,1	214 224,2	214 271,2
3- 2	2,8	-84 580,0	-84 580,0	-84 580,0	-84 580,0
3- 1	2,0	129 550,0	129 597,1	129 644,2	129 691,2
2-1	3,0	52 710,0	52 726,2	52 742,5	52 758,7
2- 3	3,6	-76 840,0	-76 870,8	-76 901,7	-76 932,5

 $h_{ij}(t) = (g_{ix} \Delta x_{ij} + g_{iy} \Delta y_{ij})/980\ 882.$ (66)

,

•

6

,

	$\Delta x_{ij}()$	Δy_{ij} ()	$g_{ix}($)	$g_{iy}($)	h_{ij} ()
2- 1	4 199,95	0	-1 479,72	0,00	6,3 416
1-1	2 842,73	1 468,92	-458,08	154,36	1,0 974
1-2	-1 357,22	1 468,92	-1 685,18	154,36	-2,5 652
2- 3	-127,01	-2 792,05	-1 571,25	363,55	0,8 321
1- 3	-1 484,23	-1 323,13	-549,61	517,90	-0,1 332
1-2	1 997,81	-2 243,86	-423,36	220,32	1,3 675
3-2	3 482,04	-920,73	-309,43	429,51	1,5 030

, 2, 3 4- . (. . 5).

•

,

,

2, 3 4-

,

(66).

,

 μ = 0,5 / .

,

•

 $h = 0.5 \qquad \sqrt{L}, \qquad L -$ ().
	7	
•	1	٠

,

,

7

		1-			2-		
	g_{ix}	g_{iy}	g_{iz}	g_{ix}	g_{iy}	g_{iz}	
1	-252,62	0,00	-21,05	-780,54	0,00	-95,11	
2	-183,17	131,92	-17,10	-566,86	408,26	-78,33	
1	-663,54	308,71	-112,22	-2 001,34	931,12	-484,96	
2	-2 706,81	0,00	-480,94	-7 751,71	0,00	-2 372,52	
3	-435,69	727,10	-105,32	-1 317,67	2 198,99	-500,52	
		3-	-	4-			
	g_{ix}	g_{iy}	g_{iz}	g_{ix}	g_{iy}	g_{iz}	
1	-1 117,43	0,00	-153,77	-1 389,77	0,00	-205,97	
2	-812,14	584,92	-127,12	-1 010,64	727,88	-170,65	
1	-2 830,99	1 317,12	-770,77	-3 490,44	1 623,93	-1 020,60	
2	-10 650,54	0,00	-3 819,13	-12 848,84	0,00	-5 061,25	
3	-1 864,86	3 112,17	-813,76	-2 299,62	3 837,72	-1 090,86	
					i		

(67)

$$u_i - \Delta g_i$$
 [.].

,

,

 $g_i = g_i^F + \Delta g_i + \Delta g_i \cdot \cdot + \Delta g_i \cdot \cdot$

		1-		2-			
	g_{ix}	g_{iy}	g_{iz}	g_{ix}	g_{iy}	g_{iz}	
1	0	0	0	529,95	0,00	-284,77	
2	0	0	0	396,52	-285,58	-249,43	
1	0	0	0	836,67	-389,26	-845,38	
2	0	0	0	879,82	0,00	-1 663,93	
3	0	0	0	464,69	-775,50	-922,06	
		3-			4-		
	g_{ix}	g_{iy}	g_{iz}	g_{ir}	g_{iv}	q_{i_7}	
1			0.2	011	Oly	012	
1	849,22	0,00	-474,88	1 046,28	0,00	-596,57	
2	849,22 636,84	0,00 -458,66	-474,88 -416,80	1 046,28 785,51	0,00 -565,74	-596,57 -524,16	
$\begin{array}{c} 1 \\ 2 \\ 1 \end{array}$	849,22 636,84 1 302,77	0,00 458,66 606,11	-474,88 -416,80 -1 370,43	1 046,28 785,51 1 582,34	0,00 -565,74 -736,18	-596,57 -524,16 -1 697,56	
$\begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ \end{array}$	849,22 636,84 1 302,77 1 325,53	$\begin{array}{r} 0,00 \\ -458,66 \\ -606,11 \\ 0,00 \end{array}$	-474,88 -416,80 -1 370,43 -2 603,39	1 046,28 785,51 1 582,34 1 584,74	$\begin{array}{r} 0,00\\ -565,74\\ -736,18\\ 0,00 \end{array}$	-596,57 -524,16 -1 697,56 -3 170,53	

(67) Δg_i .

•

•

4-

: $\Delta g_i = -0,3086u_i$.

,

$$\Delta g_i = \sqrt{\Delta g_{ix}^2 + \Delta g_{iy}^2 + \Delta g_{iz}^2} . \tag{68}$$

,

 g_i

Y(t) (63).

g

. 9

1, 2, 3

	1		٦
1	Ľ		
2	L		,
	5	1	
-	-		

	t = 1	<i>t</i> = 2	<i>t</i> = 3	<i>t</i> = 4
h_1 ()	-0,428	-0,380	-0,359	-0,132
$h_2($)	0,592	-0,456	-0,014	0,186
$h_3()$	-0,815	-0,308	-0,192	0,089

N				
$h_4()$	-0,774	-0,557	-0,286	0,946
$h_5()$	0,792	-0,345	-0,021	0,014
$h_6()$	0,007	0,788	-1,289	0,339
$h_7()$	-0,525	0,003	-0,419	-0,718
$g_{C_1}($)	-0,638	-1,276	0,959	-1,699
g _{C2} ()	-6,571	9,388	-2,389	2,687
$g_{M_1}()$	2,892	-9,401	-2,115	-6,965
g _{M2} ()	8,906	-0,580	6,049	3,207
g _{M3} ()	0,474	3,484	-4,717	4,512

•

,

_

(. 10)

10

1, 2, 3, 4-

•

	Y(t=1)	Y(t=2)	Y(t=3)	Y(t=4)
$h_1()$	-180 164,54	-180 186,12	-180 211,88	-180 237,93
$h_2()$	33 962,16	33 977,08	33 994,51	34 011,63
$h_3()$	214 126,28	214 170,58	214 215,84	214 261,57
$h_4()$	-84 580,46	-84 579,38	-84 578,44	-84 575,85
$h_5()$	129 550,99	129 596,39	129 643,87	129 690,93
$h_6()$	52 711,38	52 729,74	52 742,93	52 762,67
$h_7()$	-76 839,49	-76 868,26	-76 899,18	-76 929,76
$g_{C_1}()$	980 882 137,0	980 881 766,7	980 881 531,5	980 881 354,7
g _{C2} ()	980 882 135,0	980 881 830,9	980 881 612,8	980 881 466,8
$g_{M_1}()$	980 882 049,4	980 880 788,2	980 880 027,0	980 879 449,3
g _{M2} ()	980 881 686,7	980 878 007,0	980 875 727,8	980 873 902,7
g _{M3} ()	980 882 053,9	980 880 691,4	980 879 836,5	980 879 208,2

•

3.3.

,

g –

*Sk*1:

1

:

$$k_{g_{C1}}^{MK}(t=1) = \frac{G \cdot \Delta Z_{C1,Sk1}(t=1)}{r_{C1,Sk1}^3(t=1)},$$
(70)

$$r_{C1, Sk1}(t=1) = \sqrt{\Delta X_{C1, Sk1}^2(t=1) + \Delta Y_{C1, Sk1}^2(t=1) + \Delta Z_{C1, Sk1}^2(t=1)}; \quad (71)$$

G –

(70) (71)
,
$$\Delta X_{C1, Sk1}(t=1) = X_{C1}(t=1) - X_{Sk1}(t=1);$$
$$\Delta Y_{C1, Sk1}(t=1) = Y_{C1}(t=1) - Y_{Sk1}(t=1);,$$
$$\Delta Z_{C1, Sk1}(t=1) = Z_{C1}(t=1) - Z_{Sk1}(t=1).$$

•

$$h_{1}(t=1). \qquad (. . . 14)$$

$$\vdots$$

$$h_{1}(t=1) = H_{M2}(t=1) - H_{C1} + k_{h_{1}}^{MK}(t=1)MK(t=1) + \delta_{h_{1}}(t=1), \qquad (72)$$

$$H_{M2}(t=1) - M_{2} \qquad 1 - ; \quad H_{C1} - () \qquad 1; \qquad MK(t=1) - , \qquad (72)$$

1- ;
$$\delta_{h_1}(t=1)$$
 -
1 2; $k_{h_1}^{MK}(t=1)$ -
 $h_1(t=1)$.

 $k_{h_1}^{MK}(t=1)$

2,

*Sk*1:

1

$$\begin{aligned} k_{h_{1}}^{MK}(t=1) &= -\frac{G}{2\gamma} \begin{bmatrix} \left(\frac{\Delta X_{C1, Sk1}(t=1)}{r_{C1, Sk1}^{3}(t=1)} + \frac{\Delta X_{M2, Sk1}(t=1)}{r_{M2, Sk1}^{3}(t=1)} \right) \Delta X_{C1, M2}(t=1) + \\ + \left(\frac{\Delta Y_{C1, Sk1}(t=1)}{r_{C1, Sk1}^{3}(t=1)} + \frac{\Delta Y_{M2, Sk1}(t=1)}{r_{M2, Sk1}^{3}(t=1)} \right) \Delta Y_{C1, M2}(t=1) \end{bmatrix} . \end{aligned}$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$(73)$$

$$\mu_g = 5 \qquad . \qquad p_{h_i} = \frac{1}{L_i}, \qquad L_i - \qquad , \qquad .$$

•

MK

,

•

 $p_{g_i} = 0,01.$

•

,

[218] –

•

•

2-

,

:

 $X_{R1} = (H_{M1}, H_{M2}, H_{M3}, u_{M1}, u_{M2}, u_{M3}, MK, \delta MK, MO)^T,$

 u_{M1}, u_{M2}, u_{M3} – 2-

•

,

1-

70 %

 H_{M1}, H_{M2}, H_{M3}

,

,

MK

,

).

 u_{M1}, u_{M2}, u_{M3} MO $h_1, h_2, h_7, gC_1.$ (69) (72). 3-4-. ,

,

,

(

g*MO*, 4-:

 $X_{R1} = (H_{M1}, H_{M2}, H_{M3}, u_{M1}, u_{M2}, u_{M3}, MK, \delta MK, MO, \delta MO)^{T}.$

,

•

,

, – . 3- , 4-

 $u_{M1}, u_{M2}, u_{M3}, ,$ $H_{M1}, H_{M2}, H_{M3}, MK, MO$

,

,

,

,

•

,

 u_{M1}, u_{M2}, u_{M3}

,

. [114].

•

,

,

).

,

,

$$M_{-}(\tau) = \Delta B (1 - e^{-W_0 \tau / \Delta B}), \qquad W_0 - ; \quad B -$$

,

 $B = W_0$.

.
$$\Delta \hat{B} = 1,12 \cdot 10^7 \quad .$$

$$\hat{W}_0 = 0,90 \cdot 10^7 \quad / \qquad = 1\ 042 \quad / \qquad .$$

(

$$u_{M1}, u_{M2}, u_{M3}$$
 –

, 1 2 , 1 A, 2 3 B. :

$$X_{R2} = (H_{M1}, H_{M2}, H_{M3}, u_A, u_B, MK, \delta MK)^T,$$

 $u_A, u_B - 4$

1, 2,

3

2 3.

1 2, 3 0,50 1 2 3. ω Δt ,

 $X_{R3} = (H_{M1}, H_{M2}, H_{M3}, \omega, MK, \delta MK)^{T}.$

/).

ω (

:

• . 11 , , F-[215], , 4. , 2-3--70 %, 4-- 90 %. ξ, η *g*, ζ (. 12).

84

,

,

•

$$M_{(t=4)=8,61\cdot 10^9}$$
,
7,8

V-		t = 2			<i>t</i> = 3		t = 4		
Λ_R									
u_{M1}	-16,23	-16,09	0,89	-16,23	-16,09	0,39	-16,23	-16,13	0,89
u_{M2}	30,84	30,86	1,07	30,84	30,86	0,47	30,84	30,82	1,07
u_{M3}	30,84	30,05	1,05	30,84	30,05	0,46	30,84	31,09	1,05
MK	$4,39 \cdot 10^{9}$	$4,38\cdot 10^9$	$4,90 \cdot 10^{6}$	$6,20 \cdot 10^{9}$	$6,19 \cdot 10^{9}$	$3,55 \cdot 10^{6}$	$4,39 \cdot 10^{9}$	$7,74 \cdot 10^{9}$	$2,94 \cdot 10^{6}$
MK	$3,01 \cdot 10^{9}$	$3,02 \cdot 10^{9}$	$4,90 \cdot 10^{6}$	$1,81 \cdot 10^{9}$	$1,81 \cdot 10^{9}$	$1,33 \cdot 10^{6}$	$3,01 \cdot 10^{9}$	$1,55 \cdot 10^{9}$	$0,72 \cdot 10^{6}$
u_{M1}	-16,23	-16,12	0,85	-16,23	-15,66	0,38	-16,23	-16,13	0,23
$u_{M2} = u_{M3}$	30,84	30,43	0,89	30,84	31,16	0,39	30,84	30,96	0,24
MK	$4,39 \cdot 10^{9}$	$4,38 \cdot 10^{9}$	$4,71 \cdot 10^{6}$	$6,20 \cdot 10^{9}$	$6,19 \cdot 10^9$	$3,47 \cdot 10^{6}$	$4,39 \cdot 10^{9}$	$7,74 \cdot 10^{9}$	$2,92 \cdot 10^{6}$
MK	$3,01 \cdot 10^9$	$3,02 \cdot 10^{9}$	$4,71 \cdot 10^{6}$	$1,81 \cdot 10^{9}$	$1,81 \cdot 10^{9}$	$1,30 \cdot 10^{6}$	$3,01 \cdot 10^9$	$1,55 \cdot 10^{9}$	$0,71 \cdot 10^{6}$
	$1,95 \cdot 10^{-5}$	$1,92 \cdot 10^{-5}$	$3,05 \cdot 10^{-7}$	$1,95 \cdot 10^{-5}$	$1,94 \cdot 10^{-5}$	$1,38 \cdot 10^{-7}$	$1,95 \cdot 10^{-5}$	$1,95 \cdot 10^{-5}$	$0,82 \cdot 10^{-7}$
ω	/	/	/	/	/	/	/	/	/
u_{M1}	-16,23	-16,04	0,25	-16,23	-16,16	0,12	-16,23	-16,24	0,07
$u_{M2} = u_{M3}$	30,84	30,48	0,48	30,84	30,70	0,22	30,84	30,86	0,13
MK	$4,39 \cdot 10^{9}$	$4,38 \cdot 10^{9}$	$4,\overline{60\cdot 10^{6}}$	$6,20 \cdot 10^{9}$	$6,18 \cdot 10^9$	$3,50 \cdot 10^{6}$	$4,39 \cdot 10^{9}$	$7,74 \cdot 10^{9}$	$2,92 \cdot 10^{6}$
MK	$3,01 \cdot 10^9$	$3,02 \cdot 10^{9}$	$4,60 \cdot 10^{6}$	$1,81 \cdot 10^9$	$1,81 \cdot 10^9$	$1,31 \cdot 10^{6}$	$3,01 \cdot 10^{9}$	$1,55 \cdot 10^{9}$	$0,71 \cdot 10^{6}$

)	
)	

(

	$g_z()$	٤	"	ζ()	<i>g</i> _z ()	٤	"	ζ()	<i>g</i> _z ()	٤	"	ζ()
		<i>t</i> =	2			<i>t</i> =	3			t = 4		1
	980881768	0,05	0,00	0,92	980881531	0,06	0,00	1,38	980881355	0,07	0,00	1,72
1	980881767	0,05	0,00	0,92	980881530	0,06	0,00	1,38	980881355	0,07	0,00	1,72
	0,37	0,0004	0,00	0,001	0,70	0,0003	0,0001	0,001	0,72	0,0003	0,0001	0,001
	980881821	0,04	-0,03	0,88	980881613	0,04	-0,03	1,31	980881467	0,05	-0,03	1,63
2	980881821	0,04	-0,03	0,88	980881614	0,04	-0,03	1,31	980881463	0,05	-0,03	1,64
	0,33	0,0003	0,0002	0,001	0,61	0,0003	0,0002	0,001	0,63	0,0002	0,0002	0,001
	980880797	0,25	-0,12	1,46	980880027	0,32	-0,15	2,15	980879449	0,40	-0,19	2,67
1	980880796	0,25	-0,12	1,46	980880027	0,32	-0,15	2,15	980879453	0,40	-0,19	2,67
	0,86	0,0008	0,0004	0,002	2,00	0,0006	0,0003	0,002	2,05	0,0005	0,0002	0,002
	980878007	1,5	0,0	2,35	980875727	2,0	0,0	3,39	980873903	2,4	0,0	4,18
2	980878008	1,5	0,0	2,35	980875723	2,0	0,0	3,39	980873897	2,4	0,0	4,18
	0,31	0,0022	0,0000	0,003	4,00	0,0014	0,0001	0,002	1,55	0,0011	0,0001	0,001
	980880687	0,18	-0,30	1,53	980879836	0,24	-0,40	2,25	980879208	0,30	0,50	2,80
3	980880686	0,18	-0,30	1,53	980879839	0,24	-0,40	2,25	980879201	0,30	0,50	2,80
	0,98	0,0048	0,0080	0,002	2,16	0,0036	0,0060	0,002	2,21	0,0031	0,0051	0,002

 $X_R(X,t)$, () () [7]. $X_R(X,t)$, () () , $X_R(X, t)$ [219]. () [7]. , , , 3.1 -(• , 20). (3.3) (. 3.2)

:

).

[219–221].

,

$$\lambda(t=2) = \frac{\Delta MK(t=2)}{MO(t=2)} 100 \% = 69 \%;$$

•

,

$$\lambda(t=3) = \frac{\Delta M K(t=3)}{\Delta M O(t=3)} 100 \% = 70 \%;$$

$$\lambda(t=4) = \frac{\Delta M K(t=4)}{\Delta M O(t=4)} 100 \% = 89 \%.$$

,

.

,

τ

•

$$M \quad (\tau) = \Delta B (1 - e^{-W_0 \tau / \Delta B}). \tag{74}$$

$$\Delta B \quad W_0.$$

$$(74) \quad W_0 \quad \Delta B:$$

$$W_0 = \Delta B (\ln \Delta B - \ln(\Delta B - M_{(\tau)}) / \tau, \qquad (75)$$

$$W_0 - \qquad ; \Delta B - \qquad ; \tau -$$

. 13.

τ

:

	-	-		
		()	τ ()	$M_{-}(10^{9})$
t = 1	7	0		0
	8	1	0	0
t=2	7	61	60	4,316
t = 3	6	122	121	6,911
<i>t</i> = 4	6	183	182	8,646

M = MO

(76)

2, 3 4-(75),

τ

 $\int W_0 = \Delta B (\ln \Delta B - \ln(\Delta B - 4,316) / 60;$ $W_0 = \Delta B (\ln \Delta B - \ln(\Delta B - 6,911) / 121;$ $W_0 = \Delta B (\ln \Delta B - \ln(\Delta B - 8, 646) / 182.$

. 15), (

•

:

,

 ΔB W_0

,

$$\Delta \hat{B} = 1,11 \cdot 10^7$$
 ,
 $\hat{W}_0 = 0,90 \cdot 10^7$ / =1043 / .

,

,

(15) .

(

•

 $- p_{h_i} = \frac{1}{L_i}, \qquad L_i -$ () ($trK_{XR}(X,t)$).

 $trK_{XR}(X,t)$

. 14, 15, 17 19

 $\min trK_{XR}(X,t).$

. 15.

 ΔB 2, 3, 4-

14

RK ()

MK 1-

[90,

92].

$\begin{array}{c} RK \left(t = 1 \right) \\ (\end{array}$	488,0	489,0	489,5	490,0	490,5	491,0	492,0
$MK (t = 1) (10^9)$	1,280	1,288	1,292	1,296	1,300	1,304	1,312

$trK_{XR}(X,t)$	1,48 646	1,48 375	1,48 305	1,48 277	1,48 292	1,48 349	1,48 588
-----------------	----------	----------	----------	----------	----------	----------	----------

. 16

(. . 13)

•

15

X, *Y*, *Z*

1	2	3	4	5	6	7	8	9	10	11
	X()	5 920	5 930	5 940	5 950	5 960	5 970	5 980	5 990	6 000
	$trK_{XR}(X,t)$	4,274	4,205	4,174	4,179	4,220	4,296	4,407	4,552	4,730
2	Y()	-40	-30	-20	-10	0	10	20	30	40
2-	$trK_{XR}(X,t)$	5,381	4,856	4,529	4,402	4,480	4,764	5,258	5,965	6,889
	Z()	-4 960	-4 970	-4 980	-4 990	-5 000	-5 010	-5 020	-5 030	-5 040
	$trK_{XR}(X,t)$	5,094	4,907	4,786	4,730	4,738	4,809	4,940	5,131	5,380
	X()	5 920	5 930	5 940	5 950	5 960	5 970	5 980	5 990	6 000
	$trK_{XR}(X,t)$	4,062	3,857	3,708	3,615	3,578	3,595	3,666	3,791	3,968
2	Y()	-40	-30	-20	-10	0	10	20	30	40
5-	$trK_{XR}(X,t)$	5,765	4,850	4,200	3,820	3,713	3,883	4,334	5,070	6,094
	Z()	-4 960	-4 970	-4 980	-4 990	-5 000	-5 010	-5 020	-5 030	-5040
	$trK_{XR}(X,t)$	4,571	4,287	4,087	3,968	3,928	3,967	4,083	4,273	4,538
	X()	5 920	5 930	5 940	5 950	5 960	5 970	5 980	5 990	6 000
	$trK_{XR}(X,t)$	4,312	3,973	3,701	3,497	3,359	3,288	3,282	3,340	3,462
1	Y()	-40	-30	-20	-10	0	10	20	30	40
4-	$trK_{XR}(X,t)$	5,370	4,427	3,775	3,416	3,356	3,596	4,143	4,999	6,169
	Z()	-4 960	-4 970	-4 980	-4 990	-5 000	-5 010	-5 020	-5 030	-5040
	$trK_{XR}(X,t)$	4,014	3,745	3,561	3,462	3,445	3,509	3,652	3,873	4,171

	2	3	4
X	6 000	6 000	6 000
	5 940	5 960	5 980
Y	0	0	0
()	-10	0	0
Z	-5 000	-5 000	-5 000
	-4 990	-5 000	-5 000
	70	70	90
(%)	69	70	89

	1-		1,377	
(10 ⁹)			1,296	
				. 16
		2	3	4
			1 042	
W ₀ (/)			1 043	
	$\mathbf{A}\mathbf{D}$ ()		$1,12 \cdot 10^{7}$	1
	ΔD ()		$1.11 \cdot 10^{7}$	1

•

(. 19, 20)

•

17

 p_g

,

2-	p _g	0,0 020	0,0 021	0,0 023	0,0 025	0,0 027	0,003	0,004
	$trK_{XR}(X,t)$	3,7 016	3,6 941	3,6 858	3,6 848	3,6 893	3,7 042	3,7 975
3-	p _g	0,0 100	0,0 110	0,0 115	0,0 120	0,0 130	0,0 140	0,0 160
	$trK_{XR}(X,t)$	7,5 475	7,5 453	7,5 448	7,5 446	7,5 451	7,5 464	7,5 512
4-	p _g	0,0 260	0,0 280	0,0 290	0,0 300	0,0 310	0,0 320	0,0 400
	$trK_{XR}(X,t)$	7,0 383	7,0 377	7,0 376	7,0 375	7,0 376	7,0 378	7,0 414

2-	3-	4-	
0,0 025	0,0 120	0,0 300	

19

20

$$trK_{XR}(X,t),$$

m_g) m_h

(

(

)

	$m_g = 1$	$m_g = 3$	$m_g = 5$	$m_g = 10$	$m_g = 15$
$m_h = 0,25$	1,121	0,734	2,203	6,505	17,581
$m_{h} = 0,50$	4,472	1,931	2,111	6,539	11,646
$m_h = 0,75$	8,961	4,138	3,859	7,087	16,825
$m_h = 1,00$	15,400	6,465	5,455	8,962	11,525

. 20.

 m_g

 m_h

 $m_g m_h$

<i>m_h</i> ()	0,25	0,50	0,75	1,00
<i>m_g</i> ()	3	3	5	5

()

-

)

(. . 2).

3.5.

, [9, 130–134].

•

[141, 142].

,

,

2–7

,

,

,

,

. 11 12. 2, 3 4-1- . 21.

21

,

()

•

	g(t=2) - g(t=1)	g(t=3) - g(t=1)	g(t=4) - g(t=1)
<i>C</i> 1	-370	-238	-174
<i>C</i> 2	-316	-153	-67
<i>M</i> 1	-1341	-1740	-2076
M2	-4129	-6044	-7633
<i>M</i> 3	-1450	-1928	-2329

, , , [222, 223] Surfer.

· , · · ,

. 16–18

•

,

(. . 13).

,

3.1

,

. 16.

•

•

,

,

•

(. 19).

,

•

	X()	Y()	H()	Z()
C_1	0	0	1 185,02	0
C_2	844,92	3 712,78	1 203,77	18,75
M_1	2 842,73	1 468,92	1 151,06	-33,96
M_2	4 199,95	0	1 365,19	180,17
M_3	4 326,96	2 792,05	1 280,61	95,59
So	2 300	1 500	1 400	214,98
Sk	3 500	1 500	980	-205,02

$$X_{R}(t) = (t, t-1)X_{R}(t-1),$$
(77)

 $X_R(t)$ – : H_i , , ; (t, t-1) – t-1 t. , $\Delta t = 1$. • (), 1, 2, 3. 2 **3**• , 1 0,50 0,95 2 3. $\omega = 3,25 \cdot 10^{-5}$ S / . 1, 2, 3 $u_{M1} = -48,70$, $u_{M2} = 92,53$, $u_{M3} = 92,53$. 1, 2 3 . 23.

23

•

,

1, 2 3

2

	(t = 1) ()	(t=2)()	(t=3)()	(t = 4) ()
M_1	1 151 060,00	1 151 044,00	1 151 028,00	1 151 011,00
M_2	1 365 190,00	1 365 221,00	1 365 252,00	1 365 283,00
M_3	1 280 610,00	1 280 641,00	1 280 672,00	1 280 703,00

3

,

 $\delta = 2,63$ / 3 .

RS = 300 ,

$$MS = \frac{4}{3}\pi RS^{3}\delta = 2,97 \cdot 10^{8}$$

RO = 260

$$MO = \frac{4}{3}\pi RS^{3}\delta = 1,94 \cdot 10^{8}$$

•

,

. 19 . 22, δh

. 24.

24

—

,

		δh_s ($\delta h_{ m o}$ (δ <i>h</i> (
(–)	())())())()
1- 2	4,2	0,08	-0,07	0,01
1- 1	3,2	7,77	-3,91	3,86
2- 1	2,0	-4,61	2,41	-2,20
3- 2	2,8	0,00	0,00	0,00
3- 1	2,0	-4,52	2,36	-2,16
2- 1	3,0	5,89	-2,95	2,94
2- 3	3,6	0,03	-0,03	0,01

,

,

$$MS = \frac{4}{3}\pi RS^{3}\delta = 2,97 \cdot 10^{8}$$

•

•

,

 $MO = \frac{4}{3}\pi RO^{3}\delta = 1,94 \cdot 10^{8}$

•

2

,

3.3.

,

3.7.

_

_

,

_

4.

).

,

•

[211–214, 216, 217, 219–221],

,

GPS-

,

[225].

,

,

_

(

[226].

,

,

120

)

-

,

•

 $\Delta t = 2 \qquad .$

. 21.

(

[226].

$$\eta = 10^{17} \cdot E = 10^{10} ,$$

 $v = 0,3, ,$
 $v_V = 5 \cdot 10^7 \frac{3}{2} .$
 $P (t)$

$$P (t) = P_{\infty}(1 - e^{-\frac{t}{\tau_0}}); (78)$$

$$P_{\infty} = \frac{v_V \eta}{2\pi R^3 (1+\nu)}.$$
 (79)

-

,

(78) (79)
$$P_{\infty}$$
 -
 $\eta_{.}, \tau_0 = \frac{\eta_{.}}{E}$ -

$$P_{\infty} = 1,27 \cdot 10^{8} , \tau_{0} = 31,7 , \qquad (80)$$

$$(t = 0)$$

$$P \quad (t = 1) = 0 , \qquad (81)$$

$$(t = 2)$$

$$P \quad (t = 2) = 7,78 \cdot 10^{6} , \qquad (82)$$

$$(t = 4)$$

$$P \quad (t = 3) = 1,51 \cdot 10^{7} . \qquad (83)$$

•

:

$$u_{r}$$

 $(-) z,$
 z_{0} (. 22).

•

12; **z**o

 $u_z u_r$

$$u_r = 2P \qquad R^3 \qquad \frac{1 - v^2}{E} \frac{r}{\left(r^2 + z_0^2\right)^{\frac{3}{2}}};$$
 (84)

$$u_{z} = -2P \qquad R^{3} \qquad \frac{1 - v^{2}}{E} \frac{z_{0}}{\left(r^{2} + z_{0}^{2}\right)^{3/2}}.$$
(85)

 u_r

 u_z

$$R = 2500 ,$$
(82) (83) 2- 3-

r

1 (. 25).

 $z_0 = 5\ 000$

			()	r
<i>n</i> ()	<i>t</i> = 2 (2	1-)	<i>t</i> = 3 (4	1-)
r()	Ur(t=2)	Uz (t = 2)	Ur(t = 3)	Uz(t=3)
0	0,000	0,886	0,000	1,717
1	0,167	0,835	0,324	1,619
2	0,284	0,709	0,550	1,374
3	0,335	0,558	0,650	1,083
4	0,337	0,422	0,654	0,818
5	0,313	0,313	0,607	0,607
6	0,279	0.232	0,541	0,450

7	0,243	0,174	0,472	0,337
8	0,211	0,132	0,409	0,256
9	0,183	0,101	0,354	0,197
10	0,158	0,079	0,307	0,154
11	0,138	0,063	0,268	0,122
12	0,121	0,050	0,234	0,098
13	0,107	0,041	0,207	0,079
14	0,094	0,034	0,183	0,065
15	0,084	0,028	0,163	0,054
16	0,075	0,024	0,146	0,046
17	0,068	0,020	0,131	0,039
18	0,061	0,017	0,119	0,033
19	0,055	0,015	0,108	0,028
20	0,051	0,013	0,098	0,024

. 23.

,

•
(84) (85).

10 *t* = 1

		(.	26)
	(22)	$u_x, u_y, u_H,$
. 27.	0	. 22	
		1 200	
			20

26

t = 1

	X ()	Y()	H()	Z()
<i>C</i> 1	3 215,338	6 121,663	1 167,543	-32,457
<i>C</i> 2	3 344,698	15 348,903	1 159,988	-40,012
1	5 312,652	8 014,358	1 180,055	-19,945
2	5 219,147	13 722,68	1 168,332	-31,668
3	6 516,634	11 106,317	1 222,877	22,877
4	8 545,442	7 978,366	1 249,394	49,394
5	8 402,655	11 008,24	1 406,231	206,231
6	8 714,887	13 976,512	1 250,538	50,538
7	11 485,532	8 848,614	1 342,351	142,351
8	11 502,566	13 155,112	1 338,652	138,652

•

27

t = 2 t = 3 ()

	t = 2 (2)		1-)	<i>t</i> = 3	(4	1-)		
	u_x	u_{y}	и	u_x	u_{y}	и		
<i>C</i> 1	-0,163	-0,117	0,120	-0,315	-0,227	0,232		
<i>C</i> 2	-0,178	0,116	0,134	-0,345	0,225	0,259		
1	-0,248	-0,158	0,265	-0,482	-0,307	0,514		
2	-0,258	0,147	0,269	-0,499	0,284	0,522		
3	-0,341	0,010	0,489	-0,660	0,020	0,948		
4	-0,148	-0,307	0,507	-0,286	-0,594	0,984		

5	-0,245	0,001	0,765	-0,474	0,002	1,484
6	-0,134	0,311	0,523	-0,261	0,604	1,014
7	0,183	-0,265	0,616	0,355	-0,514	1,195
8	0,185	0,265	0,614	0,358	0,513	1,191

$$t = 3 \quad t = 2$$
, $t = 2 \quad t = 1,$

$$P \quad (t)$$

$$(78). \quad \psi(t = 2,3)$$

$$2 \quad t = 3 \quad t = 2 \quad t = 2 \quad t$$

$$P \quad (t) \quad t = 1, t = 2 \quad t = 3$$

$$(91) \quad (92)$$

= 1

,

$$\psi(t=2,3) = \frac{P}{P} \frac{(t=3) - P}{(t=2) - P} \frac{(t=2)}{(t=1)} = 0,939.$$
(86)

$$(84) \quad (85) \ P \quad (t)$$

$$u_z \quad u_r$$

$$t = 3 \quad t = 2 \qquad t = 1$$

$$\psi(t=2,3).$$

$$u_x, u_y, u_H.$$

,

,

,

()
$$u_x, u_y, u_H$$
 (. . . 27)
() $t = 2$ $t = 3$
. 28.

3	•

(

,

3,

,

126

,

t = 2 t = 3

).

	t = 2 (2)		1-)	<i>t</i> = 3	t = 3 (4)	
	x	у	Н	x	у	Н
<i>C</i> 1	3215,175	6121,546	1167,663	3215,023	6121,436	1167,775
<i>C</i> 2	3344,520	15349,019	1160,122	3344,353	15349,128	1160,247
1	5312,404	8014,200	1180,320	5312,170	8014,051	1180,569

()

(

. 28

	t=2 ((2	1-)	<i>t</i> = 3	(4	1-)
	x	у	Н	x	У	Н
2	5218,889	13722,827	1168,601	5218,648	13722,964	1168,854
3	6516,293	11106,327	1223,366	6515,974	11106,337	1223,825
4	8545,294	7978,059	1219,901	8545,156	7977,772	1220,378
5	8402,410	11008,241	1406,996	8402,181	11008,242	1407,715
6	8714,753	13976,823	1231,061	8714,626	13977,116	1231,552
7	11485,715	8848,349	1392,967	11485,887	8848,100	1393,546
8	11502,751	13155,377	1389,266	11502,924	13155,625	1389,843

$$M = 1,55 \cdot 10^8 \quad . \tag{87}$$

 $v_V = 5 \cdot 10^7 \frac{3}{2}$ (, ,) $\delta = 3,25 \frac{3}{3}$ [111] t =

2

 $M (t=2) = 3,25 \cdot 10^8 \tag{88}$

•

t = 3

$$M (t = 3) = 6,50 \cdot 10^8 .$$
(89)
(87)
(88) (89)
(
$$\xi'', \eta'' \qquad \zeta)$$
. 29.

•

t = 1, t = 2 t = 3

		t =	1		t = 2 (2 1-))	t = 3 (4)		1-)	
	g ()	٤"	η″	ζ()	g ()	٤"	η″	ζ()	g ()	٤"	η″	ζ()
<i>C</i> 1	980 500 049,41	0,003	0,002	0,011	980 500 061,14	0,006	0,004	0,011	980 500 072,86	0,009	0,007	0,011
<i>C</i> 2	980 500 049,30	0,003	-0,002	0,011	980 500 062,37	0,007	-0,004	0,011	980 500 075,44	0,010	-0,007	0,011
1	980 500 048,08	0,006	0,004	0,014	980 500 074,07	0,011	0,007	0,014	980 500 100,05	0,016	0,010	0,014
2	980 500 047,95	0,006	-0,004	0,014	980 500 074,40	0,012	-0,007	0,014	980 500 100,84	0,017	-0,010	0,014
3	980 500 043,28	0,018	-0,001	0,017	980 500 090,95	0,025	-0,001	0,017	980 500 138,62	0,032	-0,001	0,017
4	980 500 043,17	0,008	0,017	0,017	980 500 092,34	0,011	0,024	0,017	980 500 141,50	0,014	0,030	0,017
5	980 500 026,28	0,085	0,000	0,019	980 500 096,20	0,089	0,000	0,019	980 500 166,12	0,094	0,000	0,019
6	980 500 042,48	0,008	-0,019	0,018	980 500 093,15	0,011	-0,025	0,018	980 500 143,81	0,014	-0,031	0,018
7	980 500 040,91	-0,018	0,026	0,018	980 500 099,00	-0,022	0,031	0,018	980 500 157,08	-0,025	0,036	0,018
8	980 500 040,83	-0,018	-0,026	0,018	980 500 098,80	-0,022	-0,031	0,018	980 500 156,77	-0,025	-0,036	0,018

,

(,).

()

,

. 24.

(1 2),

GPS/ -

,

,

2- , 3-

 δM , ()

)

$$X_{R}(t=2) = X_{R}(t=3) =$$

= $(X_{1}, Y_{1}, H_{1}, ..., X_{8}, Y_{8}, H_{8}, ..., u_{X_{1}}, u_{Y_{1}}, u_{H_{1}}, ..., u_{X_{8}}, u_{Y_{8}}, u_{H_{8}}, \delta M)^{T},$ (91)

:

$$u_{X_1}, u_{Y_1}, u_{H_1}, \dots, u_{X_8}, u_{Y_8}, u_{H_8} - 2, \dots, 8$$
(90) (91)

MK	δM .		h,	β	
	g	k_h^{MK} , k_{eta}^{MK} , k_g^{MK}	$k_h^{\delta MO}$, $k_eta^{\delta MO}$	$P, k_g^{\delta MO}$	
δ			_		$MK, \delta M$,
		(24).		3.3 –	(70)
(73).		k_{eta}^{MK}	$k_{eta}^{\delta M 0}$	0	δ

[227].

•

,

,

(

$$\begin{split} \delta A_{12} &= (\eta_1 \cos A_{12} - \xi_1 \sin A_{12}) \text{ctg } z_{12} - \eta_1 \text{tg} B_1. \quad (92) \\ (92) \quad \eta_1, \quad \xi_1 &= \\ , \quad A_{12}, \quad z_{12} - & 12, \quad B_1 - \\ \beta, & \vdots \quad 12 \quad (0, 13 \quad (0, 1) - \\ \beta \vdots & \\ v_\beta &= \delta A_{12} - \delta A_{13} = (\eta_1 \cos A_{12} - \xi_1 \sin A_{12}) \text{ctg } z_{12} - \\ - (\eta_1 \cos A_{13} - \xi_1 \sin A_{13}) \text{ctg } z_{13}. & (93) \\ (93): \\ v_\beta &= (\sin A_{12} \text{ctg } z_{12} - \sin A_{13} \text{ctg } z_{13}) \xi_1 - \\ - (\cos A_{12} \text{ctg } z_{12} - \cos A_{13} \text{ctg } z_{13}) \eta_1. & (94) \end{split}$$

$$:\delta$$
 , , 1

$$\xi_{1} = -\frac{\Delta g_{1x}}{g_{1}} = -G\frac{\Delta X_{1S}}{g_{1}r_{1S}^{3}} M - G\frac{\Delta X_{1S}}{g_{1}r_{1S}^{3}} \delta MO;$$
(95)

$$\eta_{1} = -\frac{\Delta g_{1y}}{g_{1}} = -G\frac{\Delta Y_{1S}}{g_{1}r_{1S}^{3}} M - G\frac{\Delta Y_{1S}}{g_{1}r_{1S}^{3}} \delta MO.$$
(96)

 g_1

•

,

$$k_{\beta}^{\delta MO} = -\frac{G}{g_1 r_{1S}^3} [(\sin A_{12} \operatorname{ctg} z_{12} - \sin A_{13} \operatorname{ctg} z_{13}) \Delta X_{1S} - (\cos A_{12} \operatorname{ctg} z_{12} - \cos A_{13} \operatorname{ctg} z_{13}) \Delta Y_{1S}].$$
(99)
(98) (99)

13 12,

$$\beta(t=2) = \operatorname{arctg} \frac{Y_3(t=2) - Y_1(t=2)}{X_3(t=2) - X_1(t=2)} - \operatorname{arctg} \frac{Y_2(t=2) - Y_1(t=2)}{X_2(t=2) - X_1(t=2)} + k_{\beta}^{MK}(t=2)MK(t=2) + k_{\beta}^{\delta MO}(t=2)\delta MO(t=2) + \delta_{\beta}.$$
(100)

:

,

$$\delta z_{12} = \xi_1 \cos A_{12} + \eta_1 \sin A_{12}. \tag{101}$$

(95) (96) (101)

$$\delta z_{12} = -\frac{G}{g_1 r_{1S}^3} (\Delta X_{1S} \cos A_{12} + \Delta Y_{1S} \sin A_{12})M - \frac{G}{g_1 r_{1S}^3} (\Delta X_{1S} \cos A_{12} + \Delta Y_{1S} \sin A_{12})\delta MO.$$
(102)

$$z(t=2) = \operatorname{arcctg} \frac{Z_2(t=2) - Z_1(t=2)}{\sqrt{(X_2(t=2) - X_1(t=2))^2 + (Y_2(t=2) - Y_1(t=2))^2}} + k_z^{MK} MK(t=2) + k_z^{\delta MO} \delta MO(t=2) + \delta_z,$$
(103)

$$k_z^{MK}$$
 $k_z^{\delta MO}$ δ

$$k_z^{MK} = -\frac{G}{g_1 r_{1S}^3} (\Delta X_{1S} \cos A_{12} + \Delta Y_{1S} \sin A_{12}); \qquad (104)$$

$$k_z^{\delta MO} = -\frac{G}{g_1 r_{1S}^3} (\Delta X_{1S} \qquad \cos A_{12} + \Delta Y_{1S} \qquad \sin A_{12}).$$
(105)

h

:

t =

(90) :

1

,

$$h_1(t=1) = H_1(t=1) - H_{C1}(t=1) + k_{h_1}^{MK}(t=1)MK(t=1) + \delta_{h_1};$$

•

:

$$h_{2}(t=1) = H_{2}(t=1) - H_{C2}(t=1) + k_{h_{2}}^{MK}(t=1)MK(t=1) + \delta_{h_{2}};$$
(106)
$$\dots$$

$$h_{12}(t=1) = H_{8}(t=1) - H_{7}(t=1) + k_{h_{12}}^{MK}(t=1)MK(t=1) + \delta_{h_{12}}.$$

$$t = 1 (27):$$

•••

$$\beta_1(t=1) = \operatorname{arctg} \frac{Y_4(t=1) - Y(t=1)_1}{X_4(t=1) - X_1(t=1)} - \operatorname{arctg} \frac{Y_{C1}(t=1) - Y_1(t=1)}{X_{C1}(t=1) - X_1(t=1)} + k_{\beta_1}^{MK}(t=1)MK(t=1) + \delta_{\beta_1};$$

$$\beta_{2}(t=1) = \operatorname{arctg} \frac{Y_{5}(t=1) - Y_{4}(t=1)}{X_{5}(t=1) - X_{4}(t=1)} - \operatorname{arctg} \frac{Y(t=1)_{1} - Y_{4}(t=1)}{X_{1}(t=1) - X_{4}(t=1)} + k_{\beta_{2}}^{MK}(t=1)MK(t=1) + \delta_{\beta_{2}};$$
(107)

$$\beta_{27}(t=1) = \arctan\frac{Y_7(t=1) - Y_5(t=1)}{X_7(t=1) - X_5(t=1)} - \arctan\frac{Y_8(t=1) - Y_5(t=1)}{X_8(t=1) - X_5(t=1)} + k_{\beta_{27}}^{MK}(t=1)MK(t=1) + \delta_{\beta_{27}}.$$

$$t = 1:$$

$$s_{1}(t=1) = \sqrt{(X_{1}(t=1) - X_{C1}(t=1))^{2} + (Y_{1}(t=1) - Y_{C1}(t=1))^{2} + (Z_{1}(t=1) - Z_{C1}(t=1))^{2} + \delta_{s_{1}}};$$

$$s_{2}(t=1) = \sqrt{(X_{2}(t=1) - X_{C2}(t=1))^{2} + (Y_{2}(t=1) - Y_{C2}(t=1))^{2} + (Z_{2}(t=1) - Z_{C2}(t=1))^{2} + \delta_{s_{2}}}.$$

GPS-

$$b_{1}(t=1) = \begin{vmatrix} X_{1}(t=1) - X_{C1}(t=1) + \delta_{bx_{1}} \\ Y_{1}(t=1) - Y_{C1}(t=1) + \delta_{by_{1}} \\ Z_{1}(t=1) - Z_{C1}(t=1) + \delta_{bz_{1}} \end{vmatrix};$$

t = 1:

$$b_{2}(t=1) = \begin{vmatrix} X_{4}(t=1) - X_{1}(t=1) + \delta_{bx_{2}} \\ Y_{4}(t=1) - Y_{1}(t=1) + \delta_{by_{2}} \\ Z_{4}(t=1) - Z_{1}(t=1) + \delta_{bz_{2}} \end{vmatrix};$$
(109)

$$b_{21}(t=1) = \begin{vmatrix} X_6(t=1) - X_4(t=1) + \delta_{bx_{21}} \\ Y_6(t=1) - Y_4(t=1) + \delta_{by_{21}} \\ Z_6(t=1) - Z_4(t=1) + \delta_{bz_{21}} \end{vmatrix}.$$

• • •

g

t = 1:

 $g_{C1}(t=1) = g_E + k_{g_{C1}}^{MK}(t=1)MK(t=1) + \delta_{g_{C1}};$

 $g_{C2}(t=1) = g_E + k_{g_{C2}}^{MK}(t=1)MK(t=1) + \delta_{g_{C2}};$ (110)

$$g_8(t=1) = g_E + k_{g_8}^{MK}(t=1)MK(t=1) + \delta_{g_8}.$$

- 21 GPS- $(\Delta X, \Delta Y, \Delta Z)$.

,

,

$$(t=3)$$
 – 114 (GPS-).

:

2-
$$(t=2)$$
 3- $(t=3)$

 \mathbf{O}

 $h_1(t=2)$

 $h_1(t=2) = H_1(t=2) - H_{C1} + k_{h_1}^{MK}(t=2)MK(t=2) + k_{h_1}^{\delta M} \quad (t=2)\delta M \quad (t=2) + \delta_{h_1}. \ (111)$

δ.

 $\beta_1(t=2) -$

$$\beta_{1}(t=2) = \operatorname{arctg} \frac{Y_{4}(t=2) - Y_{1}(t=2)}{X_{4}(t=2) - X_{1}(t=2)} - \operatorname{arctg} \frac{Y_{C1}(t=2) - Y_{1}(t=2)}{X_{C1}(t=2) - X_{1}(t=2)} + k_{\beta_{1}}^{MK}(t=2) + k_{\beta_{1}}^{\delta M}(t=2) \delta M \quad (t=2) + \delta_{\beta_{1}}.$$
(112)

Matrixer.

(. 30–34).

30

•

	()	$h_{ij}(t=1)()$	$h_{ij}(t=2)()$	$h_{ij}(t=3)()$
1-1	2 825,1	12 513,06	12 658,44	12 793,84
<i>C</i> 2-2	2 481,6	8 343,79	8 479,86	8 607,37
1-3	3 318,1	42 820,73	43 046,46	43 255,21
2-3	2 920,4	54 544,21	54 764,27	54 970,54
1-4	3 233,0	39 338,06	39 581,80	39 808,76
3-5	1 888,6	183 353,81	183 632,42	183 890,74
2-6	3 504,9	62 206,52	62 459,88	62 698,23
4-5	3 033,2	186 836,91	187 096,13	187 338,05
6-5	2 984,6	175 693,04	175 936,09	176 163,46
4-7	3 066,2	172 957,25	173 066,16	173 168,39
6-8	2 906,2	158 113,48	158 204,90	158 290,94
8-7	4 306,5	3 699,07	3 702,56	3 690,69

		<i>t</i> =	: 1		t = 2		t = 3		
1	2	3	4	5	6	7	8	9	10
1	137	17	52,21	137	17	40,75	137	17	30,32
2	44	43	57,72	44	44	12,64	44	44	26,56

	<i>t</i> = 1				t = 2			<i>t</i> = 3		
1	2	3	4	5	6	7	8	9	10	
3	24	37	47,04	24	37	50,44	24	37	54,41	
4	54	14	35,45	54	14	25,69	54	14	16,61	
5	54	3	19,83	54	3	19,73	54	3	20,13	

6	55	31	43,19	55	31	44,80	55	31	46,25
7	63	49	31,71	63	49	21,07	63	49	11,18
8	23	10	11,37	23	10	16,10	23	10	20,23
9	44	36	20,93	44	36	35,73	44	36	48,79
10	134	54	10,34	134	53	59,11	134	53	47,49
11	76	12	35,13	76	12	44,12	76	12	52,85
12	30	16	10,69	30	16	3,37	30	15	58,09
13	56	23	40,50	56	23	30,73	56	23	22,49
14	52	17	22,92	52	17	18,68	52	17	15,24
15	69	43	1,32	69	42	58,34	69	42	55,31
16	49	17	24,70	49	17	21,29	49	17	17,49
17	55	33	7,50	55	33	8,01	55	33	7,75
18	37	28	33,36	37	28	38,09	37	28	42,70
19	47	4	17,97	47	4	23,88	47	4	28,91
20	48	36	11,44	48	36	12,10	48	36	12,29
21	48	23	55,68	48	23	47,58	48	23	40,10
22	31	26	35,64	31	26	29,57	31	26	23,63
23	79	35	13,28	79	35	22,12	79	35	29,79
24	55	12	52,77	55	12	53,22	55	12	55,21
25	51	30	2,08	51	29	56,74	51	29	52,37
26	51	7	21,35	51	7	16,71	51	7	12,62
27	55	4	6,52	55	4	7,64	55	4	9,66

		<i>t</i> = 1	<i>t</i> = 2	<i>t</i> = 3
1	1-1	2 825,0973	2 825,0057	2 824,9182
2	2-2	2 481,5762	2 481,4981	2 481,4228

C	DC	
U.	E D	-

t = 1					
		$\Delta X()$	$\Delta Y($)	$\Delta Z()$	
1	2	3	4	5	
1	<i>C</i> 1-1	2 097,313 8	1 892,689 2	12,510 0	
2	1-4	3 232,788 4	-35,989 7	39,322 6	
3	1-5	3 090,001 1	2 993,888 9	226,167 9	
4	1-3	1 203,979 9	3 091,957 9	42,823 9	
5	3-4	2 028,805 9	-3 127,954 1	-3,481 3	
6	3-5	1 886,020 3	-98,080 6	183,363 1	
7	3-6	2 198,246 7	2 870,197 5	7,652 8	
8	3-2	-1 297,491 4	2 616,358 6	-54,554 3	
9	2-5	3 183,508 5	-2 714,440 3	237,905 5	
10	2-6	3 495,740 1	253,836 0	62,204 7	
11	2-C2	-1 874,452 8	1 626,216 2	-8,333 2	
12	4-7	2 940,089 3	870,246 9	172,965 9	
13	4-5	-142,782 7	3 029,867 9	186,837 4	
14	5-7	3 082,877 9	-2 159,633 0	-13,883 9	
15	5-8	3 099,915 0	2 146,874 8	-17,577 6	

16	5-6	312,233 2	2 968,271 2	-175,695 8		
17	6-8	2 787,679 3	-821,398 8	158,118 4		
18	7-8	17,041 3	4 306,498 6	-3,701 9		
19	<i>C</i> 1-8	8 287,225 1	7 033,448 5	221,099 7		
20	<i>C</i> 2-7	8 140,833 8	-6 500,284 0	232,371 3		
21	4-6	169,440 5	5 998,142 3	11,152 1		
	t = 2					
		$\Delta X($)	$\Delta Y()$	$\Delta Z()$		
1	<i>C</i> 1-1	2 097,223 2	1 892,656 9	12,657 9		
2	1-4	3 232,886 2	-36,138 4	39,581 5		
3	1-5	3 090,001 7	2 994,040 4	226,677 4		
4	1-3	1 203,892 6	3 092,127 6	43,046 8		
5	3-4	2 029,001 4	-3 128,262 9	-3,465 6		
6	3-5	1 886,124 3	-98,092 3	183,640 1		
7	3-6	2 198,453 0	2 870,495 7	7,684 9		
8	3-2	-1 297,404 3	2 616,500 7	-54,764 7		
9	2-5	3 183,522 2	-2 714,577 9	238,394 2		
10	2-6	3 495,859 2	254,001 7	62,446 1		
11	2-C2	-1 874,373 1	1 626,191 8	-8,475 9		
12	4-7	2 940,428 1	870,296 0	173,067 2		
13	4-5	-142,883 4	3 030,181 9	187,088 9		
14	5-7	3 083,296 5	-2 159,891 7	-14,026 0		

t = 2				
		$\Delta X()$	$\Delta Y()$	$\Delta Z()$
15	5-8	3 100,345 3	2 147,134 4	-17,732 5
16	5-6	312,344 7	2 968,574 5	-175,938 1
17	6-8	2 788,006 4	-821,443 6	158,209 8

. 33

18	7-8	17,029 8	4 307,022 2	-3,701 6
19	1-8	8 287,572 6	7 033,831 3	221,589 1
20	2-7	8 141,195 2	-6 500,672 8	232,849 7
21	4-6	169,460 6	5 998,766 9	11,167 4
		<i>t</i> = 3	L	
		$\Delta X()$	$\Delta Y()$	$\Delta Z()$
1	<i>C</i> 1-1	2 097,146 3	1 892,628 1	12,798 0
2	1-4	3 232,990 0	-36,282 0	39,814 2
3	1-5	3 090,006 4	2 994,200 3	227,149 3
4	1-3	1 203,801 3	3 092,285 0	43,260 5
5	3-4	2 029,180 9	-3 128,569 7	-3,438 6
6	3-5	1 886,211 9	-98,089 8	183,886 9
7	3-6	2 198,652 9	2 870,772 7	7,728 5
8	3-2	-1 297,334 4	2 616,630 6	-54,970 4
9	2-5	3 183,530 9	-2 714,723 9	238,851 8
10	2-6	3 495,984 2	254,147 7	62,707 3
11	2-C2	-1 874,300 4	1 626,160 0	-8,607 2
12	4-7	2 940,729 6	870,328 3	173,159 6
13	4-5	-142,976 0	3 030,470 9	187,334 6
14	5-7	3 083,708 9	-2 160,146 1	-14,165 2
15	5-8	3 100,743 4	2 147,379 7	-17,869 3
16	5-6	312,441 1	2 968,870 2	-176,142 6
17	6-8	2 788,297 6	-821,489 5	158,283 0
18	7-8	17,042 7	4 307,526 6	-3,701 8
19	1-8	8 287,903 1	7 034,189 8	222,075 4
20	2-7	8 141,532 0	-6 501,021 5	233,300 9
21	4-6	169,473 7	5 999,345 3	11,175 4

()

	t = 1	t = 2	t = 3
<i>C</i> 1	980 500 043,6	980 500 057,3	980 500 062,6
<i>C</i> 2	980 500 054,7	980 500 060,5	980 500 073,9
1	980 500 048,1	980 500 067,1	980 500 100,6

. 34

	<i>t</i> = 1	t = 2	<i>t</i> = 3
2	980 500 062,3	980 500 077,7	980 500 095,6
3	980 500 046,2	980 500 085,0	980 500 133,4
4	980 500 041,9	980 500 094,0	980 500 138,9
5	980 500 017,3	980 500 092,3	980 500 171,1
6	980 500 044,7	980 500 094,3	980 500 140,9
7	980 500 041,2	980 500 096,2	980 500 155,7
8	980 500 045,2	980 500 101,8	980 500 151,2

•

—

-

4.3.

, (90), 2- 3- – (91).

1-

A(t) $y_i(t)$		$X_R(t)$).	:	
	A(t).	()			
	,	,		δ.	k_h^{MK} ,
k_{eta}^{MK} , k_{g}^{MK}		$k_h^{\delta MO}, \ k_{eta}^{\delta MO}, \ k_g^{\delta MO}$	δ		
,	24)	,		,	(70) (73) (98)
(99).					(10), (13), (20),
1-1, 1-4, 1-5, 1-3, 2-6, 2	- 2, 1-8,	(90) 2-7		5	GPS-
1		. 35	5.		

	X()	Y()	H()
<i>C</i> 1	3 215,338	6 121,663	1 167,543
<i>C</i> 2	3 344,698	15 348,903	1 159,988
1	5 312,652	8 014,352	1 180,053
2	5 219,151	13 722,687	1 168,321
3	6 516,632	11 106,310	1 222,877
4	8 545,440	7 978,363	1 219,376

5	8 402,653	11 008,241	1 406,221	
6	8 714,891	13 976,523	1 230,526	
7	11 485,532	8 848,619	1 392,359	
8	11 502,563	13 155,111	1 388,643	
	$21,44 \cdot 10^{7}$			

—

(. 36).

36

1-

)

1-

() (

		()	
	X ()	5 312 651,7	6,77
1	Y()	8 014 357,3	6,16
	H()	1 180 057,7	4,17
	X ()	5 219 144,1	5,66
2	Y()	13 722 681,3	5,00
	H()	1 168 329,0	4,20

. 36

		()	
	X()	6 516 634,9	5,68
3	Y()	11 106 321,8	5,02
	H()	1 222 880,2	4,21
	X ()	8 545 439,9	5,69
4	Y()	7 978 370,4	5,04
	H()	1 219 394,8	4,21

	X()	8 402 653,1	5,68
5	Y()	11 008 242,0	5,02
	H()	1 406 237,3	4,21
	X()	8 714 884,0	5,70
6	Y()	13 976 514,8	5,04
	H()	1 230 540,3	4,21
	X()	11 485 528,7	5,70
7	Y()	8 848 614,4	5,04
	H()	1 392 358,0	4,22
	X()	11 502 567,1	5,70
8	Y()	13 155 115,3	5,05
	H()	1 388 658,1	4,23
		$15,037 \cdot 10^{7}$	$0,61 \cdot 10^{7}$

,

—

 δM

2-

 $X_1, Y_1, H_1, ..., X_8, Y_8, H_8,$

1-

$u_{X_1}, u_{Y_1}, u_{H_1}, .$, u_{X_8} , u_{Y_8} ,	$u_{H_{8}},$
GPS-	1-1, 1-	-4, 1-5,
,	2-	
. 37.		

37

•

2-

5

,

		()	
1	2	3	4
1	X()	5 312 400,4	2,85
1	Y()	8 014 201,5	2,61

1-3, 2-6, 2-2, 1-8, 2-7

H() 1 180 318.5 1 48	 		
	H()	1 180 318,5	1,48

		()	
1	2	3	4
	X()	5 218 889,5	2,40
2	Y()	13 722 825,6	2,13
	H()	1 168 598,8	1,42
	X ()	6 516 290,5	2,40
3	Y()	11 106 328,5	2,14
	H()	1 223 364,6	1,42
	X()	8 545 287,7	2,41
4	Y()	7 978 061,5	2,15
	H()	1 219 899,1	1,42
	X()	8 402 405,9	2,39
5	Y()	11 008 243,2	2,13
	H()	1 406 995,5	1,41
	X()	8 714 749,6	2,41
6	Y()	13 976 824,8	2,15
	H()	1 231 050,7	1,43
	X()	11 485 715,1	2,41
7	Y()	8 848 350,9	2,15
	H()	1 392 968,0	1,42
	X($)$	11 502 749,9	2,41
8	Y()	13 155 377,3	2,15
	H()	1 389 258,7	1,42
		$15,034 \cdot 107$	$0,038\cdot 10^7$
	$u_X()$	-251,3	2,73
1	$u_{Y}()$	-155,8	2,48
	$u_H()$	260,8	1,41
2	$u_X()$	-254,6	2,28

. 37

	$u_{Y}()$	144,3	2,00
	$u_H()$	269,9	1,35
	$u_X()$	-344,3	2,28
3	$u_{Y}()$	6,7	2,01
	$u_H()$	484,3	1,36
4	$u_X()$	-152,1	2,29
	$u_{Y}()$	-308,9	2,01
	$u_H()$	504,3	1,36
5	$u_X()$	-247,2	2,28
	$u_{Y}()$	1,2	2,01
	$u_H()$	758,2	1,35
	$u_X()$	-134,4	2,29
6	$u_{Y}()$	310,0	2,02
	$u_H()$	510,4	1,36
7	$u_X()$	186,4	2,29
/	$u_{Y}()$	-263,4	2,02

		()	
1	2	3	4
	$u_H()$	610,0	1,36
	$u_X()$	182,8	2,29
8	$u_{Y}()$	262,1	2,02
	$u_H()$	600,6	1,36
	δΟ	$30,704 \cdot 10^{7}$	$0,005 \cdot 10^{7}$

. 37

() . , .

. 3-.

0,94

GPS-

3-

2-

.

 ΔX , ΔY , ΔZ GPS-

,

,

1-2-. $\psi(t=2,3)$ (86). :

,

•

38

		()	
1	2	3	
1	$\frac{Z}{Y(\cdot)}$	5 312 163 /	
1	X()	8 014 054 5	2,41
1	$\frac{I()}{U()}$	1 190 572 5	2,30
		<u> </u>	1,42
	<u>X()</u>	5 218 645,1	2,33
2	Y()	13 722 973,8	2,29
	H()	1 168 854,9	1,37
	X()	6 515 964,8	2,40
3	Y()	11 106 341,8	2,38
	H()	1 223 831,9	1,39
	X()	8 545 148,6	2,40
4	Y()	7 977 768,6	2,38
	H()	1 220 387,9	1,39
	X()	8 402 171,8	2,23
5	Y()	11 008 249,6	2,21
	H()	1 407 725,1	1,29
	X ()	8 714 625,1	2,41
6	Y()	13 977 127,9	2,39
	H()	1 231 554,9	1,39
	X()	11 485 893,4	2,30
7	Y ()	8 848 098,4	2,29
	H()	1 393 554,3	1,32
	X ()	11 502 929,5	2,30
8	Y()	13 155 634,5	2,29
	H()	1 389 844,3	1,32

		14,996	$0,096 \cdot 10^7$
	$u_X()$	-232,1	1,42
1	$u_{Y}()$	-142,8	1,38
	$u_H()$	243,7	0,90

. 38

		()	
1	2	3	4
	$u_X()$	-234,4	1,28
2	$u_{Y}()$	138,2	1,24
	$u_H()$	246,2	0,80
	$u_X()$	-317,4	1,30
3	$u_{Y}()$	9,6	1,26
	$u_H()$	448,7	0,80
	$u_X()$	-139,8	1,30
4	$u_{Y}()$	-283,8	1,27
	$u_H()$	468,0	0,80
	$u_X()$	-230,2	1,25
5	$u_{Y}()$	3,3	1,22
	$u_H()$	702,4	0,77
	$u_X()$	-121,8	1,31
6	$u_{Y}()$	291,4	1,28
	$u_H()$	472,7	0,80
	$u_X()$	173,1	1,29
7	$u_{Y}()$	-245,4	1,26
	$u_H()$	564,8	0,78

	$u_X()$	170,5	1,29
8	$u_{Y}()$	245,3	1,26
	$u_H()$	554,9	0,78
	δΟ	$61,\!381\cdot 10^7$	$0,015 \cdot 10^{7}$

), , (,).

,

,

,

,

,

,

4.4.

,

,

,

(. . 21)

•

,

,

•

. 28.

 u_r u_z ,

		t = 2		<i>t</i> = 3	
	r ()	(2	1-)	(4	1-)
		$u_r(t=2) ()$	$u_z(t=2) ()$	$u_r(t=3) ()$	$u_z(t=3)()$
1	8 356	200,3	119,9	388,4	232,4
2	7 950	212,5	133,6	412,0	259,1

39
1	5 557	295,6	260,8	574,5	515,7
2	5 501	292,7	269,9	578,4	526,0
3	3 485	344,4	484,3	670,4	951,7
4	3 354	344,3	504,3	668,6	993,1
5	1 597	247,2	758,2	481,3	1 487,8
6	3 242	337,9	510,4	665,5	1 014,6
7	2 614	322,7	610,0	631,9	1 196,3
8	2 627	319,5	600,6	633,2	1 186,2

. 39

(. 29).

$$\sigma_{r} = \frac{P - R^{3}}{2} \left\{ \frac{\left[-2r^{2} + (z - z_{0})^{2} - \frac{2(3 - 2\nu)}{\left[r^{2} + (z - z_{0})^{2}\right]^{5/2}} - \frac{2(3 - 2\nu)}{\left[r^{2} + (z + z_{0})^{2}\right]^{3/2}} + \frac{3(11z^{2} + 14zz_{0} + 3z_{0}^{2})}{\left[r^{2} + (z + z_{0})^{2}\right]^{5/2}} - \frac{30z(z + z_{0})^{3}}{\left[r^{2} + (z + z_{0})^{2}\right]^{7/2}} \right\};$$
(118)

$$\sigma_{z} = \frac{P - R^{3}}{2} \left\{ \frac{\left[r^{2} - 2(z - z_{0})^{2} - \frac{1}{\left[r^{2} + (z - z_{0})^{2}\right]^{5/2}} - \frac{1}{\left[r^{2} + (z + z_{0})^{2}\right]^{3/2}} - \frac{3(5z^{2} + 4zz_{0} - z_{0}^{2})}{\left[r^{2} + (z + z_{0})^{2}\right]^{5/2}} + \frac{30z(z + z_{0})^{3}}{\left[r^{2} + (z + z_{0})^{2}\right]^{7/2}} \right\};$$

(119)

$$\sigma_{\varphi} = \frac{P - R^{3}}{2} \left\{ \frac{\left[r^{2} + (z - z_{0})^{2}\right]^{3/2}}{\left[r^{2} + (z - z_{0})^{2}\right]^{3/2}} + \frac{3 - 8\nu}{\left[r^{2} + (z + z_{0})^{2}\right]^{3/2}} + \frac{6(z + z_{0})\left[(-1 + 2\nu)z + 2\nu z_{0}\right]}{\left[r^{2} + (z + z_{0})^{2}\right]^{5/2}} \right\};$$
(120)

$$\sigma_{rz} = -\frac{3}{4}P \qquad R^{3} \qquad r \begin{cases} \frac{z-z_{0}}{\left[r^{2}+(z-z_{0})^{2}\right]^{5/2}} + \frac{5z+z_{0}}{\left[r^{2}+(z+z_{0})^{2}\right]^{5/2}} - \\ -\frac{20z(z+z_{0})^{2}}{\left[r^{2}+(z+z_{0})^{2}\right]^{7/2}} \end{cases}; \quad (121)$$

 $\sigma_{r\varphi} = \sigma_{z\varphi} = 0. \tag{122}$

$$t = 1, t = 2, t = 3$$

$$\sigma_r, \sigma_z, \sigma_{\phi}, \sigma_{rz} (..40, 41).$$

$$z = 0.$$

,

40

t = 2

	7. ()	$P R^3$ (σ_r	σ_z	σ_{ϕ}	σ_{rz}
	20 ()	$\cdot 10^5 \cdot {}^3)$	((((
<i>C</i> 1	5 000	1,216 45E + 12	-2,40	-2,01	1,68	0,00
<i>C</i> 2	5 000	1,216 45E + 12	-2,50	-2,30	1,92	0,00
1	4 902	1,189 46E + 12	-2,26	-5,48	4,64	0,00
2	5 073	1,224 99E + 12	-1,88	-5,61	4,76	0,00
3	4 901	1,180 87E + 12	3,18	-12,64	10,84	0,00
4	4 912	1,186 79E + 12	3,91	-13,34	11,44	0,00

5	4 900	1,163 81E + 12	17,21	-23,88	20,64	0,00
6	4 897	1,160 11E + 12	4,42	-13,69	11,75	0,00
7	4 942	1,185 32E + 12	8,74	-17,38	14,96	0,00
8	4 938	1,169 5E + 12	8,53	-17,10	14,72	0,00

t = 3

	- ()	$P R^3$ (σ_r	σ_z	σ_{ϕ}	σ_{rz}
	<i>z</i> ₀ ()	$\cdot 10^5 \cdot {}^3$)	((((
<i>C</i> 1	5 000	2,358 55E + 12	-4,64	-3,90	3,26	0,00
<i>C</i> 2	5 000	2,358 55E + 12	-4,84	-4,46	3,73	0,00
1	4 989	2,365 78E + 12	-4,11	-10,75	9,11	0,00
2	5 003	2,375 31E + 12	-3,95	-11,01	9,33	0,00
3	4 948	2,342 47E + 12	6,45	-24,70	21,17	0,00
4	4 981	2,371 78E + 12	7,98	-26,03	22,33	0,00
5	4 938	2,314 03E + 12	33,63	-46,53	40,22	0,00
6	4 943	2,329 5E + 12	8,97	-27,05	23,22	0,00
7	4 949	2,329 06E + 12	17,15	-34,05	29,31	0,00
8	4 922	2,299 59E + 12	16,81	-33,85	29,14	0,00

41

(. . 40, 41)

(. 30–35).

4.5.

5.1.

—

,

•

,

-

-

,

,

,

,

, , ,

•

•

.

Delphi Matlab [228, 229].

,

•

•

Excel Surfer, Elcut, Microdem (Maple, Derive, Mathcad, Mathematica, StatGraphics, Matrixer,

,

(

.) [228–234].

-

,

,

•

,

3, 2 . 4)

,

,

(. 36, . 5).

,

•

🌶 Delphi 7 -	MSS_Kr45		
File Edit S	iearch View Proje	t Run Component Database Tools Window Help 🛛 🔨 🥑	- Ø ₂
93 00 · F		🛐 🛷 Standard Additional Win32 System Data Access Data Controls dbExpress	s DataSnap BDE ADO InterBase Web
6 - 5			
bject TreeVie	w 🔀	🖹 MSS1_45. pas	
🌆 🏡 🔺	÷	MSS1_45	
Form1 Button1 Button2 Memo1 StringGri	id1	<pre>end; procedure TForm1.Button2Click(Sender: TObject); begin for i:=1 to 28 do for j:=1 to 28 do KSS[i,j]:=0; for e:=1 to 10 do // If (e<>4) or(e<>5) then Begin for i:=1 to 8 do for j:=1 to 28 do ke[i,j]:=0; for j:=1 to 14 do begin //эаполнение T if Nke[e,j]<>0 then begin ke[(Nke[e,j]*2-1),j*2-1] ke[(Nke[e,j]*2),j*2]:=1; end; end; for i:=1 to 28 do for j:=1 to 8 do KeT[i,j]:=Ke[j,i];</pre>	7: Form1
		For i:=1 to 28 do //утлюжение матриц Kt и K	
bject Inspect	or 🔀	for j:=1 to 8 do	
Button2	TButton 💌	begin	
Properties Ev	ents	KeTK[1,]]:=U; for k:=1 to 2 do VoTk[i i]:=VoTk[i i]+VoT[i k]tk	
Action		end:	
FLAnchors	[akLeft.akTop]	For i:=1 to 28 do //www.owenne marphu Kt M K	
BiDiMode	bdLeftToRight	for j:=1 to 28 do	
Cancel	False	begin	
Caption	считать	KS[i,j]:=0; for k:=1 to 8 do KS[i,j]:=KS[i,j]+K	
E Constraints	(TSizeConstrain	end;	
Cursor	crDefault		
Default	False	for i:=1 to 28 do for j:=1 to 28 do KSS[i,j]:=KSS[i,j]	
DragCursor	crDrag		
DragKind	dkDrag	End: //конец блока е	
DragMode	dmManual	//отлал	Загрузить считать
Enabled	True	for i:=1 to 28 do	· · · · · · · · · · · · · · · · · · ·
∃ Font	(TFont)	for $i = 1$ to 28 do	<
Height	25	herin	
HelpContext	0	negin	
HelpKeyword		stringgridi.telis[],i]:=rioattostr(KSS[1,]]); end	
HelpType	htContext	for 1:=1 to 28 do begin	
Hint	0.0000000000000000000000000000000000000	Str:=''; for j:=1 to 28 do str:=str+ floattost	r(K

Excel (. 37). () Excel.

Ряд 1 -♣ =РЯД(;;ГСЧ!\$N\$3:\$N\$31;1) В C D E Н A F G J K M N 1 Генерация нормально распределенных чисел (0, 1) М norm= 0.25 n= 12 0 Sigm_norn 0.5 alfa= 1 2 3 5 6 7 8 10 12 2 4 9 11 -0.2154 0.122214 -0.13522 0.152007 3 1 0.194228 0.120705 0.044872 -0.20657 -0.13508 -0.01021 -0.18688 -0.0288 -0.284144 2 -0.11503 -0.06861 -0.22752 0.100753 0.102353 -0.18766 0.123451 0.020349 -0.04982 -0.1766 0.228202 -0.22063 -0.4707 5 3 -0.01033 0.192665 -0.23289 -0.0856 -0.0583 0.089003 0.205812 -0.11206 0.04646 -0.11509 -0.20294 0.077955 -0.205 6 4 0.101141 -0.0837 0.095067 -0.23973 -0.23487 -0.08587 0.233927 0.004478 0.080108 -0.1561 0.034033 -0.15544 -0.40698 7 5 -0.06903 0.168386 -0.17113 -0.03421 0.098884 0.240895 -0.06198 -0.11308 0.00035 0.040588 0.219511 -0.08125 0.237932 8 6 0.072822 -0.21294 -0.17876 -0.03323 0.225092 0.236371 0.007565 -0.09844 -0.21786 -0.00102 0.085603 -0.19149 -0.3063 7 0.019073 -0.07627 0.090248 -0.06846 -0.21227 -0.05899 -0.18836 0.248839 -0.04687 -0.15708 -0.047 0.015133 -0.48198 9 8 0.238188 -0.14777 -0.18011 0.22111 0.125707 0.171033 -0.17573 0.22061 0.21668 0.121272 0.118573 0.114413 10 1.043967 11 9 0.032571 -0.01924 0.196882 0.179991 -0.20314 0.036566 0.222028 0.138519 0.005464 -0.23651 -0.16332 0.184923 0.374736 -0.0269 -0.05167 0.191375 0.19636 12 10 0.067121 -0.19445 -0.13677 -0.09959 0.011367 0.244007 -0.00052 -0.02982 0.222214 11 -0.16004 -0.10561 -0.08529 -0.007 -0.12115 -0.16064 0.001513 -0.03977 0.05759 0.200484 0.060661 -0.14534 -0.50457 13 14 12 -0.01853 0.095357 0.109764 0.102521 -0.0402 -0.15622 -0.12349 -0.15657 -0.08944 0.229397 0.009789 0.247896 0.21028 15 13 -0.18424 0.208579 0.061617 0.244836 0.140985 0.21883 0.236568 -0.05948 -0.01924 0.116394 0.211978 -0.05816 1.11867 16 14 0.013482 0.011133 -0.05892 -0.05666 0.18318 0.118225 0.193204 0.06632 -0.06602 0.23532 0.178902 0.104744 0.92291 17 15 -0.08603 0.226345 0.035133 0.151657 0.028626 0.245728 -0.09774 0.162355 0.096409 -0.06258 0.037407 -0.01603 0.721278 18 16 0.022271 -0.1742 -0.23685 -0.02092 0.17926 0.119033 0.130899 0.168818 0.067695 -0.06402 -0.13088 0.199478 0.26057 17 0.054653 -0.14327 0.019399 0.127334 0.155664 -0.11531 0.112421 0.196076 -0.23003 -0.01378 -0.22741 0.214471 0.150218 19 18 -0.2438 0.243564 0.142925 -0.22634 0.184919 0.198889 -0.10309 0.202123 0.15364 0.004505 -0.15016 -0.08893 0.31825 20 21 19 0.128204 0.194815 -0.11184 0.222241 0.231812 0.227702 -0.13611 -0.12824 0.142568 -0.2381 0.245664 -0.22831 0.55040 22 20 0.124095 -0.15677 -0.00626 0.085429 0.108046 0.226339 -0.02178 0.18961 -0.23375 -0.03497 0.191023 0.138576 0.60959 23 21 -0.09355 -0.1299 -0.11766 0.076145 -0.0754 0.086817 0.230734 0.14463 0.019718 -0.24465 -0.14711 -0.11465 -0.36487 24 22 0.077638 0.0928 -0.00436 -0.20106 -0.00591 0.070432 -0.17768 0.081227 -0.1639 -0.02222 -0.10224 0.004166 -0.351 25 23 -0.23137 -0.19773 0.199004 0.022361 0.212646 0.001254 -0.07831 0.042907 -0.00321 0.096574 0.059021 -0.24621 -0.12308 24 0.031972 0.100896 0.002371 -0.10541 -0.15281 -0.15449 -0.158 -0.12033 -0.15335 0.063487 0.112271 0.215909 -0.31749 26 27 25 -0.10059 -0.24914 -0.19685 -0.12999 -0.04677 -0.22887 -0.16898 0.035552 -0.23821 0.155323 0.032253 -0.14245 -1.2787 28 26 -0.0672 0.104964 -0.04203 -0.15092 -0.07626 0.178455 0.209191 0.069962 0.202613 -0.03383 -0.1774 -0.10294 0.114605 29 27 -0.17862 -0.13503 0.011893 -0.0923 0.103725 -0.20782 0.114141 0.084184 -0.12283 -0.16065 -0.1102 -0.13185 -0.82535 30 28 0.144265 -0.06482 -0.00198 0.14094 -0.22644 0.238104 0.026271 0.110213 0.008643 -0.01091 -0.01616 -0.14088 0.20724 31 29 0.067253 0.100965 -0.12207 0.244678 0.092089 0.01273 0.127828 0.002828 -0.11913 0.085796 0.209804 0.090122 0.792908 32 0.065839 33 0.573149

•

. 37.

Matrixer (. 38).

0

•

•

.

Matrixer

(. 39)

(.

*** Текст Справка Переменная N1, 114 набл. -1.48288 Минимум Максимум 1.16543 Среднее 0.0152285965 [0.7523] Медиана 0.00753 [1.0000] Дисперсия 0.2618268588 (смещенная оценка) Дисперсия 0.2641439107 (несмещенная оценка) Среднеквадратическое отклонение 0.5116901981 (смещенная оценка) Среднеквадратическое отклонение 0.513949327 (несмещенная оценка) Аснометрия -0.1058281037 [0.6446] Эксцесс -0.3855945044 [0.4007] Коэффициент вариации 33.748962175 Сулма 1.73606 Сумма квадратов отклонений от среднего 29.848261907 Сумма квадратов 29.874699664 Автокорреляция 1-го порядка -0.1006451881 [0.2826] Закрыть

. 39.

(. . 3, 4) (. . 41, 42).

-

emanft h	voel FKB	_0KM_3.xl	із (Польно	для чисы	ня									ē
gain (pa	алка Вна	Встазка	dobfor t	дронс да	ные ден	greanca						Bename screw	۰.	. 6
200	ALA	9 X B	· 即 · 印	100	C . 18 -	98. E + \$1	烈 編 品 10	0% - 1기 국내	ΨΩH.					
		1 m							Sector Sector					
03 <u>03</u> 73	0 43	日間に	Ahount	HILL CREME-	146-146	mente unese	485							
CAY	- 10	· X F	ш≣	田 田 田	1 9 %	10 38 28 1	(保保)	- A - A						
AD		6 =(AD3*	ACSAES	A-935/(735A	C3-AA3"AE	130/1000	a de de co s							
4	E.	P. P. B.	n	F	F	72	н	T		2		14	м	-
				-	10		100	Parmer an Mer	ORY RECENT CO.	CILINAR COOR	-			
2.1	9	N					NP TOURS	i we ter ne ner	ing respire and	k k	NI.	81	100	
	1	1.					1	1	4	2	32.0	24.0	32.0	-
1	17	11					2	1	3	4	32.0	24.0	24.0	7
	2	1:					3	2	4	5	32.0	24.0	24.0	1
3	A N	6	3.				4	3	7	4	24.0	16.0	24.0	1
1	C	N .	11				6	1	B	5	24.0	16.0	24.0	-
1	14	15	11		-		6	3	6	7	24.0	16.0	16.0	
1	à	X	1 18				1 i	4	7	8	24.0	16.0	16.0	1
1	1	. /	~	1			8	6	3		24.0	16.0	16	-
16	7	B	\ a	11			9	6	11	7	16.0	80	15.0	
	19	12	11	13			10	7	12	8	16.0	80	15.0	1
1.1	ix.	18	ià	16	10		11	8	12	9	16.0	80	18.0	-
1	1	1		- I	1		12	8	10	11	16.0	80	80	+
in in	11	1 17	12	14	1.		13	7	11	12	16.0	80	80	+
10	10	17	MR	Na.	13		14	8	12	13	16.0	60	9.0	1
-	N.	1 Alexandre	2	20	200		16	9	19	14	16.0	80	3.0	+
- 1		- /		/	1-	1	16	10	16	31	8.0	0.0	3.0	+
1.	10	-7	10	19	20		17	11	17	12	0.0	00	3.0	1
1.1							18	12	18	13	80	0.0	30	+
CITLE OVAL	ton int						19	12	10	16	80	0.0	30	1
No n to	T I		No n.u.	U teer	Vitene		20	10	16	18	80	0.0	0.0	-
1	30	0	1	2728	8 9963		21	11	1E	17	80	0.0	30	1
2	32	46	2	1 3974	90518		72	17	17	18	80	00	0.0	1
3	24	0	3	2.5956	7.2497		23	13	16	19	0.0	00	30	+
1	24	5.6	4	1 3744	7.0417		24	14	10	20	80	0.0	0.0	1
5	24	11.2	5	-0.0505	6.9789		44	14	18					÷
6	15	0	6	2 4592	5 3084		Maayas Koura		Kood human	Ivaccasa				
7	16	56	7	1 1953	4 8897		Nu	0.2	E=	3000000000	P*= 1	1260000000	E*/=	÷
8	18	11.2	8	0.0446	4.4176		Tne	1	2	3	4	E	B	Ť
9	16	16.0	9	1 2324	4.0295		pr		-	Kounousumi se	apping nethodia	Suma S	a	-
10	B	10.0	10	19029	36136		411	2827506	3 IBDELE	28/2/6/16	2 22295-05	1 GEESELIE	295525.0	14
11	8	6.6	11	0.56(1	2,0021		433	1.62725-06	-3.713SE-06	11221E-05	-3.7130E-05	-1 1221E-05	-7 17505-0	븕
12	B	11.2	12	.0 1117	21035		CVICaLCIC)	9 38/85/06	-9.8031E-06	.6 2033E-07	1.66365-05	3 1966E-05	9.60185.0	ř.
13	8	16.8	13	.0.9627	1.0666		1012-021112	0.00402400	-0.00010-00	FLAMP BOUND US	mausued free	use anneurof as	0.00102-0	0
14	3	25.4	10	0.2024	1,0000	-		000010 0007	000 400 0004	DOTO DUORDA	1001 10 0010	100015 7050	accost acc	-

. 41.

Excel

. 42. Excel

📣 Workspace	🛛	💔 D: WatLab6\work\FKB2.m	🕯 MATLAB	🔳 🗖 🔀
File Edit View Web Wir	ndow Help	File Edit View Text Debug Breakpoints Web Window Help	File Edit View Web Wind	ow Help
😂 🛃 🔲 🕅 Stad	k Base 💌	🗅 😅 🗑 👗 🛍 🎕 이 이 🚧 升 🔮 🛣 🗐 🗶	🗅 😂 👗 🖻 🛍 🕫	C≥ 第 ? Current Directory: D:Watl
Name	Size -	1 % Вулкан 3 эпохи (автор Мазуров Б.Т.)	Current Directory 🛛 🛪 🗙	Command Window
A0	25x50	2 - ClC 3 kformat long:		0
Al	89x25	4 - format short e		0
A2	89x50	5 %A2F=clipboarddata	All files	0
A2m	89x25	6 %Обработка первой эпохи	<pre>fl.fig</pre>	D
A3	114x50	8 - Qv1_0=A1*Q1_0*A1'+Qd1;	figl.jpg	0
F 2	50x50	9 - G1=Q1_0*A1'*inv(Qv1_0);	fig23.jpg	0
F3	50x50	10 - Q1=(eye(25)-G1*A1)*Q1_0;	FKB1.m	ő
G1	25x89	12 - X1=X0+dX1;	FKB2.m	0.0400
G 2	50x89	13 - Qii=diag(Q1);	fX3.txt	>> 0v1 0-81801 088114041
G 3	50x114	14	Probal.m	>> G1=Q1 0*A1'*inv(Qv1 0);
III L1	89x1	16 - A2=[A1,A2m]:	aiil.txt	>> Q1=(eye(25)-G1*A1)*Q1_0;
H 12	89×1	17 - X2_1=F2*X1R;	[H] Qii2.txt	>> dX1=G1*L1
	89x1	18 - Q2_1=F2*Q1R*F2';	🔛 Qii3.txt	dX1 =
# P3	114x1	$19 = Qv2_1 = A2*Q2_1*A2'+Qd1;$ $20 = G2=02_1*A2'*inv(0v2_1);$	R.mat	
	25v25	21 - Q2=(eye(50)-G2*A2)*Q2_1;	R01.mat	-0.1570
	50×50	22 - dX2=G2*L2;]sl.enf	5.0636
	25×25	23 - X2=X2_1+dX2;	[ii] s1.jpg	-6.6921
	23x23	24 - Q112=d1ag(Q2); 25 - save Oii2.txt Oii2 -ascii -double -tabs;	Thumbs.db	-5.5201
	50x50	26 - £X2=A2*dX2;	[i]xl.txt	7.7828
	50×50	27 - m2=fX2'*inv(Qv2_1)*fX2;	X2.txt	11.6032
03 00	50×50	28 29 305nañozza znezbež здоух	X2 1.txt	3.2657
Q3_2	50x50	30 - X3_2=F3*X2;	X3.txt	-0.3236
tho dat	89x89	31 - Q3_2=F3*Q2*F3';	X3 2.txt	7.9163
Qd3	114x114	32 - Qd3=diag(P3); 33 - 0x3 2-53103 215314043;		0.2014
Qii	25x1	34 - G3=Q3 2*A3'*inv(Qv3 2);		0.8506
Qii2	50x1	35 - Q3=(eye(50)-G3*A3)*Q3_2;		16.3280
Qii3	50x1	36 - dX3=G3*V3_2;		-7.9979
0v1_0	89x89	38 - 0113=diag(03);		14.3885
@v2_1	89x89	39 - save Qii3.txt Qii3 -ascii -double -tabs;		-3.1199
@v3_2	114x114	40 - £X3=A3*dX3;		-4.0419
₩V3_2	114x1	$\frac{41}{42} = \frac{1}{100} $		4.0209
X0	25x1	43		3.7681
IIX II	25x1	44		15.4367
XIR	50x1			0.4000
X2	50x1 🗸			>> •
	<u> </u>		• •	
Ready		Ready	Ready	

, ,

—

. 44.

Matlab

· ,

•

_

NVSK

• • • •

• •

[64] GPS-18 GPS- (. 2), (. 45). NVSK (.).

,

. 46).

(

.

•

$$(\qquad \qquad .47. \\ - \varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{xy}).$$

. 47

27 2003 . . . 48

•

16

www.usgs.gov.

(27.09.03 - 17.10.03)

(27.09.03,

27.09.03

GPS-

– 7,3),

			(. 49),
GPS-	[64].	27	2003 .

•

2000, 2001,

2002 .

(

);

;

,

•

,

•

,

:

_

. 50. GPS-

$$\varepsilon = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases} = \begin{cases} \frac{\partial \delta_x}{\partial x} \\ \frac{\partial \delta_y}{\partial y} \\ \frac{\partial \delta_x}{\partial y} + \frac{\partial \delta_y}{\partial x} \end{cases}.$$
 (124)

•

:

_

GPS-

GPS-

. 52.

•

•

2003 .

[66].

,

, –).

 $\delta = \sqrt{\delta_x^2 + \delta_y^2} \, .$

(. . 58). . 63–65 ((124)).

•

•

•

,

,

,

_

,

,

_

,

2003 .,

27 2003 . GPS- 2001–2004 .

,

, . , , ,

•

,

. , . .). () , . , -. • , .

-, , (, , _____, ____, ____, ____, _____, _____,

1. . . , • , . 2: 2. . . 3. . . // . - ., 1988. - . 6–22. . – .: , 1979. 4. . . • •, 5. . 2: ; , 1979. • 6. . – .: , 1967. . . : 7. • : , 2002. – 423-XXI . 8. XXI : 2 .- .: ,2003. . . 9. // – 1987. – 1. – . 46–61. . . – 1958. – 10. // . . 7. - . 3–5. 11. . . •

12.	/	.// .		- 1982
12.				
13,				//
	:	, 1989. – . 68–87.		
14		:		
//		:		. –
: - ,	, 1996. – .	74–77.		
15. Sherman S. I., Gladkov A. S. F	ractals in studies of fault	ing and seisicity in the	Baikal rift zone // Tecton	ophysics.
– 1999.	_	Vol.	308.	-
P. 133–142.				
16 «	» .	XXI :	2 .;	. –
.: , 2003.				
17, .	•	.–	.: , 2003.	
18,	• •, • •			//
(). – 1988. – 10. – .	268–285.		
19, .				-
	. –	- :	, 1999.	
20				
· , ,	:	, 1989.		
21.	;		, –	··· ,
1979. – 256 .				
22				
	: ,	,	: , 1989.	

23.	, ., ., // .–2002.– 7.– .18–23.	-
24.	. , , , , , 1968 . 	•
25.	· · · · · · · · · · · · · · · · · · ·	
26.	· · · · · · · · · · · · · · · · · · ·	_
27.	; , ,	:
28.	· 1990	_
29.	//	•
30.	 .– .: , 1984.	•
31.		•
-	. , 2004. – . 267–270.	
32.		
6. 33. 511 .	:	_

34.			••••	–	:		
	, 2001. – 425 .						
35.			: .	–	:		
	, 2003. – 425 .						
36.			: .	–	: -		
	, 2004. – 456 .						
37.			: .	–	:		
	, 2005. – 530 .						
38.	• •,						
		// .	–	:	, 1999. – .	5–20.	
39.					:		
					// .		—
	:	, 2001. –	. 7–18.				
40.	• ••,	• •,			-		
							//
•	VIII		. Geoinfocad	d, ,	, 12–19	2004 .	-
	: , 2004. –	. 11–14.					
41.	• •,	• •,					
	-				-		
			//	•	«	1	
		», 1		1		.– i	:
1	- ,2004. – .409–416.						

., 2004. – . 89–93.

44. Seredovich Vladimir A., Pankrushin Venyamin K. and Mazurov Boris T. Mathematical Modeling and Identification of the Stressed-deformed State of Geodynamic Systems by Spatio-temporal Series of Combined Geodetic and Geophysical Observations in the Light of Prediction of Natural and Technogenic Catastrophes. FIG Working Week 2004, Athens, Greece, May 22–27, 2004.

45. . ., . . • •, // . - 2004. - . 9. - . 30–35. 46. . . • •, • •, // : . . . – , 2004. – . 175–183. 47. . . // , 2005. – . 184–193. : . . .-.

51

[]: (.)/; . . . - ,2005. - 012004.09418. 53. -

. .

- . : . . . : , 1994. – . 15–16. // XLII . – 56. // . . . , 2000. – . 33. : . L - . . – . 57. . . , . . // . / . . , . . . , 2006. – . 161–165. : -. 58. // . . . , , , 2004. – ., 2004. – . 7– . 225-. – . ., 14. 59. • •, • •, . . // . - 2004. - 6. - . 33-44. 60. // . . , 2004. – ., 2004. – . - . ., .225-. • . 106-110. // 61. • •, . . . - 2006. - 5. - . 27-35. 62. • • • . . // . - 2005. - 2. - . 27-35. 63. _ . . . - 2004. - . 9. - . 21-26. GPS, //

// . LIII : . . III. – : , 2003. – . 217–219. 65. Goldin V., Timofeev V. Yu., Ardyukov D. G. Fields of the Earth's Surface Displacement in the Chuya Earthquake Zone in Gornyi Altai: doklady Earth Sciences. – Vol. 405A, No. 9. – 2005. – . 1408–1413. / . . 66. . // . - 2006. - . 47, 8. - . 923-937. 67. Crustal motion in Indonesia from Global Positioning System measurements / Y. Bock and al. // Journal of geophysical research, V. 108, B8, 2367, doi:10.1029/2001JB000324, 2003. 68. Contemporary horizontal and vertical deformation in the Tien Shan / T. A. Herring and al. / . . , 2002». — .: , 2002. — . 75–84. «APGS-**GPS-**69. 1992-2000 // i i .- . .- i : i - .2004.- .41-49.70. •••, -2006 - 5 - 3 - 10// . . 71. . . • •, : , 1990. – 153 . 72. • •, • • . - 2002. - . 43, 6. - . 563-574. // 73. • •, // . - 2004. - . 9. - . 27-30.

74. Turcotte D. L. A fractal model for crastal deformanion // Tectonophysics, 132, 1986. – P. 261–269.

64.

• ••

• •,

75. Turcotte Donald L. Fractals and chaos in geology and geophysics // Second edition. Cambridge universite press, 1997. – 398 p.

76. International Conference «III – Posed and Inverse Problems» dedicated to Prof. M. M. Lavrent'ev on the occasion of his 70 th anniversary (August 5–9, 2002, Novosibirsk, Russia): Fractalness and recursiveness. Yu. I. Kuznetsov. – Novosibirsk, Sobolev Institute of Mathematics, 2002. – P. 101.

82. •• • // i i .-.. i: i - , 2004. – . 74–82. 83. 07-408-01. , 2001. . – .: 84. . – .: , 1983. – 328 . . . 85. . . || : . . – : , 1984. - . 108–115. 86. . . // . . . – 1984. – 11. – . 23–25. 87. . . // . . . - 1985. - 1. -. 39–44. 88. . ., . . . – .: , 1985. – 248 . 89. 90. · ·, · · _ ••• // - -2005. 7. (, 2005 .). – : , 2005. . 2. – . 51–55. 25–29

91. •••, •••, ••• . - 2005. - 5. - . 3-13. // . . 92. . . • •, • •, . - 2005. - 6. - . 3-14. // . . 93. . . : . // . LIII . , 11–21 2003 . . II. – : , 2003. – . 247– ., . 70-251. 94. ••• • • . - 2003. - 2. - . 27-33. // 95. . ., . ., . . // - : - . ,2001. - .271–277. 96. /// : ,1999. – .356–362. : . . .– 97. • •, . . . - . - 1993. - 9. // . – .: , 1978. – 154 . 98. • •, • • 99. . ., . . • •, // • • • : , 1999. – . 139–146.

100. • •, // • • 1999. – . 139–146. 101. • • • . . » // « : . , 1999. – . 408–414. : • 102. / . . . // , 2004. – . 326–328. : -. . . – 103. • •, . . • •, // . . , 2004. – . 297–302. : -• 104. , 2004. – . 115–118. // . : -. — • 105. , 2001. – . 158–164. // : -. . – . 106. •, • , 2004. – . 526–529. // . . . – : . 107. • •, • •, // . - 2001. - 2. - . 12-18. , 1979. – 388 . 108. . – .: • 109. . – .: , 1988. – 382 .

110. Mogi K. Relations of eruptions of various volcanoes and the deformation of the ground surface around them // Bull Earthquake Res. Inst., 1958, Tokyo Univ., 36, 99-134.

111, .	:				. 2; .
. – , 1985. – 360 .					
112	.: , 1979.				
. 113.		/ .	•••		. – .:
, 1984. – 312 .					
114.	(1975 –	- 1976 .,); .		:
, 1984. – 637 .					
115,,					
// (). –	1988. – 10. – . 26	58–285.			
116. Donellan A., Hager B. H., King R. W	V. Rapid north-south	shortening jf the	e Ventura ba	sis, southern	Califotnia //
Nature 1993 V. 366 333.					
117. Heck B. Time-dependent geodetic be	oundary value problem	ms. Figure and	dynamique I	Earth, Moon a	and Planets:
Proc. Int. Symp.: Prague, Sept. 15-20, 198	6. Pt. 1 – Prague, 198	87 .– P. 195–225	, ,		
118. Heck B., Malzer H. On some problem	ns connected with the	determination of	of recent verti	cal crustal mo	ovemens fro
repeated levellings and gravitymeasurment	ts tectonophysics. 130) (1986). – P. 29	9–305.		
119,			. –	., 1990. – 14	9.28
).			
120				//	
:	, 1989. – . 9–26				
121		: ,1	965. – 379		
122		:	, 1981. – 1	232 .	
123					
//		. – 1990. –	- 4 30	0–37.	
124.

. – 1995.

- 10.- . 20–30.

• • •

125. Geodetic and geophysical effects associated with seismic and volcanic hazards. Edited by Jose Fernandez. – Birkhauser Verlag, 2004. P. 1301–1611.

//

:

126. Battaglia M., Segall P. The interpretation of gravity changes and crustal deformation in active volcanic areas / Geodetic and geophysical effects associated with seismic and volcanic hazards. Edited by Jose Fernandez. – Birkhauser Verlag, 2004. P. 1453–1467.

127. Intrusive Mechanisms at Mt. Etna Forerunning the July-August 2001 eruption from seismic and ground deformation data / A. Bonaccorso and al. // Geodetic and geophysical effects associated with seismic and volcanic hazards. Edited by Jose Fernandez. – Birkhauser Verlag, 2004. P. 1469–1487.

128. Bonaccorso A., Sansosti E., Berardino P. Comparison of integrated geodetic data models and satellite radar interferograms to infer magma storage during the 1991–1993 Mt. Etna eruption / Geodetic and geophysical effects associated with seismic and volcanic hazards. Edited by Jose Fernandez. – Birkhauser Verlag, 2004. P. 1345–1357.

129. Methods for evaluation of geodetic data and seismicity developed with numerical simulations: review and applications / K. F. Tiampo and al. // Geodetic and geophysical effects associated with seismic and volcanic hazards. Edited by Jose Fernandez. – Birkhauser Verlag, 2004. P. 1489-1507.

130.

//

. .

,

131.

. – .: , 1988. – 212 .

132.

, 1970. – 180 .

133. . . ,

140. GPS monitoring in the N-W part of the volcanic island of Tenerife, Canaries, Spain: Strategy and results / Geodetic and geophysical effects associated with seismic and volcanic hazards. Edited by Jose Fernandez. – Birkhauser Verlag, 2004. P. 1359–1377.

141. • •• • •, • • // 8-: 142. . . • ••, . – 1991. – 10. – . 130–134. // 143. // • •, • • 1993. – 7. – . 8–11. 144. . . . - 2000. - 8. - . 24-27. // 145. • •, • •, XXI : 2 . . 2; • , 2003. – 333 . 146. • • •• . . , . – 2004. – 6. – . 12–18. // . . 147. • •, • •, . . // • 1980. – . 78–85. 148. // . . . - 1982. - 9. - . 12-15.

149.					
	// .		. – 1984. – 3. –	. 72–75.	
150.					//
	. – 1993. – 2	2. – . 8–10.			
151.	• •,				
//		. – 1990. – 2. – . 14	-16.		
152.	• •,	,			
			-	//	. – 2003.
- 8	. 36–39.				
153.					
		/	. //	. – 2003. –	8. – . 44–46.
154.	• •,		: .		. – .: .
., 1989.	-367 .: .				
155.			;	:	, 1987. – 711
1 <i>5 (</i>					
156.	• •,	• •,	• •		1007
5 1	21 127		// .	·	. – 1997. –
31	.51-157.				
137.	•••,	· ·	• 108		
158	~ -	», 1302. –	. ,170	595.	
150.	• •,	•••,••			
//				1094 74	25

// : . . - : , 1984. - . 24–35.

159. • •, . . // . — . - 1986. - 1. - . 5-13. • 160. . . • •, // . . . - 1988. - 1. - . 3-11. 161. // . . : , 1972. – . 126–131. • . — 162. . . // . . . – : , 1989. – . 50–57. : // . . 163. . – 1985. – • • 3.- .34-41. 164. • •, . . -. – 1985. – 5. – // . . _ . 11–17. 165. • •, . . // 1985. – 6. – . 80–90. 166. • •, . . – // . . XII • ,

						. – ,
1991. –	. 83.					
167					"	
1071		•••				//
	»			-		// • •
			. – 1991. – 4	. – . 54–68.		
168.					«	
			»	_		-
			//		1002 2	77 02
1.00			// •	•	1992 2	. 11-92.
169.		•••		-	- ,	
					*	
			»// .		. – 1993. – 1–2. –	. 82–104.
170						
170.		•••				11
				*		» // .
•			. – 1994.	2-3 82-97.		
171.				/	. //	
	3.				. – :	. 1997. –
271	0.					, 19971 - 201
271.						
172.		• • • • • •				
	//	•	•	1998 1 1	106–111.	
173.						
		•				
1	`		11		1000	26.42
()		// .	•	. – 1999. – 3.	26-43.

. –

174. . . . - 1999. - 6. - . 41-62. // . . 175. . . , // . . . - 2000. - 6. - . 100-121. 176. . – .: , 1970. . . • •, -124 . 177. • ••, . . • •, // . – 2003. – . . 8.– . . 143–147. 178. ; - .; ,1980. – 160 . // 179. . . - ., 1980. - . 49–73. 180. // . . . • , , 1989. – . 39 (79). – . 62–71. 181. , . . , 24–28 . 1990 . – // . . IX-, 1990. – , . 25–26. // . 182. . . : , 1993. – . 51 (91). – . 36–41.

183.							//
	XLIII	. :		1	_	: ,199	5. – . 28–31.
184.							
	:	,	. –		, 6–9 . 1	997. –	, 1997. –
298							
185.	• •,			-		-	. –
2001.	- 45-9.						
186.	• •,	• •,					// i
	i			–	i: i -	, 2004. –	. 423–426.
187.							//
•		: -	•	, 2004	459–463	3.	
188.	•••,						
			//		–	:	
	, 2004. – . 469–475						
189.				//	•	–	: -
•					,	2004.	_
. 10	3–112.						
190.	• •,	 // .		. –	: -	-	. 2004. – .
210-2	213.	··· -	-				, · ·
191.	• •,	• ••			:	, 1986. – 30	1.
192. N	Monmonier M. Cartograp	phies of danger.	– Chicago, 19	997. – 363 p.			

193.

• •

, 2004. – . 197–202. -194. »/ . . . // ~ . , 2005. – . 125–129. : - . 195. , 2005. – . 125–129. // : . .– -• . 196. / . . , 2005. – . 203–218. . // : -. • • . — 197. / . . . , 2005. – . 248–254. . // : -. . .-198. : , 2004. – 260 . : . – 199. 2 : • . . », 2005. – 334 . . . 1. – .: ** 200. . – .: . ., 1979. – 432 . . . 201. . . • •, : . ., 1998. – 314 .

//

202. Terada T., Miyabe N. Deformation of the earth crust in Kwansai districts and its relation to the orographic feature // Bull. Earthquake Res. Inst., Univ. Tokyo, 7, 223 (1929).

 203.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

205.	•••,	•••,				
		:	:	, 1989.		
206.					/	. //
:	•	,	. 225-	. –	.: , 20	004. –
. 251–253	3.					
207.				: ,	, 1991. – 213 .	
208.						
		. – …	, 1996.			
209.				. – …	, 1983. – 112 .	
210.	•••,			:	, 1972. – 145 .	
211.	•••,			:	-	
					// -	-2005.
•	.: .	7.(, 25–29	2005 .). –	: , 2005.	. 2. –
. 56 – 62.						
212.						
		// .		. – 2007. –	- 2 97–106.	
213.	•••,			:		
					// -	-2005.
•	.: .	7.(, 25–29	2005 .). –	: , 2005.	. 2. –
. 62–67.						
214.						
				//		

. - 2007. - 3. - . 93-101.

215. •• : • • , 1989. – 89 . : 216. : . . • • // - -2005. 7. 2005 .). – , 2005. . 2. – . 67–74. , 25–29 : (217. . - 2007. - 4. // . . , 1984. – 218. . – … •• . 831 . 219. — • •, // , 2006. – . 102–111. : - . 220. Mazurov B. T., Pankrushin V. K. Models Parameter Adaptation of Geodynamic Objects and Observation

// . – 2006. – . 11. –

. 84–94.

222. Clayton V. Deuth. Geostatistical reservoir modeling. – Oxford, University press, 2002. – 376 p.

223.	,			. –	,
1989. – 2					
224.					
	- 2006 - 4 - 99-104				// .
225.		-			
					//
-	-2005 : .	7.(, 25–29	2005 .). –	:
, 20	005 3, . 2. – . 141–146.	·			
226.	,				
		//		. – 1979. – 1. –	16–27.
227.		: . ;			. – …
, 19	991. – 268 .				
228.	MatLab: .	:	- ,1	998. – 350 .	
229.	Matlab 6.5 SP1/7 + Simu	ılink 5/6		:	- ,
2005 5					
230.	Maple V Pover Edition. – .	; , 1998. – 24	0.		
231.	Mathcad 7 Pro	:	-	, 1998. – 384 .	
232.	,	Mathe	matica 2.2. –	.: , 1997. –	- 368 .
233.		: ,1	1997. – 240 .		
234.	;	, .	, •	. ; .	
	. – .: , 1986, 464 .				

235.		//
	. – 2005. – 12. – . 43–52.	
236.	:	, 2005. – 424 .
237.	2003 (= 7,5) []/
	. – 2003. – 1 (21). –	: http://www.scgis.ru/russian/cp 1251/hdgggms/1
2003/scr	rep-7.pdf.	
238.	· ·, · ·	
_	//2006.	- 4 53–57.
239.	,	// .
. –	: , 2006).
240.		2003 // .
	,	, , , 2004. – ., 2004. – . 447–451.
241.		-
	//	XXI :
	: , 2003. – . 47–52.	
242.		//
	. – 2007. – 3. – . 48–50.	
243.		
	//	. – 2007. – 4. – . 51–53.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0,626	-0,174	-0,480	0,035	0,167	-0,035	-0,313	0,174	0,000	0,000	0,000	0,000	0,000	0,000
2	-0,174	0,458	-0,035	-0,069	0,035	-0,160	0,174	-0,229	0,000	0,000	0,000	0,000	0,000	0,000
3	-0,480	-0,035	0,763	0,174	-0,313	-0,174	0,031	-0,161	0,000	0,195	0,000	0,000	0,000	0,000
4	0,035	-0,069	0,174	0,848	-0,174	-0,229	-0,202	-0,551	0,167	0,000	0,000	0,000	0,000	0,000
5	0,167	0,035	-0,313	-0,174	1,253	0,000	-0,961	0,000	0,000	0,000	0,167	-0,035	-0,313	0,174
6	-0,035	-0,160	-0,174	-0,229	0,000	0,915	0,000	-0,138	0,000	0,000	0,035	-0,160	0,174	-0,229
7	-0,313	0,174	0,031	-0,202	-0,961	0,000	2,813	0,189	-1,278	-0,161	-0,313	-0,174	0,335	0,000
8	0,174	-0,229	-0,161	-0,551	0,000	-0,138	0,189	2,043	-0,202	-0,348	-0,174	-0,229	0,000	-0,320
9	0,000	0,000	0,000	0,167	0,000	0,000	-1,278	-0,202	1,561	0,174	0,000	0,000	-0,313	-0,174
10	0,000	0,000	0,195	0,000	0,000	0,000	-0,161	-0,348	0,174	1,128	0,000	0,000	-0,174	-0,229
11	0,000	0,000	0,000	0,000	0,167	0,035	-0,313	-0,174	0,000	0,000	0,626	0,174	-0,480	-0,035
12	0,000	0,000	0,000	0,000	-0,035	-0,160	-0,174	-0,229	0,000	0,000	0,174	0,458	0,035	-0,069
13	0,000	0,000	0,000	0,000	-0,313	0,174	0,335	0,000	-0,313	-0,174	-0,480	0,035	1,253	0,000
14	0,000	0,000	0,000	0,000	0,174	-0,229	0,000	-0,320	-0,174	-0,229	-0,035	-0,069	0,000	0,915
15	0,000	0,000	0,000	0,000	0,000	0,000	-0,313	0,174	0,031	-0,202	0,000	0,000	-0,480	0,035
16	0,000	0,000	0,000	0,000	0,000	0,000	0,174	-0,229	-0,161	-0,551	0,000	0,000	-0,035	-0,069
17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,167	0,000	0,000	0,000	0,000
18	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,195	0,000	0,000	0,000	0,000	0,000
19	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
20	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
21	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
22	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
23	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
24	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
25	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
26	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
27	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
28	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
4	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
6	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
7	-0,313	0,174	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
8	0,174	-0,229	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
9	0,031	-0,161	0,000	0,195	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
10	-0,202	-0,551	0,167	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
11	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
12	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	-0,480	-0,035	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	0,035	-0,069	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
15	2,187	0,016	-1,278	-0,161	0,000	0,000	0,000	0,000	0,167	-0,035	-0,313	0,174	0,000	0,000
16	0,016	1,585	-0,202	-0,348	0,000	0,000	0,000	0,000	0,035	-0,160	0,174	-0,229	0,000	0,000
17	-1,278	-0,202	1,561	0,174	0,000	0,000	0,000	0,000	-0,313	-0,174	0,031	-0,161	0,000	0,195
18	-0,161	-0,348	0,174	1,128	0,000	0,000	0,000	0,000	-0,174	-0,229	-0,202	-0,551	0,167	0,000
19	0,000	0,000	0,000	0,000	0,626	-0,174	-0,480	0,035	0,000	0,000	0,000	0,000	0,000	0,000
20	0,000	0,000	0,000	0,000	-0,174	0,458	-0,035	-0,069	0,000	0,000	0,000	0,000	0,000	0,000
21	0,000	0,000	0,000	0,000	-0,480	-0,035	1,253	0,000	-0,480	0,035	0,000	0,000	0,000	0,000
22	0,000	0,000	0,000	0,000	0,035	-0,069	0,000	0,915	-0,035	-0,069	0,000	0,000	0,000	0,000
23	0,167	0,035	-0,313	-0,174	0,000	0,000	-0,480	-0,035	1,879	0,174	-0,961	0,000	0,000	0,000
24	-0,035	-0,160	-0,174	-0,229	0,000	0,000	0,035	-0,069	0,174	1,373	0,000	-0,138	0,000	0,000
25	-0,313	0,174	0,031	-0,202	0,000	0,000	0,000	0,000	-0,961	0,000	2,813	0,536	-1,278	-0,230
26	0,174	-0,229	-0,161	-0,551	0,000	0,000	0,000	0,000	0,000	-0,138	0,536	2,043	-0,133	-0,348
27	0,000	0,000	0,000	0,167	0,000	0,000	0,000	0,000	0,000	0,000	-1,278	-0,133	1,561	-0,174
28	0,000	0,000	0,195	0,000	0,000	0,000	0,000	0,000	0,000	0,000	-0,230	-0,348	-0,174	1,128

		1		1		
	x ()	y()	$u_x()$	$u_y()$	$m_{u_x}()$	$m_{u_y}()$
NVSK	595	-114	0,00	0,00	0,00	0,00
YAZU	122	273	-0,10	4,18	0,85	1,02
CHAG	64	245	3,14	2,76	0,97	1,08
UKOK	8	234	21,32	17,10	1,73	1,94
BALY	135	213	-0,96	4,22	1,07	1,24
KURA	84	207	-0,50	-0,96	0,89	1,03
ULAG	112	189	-0,08	1,20	1,76	2,08
ARTB	257	158	-7,38	-3,20	1,89	2,06
TUNZ	280	101	-9,82	2,50	1,99	2,07
CHIK	128	93	0,20	2,00	0,88	1,05
ELTS	419	83	-0,34	3,76	1,21	1,20
SEMI	169	44	-0,14	1,72	0,86	1,10
KAYT	73	33	-3,18	19,26	1,56	1,91
KAIT	73	31	-0,70	1,80	0,88	1,03
USTK	161	-16	0,44	-2,28	0,89	1,02
ANUI	319	-16	-8,40	-1,46	1,98	1,94
SOLO	246	-40	2,26	-0,26	1,78	1,74
KRUT	497	-249	-2,66	9,42	1,58	1,47

:

T	
1	,

			_	$\varepsilon_{xx} = e_{11}$	$\varepsilon_{yy} = e_{22}$	$\varepsilon_{xy} = \frac{e_{12} + e_{21}}{2}$
1	KRUT	SOLO	ANUI	-1,08E-07	-6,89E-10	-7,85E-08
2	KRUT	ANUI	NVSK	-1,93E-09	-1,54E-08	-1,43E-08
3	NVSK	ANUI	ELTS	3,73E-08	1,77E-08	3,93E-08
4	ANUI	TUNZ	ELTS	1,07E-08	1,42E-08	5,41E-08
5	ANUI	SOLO	TUNZ	-5,39E-08	-2,50E-08	-5,12E-08
6	ELTS	TUNZ	ARTB	7,61E-08	-4,50E-09	-1,21E-08
7	SOLO	USTK	SEMI	-1,21E-08	4,11E-08	3,94E-08
8	SOLO	SEMI	TUNZ	-7,32E-08	-3,46E-09	-1,46E-08
9	TUNZ	SEMI	ARTB	5,33E-09	4,85E-08	-8,52E-08
10	SEMI	CHIK	ARTB	-2,99E-08	-3,05E-08	-3,19E-08
11	CHIK	ULAG	ARTB	-1,18E-08	-3,35E-08	-3,35E-08
12	ULAG	BALY	ARTB	9,10E-09	-2,76E-09	4,04E-08
13	BALY	YAZU	ARTB	3,18E-09	-6,77E-08	-3,32E-08
14	USTK	KAIT	SEMI	-1,06E-08	-9,65E-09	3,74E-08
15	SEMI	KAYT	CHIK	3,05E-08	-1,67E-07	-5,30E-08
16	CHIK	KAYT	KURA	1,24E-08	-1,99E-07	-2,82E-08
17	CHIK	KURA	ULAG	-5,01E-10	7,93E-08	9,71E-09
18	ULAG	KURA	BALY	-3,19E-08	9,78E-08	1,44E-08
19	BALY	KURA	YAZU	1,19E-08	9,94E-08	5,09E-09
20	KAYT	UKOK	KURA	3,31E-08	-2,74E-07	-1,87E-07
21	KURA	UKOK	CHAG	-6,42E-08	-2,49E-07	-1,71E-07
22	KURA	CHAG	YAZU	5,26E-08	-1,80E-08	2,64E-09

unit MSS3;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls;

type

TForm1 = class(TForm)

Memo1: TMemo;

Button1: TButton;

Button2: TButton;

procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

a : array [1..100] of integer;

tr1 : array [1..100,1..60] of integer;

ijk : array [1..100,1..3] of integer;

kss, ks : array [1..60,1..60] of real;

b : array [1..6,1..60] of integer;

bt : array [1..60,1..6] of integer;

xy : array [1..60,1..2] of real;

ke : array [1..6,1..6] of real;

4

```
kes : array [1..60,1..6] of real;
 i,j,k, l, m, c, t,d, ls: integer;
 str,str1,str2: string;
 xo1,xo2,xo3,yo1,yo2,yo3,x2,x3,y2,y3,x23,x32,y23,y32,s2,h,v,E,G : real;
 E2, VE : real;
 f : text; bo: boolean;
implementation
{$R *.dfm}
procedure TForm1.Button1Click(Sender: TObject);
begin
//
  AssignFile(F,'C:\BT\Diss2\Delphy\prim3.txt');
  Reset(f);
// while not(Eof(f)) do begin
  readln(f,str); str:=str+' ';ls:=Length(str);
  str1:="; j:=1;
```

```
for i:=1 to ls do if str[i]<>' then str1:=str1+str[i]
```

```
else begin a[j]:=Strtoint(str1); j:=j+1; str1:=";end;
```

```
m:=a[1]; c:=a[2]; t:=a[3]; //
```

```
Memo1.Lines.Add(str); d:=2*(m+c);
```

//

```
for k:=1 to t do begin
readln(f,str); str:=str+' ';ls:=Length(str);
str1:="; j:=1;
for i:=1 to ls do begin
bo:=(str[i]='1') or (str[i]='2') or (str[i]='3') or (str[i]='4') or (str[i]='5') or
(str[i]='6') or (str[i]=7') or (str[i]='8') or (str[i]='9') or (str[i]='0') or (str[i]='.');
if bo then str1:=str1+str[i]
```

•

,

,

```
else begin tr1[k,j]:=Strtoint(str1); j:=j+1; str1:=";end;
            end;
                                                    Memo1.Lines.Add(str); end;
//
            for k:=1 to t do begin
            readln(f,str); str:=str+' ';ls:=Length(str);
            str1:="; j:=1;
            for i:=1 to ls do begin
            bo:=(str[i]='1') \text{ or } (str[i]='2') \text{ or } (str[i]='3') \text{ or } (str[i]='4') \text{ or } (str[i]='5') \text{ or } (str[i]='5') \text{ or } (str[i]='1') \text{ or } (st
             (str[i]='6') or (str[i]='7') or (str[i]='8') or (str[i]='9') or (str[i]='0') or (str[i]='.');
            if bo then str1:=str1+str[i]
            else begin ijk[k,j]:=Strtoint(str1); j:=j+1; str1:=";end;
                                                    Memo1.Lines.Add(str); end;
            end;
//
            for k:=1 to m+c do begin
            readln(f,str); str:=str+' ';ls:=Length(str);
            str1:="; j:=1;
            for i:=1 to ls do begin
```

```
bo:=(str[i]='1') or (str[i]='2') or (str[i]='3') or (str[i]='4') or (str[i]='5') or
```

```
(str[i]='6') or (str[i]='7') or (str[i]='8') or (str[i]='9') or (str[i]='0') or (str[i]='.');
```

```
if bo then str1:=str1+str[i]
```

```
else begin xy[k,j]:=Strtofloat(str1); j:=j+1; str1:=";end;
```

end; Memo1.Lines.Add(str); end;

CloseFile(f);

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

v:=0.3; E:=0.2; G:=E/2/(1+v); h:=1;

E2:=E/(1-v*v); VE:=v*E/(1-v*v);

for k:=1 to d do for j:=1 to d do ks[k,j]:=0;

//

```
for i:=1 to t do begin //
```

xo1:=xy[ijk[i,1],1]; yo1:= xy[ijk[i,1],2];

xo2:=xy[ijk[i,2],1]; yo2:= xy[ijk[i,2],2];

xo3:=xy[ijk[i,3],1]; yo3:= xy[ijk[i,3],2];

x2:=xo2-xo1; x3:=xo3-xo1; y2:=yo2-yo1; y3:=yo3-yo1;

```
x32:=x3-x2; x23:=-x32; y32:=y3-y2; y23:=y2-y3;
```

s2:=x2*y3-x3*y2; //

```
ke[1,1]:=E2*y23*y23+G*x32*x32; ke[1,2]:=(VE+G)*x32*y23;
```

```
ke[1,3]:=E2*y23*y3-G*x32*x3; ke[1,4]:=VE*y32*x3+G*x32*y3;
```

```
ke[1,5]:= E2*y32*y2+G*x32*x2; ke[1,6]:=VE*y23*x2-G*x32*y2;
```

```
ke[2,2]:= E2*x32*x32+G*y23*y23; ke[2,3]:=VE*x32*y3-G*y23*x3;
```

```
ke[2,4]:= E2*x23*x3+G*y23*y3; ke[2,5]:=VE*x23*y2+G*y23*x2;
```

ke[2,6]:= E2*x32*x2-G*y23*y2;

```
ke[3,3]:=E2*y3*y3+G*x3*x3; ke[3,4]:=-(VE+G)*x3*y3;
```

```
ke[3,5]:= -E2*y2*y3-G*x2*x3; ke[3,6]:=VE*x2*y3+G*x3*y2;
```

```
ke[4,4]:= E2*x3*x3+G*y3*y3; ke[4,5]:=VE*x3*y2+G*x2*y3;
```

```
ke[4,6]:= -E2*x2*x3-G*y2*y3; ke[5,5]:=E2*y2*y2+G*x2*x2;
```

```
ke[5,6]:= -(VE+G)*x2*y2; ke[6,6]:=E2*x2*x2+G*y2*y2;
```

//

for k:=2 to 6 do for j:=1 to k-1 do ke[k,j]:=ke[j,k];

for
$$k:=1$$
 to 6 do for $j:=1$ to 6 do $ke[k,j]:=h*ke[k,j]/s2$;

//

```
for k:=1 to 6 do for j:=1 to d do b[k,j]:=0;
```

for k:=1 to m+c do begin

```
if tr1[i,k]<>0 then begin b[(tr1[i,k]*2-1),k*2-1]:=1;
```

b[(tr1[i,k]*2),k*2]:=1; end; end;

for k:=1 to d do for j:=1 to 6 do bt[k,j]:=b[j,k];

For k:=1 to d do // Bt ke

```
for j:=1 to 6 do
  begin
   Kes[k,j]:=0;
   for l:=1 to 6 do Kes[k,j]:=Kes[k,j]+bt[k,l]*ke[l,j];
   end;
For k:=1 to d do //
                                        Kt K
  for j:=1 to d do
   begin
   KS[k,j]:=0; for l:=1 to 6 do KS[k,j]:=KS[k,j]+Kes[k,l]*b[l,j];
   end;
//
for k:=1 to d do for j:=1 to d do KSS[k,j]:=KSS[k,j]+KS[k,j];
end;//
for k:=1 to d do begin str:=";for j:=1 to d do
 str:=str+Floattostr(kss[k,j])+'';
Memo1.Lines.Add(str); end;
end;
end.
```

3 % (. .) clc %format long; format short e %A2F=clipboarddata % Qd1=diag(P1); Qv1_0=A1*Q1_0*A1'+Qd1; G1=Q1_0*A1*inv(Qv1_0); Q1=(eye(25)-G1*A1)*Q1_0; dX1=G1*L1; X1=X0+dX1; Qii=diag(Q1); % A2=[A1,A2m]; X2_1=F2*X1R; Q2_1=F2*Q1R*F2'; Qv2_1=A2*Q2_1*A2'+Qd1; G2=Q2_1*A2**inv(Qv2_1); Q2=(eye(50)-G2*A2)*Q2_1; dX2=G2*L2; X2=X2_1+dX2; Qii2=diag(Q2); save Qii2.txt Qii2 -ascii -double -tabs; fX2=A2*dX2;m2=fX2'*inv(Qv2_1)*fX2;

%

X3_2=F3*X2;

Q3_2=F3*Q2*F3';

Qd3=diag(P3);

Qv3_2=A3*Q3_2*A3'+Qd3;

G3=Q3_2*A3**inv(Qv3_2);

Q3=(eye(50)-G3*A3)*Q3_2;

dX3=G3*V3_2;

X3=X3_2+dX3;

Qii3=diag(Q3);

save Qii3.txt Qii3 -ascii -double -tabs;

fX3=A3*dX3;

m3=fX3'*inv(Qv3_2)*fX3;

020461 04.03.1997.

630108, , . , 8.

.

•